
 

 

ABSTRACT 
 
BROWN, CAMERON SCOTT. Spectral Cascade-Transport Turbulence Model Development for Two-
Phase Flows. (Under the direction of Igor A. Bolotnov.)  
 

Turbulence modeling remains a challenging problem in nuclear reactor applications, 

particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. 

Understanding the fundamental physics of turbulent multiphase flows is crucial for the 

improvement and further development of multiphase flow models used in reactor operation and 

safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach 

continue to become viable tools for reactor analysis. The on-going increase in available 

computational resources allows for turbulence models that are more complex than the traditional 

two-equation models to become practical choices for nuclear reactor computational fluid dynamic 

(CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased 

computational capabilities continue to allow for higher Reynolds numbers and more complex 

geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation 

and verification data for turbulence model development. Spectral turbulence models are a 

promising approach to M-CFD simulations. These models resolve mean flow parameters as well as 

the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than 

traditional two-equation type models. Previously, work performed by other researchers on a 

spectral cascade-transport model has shown that the model behaves well for single and bubbly two-

phase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow 

in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. 

Spectral models are great candidates for multiphase RANS modeling since bubble source terms can 

be modeled as contributions to specific turbulence scales.  

 This work focuses on the improvement and further development of the spectral cascade-

transport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M-CFD 

codes. To aid in SCTM development and validation a spectral analysis of single and two-phase 

bubbly DNS data in different geometries was performed with investigation of the modulation of the 

turbulent kinetic energy spectrum slope due to the presence of bubbles. A new spectral analysis 

technique was developed to show that modifications to the energy spectrum slope are due to the 



 

 

presence of bubble wakes. Spectral analysis results are essential aids in turbulence model 

development and validation. Further work on the one-dimensional (1D) SCTM formulation was 

performed to improve model behavior for higher Reynolds number channel flow than previously 

examined, where the boundary layer close to the solid wall is now resolved and good agreement 

was achieved between the SCTM and DNS data. The SCTM was then implemented into the 3D M-

CFD package NPHASE-CMFD and tested for turbulent single-phase, monodispersed bubbly two-

phase, and polydispersed bubbly two-phase flow in various geometries. The SCTM predictions were 

compared with the k-ε model, experimental data, and DNS data. The objective of the work is to 

improve and develop the SCTM and subsequently provide the numerical framework for the SCTM to 

be used in M-CFD predictions of multiphase flow in complex nuclear reactor geometries. 
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1. INTRODUCTION 

 Understanding the fundamental physics of multiphase flows is imperative in industries such 

as nuclear and chemical engineering. Safety and thermal-hydraulic analysis of current and future 

generations of nuclear reactors can benefit extensively from high fidelity predictive capabilities of 

multiphase flows. Multiphase computational fluid dynamics (M-CFD) approach allows modeling 

three-dimensional (3D) distributions of gas/liquid volume fractions as well as mean velocities and 

turbulent parameters in various geometries. In nuclear reactor related geometries, M-CFD models 

must account for intricate flow scenarios such as flow around spacer grids, mixing vanes, fuel 

bundles, etc. M-CFD is more difficult than single-phase turbulence modeling since bubble 

interactions with the liquid turbulence must be modeled to achieve closure [1].  

 As computational capabilities continue to increase, direct numerical simulation (DNS) is 

becoming more affordable for representative nuclear geometries [2] while full-scale reactor 

modeling with Reynolds-averaged Navier-Stokes (RANS) type turbulence models is on the horizon 

[3-5]. However, multiphase turbulence interactions must be well understood and the physical 

models of such processes must be validated in reactor relevant geometries and flow scenarios. DNS 

provides data to quantify bubble interactions with the liquid turbulence for the development of 

more physically sound closure terms to be used in the most common turbulence models such as k-ε 

[6] (or k-ω [7], SST [8], etc.), as well as turbulence models that are being developed specifically for 

multiphase reactor relevant applications [9-11]. DNS also provides results that can be used to assess 

existing turbulence modeling approaches as well as to develop more physically-based spectral 

turbulence models. Spectral turbulence models provide more flow statistics than traditional two-

equation models (i.e. the turbulent kinetic energy (TKE) spectrum) and are a desirable choice for M-

CFD since bubble source terms can be modeled as contributions to specific turbulence scales. In 

polydispersed flows, the contributions of bubbles of different physical characteristics such as size 

and velocity can be quantified separately in terms of their contributions to the TKE spectrum.  

 In this work, the continued development and improvement of the spectral cascade-

transport turbulence model (SCTM) to become a 3D turbulence model available for use in M-CFD 

codes is presented. The one-dimensional (1D) SCTM formulation was improved and validated 

against DNS data using a software package for the solution of partial differential equations (PDEs). 
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The SCTM formulation was extended to 3D and the model was implemented into a powerful M-CFD 

code. Simulations of turbulent single-phase flow, monodispersed bubbly two-phase flow, and 

polydispersed bubbly two-phase flow were performed using the SCTM turbulence closure option in 

the M-CFD code. A supplemental spectral analysis of DNS data in different geometries for single and 

two-phase bubbly flows was performed to provide SCTM numerical validation data and investigate 

the TKE spectrum in different geometries for bubbly two-phase flows. A new spectral analysis 

technique was developed to show that modulation of the TKE spectrum slope in bubbly two-phase 

flows is due solely to the presence of the bubble wakes.  

1.1 Literature Survey 

System and subchannel analysis codes have difficulty predicting local heat transfer 

information [3] as well as complex 3D information about coolant mixing, flow, temperature, and 

pressure distribution in reactor fuel assemblies [12]. All this information is important for improving 

nuclear reactor thermal-hydraulic analysis and, as a result of the coupled physics, neutronic and 

material performance considerations as well. M-CFD analysis of nuclear reactor behavior using the 

Reynolds-averaged Navier-Stokes equations is an area of active research.  

RANS models solve the Reynolds-averaged equations for the mean velocity field, rather than 

the instantaneous velocity field such as in DNS (or large eddy simulation (LES) at large scale), but 

capture considerably more flow physics than subchannel analysis type models. The following review 

of literature will show the mathematical basis for RANS turbulence modeling and how current wall-

resolved two-equation turbulence models are formulated (§ 1.1.1). Followed by an overview of the 

turbulent kinetic energy spectrum and spectral RANS models (§ 1.1.1.1) as well as some discussion 

on the current state-of-the-art for M-CFD with turbulent viscosity closure models for the RANS 

equations (§ 1.1.1.2). Finally, some literature is presented on the turbulent kinetic energy spectrum 

in two-phase bubbly flows along with difficulties in obtaining the spectrum in both experimental and 

numerical domains due to the passage of the bubble over an experimental or numerical probe (§ 

1.1.2).    
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1.1.1 RANS Models 

 The Reynolds-averaged equations for the mean velocity field are acquired by time averaging 

the Navier-Stokes equations. The RANS equations are available abundantly in the open literature 

with differences in notation. Following the notation of Wilcox [13], the Reynolds-averaged equations 

for mass and momentum, respectively, are:  

 𝜕𝑈𝑖
𝜕𝑥𝑖

= 0 (1.1) 

 
𝜌
𝜕𝑈𝑖
𝜕𝑡

+ 𝜌𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= −
𝜕𝑃

𝜕𝑥
+

𝜕

𝜕𝑥𝑗
(2𝜇𝑆𝑗𝑖 − 𝜌𝑢𝑗

′𝑢𝑖
′̅̅ ̅̅ ̅̅ ) (1.2) 

where [13]:   

   𝑈𝑖  = mean velocity vector  

   𝑥𝑖 = position vector  

   𝜌 = density  

   𝑃 = pressure 

   𝜇 = molecular viscosity  

   𝑆𝑗𝑖 = 
1

2
(
𝜕𝑈𝑖

𝜕𝑥𝑗
+
𝜕𝑈𝑗

𝜕𝑥𝑖
) = strain-rate tensor  

   𝑢𝑖
′ = fluctuating velocity  

Equations (1.1) and (1.2) are the RANS equations for the mean flow for incompressible, constant-

property flow. These equations are analogous to the Navier-Stokes equations for the instantaneous 

flow field except for the appearance of the 𝑢𝑗
′𝑢𝑖
′̅̅ ̅̅ ̅̅  correlation that represents the time-averaged rate 

of momentum transfer due to turbulence [13]. The −𝜌𝑢𝑗
′𝑢𝑖
′̅̅ ̅̅ ̅̅  term is known as the Reynolds-stress 

tensor denoted by −𝜌𝜏𝑖𝑗. Therefore, 𝜏𝑖𝑗  is the specific Reynolds-stress tensor:  

 𝜏𝑖𝑗 = −𝑢𝑗
′𝑢𝑖
′̅̅ ̅̅ ̅̅  (1.3) 

The expansion of the symmetric specific Reynolds-stress tensor (𝜏𝑖𝑗 = 𝜏𝑗𝑖) is shown in Equation 

(1.4). Upon inspection of Equation (1.4), Reynolds-averaging the Navier-Stokes equations resulted in 

six additional unknown tensor terms with no further addition of equations. This defines the closure 

problem of turbulence: examination of Equations (1.1), (1.2), and (1.4) specifies that the unknown 

terms are the pressure, three components of mean velocity, and the six Reynolds stress terms for a 

combined total of ten unknowns. However, only the mass conservation (Equation (1.1)) and 
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momentum conservation for the three velocity components (Equation (1.2)) exists from Reynolds-

averaging. Therefore, the system of ten unknowns and four equations has yet to be closed and 

additional equations are needed to determine the Reynolds stresses.  

 

𝜏𝑖𝑗 = −[

𝑢1
′𝑢1

′̅̅ ̅̅ ̅̅ 𝑢1
′𝑢2

′̅̅ ̅̅ ̅̅ 𝑢1
′𝑢3

′̅̅ ̅̅ ̅̅

𝑢2
′ 𝑢1

′̅̅ ̅̅ ̅̅ 𝑢2
′ 𝑢2

′̅̅ ̅̅ ̅̅ 𝑢2
′ 𝑢3

′̅̅ ̅̅ ̅̅

𝑢3
′ 𝑢1

′̅̅ ̅̅ ̅̅ 𝑢3
′ 𝑢2

′̅̅ ̅̅ ̅̅ 𝑢3
′ 𝑢3

′̅̅ ̅̅ ̅̅
] (1.4) 

 The RANS equations are closed by the solution of the Reynolds stresses determined by a 

turbulence model, either through the turbulent viscosity hypothesis or by modelling the Reynolds 

stress directly [14]. Turbulent viscosity models use the Boussinesq eddy-viscosity approximation to 

compute the specific Reynolds stress tensor as the product of an eddy viscosity and the mean strain-

rate tensor [13] such that:  

 
𝜏𝑖𝑗 = 2𝜈𝑇𝑆𝑖𝑗 −

2

3
𝑘𝛿𝑖𝑗  (1.5) 

where k is the TKE defined to be one-half of the trace of the specific Reynold-stress tensor:  

 
𝑘 =

1

2
𝑢𝑖
′𝑢𝑖
′̅̅ ̅̅ ̅̅ =

1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅) (1.6) 

where the repeated index of the Reynolds stress tensor term presumes summation. Note that the 

diagonal components of the specific Reynolds-stress tensor represent the normal stresses while the 

off-diagonal components represent the shear stresses [14]. 

Therefore, given the distribution of turbulent viscosity the RANS equations can be closed by 

substituting in the Boussinesq definition of the specific Reynolds-stress tensor (Equation (1.7)). This 

is a convenient closure to the RANS equations since the unknown Reynolds stresses can be related 

directly to mean flow quantities to close the system.  

 𝜕𝑈𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑖
[𝜈𝑒𝑓𝑓𝑆𝑗𝑖] −

1

𝜌

𝜕

𝜕𝑥𝑗
(𝑃 +

2

3
𝜌𝑘) (1.7) 

where  

 𝜈𝑒𝑓𝑓 = 𝜈 + 𝜈𝑇 (1.8) 

 Finally, under the assumption that the Boussinesq approximation is valid, all that remains to 

solve the RANS equations for the mean flow parameters is to determine the appropriate distribution 

of the turbulent viscosity (sometimes referred to as the eddy viscosity or eddy diffusivity). The 

turbulent viscosity can be written as the product of a velocity 𝑢∗ and length scale 𝑙∗ (Equation (1.9)). 
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Specifications of the velocity and length scale to determine the turbulent viscosity are the historical 

basis for the development of the multitude of RANS turbulence models in the literature.  

 𝜈𝑇 = 𝑢
∗𝑙∗ (1.9) 

 Early considerations of Prandtl [15] defined the distribution of turbulent viscosity in terms of 

some mixing length based on the geometry of the flow [14]. Such mixing length models are 

considered algebraic models where the relationship between the turbulent viscosity and mixing 

length must be identified in advance. More advanced algebraic models include the Cebeci-Smith 

model [16] and the Baldwin-Lomax model [17]. Turbulence modeling approaches have evolved with 

the increased computational power to perform numerical simulations (Figure 1.1). Specifically, one-

equation and two-equation models have been developed based on the turbulent kinetic energy 

transport equation. Complete one-equation models (i.e. the turbulence length scale is determined 

by model equations) have been proposed by Baldwin and Barth [18] as well as Spalart and Allmaras 

[19]. Two-equation turbulence models are inherently complete and constitute the most widely used 

approach to turbulence modeling in practice today. More specifically, the k-ε [6] and k-ω [7] two-

equation models are often used in CFD with the k-ε model being the most common and available in 

most commercial CFD codes [14]. Pope [14] notes that from the two modeled quantities of 

turbulent kinetic energy (k) and dissipation rate (ε) a length scale (𝐿 = 𝑘3 2⁄ 𝜀⁄ ), a time scale 

(𝜏 = 𝑘 𝜀⁄ ), and a quantity of dimension of the turbulent viscosity (𝑘2 𝜀⁄ ) can be formed. Many two-

equation type models have been developed that make use of the TKE transport equation with some 

other second equation involving the turbulence length scale. For example, the k-ω model of Wilcox 

[7], the k-τ model of Speziale et al. [20], the k-Ϛ model of Robinson et al. [21], and the k-kτ model of 

Zeierman and Wolfshtein [22] to name a few found in the literature.  
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Figure 1.1. Turbulence modeling approaches with increasing computational requirement and 
resolution. Note that LES still requires a subgrid-scale model that usually employs the Boussinesq 
approximation. 

 

 High-Reynolds number (HRN) turbulence models do not resolve the near-wall turbulent 

boundary layer and appropriate boundary conditions must be applied to the TKE and turbulent 

dissipation equations. In most turbulence models for single-phase flow, the logarithmic law of the 

wall is applied as the boundary condition to define the velocity at some distance from the wall [13]. 

In general, HRN turbulence models resolve the turbulence down to a dimensionless wall coordinate 

value (𝑦+, see Equation (1.14)) of about 30. Low-Reynolds number (LRN) turbulence models resolve 

the turbulence through the boundary layer all the way to the wall or solid surface of interest. 

Numerous turbulence models exist for such wall-bounded flows and some examples specific to the 

k-ε model are those of Jones and Launder [6], Launder and Sharma [23], Lam and Bremhorst [24], 

and Chien [25]. Wilcox [13] has provided a form of the k-ε equations that are consistent for each of 

these models such that the only differences arise in model constants and damping functions. The k-ε 
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equations are shown here as they are given by Wilcox [13] for steady, incompressible boundary 

layer flows where the y direction denotes the direction normal to the solid surface.  

 
𝑈
𝜕𝑘

𝜕𝑥
+ 𝑉

𝜕𝑘

𝜕𝑦
= 𝜈𝑇 (

𝜕𝑈

𝜕𝑦
)
2

− 𝜀 +
𝜕

𝜕𝑦
[(𝜈 +

𝜈𝑇
𝜎𝑘
)
𝜕𝑘

𝜕𝑦
] (1.10) 

 
𝑈
𝜕𝜀̃

𝜕𝑥
+ 𝑉

𝜕𝜀̃

𝜕𝑦
= 𝐶𝜀1𝑓1

𝜀̃

𝑘
𝜈𝑇 (

𝜕𝑈

𝜕𝑦
)
2

− 𝐶𝜀2𝑓2
𝜀̃2

𝑘
+ 𝐸 +

𝜕

𝜕𝑦
[(𝜈 +

𝜈𝑇
𝜎𝜀
)
𝜕𝜀

𝜕𝑦
] (1.11) 

where dissipation (ε) is related to 𝜀̃ by:  

 𝜀 = 𝜀𝑜 + 𝜀̃ (1.12) 

The 𝜀𝑜 term is the value of the dissipation at the wall surface and is defined differently for each of 

the models. The eddy viscosity formulation is [13]:  

 
𝜈𝑇 =

𝐶𝜇𝑓𝜇𝑘
2

𝜀
 (1.13) 

thus depending on the modeled k and ε to close the RANS system of equations. Note that these 

models include five empirical damping functions 𝑓1, 𝑓2, 𝑓𝜇 , 𝜀𝑜, and 𝐸 that depend on the 

dimensionless parameters [13]:  

 
𝑅𝑒𝑇 =

𝑘2

𝜀̃𝜈
,     𝑅𝑦 =

𝑘1 2⁄ 𝑦

𝜈
,     𝑦+ =

𝑢𝜏𝑦

𝜈
 (1.14) 

For completeness model constants and damping functions for the Chien k-ε model [25] are shown in 

Equation (1.15).  

 𝑓𝜇 = 1 − 𝑒
−0.0115𝑦+ 

𝑓1 = 1 

𝑓2 = 1 − 0.22𝑒
−(𝑅𝑒𝑇 6⁄ )2 

𝜀𝑜 = 2𝜈
𝑘

𝑦2
 

𝐸 = −2𝜈
𝜀̃

𝑦2
𝑒−𝑦

+ 2⁄  

𝐶𝜀1 = 1.35,     𝐶𝜀2 = 1.80,     𝐶𝜇 = 0.09,     𝜎𝑘 = 1.0,    𝜎𝜀 = 1.3 

(1.15) 

 A few observations should be made concerning the Chien k-ε model in Equations (1.10) – 

(1.15). First, the right-hand side (RHS) terms in the equation for TKE (Equation (1.10)) are those of 

turbulent production, turbulent dissipation, and viscous and turbulent diffusion, respectively. 

Second, the surface boundary conditions are non-intuitive for the empirical dissipation rate 

transport Equation (1.11). While the no-slip boundary condition at the solid surface indicates that k 
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must vanish at the boundary [13] the value is not so well-defined for the dissipation and some 

assumption of the dissipation value at the boundary must be made. Third, the near-wall models for 

k and ε are quite empirical and the presence of the solid wall has an effect on the turbulence that 

must be accounted for through use of damping functions.  

1.1.1.1 Spectral RANS Models 

Richardson [26] was the first to introduce the energy cascade notion that kinetic energy 

enters the turbulence due to some production mechanism at the largest scales and is then 

transferred successively to smaller scales until the energy is removed at the smallest scales due to 

viscous dissipation [14]. Kolmogorov [27] identified the smallest scales of motion in the flow and the 

smallest length, time, and velocity scales are justly known as the Kolmogorov scales. Richardson 

theorized that the turbulence is composed of eddies of various sizes representing some turbulent 

motion of characteristic length, velocity, and time scales [14]. In terms of the energy cascade, the 

largest eddies are unstable and break-up, followed by the transfer of energy to smaller eddies. This 

process is continued to smaller and smaller eddies until the smallest turbulent eddies are removed 

by viscous effects at the Kolmogorov scales of motion. Therefore, the energy cascade is composed 

of three distinct regions based on the length scale of the turbulent eddies [14]: the energy 

containing range where the largest eddies are produced, the inertial subrange where energy is 

successively transferred to smaller eddies, and the dissipation range where viscous effects 

dominate. In most turbulence models used for nuclear engineering applications, such as the two-

equation models presented in § 1.1.1, the spatial resolution necessary to describe the turbulence is 

accomplished at the expense of spectral resolution [28]. Spectral models maintain the spatial 

resolution of turbulence and simultaneously resolve the turbulent kinetic energy spectrum function.  

The turbulent kinetic energy spectrum function 𝐸(𝜅) in wave number (𝜅) space is related to 

the length scale (ℓ) of turbulent motion by Equation (1.16). The relation stipulates that the smallest 

wave numbers correspond to the largest liquid eddies in the flow. Therefore, as wave number 

increases the characteristic eddy size decreases and vice versa.  

 
𝜅 =

2𝜋

ℓ
 (1.16) 

Pope [14] indicates that the energy in each wave number range (𝜅𝑎 , 𝜅𝑏) can be obtained by 

integration of the energy spectrum function over the range:  
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𝑘(𝜅𝑎,𝜅𝑏) = ∫ 𝐸(𝜅)𝑑𝜅

𝜅𝑏

𝜅𝑎

 (1.17) 

While the dissipation rate in homogeneous turbulence in the same range is defined by:  

 
𝜀(𝜅𝑎,𝜅𝑏) = ∫ 2𝜈𝜅2𝐸(𝜅)𝑑𝜅

𝜅𝑏

𝜅𝑎

 (1.18) 

From Equations (1.17) and (1.18), a general power-law scaling can deduce the slope of the 

energy spectrum in the inertial subrange and a slope of -5/3 is universally accepted in single-phase 

flows. Figure 1.2 shows the energy spectrum obtained from DNS of turbulent plane channel flow by 

Hoyas and Jiminez [29] with some approximate labeling of the energy containing range, inertial 

subrange, and dissipation range as well as a -5/3 slope. This is a representative spectrum shape for 

single-phase flows that shows how energy is distributed over the range of eddy sizes in the domain. 

Note that if Equations (1.17) and (1.18) are integrated over the entire wave number/spectral space 

(i.e. over all scales from the Kolmogorov length scale to the largest length scale present in the flow) 

the total turbulent kinetic energy and dissipation rate are obtained. 

Spectral RANS turbulence models are formulated on the basis that the interactions between 

different wave number ranges can be quantified based on mean flow parameters and a turbulent 

viscosity obtained for closure of Equation (1.7). Spectral models belong to a class of shell models [9, 

30] where the turbulent kinetic energy is resolved into a continuous spectrum of scales [28]. 

Desnyanski and Novikov [31] introduced one of the earliest cascade models where spectral shells 

are used to model the TKE cascade. In their model, algebraic expressions are used to quantify the 

transfer of energy between nearest neighboring shells. Following Desnyanski and Novikov, Lewalle 

and Tavlarides [28] developed the cascade-transport (CT) model and performed calibration and 

testing with homogeneous uniform shear flow experimental data. In their CT model, energy is 

exchanged between the nearest modes only, the dissipation term is explicit (without the need for an 

additional dissipation rate transport equation such as in k-ε type models), and the diffusion and 

production terms match those in the model TKE equation (Equation (1.10)). Lewalle and Tavlarides 

[28] used a cumulative spectral eddy viscosity model given by Heisenberg (see Hinze [32]) to 

formulate the CT model eddy viscosity with a correction factor used outside of the inertial subrange. 

The CT model achieved good agreement with the experimental results although the authors note 

that the solution had considerable sensitivity to the form of the turbulent viscosity correction factor. 
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Lewalle and Tavlarides also note that the added complexity and computation requirements of the 

CT model are justifiable if multiple length scales are essential to the problem such as in non-

equilibrium or two-phase turbulent flows. Note that spectral RANS models provide both spatial and 

spectral resolution. Therefore, the distribution of turbulent viscosity must be formulated in both 

spectral and spatial domains to provide the needed closure to the RANS equations.  

 

Figure 1.2. Representative energy spectrum. Data from DNS [29] of flat plane channel (Reynolds 
number based on hydraulic diameter approximately 97,000).  

 

Bolotnov et al. [9-11] have followed the work of Lewalle and Tavlarides [28] to propose the 

earliest formulations of the spectral cascade-transport model. The SCTM has been developed using 

a “building block” approach. Specifically, the model has been tested for single-phase and two-phase 

decay of isotropic turbulence [10], single-phase and two-phase uniform shear flows [9], and single-

phase turbulent channel flow without resolving the near-wall boundary layer at a Reynolds number 

based on friction velocity (Reτ) of 180 [11]. Each new building block in SCTM development required 

additional terms to manage the physics in more complex turbulent flows.  



 

11 
 

1.1.1.2 Multiphase RANS Models 

 Turbulence modeling for multiphase flow applications must include the effects of additional 

flow physics to account for the presence of other phases. In nuclear engineering applications, 

multiphase flow models are essential to improving predictions for a wide range of challenge 

problems. For example, the prediction of the thermal-hydraulic conditions leading to CRUD 

formation and ultimately crud-induced power shift (CIPS) [33] or the estimation of critical heat flux 

(CHF) conditions leading to departure from nucleate boiling (DNB) and fuel rod failure [3]. Although 

the capabilities to perform DNS of turbulent multiphase flows are advancing a rapid rate [2, 34-38], 

these simulations are limited to smaller geometries and require considerable computational power. 

Therefore, M-CFD calculations with RANS approach have emerged as the viable option to improve 

upon existing 1D subchannel analysis type calculations. M-CFD approach with RANS provides 3D 

distributions of velocities, gas/liquid volume fractions, as well as turbulent parameters. Current 

state of the art CFD calculations investigating complex challenge problems for nuclear geometries 

will benefit tremendously from improved M-CFD turbulence models.  

The coupling of averaged Eulerian-Eulerian formulations to RANS turbulence modeling has 

emerged for use in real-world and system scale calculations [39] as the availability of computational 

power becomes more prevalent. Lahey [40] has presented a “research roadmap” for the prediction 

of multiphase flows in nuclear applications to move beyond quasi-multidimensional subchannel 

models to three-dimensional two-fluid M-CFD models using high quality numerical data from DNS 

for validation and development. Presently, the literature for nuclear related M-CFD focuses 

predominately on the modeling of bubbly two-phase flows. In bubbly two-phase flows, there exists 

a largely continuous liquid fluid with a modest volume fraction of the vapor bubble phase. Lahey 

[40] presented the four-field, two-fluid (i.e. continuous vapor, continuous liquid, dispersed vapor, 

and dispersed liquid) conservation equations in addition to the two-phase k-ε model formulation of 

Lopez de Bertodano et al. [41]. Note that in bubbly flow regimes the conservation equations need 

only consider the continuous liquid and dispersed vapor fields although the conservation equations 

can account for other flow regimes of interest such as slug, churn-turbulent, annular, and mist. 

Rzehak and Krepper [42] state that this two-fluid framework is widely used to model two-phase 

flows with conservation equations for mass, momentum, and energy of both phases weighted by 

phasic volume fractions. The exchange of mass, momentum, and energy between the phases are 
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modeled by interfacial source and sink terms in the conservation equations [42]. There are 

numerous formulations in the literature for the interfacial momentum exchange terms in the bubbly 

two-phase flow regime (e.g. drag force, lift force, turbulent dispersion force, wall force, virtual mass 

force, etc.) as well as models for bubble coalescence and bubble break-up and data from both 

experiments and DNS continues to improve these closure laws [43-49]. In addition to interfacial 

closure models, M-CFD using RANS approach requires improved turbulence models that account for 

the additional flow physics due to the presence of multiple phases.  

As recently noted by Colombo and Fairweather [39], the accurate prediction of multiphase 

turbulence is essential for progress within the M-CFD framework. Many researchers have shown 

definitively that the presence of bubbles affect the liquid turbulence structure. This can be most 

easily examined by the modulation of the TKE spectrum due to the presence of bubbles in 

multiphase flow when compared to single-phase flow. Both experimental results [50-52] and 

numerical results [53, 54] have found that the slope of the energy spectrum in bubbly two-phase 

flows differs from the expected -5/3 slope known from Kolmogorov theory. An early approach to 

account for the presence of bubbles in two-phase bubbly flow was taken by Sato and Sekoguchi [55] 

who used an analytical approach to split the fluctuations of velocity and pressure in the liquid into 

those caused by the motion of the bubbles (bubble-induced turbulence or BIT) and those caused by 

the inherent liquid turbulence independent of the existence of the bubbles. Sato and Sekoguchi [55] 

developed an additive term for the turbulent viscosity dependent on bubble diameter, void fraction, 

and the relative velocity of the dispersed vapor phase to the liquid phase to capture the effect of the 

bubbles on the liquid turbulence. If this method is used without altering a chosen two-equation 

model it will not provide a direct prediction of TKE and turbulent dissipation [42]. Lee et al. [56] 

applied a two-phase k-ε model to bubbly flows through use of additional source terms in both the 

TKE and dissipation equations to account for the effect of the bubbles on the flow. Lopez de 

Bertodano et al. [41] extended a single-phase k-ε model to a two-phase k-ε model formulation and 

tested the model for two-phase decay of isotropic turbulence and two-phase bubbly flow in a pipe. 

Rzehak and Krepper [42] indicate that in addition to BIT terms for either the turbulent viscosity or 

within a two-equation model it would also be possible to solve separate turbulent transport 

equations for both the liquid and vapor phases. While this may provide the most physical 

representation of the problem it also requires more unknown parameters such as phasic interaction 
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terms and is less applicable at the current time [42]. Therefore, there has been considerable interest 

in the form of the liquid phase BIT source terms for two-equation RANS modeling.  

There exists a substantial number of publications where a various sets of closure relations is 

compared to a set of multiphase experimental data [57] but almost all use the k-ε, k-ω, or SST 

turbulence models. In general, BIT source terms can be applied to any turbulence model if 

dimensional consistency is maintained. There is some discrepancy as to whether consensus has 

been reached for the BIT source term. Colombo and Fairweather [39] indicate that no generally 

accepted formulation has emerged while Rzehak et al. [57] indicate that there is general agreement 

in the literature for the form of the BIT source term in the k-equation. At any rate, it can be agreed 

that there is no generally accepted form of the BIT source term for the second turbulence model 

equation (e.g. ε, ω, etc.) due to the need to define a time scale. Rzehak and Krepper [42] compared 

predictions of the SST turbulence model using BIT source term formulations published by Morel 

[58], Politano et al. [59], and Troshko and Hassan [60] to results obtained using their own source 

term as well as to the Sato turbulent viscosity correction for bubbly two-phase flow in a circular 

pipe. Colombo and Fairweather [39] used a multiphase formulation of the standard k-ε turbulence 

model [6] and compared the BIT source term predictions of Troshko and Hassan [60], Rzehak and 

Krepper [42], and a model of their own to bubbly two-phase pipe flow. For each of the 

aforementioned BIT source term models the k-equation source is expressed as some form of the 

drag force multiplied by the relative velocity. The only exception is the Morel model [58], which also 

includes the virtual mass force. Recently, Ma et al. [61] used bubbly two-phase DNS data to develop 

a new BIT source term based on the drag force, relative velocity, and the bubble Reynolds number. 

Note that the source terms for the dispersed phase effect on the continuous phase TKE could be 

implemented into any turbulence model formulation for TKE. For example, Jairazbhoy et al. [62, 63] 

modeled neutrally buoyant droplets in homogeneous gas turbulence using a two-phase cascade-

transport model with an included source term for drop-eddy interactions. Bolotnov et al. [9, 10] 

added the bubble-induced source term used by Lahey [64] to the spectral cascade-transport model 

for prediction of two-phase bubbly decay of isotropic turbulence and uniform shear flows. 

RANS turbulence modeling of bubbly two-phase flows has, to the author’s knowledge, been 

almost entirely conducted using HRN type two-equation turbulence models where the near-wall 

boundary layer is not resolved and appropriate boundary conditions must be applied to the TKE and 
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turbulent dissipation equations. In single-phase flow, the logarithmic law of the wall is well-known 

and applied as the boundary condition to define the velocity at some distance from the wall [13]. 

There have been different approaches to the application of boundary conditions in multiphase 

flows. Politano et al. [59] note that experimental data has shown that the single-phase logarithmic 

law of the wall is not valid for turbulent two-phase flows. However, some authors have retained the 

single-phase logarithmic law of the wall as the best estimate for the unknown boundary condition in 

the modeling of multiphase flows [41, 57]. There have been several attempts to modify the single-

phase logarithmic law of the wall to account for the presence of bubbles such as work by Marie et 

al. [65] and Troshko and Hassan [60, 66]. Politano et al. [59] used a simplified approach to modify 

the single-phase logarithmic law and demonstrated a good agreement with experimental results. 

Although, it should be noted that the in their model the height of the gas volume fraction peak was 

dependent on the first mesh node location close to the wall.  

In polydispersed two-phase flow, models must also account for the individual behavior of 

differently sized bubbles within the flow. Bubbles of distinct size and deformability interact 

differently with the liquid turbulence. Carrica et al. [67] developed a polydispersed model for bubbly 

flows. More recently, Krepper et al. [68] have presented the inhomogeneous MUSIG model to 

distribute bubbles into interacting groups modeled by different velocity fields and appropriate 

interfacial closure terms. The development of more physically based turbulence closure models 

should continue to improve predictions of polydispersed bubbly two-phase flow as well as higher 

void fraction flow regimes encountered in nuclear reactor subchannels. While more complex 

methods such as Reynolds stress models are a possibility [39], these models also introduce the need 

to account for anisotropic source terms for the bubble induced turbulence [57]. DNS data has shown 

that bubbles influence the turbulence anisotropy by improving the isotropy ratios [34]. With the 

complex challenges of multiphase turbulence modeling considered, spectral turbulence models are 

excellent candidates to provide better physical representation of multiphase flows. Spectral models 

allow the contributions from different bubble groups (e.g. bubble groups could be split on bubble 

size such as in the MUSIG model [68], relative velocity, etc.) to be included as BIT source terms at 

different turbulence scales. 

 Lance and Bataille [50] showed experimentally that the bubble-induced turbulence energy 

exhibits non-linear behavior as void fraction increases. Bolotnov et al. [10] showed that the SCTM 
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could capture this non-linear behavior when the effect of bubbles is introduced into the correct 

spectral bin. Simpler two-equation turbulence models are not expected to capture this non-linear 

behavior [10, 39]. The wall-resolved SCTM is an ideal candidate for polydispersed bubbly two-phase 

flow predictions since the non-linear influence of bubbles from distinct size groups can be added as 

TKE source terms at the scales of interest and the turbulence is resolved through the boundary layer 

to the wall. Modeling the TKE spectrum also provides more statistics for validation with 

experimental and numerical data. Although the slope of the energy spectrum for multiphase flows is 

not universally accepted, many authors report a slope close to -3. 

1.1.2 Spectral Analysis of the Turbulent Kinetic Energy Spectrum  

 The spectral analysis of single and multiphase turbulent flows provides not only the 

turbulent kinetic energy spectrum for validation of spectral turbulence models but is also imperative 

in developing physically sound closure terms for bubble interactions with the liquid turbulence. The 

one-dimensional energy spectrum of the velocity fluctuations in the liquid phase is essential in 

quantifying the bubble/turbulence interactions [69] for development of improved BIT source terms. 

The one-dimensional energy spectrum of the velocity fluctuations in the frequency domain can be 

calculated by performing fast Fourier transform (FFT) on the velocity fluctuations in the time 

domain. Advanced spectral turbulence models such as the SCTM [9-11] have shown that the energy 

spectrum of multiphase flows can improve turbulence closure terms and provide better predictions 

of flow characteristics. In single-phase flows, the -5/3 slope of the energy spectrum in the pure 

inertial subrange is known from Kolmogorov theory. However, the slope of the energy spectrum for 

multiphase flows is not so well understood and differing values are found in the literature.  

 Most available data for the evaluation of the slope of the energy spectrum in multiphase 

flows, both experimental and numerical, exists for purely bubble-induced turbulence. Purely bubble-

induced turbulence (pseudo-turbulence) refers to an initially at rest flow that is forced by rising 

bubbles as the only source of liquid turbulence energy [70]. Lance and Bataille [50] suggested the 

ratio of bubble-induced kinetic energy to the turbulent kinetic energy in the absence of bubbles as 

an appropriate parameter to characterize a bubbly flow. Rensen et al. [71] defined this 

dimensionless quantity as the “bubblance” parameter (b) and showed that 𝑏 = ∞ for pure pseudo-

turbulence and suggested that the slope of the energy spectrum can be determined from the 
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bubblance alone. Although the bubblance parameter is useful for characterizing a bubbly flow it has 

not been successful as the only determinant of the slope of the energy spectrum [69, 72]. Sathe et 

al. [72] suggested that circulation velocity, bubble size distribution, and lateral variation of mean 

bubble size in an experimental bubble column greatly affect the energy spectrum.   

 Experimental techniques such as particle image velocimetry (PIV) and hot wire anemometry 

(HWA) have been used to evaluate the liquid energy spectrum in pseudo-turbulent bubbly flows. 

Lance and Bataille [50] found the classical -5/3 power law gradually replaced by a -8/3 slope in the 

high frequency range as void fraction was increased in bubbly turbulence and these results were 

reproduced by Wang et al. [1]. Rensen et al. [71] were not able to reproduce these results and 

instead reported a slope slightly less than -5/3 and attributed their differences to the bubblance 

parameter. Shawkat et al. [51] experimentally investigated the energy spectrum of air-water flow in 

a vertical pipe and found slopes ranging from -8/3 to -10/3 dependent on the void fraction. They 

proposed that the traditional inertial subrange might not be valid for two-phase bubbly flows since 

there is energy production due to liquid-bubble interactions at the traditional inertial subrange 

length scales.  Bolotnov et al. [10] made similar arguments that bubble contributions to the liquid 

turbulence occur at length scales on the order of the bubble diameter in their spectral cascade-

transport model development. Mercado et al. [73] found a slope of -3.18 for the energy spectrum 

with no dependency on the void fraction. Mendez-Diaz et al. [52] experimentally analyzed pseudo-

turbulent flow for two different bubble sizes and three different viscosity liquids and found a slope 

close to -3 for all cases. A slope of -5/3 transitioning to -3 at higher wave numbers was reported by 

Sathe et al. [72].  

 Numerical experiments are a particularly powerful tool that complement and provide 

comparisons to experimental results. Sugiyama et al. [74] modeled 800 rising particles as bubbles 

for pseudo-turbulent flow and also found a -3 slope. Mazzitelli and Lohse [70] simulated 288,000 

microbubbles for pseudo-turbulence but did not resolve the bubble wakes. They report a -5/3 slope 

consistent with their observation that the -3 slope is due to energy deposited by the bubble wake 

that is then directly dissipated. Roghair et al. [54] reported a slope of -3 in DNS of pseudo-turbulent 

flow for a converged case with 5% void fraction as well as a -3 slope for a non-fully converged case 

with 15% void fraction. Riboux et al. [75] also proposed that bubble-induced agitation of the liquid 

phase mainly results from wake interactions and found a slope of -3. They modeled the bubbles as 
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fixed momentum sources and reproduced the wake some distance from the bubble to minimize 

computational cost. Bunner and Tryggvason [53] simulated as many as 216 bubbles with void 

fractions ranging from 2% to 24% in laminar, low Reynolds number bubbly flow and found a slope of 

approximately -3.6 for comparisons of different numbers of bubbles as well as different void 

fractions. Bunner and Tryggvason [53] note that their steeper slope of -3.6 in comparison to Lance 

and Bataille [50] can be attributed to the very different conditions of the simulations. Santarelli and 

Froehlich [37, 38] simulated monodispersed bubbly flow and polydispersed bubbly flow with a large 

and small bubble group for a bulk Reynolds number of 5263. Ma et al. [61] performed spectral 

analysis of the Santarelli and Froehlich [37, 38] data and found a slope of -3. The increasing 

capabilities of high performance computing (HPC) continue to expand DNS capabilities by allowing 

simulations of higher Reynolds numbers, larger domain sizes, and more complex geometries. 

Bolotnov [34] used a massively parallel code, PHASTA, to fully resolve 60 bubbles in a turbulent flow 

with a Reynolds number based on friction velocity of 400. Bolotnov et al. [35] also used PHASTA to 

simulate turbulent single and two-phase bubbly flow in a 200 mm diameter circular pipe. Fang et al. 

[2] have used the same advanced massively parallel code to simulate turbulent single-phase flow, as 

well as turbulent bubbly two-phase flow, in reactor subchannel geometry. Analytic considerations 

have also shown a -3 scaling of the energy spectrum for two-phase bubbly flows (e.g. [10], [50], 

[76]).  Bolotnov et al. [10] derived both -5/3 and -3 slope values in the inertial subrange by 

assumption of a power-law spectra for the single-phase turbulent kinetic energy spectrum. 

 Estimating the two-phase energy spectrum has additional challenges since the complexity of 

two-phase flows results in a time history of mixed velocity signals coming from either the liquid or 

gas phase. The liquid phase velocity history is discontinuous due to the passage of a bubble over an 

experimental or numerical probe. There exist several methods of handling the discontinuous liquid 

velocity signal so that FFT can be applied to calculate the energy spectrum although none of these 

methods have been shown to be definitive. Ilic et al. [69] compared four different methods of 

bridging the gap in the liquid velocity signal: (i) the method of Tsuji and Morikawa [77] to replace 

the defective part of the signal with a linear interpolation, (ii) the method of Gherson and Lykoudis 

[78] to patch together the successive liquid velocity signal, (iii) the method of Wang et al. [1] to 

replace the defective parts of the signal with the mean velocity of the liquid phase, and (iv) the 

method of Panidis and Papailiou [79] to analytically replace the defective part of the signal with 
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segments having the same statistical properties of the liquid signal. Ilic et al. [69] found the method 

of replacing the defective parts of the signal with the mean velocity of the liquid phase to be most 

promising. Shawkat et al. [51] also compared different methods of bridging over the defective parts 

of the liquid velocity signal and chose to use the linear interpolation method. Mercado et al. [73], 

Ma et al. [61], and Roghair et al. [54] chose to calculate the energy spectrum using the liquid signal 

pieces between the passage of bubbles and then average for the energy spectrum. This approach 

creates issues since the length of each data segment will not be the same. Using data segments of 

differing lengths required the calculation of a minimum data segment length to be included in the 

averaging for the energy spectrum. Note that even with a minimum segment length the amount of 

data will decrease with increasing void fraction and the resolved frequency range will be dissimilar 

for differing data length segments.  

 Although pseudo-turbulent flows provide valuable insight into the slope of the energy 

spectrum in multiphase flows, the conditions of multiphase flow in nuclear reactor subchannels are 

highly turbulent and M-CFD approach must capture the physics of the multiphase energy spectrum 

for turbulent conditions. Mercado et al. [73] expressed interest in future investigation of flows 

where turbulent effects become dominant. Mendez-Diaz et al. [52] recently stated that calculating 

the energy spectrum in fully turbulent flow could demonstrate whether the spatial inhomogeneity 

of bubbles or the normal turbulent energy cascade dominates the shape of the energy spectrum.  

 In addition to highly turbulent flow conditions, single-phase CFD and M-CFD must account 

for complex geometries within the nuclear reactor core. The presence of spacer grids, mixing vanes, 

and other structural components within the reactor subchannel geometry combine to create 

intricate flow scenarios that must be accurately modeled. M-CFD simulations should be validated for 

these flow situations before being scaled up to reactor conditions. Krepper et al. [80] have examined 

polydispersed bubbly two-phase flow around an obstacle and expressed the need for more physical 

bubble breakup and coalescence models. Spectral models based on the bubble/turbulence 

interactions from high quality numerical data from DNS can improve predictions for such nuclear 

engineering flow conditions.   
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2. SPECTRAL ANALYSIS OF DNS 

As discussed in § 1.1.2, most existing research efforts pertaining to the slope of the energy 

spectrum in multiphase flows exists for pseudo-turbulence. However, the increasing availability of 

multiphase turbulent DNS provides data for the spectral analysis of multiphase turbulent flows. 

Single and two-phase DNS of fully-developed turbulent flow performed using PHASTA [81-86] in flat 

plane channel [34], circular pipe [35], and PWR reactor subchannel [2] geometries were spectrally 

analyzed. Performing a comprehensive spectral analysis of turbulent single and two-phase bubbly 

flows in different geometries provides high quality data to increase the capabilities of advanced 

spectral turbulence models such as the SCTM. A comparison of the energy spectra for two-phase 

bubbly flow in different geometries ensures that the SCTM can be applied to different flow 

scenarios. Results from spectral analysis can be used for model validation as well as the 

development of improved BIT source terms. Parameters of interest for the performed DNS are 

shown in Table 2.1. In the two-phase simulations, PHASTA tracks the liquid/gas interface using a 

level-set method. The bubbles are monodispersed and retain an essentially spherical shape 

throughout the simulation time.  

2.1 Numerical Method 

It is necessary to first provide details on how the PHASTA DNS data (Table 2.1) was 

recorded. Details about the numerical method and capabilities of the PHASTA code can be found in 

the literature [2, 34, 48, 81]. During each PHASTA simulation (Figure 2.1), instantaneous flow 

quantities (i.e. velocity, pressure, etc.) were recorded at specific locations within the computational 

domain called virtual probes. These virtual probes were placed at planar locations normal to the 

flow-direction covering different distances from the wall. At each wall distance, virtual probes were 

also placed in the span-wise direction to increase the statistical sample. For example, Figure 2.2 

shows how the virtual probes were arranged for the PWR subchannel simulations performed by 

Fang et al. [2]. The amount of simulation time considered can be described by the Large Eddy Turn 

Over Time (LETOT) [87] defined as one-half the hydraulic diameter divided by the friction velocity. 

Note that DNS is notably expensive to perform, especially for larger bubble counts, unstructured 

geometries, and higher Reynolds numbers. The Reynolds number for the DNS considered in this 
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work (Table 2.1) is still rather small in comparison to nuclear reactor conditions although the 

computational requirement is significant. The inner and outer scale separation for smaller Reynolds 

numbers limits how well the inertial subrange is resolved. However, the slope of the inertial 

subrange can still be quantified for the presented Reynolds numbers.  

 

Table 2.1. A summary of the parameters for the spectrally analyzed DNS data [2, 34, 35]. 

Parameter Plane Channel Circular Pipe   Subchannel 

 
Single-
Phase 

Two-
Phase 

Single-
Phase 

Two-
Phase 

Two-
Phase 

Single-
Phase 

Two-
Phase 

Single-
Phase 

Two-
Phase 

Reynolds number 
based on friction 

velocity, Reτ 

400 400 1920 1920 1920 400 400 996 996 

Reynolds number 
based on hydraulic 

diameter 
29,079 29,079 77,470 77,470 77,470 29,079 29,079 80,744 80,744 

Mesh size, elements 20M 20M 1,900M 240M 1,900M 52M 52M 1,110M 1,110M 

Domain length (cm) 6.28 6.28 62.8 62.8 62.8 4.0 4.0 4.0 4.0 

Number of bubbles 0 60 0 112 895 0 17 0 262 

Void fraction, α 0% 1% 0% 1% 1% 0% 1% 0% 1% 

Bubble diameter (wall 
units), d

+
 

N/A 

81.2 

N/A 

288 144 

N/A 

200 

N/A 

200 

Eotvos number, 

𝐸𝑜 =
(𝜌𝑙 − 𝜌𝑔)𝑔𝑑

2

𝜎
 

0.110 0.560 1.31 0.343 0.250 

Morton number, 

𝑀𝑜 =
𝑔𝜇𝑙

4(𝜌𝑙 − 𝜌𝑔)

𝜌𝑙
2𝜎3

 

1.33 
ˣ10

-11
 

4.13 
ˣ10

-14
 

1.25 
ˣ10

-12
 

5.6ˣ10
-15

 5.1ˣ10
-13

 

Weber number, 

𝑊𝑒 =
𝜌𝑙𝑢𝑅

2𝑑

𝜎
 

0.367 3.0 4.21 1.68 0.06 

 

Recall that the one-dimensional energy spectrum of the velocity fluctuations in the 

frequency domain can be calculated by performing fast Fourier transform (FFT) on the velocity 

fluctuations in the time domain (§ 1.1.2). A spectral analysis code (SAC) was developed as the 

numerical tool to perform the FFT on the velocity fluctuations in the time domain obtained by 

PHASTA simulations. The SAC was developed using the Fortran language to read DNS time history 

data files from the PHASTA code and use the Intel® Math Kernel Library (Intel® MKL) to perform FFT. 

More details of the SAC are available in Appendix A. 
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Figure 2.1. Instantaneous velocity distribution of a two-phase circular pipe with 895 bubbles 
obtained from PHASTA simulation [35].  

   

The recorded instantaneous flow quantities at each time step in a PHASTA simulation results 

in a discrete time velocity signal characterized by random turbulence induced fluctuations. By 

applying Reynolds decomposition [14], the instantaneous velocity signal is decomposed into its 

mean and fluctuating components at each virtual probe location-i:  

 𝑢𝑖(𝑡) = 𝑈𝑖 + 𝑢𝑖
′(𝑡) (2.1) 

where 𝑢𝑖 is the instantaneous velocity signal (provided by DNS temporal data) and 𝑈𝑖  is the mean 

velocity component calculated by performing the time-average of the instantaneous velocity over 

the total simulation time 𝑇:  

 
𝑈𝑖 =

1

𝑇
∫ 𝑢𝑖(𝑡

′)𝑑𝑡′
𝑡+𝑇

𝑡

 (2.2) 

The fluctuating velocity component 𝑢𝑖
′ is then calculated by the SAC for each discrete time in the 

simulation as the difference in the instantaneous velocity from the mean.  

 𝑢𝑖
′(𝑡) = 𝑢𝑖(𝑡) − 𝑈𝑖  (2.3) 

 The velocity fluctuations at each time step are used to compute one half of the single-point 

velocity correlation (Equation (2.4)) and FFT is then applied, using the Intel® MKL libraries, to 

calculate the TKE spectrum in the frequency domain using Bartlett’s method [88]. In a similar 

approach to Roghair et al. [54], who averaged the energy spectrum over 27 probes, the energy 

spectrum was calculated for each of the span-wise virtual probes at a particular distance from the 

wall and then averaged.  

 𝑅𝑖𝑖(𝑡𝑗) = 𝑢𝑖
′(𝑡𝑗)𝑢𝑖′(𝑡𝑗) (2.4) 
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Figure 2.2. Virtual probe locations in the PHASTA simulations performed by Fang et al. [2] of a single 
PWR reactor subchannel (4.57 mm fuel rod radius, 12.6 mm fuel rod pitch). 

 

 For two-phase DNS, the instantaneous velocity signal will be discontinuous due to the 

passage of a bubble over the virtual probe. The phase indicator function of the level-set method 

denotes the presence of a bubble at a virtual probe location and thus defines the defective temporal 

locations of the liquid velocity signal. While numerous methods for bridging the defective portion of 

the liquid velocity signal exist in the literature (§ 1.1.2), the SAC has been formulated with the 

capability to either replace the defective portion of the signal with the mean velocity [1], hold the 

value of the liquid velocity just before the defect [77], or use linear interpolation between the two 

points of the velocity signal before and after the defect [51, 77]. Figure 2.3 shows fluctuating 

velocity signals calculated from DNS using the mean insertion, hold value, and linear interpolation 

methods over a defective portion of the liquid velocity signal defined by a temporal bubble location. 

Following the findings of Shawkat et al. [51], the linear interpolation technique has been used in the 

presented research since comparisons with the mean insertion and hold value methods have also 

shown bias in the spectra at the high frequency range.  
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Figure 2.3. The fluctuating velocity signal at a particular span-wise direction for every sixth time step 
with the defective portions replaced by the mean liquid velocity (blue circles), the value just before 
the defect (black squares), and a linear interpolation over the defective time (red triangles) for a 
bubble spanning about 2.35-2.37 seconds. 

 

2.1.1 Pseudo-Void Numerical Experiments 

Just as Riboux et al. [75], we believe that bubble effects on the energy spectrum are due to 

bubble wake interactions with the liquid turbulence. Therefore, pseudo-void numerical experiments 

were formulated to show that bubble/turbulence interactions change the slope of the energy 

spectrum only when the bubble wakes are present. Shawkat et al. [51] compared different methods 

for bridging the gap in the defective two-phase velocity signal by electronically interrupting a single-

phase signal with the gas identifier signal from a two-phase signal. Following this approach, pseudo-

void simulations were developed where the phase indicator signal from two-phase DNS is overlaid 

on the velocity signal of single-phase DNS, mimicking the presence of bubbles in the data. The 

single-phase data is interrupted due to the mimicked gas phase but does not contain the bubble 

wakes since the velocity signal is not altered outside of the prescribed defective portions. The linear 

interpolation technique was used to bridge the defective parts of the pseudo-void signal.  

Due to the often larger time step in single-phase DNS the temporal bubble location at a 

numerical probe can be harder to resolve for pseudo-void simulations. For the projection of the 
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bubble distribution onto the single-phase signal, the single-phase time step can be larger than 

bubble passage time that was resolved by two-phase DNS in multiple time steps. Therefore, it is 

important to ensure proper projection of the bubble distribution of the two-phase DNS onto the 

single-phase data. The “bubble contribution” was developed to measure how well the bubble 

distribution is reproduced in the pseudo-void simulations, where the bubble contribution is the 

number of bubbles at a span-wise location normalized by the total bubbles in the simulation. 

2.2 Results 

2.2.1 Plane Channel 

It is necessary to use enough data points in the averaging window when performing FFT to 

calculate the energy spectrum. Comparisons of the energy spectrum for different numbers of points 

as integer powers of 2 for the plane channel geometry have shown that using as few as 256 points in 

the averaging window had minimum deviations from much larger time window widths. The DNS 

data must be statistically steady-state before being spectrally analyzed and Figure 2.4 shows that 

the behavior of the single-phase energy spectra is similar for each of the 42 virtual probes in the 

plane channel case. Similar or better behavior at each of the virtual probes for a particular distance 

from the wall was observed for all of the cases presented here.  

For the two-phase plane channel simulations, 15 averaging windows each with a width of 

512 points were used for a total simulation time slightly greater than 4 LETOTs. Figure 2.5 shows the 

energy spectra for the two-phase plane channel simulations at three different 𝑦+ locations. Note 

the difference in energy magnitudes since more energy is present in the energy producing region 

close to the wall. The energy spectra have a slope close to -3 over a frequency range of about 1.5 

decades. The flattened profile in the high frequency range is interesting and is due to oversampling 

the DNS data which causes very high frequency results in the energy spectra at frequencies higher 

than the Kolmogorov scales of interest. Similar spectral shapes have been shown by Mercado et al. 

[73] and Roghair et al. [54]. In contrast to the suggestions of Rensen et al. [71], the bubblance was 

much less than 1 in the turbulent DNS results presented here but the -3 scaling of the slope in the 

energy spectrum is still observed. 
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Figure 2.4. The energy spectra for each of the 42 span-wise locations in the single-phase plane 
channel simulation at y+ ≈ 15. 

 

 

Figure 2.5. Energy spectra for the two-phase plane channel simulations at y+ ≈ 380 (red squares),  
y+ ≈ 150 (blue triangles), and y+ ≈ 15 (green circles). 

 

Single-phase plane channel simulations were spectrally analyzed with 16 averaging windows 

each with a width of 512 points for a total simulation time of about 63 LETOTs. The much longer 

simulation time is a result of the larger time step of the single-phase DNS compared to two-phase 
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DNS. Therefore, to properly implement the pseudo-void technique the amount of single-phase 

simulation time used had to be consistent with the overall time of the two-phase record so that 

bubble locations could be projected onto the single-phase data. Figure 2.6(a) shows how bubbles 

are distributed at each span-wise location over time at 𝑦+ ≈ 150 in the two-phase plane channel 

simulation. A single FFT averaging window with a length of 534 points was used for the pseudo-void 

spectral analysis so that the time was also about 4 LETOTs. Figure 2.6(b) shows comparisons of 

bubble contributions at each span-wise location for two-phase and pseudo-void calculations that are 

in good agreement.  

 

 

(a) 

 

(b) 

Figure 2.6. (a): Bubble locations (closed-end lines) in time at each of the span-wise virtual probes for 
the two-phase plane channel case (y+≈ 150). (b): Bubble contributions from each span-wise location 
to the overall number of bubbles present in the flow at y+ ≈ 150 in the plane channel geometry. 

 

Figure 2.7 shows the single-phase and pseudo-void spectra, as well as a single-phase 

spectrum for the same time length as the pseudo-void simulation, for three different 𝑦+ locations. 

The expected -5/3 slope is labeled for each 𝑦+ location and the data is in good agreement although 

the inertial range is limited at this Reynolds number. The pseudo-void results show no difference 

from the single-phase data, which demonstrates that the change of the energy spectrum slope in 

the two-phase simulations is due to bubble wake interactions with the liquid turbulence. The energy 
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spectra for shorter times (pseudo-void, single-phase with pseudo void time) are not as smooth as 

the energy spectra for the full single-phase data length since only one FFT averaging window was 

used. 

 

Figure 2.7. Single-phase and pseudo-void energy spectra at y+ ≈ 380, y+≈ 150, and y+ ≈ 15 for the 
plane channel geometry. The full simulation time of about 63 LETOTs is indicated by the thick red 
line, the pseudo-void simulation is indicated by the triangles, and a single-phase simulation for the 
same simulation time as the pseudo-void simulation is indicated by the circles. 

 

2.2.2 Circular Pipe 

2.2.2.1 One hundred and twelve bubble case 

Spectral analysis for the two-phase circular pipe geometry with 112 bubbles was performed 

with 9 averaging windows of 1024 points each for a total simulation time of about 0.5 LETOT. Due to 

the much smaller time step of these simulations in comparison to the plane channel geometry more 

points were required per averaging window. Figure 2.8(a) shows the energy spectra for the two-

phase circular pipe simulations at three different 𝑦+ locations. The 𝑦+ locations are formulated such 

that the pipe centerline value is equal to the Reynolds number based on friction velocity (Reτ = 1920) 

and the smaller values represent locations closer to the wall. The two-phase energy spectra in the 
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circular pipe geometry also exhibit a slope close to -3 over a frequency range of about one decade. 

The harmonics corresponding to the bubble passage time over the numerical probe are also present 

in the two-phase spectra. For example, at 𝑦+ ≈ 1620 a slightly flattened profile is observed at around 

40 Hz. Figure 2.8(b) shows a cross-sectional snapshot of the DNS [35] velocity distribution for the 

circular pipe with 112 bubbles and the wall-peaked void distribution is evident. Similarly, Figure 2.9 

shows the velocity distribution as viewed through the pipe and Q-criterion (i.e. 𝑄 =
1

2
[Ω2 − 𝑆2] 

where Ω and 𝑆 are the vorticity and rate-of-strain tensors, respectively) has been used to visualize 

the vortical structures induced by the bubbles. The difference in spectra magnitudes is a result of 

this bubble induced turbulence, as well as the shear induced turbulence, close to the wall. The Q-

criterion visualization provides some further illustration into how bubbles interact with the 

surrounding fluid.  

 

 

(a) 

 

(b) 

Figure 2.8. (a): Energy spectra for the two-phase circular pipe simulations with 112 bubbles at  
y+ ≈ 1620 (red squares), y+≈ 160 (blue triangles), and y+ ≈ 13 (green circles). (b): Snapshot of the 
instantaneous velocity distribution for the 112 bubble circular pipe DNS [35].  
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Figure 2.9. The instantaneous velocity distribution for the 112 bubble circular pipe DNS [35] using Q-
criterion to visualize the vortical structures (red and blue) induced by the bubbles. 

 

Single-phase and pseudo-void analyses were performed with 9 averaging windows of 1024 

points each for a total simulation time of about 0.36 LETOT. Since the time steps were similar for the 

single-phase and two-phase DNS of the circular pipe the bubble contributions were nearly identical 

for each span-wise location. In the pipe geometry, span-wise locations are concentric circles of 

numerical probes that all reside at the same distance from the wall. Figure 2.10 shows the single-

phase and pseudo-void energy spectra for the circular pipe geometry and the expected -5/3 slope of 

the inertial subrange is labeled. The pseudo-void results again show no difference from the single-

phase data and demonstrate that the change of the energy spectrum slope in multiphase flows is 

due to the bubble wake interactions with the liquid turbulence. Note the lower spectrum 

magnitudes close to the wall for the single-phase simulations (in comparison to two-phase 

simulations) since the bubble induced vortical structures (Figure 2.9) are absent. A comparison of 

the fluctuating velocity signal for each of the considered simulations (Figure 2.11) indicates how the 

turbulence is modulated near the bubble location. In two-phase, the velocity signal is higher in front 

of the bubble due to the buoyant nature of the rising bubble and high frequency fluctuations are 

present behind the bubble as the bubble wake. In single-phase versus pseudo-void simulations, the 
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fluctuating velocity signal is different only across the temporal bubble location where the linear 

interpolation technique is used to bridge the prescribed discontinuity of the bubble location. 

 

Figure 2.10. Single-phase (solid line) and pseudo-void (triangles) energy spectra for the circular pipe 
at y+ ≈ 1620, y+≈ 160, and y+ ≈ 13. 

 

Figure 2.11. Fluctuating velocity signal near a particular bubble location for two-phase (solid black 
line, squares), single-phase (red dash-dot line), and pseudo-void (blue triangles) DNS. 
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2.2.2.2 Eight hundred and ninety five bubble case 

Two-phase data for the circular pipe geometry with 895 bubbles was spectrally analyzed 

with 3 averaging windows of 1024 points for a total simulation time of about 0.13 LETOT and results 

are shown in Figure 2.12. The two-phase data with 895 bubbles indicates a -3 scaling of the energy 

spectrum for the location closest to the wall and a scaling close to -3 for the other two locations. In 

this case, the energy spectrum is not higher closer to the wall since the DNS void fraction profile is 

not wall-peaked (see Figure 2.21(a)) and bubbles present in the center of the pipe induce turbulence 

as shown by the Q-criterion visualization of the vortical structures induced by the bubbles (Figure 

2.13).  

 

 

Figure 2.12. Energy spectra for the two-phase circular pipe simulations with 895 bubbles at  
y+ ≈ 1620 (red squares), y+≈ 160 (blue triangles), and y+ ≈ 13 (green circles). 
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Figure 2.13. The instantaneous velocity distribution for the 895 bubble circular pipe DNS [35] using 
Q-criterion to visualize the vortical structures (red and blue) induced by the bubbles.  

 

2.2.3 PWR Reactor Subchannel 

2.2.3.1 Reτ = 400 

Spectral analysis of the two-phase Reτ = 400 subchannel was performed using 9 windows of 

1024 points for a total data time of about 0.6 LETOT and the results are shown in Figure 2.14(a). A 

scaling close to -3 is shown for each distance from the wall. The 𝑦+ locations (Figure 2.14(b)) are 

formulated differently than for traditional channel flow [2] but still represent distance to the wall 

(the fuel pins in the subchannel case). As with the 895 bubble circular pipe case the spectrum 

magnitude of the location closest to the wall is not the highest since bubbles present closer to the 

center of the subchannel induce turbulence. 
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(a) 

 

(b) 

Figure 2.14. (a): Energy spectra for the two-phase subchannel geometry (Reτ = 400) at y+ ≈ 535 (red 
squares), y+ ≈ 160 (blue triangles), and y+ ≈ 15 (green circles). (b): Distribution of y+ in the  
Reτ = 400 nuclear reactor subchannel geometry. 

 

Spectral analysis of the single-phase Reτ = 400 subchannel was performed using 116 

windows of 1024 points for a total data time of about 20 LETOTs. The pseudo-void analysis was 

performed with 4 windows of 930 points to match the time available from the two-phase data. The 

energy spectra at different y+ locations are shown in Figure 2.15 and are in good agreement with the 

labeled -5/3 scaling in the inertial subrange. The inertial subrange resolution is small for this flow 

since the separation of turbulent scales is not large for relatively small turbulent Reynolds number. 

Again the consistent pseudo-void and single-phase results show that only the bubble wakes 

contribute to the slope modification. 

2.2.3.2 Reτ = 996 

The turbulent two-phase bubbly flow DNS for the nuclear reactor subchannel geometry  

(Reτ = 996) performed by Fang et al. [2] was spectrally analyzed with 3 averaging windows of 1024 

points for about 0.26 LETOT (Figure 2.16(a)). The 𝑦+ locations (Figure 2.16(b)) are formulated in the 

same way as the Reτ = 400 case and all the locations shown here demonstrate a -3 scaling quite well. 

Spectral analysis of the single-phase Reτ = 996 subchannel was performed using 11 windows 

of 1024 points for a total data time of about 5.5 LETOTs (Figure 2.17). The pseudo-void simulation 
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was performed with one averaging window of 512 points to match the time of the available two-

phase DNS data. Again, the single-phase results are consistent with the expected -5/3 slope and the 

pseudo-void technique shows that bubble wake contributions modify the energy spectrum slope.  

 

 

Figure 2.15. Single-phase and pseudo-void energy spectra at y+ ≈ 535, y+≈ 160, and y+ ≈ 15 for the 
subchannel geometry (Reτ = 400). The full simulation time of about 20 LETOTs is indicated by the 
thick red line, the pseudo-void simulation is indicated by the triangles, and a single-phase simulation 
for the same simulation time as the pseudo-void simulation is indicated by the circles.  
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(a) 

 

(b) 

Figure 2.16. (a): Energy spectra for the two-phase subchannel geometry (Reτ = 996) at y+ ≈ 1100 (red 
squares), y+ ≈ 150 (blue triangles), and y+ ≈ 15 (green circles). (b): Distribution of y+ in the  
Reτ = 996 nuclear reactor subchannel geometry. 

 

Figure 2.17. Single-phase and pseudo-void energy spectra at y+ ≈ 1315, y+ ≈ 150, and y+ ≈ 15 for the 
subchannel geometry (Reτ = 996). The full simulation time of about 5.5 LETOTs is indicated by the 
thick red line, the pseudo-void simulation is indicated by the triangles, and a single-phase simulation 
for the same simulation time as the pseudo-void simulation is indicated by the circles. 
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2.2.4 Comparison of the Flow Geometries  

A direct comparison of the two-phase energy spectra for all of the considered geometries in 

this work is presented for 𝑦+ values of about 15 (Figure 2.18), 150 (Figure 2.19), and near the 

centerline (Figure 2.20). The energy spectrum for each of the geometries is normalized such that the 

maximum frequency value is 1 and the magnitudes of each energy spectrum are similar for shape 

comparison. Consistent shapes, with a power law scaling close to -3, are evident for each of the 

considered geometries. Figure 2.21(a) shows the void distribution for all geometries scaled as a 

function of distance measured in bubble diameters from the wall and all the geometries have a void 

fraction peak close to within the 1.0-2.0 bubble diameter range. The filled symbols indicate the peak 

locations where the two-phase data was spectrally analyzed (Figure 2.21(b)). The 895 bubble circular 

pipe geometry has a flatter void fraction profile across the entire channel diameter but, for 

consistency, we consider the peak location closest to the wall for spectra comparison. The spectra 

for all the considered geometries at the peak locations (Figure 2.21(b)) also show a similar shape 

with a power law scaling close to -3.  

The slope of the energy spectrum in bubbly two-phase flows is similar for different 

geometries, including nuclear reactor subchannels, and provides confidence that the SCTM can be 

universally applied in nuclear reactor core-relevant geometries. 
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Figure 2.18. Comparison of the energy spectra (y+≈ 15) for all of the two-phase simulations in each 
of the geometries considered in the current work. 

 

Figure 2.19. Comparison of the energy spectra (y+ ≈ 150) for all of the two-phase simulations in each 
of the geometries considered in the current work. 
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Figure 2.20. Comparison of the energy spectra (y+ near the centerline) for all of the two-phase 
simulations in each of the geometries considered in the current work. 

 

(a) 

 

(b) 

Figure 2.21. (a): Void fraction distribution as a function of bubble diameter (scaled so that peaks 
close to the wall are evident). Filled symbols indicate locations of the peaks. (b) Energy spectra 
calculated at the spatial locations defined by the peaks in (a). 
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3. ONE-DIMENSIONAL SCTM IMPROVEMENT AND DEVELOPMENT 

3.1 SCTM History 

 Previous development and validation of the SCTM was performed for single and two-phase 

decay of isotropic turbulence [10], single and two-phase uniform shear flow [9], and a HRN model 

for single-phase channel flow [11] where wall functions based on the law of the wall boundary 

condition were used to achieve closure near the wall of the conduit. The previous model 

formulation [11] required a non-trivial TKE boundary condition at the smallest resolved 𝑦+ value 

(typically about 30). The previous work by Bolotnov et al. [11] was only applied to a channel flow for 

a Reynolds number based on friction velocity (Reτ) of 180. A pure inertial subrange was not observed 

for such a relatively low Reynolds number and the expected -5/3 slope in the inertial subrange could 

not be verified. 

 The authors of the previous research efforts continued SCTM development with some 

model formulations to extend the model capabilities to resolve the turbulence through the 

boundary layer all the way to the wall. In this way, SCTM terms utilizing both spatial and spectral 

damping that accounted for the wall influence were included in the model formulation and the 

model was tested for Reynolds numbers based on friction velocity of 180, 950, and 2000. Extending 

the model to a LRN (wall-resolved) type model eliminated the need for a priori boundary conditions 

based on the law of the wall and DNS data. However, the model formulation was not finalized. 

Figure 3.1 shows some of the results obtained by the previous authors with a wall-resolved 

formulation. In Figure 3.1(a) the model predictions of the law of the wall demonstrate a non-

physical oscillation about the DNS data. Figure 3.1(b) shows some numerical issues with a sawtooth 

behavior for the model prediction of turbulent viscosity. Figure 3.1(c) and Figure 3.1(d) both show 

that the numerical predictions do not recover the bin TKE values at the highest wave numbers. 

These issues were taken into consideration and the present work focused on improving the wall-

resolved SCTM formulation and developing an improved model that properly accounts for the wall 

influence on the turbulence.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.1. Previous results for the wall-resolved SCTM. (a) Law of the wall (Reτ = 950 and 2000). (b) 
Turbulent viscosity (Reτ = 180). (c) – (d) Energy spectrum (Reτ = 950, Reτ = 2000).  

 

3.2 One-Dimensional SCTM Formulation 

The 1D SCTM formulation is presented here. In this case, 1D refers to the direction across 

the channel width and normal to the channel wall. The RANS equations (Equation (1.7)) are solved 

using a turbulent viscosity determined by the SCTM equations where the Boussinesq approximation 

(Equation (1.5)) requires that turbulent viscosity distribution be modeled to obtain closure.  
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 The SCTM resolves the TKE spectrum by splitting the total TKE into separate wave number 

bins and solving separate but coupled transport equations for each bin. Recall from § 1.1.1.1 that 

the energy in each wave number range (𝜅𝑎, 𝜅𝑏) can be obtained by integration of the energy 

spectrum function over that wave number range (Equation (1.17)) and that the integration of the 

energy spectrum over all wave numbers results in the total TKE. Therefore, the total TKE can be split 

into N wave number bins corresponding to a separate TKE variable for that particular bin-m such 

that the total TKE is the sum of the spectral energies [10]:  

 

𝑘 = ∑ 𝑘𝑚

𝑁

𝑚=1

 (3.1) 

where 𝑘 is the total TKE, 𝑘𝑚 is the TKE in bin-m, and N is the total number of wave number bins. The 

bin TKE values can then be formulated analogous to Equation (1.17):  

 
𝑘𝑚 = ∫ 𝐸(𝜅)𝑑𝜅

𝜅𝑚

𝜅𝑚−1

 (3.2) 

where 𝐸(𝜅) is the TKE spectrum introduced in § 1.1.1.1, 𝜅 is the wave number (Equation (1.16)), and 

𝜅𝑚−1 and 𝜅𝑚 are the left and right wave number boundaries for bin-m, respectively. Since the 

entire energy spectrum must be captured with the discrete spectral bins the smallest and largest 

wave numbers require estimation for a particular problem. Bolotnov et al. [10] have defined the 

smallest wave number to correspond to the geometry of the problem: 

 
𝜅0 =

2𝜋

𝛿
 (3.3) 

where 𝛿 is the characteristic length scale of the largest liquid eddies (e.g. the channel half-width in 

channel flow geometry). They have defined the largest wave number to correspond to the 

Kolmogorov scale:  

 
𝜅𝑁 =

2𝜋

𝜂
,      𝜂 =

𝜈3 4⁄

𝜀1 4⁄
 (3.4) 

where 𝜈 is the kinematic viscosity of the liquid and 𝜀 is the turbulent dissipation rate.  

 The left and right wave number boundary for each of the discrete spectral bins must be 

defined and the splitting is performed using uniform bin sizes in a logarithmic sense:  

 𝜅𝑚 = 𝜉𝜅𝑚−1 = 𝜉
𝑚𝜅0 (3.5) 

where the parameter 𝜉 is the spectral resolution. Thus, based on the expected scales of a given 

problem, the number of spectral bins is then a function of the spectral resolution [11]:  
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𝑁 = log𝜉 [

𝜅𝑁
𝜅0
] (3.6) 

where N is the number of spectral bins. Lewalle and Tavlarides [28] suggest the spectral resolution 

be no greater than 2 to properly resolve the non-linear interactions between spectral bins. The 

minimum number of required spectral bins can then be calculated with 𝜉 = 2. However, enough 

spectral bins must be utilized so that at the largest scales (smallest wave numbers, Figure 1.2) the 

numerical results are independent of the number of bins and at the smallest scales (largest wave 

numbers, Figure 1.2) an accumulation of energy is avoided [28].  

 The smallest and largest scales of the problem, number of wave number bins, and 

boundaries of each wave number bin are now defined. Thus, it remains to express the TKE in each 

bin-m and a turbulent viscosity for closure of the RANS equations. The SCTM solves a separate TKE 

transport equation for each bin-m. Bolotnov et al. [9-11] have followed the work of Lewalle and 

Tavlarides [28] to express the single-phase TKE transport equation for bin-m as:  

 𝐷𝑘𝑚
𝐷𝑡

= 𝑃𝑚 − 𝜀𝑚 +𝐷𝑚 + 𝑇𝑚 (3.7) 

where 𝑃𝑚, 𝜀𝑚, 𝐷𝑚, and 𝑇𝑚 are the spectral production, dissipation, diffusion, and spectral transfer 

of the TKE in bin-m, respectively. Provided a spectral turbulent viscosity for each bin-m can be 

defined as an additive quantity such that [28]:  

 

𝜈𝑇 = ∑ 𝜈𝑚
𝑇

𝑁

𝑚=1

 (3.8) 

the equations can be closed. Each of the terms for bin-m will now be discussed separately.  

3.2.1 Spectral Transfer 

The spectral transfer (i.e. eddy energy cascade) term, 𝑇𝑚, characterizes the non-linear 

interaction of TKE between wave number bins. Bolotnov et al. [10] followed the assumption that 

there exists forward transfer of energy from larger to smaller eddies and inverse/backward transfer 

from smaller to larger eddies. For a particular wave number bin the spectral transfer can then be 

considered as four distinct terms: the energy inflow through the left boundary, the energy outflow 

through the right boundary, and the possible outflow through the left boundary and inflow from the 

right boundary (i.e. inverse cascade):  
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 𝑇𝑚 = 𝑇𝑖𝑛
𝑙𝑒𝑓𝑡

− 𝑇𝑜𝑢𝑡
𝑙𝑒𝑓𝑡

+ 𝑇𝑖𝑛
𝑟𝑖𝑔ℎ𝑡

− 𝑇𝑜𝑢𝑡
𝑟𝑖𝑔ℎ𝑡

 (3.9) 

Bolotnov et al. [10, 11] used the donor-cell modeling approach of Kovasznay [32] to represent the 

inflows and outflows through the left and right wave number boundaries for a particular bin for the 

four terms. That transfer term is used in the present work and formulated for bin-m as: 

 

𝑇𝑚 = 𝐶1 ∑ 𝛽𝑗𝜅𝑚−1𝑘𝑚+𝑗 √𝐸𝑚𝜅̅𝑚

−1

𝑗=−𝑁

− 𝐶1∑𝛽𝑗𝜅𝑚−1+𝑗𝑘𝑚 √𝐸𝑚+𝑗𝜅̅𝑚+𝑗

𝑁

𝑗=1

− 𝐶2 ∑ 𝛽𝑗𝜅𝑚+𝑗𝑘𝑚 √𝐸𝑚+𝑗𝜅̅𝑚+𝑗

−1

𝑗=−𝑁

+ 𝐶2∑𝛽𝑗𝜅𝑚𝑘𝑚+𝑗 √𝐸𝑚𝜅̅𝑚

𝑁

𝑗=1

 

(3.10) 

where 𝜅̅ =
𝜅𝑚−1+𝜅𝑚

2
 is the characteristic wave number (center) of bin-m and 𝐸𝑚 is the TKE density 

function approximation for bin-m. The square root of the energy (𝐸𝑚) terms in Equation (3.10) 

effectively represent the spectral “velocity” of the transfer between wave number bins. If the TKE is 

assumed constant (i.e. Riemann integration) within a spectral bin-m then the TKE density function 

can be approximated as:  

 
𝐸𝑚 =

𝑘𝑚
∆𝜅𝑚

 (3.11) 

where ∆𝜅𝑚 = 𝜅𝑚 − 𝜅𝑚−1 is the width of wave number bin-m. The 𝐶1 and 𝐶2 are model parameters 

which quantify the directional transfer rates [11] that have now been further developed using the 

DNS data of del Alamo et al. [89] and Hoyas and Jiminez [29] to account for the presence of the wall 

in the low-Reynolds number SCTM:  

 
𝐶1 = 16.0 − 14.8(1 − exp(−

𝑦+

40.0
))

2

,      𝐶2 = 0.3167𝐶1 (3.12) 

where 𝑦+ is the dimensionless distance to the wall (Equation(1.14)). Bolotnov et al. previously found 

values of 𝐶1 = 1.2 and 𝐶2 = 0.38 for decay of isotropic turbulence [10] and uniform shear flow [9]. 

Figure 3.2 shows that this near-wall correction term retains these values as distance from the wall is 

increased.  

 Equation (3.10) includes weight functions, 𝛽𝑗, that quantify the interaction between wave 

number bins. The weight functions are formulated such that about 75% of the transfer occurs 

between bins ranging from half the current bin size to twice the current bin size as suggested by 
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Domaradzki [90]. Bolotnov et al. [10] quantified the weights by integration of the following 

distribution over a wave number bin:  

 
𝑓(𝜅) =

1

𝜎̂√2𝜋
exp (−

[log(𝜅) − log(𝜅̅)]2

2𝜎̂2
) (3.13) 

where 𝜎̂ = 0.225 is the standard deviation and 𝜅̅ is the left or right boundary of the interacting 

spectral bin.  

 

Figure 3.2. Forward transfer coefficient (C1) dependence upon distance from the wall. 

 

 Note that the spectral transfer term has been formulated in such a way as to satisfy the 

required constraint that the sum of all the spectral components of transfer does not contribute to 

the total TKE, i.e.: 

 

∑ 𝑇𝑚 = 0

𝑁

𝑚=1

 (3.14) 

3.2.2 Dissipation 

Bolotnov et al. [11] considered two different contributions to the turbulent dissipation rate 

in non-homogeneous channel flows. These contributions were the so-called “in-plane” component 

of dissipation that approaches zero near the wall and the “inter-plane” dissipation component that 

is non-zero at the wall. Cadiou et al. [91] took a similar approach to decompose the turbulent 

dissipation into two-components. In the present work, turbulent dissipation is again split into 

dissipation components that are zero and non-zero at the wall. However, these components are 
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more succinctly quantified as the terms of the dissipation tensor that are zero at the wall and non-

zero at the wall based on an analysis of DNS data (Figure 3.3) and are now named as the 

homogeneous and inhomogeneous dissipation components, respectively. The homogeneous 

component follows previous SCTM formulations as a well-known formula [14] for spectral 

dissipation:   

 
𝜀𝑚
𝑝
= ∫ 2𝜈𝜅2𝐸(𝜅)𝑑𝜅 =̃ 2𝜈

𝑘𝑚
Δ𝜅𝑚

(
𝜅𝑚
3

3
−
𝜅𝑚−1
3

3
)

𝜅𝑚

𝜅𝑚−1

 (3.15) 

where the TKE density function 𝐸(𝜅) is again approximated as a constant (Equation (3.11)) in each 

wave number bin interval (𝜅𝑚−1, 𝜅𝑚).  

 The inhomogeneous dissipation depends on the distance from the wall (y) and must be 

modeled separately for wall-bounded flow. The current work utilizes a new formulation for 

inhomogeneous dissipation that was based on the previous SCTM formulation [11] but includes new 

terms and accounts for the wall influence:  

 
𝜀𝑚
𝑦
= [𝐶𝜀1

𝑑𝑈

𝑑𝑦
𝑢𝜏𝜈(𝜅𝑚 − 𝜅𝑚−1) + 𝐶𝜀2

𝑘𝑚
Δ𝜅𝑚

𝑢𝜏 (
𝜅𝑚
2

2
−
𝜅𝑚−1
2

2
)] exp (−0.15𝑦+) (3.16) 

where 𝐶𝜀1 = 0.25 and 𝐶𝜀2 = 0.05 are model constants. This model ensures that the inhomogeneous 

dissipation is non-zero at the wall and depends on the near wall value of TKE in each bin. The 

exponential wall-correction term in Equation (3.16) dictates that the inhomogeneous dissipation 

does not have a significant effect away from the walls, as physically expected. Finally, the total 

dissipation in bin-m (𝜀𝑚) is the sum of both contributions: 

 

𝜀 = ∑ 𝜀𝑚 = ∑(𝜀𝑚
𝑝
+ 𝜀𝑚

𝑦
)

𝑁

𝑚=1

𝑁

𝑚=1

 (3.17) 

where the total dissipation rate is the sum of the dissipation rate for each wave number bin.  
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Figure 3.3. Turbulent dissipation components: homogeneous dissipation (dash-dot line) and 
inhomogeneous dissipation (dashed) line. Based on the DNS results of Bolotnov [34].  

 

3.2.3 Production and Turbulent Viscosity  

Lewalle and Tavlarides [28] chose to construct the turbulence production term to 

correspond to the model TKE equation. The first term on the RHS of the TKE equation for the k-ε 

model (Equation (1.10)) is the turbulence production term:  

 
𝑃 = 𝜈𝑇 (

𝑑𝑈

𝑑𝑦
)
2

 (3.18) 

where 𝑈 is the stream-wise component of mean velocity, 𝑦 is the direction normal to the wall, and 

the partial derivative terms have been amended to the total derivative for the 1D SCTM. As shown 

by Equation (3.8), the SCTM has been formulated under the assumption that the turbulent viscosity 

is an additive quantity over the spectral wave number bins. Therefore, the turbulence production in 

bin-m is given by:  

 
𝑃𝑚 = 𝜈𝑚

𝑇 (
𝑑𝑈

𝑑𝑦
)
2

 (3.19) 

which ensures that the spectral production sums to the proper total in Equation (3.18) [11].  
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 However, the distribution of turbulent viscosity over the spectral space remains to be 

determined. Bolotnov et al. [9, 11] followed the work of Lewalle and Tavlarides [28] to apply a 

Heisenberg [32] spectral turbulent viscosity with a correction term outside of the inertial subrange. 

However, in non-homogeneous wall-resolved flows the wall influence on the turbulence must be 

considered and Bolotnov et al. [11] provided turbulent viscosity damping functions in the 

development of the HRN SCTM. They used a spectral wall function to damp the larger eddies close 

to the wall and a Launder-Sharma [23] near-wall correction term frequently used in k-ε models. 

Different damping functions are utilized in the present wall-resolved SCTM (much like in low-

Reynolds number k-ε models, see Equations (1.10) – (1.15). The turbulent viscosity for bin-m is:  

 

𝜈𝑚
𝑇 = 𝑓𝜇𝑓𝑦𝑓𝑠𝜈𝑚

𝑇 |𝐿&𝑇 = 𝐶𝐻𝑓𝜇𝑓𝑦𝑓𝑠Δ𝜅𝑚√
𝐸(𝜅̅𝑚)

𝜅̅𝑚
3 [𝐸(𝜅̅𝑚)𝜅̅𝑚

5
3⁄ 𝜀
−2

3⁄ ]
0.75

 (3.20) 

where 𝑓𝜇 , 𝑓𝑦, and 𝑓𝑠 are the damping functions that are multiplied by the Lewalle and Tavlarides 

(L&T) type turbulent viscosity and 𝐶𝐻 = 0.40 is a model constant. Although the formulation is 

different than in the HRN SCTM, 𝑓𝑦 is still a spectral wall function that damps the larger eddies close 

to the wall:  

 𝑓𝑦 = √1 − exp (−1.6𝑦𝜅̅𝑚) (3.21) 

and 𝑓𝜇is now the Chien [25] low-Reynolds number near-wall correction (see Equation (1.15)):  

 𝑓𝜇 = 1.0 − exp (𝜎𝜇𝑦
+) (3.22) 

where for the SCTM 𝜎𝜇 is dependent upon the Reynolds number based on friction velocity of the 

flow: 

 𝜎𝜇 = −7.38𝑥10
−3exp (−8.53𝑥10−4𝑅𝑒𝜏) (3.23) 

Finally, a spectral damping function that controls the energy of the largest eddies in the flow is:  

 
𝑓𝑠 = 1.0 − exp (−175.0

𝜅̅𝑚
𝜅𝑁
) (3.24) 

3.2.4 Diffusion 

In the previous work of Bolotnov et al. [11] the diffusion term was formulated much like that 

in k-ε models although the turbulent Schmidt number (𝜎𝑘) was dependent on the characteristic 

wave number of the bin-m. In the present work, Lewalle and Tavlarides [28] are more closely 
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followed and the dissipation term is the same as that used in k-ε models (see the final term in 

Equation (1.10)):  

 
𝐷𝑚 =

𝜕

𝜕𝑦
[(𝜈 +

𝜈𝑇
𝜎𝑘
)
𝜕𝑘

𝜕𝑦
] (3.25) 

where 𝜎𝑘 = 0.5. This constitutes a more general model that becomes less dependent on the spectral 

parameters than in previous formulations.  

3.2.5 Relationship of the SCTM to Two-Equation k-ε Type Models 

Summation of the SCTM TKE transport equations over all wave number bins yields the total 

TKE as shown in Equation (3.1)  on the LHS and total production, dissipation, and viscous and 

turbulent diffusion terms on the RHS since spectral transfer does not contribute to the overall TKE 

(Equation (3.14)). Recall from § 1.1.1 that these are the same terms in the TKE equation of standard 

single-phase k-ε models (Equation (1.10)). However, the exact expression for some of these source 

terms do not precisely correspond to the empirical results used in the k-ε TKE transport model, 

rather the expressions for 𝜀 and 𝜈𝑇quantify complicated spectral integrations. However, the spectral 

cascade-transport turbulence model does not require the use of a transport equation for turbulent 

dissipation rate as a k-ε model does but is capable of good spatial predictions of the DNS results 

while also resolving the energy spectrum.  

3.3 One-Dimensional SCTM Results from FlexPDE 

FlexPDE [92] was used for SCTM calibration and development with comparison to plane 

channel flow DNS. The domain considered a 1D slice across the channel width in terms of distance 

from the wall. FlexPDE software is a partial differential equation (PDE) solver that converts a user 

defined system of PDEs into a finite element model and then chooses an appropriate numerical 

solution scheme. Validation of the 1D SCTM was performed with FlexPDE so that the primary focus 

could be on improving the flow physics modeling by taking advantage of a robust numerical 

treatment to solve the equations, to use the in-situ visualization of FlexPDE for simulation control 

and improved model development efficiency, and to pose the equations in a natural scripting 

language.   
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The SCTM was applied to several Reynolds number flows for validation in 1D FlexPDE. The 

DNS data (Reτ = 2000) of Hoyas and Jiminez [29] and (Reτ = 950) del Alamo et al. [89] allow for 

validation of not only mean flow parameters, but for model validation of the performance in the 

spectral domain as well since the DNS information in the spectral domain is available. The SCTM 

performance has also been assessed for lower Reynolds number turbulent channel flow (Reτ = 550) 

using the DNS data of del Alamo and Jiminez [93]. Table 3.1 shows model parameters for all the 

considered cases.  

 Although FlexPDE has dynamic time-stepping capabilities, a constant time step of 1.0 was 

used for each of the presented cases for convergence of the SCTM due to its highly non-linear 

nature. Spatial mesh resolution across the channel, in the direction normal to the wall (y), was 

varied using Equation (3.26) to accurately resolve the wall boundary layer. In this way, a finer mesh 

is utilized closer to the wall and a coarser mesh is utilized closer to the channel centerline. The cubic 

basis function option for the finite element model in FlexPDE was used for better solution accuracy 

with some penalty in overall computation time.  

 
𝑑𝑦 = 0.85 [1.4 + 25.0 (tan−1 {𝑦𝜋 −

𝜋

2
})
𝜈

𝑢𝜏
 ] (3.26) 

 SCTM results from 1D FlexPDE will be shown for the three considered Reynolds numbers 

(Reτ = 550, Reτ = 950, Reτ = 2000) in comparison to DNS data as well as the low-Reynolds number 

Chien k-ε model [25]. Overall, predictions of the SCTM are on par with the Chien k-ε model and 

provide good predictions of the DNS data while also resolving the TKE spectrum. SCTM simulations 

with perturbed initial conditions were performed and results converged to the same presented 

solutions.  
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Table 3.1. SCTM model parameters for each of the considered Reynolds number cases.  

Parameter description Notation Reτ = 550 Reτ = 950 Reτ = 2000 Units 

Friction velocity 𝑢𝜏  0.04890 0.04539 0.04130 m/s 

Kinematic viscosity ν 8.945e-5 4.859e-5 2.062e-5 m
2
/s 

Domain left boundary 𝑦0
+ 0.0 0.0 0.0 - 

Domain right boundary 𝑦1
+ 546.70 934.13 2003.15 - 

Number of cascade bins N 18 5 - 22 18 - 

Spectral resolution parameter ξ 1.3921 
3.361 - 
1.317 

1.4553 - 

Spatial mesh resolution ∆𝑦+ 0.38 – 1.8 0.38 – 3.1 0.34 – 6.7 - 

Left boundary of wave number range 
(largest liquid eddies) 

κ0 1.000 1.333 1.333 1/m 

Right boundary of wave number range 
(smallest liquid eddies) 

κN 385.7 571.7 1144.0 1/m 

 

3.3.1 Reτ = 2000 

 The highest Reynolds number case will be discussed first. As can be seen in Figure 3.4, the 

SCTM demonstrates good prediction of the mean velocity profile and reasonable agreement for the 

total TKE profile. Note that a non-dimensional TKE scale (𝑘+ = 𝑘
𝑢𝜏2⁄ ) was used on the right vertical 

axis of the plot. Comparisons with the Chien k-ε model show that although TKE is over-predicted by 

the SCTM, mean velocity is likewise over-predicted by the Chien k-ε.  

 Figure 3.5 compares SCTM results with the well-known law of the wall:  

 
𝑈+ =

1

𝜅0
ln 𝑦+ + 𝐵 (3.27) 

where κ0 = 0.39 and B = 4.7. The law of the wall indicates that the stream-wise velocity in the flow 

varies logarithmically with distance from the wall surface [13]. For the SCTM, excellent agreement is 

shown in the region of applicability of the law of the wall as well as with the DNS data all the way to 

the wall. The SCTM provides better prediction of the mean velocity than the Chien k-ε model. Unlike 

in previous spectral cascade-transport models of channel flow [11], a wall function boundary 

condition is not needed to achieve closure.  
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Figure 3.4. Mean velocity and TKE profiles obtained by the SCTM using eighteen (N = 18) wave 
number bins (solid lines) compared to DNS results (Reτ = 2000) of Hoyas and Jiminez [29] (dashed 
lines) and the Chien k-ε model [25] (dashed dot dot lines).  

 

Figure 3.5. Mean velocity profile of the SCTM using eighteen (N = 18, Reτ = 2000) wave number bins 
(blue solid line) compared to DNS results of Hoyas and Jiminez [29] (red dashed line), the Chien k-ε 
model [25] (grey dashed dot dot line), the law of the wall, and U+ = y+ in the very near wall region.  
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 Spectral energy results can be presented as TKE spectrum at various y+ locations. Figure 3.6 

compares eighteen bin SCTM energy spectrum predictions at four different y+ locations (y+ = 2000, y+ 

= 1200, y+ = 400, y+ = 40) with DNS data [94] and the well-known -5/3 energy spectrum slope for 

single-phase turbulent flows. Near the channel centerline (Figure 3.6(a)) and through the bulk 

turbulence region of the flow (Figure 3.6(b), (c)), excellent agreement is observed between the 

SCTM and the DNS data. However, the model fails to predict the change in energy spectrum slope 

near the wall (Figure 3.6(d)) where it instead preserves the theoretical -5/3 slope of the inertial 

subrange. This could be due to slight under-predictions of viscous diffusion and dissipation close to 

the wall, which will be discussed in accordance with Figure 3.8(d). Applying the SCTM to much 

higher Reynolds number than were previously examined by Bolotnov et al. [11] for channel flow 

without resolving the near-wall boundary layer has shown that the model predicts the theoretical  

-5/3 slope of the inertial subrange. At this particular Reynolds number (Reτ = 2000), inner and outer 

scale separation are large enough to observe the inertial subrange and validate model behavior.  

 The spectral energy results can also be represented as contours in the spectral and spatial 

domains (Figure 3.7). The peak of TKE is clearly shown very close to the wall and within the smallest 

wave number range where turbulent liquid eddies are the largest. This follows the spatial and 

spectral representations of TKE in Figure 3.4 and Figure 3.6, respectively, where the TKE peak was 

concentrated near the wall and the lowest wave number bins within the energy containing range 

have values of TKE density many magnitudes larger than values at the dissipation range. Figure 

3.7(b) shows the TKE contour zoomed to the peak location to emphasize the concentration of TKE. 

The characteristic bin number is shown along the horizontal axis and can be matched to the 

corresponding wave number bin in Table 3.2. The contour plot approach is a convenient way to 

represent the behavior of the turbulence in both physical and spectral domains and this approach 

was used in the spectral analysis of DNS data by Bolotnov et al. [94].  

Examining SCTM source terms (i.e. the right hand side terms of the single-phase cascade-

transport equation (3.7)) in both the spatial and spectral domain indicates that the model behaves 

as expected in terms of energy production at the lowest wave number bins, energy transfer through 

the inertial subrange, and the eventual dissipation of the smallest eddies at the highest wave 

number bins. Figure 3.8(a) shows the SCTM source term balance for bin-5. Eddies in this bin are 

sized approximately as one-sixth of the channel half width (Table 3.2). Recalling the spectral peak of 
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TKE from the contour plot in Figure 3.7 it is consistent that eddies in this bin receive energy 

predominately through the production term (dashed blue line) while energy is removed by the 

spectral transfer term (red dashed dot dot line) through the energy cascade process. Both the 

viscous and turbulent diffusion (teal dashed dot line and orange dotted line) terms are considerable 

in bin-5, where viscous effects are present close to the wall (i.e. y+ less than about 10) and the 

change in turbulent diffusion sign occurs to keep the source term balance equal to zero when 

viscous effects are no longer present. Note that dissipation effects are negligible for eddies of this 

size.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.6. SCTM (N = 18, Reτ = 2000) prediction of the TKE spectrum at four different distances from 
the wall: (a) y+ = 2000, (b) y+ = 1200, (c) y+ = 400, and (d) y+ = 40 (blue solid line with diamonds) in 
comparison to DNS data spectrum (red squares) and -5/3 slope (dashed line).  
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 However, for bin-11 (Figure 3.8(b)) the source terms are distributed much differently. In this 

bin, eddies are sized as approximately 1/52 of the channel half width. Noting the location of bin-11 

in Figure 3.6, this bin resides at the transitional point between the -5/3 slope of the inertial subrange 

and the steeper slope of the dissipation range. The energy transfer into the bin (𝑇𝑖𝑛
𝑙𝑒𝑓𝑡

+ 𝑇𝑖𝑛
𝑟𝑖𝑔ℎ𝑡

) and 

energy transfer out of the bin (𝑇𝑜𝑢𝑡
𝑙𝑒𝑓𝑡

+ 𝑇𝑜𝑢𝑡
𝑟𝑖𝑔ℎ𝑡

) are printed separately for bin-11 rather than just the 

net spectral transfer term (Equation (3.9)) and these terms dominate the TKE budget. At the tail of 

the inertial subrange the energy transfers into and out of the bin are nearly equal and exemplify the 

interacting spectral shell type model basis for the SCTM. Figure 3.8(b) also shows fully-developed 

steady state model predictions for bin-11 since the sum of all source terms is essentially zero.  

 

  

(a) (b) 

Figure 3.7. SCTM predictions of the TKE contour levels (N = 18, Reτ = 2000) in the spectral and spatial 
domains for the full range of y+ and characteristic wave number values (a) and for a perspective 
zoomed to the area of interest (b).   
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Table 3.2. SCTM wave number boundaries for N = 18, Reτ = 2000 case and the approximate average 
eddy size in each spectral bin based on the channel half width (δ).  

Spectral bin 
number 

Left boundary  
wave number, 1/m 

Right boundary  
wave number, 1/m 

Approximate average  
eddy size 

1 1.333 1.940 4δ/5 

2 1.940 2.824 δ/2 

3 2.824 4.110 δ/3 

4 4.110 5.982 δ/4 

5 5.982 8.705 δ/6 

6 8.705 12.67 δ/8 

7 12.67 18.43 δ/11 

8 18.43 26.83 δ/17 

9 26.83 39.05 δ/25 

10 39.05 56.83 δ/36 

11 56.83 82.72 δ/52 

12 82.72 120.3 δ/76 

13 120.3 175.2 δ/110 

14 175.2 254.9 δ/161 

15 254.9 371.1 δ/235 

16 371.1 540.1 δ/342 

17 540.1 786.0 δ/497 

18 786.0 1144 δ/724 

 

Figure 3.8(c) shows the SCTM source term distribution for bin-18, or the smallest eddies 

present in the flow. In this bin, the spectral transfer term transports energy through the left wave 

number boundary of the bin as energy cascades down from larger eddies. The viscous diffusion term 

also provides energy in this bin. The homogeneous and inhomogeneous dissipation terms (dashed 

green line and long-dashed purple line) dominate in removing TKE from the turbulent eddies.  

 The total source term balance for the SCTM can be obtained by summing the spectral 

source terms for each bin. The total source term balance for the SCTM (N = 18, Reτ = 2000) in 

comparison to the DNS data of Hoyas and Jiminez [29] is shown in Figure 3.8(d). The SCTM predicts 

these terms quite well, most notably in predicting spatial peak locations, although there is some 

disagreement in the dissipation and viscous diffusion terms close to the wall. As aforementioned, 

this disagreement may account for the SCTM failing to predict the slope change of the TKE spectrum 

close to the wall in Figure 3.6(d). The SCTM spectral transfer term summed over the spectral space is 

shown in Figure 3.8(d) as well and the term essentially sums to zero.  

 



 

56 
 

 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

Figure 3.8. (a) - (c): SCTM results for the source term distribution of the cascade-transport equation 
for bin numbers 5, 11, and 18, respectively (N = 18, Reτ = 2000). (d): The total source term balance of 
the SCTM in comparison to the DNS results of Hoyas and Jiminez [29].     

 

 Figure 3.9 shows the non-dimensionalized turbulent viscosity prediction of the SCTM (the 

sum of the bin turbulent viscosities) in comparison to DNS data and the Chien k-ε model. The DNS 

turbulent viscosity was evaluated using [11]:  

 
𝜈𝑇 = −

〈𝑢′𝑣′〉

𝑑𝑈
𝑑𝑦

 (3.28) 
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Excellent agreement is observed close to the wall with acceptable agreement for the rest of the 

flow. Note that the peak location of turbulent viscosity is well predicted by the SCTM and centerline 

discrepancies are observed for both the SCTM and Chien k-ε.  

 

 

Figure 3.9. Non-dimensional turbulent viscosity distribution of the SCTM (N = 18, Reτ = 2000; solid 
blue line) compared with DNS results of Hoyas and Jiminez [29] (dashed red line) and the Chien k-ε 
model [25] (grey dashed dot dot line).  

 

3.3.2 Reτ = 950 

 SCTM predictions for Reτ = 950 were also performed and compared with DNS data [89] and 

the Chien k-ε model [25]. Note that for each considered Reynolds number the model formulation 

remains the same as that in § 3.2 while the wave number ranges (Table 3.1) are different based on 

the requirements of the SCTM. A spectral resolution study was also performed for this particular 

case at Reτ = 950 to ensure that model accuracy does not significantly degrade even when coarser 

spectral resolution is used.  

 Figure 3.10(a) shows the mean velocity and TKE profiles calculated by the SCTM in 

comparison to the DNS data and Chien k-ε model. These mean flow parameters are predicted quite 
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well. Particularly, the SCTM better predicts the mean velocity behavior than the over-prediction of 

the Chien k-ε model. However, the SCTM does over-predict the TKE profile further from the wall. 

The SCTM performs similarly to the Chien k-ε model for the turbulent viscosity (Figure 3.10(b)), 

where both models over-predict the DNS data at the channel centerline. However, the centerline 

behavior of the estimated turbulent viscosity has limited influence on model predictive capabilities 

since the relatively flat velocity profile results in small turbulent production and diffusion. On the 

other hand, the DNS estimates provided for comparison also have larger uncertainty close to the 

centerline since this artificial quantity (turbulent viscosity) is computed using the ratio of DNS-

estimated turbulent shear stress (〈𝑢′𝑣′〉) over DNS-estimated velocity gradient (𝑑𝑈/𝑑𝑦). At the 

centerline both those quantities are expected to be zero – so turbulent viscosity is not defined using 

this method. As one approaches the centerline location the uncertainty grows. These two 

observations explain why away from the wall (where velocity gradients and shear stresses are small) 

having a disagreement between the model prediction and DNS estimates does not necessarily result 

in poor model performance (as seen for both Chien and SCTM models). 

 

 

(a) 

 

(b) 

Figure 3.10. Mean velocity and TKE profiles (a) as well as turbulent viscosity profile (b) obtained by 
the SCTM (N = 18, Reτ = 950) in comparison to the DNS data of del Alamo et al. [89] and the Chien k-
ε model [25].  

 

 Figure 3.11 shows how the SCTM mean velocity (N = 18, Reτ = 950) compares to the well-

known law of the wall (Equation (3.27)). The SCTM predicts the law of the wall and the DNS data 
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quite well, notably achieving the flat velocity profile in the logarithmic region of applicability and 

well-predicting the DNS data in the very near wall region.  

 Figure 3.12 shows the total source term balance (the sum over all wave numbers) for the 

SCTM in comparison with the DNS results of del Alamo et al. [89] for the eighteen bin Reτ = 950 case. 

As with the Reτ = 2000 case (Figure 3.8(d)), good agreement between the SCTM and DNS data is 

observed with only some notable discrepancy in the dissipation and viscous diffusion estimations 

close to the wall.  

 

 

Figure 3.11. Mean velocity profile of the SCTM using eighteen (N = 18, Reτ = 950) wave number bins 
(blue solid line) compared to DNS results of del Alamo et al. [89] (red dashed line), the Chien k-ε 
model [25] (grey dashed dot dot line), the law of the wall, and U+ = y+ in the very near wall region. 
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Figure 3.12. Total source term balance for the SCTM (N = 18, Reτ = 950) in comparison to the DNS 
results of del Alamo et al. [89].  

 

3.3.2.1 Spectral resolution study  

 A spectral resolution study was performed for the Reτ = 950 case where results for N = 5,  

N = 8, N = 14, N = 18, and N = 22 wave number bins were compared to gauge model performance. 

The spectral resolution parameter for the different number of wave number bins can be seen in 

Table 3.3. Clearly, the N = 5 and N = 8 simulations have spectral resolution parameters larger than 

the suggested maximum value of 2 (§ 3.2) but, as will be shown, acceptable model predictions are 

still possible. Figure 3.13 displays how turbulent viscosity behaves for the differing number of 

spectral bins. The N = 5 simulation does show some slightly under-predicted results in comparison to 

the N = 18 case. However, expected model behavior of convergence to some final solution as the 

number of bins is increased is observed. Behavior of the remaining mean flow parameters (i.e. mean 

velocity and TKE) is similar and shown in Figure 3.14.  
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Table 3.3. Spectral resolution (ξ) values for each of the considered number of bins in the spectral 
resolution study.  

Number of Bins Spectral Resolution (ξ) 

5 3.361 

8 2.133 

14 1.542 

18 1.400 

22 1.317 

 

 

 

Figure 3.13. SCTM turbulent viscosity (Reτ = 950) with N = 5 (blue dotted line), N = 8 (orange dashed 
line), N = 14 (green dashed dot line), N = 18 (solid blue line), and N = 22 (purple dashed dot dot line) 
wave number bins in comparison to the DNS results of del Alamo et al. [89].  
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Figure 3.14. SCTM mean velocity and TKE profiles (Reτ = 950) with N = 5 (blue dotted line), N = 8 
(orange dashed line), N = 14 (green dashed dot line), N = 18 (solid blue line), and N = 22 (purple 
dashed dot dot line) wave number bins in comparison to the DNS results of del Alamo et al. [89].  

 

The TKE spectrum is shown for all of the considered bin numbers in the spectral resolution 

study at y+ locations of 930, 560, and 40 in Figure 3.15, Figure 3.16, and Figure 3.17, respectively. 

Good agreement with the DNS data is observed in the bulk turbulence region away from the wall (y+ 

= 930 and y+ = 560) as well as expected model behavior for different wave number resolutions; 

namely the higher resolutions (N = 14, N = 18, N = 22) can better predict changes in the slope of the 

energy spectrum than the lower bin number resolution cases. However, the model is still able to 

correctly predict the -5/3 slope in the inertial subrange and the changes in energy spectrum 

behavior even for the very low bin number resolutions of N = 5 and N = 8. Although the smallest 

allowable spectral resolution for the SCTM has been stated as 2, the presented spectral resolution 

study has shown that the SCTM is robust since minimal changes are observed even for spectral 

resolution as high as 3.361 (N = 5). The TKE spectrum in the near wall region (Figure 3.17) fails to 

predict the change in slope at the transition from the inertial subrange to the dissipation region 

much like the behavior observed in the Reτ = 2000 case. Again, this may be due to under-predictions 

of dissipation and viscous diffusion near the wall. Behavior of the total source term balance was 

similar for all the different number of bins considered in the spectral resolution study.  
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Figure 3.15. SCTM (Reτ = 950) predictions of the TKE spectrum at y+ = 930 for 5 (blue “X” symbols), 8 
(orange “+” symbols), 14 (green circles), 18 (blue diamonds), and 22 (purple triangles) wave number 
bins compared to DNS spectrum (red squares) and -5/3 slope (black dashed line).  

 

Figure 3.16. SCTM (Reτ = 950) predictions of the TKE spectrum at y+ = 560 for 5 (blue “X” symbols), 8 
(orange “+” symbols), 14 (green circles), 18 (blue diamonds), and 22 (purple triangles) wave number 
bins compared to DNS spectrum (red squares) and -5/3 slope (black dashed line). 
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Figure 3.17. SCTM (Reτ = 950) predictions of the TKE spectrum at y+ = 40 for 5 (blue “X” symbols), 8 
(orange “+” symbols), 14 (green circles), 18 (blue diamonds), and 22 (purple triangles) wave number 
bins compared to DNS spectrum (red squares) and -5/3 slope (black dashed line). 

 

3.3.3 Reτ = 550 

 Figure 3.18 presents a comparison of SCTM (N = 18, Reτ = 550) mean flow predictions with 

the DNS data of del Alamo and Jiminez [93] and the Chien k-ε model [25] for the lowest considered 

Reynolds number used for model calibration and validation. Decent agreement is shown between 

the SCTM mean velocity and DNS data while acceptable agreement is observed with the TKE 

magnitude and location. The Chien k-ε model again over-predicts mean velocity in comparison to 

the SCTM and DNS results. The SCTM missed the prediction of the turbulent viscosity (Figure 

3.18(b)) peak. However, the Chien k-ε model predictions are no better than the SCTM and earlier 

discussion has been given concerning possible reasons for observed disagreement between the DNS 

results and models. A comparison of the SCTM with the law of the wall (Figure 3.19) shows excellent 

agreement close to the wall and a flat profile in the applicable logarithmic region although there is 

some slight under-prediction of mean velocity at moderate y+ values. Similarly, the Chien k-ε model 

over-predicts mean velocity behavior in the bulk of the flow.  
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(a) 

 

(b) 

Figure 3.18. Mean velocity and TKE profiles (a) as well as turbulent viscosity profile (b) obtained by 
the SCTM (N = 18, Reτ = 550) in comparison to the DNS data of del Alamo and Jiminez [93] and the 
Chien k-ε model [25].  

 

 

Figure 3.19. Mean velocity profile of the SCTM using eighteen (N = 18, Reτ = 550) wave number bins 
(blue solid line) compared to DNS results of del Alamo and Jiminez [93] (red dashed line), the Chien 
k-ε model [25] (grey dashed dot dot line), the law of the wall, and U+ = y+ in the very near wall 
region. 
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 TKE spectrum results for the SCTM (N = 18, Reτ = 550) are shown in Figure 3.20 in 

comparison to the theoretical -5/3 slope of the inertial subrange and the overall spectrum shapes 

are consistent with expectations. Note that at this lower Reynolds number the inner and outer scale 

separation is reduced but the SCTM can still be validated by the -5/3 slope in the inertial subrange. 

TKE spectrum results close to the wall for Reτ = 550 are consistent with results for previous Reynolds 

numbers and fail to capture the change in slope from the inertial subrange to the dissipation range 

close to the wall. The total source term balance (Figure 3.21) compares well with DNS results with 

excellent prediction of peak locations. Consistent with the results at previous Reynolds number, the 

viscous diffusion and dissipation terms are under-predicted close to the wall.  

 

 

(a) 

 

(b) 

Figure 3.20. SCTM (N = 18, Reτ = 550) prediction of the TKE spectrum at two different distances from 
the wall: (a) y+ = 540 and (b) y+ = 150 (blue solid line with diamonds) in comparison to the theoretical 
-5/3 slope (dashed line).  
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Figure 3.21. Total source term balance for the SCTM (N = 18, Reτ = 550) in comparison to the DNS 
results of del Alamo and Jiminez [93].  
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4. IMPLEMENTATION OF SCTM INTO THREE-DIMENSIONAL M-CFD SOLVER 

 The completed vision of the SCTM is an advanced multiphase spectral turbulence model for 

nuclear related applications that provides better flow predictions than current industry standard 

two-equation models widely used in CFD/M-CFD codes. Therefore, it was a natural step in model 

development to implement the single-phase SCTM into a 3D M-CFD code and perform model 

verification and validation with an array of test cases and the existing 1D FlexPDE results.  

 NPHASE-CMFD is an advanced multiphase computational fluid dynamics code for combined 

mass, momentum, and energy transfer processes [95] developed by Interphase Dynamics, LLC that 

was chosen as the 3D M-CFD code for SCTM implementation. NPHASE-CMFD is written in the C 

programming language with built-in and user defined mechanistic modeling that is integrated with 

numerics [96]. Highlights of the NPHASE-CMFD code [96] include powerful multiphase capabilities, 

the use of structured and unstructured grids of arbitrary element type, the ability to model an 

arbitrary number of fields (fluid components and/or phases), turbulence closure with either low or 

high Reynolds number k-ε model, parallel processing using the MPI protocol, and the ability to 

model an arbitrary number of chemical species advected by a chosen field. NPHASE-CMFD has been 

applied to many challenging multiphase problems. For example, Tiwari et al. [97] used NPHASE-

CMFD to perform 3D analyses of single-phase liquid and two-phase dilute particle/liquid flows in U-

bend and helical curved conduits. Tselishcheva et al. [98] used NPHASE-CMFD to model two-phase 

bubbly flow in a horizontal straight pipe and a horizontal pipe with a 90 degree elbow. Behafarid et 

al. [99] coupled NPHASE-CMFD to the PHASTA DNS code to model fission gas propagation 

discharged into the coolant channel of a Generation IV sodium fast reactor after a loss-of-flow 

accident. Waite et al. [100] are continuing to improve dispersed bubbly flow models in NPHASE-

CMFD through comparisons of 3D simulations of PWR coolant channels with mixing vanes and 

spacer grids with the experimental database.  

NPHASE-CMFD was chosen for SCTM implementation into a 3D M-CFD code since its 

capabilities aligned well with the overall model development plan. Implementation into NPHASE-

CMFD was important for extending the SCTM to multidimensional problems, taking advantage of 

high quality meshing software for complex nuclear relevant geometries, using advanced post-

processing and visualization tools, using multicore processing, expanding SCTM multiphase 
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capabilities and numerics, and eventually including the energy equation and heat transfer terms. 

Implementing the SCTM into NPHASE-CMFD posed challenges, such as the extension from 1D to 3D 

and numerical convergence that were addressed and are discussed subsequently.  

4.1 Repurposing the NPHASE-CMFD Species Transport Equations for the SCTM 

 NPHASE-CMFD can solve transport equations for an arbitrary number of chemical species, 

Ns, advected by a chosen field. The species transport equations used in the code assume that the 

species are well mixed at the molecular level in field-j; sharing the same velocity, pressure, and 

temperature of the carrier field-j of phase-k [96]. The mass fraction, Ys, of a particular species-s (s = 

1…Ns) describes the mass transfer by convection and diffusion through a conservation transport 

equation. The conservation transport equation for a particular species-s is defined in Section 4.4 of 

the NPHASE-CMFD User Manual [96] as:  

 𝜕(𝛼𝑗𝜌𝑗𝑌𝑠)

𝜕𝑡
+ ∇ ∙ (𝛼𝑗𝜌𝑗𝑣𝑗̅𝑌𝑠) = ∇ ∙ [𝛼𝑗 (

𝜇𝑗

𝜎𝑠
+
𝜇𝑗
𝑇

𝜎𝑠
𝑇)∇𝑌𝑠] + Γ𝑗

′′′𝑌𝑠𝑗 + 𝑆𝑠 (4.1) 

where the particular terms are [96]:  

   𝑌𝑠  = mass fraction of species-s  

   𝜇𝑗   = molecular viscosity for field-j  

   𝜇𝑗
𝑇  = turbulent viscosity for field-j  

   𝜎𝑗  = laminar species Schmidt number 

   𝜎𝑗
𝑇 = turbulent species Schmidt number 

   Γ𝑗
′′′ = mass transfer rate due to phase change in field-j and intraphase 

      change from other fields of same phase-k 

   𝑌𝑠𝑗  = mass fraction of species-s from field-j due to mass transfer 

   𝑆𝑠 = user implemented species source term  

The conservation transport equation is an approximation for the exact species transport mass 

balance defined in the NPHASE-CMFD User Manual [96] as:  

 𝜕(𝛼𝑗𝜌𝑗𝑌𝑠)

𝜕𝑡
+ ∇ ∙ (𝛼𝑗𝜌𝑗𝑣𝑗̅𝑌𝑠 + 𝐽𝑠) = 𝑆𝑠 (4.2) 



 

70 
 

where Js is the mass flux of species-s relative to the mean flow and is modeled by Fick’s law of 

diffusion within NPHASE-CMFD as [96]:  

 
𝐽𝑠 = ∇ ∙ [𝛼𝑗 (

𝜇𝑗

𝜎𝑠
+
𝜇𝑗
𝑇

𝜎𝑠
𝑇)∇𝑌𝑠] (4.3) 

 The existing numerical framework within NPHASE-CMFD to solve an arbitrary number of 

species transport equations was an ideal candidate for implementing the SCTM. The conservation 

transport equation for a particular species-s (Equation (4.1)) is analogous to the SCTM TKE transport 

equation for a particular bin TKE, km, (Equation (3.7)). Therefore, the existing numerical framework 

can be tailored to solve for bin turbulent kinetic energies rather than species mass fraction by 

implementing the SCTM source terms on the RHS. Taking the mass transfer rate due to phase 

change and intraphase change from other fields of same phase-k (Γ𝑗
′′′) to be zero and substituting in 

bin TKE (km) for species mass fraction (Ys), the NPHASE-CMFD numerical framework now reads to 

solve for bin TKE as:  

 𝜕(𝛼𝑗𝜌𝑗𝑘𝑚)

𝜕𝑡
+ ∇ ∙ (𝛼𝑗𝜌𝑗𝑣𝑗̅𝑘𝑚) = ∇ ∙ [𝛼𝑗 (

𝜇𝑗

𝜎𝑠
+
𝜇𝑗
𝑇

𝜎𝑠
𝑇)∇𝑘𝑚] + 𝑆𝑚 (4.4) 

where the first term on the RHS is Js shown in Equation (4.3), or the diffusion term Dm (Equation 

(3.25)) in the SCTM formulation. The remaining RHS terms of the bin TKE equation (Equation (3.7)) 

then need to be implemented into NPHASE-CMFD to form the user implemented species source 

term for bin-m such that:  

 𝑆𝑚 = 𝑃𝑚 + 𝜀𝑚
𝑝
+ 𝜀𝑚

𝑦
+ 𝑇𝑚 (4.5) 

where the definitions of SCTM bin-m production (𝑃𝑚), homogeneous dissipation (𝜀𝑚
𝑝 ), 

inhomogeneous dissipation (𝜀𝑚
𝑦 ), and spectral transfer (𝑇𝑚) were given in § 3.2.   

 Using the NPHASE-CMFD numerical framework for the species equations tailored to the 

SCTM provides the bin TKE values that are then fed into the SCTM formulation for turbulent 

viscosity. The turbulent viscosity is then fed back into the normal code structure for the RANS 

equations with NPHASE-CMFD (Figure 4.1).  
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Figure 4.1. NPHASE-CMFD iteration process with species equations tailored to SCTM.  

 

4.2 NPHASE-CMFD Code Structure  

 NPHASE-CMFD is not an open source code and the user is allowed access to the code 

internals only through so-called “user routines” that allow for accessing at certain points and 

performing a given task that alters NPHASE-CMFD equations (e.g. the inclusion of a user source term 

for the momentum equations or user drag coefficient formulation). The user routines are compiled 

and linked into the binary executable before program execution [101]. User routines are denoted by 

the user_TASK.c form, where ‘TASK’ references some specific coding where the user routine is called 

from the source code. For example, the user_viscosity_turbulent.c and user_source_species.c 

routines that are used by the SCTM (Figure 4.1) are intuitively named for user control of the 

turbulent viscosity and species source term.  

 The low-Reynolds number k-ε option must be activated in NPHASE-CMFD to apply the 

turbulent fluxes near the wall in the momentum equations. Therefore, this option must remain on in 

the NPHASE-CMFD input so that the SCTM turbulent viscosity is applied in the near-wall region. To 

eliminate influences of the k-ε equations on the overall simulations in terms of momentum source 

and computation time the false time step for both k and ε are set to very small values (1.0x10-30) 

while the solver sweeps for k and ε are both set to zero. This eliminates the k-ε equations while 
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simultaneously taking advantage of the NPHASE-CMFD use of the turbulent fluxes in the momentum 

equation.  

 Some information is required by NPHASE-CMFD to use the SCTM for the calculation of 

turbulent viscosity. The user_initialize.c routine is used for control of the input parameters for the 

SCTM. In this routine the user can define model constants, wave number boundaries, initial bin TKE 

values, etc. The calculation of all RHS source terms is controlled from the user_source_species.c 

routine. The overall turbulent viscosity for the NPHASE-CMFD RANS equations is calculated in 

user_viscosity_turbulent.c after calculation of the bin turbulent viscosities. Appendix B provides a 

more in-depth look at the SCTM numerical implementation into NPHASE-CMFD.  

4.3 Verification and Validation 

Verification and validation are required to increase confidence in CFD solutions. Simply 

stated by Roache [102], verification refers to “solving the equations right” and validation refers to 

“solving the right equations”. To expand upon these simple explanations: verification is the process 

of determining that the programming and computational implementation of the model is correct 

while validation is the process of determining that the results of the model agree with experimental 

results and analytic solutions [103]. Verification and validation were both important steps to ensure 

the SCTM provides acceptable physical results within the framework of NPHASE-CMFD. The NPARC 

Alliance (a collaboration between NASA Glenn Research Center and Arnold Engineering 

Development Complex) has outlined six steps for the verification process of a CFD code [103]: (i) 

examine the computer programming of the code; (ii) examine iterative convergence; (iii) examine 

consistency; (iv) examine grid convergence; (v) examine temporal convergence; (vi) compare code 

results to accurate solutions. For example, examining consistency ensures that mass is conserved in 

flow through a channel. These six steps were taken into account as the SCTM was implemented into 

NPHASE-CMFD. The SCTM had previously only been evaluated as a 1D formulation with the FlexPDE 

solver. Therefore, additional issues that arose in the extension to a 3D M-CFD formulation were met 

with the verification and validation process in mind.  



 

73 
 

5. SINGLE-PHASE FLOW RESULTS 

In this chapter, single-phase results using the SCTM in NPHASE-CMFD are presented for 

various tests cases. The test cases were chosen for verification of the SCTM implementation and 

validation of the SCTM performance. Each test case has an abbreviated name and is discussed 

separately as to why it was performed for verification and validation of the SCTM.  

5.1 FT1: Flow Through  

The flow through test was quite simple but necessary to evaluate if some initial assumptions 

about the code behavior were correct. The flow domain was a square channel with symmetry 

boundary conditions on the top, bottom, left, and right walls; an inlet flow boundary with flow only 

in the positive-x direction; and an outlet pressure boundary. The species source term and SCTM 

turbulent viscosity were both artificially set equal to zero. The turbulent kinetic energy and 

dissipation values for the NPHASE-CMFD k-ε equations were set to equal values and the small false 

time step and zero solver sweep options were used. The purpose of this test was then a simple 

check to see that no external source terms act upon the implemented SCTM equations and that the 

bin TKE values remained constant as advected through the channel. The flow through test also 

showed that the small false time step and zero solver sweep options can effectively “turn off” the 

k-ε equations. The results of the flow through tests were as expected.  

5.2 DT1: Single-Phase Decay of Isotropic Turbulence   

Bolotnov et al. [10] have previously shown that the SCTM performs well for single-phase 

decay of isotropic turbulence and that in the absence of mean flow gradients the single-phase SCTM 

equation for TKE in bin-m reduces to the spectral transfer and dissipation terms. In the current 

model formulation for the decay problems, only the homogeneous dissipation term remains such 

that:  

 𝐷𝑘𝑚
𝐷𝑡

= 𝑇𝑚 − 𝜀𝑚
𝑝

 (5.1) 

However, implementation into a 3D M-CFD code, where the initial condition is advected along the 

flow direction, stipulates a non-zero spatial diffusion term in the flow direction. The DT1 test was 
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performed to show that the diffusion term can be handled naturally by NPHASE-CMFD (Equation 

4.3) and that the spectral transfer and homogeneous dissipation terms were correctly implemented. 

The DT1 test also showed that the repurposing of the species equations was a suitable method for 

solving the individual bin TKE values in NPHASE-CMFD.  

 Kang et al. [104] investigated nearly isotropic turbulence downstream of an active grid at 

high Reynolds number (Reλ ≈ 720) and Bolotnov et al. [10] used this data to calibrate the SCTM 

spectral transfer constants. Kang et al. provided data at four measuring stations downstream of the 

active grid as well as an analytic formulation to produce the TKE spectrum dependent on flow length 

scales and dissipation rate. The Kang et al. data was used for validation in the DT1 test.  

Square duct geometry with symmetry boundary conditions on all four walls, an inlet 

boundary condition, and outlet pressure boundary condition was used for the DT1 test. Meshes 

were first considered with resolution only in the stream-wise (x) direction. One of these meshes (M1 

mesh) is shown in Figure 5.1. Air properties at 20 ℃ were used (𝜌 = 1.2047, 𝜇 = 1.821x10-5) to match 

the kinematic viscosity (𝜈 = 1.511 x10-5) in the experimental data. A constant inflow x-direction 

velocity of 12.0 m/s was prescribed. The data at the first measuring station (x/M = 20 where M is the 

mesh size of the turbulence-generating grid) was used as the TKE spectrum at the duct inlet.  

Figure 5.2 shows the decay of TKE as a function of distance from the inlet for the Kang et al. 

data and the SCTM. The experimental data is shown at the four downstream measuring stations 

(non-dimensionalized by the grid size, M) at x/M = 20, x/M = 30, x/M = 40, and x/M = 48. SCTM 

results for three consecutively refined computational meshes of M1 = 125 elements, M2 = 500 

elements, and M3 = 2000 elements are shown. The SCTM simulations were taken to be converged in 

NPHASE-CMFD when residuals for the species equations reached an order of 10-16. For all the data 

shown in Figure 5.2 the total TKE was calculated by integrating the energy spectrum. Clearly, the 

SCTM provides excellent prediction of the spatial TKE decay for each of the considered mesh 

resolutions.  
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Figure 5.1. M1 mesh with 125 elements in the stream-wise (x) direction. 

 

 

Figure 5.2. SCTM prediction (N = 21) of decay of TKE as a function of distance from the inlet (non-
dimensionalized by the turbulence-generating grid size, M) for meshes M1, M2, and M3 compared 
with the experimental data of Kang et al. (symbols).  

 

 Spectral results for the SCTM versus the Kang et al. experimental data (Figure 5.3) indicate 

that the SCTM performs quite well and slightly better at the highest wave numbers for increased 

mesh resolution. Computational time requirements were considerably increased with increased 

mesh resolution. The M1 mesh required just 6.9 seconds of total simulation time while the M3 mesh 

required about 38 minutes. This increase in computational effort is an important realization from 

the DT1 verification test. Simulations with 14 and 24 wave number bins were also performed (Table 

5.1) on the M2 mesh to further assess computational costs of the SCTM (Figure 5.4). These 

simulations showed that the increase in computational time per iteration scaled exactly linearly with 
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increased bin resolution. The average times per 100 iterations were 1.81, 2.77, and 3.16 seconds for 

the 14, 21, and 24 bin simulations, respectively. Figure 5.4 also includes the predictions of the k-ε 

model available in NPHASE-CMFD and shows that the SCTM better predicts the experimental data. 

The average cost per 100 iterations using the k-ε model was 0.22 seconds.  

 

Table 5.1. Spatial and spectral representation of performed tests (green) for single-phase decay of 
isotropic turbulence. 

 

 

Figure 5.3. Spectral evolution of TKE decay. Shown for the SCTM using M1 (squares) and M3 
(triangles) meshes as well as the experimental data of Kang et al. 

 

 Thus far, results for the DT1 test were all produced on an essentially 1D mesh such as that 

shown in Figure 5.1. Simulations were also performed on a mesh with 10 elements each in the y and 

z coordinate directions as a simple verification that resolving the mesh in the y and z directions does 

not affect the solution. These results were identical to the previously presented results, as expected.  
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 As stated in § 4, implementing the SCTM into a 3D M-CFD code provides the ability to take 

advantage of high quality post-processing software. Paraview [105] is such software and is able to 

read the post-processing files from NPHASE-CMFD. Figure 5.5 shows how Paraview can be used to 

more schematically represent SCTM results from NPHASE-CMFD. The decay of TKE along the duct 

length is shown for the M3 mesh using 21 wave number bins.  

 

 

Figure 5.4. SCTM prediction of decay of TKE as a function of distance from the inlet (non-
dimensionalized by the grid size, M) using 14, 21, and 24 wave number bins compared with the 
experimental data of Kang et al. (symbols) and the k-ε model.  

 

 The results of the DT1 test showed that the spectral transfer and homogeneous dissipation 

terms were correctly implemented into NPHASE-CMFD and that the re-purposing of the species 

equations was an acceptable method of solving for the SCTM bin TKE values. The DT1 test also 

showed iterative convergence and conservation of total mass through the duct.  
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Figure 5.5. SCTM prediction of the TKE decay as a function of spatial position along the duct. 

 

5.3 TCF1: Single-Phase Turbulent Channel Flow  

The plane channel flow geometry predicted with the SCTM using FlexPDE (§ 3.3) was an 

excellent starting point for verification of the wall-resolved SCTM in NPHASE-CMFD. Previous tests (§ 

5.1 – 5.2) showed that the k-ε equations could be effectively turned off in NPHASE-CMFD and that 

repurposing the chemical species equations was an acceptable method for solution of the SCTM TKE 

transport equations. The DT1 test showed that NPHASE-CMFD handles the diffusion term and that 

the spectral transfer and homogeneous dissipation terms were correctly implemented. For the 

single-phase turbulent channel flow test (TCF1) the spectral production and inhomogeneous 

dissipation terms were implemented as well as the calculation of turbulent viscosity.  

Both model performance and numerical convergence are exceedingly important in complex 

turbulence model development, particularly for highly non-linear models such as the SCTM. The 

spectral production and inhomogeneous dissipation terms, along with the calculation of turbulent 

viscosity, were first implemented into NPHASE-CMFD exactly as presented in § 3.2 as used in 1D 

FlexPDE. Although initial results for the SCTM in NPHASE-CMFD showed that model behavior was 

converging towards the 1D FlexPDE solution a few conclusions were drawn. The formulation for 

inhomogeneous dissipation (Equation (3.16)) contained the derivative of mean velocity. This caused 

numerical issues for predominately two reasons: (i) in CFD calculations the mean velocity on the 

inflow is generally prescribed as a constant across the manifold which leads to high values of the 

gradient early in the simulation (due to prescribed no-slip wall boundary conditions) before fully-
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developed flow conditions; (ii) NPHASE-CMFD uses the production destruction clip ratio [96], or the 

ratio of turbulent production to turbulent dissipation, to limit the shear-induced turbulence during 

early iterations and this approach should be used with the SCTM as well. Therefore, if the turbulent 

dissipation contains the mean flow gradient then limiting turbulent production based on turbulent 

dissipation rate becomes non-sensible and the calculations become increasingly numerically stiff. As 

shown previously, SCTM predictions with 1D FlexPDE for the overall energy budget (Figure 3.8(d), 

Figure 3.12, Figure 3.21) under-predicted the dissipation close to the wall that is controlled by 

inhomogeneous dissipation. After careful deliberation, the most practical plan of action was then to 

improve both model behavior and numerical convergence by implementing a modified 

inhomogeneous dissipation term from that shown previously in Equation (3.16). The improved 

inhomogeneous dissipation term is shown in § 5.3.1 and a method for improving the convergence 

behavior and numerical stability of the SCTM in NPHASE-CMFD is shown in § 5.3.2.  

5.3.1 Improved Inhomogeneous Dissipation Term  

The improved inhomogeneous dissipation term was formulated based on Equation 4.222 

presented in Wilcox [13]:  

 
𝑘~𝑦2  𝑎𝑛𝑑   

𝜀

𝑘
→
2𝜈

𝑦2
   𝑎𝑠   𝑦 → 0 (5.2) 

such that the SCTM inhomogeneous dissipation term for bin-m is now:  

 
𝜀𝑚
𝑦
=
2𝜈𝑘𝑚
𝑦2

exp (−0.15𝑦+) (5.3) 

where y is the physical distance to the closest wall and the exponential term remains to ensure that 

the inhomogeneous dissipation term has no effect outside of the near-wall boundary layer. Note 

that this modified inhomogeneous dissipation term eliminated two model constants (𝐶𝜀1, 𝐶𝜀2) while 

simultaneously reducing numerical stiffness and, as will be shown, providing better predictions of 

the DNS dissipation shape and TKE. Note that this term is similar to the Chien k-ε boundary 

condition for dissipation close to the wall as shown in Equation (1.15).  

The modification of the inhomogeneous dissipation term required that the model constants 

be altered slightly to account for the difference in SCTM formulation. All the parameters are as 
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exactly as presented in the 1D formulation (§ 3.2) except the turbulent viscosity damping terms that 

now have the following forms:  

 𝑓𝑦 = [1 − exp(−1.6𝑦𝜅̅𝑚)]
1 4⁄  

𝑓𝜇 = 1.0 − exp(−0.007𝑦
+)   

𝑓𝑠 = 1.0 − exp (−125.0
𝜅̅𝑚
𝜅𝑁
) 

(5.4) 

Although the model formulation would ideally remain the same in the transition from the 1D solver 

to the 3D M-CFD code the need for improved performance and numerical convergence required 

that it should be modified. It is also important to note that the previous formulation contained a 

model constant calibrated in the 𝑓𝜇 term (Equation (3.22)) calculated by the Reynolds number based 

on friction velocity. This is intuitive in the previous 1D work where the friction velocity (𝑢𝜏) was 

known a priori but is not so intuitive when the model is extended to flow scenarios where the 

friction velocity is not known a priori and can be more difficult to quantify in a 3D calculation on 

each iteration. All the SCTM calculations using NPHASE-CMFD in the present work were performed 

with identical model constants (§ 3.2, Equation (5.4)). It is expected that some model constant 

adjustment based on mean flow parameters, such as what is done for traditional wall-resolved two-

equation models (Equations (1.10) – (1.15)) [13], will be required for future endeavors with the 

SCTM. However, at this time an adjustable model constant would stand to degrade the physical 

arguments and the form of these constants will be more suitably determined as more test cases are 

performed. A survey over the whole results database should be completed with continued model 

development beyond the current scope. Equation (5.4) contains the model constants expected to 

need calibration as the SCTM is applied to more turbulent flows. In the future, adjustment of the 

model constants based on turbulent flow parameters will improve model performance over a wide 

range of applications.  

5.3.2 Variable Relaxation Factors 

NPHASE-CMFD uses relaxation factors for flow field variables to improve numerical 

convergence by the addition of numerical damping [96]. For a given variable, 𝜙, the value at the 

next iteration (𝑛 + 1) is updated by:  

 𝜙𝑛+1 = 𝛽𝜙𝑛+𝑘 + (1 − 𝛽)𝜙𝑛 (5.5) 
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where 𝛽 is the value of the relaxation factor and the 𝑛 + 𝑘 index indicates the calculated value of 𝜙 

at the next iteration. Note that a relaxation factor of zero would provide no solution advancement 

and that a value of one would provide no numerical damping. The relaxation factors have been 

altered based on the wave number bins to control numerical convergence with the SCTM. 

Considering the large difference in time scales between the largest and smallest eddies present in 

the flow it makes sense that the transport equations for different size eddies have different 

convergence “speeds”. Therefore, an option was included with the SCTM in NPHASE-CMFD to turn 

on variable relaxation factors. With this option, the relaxation factor for a particular bin TKE 

equation is defined as:  

 
𝛽𝑚 =

𝛽𝑚𝑎𝑥

√𝜅̅𝑚
 (5.6) 

where 𝛽𝑚𝑎𝑥 is the user-defined relaxation factor value. Equation (5.6) specifies that the largest eddy 

sizes have the largest relaxation factor values and therefore the fastest convergence speed and vice 

versa. This eliminates some numerical issues at the smallest eddy sizes where the transfer term can 

dictate negative TKE values when the simulation is far from the solution such as in the initial 

iterations. Testing has shown that after the solution has evolved the variable relaxation factor can 

be turned off and the solutions are consistent.  

5.3.3 Meshing 

The numerical mesh setup used to test the SCTM in the TCF1 case was essentially 1D since 

boundary lower growth occurs off the lower wall and the other three walls of the duct are assigned 

symmetry (no-slip) boundary conditions in NPHASE-CMFD. Figure 5.6 shows the cross-sectional view 

of a numerical mesh with 48 elements in the direction parallel to the solid wall boundary and Figure 

5.7 shows how the stream wise velocity and TKE compare for this 48 element mesh with a higher 

resolution mesh with 199 elements in the direction parallel to the solid wall boundary. Clearly, the 

predictions are nearly identical. All the following results shown here were simulated on the lower 

resolution mesh with 48 elements in the direction normal to the solid wall boundary. The length-

over-diameter (LOD) of the mesh was equal to 200.  
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Figure 5.6. Cross-sectional view of a numerical mesh with 48 cells in the direction parallel to the wall 
boundary. 

 

 

Figure 5.7. Stream-wise velocity (left vertical axis) and non-dimensional TKE (right vertical axis) 
predicted by SCTM in NPHASE-CMFD using two different mesh resolutions (N = 5, Reτ = 950). 

 

5.3.4 Reτ = 2000 

SCTM predictions using NPHASE-CMFD for the highest considered Reynolds number case are 

shown in Figure 5.8 – Figure 5.10 in comparison to previously shown SCTM predictions using 
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FlexPDE and the DNS data. Most notably, the SCTM with improved inhomogeneous dissipation term 

implemented into NPHASE-CMFD provides exceedingly better results for the TKE (Figure 5.8(b)). 

Results for stream-wise velocity (Figure 5.8(a)) and turbulent viscosity (Figure 5.9(a)) differ from the 

estimates with FlexPDE. The location of the turbulent viscosity peak is not predicted as well with 

NPHASE-CMFD while the peak magnitude is better captured. The total turbulent dissipation shape 

(Figure 5.9(b)) is captured better as well and much improved from the previous result with FlexPDE 

(Figure 3.8(d)). The SCTM is somewhat able to capture the inflection point in the turbulent 

dissipation shape around 𝑦+= 10. The total spectral transfer term sums to zero as expected and 

does not contribute to the overall TKE budget. Note that the viscous/turbulent diffusion terms are 

not included in the total source terms plot (Figure 5.9(b)) since only the turbulence production, 

homogeneous dissipation, inhomogeneous dissipation, and spectral transfer terms are the user-

defined functions supplied to NPHASE-CMFD (see Equation (4.5)). 

  

(a) (b) 

Figure 5.8. SCTM predictions (N = 18, Reτ = 2000) of stream wise velocity (a) and TKE (b) using 
NPHASE-CMFD (black dashed dot line) in comparison to SCTM prediction using FlexPDE (solid blue 
line) and DNS data (red dashed line) of Hoyas and Jiminez [29]. 
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(a) (b) 

Figure 5.9. (a): SCTM prediction (N = 18, Reτ = 2000) of turbulent viscosity in comparison to SCTM 
prediction using FlexPDE (solid blue line) and DNS data (red dashed line) of Hoyas and Jiminez [29]. 
(b): Total source term balance of SCTM using NPHASE-CMFD in comparison to DNS data of Hoyas 
and Jiminez [29]. 

 

Spectral energy results are shown at two 𝑦+ locations in Figure 5.10 and the SCTM 

predictions using NPHASE-CMFD are very similar to those from FlexPDE. There is still some 

discrepancy closer to the wall (Figure 5.10(a)) where there is a build-up of energy in the high wave 

number range. Although the dissipation shape is much better represented with the new formulation 

for inhomogeneous dissipation the SCTM still fails to capture the change in energy spectrum slope in 

the transition from the inertial subrange to the dissipation range for the 𝑅𝑒𝜏= 2000 case.  
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(a) (b) 

Figure 5.10. SCTM (N = 18, Reτ = 2000) prediction of the TKE spectrum using NPHASE-CMFD (black 
triangles) and FlexPDE (blue diamonds) in comparison to the DNS data (red squares) and -5/3 slope 
(dashed line) at y+ = 40 (a) and y+ = 2000 (b).  

 

Results from the 𝑅𝑒𝜏= 2000 case rendered in Paraview are shown in Figure 5.11 – Figure 

5.13. The output capabilities of NPHASE-CMFD allow different bin contributions to the TKE to be 

viewed over the whole geometry as well as an x-axis slice showing behavior normal to the solid wall 

boundary (Figure 5.11). The stream-wise velocity is shown as an x-axis slice at LOD = 180 location 

(Figure 5.12) as well as over the total channel length (Figure 5.13). Clearly, the uniform velocity at 

the inlet requires some length to reach fully-developed flow. Comparisons of data at different 

measuring stations along the channel length have shown that fully developed flow is achieved.  
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Figure 5.11. SCTM (N = 18, Reτ = 2000) prediction using NPHASE-CMFD rendered in Paraview for the 
bin-1 TKE shown at stream-wise location LOD = 180 as a slice along the x-axis.  

 

 

 

Figure 5.12. SCTM (N = 18, Reτ = 2000) prediction using NPHASE-CMFD rendered in Paraview for the 
stream-wise velocity shown at stream-wise location LOD = 180 as a slice along the x-axis.  
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Figure 5.13. SCTM (N = 18, Reτ = 2000) prediction using NPHASE-CMFD rendered in Paraview for the 
stream-wise velocity along the channel length. Shown here is a slice stream-wise along the z-axis 
and scaled to one thirty-second of the total channel length.  

 

5.3.5 Reτ = 950 

SCTM predictions using NPHASE-CMFD are similar to those from FlexPDE for 𝑅𝑒𝜏= 950 for 

the stream-wise velocity (Figure 5.14(a)) while the TKE is better predicted (Figure 5.14(b)). Although 

the turbulent viscosity magnitude prediction is further from the DNS data using NPHASE-CMFD 

(Figure 5.15(a)) the shape of the DNS curve is better modeled using NPHASE-CMFD. The total source 

term balance shows (Figure 5.15(b)) that the production peak is slightly closer to the wall than the 

DNS data. However, as with the higher Reynolds number case discussed previously, the new 

formulation for inhomogeneous dissipation provides a vastly improved prediction of the overall 

shape of the turbulence dissipation curve from DNS and again is able to capture the deflection point 

in the curve around 𝑦+= 10. The overall spectral transfer term sums to zero as expected and does 

not contribute to the TKE budget. 

Spectral energy results at 𝑅𝑒𝜏= 950 are shown in Figure 5.16 for two different distances 

from the solid wall boundary. The SCTM results from NPHASE-CMFD are very close to those from 

FlexPDE. Although the model formulation has been slightly altered between predictions from the 

two numerical tools the similar behavior is encouraging numerical verification that the SCTM 

performance in the 3D M-CFD code is as expected. 
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(a) (b) 

Figure 5.14. SCTM prediction (N = 18, Reτ = 950) of stream wise velocity (a) and TKE (b)  using 
NPHASE-CMFD (black dashed dot line) in comparison to SCTM prediction using FlexPDE (solid blue 
line) and DNS data (red dashed line) of del Alamo et al. [89]. 

 

  

(c) (d) 

Figure 5.15. (a): SCTM prediction (N = 18, Reτ = 950) of turbulent viscosity in comparison to SCTM 
prediction using FlexPDE (solid blue line) and DNS data (red dashed line) of del Alamo et al. [89].  
(b): Total source term balance of SCTM using NPHASE-CMFD in comparison to DNS data of del 
Alamo et al. [89]. 
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(a) (b) 

Figure 5.16. SCTM (N = 18, Reτ = 950) prediction of the TKE spectrum using NPHASE-CMFD (black 
triangles) and FlexPDE (blue diamonds) in comparison to the DNS data (red squares) and -5/3 slope 
(dashed line) at y+ = 40 (a) and y+ = 935 (b). 

 

5.3.6 Reτ = 550 

The general trends for the higher Reynolds number cases discussed previously are seen for 

the SCTM predictions using NPHASE-CMFD at 𝑅𝑒𝜏= 550 (Figure 5.17 – Figure 5.19). Note that at this 

Reynolds number the TKE peak is well-predicted (Figure 5.17(b)) and turbulence dissipation shape is 

very well modeled by the SCTM (Figure 5.18(b)). Spectral energy results at two different 𝑦+ 

locations show very similar results for NPHASE-CMFD and FlexPDE. However, at this Reynolds 

number the energy build-up in the high wave number range for the location close to the wall is 

slightly less for the NPHASE-CMFD results than for the FlexPDE results. It is possible that significantly 

increasing the number of spectral bins could mitigate this build-up of energy in the dissipation range 

although the spectral resolution for each of these cases is less than the maximum suggested value of 

2.  
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(a) (b) 

Figure 5.17. SCTM predictions (N = 18, Reτ = 550) of stream wise velocity (a) and TKE (b) using 
NPHASE-CMFD (black dashed dot line) in comparison to SCTM prediction using FlexPDE (solid blue 
line) and DNS data (red dashed line) of del Alamo and Jiminez [93]. 

 

  

(a) (b) 

Figure 5.18. SCTM prediction (N = 18, Reτ = 550) of turbulent viscosity in comparison to SCTM 
prediction using FlexPDE (solid blue line) and DNS data (red dashed line) of del Alamo and Jiminez 
[93]. (b): Total source term balance of SCTM using NPHASE-CMFD in comparison to DNS data of del 
Alamo and Jiminez [93].  
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(a) (b) 

Figure 5.19. SCTM (N = 18, Reτ = 550) prediction of the TKE spectrum using NPHASE-CMFD (black 
triangles) and FlexPDE (blue diamonds). 

 

5.4 TPF1: Single-Phase Turbulent Pipe Flow 

It is important that the SCTM implementation into NPHASE-CMFD was tested for geometries 

that are at the very least non-square in nature as a precursor to the overall goal of modeling nuclear 

reactor subchannels with mixing vanes and spacer grids. Therefore, circular pipe geometry was a 

good next choice for testing the implementation of the model; particularly testing gradient terms 

and terms that rely on distance to the wall. NPHASE-CMFD has an R-Z cylindrical coordinate option 

that can be used for axisymmetric two-dimensional geometries [106]. With this option, Cartesian 

meshes with a single element in the theta direction can be simulated in cylindrical coordinates. 

When the length of the single element in the theta direction is equal to 2𝜋 the entire pipe geometry 

is simulated. Figure 5.20 shows how the square geometry translates to the R-Z coordinate system 

using the NPHASE-CMFD cylindrical coordinates option. Note that if the cylindrical coordinates 

option is not used in NPHASE-CMFD and the “Pipe Wall” and “Centerline” boundaries are set to wall 

boundary conditions this mesh would constitute flow between parallel plates in Cartesian geometry.  
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Figure 5.20. Schematic of the flow in axisymmetric pipe with R-Z coordinates in NPHASE-CMFD.  

 

5.4.1 25 mm Diameter Pipe 

Circular pipe geometry was considered with an inner diameter of 25 mm. This geometry 

corresponds to the experimental work of Hosokawa and Tomiyama [107] that used Laser Doppler 

velocimetry (LDV) image processing techniques to investigate upward single and bubbly two-phase 

flows with air-water systems at atmospheric conditions. In their work, radial distributions of void 

fraction, bubble aspect ratio, phasic velocities, liquid TKE, and average bubble diameter were 

measured. Hosokawa and Tomiyama [107] provided radial profiles of TKE for two single-phase 

experiments with inlet liquid volumetric flux (𝐽𝐿 = 𝑣𝐿𝛼𝐿) values of 0.5 m/s (Re ≈ 14,000) and 1.0 m/s 

(Re ≈ 28,000), respectively. Henceforth the 𝐽𝐿 = 0.5 m/s case will be referred to as HT11 and the 𝐽𝐿 = 

1.0 m/s case will be referred to as HT12, where the first numerical index on each case name of “1” 

indicates single-phase. The working fluid was water at atmospheric conditions (𝜌 = 997.561 and  

𝜇 = 8.887x10-4). Three numerical meshes were generated with equidistance spacing in the radial 

direction of 51, 103, and 207 elements, respectively. A mesh convergence study was performed 

using the LRN k-ε model and the least resolved mesh with 51 elements across the radial direction 

was found to be sufficient for LRN turbulence modeling. Furthermore, the average value of 

turbulent dissipation from the k-ε model result was used to estimate the right wave number 

boundary (Equation 3.4) for the SCTM in the HT12 case. The left and right wave number boundaries 

for the HT12 case were 𝜅0 = 1.0 m-1 and 𝜅𝑁 = 7.82x104 m-1, respectively. Given the wave number 

boundaries the minimum number of wave number bins (Equation 3.6) was found to be about N = 16 

and N = 18 bins were then used for the simulations. These same values were used for the HT11 case 

as a conservative estimate.  
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Predictions of TKE from NPHASE-CMFD using both the SCTM and the k-ε model are shown in 

comparison to Hosokawa and Tomiyama experimental data in Figure 5.21. In both cases, the k-ε 

model provides a better prediction of the TKE shape. However, as discussed previously (§ 5.3.1), 

finalizing SCTM constants over a range of turbulent validation tests beyond the current scope can 

improve estimates of the TKE shape. The importance of the results shown here is the ability of the 

SCTM to handle the circular geometry in NPHASE-CMFD using the existing code structure and 

options for cylindrical geometries.  

 

  

(a) (b) 

Figure 5.21. Predictions of SCTM (N = 18) and k-ε model TKE from NPHASE-CMFD in comparison to 
Hosokawa and Tomiyama [107] experimental data for case HT11 (a) and HT12 (b). The abscissa is 
non-dimensional radial distance.   

 

 Figure 5.22(a) – (b) shows stream-wise velocity profiles estimated using the SCTM and k-ε 

model for the HT11 and HT12 cases. The profiles are quite similar, particularly for the higher inlet 

velocity HT12 case. Although there is no experimental data available for direct comparison the 

profiles follow the expected shape for pipe flow. Figure 5.22(c) – (d) show the TKE spectra for the 

HT11 and HT12 cases at various radial distances. Due to the inherent nature of the SCTM to capture 

the TKE spectrum the -5/3 slope in the inertial subrange is clearly realized. Also, the difference in 

energy is substantial between radial locations close to the wall and near the centerline. For example, 

in both the HT11 and HT12 cases the radial location closest to the pipe wall (light blue circles) has an 

energy density many orders of magnitude higher than at the location closest to the channel 



 

94 
 

centerline (blue diamonds) at the smallest eddy scales. This is physically sensible considering that 

the bulk of the smallest eddies in the flow exist close to the solid wall boundary. Note that for both 

cases the spectral transfer term sums to zero (Figure 5.23) as expected and also indicates SCTM 

convergence. In both cases, the total production and dissipation terms follow expected physical 

shapes (Figure 5.23).  

 

  

(a) (b) 

  

(c) (d) 

Figure 5.22. Predictions of SCTM (N = 18) and k-ε model stream-wise velocity from NPHASE-CMFD 
for HT11 (a) and HT12 (b). TKE spectra at various radial locations for HT11 (c) and HT12 (d). The 
abscissa is non-dimensional radial distance.   
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(a) (b) 

Figure 5.23. Predictions of SCTM (N = 18) total source term balance using NPHASE-CMFD for HT11 
(a) and HT12 (b). The abscissa is non-dimensional radial distance.   

 

5.4.2 200 mm Diameter Pipe 

Circular pipe geometry with an inner diameter of 200 mm was also considered for 

comparison between the SCTM and k-ε model in NPHASE-CMFD. The cylindrical coordinate option 

was used in NPHASE-CMFD with an inlet liquid volumetric flux (𝐽𝐿) of 1.0 m/s corresponding to a 

Reynolds number of about 224,500 for water at atmospheric conditions (𝜌 = 997.561 and  

𝜇 = 8.887x10-4). Two R-Z numerical meshes were generated with equidistant spacing of 325 and 650 

elements in the radial direction, respectively. A mesh convergence study with the k-ε model showed 

that the mesh with 325 elements across the radial direction was sufficient for LRN turbulence 

modeling. As with the 25 mm diameter pipe (§ 5.4.1), the k-ε prediction of turbulent dissipation was 

used to estimate the right wave number boundary for the SCTM. The left and right wave number 

boundaries were 𝜅0 = 1.0 m-1 and 𝜅𝑁 = 7.32x104 m-1, respectively. The minimum number of bins 

(Equation 3.6) was then found to be about N = 16 and N = 18 bins were then used for the 

simulations.  

Predictions of stream-wise velocity and TKE (Figure 5.24) are similar for the SCTM and k-ε 

model although the SCTM TKE peak is considerably wider than the k-ε model. As mentioned 

previously, the peak shape will be slightly modified as SCTM constants are improved. The 

predictions shown here are for higher Reynolds number than any previously considered tests of the 
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SCTM and results are within adequate engineering error when measured alongside the k-ε model. 

The result for the turbulent viscosity distribution (Figure 5.25) exhibits an acceptable physical shape.  

 

  

(a) (b) 

Figure 5.24. Predictions of SCTM (N = 18) and k-ε model stream-wise velocity (a) and TKE (b) from 
NPHASE-CMFD for 200 mm pipe. The abscissa is non-dimensional radial distance.   

 

 

Figure 5.25. SCTM prediction of non-dimensional turbulent viscosity as a function of non-
dimensional radial distance for 200 mm pipe.   

 

 The TKE spectra are shown at nine radial locations (Figure 5.26) ranging from near the pipe 

wall to near the pipe centerline. The spectra exhibit the expected -5/3 slope of the inertial subrange 

and the considerable Reynolds number of the flow allows for sufficient separation of the largest and 
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smallest scales and thus an appreciable spectral transfer region. The energy at the smallest scales is 

decreased as moving towards the channel centerline as discussed in accordance with Figure 5.22 for 

the 25 mm pipe. Even at this higher Reynolds number there are no noticeable tails as a continuation 

the -5/3 slope of the inertial subrange and therefore it is concluded that the modification of the 

inhomogeneous dissipation term (§ 5.3.1) did improve the near-wall behavior of the SCTM.  

 

 

Figure 5.26. TKE spectra at nine radial locations in 200 mm pipe ranging from near the pipe wall to 
the pipe centerline.  

 

 The 200 mm diameter pipe was used to demonstrate the full 3D capabilities of the SCTM 

implemented into NPHASE-CMFD. The ability to model 3D geometries with M-CFD inherently 

increases reactor safety and performance calculations and the increasing availability of 

computational resources allows 3D M-CFD to be a viable option in the nuclear industry. As with the 

previous computational meshes, the mesh generation software Pointwise [108] was used to 

generate the 3D 200 mm diameter pipe mesh shown in Figure 5.27 with O-H topology. The 3D 200 

mm mesh contains 107,205 mesh elements and has a LOD = 100. To improve convergence for the 

3D mesh pseudo-periodic inflow/outflow conditions were used. This type of pseudo-periodic 

boundary condition has been used with NPHASE-CMFD before but the routines were modified to 

include the NPHASE-CMFD species equations as well so that SCTM bin TKE values could be recorded. 
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To use the pseudo-periodic conditions, simulations nodal values are recorded at a stream-wise 

location (usually around 90 % – 95 % of the total channel length to avoid any effects at the channel 

outflow) into a binary output file. This binary output file can then be used as an input file on the 

next set of simulation iterations such that either the mesh inflow is set to the recorded nodal values 

or the entire mesh is set to the recorded nodal values. This type of pseudo-periodic boundary 

condition was used for some of the single-element width simulations shown previously but can aid 

more tremendously in 3D simulations that require substantial wall-clock time.  

 

 

Figure 5.27. Slice across the stream-wise (x) axis of the 3D 200 mm diameter pipe mesh.  

 

The 3D results shown here are not comprehensive in terms of mesh resolution but are 

presented as verification for the SCTM implementation into NPHASE-CMFD. A radial slice across the 

x-axis taken at 95 % of the total pipe length from the pipe inlet was taken in Paraview to view 

simulation results. The distribution of stream-wise velocities using the k-ε model and the SCTM are 

shown in Figure 5.28(a) – (b). The distribution of mean velocity as the values on the mesh elements 

is shown as a line plot across the y-axis and through the pipe center for both turbulence models in 

Figure 5.28(c) – (d). Clearly, the 3D predictions using the SCTM are symmetric and provide an 
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excellent verification for the SCTM implementation. Figure 5.29 provides additional verification 

where mean velocity and TKE results are plotted from the pipe wall to the pipe centerline for both 

the k-ε model and SCTM using the R-Z mesh and the 3D mesh. The predictions using the R-Z mesh 

and the 3D mesh are consistent. The differences arise due to the coarse nature of the 3D mesh and 

the use of the values on the mesh elements to plot the data rather than the smoother nodal data for 

higher resolved R-Z mesh.  

 

  

(a) (b) 

  

(c) (d) 

Figure 5.28. Stream-wise velocity in 200 mm diameter pipe using 3D mesh shown as radial slice 
across the stream-wise x-axis for k-ε (a) and SCTM (b) turbulence models and for k-ε (c) and SCTM 
(d) turbulence models as a line plot across the y-axis of the radial slice through the pipe center.  
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 To further demonstrate how the coarse numerical mesh affects the solution the TKE 

prediction from SCTM is shown without (Figure 5.30(a)) and with (Figure 5.30(b)) the numerical 

mesh overlaid on a radial slice.  Clearly, some mesh effects are evident since the solution is not 

absolutely smooth and mirrors the shape of the numerical elements. The mesh effects are more 

dominant approaching the pipe center from the pipe wall since this is the direction of boundary 

layer growth off the solid wall boundary. However, as discussed above, the 3D test case was an 

excellent verification test for the SCTM implementation into NPHASE-CMFD.  

 

  

(a) (b) 

Figure 5.29. A comparison of the R-Z and 3D mesh results in 200 mm diameter pipe for the stream-
wise velocity (a) and TKE (b) using k-ε and SCTM turbulence models.   
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(a) (b) 

Figure 5.30. TKE prediction in 200 mm diameter pipe using SCTM without mesh overlay (a) and with 
mesh overlay (b).  

 

5.5 TPLF1: Single-Phase Turbulent Flow between Parallel Plates 

 Single-phase flow between parallel plates was considered with a plate spacing of 100 mm. 

This flow scenario is similar to the TCF1 (§ 5.3) test case. However, both plane walls were considered 

and parameters were dimensional with adiabatic water conditions (𝜌 = 997.561 and  

𝜇 = 8.887x10-4). The numerical mesh (Figure 5.31) was generated using Pointwise [108] with 200 

equidistant elements in the direction normal to the duct walls resulting in a dimensional mesh 

spacing of 0.5 mm. Although the near-wall 𝑦+ resolution of this mesh was found to be somewhat 

coarse in post-processing a mesh resolution study using meshes with 400 and 1600 equidistant 

elements showed mesh convergence of the mean velocity and nearly identical profiles of TKE. An 

inlet liquid volumetric flux (𝐽𝐿) of 1.0 m/s corresponding to a Reynolds number of about 112,250 was 

prescribed. As with pipe flow cases (§ 5.4), the k-ε prediction of turbulent dissipation was used to 

estimate the right wave number boundary for the SCTM. The left and right wave number boundaries 

were 𝜅0 = 1.0 m-1 and 𝜅𝑁 = 8.6x104 m-1, respectively. The minimum number of bins (Equation 3.6) 

was then found to be about N = 16. A bin resolution study was performed for this geometry as well 

as an examination of expected physical behavior.  
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Figure 5.31. 100 mm parallel plate mesh with 200 elements in the (y) direction normal to the duct 
walls. The z-axis single element width has been scaled down from the full 2𝜋 length for enhanced 
viewing.  

 

 The SCTM calculations of stream-wise liquid velocity using N = 10 (𝜉 = 3.115), N = 18 (𝜉 = 

1.880), and N = 22 (𝜉 = 1.676) wave number bins were all similar to the stream-wise liquid velocity 

estimated using the k-ε model (Figure 5.32). The results of both stream-wise velocity (Figure 5.32) 

and TKE (Figure 5.33) show wave number bin convergence for the SCTM. The simulations with N = 

10 wave number bins results in a spectral resolution parameter (𝜉) of 3.115 that is considerably 

higher than the maximum allowable value of 2.0 (Equation 3.6) but still provides excellent 

agreement with the higher bin number simulations for stream-wise velocity. The N = 10 wave 

number simulation slightly underestimates the TKE in comparison to simulations with higher wave 

number but all the simulations provide a physically expected result where the TKE profile is wall-

peaked and depressed in the duct center.  
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Figure 5.32. Stream-wise velocity using SCTM with N = 10 (𝜉 = 3.115), N = 18 (𝜉 = 1.880), and N = 22 
(𝜉 = 1.676) wave number bins in comparison to k-ε model for parallel plate geometry with 100 mm 
spacing.  

 

 
Figure 5.33. TKE prediction using SCTM with N = 10 (𝜉 = 3.115), N = 18 (𝜉 = 1.880), and N = 22 (𝜉 = 
1.676) wave number bins for parallel plate geometry with 100 mm spacing. 

 

 The parallel plate geometry provides an excellent opportunity for verification of the SCTM 

implementation into NPHASE-CMFD. Since two solid wall boundaries are present, the SCTM 
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implementation should naturally apply the terms dependent on wall distance, mean flow gradients, 

etc. In terms of the statistical average, the turbulence on either side of the duct centerline should be 

identical. Therefore, profiles of velocity, TKE, etc. should be identical as well when considered on 

either side of the duct centerline. To demonstrate the correct behavior of the SCTM in this geometry 

the TKE is plotted as a function of non-dimensional wall distance from -1 to 1 with 0 as the duct 

centerline (Figure 5.34(a)). If the total duct width (100 mm) is taken as 𝐿, then the locations on 

either side of the duct centerline can be described non-dimensionally as 𝑦 𝐿0.5⁄ . In Figure 5.34(b), 

locations of equal distance from the duct centerline are chosen for examining TKE spectra. The 

positive/negative locations on either side of the duct centerline show that the predictions of TKE are 

identical, as expected. The TKE is highest at the smallest scales for the spatial location closest to the 

duct walls (𝑦 𝐿0.5⁄  = ± 0.925). This same physical behavior was shown for the circular pipe geometry 

and discussed in accordance with Figure 5.22 and Figure 5.26. The inner and outer scale separation 

at this Reynolds number is high enough to confirm the -5/3 slope of the inertial subrange.  

 

  

(a) (b) 

Figure 5.34. (a) SCTM (N = 18) TKE plotted as a function of non-dimensional wall distance with zero 
at duct centerline. (b) TKE spectra at six different spatial locations (y/L0.5 = ± 0.925, y/L0.5 =  ± 0.505, 
y/L0.5 =  ± 0.025).  

  

TKE spectrum results for SCTM simulations with N = 10 (𝜉 = 3.115), N = 18 (𝜉 = 1.880), and N 

= 22 (𝜉 = 1.676) wave number bins are shown for a spatial location near the duct centerline (Figure 

5.35(a)) and a spatial location close to the duct wall (Figure 5.35(b)).  Spectra at both locations 
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exhibit the -5/3 slope of the inertial subrange and excellent wave number bin convergence although 

more distinct characteristics of the TKE spectrum are captured as the number of bins is increased. 

However, as was shown in a previous bin resolution study (§ 3.3.2.1), the SCTM is robust and is able 

to capture the TKE spectrum even for spectral resolution parameters significantly greater than the 

recommended value of 2.0.  

 

  

(a) (b) 

Figure 5.35. TKE spectrum at two different spatial locations, (a) y/L0.5 = 0.025 and (b) y/L0.5 = 0.925, 
for SCTM simulations with N = 10 (𝜉 = 3.115), N = 18 (𝜉 = 1.880), and N = 22 (𝜉 = 1.676) wave 
number bins for parallel plate geometry with 100 mm spacing.  

 

 The total source term balance from NPHASE-CMFD using the SCTM with N = 18 wave 

number bins is shown in Figure 5.36. The wall-peaked profiles of production and dissipation are 

physically expected and symmetrical. Comparison of the total source term balance from simulations 

of different wave number bins showed wave number bin convergence. The total spectral transfer 

term is zero and does not contribute to the overall TKE and indicates SCTM convergence.  
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Figure 5.36. Total source term balance using the SCTM (N = 18) in NPHASE-CMFD for the parallel 
plate geometry with 100 mm spacing.  

 

 Paraview [105] software is used to view the simulation results as a more physical 

representation of the geometry. Figure 5.37 and Figure 5.38 were both taken as a slice 

perpendicular to the x-axis at a stream-wise location 95 % of the overall duct length from the duct 

inlet and the z-axis has been scaled shorter for enhanced viewing. Figure 5.37 and Figure 5.38 show 

the TKE and stream-wise velocity distributions between the parallel plates, respectively. Viewing 

simulation output from a 3D M-CFD code such as NPHASE-CMFD with Paraview (or similar post-

processing software) provides a more qualitative approach to post-processing analysis and can be an 

additional asset in interpretation of turbulence modeling results.  

 



 

107 
 

 

Figure 5.37. TKE distribution between parallel plates with 100 mm spacing (y direction is normal to 
duct walls). X-axis cut taken at a stream-wise location 95 % of the distance from the duct inlet. The 
z-axis has been scaled shorter for enhanced viewing.  

 

Figure 5.38. Stream-wise velocity (U) distribution between parallel plates with 100 mm spacing (y 
direction is normal to duct walls). X-axis cut taken at a stream-wise location 95 % of the distance 
from the duct inlet. The z-axis has been scaled shorter for enhanced viewing. 
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6. TWO-PHASE FLOW RESULTS 

 In this chapter, two-phase flow results for monodispersed and polydispersed bubbly flows 

using the SCTM implemented in NPHASE-CMFD are presented for various tests cases. The presented 

test cases were chosen for verification of the correct physical behavior of the SCTM in NPHASE-

CMFD and for validation of the LRN SCTM for two-phase flows in a 3D M-CFD package.  

As discussed in § 1.1.1.2, the Eulerian-Eulerian approach has been widely applied to bubbly 

two-phase flows and continues to be an active area of research. The Eulerian-Eulerian approach 

solves a set of conservation equations for each phase. In the case of adiabatic flow with no bubble 

coalescence, bubble break-up, or mass transfer between phases only the mass and momentum 

equations are required and the phases are treated as incompressible with constant properties:  

 𝜕

𝜕𝑡
(𝛼𝑗𝜌𝑗) + ∇ ∙ (𝛼𝑗𝜌𝑗𝑣̅𝑗) = 0 (6.1) 

  𝜕

𝜕𝑡
(𝛼𝑗𝜌𝑗𝑣̅𝑗) + ∇ ∙ (𝛼𝑗𝜌𝑗𝑣̅𝑗𝑣̅𝑗) = −𝛼𝑗∇𝑝𝑗 + ∇ ∙ [𝛼𝑗(𝜏̿𝑗 + 𝜏̿𝑗

𝑡)] + 𝛼𝑗𝜌𝑗𝑔̅ + 𝑀̅𝑗 (6.2) 

where 𝛼𝑗 represents the volume fraction of phase j, 𝜌 is the density, 𝑣̅ is the velocity, 𝑝 is the 

pressure, 𝑔̅ is the gravitational acceleration, 𝜏̿𝑗 and 𝜏̿𝑗
𝑡 are the fluid and Reynolds stress tensors, 

respectively, and 𝑀̅𝑗 represents the interfacial momentum transfer between the phases. In the 

present work, drag force, virtual mass force, turbulent dispersion force, and a modified lift force that 

accounts for the presence of the solid wall boundary are utilized such that:  

 𝑀̅𝑗 = 𝑀𝑗
𝐷 +𝑀𝑗

𝑉𝑀 +𝑀𝑗
𝑇𝐷 +𝑀𝑗

𝐿 (6.3) 

where 𝑀𝑗
𝐷 represents the drag force, 𝑀𝑗

𝑉𝑀 represents the virtual mass force, 𝑀𝑗
𝑇𝐷 represents the 

turbulent dispersion force, and 𝑀𝑗
𝐿 represents the lift force. NPHASE-CMFD has been designed to 

perform such Eulerian-Eulerian calculations and solves the mass and momentum conservation 

equations for each designated phase with user-inputted routines for the interfacial closure terms. 

Since the focus of the present work is the development and implementation of the M-CFD SCTM, 

interfacial force terms were implemented following the work of Shaver and Podowski [109] where 

essentially “off-the-shelf” models were used with little modification for the drag, virtual mass, and 

turbulent dispersion forces. Shaver and Podowski [109] used a HRN k-ε model and presented a 

modified lift force coefficient to account for the presence of the solid wall boundary. Since the 

current work uses the LRN SCTM a new lift coefficient modification that accounts for the solid wall 
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boundary is used. In addition, this new lift coefficient modification acts as a wall repellent force and 

eliminates the need for a separate wall force to be included in the interfacial force balance. Existing 

user routines for each of the interfacial force terms were used with the SCTM and each term is 

discussed separately in § 6.1.   

6.1 Interfacial Forces  

6.1.1 Drag Force  

The drag force is given as [109]: 

 
𝑀𝑔
𝐷 = −

3

4
𝐶𝐷
𝛼𝑑
𝐷𝑑
𝜌𝑐(𝑣̅𝑑 − 𝑣̅𝑐)|𝑣̅𝑑 − 𝑣̅𝑐| (6.4) 

where the subscripts c and d refer to the continuous (liquid) and dispersed (gas) phases. Note that 

Equation (6.4) is written for the continuous gas phase and that the drag force for the continuous 

liquid phase would be equal but opposite (i.e. 𝑀𝑔
𝐷 = −𝑀𝑙

𝐷). The drag coefficient is given by [109]:  

 
𝐶𝐷 =

24

𝑅𝑒𝑏
(1 + 0.092𝑅𝑒𝑏

0.78) (6.5) 

which is slightly modified from a well-accepted relationship for bubbly flow [49, 109]. 

6.1.2 Virtual Mass Force  

The virtual mass force can be significant for developing flows. Although the present work 

deals with steady-state the virtual mass force is included here for completeness since it will be 

important in future works with the SCTM in nuclear thermal-hydraulic calculations. Following Shaver 

and Podowski [109] the form proposed by Drew [44] is used with a constant virtual mass coefficient 

of 𝐶𝑉𝑀 = 0.5:  

 
𝑀𝑔
𝑉𝑀 = −𝐶𝑉𝑀𝛼𝑑𝜌𝐶 (

𝐷𝑣̅𝑑
𝐷𝑡

−
𝐷𝑣̅𝑐
𝐷𝑡

) (6.6) 

where the operator 𝐷 𝐷𝑡⁄  is the material derivative.  

6.1.3 Turbulent Dispersion  

The turbulent dispersion force follows the work of Podowski [110] and is given as [109]:   
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 𝑀𝑔
𝑇𝐷 = −𝐶𝑇𝐷𝛼𝑑𝜌𝑐𝑘𝑐∇𝛼𝑑 (6.7) 

where 𝐶𝑇𝐷 = 2/3. Note that for an existing NPHASE-CMFD turbulent dispersion user routine the 

overall TKE of the continuous phase (𝑘𝑐) had to be altered to represent the overall TKE calculated by 

the SCTM.  

6.1.4 Lift Force  

The lift force formulation is given by Zun [45] as:  

 𝑀𝑔
𝐿 = −𝐶𝐿𝛼𝑑𝜌𝑐(𝑣̅𝑑 − 𝑣̅𝑐) × (∇ × 𝑣̅𝑐) (6.8) 

where 𝐶𝐿 is the lift coefficient and active research continues to develop expressions for the lift 

coefficient dependent on bubble size, deformation, etc. Both experimental [111] and numerical data 

[48] have shown a change in the sign of the lift coefficient dependent on bubble diameter and that 

for bubble diameters larger than about 5-6 mm the lift coefficient becomes negative. Recent DNS 

simulations have suggested that the lift coefficient also becomes negative close to the wall [47]. 

Therefore, to account for the wall presence in the LRN SCTM a lift coefficient modification was 

developed and is shown in Figure 6.1. This lift coefficient modification behaves such that it linearly 

increases from the negative value of the nominal lift coefficient (𝐶𝐿,0) at the wall to the positive 

value of the nominal lift coefficient at one bubble diameter away from the wall and then remains 

constant. The modification indicates that the lift coefficient is zero at the distance of one bubble 

radius away from the wall. Mathematically, the lift coefficient is defined as:  

 

𝐶𝐿 =

{
 

 𝐶𝐿,0 (
2𝑦

𝐷𝑑
− 1)  0 ≤

𝑦

𝐷𝑑
≤ 1

𝐶𝐿,0          1 <
𝑦

𝐷𝑑

 (6.9) 

where 𝑦 indicates the distance to the wall.  

In this work, a value of 𝐶𝐿,0 = 0.03 was used for the monodispersed bubbly flow cases with 

small bubbles. This value is consistent with previous modeling using NPHASE-CMFD [109, 112]. If 

larger bubbles are considered and the nominal lift coefficient is negative the lift force modification is 

not used. Note that Colombo and Fairweather [39] report that lift coefficient values ranging from 

0.01 to 0.5 have been used in the literature resulting in good agreement with experimental data.  
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Figure 6.1. Modified lift coefficient as a function of distance from the wall.  

 

6.2 Multiphase Turbulence Closure with the SCTM 

Bolotnov et al. [9, 10] showed that the SCTM could be extended to bubbly two-phase decay 

of isotropic turbulence and homogeneous shear flows with the addition of a BIT source term that 

accounts for the influence of the dispersed phase on the continuous liquid phase TKE. The BIT 

source term can be added to the overall TKE balance for a particular bin-m (Equation (3.7)):  

 𝐷𝛼𝑐𝑘𝑚
𝐷𝑡

= 𝛼𝑐[𝑃𝑚 − 𝜀𝑚 + 𝐷𝑚 + 𝑇𝑚 +𝛹𝑚] (6.10) 

where 𝛹𝑚 is the BIT source term for bin-m and the remaining terms are unchanged from their 

previous definitions. Since bubbly two-phase flows are considered here 𝛹𝑚 is considered the BIT 

source term but physically represents the dispersed phase source term if situations of higher void 

fraction were to be considered such as slug or churn-turbulent flow. The TKE transport equation is 

weighted by the continuous liquid phase volume fraction [42, 96]. NPHASE-CMFD solves 

conservation equations for each phase in the simulation but the turbulence closure option is only 

used for the continuous liquid phase. The additional BIT source term (𝛹𝑚) was added to the RHS 

calculation of the user implemented species source term for bin-m in NPHASE-CMFD (Equation 

(4.5)) and will only be used when a multiphase simulation is initiated. Although only monodispersed 
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flows were considered in the work of Bolotnov et al. [9, 10] a definition for the form of the BIT 

source term was provided for polydispersed flow with no bubble coalescence or break-up that 

assumed bubbles can be split into 𝑁𝑠 size groups. These size groups each have a set of specific 

characteristics such as the volume fraction, the mean diameter, and/or the relative velocity of 

bubbles in that group [10]. The advantage of spectral turbulence modeling is that each size group 

can be modeled to modify the TKE spectrum differently. It was assumed that linear superposition 

can be used to include the influence of all the different size groups on the TKE spectrum [10] such 

that the total bubble-induced source term for bin-m: 

 
𝛹𝑚 =∑ 𝛾𝑚𝑖

𝜙𝑖
𝑁𝑠

𝑖=1
 (6.11) 

is the sum of the bubble-induced source terms for each size group (𝜙𝑖). Note that for a particular 

bin-m the bubble-induced source term is multiplied by a spectral weighting factor (𝛾𝑚𝑖
) that 

indicates the contribution for a bubble in size group-i to the TKE spectrum in bin-m. These weighting 

factors are distributed to be equal to one for each size group when summed over all spectral bins 

(e.g. ∑ 𝛾𝑚𝑖
= 1𝑁

𝑚=1 ).  The spectral weighting factors for all the results shown here were formulated 

such that the maximum contribution of the dispersed phase is applied to the wave number bin 

characteristic of the bubble diameter (e.g. 𝜅𝑙𝑒𝑓𝑡 ≤ 1 𝐷𝑖⁄ ≤ 𝜅𝑟𝑖𝑔ℎ𝑡). A Gaussian distribution was used 

to define the weighting factor for wave numbers smaller than the characteristic bin while a decaying 

slope (𝜅−1 4⁄ ) was used for wave numbers larger than the characteristic bin. An example spectral 

weighting factor distribution is shown in Figure 6.2 where the horizontal axis is multiplied by the 

bubble diameter. This weighting factor distribution corresponds to a simulation with 𝜅0 = 1.0 m-1, 𝜅𝑁 

= 7.82x104 m-1, N = 18, and a bubble diameter of 3.21 mm (e.g. case HT21, Table 6.2). The 

boundaries of the wave number bins are shown as vertical dotted lines and the weighting factor is 

labeled by bin number for each bin. The peak of the weighting factor contribution is applied in bin-

10 where the length scale is on the order of the bubble diameter (i.e. 𝜅𝐷𝑑 = 1.0). Note that this 

shape assumes some eddies larger than the characteristic wave number, which is defined by the 

bubble diameter; receive energy from the bubbles since the contributions to bin-8 and bin-9 are 

significant.  

Bolotnov et al. [10] adjusted the spectral weighting factors to ensure consistency with the 

experimental TKE spectra that were used for comparison. In the present work, the spectral 



 

113 
 

weighting factors are estimated based on the physical argument that the majority of energy 

transferred to the liquid from the dispersed phase occurs at length scales on the order of the bubble 

diameter. The previous work [10] modified the decaying slope used to define the spectral weighting 

factors from 𝜅−1 4⁄  to 𝜅−1 at the transition from the inertial subrange to the dissipation range. 

However, for the SCTM to be a complete turbulence closure model the spectral weighting factors 

must be assigned before the simulation with no knowledge of the wave number ranges for the 

transition from the inertial subrange to the dissipation range. The estimation of a Gaussian 

distribution for wave numbers smaller than the characteristic bin and a 𝜅−1 4⁄  decaying slope for 

wave numbers larger than the characteristic bin are then a best estimate of the spectral weighting 

factor shape. The spectral weighting factors are calculated for each bubble size group when the 

NPHASE-CMFD simulation is initialized. In the future, if simulations are considered where the bubble 

size can change due to heat transfer, bubble coalescence, bubble breakup, etc. the calculation of the 

spectral weighting factors for each bubble size group could easily be reassigned to within the 

SCTM/NPHASE-CMFD iteration process (Figure 4.1).   

 

 

Figure 6.2. Example spectral weighting factor (γm) for bubble-induced source term.  
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Two bubble-induced turbulent source term models have been implemented as options for 

use with the SCTM in NPHASE-CMFD. The first is that used by Bolotnov et al. [9, 10]  and proposed 

by Lahey [40]: 

 𝜙𝑖 = 𝐶𝑝𝑖 (1 + 𝐶𝐷𝑖
4 3⁄ )𝛼𝑖𝑉𝑅𝑖

3 /𝐷𝑖 (6.12) 

where for size group-i: the drag coefficient (𝐶𝐷𝑖) is given in Equation (6.5), 𝛼𝑖 is the local void 

fraction, 𝑉𝑅𝑖 is the relative velocity, 𝐷𝑖 is the bubble diameter, and 𝐶𝑝𝑖 = 1 2⁄ 𝐶𝑉𝑀𝑖
 [10].  The second 

bubble-induced source option is that proposed by Rzehak and Krepper [42]: 

 
𝜙𝑖 =

3

4
𝐶𝐷𝑖𝛼𝑖𝑉𝑅𝑖

3 /𝐷𝑖 (6.13) 

where the terms are defined the same as in Equation (6.12).  

 The SCTM has been applied to upward monodispersed and polydispersed adiabatic air-

water flows in different geometries.  

6.3 Comparison of High- and Low-Reynolds Number Turbulence Closures  

This work is the first time a LRN turbulence modeling approach has been used for 

multiphase flow modeling in NPHASE-CMFD. Therefore, a first test was conducted using the code’s 

native k-ε model to compare the HRN and LRN turbulence closure options where the new lift 

coefficient modification (Figure 6.1) was used for the LRN model. This test was performed using 

simple parallel plate flow geometry with constant air-water properties at atmospheric conditions 

(Table 6.1). The spacing between the plates was 20.25 mm, the Reynolds number was approximately 

30,000, the liquid and gas superficial velocities were 1.216 and 0.075, respectively, and bubbles 

maintained a constant diameter of 2.0 mm. The results in Figure 6.3 show satisfactory agreement 

for the HRN and LRN model comparison. The predictions are quite similar although the LRN model 

captures the TKE peak close to the wall. Clearly, the LRN model predicts the correct zero void 

fraction boundary condition close to the solid wall boundary.  
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Table 6.1. Material properties for atmospheric air/water conditions. Note these values are similar to 
those used by Rzehak et al. [57].  

Property Description Value Units 

𝜌𝑐  Continuous phase (water) density 997.561 kg∙m
-3 

𝜇𝑐 Continuous phase (water) molecular viscosity 8.887x10
-4 

kg∙m
-1

∙s
-1 

𝜌𝑑  Dispersed phase (air) density 1.204 kg∙m
-3

 

𝜇𝑑 Dispersed phase (air) molecular viscosity  1.725x10
-5 

kg∙m
-1

∙s
-1

 

𝜎 Surface Tension 0.0728 N∙m
-1

 

 

  

(a) (b) 

Figure 6.3. Comparison of HRN and LRN k-ε results for parallel plate geometry. (a) Stream-wise liquid 
velocity (left vertical axis) and TKE (right vertical axis). (b) Void fraction.  

 

6.4 TPF2: Two-Phase Turbulent Pipe Flow  

Circular pipe geometry using the NPHASE-CMFD R-Z cylindrical coordinate option is again an 

excellent test for the SCTM (see § 5.4). Much of the experimental data available in the literature for 

bubbly two-phase flow exists for upward circular pipe flow and the SCTM was compared against 

existing monodispersed experimental data in 25 mm diameter pipe. The SCTM was also used to 

model polydispersed bubbly two-phase flow in 25 mm diameter pipe and monodispersed bubbly 

two-phase flow in 200 mm diameter pipe on a 3D numerical mesh.  
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6.4.1 25 mm Diameter Pipe  

6.4.1.1 Monodispersed Bubbly Two-Phase Flow 

The experimental data of Hosokawa and Tomiyama [107] was chosen as the first assessment 

of the wall-resolved SCTM for turbulent bubbly two-phase flows. As discussed previously (§ 5.4.1), 

Hosokawa and Tomiyama [107] used LDV image processing techniques to investigate upward single 

and bubbly two-phase flows with air-water systems at atmospheric conditions. Table 6.2 gives the 

average parameters of interest for four test cases. As with the single-phase simulations (§ 5.4.1), the 

left and right wave number boundaries were 𝜅0 = 1.0 m-1 and 𝜅𝑁 = 7.82x104 m-1, respectively and 

the minimum number of wave number bins was calculated to be N = 16. For all the results shown 

here N = 18 wave number bins were used unless explicitly noted to use N = 16 wave number bins. 

 

Table 6.2. Parameters for experimental data of Hosokawa and Tomiyama [107].  

Case 𝑱𝒄 (m/s) 𝑱𝒅 (m/s) 𝜶𝒅 𝑫𝒅 (mm) 

HT21 0.5 0.018 0.0231 3.21 

HT22 0.5 0.025 0.0399 4.25 

HT23 1.0 0.02 0.0146 3.52 

HT24 1.0 0.036 0.0330 3.66 

 

 Predictions of mean liquid velocity in the stream-wise direction are shown for the SCTM and 

k-ε model in comparison to the experimental data for each test case in Figure 6.4. For case HT21, 

results for both of the bubble-induced turbulent source terms implemented into the SCTM are 

shown, where “L” denotes the Lahey term (Equation (6.12)) and “RK” denotes the Rzehak and 

Krepper term (Equation (6.13)). For the k-ε results, the NPHASE-CMFD turbulence model is used 

with no additional turbulent source terms as well as with the Lahey term user-implemented. Note 

that for the k-ε model the turbulent dissipation equation source had to be included as well (as 

defined by Lahey [40]). The predictions of mean liquid velocity are in good agreement with the 

experimental data for each test case except for the k-ε result with the Lahey source term that is 

depressed in the pipe center. In each of the cases both the SCTM and k-ε model predict velocity 

profiles near the pipe center that are flatter than the profile measured experimentally. In case HT21, 
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both bubble-induced source term models provide an identical result along with the prediction using 

the minimum N = 16 wave number bins rather than N = 18 wave number bins.  

 

  

(a) (b) 

  

(c) (d) 

Figure 6.4. SCTM and k-ε predictions of mean stream-wise liquid velocity in comparison to 
experimental data of Hosokawa & Tomiyama [107].  

 

 SCTM and k-ε predictions of TKE are shown in comparison to the Hosokawa and Tomiyama 

experimental data in Figure 6.5. The predictions of TKE for both turbulence models are in much 

larger disagreement with the experimental data than the mean velocity across all four cases. Similar 

difficulties in predicting TKE profiles of bubbly two-phase flows with eddy viscosity turbulence 

models have been shown in the literature [39, 42]. Similar to the single-phase prediction in 25 mm 

pipe (Figure 5.21), the SCTM results show a wider TKE peak than the k-ε model. However, both 
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turbulence models fail to predict the TKE magnitude although for the higher Reynolds number HT23 

and HT24 cases (Figure 6.5(c), Figure 6.5(d)) the k-ε model does show slightly better predictions. In 

lower Reynolds number cases HT21 and HT22 (Figure 6.5(a), Figure 6.5(b)) the k-ε prediction near 

the pipe centerline is very low although, for the HT22 case, the SCTM prediction is equally as 

disagreeable albeit the estimate is much higher than the experimental data. Notably, the SCTM 

predictions using either bubble-induced source term in the HT21 case are nearly identical. As 

discussed previously (§ 1.1.1.2), issues with the form of the bubble-induced source term are most 

predominant when determining the timescale of the source term for the dissipation rate equation. 

Since the SCTM does not use an empirical dissipation rate transport equation, such as that used in 

two-equation models, the need to determine this controversial timescale is eliminated. The HT21 

simulation with the minimum N = 16 wave number bins is essentially identical to the N = 18 wave 

number bins simulation and indicates bin convergence of the SCTM.  
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(a) (b) 

  

(c) (d) 

Figure 6.5. SCTM and k-ε predictions of liquid TKE in comparison to experimental data of Hosokawa 
& Tomiyama [107].  

 

 NPHASE-CMFD simulation results for gas volume fraction with the SCTM and k-ε model are 

shown in comparison to the experimental data in Figure 6.6 for all four cases. As with the mean 

velocity and TKE predictions the influence of bubble-induced source terms is negligible for the SCTM 

and bin convergence is shown for the N = 16 wave number bins HT21 simulation. It is interesting to 

note the experimental data profiles are rather flat for the lower Reynolds number cases HT21 and 

HT22 (Figure 6.6(a), Figure 6.6(b)) but both turbulence models predict a more wall-peaked void 

fraction profile. For the higher Reynolds number HT23 and HT24 cases (Figure 6.6(c), Figure 6.6(d)) 

the experimental data shows a wall-peaked void fraction distribution that both turbulence models 

better estimate. At higher Reynolds number, the SCTM predicts the peak location, peak magnitude, 
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and overall shape of the gas volume fraction distribution quite well. This improvement over the 

HT21 and HT22 cases could partially be due to the higher shear-induced turbulence in this case and 

therefore higher velocity gradient. This creates a stronger lift force that pushes the volume fraction 

towards the wall and follows the experimental result of a more pronounced wall-peaked profile. 

There is some numerical checkerboarding behavior in estimates of the void fraction from both the k-

ε model and the SCTM, particularly for the HT23 case. However, the general trend of void fraction 

shape should still be accepted.  

  

(a) (b) 

  

(c) (d) 

Figure 6.6. SCTM and k-ε predictions of dispersed phase volume fraction in comparison to 
experimental data of Hosokawa & Tomiyama [107].  

 

 SCTM predictions of the TKE spectrum (𝐸(𝜅) = 𝑘𝑚 Δ𝜅𝑚⁄ ) are shown for a radial spatial 

location near the pipe centerline (Figure 6.7(a)) and near the pipe wall (Figure 6.7(b)) for case HT21. 
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Near the pipe centerline the void fraction profile is essentially flat (Figure 6.6(a)) resulting in 

homogeneous turbulent bubbly flow. At this location, the TKE spectrum for the two-phase results 

shows the -5/3 slope of the inertial subrange transitioning to a less-steep slope than that shown in 

single-phase flow with the same liquid volumetric flux (case HT11). This transition to a less steep 

slope in homogeneous turbulent bubbly flow has been presented in the literature [50] and shown in 

previous work with the SCTM [10] and a value close to -11/3 is reasonable. However, near the pipe 

wall (Figure 6.7(b)) the difference in TKE spectrum behavior is not as pronounced in the dissipation 

range. The influence of the bubble-induced source term can be seen around bin-8 where the two-

phase spectra magnitudes become higher than the single-phase. However, the shapes of the spectra 

remain consistent through the inertial subrange and dissipation range. One possible explanation is 

that this location is close to the peak of TKE and the shear-induced TKE of the liquid therefore 

dominates throughout the energy cascade process.  

Spectral analysis of turbulent bubbly two-phase DNS data showed (§ 2) that modulation of 

the spectrum slope occurs even in flows where the shear-induced turbulence is significantly greater 

than the bubble-induced turbulence although it is possible that the modulation close to wall 

boundaries differs than in the essentially homogeneous bubbly two-phase turbulence region in the 

bulk of the flow. Appendix C provides a more detailed comparison of the single-phase and two-

phase spectra as a function of spatial location in the 25 mm diameter pipe. The results in Appendix C 

show that the single-phase and two-phase spectra become more similar in the high wave number 

range as distance from the pipe centerline increases. The results for 16 wave number bins in 

comparison to 18 wave number bins show that the SCTM achieves independence from spectral 

resolution. TKE spectrum results again show that the difference in the Lahey and Rzehak and 

Krepper source terms is negligible for the SCTM. The TKE spectrum results for the HT22 case were 

similar to those from the HT21 case. 
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(a) (b) 

Figure 6.7. SCTM TKE spectrum at two spatial locations (HT21) compared to single-phase result.  

 

 Interestingly, TKE spectrum comparisons between the HT24 case and a single-phase case 

with the same liquid volumetric flux (case HT12) only show moderate differences (Figure 6.8). The 

discussion pertaining to Figure 6.7 still holds true between locations in the bulk of the flow and in 

the near-wall region. However, the spectrum is only slightly less steep in the dissipation range for 

the radial location in the bulk of the flow. Due to the overall under-prediction of the TKE in the 

HT21, HT23, and HT24 cases it is possible that the bubble-induced source term needs to have a 

stronger effect on the overall TKE if the HT22 case is considered an outlier. A more distinct 

difference in spectrum results may then be realized for this HT24 case. TKE spectrum results for the 

HT23 case are similar to those shown for the HT24 case. When considering all these cases it should 

be reiterated that no model constants have been adjusted for the SCTM.  

 



 

123 
 

  

(a) (b) 

Figure 6.8. SCTM TKE spectrum at two spatial locations (HT24) compared to single-phase result. 

 

6.4.1.2 Polydispersed Bubbly Two-Phase Flow  

 A polydispersed test case was formulated to demonstrate the physical behavior of the SCTM 

when different bubble size groups are present. A small bubble size group and large bubble size 

group were modeled using the SCTM with the Lahey bubble-induced source term following Equation 

(6.12) to formulate the overall source term for bin-m. NPHASE-CMFD solves a separate set of mass 

and momentum equations for the liquid field, the first bubble size group, and the second bubble size 

group. The interfacial force terms were kept identical to those presented in § 6.1 with the exception 

of the lift coefficient for the large bubble group which was changed to a value of -0.015. For 

comparison, a monodispersed case was also considered where the bubble size was found to provide 

the same amount of gas volume occupied within the domain (see  Appendix D for equivalent bubble 

diameter calculation details). The parameters for these cases are shown in Table 6.3. The gas 

volume fraction distributions for both of these cases are shown in Figure 6.9. The overall gas volume 

fraction of the polydispersed case is very similar to that of the equivalent monodispersed case. 

However, when considered separately, the correct physical behavior of the small and large bubble 

size groups is realized. The small bubbles are pushed towards the wall and the large bubbles are 

pushed towards the pipe centerline for a core-peaked profile. Although this behavior can be 

predominately controlled through the interfacial force definition, using the SCTM allows bubble size 

groups to retain their own influence on the liquid turbulence. Also, in more complex scenarios 
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where bubble break-up and coalescence are important the equations for both can be included 

separately for each bubble size group.  

 

Table 6.3. Parameters for polydispersed case in 25 mm diameter pipe geometry.  

Case 𝑱𝒄 (m/s) 𝑱𝒅𝟏 (m/s) 𝑱𝒅𝟐 (m/s) 𝜶𝒅𝟏 𝜶𝒅𝟐 𝑫𝒅𝟏 (mm) 𝑫𝒅𝟐 (mm) 

Polydispersed 0.475 0.028 0.007 0.04 0.01 3.00 6.00 

Monodispersed 0.475 0.035 -  0.05 -  3.25 -  

 

It is interesting to investigate the influence of the bubbles on the liquid turbulence through 

the TKE spectrum (Figure 6.10). Two radial locations are considered where Figure 6.10(a) is within 

the bulk of the flow and the void fraction profile is essentially flat and Figure 6.10(b) is near the pipe 

wall and the void fraction peak. The change in energy spectrum slope in comparison to single-phase 

case with the same liquid volumetric flux is in accordance with the previous observations for Figure 

6.7. In this case, the interesting physics of the different bubble sizes is captured in the spectrum and 

differences are seen between the polydispersed and equivalent monodispersed case. The influence 

of the large bubble group as an additional energy source is shown as an increase in the spectrum 

magnitude in the polydispersed case around bin-6 – bin-9. Interestingly, the spectrum magnitude is 

decreased for the polydispersed case in the first two wave number bins. It is possible that the 

presence of the gas phase in the center of the channel in the form of the larger bubbles suppresses 

the liquid turbulence at the largest eddy scale or limits the allowable size of the largest eddies in the 

flow.  
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Figure 6.9. Gas volume fraction distribution for polydispersed and equivalent monodispersed cases 
in 25 mm diameter pipe geometry (“D” indicates bubble diameter).  

 

  

(a) (b) 

Figure 6.10. SCTM TKE spectrum results at two different spatial locations for polydispersed and 
equivalent monodispersed cases in 25 mm diameter pipe geometry.  

 

 The comparison to the Hosokawa and Tomiyama experimental data was an encouraging first 

test of the SCTM behavior for monodispersed and polydispersed wall-bounded bubbly two-phase 

flow. The results for mean flow parameters are similar to those from the k-ε model and within the 

engineering uncertainty generally shown in the literature for M-CFD using RANS approach. The TKE 
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spectrum predictions shown here are reasonable and resolving the TKE spectrum allows bubble 

groups with distinctively different characteristics to influence the liquid turbulence on their own 

accord. Using NPHASE-CMFD, each bubble group has a separate set of mass and momentum 

equations so that extension to more complex flows with phasic interaction is readily possible. 

6.4.2 200 mm Diameter Pipe 

The 200 mm diameter pipe geometry was chosen to qualitatively demonstrate SCTM two-

phase capabilities in NPHASE-CMFD for a 3D geometry. The 3D 200 mm diameter pipe mesh shown 

in Figure 5.27 was again used although, as previously discussed (§ 5.4.2), this mesh was quite coarse 

in terms of required resolution for LRN turbulence modeling. However, the objective of the results 

shown here are verification of the ability for the SCTM to be used in NPHASE-CMFD for 3D 

multiphase simulations.  

The inlet conditions for this two-phase case were a prescribed inlet velocity of 1.0 m/s for 

both the liquid and gaseous phases and inlet volume fractions of 98 % and 2 % for the liquid and gas 

phases, respectively. The liquid volumetric flux (𝐽𝑐) was then 0.98 and the gas volumetric flux (𝐽𝑑) 

was then 0.02. The bubble size (𝐷𝑑) was 4.0 mm.  The left and right wave number boundaries were 

identical to the single-phase case and set as  𝜅0 = 1.0 m-1 and 𝜅𝑁 = 7.32x104 m-1, respectively. As with 

the single-phase case, the minimum number of spectral bins was calculated to be N = 16 and N = 18 

bins were used for the simulation. The liquid and gas properties were taken to be water and air at 

atmospheric conditions (Table 6.1). These inlet conditions correspond to a bulk Reynolds number of 

about 224,500. The spectral weighting factors were calculated as shown in § 6.2 and used with the 

Lahey BIT source term (Equation (6.12)).   

Figure 6.11(a) – (b) shows the stream-wise liquid and gas phase velocities taken as a slice 

perpendicular to the x-axis at a stream-wise location 95 % of the overall pipe length from the pipe 

inlet. Figure 6.11(c) – (d) shows the stream-wise liquid and gas phase velocities as a line plot across 

the y-axis of the radial slice through the pipe center where the values for the line plots were 

obtained from Paraview as values on the mesh elements across the y-axis. The stream-wise 

velocities verify the behavior of the SCTM for two-phase behavior in 3D geometry. The simulation 

was not executed to total convergence but the correct trends are exemplified. The shapes of the 
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velocity profiles are reasonable and a relative velocity of the gas phase to the liquid phase has 

developed due to the buoyant nature of the rising bubbles.  

 

  

(a) (b) 

 

 

 

 

(c) (d) 

Figure 6.11. Stream-wise liquid and gas velocity distributions. (a) – (b): shown as a slice across the 
stream-wise (x) axis of the pipe at an axial position 95 % of the total pipe length from the inlet. (c) – 
(d): shown as a line plot across the radial slice.   

 

 Likewise, the volume fraction predictions shown as a slice across the stream-wise (x) axis of 

the pipe at an axial position 95 % of the total pipe length from the inlet and the line plots of volume 

fractions across the y-axis of the slice (Figure 6.12) also exemplify the expected trends. The gas 

phase volume fraction is wall-peaked and the effect of the lift force with wall-repellent coefficient is 
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seen as the dark blue ring very close to the wall (Figure 6.12(b)). The simulation results shown here 

are reasonable even though the numerical mesh is coarse. Some mesh effects are evident in the 3D 

distributions of volume fraction as areas of discoloration due to coarseness of the mesh. The 3D 200 

mm diameter pipe results shown here are an excellent verification of the SCTM behavior in NPHASE-

CMFD.  

  

(a) (b) 

  

(c) (d) 

Figure 6.12. Liquid and gas phase volume fraction distributions. (a) – (b): shown as a slice across the 
stream-wise (x) axis of the pipe at an axial position 95 % of the total pipe length from the inlet. (c) – 
(d): shown as a line plot across the radial slice.   
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6.5 TPLF2: Two-phase Turbulent Flow between Parallel Plates 

 The parallel plate geometry with 100 mm spacing between the plates (§ 5.5) was used for 

simulation of monodispersed and polydispersed bubbly two-phase flow. The working fluids were 

water and air at atmospheric conditions (Table 6.1).  The numerical mesh with 200 equidistant 

elements in the direction normal to the duct walls with a dimensional mesh spacing of 0.5 mm was 

used just as with the single-phase case. The left and right wave number boundaries were identical to 

the single-phase case and set as 𝜅0 = 1.0 m-1 and 𝜅𝑁 = 8.6x104 m-1, respectively. The results for the 

single-phase case showed that N = 18 and N = 22 spectral bins converged to nearly identical 

solutions and N = 18 spectral bins are used for the two-phase simulations. For both the 

monodispersed and polydispersed cases the Lahey BIT source term was used.  

6.5.1 Monodispersed Bubbly Two-Phase Flow  

The inlet conditions for monodispersed bubbly two-phase flow are shown in Table 6.4 below 

and correspond to a bulk Reynolds number of about 112,250. 

 

Table 6.4. Inlet conditions for monodispersed two-phase simulation in parallel plate geometry.  

Phase Velocity (m/s) Volume Fraction  Volumetric Flux (m/s) Bubble Diameter (mm) 

Liquid (water) 1.0 0.98 0.980 - 

Gas (air) 1.1 0.02 0.022 4.0 

 

 Velocity distributions for the liquid and gas phases are shown in Figure 6.13 as a line plot 

across the duct in the direction normal to the walls and in Figure 6.14 as a slice perpendicular to the 

x-axis at a stream-wise location 95 % of the overall duct length from the duct inlet where the z-axis 

has been scaled shorter for enhanced viewing. The difference in gas and liquid velocity shows that a 

relative velocity of about 0.33 m/s develops between the phases due to the buoyant nature of the 

rising bubbles. In comparison to the liquid velocity profile from the single-phase simulation (Figure 

5.32), the velocity profiles are much flatter across the duct with the only appreciable gradient 

occurring very close to the walls. This same type of velocity profile flattening between single-phase 

and two-phase simulations was seen for the 25 mm pipe simulations as well (Figure 5.22 vs. Figure 

6.4).  
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Figure 6.13. Prediction of liquid and gas velocities in the stream-wise direction.  

 

(a) 

 

(b) 

Figure 6.14. Stream-wise liquid (UL) and gas (Ug) velocity distributions between parallel plates with 
100 mm spacing (y direction is normal to duct walls). The z-axis has been scaled shorter for 
enhanced viewing. 
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 Prediction of the void fraction distribution (Figure 6.15) shows the expected wall-peaked 

behavior for small bubbles where the lift forces acts to push the bubbles towards the duct walls. 

Due to the presence of the solid wall boundaries void fraction value peaks at slightly greater than  

7 % even though the inlet average void fraction was 2 %. With the LRN SCTM and the modified lift 

coefficient (Equation (6.9)) the area of zero void fraction within one bubble diameter of the wall is 

evident in Figure 6.15(a) and as the solid blue region very close to the duct walls in Figure 6.15(b).  

Considering the sharp gradients of mean velocities and volume fractions close to the walls, LRN 

turbulence modeling can enhance predictions of multiphase flow since the near-wall boundary layer 

is resolved rather than estimated as a boundary condition with controversial two-phase law of the 

wall formulations.  

The TKE distribution for both single-phase (§ 5.5, 𝐽𝐿 = 1.0 m/s) and two-phase simulations in 

parallel plate geometry is shown in Figure 6.16(a). The two-phase results show the expected wall-

peaked TKE profile with a more pronounced peak than the single-phase results. The two-phase 

results are also of higher magnitude than single-phase results. This increase in magnitude can be 

realized in the TKE spectra. Figure 6.16(b) – Figure 6.16(d) show the TKE spectra at three different 

spatial locations. The spatial locations for the TKE spectra are denoted on the TKE distribution in 

Figure 6.16(a) as the red star symbols. In each of the spectra, the low wave number/large-eddy end 

of the spectra has a distinctly different shape and less energy than the single-phase data. 

Conversely, the energy spectra all exhibit higher energy content in the high wave number/small-

eddy end of the spectra. Although the small wave number range has considerably less energy in 

two-phase flow the contribution of BIT is still sufficient enough to increase the overall TKE. Also, the 

two-phase spectra exhibit the -5/3 slope of the inertial subrange transitioning to a slope less steep 

than comparable single-phase data as has been shown previously with the spectral analysis of DNS 

data and in the 25 mm diameter pipe geometry calculations with the SCTM and NPHASE-CMFD. 

Similar to the 25 mm diameter pipe geometry, the difference in energy in the high wave number 

range increases as spatial distance from the solid wall boundary increases. In light of the much 

flatter TKE profile in the bulk of the flow for two-phase data in comparison to single-phase data 

(Figure 6.16(a)), this difference in the high wave number end of the spectra could be due to the 

continuous influence of BIT in the essentially homogeneous two-phase flow region near the duct 
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centerline. The peak of the spectral weighting factor (𝛾𝑚) for this case occurred in bin-9 and the 

increase of TKE density in bin-9 is evident for each of the spatial locations.  

 

 

(a) 

 

(b) 

Figure 6.15. Gas volume fraction as a line plot across the duct width (a) and as a slice across the 
stream-wise direction (y direction is normal to duct walls) with the z-axis has been scaled shorter for 
enhanced viewing (b).  

 

 In terms of SCTM verification within the NPHASE-CMFD code, the mean velocity, void 

fraction, and TKE distributions are all symmetric about the duct centerline as expected. This 

indicates that in two-phase simulations where multiple wall boundary conditions are present the 

SCTM correctly calculates gradients, wall-distances, etc. as required by the model formulation. This 

provides increased confidence that the SCTM has been correctly implemented into NPHASE-CMFD.  
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(a) (b) 

  

(c) (d) 

Figure 6.16. (a): Single-phase and two-phase SCTM TKE as a function of non-dimensional wall 
distance with zero at duct centerline. (b) – (d): TKE spectra at three spatial locations (y/L0.5 = 0.965, 
0.895, 0.025) denoted by star symbol on TKE distribution in (a).  

 

 The total source term balance is shown in Figure 6.17 and, with the exception of the 

diffusion term since it is handled internally by NPHASE-CMFD, constitutes the RHS of Equation (6.10) 

and includes the production, spectral transfer, dissipation, and BIT/dispersed phase source terms. 

The shapes of the production and dissipation terms are similar to those for single-phase flow (Figure 

5.36) albeit the peak magnitudes are higher in two-phase flow. The increase in peak magnitudes is 

physically sound due the sharp gradients of velocity close to the duct walls in two-phase flow. The 

BIT source term mirrors the shape of the void fraction distribution and peaks close to the duct walls 

with the influence of the modified lift coefficient apparent as the region equal to zero BIT source 
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very close to the walls. The total spectral transfer term indicates that spectral transfer does not 

contribute to the overall TKE.  

 

Figure 6.17. Total source term balance using the SCTM in NPHASE-CMFD for two-phase simulation in 
the parallel plate geometry with 100 mm spacing. 

 

 While Figure 6.17 shows the distribution of the BIT source term in the spatial domain, Figure 

6.18 displays how the BIT source term is distributed in the spectral domain. In Figure 6.18 the 

spectral weighting factor (𝛾𝑚) is plotted as a function of the bin characteristic wave number (𝜅̅𝑚) 

multiplied by the bubble diameter. For this particular case, the peak of the spectral weighing factor, 

where the wave number is on the order of the bubble diameter, occurs in wave number bin-9. 

Recall that discussion on how the spectral weighting factors are determined at the initialization of a 

two-phase simulation with the SCTM in NPHASE-CMFD was provided in § 6.2.  

 It is interesting to view the bin BIT source terms as a contour in both the spectral and spatial 

domains (Figure 6.19). The distribution of the BIT source term is shown to be peaked (concentrated 

area colored as red) in bin-9 and close to the duct walls. The contour plot is a schematic way to 

combine Figure 6.17 and Figure 6.18 and view the BIT source term in both spatial and spectral 

space. The advantage of the SCTM for two-phase flow simulations is the ability to define the BIT 

source term across the spatial and spectral domain; i.e. anywhere within the space mapped by 
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Figure 6.19. The non-dimensional spatial distance (𝑦 𝐿0.5⁄ ) and logarithm of wave number (log[𝜅]) 

were chosen as the y-axis and x-axis, respectively, simply for feasibility of viewing the contour plot.   

 

Figure 6.18. Spectral weighting factor (γm) of the BIT source term in two-phase parallel plate 
geometry simulation. The wave number bin boundaries are shown as vertical dotted lines.  

 

 

Figure 6.19. Contour levels of the bin BIT source terms in the spatial and spectral domains for the 
two-phase simulation in parallel plate geometry. The vertical lines represent wave number 
boundaries that are defined along the top of the plot.  
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 The distribution of non-dimensional turbulent viscosity (𝜈𝑇 𝜈⁄ ) predicted by the SCTM for 

monodispersed two-phase flow in the parallel plate geometry is shown in Figure 6.20. The capability 

of the SCTM to reasonably estimate the distribution of turbulent viscosity within the bulk of the flow 

and through the boundary layer to the wall and return that estimation to NPHASE-CMFD has been 

verified.  

 

Figure 6.20. Distribution of turbulent viscosity, non-dimensonalized by kinematic viscosity, 
determined by the SCTM for two-phase flow in parallel plate geometry.  

 

6.5.2 Polydispersed Bubbly Two-Phase Flow  

The inlet conditions for polydispersed bubbly two-phase flow with a small and large bubble 

group are shown in Table 6.5 below and correspond to a bulk Reynolds number of about 112,250. 

The nominal lift coefficient for the large bubble group was 𝐶𝐿,0 = -0.015 as was done for the large 

bubble group in the polydispersed two-phase flow simulations in 25 mm diameter pipe geometry (§ 

6.4.1.2).  

 Prediction of the gas volume fraction (Figure 6.21(a)) shows the different behavior of the 

small and large diameter bubble groups. The small bubbles are pushed towards the duct walls for a 

wall-peaked void fraction distribution and the large bubbles are pushed towards the channel center 

for a core-peaked void fraction distribution. There is a region of essentially zero total void fraction 

on either side of the large bubble group volume fraction peak that could be due to the interaction of 
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velocity, void fraction, and the lift force calculation. This region corresponds to counter-acting lift 

forces for the small and large bubble size groups. Improved lift force closure, particularly for the 

large bubble size group, could improve void fraction behavior in the future.  Each bubble group has 

an individual set of mass and momentum equations that are solved within the NPHASE-CMFD 

framework. Figure 6.21(b) – (c) shows how stream-wise liquid velocity and TKE are influenced by the 

existence of the large bubble group. For monodispersed two-phase flow both of these quantities 

had a flat profile within the free stream region of the duct away from the influence of the walls. 

However, the presence of the large bubble group concentration within the duct center accelerates 

the liquid velocity in this region. The BIT source term of the large bubble group also imparts an 

increase of TKE that is seen to almost mirror the shape of the large bubble group void fraction 

distribution in the duct center. Additional figures showing these mean flow quantities are included 

in Appendix E.  

 

Table 6.5. Inlet conditions for polydispersed two-phase simulation in parallel plate geometry. 

Phase Velocity (m/s) Volume Fraction  Volumetric Flux (m/s) Bubble Diameter (mm) 

Liquid (water) 1.0 0.97 0.970 - 

Gas (air) – small 
bubble group 

1.2 0.02 0.024 3.0 

Gas (air) – large 
bubble group 

1.4 0.01 0.014 6.0 

 

The influence of the large bubble group is also seen in the total source term balance (Figure 

6.21(d)) where production, dissipation, and the BIT source term all differ from the predictions for 

monodispersed flow in Figure 6.17. The production term has two peaks on either side of the duct 

center due to the gradient of the liquid phase velocity caused by the large bubble group. In the duct 

center the inhomogeneous dissipation (Equation (5.3)) is negligible since the distance from the wall 

is substantial. However, the homogeneous dissipation (Equation (3.15)) is dependent on TKE and 

creates the dissipation peak in the duct center due to the added TKE of the large bubble group. The 

influence of the large bubble group on the total source balance is captured through the BIT source 

term.  
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(a) (b) 

  

(c) (d) 

Figure 6.21. (a): Gas volume fraction of 3 mm (solid black line) and 6 mm (dashed red line) bubble 
groups.. (b): Stream-wise liquid velocity distribution. (c): TKE as a function of non-dimensional wall 
distance with zero at duct centerline. (d): Total source term balance.  

 

 The TKE spectra show the -5/3 slope of the inertial subrange transitioning to a slope close to 

-11/3 (Figure 6.22) as has been shown for other predictions of bubbly two-phase flow with the 

SCTM. The polydispersed spectra show some resemblance at the smallest wave numbers to the 

monodispersed spectra. There is an increase in spectra magnitude around bin-9 and bin-10 where 

the peak of the spectral weighting factor occurs for the large and small bubble groups, respectively. 

Interestingly, spectra shapes for spatial locations near the void fraction peak of the large bubble 

group (e.g. 𝑦 𝐿0.5⁄  = 0.005) and small bubble group (e.g. 𝑦 𝐿0.5⁄  = 0.975) exhibit a similar shape and 
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have magnitudes at the highest wave numbers that are larger than locations where the void fraction 

is essentially flat (e.g. 𝑦 𝐿0.5⁄  = 0.295).  

 

 

Figure 6.22. TKE spectra at different spatial locations (legend shows y/L0.5  locations).  

 

 Recall from Equation (6.11) that the total BIT source term (𝛹𝑚) for bin-m is the sum of the 

source terms for each considered bubble size group. In this two bubble size group case, the total BIT 

source term for bin-m is then:  

 𝛹𝑚 = 𝛾𝑚1𝜙1 + 𝛾𝑚2𝜙2 (6.14) 

where subscripts “1” and “2” indicate the small and large bubble size groups, respectively. The first 

and second terms on the RHS of Equation (6.14) are shown as contours in the spectral and spatial 

domain in Figure 6.23 (see also Appendix E). The non-dimensional spatial distance (𝑦 𝐿0.5⁄ ) and 

logarithm of wave number (log[𝜅]) were chosen as the y-axis and x-axis, respectively, simply for 

feasibility of viewing the contour plot. In Figure 6.23(a), the peak of the BIT source term for the 

small bubble group occurs in bin-10 and very close to the walls. In Figure 6.23(b), the peak of the BIT 

source term for the large bubble group occurs in bin-9 and within the center of the duct. The ability 

to resolve contributions of different bubble size groups to the liquid turbulence in both the spectral 

and spatial domains is the inherent capability of the SCTM that will increase the fidelity of RANS M-

CFD.  
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(a) 

 

(b) 

Figure 6.23. Contour levels of the bin BIT source terms in the spatial and spectral domains for the 
small (a) and large (b) bubble group in polydispersed two-phase simulation in parallel plate 
geometry. The vertical lines represent wave number boundaries that are defined along the top of 
the plot.  
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7. CONCLUSIONS 

The SCTM has been further developed and tested as a RANS turbulence closure option in 

M-CFD codes for polydispersed two-phase flows. High-fidelity predictions of polydispersed two-

phase flows are essential to improving safety and thermal-hydraulic analyses of current and future 

generations of nuclear reactors. M-CFD simulations with advanced spectral turbulence models such 

as the SCTM are becoming viable options for nuclear reactor analysis as available computational 

power continues to increase. M-CFD with RANS turbulence modeling captures 3D distributions of 

velocity, volume fraction, TKE, etc. that are not resolved with the current industry standard 1D 

thermal-hydraulic analysis techniques. Simulations of two-phase flows are more difficult than single-

phase flows since bubble interactions with the liquid turbulence must be quantified and included in 

the modeling approach. The development of high-fidelity multiphase turbulence models specifically 

for nuclear reactor applications will improve reactor safety calculations and allow nuclear power 

plant operation closer to the margin with higher confidence levels. 

 DNS data has emerged as an excellent tool for improving turbulence model formulations 

since characteristics that are generally hard to capture in experiments are recorded in DNS. The 

expansive data that is obtained from DNS can be used for validation as well as undergo data mining 

techniques to reveal additional information. The spectral analysis of single-phase and two-phase 

DNS to provide the TKE spectrum provides further data about the bubble interactions with the liquid 

turbulence.  

 In this work, spectral analysis of turbulent single-phase and bubbly two-phase DNS data in 

different geometries was performed to investigate the modulation of the TKE spectrum slope due to 

the presence of bubbles. A novel technique called pseudo-void was developed to show that the 

bubble wake interaction with the liquid turbulence is the contributing factor to the modification of 

the energy spectrum slope in two-phase flows from the expected -5/3 slope of the inertial subrange 

in single-phase flows. The spectral analysis was performed in different geometries and at different 

bulk Reynolds numbers to show that the slope of the energy spectrum in bubbly two-phase flows is 

similar regardless of these factors and that spectral turbulence models such as the SCTM can be 

universally applied to bubbly two-phase flow modeling.  
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 An existing spectral turbulence model was adopted for model improvement and 

development. The existing model had been used in 1D to model single and two-phase decay of 

isotropic turbulence, single and two-phase uniform shear flow, and single-phase channel flow 

without resolving the near-wall boundary layer for a relatively low bulk Reynolds number. In this 

work, the SCTM was first improved for 1D and extended to a LRN type model in simple plane 

channel flow and validated for Reynolds numbers up to 2000 based on friction velocity. The SCTM 

was compared with DNS data for mean flow parameters as well as the TKE spectrum and TKE 

budget. The SCTM was then extended to a 3D model and implemented into the M-CFD code 

NPHASE-CMFD as a wall-resolved LRN turbulence closure option that resolves the turbulence in the 

spectral and spatial domains. Numerical considerations in NPHASE-CMFD required that the model 

be formulated slightly differently than the 1D formulation. The SCTM was then tested extensively in 

NPHASE-CMFD and compared with predictions from 1D FlexPDE, the k-ε model, DNS data, and 

experimental data. The SCTM has been tested in NPHASE-CMFD for various geometries using 2D and 

3D numerical meshes.  

 A BIT source term was included in the SCTM for use with the existing code structure of 

NPHASE-CMFD so that different dispersed phase groups can influence the TKE separately in the 

spectral and spatial domains. The two-phase LRN SCTM in NPHASE-CMFD was tested for various 

geometries and compared with experimental data. The SCTM provides estimations of experimental 

data that are within the engineering uncertainty of the k-ε model while simultaneously providing 

more flow physics. The SCTM also provides physically expected results when applied to 

polydispersed bubbly two-phase flow scenarios.  

 In conclusion, the SCTM has been developed for use in 3D M-CFD codes and the 

accomplished work includes:  

i. Performing spectral analysis of turbulent single and two-phase bubbly DNS data in 

different geometries to show that that the two-phase spectra are similar in different 

geometries and using a novel method to show that bubble wakes modulate the TKE 

spectrum.  

ii. Improving and developing the 1D SCTM as a LRN type turbulence model and testing the 

SCTM in 1D FlexPDE with validation data from DNS.  
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iii. Formulating the SCTM as a 3D turbulence closure option to be used in 3D M-CFD codes 

and implementing the model into NPHASE-CMFD.  

iv. Performing verification and validation testing of the SCTM in NPHASE-CMFD for single 

and two-phase flow scenarios.  
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8. RECOMMENDATIONS FOR FUTURE WORK 

The presented spectral analysis and development of the SCTM for two-phase flows provides 

a foundation for the use of DNS data to improve turbulence modeling approaches and the continued 

use of the SCTM in M-CFD code packages. A discussion of recommendations for future work is 

provided with regards to both spectral analysis and the SCTM.  

8.1 Future Work Recommendations for Spectral Analysis  

 The archive of DNS data will continue to be expanded as computational capabilities allow 

simulation of larger geometries, higher Reynolds numbers, higher void fractions, etc. The spectral 

analysis of these simulations can be performed with the presented spectral analysis technique to 

provide the TKE spectrum and comparisons of the spectra should be completed as a function of 

these different simulation parameters. However, future work with DNS datasets could focus on data 

mining to provide more exact terms for use with the SCTM. For example, it could be possible to 

deduce further information on how bubbles influence the liquid turbulence to improve the 

formulation of the spectral weighting factor. An analysis toolkit could be formulated for SCTM 

validation where DNS is performed and spectrally analyzed in a way that provides data for exact 

comparison with the simulation from the SCTM in a RANS M-CFD package. In this way, the SCTM 

could be validated with DNS data not only through mean flow parameters, the TKE spectrum, and 

the TKE budget but also through more advanced statistics such as the BIT source term in the spectral 

and spatial domains.  

8.2 Future Work Recommendations for the SCTM  

 The presented work has developed the SCTM as a turbulence closure option that can be 

used in M-CFD codes for simulation of turbulent single and two-phase bubbly flows. In particular, 

the SCTM can model an arbitrary number of dispersed phase groups and, when coupled to a code 

such as NPHASE-CMFD, separate mass and momentum equations are solved for each dispersed 

phase group. This flexibility allows the SCTM to be used as an advanced spectral turbulence model 

moving forward for high-fidelity RANS simulations of monodispersed and polydispersed two-phase 

flows that is expected to be valid for higher void fraction distributions than can be captured with 
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traditional two-equation turbulence models. The SCTM is a LRN turbulence model and therefore 

eliminates the need for unknown two-phase law of the wall type boundary conditions. Future work 

with the SCTM could focus on a few areas for improvement including:  

i. Finalizing the constants in the model formulation as a more extensive library of test 

cases is produced. The results shown here are acceptable and have been produced with 

no modification of model constants but could possibly be improved if model constants 

are dependent on mean flow parameters such as what is traditionally done with LRN 

two-equation turbulence models. An extensive sensitivity analysis to model constants 

could accompany this endeavor.  

ii. Take advantage of state-of-the-art computing capabilities to decrease the 

computational time required for SCTM simulations. Multithreading of the SCTM is 

possible since the solution of the bin TKE values can be performed simultaneously. With 

the emerging use of graphics processing units (GPUs) for computation the SCTM could 

be highly scalable where, at each iteration, the bin TKE values could be solved across an 

array of GPUs.  

iii. Perform more validation tests with experimental and DNS data. Turbulence models are 

improved as more users of the model provide feedback of model performance in 

numerous flow scenarios. The SCTM could be compared with various experimental tests 

and DNS data to gauge model performance. For example, the SCTM could be tested in 

classical complex turbulence model validation tests such as flow over backwards facing 

step as well as more nuclear focused validation tests such as polydispersed bubbly two-

phase flow around an obstacle.  

The recommendations for future work provide an avenue for the SCTM to become a widely 

validated turbulence closure option for improved multiphase flow predictions when compared to 

traditional two-equation RANS turbulence models. The recommendations also indicate how data 

analysis of large DNS datasets can improve lower fidelity simulations such as those with RANS 

turbulence models. A schematic roadmap for the development is presented in Figure 8.1 with 

recommendations for future work shown in red. The presented work has developed the SCTM so 

that it can be used in M-CFD code packages with physical predictions of two-phase flow.  
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Figure 8.1. Roadmap for SCTM development. Future work recommendations are shown in red.   
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10.1 Appendix A 

Selected algorithms from the spectral analysis Fortran program are presented.  

10.1.1 Handling the Defective Two-Phase Signal 

The algorithm for handling the defective two-phase signal based on user input is presented 

here: 

 

509     do ir=1,Nrun  

510     do ih=1,Nhom 

511     do j=1,Ntime 

512      if(phase(m,j-1,ih,ir).gt.0.5.and.phase(m,j,ih,ir).lt.0.5) then  

513       startj= j  

514      else if(phase(m,j,ih,ir).lt.0.5.and.phase(m,j+1,ih,ir).gt.0.5) then  

515       endj= j  

516       jcount= endj-startj      

517       k=0 

518       do while(k.lt.jcount+1) 

519        if(defectflag.eq.1) then   

520        !mean insert  

521        uinst(m,startj+k,ih,ir)= umean(m)  

522        vinst(m,startj+k,ih,ir)= vmean(m)   

523        winst(m,startj+k,ih,ir)= wmean(m)  

524        else if(defectflag.eq.2) then   

525        !interpolation 

526        uinst(m,startj+k,ih,ir)= uinst(m,startj-1,ih,ir) + 

(uinst(m,endj+1,ih,ir)-uinst(m,startj-1,ih,ir))*  & 

527         ((Ctime(startj+k) - Ctime(startj-1))/(Ctime(endj+1) - Ctime(startj-1)))  

528        vinst(m,startj+k,ih,ir)= vinst(m,startj-1,ih,ir) + 

(vinst(m,endj+1,ih,ir)-vinst(m,startj-1,ih,ir))*  & 

529         ((Ctime(startj+k) - Ctime(startj-1))/(Ctime(endj+1) - Ctime(startj-1)))  

530        winst(m,startj+k,ih,ir)= winst(m,startj-1,ih,ir) + 

(winst(m,endj+1,ih,ir)-winst(m,startj-1,ih,ir))*  & 

531         ((Ctime(startj+k) - Ctime(startj-1))/(Ctime(endj+1) - Ctime(startj-1)))  

532        else if(defectflag.eq.3) then  

533        !hold value before defect 

534        uinst(m,startj+k,ih,ir)= uinst(m,startj-1,ih,ir) 

535        vinst(m,startj+k,ih,ir)= vinst(m,startj-1,ih,ir) 

536        winst(m,startj+k,ih,ir)= winst(m,startj-1,ih,ir) 

537        end if !defectflag  

538        k=k+1 

539       end do  

540 

541      end if  

542     end do 

543     end do 

544     end do 
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10.1.2 FFT 

The algorithm for computing the FFT and the resulting energy spectrum in each segment 

used for Bartlett’s method is presented here:  

 

551     !calculate the fluctuating velocities and TKE 

552     write(*,*) 'Calculating flucutating velocities and TKE for yplus:', 

yplus(ypoint(m)) !yplusfrac(m)  

553      do ir=1,Nrun     

554       do j=1,Ntime 

555        do ih= 1,Nhom 

556 

557         !handling the defect is taken care of above with choice in input file  

558         uprime(m,j,ih,ir)= uinst(m,j,ih,ir) - umean(m)       !x direction 

fluctuating velocity  

559         vprime(m,j,ih,ir)= vinst(m,j,ih,ir) - vmean(m)       !y direction 

fluctuating velocity  

560         wprime(m,j,ih,ir)= winst(m,j,ih,ir) - wmean(m)       !z direction 

fluctuating velocity  

561 

562         !TKE for the whole data sequence 

563         TKE(m,j,ih,ir)= 0.5D0*(uprime(m,j,ih,ir)*uprime(m,j,ih,ir) + 

vprime(m,j,ih,ir)*vprime(m,j,ih,ir)    & 

564          + wprime(m,j,ih,ir)*wprime(m,j,ih,ir))  

565          

566  

567 

568        end do !ih  

569       end do !j  

570      end do !ir  

571 

572     !ASSEMBLING THE PERIODOGRAM AND FINDING ENERGY SPECTRUM  

573     !split up the whole data sequence into the segments of equal length before 

performing FFT 

574      do ir=1,Nrun 

575       do ih=1,Nhom 

576        do k=1,segments 

577         do mseg=1,lsegment 

578 

579          pxx(m,k,mseg,ih,ir)= TKE(m,(mseg+(k-1)*lsegment),ih,ir) 

580 

581         end do !mseg 

582        end do !k  

583       end do !ih 

584      end do !ir  

585 

586      

587     !perform the FFT at the different j locations for each segment  

588     write(*,*) 'Performing FFT for yplus value:', m  

589     FFTlength= lsegment   

590      do ir=1,Nrun 

591       do ih=1,Nhom 

592        do k=1,segments 

593 

594         status = DftiCreateDescriptor(MYFFT,DFTI_DOUBLE,DFTI_REAL,1,FFTlength) 

595         status = DftiCommitDescriptor(MYFFT) 



 

158 
 

596         status = DftiComputeForward(MYFFT,pxx(m,k,:,ih,ir)) 

597         status = DftiFreeDescriptor(MYFFT) 

598 

599        end do !k  

600       end do !ih 

601      end do !ir      

602 

603      !square the periodogram at each point and divide by segment length  

604      do ir=1,Nrun 

605       do ih=1,Nhom 

606        do k=1,segments 

607         do mseg=1,lsegment+2 

608 

609          pxx(m,k,mseg,ih,ir)= (pxx(m,k,mseg,ih,ir)**2.0D0)/real(lsegment)  

610 

611         end do !mseg 

612        end do !k  

613       end do !ih 

614      end do !ir  

615      

616      !average over the number of segments  

617      do ir=1,Nrun 

618       do ih=1,Nhom 

619        do mseg=1,lsegment+2 

620        pbart(m,mseg,ih,ir)= 0.0D0  

621         do k=1,segments 

622 

623          !sum over the segments  

624          pbart(m,mseg,ih,ir)= pbart(m,mseg,ih,ir) + pxx(m,k,mseg,ih,ir) 

625 

626         end do !k  

627        end do !mseg 

628       end do !ih  

629      end do !ir  

630 

631      do ir=1,Nrun 

632       do ih=1,Nhom 

633        do mseg=1,lsegment+2 

634 

635          !divide out the number of segments  

636          pbart(m,mseg,ih,ir)= pbart(m,mseg,ih,ir)/real(segments)  

637 

638        end do !mseg 

639       end do !ih  

640      end do !ir  

641      

642     !get the magnitude of the energy spectrum from real and imag parts of FFT 

643     do ir=1,Nrun  

644      do ih=1,Nhom 

645       do mseg=1,lsegment/2 

646        re= pbart(m,2*mseg+1,ih,ir)             !real part of 

FFT 

647        im= pbart(m,2*mseg+2,ih,ir)             !imaginary part 

of FFT 

648        magrun(m,mseg,ih,ir)= sqrt(re*re + im*im)     !FFT magnitude  

649       end do !mseg 

650      end do !ih 

651     end do !ir 

652 
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653     !sum over the run number and divide it out 

654     do ih=1,Nhom 

655      do mseg=1,lsegment/2 

656      maghom(m,mseg,ih)= 0.0D0  

657       do ir=1,Nrun  

658        maghom(m,mseg,ih)= maghom(m,mseg,ih) + magrun(m,mseg,ih,ir)  

659       end do !ir  

660        maghom(m,mseg,ih)= maghom(m,mseg,ih)/real(Nrun)  

661      end do !mseg  

662     end do !ih  

663 

664     !sum over the homogeneous direction and divide it out  

665     do mseg=1,lsegment/2 

666     mag(m,mseg)= 0.0D0  

667      do ih=1,Nhom 

668       mag(m,mseg)= mag(m,mseg) + maghom(m,mseg,ih)  

669      end do  

670       mag(m,mseg)= mag(m,mseg)/real(Nhom)  

671     end do 
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10.2 Appendix B 

The NPHASE-CMFD iteration process with the SCTM is shown in more detail in Figure 10.1 

with the user routines detailed in red. More extensive routines to handle the SCTM are called from 

the standard user routines where access is permitted to the NPHASE-CMFD code and those routines 

are discussed throughout the remainder of Appendix B.  

 

 

 

Figure 10.1. NPHASE-CMFD iteration process with SCTM implemented. 

 

10.2.1 NPHASE-CMFD Routine – user_initialize.c  

 Table 10.1 provides further information on the NPHASE-CMFD routine user_initialize.c. Note 

that the routines for mean flow gradients, wall coordinates, homogeneous dissipation, 



 

161 
 

inhomogeneous dissipation, and the bin eddy viscosities are called from this routine only for 

numerical stability purposes on the first iteration but will be discussed further in § 10.2.2.  

 

Table 10.1. Information for NPHASE-CMFD routine user_initialize.c.  

Routine user_initialize.c 

Purpose 
SCTM constants and parameters are input by the user and data storage 
arrays are defined. 

Calls Routines 

beta_transfer 
bin_boundaries 
eddy_viscosity 
homogeneous_dissipation 
inhomogeneous_dissipation 
mean_gradients 
set_inflow 
set_tke_IC 
spectral_bubble_weight 
wall_coordinates 

 

 The entire user_initialize.c routine is shown here. For routines called from user_initialize.c 

only relevant algorithms will be shown.   

001 #include <stdlib.h> 

002 #include "nphase_struct.h" 

003 #include <math.h> 

004 #include "definitioans.h" 

005 #include <stdio.h> 

006 

007 extern struct data var; 

008 extern struct boundary_patch partition ; 

009 

010 //requested outputs  

011 // 1 = print | 0 = quiet 

012 int     print_mvy= 1 ;           //mean velocity files (y) 

013 int     print_mvx= 0 ;          //mean velocity files (x) 

014 int     print_ek = 1 ;           //TKE density files  

015 int     print_ba = 1 ;           //beta-j transfer weights  

016 int     print_ka = 1 ;          //bin boundary information  

017 int     print_kb = 0 ;           //TKE in each bin  

018 int     print_su = 0 ;           //bin source terms  

019 int     print_st = 1 ;           //total source terms  

020 int     print_gb = 1 ;           //spectral bubble weights (bin 

distribution)  

021 int     print_ds = 1 ;           //dispersed TKE source terms  

022 

023 //flags  

024 int iSCTMlowhigh  = 0 ;          //hi(1)/lo(0) Re option   | (right now no 

wall functions)  

025 int variablerelax = 1 ;          //option to use the variable relaxation 

factor based on wave number 
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026 double  rfsmax    = 0.9 ;        //maximum value for variable relaxation 

factor  

027 

028 //SCTM model constants defined here  

029 int     kcntltot ;                //total number of k controlled nodes  

030 double *Species_Node_Old;  

031 

032 //wavenumber boundaries  

033 double wnleft =  1.0 ;           //left wavenumber boundary  

034 double wnright = 7.32e4 ;        //right wavenumber boundary  

035 double *kappa ;                  //bin boundary  

036 double *kappa_center ;           //center of wavenumber bin  

037 double *kappa_width  ;           //width of wavenumber bin   

038 

039 //homogeneous dissipation 

040 double *homogeneous_dissipation_node ;   //homogeneous dissipation pointer 

041 

042 //inhomogeneous dissipation constants  

043 double c_inhom = 0.15   ;                 //constant in exponential 

damping term 

044 double *inhomogeneous_dissipation_node;  //inhomogeneous dissipation pointer 

045 double *total_tds_node ;                  //total dissipation for use 

in eddy_viscosity.c 

046 

047 //transfer term constants 

048 double sigma_transfer = 40.0 ;  //sigma constant in transfer weight  

049 double sigma0 = 0.225 ;           //transfer spectral width  

050 double *betaj ;                   //beta transfer weight  

051 double *transfer_node ;           //transfer for bin-m on node pointer 

052 

053 //production term and turbulent viscosity constants 

054 double CH = 0.40 ;               //nu_T multiplier  

055 double betanu = 0.75 ;           //Heisenberg beta in nu_T calculation  

056 double NCM = -1.6 ;              //NCM in f_y damping function  

057 double SCM = -125.0 ;            //SCM in f_s damping function  

058 double *production_node ;       //production for bin-m on node pointer  

059 double *turbulent_viscosity ;   //turbulent viscosity for bin-m on node pointer  

060 int    cliptotal ;                //total nodes where turbulence has 

been clipped   

061 

062 //gradient storage  

063 double *gradient_u ;             //x-direction velocity gradient  

064 double *gradient_v ;             //y-direction velocity gradient 

065 double *gradient_w ;             //z-direction velocity gradient 

066 

067 //wall coordinate storage  

068 double *u_tau ;                  //friction velocity  

069 double *y_p ;                    //y plus  

070 

071 //multiphase storage 

072 int    bubble_source_model = 1  ;    //bubble model 1) LAHEY;  2) RK  

073 int    wm = 4 ;                       //weighting model 

074 double *gamma_bubble ;               //spectral bubble weight function 

per group 

075 double *phi_bubble   ;                //total bubble source term   

076 double *bubble_source_node ;         //bubble source term on node (Psi_m)  

077 

078  int user_initialize() 

079 { 
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080 /*--------------------------------------------------- 

081     routine to initialize variables and set boundary conditions 

082 

083     called from: 

084     initialize 

085 

086 ---------------------------------------------------*/ 

087 

088     int *nspecies= var.nspecies ;  

089     int *nnode= var.nnode ;  

090     int *iter=var.iter ; 

091     int *nfield=var.nfield ;  

092 

093     real *tds=var.tds ;  

094     real *rfs=var.rfs ;  

095     real *walldistance=var.walldistance ;    

096     real *wallshearappor=var.wallshearappor ; 

097 

098     int inode ;  

099     int ibf ;  

100     int bin ;  

101     int carrier_field ;  

102     int nstridebintds ;  

103     int j ;  

104     int nstridebin_cntl ;  

105     int nstridebin ;  

106 

107     double wd ;  

108 

109     entered("user_initialize") ; 

110      

111     //calculate the bin boundaries  

112     kappa=           (double *)malloc((*nspecies + 1)*sizeof(double)) ;  

//allocate space for kappa 

113     kappa_center=    (double *)malloc((*nspecies + 1)*sizeof(double)) ;  

//allocate space for center of bin 

114     kappa_width=     (double *)malloc((*nspecies + 1)*sizeof(double)) ;  

//allocate space for width of bin  

115     bin_boundaries() ;                                                  //call 

bin boundary function  

116 

117     //set the SCTM bin initial conditions 

118         //OVERRIDES THE INPUT FILE   

119         if(*iter == 0) set_tke_IC() ;    

120 

121     //set the inflow with the file 

122         // 0 - set the inflow 

123         // 1 - set the inflow and initialize everywhere 

124         set_inflow(1) ; 

125 

126     //calculate the beta transfer weights  

127     betaj=      (double *)malloc(*nspecies *sizeof(double)) ;   //allocate 

space for betaj  

128     beta_transfer()  ;                                          //calculate 

betaj in function  

129 

130     //allocate the global pointers  

131     homogeneous_dissipation_node=       (double *)malloc(*nnode* 

*nspecies*sizeof(double)) ;  
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132     inhomogeneous_dissipation_node=    (double *)malloc(*nnode* 

*nspecies*sizeof(double)) ; 

133     transfer_node=                    (double *)malloc(*nnode* 

*nspecies*sizeof(double)) ;   

134     production_node=                  (double *)malloc(*nnode* 

*nspecies*sizeof(double)) ; 

135     turbulent_viscosity=              (double *)malloc(*nnode* 

*nspecies*sizeof(double)) ; 

136     total_tds_node=                   (double *)malloc(*nnode*           

       sizeof(double)) ; 

137     Species_Node_Old=                 (double *)malloc(*nnode* 

*nspecies*sizeof(double)) ; 

138     gradient_u=                       (double *)malloc(*nnode* 3*        

       sizeof(double)) ;  

139     gradient_v=                       (double *)malloc(*nnode* 3*        

       sizeof(double)) ; 

140     gradient_w=                       (double *)malloc(*nnode* 3*                 

sizeof(double)) ; 

141     u_tau=                            (double *)malloc(*nnode*                      

sizeof(double)) ; 

142     y_p=                              (double *)malloc(*nnode*                      

sizeof(double)) ; 

143     gamma_bubble=                     (double *)malloc((*nfield-1)* 

(*nspecies)*sizeof(double)) ; 

144     phi_bubble=                       (double *)malloc(*nnode* 

(*nfield-1)*sizeof(double)) ; 

145     bubble_source_node=              (double *)malloc(*nnode* (*nfield-

1)* *nspecies*sizeof(double));  

146 

147 

148     //multiphase - choose a model for bubble weight contribution to bins 

149         //  1)  contribution to single bin at bubble length scale  

150         //  2)  2*beta-j (normal) distribution to wave numbers >= bubble length 

scale  

151         //  3)  kappa^slope for wave numbers >= bubble length scale  

152         //  4)  beta-j*kappa^slope for kappa > bubble length scale <= 

kappa^slope  

153         if(*nfield>1){ 

154          spectral_bubble_weight(wm) ; 

155         } 

156 

157 

158     //intialize the total tds  

159     carrier_field=1 ; 

160     if(*iter == 0){ 

161         for(inode=0; inode<=*nnode-1; ++inode){ 

162         LaminarViscosity_InternalNode(inode,carrier_field)= 

InputFileViscosity(carrier_field) ;  

163         Density_InternalNode(inode,carrier_field)= 

InputFileDensity(carrier_field) ; 

164              *(total_tds_node+inode)= 0.0 ; 

165          for(bin=1; bin<=*nspecies; ++bin){ 

166           nstridebin= (*nnode)*(bin-1) ; 

167           *(inhomogeneous_dissipation_node +inode+nstridebin)= 0.0 ;  

168           *(homogeneous_dissipation_node   +inode+nstridebin)= 0.0 ;  

169           *(transfer_node                   +inode+nstridebin)= 0.0 ;  

170           *(production_node                 +inode+nstridebin)= 0.0 ;  

171           *(turbulent_viscosity          +inode+nstridebin)= 0.0 

; 
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172           *(u_tau                            +inode           )= 0.0 

;  

173           *(y_p                              +inode           )= 0.0 

;  

174          } 

175         } 

176     } 

177 

178     //initialize mean gradients and wall coordinates  

179     mean_gradients(carrier_field) ; 

180     wall_coordinates(carrier_field) ; 

181 

182     for(bin=1; bin<=*nspecies; ++bin){ 

183      homogeneous_dissipation(carrier_field,bin) ; 

184      inhomogeneous_dissipation(bin+8,carrier_field,bin) ; 

185     } 

186 

187      //get total tds based off initialization  

188          for(inode=0; inode<= *nnode-1; ++inode){ 

189           *(total_tds_node+inode)= 0.0 ; 

190           for(j=1; j<=*nspecies; ++j){ 

191            nstridebintds= (*nnode)*(j-1) ; 

192  *(total_tds_node+inode) += 

*(homogeneous_dissipation_node+inode+nstridebintds)+          

*(inhomogeneous_dissipation_node+inode+nstridebintds) ;  

193           } //j loop 

194          } // inode loop            

195 

196     //initialize the bin eddy viscosities  

197     for(bin=1; bin<=*nspecies; ++bin){ 

198      eddy_viscosity(carrier_field,bin) ; 

199     } 

200 

201     //initiate the old species values as the initial  

202      for(j=1; j<=*nspecies; ++j){ 

203       nstridebin_cntl= (*nnode)*(j-1) ; 

204       for(inode=0; inode<= *nnode-1; ++inode){  

205        *(Species_Node_Old+inode+nstridebin_cntl)= Species_InternalNode(inode,j) 

;  

206       } //inode 

207      } //j 

208      

209     exiting("user_initialize") ; 

210 

211     return 0 ;  

212      

213 } 

10.2.1.1 Routine – beta_transfer.c 

Relevant algorithms from beta_transfer.c routine to calculate the transfer weights.  

35      entered("beta_transfer") ; 

36 

37      betaprime = tempralloc(*nspecies) ;  

38 

39      //calculate beta for m>j, stores betaj from bin(1) to bin(N-1) 

40      for(jbin=1; jbin<= *nspecies - 1 ; ++jbin) {   

41       *(betaprime+jbin) = 0.5*(1.0/(sigma0*sqrt(2.0*pi)))* 
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42       (exp(-(pow((log10(kappa[*nspecies-1])-

log10(kappa[jbin])),2.0)/(2.0*sigma0*sigma0))) +  

43       (exp(-(pow((log10(kappa[*nspecies])-

log10(kappa[jbin])),2.0)/(2.0*sigma0*sigma0)))))*  

44       (log10(kappa[*nspecies-jbin]) - log10(kappa[*nspecies-jbin-1]))   ;     

45      } 

46 

47      //NOTE**** not storing the negative of beta-j since it is equal 

48 

49      //set up global beta so it is consistent with number of bins away from bin-

m  

50      for(jbin=1; jbin<= *nspecies - 1; ++jbin){ 

51       *(betaj + jbin)= *(betaprime+*nspecies - jbin) ;  

52      } 

53 

54      temprdealloc(betaprime);  

55 

56      exiting("beta_transfer") ; 

10.2.1.2 Routine – bin_boundaries.c 

Relevant algorithms from bin_boundaries.c routine to calculate the wave number 

boundaries.  

31      entered("bin_boundaries") ; 

32 

33      ///////////////////////////////////////////////////////////////////// 

34      //          wavenumber boundary calculations                                     

// 

35      ///////////////////////////////////////////////////////////////////// 

36 

37      //calculate the spectral resolution  

38      lambda=  exp((log(wnright)-log(wnleft))/ (double)*nspecies) ;  

 //spectral resolution, lambda 

39       

40      //loop over the number of bins to get boundaries  

41      for(iwn=0 ; iwn<= *nspecies ; ++iwn) { 

42          *(kappa + iwn)= wnleft*pow(lambda,(double)iwn) ;     

43      }  

44 

45      //loop to find bin widths and centers  

46      for(iwn=1; iwn<= *nspecies  ; ++iwn) { 

47          *(kappa_center + iwn)= 0.5*(*(kappa+iwn) + *(kappa+iwn-1)) ; //bin 

centers 

48          *(kappa_width + iwn)= *(kappa+iwn) - *(kappa+iwn-1) ;        

 //bin widths     

49      }  

50 

51      ///////////////////////////////////////////////////////////////////// 

52 

53      exiting("bin_boundaries") ; 
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10.2.1.3 Routine – set_inflow.c 

The details of this routine are not included since the set_inflow.c routine existed from 

previous use with NPHASE-CMFD. A simple alteration of the existing routine was performed to 

provide output for the chemical species equations storage from NPHASE-CMFD.  

10.2.1.4 Routine – spectral_bubble_weight.c 

Relevant algorithms from spectral_bubble_weight.c routine to calculate the spectral bubble 

weighting factor (𝛾𝑚𝑖
) using the model chosen from user_initialize.c.  

042     entered("spectral_bubble_weight") ;  

043 

044     //print an output message  

045     printf("\n") ; 

046     printf("**************************************************************\n") 

; 

047     printf("Multiphase run! setting bubble contributions using \n") ;  

048     printf(" bubble weight model # \t%i\n",wm) ;  

049     printf("**************************************************************\n") 

; 

050     printf("\n") ; 

051 

052     slope = -1.0/4.0 ;  

053 

054     //loop over the dispersed fields - bubble groups  

055     for(ifield=1; ifield<=*nfield-1; ++ifield){ 

056      bubble_group    = ifield ;  

057      dispersed_phase = ifield + 1 ; 

058      db              = BubbleDiameter_InternalNode(10,dispersed_phase) ;   

059      kappa_bubble    = 1.0/db ;   

060      nstride         = *nspecies* (bubble_group-1) ;  

061 

062 

063      //find characteristic bin for current bubble size  

064      for(j=1; j<= *nspecies; ++j){ 

065       if(kappa_bubble >= *(kappa+j-1) && kappa_bubble <= *(kappa+j) ) { 

066        dbbin = j ;  

067       } 

068      }//j  

069            

070       

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

071       //                BUBBLE WEIGHTING MODEL #1                 

       // 

072       

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

073       if(wm == 1){ 

074        for(j=1; j<= *nspecies; ++j){ 

075         if(j==dbbin){ 

076          *(gamma_bubble + nstride + j) = 1.0  ; 

077         } 
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078         else{ 

079          *(gamma_bubble + nstride + j) = 0.0 ;  

080         }      

081        }//j 

082       }//wm = 1  

083       

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

084 

085       

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

086       //                            BUBBLE WEIGHTING MODEL #2                           

       // 

087       

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

088       else if(wm == 2){ 

089        for(j=1; j<= *nspecies; ++j){ 

090         if(j<dbbin){ 

091          *(gamma_bubble + nstride + j) = 0.0 ; 

092         } 

093         else if(j>=dbbin){ 

094          *(gamma_bubble + nstride + j) = 2.0* *(betaj+j-dbbin+1) ;  

095         }  

096        }//j 

097       }//wm = 2 

098       

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

099 

100      

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

101      //                            BUBBLE WEIGHTING MODEL #3                           

      // 

102      

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/  

103      else if(wm == 3){ 

104        sum = 0.0 ;  

105            for(j=1; j<= *nspecies; ++j){ 

106             if(j<dbbin){ 

107              *(gamma_bubble + nstride + j) = 0.0 ; 

108             } 

109             else if(j>=dbbin){ 

110              *(gamma_bubble + nstride + j) = pow(*(kappa_center+j),slope) ;  

111             } 

112         sum += *(gamma_bubble + nstride + j) ;  

113            }//j 

114 

115            for(j=1; j<= *nspecies; ++j){ 

116         *(gamma_bubble + nstride + j) /= sum ;   

117        }//j 

118      }//wm = 3  

119      

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

120 
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121      

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

122      //                            BUBBLE WEIGHTING MODEL #4                           

      // 

123      

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

124      else if(wm == 4){ 

125       sum = 0.0 ;  

126           for(j=1; j<= *nspecies; ++j){ 

127            if(j<dbbin){ 

128         *(gamma_bubble + nstride + j) = *(betaj+dbbin-j) * 

pow(*(kappa_center+dbbin),slope) ;   

129        }//j<dbbin 

130        else if(j>=dbbin){ 

131         *(gamma_bubble + nstride + j) = pow(*(kappa_center+j),slope) ; 

132        }//j>=dbbin 

133        sum += *(gamma_bubble + nstride + j) ; 

134       }//j 

135 

136           for(j=1; j<= *nspecies; ++j){ 

137            *(gamma_bubble + nstride + j) /= sum ; 

138           }//j 

139      }//wm=4 

140      

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++/

/ 

141 

142     } //ifield  

143 

144     exiting("spectral_bubble_weight") ; 

10.2.2 NPHASE-CMFD Routine – user_source_species.c  

Table 10.2. provides further information on the NPHASE-CMFD routine 

user_source_species.c. Note that some routines such as the calculation of the mean flow gradients 

and the wall coordinates are only called during the first bin TKE solve to eliminate computational 

overhead since mean flow gradients are not altered during the iteration on NPHASE-CMFD chemical 

species equations.  
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Table 10.2. Information for NPHASE-CMFD routine user_source_species.c.  

Routine user_source_species.c 

Purpose Calculate the RHS of each bin TKE equation and set boundary conditions.  

Calls Routines 

bubble_model (if m = 1 and multiphase simulation) 
bubble_source (if multiphase simulation)  
eddy_viscosity  
homogeneous_dissipation 
inhomogeneous_dissipation 
mean_gradients (if m = 1) 
prod  
transfer 
wall_coordinates (if m = 1) 

 

The entire user_source_species.c routine is shown here. For routines called from 

user_source_species.c only relevant algorithms will be shown.   

001 #include "nphase_struct.h" 

002 #include <math.h> 

003 #include "definitions.h" 

004 #include <stdio.h> 

005 extern struct data var; 

006 extern struct boundary_patch partition ; 

007 extern struct boundary_patch wall ; 

008 

009 //global definitions 

010 extern double *homogeneous_dissipation_node ; 

011 extern double *inhomogeneous_dissipation_node ; 

012 extern double *transfer_node ; 

013 extern double *turbulent_viscosity ;  

014 extern double *production_node ; 

015 extern double *kappa_center ;  

016 extern double *total_tds_node ;  

017 extern double *Species_Node_Old ;  

018 extern double *bubble_source_node ;  

019 extern int    variablerelax ;  

020 extern double rfsmax ;  

021 

022 int user_source_species(int ivar) 

023 { 

024 /*--------------------------------------------------- 

025     user routine for species source/sink terms 

026 

027     tailored to the SCTM transport model  

028     begin work: April, 2015 

029      

030     called from: 

031     species 

032 ---------------------------------------------------*/ 

033 

034     int *nspecies=var.nspecies ;         //number of species (i.e. k) eqns 

035     int *nnode=var.nnode ;   

036     int *nfield=var.nfield ;  

037      

038     real *tke=var.tke ;  
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039     real *tds=var.tds ;  

040     real *small=var.small ;  

041     real *large=var.large ;  

042     real *diff=var.diff ;  

043     real *walldistance=var.walldistance ; 

044     real *rfs=var.rfs ;  

045 

046     int inode ;  

047     int bin ;                  //current bin number  

048     int carrier_field ;  

049     int j ;  

050     int nstridebin ;  

051     int nstridebintds ;  

052     int nstridebin_old ;  

053     int nstridebubble ;  

054     int ibf ;        

055     int ifield ;  

056 

057     double gamma ;  

058     double wallarea ;  

059     double wd ;  

060 

061     double *tempralloc(),*temprdealloc() ; 

062     double *dispersed_source ;  

063 

064     entered("user_source_species") ; 

065 

066     dispersed_source = tempralloc(*nnode) ; 

067 

068     // species number 

069     bin = ivar - 8; 

070     carrier_field = 1 ; 

071     nstridebin= (*nnode)*(bin-1) ;  

072     if(bin == 1) { 

073         mean_gradients(carrier_field) ; 

074         wall_coordinates(carrier_field) ;  

075         if(*nfield > 1){     

076          for(ifield=1; ifield<= *nfield-1; ++ifield){ 

077           bubble_model(ifield) ;   

078          } //ifield  

079         } //if nfield>1 

080     }    

081 

082     LaminarPrandtlNumber(ivar,1)   = 1.0 ;  

083     TurbulentPrandtlNumber(ivar,1) = 0.5 ;  

084 

085     //variable relaxation factor  

086     if(variablerelax == 1) { 

087      *(rfs+bin-1) = rfsmax/ sqrt( *(kappa_center+bin) ) ; 

088     } 

089 

090     //*********************************************************************** 

091     //  SOURCE TERMS CALL                                                   

               *  

092     //*********************************************************************** 

093 

094     //transfer routine 

095     transfer(carrier_field,bin) ; 

096 
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097     //inhomogeneous dissipation routine 

098     inhomogeneous_dissipation(ivar,carrier_field,bin) ; 

099 

100     //homogeneous dissipation routine  

101     homogeneous_dissipation(carrier_field,bin) ;  

102 

103     //update total dissipation  

104     for(inode=0; inode<= *nnode-1; ++inode){ 

105      *(total_tds_node+inode)= 0.0 ; 

106      for(j=1; j<=*nspecies; ++j){ 

107       nstridebintds= (*nnode)*(j-1) ; 

108       *(total_tds_node+inode) += 

*(homogeneous_dissipation_node+inode+nstridebintds) 

109         + *(inhomogeneous_dissipation_node+inode+nstridebintds) ; 

110      } //j loop  

111     }//inode loop  

112 

113     //eddy viscosity routine  

114     eddy_viscosity(carrier_field,bin) ; 

115 

116     //production routine  

117     prod(ivar,carrier_field,bin) ;  

118 

119     //bubble source term  

120     if(*nfield>1){ 

121      for(ifield=1; ifield<= *nfield-1; ++ifield){ 

122       bubble_source(ifield,bin) ;  

123      }//ifield 

124     }    

125 

126     //formulate the species source term  

127     for(inode=0; inode<= *nnode-1; ++inode){ 

128 

129      if(*nfield>1){ 

130       *(dispersed_source + inode) = 0.0 ;  

131       for(ifield=1;ifield<= *nfield-1; ++ifield){ 

132        nstridebubble = *nnode*(bin-1) + *nnode* *nspecies* (ifield-1) ;  

133        *(dispersed_source + inode) += *(bubble_source_node + nstridebubble + 

inode) ;     

134        // *(dispersed_source + inode) += 0.0 ;  

135       }//ifield 

136      }//nfield>1  

137 

138     if(*nfield ==1 ){    

139          SourceTerm_Species(inode,carrier_field) = 

140           - *(inhomogeneous_dissipation_node +inode+nstridebin) 

141           - *(homogeneous_dissipation_node     +inode+nstridebin) 

142           + *(transfer_node                   +inode+nstridebin) 

143           + *(production_node                 +inode+nstridebin) ;  

144      } 

145      else{   

146      SourceTerm_Species(inode,carrier_field) =   

147      - *(inhomogeneous_dissipation_node+inode+nstridebin)  

    *VolumeFraction_InternalNode(inode,carrier_field)     

148       - *(homogeneous_dissipation_node  +inode+nstridebin) 

             

*VolumeFraction_InternalNode(inode,carrier_field) 

149       + *(transfer_node                +inode+nstridebin) 

*VolumeFraction_InternalNode(inode,carrier_field) 
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150       + *(production_node           +inode+nstridebin) 

*VolumeFraction_InternalNode(inode,carrier_field) 

151       + *(dispersed_source         +inode           )      

*VolumeFraction_InternalNode(inode,carrier_field) ; 

152      } 

153 

154      SourceTerm_Species(inode,carrier_field) *= NodeVolume_InternalNode(inode)* 

                                     

Density_InternalNode(inode,carrier_field) ;  

155      

156      //store the old species value  

157      if(bin == 1){ 

158       for(j=1;j<=*nspecies; ++j){  

159        nstridebin_old = (*nnode)*(j-1) ;  

160        *(Species_Node_Old+inode+nstridebin_old)= Species_InternalNode(inode,j) 

;  

161       }  

162      }  

163      

164     } //end loop over nodes      

165 

166     //*********************************************************************** 

167     //  Dirichlet boundary conditions for species // wall boundary BCs      

             *  

168     //*********************************************************************** 

169     for(ibf=0; ibf<=NumberFaces_WallBoundary-1; ++ibf){ 

170         TurbulentKineticEnergy_WallBoundary(ibf,carrier_field)  = 0.0 ; 

171         UVelocity_WallBoundary(ibf,carrier_field)                = 

0.0 ; 

172         VVelocity_WallBoundary(ibf,carrier_field)         = 0.0 ; 

173         WVelocity_WallBoundary(ibf,carrier_field)         = 0.0 ; 

174         Species_WallBoundary(ibf,bin)                  = 0.0 ;  

175         inode=  AdjacentNodeNumber_WallBoundary(ibf) ;  

176         wallarea=   Area_WallBoundary(ibf) ;  

177         wd=         *(walldistance+inode); 

178 

179      //note the hardcode of Schmidt numbers  

180      gamma= (LaminarViscosity_InternalNode(inode,carrier_field) / 1.0 )  

              + ( *(turbulent_viscosity+inode+nstridebin) / 0.5 ) ; 

181      NodeCoefficientMatrix_Species(inode,carrier_field) -=  

Density_InternalNode(inode,carrier_field)*gamma*wallarea/wd ; 

182     } //end of ibf loop  

183 

184     temprdealloc(dispersed_source) ;  

185 

186     exiting("user_source_species") ; 

187 

188     return 0 ; 

189 } 

10.2.2.1 Routine – bubble_model.c  

Relevant algorithms from bubble_model.c routine to calculate BIT source term in each bin 

with the form of the BIT source term defined in user_initialize.c.  

043     entered("bubble_model") ;  

044 

045 
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046     //get current fields  

047     continuous_phase = 1 ;  

048     dispersed_phase  = ifield + 1 ;  

049     nstride = (ifield-1)* *nnode ;  

050      

051     //virtual mass coefficient & cp  

052     cvm = 0.5 ;  

053     cp  = 0.5*cvm ;  

054 

055 

056 

057 if(bubble_source_model == 1){ 

058 

059     //-------------------------------------------------------------------------

-------------------------------------- 

060     //                      LAHEY MODEL 

061     //-------------------------------------------------------------------------

-------------------------------------- 

062     for(inode=0; inode<= *nnode-1; ++inode){     

063 

064      //calculate relative velocities and magnitudes 

065      urel = UVelocity_InternalNode(inode,dispersed_phase) –  

UVelocity_InternalNode(inode,continuous_phase) ;  

066      vrel = VVelocity_InternalNode(inode,dispersed_phase) –  

VVelocity_InternalNode(inode,continuous_phase) ;  

067      wrel = WVelocity_InternalNode(inode,dispersed_phase) –  

WVelocity_InternalNode(inode,continuous_phase) ; 

068 

069      velrelmag = sqrt( urel*urel + vrel*vrel + wrel*wrel ) ;  

070      Re_rel=velrelmag*Density_InternalNode(inode,continuous_phase)* 

BubbleDiameter_InternalNode(inode,dispersed_phase) 

071               /LaminarViscosity_InternalNode(inode,continuous_phase); 

072 

073      //drag coefficient 

074      cd=24.0/Re_rel*(1.+0.092*pow(Re_rel,0.78)); 

075      cd=max(cd,0.4); 

076 

077      //volume fractions   

078      ag = VolumeFraction_InternalNode(inode,dispersed_phase) ;  

079      

080      //bubble diameter  

081      db = BubbleDiameter_InternalNode(inode,dispersed_phase) ;  

082 

083      //nodal phi value  

084      *(phi_bubble + nstride + inode) = cp* (1.0 + pow(cd,4.0/3.0))* ag* 

pow(velrelmag,3.0) / db ;  

085 

086     } //inode  

087 

088     //-------------------------------------------------------------------------

-------------------------------------- 

089     //                         END LAHEY MODEL  

090     //-------------------------------------------------------------------------

--------------------------------------                           

091 

092 }//bubble_source_model = 1  

093 

094 

095 
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096 else if(bubble_source_model == 2){ 

097 

098     //-------------------------------------------------------------------------

-------------------------------------- 

099     //                      RK MODEL (RZEHAK & KREPPER, IJMF, 2013) 

100     //-------------------------------------------------------------------------

-------------------------------------- 

101     for(inode=0; inode<= *nnode-1; ++inode){     

102 

103      //calculate relative velocities and magnitudes 

104      urel = UVelocity_InternalNode(inode,dispersed_phase) –  

UVelocity_InternalNode(inode,continuous_phase) ;  

105      vrel = VVelocity_InternalNode(inode,dispersed_phase) –  

VVelocity_InternalNode(inode,continuous_phase) ;  

106      wrel = WVelocity_InternalNode(inode,dispersed_phase) –  

WVelocity_InternalNode(inode,continuous_phase) ; 

107 

108      velrelmag = sqrt( urel*urel + vrel*vrel + wrel*wrel ) ;  

109      Re_rel=velrelmag*Density_InternalNode(inode,continuous_phase)* 

BubbleDiameter_InternalNode(inode,dispersed_phase) 

110               /LaminarViscosity_InternalNode(inode,continuous_phase); 

111 

112      //drag coefficient 

113      cd=24.0/Re_rel*(1.+0.092*pow(Re_rel,0.78)); 

114      cd=max(cd,0.4); 

115 

116      //volume fractions   

117      ag = VolumeFraction_InternalNode(inode,dispersed_phase) ;  

118      

119      //bubble diameter  

120      db = BubbleDiameter_InternalNode(inode,dispersed_phase) ;  

121 

122      //nodal phi value  

123      *(phi_bubble + nstride + inode) = 0.75*cd*ag*pow(velrelmag,3.0) / db ; 

124       

125     } //inode 

126 

127     //-------------------------------------------------------------------------

-------------------------------------- 

128     //                                             END RK MODEL 

129     //-------------------------------------------------------------------------

--------------------------------------                                              

130 

131 }//bubble_source_model = 2  

132 

133     exiting("bubble_model") ; 

10.2.2.2 Routine – bubble_source.c 

Relevant algorithms from bubble_source.c routine to calculate the BIT source for each wave 

number bin (e.g. 𝛾𝑚𝑖
𝜙𝑖).  

39      entered("bubble_source") ;  

40 

41      bubble_group    = ifield ;  

42      dispersed_phase = ifield + 1 ;  

43      nstridegamma    = *nspecies* (bubble_group-1) ;  

44      nstridephi      = *nnode*    (bubble_group-1) ;  
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45      nstride     = *nnode*(bin-1) + *nnode* *nspecies* (bubble_group-1) ;  

46 

47      //bubble_source_node  

48      gamma = *(gamma_bubble + nstridegamma + bin) ;  

49 

50      for(inode=0;inode<=*nnode-1;++inode){ 

51       phi = *(phi_bubble + nstridephi + inode) ; 

52    

53       *(bubble_source_node + nstride + inode) = gamma*phi ;        

54 

55      } //inode  

56 

57      exiting("bubble_source") ; 

10.2.2.3 Routine – eddy_viscosity.c  

Relevant algorithms from eddy_viscosity.c routine to calculate the turbulent viscosity in 

each wave number bin.  

065     entered("eddy_viscosity") ; 

066 

067     m= bin ;  

068     nstride= 0 ;  

069     nstridebin= (*nnode)*(m-1) ; 

070 

071     //loop over the nodes to calculate the damping functions and turbulent 

viscosity  

072     for(inode=0; inode<= *nnode-1; ++inode){ 

073 

074      if(iSCTMlowhigh == 0 ){ 

075      //fs damping function  

076      fs= 1.0 - exp(SCM*kappa_center[m]/kappa[*nspecies]) ;   

077 

078      //fmu damping function  

079      wd=*(   walldistance+inode); 

080      pd=*(porwalldistance+inode); 

081      mind=MIN(wd,pd);  

082      CCM= -0.007 ;  

083      fmu= 1.0 - exp(CCM* *(y_p+inode)) ;  

084 

085      //fy damping function 

086      fy= pow((1.0 - exp(NCM*mind*kappa_center[m])),0.25);    

087      }  

088      else if(iSCTMlowhigh == 1){     

089      fs  = 1.0 ;  

090      fmu = 1.0 ;  

091      fy  = 1.0 ;  

092      }   

093       

094      //calculate turbulent viscosity  

095      Em    = Species_InternalNode(inode,m)/ *(kappa_width+m) ;  

096      term1 = sqrt(Em/pow(*(kappa_center+m),3.0)) ;  

097      term2 = pow(Em* pow(*(kappa_center+m),(5.0/3.0))  

           * pow(*(total_tds_node+inode),(-2.0/3.0)),betanu) ;  

098      nunode= CH*fs*fmu*fy* *(kappa_width+m)*term1*term2 ;  

099      *(turbulent_viscosity+inode+nstridebin)= nunode ;  

100 

101     } //end loop over the nodes  
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102 

103     exiting("eddy_viscosity") ; 

10.2.2.4 Routine – homogeneous_dissipation.c  

Relevant algorithms from homogeneous_dissipation.c routine to calculate the 

homogeneous dissipation in each wave number bin.  

37      entered("homogeneous_dissipation") ; 

38 

39      m= bin ;  

40      nstridebin= (*nnode)*(m-1) ;     

41 

42      // homogeneous dissipation on node for the current bin m  

43      for(inode=0 ; inode<= *nnode-1 ; ++inode) { 

44       *(homogeneous_dissipation_node+inode+nstridebin) =  

45        

2.0*LaminarViscosity_InternalNode(inode,carrier_field)/Density_InternalNode(inode,c

arrier_field) 

46        *(Species_InternalNode(inode,m)/kappa_width[m])  

47        *(pow(kappa[m],3.0)/3.0 - pow(kappa[m-1],3.0)/3.0) ;   

48      } //end loop over nodes   

49 

50      exiting("homogeneous_dissipation") ; 

10.2.2.5 Routine – inhomogeneous_dissipation.c 

Relevant algorithms from inhomogeneous_dissipation.c routine to calculate the 

inhomogeneous dissipation in each wave number bin.  

50      entered("inhomogeneous_dissipation") ; 

51       

52      m= bin ;  

53      nstride= 0 ;  

54      nstridebin= (*nnode)*(m-1) ; 

55       

56      // inhomogeneous dissipation  

57      for(inode=0 ; inode<=*nnode-1 ; ++inode) { 

58       

59       wd=*(   walldistance+inode); 

60       pd=*(porwalldistance+inode); 

61       mind=MIN(wd,pd); 

62       

63       *(inhomogeneous_dissipation_node+inode+nstridebin)=  

64              exp(-c_inhom* *(y_p+inode))* 

65              2.0* Species_InternalNode(inode,m)*  

66              (*(vism+inode+nstride)/ *(rho+inode+nstride)) / (wd*wd) ;  

67       

68      } //end loop over nodes  

69 

70      exiting("inhomogeneous_dissipation") ; 
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10.2.2.6 Routine – mean_gradients.c  

Relevant algorithms from mean_gradients.c routine to calculate the mean flow gradients. 

This routine is only called from user_source_species.c when bin-m = 1 to reduce computational 

overhead. 

28      entered("mean_gradients") ;  

29 

30      //calculate gradients    

31      gradient(u,gradient_u,1,carrier_field) ; 

32      gradient(v,gradient_v,2,carrier_field) ;  

33      gradient(w,gradient_w,3,carrier_field) ;  

34 

35      exiting("mean_gradients") ; 

10.2.2.7 Routine – prod.c 

Relevant algorithms from prod.c routine to calculate the turbulence production in bin-m. 

Note on line 073 that a preexisting mean strain rate algorithm was used.  

058     entered("prod") ; 

059 

060     m= bin ;  

061     nstridebin= (*nnode)*(m-1) ; 

062     clipcount= 0 ; 

063     if(m==1){  

064       cliptotal= 0 ;  

065     } 

066           

067     nstride = 0 ;  

068     stride1 = *nnode ;  

069     stride2 = 2* *nnode ;  

070 

071     //production term for bin m 

072     for(inode=0; inode<=*nnode-1; ++inode){ 

073      //use mean strain rate generation routine from Igor Bolotnov TURBULENCE 

ROUTINES (01/13/2017) 

074      term1 = *(gradient_u        +inode)* *(gradient_u        +inode)  

075            + *(gradient_v+stride1+inode)* *(gradient_v+stride1+inode)  

076            + *(gradient_w+stride2+inode)* *(gradient_w+stride2+inode); 

077                     + *lcyl* *(v+nstride+inode)* *(v+nstride+inode)/  

078                         (*(yc+inode)+ *small)/ (*(yc+inode)+ *small); 

079      term2 = *(gradient_u+stride1+inode) + *(gradient_v        +inode) ; 

080      term3 = *(gradient_u+stride2+inode) + *(gradient_w        +inode) ; 

081      term4 = *(gradient_v+stride2+inode) + *(gradient_w+stride1+inode) ; 

082           

083 

084      production= *(turbulent_viscosity+inode+nstridebin) *  

    (2.*term1 + term2*term2 + term3*term3 + term4*term4 ) ; 

085 

086      dest= ABS( *(inhomogeneous_dissipation_node+inode+nstridebin) +  

 *(homogeneous_dissipation_node+inode+nstridebin)) ;  

087      clippedprod= *prodclip*dest ;   

088 

089      *(production_node+inode+nstridebin)= MIN(clippedprod,production) ;    
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090 

091      if(clippedprod<=production) clipcount+=1 ;  

092      

093     } 

094 

095     cliptotal+=clipcount ;  

096         if(m == *nspecies && cliptotal>0 ) printf("total clip %i\n",cliptotal) 

;  

097         

098     exiting("prod") ; 

10.2.2.8 Routine – transfer.c  

Relevant algorithms from transfer.c routine to calculate the spectral transfer between wave 

number bins for a particular wave number bin-m.  

049     entered("transfer") ;  

050 

051     m= bin ;  

052 

053     nstride= 0 ;  

054     nstridebin= (*nnode)*(m-1) ;    //correct location in array for current bin  

055 

056     //check for a negative k value to avoid non-real numbers     

057     kcntl= 0 ;  

058     if(bin==1) kcntltot= 0 ; 

059 

060     for(j=1; j<=*nspecies; ++j){ 

061      nstridebin_cntl= (*nnode)*(j-1) ; 

062      for(inode=0; inode<= *nnode-1; ++inode){   

063           if(Species_InternalNode(inode,j)<=0.0) { 

064            Species_InternalNode(inode,j)= 

*(Species_Node_Old+inode+nstridebin_cntl) *0.90 ;        

065        kcntl+= 1 ; 

066           } //end if k<0 

067          } //end loop over nodes (inode)  

068     } //end loop over bins (j)   

069     kcntltot+= kcntl ;  

070     if(bin==*nspecies && kcntltot>0) printf("Total number of nodes where k 

values have been controlled:\t%i\n",kcntltot) ;  

071 

072 

073 

074  //loop over the nodes  

075  for(inode=0; inode<= *nnode - 1; ++inode){ 

076   //initialize for each node  

077   TC1= 0.0 ; 

078   TC2= 0.0 ; 

079   TC3= 0.0 ; 

080   TC4= 0.0 ; 

081 

082   //loop over the bins before current bin m 

083     if(m > 1){   

084      for(j=1; j<= m-1; ++j){ 

085 

086       TC1 += betaj[j]*kappa[m-1]*Species_InternalNode(inode,m-j)* 

087        sqrt(Species_InternalNode(inode,m)*kappa_center[m]/kappa_width[m]) ; 

088        
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089       TC3 += betaj[j]*kappa[m-j]*Species_InternalNode(inode,m)* 

090            sqrt(Species_InternalNode(inode,m-j)*kappa_center[m-

j]/kappa_width[m-j]) ;             

091 

092       } //end of loop over bins before m  

093     } //end of if m>1 

094      

095      

096   //loop over the bins after the current bin m  

097     if(m < *nspecies){ 

098      for(j=1; j<= *nspecies - m; ++j){ 

099   

100       TC2 += betaj[j]*kappa[m-1+j]*Species_InternalNode(inode,m)* 

101            

sqrt(Species_InternalNode(inode,m+j)*kappa_center[m+j]/kappa_width[m+j]) ;  

102 

103           TC4 += betaj[j]*kappa[m]*Species_InternalNode(inode,m+j)* 

104            sqrt(Species_InternalNode(inode,m)*kappa_center[m]/kappa_width[m]) ;  

105 

106      } //end of loop over bins after m  

107     } //end of if m<N 

108 

109 

110  //get C1 & C2 at the current node (y+ dependent)   

111  if(iSCTMlowhigh == 0){ 

112   C1= 16.0 - 14.8*pow((1.0-exp(- *(y_p+inode)/sigma_transfer)),2.0) ;  

113   C2= 0.3167*C1 ;  

114  } 

115  else if(iSCTMlowhigh == 1){ 

116   C1= 1.2  ;  

117   C2= 0.38 ;    

118  } 

119 

120   //sum the terms for the transfer term  

121   *(transfer_node+inode+nstridebin)= C1*TC1 - C1*TC2 - C2*TC3 + C2*TC4 ; 

122 

123  } //end of loop over nodes  

124   

125 

126     exiting("transfer") ;  

10.2.2.9 Routine – wall_coordinates.c  

Relevant algorithms from wall_coordinates.c routine to calculate the non-dimensional wall 

units. This routine is only called from user_source_species.c when bin-m = 1 to reduce 

computational overhead. 

50      entered("wall_coordinates") ; 

51 

52      nstride = 0 ;   

53       

54      for(inode=0; inode<= *nnode - 1; ++inode){ 

55            wd=*(   walldistance+inode); 

56            pd=*(porwalldistance+inode); 

57            mind=MIN(wd,pd); 

58                if(wd == mind){ 

59                    ibf=*(walldistface0+inode); 
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60                    utau=sqrt( *(walltw0+ibf)/ *(rho+inode+nstride) ); 

61                } 

62                if(pd == mind){ 

63                    ibf=*(porwalldistface0+inode); 

64                    utau=sqrt( *(porwalltw0+ibf)/ *(rho+inode+nstride) ); 

65                } 

66 

67            *(u_tau+inode) = utau ;  

68            *(y_p  +inode) = *(rho+inode+nstride)*utau* mind/ 

*(vism+inode+nstride);   

69    

70      }//end loop over nodes  

71 

72      exiting("wall_coordinates") ; 

10.2.3 NPHASE-CMFD Routine – user_viscosity_turbulent.c  

The NPHASE-CMFD routine user_viscosity_turbulent.c is used to sum over the bin turbulent 

viscosities (Equation (3.8)) to calculate the total turbulent viscosity distribution for use in the RANS 

momentum equation. The relevant algorithms from the routine are shown here.  

075   entered("user_viscosity_turbulent") ; 

076 

077     carrier_field = 1 ;  

078     //sum over the bins to get total turbulent viscosity     

079      for(inode=0; inode<= *nnode-1; ++inode){ 

080       *(vist+inode)= 0.0 ; 

081           for(bin=1; bin<= *nspecies; ++bin){ 

082            nstridebin= (*nnode)*(bin-1) ; 

083             *(vist+inode) += 

*(turbulent_viscosity+inode+nstridebin)*Density_InternalNode(inode,carrier_field) ; 

084           }  

085      } 

086 

087      

088     //if multiphase run -> set the turbulent viscosity of vapor fields to 

liquid turbulent viscosity  

089         if(*nfield>1){ 

090          for(ifield=1; ifield<= *nfield-1; ++ifield){ 

091       nstride = nstride=ifield* *nnode ; 

092        for(inode=0; inode<= *nnode-1; ++inode){ 

093         *(vist+inode+nstride) = *(vist+inode) ;  

094        } 

095      } 

096     } 

097 

098   exiting("user_viscosity_turbulent") ; 

10.2.4 NPHASE-CMFD Routine – user_monitor.c  

The NPHASE-CMFD routine user_monitor.c has been used in the past for simulation control 

(i.e. stopping the simulation on divergence) as well as printing output at stream-wise locations in the 
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wall-normal direction. The existing user_monitor.c routine was used here and altered to provide 

output relevant to SCTM performance such as wave number bin TKE values, energy spectra, etc. The 

routine is expansive and is not shown.  

10.2.5 NPHASE-CMFD Routine – user_liftforce.c 

The NPHASE-CMFD routine user_liftforce.c allows the user to input a lift force formulation. 

As discussed, an existing lift force formulation was used with modification of the lift coefficient close 

to the solid wall boundary. The relevant portion of the lift force algorithm where the lift coefficient 

is modified is shown here.  

160         //modified for LRN model   

161         y_hat = 

2.*DistanceClosestWall_InternalNode(inode)/BubbleDiameter_InternalNode(inode,field_

dispersed)-1.; 

162         y_hat = MIN(y_hat,1.) ;  

163 

164         if(usermult<0.0){ 

165             y_hat = 1.0 ;  

166         }    

167          

168         //evaluate lift terms  

169         term = usermult* cl* y_hat* vfhat* 

Density_InternalNode(inode,field_continuous) ; 
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10.3 Appendix C 

The TKE spectra from HT11 and HT21 are further compared at ten different spatial locations 

where the two-phase results were obtained with the Lahey BIT source term. Figure 10.2 is a 

schematic of the 25 mm diameter pipe with non-dimensional spatial locations labeled that 

correspond to locations where the TKE spectra are presented in Figure 10.3 – Figure 10.4. Single-

phase spectra are shown as black square symbols and two-phase spectra are shown as blue 

diamond symbols.  

 

Figure 10.2. 25 mm diameter pipe with spatial locations for TKE spectra comparison labeled. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 10.3. TKE spectra comparison for HT11 and HT21 cases at r/R = 0.11 – r/R = 0.60.  
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(a) (b) 

  

(c) (d) 

Figure 10.4. TKE spectra comparison for HT11 and HT21 cases at r/R = 0.70 – r/R = 0.95. 
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10.4 Appendix D 

The Maple (www.maplesoft.com) algorithm used to calculate the equivalent bubble 

diameter for a monodispersed case in comparison to polydispersed (two bubble group) case: 

 

>  
> #Find equivalent bubble diameter for a monodispersed case from 

polydispersed case  

>  
> #Inputs 

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

> #Geometric values  

>  

>  

>  
> #Total amount of volume occupied by each group  

>  

>  

>  
> #Total gas volume 

>  

>  
> #Number of bubbles  

>  

>  

>  

>  
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> #Equivalent diameter for monodispersed case with same number of 

bubbles  

>  

>  

>  
> #Void fraction for equivalent case  

>  
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10.5 Appendix E 

Supplemental figures are shown here for polydispersed two-phase flow between parallel 

plates with 100 mm plate spacing (§ 6.5.2). The subscripts are indicated as “L” for liquid, “g,1” for 

the small bubble group of 3 mm diameter, and “g,2” for the large bubble group of 6 mm diameter. 

Figure 10.5 – Figure 10.7 are mean flow parameters shown across the channel width. Figure 10.7 is 

the total bin BIT source term given by Equation (6.14).  

 

(a) 

 

(b) 

 

(c) 

Figure 10.5. Stream-wise velocity distributions for polydispersed two-phase flow between parallel 
plates with 100 mm spacing (y direction is normal to duct walls). The z-axis has been scaled shorter 
for enhanced viewing.  
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(a) 

 

(b) 

 

(c) 

Figure 10.6. Volume fraction distributions for polydispersed two-phase flow between parallel plates 
with 100 mm spacing (y direction is normal to duct walls). The z-axis has been scaled shorter for 
enhanced viewing. 
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Figure 10.7. TKE distribution for polydispersed two-phase flow between parallel plates with 100 mm 
spacing (y direction is normal to duct walls). The z-axis has been scaled shorter for enhanced 
viewing. 

 

 

Figure 10.8. Contour levels of the total bin BIT source terms in the spatial and spectral domains in 
polydispersed two-phase simulation in parallel plate geometry. The vertical lines represent wave 
number boundaries that are defined along the top of the plot.  

 

 


