
ABSTRACT 

ZIMMER, MATTHEW DALY. Vertical Two-Phase Flow Regime Transition Study Using 

Interface Resolved Simulations (Under the direction of Dr. Igor A. Bolotnov). 

 

Two-phase flow regime transitions represent a significant change in flow properties, such as 

momentum transfer, heat transfer, and pressure drop. Transient three-dimensional interface 

capturing direct numerical simulations (DNS) of the two-phase flows is an exciting field that, due 

to recent advancements in computing power, has become capable of simulating phenomena 

previously not achievable due to the extremely expensive spatial and temporal resolution 

requirements. Two-phase flow regime transitions are an excellent example of such phenomena. 

Performing fully resolved interface capturing DNS of two-phase flow regime transition 

simulations could be valuable to contributing to the understanding of the involved physics. 

However, studying two-phase flow regime transitions using interface capturing DNS currently has 

nearly no committed body of research evaluating how feasible and accurate such a simulation is. 

Determining the important physics of two-phase flow regime transitions and quantifying the 

associated computational mesh resolution has yet to be done for this type of simulation.  

Bubble breakup and coalescence, interfacial shear, thin film dynamics, and turbulent-interface 

interactions are all events unique to two-phase flow with significantly small length and time scales. 

This work will discuss these length scales and quantify the mesh resolutions necessary to 

accurately simulate slug to churn and slug to bubbly two-phase flow regime transitions while 

maintaining a reasonable computational expense for modern machines. In this way a standard is 

created for future research in the area of interface capturing DNS of two-phase flow regime 

transitions. Validation is also a focus of this work in order to further support the code’s simulation 

capabilities. Following these studies, first of their kind two-phase flow regime transition studies 

are performed and analyzed using techniques designed specifically for these simulations. 



Slug flow was accelerated to reach churn-turbulent and bubbly flow, followed by their 

decelerations back to slug flow. The simulations were designed to isolate the effects of individual 

flow parameters in order to understand their contributions to the transition. The high fidelity 

numerical data provided by the simulations yield a detailed view of the flow characteristics, and 

their temporal development. By analyzing the similarities and differences in the results, such as 

local turbulent kinetic energy (TKE), interfacial shear profiles, and interfacial area, associated with 

each isolated parametric study, an understanding of what induces the flow regime transition and 

how it develops can be formulated. Analysis shows there is a competition between turbulence-

induced large interfacial instabilities and shearing at the tail in driving the breakup of the Taylor 

bubble. The deceleration also experiences a competition between coalescence and TKE decay that 

prevents the transitions from being fully reversible. The interfacial shear was identified as the 

vehicle for energy transfer from liquid to the interface. By relating the total energy transferred to 

the turbulent energy in the flow, a transition criterion was formulated as a universal predictive 

capability for slug flow transition.  
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CHAPTER 1. INTRODUCTION 

1.1 Overview and Motivation 

Several different methods of simulating single and two-phase flows exist, each with different 

resolution and modeling requirements. Some of the more common flow simulation methods are 

systems level codes, subchannel codes, Reynolds Averaged Navier-Stokes (RANS), large eddy 

simulation (LES), and direct numerical simulation (DNS). Rather than being in competition for 

the same task, each of these methods are best suited to different applications. A DNS code, for 

example, would not be used to analyze nuclear reactor operation. A system level code would be 

best in this situation. Vice versa, a systems level code would not be appropriate for small scale 

simulation. Even though all the methods can model two-phase flow, different scales of physics 

and levels of fidelity are captured in each. The multiphase computational fluid dynamics (M-CFD) 

RANS and subchannel approaches rely heavily on empiricism to provide closure to their models 

since they are not capable of resolving many physical flow features. In contrast, DNS solves the 

Navier-Stokes equations directly and requires no turbulence closures. The computational 

requirements of lower resolution codes tend to be smaller, making them popular for 

system/component design applications. In these circumstances, a large number of simulations may 

be required to analyze all possible operating conditions, making a high resolution and 

computationally expensive method such as DNS not feasible.  

As computational power has improved over time, DNS has increased in popularity for model 

development applications. DNS allows for the detailed exploration of complex phenomenon 

without the need for monetarily expensive experimental equipment or extensive modeling. Since 

DNS does not rely on as numerous a set of models, the phenomenological domain is larger. A 

model is limited in its application to the system it was designed for, but a two-phase DNS code, in 



   

2 

 

theory, is limited by the computational power available. Therefore, flows ranging from single 

phase pipe flow to two-phase convective boiling flows in a reactor subchannel all lie within DNS’s 

grasp. This allows verified and validated DNS to explore the true physics on a fundamental level. 

These simulations can be used to formulate new models that are implemented in the lower 

resolution codes. Nuclear engineers employ nearly all scales of computational fluid dynamics 

(CFD) in their research to improve reactor performance and safety. Given the importance of safe 

and efficient reactor performance, the requirement for accurate modeling is crucial. The models 

must be carefully formulated to be representative of real world phenomena. To do so, experiments 

are commonly used to replicate the physics of a nuclear reactor and generate empirical correlations. 

However, boiling water reactor (BWR) and pressurized water reactor (PWR) prototypic 

experimental equipment is difficult to manufacture and come with a sacrifice to measurement 

resolution. The high temperature and pressure conditions are preventative for many common high-

resolution measurement methods such as conductivity probes and particle image velocimetry 

(PIV). DNS’s limits are computational rather than physical, and simulating high pressure and 

temperature fluid properties and complex geometries is not an issue with modern solvers. In 

addition, DNS allows for data collection at time and spatial resolutions many experimental 

methods cannot achieve, even at atmospheric conditions. Numerical data can come from every 

computational point at every time step, producing terabytes worth of data. With such an immense 

volume of numerical data, a challenge is knowing how to analyze it while maximizing its utility. 

Single-phase DNS has already been shown to accurately capture flow behavior for a wide range 

of Reynolds numbers, Re = 11,000 − 500,000 [1, 2, 3]. Given BWR flows approach Re ≈

300,000 [4], single-phase DNS has already reached and surpassed reactor relevant turbulence 

conditions. These DNS studies simulated flow between parallel plates and DNS was shown to 
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agree very well with what has been observed experimentally. Results from single phase DNS 

studies show that these methods accurately predict both small scale, such as the hairpin vortices 

structure in shear flow [5], and large scale, such as the inverse relationship between wave number 

and pre-multiplied energy spectra density at extremely high Reynolds number [1], without any 

supplied physical knowledge. A significant proportion of the fluid dynamics research community 

has accepted single phase DNS-based data as the valid benchmark to theoretically study and 

understand the turbulence at the same level as the high-quality experimental data. However, in a 

nuclear reactor core the turbulent flows are more complex and two-phase flows are encountered. 

As far as Reynolds number range, two-phase DNS lags behind single-phase due to the extra 

complexity of tracking the interfaces. However, as shown by Fang et al. [6], this gap is closing 

annually. Additionally, research has proven the reliability of two-phase DNS and its potential as a 

powerful tool [7, 8, 9, 10] for flow analysis and understanding. Specifically, DNS’s utility is 

highlighted by Feng & Bolotnov [11] where a single bubble, held static in space (impossible 

experimentally), was subjected to different levels of turbulence. The bubble-induced turbulence 

(BIT) was then measured, providing insight to how a single bubble contributes to turbulence 

enhancement. 

In BWRs, the vapor volume fraction, or void fraction, enters the core at zero value and peaks 

at around 0.75 [4]. The axially dependent void fraction leads to axial macro-interface topology 

changes. As boiling begins near the bottom of the core small bubbles will first be produced due to 

nucleate flow boiling phenomenon. As more bubbles are produced they begin to collide and 

coalesce, forming larger interfacial structures that can further grow or become too large to support 

itself and break apart. This process of coalescence and breakup is continuous along the length of 

the subchannels and is extremely complex. Flow properties such as local heat transfer coefficient 
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and pressure drop are dependent on the interfacial structure [12, 13, 14], necessitating knowledge 

of the local void location and two-phase flow pattern. The void distribution in the core is 

consequential to the neutronics as well since water is the primary neutron moderator. To fully 

describe the physics involved in such a flow, several two-phase flow regimes have been defined. 

Each regime is defined by a classical interface shape most prevalent in the domain. These are a 

convenient way to categorize flows with similar behavior and interface topology. The macro-

interface topology changes that occur along the length of the core are therefore named two-phase 

flow regime transitions. As mentioned, depending on the structure of the interface the turbulence, 

heat transfer, momentum transfer, and critical heat flux (CHF) of the flows can be different. This 

variation in properties makes the knowledge of where each regime exists in the BWR core 

important for predictive capabilities of coolant flow behavior. Unfortunately, the two-phase flow 

regime transitions are not well understood by the scientific community, making accurate 

predictions of their location difficult. Flow regime maps implemented in some codes can be as 

simple as a linear relationship between void fraction and flow rate. Experiments can explore 

individual steady state two-phase flow regimes, but capturing the transition between the regimes 

can be very challenging due to their time-dependent nature and non-trivial identification. The two-

phase flow regime transition process represents an excellent candidate for a DNS study. The study 

would require high spatial and temporal resolution for the data collection techniques, something 

DNS excels at, and producing new models that better capture the physics would be beneficial for 

two-phase flow modeling. Additionally, studying such a complex phenomenon in fine detail can 

reveal the physical mechanisms behind the transitions and inform the scientific community on why 

the transition occurs. Despite flow regime transitions being a strong candidate for an interface 

resolved DNS study, no DNS researchers have committed significant effort to the field. This is 
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partly due to the relatively small DNS community, but also due to the extremely high 

computational expense that is expected from high flow rate simulations with highly deformed 

interfaces. With limited high-performance computing facilities available, most time has been 

dedicated to singular two-phase flow regime simulations. 

This work aims to begin to fill this gap by being the first research to tackle two-phase flow 

regime transitions using interface capturing simulations. Specifically, slug to churn-turbulent, slug 

to bubbly, churn-turbulent to slug, and bubbly to slug transitions will be focused on. The selected 

code is PHASTA, which will be fully explained in CHAPTER 2, and uses the level set method for 

interface capturing. Beginning research into a new area requires evaluation of computational 

limitations and development of novel data analysis techniques that may not have been necessary 

previously. An obvious example of new requirements is the need to resolve the Kolmogorov scale 

in a DNS but not in lower fidelity codes. Therefore, part of this work, as well as the literature 

review, will focus on determining new computational requirements, limitations, and data analysis 

techniques that are necessary to simulate the previously mentioned two-phase flow regime 

transitions using PHASTA. 

In this report the DNS study of vertical two-phase flow regime transitions will be summarized. 

First, the knowledge of two-phase flow regimes and their transitioning will be discussed. A short 

summary of the numerical methods used in this study will be provided. Some important 

computational considerations specific to this study will also be described. Using simulations that 

were designed from experiments, new resolution requirements for simulating the transitions will 

be discussed and presented. Some data analysis tools that were developed specifically for this work 

will also be explained. Then the results from the transition simulations will be presented and 

analyzed. In order to provide confidence in the DNS code as a useful tool for studying such a 
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complex flow, validation was an important part of this research. Both theoretical and experimental 

validation studies whose quantities of interest ranged from globally averaged to local and 

instantaneous were examined. Due to their suspected importance to the flow regime transitions, 

geometry, gas viscosity, and surface tension were varied to observe their effect on the transition. 

The goal of this study was to identify prominent mechanisms for two-phase flow regime 

transitions, determine what causes these mechanisms to be the driver for the transition, and how 

these causal effects can be characterized in models required in lower resolution codes.  

1.2 Literature Review 

Historically, a primary focus of two-phase flow regime transition research was the production 

of a tool to accurately predict which regime exists under what flow conditions and when the 

regimes transition from one to another. Experimental, theoretical, and computational tools have 

all been used in this research, and the presented literature review will discuss all of them. The 

structure of the literature review is as follows: (1) two-phase flow regime definitions; (2) methods 

for identifying flow regimes; (3) methods for predicting flow regime transitions through 

experimental and computational means; (4) a discussion of computational efforts to model flow 

regime transitions; (5) a brief history of high-resolution interface resolved two-phase flow regime 

transition research. The history of two-phase flow regime transition research is quite extensive and 

while this discussion covers enough to provide the major structure, it does not claim to be a fully 

exhaustive review.  

1.2.1 Two-Phase Flow Regimes 

As discussed, two-phase flow regimes are defined by the major liquid-gas interfacial structure 

observed in the flow. In nuclear engineering, the four common vertical two-phase flow regimes 

are bubbly, slug, churn-turbulent, and annular flow [15], as shown in Figure 1.1. 
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Bubbly flow (Figure 1.1 (a)) is characterized by small bubbles dispersed throughout the liquid. 

Generally, the bubbles remain relatively spherical as surface tension remains dominant and they 

are either not numerous enough to coalesce and form larger structures or turbulent forces are too 

strong to allow for larger bubbles. Slug flow (Figure 1.1 (b)) is characterized by long smooth 

bubbles that occupy the entire flow area other than a liquid film on the wall, called Taylor bubbles, 

separated by slugs of liquid. It is common to have smaller bubbles dispersed within the slugs. 

Depending on the flow conditions both the liquid slugs and Taylor bubbles can be very long, being 

tens of conduit diameters in length. Churn-turbulent flow (Figure 1.1 (c)) is a relatively high void 

flow where large and small interfacial structures are mixed throughout. The interfaces are not 

smooth and the axial void distribution is chaotic, occurring at high flow rates. There is no single 

coherent structure that characterizes this regime, instead it is a culmination of heavily deformed 

interfaces at high void fractions. Annular flow (Figure 1.1 (d)) sustains a continuous column of 

gas in the center of the conduit with a film of liquid on the walls. While the phases are primarily 

in their continuous regions, dispersed liquid and gas is possible as well (e.g. small liquid droplets 

in the vapor core and small gas bubbles in the liquid film). The liquid film thickness typically 

varies spatially as well, a result of the interfacial shear forming waves in the film. Other regimes, 

(a)            (b)                        (c)                        (d) 

Figure 1.1: The common two-phase flow regimes: bubbly (a), slug (b), churn-turbulent (c), and 

annular (d). 
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such as cap-bubbly, froth, annular-mist, and annular-wavy, have been proposed but are essentially 

variations or sub-categories of the four main discussed above. 

In other disciplines, such as chemical engineering, and even within nuclear engineering, 

horizontal and different vertical flow regimes are often identified [15]. Horizontal two-phase flow 

regimes include plug, which is characterized by larger bullet shaped bubbles that are still smaller 

than a Taylor bubble. When the plug bubbles become large enough they form horizontal slug flow, 

which is similar to vertical slug flow but buoyancy forces the bubble closer to the top wall. 

Horizontal stratified flow is where gravity completely separates the phases and they form two 

layers with a flat interface between them. As the flow rate increases the interface between the 

phases becomes wavy, a regime appropriately known as wavy flow. Horizontal flow also allows 

for the annular regime if gas flow rates are high enough. Annular flow, at all inclinations, can be 

even further categorized into falling film and wispy. Falling film annular flow occurs when the 

liquid film flows downward, against the flow of gas (so-called counter-current flow conditions). 

Wispy annular flow is characterized by finely dispersed droplets in the gas core. Other regimes 

that have been identified are froth flow, which is considered to be close to churn-turbulent but is 

composed of smaller bubbles, cap-bubbly, a regime between bubbly and slug flow, and mist, where 

only small dispersed droplets are flowing amongst continuous gas. Vertical regimes will remain 

the focus of this work because both typical PWR and BWR cores are oriented vertically. 

As mentioned, each regime behaves differently, which is why they have each been 

distinguished with a name. To fully simulate two-phase flow using a M-CFD approach each regime 

has its unique set of models to describe its mass, momentum, and energy transfer. To apply these 

models, the flow regime must be identified at every location in the simulation. As will be described 
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in the next section, two-phase flow regime identification is not always trivial, yet has a profound 

effect on modeling results. 

1.2.2 Flow Regime Identification 

The interfacial topology of a certain flow can closely resemble more than one regime. 

Therefore, for an experimentalist capturing data intended for creating a correlation, different 

correlations may be produced from the same data depending on how the flow regimes are 

identified. A computationalist implementing a flow regime heat transfer correlation may find a 

different solution depending on how the code determines when a flow regime transition occurs. 

Two-phase flow regime identification was first visual [16] but due to natural variability in human 

behavior this is subject to human error. Pressure signal [12, 13] and void distribution [17] based 

methods were developed as a more quantitative means of interpreting the data. Researchers would 

use tools to measure signals for the respective parameter and would bin the regime based on the 

more quantitative signal. While effective, this often still requires human eyes to bin each flow 

condition based on the recorded signals. Machine learning provides the means to eliminate the 

need for human classification and has been implemented in several two-phase flow regime studies 

[17, 18, 19]. Machine learning requires large volumes of data for training purposes but, once 

trained, can classify two-phase flow regimes more consistently than a human. Using experimental 

measurements and machine learning is the most rigorous method of classifying experimental flow 

regimes available. 

The next step after classifying individual regimes is compiling this into a database that 

summarizes under what conditions a certain regime exists. A 2D map is often constructed for this 

characterization. The axes are most commonly the superficial liquid and gas velocity. Superficial 

velocity is defined as 
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𝑗𝑖 = 𝛼𝑖𝑢𝑖 ( 1.1 ) 

where subscript i refers to phase, α is the volume fraction, and u is the mean flow velocity. 

Therefore, maps using superficial velocities only take into account flow rate and volume fraction, 

an inherent flaw in flow regime maps. The map is either created from a series of experimental data 

points that are numerous enough to define the regime boundaries, or theoretical criteria that 

determine for what superficial velocities the transition occurs. The experimental maps allow for 

interpolation between measured flow conditions and define the flow regime transition boundaries. 

Knowing precisely when one regime transitions to another is important for applying the correct 

correlations and therefore predicting system behavior. Because of this predictive capability, flow 

regime maps can be a valuable tool when designing new systems.  

1.2.3 Predicting Flow Regime Transition 

While two-phase flow regime maps are a useful tool and are applied in many codes, they do not 

provide a completely accurate representation of the flow regime transition phenomenon. Flow 

regime maps commonly use lines to indicate the point one regime suddenly transitions to another. 

In reality, the transition process is continuous, with no sudden jump. This is reminiscent of the 

Reynolds number, in which there is a transition region between the laminar and turbulent single-

phase regimes. It is at these transitions that the aforementioned non-trivial classification situations 

exist as well, allowing flow regime maps to be different even if they were developed for very 

similar conditions.  

Two common methods of producing flow regime maps are experimentally, by collecting a set 

of data for many different flow conditions, and theoretically, where transition criteria are 

postulated by the researcher and a map is created from these conditions. The benefits and 

downsides of each of these are discussed next. 
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1.2.3.1 Experimentally Based Regime Boundaries 

There is a plethora of experimental flow regime maps, for many different conditions and 

geometries, available in the literature [19, 20, 16, 21, 22]. The reason for this is also the largest 

downside to experimental flow regime maps. A 2D flow regime map only directly applies to the 

precise conditions it was created from, so for each new practical application a new map needs to 

be generated. The alternative is extrapolating from an existing map and potentially losing accuracy. 

Different temperatures, pressures, geometries, fluids, etc. prevent flow regime maps from being 

widely applicable because the physics is dependent on each of these variables and extrapolating 

from one flow regime map may inaccurately predict behavior. Creating a complete flow regime 

map, for just a BWR subchannel geometry, would require equipment that can stand BWR 

temperatures and pressures and a measurement technique appropriate for the experimental setup. 

Another problem with experimental flow regime maps is that they are created using steady state 

flow conditions. Researchers employ very long test sections to allow the two-phase flow to fully 

develop and reach its appropriate flow regime before observations are made and data taken. In 

reality, the boiling in BWRs prevents the flow from ever reaching a fully developed condition. 

Therefore, a flow regime map for BWR prototypic conditions still only determines the flow regime 

for conditions that do not occur in the core of a BWR. It is entirely feasible to have flow conditions 

that visibly resemble bubbly flow, but are predicted to be slug flow and would reach slug flow 

given a development length. On the other hand, experimentally based flow regime maps are 

excellent because they capture the full physics. The experimental data comes directly from the 

phenomenon and no simplifications or assumptions are made. With the proper tools, a flow regime 

map could be very accurate for its appropriate application. For example, Williams and Peterson Jr. 

[23] used a high pressure setup capable of boiling to study two-phase flow regimes in a 4×1 rod 
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bundle. The work produced flow regime maps that reflected the physics in a BWR closer than 

many other studies could.  

An excellent example of a rod bundle flow regime map study are the maps developed by Ren 

et al. [21]. The researchers not only identified classic flow rate dependency of flow regime, but 

also the spatial dependency. Three different subchannel classes in the rod bundle were focused on: 

the corner, the side, and the inner subchannels. One flow regime map produced from this study is 

shown in Figure 1.2. 

 
Figure 1.2: Flow regime map developed by Ren et al. [21] for an inner subchannel in a rod 

bundle. 

As seen in Figure 1.2, Ren et al. also compared their results to several other flow regime maps [24, 

25, 26]. The maps all follow the same trend, but it is clear that there is still variation despite nearly 

all these maps being developed for the same conditions. To determine the precise reason for the 

variation and coalesce to a single map is extremely difficult due to the multiple sources of 

uncertainty, including both human and machine, existing in the studies. 
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1.2.3.2 Theoretically Derived Regime Boundaries 

The first step in creating a theoretical two-phase flow regime map is deciding what physics 

contribute to each flow regime transition. This hypothetical cause must then be formulated into an 

expression that can be used to build a flow regime map. Theoretically derived two-phase flow 

regime maps are advantageous as they can be adjusted to accommodate a wider variety of flow 

conditions. The fluid properties can be altered to accommodate different fluids, temperatures, and 

pressures, and the transition lines will respond accordingly. Where these maps fall short is the 

difficulty in capturing the full physics involved with something as complex as a two-phase flow 

regime transition. Even if the most dominant effects are taken into account, small inaccuracies 

may exist. Because theoretical flow regime maps represent the most prominent effort to 

characterize the physical mechanisms behind two-phase flow regime transitions several different 

theoretical maps will be discussed. This will demonstrate how such a map is created as well as 

what researchers consider to be major contributing factors in each transition. The maps that will 

be discussed are the Mishima & Ishii [24], Taitel et al. [27], and Barnea [28] maps. Note that the 

most recent of these papers was published in 1987. There is little recent work committed to 

theoretically deriving transition criteria. Instead, research has been focused on developing more 

advanced experimental flow regime maps for specific fluids, geometries, and conditions. The 

literature review found only one recent theoretically produced map. Liu & Hibiki [26] derived a 

flow regime map for flow in a vertical rod bundle in 2017.  

1.2.3.2.1 The Mishima & Ishii Maps 

The Mishima & Ishii [24] maps consider steady state upward vertical pipe flow, meaning even 

theoretical maps are still limited in application. Below a void fraction of 30% bubble flow was 

assumed to always exist. This was based on sphere packing theory, a denser packing efficiency 
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and the bubbles coalesce to form slug flow. This single void fraction is not enough to form a map 

using the conventional superficial velocities space. To do so, the following expression was 

formulated using a drift flux model [29]. 

𝑗𝑔

𝛼
= 𝐶0𝑗 + √2(

𝜎𝑔∆𝜌

𝜌𝑙
2  )

1
4

(1 − 𝛼)1.75 ( 1.2 ) 

where jg is the gas superficial velocity, α is the void fraction, σ is surface tension, 𝜌𝑙 is the liquid 

density, 𝛥𝜌 is the difference in liquid and gas densities, 𝑔 is acceleration due to gravity, and 𝐶0 is 

a drift-flux parameter. The slug to churn transition was postulated to occur when the void fraction 

in the entire domain exceeds that of just the Taylor bubble segment. This can also be interpreted 

as the point at which the liquid slug is no longer discernable due to redistribution of void. Through 

analysis of the flow dynamics this criterion was translated into the following expression: 
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where 𝜈𝑙 is the liquid kinematic viscosity and 𝐷 is the pipe diameter. The final transition, from 

churn to annular was considered to occur via two different mechanisms: flow reversal in the liquid 

film around the Taylor bubbles, or destruction of the liquid slugs by gas entrainment or interfacial 

deformation. Two new expressions, similarly based on a drift-flux model, were derived for these 

conditions. 

𝑗𝑔 = √
∆𝜌𝑔𝐷

𝜌𝑔
(𝛼 − 0.11) ( 1.4 ) 

𝑗𝑔 ≥ (
𝜎𝑔∆𝜌

𝜌𝑙
2  )

1
4

𝑁𝜇𝑙
−0.2 ( 1.5 ) 
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where Nμl is a parameter to characterize onset of entrainment for film flow. 

1.2.3.2.2 The Taitel et al. Maps 

The Taitel et al. [27] maps are also applicable only to upward steady state two-phase flow in 

vertical pipes. Similar to the Mishima & Ishii maps, Taitel et al. define the transition from bubble 

to slug to occur at 25% void fraction. This is also based on spherical packing theory but some 

experimental data was cited for support of the lower value. To create an expression for this 

criterion, Taitel et al. consider conditions at which turbulent dispersion forces are dominant. If 

turbulent dispersion properties are not dominant, then the bubbles can coalesce and form slug flow. 

𝑗𝑙 = 3.0𝑗𝑔 − 1.15 (
𝑔∆𝜌𝜎

𝜌𝑙
2 )

1
4

 ( 1.6 ) 

If turbulent dispersion forces are dominant, then a Taylor bubble will not form. The following 

expression defines these flow rates. 

𝑗𝑙 + 𝑗𝑔 = 4.0
𝐷0.429 (

𝜎
𝜌𝑙
)
0.089

𝜈𝑙
0.072 (

𝑔∆𝜌

𝜌𝑙
)
0.446

 
( 1.7 ) 

The last condition for bubbly flow defined by Taitel et al. stated the void fraction must be below 

52%. Note that those values are cross-section averaged, and even in the bubbly flow one would 

expect a lateral variation of void fraction. The authors also considered pipe geometry and decided 

there is a lower limit on pipe diameter that bubbly flow will not exist for and slug flow will persist. 

(
𝜌𝑙
2𝑔𝐷2

∆𝜌𝜎
)

1
4

≤ 4.36 ( 1.8 ) 

The slug to churn transition was theorized to occur when the liquid slugs are too short to maintain 

a turbulent velocity profile, resulting in trailing bubbles overtaking the one ahead of it. They 

consider churn to be an entrance phenomenon and use characteristic lengths and velocities to 
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determine when this churn state occurs. The resulting expression only requires the mixture velocity 

to be known and depends strongly on pipe dimensions. 

𝑙𝐸
𝐷
= 40.6 (

𝑗

√𝑔𝐷
+ 0.22) ( 1.9 ) 

where lE is the churn entrance length. Taitel et al. determined annular flow only exists when the 

drag of the gas flow against the droplets is sufficient to support the droplets, otherwise they would 

fall and accumulate, segmenting the gas core. By estimating the drag coefficient Taitel et al. arrived 

at this expression for the transition to annular flow. 

jgρg
1/2 

(σg∆ρ)1/4
= 3.1 ( 1.10 ) 

1.2.3.2.3 The Barnea Maps 

The Barnea [28] maps are more universal and provide transition criteria for all pipe sizes at all 

inclinations for steady state flows. Because of the additional flow regimes that exist at non-vertical 

angles, there are more equations to model each transition. Therefore, in this report the equations 

are not presented and only the theory for each transition will be discussed.  

The Barnea maps postulate that bubbly flow exists when the Taylor bubble velocity exceeds 

the small bubble velocity. Additionally, bubbly flow exists when the angle of inclination is large 

enough to prevent bubble migration to a single wall, i.e. preventing coalescence due to proximity 

to other bubbles. Finally, bubbly flow will not exist below a critical pipe diameter. Note that these 

conditions are not sufficient on their own to relate the flow rates of each phase. Therefore, Barnea 

uses the 25% void fraction as a transition criterion as well. This condition comes from experimental 

observations and packing theory. 

Barnea makes a distinction between bubbly flow and dispersed bubble flow. Bubbly flow 

occurs at lower flow rates and dispersed bubbly flow occurs at high flow rates where turbulent 
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dispersion forces prevent coalescence to form large bubbles. By approximating the turbulence 

necessary to break up bubbles, Barnea created a criterion for dispersed bubbly flow as well. The 

condition for dispersed bubbly flow only specifies the gas superficial velocity for transition. To 

obtain a liquid superficial velocity, packing theory is again applied, where the maximum allowed 

void fraction is 52%.  

The stratified (which can be stratified smooth or stratified wavy) to non-stratified (elongated 

bubble, slug, churn, or annular) transition occurs only in horizontal/low angle pipes. Barnea 

decided the historically used Kelvin-Helmholtz instability is the best predictor for the transition 

out of the stratified regime. When the energy of the Kelvin-Helmholtz instabilities that develop on 

the interface between the two phases is enough to overcome the decay caused by gravity, a 

transition occurs. It was found that this criterion was applicable to all pipe inclinations. The other 

criterion determines what regime the flow transitions to when leaving stratified flow. At steep pipe 

inclinations, the stratified regime region disappears due to other regimes being predicted to exist 

at those conditions.  

Barnea determined that the transition mechanism for stratified to annular (annular or wavy 

annular) depends on the inclination of the pipe. At steep downward angles when the void fraction 

is large enough, and when the liquid flow rate is high enough, small droplets separate from the 

stratified liquid and deposit on the other side of the pipe. This process forms a liquid film covering 

the entire pipe circumference, creating annular flow. 

The annular to intermittent (elongated bubble, slug, or churn) transition was theorized to occur 

when the gas core of the annular flow becomes blocked by the liquid. This could occur via either 

instabilities in the liquid film growing until they bridge the pipe, or the flow rate of the liquid film 

being large enough to supply enough liquid to a region to block the gas core. From these two 
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mechanisms a criterion that characterizes the instability of the liquid film and a criterion that 

models the flow rate in the liquid film were created. 

Barnea breaks the intermittent regime into elongated bubble, slug, and churn regimes. 

Elongated bubbly flow is flow with Taylor bubbles and liquid slugs where there are no bubbles in 

the slug. Slug flow is the same but with bubbles in the slug. To define the transition between these 

three regimes Barnea uses a single expression which defines the holdup (another term for void 

fraction) in the liquid slug. When the holdup is predicted to be zero, elongated bubble exists. When 

the void fraction is 52% or more, holdup is predicted in the slug and churn exists. Between these 

conditions slug flow exists. 

The stratified regime is also segmented into stratified smooth and stratified wavy. The names 

refer to the shape of the interface between the phases and the transition between the two is also 

defined by when these waves occur. To formulate an equation Barnea considered the wind effect, 

which is a means of estimating the shear at the interface. Flow is not necessary in the gas for this 

condition to predict a transition. 

1.2.4 Two-Phase Flow Regime Transition Modeling 

Lower resolution codes modeling two-phase flow regime transitions rely heavily on flow 

regime maps to predict when a flow regime transition occurs. A subchannel code, for example, 

can use 1/1.5D mass, momentum, and energy transfer equations to predict void fraction and flow 

rates. The code then refers to a flow regime map to check what regime region the flow lies in. The 

code selects the appropriate regime and the correlations associated with that regime calculate 

parameters such as relative velocity and heat transfer coefficient. When the calculated superficial 

velocities cross a flow regime boundary on the map, the flow regime transitions. Underlying 

problems with this method include the assumption that the flow regime transition is a sudden and 
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distinct event, and the flip between correlations may result in discontinuities if a smoothing 

function is not applied. Finally, the accuracy of these models is inherently tied to the fidelity of 

the flow regime map. Uncertainty can be produced from using a map created from different 

geometries, pressures, or oversimplification. An example of an oversimplified flow regime map 

that is used by the subchannel code CTF [30] is shown in Figure 1.3.  

 
Figure 1.3: COBRA-TF flow regime map [30]. 

While this map does provide some guidance, void fraction is the only parameter considered for all 

transitions. As was shown in Section 1.2.3.2 Theoretically Derived Regime Boundaries, this is not 

consistent with what many researchers consider to be the primary flow regime transition criteria. 

Updating CTF with a more accurate map could improve the accuracy of the code. 

The current state of RANS, unsteady RANS (URANS), and large eddy simulation (LES) codes, 

while more resolved than subchannel codes, are not capable of modeling all flow regimes. As 

explained by Bestion [31], some RANS, URANS, and LES codes do implement interface 
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capturing methods but do not fully resolve all scales of the two-phase flow. These methods 

decompose the two phases into continuous liquid, continuous gas, dispersed liquid, and dispersed 

gas. This two-fluid four-field model can capture bubbly, annular, and droplet flow regimes, but 

not cap-bubbly, slug, and churn-turbulent. The issue is time and space averaging, or filtering, are 

not compatible with intermittent flows where bubble sizes are highly variable and complex 

interfacial structures exist. Codes employing this method do not account for different flow regimes. 

Instead, eight different combinations of continuous liquid/gas and dispersed liquid/gas can be 

identified at each computational point in the domain. The mass, momentum, and energy transfer 

equations are solved to track the distribution of each of the four fields. Since the void distribution 

is part of the solution, these codes do not rely on flow regime maps. A significant challenge of 

two-phase modeling is capturing the effects of sub-grid turbulence and interfaces. An accurate 

two-phase model can predict where and when interface-interface (e.g. a small dispersed bubble 

encounters a continuous phase) and interface-turbulence interactions occur while conserving mass, 

momentum, and energy. Due to the complexity, a model proven to accurately capture any void 

distribution and interfacial topology has yet to be widely recognized in the M-CFD community. 

This task requires advanced models to predict where large and small bubbles will exist and account 

for their interactions with each other and the liquid [31].  

1.2.5 The Interfacial Area Transport Equations 

The interfacial area transport equations [32], when proper coalescence and breakup models are 

applied, are a means of simulating two-phase flow while avoiding the need to characterize the flow 

as any regime. Instead, the equations directly calculate the interfacial structure, without the naming 

system. The equations can be applied to the two-fluid model [33], which uses a pair of mass, 

momentum, and energy conservation equations, one for each phase. In each of these equations a 
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respective interfacial mass, momentum, and energy transfer term appears. The interfacial area 

transport equations are used to close these terms due to their strong dependence on the interfacial 

area concentration. The interfacial area transport equations are given below. 

𝜕𝑛

𝜕𝑡
+
𝑑

𝑑𝑧
(𝑛𝑣𝑝) = (𝜙𝐵 − 𝜙𝐶) + (𝜙𝑃𝑁 −𝜙𝑃𝐶) ( 1.11 ) 

𝜕𝑎𝑖
𝜕𝑡

+
𝑑

𝑑𝑧
(𝑎𝑖𝑣𝑖) =

1

3𝜓
(
𝛼

𝑎𝑖
)
2

((𝜙𝐵 − 𝜙𝐶) + (𝜙𝑃𝑁 − 𝜙𝑃𝐶)) + (
2𝑎𝑖
3𝛼
)(
𝜕𝛼

𝜕𝑡
+
𝑑

𝑑𝑧
(𝛼𝑣𝑖)) 

( 1.12 ) 

where n is the bubble number density, t is time, vp is the average bubble velocity, z is the axial 

position along the flow direction, ai is the interfacial area concentration, vi is the interfacial 

velocity, α is the void fraction, and 𝜓 is a bubble shape factor. 𝜙𝐵, 𝜙𝐶 , 𝜙𝑃𝑁, and 𝜙𝑃𝐶 are the rates 

of change in bubble number density due to breakup, coalescence, nucleation, and collapse, 

respectively. Extensive modeling is needed to further define these rate of change terms. In total, 

there are seven closure relations needed for this model, and include definitions for maximum 

particle volume, breakup frequency, coalescence frequency, and more [32]. Still, these models do 

not require flow regimes to calculate the interfacial area concentration and can come from both 

experimentation and theory. When compared to experimental data the equations are capable of 

capturing the correct interfacial area distribution to within 10% error but can exceed 20% [34], 

depending on the experiment. An issue with the interfacial area concentration transport equations, 

as presented, becomes apparent when considering their dependent variables. The shown equations 

are area averaged in the streamwise direction, z. Three-dimensionality is a possibility but requires 

many more models as well as experimental data that can match this level of detail. This is important 

when considering flow in a nuclear reactor because where the distribution of void is important to 

convective heat transfer properties. An issue with the equations is that they were originally 

developed for the bubbly flow regime. The origin of the interfacial area transport equations comes 
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from the Boltzmann transport equation, which describes discrete particle distribution. Therefore, 

the interfacial area transport equations assume spherical or slightly deformable bubbles. 

Accounting for flow regimes with highly deformed interfaces has been a research focus in the 

community but involves significantly more closure relationships [35, 34]. 

1.2.6 High-Resolution Two-Phase Flow Regime Simulations 

High-resolution two-phase flow simulations are still a relatively recent focus in the scientific 

community. Experiments cover a larger area in the space of two-phase flow phenomenon but, as 

will be discussed, simulation continues to demonstrate its utility. Some very enlightening DNS 

studies have been performed.  Early work by Esmaeeli and Trygvasson [36, 37] studied bubbly 

flows to observe the dynamics of small rising clusters of bubbles. A combination of 2D and 3D 

simulations were performed with only eight bubbles in the 3D simulations. Later, Lu and 

Tryggvason [9] studied how the deformability of bubbles affects turbulent channel flow. These 

simulations increased the number of simulated bubbles to 21. The results showed bubble 

deformability determines the void distribution. Bolotnov [38] performed a similar study, this time 

using the bubbly channel flow to conclude bubbles improve turbulence isotropy for low Reynolds 

number flows. Elghobashi [39] reviewed the DNS work on how bubbles and droplets behave in 

turbulence. The review covers research on bubbles and droplets smaller and larger than the 

Kolmogorov scale and several different interface capturing methods. The review found most 

methods are restricted to viscosity and density ratios of about 0.01, a limitation not experienced 

by PHASTA. Some smaller scale simulations focused on analyzing individual bubbles to 

determine bubble induced turbulence and drag coefficients [40, 11]. While possible, an 

experimental study of individual bubbles encounters statistical and resolution challenges that are 

easier for a simulation to overcome. Simulations with more complex geometries, PWR 
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subchannels with spacer grids, have recently been performed [8, 41], this time with hundreds of 

bubbles being simulated and information specific to individual bubbles being collected in-situ. 

Due to the large number of bubbles and complex geometry, these simulations require extremely 

large meshes and powerful computational resources. The tradeoff for such an expense is obtaining 

flow information that is highly detailed and directly relevant to the nuclear industry. Moving 

beyond the bubbly flows, Behafarid et al. [7] studied Taylor bubble motion in a pipe. The rise 

velocity and shape of a Taylor bubble is relatively well described, thanks largely to Dumitrescu 

[42], allowing for validation of the DNS. Rodriguez [43] simulated annular flow and was able to 

capture the major physics associated with annular flow (liquid film thickness, large wave 

formation, and bubble carry-under). By using advanced analysis techniques, the dispersed liquid 

and gas phases were both tracked during the simulation, allowing for four-field information to be 

collected and analyzed. The possibility to collect this numerical data in various ways highlights a 

major advantage of DNS. 

So far, only simulations of statistically steady state flows have been discussed. Only recently 

has the focus of a high-fidelity two-phase flow simulation been a two-phase flow undergoing a 

major topology change [10, 44, 45, 46]. In this work spherical bubbles were placed in a channel 

and were allowed to coalesce over time. In addition to observing how various parameters develop 

over time, the series of papers investigates the effect of surface tension and void fraction on the 

development and eventual steady state flow. Numerical data was collected to analyze how the 

topology change affected the flow over time. Lu and Tryggvason found the void distribution and 

topological structure was strongly related to both the surface tension and void fraction. An 

important distinction of this work is that the observed transient is a consequence of the initial 

bubble distribution, rather than some outside forcing factor that drives the flow from one steady 
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state to another. Therefore, this study is distinctly different from nuclear reactor flows where the 

initial condition is single phase liquid and flow regime transitions are forced by void addition 

through boiling. 

Similarly, but on a smaller scale, Mohammadi et al. [47] studied the coalescence of two water 

droplets in oil. This study examined the effect of surface tension, collision velocity, and how off-

center the bubbles collided with each other on the coalescence process. The code was first validated 

and proven to agree very well with experiments. The results showed how each of the 

aforementioned parameters affects the coalescence process, which is very important for flow 

regime transitions.  

Another recent paper used DNS to study two-phase flow in both 2D and 3D inclined pipes [48]. 

This work first solved for a steady state light fluid only solution and then injected stratified heavy 

fluid into the pipe. The results were compared to flow regime maps in order to show agreement 

between the code and experiments. Both the 2D and 3D simulations agreed with the flow regime 

maps. The researchers also used the simulations to compare how the 2D and 3D flows differ and 

concluded that the dynamics is only slightly different between them.  

After an extensive literature review, a study using high-fidelity simulations to analyze the 

transition between one stable two-phase flow regime state to another stable flow regime state has 

not been found. The lack of simulation on this topic represents a gap in the field that is commonly 

explored through experimentation. The objectives of the research presented in this report include 

addressing this research gap by using the PHASTA code to simulate two-phase flow regime 

transitions. Due to the challenge of simulating highly turbulent transient two-phase flows, a 

significant focus of the work is to determine computational requirements for simulating such a 

flow as well as assess PHASTA’s ability to accurately simulate these flows. In addition, important 
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data analysis techniques that are needed to analyze the computational data will be discussed. This 

creates a framework for future researchers to follow when developing their studies. A series of 

flow regime transition simulations will also be discussed. DNS produces volumes of numerical 

data that are not matched by that of other numerical methods or experiments. This ability provides 

the opportunity to extensively analyze and elucidate the physics of the two-phase flow regime 

transition phenomena. This contribution aims to bring a physical understanding to a largely 

empirically based field.  

1.2.7 Interface Capturing Simulations Validation 

Validation of interface capturing simulations is a difficult task due to the challenge of obtaining 

accurate experimental data that can match the length and time scales resolved by such simulations. 

Even single-phase DNS relies on time averaged quantities to validate their simulations. The single 

phase DNS of Lee & Moser [1] and the multiple single phase DNS studies reviewed in [49] all 

compare time averaged quantities, such as velocity, Reynolds stresses, wall shear, and vorticity 

with experimental data. Ideally, since DNS can resolve individual eddies, validation would occur 

at the eddy level. As discussed in [50, 51], single phase DNS has been able to accurately simulate 

the horseshoe structure of wall bounded turbulence in the viscous sub-layer. However, the current 

practice is to trust the eddies are modeled accurately if the velocity and Reynolds stresses agree 

with experiments. Two-phase DNS has the added challenge of capturing the behavior and 

interactions of the interface. The interface adds a new scale of resolution because during 

coalescence important physics occur on the fraction of micrometer scale [52]. In addition, bubbles 

can both induce and suppress turbulence, necessitating the interface capturing method accurately 

recreates this turbulence generation and suppression. Experimental data for such phenomena does 

exist. Using techniques like particle image velocimetry (PIV), instantaneous velocity and vorticity 
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measurements of the rise of a single bubble in stagnant liquid are possible [53, 54]. These 

experiments are even capable of 55 μm resolution [53], more than fine enough to compare to a 

two-phase DNS. Unfortunately, even when simulations attempt to reproduce the exact test of a 

bubble rising in a stagnant liquid, only parameters like terminal bubble velocity are compared to 

experiments for the validation [55]. 

A common validation technique for two-phase DNS is to measure the interface location because 

in complex flows this can be more easily measured experimentally than turbulence (it would be 

difficult to experimentally measure highly resolved instantaneous turbulence in bubbly or churn 

flow conditions). For example, Lahey [56] used the classic 2D dam break problem to validate 

PHASTA. The front location and the height of the liquid is measured over time and compared to 

experiments. Mohammadi et al. [47] compared the shape and location of bubble interfaces as they 

coalesced in viscous oils and Xie et al. [48] made subjective flow regime classifications and 

ensured their code’s predictions matched flow regime maps. None of these validation studies 

capture the finest resolved scale of the respective simulations. To the best of the author’s 

knowledge no two-phase DNS researcher has used the single eddy scale to validate their 

simulations. As mentioned, the reason for this is the difficulty in experimentally measuring and 

observing these scales. At the moment the best option is to find experiments as detailed and 

relevant to the research and use the available experimental data to validate the predictive 

capabilities of the same selected quantities for which experimental data is available. 

1.3 Research Objectives 

Using high-fidelity computational data to inform the knowledge base of two-phase flow is a 

continuous objective for researchers. Two-phase flow regimes offer an excellent opportunity for 

furthered understanding but the complexity of two-phase flow regime transitions necessitates that 
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computationalists pay extra attention to preparing a simulation. Considering interface capturing 

two-phase flow regime transition DNS is a new field, the computational requirements, both pre 

and post-simulation, have yet to be fully outlined by the CFD community. This dissertation 

presents a foundation for simulating two-phase flow regime transitions by: (a) Identifying limiting 

scales for resolving the flow and proposes computational requirements for ensuring accuracy; (b) 

Proposing and completing a validation hierarchy, based on the work contributed by Oberkampf 

[57, 58, 59] to the CFD field, for flow regime transitions; (c) Developing data collection and 

analysis tools that can take advantage of the wealth of computational data. The presented tool is 

designed for flow regime transitions as it captures interfacial area, a parameter often used to 

analyze flow regimes; (d) Performing simulations and analyzing their associated data to determine 

the driving physics of the two-phase flow regime transitions. These simulations are the first of 

their kind and simulate forward transitions, which are common to the field, and reverse 

simulations, which are explored less often. 

This dissertation is structured as follows. The PHASTA’s governing equations and the level set 

method for interface capturing are explained and a validation history is provided in CHAPTER 2. 

Despite having a robust flow solver available for this work, very little research has been committed 

to studying transient two-phase flows. Therefore, CHAPTER 3 is dedicated to determining the 

necessary components for successful interface resolved two-phase flow regime transition DNS. 

This includes discussing new meshing requirements specific to two-phase flow and data collection 

and analysis tools. CHAPTER 4 provides details on how the simulations are prepared (meshing, 

geometry, boundary conditions, etc.) and CHAPTER 5 details how we trust PHASTA to be 

capable of simulating this complex problem (validation). CHAPTER 6 presents and analyzes all 

the simulations prepared for this research. There is a focus on determining the mechanisms for 
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transition and what properties differ between each mechanism. A flow regime transition criterion 

is also presented and tested to ensure its validity. CHAPTER 7 provides the major conclusions 

drawn from this dissertation and CHAPTER 8 proposes some recommendations for future work. 
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CHAPTER 2. NUMERICAL METHODS 

The open source PHASTA code is the primary tool used in this work. PHASTA is a Parallel, 

Hierarchic, higher-order, Adaptive, Stabilized (finite element method-based (FEM)), Transient 

Analysis flow solver capable of simulating compressible and incompressible flows on structured 

(hexahedrons) and unstructured meshes (tetrahedrons). PHASTA uses the level set method for 

capturing the interface between two immiscible fluids. PHASTA is highly parallelizable and has 

been shown to scale well up to 768×1024 processors on the IBM Blue Gene/Q Mira System (at 

Argonne National Laboratory). Detailed descriptions of PHASTA and its implementation can be 

found in [60, 61, 62, 63]. PHASTA’s capability of using unstructured meshes allows for simulation 

of complex geometries.  

PHASTA has a strong history of two-phase flow simulations including: studying the effect a 

single bubble has on turbulence [11], examining full bubbly flow with hundreds of bubbles where 

both the liquid turbulence and individual bubble information is collected and analyzed [38, 8], 

using Taylor bubble flow to verify and validate the code [7], simulating the complexities of annular 

flows [43], and demonstrating the capability to simulate implosions and plunging jets [56]. The 

body of work behind PHASTA has shown its value to analyzing two-phase flows. 

2.1 Governing Equations 

PHASTA solves the strong form of the incompressible Navier-Stokes (INS) equations [64]: 

Continuity: 𝑢𝑖,𝑖 = 0  ( 2.1 ) 

Momentum: 𝜌𝑢𝑖,𝑡 + 𝜌𝑢𝑗𝑢𝑖,𝑗 = −𝑝,𝑖 + 𝜏𝑖𝑗,𝑗 + 𝑓𝑖  ( 2.2 ) 

where 𝜌 is the density, 𝑢𝑖 is the i component of velocity, 𝑝 is dynamic pressure, 𝜏𝑖𝑗 is the viscous 

stress tensor, and 𝑓𝑖 is the i component of the body force vector (which includes gravity, surface 

tension, and driving pressure gradient). In a periodic domain where gravity is oriented parallel to 
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the flow direction, an additional value equal to the hydrostatic pressure gradient is added to the 

pressure gradient. This value is a simple multiple of density and gravity and it supports the weight 

of the fluid mixture, preventing it from falling downward due to the gravity forces. The spatial and 

temporal discretization of these equations are given in [64]. The viscous stress tensor is  

τij = μSij = μ(
∂ui
∂xj

+
∂uj

∂xi
) ( 2.3 ) 

where 𝜇 is dynamic viscosity and 𝑆𝑖𝑗 is the strain rate tensor. 

2.2 Level Set Method 

PHASTA implements the level set method for interface capturing [65, 66, 67]. In the level set 

method a signed distance field, 𝜑, is overlaid on the entire domain. The fluid-gas interface is 

located at the zero level set value in the distance field (i.e. the interface is located at 𝜑 = 0) and 

the liquid is in the positive distance field and gas in the negative distance field. The interface is 

advected exactly with the fluid, prescribed by 

∂φ

∂t
+ 𝐮 ∙ ∇φ = 0 ( 2.4 ) 

where 𝒖 is the fluid velocity vector. To allow a continuous transition from liquid to gas properties, 

the interface is assumed to have some thickness, 2𝜀. Typically, 𝜀 is at least 1.2 computational 

elements in size. The property transition follows the smooth Heaviside function, given by 

𝐻𝜀(𝜑) = {

0,                                           𝜑 < −𝜀
1

2
(1 +

𝜑

𝜀
+
1

𝜋
𝑠𝑖𝑛 (

𝜋𝜑

𝜀
)),   |𝜑| < 𝜀

1,                                             𝜑 >  𝜀

     ( 2.5 ) 

Hence, fluid properties are defined by 

𝜌(𝜑) = 𝜌𝑙𝐻𝜀(𝜑) + 𝜌𝑔(1 − 𝐻𝜀(𝜑)) ( 2.6 ) 
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𝜇(𝜑) = 𝜇𝑙𝐻𝜀(𝜑) + 𝜇𝑔(1 − 𝐻𝜀(𝜑)) ( 2.7 ) 

This method is not limited in the number of gas and/or liquid regions allowed, meaning continuous 

liquid, continuous gas, dispersed liquid and dispersed gas flows are all possible. While solving Eq. 

( 2.4 ) the far distance field can become distorted by the fluid velocity. To maintain an accurate 

distance field, a redistancing operation is performed by solving 

𝜕𝑑

𝜕𝜏
= 𝑆(𝜑)(1 − |∆𝑑|) ( 2.8 ) 

where 𝑑 is a scalar that represents the corrected distance field and τ is the pseudo time over which 

the equation is solved [66, 67]. 𝑆(𝜑) is defined as 

S(φ) =

{
 

 
−1,                                φ < −εd

(
φ

εd
+
1

π
sin (

πφ

εd
)),   |φ| < 1

1,                                 φ > εd

 ( 2.9 ) 

Where 𝜀𝑑 is the distance field interface half-thickness which can be different from 𝜀 previously 

defined. Notice that 
𝜕𝑑

𝜕𝜏
 is zero at the interface, meaning the interface location is not changed during 

redistancing. Figure 2.1 plots this property transition. 

 
Figure 2.1: Depiction of the property transition across the interface. 
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2.3 Code Validation 

This section will expand on PHASTA’s validation in order to provide a basis for the validation 

discussion that occurs in CHAPTER 5. A significant amount of effort has been placed in validating 

PHASTA and it begins with single phase simulations in a parallel plate channel. Trofimova et al. 

[3] designed simulations of two different friction Reynolds numbers, 180 and 395, that matched 

the simulations performed by Moser et al. [2]. Three different meshes, ranging from 66,500 to 

9,500,000 computational elements in size were designed for each flow condition. For both flows 

all the meshes met the typical requirements for single phase DNS (discussed in depth in Section 

3.1 Single Phase Flow Resolution Requirements) at the wall but the bulk resolution varied between 

meshes. Only the finest mesh met the DNS standard for resolution. Statistics ranging from mean 

velocity (Figure 2.2 left) to the decomposed energy spectra (Figure 2.2 right) were compared to 

the Moser et al. [2] numerical data. The code used by Moser et al. has been extensively validated 

against high Reynold number experiments. The code has also shown to predict high Reynolds 

numbers phenomena that had never been observed computationally before. Therefore, this code-

to-code comparison is utilizing a robust code. The comparison showed that for the sufficiently 

refined meshes (the finest mesh in the study), PHASTA was capable of accurately predicting the 

turbulent flow behavior. 
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Figure 2.2: Images from Trofimova et al. [3] showing the mean streamwise velocity (left) and 

streamwise energy spectra (right) PHASTA data compared to Moser et al. [2]. 

Lahey [56] presents PHASTA’s results for the classic dam break problem. A 2D column of 

water, held by an imaginary dam, is initialized and allowed to flow as if the dam holding it 

suddenly disappeared. The liquid height and leading edge location is tracked and can be compared 

to experimental data. The results show that PHASTA can accurately predict the liquid’s behavior 

even for a relatively coarse mesh. Just before the liquid hit the wall on the opposite side of the 

domain in the simulation, the liquid height differed by about 10% and the liquid front location 

differed by about 8% (see Figure 2.3). 
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Figure 2.3: Images from Lahey [56] showing the results from the dam break front location (top) 

and height (bottom) compared to experiments. 

Thomas et al. [68] performed a validation study of a single bubble in laminar flow. The drag 

force on the bubble was extracted and compared to correlations. The comparison showed excellent 

agreement with the Tomiyama et al. [69] correlation at the lower Reynolds number (see Figure 

2.4). 
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Figure 2.4: An image from Thomas et al. [68] showing how the PHASTA drag coefficient 

predictions compare to the Tomiyama correlation. 

At the larger Reynolds numbers the PHASTA bubble deformed slightly from spherical, varying 

the results from the Tomiyama correlation, which assumes spherical bubbles. Experimental data 

for the drag coefficient on a bubble in turbulent flow was not available in this study. However, 

when the calculated drag coefficient was compared to the prediction from a simple force balance 

using the relative velocity, the results compared well. This work shows that PHASTA is able to 

predict the drag coefficient, which depends largely on the interfacial shear, of a bubble in both 

laminar and turbulent flow. 

Feng & Bolotnov [11] extended the single bubble studies to examine bubble-induced 

turbulence. In this work the turbulence in front of and behind a bubble was examined. Using 

dimensional analysis the factors contributing to turbulence suppression and enhancement were 

isolated. This study also did not have experimental data to compare to, due to the difficulty of 

experimentally isolating a single bubble’s turbulence generation. However, a study was performed 

to ensure the interface capturing method was not artificially affecting the turbulence. It was found 
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that given a fine enough resolution and an appropriate interface half thickness, the level set method 

only changed the turbulence intensity by 2%, at most. 

Taking these results one step further leads to bubble channel flow simulations, which were 

performed by Bolotnov et al. [70]. In this work comparisons to experimental data were not 

performed, but the simulation predicted the wall peaked bubble distribution that is expected in 

bubbly flow where the bubbles are not deformable. The work also examined flow of a large 

deformable bubble in a channel and found the bubble remained in the center, as is expected. 

Behafarid et al. [7] performed a simulation of a Taylor bubble rising in a pipe of stagnant liquid. 

A common correlation for the rise velocity of a Taylor bubble, 𝑢𝑇, that has been proven to be 

accurate, takes the form of the following: 

𝑢𝑇 = 𝐶√𝑔𝐷 (2.10) 

C is a coefficient determined from fluid properties and geometry, g is gravity, and D is the pipe 

diameter. Behafarid et al.’s simulation Eq. (2.10) predicted a rise velocity of 16.88 cm/s while 

PHASTA predicted 16.44 cm/s, only a 2.6% difference. This result is relevant to the accurate 

prediction of both interfacial shear and Taylor bubble shape predictions and is particularly relevant 

to the work presented here. 
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CHAPTER 3. BUILDING A FRAMEWORK FOR SIMULATING FLOW 

REGIME TRANSITIONS 

Due to the lack of research in this area it is important to establish a standard for future 

researchers to reference when developing their own interface resolved flow regime transition 

simulation research. This Chapter will cover some well-established single phase DNS meshing 

requirements, as well as introduce new two-phase considerations originally developed for flow 

regime transition simulations, but are applicable to any two-phase flow simulation. Additionally, 

important computational considerations will be discussed and some data analysis tools useful to 

transient two-phase flow regime transitions will be presented. 

3.1 Single Phase Flow Resolution Requirements 

Amongst the DNS community, it is generally accepted that a fully resolved DNS mesh has a 

bulk mesh fine enough to capture the Kolmogorov scale and a wall boundary layer mesh that 

resolves the steep velocity gradients in the viscous sublayer [51]. The Kolmogorov scale is the 

smallest scale of turbulence in the flow that carries energy before dissipating it into heat. Therefore, 

in order to be fully resolving the turbulent flow, a DNS needs to capture this scale, otherwise the 

momentum transport is incorrect. Very close to the wall viscous forces dominate. Therefore, as the 

fluid approaches zero velocity, due to the no slip condition, the velocity profile approaches a 

straight line (e.g. constant gradient). Designing the wall boundary layer mesh to have at least one 

point in this linear region is important to resolve the wall shear. This shear is what ultimately 

produces eddies in turbulent flow, making its resolution also very important to DNS. To quantify 

the resolution ∆𝑦+ at the wall and in the bulk are typically referenced. ∆𝑦+ is a nondimensional 

distance, 
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∆𝑦+ =
∆𝑦𝑢𝜏
𝜈

 ( 3.1 ) 

where ∆y is the absolute length (in meters), 𝜈 is the liquid kinematic viscosity, and 𝑢𝜏 is the friction 

velocity, defined as 

𝑢𝜏 = √
𝜏𝑤
𝜌𝑙

 ( 3.2 ) 

where 𝜏𝑤 is the wall shear. For a fully resolved DNS, ∆𝑦𝑤𝑎𝑙𝑙
+ ≤ 1 and  ∆𝑦𝑏𝑢𝑙𝑘

+ ≤ 12 are the 

generally accepted criteria [1, 51]. 

3.2 Two-phase Flow Resolution Requirements 

Formulating two-phase resolution requirements has been previously addressed by Fang and 

Bolotnov [8] who determined at least 20 computational points across the diameter of a bubble are 

required to simulate a bubble which can properly deform during the flow solution. This 

requirement was formulated to tackle more than one important consideration to bubble dynamics. 

First, the 20 point resolution minimizes the mass conservation issue that the level set method 

experiences. Second, the 20 point criterion ensures the curvature of the bubble, even when it 

deforms, is properly resolved, which allows for the surface tension force to be accurately 

calculated. Therefore, this criterion does not address flow physics such as how thick the interface 

is relative to gradients or turbulent structures in the fluids. Additionally, for slug flow the Taylor 

bubble is so large the 20 point minimum is practically not a concern until it begins to break up. To 

ensure the transitions are fully resolved different two-phase factors were considered. 

3.2.1 Interfacial Shear 

The interfacial shear, the shear between the liquid and the gas, is extremely important in these 

accelerating flows, as will be shown in future discussion. Interfacial shear plays a role in 
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determining the relative velocity, bubble breakup, and BIT. Additionally, the single phase DNS 

resolution requirements are built around the wall shear, making the interfacial shear an excellent 

place to start for two-phase resolution considerations. To understand how well DNS resolves 

interfacial shear, a series of simulations were designed based on the simple shear flow experiments 

performed by Karam and Bellinger [71]. In these experiments, two highly viscous fluids were used 

to form a continuous phase and a single droplet between two parallel plates moving in opposite 

directions. This forms a linear shear flow that deforms the droplet but does not move it laterally. 

The droplet deformation occurs because the continuous phase applies a shear force that stretches 

the bubble in opposite directions. This makes this experiment an excellent candidate to test the 

resolution requirements corresponding to interfacial shear. Properties for the fluids used are shown 

in Table 3.1.  

Table 3.1: Experimental properties from [71] used to design simulations 

Fluid 
Density 

[kg/m3] 

Viscosity 

[kg/m-s] 

Surface 

Tension [N/m] 

Shear Rates 

[1/s] 

Continuous 998 3.11 
0.0027 

0.4174,  

17.53, 

25.45 Droplet 920 0.203 

 

Due to the high viscosity and relatively small density difference, buoyancy is practically 

insignificant and the droplet is held almost perfectly in place for multiple seconds. Previous single 

bubble studies performed in PHASTA [11] required the use of the partial-integral-derivative (PID) 

controller [68]. The PID controller detects the forces acting on a bubble and applies equal and 

opposite forces to hold the bubble in place. Therefore, measurements of lift force acting on the 

bubble, or bubble-induced turbulence behind the bubble, could be made. By choosing a study using 

an extremely viscous liquid and small density difference, there is no need to use the PID controller 

because the bubble is naturally held in place. This allows for simulations with PHASTA without 
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the PID controller, eliminating the concern of inaccuracies introduced by it. Karam and Bellinger 

measured droplet deformation and the angle of the deformation relative to the centerline plane 

parallel to the plates. Deformation, D, is defined by 

𝐷 =
𝐿 − 𝐵 

𝐿 + 𝐵
 ( 3.3 ) 

where L is the length of the bubble along its major axis and B is the length of the droplet along its 

minor axis. Figure 3.1 shows a diagram of the deformed bubble with L, B, and the measured angle 

shown. 

Three different shear rates were chosen, shown in Table 3.1. All three shear rates remain fully 

laminar due to the extremely high viscosity of the continuous fluid. Three different meshes were 

also designed for the simulations. The mesh sizes were 60, 30, and 15 μm, which corresponds to 

8.5, 17, and 34 points across a 0.5 mm diameter droplet, respectively. The series of nine 

simulations were run until the bubble no longer changed shape and measurements were taken in 

Paraview [72]. Note that the finest mesh could not converge in the lowest shear simulation. The 

reason for this is not clear but may be a result of the dominant viscous forces, highly resolved 

mesh, and the method by which the finite element method in PHASTA is stabilized coming 

together to form an unstable solution. Nonetheless, the summary of the results from these 

simulations is presented in Table 3.2. 

Figure 3.1: A diagram showing the layout for the experiment performed by Karam and Bellinger [71]. 

The velocity profile of the continuous phase is shown. Not to scale. 

B L ϴ 

x 

y 
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Table 3.2: Results from the simple shear simulations 

Shear 

Rate [1/s] 

Mesh 

Size [μm] 
Dsim Dexp 

Error in 

D [%] 
ϴsim ϴexp 

Error in 

ϴ [%] 

0.4174 

60 0.63 

0.46 

37.0 18 

N/A 

N/A 

30 0.51 10.8 26 N/A 

15 N/A N/A N/A N/A 

17.53 

60 0.42 

0.33 

27.2 30 

27 

11.1 

30 0.38 15.2 32 18.5 

15 0.36 9.1 32 18.5 

25.45 

60 0.66 

0.39 

69.2 26 

21 

23.8 

30 0.58 48.7 23 9.5 

15 0.53 35.9 25 19.0 

 

As Table 3.2 shows, as the simulations are further resolved the agreement generally improves with 

respect to D. It is worth noting that the experiment used droplets about 0.5 mm in diameter and the 

measurement tools were only capable of measuring to 0.1 mm accuracy. This means there could 

be significant uncertainty in the reported D values, especially when the B dimension can be as thin 

as 0.3 mm. Using the two higher shear rates, the grid convergence index (GCI) and the order of 

convergence, p, can be calculated. GCI is a measurement that estimates the discretization error 

present in the finest simulation [73]. Here p is defined as 

𝑝 =
1

𝑙𝑛(𝑟21)
|𝑙𝑛 |

𝜀32
𝜀21
| + 𝑞(𝑝)| ( 3.4 ) 

where r21 is the ratio of the middle mesh to the finest mesh size (larger than one), ε32 is the 

difference between the solutions for the coarsest and middle mesh, ε21 is the difference between 

the solutions for the middle and finest mesh, and q(p) is defined as 

𝑞(𝑝) = 𝑙𝑛 (
𝑟21
𝑝
− 𝑠

𝑟32
𝑝 − 𝑠

) ( 3.5 ) 

where r32 is the ratio of the coarsest mesh to the middle mesh size (larger than one), and s is 

𝑠 = 1 ∙  𝑠𝑔𝑛 (
𝜀32
𝜀21
) ( 3.6 ) 
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GCI is defined as 

𝐺𝐶𝐼 =
1.25𝑒𝑎

21

𝑟21
𝑝 − 1

 ( 3.7 ) 

where 𝑒𝑎
21is 

ea
21 = |

φ1 − φ2
φ1

| ( 3.8 ) 

where 𝜑 corresponds to the solution for the quantity of interest for the mesh indicated by the 

subscript.  

The order of convergence in the 17.53 and 25.45 1/s shear rate cases was 1.63 and 0.74, 

respectively. This aligns with the first order convergence that was expected. The GCI in these 

cases was 2.4% and 17.4%, respectively. The higher shear rate having a larger GCI is logical. A 

GCI for the lowest shear rate could not be directly calculated due to there being only two 

measurements. However, if p is assumed to be one, then the GCI can be estimated to be 29.4% for 

the middle mesh. Presumably, if the finest simulation were capable of numerically converging, 

this error would become significantly smaller. Together, this suggests that the finest mesh used in 

these simulations is required to resolve the interfacial shear. 

As mentioned earlier, interfacial shear is similar in concept to the wall shear that determines 

the y+ meshing resolution requirements. However, this flow is so viscous that even if the largest 

interfacial shear were used to calculate y+ values (about 100 N/m2), the supposed necessary mesh 

size would be on the order of the distance between the plates. Therefore, this method for calculating 

meshing requirements was not considered. To better determine when the simulation becomes fully 

resolved, measurements of interfacial shear were taken on the inner and outer sides of the interface, 

as well as on the top and bottom sides of the droplet. Paraview was used to extract this information 
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using the method described in Section 3.4 Interfacial Shear Data Collection. Using this information 

the interfacial shear for each mesh and shear rate simulation was plotted, shown in Figure 3.2. 
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 60 μm 30 μm 15 μm 

0.4174 

[1/s] 

  

N/A 

17.53 

[1/s] 

   

25.43 

[1/s] 

   
Figure 3.2: Interfacial shear profiles for the droplet deformation simulations. 
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As can be seen in Figure 3.2, the top and bottom shear profiles for both the inner and outer sides 

of the droplet are nearly mirror images of each other, which is expected due to the symmetry of 

the flow. The coarsest meshes produce a saw tooth pattern, which somewhat persists in the middle 

mesh, but has completely disappeared in the finest mesh. This is true for all the shear rates, except 

the smallest where the finest mesh did not converge, despite their values differing by a factor of 

about 60. Similarly, the magnitude of the interfacial shear in each case varies by a factor of about 

10. Despite this variability in the shear rate and interfacial shear, each simulation becomes resolved 

at the same mesh. If the finest mesh is assumed to fully resolve the shear then this suggests that 

interfacial shear, or magnitude of velocity gradient at the interface, is not the primary factor 

determining if the mesh is fine enough. Instead the determining factor must be a parameter that is 

approximately constant in every simulation. The same droplet size, 0.5 mm diameter, is used in 

each simulation, making it a possible contender. In their work Karam and Bellinger [71] have cited 

the important role that the recirculation within the droplet or bubble in a simple shear flow may 

play in determining the shape of the droplet/bubble. Given a strong enough recirculation the 

interface is supported and can resist deformation to the point where larger shear rates deform the 

droplet less. Additionally, the recirculation within the droplet helps determine the interfacial shear 

because very close to the interface the two fluids must have the same velocity. There must be a 

conservation of momentum across the interface, which is why the shear flow drives the 

recirculation in the droplet. However, if the recirculation cannot be resolved then the velocity 

profile in the droplet will change, also changing the gradient at the interface and the momentum 

transfer across the interface. Therefore, it is theorized that resolving the recirculation inside the 

droplet is important. Figure 3.3 shows images of the streamlines inside the droplet for each mesh 

in the 25.45 1/s shear rate simulations.  
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(a) 

 

(b) 

 

(c) 

 
Figure 3.3: Images from the 25.45 1/s shear rate case showing the recirculation inside the 

droplets in the coarse (a), intermediate (b), and fine (c) meshes. The interface is shown as the 

transparent grey contour and the streamlines are the white lines. 

As is clear from Figure 3.3, as the mesh becomes finer the recirculation becomes stronger, more 

defined, and the streamlines become smoother. The stronger recirculation supports the droplets, 

causing it to become less deformed for the finer meshes. Additionally, as the mesh becomes finer 

the interface thickness becomes thinner as well. The shorter distance over which the property 

transition occurs in the finer meshes minimizes its effect on the recirculation. The property 

transition clearly interferes with the coarse mesh’s recirculation. The higher viscosity dampens the 

recirculation, visible by the region inside the droplet close to the interface where no streamlines 



   

47 

 

exist. This observation is important because it indicates that the addition of a droplet into a simple 

shear flow is enough to make the simulation under resolved. The single phase shear case would be 

fully resolved at the coarse mesh and the solution would not change as the mesh is refined. 

However, by adding the droplet (or a bubble), a confined recirculating flow is formed in the 

domain. An analogy can be drawn between this confined recirculation and a single turbulent eddy 

that is somehow held in place. With this addition, the resolution requirements suddenly jump to 

meet the recirculation. As shown, if this recirculation is not properly resolved the interfacial shear 

and droplet deformation will be incorrect. 

Considering this observation, the conclusion is the mesh must be fine enough to resolve the 

circulation in the fully deformed droplet and further capture the velocity gradients at the interface. 

As has been demonstrated, due to the “eddy” that can be formed inside the droplet this requirement 

may be more stringent than the classic single phase DNS requirements. Quantitatively, the B length 

is the smallest dimension of this recirculation flow in the droplet. In the 25.45 and 17.53 1/s fine 

mesh simulations the B length, without the half interface thickness, corresponded to 0.274 mm and 

0.331 mm, respectively. This equates to 18.3 and 22.1 points across the length, respectively. Given 

the middle mesh had a mesh size equal to two times the fine mesh size, more than 10 points across 

the B dimension are required to resolve the recirculation and 18 is sufficient. This is very similar 

to, but slightly less demanding than, the 20 points across the diameter criterion determined by Fang 

and Bolotnov [8] if the bubble remains spherical. Deformed bubbles need to maintain this new 

criterion, which for highly deformable bubbles may be very demanding. It is also possible, 

especially for large Taylor bubbles, turbulent structures form that do not occupy the entire volume 

of the bubble. In these circumstances, the structures will also need to satisfy some resolution 

requirements in case they collide with the interface. In flows where the eddy scale is smaller than 
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the bubble diameter the y+ units become relevant because if eddies are generated in the bubble 

they likely start at the interface. The comparison between a wall and an interface is not perfect 

because the interface does not hold a no-slip condition, but a shear layer is still formed between 

them. A viscous sub-layer may not be formed, but the y+ information generated from using the 

interfacial shear can inform the eddy generation and ensure the mesh meets the standard DNS 

requirement of 12 y+ units. Therefore, in these cases standard y+ units will determine if the flow 

inside the bubbles is fully resolved. Moving forward, in slug flow simulations the Taylor bubble’s 

interfacial shear will likely rely on y+ calculations since the bubble is too big for a single 

recirculating flow to form. The criterion for when a single recirculation occupies the entire bubble 

will likely apply when small bubbles are being torn off the Taylor bubble. The interfacial shear, 

and therefore the process of tearing the bubble off, will only be resolved for a certain minimum 

bubble size, corresponding to at least 10 and ideally 18 element lengths. 

This study also revealed PHASTA’s inability to simulate extremely large viscosity ratios. As 

cited in literature [39], most interface capturing DNS codes can only simulate viscosity ratios of 

0.01 before the property transition across the interface causes numerical problems.  PHASTA has 

been used to simulate the same viscosity ratio, but when attempting to recreate the experiments in 

Müller-Fischer et al.’s work [74], which used a highly viscous liquid continuous phase and 

standard air for the bubble instead of a lighter liquid, problems arose. The buoyant force would 

still only drive the bubble at 0.1 mm/s, making it practically still. However, it became quickly clear 

that the sudden viscosity change across the interface, a ratio of 6.393∙10-6, prevented the code from 

reaching numerical convergence. This ratio is an order of magnitude smaller than the smallest 

viscosity ratio, 0.0001, tested by DNS. Instead of reaching numerical convergence, extremely large 

velocities in the gas phase and large artificial jumps in pressure would occur around the interface. 
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This is likely due to the mesh being unable to resolve the extremely large velocity gradient that 

would need to be on the gas side of the interface in order to reconcile the large shear force on the 

liquid side. So instead, the momentum equation calculated that this shear force induced large 

velocities in the gas.  

3.2.2 Liquid Film Resolution 

The liquid film between the Taylor bubble and the wall can be quite thin while still maintaining 

a velocity profile. The velocity in the film must be well defined in order to capture the interfacial 

shear on the bubble and the interaction between the liquid leaving the film, also known as liquid 

film jets, and the wake behind the Taylor bubble. Due to how thin and close to the wall the liquid 

film is, the liquid is typically laminar, meaning the velocity profile takes up a parabolic profile. 

One side of the parabola has a zero velocity, at the wall, and the other moves with the interface of 

the bubble.  Due to the fast moving Taylor bubble, the liquid film often has an average negative 

velocity for low flow conditions and a slower velocity if the flow rate is high enough. This 

approximate parabolic velocity profile has been observed experimentally [75, 76] and other 

measurements have shown how the liquid film can be less than a millimeter thick [77, 78]. Given 

the parabolic nature of the velocity profile, at least six points will be required to resolve the film. 

At least three points are required to define a curve so the 6 point resolution provides three points 

per side of the parabola. Ideally, the mesh would provide more than six points. This resolution 

requirement will be discussed further in the mesh design section. 

3.2.3 Taylor Bubble Breakup Events 

The bubbles that breakup from the main body of the Taylor bubble will either enter the wake 

of the Taylor bubble or depart the wake into the main body of the slug. Due to their influence on 

the flow dynamics, capturing a realistic distribution of these daughter bubbles is important to 
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resolving slug flow as well as the breakup of the Taylor bubble leading to new regimes. 

Additionally, capturing accurate bubble size distributions in the wake suggests the simulations are 

accurately capturing the physics of slug flow. There is very little research focused on determining 

size distributions of bubble breaking off from Taylor bubbles. However, there are studies that focus 

on tangentially related flows.  

Evans et al. [79] performed an experimental study where the bubble distribution behind a 

ventilated cavity in downward pipe flow (creating what resembles a static cap bubble) was 

measured. Water and air at atmospheric pressure were used. In this experiment air is continuously 

pumped into downward flow, forming a gas cavity that stays in place and resembles a very large 

cap bubble or very short Taylor bubble. This forms a short liquid film region and a recirculation 

region, or wake, behind the cavity very similar to slug flow. The distribution of bubbles coming 

off the cavity are then measured. The diameter of the pipe is 5.0 cm, considerably larger than the 

pipe used in this work. The experiments found that the bubbles coming off the cavity were almost 

never smaller than 0.5 mm in diameter and typically averaged around 1-2 mm in diameter.  

Experiments by Lehr et al. [80] performed a similar study, but for bubble columns. Air and 

water at atmospheric pressure were also used in this study. They found similar results where 

bubbles rarely were smaller than 0.5 mm in diameter and averaged around 2-4 mm in diameter, 

depending on flow conditions. This is promising for the flow regime transitions because these 

bubbles are well within the resolution capability available to this work. 

An experiment performed by Sun [81] found that bubbles shearing off of large cap bubbles 

typically averaged at 0.5 mm and were as small at 0.2 mm. This is considerably smaller than the 

previous studies. An explanation for this may be the very high flow rates associated with this 

research, 𝑗𝑙 = 2.839 and 𝑗𝑔 = 0.995 m/s. At these flow rates the Reynolds number approaches 
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100,000. This exceeds the Reynolds number expected to be encountered in this study, meaning the 

bubbles are likely to be broken into smaller sizes by the more energetic turbulence. Even still, for 

a fully resolved flow of a Reynolds number equal to 100,000, the mesh would likely be capable of 

resolving these bubbles by approximately 10 points across the diameters. 

3.3 Virtual Probe Data Collection 

To collect the instantaneous local numerical data, the static probe approach was used. The tool 

places a network of static probes aligned along a plane, or planes, in the domain. The probe 

locations are chosen so that, for a pipe, there are many layers of probes that are all equidistant from 

the pipe wall and they align along radial lines extending from the center. The plane is static and 

collects data at every time step. Figure 3.4 shows the probe setup used for all the pipe simulations.  

 
Figure 3.4: Numerical data collection probe locations used for the pipe flow simulations. 

There are 5120 probes distributed among 75 layers. Each profile generated from analysis contains 

75 radial data points. The point closest to the wall is well within the ∆𝑦𝑤𝑎𝑙𝑙
+ ≤ 1 region for all times 

steps in the simulations. At each time step the velocity components, pressure, and level set values 

are collected at each probe. The user can time average this information for any timespan to 
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calculate the mean profile for many different quantities of interest. For example, mean u-velocity, 

void fraction, and 〈𝑣’𝑤’〉 Reynolds stress are all possible. Eqs.  ( 3.9 ) and ( 3.10 ) show examples 

of how mean velocity and 〈𝑣’𝑤’〉 would be calculated. 

𝑈(𝑡) =
1

𝑁𝑟
∑ (

1

𝑁𝑠
∑𝑢𝑖(𝑡 + 𝑡𝑗)

𝑁𝑠

𝑗=1

)

𝑁𝑟

𝑚=1

 
( 3.9 ) 

 

〈𝑣’𝑤’〉(𝑡) = 1/𝑁𝑟 ∑ (
1

𝑁𝑠
∑(𝑣(𝑡 + 𝑡𝑗) − 𝑉(𝑡)) (𝑤(𝑡 + 𝑡𝑗) −𝑊(𝑡))

𝑁𝑠

𝑗=1

)

𝑁𝑟

𝑚=1

 ( 3.10 ) 

Here Nr is the number of ensemble runs performed (always one here), Ns is the number of time 

samples, t is the current time, and tj is the time of a particular data sample. Important to note is that 

the static probe tool cannot collect information in wedge shaped mesh elements. The boundary 

layer mesh is by default wedge shaped, so typically they are tetrahedronized before beginning the 

simulation. This was not done for the one simulation (10 cm long pipe, M2 case), so no data from 

the boundary layer elements from this case are presented. Most of the important information 

regarding the flow regime transition occurs in the bulk of the flow, so this was not a major obstacle 

to overcome. 

The time averaging tool was originally developed for channel flow, where wall perpendicular 

and parallel directions do not change relative to the Cartesian coordinate system. For a pipe, this 

does not hold true and averaging all the y and z velocities at each distance from the wall would not 

produce meaningful results. To account for this a new script was produced to translate the 

Cartesian coordinate velocities to cylindrical velocities. In this system the velocity vector is 

composed of streamwise, wall parallel (uϴ), and wall perpendicular (ur) velocities.  

Another challenge with static probe tool unique to this two-phase flow regime transition study 

is the change of calculating mean flow rate over time. The tool calculates the local mean velocity 
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from all points and all time steps at that particular radial location. This mean velocity is then used 

to calculate the fluctuations at each time step. Due to the acceleration, the true mean velocity at 

the first time step in the window is smaller than the calculated mean. Incorrect mean velocity 

calculations contribute significant error to the velocity fluctuations, particularly for the streamwise 

direction. To compensate for this, the mean velocities for multiple sequential time windows are 

calculated and a linear interpolation line is calculated from the midpoint of each time window. To 

illustrate this process, u velocity (streamwise) data at a single point was extracted from the flow. 

The slug was broken into seven time windows and the interpolation process was applied. Figure 

3.5 shows the results of this analysis.  

 
Figure 3.5: A hypothetical dataset showing how the mean velocity is interpolated to generate a 

more accurate dependent mean velocity. 

The yellow line is the level set value where zero indicates gas and one indicates liquid. Only liquid 

data was processed for this demonstration. The varying mean velocity is clearly visible in both the 

wake region and the liquid slug. Ideally, the velocity fluctuation calculations would come from a 

mean velocity trace similar to the green line. Instead, this modification calculates the velocity 

fluctuations from the red line, which is a significant improvement to the constant mean velocity 

(black line). This improvement is especially clear in the region far from the wake. The acceleration 
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is nearly linear in this region and the interpolated mean velocity agrees well with the expected 

ensemble average. To validate the code, an accelerating single phase laminar flow case was 

created. Zero TKE is expected but the standard static probe tool would calculate a non-zero value. 

TKE measures the energy coming from the velocity fluctuations. In a cylindrical coordinate 

system, the TKE is defined by the following. 

𝑇𝐾𝐸 =
1

2
(𝑢′𝑢′̅̅ ̅̅ ̅̅ + 𝑢𝑟′𝑢𝑟′̅̅ ̅̅ ̅̅ + 𝑢𝜃

′ 𝑢𝜃
′̅̅ ̅̅ ̅̅ ̅) ( 3.11 ) 

The superscript indicates a velocity fluctuation measurement. As Figure 3.6 shows, the correction 

brings the mean TKE profile much closer to zero. 

 
Figure 3.6: Results from an accelerating laminar flow case demonstrating the reduction in error 

the interpolation method provides. 

The TKE calculation is still not zero, revealing that the flow does not accelerate perfectly linearly. 

Paraview has also proven to be a valuable data collection method. Multiple quantities of interest 

are difficult to obtain via the static probe tool due to its immobile probe locations and lack of 

information regarding the points where probes are not located. Paraview can analyze a single time 

step for any and all points in the domain. Turbulent structures, interfacial shape, and interfacial 

shear are examples of numerical data that static probe tool cannot calculate but Paraview can. The 

major disadvantage of Paraview is averaging in time is difficult because data at every time step is 
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not saved and loading the numerical data from each time step into Paraview is extremely time 

consuming. 

3.4 Interfacial Shear Data Collection 

The interfacial shear on the bubbles will be discussed extensively, and has already been 

analyzed in Section 3.2.1 Interfacial Shear. This section will quickly explain how the interfacial 

shear is calculated. The process is entirely performed in Paraview by first choosing a thin slice of 

the domain, perpendicular to the streamwise direction. In the pipe flow simulations this slice is 

typically 1 mm thick. This slice is then contoured twice at the one interface half thickness, 1.0ε, 

and 1-1/3 interface thickness, 1.33ε. An image of this contouring is provided in Figure 3.7. 

 
Figure 3.7: An image illustrating how the interfacial shear is calculated on a Taylor bubble. Red 

and blue surfaces show the level set contours velocity is averaged over.  

The grey contour is the bubble interface and the red and blue planes shows the 1.0ε and 1.33ε 

contours that velocity is averaged over, respectively. The locations of the 1.0ε and 2.0ε level set 

contours are shown on the velocity plane by the white lines. The velocity parallel to the level set 

contour is then calculated from the contour normal: 

𝑢𝑝𝑎𝑟 = 𝒖 − 𝒏 ∙ 𝒖 
( 3.12 ) 
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where u is the velocity vector and n is the contour normal. upar is averaged over the entire contour 

and the shear is calculated from the gradient between these averages 

𝜏𝑖 = 𝜇
𝑢𝑝𝑎𝑟,1.33𝜀 − 𝑢𝑝𝑎𝑟,1𝜀

0.33𝜀
 ( 3.13) 

where 𝜏𝑖 is the interfacial shear and μ is the viscosity. This operation can be performed for both 

the liquid side and gas side of the interface. The slice of the domain is then adjusted to a new 

location and a new interfacial shear is calculated. 

3.5 Interfacial Area Concentration Data Collection 

Interfacial area concentration is a quantity commonly measured and calculated in order to 

describe the state of the two-phase flow [82]. PHASTA did not have the capability to measure the 

interfacial area concentration during simulation, preventing quantitative analysis of the interfacial 

area information during the transitions. To analyze the interface structure as the flow develops 

during the transition, a tool was developed to collect the interfacial area information throughout 

the entire domain at every time step. This section discusses this tool and the analysis that it allows 

to be performed. 

3.5.1 Tool Description 

To collect the interfacial area concentration information, the user must first define a pseudo 

grid that is overlaid on the domain. This grid can have any dimensions but should be coarser than 

the computational mesh. As the simulation runs, the total interfacial volume is collected in each 

element of the pseudo grid. Since the level set method simulates the interface as a volume, with a 

thickness of 2ε, directly collecting interfacial area is not possible. Instead, the code calculates the 

interfacial volume, V, and divides by the interface thickness to find the interfacial area.  
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𝐴𝑖 =
𝑉

2𝜀
 ( 3.14 ) 

As long as the grid is fine enough relative to the curvature of the interface, this interfacial area 

calculation will be accurate. The interfacial area information is collected locally on each processor 

and later compiled together to form a single matrix of interfacial area in each element of the pseudo 

grid. The user can then find the interfacial area information, for every time step, in a dedicated 

output file. 

3.5.2 Method Verification 

To verify that this tool correctly calculates the interfacial area, a simple case with just two 1.0 m 

diameter bubbles in 3.0 m cube was designed. The code should calculate 6.28 m2. In actuality, the 

code calculated 5.44 m2, a 13.4% error. This error is significant and likely comes from the method 

used to calculate the interfacial area, Eq. ( 3.14 ), rather than the collection method. Figure 3.8 

shows an instant in time from a simulation and the associated interfacial area information shown 

on a semi-transparent 3D grid. 

  

Figure 3.8: An image of the air-water interface (left) and the associated interfacial area 

concentration information (right). The interfacial area grid is 3D and semi-transparent. 
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Figure 3.8 shows that the interface shape measured from the interfacial area collection code 

matches the simulation. 

Turning this capability on is inexpensive, increasing the run time by about 1.1% over 40 time 

steps on the Argonne BGQ machines. Therefore, users can either continuously collect data or run 

single select time steps to collect data at representative instances. However, for large pseudo grids, 

the interfacial area output file can become gigabytes in size if collecting at every time step. The 

Matlab script that analyzes this data becomes extremely slow when inputting files this large. It is 

recommended that single time steps are collected at a time. Appendix A.1 shows the Fortran 

routine that calculates the interfacial area. Other pieces of code, like MPI commands, that are 

scattered among other PHASTA subroutines are not included. 

3.5.3 Data Analysis 

To analyze the data collected by this newly developed tool, a Matlab script was generated. Since 

the code collects interfacial and gas volume information at every time step and at every point in 

the domain, a wide range of parameters can be calculated. The script is capable of identifying the 

major structures in the flow, namely the nose of the Taylor bubble, and calculating parameters like 

Sauter mean diameter, defined below, at different distances from the nose (see Figure 3.9). 

𝐷𝑠 =
6𝑉

𝐴𝑖
 

( 3.15 ) 

Here V is the total volume of gas and Ai is the total interfacial area. 
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Figure 3.9: Sauter mean diameter information for two different meshes at the same time instance. 

The script also can spatially average across the whole domain, or a specified region if desired. This 

allows for the temporal progression of interface void location to be understood, allowing for 

possible future model development and comparison. Figure 3.10 gives a short example of this 

temporal progression and shows radial profiles for the mean interfacial area in the domain at two 

different time steps in the 20 cm long pipe. 
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Figure 3.10: Spatially averaged interfacial area information for two different points in time of the 

20 cm long pipe simulation. 

The script would also allow similar plots for void fraction and Sauter mean diameter. This 

capability is similar to the wire mesh sensor used in experiments. The difference is that this method 

is unobtrusive and allows for data collection over a volume rather than just a plane. Appendix A.2 

contains the Matlab code for this tool. 
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CHAPTER 4. PROBLEM SETUP 

Simulating flow regime transitions using interface resolved methods has never been the primary 

research project focus of other computational studies using similar interface resolved methods. 

This Chapter details the considerations that were necessary for creating these first of their kind 

simulations that can accurately predict flow regime transitions while remaining computationally 

affordable and relevant to the available literature. An explanation of all the information needed to 

recreate these flow regime transition simulations will be included. 

4.1 Boundary Conditions 

All presented flow regime transition simulations use no-slip conditions on the walls and 

periodic boundaries on the ends of the pipes. The long development length required by flow regime 

transitions required the periodic boundary conditions. Otherwise, a domain multiple meters long 

would be necessary. This simulation would be prohibitively expensive at the necessary mesh 

resolution. The consequence of applying periodic boundaries will be discussed in Section 4.2.2 

Domain Length Study.  

4.2 Domain Design 

All the domains are oriented vertically and x is the streamwise direction. A pipe was chosen as 

the primary geometry because of the large body of research already committed to studying both 

single and two-phase flow in pipes. Before analyzing complex geometries, such as the BWR 

subchannel, simpler geometries should be studied in order to provide confidence in the code’s 

ability and understand the physics of the simpler flows.  

4.2.1 Dimensions 

The three different pipe geometries are summarized in Table 4.1. 
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Table 4.1: Summary of the three primary domains used in this work. 

 Length [cm] Diameter [mm] 

Pipe 1 10.0 15.0 

Pipe 2 20.0 15.0 

Pipe 3 4.0 2.4 

 

The two diameters were both chosen due to their similarity to relevant experimental research [24, 

83, 84]. Additionally, these sizes are expected to highlight specific physics of interest. The 15.0 

mm pipe is close to the size of a BWR subchannel, implying similar phenomenon and dominant 

forces will be observed. The 2.4 mm pipe, or minichannel, offers the opportunity to perform 

validation studies due to the dominant surface tension and viscous forces that make the flows easier 

to characterize. Minichannel/microchannels have been the studied extensively and their behavior 

is well documented [84, 85, 86].  

4.2.2 Domain Length Study 

A major consideration for each periodic domain is its length. Unlike other two-phase flow 

regimes, slug flow is intermittent. Bubbly and churn-turbulent flow regimes look approximately 

similar spatially, and especially in the axial direction two arbitrary segments are nearly indistinct. 

In contrast, slug flow is composed of two distinct segments, the liquid slug and the Taylor bubble. 

The length scale of slug flow is therefore the length of the slug and bubble together. Choosing a 

computational domain whose length is not an integral length of the slug flow length scale would 

be unphysical. A simple example would be a periodic pipe so short it forces annular flow. 

Fortunately, several studies have focused on measuring liquid slug lengths behind a Taylor bubble 

[87, 88, 89, 90]. These experiments find that the slug length is highly variable and can be as little 

as 3 pipe diameters to greater than 40 pipe diameters. Higher flow rates and smaller diameter pipes 

tend to decrease the expected slug length as well. 



   

63 

 

A study was performed to examine if pipes 1 and 2 produced realistic flows. A 6.0 cm and 24.0 

cm domain, 15.0 mm in diameter were created. For both cases the mean liquid flow rate was 0.2 

m/s and the void fraction was 40%. At this condition slug flow is expected. The simulations were 

allowed to reach steady state and the resulting flows were observed (see Figure 4.1). 

 

 

Figure 4.1: Stables conditions for the 60 mm (top) and 240 mm (bottom) domains used in the 

domain length study. 

As Figure 4.1 shows, the interface in the 6.0 cm domain is perturbed, causing large fluctuations in 

the local liquid film thickness, and the interfaces in the 24.0 cm domain are smooth. The 

perturbations are caused by the wake of the bubble self-interfering through the periodic stream-

wise boundary. A Taylor bubble experiencing this phenomenon would not be a stable condition 

and the trailing Taylor bubble would accelerate and merge with the leading bubble. The liquid slug 

in this flow is less than two diameters long, an unlikely condition according to relevant experiments 

[87, 90]. The Taylor bubbles in Figure 4.1 (bottom) are smooth and they survive without merger. 

To achieve this flow the computational expense would become too large at the finer mesh 

resolutions due to how long the pipe is. Therefore, the 10.0 cm long pipe domain (that is used in 

future simulations) was modeled after the shorter liquid slug/Taylor bubble pair in Figure 4.1 

(bottom), where the liquid slug is about three diameters long. The 20.0 cm long domain was chosen 

to extend the slug length, to about 10 diameters, and characterize how the slug length affects the 

transition.  



   

64 

 

4.3 Mesh Design 

Three different meshes, M0, M1, and M2, were designed (see Table 4.2, Table 4.3, and Table 

4.4). Starting at M0, the coarsest mesh, the mesh size is halved in each direction. This uniform 

refinement increases the number of computational elements by about a factor of 23. Using a drift-

flux model [29], the ∆𝑦+ values were estimated for the high flow rates at which slug flow has been 

predicted to undergo a transition [24]. At these conditions the Reynolds number is expected to be 

about 60,000 in the 15.0 mm diameter pipes.  

Table 4.2: Description of the computational meshes for the 10.0 cm long, 15.0 mm diameter 

pipe. 

 Base/M0 1st Refinement/M1 2nd Refinement/M2 

Wall Mesh [mm] 0.0700 0.0385 0.0154 

Bulk Mesh [mm] 0.2360 0.1230 0.0615 

Wall ∆𝑦+ 14 7 3 

Bulk ∆𝑦+ 46 24 12 

Smallest Resolvable Bubble 

Diameter [8] [mm] 
4.72 2.46 1.23 

Smallest Bubble Diameter for 

Resolving Interfacial Shear [mm] 
4.25 2.21 1.11 

Number of Elements [millions] 8 57 430 

 

Table 4.3: Description of the computational meshes for the 20.0 cm long, 15.0 mm diameter 

pipe. 

 1st Refinement/M1 2nd Refinement/M2 

Wall Mesh [mm] 0.0154 0.0075 

Bulk Mesh [mm] 0.123 0.0615 

Wall ∆𝑦+ 3 1.5 

Bulk ∆𝑦+ 24 12 

Smallest Resolvable Bubble Diameter [8] [mm] 2.46 1.23 

Smallest Bubble Diameter for Resolving 

Interfacial Shear [mm] 
2.21 1.11 

Number of Elements [millions] 140 1117 
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Table 4.4: Description of the computational meshes for the 40 mm long, 2.4 mm diameter 

minichannel. 

 Base Mesh/M0 1st Refinement/M1 

Wall Mesh [mm] 0.010 0.005 

Bulk Mesh [mm] 0.04 0.02 

Wall ∆𝑦+ 0.027 0.014 

Bulk ∆𝑦+ 0.110 0.055 

Smallest Resolvable Bubble Diameter [8][mm] 0.80 0.40 

Smallest Bubble Diameter for Resolving 

Interfacial Shear [mm] 
0.72 0.36 

Number of Elements [millions] 36 291 

 

M0 was not applied to the 20 cm long pipe because, as will be discussed, the M0 mesh could not 

fully resolve the flow. The 10 cm long simulations also indicated that the boundary layer mesh 

should be finer. Knowing this, the 20 cm long domain boundary layers were adjusted to be finer. 

The smallest resolved bubble diameter is calculated from the criteria developed by Fang & 

Bolotnov [8] stating the level set method requires 20 points across the diameter of a bubble. The 

smallest resolvable bubbles according to the criterion developed in Section 3.2.1 Interfacial Shear 

is also shown. The ∆𝑦𝑤
+ shown in Table 4.2, Table 4.3, and Table 4.4 refer to a single instance, the 

highest velocity condition, when the flow is at steady state. However, because the flow regime 

transition is a transient phenomenon, the necessary mesh resolution is also changing with time. 

Therefore, each mesh may be appropriate at different times in the simulation. Using Eqs. ( 3.1 ) 

and ( 3.2 ) and wall shear information from the 20 cm long pipe flow, the necessary wall resolution 

at different time steps was calculated and compared to the wall mesh size of the different meshes 

(Figure 4.2). 
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Figure 4.2: The wall mesh size necessary to fully resolve the flow. The three horizontal lines 

refer to the actual wall mesh size used in the 20 cm long pipe simulations. The data for wall 

shear comes from flow in the 20 cm long pipe. 

As Figure 4.2 shows M0 quickly loses ∆𝑦𝑤
+ < 1 qualification. Even the M2 mesh becomes under 

resolved according to this criterion. An M3 mesh would be necessary to meet this criterion at all 

time steps. This mesh would be about 8 billion elements in size and a single flow through in the 

10cm pipe would require about 50 million CPU-hours. Fortunately, it has been observed that the 

flow regime transition begins while M2 still fully resolves the flow. Additionally, the ∆𝑦𝑤
+ of M2 

never becomes larger than 2 and remains close to 1.5 (which has been shown to be satisfactory 

resolution in bubbly turbulent channel flow simulations). To observe the effect the mesh has on 

the TKE, Figure 4.3 compares the TKE in the liquid slug from the M1 and M2 simulations at five 

different time windows in the 20 cm long pipe. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-0.1 0 0.1 0.2 0.3 0.4 0.5

W
al

l E
le

m
en

t 
Si

ze
 [

m
m

]

Time [sec]

y+=1

M0

M1

M2



   

67 

 

 
Figure 4.3: Comparing M1 and M2 liquid slug TKE profiles at different instances in time. Time 

refers to time since the pressure gradient was increased. 

As Figure 4.3 shows, the TKE is only slightly different between each mesh for earlier time 

instances. Some difference is acceptable because there is uncertainty from sampling and in the 

TKE calculation (see Section 3.3 Virtual Probe Data Collection). For the times when the meshes 

agree on TKE, the peaks, although slightly different in magnitude, are consistently located at the 

same location as well. The TKE calculations only begin to differ after 0.3 seconds, which 

corresponds to six flow throughs of the Taylor bubble. As seen in Figure 4.2 M1 and M2 would 

be expected to become inaccurate after about 0.05 and 0.15 seconds, respectively. These results 

suggest that even when the classic ∆𝑦𝑤
+ < 1 criterion is not met, the results from an “under 

resolved” mesh can still match a fully resolved mesh. Altogether, initially in the transient, it seems 

the discretization uncertainty is relatively insensitive to the Reynolds number. The M1 mesh can 

still be used to approximate the TKE even when it no longer meets the ∆𝑦𝑤
+ < 1 condition. This 

will be important for when M2 is too computationally expensive but other tests are still desired 

using M1. Additionally, this suggests M2 is accurate past the time it no longer satisfies the ∆𝑦𝑤
+ <

1 condition. 
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While ∆𝑦+ is an appropriate measurement for single-phase DNS resolution, two-phase DNS 

meshing requirements may be just as, or more, limiting. Using the criterion developed in Section 

3.2.1 Interfacial Shear, the interfacial shear data at two different time instances were chosen to 

determine the interface ∆𝑦+ dimensions. Time steps early and late in the transient were chosen in 

order to observe the shear for a laminar and turbulent liquid film. Profiles of the interfacial shear 

on the gas and liquid side are shown in Figure 4.4. 

 
Figure 4.4: Interfacial shear profiles on the liquid side (solid line) and gas side (dotted line) of 

the interface of the Taylor bubble at two different time steps. 

At the earlier time step, the Taylor bubble’s interface is still smooth and the nose does not 

encounter a significant amount of turbulence. The flow in the later time step is fully turbulent and 

the interface is very perturbed. Taking the maximum interfacial shear value from both sides of the 

interface, the ∆𝑦+ units of each bulk mesh, for liquid and gas were calculated. The elements in M1 

were 5.87 ∆𝑦+ units in the liquid and 3.32 ∆𝑦+ units in the gas. The elements in M2 were 2.93 

∆𝑦+ units in the liquid and 1.66 ∆𝑦+ units in the gas. Therefore, the meshes are both still resolving 

the interfacial shear of the Taylor bubbles. However, the bubbles in the wake of the Taylor bubble 

can be very small, just a couple elements across the diameter. These are not well resolved but since 
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they are so small do not have a significant effect on the flow. The majority of the bubbles in the 

wake were millimeters in diameter. The M2 mesh meets the interfacial shear criterion for these 

bubbles. 

As was discussed in Section 3.2.2 Liquid Film Resolution, for slug flow, the liquid film around 

the Taylor bubble was considered to be one of the smallest scale two-phase phenomenon that 

would be important to the flow regime transitions. In Figure 4.5, images from the M0, M1, and 

M2 simulations show a zoomed in view of the liquid film (the region above the thick white line) 

with an overlay of the computational mesh. In these images the thick white line is the bubble 

interface (the zero level set contour), the blue lines outline the mesh, and the thin white lines are 

the integral values of half interface thickness (ε) level set contours (see Figure 2.1 for reference). 

  
 

Figure 4.5: Images showing how well each mesh resolved the liquid film. The top of each image 

is the pipe wall. The blue lines show the computational mesh. The thick white line is the 

interface and the thin white lines are half interface level set contours. 

Figure 4.5 (left) clearly shows that the fully liquid properties region of the liquid film (above the 

first thin white line) is only resolved by five or six points in M0. Considering one of these points 

is the boundary, this is not a well resolved flow. As discussed, at least six points are required to 

form the parabolic velocity profile expected in the liquid film region. In fact, the simulations show 

that hardly any down coming liquid is being ejected from the film into the wake of the bubble. As 

the mesh is refined the liquid film becomes thinner, from about 1.0 mm to 0.7 mm, further 

suggesting M0 is too coarse. At M1 and M2 the film thickness is approximately the same and it is 
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resolved by, at a minimum, 10 and 13 points, respectively. Since M0 has been shown to not resolve 

the flow in the 15.0 mm diameter pipe it will not be further considered in other simulation. 

The importance of testing the two-phase resolution of the mesh is highlighted in the 

minichannel flow when considering the liquid film. Even though the ∆𝑦+ values indicate the mesh 

is very well resolved, ∆𝑦𝑤
+ = 0.027, for M0, the liquid film is only resolved by four points. A 

researcher only considering single phase factors would assume this was fully resolved, when in 

fact important liquid film phenomena are lost.  

Unfortunately, determining how well PHASTA predicts the size of bubbles being torn off the 

Taylor bubble, referring to the discussion in Section 3.2.3 Taylor Bubble Breakup Events, is 

difficult. PHASTA’s bubble tracking capability [91] cannot yet accurately track new bubbles being 

produced so rapidly. Therefore, the only alternative to determine the size of these bubbles is to 

measure individual bubble volumes in Paraview and calculate Sauter mean diameters using either 

Paraview or the interfacial area tracking code developed for this work. As Figure 4.6 shows, the 

interfacial structure behind the Taylor bubble can be very complex. 

 
Figure 4.6: A snapshot showing the complex interface topology in the wake of the Taylor 

bubble. 
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The size of the smallest visible bubbles was measured and the Sauter mean diameter in the wake 

was measured. Two different time instances were chosen and both M1 and M2 were investigated. 

One time is right after bubbles began to shear off the Taylor bubble and the second is late in the 

transient when the wake has many bubbles in it. Results from this study are reported in Table 4.5. 

Table 4.5: Data from measuring the bubble sizes in the wake of the Taylor bubble at two 

different time instances for both M1 and M2. 

  Early Time Late Time 

 

Mesh 

Size 

[mm] 

Sauter Mean 

Diameter 

[mm] 

Equivalent Diameter 

of Smallest 

Observed Bubbles 

[mm] 

Sauter Mean 

Diameter 

[mm] 

Equivalent 

Diameter of 

Smallest Observed 

Bubbles [mm] 

M1 0.123 2.94 0.248 3.86 0.494 

M2 0.065 2.66 0.252 2.52 0.456 

 

The equivalent diameter is calculated from the volume of the bubble. 

𝐷𝑒𝑞 = 2(
𝑉3

4𝜋
)

1
3
 ( 4.1 ) 

This result compares well to the experimental results measuring similar quantities [79, 80]. For 

both meshes, at both time instances, the mean diameters fell within the range of what was expected, 

about 2-4 mm. Additionally, at the early time step, M1 and M2 have a very similar Sauter mean 

diameter. M1 is only 10.5% different from M2. Later in the simulation, the two meshes differ 

considerably, but this is expected since M1 is not fully resolving the turbulence. In both meshes 

the smallest observed bubbles are only a few grid points across. It is unclear if these bubbles are 

remnants of bubbles suffering from the level set method’s mass conservation issues or if this is the 

size they broke into. Interestingly, the size of these small bubbles does not change appreciably 

between M1 and M2. This suggests they are physical because M2 would have bubbles half as 

small if their size was primarily dependent on the mesh size. If this is true, then they are in 

approximate agreement with the scale of the smallest bubbles observed in experiment. The 
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maximum size is not comparable in these cases because the experimental geometry in both papers 

was considerably bigger than the pipes in this work. 

4.4 Inducing a Flow Regime Transition 

Having the capability to induce a flow regime transition without misrepresenting the physics is 

an important consideration for this study. Experiments are fortunate to have valves that 

individually control the flow rates of each phase (effectively setting the superficial velocities for 

each phase). The researchers can hold the liquid flow rate constant while independently changing 

the gas flow rate, and vice versa. Some experiments can even add void via boiling. The periodic 

boundary conditions prevent the use of techniques involving valves and the boiling capability is 

still being developed [92]. Therefore, a new method for inducing a flow regime transition must be 

created. 

One possible method that was initially considered focused on changing the void fraction. As 

the flow went past a certain region of the domain the code would change the level set field just 

within this region to increase the void fraction. This interface moving method is not physical 

however, so it was not chosen. Instead, the transitions were induced by increasing the driving 

pressure gradient, one of the input parameters. Using this method, both the liquid and gas flow 

rates will increase, moving diagonally across a superficial velocity based flow regime map. Since 

the pressure gradient is included in the INS, this method does not alter the physics and every single 

computational node will observe the change in pressure gradient simultaneously. When the 

pressure gradient is suddenly increased, the flow begins to accelerate because there exists an 

imbalance in the wall shear force and driving pressure gradient force. Consequentially, the flow 

accelerates until these two are balanced. Figure 4.7 shows this temporal progression. 



   

73 

 

 
Figure 4.7: An example of how the wall shear responds when the pressure gradient is step 

increased. The wall shear data comes from the 20 cm long pipe, at the M1 resolution. 

The time period that this transient occurs over allows for detailed data analysis as the flow develops 

and a two-phase flow regime transition occurs.  

4.5 Fluid Properties and Flow Conditions 

Depending on the purpose of the simulation, different fluid properties and flow conditions were 

chosen. For the 15.0 mm diameter pipe, the same density and viscosity properties were used for 

most of the simulations. The surface tension was typically the STP value but it was varied for some 

cases and will be specified when necessary. These properties are given in Table 4.6 and the 

pressure gradient values are given in Table 4.7.  

Table 4.6: Fluid properties used in the simulations. Properties at BWR and atmospheric 

conditions are given for reference. 

 Density [kg/m3] Viscosity [kg/m-s] 
Surface 

Tension [N/m] 

 Simulation BWR STP Simulation BWR STP BWR STP 

Liquid 758.15 758.15 997.00 8.54E-4 8.54E-5 8.72E-4 
0.014 0.0714 

Vapor 30.83 30.83 1.17 2.86E-4 1.86E-5 1.20E-5 
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Table 4.7: The pressure gradient values, and their names, used in the simulations. 

Pressure Gradient [Pa/m] 

P0: 17.5 

P1: 1017.5 

P2: 15047.5 

 

The densities chosen correspond to what would be found in a BWR. The viscosities were inflated 

in order to allow for high flow rates while maintaining reasonable time step sizes and meshing 

requirements. The pressure gradients were calculated from a drift-flux model [29], where smooth 

slug flow is expected at P0 and P1, and a transition out of slug flow is expected for P2. The 

minichannel fluid properties correspond to atmospheric conditions because experiments use 

primarily atmospheric conditions. The void fractions of the 10 cm long, 20 cm long, and 

minichannel domains are 40%, 20%, and 50%, respectively. The 10 and 20 cm long domains have 

the same volume of gas. This volume was chosen to allow for a single Taylor bubble to form in 

the 10 cm long domain. The minichannel’s void fraction was chosen by estimating the void in the 

experiments that the simulation will be designed from [84]. 

Using the properties from Table 4.6, bubble size information from Table 4.5 and flow rate 

information, the range of Reynolds number (Re), 

𝑅𝑒 =
𝜌𝑈𝐷

𝜇
 ( 4.2 ) 

Weber number (We), 

𝑊𝑒 =
𝜌𝑢𝑟

2𝑙

𝜎
 ( 4.3 ) 

and Eötvös number (Eo), 

𝐸𝑜 =
∆𝜌𝑔𝑙2

𝜎
 ( 4.4 ) 
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are provided in Table 4.8. In these equations 𝑙 refers to the bubble diameter.  

Table 4.8: Non-dimensional number information for the transition simulations 

Number 10 cm Long Pipe 20 cm Long Pipe 

Reynolds 2700-54,000 3,200 - 74,200 

Weber 0.11 - 5.85 

Eötvös 0.006 - 16.88 

 

Ranges are provided for the transient because the two-phase flow regime transitions are changing 

in flow rate and produce bubbles of different sizes, especially in the churn-turbulent regime. The 

largest Weber and Eötvös numbers refer to the Taylor bubble. As the new regimes develop it is 

expected that the Taylor bubbles breakup and the Weber and Eötvös numbers both decrease. The 

Reynolds number range, initially beginning in the transition region, ends at the value 

corresponding to the liquid flow rate from the 20 cm long pipe at the end of the transition. This 

high Reynolds number arises after the transition has already begun. For comparison, in the 10 cm 

long pipe the two-phase flow regime transition began when the Reynolds number was about 

40,000. Additionally, the Reynolds number range in Table 4.8 uses the mean liquid velocity. Using 

the mean velocity in the film, the film Reynolds number before the acceleration is found to be 674. 

Since the velocity in the film is negative prior to acceleration, this Reynolds number would initially 

decrease as the film velocity approaches zero. The Reynolds number would then increase as the 

film velocity becomes positive. To calculate the Weber number, the relative velocity of the Taylor 

bubble at the low pressure gradient condition was calculated exactly. However, the relative 

velocity of the bubbles in the wake was not directly measured, so an assumption of 0.2 m/s was 

used. Note that the largest Weber and Eötvös correspond to the observed Taylor bubbles. The 

range of Weber and Eötvös shows that both spherical bubbles, where surface tension is dominant, 

and deformable bubbles, where liquid inertial effects are more prominent, exist in these flows. In 
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particular, the large values indicate that the Taylor bubble is prone to instabilities and deformation 

due to the interface’s interaction with the liquid. 

4.6 Initialization 

At time zero all locations in the domain have the same velocity, 0.1 m/s. To initialize the gas in 

the domain small bubbles are randomly placed within the domain until the desired void fraction is 

reached (see Figure 4.8). 

 

Figure 4.8: An example of the void initialization. 

In the first time steps the bubbles will rapidly coalesce into one large Taylor bubble, forming slug 

flow. The rapid coalescence is chaotic, and generates some turbulence. This is not a concern 

however because once the Taylor bubble is formed, it is allowed to complete at least two flow-

throughs of the domain. During these flow-throughs the liquid is entering the thin film and then 

being ejected into the wake. This process of reaching a laminar flow in the film, where the 

Reynolds number is about 400, and then becoming turbulent in the wake is considered to erase 

information regarding the initial condition. Following these flow-throughs the transitions will 

initiate, meaning all forward transitions in this work begin with slug flow. 
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CHAPTER 5. VALIDATION EFFORTS 

Validation is important to all CFD codes. William L. Oberkampf is the premier expert on CFD 

validation and has committed significant time to laying out a framework for scientific verification 

and validation. In his writings Oberkampf has detailed his frustration with the CFD community’s 

general lack of proper validation: “Common practice has been that if the computational results 

generally agree with the experimental data over the range of measurements, the model is 

commonly declared ‘validated.’ Comparing computational results and experimental data on a 

graph, however, is only incrementally better than making a subjective comparison.” [57]. This 

point is especially important when considering the subjective nature of flow regime transition 

classification. Additionally, the nuclear engineering community commonly uses a single piece of 

data to validate a multiphysics problem. For example, due to the limited amount of data available, 

researchers using nuclear reactor system codes will validate their code using the reactor pressure 

vessel pressure and core water level data from the Fukushima accident. Upon claiming the code is 

validated, the same code will be used to predict parameters such as pressure vessel failure time, 

isotope release, core relocation, and hydrogen generation [93, 94, 95]. The intention of pointing 

out this practice of low data validation is not to highlight weaknesses, but rather draw parallels 

between reactor system code validation and DNS validation (in particular two-phase DNS). In both 

cases, directly applicable data that is on the scale necessary for validation is limited. So far an 

extensive method to validate codes that experience this problem has not been developed. Instead, 

this Chapter will attempt to follow Oberkampf’s methods, specifically the validation hierarchy, to 

prove PHASTA is capable of simulating two-phase flow regime transitions using the pressure 

gradient jump method discussed in Section 4.4 Inducing a Flow Regime Transition. This Chapter 
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should also provide confidence in the accuracy of the numerical data created from the developed 

simulations. 

5.1 The Validation Hierarchy 

The validation hierarchy proposed by Oberkampf and Trucano [59] provides a path for 

validating a code designed for simulating extremely complex processes, such as an airplane, race 

car, or two-phase flow system. In the paper [58], Oberkampf and Trucano use the example of a 

cruise missile. The hierarchy shows how the problem is decomposed to different levels of 

complexity and how each level relates to each other. The hierarchy breaks down the main physics 

into different levels of complexity: system, subsystem, benchmark, and unit problem. Identifying 

the correct components to each level is not always obvious but is extremely important for a 

complete validation process. In general, the system level breaks the entire problem up into the 

major components that make it up (physical structure, fluids, electrical components, etc.). While 

all the systems are related and interact with one another, they operate on different principles and 

physics from each other. The subsystem level is composed of the classes of physics that each 

system encounters (electrodynamics, thermal hydraulics, structural mechanics, etc.). The 

benchmark level puts forth individual problems that no longer are directly derivative of the initial 

problem, but are test pieces for the physics mentioned in the subsystem level. An example would 

be convective boiling in a pipe being a benchmark problem of a nuclear reactor. The unit problem 

level is the simplest in terms of physics, but still very important because all of the components of 

this level must capture the physics of the entire problem on the simplest level. For example, simple 

geometry single phase laminar and turbulent flow problems and individual bubble flows would be 

included here.  
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This hierarchy provides an order of operations when performing a code validation. Simulations 

described in the unit problem level must be performed first. These unit problems are designed to 

test a single piece of physics, such as single phase turbulence in a parallel plate channel, or drag 

on a single bubble. Unit problems generally have experimental data to directly compare to as well. 

Once the code is shown to be accurate for each unit problem then the code is said to be validated 

for these phenomena. If all the problems at the unit level are validated then the code can be used 

to predict phenomena at the benchmark level, such as bubbly flow in a parallel plate. In turn, if the 

code can be validated for all the benchmark problems, then it can be confidently used to perform 

simulations at the subsystem level, such as convective boiling flow in a complex geometry (like a 

BWR channel). If all the pieces at the subsystem level are then validated, then the code can be 

extended to the system level. Finally, if the code is validated at the system level then it can be 

extended to predict behavior of the total problem. Therefore, even though the code has not been 

validated against experiments at the total problem level, since the problem is a combination of 

simpler problems that the code has been validated for, researchers can conclude the code can make 

accurate predictions of the total problem behavior. 

Fully validating a code by this method is quite a demanding task, especially for the example 

given of a cruise missile, and would take considerable time. Fortunately, the problem of two-phase 

flow regime transitions is not as interdisciplinary as a cruise missile and the entire problem likely 

already falls under the subsystem level. Figure 5.1 shows the novel validation hierarchy that was 

created for two-phase flow regime transitions.



   

80 

 

 

 

 

 

 

Figure 5.1: Two-phase flow regime transition validation hierarchy. Blue boxes are simulations previously run by other colleagues. 

Green box simulations were performed in this work. White boxes have not been simulated with PHASTA. 
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In Figure 5.1 green represents validation cases performed in this work. Blue are simulations that 

PHASTA has performed, but by colleagues. White means these simulations have not been run in 

PHASTA but will still be discussed due to their relevance. The following sections will discuss the 

unit problem and benchmark level simulations that were performed in this work to validate 

PHASTA for two-phase flow regime transitions. To learn about the simulations in blue, the reader 

is referred to [11, 63, 3, 38]. 

5.2 Unit Problem Level 

5.2.1 Bubble Approaching a Free Surface 

As a bubble approaches a free surface or another bubble, a thin liquid film forms that must drain 

before coalescence can occur. Due to the dominant viscous forces in the film, the drainage can 

take a considerable amount of time, and the bubbles sometimes recoil away from each other instead 

of coalescing. The liquid film is not uniform in thickness and typically takes the shape of a reverse 

donut, where it is thinnest in a ring surrounding a region of thicker film. The film first forms with 

a thickness of about 0.1 mm [96] and it will snap in the thin region at only a few micrometers in 

thickness [96, 52]. However, as two bubbles in a simulation employing the level set method 

approach one another, their Heaviside function determined property transitions will begin to 

overlap. As they continue to overlap, the properties between the bubbles become more and more 

gaseous, making it easier for the bubbles to approach each other. Therefore, the level set method 

permits coalescence for nearly all situations when one bubble approaches another. To properly 

simulate two bubbles bouncing off each other, as would be expected in bubbly flows, using the 

level set method would require a computational mesh fine enough to capture the liquid film 

between the bubbles. To determine how fine this mesh needs to be, a grid study was designed. 

This study will analyze increasingly fine meshes for a buoyancy driven bubble rising towards a 
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free surface. The domain is large enough to allow the bubble to reach its terminal velocity by the 

time it begins to interact with the surface. In reality, as the bubble reaches the surface, the bubble 

will bounce off the surface before coalescing. The path and velocity of the bubble will be measured 

and compared to experiments [97]. Using this data an appropriate mesh size for resolving the liquid 

film between bubbles will be determined. Table 5.1 shows the total number of elements and the 

size of the elements that were resolving the liquid film. 

Table 5.1: Mesh parameters for the liquid film grid study. 

 M0 M1 M2 M3 M4 

Liquid Film Resolution [μm] 60 30 15 7.50 3.75 

Number of Elements [millions] 1.34 1.08 2.76 9.99 34.0 

 

To remain computationally affordable, 30, 15, 7.5, and 3.75 μm sized elements only exist in 

small cylindrical regions between the bubble and the free surface. The rest of the domain uses 

recursively coarser element sizes. Figure 5.2 shows an image of the meshing in M3.  

 
Figure 5.2: An image of the M3 mesh. The color represents vertical (y direction) velocity and the solid 

white lines show the bubble interface and free surface. 
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Additionally, the bubble was allowed to rise to the free surface from the bottom of the domain 

only in the M0 mesh. Future simulations used the solution from a time step from M0 when the 

bubble was already close to the surface but not close enough to effect whether the bubble bounces 

off the surface (about 1 bubble diameter away from the surface). This allows the mesh to be 

coarsened in the path of the bubble that will no longer be important to the bubble-surface 

interaction. For this reason the first refinement has less elements than the coarsest mesh despite 

using smaller sized elements. The fluid properties (see Table 5.2) matched the experiments and 

were based on ethanol and air. 

Table 5.2: Fluid properties for bubble rising towards a free surface case 

 Ethanol Air 

Viscosity [kg/m-s] 0.0012 1.827E-5 

Density [kg/m3] 789.0 1.2 

Surface Tension [N/m] 0.0224 

Bubble Diameter [m] 0.00162 

 

The simulations found the bubble’s terminal velocity to be 0.212 m/s, which agrees within 5% 

to the experimentally measure terminal velocity, 0.223 m/s. Results for the distance from the free 

surface location normalized by the bubble diameter, and velocity, normalized by terminal velocity, 

are shown in Figure 5.3 and Figure 5.4, respectively. 
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Figure 5.3: Bubble location results. The distance is the distance from the free surface in bubble diameters. 

Left shows all the data and right zooms in to show more detail. 

  

  
Figure 5.4: Bubble velocity results. The velocity is normalized by the terminal velocity of the bubble. Left 

shows all the data and right zooms in to show more detail. 

As is clear from the final location of the bubble in all the simulations, the bubble did not bounce 

but rather coalesced with the free surface. All the meshes agreed with the experimental data very 

well and each new refinements extended the life of the bubble. Even M0 was able to capture the 

deceleration of the bubble as it approaches the surface. Therefore, the level set method can capture 

the film drainage process even for meshes that resolve the initial liquid film by only a few 

computational points. The physics is accurately captured, but once the film thickness approaches 

the size of the computational elements, the film enters the property transition region of the interface 

and the bubbles coalesce. Even the finest mesh in this study is about 20 times larger in size than 

the measured final flim thickness. Further mesh refinements were too expensive for the available 

computaitonal resources and a fully resolved simulation may even be too expensive for the most 

powerful computers in the world. Nonetheless, the results are encouraging for the level set method 

because it implies, first, that given a fine enough mesh and enough computational resources, the 

simulations would match the experiment, and second, even coarser meshes can capture the film 

drainage process between two bubbles. 
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5.2.2 Droplet Deformation in a Simple Shear Field 

This study has already been referenced in Section 3.2.1 Interfacial Shear but in the context of 

what is needed for a simulation to be fully resolved. This section will focus on how the simulations 

compare to experiments. Accurately predicting how a droplet deforms in a simple shear flow will 

suggest PHASTA, and the level set method, can accurately predict interfacial shear, which is very 

important for how the Taylor bubble interacts with the liquid. The simulations contained two 

parallel plates, moving in equal and opposite directions to form three different shearing rates (see 

Table 3.2 for details on the flow and mesh properties). The simulations were allowed to run until 

the droplet was no longer deforming. Experimental work [71, 98] has focused on determining the 

deformation factor, defined by Eq. ( 3.3 ), and the angle of the deformation. Results from the 

simulations and the experimental measurements are shown in Figure 5.5. 

  

Figure 5.5: Deformation factor, D, (left) and deformation angle (right) results from the droplet 

shear simulations and experimental work [71, 98]. 

As Figure 5.5 shows, PHASTA’s higher resolution simulations are in better agreement with Rust 

& Manga than Karam & Bellinger. On average, M2 has a 10% error and M1 has a 12% error 

compared to Rust & Manga. Compared to Karam and Bellinger M2 and M1 have a 20% average 
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error. This is likely because Karam & Bellinger had limited precision in their measurement tools 

and were only able to measure to one significant digit in the deformation of the droplet. The 

agreement with Rust & Manga is very encouraging however. 

5.2.3 Minichannel Taylor Bubble Flow 

Taylor bubble flow in small pipes has also been extensively studied [84, 99, 100, 85, 86]. The 

flows are dominated by viscous and surface tension forces, making the physics relatively simple 

to understand for two phase flow. Showing PHASTA can accurately simulate these flows is 

important before turbulent two-phase flows are simulated. The first validation test will examine if 

PHASTA is consistent with experimental flow regime observations. Figure 5.6 gives a flow regime 

map for a pipe with the same dimensions as is being used in this study (2.4 mm diameter). 

 
Figure 5.6: Identification of the superficial velocities that PHASTA predicted for the 

microchannel flow on an experimental flow regime map [84]. 

PHASTA had predicted slug flow, and this agrees with the map shown in Figure 5.6.  

Due to the dominant viscous forces, the flow field is relatively simple and the wake can be 

described as a toroidal vortex, with the fastest velocity in the center of the pipe. Figure 5.7 (top) 

shows the flow field found from PIV experiments compared to the flow field found in the 

simulations. 

0.01

0.1

1

10

0.05 0.5 5 50

j l
[m

/s
]

jg [m/s]

Fukano & Kariyasaki

Present Study

Intermittent/Slug
Annular

Bubbly



   

87 

 

 

 

 

Figure 5.7: Comparison of the flow field from experiment (top) [86], to the flow field from 

simulation (bottom). In the bottom image x is the streamwise direction. 

It is clear that the simulation is not accurately predicting the flow field. There is a negative 

streamwise velocity region directly behind the Taylor bubble in the center of the pipe. This 

phenomenon may come from the under resolved mesh on which the flow was initially solved. The 

low resolution, particularly in the liquid film region, which does not meet the requirements put 

forth in Section 3.2.2 Liquid Film Resolution, may be inhibiting the downward flow in the liquid 

film, creating this negative velocity region. When the M1 mesh was created, the solution found 

with the M0 mesh was used as the initial condition, assuming that after some time, the flow would 

adjust and reach the expected velocity pattern. This did not occur and the best solution may be to 

restart with the M1 mesh. However, despite this, the simulation was carried forward in order to 

observe another phenomenon unique to microchannel slug flow. Fast moving Taylor bubbles in 

narrow channels develop regular interfacial waves at the tail. Depending on the length of the 

bubble and size of the channel, the waves move upward along the bubble, decaying in magnitude. 

[m/s] 
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Figure 5.8 (top) shows images of these waves for flow in a 1.1 mm diameter pipe [101]. Figure 

5.8 (bottom) shows an image from the simulations on the M1 mesh as the flow is accelerating. 

 

 

Figure 5.8: Images of the interfacial waves in experiment [101] (top) and in simulation (bottom). 

As Figure 5.8 (bottom) shows, there are clear interfacial waves in the PHASTA simulations. 

Capturing these instabilities is important because they will be a driving factor in flow regime 

transitions in the minichannel. PHASTA’s predictions of these waves also show that the level set 

method can predict this interface behavior without a model to inform the code of this phenomenon.  

5.2.4 Accelerating Single Phase Flow 

No new simulations were prepared to study accelerating single phase flows. However, the CFD 

community has acknowledged that the transition from laminar to turbulent single phase regimes 

requires different meshing requirements than steady laminar or turbulent flows. Therefore, instead 

of validation, this section will briefly show that the meshes used in these simulations still meet this 

criterion. The flow regime transition simulations are accelerating flows and are directly relevant 

to accelerating single phase flows. Wu & Moin [102] and Rai & Moin [103] both designed flow 

over a flat plate simulations, where, at some point along the plate, the boundary layer transitions 

from laminar to turbulent. Their results both found that an accurate solution requires a grid refined 

by a factor of up to two. Wu & Moin used ∆𝑥+ = 5.91 for the streamwise mesh and ∆𝑧+ = 11.13 

in the spanwise direction. Rai & Moin used ∆𝑥+ = ∆𝑧+ = 28.2 and found the mesh should be 
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refined by up to a factor of two and likely exceeds typical DNS meshing requirements. Typically, 

simulations using PHASTA are designed to have 12+ wall units in the streamwise and spanwise 

direction, meaning this criterion is twice as strict. At the moment of transition from laminar to 

turbulent flow, M1 maintains a streamwise and spanwise spacing of about 12+ and M2 has about 

6+ units. Therefore, M2 is still an accurate simulation despite the strict resolution required. It is 

worth pointing out again that, as shown in Section 3.1 Single Phase Flow Resolution 

Requirements, M1’s solution is still consistent with M2 up until a certain time for second order 

statistics despite not meeting meshing requirements. 

5.3 Benchmark Level 

5.3.1 Accelerating Two-Phase Flows/Flow Regime Maps 

In depth analysis and measurement of pressure gradient driven accelerating two-phase flows 

has not been a focus of much research, making it difficult to directly compare this work. However, 

flow regime maps represent a two dimensional space that an accelerating two-phase flow can move 

through. If the flow agrees with the map then the regime should match where the acceleration 

begins and where it ends. A priority in the validation process was to ensure PHASTA’s flow 

regime predictions match the flow regime maps. To draw conclusions from the simulations about 

the mechanisms for flow regime transitions, there must be a proven consistency between the 

simulations and theory/experiments. This study is not meant to prove that PHASTA predicts a 

transition at the same point the map does. Instead, a matching transition should provide confidence 

in the mechanisms for the transition. Additionally, since the flow is pressure gradient driven, a 

drift flux model [29] should be able to approximate the expected acceleration path. Because reverse 

transitions (decelerating flows) are typically not considered in flow regime transition modeling, 

only forward transitions are considered here. 
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Figure 5.9 plots the simulation superficial velocity and drift flux model prediction on the 

theoretically based Mishima & Ishii [24] and Taitel et al. [27] maps.  

 
Figure 5.9: Comparison of the simulations to the theoretical Mishima & Ishii [24] and Taitel et 

al. [27] flow regime maps. The Drift flux model [29] is also included. Mishima & Ishii did not 

predict churn-turbulent flow at these conditions. 

As Figure 5.9 shows, according to the both maps the 10 cm long domain should be starting in the 

slug flow regime. As the superficial velocities increase, the Taitel et al. maps predict a transition 

to the churn-turbulent regime and possibly bubbly flow. The Mishima & Ishii maps did not predict 

any churn-turbulent flow but the flow rates approach the annular regime, and presumably 

intermittent flow would be breaking down at this condition. PHASTA does predict the initial slug 

flow and the transition to churn-turbulent. Annular flow was considered to not be reached in the 

simulations, and the maps show the superficial velocities lie directly on the regime boundary, 

making a classification difficult. Appendix B shows images of this transition. According to both 

maps the initial condition in the 20 cm long pipe flow is expected to be bubbly flow. PHASTA did 

not predict this but this is because slug flow was forced by initializing the entire gas volume in a 

small region of the pipe, forcing coalescence to one large bubble. As the flow accelerates however, 
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PHASTA does predict a transition to bubbly flow (see images in Appendix C). Interestingly, this 

transition only occurs after the superficial velocities are crossing the line in the Taitel et al. map 

that distinguishes between bubbly flows where turbulent dispersion forces are not and are 

dominant. When the turbulent dispersion forces become dominant, the Taylor bubble breaks up 

and becomes bubbly flow, suggesting Taitel et al. are identifying an important flow regime 

transition criterion. Overall, the flow regime transitions identified in the maps agree with 

PHASTA’s predictions.  

Bergles et al. [104] have produced an experimental flow regime map (Figure 5.10) for boiling 

flow in a 10.3 cm diameter pipe at 6.9 MPa with steam and water. While the presented PHASTA 

results are at adiabatic conditions, this still provides useful insight into what should be expected at 

this pressure. 

 
Figure 5.10: Comparison of the Bergles et al. [104] experimental flow regime map to the 

simulations. 

This map also agrees with PHASTA’s prediction of a transition from slug to churn-turbulent flow 

in the 10 cm long pipe. This map predicts that the 20 cm long pipe flow remains in the bubbly 
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regime, but as was mentioned, this is not a concern because the slug flow was a forced initial 

condition. 

5.3.2 Taylor Bubble/Slug Flow  

Before accelerating, all the simulations begin with a single Taylor bubble. Therefore, ensuring 

PHASTA is accurately predicting the behavior of the Taylor bubble is critical to simulating its 

interaction with the liquid and eventual breakup. The shape of a Taylor bubble has been studied 

extensively, and for potential flow an exact solution exists [42]. While the simulations were not 

potential flow, the liquid film thickness should be similar since viscous forces become more 

significant in the thin film region. To find the film thickness in the simulation, the zero level set 

locations were collected along eight different slices (see Figure 5.11). These eight profiles were 

then averaged. The comparison is shown in Figure 5.12. 

 
Figure 5.11: The planes (red) used to collect the zero level set locations along the Taylor bubble 

(grey). 
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Figure 5.12: The predicted liquid film shape compared to the Dumitrescu [42] analytic solution 

for potential flow. 

At three diameters from the nose of the bubble, x/D, all three simulations predict the film thickness 

is 0.099R, where R is the radius of the pipe. The analytic solution predicts the film is 0.074R. An 

experiment [77] found that, for similar flow conditions and very long Taylor bubbles, the film 

thickness stabilizes at 0.086R. These bubbles were long enough to ensure the film thickness was 

no longer changing. As Figure 5.12 shows, the film thickness is still slowly decreasing. Given a 

long enough bubble, the simulations would agree even better with the experimental results. Finally, 

Karapantsios et al. [78] developed an expression for the liquid film thickness of Taylor bubbles 

rising in stagnant fluid. This expression predicts the film thickness should be 0.094R. Considering 

the simulations do not have bubbles long enough to achieve a non-changing film thickness, and 

the variability in literature results, PHASTA is accurately simulating the film thickness associated 

with slug flow.  

The wake structure of the Taylor bubble is complex, fortunately there are studies that provide 

data for both average and instantaneous velocity information. First, Shemer et al. [83] looked at 

the mean velocity profiles at different distances behind a Taylor bubble. This experiment used a 

14 mm diameter pipe, very close to the 15 mm diameter used in this work. To obtain their statistics 
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400 bubble p asses, each providing one data point, were collected to make each plot. A simulation 

in the 20 cm long, 15 mm diameter pipe was created to replicate the Re = 8250 experiment. Figure 

5.13 and Figure 5.14 show the comparison between velocity and streamwise velocity fluctuation 

data from the experiment and simulation, respectively.  

 
Figure 5.13: Comparison of the Shemer et al. [83] streamwise velocity data to the simulation for 

different locations behind a Taylor bubble. 

 
Figure 5.14: Comparison of the Shemer et al. [83] streamwise velocity fluctuation data to the 

simulation for different locations behind a Taylor bubble. 
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Discrepancy does exist in the data, the most obvious being the velocity is higher in the simulation 

and the streamwise velocity fluctuations appear to be smaller in the simulation. The difficulty in 

obtaining a large volume of numerical data may explain some of the discrepancy. As mentioned, 

the experiments sample from 400 different bubbles, while the numerical data is from one time 

instance. Therefore, the sampling uncertainty is larger in this particular validation study. A similar 

discrepancy was observed in [105]. Mikuz et al. noted that their simulations predicted a peak in 

the streamwise velocity fluctuations directly behind the corner of the Taylor bubble. PHASTA 

predicts this peak as well, but Shemer did not observe this. The reason why Shemer did not 

measure this peak is not clear because strong fluctuations are expected in this region, as seen in 

the data from Shi et al. [106]. The trend in the velocity progression is similar between each dataset. 

Close behind the bubble, the profile is relatively flat, with a negative region near the wall from the 

liquid film jets. Further behind the bubble, at 𝑥/𝐷 = 0.6 and 1.0, the velocity in the wake increases 

and the negative region close to the wall disappears. The 𝑥/𝐷 = 2.0 profiles are the most 

dissimilar. The simulation predicts the flow returns to a profile close to the typical turbulent log-

law profile while the experiment finds a gradual increase in velocity from the wall, eventually 

reaching an approximately flat profile in the center. Mikuz et al. also found that the return to a 

more typical turbulent velocity profile was faster in their simulation than Shemer observed. The 

conclusions drawing from this validation study are unclear. The general trend in the wake velocity 

agrees with Shemer et al. but the fluctuations display different trends. The DNS data seems to be 

more consistent with other DNS but could benefit from additional samples to achieve less 

uncertainty. 

Data for the instantaneous velocity field in the wake of a Taylor bubble has been captured by 

Shi et al. [106]. It is difficult to compare instantaneous velocity due to the variability, but one 
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phenomenon that has been noticed in the simulations were structures resembling Kelvin-

Helmholtz instability arising in the shear layer between the liquid film jet and the wake of the 

bubble. This phenomenon would not be noticed without the instantaneous velocity information. 

Figure 5.15 shows these structures circled in black, the color field is the y velocity. For this single 

vertical plane, the y velocity also corresponds to the radial velocity. 

 
Figure 5.15: An image showing the Kelvin-Helmholtz structures that develop in the shear layer 

between the liquid film jets and the wake. Colored by y velocity. 

At the corner of the bubble the level set field experiences a sharp 90 degree turn which can give 

rise to undesired level set field stretching that could affect the flow. In order to determine if the 

velocity is unaffected by the level set field at this corner, autocorrelations are performed on the y 

velocity in this region of the experimental and numerical flows. The autocorrelation is given by 

the following: 

𝐴(𝑑) = ∫
𝑣(𝑥)𝑣(𝑥 − 𝑑)

𝑣(𝑥)2
𝑑𝑥 ( 5.1 ) 

where A is the autocorrelation value, v is the y velocity data, and d is the data offset value, or 

distance behind the Taylor bubble in this case. Autocorrelations measure the periodicity of data. If 

[m/s] 
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the data is regularly oscillating, then the autocorrelation value will oscillate as well. If there is no 

oscillatory pattern, then the autocorrelation will decay quickly to zero. Two datasets from the 

experiment and two from the DNS, each named left and right, were used to perform the 

autocorrelations. The results are shown in Figure 5.16. 

 
Figure 5.16: The results from the autocorrelations of Shi et al.’s data [106] and the DNS data. 

As is expected, the DNS autocorrelations show an oscillatory pattern, seen in how the 

autocorrelation fluctuates around zero. This indicates the transverse velocity is changing sign along 

the line the data was sampled from. The experimental data displays the same behavior, and with a 

similar frequency, showing the instabilities do occur in two-phase flows. Averaging the peak-to-

peak wavelength of the experimental and computational oscillations shows that the two datasets 

agree within 7% (about a 3 mm wavelength). This is an encouraging result because it shows the 

sharp corner in the level set field at the tail of the bubble is not adversely affecting the wake. 

Additionally, PHASTA is capturing phenomena that are physical and contribute significantly to 

the turbulence in the wake. 
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5.3.3 Rising Cap Bubble Flow 

As mentioned, the experiment produced by Sun [81] had relatively high flow rates and a 

Reynolds number that was estimated at just below 100,000. Simulating this flow would be 

extremely computationally expensive and be on the cutting edge of two-phase DNS. Lower flow 

rate simulations were also tested but this data was not presented in the text. Recreating this 

experiment computationally would be extremely valuable in analyzing PHASTA’s breakup 

capability. Due to the liquid momentum driving bubble breakup, one can claim the level set method 

more accurately captures breakup than coalescence, which is largely dependent on small scale 

phenomena. Recreating this cap bubble shearing process and observing turbulence as it collides 

with the bubble would be an excellent test to back up this claim. This simulation would capture 

both the tail shearing and interfacial instability phenomena and be able to validate these 

mechanisms for breakup in PHASTA. Even without this simulation recreated perfectly, it appears 

PHASTA can predict bubbles shearing off of Taylor bubbles that are close in size to what multiple 

experiments have found. For additional details on this, see the mesh resolution discussion in 

Sections 3.2.3 Taylor Bubble Breakup Events, 4.3 Mesh Design, and Table 4.5. 

5.4 Churn-Turbulent Interface/Void Distribution 

This study was not included in the validation hierarchy but is important because showing the 

interfacial area and void distribution of churn-turbulent flow in PHASTA agrees with experiments 

would indicate PHASTA can accurately simulate the turbulence of churn-turbulent flow and its 

interface interactions. Additionally, these measurements pair nicely with Taylor bubble shape 

measurements due to their similarities. Unfortunately, the best available study uses total interfacial 

area concentration at different axial positions rather than local/radial measurements [107]. 

Typically, experimental local interfacial area measurements are only taken in bubbly flow because 
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interfacial area calculation relies on assumptions of spherical bubble shape. Dejesus & Kawaji 

[108] developed a correlation for air-water interfacial area concentration from experimental data 

they produced in a 2.54 cm diameter pipe: 

𝐴𝑖
′′′ = 1.535

𝑑𝑃

𝑑𝑥

0.12

𝑗𝑙
−0.14𝑗𝑔

1.2𝛼𝑙
1.6 ( 5.2 ) 

where 𝐴𝑖
′′′ is the total interfacial area concentration of the flow, 

𝑑𝑃

𝑑𝑥
 is the pressure gradient, and 𝛼𝑙 

is the liquid fraction. Using this correlation finds an expected interfacial area concentration of 

5.99 cm2/cm3. The simulation had an interfacial area concentration of 5.81 cm2/cm3, only a 3% 

difference. This error is similar in agreement to the experiments that were compared to the 

correlation. This result is important because it demonstrates that even though the level set method 

will always coalesce two approaching bubbles together (for meshes that do not resolve the 

micrometer scale liquid film) the interfacial area can still be accurately captured. Experimental 

radial void and interfacial area concentration distribution data is available in the open literature; 

however, it is extremely difficult to find cases directly related to the flows performed in this work. 
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CHAPTER 6. SIMULATING FLOW REGIME TRANSITIONS 

Four different classes of simulations are analyzed in this Chapter: forward and reverse 

transitions in a pipe 10 cm long and 15 mm in diameter with a 40% void fraction, and a 20 cm 

long pipe 15 mm in diameter with a 20% void fraction. Numerical data from these simulations will 

be presented first and be followed by a discussion of their associated transition mechanisms. The 

forward and reverse transitions will be compared and contrasted to determine how the physics 

differs between accelerating and decelerating flows. Two major transition mechanisms for the 

forward and reverse transitions were observed, both exhibiting distinctly different flow 

characteristics. A novel criterion for transition will also be presented in this Chapter. For reference, 

time is considered to begin (t=0) when the pressure gradient is changed. Unless specified, these 

simulations were all performed on M2 mesh resolution. Due to lack of available computing 

resources in some instances, mesh M1 was sometimes used. Numerical data was not collected from 

the boundary layer mesh in the 40% void fraction flows because the static probe tool cannot collect 

data from prism elements. The boundary layer mesh in other simulations was tetrahedronized, 

eliminating this issue. 

6.1 40% Void Fraction 

In these simulations the forward flow is allowed to develop a single Taylor bubble. The Taylor 

bubble interface is smooth despite the relatively short liquid slug. The reverse transition’s initial 

condition is taken from a time step when the forward flow is in the churn-turbulent regime. A 

single static probe plane is placed in the domain for data collection. The forward transition alone 

represents about 20 million CPU-hours. For a complete set of images of both the forward and 

reverse simulation see Appendix B and Appendix D. 
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6.1.1 Accelerating Flows 

This simulation is initialized in slug flow and is accelerated to flow rates exceeding 5 m/s where 

slug flow is no longer observed. Figure 6.1 (a) shows the Taylor bubble prior to acceleration. 

Behind the Taylor bubble a clear wake exists. This wake consists of a fast turbulent region directly 

behind the Taylor bubble and a peripheral region where the slower moving liquid film spills out 

into the wake. The slower moving liquid film jets causes a significant amount of turbulence, as 

will be discussed, due to the shear created between the fast and slow moving regions. However, 

the turbulence decays significantly before colliding with the nose. The turbulence decay is 

sufficient enough that the interface remains completely smooth, as there are no eddies with 

sufficient energy to collide and cause perturbations. The average liquid velocity is about 0.2 m/s, 

corresponding to a Reynolds number equal to 2665, nearly completely laminar.    

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

 

Figure 6.1: Visualization of the flow regime transition of the 40% forward flow regime transition 

simulation. (a) 0.0 sec, (b) 0.17 sec, (c) 0.219 sec, (d) 0.234 sec. 

As the flow accelerates the wake begins to elongate and wall generated turbulence becomes 

more prevalent. Therefore, eddies are now colliding with the Taylor bubble interface, causing 

perturbations, as seen in Figure 6.1 (b). Additionally, due to the fast moving wake extending to the 



   

102 

 

bubble, the bubble’s nose accelerates and stretches out the bubble (see Figure 6.1 (b) and (c)). The 

combination of the large interfacial perturbations and the bubble’s extension eventually breaks up 

the Taylor bubble, creating churn-turbulent flow (Figure 6.1 (d)). Plotting the superficial velocities 

over time on the Mishima & Ishii [24] and Taitel et al. [27] Maps (Figure 6.2) is consistent with 

what the flow regime maps predict a slug to churn-turbulent/annular regime. 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6.2: Comparison of the computational superficial velocity data form the 40% forward 

simulation to the Mishima & Ishii [24] and Taitel et al. [27] flow regime maps. The images 

show the state of the flow at the three labeled points on the map. 

Figure 6.2 shows that the progression of superficial velocity undergoes two different stages. The 

non-logarithmic axes were chosen to better show the features of the development. First, as the 

Taylor bubble accelerates, the gas and liquid acceleration both increase together. As the bubble 

begins to break up, starting at point (b), the gas superficial velocity stagnates, or even seems to 

slow, as the liquid superficial velocity continues to increase. This lasts for only about 0.025 

seconds. Once the bubble is fully broken apart the approximately even acceleration continues, at 

an elevated liquid flow rate, until the final flow condition is reached. The gas superficial velocity 

stagnation is likely attributed to the increase in interfacial area that also increases the drag force 

on the gas phase. The additional drag force on the gas pauses the average velocity of the gas. The 
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drag would also increase the velocity of the liquid as the gas “pulls” on the liquid more. This is 

why the churn flow continues at a faster liquid flow rate. This sequence is an excellent 

demonstration of a flow under transition and illustrates that the flow regime transition process 

cannot be represented by a hard line. Similar to turbulent transition, there is a time when the flow 

is neither slug nor churn-turbulent and exhibits different characteristic parameters. 

The TKE encountered by the bubble is important to the breakup of the bubble and it drives the 

formation of interfacial instabilities. Figure 6.3 shows the liquid TKE at three different instances 

in time; the liquid slug well before the breakup (blue line), the slug as the breakup is initiating 

(green line), and the churn-turbulent flow (yellow and red lines). A TKE profile based on Moser 

et al.’s [2] data is included to provide context relative to a typical single phase TKE profile. 

 
Figure 6.3: TKE plots for three different instances in time in the 10 cm long forward flow as well 

as single phase computational data from Moser et al. [2]. 

It is clear that the TKE peak is shifted inward compared to typical turbulent flow. As this shifted 

TKE profile grows, more eddies, that are also more energetic, begin to collide with the interface. 

Importantly, due to the shifted TKE peak, the most energetic eddies do not enter the liquid film 

and instead collide with the nose of the bubble. Eventually, the TKE is strong enough to form 
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interfacial instabilities that bridge the entire diameter of the pipe, breaking up the bubble. These 

interfacial instabilities and their growth over time can be seen in Figure 6.4. 

 
Figure 6.4: Interface profiles for different instances in time of the 10 cm long forward 

simulation. Dumitrescu’s [42] profile is also included. 

Once churn-turbulent flow is reached, the TKE profile is completely changed. As Figure 6.3 

shows, the TKE near the wall decreases by nearly half while the TKE in the center of the pipe 

increases. As acceleration continues this TKE profile shape is approximately maintained and 

increases in magnitude. The interfacial area distribution also undergoes a major change after 

transitioning to churn-turbulent flow. Slug flow exhibits very little interfacial area due to the entire 

gas volume being contained in one bubble. Most of this interface is located near the wall. Churn-

turbulent flow has many more interfaces that are distributed more evenly across the diameter of 

the pipe. Figure 6.5 shows the mean interfacial area concentration, averaged over the entire 

domain, of each flow regime. 
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Figure 6.5: Interfacial area concentration for slug flow (blue line) and churn-turbulent flow (red 

line). 

As the bubble breaks down the interfacial area dramatically increases and becomes much more 

concentrated in the center of the pipe. Even with this sharp increase in interfacial area, large Sauter 

mean diameters are still calculated in the center of the pipe, as shown in Figure 6.6. 

 

Figure 6.6: Sauter mean diameter calculation for churn-turbulent flow at 0.221 sec. 

Close to the wall the Sauter mean diameter is calculated to be only 1.0 mm before reaching 

effectively zero at 0.5 mm from the wall. 
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6.1.2 Decelerating Flows 

While in the churn-turbulent regime the pressure gradient was stepped back to the P0 value and 

the flow was allowed to naturally decelerate. Figure 6.7 shows how the interfacial velocities 

progressed over time and how the progression compares to the Mishima & Ishii [24] and Taitel et 

al. [27] flow regime maps.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 

Figure 6.7: Comparison of the computational superficial velocity data form the 40% reverse 

simulation to the Mishima & Ishii [24] and Taitel et al. [27] flow regime maps. The images 

show the state of the flow at the four labeled points on the map. 

The flow regime map is on a linear scale to provide more detail to how the superficial velocities 

develop over time. Similar to the forward transition, the deceleration rate is not constant over time 

nor is it consistent between phases. The gas phase’s deceleration stagnates twice as the liquid 

continues to slow. This occurs first when the small bubbles in the churn-turbulent flow coalesce 

with the larger structures to form a wavy gas core and lasts about 0.063 sec. This is seen in Figure 

6.7 (a) and (b) and represents the transition out of churn-turbulent flow to annular flow. 

Coalescence reduces the amount of interfacial shear, meaning the gas is no longer pulling the 

liquid, therefore slowing it. Additionally, even though the flow is decelerating on average, the 

migration of gas to the faster moving center of the pipe causes the gas to maintain its velocity. 

Between (b) and (c) the phases slow down together. The reason for the second gas superficial 
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velocity stagnation, occurring between points (c) and (d) and lasting about 0.1 sec, is not as clear. 

However, during this time period the annular flow experiences liquid waves that occupy the entire 

pipe cross section and temporarily segment the gas core. These bridges form because the TKE in 

the liquid weakens enough to allow the surface tension to reduce the interfacial area by forming a 

more spherical interface shape. Since a sphere containing all of the gas cannot be formed, instead 

the gas column widens, making the liquid film thinner. As the film becomes thinner the gas core 

can no longer extend along the entire pipe length. When this bridge is formed, a pseudo nose and 

wake from a Taylor bubble also exists. The fast moving and energetic wake then pulls the nose 

back into the core. This back-and-forth may maintain the gas’s velocity. 

Also different from the forward transition, is the TKE development. This difference is caused 

by the different void distribution. The forward transition allowed the TKE in the slug to increase, 

but in the reverse simulation there is no slug, only a liquid film. The TKE in the liquid film is what 

determines if the gas core can continue to be supported or if a Taylor bubble is to be formed. As 

Figure 6.8 shows, the liquid TKE initially decreases rapidly, but after a little over 0.1 seconds, the 

TKE only decreases slightly or remains constant. 
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Figure 6.8: TKE plots for different points in time for the 10 cm long reverse flow. Computational 

Data from Moser et al. [2] is included for reference. 

This explains why annular flow is maintained for so long, the TKE does not decay evenly in time, 

and the liquid film TKE is strong enough to still overcome the surface tension force. The second 

stagnation in gas velocity occurs between the green and purple lines in Figure 6.8, where it is clear 

the TKE is nearly constant throughout. Here the gas velocity may be maintained by the lower 

interfacial drag formed by the smoother interface of the gas core. Interestingly, the liquid TKE in 

the deceleration is never as high near the wall as in the forward simulation. This suggests that the 

TKE needed to breakup the Taylor bubble is larger than what is required to maintain a single gas 

column. Therefore, as interfacial structure and TKE change over time, criteria for forming different 

regimes arise, causing a new flow regime transition. Therefore, the flow regime transitions are 

dependent on the initial condition and information regarding the time history may not determine 

how the regimes develop in reverse. This time asymmetry is a novel observation in the field of 

two-phase flow regime transitions. The theory discussed in Section 1.2.3.2 Theoretically Derived 

Regime Boundaries only ever considers one criterion for each flow regime boundary. This 
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suggests that flow regime maps for decelerating flows or condensing flows may vary significantly 

from their counterparts. 

6.2 20% Void Fraction 

In these simulations the forward flow is allowed to develop a single Taylor bubble. The Taylor 

bubble interface is smooth and the liquid slug contains almost no turbulence. The slug is long 

enough and the flow is slow enough that TKE from the bubble wake decays before reaching the 

bubble and almost no turbulence is generated at the wall. The reverse transition’s initial condition 

is taken from a time step in the M1 mesh simulation when the forward flow’s Taylor bubble is 

nearly completely broken apart. A single static probe plane is placed in the domain for data 

collection. The forward transition alone represents about 40 million CPU-hours. For a complete 

set of images of both the forward and reverse simulation see Appendix C and Appendix E. 

6.2.1 Accelerating Flows 

This simulation also begins in slug flow, this time with a significantly longer liquid slug due to 

the longer pipe, 20 cm, and lower void fraction, 20%. As was discussed in Section 6.1.1 

Accelerating Flows the turbulence in the wake played a major role in the breakup of the bubble. 

This simulation was designed to test how the transition differs when the wake is too far away from 

the bubble to have a major effect on the bubble. Figure 6.9 shows the progression of the superficial 

velocity for this simulation. 
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(a) (b) (c) (d) 

Figure 6.9: Comparison of the computational superficial velocity data from the 20% forward 

simulation to the Mishima & Ishii [24] and Taitel et al. [27] flow regime maps. Images from 

select moments are also shown. 

As is immediately clear when comparing the images to the map, the initial regime does not match 

what was predicted by the map. The flow was predicted to be in the bubbly flow regime. This is 

because the initial slug flow condition was artificially forced in the simulation by initializing the 

gas as a single bubble.  However, as the flow accelerates, the transition only occurs after the 

superficial velocities cross into the region where Taitel et al. reason turbulent dispersion forces are 

dominant in producing bubbly flow by preventing the bubbles from coalescing to form larger 

structures. Taitel et al.’s hypothesis already suggests that turbulence will play a critical role in the 

breakup of this bubble. As Figure 6.9 shows, despite the flow accelerating, no bubbles shear off 

the tail before interfacial perturbations form. The breakup only begins once eddies begin to collide 

with the interface. However, due to the required development time for the turbulence, the breakup 

begins well after the superficial velocities have crossed the line defined by Taitel et al.  
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The turbulence that is colliding with the nose of the bubble is very close to a typical turbulent 

TKE profile (see Figure 6.10). Therefore, this simulation is successful in isolating the effect of 

wall generated turbulence on the breakup process. 

 
Figure 6.10: The development of the TKE in the 20% forward simulation. Data from Moser [2] 

et al. is included for reference to a typical turbulent TKE profile. 

Figure 6.10 shows that Moser et al. found the TKE in the bulk to be larger than what is measured 

in these simulations. The reason for this is attributed to the transition simulations forming a 

developing flow, meaning the TKE is continuously diffusing from the wall to the bulk, making 

this low bulk TKE expected. It is possible to see in the red line of Figure 6.10 that the TKE slightly 

inward from the peak plateaus before decreasing towards the center. This is likely a bubble-

induced contribution to the TKE. At this point in the simulation small bubbles are occupying the 

liquid slug, at about a 3-4% void fraction. These bubbles are relatively small and will therefore 

collect near the wall, contributing to the TKE near the wall. As this wall concentrated energetic 

turbulence collides with the Taylor bubble, interfacial perturbations are formed. Instantaneous 

bubble interface profiles are shown in Figure 6.11.  
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Figure 6.11: Instantaneous interface shapes for the 20% void fraction simulation. Dumitrescu's 

[42] profile is included for reference. 

Due to the strongest turbulence being close to the wall, these perturbations are not able to break 

the bubble up by bridging the full pipe diameter. Instead, the perturbations propagate down the tail 

of the bubble and cause small bubbles to shear off the tail. The requirement for turbulence to induce 

the shearing off of bubbles at the tail of a Taylor bubble is consistent with what Delfos et al. [109] 

observed experimentally. In the work, for Taylor bubbles in laminar flow, no bubbles would shear 

off the wake until a certain length of Taylor bubble was reached. After this critical length, the 

liquid film would naturally become turbulent, causing interfacial perturbations.  

This tail shearing process is significantly slower in completely breaking up the Taylor bubble 

and no simulation reached an instance in time when the Taylor bubble’s body did not exist. 

However, the simulation was considered to be approaching bubbly flow, and would likely have 

reached it given enough computational resources to continue this shearing off process. The 

interfacial area concentration information, Figure 6.12, shows that interfaces are not most 

concentrated in the center of the pipe like they were in the churn-turbulent flow.   
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Figure 6.12: Interfacial area concentration information for slug flow (blue line) and highly 

bubbly slug flow (red line) in the 20% void fraction flow. 

This wall shifted interfacial area peak is consistent with bubbly flow behavior. Small bubbles 

collect near the wall due to the lift force acting on them. In this flow the bubbles are slightly further 

from the wall than would be expected, but this can be explained by the recirculation of bubbles in 

the wake of the Taylor bubble as it breaks up. This recirculation flattens the distribution of bubbles 

and only bubbles that escape the wake and enter the slug will be able to reach the wall. 

Additionally, a significant amount of interfacial area is still associated with the remaining body of 

the Taylor bubble, whose interface is located at around 4 or 5 mm from the wall. The Sauter mean 

diameter, Figure 6.13, also shows that close to the wall, mostly small bubbles exist and in the bulk 

larger bubbles exist.  



   

114 

 

 
Figure 6.13: Sauter mean diameter information for bubbly slug flow in the 20% void fraction 

flow (0.419 sec). 

The Sauter mean diameter distribution in the liquid slug, Figure 6.14 (left), shows that the bubbles 

in the slug are smaller than the whole domain distribution. Additionally, the interfacial area 

concentration in the liquid slug, Figure 6.14 (right), has a prominent peak close to the wall, as 

would be expected for bubbly flow.  

  
Figure 6.14: Sauter mean diameter (left) and Interfacial area concentration (right) distributions 

for the liquid slug only in the bubbly slug flow condition at 0.419 sec in the 20% void fraction 

flow. 

 Together, these profiles, in addition to visual analysis, suggest that the flow is approaching bubbly 

flow as breakup continues. 
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6.2.2 Decelerating Flows 

This simulation demonstrates the recombination of the bubbles that sheared off the Taylor 

bubble to form a single bubble and return to slug flow. The flow was already fully turbulent from 

time zero and by the end of the simulation almost all turbulence had decayed and smooth slug flow 

existed. Superficial velocities for this flow are shown in Figure 6.15. 

 
   

(a) (b) (c) 

Figure 6.15: Comparison of the computational superficial velocity data from the 20% reverse 

simulation to the Mishima & Ishii [24] and Taitel et al. [27] flow regime maps. Images from 

select moment are also shown 

The superficial velocity progression is very similar to the forward transition and follows an 

approximately consistent rate for both phases. The bubbles slowly recoalesce over a long period 

of time, tenths of seconds, and the interface of the Taylor bubble becomes smoother as the 

turbulence decays. The competition between breakup and coalescence still exists, but coalescence 

becomes dominant because the TKE is decaying. Interestingly, the bubble shearing nearly 
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completely stops once crossing the Taitel et al. line distinguishing between bubbly flow where 

turbulent dispersions forces are dominating. This is shown in Figure 6.15 (b) and (c). Since the 

coalescence process is gradual and continuous, there is no point in time where the gas flow rate 

diverges from the deceleration like in the 40% flows. 

The TKE in this flow, shown in Figure 6.16, is also relatively predictable. 

 
Figure 6.16: TKE plots for different times in the 20% decelerating flow. Data from Moser et al. 

is also included for reference. 

The TKE level decreases over time and maintains its similarity in shape to TKE in a single phase 

flow. The bubble becomes smooth before the turbulence has fully decayed, showing how the 

surface tension force is strong enough to completely damp low TKE before any perturbations in 

the interface reach the tail to cause shearing. When the liquid slug is still turbulent but the TKE is 

too, no bubble shearing at the tail occurs because the perturbations settle before reaching the tail 

of the bubble. Instead, the bubble nose slightly elongates as the liquid film becomes thicker from 

the turbulence entering the film. 
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6.3 Mechanisms for Transition 

This section will describe the mechanisms for the forward and reverse transitions and compare 

how they are distinct. The key feature of each mechanism is the importance of turbulent kinetic 

energy. TKE was necessary for the flow regime transition to occur in all forward simulations and 

its existence in the reverse simulations determined the coalescence rate and interface distribution. 

Two mechanisms have been identified for the transition out of slug flow:  

 In the 10 cm long pipe the flow accelerates and the wake of the Taylor bubble begins to extend 

until it reaches the nose of the trailing bubble. The turbulence in the liquid slug is dramatically 

increased by the contribution from the wake. This turbulence collides with the Taylor bubble 

nose, causing instabilities to form on the interface. If the TKE is high enough, these instabilities 

grow to bridge the diameter of the pipe, breaking up the Taylor bubble. The void then quickly 

distributes itself along the length of the pipe until a uniform axial profile is reached and churn-

turbulent flow exists. This mechanism requires an inward shifted TKE peak that is very 

energetic. 

 In the 20 cm long pipe, turbulence in the liquid slug collides with the Taylor bubble and forms 

interfacial instabilities. The perturbations propagate down the bubble until they reach the tail. 

The perturbations are smaller than the diameter of the pipe and do not bridge the width of the 

bubble. The shear force of the liquid film on the interface continues to pull the perturbation 

until it detaches from the bubble entirely, depositing the new daughter bubble in the wake of 

the Taylor bubble. When sufficient energy is being transferred to the interface, the shearing of 

bubbles at the tail becomes rapid enough to diminish the volume of the Taylor bubble, causing 

the void to be evenly distributed along the length of the pipe, forming bubbly flow. This process 
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is similar to what was discussed by Delfos [110] and Delfos et al. [109]. The TKE profile 

observed during this mechanism was close to what is expected for single-phase turbulent flow. 

Both processes rely on turbulence to initiate the transition, and it is clear that the void fraction 

plays an important role when determining how the interfacial structure develops over time. The 

distinction is the liquid slug’s turbulence in the 10 cm long pipe took on a different distribution 

due to the wake’s significant contribution. In the 20 cm long pipe the liquid slug is long enough to 

develop a more typical turbulent pipe flow TKE profile. 

In contrast, the reverse simulations begin in fully turbulent flows. In order for a reverse 

transition to occur, this turbulence needed to decay to allow coalescence to become dominant over 

breakup. Based on a visual analysis of the simulations, a flow regime transition is not always a 

directly reversible process. As the 20 cm long pipe flow slowed, the coalescence on the bubble 

closely resembled the breakup process in reverse. However, the 10 cm long pipe’s deceleration 

was distinctly different from the acceleration. These mechanisms for reverse transition are 

described as follows: 

 As the flow in the 10 cm long pipe decelerates, the small bubbles quickly coalesce with the 

larger structures in the churn-turbulent regime. The turbulence rapidly decays in the center of 

the pipe. The fast decay of liquid turbulence in the center is mostly due to the lack of liquid in 

the center due to the collection of gas there. The turbulence that remains on the periphery of 

the pipe continues to decay but at a slower rate. This is seen by the smooth interface along the 

gas core that has formed due to the coalescence. The surface tension is not yet able to overcome 

the turbulence close to the wall and the gas is pushed to the center, forming a column of gas. 

A transition to annular flow has occurred. Liquid waves and ligaments form and periodically 

make the gas core discontinuous, forming what seems to be an elongated Taylor bubble. 
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However, the new nose that was created is quickly pulled back into the gas core by the low 

pressure zone in front of it, making it continuous again. Eventually, the turbulence on the 

periphery can no longer continue to push the gas core away from the wall, causing the gas 

column’s radius to grow. Eventually, the liquid bridges the pipe, forming a Taylor bubble and 

concluding the deceleration in the slug regime. This simulation underwent two transitions, 

churn-turbulent to annular and then annular to slug. This transition path is not described by 

flow regime maps. Transitions from churn-turbulent to annular are not known to be caused by 

a decrease in flow rates. Typically, annular is considered to be a high flow rate regime. 

 In the 20 cm long pipe the deceleration closely resembled the forward simulation. As the flow 

began to slow the breakup rate at the tail from interfacial shearing also slowed. Recoalescence 

of bubbles at the tail (from gas entrained in the wake colliding with the tail) and in the film 

(from bubbles in the liquid slug entering the film) began to overcome the breakup and the 

Taylor bubble grew in size. As the turbulence decayed further, the interfacial perturbations 

disappeared, ceasing the shearing of bubbles off the tail. The simulation was concluded with a 

steady slug flow regime. 

In both cases, the reverse mechanisms are similar to their forward counterparts in that the time 

scales for the formation of a new regime. The 40% void fraction flow suddenly forms annular and 

eventually slug flow once a nose forms. The 20% void fraction flow gradually coalesces the 

smaller bubbles to form a single Taylor bubble. Additionally, similar to the forward transitions, 

turbulence was important to the interfacial structures that were formed.  

The void fraction played an important role with how the turbulence interacted with the interface. 

In the 20 cm long pipe the void was dispersed sparsely enough to allow the largest bubble to 

continue to accumulate volume and grow into one Taylor bubble. As TKE entering the liquid film 
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weakened, the bubble could grow in radius and shorten in length. Instead of a Taylor bubble 

forming in the 10 cm long pipe, a gas core was formed because the TKE in the potential film was 

still too strong for surface tension to overcome. Only when the TKE decayed enough could the 

bubble widen and form a nose and tail. 

Figure 6.17 shows the progression of interfacial area and superficial velocities for each pair of 

forward and reverse simulations. 

  
Figure 6.17: Interfacial area and superficial velocity information. 

The forward and reverse 20% void fraction simulations appear nearly identical in these plots. Both 

are characterized by nearly identical superficial velocity paths and the interfacial area each have 

one dramatic rise/fall whose conclusion matches the interfacial area of the other’s beginning. The 

interfacial shearing mechanism appears to be a reversible process. The bubbles simply coalesce 

once the turbulence begins to decay. The interfacial area in the 40% void cases are clearly different 

at the initiation of the acceleration and conclusion of the deceleration. The superficial velocities 

also do not follow identical paths and diverge in two instances. These differences are indicative of 

the different flow regime paths taken in each flow and that the interfacial instability mechanism is 

not reversible. This irreversibility is likely due to the lack of large TKE in the bulk of the flow to 
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segment the gas core. In the forward transition the TKE from the wake provided this centered TKE 

peak, but in the reverse the centered gas core and decay of turbulence lead to no large centered 

TKE peak (see Figure 6.8). Therefore, the gas core remains stable and forms annular flow as the 

interface smoothens and coalescence occurs. 

6.3.1 Interfacial Instability 

The interfacial instability mechanism occurs at the nose of the bubble and leads to breakup due 

to the Taylor bubble being segmented by the large interface waves that are on the scale of the pipe 

diameter. Due to the center shifted TKE peak, interfacial waves, or instabilities, are allowed to 

grow until they collapse the bubble. This process is very sudden, taking only 0.03 seconds, because 

a large amount of energy is being transferred to the main body of the bubble very suddenly (once 

the wake extends to the bubble). The large energy transfer at the nose implies that the turbulence 

in this region should be decaying relatively quickly, compared to the rest of the liquid film. Using 

the Q-criterion to visualize the turbulence would help back up this claim. Q-criterion is a means 

of visualizing eddies and is defined by the following [111]. 

𝑄 =
1

2
(|𝜴|2 − |𝑺|𝟐) =

1

2
((
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
+
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
) − ((

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑥
)
2

)) ( 6.1 ) 

𝜴 is the vorticity tensor and 𝑺 rate of strain tensor. To support the hypothesis that this mechanism 

drives breakup from the nose, the Q-criterion should show many eddies at the nose of the bubble, 

followed by a quick decay into the liquid film. Figure 6.18 (top) shows exactly what is expected. 
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Figure 6.18: Q-criterion iso-contour visualization in the 10 cm long pipe for the same instance in 

time. The contours are colored by the streamwise velocity. 

There is a dramatic decrease in the number of eddies seen in the liquid film compared to those in 

the wake and near the nose of the bubble. The conclusion is that the nose of the bubble is absorbing 

the TKE, which provides the energy to cause the interfacial instabilities, decaying the turbulence 

and breaking up the bubble. Figure 6.18 (bottom) also reinforces the inward shifted TKE peak, 

visible from the many small (high energy) eddies that exist far from the wall. 

It is reasonable to conclude the TKE provides the energy for the breakup of the bubble. 

However, a vehicle for the transport of energy from the liquid TKE to the interface has not been 

proposed. Looking at a single small piece of interface, a velocity gradient exists between the liquid 

and the interface. Very close to the interface the liquid and interface have the same velocity, and 

the velocity gradient can be broken into interface parallel and interface perpendicular components. 

The perpendicular components manifests in movement of the interface and the parallel component 

[m/s] 
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is the interfacial shear. As an eddy approaches and then collides with the interface, the rotation 

and movements of the liquid causes the velocity gradient to change. The change in the velocity 

gradient knocks the surface tension and velocity gradient induced force out of balance. The surface 

tension tries to regain balance by deforming the bubble or creating smaller bubbles with higher 

curvature and therefore larger surface tension forces. This deformation and breakup takes energy, 

the exact quantity of which is dependent on the surface tension. This energy comes from the eddy, 

thereby decaying the TKE. Following this logic, the eddy transfers its energy to the interface 

through the interfacial shear. To help confirm this hypothesis, the interfacial shear information was 

extracted from the 40% void fraction forward simulation at different time steps. This interfacial 

shear information is presented in Figure 6.19. 

 
Figure 6.19: Interfacial shear information for the interfacial instability mechanism in forward 

simulation. 

In Figure 6.19 the yellow line corresponds to a time just before the flow transitions and the red 

line is when the flow is in the churn-turbulent regime. The interfacial shear begins low and smooth 

across the length of the bubbles. However, the shear quickly increases and magnitude of the shear 

begins to vary along the length of the bubble. These variations are caused by the turbulence 
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entering the liquid film, forming different gradients at the interface. To better understand how the 

interfacial shear is changing relative to the TKE and interfacial area, they are plotted over time in 

Figure 6.20.  

 
Figure 6.20: Numerical data regarding the interface and TKE for the interfacial instability 

mechanism in the forward transition. 

Note that in Figure 6.20 the interfacial shear is both area averaged and integrated over the Taylor 

bubble area to calculate a mean interfacial shear and total interfacial shear force (defined below), 

respectively. 

𝐹𝜏𝑖 = ∮𝜏𝑖𝑑𝐴 
( 6.2 ) 

 
𝐹𝜏𝑖 is the interfacial shear force and 𝜏𝑖 is the interfacial shear stress. The interfacial shear and 

interfacial area follow each other nearly perfectly and the TKE also increases during the transition. 

The increase in TKE stalls once the interfacial area and shear values begin their sharp increase. 

Even though the flow continues to accelerate, implying the TKE would also increase, the TKE 

plateaus. This may be because the TKE is continually donating energy to the interface to cause 

breakup and form new interfaces, via the interfacial shear. The trends observed in Figure 6.20 back 

the hypothesis that energy is being transferred from TKE to the interface via the interfacial shear. 
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The reverse simulation for this mechanism also demonstrates the relationship between the 

interfacial area and shear. First, Figure 6.21 shows the interfacial shear during the simulation. 

 
Figure 6.21: Interfacial shear information for the interfacial instability mechanism in reverse 

simulation. 

The interfacial shear quickly decreases but reaches an approximately constant value once annular 

flow is formed. Figure 6.22 shows that as this plateau in interfacial shear is occurring, a plateau in 

interfacial area also occurs. 

 
Figure 6.22: Numerical data regarding the interface and TKE for the interfacial instability 

mechanism in the reverse transition. 
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Comparing to Figure 6.20 makes it clear that the plateau does not occur at the same interfacial 

shear, area, or TKE values that the forward transition started at. This suggests a new condition has 

been reached, showing an asymmetry in time. The reason for this time asymmetry is possibly the 

source of the turbulence in the flow. In the forward transition the primary source was the wake, 

but in the reverse there is no wake, making the primary source the wall. The wall generated 

turbulence is closer to the turbulence observed in the bubble shearing mechanism. However, there 

is no tail to shear bubbles off so the turbulence promotes a thicker liquid film and extends the gas 

length of the pipe. The sustained high TKE and interfacial shear also explains why the flow can 

support a gas core for so long. These forces continue to promote more interfaces and push the 

interfaces away from the concentration of TKE, which is at the wall. 

6.3.2 Bubble Shearing 

The bubble shear mechanism occurs at the tail of the bubble, where the shearing is pulling 

bubbles off the liquid. As discussed, this shearing off of bubbles occurs because turbulence in the 

liquid film is transferring energy to the interface that manifest as interfacial disturbances, or 

perturbations. Presumably, the transfer of energy from the turbulence, to the interface does not 

occur suddenly in liquid film, but rather gradually. By this logic, the visualization of the Q-criterion 

should show that eddies disappear at approximately an even rate in the film. Since the decay of 

turbulence in the film is a gradual process whose culmination comes at the tail of the bubble, the 

Q-criterion should show the eddies evenly diminish along the length of the bubble. Figure 6.23 

(top) shows that this expectation is consistent with what is observed in the simulation. 
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Figure 6.23: Q-criterion iso-contour visualization from a side and front view of the same instance 

in time. The contours are colored by the streamwise velocity. 

Figure 6.23 (bottom) also shows the Q-criterion from a front side view of the bubble to further 

reinforce the turbulence’s distribution, which is peaked close to the wall. The turbulence’s small 

interfacial perturbations force the transition to be bottlenecked by how quickly bubbles can be torn 

off the tail of the Taylor bubble. Understandably, this mechanism takes significantly longer, 

upwards of 0.3 seconds.  

The next concern is the mechanism(s) that transfer the energy from the turbulence, to the 

interface. The hypothesis is the interfacial shear drives this energy transfer. For this mechanism, if 

this hypothesis is correct, the interfacial shear should be approximately equal along the entire 
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liquid film length at any given instance in time when the shearing is occurring. Figure 6.24 shows 

that this is true once turbulence does start entering the liquid film. 

 
Figure 6.24: Interfacial shear along the bubble in the bubble shearing mechanism. 

Random turbulent fluctuations cause instantaneous peaks and valleys, but no obvious sustained 

local maxima or minima along the length of the bubble. It is difficult to discern due to the 

fluctuations, but the mean interfacial shear is continuously increasing as the flow accelerates. This 

is shown in Figure 6.25, which provides the calculated mean interfacial shear, total interfacial 

shear force, mean TKE, and total interfacial area.  
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Figure 6.25: Numerical data regarding the interface and TKE for the bubble shearing mechanism 

in the forward transition. 

The constant growth of TKE leads to more energetic eddies colliding with the bubble, prompting 

larger and larger shearing. However, despite the interfacial shear increasing, the total shear force 

on the bubble does not continue increasing. This is seen between 0.25 and 0.4 seconds where the 

shear force remains approximately constant. The breakup of the Taylor bubble means the bubble 

is getting shorter, providing the interfacial shear with a smaller working area. At a certain point in 

time, the energy transfer through the shear force becomes approximately constant while the 

interfacial area and TKE still increases. This suggests that TKE must be committed to not only 

breaking up the bubble but also preventing recoalescence. If the bubble absorbed all the turbulence 

then the bubbles would simply coalesce to either form a new Taylor bubble or conserve the already 

existing one. The turbulent dispersion forces in the liquid slug are critical to dispersing the bubble, 

and as more bubbles exist in the slug, the stronger these forces must be to continue the flow regime 

transition. Additionally, during this time period of constant interfacial shear force, the interfacial 

area generation slows or even plateaus. The plateau suggests that total interfacial shear force is a 

better predictor for the breakup rate of the Taylor bubble than the shear force. The TKE can only 

commit so much energy to the Taylor bubble given its shorter length and to preventing the 
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coalescence of smaller bubbles. Therefore, during this time period the breakup of the Taylor 

bubble, which has reached a constant rate due to the constant shear force, is matched by the 

coalescence of smaller bubbles. This balance of breakup and coalescence maintains a constant 

interfacial area. The interfacial shear and interfacial shear force need to increase further before 

additional breakup can occur. Finally, when comparing the final conditions for both the forward 

transitions, the interfacial area and mean interfacial shear are approximately equal despite the 

flows visually being completely different. This reinforces the interfacial shear’s role in breaking 

apart the bubble. 

Unfortunately, the simulation was approaching its final flow rates, meaning the TKE would not 

increase further. Therefore, a new pressure gradient was chosen to begin a new acceleration time 

period. Due to the limited computational resources this simulation was run for only 0.0225 

seconds. However, during this short time period, because of how fast the flow is, just over one half 

liquid flow through of the 20 cm long pipe is achieved. However, during this time period the TKE 

increased to 0.305 m2/s2 (23.1% larger) and the interfacial shear decreased to 0.977 N/m2 (25.3% 

smaller). The total shear force remained approximately constant at the plateau value observed in 

Figure 6.25 (0.0018 N). This results in the interfacial area being 0.0121 m2, a 16.2% increase. This 

short additional pressure gradient jump provides further evidence to the competition between 

breakup and coalescence that is determined by the transfer of energy from liquid to gas by the 

interfacial shear. Additionally, the numbers also bolster the idea that there is a maximum energy 

transfer rate that is capable across the interface. Even though the TKE significantly increased, the 

interfacial shear decreased, meaning less energy is being transferred to the interface. Despite this 

the interfacial area still increased because the shear is still sufficient to breakup the bubble and the 

additional turbulence can support more new interfaces. 
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The reverse simulation of the interfacial shearing mechanism follows a very similar pattern to 

the forward. Initially, the interfacial shear profiles, Figure 6.26, are chaotic due to the turbulence 

and even energy transfer across the length of the Taylor bubble.  

 
Figure 6.26: Interfacial shear profiles for the reverse of the shearing mechanism. 

Over time the shear decreases and eventually becomes constant once the turbulence is nearly 

completely decayed. The progression of the interfacial area, shear, and shear force, and the TKE 

are shown in Figure 6.27 

 
Figure 6.27: Numerical data regarding the interface and TKE for the interfacial shearing 

mechanism in the reverse transition. 
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Figure 6.27 only provides further support of the turbulence being the energy supplier, via the 

interfacial shear. From the start all the parameters are decaying, and the interfacial area seems to 

respond the slowest. This suggest the interfacial area is responding to the change in TKE and 

interfacial shear rather than the deceleration. Even after 0.5 seconds, the interfacial area is still 

decreasing more than the other parameters. This is because the interfacial shear has decreased to 

the point where no bubble shearing is occurring. The Taylor bubble can then begin to accumulate 

volume by coalescing with the small bubbles, decreasing the total interfacial area. Important to 

note is that the parameters are approaching those at the initial state of the forward transition for 

this flow. This is distinctly different from the instability mechanism and shows how shearing 

mechanism is reversible. 

6.3.3 Summary 

Two mechanisms for flow regime transition have been observed, interfacial instability and 

bubble shearing. These mechanisms drive the transition in both the accelerating and decelerating 

flows but do not necessarily have a time symmetry, meaning they are not simply the opposite 

transition in reverse. Both mechanisms are triggered by high TKE colliding with the interface of 

the bubble and energy being transferred to the interface, causing breakup, through interfacial 

shearing. What differs between the mechanisms is where the strongest TKE exists relative to the 

interface and therefore where the TKE deposits its energy on the interface.  Despite the different 

TKE profiles and resulting flow regimes, the relationship between TKE, interfacial shear, and 

interfacial area was consistent across all the simulations. This reveals the underlying physics for 

these transitions. The time asymmetry arises because the development of liquid TKE can be 

different depending on the location of the interfaces at the initiation of the transient. The different 

TKE development then changes the interfacial shear and interfacial area, producing a new regime. 



   

133 

 

6.4 Separate Effects Tests 

An advantage of DNS is its ability to complete separate effects tests that experiments are not 

capable of performing. Experiments rely on using real world fluids and are limited to the physical 

parameters of those fluids. Careful choice of working fluids and proper dimensional analysis can 

allow experimentalists to quantify the effect a single parameter has on the system, but it is not 

always a straight forward or possible task, especially for two-phase flows. In DNS, changing one 

parameter is simply a matter of changing the input value provided by the user. This section will 

discuss two separate effects tests, the gas viscosity and surface tension. 

6.4.1 Gas Viscosity 

The viscosity of the gas was hypothesized to be an important contributing factor to the flow 

regime transition process. As viscosity approaches infinity the Taylor bubble becomes a solid, 

meaning the interfacial shear would be less effective at shearing off bubbles. Additionally, 

interfacial shear, as was shown in Section 3.2.1 Interfacial Shear, may affect the gas recirculation 

flow and interfacial shear strongly enough to change the flow regime transition process. In this 

study one additional case was run. All other fluid properties were kept the same (0.071 N/m surface 

tension) but the 20 cm long pipe, with M1, was run with BWR realistic gas viscosity (1.858E-5 

[kg/m-s]). This is about 20 times less than previous simulations (2.858E-4 [kg/m-s]). To track this 

simulation over time, and compare it to the high gas viscosity case, the total interfacial area was 

recorded at different time steps. The interfacial area is a measurement of how effective the 

shear/turbulence is at perturbing the Taylor bubble and shearing off smaller bubbles. Figure 6.28 

shows the interfacial area information for these two cases. 
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Figure 6.28: Comparison of the total interfacial area of the two gas viscosity cases over time. 

Time is in reference to when the pressure gradient was increased. 

Because the wall generates most of the turbulence encountered by the bubble, as shown earlier, 

there is no reason to believe the bubble should be encountering significantly different turbulence 

over time. Therefore, any difference in the interfacial area over time would be because the gas 

viscosity made the turbulence less/more effective at breaking up the bubble. The BWR gas 

viscosity case was not run to the same time as the higher viscosity case, but as Figure 6.28 shows, 

the interfacial area progression is nearly identical. This suggests the liquid momentum makes the 

gas momentum insignificant. It is expected that for extremely high gas viscosity the interfacial 

area over time would be different, but these gas viscosities are not relevant to BWRs. Additionally, 

the liquid side interfacial shear over time was similar (Figure 6.29).  
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Figure 6.29: The interfacial shear profile over time for the BWR gas viscosity and high gas 

viscosity simulations. The time refers to time since the pressure gradient was increased. 

Figure 6.29 shows there is initially a difference in the magnitude of the shear. The BWR gas 

viscosity case shows the shear is higher before the acceleration but afterwards this switches and 

the BWR viscosity case has a lower shear. As the flow accelerates and turbulence begins to collide 

with the interface, any difference is in the instantaneous fluctuations. Given the large difference in 

the simulated gas viscosity tests, the effect it has on the flow regime transition was concluded to 

be minimal. The factor of 20 change in gas viscosity has also not appeared to change the resolution 

requirements on interfacial shear appreciably either. 

6.4.2 Surface Tension 

Having proposed where the energy for the flow regime transition comes from and how the 

energy transfer occurs, the need to determine how much energy is needed for the transition arose. 

Due to the surface tension being responsible for holding the bubble together, it was theorized that 

surface tension also dictates how much energy is needed to break up the bubble. Researchers 

looking at bubble and droplet breakup have made similar claims [112]. Two new simulations, each 

with different surface tension values, were run. The two surface tension values chosen were 0.023 
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intermediate value between BWR and atmospheric conditions. These simulations used M1 in the 

20 cm long pipe. Looking back at Table 4.8, these new surface tension values significantly increase 

the Weber and Eötvös numbers, making the surface tension even less significant for the Taylor 

bubble. As was expected, smaller magnitude perturbations were observed in the interfaces and 

these Taylor bubbles were sheared apart sooner after the acceleration than in the 0.071 N/m surface 

tension simulation. Images from each simulation are shown in Figure 6.30 (0.014 N/m is left and 

0.023 N/m is right). 
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𝜎 = 0.014 [N/m] 

Time= (0.050, 0.124, 0.188) [sec] 

𝜎 = 0.023 [N/m] 

Time=(0.050, 0.130, 0.178, 0.250) [sec] 

 

 

 

 

Figure 6.30: Images of the two lower surface tension simulations. Time refers to time since the 

pressure gradient was increased. Different streamwise velocity scales are used to better show 

detail in each simulation. 
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Note that in both simulations the interfaces become so complex that the code had difficulty solving 

the level set field while maintaining reasonable time step sizes. Therefore, the simulations were 

stopped soon after the last images shown in Figure 6.30. It was assumed that the bubble would be 

torn apart, inducing a flow regime transition, if the flow were allowed to continue at these 

conditions. This is a risky assumption but reasonable considering how weak the surface tension is. 

As Figure 6.30 shows, both bubbles do not last as long as the atmospheric surface tension case. As 

was expected, the bubble with the larger surface tension also lasts slightly longer than the BWR 

surface tension bubble. Comparing the TKE in each of the three simulations just before breakup 

gives Figure 6.31. 

 

 
Figure 6.31: TKE profiles for the three different surface tension cases in the 20 cm long pipe. 

The top image shows the TKE magnitude and the bottom shows the normalized TKE. Data from 

Moser et al. [2] is also included for reference. 
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It is clear that the necessary TKE magnitude just before the transition correlates with the surface 

tension. These results support the idea that surface tension determines the critical energy in the 

liquid and that surface tension can be used to predict how energetic the liquid needs to be. When 

the TKE profiles are non-dimensionalized by the square of the friction velocity, they collapse to 

the same shape. This result indicates the different surface tensions were not altering the turbulence 

in the liquid slug and that each bubble was encountering the same liquid turbulence.  

To explore what kind of relationship exists between the surface tension and the mean TKE 

value, Figure 6.32 plots these two values.  

 
Figure 6.32: A plot showing the relationship between the surface tension and the mean TKE 

value just before the flow regime transition occurs. The data point colors correspond to the colors 

in Figure 6.31. 

The mean TKE is an area averaged calculation from plots similar to Figure 6.31. From only three 

data points it is difficult to extract a trend line. However, as surface tension continues to increase, 

the bubble becomes, essentially, a rigid bullet of gas. At nearly infinite surface tension no level of 

TKE would be able to break the bubble apart. As the surface tension approaches zero the bubble 

would fall apart simply due to shear on the interface. The flow could be laminar and the Taylor 

bubble would break up. This suggests the trend line should hit zero at some non-zero surface 

tension. Therefore, a linear relationship is not likely. For now, no trend line was created, and more 

data points are necessary. 
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When looking at the interfacial shear between these three simulations, the profiles are not 

significantly different (Figure 6.33). 

 
Figure 6.33: A plot showing the interfacial shear profiles for the three simulations with different 

surface tension values. Time refers to time since the pressure gradient was increased. 
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simulation. Additionally, the largest interfacial shear value is at the tail of the bubble. As discussed 

earlier, this is a characteristic of the bubble shearing process. Using this knowledge, the method 

bubble shearing process can be fully described over time. The flow accelerates, increasing the 

energy in the liquid. The liquid then imparts some of this energy to the Taylor bubble by 

performing shear work on the interface. This shear work is not strongly dependent on the surface 
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turbulence begins to form in the liquid, the perturbed interface and even higher interfacial shear 

enhance the bubble shearing process. 

6.5 Flow Regime Transition Criterion 

This section dedicates a preliminary effort to developing a flow regime transition criterion that 

is not dependent on geometry, fluid, temperature, or pressure. Instead, using the knowledge of 

turbulence being an important factor in overcoming the surface tension of the bubbles, a critical 

turbulence level for breakup will be discussed and presented. This effort does not claim to be a 

perfect predictor for two-phase flow regime transitions but rather illustrates the potential for DNS 

data to provide insight into the phenomenon that experiments have not yet allowed for.  

6.5.1 Formulating the Criterion 

So far, observations suggest turbulence is necessary for initiating a flow regime transition out 

of slug flow. Additionally, the turbulence must decay before bubbles in higher flow rate regimes, 

like churn-turbulent or turbulent bubbly flow, can coalesce to form annular or slug flow. Therefore, 

the two-phase flow regime transition criteria will be formulated assuming turbulence is necessary. 

To create a criterion that can be used to determine when a transition out of slug flow is expected, 

a method to quantify the necessary TKE that accounts for the surface tension is necessary. 

Historically, a property known as surface energy has been used to determine when a small bubble 

or droplet will be broken into two daughter bubbles/droplets [112]. Surface energy is defined as: 

             𝐸𝑠𝑢𝑟𝑓 = 𝐴𝑖𝜎 ( 6.3 ) 

where 𝐴𝑖 is the interfacial area. This definition makes it clear that creating more interfacial area 

(breakup) requires energy to be added to the interface, and removing interfacial area (coalescence) 

takes away energy from the interface. Therefore, the bubble will naturally tend to the most stable 

condition, the least interfacial area, if allowed to. To prevent a system from reaching its most stable 
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condition, energy must be continuously added to prevent coalescence. For a small bubble, the 

lowest energy state is a sphere. To break a spherical bubble apart into two smaller spheres of equal 

diameter would require energy equal to the difference in surface energy between the two 

conditions: 

            ∆𝐸𝑠𝑢𝑟𝑓 = 4𝜋(2 (
𝑟

2
1
3

)
2

− 𝑟2)𝜎 ( 6.4 ) 

where 𝑟 is the radius of the initial bubble. A similar concept can be applied to a Taylor bubble. 

The lowest energy state is the slug flow before the pressure gradient was increased. As the flow 

accelerates, more energy is created along with more interfacial area. Figure 6.34 plots the 

interfacial area and area averaged TKE over time, showing how in almost all flows, the change in 

TKE occurs before the interfacial area changes. 

 
Figure 6.34: Interfacial area and area averaged TKE over time for the STP surface tension 

simulations. 

Even though the interfacial area may still be increasing significantly in Figure 6.34, especially in 

the forward 10 cm long domain, the transitions have already occurred by the last interfacial area 

measurement. The numerical data taken from the two additional surface tension simulations shows 

the same trend, but the interfacial area changes faster due to the weak surface tension requiring 
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less energy to add new interfaces. Figure 6.35 shows how there appears to be a linear relationship, 

with a slope approximately equal to one, between the interfacial area and the TKE when it is 

converted to joules. 

 
Figure 6.35: Depiction of the relationship between the surface energy and TKE when the flows 

are transitioning in the forward simulations. Trend line equation is shown. 

TKE’s units are m2/s2, meaning it must be translated to Joules by multiplying by mass of the liquid. 

To do so the volume of the liquid film was integrated and multiplied by the density. The liquid 

film’s volume was chosen, rather than the entire volume of the liquid, because the liquid film is 

where the energy transfer between the liquid and interface occurs. The liquid in the slug only 

interacts with the interface once it enters the liquid film. Additionally, the TKE is integrated across 

the entire diameter of the pipe because using a single value, the peak TKE for example, would not 

be representative. Using this information, the energy needed to create these interfaces, ∆𝐸𝐹𝑅𝑇 , and 

therefore cause a two-phase flow regime transition, can be calculated from: 

            ∆𝐸𝐹𝑅𝑇 = (𝐴𝐹𝑅𝑇 − 𝐴𝑠𝑙𝑢𝑔)𝜎 ( 6.5 ) 

where 𝐴𝐹𝑅𝑇 is the interfacial area after the flow regime transition and 𝐴𝑠𝑙𝑢𝑔 is the interfacial area 

of the slug flow. Using the four flow regime transition simulations, a mean ∆EFRT = 3.66(𝐴𝑠𝑙𝑢𝑔𝜎) 

can be calculated. Turbulence, surface tension, and interfacial area are the key components of the 
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mechanisms for flow regime transition and Eq. ( 6.5 ) only takes these into account, making it 

universal and also more fundamental than flow regime maps. If this criteria is accurate, the TKE 

during the flow regime transition should be equal to, or larger than, this value. Table 6.1 compares 

the predicted ∆EFRT and TKE values for each simulation. 

Table 6.1: Calculated critical energy for a flow regime transition compared to the TKE during 

the transition. 

 ∆EFRT [mJ] TKE [mJ] 

σ = 0.071 [N/m], L = 10.0 [cm] 0.627 0.849 

σ = 0.071 [N/m], L = 20.0 [cm] 0.627 0.709 

σ = 0.023 [N/m], L = 20.0 [cm] 0.204 0.295 

σ = 0.014 [N/m], L = 20.0 [cm] 0.124 0.203 

 

The ∆EFRT from Eq. ( 6.5 ) is close to the TKE in all simulations. This is particularly interesting 

because the 10 cm long pipe underwent a transition different from that in the 20 cm long pipe, 

demonstrating its universal applicability.  

It is not expected that this criterion will be perfect as it is based on a limited number of virtual 

experiments. However, it does represent a preliminary effort to describe flow regime transitions 

using physical phenomena and without flow regime maps, correlations, or condition dependent 

properties. The relationship between TKE and interfacial area described by this section also allows 

researchers to better describe the gradual transition from one regime to another as more interfaces 

are created. This development of interfacial area is more accurate to the transition from one regime 

to another compared to the hard lines put forth by flow regime maps. 

6.5.2 Testing the Criterion 

To test the validity of this criterion two simulations were designed such that the expected TKE 

was below the critical value, meaning no transition is expected. The two TKE levels used a 

multiplication coefficient of 
2.5σAi,slug

ρlVf
 and 

3.2σAi,slug

ρlVf
, compared to the 

3.66σAi,slug

ρlVf
 presented 
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previously. To maintain computational affordability these simulations used M1. The ∆𝑦𝑤
+ values, 

extracted after completing the simulations, were about 2.6 and 3.1, meaning, by traditional 

standards, they are under resolved. However, the purpose of this test was not to produce accurate 

turbulence levels but to test if the flow will undergo transition for a desired TKE level. With this 

in mind the test was performed. The flows were extracted at points in time during the acceleration 

where the TKE approximately equaled the desired levels. A pressure gradient that would produce 

the desired turbulence level was calculated and the flow was allowed to develop over the course 

of at least three flow throughs, or 40 pipe diameter lengths. Figure 6.36 shows the TKE profiles in 

both simulations for their last two flow throughs. 

 
Figure 6.36: TKE plots for the last two flow throughs in the criterion testing simulations. 

As can be seen, the TKE is no longer appreciably changing between flow throughs, and the 

differences can be attributed to sampling uncertainty. Therefore, the flow was considered to be at 

a statistically steady state. Calculating the actual multiplication factors, 2.8 and 3.5, reveals the 

TKE levels in both simulations were both slightly higher than expected but still under the critical 

value. As seen in Figure 6.37 both simulations remain in slug flow in the last time step. 
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(a) 

 

(b) 

 

(c) 
 

(d) 

 
Figure 6.37: Images of the last two flow throughs of the simulations testing the flow regime 

transition simulation. (a) and (b) are the 2.5 factor simulation and (c) and (d) are the 3.2 factor 

simulation. 

 There is a significant amount of gas that has broken off the Taylor bubble and been redistributed 

in the wake and liquid slug, especially in the faster flow simulation (Figure 6.37 (c) and (d)). 

However, even this with void redistribution slug flow persists, indicating the transition criterion is 

still valid. Additional testing is needed to refine the criterion and analyze its application in different 

geometries, fluids, etc. 
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CHAPTER 7. CONCLUSIONS 

The foundation for simulating two-phase flow regime transitions using interface capturing 

methods has been laid out. The studies performed in this work developed an understanding of what 

phenomena must be properly resolved in order to capture the physics of two-phase flow regime 

transitions. The two fluids are coupled together by their interaction with the interface, making the 

interfacial shear a new consideration for computational resolution. It was shown that fully 

resolving two-phase flow can require a vastly finer computational mesh due to the importance of 

obtaining accurate interfacial shear calculation. A meshing requirement was proposed for 

designing flow regime transition simulations. This requirement is determined from the most 

limiting condition of three different factors: 

 Resolving the smallest expected bubbles by at least 11 computational points across the 

shortest dimension.  

 Fully resolving the bubble-induced turbulence using interfacial shear to calculate ∆𝑦+ units 

from both sides of the interface. The standard DNS condition of ∆𝑦+ = 12 is thereby 

applied to the bulk mesh using the more stringent of the calculations.  

 Maintaining at least 6 computational points across the liquid film of a Taylor bubble. 

 PHASTA can accurately capture the thin liquid film drainage phenomenon even without 

mesh sizes on the fractions of micrometer scale. 

Although this resolution requirement was developed with flow regime transition simulations in 

mind, it is broadly applicable to any interface resolved two-phase flow simulation. 

A validation hierarchy for two-phase flow regime transitions was proposed. This hierarchy fully 

describes the major components of flow regime transitions and what capabilities are necessary to 

validate a code for two-phase flow regime transitions. Five new components of the hierarchy were 
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tackled, and the results continue to support PHASTA as a useful tool for this application. For the 

first time PHASTA was shown to be able to capture multiple two-phase phenomena:  

 The thin film, and its donut shape, that forms between a buoyancy driven bubble and a free 

surface. A computational mesh matching the experimentally measured fraction of 

micrometer thickness of the film was not necessary. 

 Bubble deformation in a simple shear field 

 Taylor bubble induced wake structure 

 Churn-turbulent interfacial area concentration despite the level set method’s automatic 

coalescence property 

Additional work needs to be done in order to complete the hierarchy but preliminary results do not 

raise concern.  

First of their kind simulations were designed and run. These simulations represent a first effort 

in using “virtual experiments” to analyze the complex two-phase flow regime transition 

phenomena. In these flows the fluids were both accelerated and decelerated to observe the 

development and analyze their mechanisms for transition. Two mechanisms for transition were 

identified, interfacial instability and bubble shearing. The flows showed that these mechanisms are 

not necessarily reversible, as the interfacial instability mechanism transitioned from slug to churn-

turbulent flow in the acceleration and churn-turbulent to annular and eventually to slug in the 

deceleration. This observation has never been made either computationally or experimentally. The 

relationship between TKE and the breakup of the Taylor bubble was demonstrated and the 

interfacial shear was proposed as the vehicle for the transfer of energy from TKE to the interface. 

Using this knowledge a flow regime transition criterion was proposed and supported through two 

tests. 
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CHAPTER 8. FUTURE WORK 

This work has provided the foundation for future computational flow regime transition research 

by defining the important considerations that must be taken into account before the large-scale 

simulations are performed. The analysis in this work also highlighted significant physical 

phenomena relating to the transitions. This novel research has opened the door to future research 

involving “virtual experiments” that can provide scientists with opportunities for new insights into 

the flow regime transitions. To address the path forward in this field and improve on the current 

research, this section will discuss where future efforts can be placed in order to benefit the field. 

Figure 8.1 lays out the already completed and ongoing work as well as the future work discussed 

here. 
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8.1 Simulating other Two-Phase Flow Regime Transitions 

The simulations performed in this work tackled only a portion of the total flow regime transition 

field. The simulations began in the slug regime, skipping the bubbly regime, which is typically 

observed at lower superficial gas velocities/void fractions, and briefly discussed the annular 

regime. Similar to experiments, research that extends this work to cover all regimes is crucial to 

understand the transition phenomena. There are certainly mechanisms for bubbly to slug transition 

that are much more prevalent than in the slug to churn-turbulent transition. Covering all regimes 

allows for analysis and modeling that will be discussed in the following sections. Having the full 

picture is important for full comprehension. 

Unlike experiments, simulation allows for the evaluation of phenomena that experiments 

cannot achieve. This is done through advanced analysis techniques and simulation design. This 

capability is not one that should be ignored when studying such a complex phenomenon because 

full analysis of the individual components of a full flow regime transition simulation may be 

extremely difficult. Similar to the validation hierarchy created in this dissertation, flow regime 

transitions have a web of underlying pieces that each contribute to the process as a whole. 

Understanding this web leads to designing simulations that elucidate each of these pieces. This 

method of studying flow regimes may be a more effective way of learning about their transitions 

from a computational standpoint. The data analysis process is simplified due to the single 

phenomena of interest, and isolating the effect of that phenomena on the flow is more feasible. 

Examples of such simulations have already been performed in this work. The bubble rising towards 

a free surface, discussed in Section 5.2.1 Bubble Approaching a Free Surface, is an examination 

of the coalescence process, which is very important for any two-phase flow. On its own this 

simulation could easily become very expensive due to the small scale of the liquid film, but due to 
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the event of interest only occurring in a small volume the numerical data would be more 

manageable. Additionally, learning how the film drains is difficult to study experimentally, making 

a DNS potentially very informative of the liquid film velocity, bubble residence time, etc. The 

simple bubble shear simulations discussed in Section 5.2.2 Droplet Deformation in a Simple Shear 

Field are also valuable to understand the breakup process. Increasing the shear rate beyond what 

was examined here would eventually lead to breakup, a mechanism also very important in flow 

regime transitions. Combining what is learned from the DNS of coalescence and breakup may be 

able to reveal a better understanding of the flow regime transition from any regime to any other. 

The interaction of turbulent eddies with the interface is also an event of interest for this research. 

Examining how the eddy changes and transfers energy to the interface would be a valuable process 

to understand. How efficient is the energy transfer, how does surface tension and deformability 

play a role in transferring  energy, and how does the eddy shape/velocity change after the collision 

are all questions that could be explained by a simple simulation that directs eddies at an interface. 

This sort of simulation is a logical next step in two-phase DNS. Single phase DNS researchers 

have already characterized the shape of eddies being generated at the wall [5] and how the structure 

can change in the bulk of the flow [113]. Extending this practice to two-phase flow would be 

valuable, not only to this study, but to the community as a whole. 

With this more complete understanding of the behavior of interfaces in turbulent flow the hope 

would be to eliminate the need for the flow regime classification system altogether. It would be 

replaced with an understanding of how the liquid is going to distribute the void and what the 

consequences, for example on pressure drop and heat transfer, would be. 
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8.2 CFD Modeling 

A popular focus of two-phase flow research is using high-fidelity data to inform models. The 

two-phase flow regime transition phenomenon is rich with large volumes of numerical data and 

opportunities for advanced analysis. As was discussed, interfacial area concentration is a common 

way to model regimes and extract heat transfer and pressure drop. The interfacial area code 

generated for this work produces data directly relevant to the interfacial area transport equations. 

Figure 8.2 shows an example of the local interfacial area concentration for a single time step.  

 

 
Figure 8.2: The interfacial area concentration information for a middle slice (top) and an image 

of its associated time step (bottom). 

Coupling the knowledge of the flow, like turbulence level, pressure drop, and interfacial area 

concentration that DNS allows can lead to more high-fidelity models for flow regimes in CFD 

codes.  

This work has already developed a transition mechanism that is independent of the fluid or 

geometry. Continuing on this path would be valuable to other codes that rely on accurate model 

for important real world systems. A new flow regime map could be produced to completely 

describe the flow across any flow rate or void fraction. 

Mechanistic modeling can even be performed using the smaller scale simulations mentioned in 

the previous section. If the individual mechanisms for a flow regime transition can be fully 

understood then a mechanistic model for a CFD code is possible.  
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8.3 Machine Learning Application 

Machine learning is an exciting field whose application can inform humans more efficiently 

and effectively than manual techniques. As mentioned, these flow regime transition simulations 

create tens of terabytes of numerical data. This immense amount of data makes it difficult for 

humans to analyze. Even when humans analyze this data it is nearly impossible to use every data 

point to its maximum potential. Machine learning algorithms help optimize the analysis process 

and better take advantage of a larger percentage of numerical data. A properly formulated neural 

network may be able to decipher flow regime transitions and produce data-driven mechanistic 

models for the transitions, essentially tackling the research described in the previous two sections. 

More advanced modeling may be able to eliminate the need for flow regimes all together. By fully 

understanding the physics involved with the transitions it may not be necessary to define the flow 

as a regime. Instead, the machine-produced model may be able to calculate an interfacial structure 

from which it can determine expected properties like pressure drop and heat transfer. 
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Appendix A.1 

Interfacial area calculation code 

 
c..*********************************************************** 

c....this routine calculates the interfacial area 

c************************************************************* 

        subroutine get_int_area(yl, shape, WdetJ, xl, A_ill, A_il) 

c 

c---------------------------------------------------------------------- 

c This routine calculates interfacial surface area, Matt Z 

c 

c input: 

c  yl(npro,nshl,ndof)           : solution 

c  shape  (npro, nshl)          : element shape-functions 

c  WdetJ  (npro)                : Jacobian 

c output: 

c  A_i                          : Interfacial Surface Area 

c  A_ili                        : Partition local interfacial area grid 

c---------------------------------------------------------------------- 

c 

      use spat_var_eps   ! use spatially-varying epl_ls 

      include "common.h" 

      include "mpif.h" 

      include "auxmpi.h" 

c....Passed arrays 

      dimension shape(npro,nshl), 

     &          yl(npro,nshl,ndof), WdetJ(npro) 

c 

c local arrays 

c 

      integer iel, n, A_i_flag(nshl)!, vol_flag(nshl) 

      integer i, nx, ny, nz, nn, ix, iy, iz, intp 

      real*8 A_il(nx_Ai,ny_Ai,nz_Ai,2), A_ill(nx_Ai*ny_Ai*nz_Ai*2) 

      real*8 Sclr_i(nshl), Sclr(npro), epsilon_ls_tmp 

      real*8 xl(npro,nenl,nsd), xd, yd, zd 

c 

c compute level set at gauss point 

c 

! Define the x,y,z dimensions of the A_i mesh 

      isc=abs(iRANS)+6 

!      A_i = zero 

! Determine the number of meshes in each direction 

      xd = (DomainSize(2)-DomainSize(1))/nx_Ai 

      yd = (DomainSize(4)-DomainSize(3))/ny_Ai 

      zd = (DomainSize(6)-DomainSize(5))/nz_Ai 

      nn_Ai = nx_Ai*ny_Ai*nz_Ai 

      Sclr = zero 

      do n = 1,nshl 

        Sclr = Sclr + shape(:,n)*yl(:,n,isc) 

      enddo 

! Initialize 

      do iel = 1,npro 

        epsilon_ls_tmp = epsilon_ls * 

     &  elem_local_size(lcblk(1,iblk)+iel-1) 

        A_i_flag = zero 
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!        vol_flag = zero 

        Sclr_i = 1.0E11 

! Start finding cell volumes 

        ix = int((xl(iel,1,1) - DomainSize(1))/xd) + 1.0 

        iy = int((xl(iel,1,2) - DomainSize(3))/yd) + 1.0 

        iz = int((xl(iel,1,3) - DomainSize(5))/zd) + 1.0 

        do n = 1, nshl 

          Sclr_i(n) = shape(iel,n)*yl(iel,n,isc) 

          if (abs(Sclr_i(n)).le.epsilon_ls_tmp) A_i_flag(n) = 1 !A_i_flag + 1 

!          if (Sclr_i(n).le.zero) vol_flag(n) = 1 

!        enddo 

! Find A_i mesh ID's for each point in domain and assign them their A_i 

! values 

!          if (A_i_flag(n).ge.1) then 

          if (abs(Sclr_i(n)).le.epsilon_ls_tmp) then !if (A_i_flag(n).eq.1) 

then !collect interfacial area info 

             A_il(ix,iy,iz,1) = A_il(ix,iy,iz,1) + 

     &               abs(shape(iel,n)*WdetJ(iel))/(2.0*epsilon_ls_tmp) 

             A_i = A_i + 

     &               abs(shape(iel,n)*WdetJ(iel))/(2.0*epsilon_ls_tmp) 

          endif 

          do intp = 1, ngauss 

          if (Sclr(iel).le.zero) then !collect volume info 

              A_il(ix,iy,iz,2) = A_il(ix,iy,iz,2) + 

     &               abs(shape(iel,n)*WdetJ(iel)) 

          endif 

          enddo 

        enddo 

      enddo 

 

      do i = 1, 2 

        do ix = 1, nx_Ai 

          do iy = 1, ny_Ai 

            do iz = 1, nz_Ai 

        A_ill(iz+nz_Ai*(iy-1.0+ny_Ai*(ix-1.0))+(i-1)*nx_Ai*ny_Ai*nz_Ai) 

     &          =  A_il(ix,iy,iz,i) 

            enddo 

          enddo 

        enddo 

      enddo 

 

      return 

      end 
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Appendix A.2 

Interfacial area analysis code, in Matlab 

format LONG 
ix(1) = 135; 
iy(1) = 10; 
iz(1) = 10; 
%Inputs 
Ai=Ai41800; 
voli=voli41800; 
Ai_M2=AiM2199200; %Ai10cmM2109800; % 
voli_M2=voliM2199200; %voli10cmM2109800; % 
ix(2) = 135; 
iy(2) = 10; 
iz(2) = 10; 
div(1,1:3) = 1; 
div(2,1) = 1; 
div(2,2:3) = 1; 
L=0.2; 
D=0.015; 
%[y,z]=meshgrid(0.0001875:D/40:D,0.0001875:D/40:D); 
pf = 2; %plotting factor, decides which dataset to plot, also need to change 

figure inputs at bottom of script 
[xp,z]=meshgrid(L/(ix(pf)/div(pf,1)*2):L/(ix(pf)/div(pf,1)):L,D/(iy(pf)/div(p

f,2)*2):D/(iy(pf)/div(pf,2)):D); 
steps(1) = 8; %size(Ai,1) 
steps(2) = size(Ai_M2,1); 
Ai=table2array(Ai); 
voli=table2array(voli); 
Ai_M2=table2array(Ai_M2); 
voli_M2=table2array(voli_M2); 
A_i(1:ix(1),1:iy(1),1:iz(1),1:2,1:steps(1)) = 0.0; 
A_i_M2(1:ix(2),1:iy(2),1:iz(2),1:2,1:steps(2)) = 0.0; 
A_xtot(1:ix(1)/div(1,1),1:2,1:steps(1)) = 0.0; 
A_xtot_M2(1:ix(2)/div(2,1),1:2,1:steps(2)) = 0.0; 
D_s(1:ix(1)/div(1,1),1:steps(1)) = 0.0; 
D_s_M2(1:ix(2)/div(2,1),1:steps(2)) = 0.0; 
D_s_temp(1:ix(1)/div(1,1),1:steps(1)) = 0.0; 
D_s_M2_temp(1:ix(2)/div(2,1),1:steps(2)) = 0.0; 
x(1:ix(1)/div(1,1),1:steps(2)) = 0.0; 
x_M2(1:ix(2)/div(2,1),1:steps(2)) = 0.0; 
x_temp(1:ix(1)/div(1,1),1:steps(2)) = 0.0; 
x_M2_temp(1:ix(2)/div(2,1),1:steps(2)) = 0.0; 
time(1:steps(1)) = 0.0; 
time_M2(1:steps(2)) = 0.0; 
x_max(1:2,1:steps(1)) = 1000000.0; 
x_max(1:2,1:steps(2)) = 1000000.0; 
error(1:ix(1)/div(1,1),1:iy(1)/div(1,2),1:iz(1)/div(1,3)) = 0.0; 
var_l(1:ix(1)/div(1,1),1:iy(1)/div(1,2),1:iz(1)/div(1,3),1:steps(1)) = 0.0; 
var_l_M2(1:ix(2)/div(2,1),1:iy(2)/div(2,2),1:iz(2)/div(2,3),1:steps(2)) = 

0.0; 
reg_l(1:ix(1)/div(1,1),1:iy(1)/div(1,2),1:iz(1)/div(1,3),1:steps(1)) = 0.0; 
reg_g(1:ix(1)/div(1,1),1:iy(1)/div(1,2),1:iz(1)/div(1,3),1:steps(1)) = 0.0; 
reg_l_M2(1:ix(2)/div(2,1),1:iy(2)/div(2,2),1:iz(2)/div(2,3),1:steps(2)) = 

0.0; 
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reg_g_M2(1:ix(2)/div(2,1),1:iy(2)/div(2,2),1:iz(2)/div(2,3),1:steps(2)) = 

0.0; 
combo(1:ix(2)/div(2,1),1:iy(2)/div(2,2),1:iz(2)/div(2,3),1:steps(2)) = 0.0; 

  
for m = 1:2 
    for t = 1:steps(m) 
       for n = 1:2 
            for i = 1:ix(m)  
                for j = 1:iy(m) 
                    for k = 1:iz(m) 
                        if n==1 
                            if m==1 
                                A_i(i,j,k,n,t) = Ai(1,(t-

1)*(ix(m)*iy(m)*iz(m))+(i+ix(1)*(j-1+iy(1)*(k-1)))); 
                            elseif m==2 
                                A_i_M2(i,j,k,n,t) = Ai_M2(t,i+ix(2)*(j-

1+iy(2)*(k-1))); 
                            end 
                        elseif n==2 
                            if m==1 
                                A_i(i,j,k,n,t) = voli(1,(t-

1)*(ix(m)*iy(m)*iz(m))+(i+ix(1)*(j-1+iy(1)*(k-1)))); 
                            elseif m==2 
                                A_i_M2(i,j,k,n,t) = voli_M2(t,i+ix(2)*(j-

1+iy(2)*(k-1))); 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 

  
for m = 1:2 
    for t = 1:steps(m) 
        for n = 1:2 
            for i = 1:ix(m)/div(m,1) 
                for j = 1:iy(m)/div(m,2) 
                    for k = 1:iz(m)/div(m,2) 
                        A_i_temp = 0.0; 
                        for e = 1:div(m,1) 
                            for f = 1:div(m,2) 
                                for g = 1:div(m,3) 
                                    if m==1 
                                        A_i_temp = A_i_temp + A_i((i-

1)*div(m,1)+e,(j-1)*div(m,2)+f,(k-1)*div(m,3)+g,n,t); 
                                    elseif m==2 
                                        A_i_temp = A_i_temp + A_i_M2((i-

1)*div(m,1)+e,(j-1)*div(m,2)+f,(k-1)*div(m,3)+g,n,t); 
                                    end 
                                end 
                            end 
                        end 
                        if m==1 
                            A_i(i,j,k,n,t) = A_i_temp; 
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                        elseif m==2 
                            A_i_M2(i,j,k,n,t) = A_i_temp; 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 

  
for m = 1:2 %meshes 
    for t = 1:steps(m) %time steps 
        for n = 1:2 %1 - interfacial area, 2 - gas volume 
            for i = 1:ix(m)/div(m,1)  
                for j = 1:iy(m) 
                    for k = 1:iz(m) 
                        for e = 1:div(m,1) %if you are further coarsening the 

boxes 
                            if m==1 
                               A_xtot(i,n,t) = A_xtot(i,n,t) + A_i((i-

1)*div(m,1)+e,j,k,n,t); 
                            else 
                               A_xtot_M2(i,n,t) = A_xtot_M2(i,n,t) + 

A_i_M2((i-1)*div(m,1)+e,j,k,n,t); 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 

  
for m = 1:2 
    for t = 1:steps(m) 
        for i = 1:ix(m)/div(m,1) 
                if m==1 
                    if (A_xtot(i,1,t)>0.0) 
                        D_s(i,t) = 6*A_xtot(i,2,t)/A_xtot(i,1,t); 
                    end 
                else 
                    if (A_xtot_M2(i,1,t)>0.0) 
                        D_s_M2(i,t) = 6*A_xtot_M2(i,2,t)/A_xtot_M2(i,1,t); 
                    end 
                end 
            if m==1 
                x(i,t) = L/ix(m)*i*div(m,1); 
            else 
                x_M2(i,t) = L/ix(m)*i*div(m,1); 
            end 
        end 
        if m==1 
            time(t) = 1E-5*t; 
        else 
            time_M2(t) = 1E-5*t; 
        end 
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    end 
end 
for m = 1:2 
    for t = 1:steps(m) 
        for i = ix(m)/div(m,1):-1:1 
           if (m==1) && (D_s(i,t)<=1E-3) && (i<x_max(m,t)) && (x(i,t)>=0.05) 
               x_max(m,t) = i;%x(i-1); 
           elseif (m==2) && (D_s_M2(i,t)<=3E-3) && (i<x_max(m,t)) && 

(x_M2(i,t)>=0.05) 
               x_max(m,t) = i;%x_M2(i-1); 
           end 
        end 
    end 
end 
for m = 1:2 
    for t = 1:steps(m) 
        for i = 1:ix(m)/div(m,1) 
            if m==1 
                if i<=x_max(m,t) %x(i,t)<=x_max(m,t) 
                    x_temp(x_max(m,t)-i+1,t) = (x(x_max(m,t),t) - x(i,t))/D; 
                    D_s_temp(i,t) = D_s(x_max(m,t)-i+1,t); 
                else 
                    x_temp(ix(m)/div(m,1)-i+x_max(m,t)+1,t) = (L + 

x(x_max(m,t),t) - x(i,t))/D; 
                    D_s_temp(i,t) = D_s(ix(m)/div(m,1)-i+x_max(m,t)+1,t); 
                end 
            else 
                if i<=x_max(m,t) 
                    x_M2_temp(x_max(m,t)-i+1,t) = (x_M2(x_max(m,t),t) - 

x_M2(i,t))/D; 
                    D_s_M2_temp(i,t) = D_s_M2(x_max(m,t)-i+1,t); 
                else 
                    x_M2_temp(ix(m)/div(m,1)-i+x_max(m,t)+1,t) = (L + 

x_M2(x_max(m,t),t) - x_M2(i,t))/D; 
                    D_s_M2_temp(i,t) = D_s_M2(ix(m)/div(m,1)-

i+x_max(m,t)+1,t); 
                end 
            end 
        end 
    end 
end 
x = x_temp; 
x_M2 = x_M2_temp; 
D_s = D_s_temp; 
D_s_M2 = D_s_M2_temp; 
st_dev = 0.0; 
error_mean = 0.0; 
error = 0.0 
error_ds= 0.0 
if ix(1)/div(1,1)==ix(2)/div(2,1) 
    for i = 1:ix(1)/div(1,1) 
        for j = 1:iy(1)/div(1,2) 
            for k = 1:iz(1)/div(1,3) 
                if i>1 
                    error(i,j,k) = abs(A_i_M2(i-1,j,k,1,1) - 

A_i(i,j,k,1,1))/(D/iy(1))^2*100; %(D_s(i,1) - D_s_M2(i,1))/D; 
                elseif i<=1 
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                    error(i,j,k) = abs(A_i_M2(ix(1)/div(1,1)-1+i,j,k,1,1) - 

A_i(i,j,k,1,1))/(D/iy(1))^2*100; 
                end 
                st_dev = st_dev + (error(i,j,k))^2; 
                error_mean = error_mean + error(i,j,k)/(ix(1)*iy(1)*iz(1)); 

%abs(D_s(i,1) - D_s_M2(i,1))/(D*ix(1)*iy(1)*iz(1)); 
            end 
        end 
        error_ds(i) = (D_s(i,1) - D_s_M2(i,1))/D; 
    end 
end 
st_dev = (st_dev/(ix(1)*iy(1)*iz(1)))^0.5; 
Ai_sum = 0.0; 
for i = 1:ix(2)/div(2,1) 
        for j = 1:iy(2)/div(2,2) 
            for k = 1:iz(2)/div(2,3) 
                Ai_sum = Ai_sum + A_i_M2(i,j,k,1,1); 
            end 
        end 
end 
Ai_sum 
st_dev = (st_dev/ix(1)) 
error_mean=error_mean 
%calculating a local variance, helps categorize the current regime, tallies 
%local gradients in interfacial area but also how many regions of no 
%interfaces there are. This is an attempt to classify regimes. IE if there 
%are a lot of areas with no interfaces where no volume is present, probably 
%bubbly, but the same with volume is probably slug. reg is a measure of if 
%there are nearby interfaces and var is a measure of the gradient of the 
%nearby interfaces 
for m = 1:2 %meshes 
    for t = 1:steps(m) %time steps 
        for i = 1:ix(m)/div(m,1) %x 
            for j = 1:iy(m)/div(m,2) %y 
                for k = 1:iz(m)/div(m,3) %z 
                    if m==1 
                        if i==1 
                            var_l(i,j,k,t) = var_l(i,j,k,t) + 

abs(A_i(i+1,j,k,1,t) - A_i(i,j,k,1,t))/(L/ix(m)*div(m,1)); 
                        elseif i==ix(1)/div(m,1) 
                            var_l(i,j,k,t) = var_l(i,j,k,t) + 

abs(A_i(i,j,k,1,t) - A_i(i-1,j,k,1,t))/(L/ix(m)*div(m,1)); 
                        else 
                            var_l(i,j,k,t) = var_l(i,j,k,t) + 

(abs(A_i(i+1,j,k,1,t) - A_i(i,j,k,1,t)) + abs(A_i(i,j,k,1,t) - A_i(i-

1,j,k,1,t)))/(L/ix(m)*div(m,1)); 
                        end 
                        if j==1 
                            var_l(i,j,k,t) = var_l(i,j,k,t) + 

abs(A_i(i,j+1,k,1,t) - A_i(i,j,k,1,t))/(D/iy(m)*div(m,2)); 
                        elseif j==iy(1)/div(m,2) 
                            var_l(i,j,k,t) = var_l(i,j,k,t) + 

abs(A_i(i,j,k,1,t) - A_i(i,j-1,k,1,t))/(D/iy(m)*div(m,2)); 
                        else 
                            var_l(i,j,k,t) = var_l(i,j,k,t) + 

(abs(A_i(i,j+1,k,1,t) - A_i(i,j,k,1,t)) + abs(A_i(i,j,k,1,t) - A_i(i,j-

1,k,1,t)))/(D/iy(m)*div(m,2)); 
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                        end 
                        if k==1 
                            var_l(i,j,k,t) = var_l(i,j,k,t) + 

abs(A_i(i,j,k+1,1,t) - A_i(i,j,k,1,t))/(D/iz(m)*div(m,3)); 
                        elseif k==iz(1)/div(m,3) 
                            var_l(i,j,k,t) = var_l(i,j,k,t) + 

abs(A_i(i,j,k,1,t) - A_i(i,j,k-1,1,t))/(D/iz(m)*div(m,3)); 
                        else 
                            var_l(i,j,k,t) = var_l(i,j,k,t) + 

(abs(A_i(i,j,k+1,1,t) - A_i(i,j,k,1,t)) + abs(A_i(i,j,k,1,t) - A_i(i,j,k-

1,1,t)))/(D/iz(m)*div(m,3)); 
                        end 
 %                       var_l(i,j,k,t) = (abs(A_i(i+1,j,k,1,t) - 

A_i(i,j,k,1,t)) + abs(A_i(i,j,k,1,t) - A_i(i-1,j,k,1,t)) + 

abs(A_i(i,j,k+1,1,t) - A_i(i,j,k,1,t)) + abs(A_i(i,j,k,1,t) - A_i(i,j,k-

1,1,t)) + abs(A_i(i,j,k+1,1,t) - A_i(i,j,k,1,t)) + abs(A_i(i,j,k,1,t) - 

A_i(i,j,k-1,1,t)))/(D/iz(1)); 
                        if  i>1 && j<iy(1)/div(m,2) && k>1 && A_i(i-1,j+1,k-

1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1;% - A_i(i-

1,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i-

1,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j<iy(1)/div(m,2) && A_i(i-1,j+1,k,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i-

1,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i-

1,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j<iy(1)/div(m,2) && k<iz(1)/div(m,3) && 

A_i(i-1,j+1,k+1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i-

1,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i-

1,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j<iy(1)/div(m,2) && k>1 && A_i(i,j+1,k-1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i,j+1,k-

1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j<iy(1)/div(m,2) && A_i(i,j+1,k,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 

1;%A_i(i,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j<iy(1)/div(m,2) && k<iz(1)/div(m,3) && 

A_i(i,j+1,k+1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 

1;%A_i(i,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
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                        if i<ix(1)/div(m,1) && j<iy(1)/div(m,2) && k>1 && 

A_i(i+1,j+1,k-1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i+1,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 

1;%A_i(i+1,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(1)/div(m,1) && j<iy(1)/div(m,2) && 

A_i(i+1,j+1,k,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i+1,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 

1;%A_i(i+1,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(1)/div(m,1) && j<iy(1)/div(m,2) && 

k<iz(1)/div(m,3) && A_i(i+1,j+1,k+1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i+1,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 

1;%A_i(i+1,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && k>1 && A_i(i-1,j,k-1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i-

1,j,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i-1,j,k-

1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && A_i(i-1,j,k,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i-

1,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i-

1,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && k<iz(1)/div(m,3) && A_i(i-1,j,k+1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i-

1,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i-

1,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if k>1 && A_i(i,j,k-1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i,j,k-

1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i,j,k-

1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if A_i(i,j,k,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 

1;%A_i(i,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if  k<iz(1)/div(m,3) && A_i(i,j,k+1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 

1;%A_i(i,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
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                        if i<ix(1)/div(m,1) && k>1 && A_i(i+1,j,k-1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i+1,j,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i+1,j,k-

1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(1)/div(m,1) && A_i(i+1,j,k,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i+1,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 

1;%A_i(i+1,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(1)/div(m,1) && k<iz(1)/div(m,3) && 

A_i(i+1,j,k+1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - 

A_i(i+1,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 

1;%A_i(i+1,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j>1 && k>1 && A_i(i-1,j-1,k-1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i-1,j-

1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i-1,j-

1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j>1 && A_i(i-1,j-1,k,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i-1,j-

1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i-1,j-

1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j>1 && k<iz(1)/div(m,3) && A_i(i-1,j-

1,k+1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i-1,j-

1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i-1,j-

1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j>1 && k>1 && A_i(i,j-1,k-1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i,j-

1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i,j-1,k-

1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j>1 && A_i(i,j-1,k,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i,j-

1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i,j-

1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j>1 && k<iz(1)/div(m,3) && A_i(i,j-1,k+1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i,j-

1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i,j-

1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
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                        if i<ix(1)/div(m,1) && j>1 && k>1 && A_i(i+1,j-1,k-

1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i+1,j-

1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i+1,j-

1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(1)/div(m,1) && j>1 && A_i(i+1,j-1,k,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i+1,j-

1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i+1,j-

1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(1)/div(m,1) && j>1 && k<iz(1)/div(m,3) &&  

A_i(i+1,j-1,k+1,1,t)>0.0 
                            reg_l(i,j,k,t) = reg_l(i,j,k,t) + 1 - A_i(i+1,j-

1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t) + 1;%A_i(i+1,j-

1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i==1 && j==1 && k==1 || i==ix(m)/div(m,1) && 

j==iy(m)/div(m,2) && k==iz(m)/div(m,3) || i==ix(m)/div(m,1) && 

j==iy(m)/div(m,2) && k==1 || i==ix(m)/div(m,1) && j==1 && k==iz(m)/div(m,3) 

||  i==1 && j==iy(m)/div(m,2) && k==iz(m)/div(m,3) ||  i==1 && j==1 && 

k==iz(m)/div(m,3) ||  i==1 && j==iy(m)/div(m,2) && k==1 ||  i==ix(m)/div(m,1) 

&& j==1 && k==1   
                            reg_g(i,j,k) = reg_g(i,j,k)/8; 
                        elseif i==1 && j==1 || i==ix(m)/div(m,1) && 

j==iy(m)/div(m,2) || i==1 && j==iy(m)/div(m,3) || i==ix(m)/div(m,1) && j==1 

|| i==1 && k==1 || i==ix(m)/div(m,1) && k==iz(m)/div(m,3) || i==1 && 

k==iz(m)/div(m,3) || i==ix(m)/div(m,1) && k==1 || j==1 && k==1 || 

j==iy(m)/div(m,2) && k==iz(m)/div(m,3) || j==1 && k==iz(m)/div(m,3) || 

j==iy(m)/div(m,2) && k==1 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t)/12; 
                        elseif i==1 || i==ix(m)/div(m,1) || j==1 || 

j==iy(m)/div(m,2) || k==1 || k==iz(m)/div(m,3) 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t)/18; 
                        else 
                            reg_g(i,j,k,t) = reg_g(i,j,k,t)/27; 
                        end 
                    elseif m==2 
                        if i==1 
                            var_l_M2(i,j,k,t) = var_l_M2(i,j,k,t) + 

abs(A_i_M2(i+1,j,k,1,t) - A_i_M2(i,j,k,1,t))/(L/ix(m)*div(m,1)); 
                        elseif i==ix(2)/div(m,1) 
                            var_l_M2(i,j,k,t) = var_l_M2(i,j,k,t) + 

abs(A_i_M2(i,j,k,1,t) - A_i_M2(i-1,j,k,1,t))/(L/ix(m)*div(m,1)); 
                        else 
                            var_l_M2(i,j,k,t) = var_l_M2(i,j,k,t) + 

(abs(A_i_M2(i+1,j,k,1,t) - A_i_M2(i,j,k,1,t)) + abs(A_i_M2(i,j,k,1,t) - 

A_i_M2(i-1,j,k,1,t)))/(L/ix(m)*div(m,1)); 
                        end 
                        if j==1 
                            var_l_M2(i,j,k,t) = var_l_M2(i,j,k,t) + 

abs(A_i_M2(i,j+1,k,1,t) - A_i_M2(i,j,k,1,t))/(D/iy(m)*div(m,2)); 
                        elseif j==iy(2)/div(m,2) 
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                            var_l_M2(i,j,k,t) = var_l_M2(i,j,k,t) + 

abs(A_i_M2(i,j,k,1,t) - A_i_M2(i,j-1,k,1,t))/(D/iy(m)*div(m,2)); 
                        else 
                            var_l_M2(i,j,k,t) = var_l_M2(i,j,k,t) + 

(abs(A_i_M2(i,j+1,k,1,t) - A_i_M2(i,j,k,1,t)) + abs(A_i_M2(i,j,k,1,t) - 

A_i_M2(i,j-1,k,1,t)))/(D/iy(m)*div(m,2)); 
                        end 
                        if k==1 
                            var_l_M2(i,j,k,t) = var_l_M2(i,j,k,t) + 

abs(A_i_M2(i,j,k+1,1,t) - A_i_M2(i,j,k,1,t))/(D/iz(m)*div(m,3)); 
                        elseif k==iz(2)/div(m,3) 
                            var_l_M2(i,j,k,t) = var_l_M2(i,j,k,t) + 

abs(A_i_M2(i,j,k,1,t) - A_i_M2(i,j,k-1,1,t))/(D/iz(m)*div(m,3)); 
                        else 
                            var_l_M2(i,j,k,t) = var_l_M2(i,j,k,t) + 

(abs(A_i_M2(i,j,k+1,1,t) - A_i_M2(i,j,k,1,t)) + abs(A_i_M2(i,j,k,1,t) - 

A_i_M2(i,j,k-1,1,t)))/(D/iz(m)*div(m,3)); 
                        end                         
                        %                       var_l_M2(i,j,k,t) = 

(abs(A_i_M2(i+1,j,k,1,t) - A_i_M2(i,j,k,1,t)) + abs(A_i_M2(i,j,k,1,t) - 

A_i_M2(i-1,j,k,1,t)) + abs(A_i_M2(i,j,k+1,1,t) - A_i_M2(i,j,k,1,t)) + 

abs(A_i_M2(i,j,k,1,t) - A_i_M2(i,j,k-1,1,t)) + abs(A_i_M2(i,j,k+1,1,t) - 

A_i_M2(i,j,k,1,t)) + abs(A_i_M2(i,j,k,1,t) - A_i_M2(i,j,k-1,1,t)))/(D/iz(2)); 
                        if i>1 && j<iy(m)/div(m,2) && k>1 && A_i_M2(i-

1,j+1,k-1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i-1,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 1;%A_i(i-

1,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j<iy(m)/div(m,2) && A_i_M2(i-

1,j+1,k,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i-1,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 1;%A_i(i-

1,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j<iy(m)/div(m,2) && k<iz(2)/div(m,3) && 

A_i_M2(i-1,j+1,k+1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i-1,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 1;%A_i(i-

1,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j<iy(m)/div(m,2) && k>1 && A_i_M2(i,j+1,k-

1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j<iy(m)/div(m,2) && A_i_M2(i,j+1,k,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
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                        if i>1 && j<iy(m)/div(m,2) && k<iz(2)/div(m,3) && 

A_i_M2(i,j+1,k+1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(m)/div(m,1) && j<iy(m)/div(m,2) && k>1 && 

A_i_M2(i+1,j+1,k-1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i+1,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i+1,j+1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(m)/div(m,1) && j<iy(m)/div(m,2) && 

A_i_M2(i+1,j+1,k,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i+1,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i+1,j+1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(m)/div(m,1) && j<iy(m)/div(m,2) && 

k<iz(m)/div(m,3) && A_i_M2(i+1,j+1,k+1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i+1,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i+1,j+1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && k>1 && A_i_M2(i-1,j,k-1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i-1,j,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 1;%A_i(i-

1,j,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && A_i_M2(i-1,j,k,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i-1,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 1;%A_i(i-

1,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && k<iz(m)/div(m,3) && A_i_M2(i-

1,j,k+1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i-1,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 1;%A_i(i-

1,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if k>1 && A_i_M2(i,j,k-1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i,j,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i,j,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if A_i_M2(i,j,k,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
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                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if k<iz(m)/div(m,3) && A_i_M2(i,j,k+1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(m)/div(m,1) && k>1 && A_i_M2(i+1,j,k-

1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i+1,j,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i+1,j,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(m)/div(m,1) && A_i_M2(i+1,j,k,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i+1,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i+1,j,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(m)/div(m,1) && k<iz(m)/div(m,3) && 

A_i_M2(i+1,j,k+1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i+1,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i+1,j,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j>1 && k>1 && A_i_M2(i-1,j-1,k-1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i-1,j-1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 1;%A_i(i-

1,j-1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j>1 && A_i_M2(i-1,j-1,k,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i-1,j-1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 1;%A_i(i-

1,j-1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i>1 && j>1 && k<iz(m)/div(m,3) && A_i_M2(i-1,j-

1,k+1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i-1,j-1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 1;%A_i(i-

1,j-1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j>1 && k>1 && A_i_M2(i,j-1,k-1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i,j-1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i,j-1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j>1 && A_i_M2(i,j-1,k,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i,j-1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 



   

178 

 

                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i,j-1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if j>1 && k<iz(m)/div(m,3) && A_i_M2(i,j-

1,k+1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i,j-1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i,j-1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(m)/div(m,1) && j>1 && k>1 && A_i_M2(i+1,j-

1,k-1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i+1,j-1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i+1,j-1,k-1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(m)/div(m,1) && j>1 && A_i_M2(i+1,j-

1,k,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i+1,j-1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i+1,j-1,k,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end 
                        if i<ix(m)/div(m,1) && j>1 && k<iz(m)/div(m,3) && 

A_i_M2(i+1,j-1,k+1,1,t)>0.0 
                            reg_l_M2(i,j,k,t) = reg_l_M2(i,j,k,t) + 1 - 

A_i_M2(i+1,j-1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t) + 

1;%A_i(i+1,j-1,k+1,1,t)/((D/(iz(1)/div(1)))^2*L/(ix(1)/div(1))); 
                        end  
                        if i==1 && j==1 && k==1 || i==ix(m)/div(m,1) && 

j==iy(m)/div(m,2) && k==iz(m)/div(m,3) || i==ix(m)/div(m,1) && 

j==iy(m)/div(m,2) && k==1 || i==ix(m)/div(m,1) && j==1 && k==iz(m)/div(m,3) 

||  i==1 && j==iy(m)/div(m,2) && k==iz(m)/div(m,3) ||  i==1 && j==1 && 

k==iz(m)/div(m,3) ||  i==1 && j==iy(m)/div(m,2) && k==1 ||  i==ix(m)/div(m,1) 

&& j==1 && k==1   
                            reg_g_M2(i,j,k) = reg_g_M2(i,j,k)/8; 
                        elseif i==1 && j==1 || i==ix(m)/div(m,1) && 

j==iy(m)/div(m,2) || i==1 && j==iy(m)/div(m,3) || i==ix(m)/div(m,1) && j==1 

|| i==1 && k==1 || i==ix(m)/div(m,1) && k==iz(m)/div(m,3) || i==1 && 

k==iz(m)/div(m,3) || i==ix(m)/div(m,1) && k==1 || j==1 && k==1 || 

j==iy(m)/div(m,2) && k==iz(m)/div(m,3) || j==1 && k==iz(m)/div(m,3) || 

j==iy(m)/div(m,2) && k==1 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t)/12; 
                        elseif i==1 || i==ix(m)/div(m,1) || j==1 || 

j==iy(m)/div(m,2) || k==1 || k==iz(m)/div(m,3) 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t)/18; 
                        else 
                            reg_g_M2(i,j,k,t) = reg_g_M2(i,j,k,t)/27;  
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
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combo(:,:,:,:) = var_l_M2(:,:,:,:).*reg_g_M2(:,:,:,:); 
opengl software 
figure; 
plot(x(:,1),D_s(:,1)); 
ylabel('Sauter Mean Diameter [m]'); 
xlabel('Distance from Nose [x/D]'); 
hold on 
plot(x_M2(:,1),D_s_M2(:,1),'r'); 
ylabel('Sauter Mean Diameter [m]'); 
xlabel('Distance from Nose [x/D]'); 
figure; 
plot(x(:,1),error_ds) 
ylabel('(Difference in Sauter Mean Diameter)/(Pipe Diameter)'); 
xlabel('Distance from Nose [x/D]'); 

  
if ix(1)/div(1,1)==ix(2)/div(2,1) & iy(1)/div(1,2)==iy(2)/div(2,2) 
    for i = 1:ix(1)/div(1,1) 
        for k = 1:iz(pf)/div(pf,3) 
            error_plot(k,i) = error(i,5,k); 
        end 
    end 
figure; 
surf(xp,z,error_plot)%,A_iplane); 
axis([0.0 L 0.0 D 0.0 1500.0]); 
ylabel('y [m]'); 
xlabel('x [m]'); 
%zlabel('Volume Fraction'); 
%plot(x(:,1),error(:,5,5)); 
zlabel('Interfacial Area Difference [%]'); 
end 

  
for i = 1:ix(pf)/div(pf,1) 
    for k = 1:iz(pf)/div(pf,3) 
        vol_iplane(k,i) = 

A_i_M2(i,5,k,2,1)/((D/(iz(pf)/div(pf,3)))^2*L/(ix(pf)/div(pf,1))); 
        A_iplane(k,i) = A_i_M2(i,5,k,1,1); 
    end 
end 

  
for i = 1:ix(pf)/div(pf,1) 
    for k = 1:iz(pf)/div(pf,3) 
        var_g_iplane(k,i) = combo(i,5,k,1);%var_l_M2(i,5,k,1); 

%reg_g(i,5,k,1); 
        reg_g_iplane(k,i) = reg_g_M2(i,5,k,1); 
    end 
end 

  
alp=0; 
for i=1:ix(1) 
    for j=1:iy(1) 
        for k=1:iz(1) 
            alp=alp+A_i(i,j,k,2,1); 
        end 
    end 
end 

  



   

180 

 

%calculating radial profiles 
A_i_axial(1:iy(1),1:iz(1),1:2,1) = 0.0; 
A_i_axial(1:iy(2),1:iz(2),1:2,2) = 0.0; 
for m=1:2 
    for n=1:2 
        for i=63:ix(m) 
            for j=1:iy(m) 
                for k=1:iz(m) 
                    if ((D/iy(m)/2+D/iy(m)*(j-1))^2 + (D/iz(m)/2+D/iz(m)*(k-

1))^2)^0.5 <= 0.075; 
                    end 
                    if m==1 & A_i(i,j,k,1,1)>0.0; 
                        A_i_axial(j,k,n,1) = A_i_axial(j,k,n,1) + 

A_i(i,j,k,n,4);%/((D/iz(m))^2*L/ix(m)); 

%6*A_i(i,j,k,2,1)/A_i(i,j,k,1,1)/ix(1); % 
                    elseif m==2 & A_i_M2(i,j,k,1,1)>0.0; 
                        A_i_axial(j,k,n,2) = A_i_axial(j,k,n,2) + 

A_i_M2(i,j,k,n,1);%/((D/iz(m))^2*L/ix(m)); 

%6*A_i_M2(i,j,k,2,1)/A_i_M2(i,j,k,1,1)/ix(2); % 
                    end 
                end 
            end 
        end 
    end 
end 
A_i_axial_mean(1:iy(2)/2,1:2) = 0.0; 
for m=1:2 
    for n=1:2 
        for j=1:iy(m)/2 
            if m==1 
                A_i_axial_mean(iy(m)/2+1-j,n,m) = (A_i_axial(j,iy(m)/2,n,m) + 

A_i_axial(iy(m)+1-j,iy(m)/2,n,m)+A_i_axial(iy(m)/2,j,n,m) + 

A_i_axial(iy(m)/2,iy(m)+1-j,n,m))/4; 
            elseif m==2 
                A_i_axial_mean(iy(m)/2+1-j,n,m) = (A_i_axial(j,iy(m)/2,n,m) + 

A_i_axial(iy(m)+1-j,iy(m)/2,n,m)+A_i_axial(iy(m)/2,j,n,m) + 

A_i_axial(iy(m)/2,iy(m)+1-j,n,m))/4; 
            end 
        end 
    end 
end 
%Sauter mean diameter calculation 
for m=1:2 
    for j=1:iy(m)/2 
        A_i_axial_mean(j,1,m) = 

A_i_axial_mean(j,1,m)/((D/iz(m))^2*L/ix(m)*ix(m));%6*A_i_axial_mean(j,2,m)/A_

i_axial_mean(j,1,m); 
    end 
end 
alp 
figure; 
%plot(0.0:0.00187:.0356,2*A_i_axial_mean(:,1,1)) 
%hold on 
plot(0.0:0.00187:D/2,A_i_axial_mean(:,1,2)) 
axis([0.0 D/2 0 150]); 
xlabel('Distance from Center [m]'); 
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ylabel('Sauter Mean Diameter [m]'); %Mean Interfacial Area Concentration 

[m^2/m^3]'); 

  
figure; 
surf(xp,z,A_iplane)%,A_iplane); 
axis([0.0 L 0.0 D 0.0 1.0]); 
ylabel('y [m]'); 
xlabel('x [m]'); 
zlabel('Volume Fraction'); 

  
figure; 
surf(xp,z,var_g_iplane)%,A_iplane); 
axis([0.0 L 0.0 D 0.0 0.02]); 
ylabel('y [m]'); 
xlabel('x [m]'); 
zlabel('Local Interface Gradient'); 

  
figure; 
surf(xp,z,reg_g_iplane)%,A_iplane); 
axis([0.0 L 0.0 D 0.0 1.0]); 
ylabel('y [m]'); 
xlabel('x [m]'); 
zlabel('Local Interface Density'); 

  
% P(1) = getframe(gcf); 
% for i = ix(2):-1:2 
%     Zdata(:,:) = A_i_M2(i,:,:,2,1)/((D/iz(2))^3)*4; 
%     Cdata(:,:) = A_i_M2(i,:,:,1,1); 
%     s.ZData = Zdata; 
%     s.CData = Cdata; 
%     pause(0.05); 
%     P(i) = getframe(gcf); 
%     axis([0.0 0.015 0.0 0.015 0.0 1.0 ]); 
%     ylabel('y [m]'); 
%     xlabel('z [m]'); 
%     zlabel('Volume Fraction'); 
% end 
% v = VideoWriter('surfanim') 
% open(v); 
% writeVideo(v,P(:)); 
% close(v); 
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Appendix B 

Time steps from the 10 cm long M2 forward simulation. Surface tension is 0.0714 N/m. 
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Appendix C 

Time steps from the 20 cm long, M2 and M1 forward simulation. Surface tension equals 0.0714 

N/m. Due to limited computational availability the M2 case has not been run as far as the M1. 

When M2 reaches its last point M1 images are shown afterwards. 
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Appendix D 

Time steps from the 10 cm long M2 reverse simulation. Surface tension is 0.0714 N/m. 
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Appendix E 

Time steps from the 20 cm long M1 reverse simulation. Surface tension is 0.0714 N/m. 
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Appendix F 

It is not unreasonable to be concerned that the pressure gradient jump causes numerical 

instabilities that are manifested in the interface of the bubble due to the manner by which the level 

set equation is formulated using the stabilized finite element method. The stabilized finite element 

method introduces two terms to the momentum equations. The first is the standard stabilization 

for the Galerkin form of the incompressible equations. The second is a two part term that corrects 

the lack of momentum conservation introduced by the first new term, and a second part that 

stabilizes term for the advective term introduced by the first part [64]. The concern is that by 

adding a significant amount of momentum to the domain through the jump in pressure gradient, 

the stabilized finite element method will react by manifesting large instabilities in the interface 

that break down the bubble. To test this theory, a low flow rate slug flow simulation was 

“slammed” by an extraordinarily large pressure gradient, 150,000 Pa/m, for 100 time steps (0.0025 

seconds) before being reduced to the original value. This is an order of magnitude larger than the 

highest pressure gradient used in any other simulation presented. The bubble was then observed to 

see how the interface would react to this sudden change. Over the next 0.05 seconds, about 10 cm 

of flow by the bubble, no interface instabilities were observed. Some tail shearing began, but this 

is not surprising due to the sudden spike in interfacial shear that would be expected. 

 

 

 

 

 

 



   

194 

 

Appendix G 

This appendix is a “video” appendix. Frames from the four major simulations are presented 

next to each other on the following pages. Flipping through the pages, starting at the last page, 

should provide a flipbook effect that animates the flows.  
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