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ABSTRACT 

Introduction: Anterior shoulder instability (ASI), a common clinical problem, 

causes significant functional impairments.  Despite little evidence to support its 

use, rehabilitation directed at the unstable glenohumeral joint often includes 

McConnell shoulder taping. This taping technique consists of a base layer of tape 

followed by application of a rigid strapping tape (corrective) to restrain excessive 

translation of the humeral head. The aims of this study  were to determine the 

effects of McConnell shoulder taping on EMG amplitude of ten shoulder muscles 

and on shoulder joint peak torque between three conditions: no tape and base 

tape alone; no tape and McConnell tape (base plus corrective) and between 

base tape alone and McConnell tape during isokinetic scaption and external 

rotation at two abduction positions in subjects with ASI.   

Methods: Eleven subjects with ASI completed concentric isokinetic testing in 

three functional exercise movement patterns while wearing a combination of fine 

wire and surface electrodes.  Peak EMG amplitude for three phases of each 

movement pattern and peak isokinetic shoulder joint torque were evaluated.  The 

absolute values of the change scores between the three tape conditions were 

analyzed using t tests (p<.0166). 

Results: Changes in EMG activity between each of the taping conditions 

increased in some subjects and decreased in others.  On the whole, significant 

differences in EMG amplitude occurred after application of full McConnell taping 
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as well as after application of base tape alone for the rotator cuff and deltoid 

muscles in all three movement patterns. The remaining six muscles 

demonstrated significant changes in EMG amplitude over selective arcs of 

motion in some movement patterns, although findings were less consistent. No 

significant differences in shoulder joint peak torque for any of the taping 

conditions arose.  

Discussion: McConnell taping effects a change in EMG activity for most shoulder 

muscles but not on peak torque in subjects with ASI.  Similarly, the base tape 

alone can also cause a change in EMG activity.  This suggests a possible 

sensory effect from tape on the skin. 

Conclusion: This study supports the use of McConnell shoulder taping as a 

means for influencing neuromuscular activity during a shoulder rehabilitation 

program for persons with ASI. 
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CHAPTER I 

 

INTRODUCTION 

 

 

Background of the problem:  

The glenohumeral joint (GHJ) of the shoulder serves as a critical 

articulation for functional upper extremity movement. Its ball and socket joint 

design affords a tremendous range of motion (ROM) in multiple anatomic planes, 

however the GHJ frequently becomes unstable. This is largely due to the 

shoulder joint socket (glenoid) being too shallow to fully contain the ball (humeral 

head) (Curl & Warren, 1996).  Therefore, the shoulder joint relies heavily on the 

local soft tissues for stability and restriction of excessive motion.  

Static stability is afforded by the joint capsule, glenohumeral ligaments 

and labrum, a rim of fibrocartilage that encircles and deepens the socket (Curl & 

Warren, 1996).  Dynamic stability is provided primarily by the four rotator cuff 



13 
 

muscles: supraspinatus, infraspinatus, teres minor and subscapularis, whose 

combined action line draws the humeral head directly into the glenoid, centering 

the humeral head thus limiting excessive motion (Lippitt, Vanderhooft, Harris et 

al., 1993).  Adding to glenohumeral joint control the deltoids, latissimus dorsi, 

pectoralis major, biceps brachii and serratus anterior provide secondary dynamic 

stability. Numerous cadaveric laboratory experiments demonstrate a decrease in 

movement of the humeral head when tension is applied to the rotator cuff  

(Blasier, Guldberg, & Rothman, 1992; Lippitt et al., 1993), biceps (Itoi, Newman, 

Kuechle, Morrey, & An, 1994; Pagnani, Deng, Warren, Torzilli, & O'Brien, 1996) 

and the deltoids (Kido, Itoi, Lee, Neale, & An, 2003).  

 Deficiency in any part of the stabilizing system (static, dynamic or 

both) can allow excessive translatory movement of the humeral head on the 

glenoid, termed subluxation (Dodson & Cordasco, 2008).  Repeated subluxation 

results in clinical shoulder instability.  Matsen (1991) defines instability as a 

clinical condition in which unwanted translation of the humeral head on the 

glenoid compromises the comfort and function of the shoulder While abnormal 

motion of the humeral head in any direction can cause instability, the most 

common type of shoulder instability occurs in the anterior (forward) direction 

(Dodson & Cordasco, 2008).  

The clinical manifestation of anterior shoulder instability (ASI) includes a 

patient complaint that the shoulder is slipping out of place, most notably when the 
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arm is placed in full abduction (sideways elevation) and external (outward) 

rotation (Dodson & Cordasco, 2008).  As this is the position of the arm during 

throwing (coined the 90/90 position), ASI often precludes an athlete from 

participating in their sport. Studies using electromyographic analysis (EMG), 

which records the electrical activity in contracting muscles (DeLuca, 2002), 

demonstrate abnormal muscle activity in subjects who have ASI during throwing 

(Glousman et al., 1988; Kim, Ha, Kim, & Kim, 2001; McMahon, Jobe, Pink, 

Brault, & Perry, 1996).  In a study of 26 subjects with ASI, 59% of subjects 

reported a marked decrease in the ability to perform in sports as well as other 

symptoms of impaired strength, decreased ROM and pain induced by activity 

(Tsai, 1991).  Functional limitations resulting from ASI are seen not only in sport, 

but also during more routine activities of daily living (ADL) such as pulling a shirt 

over one’s head.   

Rehabilitation of patients with anterior shoulder instability, therefore, 

focuses on strategies to improve function by strengthening the dynamic 

stabilizers (Jobe, Moynes, & Brewster, 1987; Jaggi & Lambert, 2010). 

Strengthening an unstable joint without causing symptoms of subluxation can be 

challenging.  One method to restrain excessive humeral head motion during 

strengthening exercises is shoulder taping.  Jenny McConnell, an Australian 

physical therapist, first introduced her taping technique in 1986 to treat patella 

(knee cap) instability (McConnell, 1986) and later expanded her technique to 

remedy the unstable shoulder joint (McConnell & McIntosh, 2009).  McConnell 
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taping uses two layers of tape; a base tape layer to protect the skin (Coverall ®) 

followed by a rigid corrective tape (Leukotape ®) used to realign the joint.  With 

patella taping, McConnell proposes that pulling the patella more medially 

(inwards) helps restore normal joint alignment that facilitates activation of the 

vastus medialis oblique (VMO), the primary medial muscular stabilizer 

(McConnell, 1986). Alterations to VMO electromyographic activity after 

McConnell patella taping in subjects with patellofemoral pain (PFP) occurred in 

numerous investigations. One author reports increased EMG magnitude (relative 

activity) after application of patella tape (Christou, 2004), another reported a 

decrease in EMG magnitude (Ng & Cheng, 2002) and a third found both  

increases and decreases in EMG magnitude (Cowan, Hodges, Crossley, & 

Bennell, 2006).  It appears from these studies that patient response to McConnell 

taping varies on an individual basis. 

Additionally, Christou (2004) found an increase in EMG magnitude of the 

VMO after application of a placebo tape. Placebo taping, wherein tape is applied 

to the skin with no joint correction made, is often employed in experimental 

taping studies as a control. The increased EMG activity in subjects during 

placebo taping in Christou’s study may point to a possible sensory effect of tape 

on muscle activity.  MacGregor and colleagues (2005) tested this concept that 

tape may partially exert its effect due to stimulation of the sensory neurons in the 

skin. They found that a stretch applied to the skin with tape, without correction of 
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patella position, increased VMO activity by as much as 9% (Macgregor, Gerlach, 

Mellor, & Hodges, 2005). 

While EMG activity provides useful information regarding the magnitude 

and timing of muscle activity, it cannot provide information about a muscle’s force 

producing capability (Soderberg & Knutson, 2000). One method to measure force 

output is through isokinetic testing wherein a mechanical dynamometer records 

torque (force about a joint’s axis of rotation) (Soderberg & Knutson, 2000).  

Several authors reported increased knee extension peak torque after patella 

taping during isokinetic knee extension (Conway, Malone, & Conway, 1992; 

Handfield & Kramer, 2000; Werner, Knutsson, & Eriksson, 1993), however 

another author found no change (Christou, 2004).  This discrepancy points out 

the limited evidence present in the current literature for the use of McConnell 

taping at the knee.  Despite a multitude of investigations of the effect of 

McConnell taping on the EMG activity and force production of the knee joint, 

there are to date no similar investigations involving the shoulder. The effect of 

tape on shoulder muscle EMG activity and force output is needed to substantiate 

the efficacy for the use of tape during physical therapy treatment protocols for 

anterior shoulder instability. 

Hence, the objectives for this study were two fold. The primary objective of 

this study was to document the effect of McConnell shoulder taping on the EMG 

magnitude of ten shoulder muscles and on shoulder joint peak torque in subjects 
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with ASI during three isokinetic movement patterns:  scaption (elevation in the 

scapular plane), external rotation at 45° of shoulder abduction (ER 45°) and 

external rotation at 90° of abduction (ER 90°).  

As the literature points to a possible sensory effect of placing tape on the 

skin, the secondary objective of this study was to document the effect of the base 

tape alone on EMG and torque during the identical testing protocol.  Accordingly, 

we tested three research hypotheses: 

Research Hypotheses 

H1 : There will be a change in the EMG magnitude of the shoulder 

muscles and in shoulder joint peak torque after the application of McConnell tape 

when compared to no tape during isokinetic: 

 H1a Scaption 

 H1b External Rotation at 45 degrees of Abduction (ER 45°) 

 H1c External Rotation at 90 degrees of Abduction (ER 90°) 

 

H2 : There will be a change in the EMG magnitude of the shoulder 

muscles and in shoulder joint peak torque after the application of base tape alone 

when compared to no tape during isokinetic: 

 H2a Scaption 

 H2b External Rotation at 45 degrees of Abduction (ER 45°) 

 H2c External Rotation at 90 degrees of Abduction (ER 90°) 
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H3 : There will be a change in EMG amplitude of the shoulder muscles and in 

shoulder joint peak torque after the application of McConnell tape when 

compared to base tape alone during isokinetic: 

 H3a Scaption 

 H3b External Rotation at 45 degrees of Abduction (ER 45°) 

 H3c External Rotation at 90 degrees of Abduction (ER 90°) 

As the literature is inconclusive as to the direction of change in EMG 

activity, a two tailed hypothesis was employed. 
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                                           CHAPTER II 

 

                               REVIEW OF LITERATURE 

 

 

This study was designed to investigate the effect of McConnell shoulder 

taping and McConnell base layer taping on the electromyographic activity of the 

shoulder muscles and on shoulder joint torque production.  The review of 

literature is divided into four sections: Anatomy and biomechanics, etiology of 

ASI, EMG comparison of the normal and unstable shoulder and review of the 

current taping literature.  
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Anatomy and Biomechanics 

The scapula, clavicle, humerus and sternum form four joints provide the 

bony framework for the shoulder complex (Figure 1).  

Figure 1: Bony Anatomy of the Shoulder Complex      

 

                               (Nordin & Frankel, 2001) 

 

The first joint of the shoulder complex is the sternoclavicular joint formed 

from the articulation between the sternum and the medial end of the clavicle. The 

articulation between the acromion process of the scapula and the lateral end of 

the clavicle form the acromioclavicular (AC) joint. The motions available at these 

two joints involve elevation, depression, protraction, retraction, upward and 

downward rotation. Motion at these two joints must occur for the shoulder joint to 

move through it’s full range of motion (Soderberg, 1997).  
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Another important link in the shoulder complex is the scapula’s articulation 

with the rib cage, which forms the scapulothoracic joint.  The primary motions of 

the scapula on the thorax consist of upward and downward rotation, as well as 

protraction and retraction. Most important to overhead movement is the upward 

scapular rotation that occurs during shoulder elevation (Soderberg & Knutson, 

2000). 

Lastly is the glenohumeral joint (GHJ) formed by the ball and socket 

articulation of the head of the humerus with the glenoid cavity of the scapula. The 

triplanar motions available at the shoulder joint include flexion and extension 

(sagittal plane), abduction and adduction (frontal plane) and internal and external 

rotation (transverse plane) (Soderberg & Knutson, 2000).  A unique shoulder 

motion is scaption, occurring when the humerus is positioned 30° anterior to the 

frontal plane. Functionally, the large motions at the GHJ allow the arm and hand 

to be well positioned for many of our daily and recreational activities. The ability 

to move the shoulder through a large ROM in the various planes is conducive to 

joint mobility however sacrifices joint stability. The diminished stability is largely 

due to the surface area of the humeral head being approximately three to four 

times the size of that of the glenoid (Soderberg, 1997). For this reason, the 

shoulder joint relies heavily on the local soft tissue restraints for its stability. 

Static restraints to shoulder motion include the joint capsule, the three 

glenohumeral ligaments: superior, middle and inferior, as well as the 
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glenohumeral labrum.  The shoulder joint capsule is large, loose and redundant, 

further contributing to the large ROM in all three planes (Soderberg, 1997). In 

contrast, the three glenohumeral ligaments seen as discrete thickenings of the 

joint capsule serve as the primary restraints to excessive anterior translation of 

the humeral head on the glenoid (O'Brien, Schwartz, Warren, & Torzilli, 1995). 

The labrum, a fibrous rim of cartilage encircling the glenoid, functions to deepen 

the glenoid and serves as an attachment site for the glenohumeral ligaments 

(O'Brien et al., 1990). Together these soft tissue structures limit anterior humeral 

head translation but require the surrounding musculature to aid in stability. 

Figure 2: Ligaments of the Shoulder Complex 

                  

          (O'Brien et al., 1990) 

 

The primary muscular stabilizers of the glenohumeral joint include the four 

rotator cuff muscles (supraspinatus, infraspinatus, subscapularis and teres 

minor), the deltoids and the long head of the biceps brachii (LHB) (Lippitt & 

Matsen, 1993; Soderberg, 1997).  Because the rotator cuff muscles are oriented 
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perpendicular to the glenoid, their contraction compresses the humeral head 

directly into the glenoid fossa (Lippitt et al., 1993). This concavity compression is 

a crucial stabilizing mechanism preventing the excessive anterior translation that 

causes ASI. 

       Figure 3: Concavity Compression 

 

            (Soderberg, 1997) 

While contraction of the rotator cuff provides the primary dynamic 

stabilization at the shoulder joint, pectoralis major and latissimus dorsi muscles 

offer important secondary stabilization. Additionally, the serratus anterior muscle 

plays an important role in shoulder stability causing upward rotation of the 

scapula that allows the glenoid fossa to maintain contact with the humeral head 

throughout the ROM (Soderberg, 1997). 

The role of the rotator cuff, deltoids and biceps muscles in limiting anterior 

humeral head translation is well documented through biomechanical laboratory 

studies using the cadaver model.  During these studies, selective cutting of the 

glenohumeral ligaments and/or labrum is performed in order to simulate an 
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unstable shoulder. The resulting humeral head translation after ligament cutting 

and the effect of simulated muscle contractions along their anatomic line of 

action are then measured.  

In one of the earlier studies, Cain et al (1987) examined the effect of 

simulated rotator cuff forces on the strain in the inferior glenohumeral ligament 

(IGHL) during shoulder external rotation. These authors found that simulated 

contraction of all 4 rotator cuff muscles caused a significant decrease in strain in 

the IGHL during external rotation at lower loads, but only the infraspinatus/teres 

minor component was significant at higher loads (Cain, Mutschler, Fu, & Lee, 

1987).  This finding elucidates the importance of the teres minor and 

infraspinatus in restraining humeral head motion during the high velocities and 

subsequent loads requisite to overhead sports.  

Blasier et al (1992) using a similar cadaveric model, quantified the 

contributions to shoulder stability made by the four rotator cuff muscles. They 

measured the force required to produce an anterior shoulder subluxation while 

applying tension to the individual rotator cuff tendons. These authors found that 

more force was required to sublux the joint when tension was applied to any of 

the four rotator cuff tendons (Blasier et al., 1992).  The results of these studies 

are supported by the works of other authors (Lippitt et al., 1993; Itoi et al., 1994; 

Wuelker, Schmotzer, Thren, & Korell, 1994).  Similar biomechanical studies 

demonstrate that contraction of the long head of the biceps (Rodosky, Harner, & 
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Fu, 1994; Itoi et al., 1994; Pagnani et al., 1996), and deltoids (Kido et al., 2003) 

decrease excessive anterior humeral head translation as well.  In summary, 

these biomechanical studies elucidate the critical stabilizing role of the shoulder 

joint musculature in helping to restrain excessive anterior motion of the humeral 

head.  

Etiology of ASI 

Traumatic ASI 

  Traumatic dislocation is the most common cause of shoulder instability 

(Dodson & Cordasco, 2008).  The typical mechanism of injury for a traumatic 

dislocation occurs following a fall onto an outstretched arm with the shoulder 

abducted and externally rotated (Dodson & Cordasco, 2008). Dislocation causes 

tearing of the glenohumeral ligaments and the joint capsule, disrupting the 

integrity of the joint. Thus, after the primary dislocation, reoccurrence rates can 

be between 55% and 90%, with a higher incidence in the younger population 

(Henry & Genung, 1982; Hovelius, 1999). 

These high reoccurrence rates are largely due to shoulder dislocation 

causing disruption of the glenohumeral ligaments, joint capsule and labrum. 

Detachment of the anterior inferior glenoid labrum, called a Bankart tear, occurs 

in 87%-100% of patients after traumatic dislocation (Baker, Uribe, & Whitman, 

1990; Norlin, 1993; Owens et al., 2010).  Using a cadaver model, Lippitt (1993) 

found that resection of the glenoid labrum reduced resistance to anterior humeral 
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head translation by 20%.  Because of the damage to the soft tissue stabilizers 

during dislocation, ASI is the most common complication following traumatic 

dislocation. Robinson followed 252 patients after traumatic dislocation (aged 15-

35) and determined that 55.7% of subjects developed ASI during the first two 

years, with the incidence increasing to 66.8% by the 5th year (Robinson, Howes, 

Murdoch, Will, & Graham, 2006). 

Atraumatic ASI: 

A second form of ASI occurs in athletes who participate in demanding 

overhead sports such as baseball, swimming, volleyball and tennis. During these 

sports, the shoulder undergoes repetitive and excessive amounts of external 

rotation at high movement velocities. This repetitive tensile loading of the anterior 

structures during external rotation and abduction is thought to cause a gradual, 

excessive stretching of the anterior joint capsule and ligaments over time (Jobe & 

Pink, 1993), which creates ASI.  

Electromyography of the Shoulder Muscles 

Alteration in the normal functioning of the shoulder muscles is 

documented in subjects with ASI. Glousman et al (1988) in one of the earliest 

studies compared the EMG activity of subjects with ASI to normal subjects during 

throwing. These authors found a significant increase in supraspinatus activity 

during the late cocking phase of the throw when the shoulder was positioned in 

maximal abduction and external rotation.  They speculate that increased 
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supraspinatus activity aids in stabilizing the shoulder when in its vulnerable 

apprehension position.  In contrast to increased supraspinatus activity, the same 

authors found a significant decrease in serratus anterior EMG activity during the 

late cocking phase of the throw.  The serratus anterior upwardly rotates the 

scapula during shoulder elevation allowing congruency between the ball and 

socket.  Diminished serratus anterior activity then may have an adverse effect on 

joint stability.  

In a similar study design, McMahon (1996) compared the EMG activity of 

the rotator cuff and scapular muscles between subjects with ASI and subjects 

with healthy shoulders during abduction, scaption and forward flexion 

movements.  In both abduction and scaption the supraspinatus demonstrated 

significantly less EMG activity from 30 to 60 degrees in subjects with ASI. Similar 

to Glousman’s (1988) study, McMahon (1996) found that during all three 

motions, shoulders with ASI demonstrated significantly less EMG activity in the 

serratus anterior.   

Kim and colleagues (2001) investigated the EMG activity of the biceps 

muscle in the vulnerable abduction and external rotation position in subjects with 

traumatic ASI compared to their unaffected side. These authors reported that the 

EMG activity of the biceps muscle was significantly greater in the unstable 

shoulder than the opposite shoulder. They concluded that the increase in biceps 

activity may be compensatory serving to increase joint stability. 
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More recently, Jaggi and colleagues (2012) in a qualitative study, sought 

to identify abnormal activation patterns of the pectoralis major (sternal head), 

anterior deltoid, latissimus dorsi and infraspinatus muscles in subjects with 

anterior shoulder instability during motions of the shoulder. The authors 

compared the temporal EMG pattern of the four muscles and compared them to 

the expected normal patterns of activity established by previous researchers. The 

pectoralis major and latissimus dorsi were found to be inappropriately active 60% 

and 81% of the time respectively and the deltoid 22% of the time.  This study, 

however, was based on retrospective EMG data and unfortunately the specific 

movement in which the muscles were acting inappropriately were not identified.  

The aforementioned studies identify altered EMG activity in the major 

stabilizing muscles of the glenohumeral complex in subjects with anterior 

shoulder instability.  Altered muscle activity in the stabilizing muscles may affect 

their ability to restrain humeral head motion, further contributing to the continued 

functional losses in these subjects.  Rehabilitation of subjects with ASI must then 

be focused on strategies to enhance the neuromuscular control of the stabilizing 

muscles.  It is suggested that joint taping has a positive influence on muscular 

activity.  Jenny McConnell, an Australian physical therapist, first introduced her 

taping technique in 1986 to treat patella (knee cap) instability (McConnell, 1986) 

and later expanded her technique to remedy the unstable shoulder joint 

(McConnell & McIntosh, 2009).  McConnell taping uses two layers of tape; a 

base tape layer to protect the skin (Coverall ®) followed by a rigid corrective tape 
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(Leukotape ®) used to realign the joint.  A review of the pertinent taping literature 

follows. 

McConnell Taping 

Patella taping: 

Several investigations document the effect of patella taping on the EMG 

magnitude of the VMO and on isokinetic force production after patella taping. Ng 

and Cheng (2002) examined the effects of patellar taping on the EMG activity 

ratio of the VMO to the vastus lateralis (VL).  Fifteen subjects with patellofemoral 

pain (PFP) performed a single leg squat with and without tape. The authors 

reported a significant decrease in the EMG ratio of the VMO to the VL after 

taping. They attribute the relative decrease in VMO activity to a decreased need 

for the VMO to pull the patella medially. 

Christou (2004) investigated the influence of patellar taping on isokinetic 

force production and on the EMG activity of the VMO and VL in females with and 

without PFP.  Subjects performed maximal isokinetic leg presses under three 

conditions: no tape (control), no glide (placebo tape) and medial and lateral 

taping (experimental). The authors found that medial and lateral taping were both 

associated with increased VMO activity whereas VL activity did not differ 

between groups. Peak leg press force did not differ between conditions or 

between groups. 
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Cowan and Hodges (2006) investigated the effect of patellar taping on the 

EMG amplitude of the vasti muscles during a stair stepping task in subjects with 

and without PFP. The authors reported that some subjects showed increased 

EMG and some showed decreased EMG after taping.  Herrington (2005) 

examined the effect of patellar taping on isokinetic peak torque of the quadriceps 

in 14 females with PFPS finding that patellar taping significantly increased 

quadriceps peak torque during isokinetic knee extension.  Herrington suggested 

that repositioning the patella with tape may alter the leverage of the patella, 

maximizing the mechanical advantage of the quadriceps (Herrington, Malloy, & 

Richards, 2005).  In summary, the use of McConnell tape in subjects actively 

contracting the quadriceps during various functional lower extremity activities 

influences EMG activity of the VMO and VL.  However, the patella taping 

literature does not offer a clear consensus regarding the direction of change in 

VMO activity or the effect of taping on isokinetic torque production.  

Glenohumeral taping 

The literature surrounding McConnell shoulder taping deals primarily with 

its effect on glenohumeral joint ROM and was all performed by McConnell 

herself.  In the first of her three papers, glenohumeral passive range of motion 

(PROM) in asymptomatic tennis players was measured pre and post both 

placebo taping (tape applied without tension) and McConnell taping.  Both 

conditions were compared to a no tape condition that served as a control. 
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McConnell tape resulted in a significant increase in passive external and internal 

rotation when compared to both the control and placebo conditions (McConnell & 

McIntosh, 2009). The author speculates that the increased ROM is desirable as it 

may optimize the shoulder obtaining a more normal axis of rotation.  A limitation 

to this study is that it was performed on nonsymptomatic subjects, thus 

extrapolating the results to unstable subjects is not possible. McConnell did, 

however, follow up with an investigation examining the effect of McConnell taping 

on shoulder joint ROM and on ball velocity in both uninjured and previously 

injured athletes during a seated throw. The authors reported that both shoulder 

internal and external rotation ROM decreased in the previously injured group 

after McConnell taping, but increased in the group of subjects who had never 

been injured (McConnell, Donnelly, Hamner, Dunne, & Besier, 2011).  Maximum 

abduction ROM and the ball velocity were not affected in either group (McConnell 

et al., 2011).  The author speculates that a decrease in the maximum external 

rotation limits the excessive joint ROM thought to be harmful to the shoulder 

during over head sports. McConnell (2012) also measured the dynamic ROM 

during the seated throw in this same group, published under separate cover. She 

reported that McConnell shoulder taping decreased the dynamic range (AROM) 

of the previously injured athlete so that it was nearer the dynamic range found in 

the group of uninjured athletes. As with their finding of decreased PROM in this 

group, McConnell (2012) speculates that the decrease in the dynamic ROM 
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might also provide protection for the injured athlete’s shoulder during overhead 

sports. 

Placebo taping 

To evaluate the possibility of a stimulation of cutaneous afferents 

contributing to the effectiveness of taping, many studies employ a placebo taping 

condition. Reflex coupling between individual mechanoreceptors in the skin and 

voluntary muscle contractions is well described in the literature. Aniss (1992) 

found that stimulation of cutaneous afferents in the skin of the hand caused both 

excitatory and inhibitory EMG responses in the muscles of the ankle.  Similar 

results were reported in a later investigation  by Fallon, Bent, McNulty, & 

Macefield (2005).  Additionally, McNulty and group (1999) reported that 

stimulation of cutaneous afferents in the skin of the hand caused both excitatory 

and inhibitory EMG responses in the muscles acting on the digits in healthy 

individuals.  

 In a more germane investigation to this one, Macgregor (2005) 

investigated the effect of stretching the skin over the patella on vasti muscles 

activity in people with PFP. Tape was applied to the skin directly over the patella 

with stretch applied in three different directions while subjects maintained an 

isometric knee extension contraction. Stretch applied to the skin over the patella 

increased VMO EMG and was greatest with the lateral skin stretch. The VL 

surface EMG activity was unchanged.  The authors suggest that cutaneous 
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stimulation may be one mechanism by which patella taping produces its clinical 

effect.  Similarly, Christou (2004) found an increase in VMO activity after 

application of a placebo tape during an isokinetic leg press, though another 

author reports no EMG change in the vasti muscles from placebo tape during a 

stair stepping task (Cowan et al., 2006).  

In summary, placebo taping at the shoulder is not well studied, though 

appears to have no effect on joint ROM. Consensus is lacking regarding whether 

or not placebo taping alters EMG activity at the knee. Thus, any studies 

investigating the effects of McConnell taping should incorporate this element into 

the research design. 
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                                                       CHAPTER III 

 

                                            MATERIALS AND METHODS 

 

 

Subjects 

We recruited volunteers for this study from flyers posted at Seton Hall 

University, the Seton Hall University student email broadcast and from flyers 

posted at The Hospital for Special Surgery cooperating physician’s offices. The 

primary investigator interviewed fourteen volunteers via telephone to determine 

their appropriateness for inclusion in the study. Thirteen of those volunteers met 

the inclusion criteria and attended a follow up session for clinical instability 

testing.  All thirteen subjects were enrolled in the study; however, one subject 

withdrew during testing secondary to discomfort from the wire electrodes.  

Therefore twelve subjects between the ages of 21 and 52 years (mean age 28.8, 

SD=) participated in this study.  The subjects represented a sample of 

convenience and met the following inclusion criteria: 1) over 18 years of age; 2) 
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one or more shoulder dislocations 3) currently experiencing symptoms; 4) 

positive result on the shoulder apprehension or relocation test (Farber et al., 

2006; Farber, Castillo, Clough, Bahk, & McFarland, 2006); 5) previous diagnosis 

of ASI from an orthopedic doctor.  Exclusion criteria for participation included: 1) 

pregnancy; 2) previous use of shoulder taping; 3) a documented rotator cuff tear; 

4) pain precluding the ability to sustain the testing protocol; 5) a positive sulcus 

sign for multidirectional instability (Tzannes, Paxinos, Callanan, & Murrell, 2004).  

All subjects had a history of one or more full dislocations and incidences of 

multiple subluxations. 
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Side Arm
tested dominance

1 29 Female L R NA
2 21 Female R R C
3 35 Male R R NA
4 32 Female R R NA
5 21 Male R R R
6b

7 35 Male L L R
8 30 Male L R R
9 53 Female R R NA

10 26 Male L R R
11 23 Male L L C
12 21 Male R R R
13 21 Male R R R

ªRecreational athlete; C, competitive athlete; NA,Non-athlete   bWithdrew

Subject Age 
(years)

Gender Upper extremity  
sportª

Table 1: Subject Demographics
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As there are no previous studies of this nature, sample size was 

determined from a power analysis after the first five subjects. A priori sample size 

(α=.05, β= .80) was determined to be 12 subjects.  Confidentiality was assured 

by assigning each subject a numeric code. All data were stored on a password 

protected computer at The Hospital for Special Surgery and on a thumb drive 

which was kept in a locked drawer. The study received approval by the 

Institutional Review Boards of The Hospital for Special Surgery and Seton Hall 

University. A written informed consent form was orally reviewed highlighting the 

possible risks and then signed by each subject. 

Location 

   The study location was the Leon Root Motion Analysis Laboratory at The 

Hospital for Special Surgery, New York, New York. 

Instrumentation 

EMG Hardware: 

The EMG signal was collected using a MA 300 EMG unit (Motion Lab 

Systems, Baton Rouge, LA). The MA 300 is comprised of two main components: 

the backpack multiplexor unit and the preamplifier electrode assemblies. The 

multiplexor houses the circuitry for sixteen variable gain EMG channels. This unit 

has a signal range of +5 volts (V) and contains a 10th order low pass filter. The 
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bandwidth capability of the multiplexor is10 Hz to 2,000 Hz.  The multiplexor low 

pass filter was set to allow the maximum bandwidth of 2000 Hz.  

There were two types of preamplifier assemblies. One houses two 

stainless steel discs positioned 18 mm apart for surface EMG detection. The 

second preamplifier type is designed with two thumb screws for attachment of 

the wire electrodes leads.   Both preamplifier specifications include a bandwidth 

of 15Hz to 3,500 Hz (-3dB), a gain of 20dB, and a common mode rejection ratio 

(CMRR) of 100dB. The analog EMG signal was relayed from the preamplifier 

assembly to the multiplexor via standard cable leads. The cable leads terminated 

in either a snap clip for attachment to the surface electrodes, or in an alligator clip 

for interface with the wire electrodes. The EMG signal was transmitted from the 

multiplexor over a single coaxial cable to a 12 bit A-D converter (National 

Instruments, Austin, TX).  

Because of the speed and amount of movement required by the arm 

during this protocol, the decision was made to use adhesive surface electrodes 

cabled to the preamplifiers for increased flexibility.  The surface adhesive 

electrodes were unipolar silver-silver chloride (Ag/AgCl) solid gel electrodes with 

a 15 mm round detection surface. Two unipolar surface electrodes were used to 

create a bipolar arrangement. The inter-electrode distance was 20mm.   

The fine wire electrodes were comprised of paired stainless steel wires, 

.08 mm in diameter. The last 2 mm of the wires are stripped for an exposed area 
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of.51 mm2 that serves as the detection surface. The wires were threaded through 

a 50 mm, 25 gauge hypodermic needle according to the technique of Basmajian 

(Basmajian, 1974). 

Isokinetic Hardware: 

Torque and position data were collected on a Biodex System 3 Multi-Joint 

Testing and Exercise Dynamometer (Biodex Corp., Shirley, N.Y.) This unit 

consists of a single chair with trunk stabilization straps and the mechanical 

dynamometer. Height, rotation, tilt and fore/aft position of both the chair and the 

dynamometer were adjustable. A Biodex analog signal interface device (Biodex 

Corp, Shirley, N.Y.) provided output of the Biodex torque and position signal to 

the A-D converter. Biodex signal output allowed for synchronization of position 

and torque with the EMG signal. 

Software: 

Cortex motion capture software (Motion Analysis Corp, Santa Rosa, CA) 

collected the EMG and Biodex signals. Visual 3D (C-Motion Inc, Germantown, 

MD) performed all signal processing. 

SPSS Statistical Software (Armonk, N.Y.) performed the statistical 

analysis. G*Power (Olshausenstr, Germany) performed the statistical power 

calculations. 
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Dependent Variables 

EMG Amplitude 

     Peak normalized EMG amplitude was calculated for each of the ten 

muscles, during the three isokinetic movement patterns (scaption, ER 45o, ER 

90o) for the three taping conditions (No tape, base tape alone and McConnell 

tape). Subjects performed five repetitions of each isokinetic movement pattern.  

Each of the five repetitions was divided into three arcs of motion: 0-50o, 50-75o, 

and 75o–maximum. The separation into three distinct arcs of motion allowed 

isolated analysis of the end ROM where the shoulder is most unstable.   

Accordingly, there were three peak EMG amplitudes per repetition (one for each 

arc of motion).  

Peak Torque 

     Peak torque was calculated for each of the three isokinetic movement 

patterns for the three taping conditions. Table 2 summarizes the research 

variables. 
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Table 2: Research Design 

Isokinetic Movement 
Pattern 

Taping Condition Dependent Variables 

Scaption No Tape 
Base Tape 
McConnell Tape 
 

Peak EMG Amplitude 
0°-50° 
50°-75° 
75°-max 

Peak Torque 
 

ER 45o Abduction No Tape 
Base Tape 
McConnell Tape 
 

Peak EMG Amplitude 
0°-50° 
50°-75° 
75°-max 

Peak Torque 
 

ER 90o Abduction No Tape  
Base Tape 
McConnell Tape 

Peak EMG Amplitude 
0°-50° 
50°-75° 
75°-max 

Peak Torque 
 

 

Procedures: 

Screening for inclusion criteria: 

PROM testing: While supine on a plinth with hips and knees flexed, the 

primary investigator moved the subjects shoulder through the available ROM in 

three planes of motion. We noted any major restrictions in PROM and subject 

report of pain. 
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Apprehension testing: While supine the primary investigator placed the 

shoulder in 90º of abduction and moved it towards 90º of external rotation. If 

subjects reported perceptions of instability the test was considered positive 

(Farber et al., 2006). 

Relocation Test: The investigator applied a posteriorly directed force to the 

humeral head with the patient positioned in the apprehension position as above. 

A decrease in apprehension or pain was a positive test (Farber et al., 2006). 

ElectromyographicTesting: 

The MA 300 EMG unit collected EMG from ten shoulder muscles using a 

combination of fine wire intramuscular electrodes and surface electrodes.  Four 

muscles were tested with intramuscular fine wire electrodes: the supraspinatus, 

infraspinatus, upper subscapularis and lower subscapularis.  EMG collection 

from the remaining six muscles: the clavicular head of the pectoralis major, 

latissimus dorsi, anterior and middle deltoid, serratus anterior and the biceps 

brachii utilized surface electrodes (table 3).  Previous studies have validated the 

use of intramuscular and surface electrodes in parallel (Backus et al., 2011).  

Sampling at 5000 Hz converted the EMG signal from analog to digital form (A-D 

conversion). For the purposes of discussion the 10 muscles are divided into three 

groups: 1. rotator cuff muscles (supraspinatus, infraspinatus, upper and lower 

subscapularis) 2. humeral muscles  (biceps brachii, anterior and middle deltoids) 

3. trunk muscles (latissimus dorsi, serratus anterior and pectoralis major). 
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           Table 3: Electrode Type by Muscle  

Muscle Electrode Type 

 
Rotator Cuff Muscles 

 
Infraspinatus  Fine wire 

Supraspinatus Fine wire 

Subscapularis, Lower Fine wire 

Subscapularis, Upper Fine wire 

Humeral Muscles 
 

Biceps Brachii  Surface 

Deltoid, Anterior Surface 

Deltoid, Middle Surface 

Trunk Muscles 
 

Latissimus Dorsi Surface 

Pectoralis Major Surface 

Serratus anterior Surface 

Supraspinatus   Fine wire 

 

All electrode placements were parallel to the orientation of the muscle and 

designed to be centered about the ideal electrode points as described by Perotto 

(Perotto & Delagi, 2005) and Cram (Cram, Kasman, & Holtz, 1998) (table 4).  
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                              Table 4: Electrode Placement for EMG Testing           

Muscle            Subject position                   Electrode placement 

Biceps Brachii Supine, arm extended Midpoint between biceps tendon at the elbow 
and supraglenoid tubercle 

Deltoid, Anterior Supine, arm at side Three fingerbreadths below the anterior 
margin of the acromion 

Deltoid, Middle Supine, arm at side Halfway between the tip of the acromion and 
the deltoid tuberosity 

Infraspinatus Prone, arm abducted to 90o and elbow                 
flexed over edge of plinth 

2.5 cm below the midpoint of the spine of the 
scapula 

Latissimus Dorsi Prone, arm at side, palm up Three fingerbreadths distal to and along the 
posterior axillary fold 

Pectoralis major Supine 3.5 cm medial to the axillary fold 

Serratus  Prone with arm dangling over edge of 
plinth 

Just lateral to the inferior angle of the scapula 

Subscapularis, Lower Prone hand behind the back 5 cm below the spine of the scapula anteriorly 

Subscapularis, Upper Prone hand behind the back 3 cm above the spine of the scapula 
anteriorly 

Supraspinatus Prone, arm abducted to 90o and elbow                  
flexed over edge of the plinth 

1.5 cm above the midpoint of the spine of the 
scapula 
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        Insertion of fine-wire electrodes utilized clean technique.  After needle 

removal the wire tips remained in the muscle bellies. The depth of insertion of 

the wire electrode ranges from 1.0 cm to 4.0 cm based upon the girth of the 

overlying musculature and amount of subcutaneous adipose tissue present in 

the subject. We taped the protruding wires to the skin and attached the 

proximal ends to the pre-amplifiers. 

Skin preparation prior to application of the surface electrodes included 

cleaning with isopropyl alcohol to remove surface oils and lightly abrasion 

with a gauze pad to decrease skin impedance.  The acromion of the opposite 

shoulder served as the placement site for the reference electrode. The 

multiplexor was secured to the Biodex chair via a Velcro belt.  

Visual observation of muscle activity on the computer screen while the 

subject performed a muscle specific resisted motion confirmed the correct 

electrode placement.   At this time, we adjusted the gains to ensure adequate 

visualization and to prevent signal saturation. After confirming adequate 

signal collection, the subjects performed a series of five second maximal 

voluntary isometric contractions (MVIC) for use in normalization. Previous 

research demonstrates the positions used (table 5) provide maximal 

activation of each muscle (Kelly, Kadrmas, Kirkendall, & Speer, 1996).  The 
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data acquired during EMG were expressed as a percentage of these MVIC 

contractions.  

                                  Table 5: MVIC Test Positions  

       Muscle                               Action 
Biceps Brachii Resisted elbow flexion, shoulder at 0⁰, elbow at 

90⁰ flexion 
Deltoid-Anterior Resisted elevation in scapular plane, shoulder at 

0⁰ rotation 
Deltoid, Middle Resisted abduction, shoulder at 0⁰ degrees 

rotation 
Infraspinatus 
 

Resisted external rotation, shoulder at 0⁰ rotation 

Latissimus Dorsi Resisted extension, shoulder at 90⁰ elevation in 
scapular plane 

Pectoralis Major Resisted horizontal adduction, shoulder at 90⁰ 
elevation in scapular plane 

Serratus anterior Shoulder protraction, shoulder at 90 elevation in 
scapular plane 

Subscapularis, Lower Resisted internal rotation, shoulder at 90⁰ 
elevation in scapular plane 

Subscapularis, Upper Resisted  internal rotation , shoulder at 0⁰ 
elevation 

Supraspinatus Resisted forward flexion in scapular plane, 
shoulder at 90⁰ elevation and 0 degrees rotation 

                            (Kelly et al., 1996) 

Isokinetic Testing 

Subjects performed three isokinetic movement patterns during which 

EMG and torque collection occurred: 1) scaption; 2) internal and external 
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rotation in 45° of shoulder abduction and 3) internal and external in 90° of 

shoulder abduction. Figures 4-6 illustrate these patterns respectively. 

Figure 4: Biodex Set Up Scaption 
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                           Figure 5: Biodex Set Up ER 45o Abduction 

 

 

Figure 6: Biodex Set Up ER 90o Abduction 
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We randomized position order using a computer generated  random 

order table (http://www.randomizer.org)  to decrease the possibility of order 

bias (table 6).  Due the length of the protocol, the last Biodex position for each 

taping condition served as the starting position of the next condition.  This 

design decreased the number of Biodex position changes, and hence the 

total testing time as well as minimizing inter-trial variability.  One of eight 

possible combinations of testing order were picked from a hat for each 

subject.

http://www.randomizer.org/
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                                             Table 6: Taping Randomization Table 

                    1 2 3 4 5 6 7 8 

 
Scaption Scaption Scaption Scaption 45 45 90 90 

No Tape 45 45 90 90 90 90 45 45 

 
90 90 45 45 Scaption Scaption Scaption Scaption 

 
90 90 45 45 Scaption Scaption Scaption Scaption 

Base Tape 45 45 90 90 45 90 45 90 

 
Scaption Scaption Scaption Scaption 90 45 90 45 

 
Scaption Scaption Scaption Scaption 90 45 90 45 

McConnell 45 90 45 90 45 90 45 90 

 
90 45 90 45 Scaption Scaption Scaption Scaption 
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As removing the tape between conditions dislodged the wire 

electrodes, rendering taping order randomization implausible. Therefore, the 

testing order was first no tape, then base tape tape alone, and lastly 

McConnell taping. The same investigator performed the EMG set up, 

McConnell shoulder taping and the isokinetic testing. 

Subject set-up and positioning: 

We performed setup and positioning according to the usual and 

customary Biodex guidelines described in the user’s manual. For all exercise 

patterns the subjects sat upright in the Biodex accessory chair reclined 10º. 

Pelvic and trunk stabilization straps restrained trunk movement. The 

dynamometer was located on the side to be tested with the height adjusted 

according to patient size. 

Scaption: 

The dynamometer was rotated 30o toward the subject, tilted upwards 

25o and the chair rotated 15º away from the dynamometer. The lateral 

acromion process served as the shoulder axis location for alignment with the 

dynamometer. Subjects gripped the accessory handle in neutral wrist 

extension, neutral forearm rotation and full elbow extension. 
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External/internal rotation at 45° abduction: 

 The dynamometer position was height 0o, rotation 20° towards the subject 

and upward tilt 50°.  The Biodex chair was rotated 90°. The dynamometer 

axis was aligned with the longitudinal shaft of the humerus approximated 

through the olecranon in line with the acromion. The elbow and forearm were 

seated in the elbow cuff.  Subjects gripped the accessory handle in neutral 

wrist extension, neutral forearm rotation and 90° elbow flexion. 

External/internal rotation at 90° abduction: 

The Biodex dynamometer tilt and rotation were 0°. The Biodex chair 

was rotated 90o. The dynamometer axis was aligned with the longitudinal 

shaft of the humerus approximated through the olecranon in line with the 

acromion.    Subjects gripped the accessory handle in neutral wrist extension, 

neutral forearm rotation and 90° elbow flexion. 

Taping Procedures: 

Base Tape Taping Procedure:  The subject sat in the Biodex chair with 

the arm relaxed at the side.   The primary investigator applied a 10 inch piece 

of Coverall tape™ starting on the anterior aspect of the shoulder joint, running 
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superiorly and posteriorly finishing just medially to the inferior border of the 

scapula.  

McConnell Taping Procedure: We taped the shoulder in accordance 

with the McConnell technique (figure 5) (McConnell & McIntosh, 2009). We 

were careful in applying the tape over the wire electrodes so as to not 

dislodge them. The subject sat in the Biodex chair, with the arm relaxed at the 

side.  Next we anchored a 10 inch piece of Leuko tape™ directly over the 

Coverall tape™ on the anterior shoulder.  The thumb of the investigator’s 

stabilizing hand applied a force up and back on the humeral head while the 

investigator’s opposite hand pulled the tape superiorly and posteriorly across 

the shoulder joint. The tape finished just medial to the inferior border of the 

scapula directly over the coverall tape.  
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                    Figure 7: McConnell Taping Technique 

                     

           (McConnell & McIntosh, 2009; McConnell et al., 2011) 

Isokinetic Testing Protocol: 

Before testing each movement pattern, we calibrated the Biodex 

dynamometer for position and performed gravity compensation. During 

gravity compensation the Biodex dynamometer takes a weight measurement 

of the arm while in the testing apparatus. Subtracting the weight of the limb 

offsets the limb weight's contribution to the overall torque measurement. In 

order to synchronize the Biodex position information with the Visual 3D 

software, we collected a static position calibration before each trial. We set 

the Biodex testing ROM according to subject comfort. Care was taken to 

avoid any reports of apprehension when setting the ER end ROM.  A resting 

EMG was recorded prior to limb movement for each trial.   
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As an initial familiarization with isokinetic movements the subject 

performed a series of graded submaximal to maximal repetitions at an 

angular velocity of 90o/second.  The testing protocol consisted of five maximal 

isokinetic repetitions at 90o/second in each of the three testing patterns for 

each of the three taping conditions. The investigator provided subjects with 

routine and standardized verbal encouragement without visual feedback. 

Approximately 5 minutes of rest between testing patterns was built into the 

protocol as the Biodex position required changing. 

At the end of the testing protocol, we removed the wire electrodes 

cleaned the electrode insertion sites with hydrogen peroxide and inspected 

the wires to ensure they were intact and not broken during removal.   

EMG Signal Processing: 

The first level of signal processing was application of a lowpass filter at 

700 Hz in order to limit the frequency spectrum.  We chose to lowpass filter at 

700 Hz based upon the findings of a power spectral analysis of the raw EMG 

signal.  The 95% power frequency was calculated for each muscle across all 

conditions.  The highest 95% power frequency for any muscle across all 

conditions for the 12 subjects was 475 Hz.  Therefore, a conservative cut off 

frequency of 700 Hz was employed before further filtering the signal. Limiting 
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the frequecy spectrum of the analog signal prior to further filtering decreased 

the possibility that high frequency artifact was included in the data.  The 

signal was then highpass filtered with a (2nd order Butterworth filter) with a 20 

Hz cutoff frequency. Next, the signal was rectified and  lowpass filtered  with a 

cut off frequency of 3.14 Hz (2nd order Butterworth filter) to create a linear 

envelope (Hillstrom & Triolo, 1994).  

Biodex Signal Processing: 

Raw torque and position output from the Biodex were lowpass filtered 

at 3.14 Hz to smooth the data. Next the signal was multiplied by the 

appropriate constant for conversion to units of degrees (position) and newton-

meters (torque).  The calibration offsets for position and torque collected 

during testing were applied. 

Data Analysis 

Visual 3D software calculated the mean EMG activity during the three 

arcs of motion (0°-50°, 50°-75°, 75°-Max) for each of the five repetitions for 

the three isokinetic movement patterns (scaption, ER 45° and ER 90°).  For 

each of the three movement patterns, only those muscles performing a 

primary role were used for analysis. Only the upward elevation (scaption) and 
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external rotation movements were used for analysis as these movements 

represent the ROM when the shoulder is most likely to be unstable. 

Raw EMG was visually inspected for artifact including data spikes and 

saturation. The mean EMG amplitudes of the middle three repetitions were 

averaged for the three position arcs. If artifact or signal saturation corrupted 

the EMG signal of one of the middle three target repetitons, we discarded the 

mean for that repetition. The goal was to average the means of three 

repetitions. Therefore, if a mean from one of the middle three repetitions was 

disgarded secondary to a corrupt signal, we substituted the mean from one of 

the remaining two repetitions. The decision of which of the two remaining  

means to substitute was based upon which of them was closest in value to 

the  other two means. 

The results demonstrated that the change in mean EMG amplitude 

between taping conditions was bidirectional. Including both positive and 

negative data in the analysis causes them to cancel each other out, 

misrepresenting the magnitude of the change between conditions. Therefore, 

the absolute change scores between conditions was used for analysis.  

 

 



58 
 

Statistical Analysis 

A paired samples T-test on the absolute value of the change scores 

tested the differences between the no tape condition and the McConnell 

taping condtion, between the no tape condition and the base tape taping 

condition and between the base tape condition and the McConnell taping 

condition.  Significance was set at .0166 to account for multiple comparisons.  

Power was set at .80.  Normality of data was tested using the Shapiro-Wilk 

test.  We used a repeated measures ANOVA to test for differences between 

the peak torques.  Noramlity and sphericity of data was tested using the 

Shapiro-Wilk and Mauchley’s test respectively. Minimal detectable change 

(MDC) at the 95% confidence level was calculated using the following 

equation: MDC = 1.96 x SEM x square root of 2. 
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CHAPTER IV 

 

 

RESULTS 

 

 

Electromyographic Data 

The change in EMG amplitudes expressed in percentage of maximum 

voluntary isometric contraction (%MVIC) between taping conditions increased 

in some subjects and decreased in others. This bidirectional EMG change 

found between conditions occurred across all muscles during all three 

isokinetic movement patterns. The distribution of subjects with positive 

change (increased activity) and negative change (decreased activity) did not 

show a strong association in one direction or another, although some 

directional tendencies arose.  The direction of EMG change between the no 
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tape-McConnell tape and the no tape-base tape conditions for scaption, ER 

45 degrees and ER 90 degrees is summarized below.  

Direction of EMG change during scaption (Figures 6-7) 

For the purposes of discussion, the muscles for the scaption 

movement pattern are divided into three functional groups: group 1 consists 

of the humeral muscles including the anterior and middle deltoids and biceps; 

group 2 consists of the trunk muscles including the pectoralis major, 

latissimus dorsi and serratus anterior and group three the rotator cuff muscles 

including the supraspinatus, infraspinatus, upper and lower subscapularis 

muscles. 

During the scaption movement pattern the distribution of subjects who 

demonstrated positive and those who demonstrated negative EMG change 

between the no tape-McConnell and no tape-base taping conditions was 

almost evenly distributed for the deltoids and biceps (figures 6a and 7a) as 

well as the pectoralis, latissimus and serratus (figures 6b and 7b).  The 

subject distribution for EMG change of the rotator cuff muscles appeared to 

have stronger directional tendencies (figures 6c and 7c).   

The lower subscapularis showed decreased activity (65%-80% of 

subjects decreased) during the no tape-McConnell tape condition. Conversely 
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the upper subscapularis activity increased in 80% of subjects during the late 

range of motion in the no tape-McConnell tape, and in the early range during 

no tape-base tape condition.  The infraspinatus activity increased in 70% of 

subjects during the later range of motion during the no tape-base tape 

condition only.  The supraspinatus activity decreased in the early ROM (70% 

of subjects) during the no tape -base tape condition.   

      

Figure 8a: Direction of EMG Change Scaption: No Tape-McConnell Tape  

Humeral Muscles 
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Figure 8b: Direction of EMG Change Scaption- No Tape-McConnell Tape  

 

Trunk Muscles 

 

 

Figure 8c: Direction of EMG Change Scaption No Tape-McConnell Tape  

Rotator Cuff Muscles 
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Figure 9a: Direction of EMG Change Scaption-No Tape-Base Tape  

         Humeral Muscles 

 

 

Figure9b: Direction of EMG Change Scaption-No Tape-Base Tape  

Trunk Muscles 
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Figure 9c: Direction of EMG Change Scaption-No Tape-Base Tape  

Rotator Cuff Muscles 
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Infraspinatus activity decreased in 60-70% of subjects during the early 

range of motion for the no tape-McConnell condition and in the late ROM 

during the no tape-base tape condition.  The lower subscapularis activity 

decreased in 70% of subjects in the early range for both taping conditions.  

The upper subscapularis also demonstrated decreased activity in the early 

ROM, though only during the no tape-base tape condition. The supraspinatus 

demonstrated decreased activity later in the range in the no tape to 

McConnell tape condition (70% of subjects) but conversely showed increased 

activity in the no tape-base taping condition. 

0%
20%
40%
60%
80%

100%
0-

50
°

50
-7

5°

75
-M

ax
°

0-
50

°

50
-7

5°

75
-M

ax
°

0-
50

°

50
-7

5°

75
-M

ax
°

0-
50

°

50
-7

5°

75
-M

ax
°

Infraspinatus Subscap, L. Subscap, U. Supraspinatus

Pe
rc

en
ta

ge
 o

f S
ub

je
ct

s 

EMG Increase

EMG Decrease



65 
 

 

Figure 10: Direction of EMG Change ER 45°-No Tape -McConnell Tape  

 

Figure 11: Direction of EMG Change ER 45°-No Tape to Base Tape 
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External Rotation at 90° Abduction (Figures 10-11) 

Infraspinatus activity increased in 65-80% of subjects in the mid to late 

ROM for both taping conditions. The lower subscapularis demonstrated 

decreased activity in 70% of subjects in the no tape-McConnell tape condition 

only.  More subjects (65%) decreased their supraspinatus muscle activity in 

the late ROM for both the no tape-McConnell and no tape- base tape 

conditions. 

Figure 12: Direction of EMG Change ER 90°-No Tape-McConnell Tape 
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Figure13: Direction of EMG Change ER 90°-No Tape-Base Tape 
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Scaption 

No Tape-McConnell Tape condition 

Descriptive statistics and individual T-test results (p<.0166) for the 

change in EMG amplitude (%MVIC) for the no tape-McConnell tape condition 

are presented for the three arcs of motion in tables 7-9.  Figures 12-14 

display graphs of the mean EMG changes for the three arcs of motion in rank 

order with corresponding p values.   Loss of EMG data due to saturation or 

corruption of the EMG signal resulted in a decrease in the number of subjects 

for the analysis of the following muscles: anterior deltoid (n=11) upper 

subscapularis (n=11), lower subscapularis (n=9), and the infraspinatus and 

supraspinatus (n=10). Significant changes (p<.0166) in EMG activity are 

present across all three arcs of motion for the anterior and middle deltoid 

muscles, biceps, upper subscapularis, supraspinatus and the latissimus dorsi. 

The infraspinatus muscle showed significant EMG change in the first two arcs 

of motion but not the last.  The lower subscapularis and pectoralis major 

showed no significant changes for any arc of motion. The serratus anterior 

was significant for only the 0-50° arc of motion. In general, the mean EMG 

changes for the anterior and middle deltoids, infraspinatus and supraspinatus 

muscles were larger than the remaining 6 muscles. Post hoc power tests of 
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all non-significant results (α=.0166) revealed that 1-β was < .80. Computed 

sample sizes to achieve power for these results ranged from 21 to 27 

subjects. The average calculated minimal clinical change (MDC) for all 

muscles across all three arcs of motion for scaption was 10.75 %. 
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Figure 14:  Δ EMG No Tape -McConnell Tape Scaption (0-50°)
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n Lower Upper 
Deltoid, A. 11 12.45 11.58 3.56 10 .005 4.66 20.23 
Subscap., L 9 11.53 16.99 2.04 8 .076 -1.53 24.59 
Subscap., U 11 11.00 11.17 3.27 10 .009 3.49 18.51 
Infra 10 10.65 10.22 3.30 9 .009 3.34 17.97 
Supra 10 9.88 7.06 4.43 9 .002 4.84 14.93 
Pect. Major 12 8.28 10.99 2.61 11 .024 1.30 15.26 
Lat. Dorsi 12 7.97 8.23 3.35 11 .006 2.74 13.20 
Deltoid M. 12 7.22 5.58 4.48 11 .001 3.68 10.77 
Biceps 12 5.36 4.34 4.27 11 .001 2.60 8.12 
Serratus 12 3.22 3.03 3.69 11 .004 1.30 5.15 

Test Value = 0                                       

Mean  
Change t df 

p  
(2-tailed) 

95%  
Confidence  

Interval of the  
Difference 

SD 

Table 7 
Change in EMG (%MVIC) No Tape- McConnell Tape 

Scaption (0-50°) 
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n Lower Upper
Infra 10 17.53 15.57 3.56 9 0.006 6.39 28.67
Deltoid, M 12 16.85 9.76 5.98 11 0.000 10.65 23.06
Subscap. L 9 13.30 18.96 2.10 8 0.068 -1.27 27.88
Deltoid, A 11 12.42 8.80 4.68 10 0.001 6.51 18.34
Supra 10 10.59 11.15 3.00 9 0.015 2.62 18.57
Lat. Dorsi 12 9.68 9.24 3.63 11 0.004 3.81 15.55
Biceps 12 9.11 7.89 4.00 11 0.002 4.10 14.12
Pect. Major 11 8.11 11.13 2.42 10 0.036 0.64 15.59
Subscap. U 11 6.04 5.20 3.86 10 0.003 2.55 9.54
Serratus 12 4.56 6.77 2.33 11 0.040 0.26 8.86

Table 8
Change in EMG (%MVIC) No Tape- McConnell Tape

Scaption (50-75°)

Test Value = 0                                       

Mean 
Change t df

p 
(2-tailed)

95% 
Confidence 

Interval of the 
Difference

SD

 

 Figure 15: Δ EMG No Tape-McConnell Tape Scaption (50-75°)  
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n Lower Upper
Deltoid, M 12 17.39 12.35 4.88 11 0.000 9.55 25.24
Deltoid, A 11 17.09 13.80 4.11 10 0.002 7.82 26.36
Infra 10 14.03 17.91 2.48 9 0.035 1.21 26.84
Supra 10 12.74 10.56 3.82 9 0.004 5.19 20.30
Lat. Dorsi 12 11.43 11.43 3.46 11 0.005 4.17 18.69
Subscap. L 9 11.39 15.25 2.24 8 0.055 -0.33 23.12
Serratus 12 11.36 14.18 2.78 11 0.018 2.35 20.37
Subscap. U 11 9.73 8.99 3.42 10 0.008 3.30 16.16
Biceps 12 9.20 8.96 3.56 11 0.004 3.51 14.89
Pect. Major 12 3.79 4.74 2.77 11 0.018 0.78 6.80

Table 9
Δ EMG (%MVIC) No Tape- McConnell Tape

Scaption (75°-Max)

Muscle

Test Value = 0                                       

t df
p

 (2-tailed)

95% Confidence 
Interval of the 

DifferenceMean
Change SD

 

Figure 16: Δ EMG No tape-McConnell tape Scaption (75°-Max) 
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No Tape-Base Tape Condition 

Descriptive statistics and t-test results of the change in EMG amplitude 

(%MVIC) for the no tape-base tape condition for the three arcs of motion are 

presented in tables 10-12.  Figures 15-17 display the graphs of the mean 

EMG changes for the three arcs in rank order with corresponding p values. 

Loss of EMG data due to saturation or corruption of the EMG signal resulted 

in a decrease in the sample size for the analysis of the following muscles: 

supraspinatus (n=10), infraspinatus (n=10), anterior deltoid (n=11), lower 

subscapularis (n=9), pectoralis major (n=10), and the upper subscapularis 

(n=10). 

 Significant changes (p<.0166) in EMG activity are present across all 

three arcs of motion for the anterior and middle deltoid muscles and the 

serratus anterior.  Significant changes in mean EMG amplitudes during the no 

tape-base tape condition were seen for other muscles more randomly over 

the three arcs of motion. Post hoc testing of all non-significant results 

(α=.0166) revealed that 1-β was < .80.  Computed sample sizes to achieve 

power for these results ranged from 17 to 32 subjects. The average MDC for 

all muscles across all three movement patterns was 9.26%. 
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n Lower Upper
Subscap. U 11 11.37 13.40 2.81 10 0.018 2.37 20.37
Deltoid, M 12 10.97 12.42 3.06 11 0.011 3.07 18.86
Deltoid, A 10 8.72 9.32 3.10 10 0.011 2.46 14.98
Infra 10 7.94 6.06 4.15 9 0.002 3.61 12.27
Supra 10 7.13 6.64 3.40 9 0.008 2.38 11.88
Lat. Dorsi 12 6.22 6.61 3.26 11 0.008 2.02 10.42
Biceps 12 6.21 8.61 2.50 11 0.030 0.74 11.67
Subscap. L 9 5.61 6.32 2.66 8 0.029 0.76 10.47
Serratus 12 5.28 5.33 3.43 11 0.006 1.89 8.66
Pect. Major 12 3.91 5.44 2.49 11 0.030 0.45 7.36

Table 10 
 ΔEMG (%MVIC)  No Tape - Base Tape 

Scaption (0-50°)

Muscle
Mean

Change SD

Test Value = 0                                       

t df
p

 (2-tailed)

95% Confidence 
Interval of the 

Difference

 

Figure 17: Δ EMG No Tape to Base Tape Scaption (0-50°) 
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n Lower Upper
Deltoid, M 12 14.35 13.12 3.79 11 0.003 6.01 22.69
Infra 10 13.16 16.81 2.47 9 0.035 1.13 25.18
Biceps 12 11.47 15.11 2.63 11 0.023 1.86 21.07
Deltoid, A 10 8.49 7.82 3.60 9 0.005 3.23 13.74
Supra 10 8.28 9.49 2.76 9 0.022 1.49 15.08
Subscap. U 11 7.12 9.52 2.48 10 0.033 0.72 13.52
Subscap. L 9 6.03 5.63 3.22 8 0.012 1.71 10.36
Serratus 12 5.24 6.20 2.92 11 0.014 1.29 9.18
Lat. Dorsi 12 5.07 5.28 3.33 11 0.007 1.72 8.43
Pect. Major 12 4.23 5.11 2.74 11 0.021 0.80 7.66

Table 11
Δ EMG (%MVIC) No Tape - Base Tape

Scaption (50-75°)
Test Value = 0                                       

Mean 
Change t df

p 
(2-tailed)

95% Confidence 
Interval of the 

Difference
SD

 

Figure: 18: Δ EMG No Tape-Base Tape Scaption (50-75°) 
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 Figure 19: Δ EMG No Tape to Base Tape Scaption (75°-Max) 
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Lower Upper
Supra 10 10.21 8.56 3.77 9 0.004 4.09 16.33
Infra 10 10.09 16.61 1.92 9 0.087 -1.80 21.97
Deltoid, M 12 9.02 7.97 3.92 11 0.002 3.95 14.08
Deltoid, A 11 8.22 8.14 3.35 10 0.007 2.75 13.69
Biceps 12 6.65 8.98 2.56 11 0.026 0.94 12.35
Subscap. L 9 6.59 11.64 1.70 8 0.128 -2.36 15.54
Pect. Major 10 5.17 5.89 3.04 11 0.011 1.43 8.91
Serratus 12 4.57 3.59 4.41 11 0.001 2.29 6.85
Subscap. U 10 4.25 4.82 2.79 9 0.021 0.80 7.70
Lat. Dorsi 12 3.40 5.18 2.27 11 0.044 0.11 6.69

Table 12
Δ EMG (%MVIC) No Tape- Base Tape

Scaption (75°-Max)

Muscle
Mean

Change SD

Test Value = 0                                       

t df
p

 (2-tailed)

95% Confidence 
Interval of the 

Difference

n
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McConnell Tape -Base Tape Conditions 

 Because the change in EMG amplitude (%MVIC) after application of 

the base tape alone was significant for several muscles, we employed a       

T-test to determine if the change from the McConnell tape was significantly 

different from that of the base tape alone.  Descriptive statistics and t-test 

results for the change in EMG amplitude (%MVIC) between the McConnell 

tape and the base tape only conditions for the three arcs of motion are 

presented in tables 13-15.  Figures 18-20 display the graphs of the mean 

EMG changes for the three arcs in rank order with corresponding p values.  

Significant changes (p<.0166) in EMG activity are present across all 

three arcs of motion for the infraspinatus, middle deltoid, and upper 

subscapularis. The anterior deltoid, supraspinatus and latissimus dorsi 

muscles were all significant during the last two arcs of motion. With respect to 

the terminal ROM (75-Max) all but the lower subscapularis and the serratus 

anterior demonstrated a significant difference (p<.0166) between the base 

tape and the McConnell taping condition.  Post hoc testing of all non-

significant results (α=.0166) revealed that 1-β was < .80. Computed sample 

sizes to achieve power for these results ranged from 16 to 29 subjects.
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    Figure 20: Δ EMG McConnell Tape -Base Tape Scaption (0-50°) 
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Muscle n
Mean

change SD t df
p

(2 tailed) Lower Upper
Deltoid, A 11 12.84 15.05 2.83 10 0.017 2.72 22.95
Infra 10 9.94 5.95 5.28 9 0.001 5.68 14.20
Pect. Major 12 8.97 10.39 2.99 11 0.012 2.37 15.57
Supra 10 8.76 9.68 2.86 9 0.019 1.84 15.68
Subscap., L. 9 8.48 13.23 1.92 8 0.091 -1.70 18.65
Deltoid, M 12 8.05 8.35 3.34 11 0.007 2.74 13.36
Lat. Dorsi 12 7.19 9.71 2.57 11 0.026 1.02 13.36
Biceps 12 3.97 5.12 2.69 11 0.021 0.72 7.23
Subscap., U. 11 3.92 3.26 3.99 10 0.003 1.73 6.11
Serratus 12 3.01 3.76 2.78 11 0.018 0.62 5.40

Table 13
Δ EMG (%MVIC) McConnell Tape - Base Tape

Scaption (0-50°)
Test Value = 0                                       

95% Confidence
 Interval of

 the Difference
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Figure 21: Δ EMG McConnell Tape to Base Tape Scaption (50-75°) 
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Muscle n
Mean

change SD t df
p

(2 tailed) Lower Upper
Subscap., L. 9 16.17 23.82 2.04 8 0.076 -2.14 34.48
Deltoid, M 12 12.45 9.92 4.35 11 0.001 6.15 18.75
Infra 10 10.96 11.32 3.06 9 0.014 2.86 19.05
Biceps 12 10.86 13.94 2.70 11 0.021 2.00 19.72
Deltoid, A 11 10.74 9.36 3.81 10 0.003 4.45 17.02
Supra 10 10.70 10.73 3.15 9 0.012 3.02 18.38
Lat. Dorsi 12 9.17 8.93 3.56 11 0.005 3.49 14.85
Serratus 12 7.57 8.17 3.21 11 0.008 2.38 12.76
Subscap., U. 11 7.02 5.79 4.02 10 0.002 3.13 10.91
Pect. Major 12 6.22 9.43 2.28 11 0.043 0.23 12.21

Test Value = 0                                       
95% Confidence

 Interval of
 the Difference

Table 14
Δ EMG McConnell Tape to Base Tape

Scaption (50-75°)
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Figure 22: Δ EMG Base Tape - McConnell Tape Scaption (75°Max) 
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Muscle n
Mean
change SD t df

p
(2 tailed) Lower Upper

Deltoid, M 12 14.37 11.29 4.409 11 .001 7.20 21.54
Subscap., L. 9 14.33 27.18 1.581 8 .153 -6.57 35.22
Serratus 12 11.32 16.07 2.439 11 .033 1.11 21.53
Deltoid, A 11 10.80 10.96 3.266 10 .008 3.43 18.16
Lat. Dorsi 12 10.05 10.46 3.327 11 .007 3.40 16.69
Supra 10 8.85 6.54 4.276 9 .002 4.17 13.52
Subscap., U. 10 7.46 5.26 4.482 9 .002 3.70 11.23
Biceps 12 7.11 7.25 3.397 11 .006 2.50 11.72
Infra 10 6.93 7.41 2.954 9 .016 1.62 12.23
Pect. Major 12 5.05 5.84 2.995 11 .012 1.34 8.76

Table 15
Δ EMG Base Tape - McConnell Tape

Scaption (75°-Max)

Test Value = 0                                       
95% Confidence 

Interval of 
the Difference
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External Rotation at 45° Abduction 

No Tape- McConnell Tape Conditions 

Loss of EMG data due to saturation or corruption of the EMG signal 

resulted in a decrease in the sample size for analysis of the infraspinatus 

(n=9) and supraspinatus (n=11). Descriptive statistics and t-test results for the 

change in EMG amplitude (%MVIC) are presented for the three arcs of 

motion in tables 16-18. Figures 21-23 display the graphs of the mean EMG 

changes in rank order with corresponding p values.  

Significant differences (p<.0166) of the absolute value of the mean 

EMG amplitudes (%MVIC) are seen for the infraspinatus and supraspinatus 

muscles across all three arcs of motion. The lower subscapularis 

demonstrated a significant change in the terminal ROM (75°-max) and the 

upper subscapularis in the mid range (50-75°). Post hoc power analysis 

revealed a 1- β <.80 for all non-significant results. Computed sample sizes to 

achieve power for these results ranged from 17-22 subjects. The average 

MDC score for all muscles over all three arcs of motion was 10.9%. 
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n
Mean

change SD
p

(2 tailed) Lower Upper
Infra 9 21.24 12.46 5.113 8 0.001 11.66 30.81
Subscap, U. 12 18.10 26.49 2.266 11 0.047 0.30 35.89
Subscap, L. 12 15.26 17.35 3.045 11 0.011 4.23 26.28
Supra 11 14.66 12.64 3.846 10 0.003 6.17 23.15

t df

95% Confidence 
Interval of the 

Difference

Test Value = 0                                       

Table 16
Δ EMG (%MVIC) No Tape - McConnell Tape

ER 45 (0-50°)

Muscle

 

 Figure 23: Δ EMG No Tape-McConnell Tape ER 45º (0-50º) 
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n SD Lower Upper
Infra 9 18.80 9.98 5.33 8 0.001 10.46 27.14
Supra 11 17.68 14.15 4.14 10 0.002 8.17 27.19
Subscap, L. 12 7.07 10.45 2.34 11 0.039 0.43 13.71
Subscap, U. 12 6.47 7.27 3.08 11 0.010 1.85 11.09

 Muscle t df
p 

(2 tailed)

95% Confidence 
Interval of the 

Difference

Test Value = 0                                       

Mean
change

Table:17
Δ EMG (%MVIC) No Tape- McConnell Tape 

ER 45° (50-75°)

 

Figure 24: Δ EMG No Tape-McConnell Tape ER 45° (50-75°) 
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n
Mean 

change SD Lower Upper
Infra 9 13.15 8.05 4.901 8 0.001 6.96 19.33
Supra 11 10.82 11.97 3.133 10 0.010 3.22 18.43
Subscap, U. 12 9.27 10.71 2.737 11 0.023 1.61 16.94
Subscap, L. 12 6.47 7.27 3.081 11 0.010 1.85 11.09

 
Confidence 

Interval of the 
Difference

Test Value = 0                                       

Table 18
Δ EMG (%MVIC) No Tape - McConnell Tape

ER 45° (75°-Max)

Muscle t df
p

(2 tailed)

 

Figure 25: Δ EMG No Tape to McConnell Tape ER 45 (75°-Max) 
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No Tape-Base Tape Conditions 

Loss of EMG data due to saturation or corruption of the EMG signal 

resulted in a decrease in the sample size for the analysis of the upper 

subscapularis (n=11), supraspinatus (n=11) and infraspinatus (n=9). 

Descriptive statistics and T-test results for the change in EMG amplitude 

(%MVIC) for the three arcs of motion are presented in tables 19-21. Figures 

24-26 display the graphs of the mean EMG changes for the three arcs of 

motion in rank order with corresponding p values.  

 Significant differences (p<.0166) of the absolute value of the mean 

EMG amplitudes (%MVIC) are seen for the supraspinatus and infraspinatus in 

the early (0-50°) and late (75°-max) portion of the ROM,  the upper 

subscapularis during mid range (50-75°) and the lower subscapularis during 

the late ROM (75°-max). Post hoc power analysis revealed a 1- β <.80 for all 

non-significant results. Computed sample sizes to achieve power for these 

results ranged from 18 to 41 subjects. The average MDC value across all 

muscles and all three arcs of motion for scaption was 13.3.
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n
Mean

Change SD Lower Upper
Subscap, U. 11 11.48 16.61 2.29 10 0.045 0.32 22.64
Supra 11 9.55 9.21 3.44 10 0.006 3.36 15.74
Infra 9 9.31 6.09 4.59 8 0.002 4.63 13.99
Subscap, L 12 8.38 10.80 2.69 11 0.021 1.52 15.24

Muscle

Table 19
Δ EMG (%MVIC) No Tape-Base Tape

ER 45° (0-50°)

df
p

(2 tailed)

95% Confidence 
Interval of the 

Difference

Test Value = 0                                       

t

 

Figure 26: Δ EMG No Tape to Base Tape ER 45° (0-50°) 
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n SD Lower Upper
Infra 9 10.56 12.49 2.390 8 0.048 0.11 21.00
Supra 11 8.07 9.86 2.715 10 0.022 1.45 14.69
Subscap, U. 11 5.73 6.98 2.847 10 0.017 1.30 10.16
Subscap, L. 12 5.11 9.72 1.822 11 0.096 -1.06 11.29

Table 20
Δ EMG (%MVIC) No Tape - Base Tape

ER 45° (50-75°)
Test Value = 0                                       

t df
p 

(2 tailed)

95% Confidence 
Interval of the 

DifferenceMean
ChangeMuscle

 

Figure 27: Δ EMG No Tape to Base Tape ER 45° (50-75°) 
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n
SD

Lower Upper
Infra 9 8.99 6.98 3.865 8 0.005 3.63 14.36
Supra 12 5.66 4.45 4.405 11 0.001 2.83 8.49
Subscap, L 11 5.73 6.98 2.847 10 0.017 1.30 10.16
Subscap, U. 11 7.19 8.73 2.605 10 0.029 0.95 13.43

Mean
Change

Test Value = 0                                       

Table 21
Δ EMG (%MVIC) No Tape - Base Tape

ER 45° (75°-Max)

Muscle t df
(2-tailed)

p

95% Confidence 
Interval of the 

Difference

 

 

           Figure 28: Δ EMG No Tape to Base Tape ER 45° (75°-Max) 
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McConnell Tape -Base Tape Conditions 

The change in EMG amplitude (%MVIC) after application of the base 

tape alone was significant for several muscles therefore a t-test was 

employed to determine if the change from the McConnell tape was 

significantly different from that of the base tape alone. Descriptive statistics 

and t-test results for the change in EMG amplitude (%MVIC) for the 

McConnell tape - base tape only conditions are presented for the three arcs 

of motion in tables 22-24.  Figures 27-29 display the graphs of the mean EMG 

changes in rank order for the three arcs of motion with corresponding p 

values. Significant differences (p<.0166) of the absolute value of the mean 

EMG amplitudes (%MVIC) are seen for the supraspinatus and the 

infraspinatus for all three arcs of motion, and for the upper and lower 

subscapularis muscles during the 2nd two arcs of motion.  Post hoc power 

analysis revealed a 1- β <.80 for all non-significant results.  Computed sample 

sizes to achieve power for these results ranged from 27-41 subjects.  
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n SD Lower Upper
Supra 11 17.25 16.63 3.439 10 0.006 6.07 28.42
Infra 9 14.08 9.46 4.463 8 0.002 6.80 21.35
Subscap, U. 11 10.67 16.16 2.191 10 0.053 -0.18 21.53
Subscap, L. 12 7.63 14.51 1.822 11 0.096 -1.59 16.85

Muscle

Test Value = 0                                       

t df
(2-tailed)

P

95% Confidence 
Interval of the 

Difference

Table 22
Δ EMG (%MVIC) McConnell Tape - Base Tape

ER 45 (0-50°)

Mean
Change

 

 

Figure 29: Δ EMG McConnell - Base Tape ER 45° (0-50°) 
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n Mean SD Lower Upper
Supra 11 19.60 13.60 4.778 10 0.001 10.46 28.73
Infra 8 8.46 5.75 4.160 7 0.004 3.65 13.27
Subscap L. 12 3.17 3.74 2.933 11 0.014 0.79 5.55
Subscap U. 12 2.34 1.77 4.595 11 0.001 1.22 3.46

Muscle t df
p

(2 tailed)

95% Confidence 
Interval of the 

Difference

Test Value = 0                                       

Table 23
Change in EMG (%MVIC) McConnell Tape - Base Tape

ER 45° (50-75°)

 

 

Figure 30: Δ EMG McConnell Tape - Base Tape ER 45 (50-70°) 
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N Mean SD Lower Upper
Supra 12 11.00 10.04 3.80 11 0.003 4.62 17.38
Infra 9 9.42 4.69 6.03 8 0.000 5.82 13.02
Subscap, U 10 7.73 7.13 3.43 9 0.008 2.63 12.83
Subscap, L. 12 2.53 1.78 4.93 11 0.000 1.40 3.66

Test Value = 0                                       

Table 24
Δ in EMG (%MVIC)  McConnell Tape - Base Tape

ER 45° (75°-Max)

Muscle t df
p

(2 tailed)

95% Confidence 
Interval of the 

Difference

 

 

Figure 31: Δ EMG McConnell Tape - Base Tape ER 45 (75-Max°) 
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External Rotation 90° Abduction  

No Tape to McConnell Tape Conditions 

Loss of EMG data due to saturation or corruption of the EMG signal 

resulted in a decreased sample size for analysis of the upper subscapularis 

(n=11), supraspinatus (n=11) and infraspinatus (n=9). Descriptive statistics 

and t-test results for the change in EMG amplitude (%MVIC) for the three arcs 

of motion are presented in tables 25-27. Figures 30-33 display the graphs of 

the mean EMG changes in rank order for the three arcs of motion with 

corresponding p values.  

Significant differences (p<.0166) of the mean EMG amplitudes 

(%MVIC) are seen for the infraspinatus and supraspinatus muscles across all 

three arcs of motion and both the upper and lower subscapularis for the 75°-

max arc of motion. The mean changes in EMG amplitudes were highest in the 

infraspinatus and supraspinatus muscles.  Post hoc power analysis revealed 

a 1- β <.80 for all non-significant results.  Computed sample sizes to achieve 

power for these results ranged from 18-28 subjects.  The average MDC value 

for all muscles across all three arcs of motion was 9.3%. 
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Lower Upper
Infra 9 13.44 7.92 5.09 8 .001 7.36 19.53
Supra 11 13.62 13.36 3.38 10 .007 4.64 22.60
Subscap., L. 11 13.23 18.66 2.35 10 .041 .69 25.76
Subscap., U. 11 8.05 12.21 2.19 10 .053 -.15 16.25

p
(2tailed) n

Mean
Change SD t df

95% Confidence 
Interval of the 

Difference

Test Value = 0                                       

Table 25
Δ in EMG (%MVIC) No Tape - McConnell Tape

 ER 90°  (0-50°)

 

 

               Figure 32: Δ EMG No Tape to McConnell Tape ER 90° (0-50°) 
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Lower Upper
Infra 9 13.84 10.63 3.91 8 .005 5.67 22.02
Supra 11 14.42 10.70 4.47 10 .001 7.24 21.61
Subscap., L. 11 5.84 8.33 2.33 10 .042 .25 11.44
Subscap., U. 11 6.71 7.80 2.72 10 .024 1.13 12.29

 n
Mean

Change SD t df
p

(2 tailed)

95% Confidence 
Interval of the 

Difference

Table 26
Δ EMG (%MVIC)  No Tape- McConnell Tape 

ER 90° (50-75°)
Test Value = 0                                       

 

               

Figure 33: Δ EMG No Tape - McConnell ER 90° (50-75°) 
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Lower Upper
Infra 9 14.72 9.16 4.82 8 .0013 7.68 21.76
Supra 11 9.39 8.58 3.63 10 .0046 3.63 15.15
Subscap., L . 11 4.18 3.36 4.13 10 .0020 1.92 6.44
Subscap., U. 11 5.64 4.35 4.30 10 .0016 2.72 8.56

Test Value = 0                                       

Table 27
Δ in EMG (%MVIC)  No Tape-McConnell Tape 

ER 90° (75-Max)

df
(2 tailed)

p

95% Confidence 
Interval of the 

Difference

 N
Mean
Change SD t

 

 

               Figure 34: Δ EMG No Tape-McConnell Tape ER 90° (75°-Max) 
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No Tape-Base Tape Conditions 

Loss of EMG data due to saturation or corruption of the EMG signal 

resulted in a decrease in the number of subjects for analysis of the upper 

subscapularis (n=11), supraspinatus (n=11) and infraspinatus (n=9). 

Descriptive statistics and T-test results for the change in EMG amplitude 

(%MVIC) for the three arcs of motion are presented in tables 28-30. Figures 

33-35 display the graphs of the absolute values of the mean EMG changes 

for the three arcs of motion in rank order with corresponding p values.  

Significant differences (p<.0166) of the mean EMG amplitudes 

(%MVIC) are seen for the infraspinatus and supraspinatus muscles over all 

three arcs of motion.  With the exception of the upper subscapularis during 

the last arc of motion, neither of the subscapularis muscles demonstrated a 

significant change in EMG. 

Post hoc power analysis revealed a 1- β <.80 for all non-significant 

results. Computed sample sizes to achieve power for these results ranged 

from 19 to 26 subjects. The average MDC value for all muscles across all 

three movement patterns was 8.2%. 
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n
Mean

change SD Lower Upper
Subscap L 11 12.04 16.40 2.43 10 0.035 1.02 23.06
Subscap, U. 11 10.55 15.52 2.25 10 0.048 .13 20.98
Supra 11 9.84 9.48 3.45 10 0.006 3.48 16.21
Infra 9 9.21 8.77 3.15 8 0.014 2.47 15.96

Muscle t df
p

(2 tailed)

95% Confidence 
Interval of the 

Difference

Test Value = 0                                       

Table 28
Δ EMG (%MVIC) No Tape-Base Tape 

ER 90°  (0-50°)

 

                 Figure 35: Δ EMG No Tape- Base Tape ER 90 (0-50°) 
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Lower Upper
Supra 11 12.24 8.72 4.66 10 0.001 6.38 18.09
Subscap, U. 11 11.53 15.90 2.29 10 0.048 .154 22.90
Infra 9 10.36 9.94 3.13 8 0.014 2.72 18.00
Subscap L 11 4.02 4.89 2.72 10 0.021 .730 7.30

Test Value = 0                                       

Table 29
Δ EMG (%MVIC) No Tape- Base Tape

 ER 90°  (50-75°)

Muscle t df
p

(2 tailed)

95% Confidence 
Interval of the 

Difference
n

Mean
Change SD

 

 

                        Figure 36: Δ EMG No Tape-Base Tape ER 90° (50-75°) 
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Muscle n
Mean
Change SD t df

p
(2 tailed) Lower Upper

Subscap, U. 11 8.83 13.07 2.24 10 0.049 .047 17.61
Infra 9 8.49 6.68 3.81 8 0.005 3.36 13.62
Supra 11 6.25 5.35 3.87 10 0.003 2.65 9.84
Subscap L 11 3.84 3.75 3.40 10 0.007 1.33 6.36

95% Confidence 
Interval of the 
Difference

Test Value = 0                                       

Table 30
Δ EMG (%MVIC) No Tape-Base Tape 

ER 90°  (75°-Max)

 

   

              Figure 37: Δ EMG No Tape-Base Tape ER 90° (75°-Max)  
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A change in EMG amplitude (%MVIC) after application of the base 

tape alone was significant for several muscles, therefore a t-test to determine 

if the change from the McConnell tape was significantly different from that of 

the base tape alone was performed.  Descriptive statistics and t-test results 

for the change in EMG amplitude (%MVIC) between the McConnell tape and 

the base tape only conditions are presented for the three arcs of motion in 

tables 31-33.  Figures 36-38 display the graphs of the absolute values of the 

mean EMG changes for the three arcs of motion in rank order with 

corresponding p values. Significant differences (p<.0166) of the absolute 

value of the mean EMG amplitudes (%MVIC) are seen for the supraspinatus 

during the second two arcs of motion, and the infraspinatus and the lower 

subscapularis during the early (0-50) and late (75-max) part of the ROM. The 

upper subscapularis muscle did not demonstrate significant changes in EMG 

activity during any part of the ROM.  Post hoc power analysis revealed a 1- β 

<.80 for all non-significant results.  Computed sample sizes to achieve power 

for these results ranged from 15 to 24 subjects.  
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n
Mean

Change SD Lower Upper
Supra 11 15.58 19.23 2.69 10 .023 2.66 28.50
Subscap, U. 11 10.33 14.44 2.37 10 .039 .632 20.03
Infra 9 9.67 6.49 4.47 8 .002 4.68 14.66
Subscap L 11 4.50 4.24 3.51 10 .006 1.65 7.35

95% Confidence 
Interval of the 

Difference

Test Value = 0                                       

Table 31
Δ EMG (%MVIC) McConnell Tape-Base Tape

 ER 90°  (0-50°)

Muscle t df
 (2-tailed)

p

 

 

                Figure 38: Δ McConnell Tape to Base Tape ER 90° (0-50°) 
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Lower Upper
Supra 11 18.81 18.08 3.45 10 .006 6.66 30.96
Infra 9 9.51 10.10 2.83 8 .022 1.75 17.28
Subscap, U. 11 8.96 10.11 2.80 10 .021 1.73 16.20
Subscap L 11 3.60 5.08 2.35 10 .041 .18 7.01

95% Confidence 
Interval of the 

Difference

Test Value = 0                                       

n
Mean

change

Table 32
Δ EMG (%MVIC)  McConnell Tape-Base Tape

ER 90°  (50-75°)

SD t df
p

(2 tailed)Muscle

 

 

Figure 39: Δ EMG McConnell Tape- Base Tape ER 90° (50-75°) 

 

p=.006* 

p=.022 
p=.021 

p=.041 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

%
M

V
IC

 

*p < 0166 



104 
 

Muscle n
Mean
change SD t df

 
p

(2 tailed) Lower Upper
Supra 11 11.29 8.81 4.25 10 .002 5.37 17.21
Infra 9 9.97 7.59 3.94 8 .004 4.14 15.80
Subscap, U. 11 8.51 11.14 2.53 10 .030 1.03 16.00
Subscap L 11 2.71 2.89 3.11 10 .011 .77 4.65

95% Confidence 
Interval of the 

Difference

Table 33
Δ EMG (%MVIC)  McConnell Tape-Base Tape 

ER 90°  (75°-Max)
Test Value = 0                                       

 

 

     Figure 40: ΔEMG McConnell Tape- Base Tape ER 90° (75°-Max) 
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Torque 

Descriptive statistics for the mean torques for scaption, ER 45° and ER 

90° are presented in tables 34, 36 and 38 respectively and in figures 39-41.  

Results of the within subject effects (tables 35, 37 and 39) demonstrate no 

main effect for taping condition for peak torque (Nm) for any of the three 

isokinetic movement patterns.  

Table 34 

Descriptive Statistics Scaption Torques (Nm) 

Taping Condition n Mean (Nm) SD
No Tape 12 13.73 6.95
McConnell Tape 12 14.15 6.14
Base Tape 12 13.92 5.8  

Table 35 

ANOVA Results Scaption Torques (Nm) 

 

 

           

Type III Sum of 
Squares df

Mean 
Square F Sig.

Partial Eta 
Squared

Tape Sphericity 
Assumed

1.077 2 .538 .143 .867 .013
Factor
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              Figure 41: Δ Torques (Nm) Scaption 

 

Table 36 

Descriptive Statistics ER 45° Torques (Nm) 

Taping Condition n Mean (Nm) SD
No Tape 12 9.03 3.52
McConnell Tape 12 9.18 3.69
Base Tape 12 8.47 2.89  
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Table 37 

ANOVA Tests of Within Subjects Effects Torques-ER 45° 

Factor   

Type III 
Sum of 
Squares df 

Mean 
Square F Sig 

Partial  
Eta 

Squared 

Tape 
Sphericity 
Assumed 3.367 2 1.68 0.524 0.60 0.05 

 

Figure 42: Δ Torques (Nm) ER 45°  

 

Table 38 

Descriptive Statistics ER 90° Torques (Nm) 

Taping Condition n Mean (Nm) SD
No Tape 12 8.75 4.22
McConnell Tape 12 8.98 4.09
Base Tape 12 8.69 3.75  
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Table 39 

ANOVA Tests of Within Subjects Effects Torques-ER 90° 

 

 

Figure 43: Torques (Nm) ER 90°  
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Chapter V 

 

DISCUSSION AND CONCLUSIONS 

   

 

   McConnell taping for anterior shoulder instability is a clinically 

important intervention despite a lack of evidence to support its use.  While 

studies report the effect of McConnell tape at the patellofemoral joint, this 

repeated measures investigation is the first to date to examine the effects of 

McConnell corrective taping and base taping alone on the electromyographic 

activity and torque production of the shoulder muscles.  Consistent with the 

patellofemoral taping literature, we found that the EMG activity between 

conditions increased in some subjects but decreased in others. This variability 
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in EMG change occurred across all three arcs of motion, for all three 

movement patterns.  Our statistical procedures used change scores to 

determine significant differences.  In an effort to limit results that may be 

attributed to measurement error, we calculated MDC for all muscles across all 

movement patterns in all taping conditions. The muscles’ MDC scores ranged 

from 8.2% to 13.3%.  In absence of any universally accepted approach, we 

chose a value just under half of the highest MDC to serve as a conservative 

estimate for demarcating meaningful change. Accordingly, changes in 

%MVIC less than 6% will be considered not to be clinically meaningful and 

are excluded from the discussion. 

The primary purpose of McConnell taping for shoulder instability is to 

alter humeral head position in order to influence activity of the rotator cuff 

muscles.  The rotator cuff muscles through concavity compression are the 

primary dynamic restraint to unwanted anterior translation of the humeral 

head on the glenoid (Lippitt et al., 1993).  In this study three rotator cuff 

muscles (supraspinatus, infraspinatus and upper subscapularis) 

demonstrated a significant change in EMG activity during the 75° to max arc 

of motion during ER at 90°.  This finding, consistent with our hypothesis, is 

critical as this is the position where the greatest anterior translation occurs in 

unstable shoulders (von Eisenhart-Rothe et al., 2005).  The lower 



111 
 

subscapularis did not demonstrate a relevant change in EMG in the 75° to 

max position during ER 90°.  This finding may be partially explained by the 

fact that the lower subscapularis is reported to be more active in lower ranges 

of abduction (Decker, Tokish, Ellis, Torry, & Hawkins, 2003), though the work 

of Kadaba and colleagues (1992) does not support that finding.  

The changes in muscle activity of the rotator cuff muscles during the 

McConnell taping condition may be owed to the tape moving the humeral 

head more posteriorly, presumably altering the muscle’s length-tension 

relationship.  Research has demonstrated that the optimal length of a muscle 

facilities optimal muscle contraction (Soderberg, 1997).  The more posterior 

re-alignment of the humeral head after taping may restore a more optimal 

length by reducing the position between the origin and insertion.  This 

concept was elucidated by Greenfield (1990) who found that shoulder 

external rotation strength increased when moving the shoulder from the 

coronal plane into the plane of the scapula where the length tension 

relationship of the rotator cuff is more optimal. 

The ability to influence the length tension relationship during the 

vulnerable abduction and ER position has important implications for the use 

of McConnell taping during rehabilitation. If we are able to effect a change in 
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muscle activity of the primary shoulder stabilizers in the apprehension 

position we can perhaps incorporate more strengthening exercises in this 

functionally important position returning patients to play more quickly. Often 

persons with ASI cannot perform strength training in full ER and abduction 

because of apprehension and pain, creating a significant functional deficit 

because this is the position of the arm during an overhead throw.  

In addition to showing significant changes in the apprehension 

position, the supraspinatus and infraspinatus muscles also demonstrated 

significant change during the other two arcs of motion, across all three 

movement patterns. Additionally these muscles demonstrated the greatest 

amount of change in EMG activity compared to the other muscles. The upper 

and lower subscapularis muscles demonstrated greater variability in their 

EMG response and acted independently of each other. For instance, the 

change in upper subscapularis EMG activity was significant over all three arcs 

of motion during scaption while the change in lower subscapularis EMG was 

not significant at all. The less consistent EMG change of the subscapularis 

muscles when compared to the supraspinatus and infraspinatus may be 

partially attributed to the technical difficulties of wire placement in these 

muscles. Access to these muscles is challenging as the arm must be fully 

internally rotated with the hand placed behind the back. As experienced in our 



113 
 

study, internal rotation in injured shoulders is frequently limited (Warner, 

Micheli, Arslanian, Kennedy, & Kennedy, 1990) making the hand behind the 

back position difficult to obtain. It is possible that because of the difficulty in 

wire placement, the ideal motor point was not achieved. Additionally, during 

the rotation tasks, the subscapularis was contracting eccentrically where as 

the supraspinatus and infraspinatus were contracting concentrically.  The 

stretched position of the subscapularis during an eccentric contraction may 

cause greater displacement of the wires, increasing EMG variability.  This 

may also be a factor in the high standard deviations seen for the 

subscapularis muscles.  

Like the rotator cuff, the deltoids and biceps serve as primary 

stabilizers of the glenohumeral joint and are reported to decrease anterior 

translation of the humeral head in unstable shoulders (Itoi et al., 1994; 

Rodosky et al., 1994;Pagnani et al., 1996; Kido et al., 2003).  The deltoids in 

our study demonstrated significant EMG changes over all three arcs of motion 

for scaption, whereas, the biceps over the last two arcs only.  The literature 

demonstrates increased EMG activity of the biceps in shoulders with ASI (Kim 

et al., 2001) and decreased activity of the deltoids in shoulders with 

multidirectional instability (Kronberg, Brostrom, & Nemeth, 1991) so the ability 
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to alter the activity of these muscles through taping has important clinical 

implications. 

While the rotator cuff muscles provide primary concavity compression, 

the trunk muscles act as secondary shoulder joint stabilizers only because 

their insertions are further from the joint axis of motion. In our study the 

latissimus dorsi demonstrated a significant change in EMG over all three arcs 

of motion during scaption, yet the pectoralis major activity remained 

unaffected. The role of the pectoralis major in the unstable shoulder is not 

well understood. Some investigators suggest that because of the anterior pull 

of the pectoralis major it may actually decrease stability of the glenohumeral 

joint (Arciero & Cruser, 1997; Labriola, Lee, Debski, & McMahon, 2005).  In a 

controlled laboratory experiment, Labriola found that simulated activity of the 

pectoralis major increased anteriorly directed shoulder forces 1180% 

(Labriola et al., 2005).  Our study supports the idea that the pectoralis major 

may not play a significant role in stabilizing the unstable shoulder.   

In this study, our results also do not support the effectiveness of 

McConnell tape in producing significant EMG changes in the serratus 

anterior. Several authors documented changes in serratus anterior activity in 

unstable subjects during throwing (Glousman et al., 1988) and shoulder 



115 
 

elevation (McMahon et al., 1996).  In our study, McConnell tape application 

did not create a significant change in serratus anterior muscle EMG.  Perhaps 

without a direct attachment onto the humerus serratus anterior is not affected 

by humeral head repositioning.  

Overall application of McConnell tape produced key changes in the 

EMG activity of the rotator cuff and deltoids consistent with the types of 

changes seen after repositioning of the patella with tape.  Several authors 

report changes in VMO EMG activity after realigning the patella more medially 

with tape. Ng and Cheng (2002), using a functional test, examined the effects 

of patellar taping on the EMG activity ratio of the VMO to the VL.  The authors 

reported a decrease in VMO activity after taping and attributed this to a 

decreased demand on the VMO to pull the patella medially.  Christou et al 

(2004) investigated the influence of patellar taping on the EMG activity of the 

VMO and VL.  Their EMG findings after patellar taping showed increases in 

VMO activity, whereas VL activity did not differ between groups.  Cowan and 

Hodges (2006) investigated the effects of patellar taping of subjects 

performing a stair based functional task.  These authors reported that the 

EMG amplitudes of the vasti muscles increased in some subjects but 

decreased in others. The presence of both increased and decreased EMG 
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activity in the patellofemoral literature is similar to the results in the present 

study. 

This variable pattern of subject EMG response in both the patella 

taping literature and the present study raises the possibility that different 

individuals use different neuromuscular strategies to cope with shoulder 

instability.  Shoulder subluxation directly influences motor performance.  

Individuals with ASI note apprehension in their functional activities, which may 

also be painful (Tsai et al., 1991).  Over time people with ASI may develop 

individual neuromuscular strategies to cope with this apprehension and pain.  

Several factors may play a role in the diversity of the subject response seen 

here, including length of time from initial injury or the type of upper extremity 

athletics the subject performs.   

Several historical theories explain the neuromuscular system’s 

response to pain or the threat of pain.  The first, the vicious cycle theory, 

proposes that there is a uniform increase in the activity of muscles that 

produce movement within a painful joint (Johansson & Sojka, 1991).  In 

subjects with ASI for example, this theory dictates that there might be an 

increase in rotator cuff muscle activity to help stabilize the joint.  A differing 

neuromuscular theory explaining muscle activity patterns around a painful 
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joint is the pain adaptation theory.  This model proposes that the activity of 

muscles that act as antagonists to a movement are uniformly decreased 

(Lund, Donga, Widmer, & Stohler, 1991).  An example of this might be a 

decrease in quadriceps muscle activity in a person with patellofemoral pain. 

The purpose of the pain adaptation response is to decrease displacement, 

velocity or force at the painful site (Hodges, 2011).  While these two theories 

help shed light on our EMG findings, more recently Hodges (2011) proposed 

that rather than a uniform increase or decrease of motor activity in response 

to pain, motor adaptation varies between individuals and tasks. He argues the 

possibility of each individual develops a protective strategy that is uniquely 

based on his or her experience.  Hodges’ model helps to explain the 

bidirectional EMG change found between subjects in this study. 

Based on these theories one could surmise that each subject entered 

this study with unique motor strategies to cope with their instability and pain 

and therefore responded differently to tape application.  Subjects who 

increased their EMG activity may have had an initial suppression of motor 

activity (pain adaptation theory).  In these subjects repositioning the humeral 

head through taping may optimize the length-tension relationship, facilitating 

contraction.  Subjects who demonstrated decreased EMG activity after tape 

application possibly experienced initial muscular hyperactivity (vicious cycle 
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theory).  Stabilizing the joint through tape may decrease the need for this 

muscular hyperactivity, thus decreasing the EMG activity in these subjects 

with ASI.  Other EMG findings of subjects with unstable shoulders confirm this 

variability in muscle response between our subjects.  Glousman (1988) 

studied throwers with ASI and found increased supraspinatus activity in the 

late cocking phase but decreased infraspinatus in the early cocking phase. 

McMahon (2002) however, found that supraspinatus activity decreased during 

abduction and scaption, whereas infraspinatus activity remained unchanged.  

Despite the different functional activities used in these two studies, it is 

evident that muscle activity varies in subjects with ASI. 

 Sensory effects from tape applied to the skin cannot be discounted.  

To ensure that our findings controlled for the potential influence on cutaneous 

afferents from the presence of tape touching the skin, we examined the EMG 

activity after the application of base tape alone.  The literature supports 

changes in motor activity from stimulation of cutaneous afferents in the 

overlying skin of the foot (Aniss et al., 1992) and the hand (McNulty et al., 

1999).  In the taping literature, Macgregor (2005) used tape to apply a stretch 

to the skin over the patella and found an increase in EMG activity of the VMO 

(Macgregor et al., 2005).  Similarly, Christou (2004) found that during 

isokinetic leg presses subjects demonstrated increases in VMO activity after 
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application of a placebo tape.  Consistent with these studies, and our 

hypothesis, we found base tape alone caused a significant change in EMG 

activity for multiple muscles across all three movement patterns.  

Interestingly, in McNulty’s (1999) investigation of reflex coupling in the hand, 

stimulation of the cutaneous afferents caused both excitatory and inhibitory 

EMG response of the muscles in the digits.  Given our findings, this may help 

to explain why bidirectional EMG changes occurred after the application of 

base tape alone.  Not surprisingly, the muscles directly underling the tape 

demonstrated the greatest change in % MVIC after base tape application. 

These included the deltoids, infraspinatus and supraspinatus muscles.  

Interestingly, the latissimus dorsi, biceps and upper subscapularis muscles 

not directly under the tape also demonstrated significant EMG change after 

application of the base tape.  These were the latissimus dorsi, biceps and 

upper subscapularis.  One explanation for these muscle changes may be that 

the tape tractioned the skin over the C4-T2 dermatomes thereby altering 

cutaneous afferent activity and subsequent reflex motor activity for theses 

muscles.  It appears then from the results of this study and the 

aforementioned literature that some of the effect of taping may be attributed 

to stimulation of the cutaneous afferents in the skin.  
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In addition to the significant changes noted in EMG for the two taping 

conditions separately, we analyzed the differences found between the no tape 

to McConnell tape with the no tape to base tape conditions.  We found that for 

many muscles these two taping conditions were also statistically different. 

Overall the supraspinatus, infraspinatus and deltoids demonstrated significant 

changes between the McConnell tape condition and the base tape condition 

relative to the baseline.  After application of the base tape, we documented an 

added effect from application of the McConnell corrective tape.  Thus the full 

treatment effect from McConnell taping then may be achieved partially from a 

sensory effect from stimulation of the cutaneous afferents and partially from 

the presumed mechanical realignment of the humeral head through the 

corrective tape.  This pilot study supports this theoretical concept of 

McConnell taping at the shoulder in subjects with ASI.  However further 

investigations are warranted.   

 While this study identified many significant EMG changes, no 

statistically different changes in peak torque between taping conditions 

occurred.  As muscle force is proportional to the total cross sectional area of 

the muscle (Soderberg, 1997) it may be that skeletal adaptation is required to 

see a change in force production.  If this is the case, perhaps changes in 

torque cannot be seen in just one session but require several weeks of 
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training.  Again, our results indicate that additional studies looking at the use 

of McConnell taping in context of a rehabilitation program for individuals with 

ASI are needed. 

Study Limitations  

There were several limitations of this study.  Although 12 subjects were 

recruited, we did not have complete data for all individual analyses due to 

saturation of a few muscle’s EMG signals.  The ranges of values entered into 

data analyses ranged from ten to twelve.  The use of a repeated measures 

design required fewer subjects reducing some of the variability, however the 

resulting smaller sample size then did not allow us to group subjects 

according to direction of their EMG change.  Additionally, because of the 

small sample size some of the non-significant results were underpowered 

rendering them inconclusive. 

A second limitation to be considered addresses the analyses using 

absolute values for the change scores since we were not able to determine 

the direction of EMG change, only the magnitude.  Lastly, we could not 

randomize the taping order, as removing the tape between conditions 

dislodged the indwelling electrodes.  For this reason we cannot eliminate the 
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chance that there was an additional learning effect as subjects performed the 

testing three times during the single session.  

 

Conclusions and Future Directions 

This is the first experimental study on the use of McConnell shoulder 

taping on the EMG activity of the shoulder muscles and shoulder joint peak 

torque in subjects with ASI.  This study documented changes in EMG activity 

of several muscles during three different functional movement patterns after 

application of both McConnell shoulder taping and base layer taping alone.   

Most significantly, three of the rotator cuff muscles demonstrated significant 

EMG change in the apprehension position of 90 degrees abduction and full 

external rotation.  The ability to affect a change in muscle activity of the 

primary stabilizing muscles within this functional position lends efficacy to the 

use of tape during rehabilitation of people with ASI. 

Because we found bidirectional EMG change between subjects, future 

studies with an increased sample size are needed size in order to allow 

grouping of subjects by direction of EMG change.  Additionally as we 

identified muscles that had no EMG change from the use of McConnell tape, 

a shorter protocol with fewer muscles studied can be used. 
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Appendix A 

 

 

Definitions 

Abduction: Lateral movement of the limbs away from the median line of 

the body (Taber, 1997) 

Afferent: Carrying inward to a central organ or section, as nerves that 

conduct impulses from the periphery of the body to the brain or spinal cord 

(Taber, 1997) 

Amplitude: The quantity that expresses the magnitude of a signal’s 

activity (DeLuca, 2002). 

Analog filter: a filter found in the electronic circuitry of the hardware 

(EMG) (DeLuca, 2002). 
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Analog- to- digital conversion (A-D): Conversion of the raw (analog) 

EMG signal into a mathematical signal through the process of sampling 

(DeLuca, 2002). 

Bandwidth: A range of EMG signal frequencies (DeLuca, 2002) 

Bipolar electrodes: Two recording surfaces used side by side (Cram, 

Kasman, & Holtz, 1998). 

Common mode rejection: During amplification, the signal that is the 

same at both recording electrodes is identified as noise and eliminated 

(Cram, Kasman, & Holtz, 1998c). 

Common Mode Rejection Ratio (CMRR):  The measure of the ability of 

the amplifier to eliminate the signal that is the same at both recording 

electrodes (common mode signal) (DeLuca, 2006). 

Concavity Compression: The stability afforded a convex object that is 

pressed into a concave surface(S. Lippitt & Matsen, 1993). 

Concentric muscle contraction: Muscle activity generated as a muscle 

shortens in length (Cram, Kasman, & Holtz, 1998c). 

Cross talk: When the signal from a distant muscle reaches the 

electrodes placed over another muscle site (Cram, Kasman, & Holtz, 1998). 
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Cut off frequency: The designated point that defines the limits of a 

filter’s frequency range (Cram, Kasman, & Holtz, 1998c). 

Dermatome: The area of skin supplied with afferent nerve fibers by a 

single posterior spinal root (Taber, 1997). 

Differential Amplification: A characteristic of the amplifier in which the 

EMG signal reaching both recording electrodes is compared to that of the 

reference electrode and only the signal that is different is passed on for 

further amplification (Cram, Kasman, & Holtz, 1998c). 

Digital EMG signal: The processed EMG signal expressed as a 

sequence of numbers (DeLuca, 2002). The digitation of a signal allows for 

mathematical manipulation of the signal to be performed. 

Dislocation: A complete separation of the joint surfaces where 

immediate, spontaneous relocation of the shoulder does not occur (Dodson & 

Cordasco, 2008).   

Eccentric muscle contraction: Muscle activity generated as a muscle 

increases in length (Cram, Kasman, & Holtz, 1998c). 

Electrode: The electrical conductor or recording surface for EMG signal 

detection(DeLuca, 2002). 
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Electromyography (EMG):  The electrical manifestation of the 

neuromuscular activation associated with a contracting muscle (DeLuca, 

2006; Webster, 2006) 

External rotation (ER): Movement of the shoulder in the transverse 

plane so that the hand moves away from the midline of the body. 

Fast fourier transformation (FFT): The mathematical process of 

decomposing an EMG signal into the frequency components in order to 

obtain the power spectrum(Cram, Kasman, & Holtz, 1998). 

Filter: a device designed to attenuate specific ranges of frequencies 

while allowing others to pass (DeLuca, 2002) 

Filtering: The manipulation of a signal’s frequency (DeLuca, 2002) 

Filter order: The magnitude of attenuation of the input signal’s 

frequency. The higher the order of the filter, the more frequency attenuation 

occurs (DeLuca, 2002). 

Fine wire electrode: An EMG electrode that is inserted into the muscle. 

Consists of 2 wires threaded through a hollow core needle(Cram, Kasman, & 

Holtz, 1998). 
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Frequency:  The number of repetitions per unit time of a complete 

waveform (Webster, 2006). 

Gain: Amplification of a signal. The amount of gain determines how 

large or small the signal appears on the visual display (Cram, Kasman, & 

Holtz, 1998). 

High pass filter: Frequencies lower than the specified filter frequency 

are attenuated (higher frequencies are passed) (Hillstrom & Triolo, 1994) . 

Instant center of rotation: the location of a point resulting from the 

construction of an intersection of two axes perpendicular to the plane of 

motion (Soderberg, 1997a). 

Internal rotation (IR): Movement of the shoulder in the transverse plane 

so that the hand moves towards the midline of the body.  

 Isokinetic exercise: Movement of the limb at a constant rate. (Perrin, 

1993). 

Isometric muscle contraction: Muscle activity in which the muscle 

length and joint angle are kept constant (Cram, Kasman, & Holtz, 1998c). 

Late cocking: A phase of the overhead throw when maximal external 

rotation and abduction of the arm is attained (Glousman et al., 1988). 
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Length-Tension relationship: The relationship between the length of a 

muscle and the contractile force the muscle is able to generate (Soderberg, 

1997c). 

Linear envelope: Smoothing a signal by low pass filtering the rectified 

signal (Winter & Winter, 1990). 

Maximal Voluntary Isometric Contraction (MVIC): A muscle contraction 

used as a reference for normalization of electromyographic activity  

(Boettcher, Ginn, & Cathers, 2008) .  

Mechanoreceptor: A receptor that receives mechanical stimuli such as 

pressure from sound or touch (Taber, 1997). 

Minimal detectable change: The smallest change that can be 

considered above the measurement error with a given level of confidence 

(95% confidence level) (Copay, Subach, Glassman, Polly, & Schuler, 2007). 

Movement artifact: Large deflections/distortion of a raw signal 

recording due to motion of the electrodes or the cables (Cram, Kasman, & 

Holtz, 1998). 

Noise: Any unwanted signal contained in a signal that may possibly 

mask the true signal of interest (DeLuca, 2002). 
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Normalization (EMG): Conversion of the EMG signal to a scale that is 

common to all measurement occasions.  Allows for comparison between 

subjects. Normalization is performed by dividing the EMG by a standard 

factor derived from a reference muscle contraction (Burden, 2010). In this 

study the MVIC was used as the reference muscle contraction 

Nyquist theorem (sampling theorem): Sampling frequency for any 

signal should be at least twice the value of the highest frequency component 

in the signal (DeLuca, 2002). 

Peak EMG Amplitude: The highest amplitude measured during the 

EMG activity (DeLuca, 2002). 

Peak Torque: The highest muscular torque produced at any point 

during an activity (Perrin, 1993) 

Power Spectrum: The distribution of frequencies contained within a 

signal (Backus et al., 2011). 

Raw EMG: The analog, unprocessed EMG signal (Cram, Kasman, & 

Holtz, 1998).  
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Reference electrode: An electrode which maintains a neutral electric 

potential to provide a common reference for the recording electrodes during 

differential amplification (DeLuca, 2002). 

Resistance/Impedance: A measure of how difficult it is for charges to 

flow in the form of an electric current (Hillstrom & Triolo, 1994) .  

Rectification (full wave): The negative portion of the EMG signal that 

resides below the zero point is made positive by artificially placing it above 

the zero crossing line (Cram, Kasman, & Holtz, 1998). 

Sampling frequency: The number of samples of the EMG signal 

collected per second (DeLuca, 2002). 

Saturation: Over amplification of the EMG signal causes the output 

signal to exceed the maximum output voltage capability of the recording 

system (DeLuca, 2002).  Visually the signal appears to be clipped at the peak 

and maximum amplitude is not represented. 

Scaption: Elevation of the arm in a plane of motion 30o forward to the 

abduction plane (Greenfield, Donatelli, Wooden, & Wilkes, 1990). 

Signal Range: The maximum output voltage a device is capable of 

sustaining (DeLuca, 2002). 
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Signal to noise ratio: The ratio of energy in a signal to the energy in the 

noise signal (DeLuca, 2002). 

Smoothing: A digital filtering technique that decreases the number of 

high frequencies contained in the signal (Soderberg & Knutson, 2000).  

Visually the signal appears to have the sharper peaks “smoothed out” (Cram, 

Kasman, & Holtz, 1998) 

Subluxation:  Partial separation of joint surfaces wherein spontaneous 

relocation occurs (Dodson & Cordasco, 2008).   

Surface Electrode:  An EMG electrode that sits on the skin over the 

muscle of interest (Cram, Kasman, & Holtz, 1998) 

Torque: Force measured about a joint’s axis of rotation. Torque = force 

x distance (Perrin, 1993). 
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