
ABSTRACT 

KHUWAILEH, BASSAM ABDULLAH AYED. Scalable Methods for Uncertainty 

Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics 

Advanced Simulation of Light Water Reactors. (Under the direction of Dr. Paul. J. Turinsky). 

 

 High fidelity simulation of nuclear reactors entails large scale applications characterized 

with high dimensionality and tremendous complexity where various physics models are 

integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). 

Each of the coupled modules represents a high fidelity formulation of the first principles 

governing the physics of interest. Therefore, new developments in high fidelity multi-physics 

simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount 

to the development and competitiveness of reactors achieved through enhanced understanding 

of the design and safety margins. Accordingly, this dissertation introduces efficient and 

scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data 

Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics 

reactor design and safety problems. 

 This dissertation builds upon previous efforts for adaptive core simulation and reduced 

order modeling algorithms and extends these efforts towards coupled multi-physics models 

with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order 

models. This can be achieved via identifying the important/influential degrees of freedom 

(DoF) via the subspace analysis, such that the required analysis can be recast by considering 

the important DoF only. In this dissertation, efficient algorithms for lower dimensional 

subspace construction have been developed for single physics and multi-physics applications 

with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) 

and inverse problems (DA and TAA). 



 Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy 

assessment and data assimilation analysis can be performed accurately and efficiently for large 

scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a 

Karhunen-Loève (KL) based algorithm previously developed to quantify the uncertainty for 

single physics models is extended for large scale multi-physics coupled problems with 

feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and 

compared to performance of the KL approach and brute force Monte Carlo (MC) approach.  

 On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess 

information about model’s parameters: nuclear data cross-sections and thermal-hydraulics 

parameters. Two improvements are introduced in order to perform DA on the high dimensional 

problems. First, a goal-oriented surrogate model can be used to replace the original models in 

the depletion sequence (MPACT – COBRA-TF - ORIGEN). Second, approximating the 

complex and high dimensional solution space with a lower dimensional subspace makes the 

sampling process necessary for DA possible for high dimensional problems.   

 Moreover, safety analysis and design optimization depend on the accurate prediction of 

various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated 

with the attributes of interest. Accordingly, an inverse problem can be defined and solved to 

assess the contributions from sources of uncertainty; and experimental effort can be 

subsequently directed to further improve the uncertainty associated with these sources. In this 

dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty 

quantification namely the Target Accuracy Assessment (TAA) has been developed and tested.  

 The ideas proposed in this dissertation were first validated using lattice physics 

applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and 



Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were 

applied to perform UQ and DA for assembly level (CASL progression problem number 6) and 

core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL 

Progression Problem Number 9) modeled via simulated using VERA-CS which consists of 

several multi-physics coupled models. The analysis and algorithms developed in this 

dissertation were encoded and implemented in a newly developed tool kit algorithms for 

Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE). 
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CHAPTER 1. INTRODUCTION 
 

Enhancing the efficiency of existing nuclear power reactors and developing new reactor 

designs require rigorous modeling and simulation tools that allow engineers to further 

understand physical phenomena more thoroughly and precisely than ever before. However, 

developing such precise and robust Virtual Reactor tools (VR) requires the employment of 

accurate, yet computationally realistic, mathematical models.  

Modeling nuclear reactors is a complex process due to the fact that the structure of reactors 

is highly heterogeneous. Fuel, gap, cladding, coolant, moderator, fuel grid, gaps, control rods, 

and other structural materials must be considered as separate mediums in the modeling process. 

Therefore, core wide calculations are performed in three steps with each dealing with a 

different scale of the reactor core. As shown in Figure 1, typically the core calculations can be 

divided into pin-cell (this step is bypassed in modern lattice physics codes), assembly and core-

wide calculations. For pin-cell calculations, a fine group cross-section library is used to 

calculate intra-group quantities (e.g. neutron flux). The ultimate goal of the pin-cell 

calculations is to produce spatially dependent multi-group cross-section to be used in the next 

level of the calculations.  

 The next level of the calculations is the lattice physics calculations (assembly level 

calculations) which are performed using the multi-group cross-sections produced by the 

previous step. At this level the spatial meshing is finer than that used for pin-cell calculations. 

This is due to the fact that assemblies have many different mediums that accounts for the 

heterogeneity along with the azimuthal dependence that must be captured. The resultant of the 

lattice physics calculations is the production of the few-group cross-sections.  
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Finally, core-wide calculations use the assembly-averaged nuclear data cross-sections 

library, to determine the neutron flux distribution and power levels over the entire core (nodal 

power) [1]. All modeling steps use mathematical models that are integrated together to form 

the so called Virtual Reactor (VR). VR uses the available nuclear data cross-sections and other 

parameters obtained via experiments that are subjected to various sources of uncertainty; to 

simulate various reactor operation conditions (e.g. various fuel cycles, plant startup, power 

maneuvering, and core reload/fuel discharge), hence, in order to provide meaningful 

simulation results; these parameters (e.g. cross-sections) should be provided along with their 

associated uncertainties. Therefore, quantities predicted via the VR are subjected to 

uncertainties that might be significant in the process of reactor design and safety margins. This 

leads to the fact that uncertainty quantification and sensitivity analysis are vital and important 

to be available for any tool of high fidelity nuclear reactor simulation. Moreover, since model’s 

parameters are considered a major source of uncertainty in the attributes of interest, efforts 

have been concentrated towards precisely determining these parameter. These efforts led to the 

application of inverse methods, adaptive core simulation and model calibration in nuclear 

reactor modeling and simulation using the experimental observables.  

This dissertation builds upon previous efforts for adaptive core simulation developed by 

H. S. Abdel-Khalik, M. A. Jesse, and P. J. Turinsky [2, 3] and reduced order modeling 

algorithms developed by Y. Bang and H. S. Abdel-Khalik [4] for uncertainty quantification of 

single physics models towards coupled multi-physics models with feedback effect. In the 

following sub-sections, previous efforts will be reviewed and discussed, then new 

developments will be summarized as an introduction for chapters 2 through 6.  
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Figure 1. Nuclear Reactor (http://energy.gov/articles/modeling-and-simulation-nuclear-

reactors-hub ).  

 

1.1 Motivation  

 

Recently, there has been increasing demand in the nuclear industry, safety, and regulation 

communities for precise confidence bounds to be provided with high fidelity predictions. For 

example, the U. S. Nuclear Regulatory Commission requires conservatisms on the design to 

assure adequate safety margins. In order to achieve that, best-estimate high fidelity calculations 

accompanied by an uncertainty evaluation must be provided so that the conservative design 

assumptions are replaced by model based estimates of the margins. The largest effort in this 

direction might be represented by the Code Scaling, Applicability and Uncertainty (CSAU) 

which demonstrates the use of model-based analysis to quantify the uncertainties [5-8]. 

However, CSAU received a number of criticisms best summarized in Ref. [7]. A number of 

http://energy.gov/articles/modeling-and-simulation-nuclear-reactors-hub
http://energy.gov/articles/modeling-and-simulation-nuclear-reactors-hub
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questions reported in Ref. [7] summarized the most important concerns about CSAU. The most 

important comments which are concerns to this work are:  

1- The generality of the CSAU formalism. 

2- Too many uncertainty factors are ignored due to the high computational costs of 

encountering them.  

3- Excessive use of engineering judgement. 

Establishing a unified framework to estimate uncertainties, safety margins and parameter 

calibration is important and fundamental for the improvement of reactor modeling and 

simulation. Therefore, this dissertation develops a framework that can encounter large scale 

uncertainty quantification problems (core-wide uncertainty quantification). Moreover, the 

generality and the conditions of applicability of the proposed framework are discussed. This 

would provide a more realistic and physics-based measure of reactor safety and design 

calculations which help the practical implementation of risk informed regulations. Moreover, 

having simulation-based margins helps in accelerating the licensing process when using high 

fidelity computer codes in safety analysis. For example, design margins can be improved by 

reducing predictive uncertainty in key reactor attributes. However, the improvement of the 

uncertainties in such important attributes requires a robust experimental effort with potentially 

a huge investment in time and/or money. Nevertheless, with the availability of solid and 

efficient simulation tools the experimental effort can be directed in the most efficient and 

optimized manner so that the time-financial investment is minimized and the safety-

competitiveness gain is maximized.  

High fidelity nuclear reactor simulation involves solving equations describing various 

chemical phenomena, heat generation and heat transfer by convection and conduction, fluid 
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hydraulics, and radiation transport. However, these equations are typically nonlinear, entails 

properties that are functions of the solution state (e.g. burnup dependent isotopic number 

density in transport calculation is a function of the neutron flux distribution), and they are often 

strongly coupled to each other. Unfortunately, nuclear engineering design and safety analysis 

includes dozens of phenomena that need to be simulated via nonlinear tightly coupled large 

scale, multi-physics models operating at a diversity of time and spatial scales. Therefore, in 

order to perform high fidelity simulations, and hence improving the design and safety margins, 

scientist should tackle these problems providing the most efficient and timely reasonable 

techniques to account for these complications.  

Current modeling and simulation tools solve these problems using the operator split 

methods, where the models are loosely coupled by decoupling phenomena and solving the 

resulting modified equations separately. If the coupled models are weakly dependent on each 

other, then each model can be simulated while fixing the other models (refer to Figure 2), 

followed by a solution of the second system given the result of the first model solution. On the 

other hand, if the coupled models are strongly dependent on each other and/or the coupled 

physics operate on disparate time scales then the former coupling technique usually converges 

very slowly if at all [9].  

 

Figure 2. Two coupled multi-physics models. 
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 A higher degree of coupling can be achieved via solving the models simultaneously 

employing a tightly coupled solution procedure by formulating a combined nonlinear algebraic 

system of equations which can be solved using a strongly convergent nonlinear solver such as 

the Jacobian–free Newton methods. Efforts in this direction can be exemplified by the Multi-

physics Object Oriented Simulation Environment (MOOSE) tool developed by Idaho National 

Laboratory [9]. MOOSE provides the user with several coupling schemes.  

 Uncertainties in key reactor safety and design attributes originate from a variety of sources 

that must be identified, analyzed and improved. In order to efficiently reduce the uncertainties 

associated with key reactor attributes, the uncertainty sources must be identified along with 

their contributions to the overall uncertainty. This is possible through the combined activities 

of uncertainty quantification analysis, data assimilation and target accuracy assessment. Data 

assimilation (i.e. parameter calibration) links the wealth of precise integral experiments and 

modeling which result in accurate and more reliable calibrated parameters (e.g. gap 

conductivity and cross-sections). However, the application of the data assimilation process for 

nuclear engineering applications has a number of challenges such as the huge computational 

burden associated with the model’s complexity and the scalability of the method for multi-

physics problems. More details about the data assimilation methods and challenges associated 

with them will be introduced in later sections. 

 Target accuracy requirements can be defined based on the input from the safety, regulation 

and industrial bodies. Such target accuracies can be used along with the high fidelity and multi-

physics simulation tools to assess the requirements on the uncertainty sources, hence, directing 

the subsequent experimental efforts in the most efficient and useful manner. After all, it is 

obvious that the Uncertainty Quantification (UQ) and Inverse Uncertainty Quantification 
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(IUQ) methods are at the heart of the development of reliable, safe and more competitive 

nuclear power plants.  

 The following sub-sections will briefly introduce the available theories and methodologies 

for UQ and IUQ, including data assimilation and target accuracy assessment).   Moreover, 

problems and challenges related to the application of these methods will be highlighted and 

briefly discussed. Finally, Reduced Order Modeling (ROM) [10-12] will be introduced as a 

facilitator of the UQ and the IUQ analysis through a brief introduction on the usefulness of the 

ROM techniques to their current and potential applications in nuclear engineering modeling, 

simulation and uncertainty quantification.    

 

1.2  Uncertainty Quantification 

 

 The ability to quantify the uncertainty in quantities predicted by computational models is 

important and paramount to various inference problems involved in nuclear engineering 

analysis. The UQ analysis quantifies the uncertainty in a certain response of interest (RoI) and 

identifies all plausible and important sources of uncertainty along with their contributions to 

the overall uncertainty.  

 Generally, computer codes are used to simulate various phenomena involved in the analysis 

of nuclear reactors. Using best estimate calculations that are combined with well estimated 

uncertainties provides more realistic evaluation of plant safety margins for licensing. In 

addition to that, there is nothing, in the uncertainty quantification methods and techniques that 

is limited to a specific reactor type or plant scenario (where conservatism varies for different 

reactor types, conditions and experts opinion). Once developed and agreed on, these methods 

and techniques can be applied to any reactor type (e.g. high temperature gas-cooled reactors or 
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liquid metal reactors) and any reactor condition (e.g. steady-state calculations, severe accident 

scenarios or operational transients…etc). Moreover, major sources of uncertainty can be 

determined and uncertainties reduced through robust and efficient experiments. This will lead 

to better response to emergencies due to the better understanding of the key phenomena.  

 Major sources of uncertainty might be classified as follow: 

a- Modeling Uncertainties: originating from the assumptions and/or simplifications entailed in 

the model. For example in for nuclear physics calculations the various self-shielding 

approximations used in the multi-group cross sections generation introduce uncertainties 

into the self-shielded libraries. 

b- Numerical Uncertainties: For example in deterministic methods the use of finite difference 

methods for spatial meshing introduce uncertainties and lack of full convergence of 

iterative methods. 

c- Input Data Uncertainties: Frequently the major source of uncertainty in the key reactor 

attributes is due to uncertainties in evaluated nuclear data such as microscopic cross 

sections, fission spectra, neutron yield (nu-bar) and scattering distributions that are 

contained in ENDF/B. Data assimilation/adjustments have been used to improve the 

knowledge of this source of uncertainty so that they cause less uncertainty in the response 

or attribute of interest [13]. 

 Models most times contain parameters that are obtained by fitting the model for 

experimental results. Since experiments contain uncertainty, even with a perfect conceptual 

model, the model will have uncertainty due to the associated parameters' uncertainties. In this 

work, the conceptual model will be assumed perfect, and parameters will refer to model 

parameters and input data. Various methods are available for uncertainty quantification. These 
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methods are either statistical or deterministic [14, 15]. Statistical methods (such as Monte Carlo 

simulations, adaptive sampling  ... etc.) propagate the uncertainties in a stochastic manner, 

where the sources of uncertainties are sampled from previously assumed (Probability Density 

Functions) PDFs. Therefore, the uncertainties can be determined by statistically analyzing the 

samples of responses of interests (finding the low order moments of the collected data). The 

Monte Carlo (MC) sampling approach has been widely recognized as the most versatile 

approach to propagate the uncertainties due for many reasons: first, its computational cost 

depends on the number of samples rather than the dimensionality of the uncertainty sources 

space; second, it can be implemented in a non-intrusive manner; and third, no assumptions 

have to be made about the model order, e.g. linear vs. nonlinear. However, the stochastic nature 

of the MC sampling entails statistical uncertainties that would affect the results of the UQ 

analysis; moreover, the statistical approach does not provide information about the uncertainty 

contribution per uncertainty source.   

 On the other hand, deterministic methods usually require the accessibility to the sensitivity 

profile of the RoI with respect to the source of uncertainty; moreover, covariance libraries of 

the uncertainty sources must be provided. These two pieces of information are then combined 

linearly (e.g. sandwich rule) or non-linearly depending on the model of interest. However, the 

sensitivity profiles are usually hard to obtain especially for high dimensional problems. For 

example, nuclear engineering applications often involve models characterized with large input 

parameter dimensionality (e.g. nuclear data cross-sections) and/or high dimensional response 

space (e.g. 3-dimensional mesh-wise neutron angular flux distribution). Generally, there are 

two approaches to evaluate the sensitivities; the forward approach and the adjoint approach. 

The adjoint (variational) approach is preferred whenever the model is characterized with a high 
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dimensional input parameter space with few RoI. The adjoint approach entails the calculation 

of m adjoint profiles each corresponding to one of the responses (observables). Therefore, the 

computational cost of applying the adjoint approach depends on the number of responses. 

Nevertheless, if the dimensionality of the RoI-space is high and/or the adjoint model is not 

available, then the forward approach (brute force) might be used. Although the forward 

approach is always available to use, its computational cost depends on the number of inputs 

(dimensionality of input parameter space). Unfortunately, neutronics applications are 

characterized with a huge dimensionality in the input space (e.g. nuclear data cross-section) 

and in certain applications huge dimensionality in the response space (e.g. mesh wise neutron 

angular flux distribution). 

 

1.3 Data Assimilation 

 

 Data Assimilation (DA) is the mathematical process by which the actual experimental 

measurements are incorporated in virtual models in order to improve their performance and 

simulation of the real physical phenomena. Data assimilation uses a variety of inverse methods 

to calibrate model’s parameters which can be categorized as deterministic methods and 

statistical methods; a comprehensive representation of these methods is presented in Ref. [15]. 

The deterministic methods, such as the least squares methods solve the calibration problem as 

an optimization problem that seeks a parameter set that minimizes the residual between 

model’s predictions and the experimental observables. Moreover, deterministic methods are 

computationally efficient and provides mathematical guarantee of the numerical convergence. 

Deterministic methods provide estimates of covariance matrix that characterize the parameters 
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set; however, much less details are provided about the posterior statistical distribution of the 

parameter set [15].  

 On the other hand, statistical methods are more attractive for applications where precise 

information are required about the statistical properties of the parameters of interest. These 

methods are categorized into Frequentist approaches and Bayesian approaches for model 

calibration and parameter estimation.  Frequentist parameter estimation approaches relies on 

the assumption that the experimental observation is one possible outcome of infinite repetitions 

of the same experiment or phenomena. Moreover, the unknown parameters are treated as being 

fixed values; hence, no probabilities can be associated with them. However, true and false 

conclusions can be assigned with corresponding probabilities of each value (true and false). 

Bayesian parameter estimation approaches assume that the parameters are considered as 

random variables with associated probability density functions. Therefore, the result of the 

Bayesian approach is a posterior Probability Density Function (PDF).  

 Data assimilation has been used for parameter estimation and model calibration in nuclear 

engineering applications. Ref. [16-25] used various data assimilation techniques for neutronics 

and thermal hydraulics for key parameter estimation. More specifically, Ref. [21] used the 

subspace methods in the context of data assimilation for large scale problems. The method 

introduced therein regularizes the data assimilation problem via a lower dimensional subspace 

approximation obtained via a gradient-based approach. However, in this work the data 

assimilation problem will be efficiently solved utilizing other features of the subspace method. 

First a surrogate model will be used to replace the original complex model. Second, the 

problem will be regularized via a subspace obtained by a gradient-free approach. 
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 In the remainder of this text, the data assimilation problem will be solved by the Bayesian 

approaches. Before introducing the details of the Bayesian approaches for parameter 

estimation and model calibration, the Bayesian interpretation of probability is reviewed here. 

Assume that the prior density  0 q  includes all the information about the model’s parameter 

( q ) prior to obtaining the experimental measurement or observation. This prior information 

might be coming from similar experiments or analytical approximations. From a Bayesian 

point of view the information coming from an observation ( v ) can be incorporated into the 

likelihood function as follow:  
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where  ,q v  is the joint probability of the random parameter and observation ( v ) . So given 
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 Several algorithms implement the Bayesian approach for parameter estimation. Among 

these are the Markov Chain Monte Carlo (MCMC) Algorithms. Ref. [15] contains a 

comprehensive study and details about these algorithms. The main short coming of the MCMC 
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is that these algorithms generate samples from the posterior density function based on rejecting 

others, hence whenever the probability space is complex and high dimensional the MCMC 

methods fails to generate useful samples which results in the rejection of a large portion of the 

samples.  In order to evaluate the likelihood of a sample; the model of interest must be run 

which means that rejecting many samples mean inefficiency in the computational cost of the 

method and slow convergence, if any.  

 Two Adaptive Metropolis-based algorithms can be used in order to perform parameter 

estimation and reduce the above difficulties. The first is the Delayed Rejection Adaptive 

Metropolis (DRAM) [27] and the DiffeRential Evolution Adaptive Metropolis (DREAM) [28]. 

In this work DRAM will be used to utilize available plant data (measurements and integral 

experiments) in order to estimate the key parameters and estimate the probability distribution 

that describes their effect on the overall uncertainty in certain key reactor attributes.  

 Ref.[20-26] are samples of the efforts to utilize the power of the data assimilation 

methodologies into nuclear reactor modeling and simulation. In these previous efforts, the 

mathematical framework of data assimilation was formulated and tested for calibrating 

modeling parameters for light water reactors and fast reactors [26].  

 Previous efforts [22-24] were made to apply a consistent method for further improving and 

understanding the nuclear data important for reactor modeling such as the inelastic discrete 

levels, evaporation temperatures for shielding applications and resolved resonance parameters 

of actinides (e.g. peak positions). These early studies indicated the validity of the method 

proposed therein but, on the other hand, they highlighted a number of challenges for large scale 

practical applications such as the way of getting the sensitivity coefficients and the need of 

reliable covariance information. 
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 Moreover, in Ref. [25] a new approach was developed and implemented to link the integral 

experiments to basic nuclear parameters used for the generation of point cross-sections data 

files. By performing the data assimilation of few nuclear parameters (e.g. scattering radius, 

resonance parameters, optical model parameters, Statistical Hauser-Feshbach model 

parameters and Pre-equilibrium Exciton model parameters) allowed performing the data 

assimilation on a few parameters set while applying the results on all multi-group nuclear data 

cross-sections. On the other hand, and for large scale problems, Ref. [21] introduced the use 

of the subspace methods for the regularization of the data assimilation problem which results 

in reducing the computational cost of the problem and allows the analyst to encounter a 

relatively large number of parameters for the calibration study. More details about the former 

contributions will be given in the coming sections whenever convenient.  

 This dissertation introduces efficient techniques for the application of Metropolis 

algorithms in large scale nuclear engineering applications. The details of DRAM are outlined 

in chapter 5. The advancements introduced here can be summarized by first, replacing the 

complex models with goal-oriented surrogate models and obtaining necessary samples from a 

lower dimensional subspace instead of sampling from high dimensional complex spaces that 

characterize the problem. Details will be provided in chapter 5. 

 

1.4 Inverse Uncertainty Quantification (Target Accuracy Assessment) 

 

 Nuclear reactor design and safety calculations require rigorous calculations of several 

important reactor attributes such as the multiplication factor, and reactor power and 

temperature distributions. Therefore, new developments in uncertainty reduction are 

paramount to improve the competitiveness of nuclear energy against other energy sources 
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making it an economic and safe energy alternative. Nuclear data are considered to be a major 

contributor to the uncertainties in the calculated reactor attributes. Therefore, it is natural to 

seek algorithms that identify the key nuclear data whose reduced uncertainties would have the 

highest impact on the uncertainties of reactor attributes of interest. Nuclear data experiments 

could then be established to reduce the uncertainty of the identified nuclear data. Given that 

the cost of experiments noticeably vary from one isotope-reaction-energy-specific cross-

section to another, one must take into account both the cost of the experiment and the potential 

benefit of uncertainty reduction on the attributes of interest. This is possible via a constrained 

optimization problem that minimizes a cost function, representing the cost of the experiments, 

while being constrained by the reduced uncertainty sought for the attribute(s) of interest. This 

problem was tackled and appeared under the name nuclear data target accuracy assessment, 

initially developed by Uschev in 1970s [16]. We refer to this problem as the inverse 

sensitivity/uncertainty quantification (IUQ) problem or more specifically, target accuracy 

assessment. The IUQ problem has been applied for current and future reactors [19, 20]. These 

studies considered different integral quantities such as the multiplication factor, reactivity 

coefficients and various important reaction rates. Based on a target uncertainty for the 

attributes, as defined by design/economic consideration, these studies have shown that the 

current nuclear data evaluations need further improvements; see Ref. [19] for an example of a 

comprehensive study. Ideally, all parameters that might contribute significantly to the overall 

uncertainty of the attribute of interest must be included in the IUQ analysis, for example: 

nuclear fuel and structural material cross-sections, fission products yields, and any other 

potentially important source of uncertainty must be included. Hence the number of parameters 

might grow very large, which increases the computational cost of the IUQ analysis and weaken 



  
 

16 

 

the identifiabilty of the problem’s solution.  These challenges are usually addressed by the 

elimination of parameters that do not contribute significantly to the overall uncertainty [19]. 

The sensitivity of each response is calculated for a reference case composition, then, influential 

parameters are selected based on their contribution to the overall uncertainty. However, the 

sensitivity profile may not remain constant over a range of inputs around the reference case. 

Hence the contribution might change as the input parameters change. This means that 

eliminating parameters that do not significantly contribute to the uncertainty relies on the 

assumption that the uncertainty contribution of each source is constant. This assumption cannot 

be always asserted and/or guaranteed. Therefore, many sources of uncertainty must be 

involved in the IUQ analysis. 

 Previous sections discussed the necessity of high fidelity simulations, efficient uncertainty 

quantifications and design optimization for the development of advanced reactor designs. This 

section highlights on different techniques to perform uncertainty quantification and design 

optimization efficiently and the challenges involved in applying these techniques to reactor 

design and safety problems. Mainly, the huge dimensionality involved in the reactor design 

and safety problems forms the major challenge. Hence this work is devoted to develop efficient 

Reduced Order Modeling (ROM) based algorithms for the performance of the forward and 

inverse sensitivity/uncertainty quantification analysis for light water reactors (LWRs). The 

inverse uncertainty quantification analysis help to evaluate the impact of each neutron cross-

section parameter uncertainty on the most important integral responses related to the core in 

general and nuclear fuel cycle and forward/inverse depletion calculations in specific. 
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1.5 Reduced Order Modeling  

 

1.5.1 Overview 

 

 Forward and inverse statistical problems can be solved by either the Bayesian or frequentist 

approaches. However, either approach can be a computationally intensive endeavor, 

particularly when faced with large-scale complex models such as high fidelity nuclear reactor 

simulators (coupling neutronics with thermal-hydraulics). Therefore, subspace based reduced 

order modeling can offer several ways for reducing the computational cost of such problems:  

1- Reducing the cost of the forward simulation: which implies replacing the original model 

with surrogate models or reduced-order models. 

2- Reducing the effective dimensionality of the input parameter space. Hence dealing with a 

small number of DoF when solving the forward and/or inverse problems (UQ and IUQ) 

3- Reducing the number of forward simulations required (i.e., more efficient sampling). For 

example in the Bayesian setting, these methods include adaptive and multi-stage Markov 

Chain Monte Carlo (MCMC) based algorithms. 

 Therefore, Reduced Order Modeling (ROM) can be one of the most important techniques 

that make the analysis of complex and computationally expensive models possible. Hence this 

dissertation introduces efficient ROM based algorithms that can be used for solving high 

dimensional single and multi-physics forward and inverse sensitivity/uncertainty 

quantification problems in nuclear engineering applications.  

 Reduced Order Modeling (ROM) achieves that by reducing the effective dimensionality of 

the variables associated with the various physics models, including physics input parameters, 

state functions, and responses of interest. The reduced dimensions are determined such that the 

resulting reduction errors (difference between the respective variable’s variation in the original 
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space and those reconstructed from the reduced dimensions) meet pre-defined user tolerance 

limits with an overwhelmingly high probability [29, 30, 34]. Mathematically, the reduced 

dimensions are described by a subspace, whose basis dimension is in many cases considerably 

smaller than the dimension of the original space. Symbolically, this can be described as 

follows: let the n input parameters, e.g., cross-sections, be represented by a vector, nx ; 

and similarly, the m components of the state, e.g., multi-group flux, with a vector 
m  , and 

the p responses, reaction rates for a number of nuclides that are tracked later by a depletion 

code, by 
py . The reduced variables rx , r , and ry  are, respectively, given by: 

T

r xx x U

, T

r   U , and T

r yy y U , where the rx columns of the matrix xn r

x


U  represent a basis 

for the active parameter subspace. Similarly, the r  columns of 
n r




U , and the ry columns 

of yn r

y


U  represent bases for the active subspaces for the state and responses, respectively. 

Considering the parameter space by way of an example, the rx refers to the number of dominant 

or effective components in the parameter space. ‘Dominant’ or ‘effective’ implies that one can 

represent within a specified accuracy all possible parameter variations that are responsible for 

the response and state variations using only rx degrees of freedom. The reduced degrees of 

freedom are used to reconstruct the parameters in the original space as follows:  

T

x x x rx x x U U U , 

where now 
xx x    is denoted as the reduction error. It has been proven in earlier work 

that rx may be selected to meet a user-defined upper-bound x [30, 34]. 

 The reduced dimensions are determined such that the resulting reduction errors (difference 

between the respective variable’s variation in the original space and those reconstructed from 
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the reduced dimensions) meet pre-defined user tolerance limits with overwhelmingly high 

probability. Mathematically, the full dimensional space is approximated by a lower 

dimensional subspace (active subspace).   

 In order to calculate the basis of the active subspace, a plethora of techniques have been 

developed in different science and engineering fields [29-33]; for an overview of such 

techniques, the reader may consult Ref. [34] and the references therein. ROM approaches may 

be classified into two broad categories, parametric and nonparametric approaches. In 

parametric approaches, the model variations for the variable of interest are fitted to a response 

surface that is described by a pre-determined set of functions with unknown coefficients. These 

functions represent a basis for the active subspace, where the unknown coefficients are 

determined using an optimization search that minimizes the discrepancies between the 

variable’s variations as calculated by the original model and those calculated by the assumed 

response surface [36 ,39]. Nonparametric approaches avoid the use of assumed set of functions; 

instead they use pattern recognition techniques to represent the dominant variations using a 

smaller number of degrees of freedom. Projection-based techniques belong to this category 

[40, 41]. Ref. [34] shows that the conventional linear algebra toolkit, including the singular 

value decomposition (SVD) algorithm and randomized Range Finding Algorithms (RFAs), 

can be used to identify an active subspace that approximates, with high probability, the 

dominant variations to a quantifiable accuracy for a general smooth nonlinear model [34]. If 

applied at the state level (i.e., flux in neutronics modeling), one can recast the model equations 

using their weak form to constrain the state variations to the identified active subspace. An 

example of such an approach is the Petrov-Galerkin rendition that is often employed for finite 

elements-based models [40]. Central to any nonparametric approach is the ability to determine 
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a basis for the active subspace. Many approaches have been developed to find such basis, e.g., 

the approximate balanced truncation methods [43], Krylov subspace methods [49] and the 

proper orthogonal decomposition (POD) [45 ,49]; Ref. [34] contains an excellent review of 

projection-based ROM techniques. The most common approach to constructing the subspace 

is the method of snapshots, where snapshots of the model are captured at successive points in 

time [32] or by perturbing the model’s input parameters and capturing the corresponding state 

or response variations [34-40]. For sufficiently complex models, this approach may still be 

impractical, as the single execution of the model is considered to be computationally taxing, 

especially for models characterized by slow convergence rate. Hence, this work investigates 

the utilization of the non-converged iterates within the context of reduced order modeling in 

nuclear engineering applications.  

 For example, the Boltzmann equation is used to solve for the neutron flux inside the reactor 

core. This is a partial integro-differential equation in space, time, energy, and angle. To 

separate out the time dependence, the equation can be recast in the form of a generalized 

eigenvalue problem, where the eigenvalue is to be equal to one when the reactor is critical. For 

details on its construction, the reader is referred to Ref. [49]. The power iteration method is 

often used to calculate the fundamental eigenvalue (i.e., multiplication factor) and the 

corresponding fundamental eigenfunction (i.e., neutron flux distribution). However, the 

convergence rate of the power iteration is determined by the dominance ratio which is defined 

as the ratio of the second largest eigenvalue to the maximum eigenvalue. The power iteration 

converges very slowly for problems with relatively large dominance ratios, a situation that is 

common in problems of practical interest. For this reason, a number of acceleration methods 

have been developed and utilized; however, multiple iterations are still required to satisfy 
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stopping criteria. Therefore, whenever a snapshot based technique is used the application of 

ROM is hindered by the fact that the repeated execution of such models is computationally 

taxing. 

 

1.5.2 Reduced Order Modeling Based Sensitivity Analysis, Uncertainty Quantification and 

Data Assimilation 

 

 Various efforts have demonstrated the use of dimensionality reduction in nuclear 

engineering applications, mostly, in sensitivity analysis, uncertainty quantification and data 

assimilation. For example the forward uncertainty propagation using the deterministic 

approach has a computational cost that is proportional to the dimension of the input space 

(uncertainty source space), hence a justified dimensionality reduction on this space would 

result in a more efficient forward uncertainty propagation. An early proposal of this technique 

is represented in Ref. [33-35]. Ref. [34] provided mathematical justification of the technique 

and applied it for uncertainty quantification in neutronics applications. Ref. [4, 34] perform a 

Karhunen-Loève (KL) expansion-based uncertainty quantification for single physics 

neutronics models. The principal KL expansion basis vectors are determined using a gradient-

based version of the Range Finding Algorithm (RFA) to identify important Degrees of 

Freedom (DoF) in the form of subspace basis vectors. These DoF (basis vectors) are then used 

to propagate the uncertainty in the nuclear data cross-sections efficiently. Chapter 0 overviews 

the analysis and the algorithm provided in Ref. [34, 4]; moreover, the chapter introduces an 

extension of the proposed algorithm into multi-physics coupled models. 

 Bang and Abdel-Khalik utilized an intersection based algorithm to further reduce the 

number of DoF for serially coupled models (no feedback) to be reckoned with in subsequent 
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analysis (Figure 3) [50]. The intersection based algorithm depends on the down selection of 

the DoF that satisfy a set of constraints. These constraints are problem dependent. For example 

in the case of uncertainty quantification application, the two constraints are those DoF with 

high uncertainty components and high sensitivity components simultaneously. Hence, 

extracting the DoF that satisfy these two constraints will result in a smaller set of DoF yet 

without noticeable affecting the accuracy of the method. However, the proposed algorithm 

does not take into account coupled models with feedback effects (closed-loop coupling); 

moreover, the algorithm requires the availability of the sensitivity information which is either 

not available or computationally expensive to obtain. Therefore, chapter 3 introduces an 

improvement of the intersection-based algorithm by extending it to closed-loop coupled 

models via an iterative algorithm that takes into account the feedback effect. Moreover, a 

gradient-free algorithm is proposed in chapter 3 which enables the utilization of the 

intersection-based algorithm with models where the sensitivity information are not available.  

 

Figure 3. Two serially coupled models. 

 The low dimensional subspace approximation (active subspace) is used to simplify 

complex and computationally expensive analysis such as uncertainty quantification. In order 

to exemplify the process of subspace-based uncertainty quantification introduced in Ref. [4], 

consider the following model: 

 y f x . 
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 If we assume that the sensitivity equations associated with the model is linear, the 

uncertainty in the input parameter vector ( x ) can be propagated towards the RoI vector ( y ) 

using the sandwich equation as follow: 

  
/ /

T

y y x x y xC S C S  (2) 

where xC  is the covariance matrix of the input parameter ( x ) and  
/y xS  represents the 

sensitivity profile of the RoI ( y ) with respect to the input parameter ( x ). However, taking 

into account that the covariance matrix xC  is symmetric then its singular value 

decomposition can be written as follow:  

2

x x x

T

x  C C C
C U Σ U  

where 
xC

U is the matrix of orthonormal basis of the space spanned by the columns of matrix 

xC  and 2

xCΣ  is a diagonal matrix of the corresponding singular values. Hence, Eq.(42) can be 

rewritten as follow: 

2

x x x

T T

y yx yx
C C C

C S U Σ U S  

            

1/2 1/2,

x x x x

T
x x

T T

yx yx
C C C C

C C

S U Σ Σ U S  

  1/2 1/2,T T

yx x x yx S C C S  

 Now if we assume that we have the basis of a lower dimensional subspace (U) that 

approximate the uncertainty space (i.e. the x-space) then Eq. (42) can be rewritten as follow: 

   1/2 , , 1/2,T T T T

y yx x x yx

  C S C U U U U C S   (3) 

where   , ,T T  U U U U I  with n rU  and r n  if the components of x are highly 

correlated (e.g. the case with nuclear data cross-sections), where m is the full dimension of the 
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input parameter space (uncertainty source space) . The basis vectors represent the degrees of 

freedom (DoF) in the x-space that are characterized with high uncertainty and high sensitivity. 

From Eq. (3) the uncertainty in the attribute of interest can be segmented into two parts; the 

first part is coming from the active subspace and the minor (negligible) part is coming from 

the in-active (orthogonal subspace). If the active subspace is chosen correctly then the part 

coming from the orthogonal component will be negligibly small: 

1/2 , 1/2, 1/2 1/2,T T T T T T

y yx x x yx yx x x yx

  C S C U U C S S C U U C S  

        1/2 1/2 1/2 1/2
T T

yx x yx x yx x yx x

  S C U S C U S C U S C U  

 From now on U will be used to denote U . If the lower dimensional subspace 

approximation is selected properly, then the uncertainty component associated with the 

orthogonal component will be negligibly small, and hence the uncertainty in the RoI (i.e. y) 

can be approximated as follow:  

    1/2 1/2
T

y yx x yx xC S C U S C U   (4) 

 This conclusion leads to the realization that the uncertainty can be evaluated via r models’ 

executions instead of m executions. Each model execution would quantify the uncertainty in 

the RoI due to a certain basis vector (degree of freedom in the uncertainty sources space). 

Notice that the term  1/2

yx xS C U can be written as:  

  1/2 1/2 1 1/2| | r

yx x yx x yx xu u   S C U S C S C  , (5) 

where iu  is the ith column of the matrix U. On the other hand, the linearity assumption 

implies the following: 

   1/2 1/2

0 0

i

yx x i x iu y x u y x y    S C C , 
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 Hence, the reduced uncertainty propagation Eq.(4) can be rewritten as:  

  1 1
T

r r T

y y yy y y y          C R R   (6) 

 Hence, this process can be viewed as a sort of Karhunen-Loève techniques with the 

neglected component (DoF) being selected based in their contribution to the uncertainty and 

sensitivity. In addition to that, in multi-physics coupled models, the important DoF must 

satisfy one more condition; taking into account the nature of multi-physics coupled model any 

selected DoF must have a significantly possibility to appear in the interface space between 

the coupled models. This down selection will be explained in more details in the following 

sub-section.  

 The error in this evaluation can be estimated as follow:  

   1/2 1/2

y

T

C y yx x yx xE  C S C U S C U  

                1/2 1/2
T

yx x yx x

  S C U S C U          

        1/2 1/2,T T T

yx x x yx

  S C U U C S                  

  1/2 1/2,T T T

yx x x yx S C I UU C S  

 The Range Finding algorithm (RFA) can be used to estimate an error upper bound in the 

L2-norm of the above error term [4, 30, 34]. This process has two major advantages: first, it 

does not require the accessibility to sensitivity profiles; second, it requires only r model’s 

execution instead of n, where r n . 

 Generally, Ref. [4, 34, 51] can be consulted for a comprehensive representation of the 

techniques proposed by Abdel-Khalik and Bang in their effort to facilitate the 
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sensitivity/uncertainty quantification analysis for high dimensional reactor physics 

applications. 

 Moreover, sensitivity analysis can be simplified significantly given the fact the 

computational cost of the sensitivity analysis depends directly on the dimensionality of the 

input and response spaces [51-52]. As mentioned before the computational cost of the adjoint 

approach depends directly on the response space dimensionality while the forward sensitivity 

approach depends on the dimensionality of the input space. Therefore, efforts have focused on 

how to capture lower dimensional subspace approximations to represent the input and response 

space using the RFA. These methods first appeared under the name Efficient Subspace 

Methods (ESM) developed in [2, 51]. This work, explored the potentialities of applying the 

subspace methods for sensitivity analysis, uncertainty quantification and data assimilation in 

nuclear engineering application. It showed the potentiality of ESM facilitating the 

uncertainty/sensitivity/data assimilation applications in nuclear engineering.  

 In addition to that, Ref.[21] employed the subspace based Reduced Order Modeling 

methods for the facilitation of the data assimilation problem. In our context data assimilation 

concerns the adjustment of macro and micro-level model’s parameters (such as nuclear data 

cross-sections and fuel thermal conductivity), factoring in their priori uncertainty limits, in 

order to enhance the agreement between model predictions and measurements for key reactor   

attributes. Denoting that the experimentally measured attributes 
expy  and the calculated 

response caly , then the data assimilation problem aims to minimize the disagreement between 

the measures and calculated values:  

   
exp

2 2

expmin
x

y

T

x cal xy y x x     
CC

S   
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where x  is the parameter adjustment vector, x  is a regularization parameter, and S  is the 

sensitivity coefficient matrix. Ref. [21] combines the sensitivity information and the parameter 

covariance information in order to determine the DoF which have large sensitivity and 

uncertainty components. Afterwards the data assimilation problem can be solved efficiently 

along these DoF via the regularization of the problem.  

 In this dissertation, we will imply a gradient free approach to determine the important DoF 

where these DoF are used to replace the original models with surrogates that have negligible 

computational cost to run. In the next sections various techniques for surrogate construction 

will be overviewed.  

 

1.5.3 Reduced Order Modeling Based Goal-Oriented Surrogate Construction 

 

 Often, the analysis of models requires frequent running of the models of interest. However, 

these models are complex and associated with high computational cost. Therefore, the 

substitution of the original models with surrogates is an important and common practice in the 

analysis of complex models. As mentioned earlier, high fidelity models can be replaced by 

simpler surrogates that have negligible computational cost to run. Ref. [53] categorized 

surrogates into three groups [53]:  

1- Data-fit models,  

2- Reduced order models, 

3-  Hierarchical models.  

 Data-fit models are generated by the regression of simulation data (training set). Examples 

of data-fit models are the Taylor expansion based models, where the training set data are used 

to determine the coefficients of the suitable Taylor series expansion of the model of interest 
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over the interval of interest. Another example is the Gaussian processes surrogates [54]. These 

surrogates require modeling choices that specify the mean and covariance of the surrogate 

Gaussian process.  

 Reduced-order models are based upon projecting the model’s equations into a certain 

reduced dimension subspace (active subspace). The basis of the active subspace is empirically 

determined via a training set of model’s forward and/or adjoint runs.   

 Hierarchical surrogates are designed to span a range of applications; these models are 

derived from the high fidelity models in conjunction with ignoring certain high fidelity aspects. 

For example the computational cost of a model can be reduced by considering coarse 

discretization grids or loose convergence criteria. Therefore, hierarchical surrogates can be 

useful whenever the loss of accuracy is negligible with respect to the application of interest.   

Combining the first and second types of surrogate models in a goal-oriented view helps in 

overcoming the difficulties associated with the model complexity and high computational cost 

due to high parameter dimensionality.  

 Goal-oriented surrogate construction is introduced in Ref. [55] where reduced 

dimensionality analysis is used to determine the DoF that preserve application-specific features 

instead of preserving all model’s features (i.e. goal-oriented DoF selection). These DoF are 

then used to construct the so called goal-oriented surrogate of the original complex model. 

Goal-oriented surrogate models have been used in nuclear engineering applications for 

uncertainty quantification purposes as represented in Ref. [4], where goal-oriented surrogate 

models are used to replace the neutronics model for purposes of uncertainty quantification. 

Ref. [4] finds the uncertainty-sensitivity specific DoF and then uses them in constructing a 

second order surrogate in the form:  
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2

1 2

T Ty x x       

 If the surrogate is intended for uncertainty quantification purposes, then the variations in 

parameter x  can be viewed as a random perturbation sampled from the distribution assumed 

by the covariance matrix xC : 

1/2

xx  C  

where   being a random vector sampled from a normal distribution to generate a random 

sample of the input parameter. However, defining the columns of matrix U  as the basis of the 

input parameter active subspace (DoF with high uncertainty-sensitivity component), then the 

perturbation vector  can be projected onto the basis of the active subspace which reduces the 

effective dimensionality of the models’ input parameter space:  

1/2 T

xx  C UU  

 Therefore, an efficient goal-oriented surrogate can be constructed as follow:  

     
2 2

1/2 1/2

1 2 1, 2,

T T T T T T

x x r ry            C UU C UU   (7) 

 Given that 
xn rU and 

T r  U then 
1,

T

r =
1/2

1

T r

x C U  and 1/2

2, 2

T T r

r x  C U . 

Hence in order to determine the unknown elements of 
1,r  and 

2,r  the model needs to be run 

2r times so that the coefficients are determined (refer to Figure 4 and Figure 5).  

 A similar goal-oriented surrogate model construction will be introduced the chapters 5 and 

6 and used for data assimilation and target accuracy assessment, respectively. 
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Figure 4. Original model: with high dimensional input space and high computational cost. 

 

 

Figure 5. Goal oriented surrogate model: with few parameters and low computational cost.  

 

1.6 SCALE 

 

 In this sub-section and the following one (1.7) the theory and implementation of reactor 

core simulation tools that will be used to validate the ideas proposed throughout this 

dissertation will be discussed. In this sub-section SCALE6.1 (A Comprehensive Modeling and 

Simulation Suite for Nuclear Safety Analysis and Design) [57] depletion sequence (TRITON) will 

be of concern while in the following sub-section VERA-CS (Virtual Environment for Reactor 

Applications-Core Simulator) [58, 59] will be discussed.  
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 SCALE is a comprehensive modeling and simulation tool developed at Oak Ridge National 

Laboratory (ORNL) for nuclear design and safety analysis. SCALE provides a comprehensive, 

verified and validated, tool for criticality safety, reactor physics, radiation shielding, 

radioactive source term characterization, and sensitivity/uncertainty analysis which is 

constructed in a “plug-and-play” logic which allows the user to use a combination of the 

available 89 computational modules, including three deterministic and three Monte Carlo 

radiation transport solvers. SCALE depletion sequence (TRITON) is the specific sequence that 

will be used to test and validate the ideas introduced in this dissertation at the lattice physics 

level.  

 

1.6.1 TRITON 

 

 TRITON sequence consists of several SCALE modules that supports transport, depletion, 

and sensitivity/uncertainty analysis [57]. TRITON calculates the problem-dependent cross-

section with multi-group transport calculations for 1-, 2-, and 3- dimensional configurations. 

The 1-dimensional geometry transport calculations are performed using XSDRNPM while 

NEWT is used for 2-dimensional transport calculation (i.e. lattice physics). In addition, 

TRITON also includes Monte Carlo depletion modules, such as KENO V.a and KENO-VI. 

Coupled with the transport capabilities available through XSDRNPM, NEWT and KENO; 

along with ORIGEN depletion capabilities and SCALE multi-group cross-section processing 

calculations, collectively they provide a rigorous first-principles approach to predict the burnup 

of various isotopes in configurations that have a strong spatial dependence on the neutron flux. 

Moreover, source terms and decay heat, as well as few-group homogenized cross-sections used 

by nodal core calculations, can be determined. 
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 Sensitivity analysis is available through the TSUNAMI-2D sequence in TRITON, which 

provides problem-dependent 2-dimensional forward and adjoint transport solutions via 

NEWT. The adjoint transport solution is then used to calculate the sensitivity coefficients, and 

the calculation of the uncertainty in keff and other relative responses due to cross-section 

provided covariance data. The module that is used to calculate the sensitivity of the response 

of interest with respect to the nuclear data is SAMS, which is capable of determining the 

sensitivity coefficients as a function of nuclide, reaction type, material region, and energy 

group. Once the sensitivity data are obtained the uncertainty can be estimated via the sandwich 

equation (refer to Eq.(2)). The implicit effects of the cross-section are treated at the sensitivity 

coefficient level rather than at the covariance matrix level, were the sensitivity coefficients 

have the following components:   

     
, , ,, , ,

complete explicit implicit
i i i
x g x g x gR R R

S S S
  

 
 

where R is the response of interest, g  is the energy group, i is a nuclide of interest and x  is the 

reaction type of interest. In a more detailed view of the equation above, the implicit term 

accounts for the indirect effect of perturbing a certain cross-section on the response: 

 
,

, , , ,

,
complete

, , , ,

i
x g

i j i j

x g y h x g y h

i j j iR
j hx g y h y h x g

R R
S

R R

       
              

  

 In this dissertation, the lattice physics based depletion sequence (T-DEPL) will be used to 

deplete the reactor core (or assembly) models. While TSUNAMI-2D will be used to generate 

the sensitivity information required throughout this work. T-DEPL is the 2-dimensional 

TRITON sequence which uses NEWT for the transport calculations, and also provides the 

capability to generate lattice-physics data for nodal core calculations. The T-DEPL sequence 
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consists of three main modules: NEWT, COUPLE and ORIGEN. NEWT generates the 

transport flux distribution which is then used to compute the region-averaged, multi-group 

cross-sections along with the multi-group flux for each of the depleted materials. COUPLE 

generates the 1-group cross-section for each of the depletion materials. Finally, ORIGEN 

depletes each of the isotopes based on the normalized material flux (or power) using the 1-

group cross-sections computed by COUPLE. In the following subsections, more details are 

given about the main modules in T-DEPL sequence [57].  

 T-DEPL uses a predictor-corrector approach where the cross-section processing and 

transport calculations use isotopic concentrations at the midpoint of depletion sub-intervals 

(assuming the reaction rates are constant and equal to their values at the beginning of the 

subinterval). After that cross-sections and neutron flux distributions are calculated at this 

midpoint and used to deplete the fuel over the full subinterval. Depletion calculations are then 

extended to the midpoint of the next sub-interval, followed by cross-section processing and 

transport calculations at the new midpoint. This process goes on for all depletion sub-intervals. 

The following two sub-sections (1.6.2, 1.6.3) will highlight the two major components of the 

depletion sequence (T-DEPL). 

 

1.6.2 NEWT 

 

 NEWT solves the time-independent form of the linear Boltzmann equation (transport 

equation): 

         ˆ ˆ ˆ ˆ, , , , , , ,tr E r E r E Q r E        (8) 

where  ˆ, ,r E   is the neutron angular flux at position r  per unit volume, in direction ̂  

per unit solid angle and at energy E  per unit energy.  
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 ,t r E  is the macroscopic total cross-section at position r  and energy E .  

 ˆ, ,Q r E  is the neutron source term at position r  per unit volume, in direction ̂  per unit 

solid angle and at energy E  per unit energy. This source includes the fission source, 

scattering source and any external neutron source.  

 NEWT solves Eq.(8) via the multi-group discrete-ordinates method using the Method Of 

Characteristics (MOC) in which the transport equation is solved analytically along 

characteristic directions within a computational cell [57]. The MOC represents the spatial 

variables along the characteristic directions (rays); these rays substitute the conventional finite 

difference representation with these characteristic variations that incorporate both the position 

information ( r ) and the directional information ( ̂ ). These characteristics are represented by 

the s-axis as follow: 

 
 ,ˆ ˆ, ,

d s E
r E

ds


   . 

 Therefore, Eq. (8) can be re-written in terms of the s-axis as follow: 

  
 

     
,

, , ,t

d s E
s E s E Q s E

ds


   (9) 

Eq. (9) has the following solution [61]:  

           . . ', . '

0

0

, ', 't t t

s
E s E s s E s

s E E e e Q s E e ds 
  

    

 In this case s represent the distance along a specific characteristics direction ( ̂ ) and 

 0 E  is an energy dependent known angular flux at s=0 which can be obtained from the 

boundary conditions. For more information on the MOC Ref. [61 - 62] can be consulted. 



  
 

35 

 

NEWT uses this angular flux distribution via numerical integration to obtain the neutron scalar 

flux distribution: 

   
4

ˆ ˆ, , ,r E r E d


     

 

1.6.3 ORIGEN  

 

 The ORIGEN-ARP sequence completes the point-depletion calculations using problem-

dependent cross sections. The problem-dependent cross-section libraries are generated using 

the ARP (Automatic Rapid Processing) module employing an interpolation algorithm that 

operates on pre-generated libraries created for a range of fuel properties and operating 

conditions [63]. 

 In determining the time dependence of nuclide concentrations in the nuclear reactor core, 

ORIGEN solves the ordinary differential equation representing the rates of appearance and 

disappearance of each isotope. Generally, isotopes in the reactor core appears due to various 

mechanisms: radioactive decay of other isotopes, fission of heavy elements into lighter 

elements, and neutron capture. The disappearance mechanisms are: radioactive decay of the 

isotope itself, fission and the capture of neutrons transforming the isotope into another. The 

time rate of change of the concentration for a particular nuclide ( iN ) is determined solving the 

following coupled ordinary differential equations:: 

   
1 1

m m
i

ij j j ik k k i i i

j k

dN
l N f N N

dt
    

 

       for 1,2,i   (10) 

where  

iN : Atom density of the ith isotope.  
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 : Space-energy-averaged neutron flux. 

i : Decay constant of the ith isotope. 

ijl : Branching ratio from the jth isotope. 

ikf : Branching ratio for neutron absorption by the kth isotope which lead to the formation the 

ith isotope.  

i : Flux-averaged neutron absorption cross-section the ith isotope. 

 

1.7 VERA-CS  

 

 VERA-CS (Virtual Environment for Reactor Applications-Core Simulator) is a steady state 

Light Water Reactors (LWRs) core simulator applicable for predicting over a range of 

operating conditions including various fuel cycles, plant startup, power maneuvering, and core 

reload/fuel discharge. VERA-CS can be, relatively, considered a high-fidelity core simulator 

which provides the capability to perform 3-dimensional geometry simulations along with 

considering coupling effects (e.g. thermal-hydraulics feedback) [64]. VERA-CS has various 

computational models that might be combined to perform the analysis of interest. In this 

dissertation, a specific VERA-CS depletion sequence will be used. Figure 6 shows the models 

involved in this depletion sequence, where MPACT is a transport solver that determines the 

neutron flux distribution and the pin power distribution necessary for COBRA-TF, which is a 

thermal-hydraulics solver which determines the fuel and coolant temperature distributions 

along with thee coolant density distribution which are given as feedback to the transport solver. 

Neutronics and thermal-hydraulics models are iterated using operator splitting approach until 

a certain stopping criteria are satisfied. After that ORIGEN (refer to section 1.6.3) performs 
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the fuel depletion calculations, hence updating the material composition of the fuel to be used 

in the next time step. Interface parameters transfer is handled by the Data Transfer Kit (DTK).  

More details about each of these components is given in the coming sub-sections (1.7.1, 1.7.2) 

while more details about the interface parameters will be provided in the coming chapters.  

  

Figure 6. Depletion with thermal-hydraulics feedback using VERA-CS (Predictor-corrector 

method). 

 

1.7.1 MPACT 

 

 MPACT is a core-wide transport solver (Michigan Parallel Analysis based on 

Characteristic Tracing). MPACT solves an integral form of the linear Boltzmann equation 

across for heterogeneous material region, which enables the simulator to generate sub-pin level 

power distributions that are necessary for detailed thermal-hydraulic updates. The Boltzmann 

equation is solved via the method of characteristics (MOC) [64-65] with discrete ray tracing 

within each fuel pin. MPACT can provide two solution types: 
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1-  A 3-D MOC solution: where the 3 dimensional Boltzmann equation is solved. However, 

for high fidelity core wide calculations this solution is computationally expensive and 

might require the allocation of huge memory and computer capabilities. Hence the second 

solution type is provided.  

2-  A “2D-1D" solution: in which MOC solutions are performed by dividing the problem into 

radial planes (2D solution) and the axial solution is performed using a lower-order one-

dimensional (1D) diffusion or SP3 approximation (1D solution).  

 For simplicity, the 3-dimensional mono-energetic Boltzmann equation with isotropic 

scattering in a homogeneous medium is going to be used to highlight the difference between 

the 3D and 2D-1D methods in MPACT:  

         
4 4

, , , ' ' , ' ',
4 4

fs
t

v
r r r d r d

 

    
 


             (11) 

In Eq.(11) : 

 , ,r x y z  is the position vector which indicates the radial, axial spatial index:  

 ,

0

x y R
r

z Z


 

 
 

while  , ,x y z      is the direction -of-flight variable. Figure 7 shows an example of a 

cylindrical homogenous system volume. The geometry consists of a radial slice (R) and an 

axial elevation (z). Figure 8 resembles a control volume in the rectangular geometry.  
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Figure 7. 3-dimensional cylindrical geometry (system volume V). 

 

 

Figure 8. 3-dimensional rectangular geometry (system volume V). 

 

 The 2D-1D method does not solve Eq.(11); instead, it solves a combination of 2D version 

along with 1D version which makes the process more computationally efficient. The 2D 

version resembles the radial slice solution assuming an isotropic axial leakage term:  
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 The axial current term can be approximated as follows, with appropriate boundary 

conditions:  

   
4

,z zJ x r d


     

 On the other hand, the 1D axial transport version which resembles the axial distribution 

can be formulated as follows:  

       
4 4
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4 4 4
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z t
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    (12) 

 

 In MPACT, the axial transport equation (Eq.(12)) is not solved directly; instead the SP1, 

SP3 approximations is solved. The SP1 approximation to Eq.(12) is given by the 1D axial 

diffusion equation. Solving the SP1 and SP3 approximation is much simpler than solving 

Eq.(12). The above analysis highlights the difference between the 3D and 2D-1D approximate 

methods. For more details about the solution methodology and various options available in 

MPACT, the reader is referred to Ref. [65].  

 

1.7.2 COBRA-TF 

 

 COBRA-TF (COolant-Boiling in Rod Arrays-Two Fluids) is a thermal-hydraulics 

simulator that was originally developed by the Pacific Northwest Laboratory (PNL) and is 

currently a part of VERA-CS. COBRA-TF is designed to perform a two fluid, three-fields 

approach (i.e. continuous vapor, continuous fluid and fluid droplets dispersed in vapor) for 
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Light Water Reactors (LWRs). This sub-section briefly summarizes the two-fluid model used 

in COBRA-TF [67].  

 COBRA-TF, models each of these fields using separate equilibrium equations; however, 

liquid and droplet fields are assumed to be in equilibrium with each other, hence, they share 

the same energy equations. In general these equations are formulated via Cartesian coordinates 

or a sub-channel method. The conservative equations are solved simultaneously using the 

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) [69]. 

 Eq.(13) presents the phasic mass conservation equation. The equation is written for the kth 

field, where the left hand side represents the time rate of change of the mass and the advection 

of the field mass into or out of the differential volume. The first term of the right hand side (i.e. 

kL ) is the mass transfer out /into of phase k. Finally, 
T

eM  represents the mass transfer in the 

mesh cell due to turbulent mixing and void drift. Note that COBRA-TF uses a simple turbulent 

diffusion-based model to calculate the axial turbulent transfer across the sub-channel gaps 

(when using the sub-channel method). kV  is the velocity field and k  is the density, while k  

is the void fraction for the kth phase. For more information about the diffusion approximation 

and void drift models, the reader is referred to Ref.[67].        

     . T

k k k k k k eV L M
t
   


  


  (13) 

 

 The inter-phase mass transfer term accounts for evaporation /condensation and 

entrainment/de-entrainment. Hence the L term can be expanded into three components:  
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 The vapor field is denoted by v while the liquid film and entrained droplet fields are denoted 

by l and e, respectively. In the above three equations, '''  is the volumetric mass transfer due 

to phase change, and '''S  denotes the continuous liquid to entrained droplet volumetric mass 

transfer. The   term is the fraction of phase change (entrained droplets  vapor). Note that 

this term will be defined based on the explicit process of interest:  

'''

1
'''

min

1

wl

fg

evap

e

v

Q

H










 

 

 

1

e
cond

v








 

evap  is the evaporation term and cond  is the condensation term. '''

wlQ  is the volumetric heat 

transfer from the wall to the liquid phase and 
fgH  is the heat of vaporization.  

 On the other hand, Eq.(14) represents the phasic momentum conservation equation. The 

left hand side denotes the time rate of change of the momentum and the advection term (note 

that Eq.(14) resembles the Cartesian coordinate’s case). ku , kv , kw  are the Cartesian directional 

components of the velocity field (note that in Cartesian coordinates the momentum 

conservation equation will consist of three separate equations for the momentum transfer in 

each direction). The pressure force (
k P  ), turbulent and viscous shear stress ( 

  . ij ij

k k kT    ), gravitational force ( k k g  ), and momentum loss/gain due to phase 

change, drag force and momentum transfer (
L d T

k k kM M M  ) are represented by the right hand 

side.  
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  (14) 

 The viscous shear stress term can be expanded into fluid-fluid shear and wall-fluid shear:  
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'''
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'''

we , '''

wv ,
'''

wl  are the volumetric wall drag of the entrained, vapor and liquid phases (note that 

COBRA-TF does not model the liquid-liquid viscous shear stresses). The 
L

kM term is the 

momentum gain/loss term due to phase change, with this term can be expanded in terms of the 

three possible phase changes as follow:  

 

'''

''' 1 '''

''' '''

L

v

L

l

L

e

M V

M V S V

M V S V





 

   

  

 

 Moreover, d

kM  is the interfacial drag term which can be, also, expanded into three terms, 

and 
T

kM is the axial momentum resulting from the turbulent mixing. 

  Finally, the energy conservation equation is represented by Eq.(15), in which the left hand 

side denotes the energy time rate of change and change in energy due to the advection into and 

out of the differential volume. The right hand side represents the phase conduction and 

turbulent heat flux (  . T

k kQ q  
 

), energy transfer due to phase change (
i

k kh ), volumetric 

heat transfer through the wall ( '''

wkq ) and finally, the pressure work term ( k

P

t





).  

        '''. . T i

k k k k k k k k k k k wk k

P
h h V Q q h q

t t
     

 
       
  

  (15) 
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COBRA-TF solves the conservation equations (Eqs.(13), (14), (15)) after applying various 

assumptions such as: 

1- No modeling for the heat conduction in the fluids ( 0kQ  ). 

2- Energy exchange happens only in the lateral and orthogonal directions. 

3- Liquid-liquid viscous shear stresses are not modeled. 

4- A simple turbulent diffusion model is used to estimate the turbulent transfer of axial 

momentum across sub-channel gaps.  

 For more information about the assumptions in COBRA-TF and the numerical methods 

used to obtain the solution, the reader is referred to Ref. [67]. 
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CHAPTER 2. EFFICIENT SUBSPACE APPROXIMATION FOR 

SINGLE PHYSICS MODELS 
 

Note: The work presented in this section was developed in collaboration with C. Wang, Y. 

Bang and H. S. Abdel-Khalik. 

 Given the complexity of modern predictive modeling and simulation tools, new 

developments in reduced order modeling are continuously being pursued by computational 

scientists as an effective means to render practical the repeated evaluations of the associated 

physics models. Reduced Order Modeling (ROM) achieves that by reducing the effective 

dimensionality of the variables associated with the various physics models, including physics 

input parameters, state functions, and responses of interest. The reduced dimensions are 

determined such that the resulting reduction errors (difference between the respective 

variable’s variation in the original space and those reconstructed from the reduced dimensions) 

meet pre-defined error tolerance limits with an overwhelmingly high probability [29, 30]. 

Mathematically, the reduced dimensions are described by an active subspace, whose dimension 

is considerably smaller than the dimension of the original full space. To construct the active 

subspace, most ROM algorithms require the repeated execution of the forward model, a 

process that could be computationally taxing especially for complex systems, such as nuclear 

reactor calculations. This chapter introduces a new approach to reduce the computational cost 

required to construct the active subspace. 

 This work proposes a modification to the algorithm developed previously in [34]; that is 

instead of collecting the snapshots based on the converged solution, the non-converged iterates 

of the solution (non-converged snapshots), obtained by randomly perturbing the input 

parameters after each iteration, are collected and used to construct a lower dimensional 
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subspace. We propose to use this subspace in lieu of the one constructed with the converged 

snapshots as done in earlier work. Note that in the proposed algorithm, the snapshots will not 

represent the converged solution for the given parameter perturbations. However, the premise 

is that the variability of the non-converged snapshots can be used to capture the subspace 

constructed from the converged solutions. As will be shown later, it is possible to prove that 

the proposed algorithm yields a subspace that is inclusive of the subspace generated using the 

converged snapshots. 

 The basis constructed from the non-converged iterates is validated by comparing its 

performance with that constructed using the converged snapshots. The application used here 

is based on a recently developed version of generalized perturbation theory, called exact-to-

precision generalized perturbation theory (EPGPT) [56]. The EPGPT utilizes the constructed 

reduced basis to efficiently compute the high order variations of given responses with respect 

to the input parameters perturbations, such as cross-sections perturbations, temperature 

variations and control rod insertions. In this chapter, the reduced basis obtained by the 

converged and the non-converged snapshots are combined separately with EPGPT to calculate 

the variations of the multiplication factor and neutron flux distribution for a range of nuclear 

cross-section variations. The following sections discuss the main idea, details of 

implementation, applications, and numerical tests conducted with SCALE6.1 package [57].    

 This algorithm emulates the so-called Range Finding Algorithms (RFAs) from linear 

algebra. An RFA attempts to answer the following question: Given a large number of vectors 

stacked as columns in a matrix A, can one find a matrix U with a smaller number of columns 

whose range contains all the original vectors in A to a user-defined tolerance? An RFA 

generates a number of snapshots, each representing a random linear combination of the 
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columns of the matrix A, and subsequently employs a rank revealing decomposition to 

determine the matrix U and its rank r, i.e., the minimum number of columns to whose range 

all the original vectors belong within a user-defined error tolerance. The number of snapshots 

needed is equal to the rank r, or slightly larger, depending on the type of RFA algorithm 

employed [41]. More importantly, the algorithm does not specify how the snapshots should be 

generated; it only requires that they are generated in a manner that ensures with high 

probability their linear independence. This means that if one has another matrix B whose range 

is believed (say based on physics argument) to be equal to the range of A, one can use random 

linear combinations of the columns of B to determine the range of A. We take this observation 

a step further by noting that if B is selected such that the range of B is inclusive of the range 

of A, the identified active subspace for B will be inclusive of A’s active subspace. This 

observation can be assessed by calculating the angle between the two subspaces (described 

later). This represents the core idea of the proposed algorithm. In our context, the matrix A (to 

be denoted later as CΦ ) aggregates snapshots of the converged flux solution, whose 

computational cost of generating depends not only on the rank of the active subspace but also 

on the model complexity which translates into the cost required to obtain a converged solution 

for each snapshot.  
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2.1 Algorithm 

 

 Consider the following iterative representation of an eigenvalue problem:  

  ( ) ( 1)

( 1)

1j j

jk
  


L F   (16) 

where L  and F  are the neutron loss and production operators, respectively. This equation is 

often solved using power iterations with some form of acceleration; where the index j  denotes 

the iteration index. A lower dimensional subspace in the state space, i.e., the flux ( ), can be 

constructed using the range finding algorithm (RFA) [34] by solving Eq. (16) a number of 

times, wherein model input parameters are randomly perturbed in each run and the flux 

variation from the reference-unperturbed case is recorded. The process is repeated until the 

accumulated snapshots span a subspace that represents the flux variations within certain user-

defined error tolerance [41, 34] (i.e. an active subspace). The dimension of this active subspace 

is found to be considerably smaller than the dimension of the original space. Symbolically, this 

can be described as follows: let the n components of the state, e.g., multi-group flux, be 

represented with a vector 
n  . The reduced variables r  are represented by a vector given 

by: 

T

r  U  

where the r columns of the orthonormal matrix 
n rU  represent a basis for the active 

subspace. The premise here is that all dominant flux variations can be represented as linear 

combinations of the basis vectors of the active subspace, i.e., the columns of U . The reduced 

variables can be subsequently used to reconstruct the flux in its original full dimensional space 

as follows:  
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T

r   UU U , 

where 
2

   is denoted as the reduction error measured using an L2 norm. To be effective, 

one needs to find an r value that renders this error considerably small. Earlier work has proven 

that r may be selected to meet a user-defined upper bound upper  [30]. The basis of the active 

subspace for the state variable   in Eq. (16) may be constructed using the following algorithm: 

1. Generate m random perturbed realizations of the input parameters represented by the 

matrices  
1

m

i i
L  and  

1

m

i i
F , where:  

i i F F F  and i i L L L  

2. For every parameter perturbation, solve Eq.(16), record the converged solution n

i  , 

and aggregate in a matrix CΦ . 

3. Calculate the singular value decomposition (SVD) of the m snapshots of the flux variation 

from the reference value: 

1 C C C C

T

i m         Φ U S V . 

CU  is a unitary matrix with orthonormal columns which can be regarded as basis vectors 

of the column space of CΦ . 

4. Generate p extra snapshots of the solution variation ˆ
j , as done in steps 1 and 2 (this step 

is done once to bound the reduction error). If the inequality below is not satisfied, then the 

dimension of the active subspace is too small to satisfy the user-defined error bound, and 

one must go back to step 1 and add more snapshots, i.e., increase m [29]: 
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 1,... C C
2

2 ˆ10 max T

j p j upper 


   I U U  

The orthonormal basis matrix CU  can be obtained using any rank revealing decomposition. 

 

5. If the inequality is satisfied, set Cr m ; the determined active subspace is expected to 

satisfy the user-defined error bound with probability 1 10 p . 

 This algorithm emulates the Range Finding Algorithm (RFA) from linear algebra. 

Symbolically, this may be described as follows: the computational cost 
Convergedc  of constructing 

the active subspace using the conventional algorithm described above is a function of both the 

rank of the active subspace (step 4) and the complexity of the model (step 2) since a converged 

solution is sought: 

Converged ( , )c f r   

where   is a variable characterizing the effect of the model’s complexity on the number of 

iterations, s  required for convergence.  

 The matrix B however (to be denoted later as NΦ ) aggregates random vectors which 

belong to a subspace that is inclusive of the range of A (this property will be proved later). The 

advantage here is that the cost Non-convergedc  of obtaining the columns of B is less dependent on 

the model complexity since convergence is not pursued, and is therefore a function of the rank 

only:  

Non-converged ( )c f r  

 To implement the proposed algorithm, step 2 of the above algorithm is modified such that 

the non-converged solution snapshots are collected in lieu of the converged snapshots, which 
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might be computationally taxing. To differentiate between these two subspaces in the 

remainder of this chapter, we employ C-subspace to denote the converged subspace generated 

using converged snapshots, while the N-subspace implies the use of the non-converged iterates 

to construct the active subspace (i.e. constructing a non-converged subspace).   

 Consider the computational cost associated with each iteration to be fixed and given by c  

(i.e. model’s complexity). For a single model run requiring s  iterations to converge, the 

computational cost is: 

  model-Cc s c   (17) 

 Assuming that for a certain error tolerance the dimension of the subspace sought is Cr , the 

total cost required to construct the C-subspace is: 

  
Converged C model-Cc r c   (18) 

 The proposed algorithm randomly perturbs the input parameters following a fixed number 

of iterations I that are much less than the total number of iterations needed for convergence1, 

(i.e., I s , where I  can be a single iteration), and records the non-converged iterates as 

snapshots. This process is repeated in a similar fashion to the algorithm above until the user-

defined error bound is satisfied. Assuming the dimension of the N-subspace determined in this 

manner is given by Nr , the total cost required would be given by:  

  
Non-converged N model-Nc r c  , (19) 

where model-Nc I c   .  If the following inequality holds:  

  N CI r s r   , (20) 

                                                 
1 Needed to satisfy stopping criteria 
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then the computational cost required to construct the active subspace would be reduced by a 

factor of  N C1 ( ) / ( )I r s r   . It is expected that Nr  will be larger than Cr , as will be shown 

later. The closer Nr  is to Cr , the higher the computational savings. The saving is unknown a 

priori and is expected to be model-dependent; therefore, one must determine it numerically for 

the given model. Also note that for models with low s (i.e., models that require few iterations 

to converge), the expected computational savings will be diminished, implying that the 

proposed algorithm will be of value to models with slow convergence which is the main 

motivation for this work.  

 Figure 9 compares the differences between the conventional and proposed algorithms for 

active subspace construction. In Figure 9a, each cascade of squares represents one model 

execution, with each square representing a single power iteration. In Figure 9b, the parameters 

are perturbed after each iteration (i.e. 1I  ) to construct the N-subspace. Note that in the 

proposed algorithm the non-converged flux iterate is used to initialize the flux for the following 

iteration. 

 

Figure 9. Algorithm schematic for: (a). C-Subspace (b). N-subspace. 
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 Define two matrices CΦ  and NΦ  whose columns represent the flux variations from the 

conventional and proposed algorithm, respectively. All variations are calculated relative to a 

given reference converged solution 
0 . Matrix CΦ  can be used to construct a basis for the C-

subspace by performing the SVD of the form: 
C C C C

TΦ U S V . Generally, the error in flux 

variation    associated with subspace representation using the basis U  is given by:  

   T

i i    I UU . (21) 

where  

  
0i i     . (22) 

 Earlier work showed that one can increase the dimension of the C-subspace until this error 

is bounded by a user-defined limit. See Ref. [34] for more details. The N-subspace is 

constructed by the SVD of the matrix NΦ ; 
N N N N

TΦ U S V , where the columns of matrix NU  

form a basis for the matrix NΦ  and its rank is determined in a similar manner to the C-subspace 

using the RFA. Our goal is to show that the range of NU  is a superset of the range of CU  for 

linear eigenvalue problem, i.e.,  

     C NR RU U  (23) 

 Before proving this, the detailed steps of the proposed algorithm are given below:  

1. Generate m random perturbed realizations of the input parameters represented by the 

matrices  
1

m

i i
L  and  

1

m

i i
F , where:  

i i F F F  and  i i L L L  
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2. For every parameter perturbation, solve Eq.(16) using a fixed number of iterations I  

(where I s , s being the number of iterations required for convergence), and aggregate 

the iterates in a matrix IΦ , with the thI  iterate (
( )I ) given by:  

( 2)

(1)

( ) 1 1 1 1

01 2 1 0

1 1 1 1I

Ik k k k





    



  
                
   

   
  
  

L F L F L F L F  

3. Calculate the singular value decomposition (SVD) of the m snapshots of the flux variation 

from the reference value: 

( ) ( ) ( )

1 N N N N

I I I T

i m         Φ U S V . 

NU  is a unitary matrix with orthonormal columns which can be regarded as basis vectors 

of the column space of matrix NΦ . 

4. Generate p extra snapshots of the solution 
( )ˆ I

j , as done in steps 1 and 2 (this is done 

once). If the inequality below is not satisfied, then the dimension of the active subspace is 

too small to satisfy the user-defined error bound, consequently, go back to step 1 to add 

more realizations, i.e., increase m  [29]: 

  ( )

1,... N N
2

2 ˆ10 max T I

tol j p j upper  


   I U U  

NU  is the orthonormal basis matrix which can be obtained using any rank revealing       

decomposition. tol  is the user-defined error tolerance.  
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5. If the inequality is satisfied, set Nr m ; the determined active subspace is expected to 

satisfy the user-defined error bound  with probability 1 10 p  . 

 Notice that the tightly converged iterative solution of Eq.(16) can be represented as:  

( 2)

(1)

( ) 1 1 1 1

01 2 1 0

1 1 1 1s

sk k k k





    



  
                
   

   
  
  

L F L F L F L F , 

where 
0  is the initial guess, 

(1)  is the solution after one iteration and 
( )s  is the tightly 

converged solution snapshot. Also, notice that:  

 (1) 1

1R  L F , 

    ( ) 1 1 1 1 1

1 2 3

s

s
I s

R      
  

 
L F L F L F L F L F , 

where 
1( )R 

L F  is the range of matrix 1
L F  obtained after one iteration. This is denoted by 1

while s denotes the range of the matrix obtained after s iterations (or s multiplications of 1
L F

). The range of an arbitrary matrix (A) (sometimes called the matrix’s column space Col(A)) 

is the set of all possible linear combinations of its columns. From linear algebra, the range of 

a matrix either shrinks or stays the same after successive multiplications [60]. This assertion is 

proven as follow:  

 For ( )   b R x  AB  such that ( ) b x x AB A B , therefore, R( )b  A . Hence:  

  ( ) ( )R RAB A . (24) 

 For I s the argument above leads to the following conclusion:  

http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Column_vector
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1s I    . 

 Therefore, if we assume that the RFA can capture the subspaces that represent s   and  I  

accurately, then the non-converged iterates will formulate a subspace that is inclusive of the 

subspace that contains the converged solutions. Consequently, one may express this 

observation as follows:  

  -subspace -subspaceC N . (25) 

 A more intuitive viewpoint is given by considering the convergence of the power iteration. 

It is known that the higher overtones of the flux equate to the eigenvectors and die off each 

power iteration as the higher overtones’ eigenvalues to the fundamental eigenvalue ratios. This 

implies the converged flux solution will be contaminated with higher overtones if the power 

iteration is terminated prematurely. This in turn implies a larger subspace that includes the 

converged subspace.    

 The proposed algorithm employs the RFA to determine the C-subspace and the N-

subspace. However, RFA approximates these subspaces within user-defined accuracy. So the 

C-subspace and N-subspace obtained by the RFA satisfies the statement of Eq.(25) upon the 

condition that they represent the ranges s  and I , respectively, with relatively high accuracy. 

One way to test the statement of Eq.(25) is to measure the angle between the two subspaces. If 

the N-subspace is perfectly inclusive of the C-subspace then the angle between the two 

subspaces must be zero. A measure of the sine of the dominant angle between the two 

subspaces has been developed elsewhere [70], and is calculated by the following equation:  

  N N C C 2
sin( ) T T  U U U U  (26) 
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where   is the dominant angle between the two subspaces of interest which are spanned by 

the columns of the two matrices NU  and CU .  

 The premise of this chapter is to produce an Efficient version of the Range Finding 

Algorithm (ERFA). So for a general model (i.e. ( )y f x ), the following steps summarize the 

use of the ERFA to construct a lower dimensional subspace (active subspace) for the response 

i.e. y . (ERFA):  

1. Generate k  random perturbed realizations of the input parameters of the model of interest:  

   1 k
x x 
 

X , 

2. For every parameter perturbation, execute the model of interest using a fixed number of 

iterations I  (where I s , s  being the number of iterations required for tight 

convergence), the variations from the references response value are aggregated in the 

matrix Y:  

 1 ky y  Y  

3. Calculate the singular value decomposition (SVD) of the aggregated response snapshots: 

TY USV . 

nxkU  is a unitary matrix with orthonormal columns which can be regarded as basis 

vectors of the column space of matrix Y . 

4. Generate p extra snapshots of the response Y , as done in steps 1 and 2 (this is done once). 

If the inequality below is not satisfied, then the dimension of the active subspace is too 

small to satisfy the user-defined error bound, consequently, go back to step 1 to add more 

realizations, i.e., increase k [29]: 
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   1,...
2

2
ˆ10 max T

tol j p j uppery 


   I UU  (27) 

U is the orthonormal basis matrix which can be obtained using any rank revealing       

decomposition. 

5. If the inequality is satisfied, set r k ; the determined active subspace is expected to satisfy 

the user-defined error bound with probability1 10 p  . 

 The flow chart below (Figure 10) summarizes the 5 steps listed above. Note that the main 

difference between the ERFA and the RFA is that the ERFA utilizes low fidelity snapshots to 

find a subspace that is spanned by the variations of the high fidelity snapshot 

 

  



  
 

59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. ERFA flow char. 

Execute the model of interest 

using a fixed number of iterations 

(a low fidelity snapshot). 

Generate p extra snapshots 

of the responses 
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Eq.(27)
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Set r k ; the determined active subspace is expected 

to satisfy Eq.(27) with a probability1 10 p  

End 
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Yes 

No 

Start 

Calculate the basis of the aggregated 

response snapshots via SVD (U) 

Generate k random 

perturbed realizations of 

the input parameters (x) 
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2.2 Numerical Test: Lattice Physics  

 

 Our goal in this section is to demonstrate that reduction errors of both N- and C-subspaces 

can be upper-bounded. Next, we demonstrate the computational savings resulting from the use 

of the N-subspace for two cases with different dominance ratios, representing both a PWR and 

a BWR lattice model. Next, we verify the assertion that the N-subspace is inclusive of the C-

subspace. Finally, we employ both the C- and N-subspace to calculate flux and eigenvalue 

variations for a range of conditions using a recently developed method, referred to as exact-to-

precision generalized perturbation theory. Modifications were implemented into the 

SCALE6.1’s NEWT code [57] in order to automate the process of building the active subspace 

via the proposed algorithm (Refer to Section 1.6.2).  

 Two different eigenvalue problems are used for demonstration. One is characterized by a 

relatively high dominance ratio (BWR lattice) while the other is characterize by a lower 

dominance ratio (PWR quarter lattice). The response of interest is the 44 energy group angular 

flux. For the quarter PWR fuel lattice, the numerical solution employs 790 spatial cells, each 

with 24 angular directions. The resulting angular flux has 834,240 components (i.e., belong to 

a space 834,240 ) over space, energy, and angles. For the BWR fuel lattice, the numerical 

solution has 1284 spatial cells, each with 24 angular directions. Similarly, the response of 

interest is the 44 energy group angular flux, which is characterized by a vector of 1,355,904 

components, i.e., belongs to 1,355,904 . The fission ( f ), elastic scattering (
s ), fission 

spectrum (  ) and average total (prompt plus delayed) number of neutrons released per fission 

event ( ) cross sections are perturbed ( 30% ) to obtain the active subspace. The nuclide 
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considered in this study are: 
234

92 U , 
235

92 U , 
236

92 U , 
238

92 U , 
1

1H , 
16

8O , and the naturally occurring 

isotopes of  B , Zr, Fe, Sn, Na, Al, Si, K and N.  Figure 11 depicts the two lattices.  

 The angular flux active subspace is constructed using both the converged snapshots (C-

subspace) and the non-converged flux snapshots (N-subspace). The two subspaces are then 

compared in terms of their associated computational cost and the rank required to achieve a 

certain error upper-bound associated with the subspace representation using the basis matrix 

U . This upper bound2 is given by Eq. (28) with a probability of 1 10 p [29] (we select 10p 

): 

   1,...
2

2 ˆ10 max T

upper j p j 


  I UU   (28) 

 Figure 12 and Figure 13 apply Eq. (28) using both the basis matrices 
CU  and

N  U  obtained 

by both the PWR and BWR lattices, respectively.  Figure 12 plots the error upper bound ( upper

) versus the ranks of the matrices 
CU  and 

NU  for the PWR fuel lattice. As predicted by Eq. 

(25), the N-subspace is bigger in size than the C-subspace. For example, for a user-defined 

error upper bound of 
210
, the corresponding ranks of the N-subspace and the C-subspace are 

100 and 78, respectively. Although the N-subspace is bigger than the C-subspace, the N-

subspace is considerably less computationally expansive to construct as demonstrated by 

equations (17) through (19). This is mainly due to the fact that the N-subspace is constructed 

using non-converged snapshots of the model’s solution.  

                                                 
2 It is important to note that Eq.(28)  employs the Euclidean norm which sums up the squared errors for all the 

flux components. Given the enormous dimension of the flux vector, the individual component errors are typically 

much smaller than the upper bound. 
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 Figure 13 compares the N-subspace and the C-subspace in a relatively high dominance 

ratio system (i.e. BWR fuel lattice). Since the convergence of this system is slower than that 

of the PWR system, the N-subspace is expected to be larger when compared to the C-subspace. 

Table I summarizes the numerical results for both the PWR and BWR systems. The BWR 

system requires an average of 279 outer iterations for its eigenvalue (multiplication factor) to 

converge to within 810 , while the PWR requires only an average of 55 iterations for the same 

convergence criterion. Taking into consideration the total computational burden involved in 

each basis construction algorithm, Table 1 indicates the computational cost to construct the N-

subspace to be about 43 times less than that of the C-subspace for the PWR system. However, 

given the low convergence rate in the case of the BWR systems, the computational cost to 

construct the N-subspace is 166 times less than that of the C-subspace. This demonstrates the 

power of the algorithm when the cost of the converged solution is relatively high.  

 

Figure 11. (a) PWR quarter fuel lattice. (b) BWR fuel lattice. 
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Figure 12. Error in the flux as obtained from the N-subspace vs. the C-subspace (PWR). 

 

  

Figure 13. Error in the flux as obtained from the N-subspace vs. the C-subspace (BWR). 
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Table 1. Computational costs required for constructing the N-subspace and C-subspace. 

Subspace PWR BWR 

Rank Computational Cost Rank Computational Cost 

C-subspace 
C 78r   Converged 55x x78c c  C 53r   Converged 279x x53 = c c  

N-subspace 
N 100r   Non-converged = 1x x100 c c  N 89r   Non-converged 1x x89c c  

  

 Next we verify the assertion made by Eq.(25) that is the N-subspace is inclusive of the C-

subspace. This can be achieved by calculating the dominant angle between the two subspaces 

using Eq.(26). When the N-subspace and the C-subspaces are properly approximated, the angle 

between the two subspaces should be zero, since the former is inclusive of the latter. Figure 14 

shows the dominant angle (in radians) between the two subspaces for the PWR fuel lattice 

calculated as a function of the rank. As would be expected, increasing the rank improves the 

approximation of the respective subspaces resulting in a gradual decline of the dominant angle. 

The implication of this graph is that if one chooses a rank that is too small, the N-subspace 

would not adequately represent the C-subspace and therefore the associated reduction errors 

would be noticeably higher than those calculated using the C-subspace. As the rank is 

increased however and the angle between the two subspaces diminishes, the reduction errors 

associated with both subspaces are expected to become more comparable to each other. This 

provides a good utility for the dominant angle as a metric that determines the proper size of 

the N-subspace.  
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Figure 14. The dominant angle reduction as the rank increases (PWR). 

 Finally, we investigate the use of the proposed algorithm to render reduction for 

applications that require repeated execution of the model. For example, in lattice physics 

calculations, the few-group cross-sections are functionalized in terms of various thermal-

hydraulic and reactivity control core conditions, so repeated solving of the Boltzmann equation 

is required as iterations with the thermal-hydraulic equations solver and critically search 

routine are completed. For demonstration, we employ a recent method, referred to as exact-to-

precision generalized perturbation theory (EPGPT) [56]. The EpGPT calculates high order 

sensitivities using the active subspace, which are then used to constructs a surrogate that 

replaces the solution of the Boltzmann equation. A prerequisite for EPGPT is the calculation 

of an active subspace for the flux. The quality of the active subspace as measured in terms of 

its associated reduction error in the sense of Eq. (27), determines the quality of the surrogate 

predictions. We employ both the C- and N-subspace in conjunction with EPGPT to calculate 

flux and eigenvalue variations for a range of conditions.  
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 In general, one can estimate the variations in a response R that is a function of the neutron 

flux via the GPT analysis with the linearity assumption: 

( )R f   

 If other physics-based restrictions are available then they can be represented as constraints 

on the flux solution: 

( )g l   

 The GPT variational analysis uses a Lagrangian (auxiliary function) to represent the 

variation in the response given a set of constraints. In the current analysis, and for the 

eigenvalue problem:  

     
** ( )
T

F R l g l       L F  (29) 

where  
*l  and 

*  are the  Lagrange multipliers associated with the eigenvalue problem. 

Eq.(29) suggests that the Lagrange function ( F ) represents the response (R) whenever the 

exact solutions ( and  ) are employed; therefore,  for any parameter perturbation the 

variation in the converged value of the Lagrangian function is equal to that of the response of 

interest (i.e. F R  ).  

 EPGPT is a hybrid methodology combining the generalized perturbation theory (GPT) and 

the RFA to reduce the computational cost required to calculate the exact response variations 

in support of nuclear reactor calculations, when both the numbers of responses and parameters 

are very large. The method is predicated on the assumption that the flux variations can be 

approximated by a small active subspace whose rank is much smaller than the dimension of 

the full flux space (i.e. r n ). Given that the dimension of the reduced flux T r

r    U  
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is much smaller than the original dimension of the flux 
n  , one can recast GPT in terms 

of a set of r pseudo responses, i.e. 
, , ,  for 1, ,pseudo i iR q i r   and 

iq  is the ith column of 

matrix U , such that the reduced variable 
r  can be estimated as follow:  

   
1

, ,r r r

r r r  
 

    I T T  (30) 

with 

  * *

1 0 0, ,r
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P P P

  

where 
r rI  is r by r identity matrix, and           P L F F F  is the perturbed 

neutron transport operator with 1
k

  . The *

i  is the pre-computed solution of the GPT 

equation for the pseudo response ,pseudo iR . In addition,  *
1

r

i i
  need to be computed only once 

for the given active subspace. The variation   can be accurately approximated using an 

iterative approach proposed in Ref. [56] with very low computational cost. Therefore, EPGPT 

can directly employ the basis vectors from C-subspace and N-subspace to efficiently calculate 

the responses variations:   

   
1

r r r  


     U U I T  (31) 

 We use the same PWR fuel lattice model described before to examine the N- and C-

subspaces via EPGPT. The eigenvalue in Eq.(16) is calculated and compared in Figure 15. The 
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exact eigenvalue and flux are calculated by executing the PWR lattice model one more time 

with the perturbed parameters (e.g. control rod insertion). The multiplication factor 

discrepancy ( k ) reported in Figure 15 is defined as follow:  

model surrogatek k k    

where this error is calculated for different subspace sizes, where each subspace size would 

result in different surrogatek . As can be observed in Figure 15, both subspaces can predict the 

eigenvalue accurately, i.e. the discrepancy is less than 100 pcm, when the dimension of active 

subspace is bigger than 60. The estimation accuracy is examined using 20 different test samples 

illustrated in Figure 16 and Figure 17, showing a maximum error of approximately 100 pcm 

which is representative of the modeling errors of transport calculations. The test samples are 

created using different reference fuel compositions. Figure 18 and Figure 19 show similar 

results for the neutron flux. It is noted that the highest errors appear in the thermal range below 

0.01 eV where the importance of neutrons is very low. This is to be expected as the active 

subspace identifies the dominant flux variations, implying that higher errors are to be expected 

in energy ranges where the neutron importance is low. 
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Figure 15. Eigenvalue errors for the N- and. the C-subspace. 

 

Figure 16. The eigenvalue errors for the C-subspace (1st order vs. 2nd order). 
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Figure 17. The eigenvalue errors for the N-subspace (1st order vs. 2nd order). 

 

Figure 18. The flux errors for the EPGPT’s C-subspace (1st order vs. 2nd order). 
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Figure 19. The flux errors for the EPGPT’s N-subspace (1st order vs. 2nd order). 
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operating conditions (e.g. reactor fuel depletion). This example will help to explore the 

possibility of obtaining the active subspace based on low fidelity snapshots of 3-dimensional 

coupled simulation problems.  

 CASL progression problem 6 is used as an illustrative example of a single assembly model 
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umbrella of the Virtual Environment for Reactor Applications-Core Simulator (VERA-CS) 

described more thoroughly in section 1.7 [58, 59, 65, 67] (for more information about VERA-

CS, MPACT and COBRA-TF refer to section 1.7).  

 CASL progression problem 6 is a single PWR 17x17 assembly (Westinghouse fuel design) 

with uniform fuel enrichment resembling fuel used in Watts Bar Unit 1 Cycle 1 at Hot Full 

Power (HFP). The example used here uses a boron concentration of 1300 ppm and 100% power 

level with no axial blankets or different enrichment regions. Overall, the total number of fuel 

rods is 264 fuel rods, with 24 guide tubes and a single instrument tube at the center. (NOTE: 

There are no control rods or removable burnable absorber rods in this problem) [68]. For more 

information about the problem’s parameters, refer to Table 2. 

 In this numerical example the response of interest would be the pin power distribution  

(calculated by MPACT). In order to provide the pin powers MPACT calculates the sub-pin 

level power distributions using the method of characteristics (MOC) in a 3-dimensional (3D) 

or a 2 Dimensional/1 Dimensional (2D/1D) fashion as previously described. For results 

reported here, the 2D/1D method is used with the axial component treated employing SP1. 
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Table 2. CASL Problem 6 Specifications [68]. 

Parameter Name  Value 

Fuel Pellet Radius 0.4096 cm 

Fuel Cladding Inner Radius  0.4180 cm 

Fuel Clad Outer Radius  0.4750 cm 

Guide Tube Inner Radius 0.5610 cm  

Guide Tube Outer Radius 0.6020 cm  

Instrument Tube Inner Radius 0.5590 cm  

Instrument Tube Outer Radius 0.6050 cm  

Outside Rod Height 385.10 cm  

Fuel Stack Height (active fuel) 385.76 cm 

Plenum Height 16 cm  

End Plug Heights (x2) 1.67 cm  

Fuel  UO2 

Clad / Caps / Guide Tube Material Zircaloy-4 

 

 The pin powers are calculated at each axial level, hence, 17x17 elements, along with 49 

fuel axial levels out of 58 total axial levels, which produces a large number of pin power 

responses (i.e. 17x17x49 = 14161). The basis of the active space of the pin powers will be 

calculated via the RFA and then compared to the basis calculated via the ERFA. The 

comparison is made by comparing the error values calculated by Eq.(32) , where U  is the basis 

of the pin power distribution vector and 
jP  is a high fidelity snapshot of the pin power 
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distribution. By projecting the high fidelity snapshots on the space of interest, the orthogonal 

component (i.e. the component of the high fidelity snapshots that cannot be expressed as a 

combination of the basis of interest) reflects how well is the subspace represents the different 

variations of the quantity of interest (e.g. 
jP ). Mathematically, the following inequality should 

be satisfied [29-30]: 

   1,...
2

2
10 max T

tol j p j upperP 


   I UU   (32) 

 In the above equation: 
0j jP P P   , where 0P  is the reference pin power distribution. The 

basis will be calculated via a set of high fidelity snapshots obtained by “2D-1D” MPACT runs 

coupled with COBRA-TF and ORIGEN (i.e. The subspace for tight stopping criteria solutions 

will be represented by the basis 
CU : C-subspace) and the subspace for the loose stopping 

criteria solutions will be represented by the basis 
NU : N-subspace). Table 3 indicates the 

stopping criteria employed.  

 In order to test the performance of the ERFA for time dependent problems two sub-tests 

will be used. The first sub-test suggests the use of the time dependent snapshots using loose 

stopping criteria to build the N-subspace (computational savings come from the fact that loose 

stopping criteria require less computational time). This test means that the depletion problem 

will be solved at all points in the fuel irradiation period; however, the N-Subspace basis is 

calculated using a set of loosely converged pin powers (at each time-step). The second sub-test 

uses tightly converged (high fidelity) time-independent snapshots to build a subspace without 

considering fuel depletion (computational savings come from the fact that solving the problem 

for one time point requires less computational resources than solving the problem at every time 

point on the interval of interest). This means that the variations in the pin powers distribution 
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for the time-independent problem (fresh fuel assembly) will be used to build the basis of the 

N-subspace.  

Table 3. Stopping criteria for VERA-CS analysis of 3D assembly. 

Response Loose Convergence Criteria  Tight Convergence Criteria 

Eigenvalue  100 (pcm) 5 (pcm) 

Temperature  10 (Co) 1 (Co) 

Boron 

Concentration  

1 ppm 0.1 ppm 

 

 Figure 20 shows a comparison of the error upper bound associated with each basis. In this 

case the pin power distribution variations at 30 GWd/MTU are approximated by the snapshots 

obtained via converged power distribution at 30 GWd/MTU (C-subspace), non-converged 

distribution at 30 GWd/MTU (N-subspace: time-dependent) and converged snapshots at 0.0 

GWd/MTU (N-subspace: time-independent). The figure shows that (N-subspace: time-

dependent) power snapshots can be used to capture the variations (important DoFs) of the 

power distribution at 30 GWd/MTU in a superior manner to the (N-subspace: time-

independent). Hence, the non-converged snapshots can be used to construct the basis of an 

active-subspace of the variations of the power distribution. At rank 50 the error upper bound 

in the 2-norm is around 1 W/cm. Note that the pin power distribution at the reference 

composition has a maximum of 274.1 W/cm and a minimum of 33.7 W/cm. For the worst case 

scenario the error in the L2 norm will be concentrated in the smallest pin power component 

(i.e. 33.7 W/cm), implying a corresponding relative error of below 3%. However, usually this 

error is distributed more evenly among all the components.   



  
 

76 

 

 

 

Figure 20.  Error in the L2 norm of the 3-D pin power distribution (the N-subspace vs. the C-

subspace).  Refer to Eq.(32).
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CHAPTER 3. EFFICIENT SUBSPACE APPROXIMATION FOR 

MULTI-PHYSICS COUPLED MODELS WITH FEEDBACK 
 

 

Note: The work presented in this section was developed in collaboration with J. Hite, H. S. 

Abdel-Khalik and Y. S. Bang (Ref. [71]). 

 Recently, the requirement of high fidelity models that are accompanied with uncertainty 

capabilities has contributed to increasing the complexity of reactor modeling and simulation 

tools; therefore, new developments in reduced order modeling are continuously being pursued 

by computational scientists as an effective means to render practical the repeated evaluations 

of the associated physics models. In the context of this dissertation, reduced order modeling is 

capable of reducing the effective dimensionality at the parameter, state and response levels, 

which reduces the number of degrees of freedom to deal with whenever performing certain 

types of analysis (e.g. uncertainty quantification, forward and adjoint sensitivity analysis). 

Moreover, reduced order modeling can utilize such reduction in replacing the original models 

with surrogates that are accurate in representing the original model to within a certain user-

defined error tolerance. This chapter will focus on performing gradient-based and gradient free 

reduced order modeling for coupled multi-physics models. 

 Reference [34] develops a gradient based reduction approach while the previous section 

introduced a gradient-free reduction approach [72]. Gradient-based reduction randomly 

samples the derivatives of the responses with respect to input parameters and subsequently 

determines the dominant directions (Degrees of Freedom - DoFs) in the parameter space via a 

linear algebraic algorithm called the Range Finding Algorithm (RFA) which represents the 

randomization, collection of gradient samples and the subsequent filtering of dominant 

directions.. The space spanned by those dominant directions is collectively referred to as the 
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“parameters active subspace”. The derivatives are evaluated using an adjoint sensitivity 

analysis procedure, which is mostly suitable for neutron transport calculations (more generally 

calculations involving linear operators) where the number of parameters is high (i.e. nuclear 

data cross-sections) with few responses of interest (e.g. multiplication factor and pin powers); 

therefore, the adjoint approach is computationally efficient for neutronics calculations. As 

discussed in chapter 2, the second type of reduction, i.e., gradient-free reduction, employs RFA 

to reduce the dimensionality of the state or response spaces via multiple randomized executions 

of the forward model using high fidelity snapshots (RFA) or low fidelity snapshots (ERFA). 

In chapter 2, both of these types of reductions were applied to single physics models. In this 

chapter, we integrate these two types of reduction algorithms to allow reduction of multi-

physics models. The idea is to perform three RFA-type reductions at each physics-to-physics 

interface, one based on the upstream physics (gradient-free reduction algorithm), another for 

the downstream physics (gradient-based reduction), and a third for the interaction thereof (i.e. 

finding the important DoFs for both the upstream and downstream physics). Moreover, a 

mathematical proof will be presented to show the convergence of the proposed algorithm (with 

increasing DoFs). In the following sections, our proposed algorithm will be referred to as 

Multi-Physics Range Finding Algorithm (MPRFA). 

 Without the loss of generality, this chapter will consider a two loosely-coupled models case 

(A and B) where the output of model A serves as input for model B and the output of model B 

serves as input for model A (see Figure 21). However, conclusions made in this chapter can be 

extended to any number of coupled multi-physics models.  
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Figure 21. A schematic of coupled models. 

 Models A and B might represent any two coupled physics models. For example, model A 

may depend on the output of model B, e.g. model A transport operator cross-section 

dependencies on the thermal-hydraulics (Model B) operator prediction of fluid and fuel 

temperatures. However, this sections assumes that these models represent a set of coupled 

source problems of the following form: 

i ix yA  and 
1i iy x B  

where A and B are matrices that represent the effect of the corresponding models. This entails 

the assumption that the effect of these modules can be approximated by the linear operators A 

and B. To make this linearity assumption more plausible, note that x  and y  can be considered 

perturbations from some reference state. Moreover, the assumption that both operators A and 

B are rank deficient implies that the associated system of equation has infinitely many 

solutions, hence in order to determine a unique solution, a constraint is required such as 

normalization.  
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 Since each operator (A and B) is rank deficient then the coupled system is rank deficient. 

In order to prove this; one can consider the effect of the coupling process as a successive 

application of the operators (A and B) as follow:  

i iy x A  

1i i ix y x  B BA  

1 1i i iy x y  A AB  

 These last two equations indicate that the operators BA-I and AB-I must be singular for 

there to be a nontrivial solution. BA is a combined operator equivalent to one coupling step. 

Eq. (23) and the proof therein shows that:  

( ) ( )rank rankB BA  

which means that if one of the coupled models is rank deficient (i.e. singular operator) then the 

coupled system is rank deficient (i.e. singular combined operator) which guarantees the 

availability of non-trivial solution.  

 

3.1 Gradient-Based Multi-Physics Range Finding Algorithm 

 

 In section 1.5 the idea of minimizing the size of the subspace was discussed. Previous 

efforts demonstrated the use of the intersection subspace for serially coupled models [50]. 

However, in the case of closed-loop coupled models (Figure 21), the interface parameters (x 

and y) are updated at each coupling step making the parameters functions of each other: 

 y f x  and  x g y  

 Therefore, the intersection subspace technique presented in Ref. [50] does not take this 

closed-loop coupling into account. Hence, in this section an iterative intersection subspace-
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based algorithm is introduced to take into account the coupled nature of the models which 

better represents the actual multi-physics coupling required in nuclear reactor physics 

modeling and simulation. The algorithm may be broken up into three stages as follows (GB-

MPRFA): 

Stage 1: Gradient-free Reduction of Upstream Model’s Outputs. 

1.  Create k random realizations of the model A’s inputs, aggregated in a matrix:  

(1) ( )[ ]kx xX  

 where x(i) represents the ith random sample of model A inputs, and execute model A k     

times. 

 2. Collect the corresponding outputs in a matrix (1) ( )[ ]ky yY .  

 3. Given a user-defined error tolerance for y, defined by y , employ ERFA to determine the 

necessary size of the active subspace, defined by rA,y which upper-bounds the error such that:  

2 yy y   , where y  is the output constrained to the active subspace.  

 4. Determine an orthonormal basis for the active subspace using the SVD decomposition: 

, , ,

T

y y y A A AY U S V  

5. If the subspace is intended to be used for UQ analysis, then use the singular value 

decomposition of the y covariance matrix to find the DoF with highest component of the 

uncertainty in the y-space: 

   
y y y

T

y  C C C
C U S U   (33) 

 where y

y

r


C

C
U , 

y
rC

is the rank of the subspace or the proper number of DoF that carry most 

of the uncertainty components as determined by the RFA. 



 

82 

 

 Stage 2. Gradient-Based Reduction of Downstream Model’s Inputs.  

6. To limit the number of model B adjoint calculations, define a pseudo response for model     

B, defined as a random linear combination of its outputs:  

pseudo i i

i

x w x , 

     where  iw  are randomly generated.  

7. Employ the adjoint of model B to calculate the derivatives of the pseudo response with 

respect to model B’s inputs. Repeat this process rB,y (the current estimate of the size of the 

active subspace of x , can be initially any value k) times and aggregate the derivatives in a 

matrix:  

,( )(1) (2)

[ , , , ]

B ir

pseudo pseudo pseudox x x

y y y

  


  
D  

Stage 3. Intersection Subspace-based Reduction at the Model-to-Model Interface. 

8. Calculate the intersection between 
,A yU  and (

yCU if available) D subspaces by forming: 

   
, ,

T

y y
A A

N U U D    or   , ,y y

T T

y y C C A AN U U U U D          (34) 

9. Construct an orthonormal basis by performing SVD decomposition: 

TN USV , 

 where the U matrix represents a basis for the intersection subspace at the first interface 

between the models in the direction A  B (i.e. y-space). And repeat steps 1 through 9 for 

the interface B  A (i.e. x- space).  

 For M coupled models, similar steps must be performed at each model to model interface. 

The more interfaces we have, the more physical constraints are applied on the reduced space.  
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The flow chart below (Figure 22) summarizes the steps listed above: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 . GB-MPRFA flow diagram. 

 In order to prove the convergence of the algorithm presented above, assume that models 

A and B are loosely coupled. Assume that the model A can be linearized as follow:  

y x A , 

while model B can also be linearized as follow:  

x yB  

Tolerance 

satisfied 
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satisfy Eq.(27) with a probability1 10 p  
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Calculate the basis of 

the aggregated 

snapshots via SVD 

Eq.(34). 
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 Coupling the two models can be viewed as a linear process applied over and over on the 

vector x : 

i iy x A  

1i i ix y x  B BA  

1 1i i iy x x  A ABA  

 The vector 
iy  is in the range of matrix A while 

1iy 
 is in the range of matrix ABA:  

( )
ii yy R R  A  

11 ( )
ii yy R R
   ABA  

 For ( )   b R x  AB  such that ( ) b x x AB A B , therefore, R( )b  A . Hence: 

( ) ( )R RAB A  

hence;  

( ) ( )R RABA A  

1i i

y yr r   

 Hence, over the coupling process the rank of the interface spaces will either shrink or 

remain the same, therefore, for linear problems it is safe to say that the MPRFA converges. 

 One more point in the MPRFA that needs elaboration is stage number 2; that is to explain 

why does the sampling of a pseudo response capable of capturing the important DoFs with 

respect of each of the real-physical responses? 

 Consider the following example (Figure 23). Before determining the important DoFs in the 

x -space with respect to the responses ( y ), the MPRFA defines a pseudo response that is a 

random combination of all responses (components of the vector y ):  
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m

pseudo j j

j

y w y   (35) 

where jw  are randomly generated factors. jy  is the jth element of the response vector y and 

m is the dimension of the response vector y . The goal is to calculate the sensitivity profile 

for the pseudo response: 

pseudoy

x




. 

 Considering Eq.(35), the derivative of the pseudo response can be expanded as follow: 

1
1

i

pseudo i i m
m

y yy
w w

x x x

  
   

   
, 

which can be written in a matrix – vector product form: 

1 | |

i

pseudo im
y yy

w
x x x

   
       

    i i

pseudos w S , 

where iw  is a vector with the ith samples of the factors. So if the pseudo response derivative is 

sampled at different points (to account for non-linearity effects) in the input parameter space (

x ) then the resultant is a matrix of random samples of the pseudo response derivatives:  

1 | | i

pseudo pseudo pseudos s    S  

  

Figure 23. Illustration example. 
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 So this process is a range finding process where the range of matrix S  is approximated 

via the range of matrix 
pseudoS , that is the Range Finding Algorithm (RFA) approximates 

( )R S  using ( )pseudoR S . In other words if i is large enough, then 
pseudoy  samples have enough 

information about the original responses vector 
1[ , , ]T

my y y  so that its features can be 

retrieved. Also, note that due to local linearity of each point in the input space, one can use 

only one sample of i

pseudos (i.e. sample of 
iw ) per sampling point in the parameter space. 

Therefore, the range of 
pseudoS  (i.e. ( )pseudoR S ) would represents the range of the variations of 

S  (i.e. ( )R S ).  

 Ref. [73] represents an algorithm that can be used as an extension for the GB-MPRFA. 

The reference introduces a basis filtering algorithm that can filter the subspace basis from 

any DoFs that are unnecessary with respect to the application of interest.  

 

3.1.1 Case Study: CASL Progression Problem 2 – lattice. 

 In this numerical test a quasi-static lattice physics depletion problem based on CASL 

progression problem number 2 is used to demonstrate the application of the proposed MPRFA. 

The model is composed of two physics models, a neutron transport calculations model to 

estimate the neutron flux distribution, and a depletion model to estimate the concentration and 

contents of various isotopes with time. The calculation of the reaction rates required for 

depletion calculations and the isotopic-dependent resonance treatment are assumed to be part 

of the depletion model; thus rendering the two interfaces to be the neutron flux and the 

macroscopic cross-sections. Many other choices for the interfaces variables could be 
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envisioned. We focus here on a single choice in support of this initial study. The neutron 

transport calculations are performed by the NEWT module which is a part of SCALE 6.1. The 

depletion calculations are performed using multiple modules, including BONAMI, NITAWL, 

MALOCS, WAX, COUPLE, ORIGEN, and OPUS [57]. Figure 24 illustrates the coupling 

between the two physics models. The following nuclei are considered in the depletion 

calculations:
234

92 U ,
235

92 U , 
236

92 U ,
238

92 U , 
237

93 Np ,
238

94 Pu , 
239

94 Pu , 
240

94 Pu ,
241

94 Pu 242

94 Pu , 
242

96Cm ,
241

95Am ,

242

95Am ,
243

95Am ,
16

8O , 
1

1H , 
16

8O , and naturally occurring isotopes of  Zr . 

For the current example, the following cross sections were perturbed: fission spectrum (  ), 

fission ( f ), elastic scattering (
s ), and average total (prompt plus delayed) number of 

neutrons released per fission event ( ). A quarter PWR lattice is considered (see Figure 25) 

which includes 64 fuel pins. The dimension of the cross sections subspace is 239,360 (i.e.

239,360 ). The scalar flux lives in a space of dimensions 100,056 (i.e.
100,056  ). 

 

 
Figure 24. Transport model (Physics A) coupled with depletion model (Physics B). 
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Figure 25. CASL Progression Problem number 2 – lattice. 

 

 

 In order to compare the MPRFA to the performance of the RFA (study each model 

separately without considering the coupling) the following two aspects will be highlighted. 

First, the size of the intersection subspace associated with the coupled physics model will be 

compared to the size of the subspace associated with a single physics model. Second, the 

intersection subspace will be used to calculate model responses for general cross-section 

perturbations. If the intersection subspace is not captured correctly, i.e., it is missing directions 

that are important to the coupled physics model, one would expect the response variations 

calculated using the reduced model to be in gross error (exceeding the user-defined error 

tolerance) when compared to the variations calculated using the exact model.   

 To investigate the first property, we employ the standard ERFA (refer to chapter 2) 

algorithm to calculate the size of the active subspaces for the flux and cross-sections as 

calculated independently by the two models, and compare their respective size against the 

intersection subspace calculated by the MPRFA algorithm, as shown in Figure 26 and Figure 

27. Single-physics space is calculated using the ERFA (refer to chapter 2) while the multi-

physics subspace is constructed using the GB-MPRFA proposed in this section. Results 
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suggest that greater reduction for the respective spaces can be achieved when codes are 

coupled. This is an attractive quality as it implies the computational cost per physics model 

can be significantly reduced when models are coupled, which represent the real scenario under 

which the models are utilized. 

 

Figure 26. Single-Physics vs. Multi-Physics Active Subspace ( ). 
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Figure 27. Cross section subspace as obtained from the single physics examination compared 

to the one obtained from the multi-physics examination ( ). 

 

 

 Regarding the adequacy of the intersection subspace, we compare the response variations 

as constrained to the single-physics-determined subspace (ERFA) and the MPRFA-determined 

subspace. Recall that the proposed approach assumes that variations that are deemed dominant 

by a single physics, but not by the other physics, will be dropped out during the iterative search 

for the solution because their effect is not significant from the coupling point of view. To test 

this assertion, we compare overall model variations for the neutron flux distribution (a function 

of energy and space) and eigenvalue (multiplication factor) for a given cross-section 

perturbation. The exact variation for both the flux and eigenvalue can be calculated by simply 

executing the forward model until convergence. Next, we project the cross-section perturbation 

along two subspaces (the subspace from the ERFA and the MPRFA subspace) and repeat the 

execution till tightly converged. The first subspace is determined by a single physics, expected 

to be bigger than the second subspace determined by the MPRFA algorithm. The 
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corresponding variations in the eigenvalue and the flux are compared with the exact variations. 

The initial cross-section are projected according to: 

    T
UU  (36) 

where U  is the orthonormal matrix associated with the respective subspaces as calculated by 

the three stages of the GB-MPRFA algorithm. 

 Table 4 compares the change in the multiplication factor calculated using both approaches. 

First, effk  for the original model is calculated (denoted as the full space model). Then, the 

subspace for the depletion cycle is calculated using both the standard ERFA and also using 

the proposed GB-MPRFA. Finally, we calculate the relative deviation from the reference 

solution for each method and compare. The overall effect of applying the GB-MPRFA is to 

render a greater reduction at the interfaces than can be done using the ERFA. Thus, when using 

the ERFA the effk  are larger than those calculated using the GB-MPRFA (even if the ERFA 

is using r = 1000), implying that the values calculated using the GB-MPRFA is superior to 

the ERFA. 

Table 4. Error in effk due to cross-section approximation using Eq.(36)  

Depletion 

step 
GWD/MTU 

Reference 

(Full Space) 
Reduced Space 

(GB-MPRFA) 
r=100 

Reduced space 

(ERFA) 
r=1000 

- k eff effk  [pcm] effk  [pcm] 
0 1.17320403 -37.31 -47.815 

10.880 1.09931821 -97.234 -118.174 

20.680 1.02163022 -71.299 -72.820 

26.390 0.95841733 -41.231 -29.15 
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3.2 Gradient-Free Multi-Physics Range Finding Algorithm 

 Since many computational models are not equipped with sensitivity calculation capability, 

a Gradient-Free MPRFA (GF-MPRFA) will be introduced here to compensate for the gradient 

based step introduced in the MPRFA algorithm. The second stage in the MPRFA performs a 

gradient-based reduction of downstream model’s inputs. This reduction is based on 

recognizing the DoF in the spaces of interest (e.g. y-space in Figure 21) that are important to 

the responses of the downstream physics which is obtained by sampling the derivative of a 

pseudo response of the downstream physics (e.g. model B in Figure 21); however, one can 

identify these degrees of freedom using a gradient-free approach. The logic is based on the 

linearity assumption, where the effect of model B can be approximated as follow: 

x yB  

 If so, then the range finding algorithm (RFA) can be used to calculate the basis of the 

column and row spaces of matrix B as follow:  

1. Sample the model’s input ( y ) – k samples;  

2. Collect the corresponding response snapshots ( 1

model

kx x   X );  

3. Compute the SVD of the snapshots matrix (
,

model

nxk nxn nxm T kxk

x x xX U S V ) where the columns of 

matrix U form the orthonormal basis of the column space of matrix B. If this basis is 

calculated accurately using the RFA, then any snapshot in the x-space can be represented 

as follow:  

  
xx1 x1xn rn n

x xx  U  . (37) 

So one can create extra snapshots of model’s B response (i.e. x ) without the need to run 

model B.  
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4. Random snapshots of the reduced parameter x1n

x , which are used to create extra snapshots 

( extraX ), can be sampled from a PDF determined by the previous step. Extra  xm r  

snapshots are required to complete the space:  

   xx x xx
r m rn r

extra x


X U α   (38) 

where α  is the matrix of the reduced parameter snapshots. Now aggregating the two                           

snapshot matrices one can have a full snapshots matrix that can be used to reveal the row 

space of matrix B without the need to access sensitivity information:  

  x x( - ) x x , x

model extra|x xn r n m r n n n m T m m

x x x
   X X X U S V  . (39) 

The columns of matrix 
xV  form the orthonormal basis of the row space of matrix B. Matrix 

xU  is the orthonormal basis of the column space which is used later in the reduction of 

the other interface (x-space in Figure 21).  

 In general, if the linearity assumption is not accurate then matrix B must be sampled so 

that its variations are captured. In this case the computational cost of capturing the gradient-

based subspace is proportional to .y xr r . Hence this method introduces computational savings 

whenever  . min ,y xr r n m  or whenever the sensitivity capability is not available (e.g. the 

adjoint model is not available) and  . miny xr r n . However, if the linearity assumption is 

sufficient, then the methodology presented above is sufficient to substitute the gradient based 

step in the GB-MPRFA with a gradient free step. The following is a summary of a gradient 

free MPRFA (GF-MPRFA): Refer to Figure 28. 

Stage 1: Gradient-free Reduction of Upstream Model’s Outputs. 
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1. Create k random realizations of the model A’s inputs, aggregated in a matrix:  

(1) ( )[ ]kx xX  

  where x(i) represents the ith random sample of model A inputs, and execute model A k      

times. 

2. Collect the corresponding outputs in a matrix (1) ( )[ ]ky yY .  

3. Given a user-defined error tolerance for y, defined by y , employ ERFA to determine the 

necessary size of the active subspace, defined by rA,y which upper-bounds the error such 

that:
2 yy y   , where y  is the output constrained to the active subspace.  

4. Determine an orthonormal basis for the active subspace using the SVD decomposition: 

, , ,

T

y y y A A AY U S V  

5. If the subspace is intended to be used for UQ analysis, then use the singular value 

decomposition to find the DoF with highest component of the uncertainty in the y-space: 

  
y y y

T

y  C C C
C U S U   (40) 

where y
r

y 
C

U , 
y

rC is the rank of the subspace or the proper number of DoF that carry 

most of the uncertainty components as determined by the RFA. 

Stage 2. Gradient-Free Reduction of Downstream Model’s Inputs.  

6. Create k random realizations of the model B’s inputs, aggregated in a matrix:  

(1) ( )[ ]ky yY  

 where y(i) represents the ith random sample of model B inputs, and execute model B k   times. 

7. Collect the corresponding outputs in a matrix. 
(1) ( )

model [ ]kx xX  

8. Determine an orthonormal basis for the active subspace using the SVD decomposition: 
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model , , ,

T

x x x B B BX U S V  

9. Create extra snapshots using Eq. (38) and aggregate them with modelX . Eq. (39) can be used 

to calculate the orthonormal basis of the row space of the matrix operator B denoted ,xBV . 

If the linearity assumption is sufficient, then these columns represent a subspace that is 

equivalent to the one calculated by stage 2 in the GB-MPRFA.    

Stage 3. Intersection Subspace-based Reduction at the Model-to-Model Interface. 

10. Calculate the intersection between the subspaces represented by the basis 
,A yU  and (

yCU  

if available) 
xV  subspaces by forming: 

  
, yy x  A CN U U V  

11. Construct an orthonormal basis by perform SVD decomposition: 

TN USV , 

where the U matrix represents a basis for the intersection subspace at the first interface 

between the models in the direction A  B. And repeat steps 1 through 11 for the interface 

B  A (i.e. x- space). 
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Figure 28.GF-MPRFA flow diagram. 
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satisfied 

? 

Set r k ; the determined 

active subspace is expected 

to satisfy Eq.(27) with a 

probability1 10 p  

End 

Yes 

Start 

Apply other 

constraints (e.g. 

Covariance). 

Calculate the basis of 

the aggregated 

snapshots via SVD 

Eq.(34). 

 

Generate k random perturbed realizations of the 

input parameters (x) for model A and collect the 

corresponding response snapshots (y).  

Collect the corresponding response 

snapshots for model B (x). 

Perform the gradient free step on model B 

by calculating the basis of the raw space.  

 

Repeat the same steps for 

the other interface (B A) 

 

No k=k+1 
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3.2.1 Case Study: Gradient-Free vs. Gradient-Based. 

 A simple numerical test is used to demonstrate the GF-MPRFA algorithm application.  

CASL VERA progression problem number 1a is used in a fuel depletion calculation 

application to demonstrate a multi-physics coupled models application [74]. The problem 

represents a single two dimensional PWR pin cell eigenvalue problem (Figure 29). The 

problem’s fuel represents the Westinghouse-type fuel. The fuel consists of uranium dioxide 

with helium gap, Zircaloy-4 cladding and water with soluble boron as moderator. The depletion 

problem is simulated using the TRITON sequence in SCALE6.1 package [57]. TRITON is the 

depletion sequence provided with SCALE6.1; the sequence’s ultimate goal is to solve Eq.(10) 

to determine the time dependent isotopic content of reactor fuel. The sequence consists of two 

major solution steps, a transport solver (NEWT) and a set of modules to solve Eq.(10). In this 

numerical test the two major solution steps will be considered as two different coupled multi-

physics models where the space of cross-sectional variation over the time steps is investigated 

via the two algorithms (GB-MPRFA and GF-MPRFA) separately. Figure 24 illustrates the 

coupled models with the interface parameters.  In this numerical test, the nuclear data cross-

sections ( 21824 ) space is constructed using both the GB-MPRFA and the GF-MPRFA. A 

comparison between the two spaces is depicted via the error criteria defined by the following 

term:  

     
1,...

2

2
10 max

jT

upper j p


  I UU  . (41) 

 Figure 30 plots the error upper bound criteria ( upper ). One can notice that both bases can 

approximate the variations of   equivalently, hence, the GF-MPRFA can replace the GB-

MPRFA whenever the gradient capability is not available.  
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Figure 29. CASL VERA problem number 1 simulated using SCALE6.1.   

 

 

Figure 30. GB-MPRFA vs. GF-MPRFA 

 

3.3 Case Study: 3-D Depletion Problem with Thermal-Hydraulics Feedback. 

 

 In this section the MPRFA will be used to apply dimensionality reduction on an example 

of a multi-physics coupled problem in three dimensional coordinates. The problem of interest 

is described in section 2.3, however, in this section the goal is different. While section 2.3 
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performed reduction at the response level (pin power distribution level), this section will seek 

reduction at the input parameter level (nuclear data cross-sections). The depletion problem has 

many parameters that can be considered as an input (e.g. nuclear data cross-sections, fission 

yields, thermal-hydraulics parameters … etc), however, since this dissertation is partially 

concerned about the uncertainty quantification for large scale problems, it is obvious that the 

nuclear data cross-sections and their dimensionality are a major challenge to be confronted by 

this dissertation. Hence, this section will utilize the GF-MPRFA to reduce the dimensionality 

of the nuclear data cross-sections space.  

 As described in section 2.3, VERA-CS is used to perform the fuel depletion with thermal 

–hydraulics feedback. The reader is referred to section 1.7 for more details on VERA-CS and 

its components.  

 Since VERA-CS does not have any adjoint based sensitivity analysis capability, our 

attention will be towards the Gradient-Free MPRFA (GF-MPRFA). Three responses of interest 

will be considered (multiplication factor, maximum pin power and maximum pin temperature) 

while the important DoFs of the nuclear cross-sections will be determined accordingly.  

 The GF-MPRFA requires two pieces of information: a covariance library for the measured 

nuclear data cross-sections ( yC  in the GF-MPRFA) and snapshots of the interface parameters 

(i.e. neutron flux distribution, pin powers, pin temperatures, time-dependent isotopic number 

densities) which represent x and y interfaces in the GF-MPRFA (refer to section 3.2). 

 Running VERA-CS for depletion problems is computationally expansive (assembly and 

core wide levels), therefore, Figure 31 compares the performance of the GF-MPRFA along 

with that of the ERFA in terms of the relative error upper bound in retrieving the cross-section 

variation vectors: 
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1,...

2

2
10 max ,             

j
j jT

upper j p ref






    


I UU . 

 Obviously, the ERFA offers a poor alternative to GF-MPRFA. For example at a rank 

(number of DoFs) of 30 the ERFA approximates the variations of the cross-section (over the 

fuel depletion process) with a relative error upper bound of 95.6% (a very bad approximation) 

while the GF-MPRFA does the approximation with a relative error upper bound of 0.038%. 

Depending on the subsequent application, one might choose the proper algorithm (i.e. ERFA 

vs. GF-MPRFA). In chapter 4 the GF-MPRFA will be used to perform efficient uncertainty 

quantification and surrogate construction.   

 

Figure 31. GF-MPRFA vs. ERFA. 
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CHAPTER 4. EFFICIENT MULTI-PHYSICS UNCERTAINTY 

QUANTIFICATION 
 

 In order to achieve high fidelity simulation, engineers have to precisely parameterize 

mathematical models in terms of all available parameters. For example, nuclear data cross-

section libraries must be evaluated on finer energy intervals, wider range of isotopes and at 

different temperature values. However, this increases the dimensionality of the problem; 

therefore, the deterministic uncertainty quantification process become more computationally 

expensive. On the other hand, the increased complexity of the high fidelity nuclear reactor 

simulators results in computationally expensive models which hinders the application of Monte 

Carlo uncertainty quantification approaches.  

  In establishing the nuclear data-specific uncertainty libraries one can distinguish four 

different classes of fuel related isotopes [19]: 

1. Major isotopes (i.e., 235U, 238U, and 239Pu), 

2. Other isotopes of Uranium and Plutonium, 

3. Minor actinides up to 245Cm (i.e., 237Np, 241Am, 242Am, 243Am, 242Cm, 244Cm and 245Cm), 

4. Higher mass minor actinides. 

5. Fission Products, control and structural materials.  

 Except for the 4th group, the uncertainties in the other groups have been studied and 

reported in various libraries [13, 75, 76]. The fundamental issue when using a linear response 

model or building a surrogate model to reduce computer resources requirements comes from 

the high dimensionality of the input parameter space or more specifically, the uncertainty 

source space.  In order to circumvent this issue, Reduced Order Modeling (ROM) techniques 

can be employed to reduce the required execution time [77, 4]. In order to perform 
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dimensionality reduction, a physics based approach can be utilized to identify the important 

dimensions (degrees of freedom) in the form of the basis of a lower dimensional subspace 

approximation (active subspace). An important uncertainty source is the one that has both high 

sensitivity and large uncertainty.  

 One final issue needs to be addressed: how can one get a physics-based active subspace 

efficiently? This question was not specifically addressed in previous efforts [4-77]. However, 

previous sections addressed this question for single physics problems and for multi-physics 

loosely coupled problems. Moreover, once the active subspace is generated, it can be used for 

many applications and problems that are within the range of its validity.  

 In this chapter, two approaches for multi-physics uncertainty propagation will be 

introduced, discussed and tested on both lattice physics and 3-dimensional reactor physics 

problems. The first approach is a linear approach that utilizes the obtained subspace along with 

a Karhunen-Loève (KL) expansion-based approach to quantify the uncertainty in attributes 

calculated by multi-physics coupled models. The second approach is a surrogate model based 

approach that replaces the original complex model with a simple surrogate form (e.g. 

polynomial, Gaussian process surrogate) and then quantifies the uncertainty via a Monte Carlo 

approach. The dimensionality reduction will be used to reduce the computational burden of 

evaluating the uncertainties whenever the uncertainty source space is high dimensional or there 

is no access to the sensitivity information and the model is characterized by high computational 

cost. Ref. [77] and Ref. [4] proposed the use of reduced dimensionality for efficient 

performance of uncertainty quantification; however, the work was limited to single physics 

applications while the current work extends the method to multi-physics coupled models. 
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Moreover the current work proposes a metric to measure the contribution of each source of 

uncertainty in the overall uncertainty in the RoI. 

 

4.1 Efficient Uncertainty Quantification for Single Physics 

 

 Before getting into the multi-physics uncertainty quantification algorithm, it is useful to re-

introduce the work presented in Ref. [4]. To start, consider the following model: 

 y f x , 

 If we assume that the model is linear, the uncertainty in the input parameter vector ( x ) can 

be propagated towards the RoI vector ( y ) using the sandwich equation as follow: 

  T

y yx x yxC S C S  (42) 

where 
xC  is the covariance matrix of the input parameter ( x ) and 

yxS  represents the sensitivity 

profile of the RoI ( y ) with respect to the input parameter ( x ). However, taking into account 

that the covariance matrix 
xC  is symmetric then its singular value decomposition can be 

written as follow:  

2

x x x

T

x  C C C
C U Σ U  

where 
xC

U is the matrix of orthonormal basis of the space spanned by the columns of matrix 

xC  and 2

xCΣ  is a diagonal matrix of the corresponding singular values denoting the variances. 

Hence, Eq.(42) can be rewritten as follow: 

2

x x x

T T

y yx yx
C C C

C S U Σ U S  

        

1/2 1/2,

x x x x

T
x x

T T

yx yx
C C C C

C C

S U Σ Σ U S  
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  1/2 1/2,T T

yx x x yx S C C S  

 Now if we assume that we have the basis of a lower dimensional subspace (U) that 

approximates the uncertainty space (i.e. the x-space), then Eq. (42) can be rewritten as follows: 

   1/2 , , 1/2,T T T T

y yx x x yx

  C S C U U U U C S   (43) 

where   , ,T T  U U U U I  with n rU  and r n  if the components of x are highly 

correlated (e.g. the case with nuclear data cross-sections), where n is the full dimension of the 

input parameter space (uncertainty source space). The basis vectors represent the degrees of 

freedom (DoF) in the x-space that are characterized with high uncertainty and high sensitivity. 

From Eq. (43) the uncertainty in the attribute of interest can be segmented into two parts; the 

first part is coming from the active subspace and the minor (negligible) part is coming from 

the in-active (orthogonal subspace). If the active subspace is chosen correctly then the part 

coming from the orthogonal component will be negligibly small: 

1/2 , 1/2, 1/2 1/2,T T T T T T

y yx x x yx yx x x yx

  C S C U U C S S C U U C S  

        1/2 1/2 1/2 1/2
T T

yx x yx x yx x yx x

  S C U S C U S C U S C U  

 From now on U will be used to denote U . If the lower dimensional subspace 

approximation is selected properly, then the uncertainty component associated with the 

orthogonal component will be negligibly small, and hence the uncertainty in the RoI (i.e. y) 

can be approximated as follow:  

    1/2 1/2
T

y yx x yx xC S C U S C U   (44) 

 This conclusion leads to the realization that the uncertainty can be evaluated via r models 

executions instead of n executions. Each model execution would quantify the uncertainty in 
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the RoI due to a certain basis vector (degree of freedom in the uncertainty sources space). 

Notice that the term  1/2

yx xS C U  can be written as:  

  1/2 1/2 1 1/2| | r

yx x yx x yx xu u   S C U S C S C  , (45) 

where iu  is the ith column of the matrix U. On the other hand, the linearity assumption 

imposes the following: 

   1/2 1/2

0 0

i

yx x i x iu y x u y x y    S C C , 

hence, the reduced uncertainty propagation Eq.(45) can be rewritten as:  

  1 1
T

r r T

y y yy y y y          C R R   (46) 

 Hence, this process can be viewed as a sort of Karhunen-Loève technique with the 

neglected component (DoFs) being selected based upon their contribution to the uncertainty 

and sensitivity. In addition, in multi-physics coupled models the important DoF must satisfy 

one more condition; taking into account the nature of the multi-physics coupled model, any 

selected DoF must have a significantly possibility to appear in the interface space between 

the coupled models. This down selection will be explained in more details in the following 

sub-section.  

 The error in this evaluation can be estimated as follow [4]:  

  

  

 

1/2 1/2

1/2 1/2

1/2 1/2,

1/2 1/2,

      

      

      .

y

T

C y yx x yx x

T

yx x yx x

T T T

yx x x yx

T T T

yx x x yx

E

 

 

 





 

C S C U S C U

S C U S C U

S C U U C S

S C I UU C S
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 The Range Finding Algorithm (RFA) can be used to estimate an error upper bound in the 

L2-norm of the above error term [29, 30, 34]. This process has two major advantages: first, it 

does not require the accessibility to sensitivity profiles; second, it requires only r model’s 

execution instead of n, where r n . 

4.2 Efficient Sensitivity Analysis 

 

 This dissertation introduces a technique, assuming a linear model, to estimate the 

individual uncertainty contribution in the overall uncertainty of the RoI using the same 

snapshots used for the uncertainty quantification process described above. In order to see how 

this is possible, let’s examine Eq.(45) again:  

 1/2 1/2 1/2 1/2 1/2

1 1 1| | | | | |yx x yx x yx x r yx x x r yx ru u u u          S C U S C S C S C C S  

where 
1/2

i x iu C . One can think of the vector 
i  as a vector of weights that gives every 

element a certain contribution in the overall uncertainty. Following this logic one can formulate 

the following linear system of equations that can be solved to obtain a reduced order estimate 

of the sensitivity coefficients:  

  T T T

yxR W S ,  (47) 

where  1 | | r W . If we are looking at the uncertainty in a single RoI ( y ), then T
Y  and 

T

yxS  will be vectors instead of matrices. The main issue now is that Eq.(47) represents an 

underdetermined system, which means that it has infinitely many solutions (if any!).  

Fortunately, we can construct a full rank system of equations that has a unique solution. In 

order to do so we have to realize that once we have the active subspace basis (U) one can write 

any input snapshots as a linear combination of the basis vectors: 
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1 1

1 1

m r
nx nxr rx

i i i i

i i

x u u  
 

    U   (48) 

 Now the response variation (
iy ) can be written in terms of the derivatives of the RoI with 

respect to the reduced input variable (
1rx ): 

1 /

1

. . .i i i i

r y

r

y y
y   

 

 
       

 
S , 

hence, the variations matrix ( Y ) can be used to formulate r linear equations with r unknowns 

(the sensitivity coefficients  
iyS ) where 

iyS is a vector if the problem has only one RoI. 

Therefore, the matrix system of equations can be written as follow:  

  T

yR AS  , (49) 

where,  

1
T

r     A . 

 The vector i can be calculated using Eq. (48):  

1/2i T i T

x ix u  U U C . 

 Once the system in Eq.(49) is solved for yS , the reduced order sensitivities yxS  can be 

estimated using the chain rule and Eq.(48):  

  . . T

yx y x y   S S S S U .  (50) 

 Once we have a reduced order estimate of the sensitivity profile, the sandwich equation 

can be used to calculate an estimate of the uncertainty contribution for each source in the input 

space. 
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4.3 Efficient Uncertainty Quantification for Multi-Physics Coupled Models 

 For multi-physics coupled models, consider Figure 21, where the interface between the 

models has two distinct types of parameters: the dependent parameters ( x  and y ) which are 

dependent on each other (i.e. y  is a response of model A and x  is a response of model B) and 

on the other hand, independent parameters such as z  which are necessary for model B but 

their values are not affected by any of the two models. In order to quantify the uncertainty at 

the interfaces between the coupled models a two steps algorithm will be adapted. The 

assumption in this section is that the parameters x  and y  are high dimensional parameters 

while the independent parameter z  is low dimensional (i.e. the corresponding uncertainty can 

be quantified using the Monte Carlo based uncertainty quantification). 

 First, the uncertainties due to the high dimensional parameter x  will be propagated at all 

coupling steps (i.e. time steps). Consider that the 
0

xC  is the initial (0th coupling step) covariance 

matrix for the x parameter. These covariance data are the initial covariance library that is 

associated with the experimental values of parameter x  (e.g. uncertainties in the evaluated 

nuclear data libraries such as ENDF libraries). So the uncertainty in y parameter can be 

expressed, assuming a linear model, via the sandwich equation as follow: 

0 0 0 0,T

y yx x yxC S C S  

 Hence, for the 1st coupling steps (i.e. time step):  

  1 0 0 0, 0 0 0 0, 0,T T T

x xy y xy xy yx x yx xy C S C S S S C S S  (51) 

 As explained before, Eq.(51) can be re-written in terms of the singular value 

decomposition (SVD) of the covariance matrix 0 0 0

0 2

x x x

T

x  C C C
C U Σ U :  
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0,1/2,0,1/2

1 0 0 0, 0, 0 0 0,1/2 0,1/2, 0, 0,

T
xx

x x x x

T T T T T T

x xy yx yx xy xy yx x x yx xy 

CC

C C C CC S S U Σ Σ U S S S S C C S S  (52) 

 Let 
xU  denote the matrix with its columns forming the basis vectors representing the lower 

dimensional subspace approximation of the x-space as determined by the ERFA or and 

MPRFA. If the columns of 
xU  are orthonormal then, 

, ,T T

x x x x

  U U U U I , where I  is the 

identity matrix. Eq. (52) can be re-written as:  

 1 0 0 0,1/2 , , 0,1/2, 0, 0,T T T T T

x xy yx x x x x x x yx xy

  C S S C U U U U C S S . 

     1 0 0 0,1/2 , 0,1/2, 0, 0, 0 0 0,1/2 , 0,1/2, 0, 0,T T T T T T T T

x xy yx x x x x yx xy xy yx x x x x yx xy

  C S S C U U C S S S S C U U C S S . (53) 

 So if the orthogonal component can be ignored, then Eq. (53) can be approximated as:   

    1 0 0 0,1/2 , 0,1/2, 0, 0, 0 0 0,1/2 0 0 0,1/2
T

T T T T

x xy yx x x x x yx xy xy yx x x xy yx x xC S S C U U C S S S S C U S S C U  

                  0 0 0 0 0 0
T T

xy y xy y x x   S R S R R R . 

 Hence, for the ith  coupling step, the updated covariance matrices (
i

xC  and i

yC ): 

  1 1
T

i i i

x x x

   C R R  

  
T

i i i

y y y  C R R  

 Important note: in the multi-physics application of efficient uncertainty quantification the 

rank r is the minimum rank of the interface spaces (x- and y- spaces); therefore, the basis 

vectors used must correspond to the space with the minimum rank. In the analysis before we 

assumed that the rank of the x-space is the minimum rank and that the covariance data in the 

x-space are known a priori. However, if the rank of the y-space is the minimum rank, then the 
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covariance in the y-space must be determined first by propagating the uncertainties from the 

x-space towards the y-space.    

 Based on the analysis introduced above and on details in Ref. [4] and for any number of 

multi-physics coupled models (refer to Figure 21), the Multi-Physics Efficient Uncertainty 

Quantification algorithm can be summarized as follow (MP-EUQ): 

A- Use a Monte Carlo based approach to quantify uncertainty due to the independent 

parameters z  (i.e. 
i

z xC ) for all time steps (assuming that y  is independent of z ). 

B- Use the MPRFA to find the basis of a lower dimensional subspace approximation (active 

subspace) for the interface parameters i.e. x and y spaces (U).  

1- Starting with the x-space, Eq. (46) can be used to propagate the uncertainties into the y-

space. 

   1, , 1, , ,
T

i i r i i r i i i T

y y yy y y y          C R R  (54) 

2- Calculate the contribution of each uncertainty source using the reduced order sensitivity 

estimate given by using Eq.(49) and Eq.(50).   

3- Then using the same logic in Eq.(46), the uncertainties in the y-space ( yC ) can be 

propagated towards the x-space.  

   
1, 1 , 1 1, 1 , 1 1 1,

T
i i r i i r i i i T

x x xx x x x               C R R  (55) 

   
i i i

x x z x C C C   (56) 

4- Calculate the contribution of each uncertainty source using the reduced order sensitivity 

estimate given by Eq. (49) and Eq.(50).   

5- Repeat steps 1 through 3 for each coupling step.  
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 The second approach is based on replacing the original model with a surrogate model. For 

example Eq.(7) is a possible form of a surrogate model that can replace the original model. 

Therefore, Monte Carlo based uncertainty quantification can be easily applied on the surrogate 

model by collecting samples of the responses of interest (refer to Ref. [4, 35]). 

 The following steps represent the Surrogate Based Uncertainty Quantification (SBUQ): 

1-  Run the model to collect a training set of the response of interest ( y ) and the 

corresponding input snapshots ( x ) where the input snapshots are generated within the 

range of the covariance matrix i.e.
1/2

xx  C  and  is a random vector. 

2-  Calculate the coefficients of the reduced order surrogate model via curve fitting 

(regression analysis). Once the model form and coefficients are determined, calculate the 

error introduced by the following surrogate form: 

   

2

2
1/2 1/2

1 2 1, 2,

x x

surr T T T T T T

x x r ry S S S S   

  
       
 
 

C UU C UU   (57) 

where 
xn rU and T r   U then 

1,

T

rS  = 
1/2

1

T r

xS C U  and 1/2

2, 2

T T r

r xS S C U .  

3- Determine the residuals ( y ) distribution (e.g. normal , independent and identically 

distribution) 

surr

y y y     

4-  Use the surrogate model to collect Monte Carlo based samples of the response of interest. 

And determine the statistical features of the samples so that the variance and mean are 

determined. 
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4.4 Case Study: Lattice Assembly Depletion (CASL Progression Problem 2) 

 

 In this section, a simple numerical test is used to demonstrate the MP-EUQ algorithm 

application.  CASL VERA progression problem number 2 (refer to Figure 81) is used in a fuel 

depletion calculation application to demonstrate multi-physics coupled models application. 

The problem is a single Westinghouse 17x17 fuel lattice. The depletion problem is simulated 

using the TRITON sequence in the SCALE6.1 package [57]. Figure 24 illustrates the coupled 

models with the interface parameters.  In this numerical test, the uncertainties in the nuclear 

data cross-sections ( ) will be propagated through the coupled models via the MP-EUQ. First 

the active subspace of the nuclear data-cross section space ( 21824 ) is identified using the 

GB-MPRFA and then the MP-EUQ is used to propagate the uncertainties throughout the 

depletion sequence to determine the uncertainty in the multiplication factor ( effk ) and the one-

group neutron flux in the fuel integrated over the fuel region ( fuel ) at the End of Cycle (EoC). 

Figure 32 shows the error upper bound associated with approximating the full dimensional 

space with a lower dimensional space with different ranks (Eq.(58)): 

   1,

2
10 max T i

upper i p


  I UU   (58) 

 Different subspace ranks are used to propagate the uncertainties and then compared to the 

uncertainty estimated using the sandwich equation (Table 5).   
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Figure 32. The error upper bound in the 2-norm of the cross-section vector due to 

representing the lower dimensional subspace approximation of the cross-sections space.  

 

Table 5. Uncertainty propagation via the MP-EUQ. 

Response  Reference 

Value (EoC)  

Sandwich 

Equation 

MP-EUQ 

r = 10 

MP-EUQ 

r = 100 

MP-EUQ 

r = 190 

effk  0.95661125 691 pcm 381pcm 602 pcm 669 pcm 

fuel  3.16896E-03 1.0891% 0.5321% 0.8043% 0.9908% 

 

4.5 Case Study: Efficient Uncertainty Quantification for 3-D Assembly Depletion with 

Thermal-Hydraulics Feedback 

 The current application deals with an example of depletion calculations with thermal-

hydraulics feedback. Figure 6 shows an illustration of the depletion calculations with thermal-

hydraulics feedback using VERA-CS [92]. This application will consider the major sources of 

uncertainty such as: nuclear data cross-sections, thermal conductivity, gap heat conduction. 

However, due to the huge dimensionality of the nuclear data cross-sections, the MP-EUQ will 

be used to propagate the uncertainties. This approach requires running the model a number of 

times that is proportional to the dimension of the lower dimensional subspace approximation 
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(i.e. active subspace) of input parameter space (i.e. nuclear data cross-sections space). This 

approximation is based on capturing the DoF that have large uncertainty components and large 

sensitivity components. Moreover, since this is a multi-physics coupled application; there is a 

certain set of DoF that can appear at the interface between the two models. These DoF can be 

captured using the Multi-Physics Range Finding Algorithm (MPRFA) outlined in Ref. [5] and 

chapter 3. However, since VERA-CS has no sensitivity calculation capability, the GF-

MPRFA which was introduced in chapter 3 will be used in this chapter.  

 Before introducing the details of the application-specific GF-MPRFA, let us re-examine 

Figure 6 and briefly discuss the interface subspaces and their physical interpretation. From 

Figure 6 one can notice that there are 7 interface parameter spaces which are explained as 

follow:  

a: heat generation spatial distribution.  

b: average fuel temperature ( fT ), average coolant temperature surrounding the rod (
cT ), and 

average coolant density surrounding the rod (  ) spatial distribution.   

Z: independent thermal-hydraulics parameters. 

L: one-group neutron flux distribution and one-group microscopic cross-sections. 

Y: ORIGEN’s independent parameters (fission product yields and half-lives). 

d:  isotopic number densities. 

X: many group cross-sections.  

 Assuming that the main source of uncertainty is the X-space then first, the important DoF 

in the X-space must be determined. These DoF must satisfy three conditions: first, being 

possibly generated by ORIGEN; second, has large uncertainty component along them; and 

third, being effective from MPACT point of view (i.e. large sensitivity component along these 
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DoF). The VERA-CS depletion sequence first assumes a constant flux which is corrected by 

the predictor-corrector and sub-step methods. The predictor-corrector method calculates the 

depletion of the fuel at a time step (ti) using the 1-group flux and cross-sections at the previous 

time step (ti-1), which produces a new predicted 1-group flux, cross-sections, and isotopic 

concentrations using the predicted concentration at ti, and then averages the two. Once the 

isotopic concentrations are obtained, a transport calculation is performed to obtain the steady 

state flux at ti. The sub-step method is applied to perform multiple depletion calculations 

between transport calculations.  

 The d-space (which is considered to be the major source of uncertainty in all other spaces) 

is a high dimensional space, hence a reduction in that space will result in more efficient 

uncertainty propagation.  

 In this application we have three distinct sources of uncertainty: 

1- Z: independent thermal-hydraulics parameters, 

2- Y: ORIGEN’s independent parameters (fission product yields and half-lives), 

3- X: many group microscopic cross-sections.  

 The Z and Y spaces are expected to be low dimensional, hence the associated uncertainty 

can be propagated efficiently via a Monte Carlo based approach. However, the X space is high 

dimensional, therefore, the GF-MPRFA will be applied first to reduce its dimensionality 

before the propagation of its uncertainty throughout the coupled system. 

One important note should be highlighted: the combination of the d-space and the X-space is 

the microscopic cross-sections space ( -space).  

Now let us consider the following application-specific steps of the GF-MPRFA: 
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Stage 1: Gradient-free Reduction of Upstream Model’s Outputs. 

1. Create k random realizations of cross-sections (X-space) inputs aggregated in a matrix (the 

I and Y parameters):  

(1) ( )

[ ]
k

x xX  

where 
( )i

x  represents the ith random sample of the cross-section vector. 

2. Collect the corresponding ORIGEN’s responses in a matrix. 
(1) ( )

[ ]
k

d dd  and the 

corresponding macroscopic cross-section values 
(1) ( )

[ ]
k

  Σ  use the RFA to construct 

orthonormal basis for the active subspace using the singular value decomposition (SVD): 

T

 
Σ U S V  

where 
r



U , and r


 is the rank of the subspace or the proper number of DoF that 

approximate the variations generated by ORIGEN as determined by the RFA. 

3.  Using the singular value decomposition find the DoF with highest component of the 

uncertainty in the X-space. 

  T
X X XX C C C

C U S U   (59) 

where 
r

 CX

XC
U , r

XC is the rank of the subspace or the proper number of DoF that carry 

most of the uncertainty components as determined by the RFA. 
XC  is the covariance 

matrix of the d-space parameters. 

Stage 2. Gradient-Free Reduction of Downstream Model’s Inputs. 

4. Collect the corresponding MPACT - COBRA-TF responses in a matrix. 
( )

(1)[ ]
k

L LL  and 

use the RFA to construct orthonormal basis for the active subspace using the singular value 

decomposition (SVD): 
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T

L d L d L d  
L U S V  

5. Generate (  dim kd ) extra snapshots in the subspace spanned by the columns of 
L d

U  ( 

response L  snapshots-refer to section 3.2, page (94) ) without running the model and 

perform the SVD on the snapshots matrix with (  dim d  snapshots):  

 (1) (dim )

, , ,

T

F L d F L d F L d
L L

  

  
  

D

L U S V  

 where 
,

L d
nxr

F L d




V , and 

L d
r


 is the rank of the subspace or the proper DoF important 

to the response of MPACT - COBRA-TF.  

Stage 3. Intersection Subspace-Based Reduction at the Model-to-Model Interface. 

6. Calculate the intersection between the column spaces of 
L d

V  , 
d

U  and 
dC

U as follow: 

,F L d
  

XCN U U V  

7. Construct an orthonormal basis by performing the SVD decomposition: 

N USV , 

where the columns of matrix U represent a basis for the intersection subspace at the first 

interface between the models in the direction MPACT – COBRA-TF  ORIGEN 

involving the information carried by the X-space, d-space.  

 Once the basis of the active subspace is determined (i.e. columns of U) one can use it in 

Eq. (46) to propagate the uncertainties from the nuclear data cross-sections towards the various 

quantities of interest. Moreover, if a- and b- Z- or Y- spaces (thermal-hydraulics - neutronics 

interfaces) are high dimensional spaces (which is not the case in this application) then the GF-

MPRFA (refer to chapter 3) can be used to pursue dimensionality reduction on these spaces. 
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Once the high dimensional subspaces are approximated by lower dimensional subspaces, the 

uncertainty in the nuclear data cross-sections(X-space), fission yields (Y-space) and thermal-

hydraulics parameters (Z-space) can be propagated through the Quantities of Interest (QoIs) 

using the following general steps:  

1. Run the coupled system of models for the reference case state.  

2. Propagate the uncertainty due to the Z- and Y- spaces via a Monte Carlo approach. 

3. Determine the lower dimensional subspace approximation for the high dimensional 

subspace (X-space) using the GF-MPRFA.  

4. Propagate the uncertainties due to the X-space using the MP-EUQ (the macroscopic cross-

sections) and the basis U through MPACT - COBRA-TF - ORIGEN coupled models. 

5. 1 through 3 are repeated for all time steps (fuel depletion steps).  

The analysis and algorithms used in this chapter were encoded and implemented in a 

newly developed tool kit algorithms for Reduced Order Modeling based 

Uncertainty/Sensitivity Estimator (ROMUSE). In this section and the sections that follow, 

ROMUSE will be used in conjunction with VERA-CS to verify and test the algorithms 

developed in this dissertation.  

 Progression problem 6 is a steady state model of a Westinghouse 17x17 PWR fuel 

assembly. In this case the assembly is hypothetically operated at 100% of rated power and at 

1300 PPM boron concentration with no axial blankets or different enrichment regions. Overall, 

the total number of fuel rods is 264 fuel rods, with 24 guide tubes, and a single instrument tube 

at the center. (NOTE: There are no control rods or removable burnable absorber rods in this 

problem) [68]. For more information about the problem’s parameters, refer to Table 2. Figure 

33 shows the proximity of the assembly within the core. In this numerical test CASL 
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progression problem 6 is going to be depleted to 30 GWd/MTU using 24 depletion time-steps 

(0, 0.1, 0.2, 0.5, 1-10x1, 12-30x2 GWd/MTU).   

 It is important to emphases here that the nuclear data cross-sections covariance library that 

will be used in this section is a 44 energy group library while VERA-CS uses a 47 group 

library. Therefore, it is obvious that the perturbations generated by the 44 group library must 

be mapped to the 47 group structure. This is achieved via linear interpolation that is based on 

the assumption of constant lethargy intervals.  

 295 nuclides, 47 energy groups, 5 reactions are treated (absorption, fission, nu-fission, 

transport, scattering) besides the fission spectrum and (n,2n) reaction. Taking into account that 

some reactions are not valid for certain nuclides the full rank of the problem’s input is < 

295*47*7. Actually, for the problem of interest, the dimension is 49,773 ( 49,773 ). So first 

the lower dimensional subspace approximation using the GF-MPRFA (refer to section 3.2) is 

applied to the three coupled models here, where the Z-space ≡ gap conductivity, fuel thermal 

conductivity and grid loss coefficient, Y – space ≡ keff , maximum pin power, maximum pin 

temperature, and X-space ≡ nuclear data cross-sections. The problem is run in parallel using 

58 cores on the NCSU HPC.  
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Figure 33. Assembly Configuration. 

 

 

 
Figure 34. A flow chart illustrating the series of coupled models in VERA-CS Depletion with 

thermal-hydraulics feedback. 

 

 Figure 34 shows a schematic of the coupled modules in VERA-CS. The current case study 

will estimate the uncertainty in the responses of interest (multiplication factor, maximum pin 

temperature and maximum pin power) due to the nuclear data cross-sections and few thermal-

hydraulics parameters (gap conductivity, fuel thermal conductivity and the grid loss 
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coefficient). The uncertainty is going to be estimated due to each of the parameters and then 

the joint uncertainty is estimated. 

 Three methods will be used to estimate the uncertainties; the Multi-Physics Efficient 

Uncertainty Quantification (MP-EUQ) which is a linear Karhunen Loeve expansion-based 

approach derived in section 4.3, Surrogate Based Uncertainty Quantification (SBUQ) detailed 

in section 4.3, and the brute force forward Monte Carlo uncertainty quantification. The brute 

force Monte Carlo method is used to verify the results by comparing the Monte Carlo estimated 

uncertainty with the uncertainty estimated by the MP-EUQ and SBUQ. 

 First, the surrogates will be constructed and then evaluated before being used to sample the 

responses of interest. In this test the surrogate form represented in Eq.(57) is used, however, 

with the addition of a third order term. Specifically, the following surrogate form is going to 

be used:  

     
2 3

1, 2, 3,

surr T T T

r r ry S S S           (60)

  

where 
xn rU , T r   U , 

1,

T

rS =
1/2

1

T r

xS C U , 1/2

2, 2

T T r

r xS S C U  and 

1/2

3, 3

T T r

r xS S C U . Hence the unknown elements of 
1,rS ,

2,rS  and 
3,rS  must be determined 

via regression analysis. For more information about the notations used in Eq.(60) the reader is 

referred to Eq. (57) and the description therein. Eq.(60) ignores the cross-product terms 

(correlation terms between model’s parameters). Computing these terms requires tremendous 

computational burden; therefore, Eq. (60) assumes that the reduced parameters are not 

correlated due to the fact that the reduction processes (i.e. GF-MPRFA, GB-MPRFA and 

ERFA) remove the linear correlations between the original parameters, hence, creating a 
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reduced set of parameters that have no (or extremely weak) correlation. In the case study 

represented in this section, a simple test will be implemented to assert this assumption.   

 First, the GF-MPRFA (refer to section 3.2) will be used to determine the basis of the active 

subspace approximation for the nuclear data cross-sections variations (U) after which the 

perturbations ( x ) are projected on the space spanned by the columns of matrix U. Finally, 

the coefficients ( 
1,rS , 

2,rS , 
3,rS  ) are determined along with the confidence intervals and the 

surrogate form –related uncertainty.   

 The surrogate parameters (
1,rS , 

2,rS , 
3,rS ) are statistical parameters that are subjected to 

variance and standard deviation which can be approximated by Eq.(61) assuming that the 

residual error is unbiased  and an independent-identical distributed random error (i.i.d) [15]:   

       
1

2 TV q q q  


     , (61)

  

where 

1,

2,

3,

r

r

r

S

q S

S

 
 

  
 
  

  ,   
surry

q
q







 and 
2 1 TR R

n p
 


 , 

and R is the residual obtained by comparing the responses obtained by the surrogate and the 

responses generated by VERA-CS (the original model).  On the other hand,  q  is the 

sensitivity matrix (if the surrogate generates multiple responses) or a vector (for single 

response case) which can be calculated efficiently using the finite difference method. Finally, 

n-p is the number of DoFs.  
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 Once the uncertainties in the surrogate parameters are determined, they can be used to 

calculate both confidence intervals and the uncertainties in the responses of interest due to the 

surrogate form (surrogate form – related uncertainty).  

 The GF-MPRFA was used to obtain the reduced dimensional input parameter space. Table 

6 show a comparison between the 2nd and 3rd order surrogates in terms of the surrogate form-

related uncertainties, norm of residuals and the residuals distribution. The surrogate form – 

related uncertainty is calculated by a Monte Carlo approach where the surrogate parameters 

are sampled based on the uncertainties estimated by Eq.(61). From the GF-MPRFA, a subspace 

of rank 50 (50 DoFs) is sufficient to capture the variations of the cross-sections in the depletion 

cycle of interest with an L2 – norm error upper bound of 1%.  

 In general, the surrogate quality can be evaluated by examining the residual errors obtained 

by comparing the responses predicted by the surrogate on one side and the original model on 

the other side. For example, the current surrogate is constructed for the purpose of uncertainty 

quantification; therefore, 40 extra random samples generated employing the covariance matrix 

are used. The perturbations are created in all the parameters simultaneously (cross-sections, 

fuel thermal conductivity, grid-loss and gap conductivity), hence, testing the assumption 

introduced within Eq.(60).  Figure 35 through Figure 37 shows the residuals associated with 

the surrogate computed for different parameter sets which are generated by varying all the 

parameters simultaneously (i.e. the gap conductivity (hgap), the fuel thermal conductivity 

(kcond) and with perturbations generated employing the covariance library which is the 

“44groupcov” library which is distributed with SCALE6.1[57]). The surrogate responses are 

compared to the responses (multiplication factor, maximum pin power, maximum pin 
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temperature) generated via VERA-CS. Therefore, the residuals are satisfactory for the purpose 

of interest (less than 10% of the initial uncertainty in the quantity of interest). 

  Figure 35 through Figure 37 show that the third order surrogates of the form represented 

by Eq.(60) can predict the multiplication factor (keff), maximum pin power, maximum pin 

temperature with sufficient accuracy relative to the uncertainty estimation application (refer to 

Table 7 through Table 9).  

 These surrogates will be used to quantify the uncertainty in the responses on interest 

(including the surrogate form - related uncertainty) and then compared with the uncertainties 

estimated via a forward Monte Carlo approach and finally compared with the uncertainty 

estimated by the MP-EUQ (refer to section 4.3 ).  

Figure 38 through Figure 52 and the figures reported in Appendix A compare the 

performance of the VERA-CS based Monte Carlo approach against the surrogate model based 

Monte Carlo approach (SBUQ). Statistical samples drawn using VERA-CS original models 

sequences and then compared to samples drawn from the surrogate model replacing the 

original VERA-CS. First, Appendix A shows the frequency distribution of keff , maximum fuel 

pin power and maximum fuel pin temperature due to the gap conductivity uncertainty (±50%), 

the thermal fuel conductivity (±10%) , grid spacer loss coefficient (±4%), and nuclear data 

cross-sections (44groupcov). These figures compares the uncertainties in the multiplication 

factor (keff), maximum pin power, and maximum pin temperature due to the 4 uncertainty 

sources of interest: gap conductivity coefficient, fuel thermal conductivity, grid-loss 

coefficients, nuclear data cross – sections and due to joint samples. Only 8 depletion/time 
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snapshots are represented by the figures reported in appendix A (0, 5, 10, 14, 18, 22, 26, 30 

GWd/MTU). The full comparison is represented by Table 7 through Table 9. 

 Figure 38, Figure 40, Figure 43, Figure 44, Figure 45, Figure 46, Figure 47, Figure 48, 

Figure 49, Figure 50, Figure 51 and Figure 52 compare the RoI along with ±σ uncertainty bars 

as predicted by the original model and the surrogate model at all the depletion steps (mean 

values ±σ). Details of the uncertainties estimated via the MP-EUQ (linear Karhunen Loeve-

based approach), SBUQ (Monte Carlo sampling 3rd order surrogates) and forward MCUQ 

(Monte Carlo sampling via original model) are shown in Table 7 through Table 9.  

 One can notice that for the multiplication factor (keff) the uncertainty estimated via the MP-

EUQ are within one standard deviation (± σ) of the uncertainties estimated via the Monte Carlo 

approaches (MCUQ and SBUQ); however, for the maximum fuel pin power and the maximum 

fuel pin temperature some of the uncertainty values estimated by the MP-EUQ are far away 

from one standard deviation. The reason for that might be due to the fact that the MP-EUQ is 

a linear approach assuming that the response of interest is a linear function of the parameters. 

The results in Table 7 indicates that the linear assumption is sufficient for the multiplication 

factor, while Table 8 and Table 9 indicate that the linear assumption is not sufficient for the 

maximum pin power and maximum pin temperature.  
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Table 6. Features of the Surrogate. 

Surrogate 

order 

RMS Number of 

Construction 

Data Points 

Number of 

extra 

Validation 

Data Points 

Residuals 

distribution 

surrogate 

form – 

related 

uncertainty 

2nd order 
effk   15.4 pcm 100 40 iid 18.2 pcm 

maxP   0.036 

W/cm 

iid 0.09 W/cm 

maxT  17 Co iid 14.36 Co 

3rd order 
effk   13 pcm 150 40 iid 13.0 pcm 

maxP  0.009 

W/cm 

iid 0.01 W/cm 

maxT   8.4 Co iid 8.36 Co 

 

 
Figure 35. Residuals in predicting the keff  (

effk ) for a range of the gap conductivity and 

cross-sections  (hgap , kcond  and  ) for 40 samples (surrogate vs. VERA-CS). 
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Figure 36. Residuals in predicting the maximum pin power (

maxP ) for a range of the gap 

conductivity and cross-sections (hgap , kcond  and  ) for 40 samples (surrogate vs. VERA-CS). 

 
Figure 37. Residuals in predicting the maximum pin temperature (

maxT )for a range of the gap 

conductivity and cross-sections  (hgap , kcond  and  ) for 40 samples (surrogate vs. VERA-

CS). 
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Figure 38. Burnup dependent keff along with uncertainty ±σ due to the gap conductivity. 

 

 
Figure 39. Burnup dependent keff along with uncertainty ±σ due to the fuel thermal 

conductivity. 
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Figure 40. Burnup dependent maximum pin power along with uncertainty ±σ due to the gap 

conductivity. 

 

 
Figure 41. Burnup dependent maximum pin power along with uncertainty ±σ due to the fuel 

thermal conductivity. 
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Figure 42. Burnup dependent maximum pin temperature along with uncertainty ±σ due to the 

fuel thermal conductivity. 

 

 
Figure 43. Burnup dependent maximum pin temperature along with uncertainty ±σ due to the 

gap conductivity. 
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Figure 44. Burnup dependent keff along with uncertainty ±σ due to the nuclear data cross-

sections.  

 

 

 
Figure 45. Burnup dependent maximum pin power along with uncertainty ±σ due to the 

nuclear data cross-sections. 
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Figure 46. Burnup dependent maximum pin temperature along with uncertainty ±σ due to the 

nuclear data cross-sections uncertainty.  

 

 

 
Figure 47. Burnup dependent keff along with uncertainty ±σ due to the grid-loss coefficient 

uncertainty. 

 

 



 

133 

 

 
Figure 48. Burnup dependent maximum pin power along with uncertainty ±σ due to the grid-

loss coefficient uncertainty.  

 

 

 

 

 

Figure 49. Burnup dependent maximum pin temperature along with uncertainty ±σ due to the 

grid-loss coefficient uncertainty. 
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Figure 50. Burnup dependent keff along with uncertainty ±σ due to joint samples. 

 

 

 

 

 
Figure 51. Burnup dependent maximum pin power along with uncertainty ±σ due to joint 

samples. 
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Figure 52. Burnup dependent maximum pin temperature along with uncertainty ±σ due to 

joint samples 
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 Table 7. Summary of the k-eff uncertainty results – joint parameters (MCUQ vs. MP-EUQ 

vs. SBUQ) 

 

 

 

 

Depletion (irradiation)  STD MP-EUQ 

r=50 

3rd Order Surrogate 

500 samples 

Monte Carlo 

500 samples 

 0.0 GWdMTU 
k  589 pcm 625 pcm  606cm 

k
  - 39 pcm 43  pcm 

0.1 GWdMTU 
k  588 pcm 595 pcm   578 pcm 

k
  - 21 pcm 36 pcm 

0.2 GWdMTU 
k

  523 pcm 557 pcm 565 pcm 

k
  - 23 pcm 44 pcm 

0.5 GWdMTU 
k  501 pcm 551 pcm  559 pcm 

k
  - 43 pcm 42 pcm 

1.0 GWdMTU 
k  503 pcm 534 pcm 549 pcm 

k
  - 32 pcm 71 pcm 

2.0 GWdMTU 
k  511 pcm 542 pcm 541 pcm 

k
  - 53 pcm 65 pcm 

3.0 GWdMTU 
k  494 pcm 532 pcm 539 pcm 

k
  - 43 pcm 62 pcm 

4.0 GWdMTU 
k  511 pcm 527 pcm 541 pcm 

k
  - 53 pcm 56 pcm 

5.0 GWdMTU 
k  523 pcm 525 pcm   531 pcm 

k
  - 46 pcm 36 pcm 

6.0 GWdMTU 
k  503 pcm 522 pcm 529 pcm 

k
  - 54 pcm 67 pcm 

7.0 GWdMTU 
k  500 pcm 518 pcm 531 pcm 

k
  - 49 pcm 43 pcm 

8.0 GWdMTU 
k  512 pcm 530 pcm 532 pcm 

k
  - 43 pcm 45 pcm 

9.0 GWdMTU 
k  499 pcm 529 pcm 533 pcm 

k
  - 41 pcm 32 pcm 
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Table 7 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.0 GWdMTU 
k  488 pcm 514 pcm 524 pcm 

k
  - 39 pcm 42 pcm 

12.0 GWdMTU 
k  491 pcm 526 pcm  538 pcm 

k
  - 23 pcm 34 pcm 

14.0 GWdMTU 
k  513 pcm 536 pcm 544 pcm 

k
  - 41 pcm 39 pcm 

16.0 GWdMTU 
k  490 pcm 542 pcm 536 pcm 

k
  - 21 pcm 38 pcm 

18.0 GWdMTU 
k  509 pcm 545 pcm  544 pcm 

k
  - 31 pcm 33 pcm 

20.0 GWdMTU 
k  512 pcm 541 pcm 547 pcm 

k
  - 36 pcm 39 pcm 

22.0 GWdMTU 
k  524 pcm 552 pcm  543 pcm 

k
  - 22 pcm  24 pcm 

24.0 GWdMTU 
k  528 pcm 567 pcm 565 pcm 

k
  - 39 pcm 42 pcm 

26.0 GWdMTU 
k  532 pcm 560 pcm  579 pcm  

k
  - 45 pcm 51 pcm 

28.0 GWdMTU 
k  559 pcm 610 pcm  607 pcm 

k
  - 39 pcm 53 pcm 

30.0 GWdMTU 
k  591 pcm 622 pcm  641 pcm 

k
  - 34  pcm 42 pcm 
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Table 8. Summary of the Maximum Pin Power uncertainty results – joint parameters (MCUQ 

vs. MP-EUQ vs. SBUQ). 

Depletion 

(irradiation)  

STD MP-EUQ 

r=50 

3rd Order Surrogate 

500 samples 

Monte Carlo 

500 samples 

 0.0 GWdMTU 
mp  2.03 W/cm 2.76 W/cm 2.32 W/cm 

mp  - 0.09  W/cm 0.11  W/cm 

0.1 GWdMTU 
mp  1.9  W/cm 2.10 W/cm  2.55 W/cm 

mp  - 0.05  W/cm 0.09 W/cm 

0.2 GWdMTU 
mp  1.8  W/cm 2.17 W/cm 2.48  W/cm 

mp  - 0.11  W/cm 0.12  W/cm 

0.5 GWdMTU 
mp  2.9  W/cm 3.26  W/cm 3.13  W/cm 

mp  - 0.1 W/cm 0.13 W/cm 

1.0 GWdMTU 
mp  3.8 W/cm 4.87  W/cm 5.11  W/cm 

mp  - 0.08  W/cm 0.09  W/cm 

2.0 GWdMTU 
mp  4.2 W/cm 5.47  W/cm 5.97  W/cm 

mp  - 0.11  W/cm 0.14  W/cm 

3.0 GWdMTU 
mp  3.7  W/cm 5.08 W/cm 5.99  W/cm 

mp  - 0.12  W/cm 0.1  W/cm 

4.0 GWdMTU 
mp  2.1  W/cm 2.66  W/cm 3.65 W/cm 

mp  - 0.06  W/cm 0.08 W/cm 

5.0 GWdMTU 
mp  2.22 W/cm 2.48 W/cm 2.94 W/cm 

mp  - 0.1  W/cm 0.13  W/cm 

6.0 GWdMTU 
mp  2.1 W/cm 2.20 W/cm 2.64 W/cm 

mp  - 0.11  W/cm 0.12  W/cm 

7.0 GWdMTU 
mp  2.1  W/cm 2.49 W/cm 3.52 W/cm 

mp  - 0.09  W/cm 0.11  W/cm 

8.0 GWdMTU 
mp  2.8  W/cm 3.48 W/cm 3.87 W/cm 

mp  - 0.05  W/cm 0.1 W/cm 

9.0 GWdMTU 
mp  2.9  W/cm 3.45 W/cm 3.99 W/cm 

mp  - 0.1 W/cm 0.13  W/cm 
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Table 8 Continued 

 

 

 

 

 

 

 

 

 

 

 

10.0 GWdMTU 
mp  2.38 W/cm 3.31 W/cm 3.94 W/cm 

mp  - 0.11 W/cm 0.13 W/cm 

12.0 GWdMTU 
mp  3.9  W/cm 4.52 W/cm 4.89 W/cm 

mp  - 0.09 W/cm 0.11 W/cm 

14.0 GWdMTU 
mp  4.1  W/cm 5.73 W/cm 5.76 W/cm 

mp  - 0.08  W/cm 0.09 W/cm 

16.0 GWdMTU 
mp  5.9  W/cm 8.39 W/cm 8.62 W/cm 

mp  - 0.07  W/cm 0.11 W/cm 

18.0 GWdMTU 
mp  8.43  W/cm 10.35 W/cm 10.36 W/cm 

mp  - 0.1 W/cm 0.11 W/cm 

20.0 GWdMTU 
mp  16.2  W/cm 18.59 W/cm 18.55 W/cm 

mp  - 0.08 W/cm 0.09 W/cm 

22.0 GWdMTU 
mp  15.21 W/cm 20.52 W/cm 20.55 W/cm 

mp  - 0.09 W/cm 0.1 W/cm 

24.0 GWdMTU 
mp  19.6 W/cm 22.44 W/cm 22.81 W/cm 

mp  - 0.08 W/cm 0.11 W/cm 

26.0 GWdMTU 
mp  20.7  W/cm 25.00 W/cm 24.99 W/cm 

mp  - 0.09 W/cm 0.11 W/cm 

28.0 GWdMTU 
mp  21.43  

W/cm 

27.63 W/cm 28.9 W/cm 

mp  - 0.07 W/cm 0.12 W/cm 

30.0 GWdMTU 
mp  23.45 W/cm 30.15 W/cm 29.76 W/cm 

mp  - 0.11 W/cm 0.13 W/cm 
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Table 9. Summary of the Maximum Pin Temperature uncertainty results – joint 

parameters (MCUQ vs. MP-EUQ vs. SBUQ). 

  

Depletion 

(irradiation) 

STD MP-EUQ 

r=50 

3rd Order Surrogate 

500 samples 

Monte Carlo 

500 samples 

0.0 GWdMTU 
mt  92 Co 99 Co 112 Co 

mt  - 8 Co 10  Co 

0.1 GWdMTU 
mt  87 Co 91 Co 92 Co 

mt  - 7 Co 9 Co 

0.2 GWdMTU 
mt  85 Co 94 Co 92 Co 

mt  - 8 Co 11 Co 

0.5 GWdMTU 
mt  88 Co 96 Co 97 Co 

mt  - 8 Co 9 Co 

1.0 GWdMTU 
mt  95 Co 105  Co 104 Co 

mt  - 5 Co 7 Co 

2.0 GWdMTU 
mt  94 Co 106  Co 105 Co 

mt  - 6 Co 9  Co 

3.0 GWdMTU 
mt  90  Co 102 Co 101 Co 

mt  - 9 Co 10 Co 

4.0 GWdMTU 
mt  82 Co 94 Co 95 Co 

mt  - 6 Co 7 Co 

5.0 GWdMTU 
mt  79  Co 90 Co 95 Co 

mt  - 6 Co 11 Co 

6.0 GWdMTU 
mt  61 Co 75 Co 76 Co 

mt  - 5 Co 11 Co 

7.0 GWdMTU 
mt  63 Co 74 Co 75 Co 

mt  - 4 Co 9 Co 

8.0 GWdMTU 
mt  60 Co 75 Co 75 Co 

mt  - 5 Co 8 Co 

9.0 GWdMTU 
mt  67 Co 79 Co 78 Co 

mt  - 8 Co 9 Co 
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 Table 9 Continued 

 

4.6 Case Study: Efficient Uncertainty Quantification for 3-D Core Depletion with Thermal-

Hydraulics Feedback (CASL Progression Problem 9) 

 

 Problem 9 is a full core Watts Bar Nuclear 1 (WBN1) with neutronics coupled to thermal 

hydraulics feedback. In this problem both fuel and burnable absorbers are depleted throughout 

the first cycle. However, due to computational resources limitation, this chapter will perform 

the uncertainty quantification study upon a part of cycle 1 using a few depletion steps. 

Specifically, the core is depleted to 160 effective full power days (EFPD) via 9 depletion steps 

10.0 GWdMTU 
mt  70 Co 81 Co 78 Co 

mt  - 7 Co 14 Co 

12.0 GWdMTU 
mt  68 Co 80 Co 81 Co 

mt  - 6 Co 7 Co 

14.0 GWdMTU 
mt  66 Co 86 Co 88 Co 

mt  - 11 Co 12  Co 

16.0 GWdMTU 
mt  70 Co 88 Co 89 Co 

mt  - 11 Co 10  Co 

18.0 GWdMTU 
mt  70 Co 92 Co 91 Co 

mt  - 10 Co 9 Co 

20.0 GWdMTU 
mt  65 Co 83 Co 99 Co 

mt  - 11 Co 13 Co 

22.0 GWdMTU 
mt  90 Co 101 Co 106 Co 

mt  - 7 Co 10 Co 

24.0 GWdMTU 
mt  79 Co 107 Co 109  Co 

mt  - 8 Co 11 Co 

26.0 GWdMTU 
mt  90 Co 113 Co 122 Co 

mt  - 9 Co 10 Co 

28.0 GWdMTU 
mt  101  Co 121 Co 130 Co 

mt  - 12 Co 16 Co 

30.0 GWdMTU 
mt  101 Co 119 Co 139 Co 

mt  - 13 Co 21 Co 
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(0, 9, 32, 45, 60, 80, 100, 120, 160 EFPD). Table 10 shows a summary of the core problem 

features while Figure 53 represents the layout and enrichment regions of the problem of 

interest.  

 As in the previous section [93], the GF-MPRFA is used to obtain the reduced dimensional 

input parameter space in the form of basis of the lower dimensional subspace, which is then 

used to perform linear uncertainty propagation via the MP-EUQ. In addition, the basis is used 

to construct the surrogate necessary for SBUQ. Table 11 show the results of the error test of 

the 2nd order surrogates in terms of the surrogate form-related uncertainties (defined in Eq.(61)

), Root Mean Square (RMS) and the residuals distribution. The surrogate form – related 

uncertainty is calculated by a Monte Carlo approach where the surrogate parameters are 

sampled based on the uncertainties estimated by Eq. (61). From the GF-MPRFA, a subspace 

of rank 60 (60 DoFs) is sufficient to capture the variations of the cross-sections in the depletion 

cycle of interest with an L2 – norm error upper bound of 1%.  

 In general, the surrogate quality can be evaluated by examining the residual errors obtained 

by comparing the responses predicted by the surrogate on one side and the original model on 

the other side. For example, the current surrogate is constructed for the purpose of uncertainty 

quantification; therefore, 40 extra random samples generated employing the covariance matrix 

are used. The perturbations are created in all the parameters simultaneously (cross-sections, 

grid-loss and gap conductivity), hence, testing the assumption introduced within Eq.(60). 

Figure 54 through Figure 56 shows the residuals associated with the surrogate computed for 

different parameter sets which are generated by varying all the parameters simultaneously (i.e. 

the gap conductivity (hgap), and with perturbations generated employing the covariance library 

which is the “44groupcov” library which is distributed with SCALE6.1[57]). The surrogate 
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responses are compared to the responses (multiplication factor, maximum pin power, 

maximum pin temperature) generated via VERA-CS. The figures show that the third order 

surrogates of the form represented by Eq.(60) can predict the multiplication factor (keff), 

maximum pin power, and maximum pin temperature with sufficient accuracy relative to the 

uncertainty estimation application (refer to Table 12 through Table 14).  

 Just like the previous section, these surrogates will be used to quantify the uncertainty in 

the responses on interest (including the surrogate form - related uncertainty) and then compared 

with the uncertainties estimated via a forward Monte Carlo approach and finally compared 

with the uncertainty estimated by the MP-EUQ (refer to section 4.3 ).  

Figure 57 through Figure 68 and the figures reported in appendix B compare the 

performance of the VERA-CS based Monte Carlo approach against the surrogate model based 

Monte Carlo approach (SBUQ). Statistical samples are drawn using VERA-CS original 

models’ sequences and then compared to samples drawn from the surrogate model replacing 

the original VERA-CS. Due to computer resource limitations, Monte Carlo sampling via 

original model was limited to 50 samples which resulted in large uncertainties associated with 

limited sampling.   First, Appendix B shows the frequency distribution of keff , maximum fuel 

pin power and maximum fuel pin temperature due to the gap conductivity uncertainty (±50%) 

grid spacer loss coefficient (±4%) and nuclear data cross-sections (44groupcov). These figures 

compares the uncertainties in the multiplication factor (keff), maximum pin power, and 

maximum pin temperature due to the four uncertainty sources of interest: gap conductivity 

coefficient, grid-loss coefficients, nuclear data cross – sections and due to joint samples. Only 

3 depletion/time snapshots are presented by the figures reported in Appendix B (0, 80, 160 

EFPD). The full comparison is represented by Table 12 through Table 14. Figure 57 through 
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Figure 68 compare the RoI along with ±σ uncertainty bars as predicted by the original model 

and the surrogate model at all the depletion steps (mean values ±σ). Details of the uncertainties 

estimated via the MP-EUQ (linear Karhunen Loeve-based approach), SBUQ (Monte Carlo 

sampling 2nd order surrogates) and forward MCUQ (Monte Carlo sampling via original model) 

are shown in Table 12 through Table 14. One can notice that for the multiplication factor (keff) 

the uncertainty estimated via the MP-EUQ are within one standard deviation (± σ) of the 

uncertainties estimated via the Monte Carlo approaches (MCUQ and SBUQ); however, for the 

maximum fuel pin power and the maximum fuel pin temperature some of the uncertainty 

values estimated by the MP-EUQ are much greater separated than one standard deviation. The 

reason for that might be due to the fact that the MP-EUQ is a linear approach assuming that 

the response of interest is a linear function of the parameters. The results in Table 12 indicates 

that the linear assumption is sufficient for the multiplication factor, while Table 13 and Table 

14 indicate that the linear assumption is not sufficient for the maximum pin power and 

maximum pin temperature.  

Table 10. Problem 9 features and design properties.  

Property  Value Details 

Fuel Assemblies 193 Modeled in quarter 

symmetry 

Enrichment  3.1%, 2.6%, 2.1% 17 Assemblies with 

3.1% 

19 Assemblies with 

2.6% 

20 Assemblies with 

2.1% 

Control Rods 8 banks of B4C Total of 18 rods in 

quarter symmetry.  

Burnable Inserts 6,12,4,3,2  poison inserts of 

Pyrex burnable. 

These burnable poison 

inserts consist of 24, 

20, 16, 12, 8 rod-lets, 

respectively.  
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Figure 53. Core layout in quarter symmetry [59]. 

 

Table 11. Features of the Surrogate. 

Surrogate 

order 

RMS Number of 

Construction 

Data Points 

Number 

of extra 

Validation 

Data 

Points 

Residuals 

distribution 

surrogate 

form – 

related 

uncertainty 

2nd order 
effk   20.07 pcm 120 30 iid 35.16 pcm 

maxP  0.01 W/cm iid 0.01 W/cm 

maxT  3.0661 Co iid 1.12 Co 
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Figure 54. Residuals in predicting the keff  (

effk ) for a range of the gap conductivity and 

cross-sections  (hgap and  ) for 30 samples (surrogate vs. VERA-CS). 

 
Figure 55. Residuals in predicting the maximum pin power (

maxP ) for a range of the gap 

conductivity and cross-sections (hgap and  ) for 30 samples (surrogate vs. VERA-CS). 
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Figure 56. Residuals in predicting the maximum pin temperature (

maxT ) for a range of the gap 

conductivity and cross-sections (hgap and  ) for 30 samples (surrogate vs. VERA-CS). 

 

 
Figure 57. Burnup dependent keff along with uncertainty ±σ due to the gap conductivity. 
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Figure 58. Burnup dependent maximum pin power along with uncertainty ±σ due to the gap 

conductivity. 

 

 

 
Figure 59. Burnup dependent maximum pin temperature along with uncertainty ±σ due to the 

gap conductivity. 
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Figure 60. Burnup dependent keff along with uncertainty ±σ due to the nuclear data cross-

sections.  

 

 

 
Figure 61. Burnup dependent maximum pin power along with uncertainty ±σ due to the 

nuclear data cross-sections. 
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Figure 62. Burnup dependent maximum pin temperature along with uncertainty ±σ due to the 

nuclear data cross-sections uncertainty.  

 

 

 
Figure 63. Burnup dependent keff along with uncertainty ±σ due to the grid-loss coefficient 

uncertainty. 
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Figure 64. Burnup dependent maximum pin power along with uncertainty ±σ due to the grid-

loss coefficient uncertainty.  

 

 

 

 

 

Figure 65. Burnup dependent maximum pin temperature along with uncertainty ±σ due to the 

grid-loss coefficient uncertainty. 
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Figure 66. Burnup dependent keff along with uncertainty ±σ due to joint samples. 

 

 

 

 
Figure 67. Burnup dependent maximum pin power along with uncertainty ±σ due to joint 

samples. 
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Figure 68. Burnup dependent maximum pin temperature along with uncertainty ±σ due to 

joint samples 
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Table 12. Summary of the keff   uncertainty results – joint parameters (MCUQ vs. MP-EUQ 

vs. SBUQ) 

 

 

 

 

 

 

 

 

 

 

 

 

Depletion (irradiation)  STD MP-EUQ 

r=60 

2nd Order Surrogate 

500 samples 

Monte Carlo 

50 samples 

 0.0 EFPD 

 
k  389 pcm 425 pcm 401 pcm 

k
  - 19 pcm 63  pcm 

9 EFPD 

 
k  399 pcm 395 pcm  417 pcm 

k
  - 21 pcm 66 pcm 

 32 EFPD 

 
k

  390 pcm 415 pcm 399 pcm 

k
  - 25 pcm 74 pcm 

45 EFPD 

 
k   380 pcm 420 pcm  398 pcm 

k
  - 19 pcm 52 pcm 

60 EFPD 
k  379 pcm 399 pcm 391 pcm 

k
  - 32 pcm 71 pcm 

80 EFPD 
k  357 pcm 398 pcm 392 pcm 

k
  - 23 pcm 65 pcm 

100 EFPD 
k  351 pcm 394 pcm 390 pcm 

k
  - 23 pcm 62 pcm 

120 EFPD 
k  349 pcm 391 pcm 387 pcm 

k
  - 23 pcm 58 pcm 

160 EFPD 
k  341 pcm 389 pcm   381 pcm 

k
  - 26 pcm 46 pcm 
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Table 13. Summary of the Maximum Pin Power uncertainty results – joint parameters 

(MCUQ vs. MP-EUQ vs. SBUQ). 

 

 

 

 

 

 

 

 

 

 

 

 

Depletion 

(irradiation)  

STD MP-EUQ 

r=60 

2nd Order Surrogate 

500 samples 

Monte Carlo 

50 samples 

 0.0 EFPD 
mp  0.06 W/cm 0.081 W/cm 0.083 W/cm 

mp  - 0.009  W/cm 0.08  W/cm 

9 EFPD 
mp  0.035 W/cm 0.71 W/cm  0.062 W/cm 

mp  - 0.005  W/cm 0.1 W/cm 

 32 EFPD 
mp  0.054 W/cm 0.09 W/cm 0.084  W/cm 

mp  - 0.011  W/cm 0.12  W/cm 

45 EFPD 
mp  0.16 W/cm 0.21  W/cm 0.186 W/cm 

mp  - 0.01 W/cm 0.13 W/cm 

60 EFPD 
mp  0.12 W/cm 0.5  W/cm 0.35 W/cm 

mp  - 0.008  W/cm 0.09  W/cm 

80 EFPD 
mp  0.19 W/cm 0.42  W/cm 0.44  W/cm 

mp  - 0.011  W/cm 0.14  W/cm 

100 EFPD 
mp  0.21 W/cm 0.38 W/cm 0.42  W/cm 

mp  - 0.012  W/cm 0.1  W/cm 

120 EFPD 
mp  0.14  W/cm 0.26  W/cm 0.184 W/cm 

mp  - 0.006  W/cm 0.08 W/cm 

160 EFPD 
mp  0.1 W/cm 0.2 W/cm 0.14 W/cm 

mp  - 0.001  W/cm 0.05  W/cm 
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Table 14. Summary of the Maximum Pin Temperature uncertainty results – joint parameters 

(MCUQ vs. MP-EUQ vs. SBUQ). 

 

 

 

 

 

 

 

 

 

 

 

Depletion 

(irradiation) 

STD MP-EUQ 

r=60 

2nd Order Surrogate 

500 samples 

Monte Carlo 

50 samples 

 0.0 EFPD 
mt  14 Co 21.7 Co 19.6 Co 

mt  - 0.2 Co 3  Co 

9 EFPD 
mt  15 Co 24.2 Co 22.7 Co 

mt  - 0.19 Co 3.1 Co 

 32 EFPD 
mt  16 Co  24 Co 22.3 Co 

mt  - 0.23 Co 2.9 Co 

45 EFPD 
mt  18 Co 28 Co 26.9 Co 

mt  - 0.3 Co 2.8 Co 

60 EFPD 
mt  21 Co 32.1  Co 32 Co 

mt  - 0.7 Co 3.7 Co 

80 EFPD 
mt  22 Co 32  Co 31 Co 

mt  - 0.4 Co 3.5  Co 

100 EFPD 
mt  18 Co 37 Co 36 Co 

mt  - 0.8 Co 3.9 Co 

120 EFPD 
mt  19 Co 40.1 Co 38 Co 

mt  - 0.5 Co 3.4 Co 

160 EFPD 
mt  21 Co 34.8 Co 33 Co 

mt  - 0.6 Co 2.8 Co 
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CHAPTER 5. SURROGATE BASED DATA ASSIMILATION FOR 

PRESSURIZED WATER REACTORS 
 

 

Data assimilation is a mathematical methodology used for establishing a connection 

between experimental and operational data and simulation completed employing mathematical 

models. Any mathematical model is an approximate representation of the real phenomenon of 

interest. The purpose of data assimilation is to improve the performance of the mathematical 

models by calibrating the model’s parameters.  

Model-based assimilation of experimental measurements (i.e. data assimilation) has been 

used in various engineering fields for the enhancement of the predictions made by 

mathematical models and simulations. Section 1.3 reviewed the literature and methodologies 

commonly used for data assimilation in nuclear engineering and closely related engineering 

fields [16, 17].  

Overall, two major problems were highlighted in section 1.3. First, the computational 

burden associated with running the high fidelity models (reactor core simulators). Second, the 

curse of dimensionality associated with the number of model parameters that will need to be 

calibrated. The computational cost of the data assimilation increases with the number of 

parameters to be calibrated. In nuclear reactor simulation, the number of neutronics parameters 

is large due to the fact that the nuclear data cross-sections libraries are detailed for high fidelity 

modeling and simulation.  

Data assimilation utilizing the long operational experience with light water reactors could 

improve simulation fidelity. In this section the Delayed Rejection Adaptive Metropolis 

algorithm (DRAM) [15] will be used in conjunction with reduced order modeling, such that 
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the end result is a practical and applicable algorithm for data assimilation for large scale reactor 

simulation applications.  

Reduced order modeling can facilitate the two major problems noted earlier. Surrogates 

(such as the reduced order surrogates constructed in chapter 4) can address the first problem 

(the computational burden associated with running the high fidelity reactor core simulators). 

On the other hand, reducing the dimensionality of the parameters of interest using the 

algorithms presented by chapter 2 and chapter 3 will address the second problem (the curse of 

dimensionality). Ref. [16] introduced high order predictive model calibration algorithm and 

applied them to relatively large scale applications while Ref. [17] performed data assimilation 

for few thermal hydraulics parameters of using lower order surrogate to replace the actual 

thermal hydraulics simulator (i.e. COBRA-TF). This dissertation would use second and third 

order polynomial surrogate models to substitute for the original coupled models (MPACT-

COBRA-TF and ORIGEN). Moreover, in this section, a 3 dimensional depletion problem with 

thermal-hydraulics feedback considered. Finally, cross-sections (high dimensional parameter) 

will be calibrated along with the few thermal hydraulics parameters considered here. An 

assembly problem and a 3 dimensional core problem are used to exemplify the proposed 

algorithms.  

Before discussing the application of  ROM in conjunction with DRAM algorithm, a brief 

summary of the major steps of the DRAM algorithm is represented here as introduced by Ref. 

[15] (refer to section 1.3 for more details about the notations below): 

1. Set an initial state for the parameters of interest ( 0x ), 

2. Determine the number of chain iterates (M), 
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3. Calculate the term   
20

1

arg min
N

x i i

i

x v f x


  , where v  is the observation, f  is the 

representative model, and N the number of observations. 

4. Set   0

2
0

1

n

i ix
i

SS v f x


  and compute the initial variance estimate 
02

0
x

SS
s

n p



, and n-P 

is the number of independent DoFs. 

5. Estimate the covariance matrix     
1

2 0 0

0

Ts x x 


C and  R chol C  is the Cholesky 

factorization. 

6. For k=1,..,M 

a. Sample  0,1kz N  and update the parameter accordingly 
* 1k

kx x Rz  , 

b. Sample  0,1u U , 

c. Compute   *

2
*

1

n

i ix
i

SS v f x


  , 

d. Compute  
 * 1

2
12* 1| min 1,

kx x

k

SS SS

skx x e










 
 


 
 
 

, 

e. If u   

    Set 
*kx x and *kx x

SS SS , 

    Else 

1. Set the design parameter 
2 0.2  , 

2. Sample  0,1kz N  and update the second stage parameter accordingly 

*2 1

2

k

k kx x R z  , 

http://www.mathworks.com/help/matlab/ref/chol.html
http://www.mathworks.com/help/matlab/ref/chol.html
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3. Sample  0,1u U
, 

4. Compute   *2

2
*2

1

N

i ix
i

SS v f x


  , 

5. Compute  
      
      

*2 * *2 * *2

*2 1 *

2 1 * 1 * 1

| | 1 |
| , min 1,

| | 1 |

k

k k k

x v J x x x x
x x x

x v J x x x x

 


 



  

 
 
 
 

, 

where J is the proposal distribution.  

6. If 2u    

 Set 
*2kx x  and *2kx x

SS SS , 

Else  

 Set 
1k kx x   and 1k kx x

SS SS  , 

End if  

End if  

f.  Update  ,k val vals Inv gamma a b , where Inv-gamma is the inverse gamma 

distribution and: 

 0.5val sa n n   and  20.5 kval s s q
b n SS  , where 2sn   and n  is the number of 

measurements used. 

g. If  0mod , 1k k   

Update  0 1cov , , , k

k ps x x xC , where sp is a design parameter that is a function 

of the dimension (p) of the parameter space ( 2.382/p is commonly used ) 

   Else 

 
1k kC C , 
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End if  

h. Update  k kR chol C , 

From the algorithm above one can notice that several steps makes DRAM limited to small-

medium dimensionality problems with reasonable computational cost. Steps 3, 4, 6.c and 6.e.4 

require the evaluation of f  (the model of interest). If the model is complex and characterized 

with high computational cost, then these steps will hinder the practicality of the DRAM 

algorithm. Therefore, in this section a subspace-based surrogate model ( f ) will be used to 

replace the model of interest ( f ). Section 1.5.3 introduced a methodology previously 

developed for goal-oriented surrogate modeling. In this section the GF-MPRFA will be used 

to construct the basis of the lower dimensional subspace approximation. Once, the basis is 

determined ( U ), a 3rd order goal-oriented subspace can be constructed as follow:  

   
2 3

1 2 3

T T Tf f S x S x S x        

where f  is the response of interest (e.g. multiplication factor, maximum fuel pin power and 

maximum fuel pin temperature), a x  is the variation in the parameters of interest from the 

reference values (e.g. cross-sections, gap conductivity and grid loss coefficient).  

In order to reduce the number of model runs required to construct the surrogate form, the 

GF-MPRFA is used to calculate the basis matrix ( U ) of the lower dimensional subspace 

approximation for the parameters space. The goal of the surrogate here is to perform data 

assimilation analysis. Therefore, the uncertainty and mean of each parameter might be updated 

hence the GF-MPRFA must take this into consideration. In chapter 4, the goal-oriented 

surrogate was constructed via perturbations generated along the covariance data (refer to 
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sections 4.3 and 4.4). In this section, the application of interest implies that the perturbations (

x ) be generated randomly within the interval of interest.  

 An efficient goal-oriented surrogate can be constructed as follow:  

  

   

1, 2, 3,

2 3

1 2 3

2 3

1, 2, 3,         

T T T
r r r

T T T T T T

rand rand rand

T T T

r r r

f f x x x

    

  

     

     
         
   
   
   

     

U U U U U U
  (62) 

where 
randx  is a random input vector sampled to generate a random sample of the input 

parameter. Given that 
xn rU  and 

T r

randx   U  then 
1, 1

T T r

r  U  

2, 2

T T r

r  U  and 
3, 3

T T r

r  U . Hence in order to determine the unknown elements of 

1,r , 
2,r  and 

3,r  the model needs to be run 3r times so that the coefficients are determined.  

Moreover, in the calculation of the posterior Probability Density Function (PDF) via Eq.(1)

, the computational cost of calculating the denominator is dependent on the dimensionality of 

the parameter space p  (i.e. p). Hence, by recasting the problem into a lower dimensional 

subspace approximation (i.e. r ), the number of calibrated parameters is reduced from p to r, 

where the uncertainty information can be mapped from the reduced space to the full 

dimensional space as follow: 

  T

x C UC U   (63) 

where xC  is the covariance matrix in the full dimensional parameter space and C  is the 

covariance in the reduced space as determined by the assimilation process. In addition to that, 

running the data assimilation analysis using the surrogate model has a negligible computational 
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cost compared to the computational cost associated with simulating using the original model 

(high fidelity simulator).  

The following is a summary of the algorithm for Subspace-Based Data Assimilation 

(SBDA):  

1. Construct the basis of the lower dimensional subspace approximation of the parameter 

space (U). 

2. Construct the goal-oriented surrogate model ( f ). 

3. Run DRAM with the surrogate model f  and replace the input parameter space ( p ) with 

the reduced space r . 

In the following sections, the SBDA will be used to perform parameters’ calibrations. The 

parameters of interest are the nuclear data cross-sections (high dimensional parameter) and two 

thermal-hydraulics parameters (gap conductivity and grid loss coefficients). In this 

dissertation, we deal with the data assimilation algorithm (i.e. DRAM) as a black box, the real 

contribution is by replacing the original high fidelity model with a surrogate that has negligible 

computational cost to run. 

 

5.1 Case Study:  Efficient Data Assimilation for 3-Dimensional Assembly Depletion with 

Thermal-Hydraulics Feedback (CASL Progression Problem 6) 

 

In this case study a few parameters calibration is performed via the SBDA. The core 

simulator of interest is VERA-CS (refer to section 1.7).  Figure 6 presents the models that 

makeup VERA-CS. Referring to the figure; the parameters of interest - in this case study – are 

the gap conductivity ( gaph ) and the grid loss coefficient ( lossg ). These two parameters 
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represents the Z-space in Figure 6. In addition, the nuclear data cross-sections will be 

calibrated along with the Z-space parameters. The cross-section parameters are represented by 

the X-space in Figure 6.  In this example the cross-sections of interest are the fission, absorption 

and scattering cross sections for a few isotopes as summarized in Table 18. The number of 

energy groups used by the VERA-CS cross-sections library is 47. Therefore, the number of 

parameters to be calibrated is 846 cross-section parameters and two thermal-hydraulics 

parameters. The DRAM – QUESO algorithm (encoded in DAKOTA 6.2 [78, 79]) will be 

employed to solve the inverse problem using 100,000 samples per chain.  

First, the goal oriented surrogate is constructed in the form represented by Eq.(62). The 

surrogate is constructed as described in section 4.4 and evaluated via examining the norm of 

residuals and their distribution. In this case study, the measured attributes are: the 

multiplication factor ( effk ), the coolant inlet temperature (
inletT ), the coolant outlet temperature 

(
outletT ), and the fission reaction rate at the fuel assembly center ( FR ). In this case study, 

synthetic data will be used instead of real data. Using the synthetic data implies that the actual 

solution of the data assimilation problem is known a priori enabling the data assimilation 

method to be verified. Five depletion steps are used to generate the synthetic measurements of 

interest. Hence, each responses is measured at each of the depletion step (0.0, 0.1, 5, 10, 30 

GWd/MTU). Table 16 summarizes the measurements and their uncertainties.  

The problem of interest is the same as the assembly problem described in section 4.4. The 

surrogate will be constructed similarly with the difference that the perturbations are generated 

randomly within the interval of interest (hgap (±50%) gloss (±4%) cross-sections (±5%)). The 

surrogate form-related uncertainty (refer to   
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Table 15 for details about the surrogate error analysis) is incorporated in the overall 

measurement uncertainty as follow:  

 
f q f surrogate f  C C C   (64) 

where 
surrogate fC  is the surrogate form variance and 

q fC  is the variance in the response due 

to the parameter set q and  
fC  is the overall variance.  

 Figure 69 through Figure 71 present the residual errors along with their distribution. For 

the surrogate model to be useful, the residual errors need to be an order of magnitude smaller 

than the experimental uncertainties.  

The surrogate is then used for simultaneous calibration of the thermal-hydraulics 

parameters along with the cross-sections of interest. The synthetic measurements are generated 

via the high fidelity simulator (VERA-CS) where specific known parameter’s perturbations 

are used. Therefore, as noted above the ideal solution to the data assimilation problem is known 

a priori and the performance of the SBDA can be evaluated by comparing the known 

perturbations and the mean variations generated by DRAM in conjunction with the surrogate 

(SBDA). The responses estimated by VERA-CS are considered as synthetic measurements to 

be assimilated.  

For the thermal-hydraulics parameters, a uniform distribution was used as a priori 

distribution sampled using the uncertainties reported in   
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Table 19 with the reference values of the parameters. Figure 73 and Figure 74 shows the 

chains and their distributions for the thermal-hydraulics parameters (grid loss coefficient and 

gap conductivity). Figure 75 indicates that there is no correlation between the gap conductivity 

( gaph ) and the grid loss coefficient (
lossg ). From chapter 4, it was noticed that the multiplication 

factor is not sensitive to the grid loss coefficient. Therefore, the variations in the grid loss 

coefficient are not identifiable using the current responses of interest. Moreover, it was found 

that the effect of the grid spacer loss coefficient is the weakest among all other parameters 

regarding the other responses of interest (coolant inlet temperature, coolant outlet temperature 

and the fission rate at the reactor center).  

 

 

Figure 69. Residual errors along with their distribution - keff. 
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Figure 70. Residual errors along with their distribution – Fission Rate (FR). 

 

 

Figure 71. Residual errors along with their distribution – Outlet Coolant Temperature (
outletT ). 
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Figure 72. Residual errors along with their distribution – Inlet Coolant Temperature (

inletT ). 

 

 

 
Figure 73. Chain and posterior distribution of the grid loss coefficient (

lossg ). 
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Figure 74. Chain and posterior distribution of the gap conductivity ( gaph ). 

 

 
Figure 75. Correlation between the gap conductivity ( gaph ) and the grid loss coefficient (

lossg

).  
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Table 15. Surrogate features. 

Surrogate 

order 
RMS 

Construction 

Data Points 

Validation 

Points 

Residuals 

distribution 

surrogate form 

– related 

uncertainty 

3rd order 

effk  

22.3 

[pcm] 

180 40 

 

effk  i.i.d 
0.01 [pcm] 

outT   

0.000016 

[Co] 

   

outletT  i.i.d 
0.00031 [Co] 

inletT   

0.000004 

 [Co] 

 

inletT  i.i.d 

 

0.0021 [Co] 

FR  

0.000022 

 

 

 

FR i.i.d 

 

0.008 

 

 

Table 16. Measurements and their uncertainties 

Measurement 
0.0 

GWd/MTU 

0.1 

GWd/MTU 

5 

GWd/MTU 

10 

GWd/MTU 

30 

GWd/MTU 

effk  
1.243546 

±0.00596 

1.2005734 

±0.00568 

1.13999 

±0.00531 

1.08474 

±0.00524 

0.921887 

±0.00641 

outletT  [C0] 
325.307 

±0.0077 

325.288 

±0.0051 

325.263 

±0.00409 

325.311 

±0.00473 

325.220 

±0.0058 

inletT  [C0] 
291.932 

±0.0012 

291.942 

±0.00095 

291.982 

±0.0008 

292.0124 

±0.00143 

292.211 

± 0.00101 

FR  
1.4050 

±0.0102 

1.3262 

±0.0071 

1.13510 

±0.002 

1.07830 

±0.0025 

0.872 

±0.0014 

 

In the case of nuclear data cross-sections a Gaussian prior distribution based on the 

covariance library (44groupcov) [57] is used. A total of 18 different isotope-reaction pairs are 

considered for calibration. Taking into account that the surrogate uses 47 group structure (refer 

to Table 17), the number of cross-sections parameters is 18x47 = 846 (refer to Table 18).  In 
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order to evaluate the performance of the SBDA the actual perturbation (which is known) is 

compared with the perturbation expected by the SBDA. A consolidated metric is defined to 

evaluate the performance of the SBDA with calibrating the cross-sections parameters. The 

metric calculates the average difference between the actual and estimated perturbation:    

  

, ,

,g ,g

,

,g

,

i syn i DAG
x x

i syn
g xDA

x i
G



 





  (65) 

where 
,

DA

x i  is the  assimilation performance metric for the interaction x and the ith isotope while 

,

,g

i syn

x  is the synthetic variation for the xth reaction, the gth energy group and the ith isotope. 

,

,g

i DA

x  is the variation predicted by the SBDA, for xth reaction,  gth energy group and ith isotope. 

G is the number of energy groups considered. Table 18 reports the average difference (
,

DA

x i ) 

along with the maximum difference between the actual perturbation and the one estimated by 

the SBDA. The maximum average difference (refer to Eq.(65)) is 3.8% occurring for the Fe-

56 absorption cross-sections. Table 19 summarizes the data assimilation results for a few 

important parameters including the two thermal-hydraulics parameters.  
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Table 17. 47 group structure. 

g Energy 

Boundary 

g Energy 

Boundary 

g Energy 

Boundary 

g Energy 

Boundary 

1 20 MeV 13 78.9 eV 25 2.3824 eV 37 0.5032 eV 

2 6.0653 MeV 14 47.8512 eV 26 1.8554 eV 38 0.35767 eV 

3 3.6788 MeV 15 29.023 eV 27 1.4574 eV 39 0.2705 eV 

4 2.2313 MeV 16 13.71 eV 28 1.2351 eV 40 0.18443 eV 

5 1.3534 MeV 17 12.099 eV 29 1.1664 eV 41 0.14572 eV 

6 0.8208 MeV 18 8.3153 eV 30 1.1254 eV 42 0.11157 eV 

7 4.9787 MeV 19 7.33822 eV 31 1.0722 eV 43 0.08197 eV 

8 0.1832 MeV 20 6.47602 eV 32 1.0137 eV 44 0.0569 eV 

9 67.38 KeV 21 5.715 eV 33 0.97100 eV 45 0.0428 eV 

10 9.119 KeV 22 5.04348 eV 34 0.9099 eV 46 0.0306 eV 

11 2.0347 KeV 23 4.4509 eV 35 0.7821 eV 47 0.0124 eV 

12 0.13 KeV 24 3.9279 eV 36 0.62506 eV - - 
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Table 18. Assimilation performance measure for the various cross-sections parameters being 

calibrated.  

Parameter Value Maximum Estimation 

Difference  

 , , ,

,g ,g ,g

i syn i DA i syn

x x x    

, -235

DA

f U  1.7% 1.9% [g=10] 

, -238

DA

f U  1.5% 3.1% [g=14] 

, 239

DA

f Pu
-  3% 2.1% [g=31] 

, -16

DA

s O  2.3% 2.8%[g=9] 

, -1

DA

s H  3.1% 2.1%[g=37] 

, 240

DA

f Pu
-  2.1% 2.3%[g=16] 

, 134

DA

a Xe
-  1.7% 2.5%[g=23] 

, 10

DA

a B
-  0.89% 1.1% [g=22] 

, 130

DA

a Xe
-  0.9% 1.4%[g=28] 

, 90

DA

a Y
-  3% 2.9%[g=20] 

, 91

DA

a Y
-  2.7% 2.9%[g=12] 

, 90

DA

a Zr -  3.2% 3.5%[g=1] 

, 56

DA

s Fe -  1.8% 3.8%[g=43] 

, 55

DA

s Mn
-  1.6% 1.9%[g=32] 

, 23

DA

a Na
-  0.97% 1.9%[g=40] 

, 238

DA

f Pu
-  1.8% 1.9%[g=45] 

, 241

DA

f Pu
-  2.3% 3.4%[g=24] 

, 236

DA

f U
-  2.7% 3.2%[g=12] 
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Table 19. Data assimilation results for a few important parameters. 

 

 

 

5.2 Case Study:  Efficient Data Assimilation for 3-Dimensional Core Wide Depletion with 

Thermal-Hydraulics Feedback. CASL Progression Problem 9. 

 

In this case study a few parameters calibration is performed via the SBDA. The core 

simulator of interest is VERA-CS (refer to section 1.7).  Figure 6 presents the models that 

makeup VERA-CS. Referring to the figure; the parameters of interest - in this case study – are 

the gap conductivity ( gaph ), and the grid loss coefficient (
lossg ). These two parameters represent 

the Z-space in Figure 6. In addition, the nuclear data cross-sections will be calibrated along 

with the Z-space parameters. The cross-section parameters are represented by the X-space in 

Figure 6.  In this example the cross-sections of interest are the fission, absorption and scattering 

cross-sections for a few isotopes as summarized in Table 22 . The number of energy groups in 

the VERA-CS cross-sections library is 47 (refer to Table 17). Therefore, the number of 

parameters to be calibrated is 846 cross-section parameters and two thermal-hydraulics 

Parameter Reference Value Actual Perturbed 

Value 

SBDA Estimated 

Perturbation  

gaph  5678.3 ± 2250 6835.02 6846.2 ± 901.86  

lossg  0.907 ± 0.03628 0.92206 0.909 ± 0.03478 

235U

f

   

[ 0.0306-0.012396] eV 

1125.219 ±2.66 1258.435 1270.231 ± 1.99 

238U

f

   

[ 2.2313-1.3534] MeV 

0.8927011±0.00528 

 

0.93246 

 

0.9013 ± 0.00387 

 

239Pu

f

  

[ 0.0306-0.012396] eV 

1361.297± 34.51 

 

1441.313  

 

1434.458 ± 27.13 

 

1H

s

  

[ 0.0306-0.012396] eV 

75.346183±0.07494 

 

82.47610 

 

79.208 ± 0.0569 

 

16O

s

   

[ 0.0306-0.012396] eV 

4.329821±0.04336 

 

4.629821  

 

4.5891 ± 0.02981 
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parameters. The DRAM – QUESO algorithm (encoded in DAKOTA 6.2 [78, 79]) will be 

employed to solve the inverse problem using 100,000 samples per chain.  

First, the goal oriented surrogate is constructed in the form represented by Eq.(62). The 

surrogate is constructed as described in section 4.4 and evaluated via examining the norm of 

residuals and their distribution. In this case study, the measured attributes are: the 

multiplication factor ( effk ), and the relative fission reaction rate 3 dimensional distribution at 

the ( FR ). The matrix FR is 49*17*17 equivalent to measuring the fission rate over 49 axial 

levels (within the 56 axial levels). Synthetic data will be used instead of real data. Using the 

synthetic data implies that the actual solution of the data assimilation problem is known a priori 

enabling the data assimilation method to be verified. Five depletion steps are used to generate 

the synthetic measurements of interest. Hence, each response is measured at each of the 

depletion step (0, 9, 32, 45, 120, 160 EFPD). Table 16 summarizes the measurements and their 

uncertainties.  

The problem of interest is the same as the assembly problem described in section 4.4. The 

surrogate will be constructed similarly with the difference that the perturbations are generated 

randomly within the interval of interest (hgap (±50%),  gloss (±4%) , cross-sections (±5%) ). The 

surrogate form-related uncertainty is obtained by Eq.(64) (refer to Table 20 for details about 

the surrogate error analysis). Note that the RMS for the FR reflects the RMS of a vector formed 

from the 49*17*17 matrix mentioned earlier; that is:  

  RMS vec 
FR

FR , 

where vec is a process that transfers a matrix into a vector. Due to the computational resources 

limitation, a 2nd polynomial surrogate is used, hence the surrogate form-related uncertainty is 
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higher than the case of a 3rd order surrogate. The effect of a higher surrogate form-related 

uncertainty is a larger error in calibrating the parameters of interest along with higher 

uncertainty. Therefore, in this section the DA problem will be solved twice; once with 

including the surrogate form-related uncertainty and then without including the surrogate form-

related uncertainty. Comparing the results of the two cases will indicate the effect of the 

surrogate errors on the calibration study. Figure 76 and Figure 77 present the residual errors 

along with their distribution. Figure 77 is a sample figure showing the residual error 

distribution for the fission rate at the core central point. For the surrogate model to be useful, 

the residual errors need to be an order of magnitude smaller than the experimental 

uncertainties.  

The surrogate is then used for simultaneous calibration of the thermal-hydraulics 

parameters along with the cross-sections of interest. The synthetic measurements are generated 

via the high fidelity simulator (VERA-CS) where specific known parameters’ perturbations 

are used. Therefore, as noted above the ideal solution to the data assimilation problem is known 

a priori and the performance of the SBDA can be evaluated by comparing the known 

perturbations and the mean variations generated by DRAM in conjunction with the surrogate 

(SBDA). The responses estimated by VERA-CS are considered as synthetic measurements to 

be assimilated.  

For the thermal-hydraulics parameters, a uniform distribution was used as a priori 

distribution sampled using the uncertainties reported in Table 19 with the reference values of 

the parameters. Figure 78 and Figure 79 shows the chains and their distributions for the 

thermal-hydraulics parameters (grid loss coefficient and gap conductivity). Figure 80 indicates 

that there is no correlation between the gap conductivity ( gaph ) and the grid spacer loss 
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coefficient (
lossg ). From chapter 4, it was noted that the multiplication factor is not sensitive to 

the grid loss coefficient. Therefore, the variations in the grid spacer loss coefficient are not 

identifiable using the current responses of interest. Moreover, it was found that the effect of 

the grid spacer loss coefficient is the weakest among all other parameters regarding the the 

fission rate at the reactor center. 

 

 

Figure 76. Residual errors along with their distribution - keff 
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Figure 77. Residual errors along with their distribution – Fission Rate at the core center. 

 

 
Figure 78. Chain and posterior distribution of the grid spacer loss coefficient (

lossg

).[Including surrogate fC ]. 
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Figure 79. Chain and posterior distribution of the gap conductivity ( gaph ). [Including

surrogate fC ]. 

 

 
Figure 80. Correlation between the gap conductivity ( gaph ) and the grid loss coefficient (

lossg

). Including surrogate fC .  
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Table 20. Surrogate features. 

Surrogate 

order 
RMS 

Construction 

Data Points 

Validation 

Points 

Residuals 

distribution 

surrogate 

form – 

related 

uncertainty 

2nd order 

effk  14.4 

[pcm] 

120 30 

 

effk  i.i.d 
35.0 [pcm] 

FR
 0.0332 

 

 

 

 

FR i.i.d 

 

 

0.93% 

[Maximum] 

 

 

Table 21. Measurements and their uncertainties 

Measurement 

0.0 

EFPD 

9.0 

EFPD 

32.0 

EFPD 

120.0 

EFPD 

160.0 

EFPD 

effk  
1.000443 

±0.00401 

1.000121 

±0.00417 

1.00013 

±0.00399 

0.999951 

±0.00387 

0.99991 

±0.00381 

FR  

(at the core central 

point) 

1.9321 

±0.021 

1.8962 

±0.019 

1.8212 

±0.0169 

1.7612 

±0.0187 

1.7312 

±0.0179 

 

In the case of nuclear data cross-sections a Gaussian prior distribution based on the 

covariance library (44groupcov) [57] is used. A total of 18 different isotope-reaction pairs are 

considered for calibration. Taking into account that the surrogate uses a 47 group structure 

(refer to Table 17), the number of cross-sections parameters is 18x47 = 846 (refer to Table 18).  
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In order to evaluate the performance of the SBDA, the actual perturbation (which is known) is 

compared with the perturbation determined by the SBDA. A consolidated metric is defined to 

evaluate the performance of the SBDA with calibrating the cross-sections parameters (refer to 

Eq.(65)). Table 22 reports the average difference (
,

DA

x i ) along with the maximum difference 

between the actual perturbation and the one estimated by the SBDA. The maximum average 

error (refer to Eq.(65)) difference is 6.2% occurring for the Pu-240 absorption cross-sections 

(when the surrogate form uncertainty is included i.e. surrogate fC ). In the case of ignoring the 

surrogate form –related uncertainty the maximum average difference is 6.1% occurring for the 

O-16 scattering cross-sections. Table 19 summarizes the data assimilation results for a few 

important parameters including the two thermal-hydraulics parameters.  
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Table 22. Assimilation performance measure for the various cross-sections 

parameters being calibrated. 

Parameter Value 

With 

surrogate fC

 

Value 

Without 

surrogate fC

 

Maximum Estimation 

Difference  

 , , ,

,g ,g ,g

i syn i DA i syn

x x x  

with surrogate fC  

Maximum Estimation 

Difference  

 , , ,

,g ,g ,g

i syn i DA i syn

x x x  

without surrogate fC  

, -235

DA

f U  2.2% 2.1% 2.8% [g=2] 2.2% [g=8] 

, -238

DA

f U  1.9% 1.8% 4.1% [g=5] 3.2% [g=4] 

, 239

DA

f Pu
-  6.2 % 5.8% 5.1% [g=41] 6.2% [g=34] 

, -16

DA

s O  6.1% 6.1% 12.4%[g=11] 3.2%[g=8] 

, -1

DA

s H  2.3% 2.1% 6.1%[g=37] 4.0% [g=40] 

, 240

DA

f Pu
-  4.1% 4.2% 4.2%[g=25] 3.5% [g=18] 

, 134

DA

a Xe
-  2.7% 2.5% 4.5%[g=26] 2.5% [g=26] 

, 10

DA

a B
-  1.5% 1.3% 4.1% [g=10] 2.1% [g=12] 

, 130

DA

a Xe
-  1.1% 0.92% 5.2%[g=8] 3.4%[g=10] 

, 90

DA

a Y
-  3.1% 3.3% 4.3%[g=12] 2.9%[g=10] 

, 91

DA

a Y
-  3.3% 3.1% 6.1%[g=15] 4.2%[g=16] 

, 90

DA

a Zr -  3.3% 3.0% 3.9%[g=3] 4.5%[g=4] 

, 56

DA

s Fe -  2.7% 1.3% 4.8%[g=41] 2.6%[g=40] 

, 55

DA

s Mn
-  2.5% 1.4% 4.9%[g=30] 3.8%[g=29] 

, 23

DA

a Na
-  2.1 % 1.5% 2.9%[g=41] 1.8%[g=34] 

, 238

DA

f Pu
-  3.3% 2.2% 5.9%[g=47] 2.2%[g=42] 

, 241

DA

f Pu
-  4.9% 2.4% 7.4%[g=41] 4.2%[g=43] 

, 236

DA

f U
-  1.9% 3.3% 5.2%[g=13] 2.1%[g=15] 
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Table 23. Data assimilation results for a few important parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Parameter Reference Value Actual 

Perturbed 

Value 

SBDA Estimated 

Perturbation  

With surrogate fC  

SBDA Estimated 

Perturbation 

Without surrogate fC  

gaph  4500 ± 2250 4359.91 4114.2 ± 903.21  4008.3 ± 699.56  

lossg  0.907 ± 0.03628 0.9123 0.9088 ± 0.035 0.9088 ± 0.035 

235U

f

   

[g=47] 

1125.219 ±2.66 1258.435 1270.01 ± 2.01 1281.45 ± 1.81 

238U

f

   

[g=27] 

0.8927011±0.00528 

 

0.93246 

 

0.9230 ± 0.00489 

 

0.9013 ± 0.00401 

 

239Pu

f

  

[g=1] 

1361.297± 34.51 

 

1441.313  

 

1431.18 ± 28.21 

 

1444.87 ± 21.34 

 

1H

s

  

[g=47] 

75.346183±0.07494 

 

82.47610 

 

81.72 ± 0.0591 

 

81.208 ± 0.0411 

 

16O

s

   

[g=47] 

4.329821±0.04336 

 

4.629821  

 

4.612 ± 0.0406 

 

4.742 ± 0.0331 
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CHAPTER 6. TARGET ACCURACY ASSESSMENT FOR HIGH 

DIMENSIONAL LIGHT WATER REACTOR SIMULATION 

PROBLEMS 
 

Examples of Target Accuracy Assessment (TAA) analysis in nuclear engineering 

applications include a variety of problems that are important to both the safety and design of 

nuclear reactors. Nuclear data assimilation and target accuracy assessment are among the most 

important examples of the so called Inverse Uncertainty Quantification  

(IUQ) applications. Data assimilation methods are used to obtain best estimate of key 

parameters (e.g. nuclear data cross-sections) with the aim of improving the simulation for 

nuclear reactor designs. Data assimilation aims to find the true state or the best estimate of the 

true state of a certain set of key parameters utilizing experimental measurements of certain 

system attributes to learn more about the true state of the key parameters. For example, given 

a certain uncertainty in a measured attribute, data assimilation can provide more information 

about key sources of uncertainty through the so-called IUQ analysis [54,250 95]. On the other 

hand, target accuracy assessment aims to estimate the requirements on the uncertainty sources 

such that the target accuracy in the attributes of interest can be met. Mathematically, both data 

assimilation and target accuracy assessment are similar except that data assimilation uses 

measurement uncertainties while the target accuracy uses uncertainty targets specified by the 

safety and design constraints to obtain the requirements on the covariance library of the key 

uncertainty sources (model’s parameters and other sources of uncertainty) [19, 20]. In 

sections 6.1, 6.2 and 6.3.2 the Target Accuracy Assessment (TAA) problem is solved for single 

and multi-physics problems via deterministic methods (i.e. Sequential Quadratic Programming 
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(SQP) algorithm) while in section 6.3.3 a 3 dimensional depletion problem is used to illustrate 

a non-linear and surrogate based methodology for the target accuracy assessment problem.  

In this chapter, four improvements are introduced to the IUQ problem analysis. First, the 

problem’s identifiability is improved through a regularization technique that confines the 

solution into a certain subspace determined a prior to the problem solution. Second, the IUQ 

scheme is made efficient for high dimensional constrained problems through dimensionality 

reduction, which facilitates both the sensitivity analysis and reduces the number of active 

constraints significantly. Third, the IUQ problem is extended to loosely coupled multi-physics 

models where two cases are considered; gradient-based and gradient-free IUQ algorithms. The 

gradient based algorithm assumes the availability of sensitivity information prior to the 

problem’s solution while, the gradient-free approach pursues the solution of the IUQ problem 

without a prior knowledge of the sensitivity information. Finally, section 6.3.3 introduces a 

TAA formalism that is based on replacing the original high fidelity model by a more efficient 

surrogate model. This makes possible to perform TAA via non-linear uncertainty propagation 

through Monte Carlo sampling. The analysis therein aims to determine a set of integral 

response measurements such that the required parameters’ uncertainties are achieved.   

The target accuracy assessment analysis helps to evaluate the impact of each neutron cross-

section or other parameter uncertainty on the most important integral responses related to the 

core and/or nuclear fuel cycle (forward/inverse uncertainty quantification of the depletion 

calculations in specific). Therefore, this chapter is a contribution to enabling the feasibility 

assessment of reactor and fuel cycle systems for current and Generation IV reactors.     
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6.1 Regularization of the Inverse Uncertainty Quantification Problem  

 

Given the stringent requirements on the accuracy of nuclear design and safety calculations, 

new developments in uncertainty reduction are paramount to improving the competitiveness 

of nuclear energy against other energy sources. Focusing on neutronics calculations, many 

studies have shown that nuclear data constitute a major source of uncertainties in the calculated 

reactor attributes of interest, which are used to judge the performance of the associated reactor 

system. Therefore, it is natural to seek algorithms that identify the key parameters whose 

reduced uncertainties would have the highest impact on the uncertainties of reactor attributes 

of interest. Nuclear data experiments could then be established to reduce the uncertainty of the 

key parameters. Given that the cost of experiments, which noticeably vary from one parameter 

to another, one must take into account both the cost of the experiment and the potential benefit 

of uncertainty reduction on the attributes of interest. This is possible via a constrained 

optimization problem that minimizes a cost function, representing the cost of the experiments, 

while being constrained by the reduced uncertainty sought for the attribute(s) of interest. Note 

that the true cost function to be minimized is defined by the cost of experiments, minus the 

economic benefit associated with the reduced uncertainties obtained from executing the 

experiments with no constraints imposed via target attributes uncertainties. Since maximizing 

the economic benefit given reduced uncertainties involves optimization, the true optimization 

problem involves joint optimization; that is, optimization of both the experiments to be 

conducted and optimization of the system design are linked due to their interdependence. This 

more challenging optimization problem will be discussed later.  

The constrained optimization problem has been previously tackled by many researchers as 

early as the 1970s. The problem appeared under the name of ‘nuclear data target accuracy 
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assessment’, initially developed by Uschev in 1970s [16]. We refer to this problem as the 

inverse uncertainty quantification (IUQ) problem. This is because it first employs basic 

uncertainty quantification to estimate the uncertainties of reactor attributes of interest, and then 

via an inverse analysis, it solves the optimization problem for the key parameters of largest 

impact on the uncertainties of attributes of interest. This IUQ algorithm has been applied for 

current and future reactors [86]. These studies considered different integral quantities such as 

the multiplication factor, reactivity coefficients and various important reaction rates, as the 

attributes of interest whose uncertainties are to be reduced. Based on a target uncertainty for 

the attributes as defined by design/safety/economic consideration, these studies have shown 

that the current cross-sections evaluations need further improvements; see Ref. [19] for an 

example of a comprehensive study. 

The IUQ suffers two problems: first, the identifiably; where several solutions might satisfy 

the target accuracy. Second, the Curse of Dimensionality; where the computational cost is a 

strong function in the dimensionality of the solution space and the constraint space. The 

identifiability of the IUQ problem depends on the effective dimensionality of the input 

parameter space which is often a rank deficient space [80]. In problems involving a high 

dimensional input parameter space the  input parameters tends to be correlated, which means 

that the space is rank deficient and hence the inverse problem is not identifiable unless the 

observables (attributes) are measured with unrealistically high accuracy. On the other hand, in 

theory, all parameters that might contribute significantly to the overall uncertainty must be 

included in the IUQ analysis, for example: nuclear fuel and structural material cross-sections, 

fission products concentrations, and any other potentially important sources of uncertainty. 

Hence the number of parameters might grow very large, which increases the computational 
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cost of the IUQ analysis. Such a challenge is usually addressed by the elimination of parameters 

that do not contribute significantly to the overall uncertainty [19]. The sensitivity of each 

response is calculated at the reference values for the input parameters and then influential 

parameters are selected based on these sensitivities. However, there is little guarantee that the 

sensitivity profile remains constant over a range of inputs around the reference case. Hence the 

contribution might change as the input parameters change. This means that eliminating 

parameters that do not significantly contribute to the uncertainty relies on the assumption that 

the model is linear and therefore that the uncertainty contribution is constant. Therefore, in this 

subsection we introduce an algorithm to identify an active subspace a prior to the problem’s 

solution. This subspace is based on sampling the sensitivity coefficients at different point in 

the phase space which can account for changes in the sensitivity coefficients in the region of 

interest (i.e. non-linearity). Moreover, this subspace can be used to regularize the problem by 

confining the solution to a physics-based lower dimensional subspace. This regularization 

might take the form of Tikhonov regularization [89]. Moreover, by confining the solution to a 

specific subspace, the Curse of Dimensionality problem is relaxed by the fact that searching 

along the DoF involved in the active subspace is more efficient than searching the whole 

solution space. Hence, both identifiability and computational cost are expected to be improved.    

In order to solve the optimization problem, many algorithms might be used. Among these 

is the Sequential Quadratic Programming (SQP) which is the most popular optimization 

algorithm used in nuclear data assessment applications including the IUQ. SQP solves a set of 

sub-problems, each of which optimizes a quadratic model over a certain Lagrangian function. 

Such a method is reliable but computationally expensive and has slow convergence 

characteristics. Therefore, most optimization algorithms are either slow or need a feasible 
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starting point which is as hard as finding a solution to the problem, especially when huge 

number of uncertainty sources are considered. The computational burden of solving realistic 

optimization problems commands the attention to techniques that can restrict the search to a 

small sub-region or feasible directions in the domain [81]. For example, an active subspace 

can be identified in order to replace the full dimensional trust region with a lower dimensional 

active subspace [81]. Another example of implementing subspace techniques for optimization 

problems is the reduced Hessian method used in an interior-point algorithm. These techniques 

are abbreviated as SESOP (Sequential Subspace Optimization) [81-85].  

 Section 1.4 reviewed the efforts in the nuclear engineering community to apply the TAA 

in determining the experimental requirements such that safety margins are met. The most 

important efforts are represented in the following references [19, 51, 22, 20]. Ref. [19] has 

been primarily limited to integral benchmark critical experiments, exhibiting no feedback or 

depletion effects, and applied to relatively small problems. In addition to that, Ref. [51, 87] 

introduced an early exploration and application of the inverse methods to develop adaptive 

core simulation.  

In this dissertation we seek to generalize the application of the IUQ algorithm to core-wide 

models simulating at power reactor conditions through the so called subspace methods. This 

goal implies one has to solve an optimization problem with a large number of parameters, 

currently impossible with a brute force application of any given optimization technique. 

Therefore, in support of our overarching goal, we propose an algorithm that can render 

practical the solution of a high dimensional optimization problem of applied to reducing the 

uncertainties of cross-sections. The proposed algorithm is based on the replacement of the full 

dimensional space of all possible solutions (i.e. the searching domain) by a subspace that is 
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smaller and of lower dimension (i.e. a target subspace) tailored by the model’s physics. A low 

fidelity solution of the optimization problem is used to build the target subspace. The proposed 

algorithm can reduce the computational cost of the targeted cross-sections assessment and 

hence allowing the designer to study a wider range of uncertainty sources and include finer 

energy groups. The algorithm is applied to a quarter PWR lattice model, where a target 

accuracy of the multiplication factor has been defined and the performance of the proposed 

algorithm was investigated and compared against the conventional IUQ approach. In this work, 

the differential cross-section and covariance values of the constituent isotopes are those 

distributed in SCALE 6.1 [57]. In addition, the proposed algorithm may be used in various 

analysis such as the impact of uncertainties in cross-sections on the transmutation of actinides 

[19], Gen. IV reactors design and safety calculations [86], and statistical adjustments of cross-

sections using post-irradiation experiments to enhance the prediction accuracy of the 

experimental data. 

 In the following sections the term T-subspace will be used to refer to the lower dimensional 

target subspace while the term SIUQ will be used to refer to the proposed subspace based 

inverse sensitivity/uncertainty quantification algorithm. 

 

6.1.1 Algorithm 

 In this section an extension of the classical IUQ methods used in Ref. [19, 86] to high 

dimensional problems will be presented. The IUQ formalism implemented in this section is 

outlined in Ref. [19, 86]. In Section 6.3.3 a new, more realistic formalism will be introduced. 
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The formalism therein utilizes a more realistic cost function and replaces the linearity 

assumption introduced in this section by a higher order goal-oriented surrogate.  

 The IUQ problem is an inequality-nonlinear-constrained optimization problem. The 

starting point when considering cross-sections as parameters is the prior covariance matrix C 

of multi-group cross sections, whose diagonal elements are the variances of cross-sections. 

The target is to calculate the updated covariance matrix '
C  by updating its elements as follows:  

  '

ij i ij jC d C d  , (66) 

where di’s are the adjustment parameters. More precisely one would write '

ij ij ijC d C , which 

when constrained with Eq.(66) reveals the assumption that dij=di .dj. This assumption assumes 

that the posterior correlation of parameters i and j is unchanged from the prior correlation. To 

show this, note that the correlation terms can be expressed as follow:  

ij ij i jC     

where 
ij  is the correlation coefficient. Therefore, the adjustment of  i iiC   by 

id and 

j jjC   by 
jd  implies that 

ij  is adjusted by a factor of .i jd d :  

' ' '

ij ij i j ij i i j j i ij jC d d d C d         

 Let us assume that the cost to be minimized can be defined as: 

  
'

',2 2
Cost[ ] i i

i iii i ii i

w

d

w

d 
  C   (67) 

where 
iw ’s are user-defined weights corresponding to cost of measuring various cross sections 

in different energy ranges. The constraint that must be satisfied by the optimal solution is: 

   2 diag '  T

R SC S   (68) 
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where 2
R

 denotes the response variance vector and the “diag.” function forms a vector from 

the matrix diagonal, 2̂
R

 is a vector of maximum allowed variances of the application’s 

bounding responses, and S  is the application’s sensitivity profile with respect to the cross-

sections at the reference case. Note that the expression in Eq.(68) includes the covariance 

terms. The covariance terms reflect the correlations between different parameters; hence they 

effect the magnitude of the responses’ variance reduction. It has been shown that the 

correlation terms are important in targeted cross-sections assessment [86].  

  In order to guide the optimization algorithm to search along certain directions we build 

these directions based on the subspace determined by an approximate solution to the 

optimization problem. If the covariance terms (correlation terms) are neglected, the problem 

can be solved using a Lagrange multipliers analysis.  

For a single response R that is a function of a vector  ; where:  

1( ,..., )NR f   . 

Then the uncertainty in the response can be calculated by propagating the input parameter 

uncertainties, neglecting the covariance terms, by:  

  ',2 2 ',2

1
i

N

R i

i

s  


   (69) 

Now assume a general objective (cost) function obj . We can solve the constrained 

optimization problem by defining a Lagrangian function F as follow:                                            

',2

RF obj         

2 ',2

1
i

N

i

i

F obj s   


     , 
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where obj is to be minimized by selection of the optimum { ',2

i
 }, and   is the variance 

tolerance in the response to be constrained. In order to solve the constrained minimization 

problem, one needs to satisfy:   

  2 ' - 2 0
jj j

jF obj s
        , for j=1,2,… N (70) 

Also, the derivative with respect to the Lagrange multiplier must satisfy:  

  2 ',2

1

0
i

N

i

i

F s  


     (71) 

If the cost function is linear then Eq.(70) and Eq.(71) can be solved explicitly for {
'

i
 }  

  '

1/2
2

2 2

2

1
2

2

j

i i

j

j

j i

i i

obj
d

obj
s s

s







 



 




 

  
   

  
  



 

where the adjustment parameter jd : 

  
1/2

2

2 2

2

1
2

2

j

j

j

j

j i

i i

obj
d

obj
s s

s















  
   

  
  



 (72) 

So if the cost function is linear, e.g.  '=
j ji

i

obj w    , Eq.(72) can be used to show 

that: 

1/2
2

2 2

2

1
2

2j

i
j

i
j i

i i

w
d

w
s s

s
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where is  is the sensitivity coefficient for the response with respect to the ith parameter. If the 

cost function is non-linear, Eq.(70) and Eq.(71) still apply. For example, if we define the cost 

function as [16-20]:  

  
2

1 ( )
i

N
i

i

w
obj



 ,  (73) 

the constrained minimization problem can be analytically solved. The updated uncertainties 

can be shown to be:  

                

1/4

2

'

2

2

1

( )

| |

j j

j

j
N

i i j

i

w
d

s w s

 


 



 
 
  
 
 

   
  


. 

So the adjustment parameter 
jd  indicated in eq.(66) is:   

  

1/4

2

20

2

1

( )1

| |

i
j

N
j

i i j

i

w
d

s w s








 
 
 
 
 

   
  


.  (74) 

So if the cost function is linear then Eq.(72) can be used to obtain the values of {di} sample 

the low fidelity solution of the optimization problem. Otherwise, if the function is non-linear 

then Eq.(70) and (71) must be solved simultaneously for {
j

 }. Note that this solution assumes 

that the covariance terms do not affect the values of the responses which is not generally true. 

However, this solution (i.e. {di}) can be used to define a lower dimensional subspace which 

can searched during the optimization with the jut noted assumption removed. This lower 

dimensional subspace will be denoted the Target Subspace (T-subspace), where the IUQ 

analysis seeks a solution for the target accuracy assessment problem. The following steps 
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summarize the process of constructing the subspace and hence solving the Subspace Inverse 

Uncertainty Quantification (SIUQ): 

1- Determine the sources of uncertainty (parameter uncertainties to be considered), 

2- Sample k perturbations of the model’s input parameters and for each sample determine the 

responses sensitivity (i.e. {si}). Then solve Eq.(70) and Eq.(71) simultaneously for each 

sample to construct the corresponding adjustment parameter samples:  

1[ , , , , ]i kd d d   

3- Build an orthonormal basis of the T-subspace spanned by the samples: 

T  USV  

4- Calculate the error upper bound using associated with each subspace size, using Eq.(75)  by 

taking additional samples [30]:                 

  1,.. 2

2
10 max || ( ) ||T

tol i s i upperd 


  I UU   (75) 

s = 10 is a reasonable choice.  

5- If the inequality in step 4 is not satisfied; increase the number of samples and repeat steps 

 2-5, 

1k k   

6- Tune the optimization algorithm to search along the directions represented by the basis 

(columns of U  matrix), where:                          

kU , k N . 

 So matrix U  contains the basis of the T-subspace. The basis will direct the optimization 

algorithm to search along certain directions. So instead of investigating the whole space, only 
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the T-subspace will be investigated. The directions of search are limited to those that belong 

to the subset determined by the proposed algorithm. Therefore, the search is restricted to a 

subset of the full dimensional space. However, note that if the correlation terms have a strong 

effect on the problem of interest, then the T-subspace solution will be invalid and hence the 

search along the directions proposed by this algorithm will not be applicable. In Section 6.3.3 

a more general and practical method will be introduced. 

 

6.1.2 Case Study: CASL Progression Problem 2 – Lattice Model 

 

 In this section, the goal is to demonstrate the proposed algorithm using a practical example. 

CASL VERA progression problem number 2 [90] is modeled using the SCALE6.1-TSUNAMI 

module [57]. Problem number 2 analyzes a fuel lattice typical of the central axial region of 

PWR fuel lattices (refer to Figure 81) and is two-dimensional. TSUNAMI calculates the first 

order sensitivity coefficients and hence can estimate the uncertainty in the responses of interest. 

Target accuracy of the multiplication factor and the fission rate are defined, and the IUQ 

formalism is then used to estimate the required experimental accuracy and the proper 

prioritization to reduce cross-section uncertainties to values determined by the constrained 

optimization.    
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Figure 81. CASL progression problem number 2.  

 

 The conventional IUQ algorithm was used to solve the optimization problem. Then the 

problem was solved using the SIUQ algorithm. In order to choose the important directions in 

the full dimensional domain, the approximate analytic solution as previously defined was 

sampled and used to build the T-subspace as indicated in the algorithm outlined in the previous 

section. The base cross-sections parameters were perturbed ( 30 %) and the size of the T-

subspace was defined using the error metric tool presented by Eq.(75). The T-subspace is then 

used to regularize the solution of the IUQ problem to be confined to those DoF represented by 

the basis of the T-subspace. 

 The size of the subspace is increased until the subspace represents the approximate solution 

within a negligible error upper bound. Figure 82 shows the absolute error. Based on this, a 

subspace of dimension (rank) equals to 60 is a reasonable choice to attain the target subspace; 

therefore, the SIUQ has only 60 directions (degrees of freedom) to search for the optimized 

solution compared with the IUQ which searches along 8140 directions. The original 

uncertainty in effk  is about 504 pcm which is intended to be reduced to 250 pcm; moreover, 
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the uncertainty in the normalized fission rate in the fuel mixture (Eq.(76)) is 1.6% and is to be 

reduced to 0.5% while minimizing the financial effort represented by the cost function defined 

by Eq. (77), where: 
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 In this study the values of {wi} and {µj} are set to 1.0 hence all the parameters and 

responses are assumed to be equivalent. Table 24 summarizes the results and compare the 

behavior of the proposed algorithm and the conventional one given certain convergence 

conditions. Since sequential quadratic programming (SQP) is the most reliable and common 

optimization algorithm used in such applications, it is used for both the IUQ and SIUQ via 

MATLAB function FMINCON and CONMIN NASA software [96]. Both algorithms 

converge to the specified target accuracies and minimizes the costs to within a 1% difference. 

However, the SIUQ converges faster (423 function evaluations), while the IUQ required 3500 

function evaluations to fall within the range of the target accuracies. In other words, the 

introduction of the T-subspace will reduce the complexity of the optimization problem. The 

SIUQ algorithm will always search in a smaller space, a situation that gives it an advantage 

over the IUQ. The running time per function evaluation is much smaller due to the fact that the 

SIUQ searches in a smaller subspace and hence the derivatives, cost and constraints need to be 

evaluated at less number of points and have smaller number of searching directions per 
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iteration per region in the parameter space. The convergence thickness (constraint violation) 

and the termination tolerance on the solution were set to 10-10. Usually, such tight tolerances 

on the constraint and solution are not used. However, since the goal of this work is to compare 

the asymptotic performance of the two algorithms, these harsh convergence conditions were 

used. This explains the relatively long CPU run times observed in Table 24. 

Table 24. Summary of the numerical results and comparison of the two algorithms. 

Algorithm DoF CPU time 

(hours) 
Costopt

 

SIUQ 60 0.45 10.37% 

IUQ 8140 6.1 10.12% 

 

 

Figure 82. Direction importance in terms of absolute error in adjustment parameter. 

In order to prioritize among alternative experiments, the previous formulation can be 

generalized such that Eq.(78)  sorts the experiments based on two factors; first the contribution 

of each experiment to the overall uncertainty reduction and second the financial saving 

associated with each experiment:  
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where  Cost optd  is the cost evaluated at the optimum adjustment set (i.e. 
optd ). ',2

jl R   is the 

variance in the response jy  due to the thl  experiment. Note that it has been assumed that the 

lth experiment only reduces the uncertainty of a single cross-section which may be true for 

differential measurements but not integral experiments. Hence, the experiments are prioritized 

according to the value of l ; the larger the value of l the more important the experiment is. 

Using the same logic one can quantify the effect of performing the first L  experiments using 

the following expression:  
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Table 25 and Table 26 show the 10 most important experiments to be performed along with 

their initial and require uncertainties, l , L . 
0  denotes the initial relative uncertainty and 

'  denotes the required uncertainty. Comparing the solution from both SIUQ and the IUQ, the 

similarity of the solution between the two schemes is obvious. Furthermore, note that the 

depleted MOX fuel has a relatively high concentration of 239

94 Pu ; therefore, the sensitivities of 

the responses with respect to this isotope are expected to be higher for the MOX fuel than for 

the 
2UO  fuel. This expectation was verified numerically by calculating the sensitivities using 

each fuel type separately. 
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The identifiability of the inverse problem can be tested by the rank of the Fisher matrix. 

The Fisher matrix represents the information carried by the model from the parameter space 

towards the response or observables space [91-94]. Figure 83 depicts the rank of the Fisher 

matrix for the full dimensional problem; one can see that the Fisher matrix is rank deficient 

even for unrealistically high measurement precision. However, Figure 84 shows that for the 

reduced problem (SIUQ algorithm) the Fisher matrix is full ranked at a measurement precision 

of 10-4.  

  Table 27 shows the identifiability test for the full dimensional IUQ formalism. One can see 

that for a different initial guess, the problem converges to different solutions with different 

adjustment parameters and experiments.  Table 28 shows that the reduced dimensional problem 

is fully identifiable regardless of the initial guess (refer to Figure 84). 

 

Table 25. Summary of the results. The 10 most affected reactions: IUQ algorithm. 

Parameter 0  %  '  % 
L  

 238

92 U , '  [3.0-4.8]MeVn n  20.0 6.3 46% 

 238

92 U , '  [1.85-2.35]MeVn n  19.7 7.44 58% 

 238

92 U , '  [2.479-3.000]MeVn n  19.1 7.42 72% 

 238

92 U , '  [1.4-1.85]MeVn n  21.1 10.4 84% 

 238

92 U , '  [6.434-8.1873]MeVn n  20.9 12.1 87% 

 238

92 U , '  [0.9-1.4]MeVn n  19.3 11.6 89% 

 238

92 U ,  [6-8.099]eVn   2.28 1.39 91% 

 238

92 U ,  [4.75-6]eVn   3.00 1.83 92% 

 238

92 U ,  [8.099-10]eVn   2.39 1.48 94% 

 
 

3.14 1.89 95% 

 

 

 235

92 U  [3.0-4.8]MeV
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Table 26. Summary of the results. The 10 most affected reactions: SIUQ algorithm. 

Parameter 0  %  '  % 
L  

 238

92 U , '  [3.0-4.8]MeVn n  20.0 7.16 45% 

 238

92 U , '  [1.4-1.85]MeVn n  21.1 8.52 63% 

 238

92 U , '  [1.85-2.35]MeVn n  19.7 7.99 79% 

 238

92 U , '  [2.479-3.000]MeVn n  19.1 7.89 90% 

 238

92 U , '  [6.434-8.1873]MeVn n  20.9 8.69 93% 

 235

92 U  [6.434-8.1873]MeV  8.34 3.52 95% 

 235

92 U  [8.1873-20.0]MeV   11.6 5.23 98% 

 238

92 U , '  [2.354-2.479]MeVn n  19.4 9.42 99% 

 238

92 U ,  [8.099-10]eVn   2.39 1.32 99.7% 

 
 

34.0 19.1 99.8% 

 

 
Figure 83. The rank of Fisher matrix for different attribute measurement precisions (full 

dimensional problem). 
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Figure 84. The rank of the Fisher matrix for different attribute measurement precisions 

(reduced problem). 

 

Table 27. Identifiability test - Full dimensional space analysis. 

 
initiald  0.1 initiald  0.5 initiald  0.9 

Cost Function 11.02% 10.49% 10.12% 

CPU (hours) 0.58 5.89 6.1 

1d  1.23E-01 1.21E-01 1.11E-01 

2d  1.29E-01 1.65E-01 1.52E-01 

3d  1.43E-01 1.55E-01 1.54E-01 

4d  1.50E-01 1.62E-01 2.55E-01 

5d  1.50E-01 1.65E-01 2.63E-01 

6d  1.50E-01 1.72E-01 3.06E-01 

7d  1.50E-01 1.82E-01 3.17E-01 

8d  1.50E-01 2.14E-01 3.12E-01 

9d  1.50E-01 2.36E-01 3.16E-01 

10d  1.50E-01 2.32E-01 3.62E-01 
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Table 28. Identifiability test - Reduced dimensional space analysis (SIUQ algorithm). 

 
initiald  0.1 initiald  0.5 initiald  0.9 

Cost Function 10.41% 10.38% 10.37% 

CPU (hours) 0.28 0.37 0.45 

1d  1.01E-01 1.03E-01 1.05E-01 

2d  1.51E-01 1.50E-01 1.52E-01 

3d  1.57E-01 1.58E-01 1.59E-01 

4d  2.62E-01 2.62E-01 2.57E-01 

5d  2.69E-01 2.63E-01 2.68E-01 

6d  3.11E-01 3.16E-01 3.16E-01 

7d  3.11E-01 3.12E-01 3.14E-01 

8d  3.14E-01 3.13E-01 3.12E-01 

9d  3.25E-01 3.25E-01 3.17E-01 

10d  3.83E-01 3.93E-01 3.98E-01 

 

 

 

6.2 Inverse Uncertainty Quantification for High Dimensional Constrained Problems 

 

The inverse uncertainty quantification problem or IUQ deals with the following question: 

which and by how much each parameter uncertainty should be reduced to meet the target 

uncertainties for the responses of interest? This provides a useful analysis tool for both new 

and existing reactors, as it allows one to identify the experimental needs to support the reactor 

application of interest. IUQ is set up as a constrained minimization problem in terms of a cost 

function that measures the cost of the experiments required to reduce cross-section 

uncertainties (focusing on nuclear data uncertainties only), with the target uncertainties for the 

responses serving as constraints.  

This section introduces another development to the IUQ formalism; this development 

reduces the computational cost of high dimensional constrained problems. The approach 

enables the IUQ to be extended to applications of this method to models with a high number 
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of constraints (e.g., flux field) whose respective uncertainties are to meet target values. Direct 

solution of the minimization problem with many constraints is difficult. To address this 

challenge, this section introduces an efficient algorithm that reduces the dimensionality of the 

response space prior to the application of the minimization search. Numerical experiments 

employing PWR lattice models demonstrate the computational efficiency of the proposed 

algorithm.  

As mentioned earlier, the SQP algorithm is used in the IUQ formalism adapted here. SQP 

algorithms are often at an advantage over other methods whenever the number of uncertainty 

sources is not large while the evaluation of the constraint functions is computationally 

expensive. Hence the improvement introduced in the previous section (section 5.1) solves the 

problem of a large number of uncertainties, while the improvement introduced here addresses 

the issue of a huge number of constraints. Therefore, this section takes us one step further 

towards the application of the IUQ formalism on multi-physics coupled problems which are 

expected to encounter a large number of constraints.  

 

6.2.1 Algorithm 

 

Consider the following radiation transport model: 

 R f  , n   and mR , 

where   represents the input parameters (e.g. nuclear data cross-sections) and R  is the 

response vector (e.g. the neutron flux field) whose uncertainties are to be reduced. Earlier work 

has shown that neutronics models typically used in reactor design calculations are inherently 

reducible, implying a large degree of correlation exists between the spatially-energy-dependent 
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flux values. This means that the flux variations could be described using a lower number of 

degrees of freedom. The range finding algorithm (RFA) [30], introduced in earlier chapters, 

can be used to determine these degrees of freedom, described mathematically by a lower 

dimensional subspace (i.e. the active subspace). The implication is that response variations 

orthogonal to the active subspace are negligible, and hence could be discarded by the analysis. 

The proposed algorithm is used to recast the minimization search in terms of the active 

subspace prior to the execution of the minimization search, which results in a significant 

reduction in the number of constraints.  

Assume that the RFA yielded the basis of the active subspace as the columns of matrix U

: 

 1 2| | | ru u uU  

 The implication is that any response variation can be approximated by:  

  1 x x1

1

r
m m r r

i i

i

R u 



 U   (80) 

where r is the rank of the active subspace and is typically much smaller than the original 

dimension of the response space, i.e., r n . The above equation may be used to recast the 

minimization search as follows:  

Eq. (80) may be re-written as follows: 

T R  U , 

where   is denoted hereinafter as the active responses. The target uncertainties for the 

responses are determined by the user, denoted by the diagonal elements of a matrix 
RC . The 
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above equation can be used to calculate the corresponding target uncertainties for the active 

responses. 

  T

R C U C U   (81) 

The IUQ formalism requires the sensitivities of the responses with respect to the input 

cross-sections, which can be expressed in terms of the active responses as follows: 

  
x1 x1

x
m r

m r

i i

dR d

d d



 
 U   (82) 

With the active responses much fewer in number than the original responses, the adjoint-

based sensitivity analysis is the best candidate to evaluate the sensitivity profiles for the r active 

responses. This follows as r is expected to be much smaller than the number of input cross-

sections, which renders a forward-based sensitivity analysis computationally intractable for 

neutronics models. The active response can be used in conjunction with Eqs.(82) and Eq.(42) 

to recast the problem’s constraints as follows:  

   Tdiag    
'

S C S   (83) 

where S  is the matrix of the sensitivity profiles of the active responses ( ). At each cost 

function calculation the parameter   is mapped back to the full dimensional response y ; hence, 

the cost function remains the same. The algorithm might be summarized as follows: 

1- Determine a basis for the active subspace described by a matrix ( xm r
U ) using the range 

finding algorithm (RFA) to identify the active responses. 

2- Calculate the sensitivity profile for the active responses ( ) using the adjoint approach. 

3- Calculate the new constraints in terms of the active responses using Eq. (81). Execute the 

IUQ optimization problem to determine the search parameters. 
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6.2.2 Case Study: High Dimensional Single Physics Target Accuracy Assessment– 

Lattice/Depletion 

 

Motivated by the need for multi-physics coupling in many nuclear systems modeling, this 

section introduces a numerical test that illustrates the use of the proposed technique on coupled 

multi-physics models. A depletion-transport sequence is used for demonstration. A PWR 

quarter fuel lattice is modeled using SCALE6.1 (H. B Robinson Assembly 05, Rod N-9, 

Sample N-9B-S, First Cycle [57]) where the TRITON sequence is used to perform the 

depletion calculations through three key steps: the first step is the transport calculations and 

the flux post processing calculation (mainly NEWT) where the transport flux solution is used 

to prepare region-averaged multi-group cross sections and multi-group flux values for each 

depletion material. Additionally, the energy-integrated power for each depletion material is 

determined by normalizing the model power density to equal a user defined power level. 

Second, COUPLE module generates a one-group cross-section library for each material 

assigned for depletion. Finally, ORIGEN module is used to deplete material using the 

normalized material power or the normalized flux  

In this numerical test the NEWT transport solver is used to calculate the corresponding 

neutron flux distribution and the multiplication factor and hence considered as one physics 

model (denoted as Transport Calculations in Figure 85), while the rest of calculations are 

considered another separate physics (denoted as Depletion Calculations in Figure 85).  The 

target is to constrain the uncertainties of the flux solution and the critical eigenvalue at all 

depletion steps to be below some specified target values. The transport calculations takes the 

neutron macroscopic cross-sections ( ) as input and generates the flux and eigenvalue as 

responses. On the other hand, the depletion calculations takes the neutron flux distribution as 
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an input to predict isotopic concentrations, as well as to generate many-group spatially 

dependent cross-sections for nodal core calculations [57].  

The goal is to constrain the uncertainty in the 44 group neutron scalar flux in the fuel 

mixture and the multiplication factor over 5 depletion steps (4 intervals). 

In order to find the reduced space, an augmented vector ( ) is defined and the RFA is used to 

find the basis of the active subspace: 

  
k




 
  
 

  (84) 

Assume that matrix xm r

 U  is the basis matrix which is used to transform the reduced 

space uncertainties into the full space using Eq.(81). Hence, the response ( ) can be 

transformed into the lower dimensional subspace as follow:  

   = U   (85) 

where the constraint can be defined as follow:  

  Tdiag       S C S   (86) 

where   is the vector of the user defined constraint tolerances (i.e. target variance). Figure 86 

shows the relative error upper bound predicted when approximating the full dimensional space 

of the augmented parameter ( ) with a lower dimensional subspace using Eq.(87). Previous 

work has demonstrated that, for loosely coupled models, the active subspace can be estimated 

using a gradient-free RFA and yet be inclusive of that obtained from the gradient-based RFA 

(GB-MPRFA) (refer to chapter 2 and 3). Hence, in this numerical test we employ the subspace 

obtained by the gradient-free RFA applied on the transport model (only) to obtain the subspace 
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characterized by the error metric in Figure 86. The RFA uses the following equation to predict 

the error upper bound:  

  1,... 2

2
10 max || ( ) ||T i

upper i p   


 I U U   (87) 

where this result is guaranteed with a probability of 1 10 p [30, 34]. Moreover, p is the number 

of extra snapshots used to verify this upper bound. 

For demonstration, in this numerical test, a subspace with dimension (r = 10) is used, 

Figure 86 suggests that this subspace can approximate the variations of the response vector (

 ) with a relative error upper bound less than 1%. Keeping in mind that the number of 

responses   per transport calculation is 45 = (44 +1) vs. 10 degrees of freedom per depletion 

step for the reduced order problem.  

Table 29 shows the summary of the calculations and the result. The reduced formalism 

computes in less than 2% of the time required to solve the full dimensional space problem 

(using the objective function presented by Eq.(88)). Figure 87 shows a comparison of the 

uncertainty in the neutron flux over the 5 depletion steps burning the fuel to 33 GWD/MTHM. 

The figure depicts the comparison between the target accuracy violation as calculated by the 

full dimensional analysis and the reduced dimensional analysis.  

Table 30 provides the required experiments along with the required uncertainties; the 

experiments were prioritized according to the expression given by Eq.(79) . Note that all the 

factors {
i } and { j } are set to 1.0.  On the other hand, Table 31 compares the target accuracy 

violation in the multiplication factor ( effk ) as obtained by both the full dimensional analysis 
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and the reduced dimensional analysis. Moreover, Figure 87 compares the constraint violations 

in the 44-group neutron flux distribution over the depletion steps (from fresh fuel to 33 

GWD/MTHM). In this numerical example the objective (cost) function is defined by Eq.(88), 

denoting the relative financial effort reported in the table:  

   
',2 2

2

1 1

1

Cost = 

n n
i i

i ii i

n
i

i i

d

 

 





 



 
 

 
 


  (88) 

 

 

 

 
Figure 85. The Depletion Sequence 
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Figure 86. Error upper bound –scalar flux. 

 

  

Table 29. Summary of the results. 

 Number of 

Constraints 

Relative Financial Effort 

Eq.(88) 

Full 

Space 

45 0.325% 

Reduced 

Space 

10 0.326% 
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Table 30.The required experiments along with the required uncertainties. 

Parameter 0  %  '
 % L  

 238

92 U , '  [3.0-4.8]MeVn n  20.04% 2.83% 57% 

 238

92 U , '  [1.85-2.35]MeVn n  19.71% 12.34% 65% 

 238

92 U , '  [2.48-3.00]MeVn n  19.13% 12.15% 73% 

 238

92 U , '  [1.4-1.85]MeVn n  21.06% 13.87% 79% 

 239

94   [0.275-0.325]eVPu   1.03% 0.50% 83% 

 239

94   [0.1-0.15]eVPu   1.03% 0.52% 86% 

 238

92 U ,  [0.03-0.1]KeVn   3.00% 1.67% 88% 

 238

92 U , '  [0.9-1.4]MeVn n   19.33% 14.76% 91% 

 239

94   [0.15-0.20]eVPu   1.03% 0.62% 92% 

 238

92 U , '  [4.80-6.43]MeVn n  20.85% 16.07% 94% 

 

 

Table 31. Uncertainty in the multiplication factor. 

Depletion Step 

(GWD/MTHT) 

Initial  

effk  

Target  

effk  

effk  

(Full 

space) 

effk  

(Reduced 

space) 

0.00 0.0054 0.0038 0.0036 0.0036 

5.44 0.0065 0.0046 0.0043 0.0042 

15.7 0.0073 0.0052 0.0044 0.0044 

25.1 0.0080 0.0057 0.0049 0.0049 

33.7 0.0084 0.0059 0.0051 0.0051 
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Figure 87. Uncertainty (standard deviation) in the 44 group flux in the fuel mixture 

(normalized to the sum of fluxes in all mixtures) as obtained from the full and reduced space. 

 

This section introduces an efficient technique for performing the inverse uncertainty 

quantification (IUQ) in reactor physics calculations. This work deals with the case when the 

IUQ aims to constraint many responses. In this case the computational cost of the IUQ problem 

is expected to be high and the problem might become intractable. Therefore, this section 
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illustrates that computational savings are possible via reduction of the dimensionality of the 

response space by transforming it into a lower dimensional active subspace. 

6.3 Multi-Physics Target Accuracy Assessment  

In recent years, there has been an increasing demand from nuclear research, safety, 

regulation and industrial communities for best estimate predictions to be provided with 

enhanced confidence bounds for many important attributes such as neutron multiplicity, power 

distribution and reaction rates. Therefore, the inverse uncertainty quantification (IUQ) problem 

can be defined and solved to assess the requirements on the sources of uncertainty such that 

the uncertainty in the attributes of interest can be met. The resultant of this inverse problem 

can, subsequently, guide the experimental effort to further reduce the uncertainty associated 

with these sources in the most efficient and optimized manner. 

As pointed out in chapter 1, nuclear reactor modeling and simulation involve neutronics, 

fuel thermo-mechanics and thermal hydraulics. Therefore, multi-physics coupling is needed to 

account for the feedback from these different effects. Such coupling is important for reactor 

design and safety analysis and should result in an integrated high-fidelity system of software 

tools describing the overall Nuclear Power Plant (NPP) behavior and taking into account 

interactions among the different systems and physical phenomena during reactor operation and 

safety related transients. Hence, multi-physics coupled modeling is at the heart of the most 

important research problems being perused in the nuclear engineering modeling and simulation 

field. Previous chapters introduced gradient-based and gradient-free reduction algorithms for 

single physics and multi-physics coupled models. Moreover, Efficient UQ and IUQ formalisms 
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were introduced and discussed. In this chapter the IUQ analysis will be extended to multi-

physics coupled models in gradient-free and gradient-based manners. 

The computational cost of the inverse uncertainty quantification problem depends, mainly, 

on the dimensionality of the uncertainty sources space and the constraint space. Fortunately, 

these spaces can be often replaced by lower dimensional subspaces approximations that are 

believed to represent the actual subspaces within certain user-defined upper error bounds [30]. 

Moreover, previous sections have demonstrated and implemented subspace based 

improvements to enhance the identifiabiltiy and the computational cost of the IUQ formalism.  

As demonstrated previously, reducing the dimensionality in the uncertainty sources space 

allows the analyst to consider a larger number of uncertainty sources because the 

computational cost is dependent of the number of DoF which represent the major 

uncertainty/sensitivity components, unlike the conventional formalism where the 

computational cost is dependent on the number of uncertainty sources.     

In this section, the algorithms developed previously are used to extract the influential DoF 

efficiently for two loosely coupled models. Extracting the important DoF represented by the 

basis of the lower dimensional subspace approximation (active subspace) reduces the 

complexity and computational cost of the analysis. Dimensionality reduction in the constraint 

space is introduced and used to reduce the computational cost of the IUQ formalism. A multi-

physics problem represented by a PWR fuel lattice depletion problem (CASL VERA 

progression problem 2) is modeled and the accuracy of the multiplication factor and the group 

dependent neutron flux (spatially averaged) are used as reactor attributes whose uncertainties 

are to be reduced. The goal is to determine the required covariance in the nuclear data cross 
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sections such that the target accuracies are achieved. Numerical experiments are used to 

demonstrate the implementation and the computational efficiency of the proposed algorithm. 

 

6.3.1 Algorithm 

 

The complexity of IUQ problem (as defined in previous sections) depends on the number 

of uncertainty sources to be reckoned with (the dimensionality of the uncertainty sources 

space) and the number of constraints to be satisfied (the dimensionality of the constraints 

space). Other complications might arise if the model is to be considered as a non-linear model. 

In this case the linear uncertainty propagation (the sandwich equation) is no longer valid. 

Moreover, if higher than the second order moment is required to describe the uncertainty 

distribution (e.g. non-Gaussian) then the method fails. However, in this work the linear 

assumption is to be tolerated for relatively small intervals in the input parameter range.  

Section 6.1.1 suggested a subspace based approach to deal with the case of huge 

dimensionality in the uncertainty sources space [88]. That approach considered single-physics 

problem with few constraints and high dimensional uncertainty source space. However, in this 

work high dimensional multi-physics coupled problems will be considered.    

To begin with the analysis, consider the two loosely coupled multi-physics models 

illustrated in Figure 85. First let us focus on model A and assume that the model can be 

represented mathematically as follow:  

 y f x , 
nx  and mR  

The multi-physics range finding algorithm (MPRFA) introduced in chapter 3 can be used 

to approximate the full dimensional space representing the model’s response (i.e. y ) by a lower 

dimensional subspace (active subspace). For example, for the two loosely coupled multi-



 

218 

 

physics models in Figure 89 there are two interface parameters where each is characterized by 

a space that can be approximated using a lower dimensional subspace (active subspace) using 

the RFA. Let 
xU  and yU  be the basis of the active subspaces of the x and y – spaces, 

respectively, as calculated by the MPRFA.  MPRFA uses a combination of gradient-free and 

gradient-based versions of the RFA. It is important to notice that the RFA can be used to 

calculate the basis of the lower dimensional subspace approximation of the x- and y-subspaces; 

however, as demonstrated in Chapter 3, comparing the RFA and the MPRFA illustrated the 

superiority of the MPRFA over the RFA. Whenever the gradient information is not available, 

the MPRFA cannot be used, hence the RFA can be used to perform the gradient-free 

dimensionality reduction using the Efficient Range Finding Algorithm, i.e. ERFA (Refer to 

Chapter 2). For more details about the RFAs Ref. [30, 34] might be consulted.  

For example, the response my  can be represented by a lower dimensional subspace 

characterized with the basis matrix yU . Therefore, any response vector can be written as a 

linear combination of the basis vectors as follow:                         

  , , , ,

1 1

yrm

y i y i y i y i

i i

y u u 
 

     (89) 

where 
yr  is the rank of the lower dimension subspace approximation (active subspace): 

  
x x1x1 y ym r rm

y yy  U   (90) 

where yr m . The following paragraphs discuss an approach which can be used to perform 

the uncertainty quantification analysis efficiently utilizing the lower dimensional spaces.  
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 From Eq.(90), if the uncertainties in the reduced order parameters ( y ’s) are determined, 

Eq.(91) can be used to propagate the uncertainty towards the full dimensional response as 

follow: 

  
y

T

y y yC U C U ,  (91) 

hence, one can propagate the uncertainties along the reduced space and map them back towards 

the full space. Note that in this case the number of responses is reduced from 
ym r , hence 

the computational cost of estimating the uncertainties is reduced. 

Moreover, the IUQ formalism entails the calculation of the sensitivity profiles which often 

involves models characterized with large input parameter dimensionality (e.g. nuclear cross-

sections) and/or high dimensional response space. Generally, there are two approaches to 

evaluate the sensitivities; the forward approach and the adjoint approach. The adjoint 

(variational) approach is preferred whenever the model is characterized with a high 

dimensional input parameter space. The adjoint approach entails the calculation of m adjoint 

profiles, each corresponding to one of the responses (observables). Therefore, the 

computational cost of applying the adjoint approach depends on the number of responses (the 

dimensionality of the y-space). Nevertheless, if the dimensionality of the y-space is high and/or 

the adjoint model is not available, then the forward approach (brute force) might be used. 

Although the forward approach is always available to use, its computational cost depends on 

the number of inputs (dimensionality of x-space).  Unfortunately, neutronics applications can 

be characterized with a huge dimensionality in the input space (e.g. nuclear data cross-section 

data) and in certain applications huge dimensionality in the response space (e.g. spatial mesh 

wise angular flux distribution). If the response space is also characterized with huge 
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dimensionality, then even the adjoint method might be computationally expensive; in this case 

the MPRFA can provide a way to ease the analysis and make the computational cost 

reasonable. A reduction in the response space provides an efficient way to calculate the 

sensitivities in the lower dimensional space and map them back towards the full dimensional 

space as follow: 

  
x y

y

m r

yx y xs s U   (92) 

For instance, using the adjoint method to calculate the sensitivity coefficients of a general 

response requires 2yr   model runs (1 forward run + 1 adjoint runs and 
yr  GPT run). On the 

other hand, the corresponding computational cost of calculating the sensitivity profiles on the 

full dimensional space is 2m . Hence, the IUQ formalism can be tuned to constrain the 

reduced dimensional variance (
yC ) instead of the full dimensional variance ( yC ) which can 

be related to that of the reduced dimensional variance using Eq.(91). 

Whenever the adjoint model is not available, a similar approach can be used to make the 

forward approach more efficient. This approach was first proposed in Ref. [51] under the title 

Efficient Subspace Method (ESM). Assume that the parameter space can be approximated by 

a lower dimensional subspace with the orthonormal basis 
x xn r

xU . Then any snapshot of the 

parameter space can be represented, approximately, by a linear combination of the basis 

vectors (columns of matrix 
x xn r

xU ) : 

  , , , ,

1 1

xrn

x i x i x i x i

i i

x u u 
 

    (93) 

where xr  is the rank of the lower dimension approximation of the parameter space:  

  x x1x1 x xm r rm

x xx  U  (94) 
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Now consider a multi-physics coupled system (consult Figure 2). In this case the IUQ 

problem must be solved repeatedly to make sure that the variance (or the standard deviation) 

on the interface parameters (e.g. x  and y ) are constrained on each coupling step. 

Assume that the two models are coupled over t steps (e.g. time steps). For example, if the 

focus is turned onto the y-space interface, then at each coupling step the sensitivity profile must 

be updated ( j

yxs ): 

,  1, ,j

yx j tS  

The IUQ formalism can be reformulated to constrain the variance on the y-space as follow: 

 ,j j T

yx x yx ydiag '
S C S  

A dimensionality reduction on the interface space can help in making this formalism 

efficient, so that the IUQ problem is solved along the influential directions (DoF) in the 

interface space.  As mentioned before, the problem can be recast in terms of the reduced 

variable. This transformation simplifies the problem in two aspects: first, the sensitivity 

profiles can be calculated efficiently along only yr  responses instead of m responses; this 

makes the adjoint sensitivity analysis more efficient. Moreover, the forward sensitivity 

approach might be simplified as explained before. Second, the number of constraints to deal 

with it is transformed from m to yr . In this case the constraint can be reformulated as follow: 

 ' ,

y y y

j j T

x x xdiag   S C S  

To avoid repetition, it is obvious that the same argument applies on the x-space interface 

between the two models. The proposed algorithm (Multi-Physics Subspace based Inverse 

Uncertainty Quantification) can be summarized as follows (MP-SIUQ):  
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Step 1: Finding the active subspace approximation (MPRFA) 

1- Using the MPRFA, find the lower dimensional subspace approximation of the interface 

parameters of interest ( xn r

yU and 
xm l

xU ).  

2- Calculate the sensitivities on the reduced space and at each coupling step for each interface 

parameter: 

,  1, ,
y

j

x j t s   

y ,  1, ,
x

j j t s  

 where t is the total number of coupling steps. 

Step 2 : Use the SIUQ algorithm to obtain the regularization subspace (T-subspace). 

Step 3 : Solve the IUQ problem in the reduced space.  

1- Outer optimization: Starting from  j = t;  Using Eq. (46) to determine the target accuracy in 

the lower dimensional space for model A. 

2- Solve the IUQ problem for model A using the following reduced constraint:  

 ,

y y y

j j T

x x xdiag   
'

s C s  

 Minimize the corresponding objective function (e.g. Eq.(77)) for the decision variable 
yd  

3- From the solution of the outer minimization problem, determine the target accuracy for 

model B: 

 'min ,j j

x x xdiag    C  

Using the following equation, determine the target accuracy in the lower dimensional space: 

T

x x xC U C U  

a- Solve the IUQ formalism for model B using the following constraint: 
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 ' ,

y yx x x

j j T j

ydiag   s C s  

     Minimize the corresponding objective function (e.g. Eq. (88)) for the decision variable 
xd  

b- Determine the target accuracy for the outer optimization step:  

 1 1min ,j j

y y ydiag     
'

C  

4-  j=j-1,  if  j = 0, go to next step , otherwise repeat steps 1 to 4.  

5- Report the initial covariance library (j=0) as the library required to attain the target accuracy 

throughout the coupling process.   

 

6.3.2 Case Study: CASL Progression Problem 2 – Lattice/Depletion 

 

Motivated by the existence of strong multi-physics coupling in many computational 

nuclear engineering applications, this section introduces a numerical test that illustrates the use 

of the proposed algorithm on coupled multi-physics models. A depletion application can serve 

as an example where the transport calculations are considered to be coupled with the rest of 

the depletion sequence. SCALE6.1, TRITON sequence is used to simulate the depletion of a 

PWR fuel lattice model [57]. More specifically, the 2-D TRITON sequence T-DEPL is used. 

T-DEPL sequence consists of three main modules: NEWT, COUPLE and ORIGEN. NEWT 

generates the transport flux distribution which is then used to compute the region-averaged, 

multi-group cross-sections along with the multi-group flux for each of the depletion materials. 

COUPLE generates the 1-group cross-section for each of the depletion materials. Finally, 

ORIGEN depletes each of the isotopes based on the normalized material flux (or power) using 

the 1-group cross-sections computed by COUPLE.  
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This section will solve the target accuracy assessment problem using the classical problem 

formulation [16, 19] while in Section 6.3.3 a new problem formalism is proposed. The 

formalism entails a new cost function combined with a more realistic list of experiments.  

In this numerical example, the transport calculations represented by NEWT are considered 

as a separate physics (Transport calculation block in Figure 89 ) while COUPLE and ORIGEN 

are considered another separate physics (depletion calculations in Figure 89). The interface 

parameters are the neutron flux distribution ( ) and the multiplication factor ( effk ) which are 

the output of the transport calculations model ( ) and the macroscopic cross-sections ( ), 

which are considered to be the output of the depletion calculation sequence. 

 

 

Figure 88. CASL Progression Problem 2: lattice Model.  
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Figure 89. Depletion sequence. 

 

 The goal is to constrain the uncertainty in the mesh-wise-spatially dependent 44 energy 

group neutron scalar flux and the multiplication factor over 5 depletion steps (4 intervals). In 

order to find the reduced space, an augmented vector (  ) is defined as the vector containing 

the transport flux and the multiplication factor: 

 
T

i ik  ,  

where i  is the vector of multi-group transport flux as calculated  after the ith depletion step 

and 
ik  is the multiplication factor characterizing the system after the ith depletion step. Assume 

that the columns of matrix xn m

 Q  form the basis for the interface parameter
i . While the 

basis of the other interface, the microscopic nuclear data cross-sections ( ), is represented by 

the columns of matrix Q . The basis of the low dimensional subspace approximation can be 

calculated using either Algorithm I (ERFA) or (MPRFA). Figure 90 and Figure 91 compare 

the performance of the lower dimensional subspace approximation for the   interface 

parameter and    interface, respectively. Each figure compares the performance of the ERFA 

and MPRFA. The relative error upper bound in the two figures suggests that the performance 
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of the basis calculated by the MPRFA is superior to those calculated via the ERFA. Therefore, 

in the remainder of this text the MPRFA will be used to calculate the basis of the lower 

dimensional subspace ( Q  and 
Q ). However, for an application where running the coupled 

models is computationally impractical, then the ERFA can offer a computationally practical 

technique to performed dimensionality reduction. For example, for the transport calculation 

model (first physics), these bases are used to transform the reduced space uncertainties into the 

full space using Eq.(91). Hence, the response ( ) can be transformed into the lower 

dimensional subspace as follow: 

  = Q  

where the constraint can be defined as follow: 

 T

x x xdiag
    S C S  

 Previous work demonstrated that the active subspace can be estimated using a single 

physics based RFA and yet be inclusive of that obtained from the multi-physics based RFA. 

The RFA uses the following equation to predict the error upper bound: 

1,... 2

2
10 max || ( ) ||T

upper i p i  


 I Q Q  

where this result is guaranteed with a probability of 1 10 p . 

 First the sensitivities are calculated using the adjoint approach applied at the reduced space 

(
/ x

S ) and then Eq.(92) is used to map the sensitivity back to the full dimensional space. The 

same procedure is applied on the other interface parameter (microscopic cross-sections ).  

In this numerical test, the scalar neutron flux is being calculated on 52 spatial mesh points 

for 44 energy groups which makes the full dimension of the scalar neutron flux (52 x 44 = 
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2288); however, the multiplication factor at each depletion step is augmented in the vector   

which makes its dimension (2288 + 1 = 2289).  To keep the error upper bound below 1%, a 

subspace of rank 300 is used for   (Figure 90) and 220 for the cross-sections (Figure 91).  

Table 32 shows the summary of the calculations and the results. The reduced formalism 

runs within a reasonable time scale compared to that required by the full dimensional problem, 

yet the reduced formalism produced similar results as depicted by Table 33 and Table 34. Both 

algorithms converge to similar solutions, as the transformation from the full to lower 

dimensional space preserves the important directions in the response space. Therefore, the 

uncertainty requirements on the sources (nuclear cross-sections) are similar. 

 

 
Figure 90. Single-Physics vs. Multi-Physics Active Subspace ( ). 
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Figure 91. Cross section subspace as obtained from the single physics examination compared 

to the one obtained from the multi-physics examination ( ). 

 

Table 32. Summary of the numerical results and comparison of the two algorithms. 

Algorithm DoF CPU time 

(hours) 
Costopt  

(BoC) - Eq.(77) 
Costopt  

(EoC) - Eq.(77) 

MP-SIUQ 250 1.1 3.64% 18.1% 

IUQ 36,144 - - - 

 

Table 33. The experimental requirements along with their required uncertainties – (EoC). 

Parameter 0  %  '  % 
L  

 238

92 U , '  [3.0-4.8]MeVn n  20.04% 3.27% 54% 

 239

94   [0.1-0.15]eVPu   1.03% 0.36% 59% 

 239

94   [0.275-0.325]eVPu   1.03% 0.39% 64% 

 239

94   [0.15-0.20]eVPu   1.03% 0.52% 66% 

 239

94   [0.07-0.1]eVPu   1.03% 0.55% 69% 

 238

92 U ,  [0.03-0.1]KeVn   3.00% 1.68% 71% 

 238

92 U , '  [1.85-2.35]MeVn n  19.71% 12.49% 78% 

  239

94   [0.05-0.07]eVPu   1.03% 0.66% 79% 

 238

92 U , '  [2.48-3.00]MeVn n  19.13% 12.29% 86% 

 238

92 U , '  [1.4-1.85]MeVn n  21.0% 14.03% 92% 
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Table 34. The experimental requirements along with their required uncertainties – (BoC). 

Parameter 0  %  '  % 
L  

 238

92 U , '  [3.0-4.8]MeVn n  20.04% 6.66% 43% 

 238

92 U , '  [1.85-2.35]MeVn n  19.71% 9.92% 55% 

 238

92 U , '  [2.48-3.00]MeVn n  19.13% 9.66% 66% 

 238

92 U , '  [1.4-1.85]MeVn n  21.06% 12.46% 74% 

 238

92 U ,  [0.03-0.1]KeVn   3.00% 1.47% 82% 

 238

92 U ,  [0.1-0.55]KeVn   2.28% 1.30% 84% 

 238

92 U ,  [0.01-0.03]KeVn   2.69% 1.48% 87% 

 238

92 U ,  [0.55-3.00]KeVn    2.39% 1.39% 88% 

 235

92 U  [3.0-4.8]MeV  3.14% 2.14% 90% 

 
 

20.85% 15.12% 92% 

 

6.3.3 Case Study: Target Accuracy Assessment for 3-D Assembly Depletion Problem 

(CASL Progression Problem 6)   

 

Two differences distinguish the TAA methodology used in this case study from the ones 

used in previous sections:  

1- The assumption that the uncertainty can be propagated linearly is removed by using a 

forward Monte Carlo sampling of a surrogate model that replaces the original model. 

Therefore, at each iteration, the uncertainty is estimated by Monte Carlo samples drawn 

from the surrogate model.  

2-  The goal of the previous TAA methodology is to determine the optimum set of the 

adjustment parameters for the parameters’ uncertainties (cross-sections) using differential 

experiments. However, in reality the uncertainty in the parameters can be improved by also 

assimilation of measurements of integral responses. Therefore, in this section the goal of 

 238

92 U , '  [4.8-6.43]MeVn n
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the TAA analysis is to provide the required integral response measurement uncertainty 

required to improve the knowledge of the parameters uncertainties. 

MP-SIUQ (refer to section 6.3.1) is used to solve the target accuracy assessment problem 

for the 3 dimensional depletion problem. Hence, the cost function that will be used in this case 

study is:  

      
 

2 ',2

2,',, ,

1
2,

1 1

Cost
m M M

i i
j R j R j IRIR

j i i ii

w w
d d

d
  

  

 
    
 
 

     (95) 

   ',2

,R j jd    (96) 

 

where 2

,R j  is the initial uncertainty in the jth target response of interest and ',2

,R j is its updated 

uncertainty. 2,IR

i  is the integral response measured to enhance the knowledge of the 

differential parameters uncertainty ( xC ) via data assimilation.  ',2,IR

i d  is the updated integral 

responses uncertainty required to update the covariance data of the differential parameter 

according to the required adjustment parameter ( d ). 
j  is the target variance ty to be achieved 

in the jth response of interests. All values of {
j } and { iw } were set to 1.0 

The process can be summarized as follow: 

1- Construct the surrogate (for example of the form represented by Eq. (62) ) replacing the 

original model with a more efficient surrogate model. 

2- Solve the optimization problem using the cost function defined on Eq.(95) and the 

constraint defined by Eq.(96). At each optimization step the uncertainty in the target 

responses ( 2

,R j ) are obtained by Monte Carlo Sampling via the surrogate model. At each 
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step the information carried by the adjustment parameters vector ( d ) are transformed into 

required uncertainty in the integral response of interest.  

The uncertainty is propagated non-linearly via Monte Carlo sampling through the 

computationally efficient surrogate model; Thereby dropping the linearity assumption 

endorsed in previous sections within chapter 6. Moreover, the end result is a set of required 

uncertainties in the measurable integral responses to be measured so that the target accuracies 

in the responses of interest are met.  

In this case study a 3 dimensional depletion problem will be subjected for a target accuracy 

assessment study. The problem described in section 0 is used in this case study to perform 

target accuracy assessment on a few measurable responses (the multiplication factor (
effk ) and 

the fission reaction rate at the reactor assembly geometrical center ( FR )) are used as integral 

responses that can be used to enhance the parameters uncertainties via data assimilation. On 

the other hand, the target responses are the maximum fuel pin power ( maxP ) and the maximum 

fuel pin temperature ( maxT ). From results introduced in chapter 4, the maximum pin power and 

maximum pin temperature are functions of the gap conductivity and nuclear cross-sections. 

Moreover, the multiplication factor and fission rate are both affected by the nuclear cross-

sections and gap conductivity. Hence, reducing the uncertainty in the multiplication factor and 

the fission rate would reduce the uncertainty in the parameters of interest (cross-sections and 

gap conductivity) through data assimilation.  

The simulator used is VERA-CS (refer to section 1.7) which does not have a sensitivity 

capability. Therefore, instead of using a linear constraint (defined by Eq.(86)) samples from a 

computationally efficient surrogate will be used to estimate the uncertainty in both the 
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responses of interests (
maxT  and 

maxP ) and the integral responses used for the improvement of 

the parameters’ uncertainties ( effk  and FR  ).  

 Table 35 shows the initial and target accuracies of the responses of interest. First a 3rd order 

surrogate of the form defined in Eq. (62) is constructed and tested. Table 36 shows the accuracy 

tests of the 3rd order surrogate of the form defined by Eq. (62). Table 37 and Table 38 illustrates 

the target accuracies along with the required integral responses measurement uncertainties at 

the Beginning of Cycle (BoC) and the End of Cycle (EoC), respectively. Note that the 

requirements at the EoC are stricter than those at the BoC which means that constraining the 

uncertainty in the responses of interest over the fuel depletion requires rigorous knowledge of 

the integral responses. Finally, this section introduced the capability of performing TAA via 

reduced order models efficiently. This use of the surrogate removes the linearity assumption 

and provides a mean of using the integral experiments rather than the differential experiments.  

 

Table 35. Initial and target accuracies for the responses of interest. 

Entry  Value 

BoC 

Value 

EoC 

maxT  
98 Co [7%] 129 Co [11.72%] 

maxT  
28 Co [2%]  56 Co [4%] 

maxP  
2.7 W/cm [1.2%] 29.6 W/cm [16.03%] 

maxP  
1 W/cm [0.37%] 5 W/cm [2.7%] 
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Table 36. Target accuracy assessment - surrogate accuracy features. 

Surrogate 

order 
RMS 

Construction 

Data Points 

Validation 

Points 

Residuals 

distribution 

surrogate 

form – 

related 

uncertainty 

3rd order 

effk  5 

[pcm] 

150 40 

 

effk  i.i.d 
14.7 [pcm] 

maxP    

0.0098 

[W/cm] 

   

maxP  i.i.d 
0.01 [Co] 

maxT   

7.4 

 [Co] 

 

maxT  i.i.d 

 

9.1  [Co] 

FR  

0.00021 

 

FR i.i.d 

 

 

0.0009 

 

Table 37. The target accuracies along with the required experimental uncertainties for the 

measurable integral parameters – (BoC). 

maxT % 
maxP % '

effkC   '

FRC   

6 % 1 % 432 pcm 0.0063 

4 % 0.5 % 369 pcm 0.0031 

2 % 0.37%  314 pcm 0.0020 

 

Table 38. The target accuracies along with the required experimental uncertainties for the 

measurable integral parameters – (EoC – 30 GWd/MTU). 

maxT % 
maxP % '

effkC  % '

FRC  % 

10 % 10 % 411 pcm 0.0047 

8 % 8 % 341pcm 0.0023 

4% 2.70% 286 pcm 0.0012 
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CHAPTER 7. SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 
 

The goal of this work is to develop scalable algorithms for the uncertainty quantification, 

data assimilation and target accuracy assessment for large scale multi-physics simulation of 

nuclear reactor cores. This dissertation builds upon previous efforts for adaptive core 

simulation developed and reduced order modeling that appeared in various engineering fields 

along with efforts developed within the nuclear research community. 

First, an efficient algorithm for Reduced Order Modeling (ROM) was developed in chapter 

2. The algorithm is an Efficient version of the so called Range Finding Algorithm (ERFA), 

which utilizes loosely converged snapshots of the quantity of interest to capture the variations 

of these quantities of interest. The proposed algorithm enables the nuclear analysts to 

approximate the Quantities of Interest (QoI) via lower dimensional subspaces efficiently; 

therefore, enabling the replacement of complex and computational expensive models with 

efficient reduced order models in the form of surrogates.    

For coupled multi-physics models, chapter 3 improves a previously developed gradient-

based Range Finding Algorithm (RFA) and extends it to multi-physics coupled models (i.e. 

closed loop coupling) with feedback effect. A Gradient Based Multi-Physics Range Finding 

Algorithm (GB-MPRFA) is developed and utilized to construct reduced order models of 

coupled multi-physics models whenever the sensitivity capability is available via adjoint or 

forward approaches. On the other hand, for coupled models without a sensitivity capability, a 

Gradient Free Multi-Physics Range Finding Algorithm (GB-MPRFA) was developed to offer 

a method for the construction of lower dimensional subspace approximations and hence 



 

235 

 

reduced order models to replace the coupled models of interest whenever sensitivity capability 

is not available. 

The algorithms described above are used to facilitate large scale analysis of reactor physics 

calculations such as uncertainty quantification and data assimilation. Chapter 4 introduces 

efficient algorithms for uncertainty quantification. First, the Karhunen-Loeve approach is 

extended for multi-physics coupled models (MP-EUQ) and then compared with a Surrogate 

Based Uncertainty Quantification (SBUQ) approach. Both methods are then verified via 

comparison with brute force Monte Carlo estimated uncertainty values obtained by sampling 

from the original high fidelity model (i.e. VERA-CS). The surrogate approach was further 

utilized to perform Data Assimilation (DA).  Chapter 5 and the case studies therein show that 

data assimilation can be performed efficiently by replacing the original high fidelity models 

with surrogate models that has negligible computational cost to run.  

Finally, chapter 6 utilizes the developed RFAs in another type of inverse problems used in 

nuclear reactor safety and design optimization studies, namely, the Target Accuracy 

Assessment (TAA). ROM is used to enhance the identifiability and efficiency of target 

accuracy assessment studies through the Multi-Physics Subspace based Inverse Uncertainty 

Quantification (MP-SIUQ) which reduces the dimensionality of the parameters and/or 

responses of interest through the proposed RFAs. Moreover, the efficiency of the problems is 

enhanced by replacing the original high fidelity model with a lower order surrogate; therefore, 

solving the inverse problem (TAA) which requires multiple model runs becomes 

computationally efficient.  

Overall, this dissertation develops a framework that can address large scale forward 

problems (i.e. uncertainty quantification), and inverse problems (i.e. data assimilation and 
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target accuracy assessment). The algorithms introduced in this dissertation have been 

developed, verified and tested on lattice physics assembly models (modeled via SCALE6.1) 

and 3 dimensional assembly and core wide models (modeled via VERA-CS). The verification 

and case study tests are mainly of Light Water Reactor (LWR) type represented by CASL 

Progression Problem number 2 (lattice physics), CASL Progression Problem number 6 (3 

dimensional assembly depletion model with thermal hydraulics feedback), and CASL 

Progression Problem number 9 (3 dimensional core wide depletion problem with thermal-

hydraulics feedback).  

The algorithms developed in this dissertation opens the way towards more detailed analysis 

of high fidelity models and facilitates the calibration of these models for depletion problems. 

In other words, the proposed algorithms formulate a model-based and general method to 

provide best-estimates of the Quantities of Interest (QoI) accompanied with an uncertainty 

evaluation, so that the conservative design assumptions are replaced by model based estimates 

of the margins. Moreover, in the past applications with rigorous uncertainty quantification 

were not possible due to computational resources requirements, hence, necessitating the 

excessive use of conservative engineering judgement which can now be rigorously addressed 

avoiding the need for excessive conservatism.  

Establishing a unified framework to estimate uncertainties, safety margins and parameter 

calibration is important and fundamental for the improvement of reactor modeling and 

simulation. This would provide a more realistic and physics-based measure of reactor safety 

and design calculations, which help the practical implementation of risk informed regulations. 

Moreover, having simulation-based margins helps in expediting the licensing process when 

using high fidelity computer codes in safety analysis. For example, design margins can be 
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improved by reducing predictive uncertainty in key reactor attributes. However, the 

improvement of the uncertainties in such important attributes requires a robust experimental 

effort with potentially a huge investment in time and/or money. Nevertheless, with the 

availability of trusted and efficient simulation tools, the experimental effort can be directed in 

the most efficient and optimized manner so that the time-financial investment is minimized 

and the safety-competitiveness gain is maximized.  

 This work represents a comprehensive study for the usage of ROM techniques in nuclear 

engineering applications. However, room for improvement is available and further 

investigations are required in order to improve the efficiency and competitiveness of the ROM 

methods in nuclear reactor analysis. Future work, might consider more rigorous mathematical 

proof to support the gradient based multi-physics dimensionality reduction approach 

introduced in chapter 3. In this context, future work will consider developing such proofs to 

insure that the gradient based approach is applicable and sufficient for nuclear reactor design 

and safety analysis along with improving the gradient free ROM algorithms performance such 

that it matches the performance of the gradient based ROM algorithms. On the other hand, 

more surrogate forms can be tried such as the Gaussian process based surrogates and simplified 

physics based surrogates (e.g. sub-channel versus CFD). In addition, the surrogates can be 

constructed more efficiently by considering each of the coupled physics separately and then 

compared with the performance of the surrogates constructed for the overall coupled system.  

 Regarding the Data Assimilation analysis, other accelerated MCMC algorithms should be 

evaluated with regard to computational performance. In this dissertation, Delayed Rejection 

Adaptive Metropolis (DRAM) was used in conjunction with the surrogate, however, other 

algorithms such as DiffeRential Evolution Adaptive Metropolis (DREAM) must be tested too.  
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 Ultimately, more case studies are needed for the consideration of other types of light water 

reactors (e.g. Boiling Water Reactors) which are characterized by a considerably different 

reactor environment which might affect the performance of the proposed algorithms. 

Moreover, other transient scenarios such as the Loss Of Coolant Accident (LOCA) and Loss 

Of Flow Accident (LOFA) can benefit from such methods as long as the required accuracy is 

preserved.   
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Appendix A 

Frequency Distributions for the Multiplication Factor, Maximum Fuel Pin Power, Maximum 

Fuel Pin Temperature – CASL Progression Problem 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 92. Statistical sampling of k-eff  corresponding to samples of the fuel thermal 

conductivity. Left: obtained via running VERA-CS right: obtained via the surrogate model. 

(Fuel Thermal Conductivity [kcond W/m2K]       keff) 
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Figure 93. Statistical sampling of  maximum fuel pin power corresponding to samples of the 

fuel thermal conductivity. Left: obtained via running VERA-CS right: obtained via the 

surrogate model. 

(Fuel Thermal Conductivity [kcond W/m2K]       Pmax) 
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Figure 94. Statistical sampling of maximum fuel pin temperature corresponding to samples of 

the fuel thermal conductivity. Left: obtained via running VERA-CS right: obtained via the 

surrogate model. 

(Fuel Thermal Conductivity [kcond W/m2K]       Tmax) 
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Figure 95. Statistical sampling of k-eff  corresponding to samples of the gap conductivity. 

Left: obtained via running VERA-CS right: obtained via the surrogate model. 

(Gap Conductivity [hgap W/m2K]       keff) 
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Figure 96. Statistical sampling maximum pin power corresponding to samples of the gap 

conductivity. Left: obtained via running VERA-CS right: obtained via the surrogate model. 

Gap Conductivity [hgap W/m2K]       Maximum Pin Power 
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Figure 97. Statistical sampling maximum pin temperature corresponding to samples of the 

gap conductivity. Left: obtained via running VERA-CS right: obtained via the surrogate 

model. 

Gap Conductivity [hgap W/m2K]       Maximum Pin Temperature 
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Figure 98. Statistical sampling of the keff corresponding to samples of the nuclear data cross-

sections. Left: obtained via running VERA-CS right: obtained via the surrogate model. 

Nuclear Data Cross-Sections [44groupcov]       keff 
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Figure 99. Statistical sampling maximum pin power corresponding to samples of the nuclear 

data cross-sections. Left: obtained via running VERA-CS right: obtained via the surrogate 

model. 

Nuclear Data Cross-Sections [44groupcov]       Maximum Pin Power. 
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Figure 100. Statistical sampling maximum pin temperature corresponding to samples of the 

nuclear data cross-sections. Left: obtained via running VERA-CS right: obtained via the 

surrogate model. 

Nuclear Data Cross-Sections [44groupcov]       Maximum Pin Temperature. 
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Figure 101. Statistical sampling keff corresponding to samples of the grid-loss. Left: obtained 

via running VERA-CS right: obtained via the surrogate model. 

Grid-Loss       keff 
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Figure 102. Statistical sampling maximum pin power corresponding to samples of the grid-

loss. Left: obtained via running VERA-CS right: obtained via the surrogate model. 

Grid-Loss        Maximum Pin Power 
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Figure 103. Statistical sampling maximum pin temperature corresponding to samples of the 

grid-loss. Left: obtained via running VERA-CS right: obtained via the surrogate model. 

Grid-Loss      Maximum Pin Temperature  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

308 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 



 

309 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 



 

310 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 



 

311 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 



 

312 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 104. Statistical sampling keff corresponding to joint samples. Left: obtained via 

running VERA-CS right: obtained via the surrogate model. 

Joint - keff 
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Figure 105. Statistical sampling maximum pin power corresponding to joint samples. Left: 

obtained via running VERA-CS right: obtained via the surrogate model. 

Joint – Maximum Pin Power 
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Figure 106. Statistical sampling maximum pin temperature corresponding to joint samples. 

Left: obtained via running VERA-CS right: obtained via the surrogate model. 

Joint – Maximum Pin Temperature  
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Appendix B 

Frequency Distributions for the Multiplication Factor, Maximum Fuel Pin Power, Maximum 

Fuel Pin Temperature – CASL Progression Problem 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 107. Statistical sampling maximum pin power corresponding to samples of the Gap 

Conductivity, Grid-loss Coefficient, Cross- Sections and joint. Left: obtained via running 

VERA-CS right: obtained via the surrogate model. 

Gap Conductivity [hgap W/m2K], Grid-loss Coefficient, Cross- Sections and joint 

samples         keff 
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Figure 108. Statistical sampling maximum pin power corresponding to samples of the Gap 

Conductivity, Grid-loss Coefficient, Cross- Sections and joint. Left: obtained via running 

VERA-CS right: obtained via the surrogate model. 

Gap Conductivity [hgap W/m2K], Grid-loss Coefficient, Cross- Sections and joint 

samples         Maximum Pin Power 
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Figure 109. Statistical sampling maximum pin temperature corresponding to samples of the 

Gap Conductivity, Grid-loss Coefficient, Cross- Sections and joint. Left: obtained via 

running VERA-CS right: obtained via the surrogate model. 

Gap Conductivity [hgap W/m2K], Grid-loss Coefficient, Cross- Sections and joint 

samples         Maximum Pin Temperature 
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