
ABSTRACT

NELSON, NOEL BENJAMIN. Validation and Uncertainty Quantification of a 1x2" NaI Collimated
Detector Using Detector Response Functions Created by g03. (Under the direction of Yousry Azmy.)

Detector response functions (DRFs) are relatively new theoretical constructs most useful for

inverse analysis of radiation sources and elemental composition. A DRF is formally defined as a

function that transforms the incident flux of radiation on a detector into a differential pulse height

spectrum or detector response (as measured by a physical detector). Such functions have not yet

been derived from first principles of physics, so semi-empirical and Monte Carlo based methods are

generally used. One such method, based on semi-empirical modeling and Monte Carlo simulation

of photon interactions with a sodium iodide (NaI) detector, is implemented by a code named

g03 developed in the Center for Engineering Applications of Radioisotopes (CEAR). g03 has been

validated for simple geometries (e.g. centered on-axis sources) with bare (i.e. uncollimated) detectors

with 3x3" and 6x6" crystal dimensions. This work uses measurements from three radioactive sources

with a 1x2" collimated NaI detector for complex geometries (e.g. off-axis and attenuated sources) to

validate the DRF constructed with g03. Three measurement campaigns were performed: on-axis

detection of calibration sources, off-axis measurements of a highly enriched uranium disc (HEU) at

41 cm, and on-axis measurements of the HEU disc at 11 cm with steel plates in between to provide

attenuation. Simulated responses were created using MCNP computed fluxes folded with a DRF

determined via g03. Furthermore, this work quantifies the uncertainty of the Monte Carlo (MC)

simulations used in and with g03, as well as the uncertainties associated with each semi-empirical

model employed in the full DRF representation. Most of the uncertainties associated with Monte

Carlo simulations were controlled by the number of histories run. The uncertainties in the empirical

model were determined by either Frequentist or Bayesian methods. In the case of many data points

(degree of freedom, DOF, four or higher), direct Frequentist calculation of uncertainty by least

squares and parameter derivatives proved more expedient than the Bayesian method (factor of 100

less computation time). However, in cases where fewer measurements were available (DOF less

than four), a delayed rejection adaptive Metropolis (DRAM) algorithm was used instead. Overall,

the response computed by the DRF for the prediction of the full energy peak region of responses

was very good (well within two standard deviations of the experimental response), but tended to

overestimate the Compton continuum by about 45-65 % due to physics associated with electron

transport in the case of the calibration sources. For the HEU disc measurements, DRF responses

tended to significantly underestimate (more than 20%) secondary full energy peaks due to scattering

with the detector collimator and aluminum can which is not accounted for in the g03 model of

the DRF. Though immediate outside detector scattering is thought to be the main reason for the

underestimation, some contribution may also come from unsimulated geometry and uranium



daughter product decay radiation. All of the Monte Carlo uncertainties were constrained to the

lowest experimental counting bin (peak channel) relative standard deviation by running a sufficient

number of histories. The uncertainties associated with least squares fits to the experimental data

tended to have parameter relative standard deviations lower than the peak channel relative standard

deviation in most cases and good reduced chi-square values (close to one). However, two fits out of

the sixty considered did not meet these criteria: the energy calibration and the Ba-133 Gaussian peak

fits for the power law. Fortunately, the energy calibration still proved to be fairly accurate (within

1% of the true incident gamma ray energies) and had a negligible effect on the validation exercise.

The other misfit had to be resolved by weighting the power law by the standard deviation of the

Gaussian peak standard deviations.
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CHAPTER

1

INTRODUCTION

1.1 Research Motivation and Goals

Detector response functions (DRF) have become an area of increasing scientific interest for the last

thirty years in several industrial detection applications. These applications include coal spectrometry

for composition and location in the interest of mining, oil-well logging, radio-tracing in medicine,

computerized tomography (CT) scans, and holdup source characterization. DRF uses could be

extended to nuclear safeguards and security applications as well such as border monitoring for

illegal transport of radioactive materials, cargo and package monitoring, and unknown source

identification at source recovery sites. However, a rigorous mathematical formulation of the DRF

has yet to be developed. Therefore, a few working empirical and stochastic approaches have been

developed instead to create DRFs.

The concept of a DRF is defined in Section 2.3. For basic purposes a DRF can be considered

a function that converts the energy-dependent flux of incoming source particles incident on a

detector into a detector response spectrum similar to what is observed in experimental detector

measurements. The DRF can also be used in the reverse sense in an inverse problem setting, as a

step in the process of predicting the physical characteristics of an unknown source (e.g. holdup

problem).

1



1.2. SUMMARY OF RESULTS AND CONCLUSION CHAPTER 1. INTRODUCTION

Much of the most recent work on DRFs has been performed by Dr. Robin Gardner and his

research group at North Carolina State University. Gardner has developed a fairly accurate DRF

model through empirical curve fitting and Monte Carlo analysis. The DRF has been validated against

experimental measurements taken by Heath and was found to agree within two standard deviations

of the experimental results from Heath. The measurements were taken with 3x3" and 6x6" NaI

detectors and Cs-137 sources centered on the detector’s front axis at a distance of 10 cm. There was

agreement with the Heath benchmark detector measurements of the same sizes up to two standard

deviations of the measured Poisson error. [16][4]

Some validation work has been carried out on the source positioned off-axis relative to the

detector and with intervening material placed between the source and detector pair. This was done

in the interest of developing spectrum analysis software specific to the Compton continuum in

order to identify attenuators and account for off-axis geometries. The software that accomplishes

this purpose is still under development, but once it reaches fruition it should be considered for

incorporation into future works that employ DRFs.

The goal of this work was to use the NaI DRF model developed by Gardner to characterize a

NaI 1x2" detector for on-axis geometries, off-axis geometries and attenuated configurations and

to validate it against experimental measurements. Also, uncertainty in the model was calculated

by Frequentist and Bayesian methods, and compared to measurement and Monte Carlo transport

uncertainties. The overarching goal is to incorporate an accurate DRF model into an holdup problem

approach to the holdup application to characterize special nuclear material (SNM) deposits at

nuclear production and processing facilities.

1.2 Summary of Results and Conclusion

There were three major sets of measurements: on-axis detection of calibration sources, off-axis

measurements with a highly enriched uranium (HEU) disc, and the HEU disc with steel plate

attenuation between the source and detector. In terms of the calibration source spectra with one or

two peaks and a Compton continuum, the computed spectrum predicted the peak well within two

standard deviations of the experimental count rate, but overestimated the continuum and valley

between the peak and Compton edge. This problem likely came from miscalibration of the electron

range multiplier (Equation 2.4) used originally for an uncollimated 3x3" detector, as the same effect

was observed in Gardner’s original validation work when the multiplier was set too low.

However, this effect did not appear in the two major experimental campaigns involving the HEU

disc, as the highest energy peak observed was of too low an energy to create a Compton continuum.

The model reproduced the main peak (186 keV) and its shoulder peak (205 keV) well, again within

2



1.2. SUMMARY OF RESULTS AND CONCLUSION CHAPTER 1. INTRODUCTION

two standard deviations of the measured count rate, but underestimated the convolved peak at

(150 keV) and did not reproduce the lead backscatter peak near 100 keV. This was due to scattering

with the lead collimator that was unaccounted for by the DRF model, as the model currently only

reproduces the effects of scattering within the detector crystal.

Finally, uncertainty quantification of the model took place on every calculated quantity from the

flux calculation in MCNP to the Gaussian peak fits for shifting the program. Where the uncertainty

was controllable by the number of particle histories chosen in Monte Carlo simulations, it was

reduced below the lowest measured uncertainty. Where it was constrained to the accuracy of the

model for least squares fitting, the reduced chi-square test was performed to check for goodness of

fit.

Two mediocre least squares fits were encountered out of many: the energy calibration and the

Ba-133 Gaussian peak fits used for the power law fit. The effects of the energy calibration were found

to be inconsequential to the validation results. While the Ba-133 peaks effects on the power law

were minimized through a special sum of the least squares weighted by the uncertainties in the

Gaussian peak uncertainties (σσT ).

3



CHAPTER

2

REVIEW OF THE LITERATURE

The purpose of this literature review is to lay the foundation for the development of the sodium

iodide (NaI) detector response function and the corresponding uncertainty quantification based

on the results and discoveries of previous scientists in the field of gamma radiation transport and

detection. First, the history and development of the NaI detector and its supplementary equipment

will be summarized. Then the major developments in Monte Carlo based transport theory relevant

to the construction of DRFs will be discussed. The third section will detail the creation of detector

response models. Finally, the last section will concern relevant Bayesian uncertainty quantification

methods.

2.1 NaI Detection and Detector Response

Before detector response functions were even considered, detector responses and operation prin-

ciples had to be developed. The detector of interest in our work is a sodium iodide scintillation

detector. Scintillation is simply the emission of a visible photon from a material by dexcitation of an

electron following its interaction with incident gamma. The favorable scintillation properties of NaI

doped with trace amounts of Thallium (NaI(Tl))were first discovered by Robert Hofstadter in 1948

[20].

4



2.1. NAI DETECTION AND DETECTOR RESPONSE CHAPTER 2. REV. OF THE LIT.

Hofstadter concluded that NaI(Tl) would be an efficent detector of ionizing radiation. He deter-

mined this based off of the duration of light emission, distribution of light pulses, particle energy

discrimination (therefore radioactive source discrimination), and the proportionality of counting

events to voltage and amplifier gain. He compared some of these characteristics with another detec-

tion material, anthracene, while merely verifying other materials to conclude that NaI(Tl) is a viable

detector.

A NaI(Tl) crystal alone does not make a detector. Light emitted from the crystal after an interac-

tion is captured via a photoelectric effect interaction with the photocathode of the detector. The

freed electrons are multiplied and amplified into a detectable electronic signal pulse by the photo-

multiplier tube (PMT). The first photmultiplier tube was developed by Harley Iams and Bernard

Salzberg much earlier than Hofstadter, in 1935. [6]

They observed the amplification of the primary photocurrent (a stream of electrons) through the

effects of secondary emission and the photoelectric effect. Secondary emission is when an electron

current strikes a charged plate and releases more electrons than were absorbed by the plate. Iams

and Salzberg found that their photomultiplier tube was superior to gas phototubes as they had

no interference at high audio frequencies from small fluctuations in its current supply, while still

comparable to the vacuum phototubes (other detector PMT candidates). This model is the basis for

modern PMT’s.

The small electronic output signal from the PMT is then amplified and reshaped from a sharp

edged pulse into a wider pulse (based on the difference between a rising and falling exponential) for

easy processing. This wider pulse is passed to the multichannel analyzer (MCA), which outputs a

differential pulse height spectrum (DPHS) also known as a detector response. A DPHS is created

simply by setting a small pulse amplitude window to count pulses of varying heights within the

window within a counting period between two energies called a channel. An MCA does this for

hundreds of channels at once across the entire detector’s energy range. The detector’s energy range

is determined partially by size and pulse amplitude gain settings. Low energy photons are resolved

better by higher gain and the inverse is true for high energy photons. Also, large detectors have

better interaction cross sections with higher energy gammas.

The first MCA was invented by George Kelly at Oak Ridge National Laboratories (ORNL) in 1953.

Kelly prized his method as being much faster than older methods using single channel analyzers and

more reliable with channel width and position errors meeting statistical standards set at the time.

[7] Since then MCAs and pulse processing equipment have become more efficient and compact,

such that they are often combined together into one machine that is controlled by local desktop

software.

Figure 2.1 summarizes and illustrates the whole basic NaI detection process. For further details

5



2.1. NAI DETECTION AND DETECTOR RESPONSE CHAPTER 2. REV. OF THE LIT.

of the detection process and pulse processing equipment, please refer to KNOLL’s book on Radiation

Detection and Measurement.

Figure 2.1 A basic NaI detector schematic. [14]

In most cases, the current pulse is sent to the pulse processing equipment and MCA to convert

the small collection of electrons from the PMT into a response spectrum. Detector response spectra

can be used to locate and identify sources of gamma radiation since the response peak channel

is proportional to the incident energy of the incident radiation. It is proportional because the

relationship between the energy deposited by radiation in the NaI crystal to the scintillation light

yield is fairly linear for energies above 100 keV. A quadratic energy calibration using at least three

known sources can account for the slight nonproportionality of detector channel to energy, and

thereby be used to identify the energy of the incident radiation from other unknown sources.

In this case, detector response measurements of known sources will be validated against syn-

thetic responses for attenuated and off-axis geometries. A typical detector response spectrum for a

small detector is shown in Figure 2.2.

6



2.1. NAI DETECTION AND DETECTOR RESPONSE CHAPTER 2. REV. OF THE LIT.

Figure 2.2 Predicted detector response spectrum of a medium sized detector with labeled regions of inter-
est [15]

Every section of the response spectrum is the result of a combination of one or more photon

interactions with the detector crystal or its casing material. The three major types of photon in-

teractions with matter include: photoelectric effect, Compton scatter, and pair production. The

photoelectric effect occurs when a photon is absorbed by an atom, and a bound electron is then

expelled from that atom. Compton scatter occurs when a photon is merely deflected by an atom,

and thereby loses a fraction of its energy and changes direction. The third interaction occurs when

a high energy photon (greater than 1.022 MeV) interacts with the nuclear electromagnetic field and

creates an electron-positron pair that are propelled in opposing directions. Further details of basic

particle interactions can be found in Hubbell’s report on Photon Cross Sections. [5]

Knoll’s book mentions several spectral components that appear in a typical response spectrum

as a result of the three basic particle interactions. These include the full energy peak, Compton

continuum, and the several other types of peaks that appear in Figure 2.2.

The full energy peak of the spectrum is produced by a combination of all three basic gamma

particle interactions with the detector crystal resulting in full energy deposition. Ideally, the full-

energy peak would be a straight vertical line, but due to the finite energy resolution of a detector, the

spectrum is blurred or spread to a Gaussian profile centered around the true peak channel, or energy.

The sources of the spread can be usually attributed to statistical fluctuations in the total number of

information carriers (scintillation photons for scintillators) created during a given detection event.

Other reasons include electronic noise (radio signals, other electronic equipment, etc.), variations in

the active detector volume (ie. defects, nonuniformity), and changes in operating parameters during

measurements. In an investigation to validate a Monte Carlo calculated NaI detector response,

a good representation for NaI energy resolution was measured to vary inversely (improve) with

7
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increasing incident particle energy. For most measurements it varies from 8-15%. [17]

The continuum is created by the probable set of energy depositions from Compton scatter

at various angles of deflection with incomplete energy deposition in the detector crystal. The

continuum can also be affected by Compton scattering outside of the detector where the deflected

photon is detected instead of the electron that is freed when the scatter occurs in the detector crystal.

One example is a backscatter peak where the photon scatters at a 180o angle from the rear detector

wall into the detector crystal. [9] The shape of the continuum and backscatter peaks can also be

significantly affected if an attenuator is in placed front of the source, or if the source is off-axis

affecting the number of photons that scatter off of the detector casing into the crystal at a given

energy. It is useful in many applications to be able to match different continuum shapes to their

most probable cause.

Escape peaks arise when pair production occurs in the detector crystal, but one (single) or both

(double) the photons that are created from the annihilation of the resulting positron escape. These

events typically occur in small detectors near the edge of the crystal where it is easy for electrons

to escape the crystal. When the positron-electron pair is created, the original photon loses the

amount of energy required to create the mass of an electron and a positron. The rest mass of both an

electron and a positron are approximately 511 keV. The electron created will not contribute much

to the response, but the positron does once it annihilates with another electron. The annihilation

event creates two photons equivalent to the lost rest mass of each particle, 511 keV, which travel in

opposite directions. If both photons escape frequently without depositing energy in the detector

crystal, then a double escape will appear in the spectrum at the energy of the incident gamma minus

two times the electron rest mass (Eo −1.022M e V ). If only one of the photons deposit their energy in

the crystal frequently, then a single escape peak will appear in the spectrum at the original incident

gamma energy minus one electron rest mass (Eo −0.511M e V ).

An annihilation peak is observed when pair production occurs in the detector shielding, or

alternatively in the source shielding, and one of the 0.511 MeV photons created in the following

positron annihilation event is detected. Finally, characteristic X-rays (usually EX−r a y < 100k e V ) are

created from the de-excitation of atoms that were involved in a photoelectric event with an incident

photon. Typically, the emitted X-rays is reabsorbed by the detector medium and contributes to

the full energy peak. However, if the detector is fairly small and these X-rays escape, then an X-ray

escape peak is observed in the response slightly below the full-energy peak (Eo −EX−r a y ).

Any detector can produce a response, but NaI(Tl) scintillators are some of the most commonly

used in practice. This is because they are cheap and fairly easy to manufacture in varying sizes,

have fairly high light emission among scintillators, have high scintillation efficiency (heavy material

Z=53) and fairly linear radiative energy deposited to light yield. The two major weaknesses of

8



2.1. NAI DETECTION AND DETECTOR RESPONSE CHAPTER 2. REV. OF THE LIT.

NaI(Tl) detectors are their large decay times between pulses and fairly low energy resolution (wide

full-energy peaks).

Decay time simply refers to the amount of time it takes for the ionized electrons from a detection

event to decay from an excited state at the Thallium activator sites back to the ground state and

produce scintillation photons for the detector pulse. Subsequent incident gamma rays cannot be

detected during this decay time. For NaI(Tl), the decay time is 230 ns, which is much slower than an

organic scintillator which have typial decay times around 2 ns. Therefore, organic scintillators are

preferred for fast counting experiments where spectral information is less important than timing.

Knoll defines Energy resolution as R = F W H M
Ho

where F W H M is the full width at half the

maximum of the full energy peak and Ho is the height of the peak at its center. Therefore, a lower

resolution means the peak is narrower compared to its height and requires fewer channels to define

the peak (better for distinguishing peaks that are close together in energy). Because FWHM is energy

dependent and dependent on the statistical fluctuation in a given measurement, for a given detector

type the Poisson limit of the resolution is defined as R |P o i s s o nl i mi t = 2.35/
p

N , where N is the total

number of information carriers. For NaI detectors, the theoretical limit would be about 1.2%, since

it produces around N=38,000 information carriers (scintillation photons), whereas a semiconductor

detector with N = 105−106 has a much lower limit of about 2.25%. NaI does not approach this limit

closely though, as their is further loss of those scintillation photons from emission to absorption in

the photocathode.

However, NaI(Tl) is the best scintillation detector for spectroscopy applications (not fast pulse

timing experiments) because it has one of the highest photon absorption to light yield of 38,000

photons/MeV. Only CsI(Tl) and Cs(Na) are higher with 65,000 and 39,000 photons/MeV respectively.

Cs(Na) has pretty equivalent properties to NaI, but has a much slower decay time between pulses.

Additionally, CsI(Tl) has a bad emission wavelength (540 nm) that doesn’t couple well with standard

PMTs absorption spectrum (400-450 nm). Due to these weaknesses, generally NaI(Tl) is preferred

among scintillators. [9]

For fine measurement applications in the lab, however, a semiconductor detector made of high

purity Germanium (HPGe) is usually preferred. It has better resolution overall ranging from 0.13-1%.

[21] So, the full-energy peaks of the HPGe would be at least ten times thinner than a NaI peak at

the same energy. However, the major weaknesses of HPGe are that it requires cryogenic cooling,

it is difficult to manufacture in large sizes, and it is generally expensive. Therefore, for field work

(e.g. uranium holdup measurements), NaI(Tl) detectors are generally used due to their greater

affordability and portability. Field application is the goal of this work, plus continuum effects are

more important than peak resolution for determining source strength and location. Hence, a 1x2"

NaI(Tl) scintillation detector was chosen to conduct the validation exercise reported here.

9
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2.2 Monte Carlo Based Radiation Transport

Detector responses can be predicted mathematically by taking the product of the detector’s response

function (DRF) with the flux (particle speed per volume) of the radiation incident on the detector

[9]. The particle flux can be predicted from the solution of the Boltzmann transport equation at

the location of the detector crystal due to a given source. The equation was first derived by Ludwig

Boltzmann in 1872. [8] Since then, many approximate methods have been developed for solving the

Boltzmann equation under certain assumptions suitable for a variety of applications.

One of the more popular transport methods is the Monte Carlo method. The Monte Carlo

method does not solve the transport equation itself, instead it simulates the particles and their

trajectories through the modeled materials using sequences of pseudo-random numbers. Then it

determines the average state of the physical system from the average behavior of the particles. [13]

The software chosen for these calculations is the Monte Carlo Neutron-Particle (MCNP) transport

code. It was created formally in 1977, though its roots extend back to the late 1940s, at the dawn of

the nuclear age. This section outlines the basics of MC transport for calculating incident flux on the

detector for the purpose of validating the DRF.

First, particles are simulated and transported according to Boltzmann physics within the volume

of interest. Instead of solving the transport explicitly for the entire volume to obtain the flux, the

fluence is calculated inside the detector volume only. The fluence, Φ, is defined as

Φ= lim
∆V→0

[

∑

i si

∆V
]. (2.1)

If a large number of particles were simulated, this quantity could be calculated directly. [10]

Simply by tracking particles through a cell of interest and summing up all of the particle tracks

within the very small discrete spheres, the flux is approximated. For large volumes like nuclear power

reactors this method becomes inefficient and less accurate. For small detector volumes, however, it

works quite well. [2]

That is how Monte Carlo simulation works by simulating moving particles directly and tracking

them through simulated media. Particle tracks from birth in a source to death (absorption or escape)

from the system including all intervening scatters are called histories. The number of particle

histories (N) executed in an MCNP run is chosen in order to obtain the desired level of uncertainty

in the calculated quantities.

A typical particle history proceeds as follows. First, particles are initialized with random location,

energy, and direction of motion according to a defined source distribution. Particles then interact

or pass through the specified media according to well defined, material dependent, probability

10
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distributions called cross sections. A photon microscopic cross section,σr e a c t i o n t y p e is defined

as the probability of a photon-nuclear reaction with a nucleus. [1] It can also be thought of as the

effective cross sectional area presented by the nucleus to the beam of incident photons, and cross

sections have units of c m 2. Cross sections depend on energy, material, and interaction type.

Often microscopic cross sections are multiplied by the atom density of the medium to make a

macroscopic cross section. Photon macroscopic cross sections,µi n t e r a c t i o n , (also called attenuation

coefficients) are simply the probability of a certain interaction with the medium occurring per unit

path length traveled. [1] Summing the macroscopic cross sections of every interaction type yields

the total attenuation cross section, µ. There are several minor interaction cross sections (Raleigh

scattering, Thompson scattering, etc.), but the largest contributions for photons come from the

three aforementioned interactions: photoelectric effect, Compton scatter, and pair production.

If these interactions produce secondary particles, they too are stored and tracked as new histories

after the original particles terminate. Finally, after each particle history has been recorded, the

particle track (si ) through the detector volume is added to the running tally calculating the flux

according to the average of Equation (1) piece by piece until all the histories are tallied.

The Monte Carlo transport method is very effective and simple, but can be inefficient and have

high variances if variance reduction techniques are not applied. Variance in Monte Carlo is based

on the number of histories run, so the simplest way to reduce variance in such a calculation is to run

more particle histories. Sometimes this is not feasible (rare events), therefore variance reduction

techniques are used instead. In Exploring Monte Carlo Methods by Dunn and Shultis the most

common variance techniques are described, which include particle weighting, truncation, splitting,

and Russian roulette.

The first method is called weighting. A biased multiplier (called a weight) may be applied to

particles undergoing desired physical events in order to force rare interactions to occur more often

without running as large numbers of histories. The biased particles’ contribution to the tally (the

score) is then renormalized by mulitplying by 1/w e i g h t . This ensures that desired events are well

sampled, but the tally still represents an unbiased system.

Further subtypes of this technique include importance sampling, and implicit absorption. In

importance sampling a particle’s contribution to the tally may be taken as the product of the

particle’s weight and the probability of the occurrence of the event of interest. The probability

density function (PDF) that describes this event may be adjusted to an alternate simpler PDF, as

long as a multiplicative correction factor is applied to the weight equivalent to the original PDF

divided by the alternate PDF. When optimum adjoint transport solutions are applied, the variance

can theoretically be reduced to zero. Similarly, alternate PDFs may also be used to force interactions

or affect the distance between collisions.

11
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For implicit absorption, particles are never allowed to be killed by absorption. Instead, every

time an absorption event would occur, the particle’s weight is reduced by multiplying its weight by

the probability of survival (1− µa
µ ). Then a particle interaction is chosen for the particle from the

remaining non-absorption interaction probabilities. Therefore, in this scenario, a particle may only

be killed by leaking out of the system. To prevent buildup of low weight particles in the system, this

technique is usually paired with the Russian roulette technique.

Truncation methods set cutoff limits for when a particle should be terminated. For example,

if a particle reaches a position outside of the system of interest (leakage), then tracking would be

terminated. Other examples, include unfavorable directions, low energies, and low weights unlikely

to contribute much to the tally of interest. Truncation helps to kill particles early that are only

wasting computational resources.

Finally, splitting and Russian roulette schemes are almost always applied together. Splitting

occurs when a particle enters a region designated of higher importance and interest (e.g. the cell

where a tally is calculated, and it is split into m particles. Each particle weight is then given by a 1/m

fraction of the weight of the original particle. Russian roulette is exactly the opposite of splitting.

Particles that travel into regions of low interest may be killed by random selection. Some 1/m fraction

of particles are killed, and the remainder increased in weight by a factor of m. [2]

All of the variance reduction techniques reduce variance without biasing the tallies, if used

correctly. Often these techniques increase computational efficiency and decrease computation

times. Many production Monte Carlo transport codes apply some of these techniques automatically,

while allowing the others to be chosen as options.

In this work, the Los Alamos National Laboratories (LANL) code Monte Carlo Neutron Transport

code (MCNP) was used to compute flux tallies incident on the 1x2" NaI detector model. The code

was originally implemented for neutron transport, but can also be used for other particle transport,

such as photon transport. Monte Carlo based calculation was also used in part to calculate the DRF.

2.3 Detector Response Functions

The DRF (R (E , h )) is defined as the probability that a photon incident on the detector with energy

E will give rise to a pulse with height h . [18]DRFs are useful for converting flux to counting spectra,

calculating detector efficiencies, and also for the reverse, transforming responses back into flux.

The latter purpose will be explored more in future research, but in this work focus will remain on

the former purpose.

At the present, no fully physical model exists to describe DRFs, but there are several stochastic

(MC) and empirical models. Gardner’s NaI DRF model is one that combines empirical relations with

12
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Monte Carlo simulation. Gardner’s original work with his colleague Avneet Sood validated 3x3 NaI

synthetic detector responses to the Heath benchmark Cs-137 spectrum. Gardner’s model was found

to be more efficient (required far less particle histories for accurate calculation) and was shown

to match better with the Heath experiments than MCNP’s F8 response tally. [16] It was chosen for

our work for these reasons and also because MCNP simulates responses according to direct energy

deposition in the detector crystal. It generates no DRF, and a DRF will be needed for future holdup

work.

The Heath experiments were performed on a 3x3" NaI detector in 1964 as a benchmark for

a number of gamma sources. All measurements were very high fidelity. The measurements were

performed in a lead shielded box to reduce background radiation and all spectra were counted

well over 10,000 counts in the peak channel for less than 1% counting uncertainty. For further

information, see Heath’s Gamma Ray Spectrum Catalogue. [4]

Gardner’s model generates a DRF for a desired detector size, source distance, and source energy

(single peak), through the following set of steps. First, Gardner’s model takes into account the non-

linear dependence of NaI scintillation efficiency ( s c i n t i l l a t i o n l i g h t y i e l d
e ne r g y d e p o s i t e d ) on the energy deposited

in the detector by the incident photon. As mentioned before (section 2.1), the nonlinearity in scin-

tillation efficiency is an inherent property of NaI(Tl) crystals, and it is particularly pronounced at

energies below 100 keV. However, this nonlinearity is still significant for all incident energies below

3 MeV. Gardner used the following nonlinear empirical relationship (from fits to experimental data)

to calculate scintillation efficiency for his DRF

S (Ee ) = 1+k1e x p [−(l n Ee −k2)
2/k3],

Ee ≥ 10 k e V ,

S (Ee ) = 1+k1e x p [−(l n Ee −k2)
2/k4], (2.2)

Ee ≤ 10 k e V ,

where Ee is electron energy in keV. k1 is 0.245, and k2 is l n 10= 2.30258. k3 is 7.1635, and k4 is

5.1946. The electrons are the very same electrons that are involved in interactions with photons

incident on the detector crystal. The second step involves Monte Carlo particle transport simulation

in which each scattered electron that deposits energy in the detector is multiplied by the scintillation

efficiency (Equation 2.2) at the energy deposited. [16]

The Monte Carlo calculation is conducted with Peplow’s code called DRFNCS. It simulates several

hundred detector response spectra through Monte Carlo transport where photon interactions are

forced in the detector, but leakage of secondary particles is allowed producing the continuum of
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the spectra. Only about 100,000 particle histories are necessary to produce results with uncertainty

under 1%, whereas MCNP F8 Gaussian energy broadened (GEB) spectra require on the order of

billions of particles to produce the same precision. The difference typically saves about a day in

computation time.

Next, the peaks were stripped from the response spectra so that each contiuum could be pro-

cessed alone. Principle component analysis (PCA) was performed on the correlated response vari-

ables and the covariance matrix to produce a small set of uncorrelated variables (principal com-

ponents). The principal components and the mean vector were stored as data and can reproduce

accurate continuum easily when multiplied with the desired channels vector.Essentially, the contin-

uum can be recalled quickly without the need to be regenerated by Monte Carlo simulation for each

DRF generated.

So, when a new DRF needs to be generated, the algorithm need only to generate the full-energy

peak of interest by Monte Carlo transport simulation and adds this contribution to the continuum

to produce the desired DRF. [22] The modified version of Peplow’s code (adjusted by the nonlinear

scintillation efficiency) is called g03. The code is in the process of being updated and is proprietary

to the Center for Engineering Applications of Radioisotopes (CEAR).

Finally, the Monte Carlo simulation of g03 is modified by several empirical equations to correct

pieces of the spectra that are not simulated fully by the Monte Carlo calculation. The g03 DRF peak

section is spread according to the following power law (Equation (2.3))

σT (EI ) = a E b
I , (2.3)

where a and b are empirical fit parameters, and EI is the energy of the incident gamma ray. This

law is simply an empirical relation that comes from a Least Squares fit of the standard deviations of

experimentally measured full-energy peak responses produced by the detector of interest. [16]

The flat Compton continuum of the DRF is produced by various empirical fits of entire experi-

mental responses (not only the peaks). This is necessary because there is as of yet, some undiscovered

phenomena causing a higher magnitude of the continuum than predicted by current physics models

and data. Simple Compton scatter and pair production physics and partial energy deposition due

to electron or photon leakage through the detector walls can predict the shape of the Compton

continuum but underestimates its magnitude. A normalization factor was developed to account for

this effect called the electron range multiplier, since the effect causing the underestimation of the

continuum was believed to be connected to the electron range. The empirical relation is given by

Equation 2.4
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Re = 1+A1e x p (−A2EI ) +A3e x p (−A4EI ) (2.4)

A1 = 39.662, A2 = 3.4052, A3 = 1.5434, A4 = 0.1576,

where EI is the energy of the incident photon, and A1−A4 are parameters fit from experimental

responses. This factor is a pseudo-electron range equation designed to correct the magnitude of the

synthetic Compton continuum produced by the Gardner’s DRF. It was fit through trial and error for

3x3" NaI detectors and may not apply to the detector of interest in this work (1x2" NaI detector). [23]

Responses, thus, may be measured or calculated. Validation of Gardner’s model has already

been completed on some levels, but almost no uncertainty quantification of the model has been

performed. The primary goal of this work is to conduct a validation exercise of the DRF for a specific

NaI detector of interest and account for its uncertainties.

2.4 Uncertainty Quantification

In the process of comparing measured to computational model results there are three types of

uncertainty in practice. There is measurement uncertainty, model uncertainty, and numerical

(simulation) uncertainty. Quantifying uncertainty is important in determining the precision of the

model and the computed results. The more precise a result is, the more likely it can be reproduced,

and the higher the level of confidence in the applicability of the computational model.

Measurement uncertainty for detection and counting was found to follow a Poisson distribution

for a single measurement. This is because the decay of a nucleus is a binary process. It either

decays or it does not. The chance of decay per unit time is constant and rather small for a large

number of nuclei and a short measurement time (compared to the nuclide’s half-life). A binomial

distribution under these conditions (constant and small probability of success) will reduce to a

Poisson distribution. [9]

In a Poisson distribution the variance is equal to the mean (the number of counts). Therefore,

the variance of the measurement is equal to the mean number of counts. In a single measurement

this would be the number of counts measured in a detector channel. The standard deviation is

then simply the square root of this count, and the fractional standard deviation (relative to the total

count) is one divided by the root of the count.

To then extend this measurement uncertainty to count rates and net counts (gross count - back-

ground count), one simply uses propagation of uncertainty. Anytime a basic operation (addition,

subtraction, multiplication, or division) is performed on the measured count, likewise a transforma-

tion must be made to the variance of the counts. If the variables involved (e.g. counts and time) are
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independent of one another, then a general formula exists for calculating total uncertainty of the

final quantity (Equation 2.5)

σ2
u = (

∂ u

∂ x
)2σ2

x + (
∂ u

∂ y
)2σ2

y + (
∂ u

∂ z
)2σ2

z + /l d o t s , (2.5)

where u = u (x , y , z , . . .) is the quantity derived from basic quantities (x , y , z , . . .) with known

variances (σ2
v a r i a b l e ). The formula is useful for determining the associated uncertainties of many

quantities (e.g. count rates and net counts) for various purposes, such as those used in the reduced

chi-square test described near the end of this section. [9]

It turns out that simulation uncertainty for Monte Carlo transport calculation is very similar

to that of measurement uncertainty. This is due to the fact that the particles themselves are being

simulated and tracked as a psuedo-random process. Measurement standard deviation is equivalent

to the square root of the number of counts (the mean) in a channel. So it makes sense that the Monte

Carlo standard deviation is simply the square root of the number of particle histories in a tally bin.

The fractional standard deviation is simply equivalent to the reciprical of the standard deviation. [2]

Determination of the model parameter uncertainty is a more difficult task. For this purpose,

there are two major statistical methods to choose from: Bayesian and Frequentist Theory. Since

the core of Frequentist Theory requires a large number of data points, a Bayesian method was

naturally chosen for the power law Gaussian fits, power law, and the energy calibration fits. Whereas

Freqentist methods were chosen for the normal Gaussian fits for shifting spectra and the Gaussian

fits of the peaks of experimental spectra for the energy calibration due to the abundance of channels

in the peaks of those spectra and for efficient calculation.

Smith’s book, Uncertainty Quantification, describes Frequentist and Bayesian statistics quite well.

In both methods, parameter means of each relationship were found via the method of nonlinear least

squares. This method solves for the mean parameter values that produced the lowest value of the

L2 norm (sum of the squares) of the error. Frequentist methods treat these values as the parameter

means and subsequently calculates a Chi squared and covariance matrix to determine the parameter

uncertainties. Bayesian methods only use the means for an initial guess (priori information). Further

details of least squares methods can typically be found in advanced linear algebra texts. With

parameter derivatives and error variance, the Chi squared and covariance matrices can be calculated.

First, however, the error variance must be calculated from the residuals. The error variance is

defined as follows

σ2 =
1

n −p
R T R (2.6)

where R is the residual vector of the differences between the model evaluated at the means predicted
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by least squares and the experimental data (R = Ye x p e r i me n t a l − fmo d e l (q )). Also, n is the number of

parameters, and p is the number of model parameters. Next theχ matrix can be calculated as simply

the derivative of the model with respect to each parameter, k at each data point i (χi k (q ) =
∂ fi (q )
∂ qk

).

Using the square of the χ matrix and the error variance the covariance matrix can simply be defined

as

V =σ2[χT (q )χ(q )]−1. (2.7)

The covariance matrix contains each parameter variance along its diagonal. Simply take the square

root of the diagonal values to find the parameter standard deviations. The Frequentist method is

very accurate and quick to calculate for cases where there are many more experimental data points

than the number of parameters. However, when confidence in a fit is lower due to fewer data points,

Bayesian codes fair better. [11]

Bayes theorem expressed in words simply states that parameters are random variables with

associated probabilistic densities that make use of known information or new information obtained

from conducted measurements. This method picks the best posterior density that reflects the distri-

bution of parameter values based on sampled observations. In other words it finds the probability

density functions (pdfs) of model parameters that maximizes the likelihood function. Further details

of the likelihood function and Bayesian theory are given in Smith’s Book or his reference D. Calvetti

and E. Somersalo, Introduction to Bayesian Scientific Computing.

DRAM was used to calculate Bayesian model parameter uncertainties. From Haario’s article

"DRAM: Efficient adaptive MCMC" one learns that DRAM stands for Delayed Rejection Adaptive

Metropolis algorithm. In this work it is used to estimate the most likely means of the model of

interests parameters to verify those determined by least squares fits by employing Monte Carlo

random sampling of the parameter values, called chains. DRAM also determines the uncertainty in

the parameters from the direct statistical variations in the parameter chains.

The basis of DRAM comes from the Random Walk Metropolis algorithm (RWM). RWM comes

from Monte Carlo principles and is fairly easy to implement. First, the variance is obtained in the

same way that the error variance is typically calculated: from the sum of the square of the residuals

divided by the number of degrees of freedom (Equation 2.6). Second, the covariance is estimated

from the inverse of the χ squared distribution which come from partial parameter derivatives of

the model (as defined by Equation 2.7). A Choleski factorization of the covariance matrix is formed.

Lastly, with the factored matrix, the parameters are varied in a semi-random way with psuedo-

random numbers chosen from a set of different distributions. Based on likelihoods of randomly

chosen parameter values the algorithm either chooses to accept (if the likelihood is increased) or

possibly reject and the rejection probability increases every time the likelihood function decreases.
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Using regular statistical methods, again the parameter standard deviations can be estimated from

the chains of random parameter values.

DRAM works along the same principles, except that the rejection condition is augmented with a

more advanced algorithm that increases the probability of acceptance (promoting mixing or broader

exploration of the chains). Also, DRAM adapts by suggesting a Gaussian proposal distribution

centered at each chain position and retrieves more information about the posterior using it to

update the covariance matrix. Together these advancements make a much more efficient algorithm

than basic RWM. [19]

Additionally, both Frequentist and Bayesian methods give estimates of the model parameters

that best reproduce a curve along the measured data points. Sometimes, least squares fits and

maximum likelihood estimates can produce poor curve fits. So, from Bevington and Robinson’s

Data Reduction and Error Analysis, one can obtain two useful tools for model examination: the

reduced chi-square test and linear correlation coefficients.

The reduced chi-square test helps to provide a quantified measurement of the goodness of fit.

The definition of the reduced chi-square is shown by Equation 2.8.

χ2 =
n
∑

j=1

[h (x j )− y (x j )]2

σ j (h )2

χ2
v =χ

2/v, (2.8)

where n is the total number of data points. h (x j ) is the measurement, and y (x j ) is the model

solution at data point j. Also, σ j (h )2 is the variance in the measurement at data point j, and v is

the number of degrees of freedom (v = n −p ) where p is the number of parameters. In our work,

the variance will likely be the poisson variance for a simple count spectrum, or the propagated

uncertainty for net counts and count rates. A reduced chi-square test will produce a value equal to

one for an ideal case, however, it is generally considered to be still a good fit for values less than ten.

Values less than one simply mean that the spectrum was overfit, and may have required a simpler

model or fewer data points to produce a similar result.

Furthermore, in the event of a poor fit, the model can be examined more closely by examining

the linear correlation coefficients. The linear correlation coefficient matrix can be calculated as

follows (Equation 2.9):

ρ j k =
σ2

j k

σ jσk
(2.9)

whereσ j k is the covariance at row i and column j as calculated by Equation 2.7, andσ j andσk
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are the diagonal standard deviations of the parameters from the covariance matrix (σ j j andσk k ).

The linear correlation coefficients of a model can reveal a weak parameter in the model that might

not be contributing much to the model fit. Parameters with many correlation coefficients under 0.2

should be considered for removal or substitution. [3]
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CHAPTER

3

EXPERIMENTAL SETUP AND

COMPUTATIONAL MODEL

This section will detail the experimental setup and the Monte Carlo computational transport models

used to simulate the experiment’s geometric configuration and calculate the flux incident on the

detector. A detector description will also be provided, as well as how the detector intrinsic efficiency

was calculated. The Monte Carlo calculated quantities are necessary for calculating response spectra

for comparison against those obtained via experimental measurements with the actual detector.

3.1 Experimental Setup

The entire experimental campaign was designed and performed at the Safeguards Laboratory at

Oak Ridge National Laboratory. The initial campaign was completed over the course of a couple

of weeks in June of 2013. Further measurements (such as those for the power law fit) were taken

on various days over the course of the spring of 2014, courtesy of ORNL personnel. All sources and

detection equipment were provided by ORNL. Each measurement was taken with the same detector,

detection equipment, and settings.

The detector of interest for validation of Gardner’s DRF model is a 1 inch diameter by 2 inches
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height right cylinder EFC Model 1X2P collimated NaI detector. This small detector is one used in

uranium holdup experiments at ORNL and is an example of a detector used for field measurements

of holdup within the holdup measurement system, HMS. A schematic of the detector is shown in

Figure 3.1.

21



1

12
11

5.078 

4.782 

3.100 

2.540 

2.254 

 0.948 

 4.288  1.430 

 6.571 

 5.080 

 1.044 

 2.771 

 0.320 
EE

F

SECTION E-E

4 7 6 8

105

2

3

9

 0.048 

DETAIL F
SCALE 2 : 1

ITEM 
NO. PART Material

1 Case Aluminum
2 Plug Aluminum
3 Electronic Housing Void
4 Rear Shield Lead
5 Polymer plate Plastic
6 Steel Enclosure Stainless Steel
7 PMT Void
8 Crystal NaI
9 Tin Shield Tin
10 Collimator Lead
11 Collimator Front Lead
12 Front Cap Aluminum

ORNL 1x2" NaI Detector

DO NOT SCALE DRAWING

NAIDET
SHEET 1 OF 1

8/22/14NBN

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2.5WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN CENTIMETERS
TOLERANCES: 0.001
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

5 4 3 2 1

Figure 3.1 A schematic detailing the 1x2" NaI detector used at ORNL.

222222



3.1. EXPERIMENTAL SETUP CHAPTER 3. EXP. SETUP AND COMP. MODEL

As can be seen, the detector is well shielded with lead except on the front face where the col-

limator aperture allows radiation into the detector from a limited extent of directions covering

the corresponding fraction of the unit sphere. Hence, the detector has approximately a 45 degree

in-axial-plane angle of vision from the center of its circular front. Contributions to the detector

response from any source of radiation far enough off of the axis of the cylindrical detector will be

significantly attenuated and radiation incident on the side or rear of the detector will not likely

contribute to the measured response spectrum (except for very high energy photons that are not suf-

ficiently attenuated by the detector’s lead collimator). The rest of the detector components are fairly

standard. It has a PMT, an aluminum sheath (container), etc., as shown in the detector schematic,

Fig. 3.1.

Overall, measurements were taken far away from the walls on a table with at most a aluminum

tee in the setup. Scattering off of the plastic table, walls, and floor were very unlikely since there is a

high probability for interaction of gamma-ray photons with high Z materials. The tee included a

small scattering possibility, but it was considered negligible. Therefore, the room geometry and the

aluminum tee were not simulated. Only the source, detector, and the air in between were simulated.

In the first set of experiments, a source was placed at a set distance from the detector center

(on-axis). The source was held in place on a ring stand, or taped to the front of the detector (for quick

counts). The source was typically a button calibration source with known activity and dimensions.

These measurements were performed for base validation, energy calibration of the detector, and

power law fitting for the DRF.

The parameters of all of the calibration sources used for validation are listed in Table 3.1. Details

of the sources used for the energy calibration and the power law fit are not reported here, as these

measurements were only intended for determining detector properties.

Table 3.1 Dimensions and activities of calibration sources used for experimental measurements

Source A.R. (cm) Thick. (cm) Act. (µC i ) Created Measured Act. Meas. (µC i )
Cs-137 0.25 0.318 5.01 9/28/2005 2/20/2014 4.13±0.62
Co-60 0.25 0.318 0.8516 3/1/2002 6/21/2013 0.1927±0.029

Note: All calibration sources used in this work were created by Eckert and Ziegler, and the active source dimensions
(active radius, A.R., and thickness) used in the MCNP model were taken from the Type D disc model in the catalog.
Furthermore, according to the supplier "Sources are manufactured with contained activity (Act.) values of ±15%
of the requested activity value unless otherwise noted in the catalog.” [27]

Note that only the active volume of these sources was simulated in MCNP and not the plastic
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case surrounding them, since attenuation was assumed to be negligible. The emission energies and

relative intensities of the gamma-rays of interest for each source used are tabulated in Table 3.2.

Table 3.2 Gamma ray energies and relative intensities of all sources measured were taken from
Brookhaven National Laboratory’s Nudat2.6 database. [28]Unlisted uncertainties were assumed to be
one in the last digit.

Source Peak No. Energy (keV) Relative Intensity (%)
Am-241 1 59.5409(1) 35.9(4)
U-235 1 105.0(1) 2.00(3)*

U-235 2 109.0(1) 2.16(13)*

U-235 3 143.76(2) 10.96(14)
U-235 4 163.356(3) 5.08(6)
U-235 5 185.715(5) 57.0(6)
U-235 6 202.12(1) 1.080(23)
U-235 7 205.316(10) 5.02(6)
Ba-133 1 80.9979(11) 35.6(3)*

Ba-133 2 356.0129(7) 62.05(1)
Cs-137 1 661.657(3) 85.10(20)
Mn-54 1 834.848(3) 99.9760(10)
Na-22 1 1274.537(7) 99.941(14)
Co-60 1 1173.228(3) 99.85(3)
Co-60 2 1332.492(4) 99.9825(6)

*Note: gamma-rays from the same source that were within 1 keV of each
other were averaged and their intensities summed together.

The next set of experiments focused on the source of interest (uranium-235 or U-235) and were

specifically conducted for the DRF validation exercise. Since it is very unlikely that a detector will be

directly pointed at a holdup material deposit when the deposit has an unknown location, strength,

and shape, off-axis detector spectra are of great interest in the holdup field. This is also necessary

for holdup configurations where the source is distributed and thus contributes to the response of a

stationary detector from broad angles of incidence. So, a source was affixed to an aluminum tee and

prepared specifically for accurate off-axis measurements.

The detector was placed on the center steel bar while the source was put on the crossbar held by

a vice and a steel ring holder at a distance of 38 cm from the detector face (41 cm from the front face

of the detector crystal). The source was then moved laterally left and right of center, or the axially

aligned position, in 5 cm intervals up to 20 cm. Measurements ceased at 20 cm because the source
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started to become indistinguishable from background beyond that distance. For visual reference, a

photograph of the lateral off-axis experimental setup is shown in Figure 3.2.

Figure 3.2 Photograph of the HEU disc off-axis experiment 41 cm from the detector and 15 cm to the right
(x=+15cm).

The source was a highly enriched uranium (HEU) disc source of known activity, dimensions,

and enrichment. The dimensions of the U-235 source are given in Figure 3.3.
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The source in the disc is composed of U3O8, uranium’s naturally occurring chemical form. The

uranium compound is set on polyethylene epoxy and encased in stainless steel. The activity of the

disc was 736 µ Ci on December 1, 2004. However, since uranium-235 has a very long half life (703.8

million years for U-235), the activity of the source at the time of the measurement was similar to

its initial activity. The individual uranium nuclides that comprise the disc source employed in our

experimental campaign are listed in Table 3.3.

Table 3.3 Enrichment of the uranium disc source

Nuclide Weight %
U-234 1.016
U-235 93.162
U-236 0.400
U-238 5.421

C (natural) 1.009E-3

The disc is of a high enrichment of U-235. U-235 is a common target material for holdup problems

in the nuclear fuel production industry because holdup material deposits present a proliferation

risk and can become a criticality safety concern. The typical holdup measurement in this case will

seek to detect the naturally emitted low energy gamma radiation. Hence, the focus of the validation

experiments has been on the low energies of the detector spectrum where the highest intensity

(most probable) gamma rays of U-235 are emitted (140-190 keV). This also explains the choice of

the smaller NaI detector size, as high energy detection that would necessitate larger detectors to

improve detection efficiency is of lower interest in the holdup field.

The last set of experiments were also performed on the highly enriched uranium disc but with

a few modifications. First, one or two steel plates taped to the front of the NaI detector to provide

attenuation. Second, the lateral distance between detector and source was reduced from 38 cm to 8

cm (11 cm from the crystal), and finally only on-axis measurements were taken. These measurements

simulated the attenuation that would be provided by steel pipe and equipment walls that normally

stand between the detector and a holdup material deposit. The dimensions of the first steel plate

were 105.22mm x 157.75mm (±0.02mm) with a thickness of 0.86 ±0.04mm . The second plate was

101.62mm x 152.66mm (±0.02mm) and 0.90 ±0.02mm . For visual reference, a photograph of the

HEU attenuation experiment at 11 cm is shown in Figure 3.4.
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Figure 3.4 Photograph of the HEU disc attenuation experiment with two stainless steel plates attached to
the detector (11 cm from the source).

For simplicity, in the MCNP simulation the isotopic compositions of the stainless steel plates

were kept the same as the steel used to encase the detector and to encase the HEU source. The

weight percent of each elemental isotope used in the steel alloy is listed in Table 3.4.
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Table 3.4 Stainless steel alloy composition used in the MCNP simulations.

Nuclide Weight %

Cr-50 0.800

Cr-52 16.2

Cr-53 0.200

Cr-54 0.400

Mn-55 2.00

Fe-54 4.20

Fe-56 64.8

Fe-57 1.50

Fe48 0.200

Ni-58 6.60

Ni-60 2.50

Ni-61 0.100

Ni-62 0.300

Ni-64 0.100

This composition of steel was taken directly from the MCNP model created by ORNL. The

original model is available upon request from the Safeguards & Security Technology Group at ORNL.

3.2 Monte Carlo Transport Models

Version five of the Monte Carlo (MC) code MCNP (Monte Carlo N-Partical Transport Code) was used

to calculate the incident gamma-ray photon flux on the 1x2 NaI detector crystal. MCNP is a radiation

transport code developed by Los Alamos National Laboratory (LANL) that simulates a large number

of random particle histories (particle tracks through a medium as well as collisions with its nuclei) in

a user specified geometric configuration according to specified material cross sections (taken from

the Evaluated Nuclear Data Files, ENDF). On the order of a few billion particle histories were run for

each flux calculation to keep the MC statistical errors smaller than the measurement uncertainties.

The computational geometry specified for MCNP was simplified from the actual experimental

geometric setups described in Sec. 3.1. Instead of including all details (i.e. objects) within the

room, only the detector and all of its components and the source were simulated within a sphere

of air. Only immediately adjacent objects like the table, the aluminum tee, and source holding
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apparatuses would be likely to contribute in a small way to the collided fluence tally. There would

be no contribution to the uncollided fluence tally as at least one Compton scatter with one of these

objects would be required before the particle struck the detector. The detector collimator reduces

the likelihood of these events further by reducing the detector solid angle by which particles can

strike the detector crystal. So, the secondary geometry (table, tee, etc.) would only make a small

contribution to the Compton continuum portion of detector spectra and hence was excluded from

the MC models.

With the simplified geometry, an F4 (average fluence) tally was taken in the detector crystal cell

by MCNP. MCNP calculates the fluence in a manner very similar to the fluence definition given by

Equation 2.1, by summing the particle track lengths over the given cell volume for each discrete

energy bin as specified by the user. In our case, 512 equal and discrete energy bins were chosen to

match the energy range given by the DRF, and to match the 512 channels observed in the measured

spectra. The average fluence tally over cell volume V was approximated discretely as follows,

Φ̄V (E )'
1

N V ∆E

N
∑

i=1

ni
∑

j=1

W
j

i s
j

i [
1

c m 2
], (3.1)

where ni is the number of times the ith particle enters V at energy Ek within energy bin k, s
j

i is

that particle’s jth track length in V, and W
j

i is the particle’s weight when entering V for the jth time.

Also, N is the total number of histories simulated by MCNP, and∆E is the width of the tally’s energy

bin centered at energy E. This relation is only an approximation of the average fluence, but if a large

number of particle histories pass through the cell volume, then it is a fairly accurate tally. [2]

However, as the MCNP fluence is based on the total number of particle histories, it can be

converted to a flux as follows

φ̄(E ) = Φ̄V (E ) ·Aγ [
p ho t o n s

c m 2 · s e c ·M e V
] (3.2)

where A is the activity of the source in Becquerels (Bq) or decays/sec, and γ is the yield in

particles/decay. So simply multiplying the F4 tally (fluence) by the source activity and yield converts

the tally to the approximate scalar flux effective over the volume of the detector crystal.

Again, the detector response can be predicted by multiplying the DRF by the incident flux.

However, Gardner’s DRF does not fully include a direct property of specific NaI detectors, absolute

efficiency, so it must be considered in the formal definition (Equation 3.3). [24] A differential pulse

height spectrum (detector response), dN/dH is defined as
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d N

d H
=

∫

R (H , E )S (E )d E ≈
G
∑

i=1

RG (H , Ei )φ̄(Ei )εa b s (Ei ). (3.3)

The formal definition from Knoll is listed first and is approximated by the more directly applicable

second definition. R(H,E) is the differential probability that a quanta of energy within dE about

E leads to a pulse with amplitude within dH about H (DRF). S(E)dE is the differential number of

incident radiation quanta with energy within dE about E. [9] RG (H , Ei ) is Gardner’s DRF, which is the

differential probability that a flux of energy Ei leads to a pulse with amplitude within dH about H

(DRF), and εa b s (Ei ) is the absolute efficiency. φ̄(Ei ) is the flux. To fully determine a detector response

using Gardner’s model, a new quantity must be defined and calculated: absolute efficiency.

Detector efficiency in general determines the percentage of radiation particles detected to the

number emitted. There are two main classes of detector efficiency, absolute efficiency and intrinsic

efficiency. Knoll defines absolute efficiency as simply the ratio of the number of detector pulses

recorded to the number of particles with energy E emitted from the source. Absolute efficiency is

dependent mainly on detector properties (cross-sections) and the counting geometry (source to

detector position). Whereas the intrinsic efficiency is the ratio of the number of detector pulses

recorded to the number of radiation quanta incident on the detector. The intrinsic efficiency is

accounted for by the DRF, however, the absolute efficiency is not. Therefore it must be approxi-

mated as the energy deposited along the average path length through the detector crystal in MCNP

simulation. [9]

In other words, the total absolute efficiency is the probability of particles incident on the detector

interacting with the detector crystal over all energies (thereby creating a pulse at energy E). This

probability is defined as

ε
j
a b s (E ) = Pi n t e r a c t i o n = 1− e −µt o t (E )·s j (E ) (3.4)

where µt o t (E → E ′,Ω→Ω′) is the NaI photon macroscopic cross section and probability that an

incident particle of energy E interacts per unit path length. s j (E ) is the track length and an MCNP

program called ptrac was used to record a large number of possible particle track lengths. This

distribution was then averaged over all track lengths to produce an average absolute efficiency

ε̄a b s (E ) as shown in Equation 3.5.

ε̄a b s (E ) =
1

Nt

Nt
∑

j=1

ε
j
a b s (E ) (3.5)

Nt is the total number of track lengths recorded by ptrac. Again, the absolute efficiency is
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multiplied by the DRF and the incident flux to produce a response spectrum (Equation 3.3). However,

since Gardner’s model typically underestimates the flat continuum under the response due to

electron physics concerning channeling or possibly NaI impurities the resulting computed response

must be normalized to the experimental response. [16] In our work, the normalization factors (the

ratio of the areas under each curve) necessary to pull up the computed response to the experimental

were found to be between two and eighteen. This is in good agreement with Gardner and Sood’s

results as they had experimental measurements that were up to around an order of magnitude

greater than the responses predicted by g03.
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4

VALIDATION

Overall, the simulated detector responses predicted by Gardner’s model predicted the highest

intensity peak region of the experimental spectra fairly well, but had some difficulty in the continuum

and secondary peak regions. In the highest intensity peak region of the response, most of the

computed spectrum lay within two standard deviations of the experimental spectrum’s centroid.

The continuum discrepancies between the predicted and measured responses in the calibration

sources appear to stem from miscalibration of the electron range multiplier (Equation 2.4) for

the collimated 1x2" NaI detector. Gardner’s current model was validated only for larger bare NaI

detectors and not for collimated detectors and therefore some differences were expected. Whereas,

significant underestimation of the secondary peaks occurred in the highly enriched uranium (HEU)

disc spectra most likely due to outside crystal scattering with the detector collimator and other

components.

4.1 Cs-137 Measurement

The first measurement was of a Cs-137 source. The Cs-137 source measurement was taken at a

distance of 10 cm from the center of the detector face with the calibration source described by Table

3.1. The high source activity (4.13 µC i ) allowed for for a precise measurement with less than one
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percent uncertainty in the peak region in terms of counts (according to Poisson counting statistics),

and it was counted for 4000 seconds. This source was used for validation and as one of the data

points for the power law fit but not for the final energy calibration. The resulting spectra computed

and measured are given in Figure 4.1a and compared with the computed response without the lead

collimator and aluminum sheath simulated in the MCNP flux calculation (Figure 4.1b).
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Figure 4.1 Measured and normalized computed responses for the Cs-137 calibration source at 10 cm
(normalized across bounds) with aluminum can (a) and without aluminum can and collimator (b).

It is apparent that the backscatter peak is overestimated and the peak underestimated. However,

the greatest difference lies in the area between Compton edge and the peak, which will henceforth

be referred to the valley of the response. At first this effect was thought to be just a product of

the model being unable to account for the collimator geometry. In Sood’s PhD thesis, a similar

problem was occurring in the valley region of the response for their NaI 3x3" detector. However, the

effect was reversed. For a bare NaI crystal simulation in MCNP for the flux calculation, the resulting

response underestimated the valley. Simulating the detector aluminum sheath or can corrected this

underestimation. [12]

In that manner, the same effect is observed here. Taking away the collimator and aluminum

sheath from the MCNP geometry resulted in a response with a lower valley. This means that the

collimator and can geometry were not the source of the shallow valley discrepancy.
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Another difference between this validation exercise and Gardner and Sood’s validation exercises,

was how the computed spectrum was normalized to the measured response. Gardner and Sood

chose to normalize to the peak channel only, whereas in this work, normalization to the area under

the section of interest bounded by the normalization bounds was chosen instead. The normal-

ization factor used to normalize the computed to the measured response spectrum is described

mathematically by Equation 4.1

Ac =
nb 2
∑

nb 1

R c
i ,

Am =
nb 2
∑

nb 1

R m
i ,

Nf =
Am

Ac
, (4.1)

where R c
i is the computed count rate, and R m

i is the measured count rate at channel i. nb 1 and

nb 2 are the normalization bounds. Normalization bounds were chosen on a case by case basis. In

this case the bounds were chosen to avoid bins artificially augmented by the rebinning process and

unnecessary noise after the full energy peaks. Rebinning was accomplished by assuming the count

rates within the old bins were uniformly distributed, and then collecting them into the new bins

according to the fractions of the old bins determined by the uniform pdf. All contribution from the

negative energy bins created from the energy calibration were lumped into the first two bins by the

rebinning algorithm. Therefore those two bins were not included in the normalization.

The main reason for the normalization according to sections was chosen to minimize the effects

of response error in parts of the spectrum. The other reason was to avoid choosing between multiple

peaks in a spectrum. However, in this case normalizing to the peak channel revealed the true source

of the valley problem as shown by the renormalized spectrum in Figure 4.2a and Gardner’s responses

resulting from various electron range multipliers: Figure 4.2b.

35



4.2. CO-60 MEASUREMENT CHAPTER 4. VALIDATION

0.2 0.3 0.4 0.5 0.6 0.7
Energy (MeV)

10-3

10-2

10-1

100

101

102

103

104

C
o
u
n
t 

R
a
te

 (
c
p
s
)

Cs-137 Source at 10 cm

normalization bounds

measured response

normalized computed response

two sigma confidence interval

(a) (b)

Figure 4.2 (a) Measured and normalized computed responses for the Cs-137 calibration source at 10 cm
(normalized to the peak). (b) 3x3" NaI detector computed responses over a varying electron range multi-
plier compared with the measured response from the Heath benchmark.

Now, as can be seen, the whole response spectrum is overestimated to the left of the peak for

the figure on the left. A similar effect is observed by a spectrum with an electron range factor that

is too low in Gardner’s figure (right). [16] A range multiplier that is too high underestimates the

continuum and a valley, while the reverse is true for one that is too low. Since the size of the detector

and number of channels of the 1x2" ORNL detector is very different from Gardner’s detector it is not

surprising that the value of the electron range multiplier may no longer be optimal. Furthermore,

the psuedo-electron range multiplier (Equation 2.4) was fit for Gardner’s detector by trial and error.

For this reason, and the fact that the HEU spectrum of interest contains far less contribution from

Compton scatter, the correction of the factor is reserved for future work.

4.2 Co-60 Measurement

The next measurement concerned the Co-60 source described in Table 3.1 taped directly to the

detector face. The low source activity (0.1927µC i ) required 1600 seconds for a reasonable number of

counts ( 400 counts, 5% Poisson uncertainty) even on the detector face, so no further measurements

were taken with this source. However, this source was only used for the detector energy calibration
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and a simple baseline validation (shown in Figure 4.3a). The energy calibration and its parameter

uncertainties are discussed further in Section 5.2.
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Figure 4.3 (a) Measured and normalized computed responses for the Co-60 calibration source on the
detector face using normalization across a range of channels (a) and normalized to the highest intensity
peak (b).

As expected, the measured spectrum shows some significant fluctuation in the confidence

interval along the response due to the low number of counts (higher uncertainty). The normalized

computed response stays mostly well within the confidence interval of the measured response

except at the backscatter peak around 2 MeV and the peaks are slightly underestimated. The two

Compton edges and most of the continuum are predicted fairly well, however the backscatter peak

region around 0.2 MeV is overestimated and the full energy peaks are slightly underestimated.

The overestimation may appear to be less significant in this case due to wider confidence bounds

(from the lower fidelity of the measurement), but it is still apparent on closer inspection. The cause

is most likely the same as the Cs-137 case, miscalibration of the electron range fit in the g03 source

code. Normalization bounds were chosen for the same reasons as the Cs case.
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4.3 Axial HEU Disc Measurement Set

The first set of HEU disc measurements were performed in order to test the performance of the

DRF model for off-axis geometry. All measurements were carried out at a distance of 41 cm on-

axis (y direction) from the crystal (38 cm from the face) and in set increments of 5 cm in the x

direction. The central and first two positions used a 400 s background count, whereas the last two

positions (x=15,20 cm) used background count times equivalent to the measurement count times.

All background count times were chosen based on propagation of the net count uncertainty.

The HEU disc source at the central position (x=0 cm) was counted for four hundred seconds. The

normalized computed and measured responses are given by Figure 4.4. The HEU disc specifications

and composition can be found along with further details of the source geometry for the entire

measurement set in Section 3.1.
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Figure 4.4 Measured and normalized computed responses for the HEU disc at the central position.

The normalized computed spectrum approximated the measured spectrum fairly well (within

two standard deviations of the experimental response) for the main full energy peak at 186 keV and

its shoulder peak at 205 keV with only a slight overestimation, however the secondary peaks at 163

and 144 keV are underestimated to compensate through normalization. The HEU gamma radiation

energies are too low in this case to produce much of a Compton continuum, and any continuum

that was produced is obscured by secondary peaks. So, it follows that absorption from the collimator
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created a significant decrease in flux unaccounted for by the DRF. The cross sections from Table 4.1

verify this line of thought by demonstrating an absorption cross section that is about 10 times larger

than the scattering cross section at 200 keV.

Table 4.1 Various photon cross sections (c m 2/g ) from 60 keV to 2 MeV. [25]

Energy (MeV) Coh. Scattering Inc. Scattering Absorp. Total
6.000E-02 4.900E-01 9.734E-02 4.432E+00 5.020E+00
8.000E-02 3.078E-01 9.923E-02 2.012E+00 2.419E+00
8.800E-02 2.632E-01 9.928E-02 1.547E+00 1.910E+00
8.800E-02 2.632E-01 9.928E-02 7.321E+00 7.684E+00
1.000E-01 2.128E-01 9.894E-02 5.237E+00 5.549E+00
1.500E-01 1.049E-01 9.484E-02 1.815E+00 2.015E+00
2.000E-01 6.260E-02 8.966E-02 8.464E-01 9.986E-01
3.000E-01 2.988E-02 8.036E-02 2.930E-01 4.032E-01
4.000E-01 1.746E-02 7.310E-02 1.417E-01 2.323E-01
5.000E-01 1.143E-02 6.734E-02 8.257E-02 1.613E-01
6.000E-01 8.060E-03 6.263E-02 5.406E-02 1.248E-01
8.000E-01 4.621E-03 5.537E-02 2.871E-02 8.870E-02
1.000E+00 2.991E-03 4.993E-02 1.810E-02 7.102E-02
1.022E+00 2.865E-03 4.944E-02 1.732E-02 6.962E-02
1.250E+00 1.930E-03 4.476E-02 1.168E-02 5.875E-02
1.500E+00 1.347E-03 4.075E-02 8.321E-03 5.222E-02
2.000E+00 7.626E-04 3.482E-02 5.034E-03 4.607E-02

In terms of mean free paths (mfp), the 3 cm of lead provided by the collimator is approximately

29 mfp in terms of absorption and only three mfp in terms of incoherent scattering. The collimator

is now optically thick in terms absorption but still thin in terms of scatter. While scattering will still

only reduce the flux of the highest full energy peak of the spectrum, it would add to the flux of the

lower energy peaks. This explains the overestimation of the high energy peak balanced with the

underestimation of the lower peak. The scattering also distorted the shape of the two convolved

peaks at 163 and 144 keV really only producing a peak at about 150 keV. Since simulation of the

low fidelity results with the peaks combined and averaged in position and intensity yielded better

results than the two simulated separately, they were kept together for all subsequent simulations.

The comparison of the low fidelity runs with the peaks separated and combined can be found in the

Appendix A.1.

The lowest energy peaks below the normalization bounds were originally thought to be a set of
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four very low intensity peaks. However, upon further investigation it was found that the backscatter

peaks from the three main full energy peaks were of the same energy. Using the Compton scattering

equation in terms of energy, it was calculated that the backscatter peaks from the lead shielding

would be centered at 114, 108, and 95 keV for the full energy peaks at 205, 186, and 150 keV, respec-

tively. Backscattering that occurs inside the detector crystal is accounted for by the DRF, but that

which occurs in the lead shielding is not. Therefore, the backscatter peaks are acknowledged, but

excluded from the normalization region in order to avoid skewing the other validation regions.

It is worthy to note that two other factors could have also contributed to the underestimation

of the two secondary peaks besides scattering in the collimator. Scattering within the table and

aluminum tee that were not simulated in the MCNP fluence model, and gamma rays emitted by the

decay products of U-234, U235, and U-238 could also have made some contribution. It was assumed

that scattered photons from the table and tee would be negligible due to shielding provided by

the collimator. Gamma radiation from uranium daughter products, however, were not simulated

simply because there were too many low energy gamma rays with low relative yields (probability of

emission per decay).

The HEU disc at the first position: 5 cm off-axis, was counted for a total of five hundred seconds.

Measurements were taken in both the positive and negative x directions. The normalized computed

and measured responses of both measurements are shown by Figure 4.5.
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Figure 4.5 Measured and normalized computed responses for the HEU disc source at y=41 cm and (a) five
centimeters left of center x=-5 cm and (b) five centimeters right of center x= 5 cm.

As expected, the entire count rate for both spectra have decreased slightly (about 25%) from

the central position due to attenuation with the collimator and increased distance from the source.

The lead backscatter peaks have also consolidated into a slightly different shape to accommodate a

new more favorable set of scattering angles. The computed response again overestimates the main

full energy peak and underestimates the secondary peaks due to the increased scatter from the

collimator. Finally, normalization bounds remained the same as the central case.

The second position was 10 cm off-axis, and the HEU disc source was counted for 750 seconds.
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The source at the third position (15 cm off-axis) was counted for 1600 seconds. The normalized

computed and measured repsonses for the positive and negative axis positions at x=10 cm and

x=15 cm are contained in Figure 4.6

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
Energy (MeV)

10-2

10-1

100

101

102

103

C
o
u
n
t 

R
a
te

 (
cp

s)

HEU Disc Position: x=-10 cm, y=41 cm

normalization bounds

measured response

normalized computed response

two sigma confidence interval

(a)

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
Energy (MeV)

10-2

10-1

100

101

102

103

C
o
u
n
t 

R
a
te

 (
cp

s)

HEU Disc Position:  x=10 cm, y=41 cm

normalization bounds

measured response

normalized computed response

two sigma confidence interval

(b)

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
Energy (MeV)

10-2

10-1

100

101

C
o
u
n
t 

R
a
te

 (
cp

s)

HEU Disc Position: x=-15 cm, y=41 cm

normalization bounds

measured response

normalized computed response

two sigma confidence interval

(c)

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
Energy (MeV)

10-2

10-1

100

101

C
o
u
n
t 

R
a
te

 (
cp

s)

HEU Disc Position:  x=15 cm, y=41 cm

normalization bounds

measured response

normalized computed response

two sigma confidence interval

(d)

Figure 4.6 Measured and normalized computed responses for the HEU disc source at y=41 cm and (a) ten
centimeters left of center x=-10 cm, (b) ten centimeters right of center x=10 cm, (c) fifteen centimeters left
of center x=-15 cm, and (d) fifteen centimeters right of center x=15 cm.

The decreasing response trend continues for both positions (10,15 cm) with increased atten-

uation from the collimator and increased distance. At 15 cm, the secondary peak and the lead
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backscatter peaks become nearly indistinguishable from background radiation. The reason for this

high background is that the experiment was designed to ensure only the visibility of the main 186

keV peak. Even the least squares fit for the linear shifting process could not fit a Gaussian peak to the

150 keV peak for the x=-15 cm position in Figure 4.8c. So, only a one peak based shift was performed

on this spectrum. Normalization bounds remained the same as previous cases for simplicity.

The final position (20 cm off-axis) was most influenced by background and required a long count

time in order to overcome it. The HEU disc at 20 cm was counted for 4800 seconds. The normalized

computed and measured responses are shown by Figure 4.7.
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Figure 4.7 Measured and normalized computed responses for the HEU disc source at y=41 cm and (a)
twenty centimeters left of center x=-20 cm and (b) twenty centimeters right of center x= 20 cm.

The count rate for this position was the lowest and most attenuated. Again, in order to focus on

the main peak and maintain reasonable count times, only the main peak at 186 keV was resolved

from background. Furthermore, the normalization was narrowed to only contain the main peak

range. The normalized simulated response approximates peak behavior quite easily in spite of

collimation and geometry when isolated from the rest of the spectrum.
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4.4 HEU Disc Attenuation Measurement Set

The second set of HEU disc measurements were done in the interest of testing the DRF model’s

simulation of purely attenuated responses. Each measurement was performed centered on-axis at a

distance of 11 cm from the crystal (only 8 cm from the face). The first measurement was counted

without any attenuators. The second and third cases involved taping one and two stainless steel

plates, respectively, to the face of the detector. The count time was kept constant at 300 s for all

three measurements. The normalized computed and measured responses for all three cases are

contained in Figure 4.8
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Figure 4.8 Measured and normalized computed responses for the HEU disc source with (a) no, (b) one,
and (c) two stainless steel sheets taped to the detector face.

The same effects as observed before for the central position at 41 cm is observed for the unat-

tenuated response: imbalance between the two full energy peaks and no prediction of the lead

backscatter peak. However, the count rate is higher due to the closer proximity of the source. Nat-

urally, the normalization bounds were kept the same as the inner axial HEU measurements. As

stainless steel sheets are added to the face of the detector, a decrease in count rate across the entire

spectrum is observed. The effect is very similar to that of the off-axis cases, except the background

shape does not change since the angle of incident radiation is constant.
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CHAPTER

5

UNCERTAINTY QUANTIFICATION

The other major goal is to quantify the uncertainties associated with the simulated responses that

were used to validate the 1x2" NaI ORNL field detector. Validation reveals the accuracy of the model

whereas uncertainty yields the expected precision of the simulated responses providing a level

of confidence in the results. Each step in calculating the detector responses for each case has an

associated uncertainty that has been calculated and compared to the experimental uncertainty

where applicable.

Uncertainties that were easily reducible (e.g. MCNP uncertainties are based on the number of

histories run), were always reduced below the peak channel uncertainty for each measurement case.

Fitting uncertainties were based on the number of data points and the data uncertainty and therefore

constrained to the quality of measurements performed. Even so, most of the fixed uncertainties

tended to be under the respective measurement’s experimental uncertainty.

5.1 Monte Carlo Based Uncertainties

The first quantity required to calculate a simulated response is the MCNP fluence calculated by

particle track length tallies in MCNP. The fluence tally was divided into small energy bins according

to the energy structure of the DRF calculated by g03. MCNP calculates the relative uncertainty of
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each bin based on the number of particle track lengths that fall into that bin. Therefore, the number

of total tallies were chosen in order to make the energy bin with the highest standard deviation

have the same uncertainty as the lowest experimental uncertainty for each measurement excluding

the Am-241 seed peak region. The number of histories required was then easily predicted, since

again Monte Carlo standard deviation is equal to the inverse square root of the number of particle

histories. In all cases, excluding Co-60, the number of histories required was on the order of billions.

Similarly, in the Cs-137, Co-60, and HEU attenuation cases the highest computational uncertainties

above 80 keV were ensured to be below the lowest uncertainty of the experimental results.

In certain cases of the HEU disc measurements at forty one centimeters, meeting the lowest

experimental uncertainty for every tally energy bin was difficult to do in a reasonable amount of

computational time. Certain MCNP modeling measures were taken to compensate and reduce

computation times. First, the lowest energy bins below 80 keV were excluded for two reasons. These

bins had the highest computational uncertainty, and they were overshadowed by leftover noise

from the background subtraction of the Am-241 seed peak in the measured spectrum anyway.

The other change involved simply reducing the source definition from an isotropic source to

only producing particle histories within the solid angle calculated to actually strike the detector

whole, not just the face. All particles were then weighted using a form of importance sampling called

forcing to prevent biasing the fluence tally, where the alternate pdf was uniform over the reduced

angle and the original pdf was uniform in all directions. The modified pdf ( f̃ (x )) and the weighting

factor (w ) can be derived from Equations 5.1 and 5.2 respectively.

f̃ (x ) =
f (x )
∫ x2

x1
f (x )d x

f o r xmi n ≤ x1 ≤ x ≤ x2 ≤ xma x , (5.1)

w =w0

∫ x2

x1
f (x )d x
∫ xma x

xmi n
f (x )d x

, (5.2)

where w is the forced weight of the particle and w0 is the original weight of the particle. f (x )

is the original pdf, and x1 and x2 are the new bounds to be imposed on the pdf in order to only

sample the important region contained by them. [26] In our work, the initial source distribution

direction was modified from being isotropic in all directions to being contained within the angle

cosine relative to a directional vector ( ~v ) aligned with the center of the detector face but still isotropic

in the other directions. A diagram of the detector to source geometry is shown for reference in Figure

5.1.
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Figure 5.1 Diagram of the detector to source geometry and the solid angle chosen for the initial source
distribution forcing pdf.

Ifµc is the cosine of angle θ (chosen to include the whole detector surface area), and the original

pdf is f (x ) = dµ/2. The solid angle bounds are set to x1 = µc and x2 = 1 for a narrower forward

direction. The modified pdf becomes

f̃ (µ) =
dµ
2
∫ 1

µc

dµ
2

=
dµ

1−µc
, (5.3)

which is sampled from instead of the full isotropic pdf. The corresponding weight can be derived

as

w =w0

∫ 1

µc

dµ
2
∫ 1

−1
dµ
2

=w0
1−µc

2
, (5.4)

which is multiplied by the original weight of each particle emitted from the source. This change

reduced the variance significantly allowing a more reasonable amount of particles to be run for the

x =±15 cm and x =±20 cm cases.

Since the table and room geometry are not simulated in the MCNP model anyway, it is a small

approximation assuming that off direction photons would likely escape the system of interest.

Rather than show all of the bin uncertainties for each case, the case with the highest uncertainty

(HEU disc at x=41 cm, y=-20 cm) excluding the Co-60 measurement will be given as an example.

The fluence F4 tally is plotted with its uncertainty bounds in Figure 5.2.
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Figure 5.2 MCNP computed fluence and two sigma confidence interval

The bounds are fairly narrow beyond 80 keV. Each spike in the fluence corresponds to an incident

gamma ray energy from the HEU disc starting from 105 keV and ending at 205 keV. The highest

relative standard deviation greater than 80 keV was 2.44% at 195 keV. This was well below the lowest

relative standard deviation of the HEU disc measurements at 41 cm which was 2.72%. As can be

seen, the confidence bound between the 186 keV peak and the maximum energy peak at 205 keV is

wider than anywhere else above 80 keV. Even the bins in under 80 keV did not exceed 5% relative

standard deviations.

The DRF itself contains a Monte Carlo calculation that fully calculates the probabilities of a

count in each channel based on contributions from all other channels using the fit parameters. Once

again, the number of particle histories controls the relative uncertainty of the DRF, and the same

threshold of the lowest experimental uncertainty for each case was selected for the highest DRF

channel uncertainty. The order of particles required was much less than that of the flux calculations

and only on the order of hundreds of thousands for all DRF Monte Carlo calculations.

Again, it is not feasible to show every uncertainty for each measurement, so only the highest

uncertainty case (excluding Co-60) will be shown. As expected, this case would be the HEU disc at

forty one centimeters for the off-axis experiments. Furthermore, six DRFs (one for each incident

photon energy) are summed together to produce the total DRF, so the peak DRF with the highest

uncertainty was chosen (105 keV peak). Because g03 did not have a second axis distance variable,

only one total DRF was used for the off-axis HEU disc experiments. Now, since the full DRF depends
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on two variables and would produce a three dimensional surface plot it will be easier to display the

uncertainty bounded along the peak channel densities, as displayed in Figure 5.3.
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Figure 5.3 HEU disc at 41 cm with DRF densities for the 105 keV peak at channel 33 and the two sigma
confidence interval

The highest probability density channel contributions for channel 33 are the immediate channels

above that channel as expected from the spread of Gaussian uncertainty. However, the peak of the

densities is actually about five to six channels over channel 33 which might explain the need to shift

the computed spectra about the same number of channels. Channels above the spread have no

contribution (density=zero), and the channels below are fairly constant. When the entire DRF is

multiplied by the flux, the entire row of densities for each channel is multiplied by the flux vector and

summed, so naturally the uncertainty is constant for each channel. The relative standard deviation

for this channel was 0.420% and well under the 2.72% experimental uncertainty. Each channel row

in the DRF possesses a similar density curve, so the highest flux channel will produce the highest

response automatically. The highest relative standard deviation of all the DRF channels was for the

last channel (512) and was only 1.80%.

The total absolute efficiency calculation was carried out through calculation with an XCOM

NaI cross section and particle track lengths through the crystal volume in MCNP as described by

Equation 3.5. The number of histories were increased accordingly until the proper number of path

lengths were acquired to reduce the highest relative standard deviation to approximately that of
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the lowest experimental uncertainties. The highest uncertainty case is shown for the HEU disc at

forty one centimeters. The resulting density curve with a two sigma confidence interval is shown in

Figure 5.4.
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Figure 5.4 Absolute efficiency of the HEU disc at 41 and two standard deviation confidence interval

This curve is essentially the probability of an interaction of energy E, occurring within the crystal.

So, low energies are almost certain to be absorbed and higher energies are more likely to escape.

The relative uncertainty is fairly small at low energies, but grows as energy increases. The relative

standard deviation was 2.78% at the highest energy which was close to the lowest experimental

relative uncertainty of 2.72%. At 0.2 MeV or less where the majority of the HEU spectrum lies the

relative uncertainty is much lower and well below 1%. The higher uncertainty at higher energies is

purely a factor of lack of information or no particle tracks at those energies.

5.2 Parameter Uncertainties

The first set of parameters are associated with both the measured and computed results: the energy

calibration. The energy calibration is simply a polynomial that converts channel data to energy

data based off of the nonlinear scintillation behavior of NaI detectors. This is a necessary piece for

verifying physical measurements and a required conversion for the empirical power law of the DRF.

The energy polynomial is given by Equation 5.5
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E (k e V ) =α2 x 2+α1 x +α0, (5.5)

where x is the channel, E is energy in keV, and α0, α1, and α2 are the polynomial parameters.

The energy calibration parameters were found by a least squares fit of measurements of known

sources with known energies at the gain settings discussed in Section 3.1. Three sources were used

to determine the energy calibration polynomial: the Am-241 seed source, and the Cs-137 and Co-60

sources detailed in Table 3.1. Each channel mean for the energy calibration was found by taking

the peak section of the measured responses for each source and fitting them according to a simple

Gaussian plus linear background empirical model. The linear Gaussian model is given by Equation

5.6

Gy =
B

p
2πσT

e −
1
2 (

x−x̄
σT
)2 +a1(x − x̄ ) +a0. (5.6)

where x is the detector channel and Gy is the resulting point in the Gaussian curve. B is the

normalization constant, andσ is the standard deviation of the Gaussian. Finally, x̄ is the mean of

the Gaussian, and a0 and a1 form the linear background term. The Gaussian channel means and

parameter standard deviations are shown in Table 5.1.

Table 5.1 Channel means and associated standard deviations (STD) of the Gaussian fits for the energy
calibration.

Source Pk. No. Mean Chan., x̄ STD,σx̄ Rel. STD,σx̄
r e l (%) Red. Chi-Square, χ2

v
Am-241 1 20.92 2.767E-3 1.323E-2 0.8973
Cs-137 1 195.79 1.804E-2 9.212E-3 2.569
Co-60 1 341.64 0.2214 6.479E-2 1.059
Co-60 2 386.38 0.1761 4.557E-2 0.7260

Each least squares fit was performed by a nonlinear least squares algorithm in MATLAB called

lsqnonlin. The standard deviation was found through the simple Frequentist methods described

in Section 2.5 from the parameter covariance matrix. Classical Frequentist methods were used in

lieu of Bayesian for all Gaussian peak fitting except for the power law measurements because there

were usually a larger number of points in each peak. Also, Frequentist calculations require less

calculation time than DRAM (about 100 times less). The algorithm had no trouble fitting these

peaks, as each relative standard deviation of the mean channel is well under 1%. Co-60, as expected,

had the highest uncertainty because it had the lowest source strength and a low count time (low
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fidelity measurement). However, all peaks were well approximated by the model producing reduced

chi-squares well under ten.

A similar least squares fit was performed by lsqnonlin using the energy polynomial (Equation

5.5). The resulting parameter means and standard deviations are tabulated in Table 5.2.

Table 5.2 Energy calibration parameter means and standard deviations.

Parameter Mean STD.,σ Rel. STD,σr e l (% ) χ2
v

a2 2.104E-4 4.352E-5 20.68 530.4
a1 3.395 1.762E-2 0.5188
a0 -11.07 1.382 12.48

Since there were a low number of data points for the energy calibration fit, the Bayesian code

DRAM was used to calculate the standard deviations and optimize the parameter means from the

least squares starting values. NaI is fairly linear in terms of scintillation to energy deposited ratio

for low energies, so it is no surprise that the second order term is very small. Unfortunately, this

also means that it has a larger relative standard deviation. The y-intercept term (a0) has a little more

effect but also has more uncertainty than the first order term (which holds the lowest uncertainty at

about half of a percent).

In order to check DRAM for a possible error in the fit and uncertainty calculations, a standard

linear regression fit with Frequentist calculations was calculated for comparison. A slightly better

reduced chi-squared value of 430.5 was found, and the parameter values were modulated within

1% of the Bayesian values. The uncertainties were also halved. So, in this case, it may actually have

been slightly better to use the standard linear regression, however, the improvement in the results

would have been marginal.

Overall, the calibration still performed well in spite of the poor reduced chi-squared value, as

each channel mean converted to energy was found to be within two keV (1% relative error) from its

true value for all peaks that were not convolved with another peak (e.g. the 150 keV convolved HEU

peak). This is acceptable because the same energy calibration is used for both computed spectra

and measured spectra. So, any additional error would offset both spectra by the same amount.

The next set of parameters involves the power law of the DRF model itself. g03 not only uses

Monte Carlo simulation to calculate DRFs, but requires an empirically fit power law based on

Gaussian spread data from the detector of interest. The power law is the very same described in the

DRF model section of the Literature review by Equation 2.3.
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Again, linear Gaussian (Equation 5.6) least squares fits of several sources were required to obtain

mean Gaussian standard deviations for the power law. Five sources were used: Am-241 (seed source),

Ba-133, Cs-137 (same as in Table 3.1), Mn-54, and Na-22. Since Ba-133 has two full energy peaks, a

total of six full energy peaks were fit.

Source geometry and activity were not required for the power law fit. However, each peak was

counted until 10,000 counts were registered in the peak channel to keep the experimental uncer-

tainty close to one percent in the peak region. Some weak sources needed multiple measurements

added together to meet 10,000 counts due to the MCA timer limit. Furthermore, there should be

no added uncertainty in the measurements because the spectra were checked for gain drift and

perfomred immediately after one another. The mean Gaussian standard deviations (σT (EI )) and

their uncertainties are compiled in Table 5.3.

Table 5.3 Channel means and associated standard deviations of the Gaussian fits for the power law.

Source Pk. No. Energy (MeV) Gauss. STD,σT STD,σσT Rel. STD,σσT
r e l (%) χ2

v
Am-241 1 5.954E-2 4.454E-3 2.128E-5 0.4778 0.9191
Ba-133 1 8.100E-2 4.879E-3 4.478E-4 9.177 56.51
Ba-133 2 3.560E-1 1.499E-2 2.106E-4 1.405 13.09
Cs-137 1 6.617E-1 2.137E-2 7.599E-5 0.3556 2.295
Mn-54 1 8.348E-1 2.468E-2 8.469E-5 0.3432 1.011
Na-22 1 1.275 3.207E-2 8.001E-5 0.2495 1.611

Some of the peaks involved in the Gaussian fits for the power law spread data were sparse in data

points, so DRAM was used to optimize the Gaussian spread parameter means (σT ) and determine

their respective standard deviations (σσT ). The first Ba-133 peak suffered quite a bit of background

interference from convolution with the Am-241 peak, and had fewer points to fit the linear Gaussian

curve to resulting in the highest uncertainty and a reduced chi-square well over ten (χ2
r e d ≤ 10 is

considered a good fit). The first peak’s data was almost thrown out for its poor Gaussian fit. The

second Ba-133 peak was also over 1% in relative uncertainty and had a reduced chi-square over ten

(to a much lesser extent than the first). This was probably due to some interference with a third

lower intensity peak at 300 keV obscuring the left tail of the Gaussian.

As a follow up, examining the linear correlation coefficients of a model can reveal weak model

parameters. If the correlation coefficients of a parameter are all under about 0.2, then that parameter

shares no linear relationship to any of the other parameters. Sometimes, removing such parameters

from the model can improve the fit. An example of this model will be provided using the worst fit
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case to check for model weaknesses. The linear correlation coefficient matrix for the first Ba-133

peak (81 keV) is listed as Table 5.4.

Table 5.4 Linear correlation coefficients for the 81 keV Ba-133 linear Gaussian model fit.

Parameter σT x̄ B a0 a1

σT 1 -0.9594 0.9901 -0.9838 0.9737
x̄ -0.9594 1 -0.9727 0.9664 -0.9801
B 0.9901 -0.9727 1 -0.9978 0.9922
a0 -0.9838 0.9664 -0.9978 1 -0.9936
a1 0.9737 -0.9801 0.9922 -0.9936 1

All of the coefficients are very highly correlated (>0.9), so there are no weak parameters. This

does not mean that the model cannot be improved, just no terms should be removed. Maybe a few

terms could be added to account for the nonlinear tail of the 60 keV Am-241 seed peak, however, a

more practical alternative was found by weighting the power law fit by the x-data uncertainties at

each point.

This alternative was developed in response to the higher uncertainty in the Ba-133 peaks and

the distrust in the Am-241 seed peak due to lack of exact knowledge of the seed’s position relative

to the center of the crystal. Originally, only three sources were used to calibrate the DRF power

law, but results showed some error in the peak widths of some of the validation measurements.

To counter this issue, the power law fit was thought to be improved with extra measurements at

energies between the three original points. However, rather than throw out less than ideal data

points for the power law, the least squares fit was simply adjusted to weight each data point by its

uncertainty. Instead of purely minimizing the sum of squares (classical least squares), the weighted

sum of squares (Equation 5.7) was minimized.

W SSq =
n
∑

i=1

(
Υi − f (xi , pj )

σ(xi )
)2 (5.7)

Above, n is the total number of data points. Υi is the measured result at data point i, and f (xi , pj )

is the value of the function being fit to the data at i. pj are the parameters, andσ(xi ) is the standard

deviation of Υi used as a weight. In this case the function fit was the power law, Equation 2.3, and Υ

was simplyσT (E ).

The rest of the least squares and uncertainty calculations remained the same. The resulting

parameter means and standard deviations of the weighted power law fit are in Table 5.5.
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Table 5.5 Power law parameter means and standard deviations.

Parameter Mean Standard Deviation,σ Relative STD,σr e l (%) χ2
v

a 0.027608 1.684E-4 0.6100 8.500E-6
b 0.644237 5.719E-3 0.8877

There were several data points for the power law, and it was uncertain if the weighted sum of

squares would behave well with the Bayesian code. So, the classical Frequentist values were used

in the DRF calculations for expedience. The Bayesian code was tested later and gave comparable

results which are given in Appendix A.2. The parameter values are on the order of Peplow and Heath’s

power law coefficients, and the relative standard deviations are under 1%. The power law is a bit

overfit, but that is somewhat expected as several extra measurements were taken when the three

point fit proved insufficient.

The final process requiring uncertainty quantification is the linear energy shift required to

allign the computed and measured spectra. g03 contains a small bug that tends to offset the entire

spectrum by several channels to the right. A program called gshift (courtesy of Gardner’s group)

corrects this issue by linearly interpolating between the channels and shifting the pulse height

spectrum to the desired channels according to Equation 5.8

xc ha n = A ·Ep +B , (5.8)

Ep = E · f (E ),

where xc ha n is the channel number, and A is a normalization constant. B is the number of

background channels, and Ep is the energy of the original pulse-height spectrum. Finally, E is the

true energy of the gamma-ray (or desired energy to shift the peak to), and f(E) is the functional

relationship of the ratio: Ep/E. A and B are adjusted accordingly to shift the peak(s) to the desired

location, while f(E) is chosen by the user. Either f(E) is based off of the natural NaI nonlinearity (for

two or more peaks), or directly proportional (for one peak).

In order to determine the linear shift required, the mean peak channels of both the measured

and computed spectra had to be found. The means were found in the same manner as those for the

energy calibration fit, by fitting the spectral peaks to the linear Gaussian model (Equation 5.6). The

Gaussian peak channel means and the associated uncertainties for the computed spectra are given

by Table 5.6 and those of the measured spectra by Table 5.7.
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Table 5.6 Computed spectrum channel means and associated standard deviations of the Gaussian fits for
the energy energy shift.

Source Pk. No. Mean Chan., x̄ Stand. Dev.,σx̄ Rel. STD,σx̄
r e l (%) χ2

v
Cs-137 1 204.67 9.799E-3 4.788E-3 1.528E-4
Co-60 1 354.68 1.310E-2 3.692E-3 3.867E-6
Co-60 2 397.71 7.363E-3 1.851E-3 1.985E-6

HEU Rad.
Center 1 52.22 1.610E-2 3.084E-2 3.257E-3
Center 2 64.51 1.093E-2 1.695E-2 0.2371

L1 1 52.22 1.596E-2 3.056E-2 1.586E-3
L1 2 64.51 1.072E-2 1.661E-2 0.1116
L2 1 52.23 1.527E-2 2.924E-2 4.388E-4
L2 2 64.51 1.069E-2 1.656E-2 3.294E-2
L3 1 52.24 1.442E-2 2.760E-2 1.318E-4
L3 2 64.51 1.090E-2 1.689E-2 1.127E-2
L4 1 52.26 1.272E-2 2.433E-2 3.262E-5
L4 2 64.52 1.174E-2 1.819E-2 4.119E-3
R1 1 52.22 1.592E-2 3.049E-2 1.576E-3
R1 2 64.51 1.073E-2 1.663E-2 0.1122
R2 1 52.23 1.523E-2 2.916E-2 4.344E-4
R2 2 64.52 1.073E-2 1.663E-2 3.309E-2
R3 1 52.24 1.450E-2 2.775E-2 1.318E-4
R3 2 64.52 1.095E-2 1.698E-2 1.141E-2
R4 1 52.25 1.282E-2 2.453E-2 3.303E-5
R4 2 64.52 1.156E-2 1.791E-2 3.971E-3

HEU atten.
0 sheets 1 52.15 2.380E-2 4.564E-2 2.151E-2
0 sheets 2 64.46 3.873E-3 6.008E-3 7.474E-2
1 sheet 1 52.13 2.600E-2 4.987E-2 2.249E-2
1 sheet 2 64.45 3.312E-3 5.139E-3 4.582E-2
2 sheets 1 52.12 2.818E-2 5.407E-2 2.286E-2
2 sheets 2 64.44 2.891E-3 4.487E-3 2.658E-2
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Table 5.7 Experimental net spectrum channel means and associated standard deviations of the Gaussian
fits for the energy shift.

Source Pk. No. Mean Chan., x̄ Stand. Dev.,σx̄ Rel. STD,σx̄
r e l (%) χ2

v
Cs-137 1 195.79 1.804E-2 9.212E-3 2.569
Co-60 1 341.64 0.2214 6.479E-2 1.059
Co-60 2 386.38 0.1761 4.557E-2 0.7260

HEU Rad.
Center 1 46.90 0.8512 1.815 0.5671
Center 2 58.30 3.464E-2 5.942E-2 8.139E-2

L1 1 45.84 0.1005 0.2192 6.329E-2
L1 2 58.54 0.1584 0.2706 0.9686
L2 1 46.2 0.4500 0.9740 1.626
L2 2 58.55 0.2289 0.3910 1.060
L3 1 X X X X
L3 2 58.51 0.1789 0.3057 0.8369
L4 1 X X X X
L4 2 58.23 0.1407 0.2416 1.837
R1 1 45.94 0.1990 0.4332 0.8888
R1 2 58.34 0.1473 0.2525 1.168
R2 1 46.02 0.3772 0.8197 0.8361
R2 2 58.35 0.1200 0.2057 0.5307
R3 1 46.25 0.4760 1.029 0.9318
R3 2 58.20 0.2007 0.3449 2.701
R4 1 X X X X
R4 2 58.54 0.2326 0.3973 1.716

HEU atten.
0 sheets 1 46.02 0.2425 0.5269 3.488
0 sheets 2 58.37 6.708E-2 0.1149 1.298
1 sheet 1 46.12 0.3239 0.7023 4.015
1 sheet 2 58.32 7.000E-2 0.1200 1.248
2 sheets 1 45.99 0.3881 0.8438 5.661
2 sheets 2 58.33 5.568E-2 9.545E-2 1.104

All of the computational channel relative standard deviations were well under 1% (lowest Poisson

uncertainty estimated from highest peak channels), but not all of the net (background subtracted)

experimental ones were. However, the experimental channel uncertainties that were over 1% oc-

curred only in the lower intensity 150 keV peak of forty one centimeter HEU disc measurements.

Furthermore, those uncertainties were expected to be higher as the lowest peak channel poisson

uncertainty of the forty one centimeter HEU measurements was 2.72%. Some of the reduced chi-
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square values showed some overfitting (perhaps the linear background was unnecessary for the

computed results), but none of the values were over ten.

All of the computational peak fits naturally had much lower uncertainties then the experimental

peak fits. Some of the 150 keV experimental peaks of the far off-axis HEU disc measurements were

not well developed, and could not be fit. In these cases, the shifting program employed the single

peak shift algorithm (Equation reference if available here) instead using only the main 186 keV peak

channel means to shift the computed spectrum in alignment with the measured.
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CHAPTER

6

CONCLUSION AND FUTURE WORK

The goal of this work was to validate and quantify the uncertainty of Gardner’s DRF model for several

source types and geometric configurations of a 1x2" NaI detector. How these goals were met has

already been detailed in the body of this thesis, but the implications of the results of this work and

extensions to future work will be discussed in this section.

6.1 Conclusion

Validation of calibration sources The model aligned within two standard deviations of the measured

spectrum of the full energy peaks of the Co-60 and Cs-137 button source spectra, but significantly

overestimated the Compton continuum by about 45-60%. At first this discrepancy was thought to

be simply an effect of the collimator being unaccounted for by the DRF model, but this hypothesis

proved to be incorrect. More light was shed on the discrepancy when a peak normalization of the

spectrum instead of the sectional normalization was performed in order to compare spectra with a

previous one from Gardner’s validation work.

Under peak normalization, the computed spectrum nearly matched with the peak of the mea-

sured response, but overestimated the rest of the spectrum. This effect was very similar to one of

Gardner’s spectra in which the electron range multiplier (Equation 2.4) was set too low. The electron
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range multiplier is a semi-empirical model of the electron range that was fit by trial and error. Further

details of the fit were not given.

Validation of HEU disc The HEU validation campaigns consisted of two sets of experiments:

one concerning x-axis off-sets of the source from the origin at a y-axis distance of 41 cm, and another

one involving attenuation using steel plates for the disc centered on the x-axis at a distance of 11

cm. Both campaigns showed predictable physics effects in terms of backscatter peak distortion

and attenuation for each type of geometrical configuration change, but a markedly different effect

occurred instead of the continuum overestimation witnessed in the calibration source validation.

Since the full energy peak of U-235 is too low for any sizable Compton scatter losses from the

detector crystal, there is no visible Compton continuum in the HEU spectra. Without a continuum,

there are only four main peaks observed in the measured spectrum: the main full energy peak

(186 keV), the shoulder peak (205 keV), the convolved peak (150 keV), and a few backscatter peaks

(around 100 keV). The model reproduced the main peak and its shoulder peak well, again within

two standard deviations of the measured count rate, but underestimated the convolved peak and

did not reproduce the backscatter peak. The backscatter peak is an artifact of the lead collimator

around the detector. This collimator is not accounted for by the DRF model because the model

currently only reproduces the effects of scattering within the detector crystal. It is also possible that

not accounting for the local geometry of the table and aluminum tee and the daughter product

decay photons of the uranium may also have contributed to the secondary peak underestimation.

Uncertainty quantification Finally, uncertainty quantification of the model was conducted

on every calculated quantity from the flux calculation by MCNP to the Gaussian peak fits for the

spectral shifting program. Where the uncertainty was controllable by the number of particle histories

chosen in Monte Carlo simulations, it was reduced below the lowest measured uncertainty. Where

it was constrained to the accuracy of the model for least squares fitting, it was compared to the

experimental uncertainty and the reduced chi-square test was performed to check for goodness of

fit.

Only two poor fits were observed, out of a total of sixty examined in this work, (in terms of

parameter variance and chi-square): the energy calibration and the Ba-133 Gaussian peak fits used

for the power law fit. The first was compared with other data points to verify a working accuracy, since

the measurement of further known sources was impractical. The largest error between the calculated

energy of a peak and its known value was approximately one percent for any non-convolved full

energy peak. Because the energy calibration is applied to both the measured and computed spectrum

(not affecting any differences between the spectra), it was deemed acceptable.

The poor Ba-133 peak fits were largely caused by the peak convolutions with other peaks. The

fit was necessary to obtain the peak standard deviation for the power law fit. Rather than discard
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the Ba-133 points, the problem was resolved by weighting the power law fit by the uncertainty in

the Gaussian peak width data points using a weighted least squares technique (Equation 5.7). All

other parameter uncertainties fell well under the lowest experimental uncertainty and passed the

chi-square test, hence they are considered reliable for use in future work.

6.2 Future Work

There are many parameters that could affect the shape of the normalized computed responses

produced by the DRF. In order to narrow down the parameters that contribute most to the secondary

peaks and the Compton continuum of the spectrum, a parameterization study could be performed.

Parameters such as the electron range multiplier, collimator thickness and density, source position

and peak intensity, and input cross-sections would be incrementally changed to test the resulting

sensitivity of the normalized computed response. The most sensitive parameters could then be

prioritized for further study.

The electron range multiplier This factor was originally said to have been fit by trial and error.

Details of experimental data used and how it was fit have not yet been found. Further investigation

could be helpful for tuning the factor for new detector configurations. However, it is possible that the

parameters were not fit but guessed until a favorable result was found. If so, then it is clear that future

experiments should be performed not only to determine the electron range of the 1x2" detector in

order to better fit this equation in the g03 source code, but to verify the original parameter choices

for Gardner’s detectors. A better fit could potentially correct the continuum overestimation problem

observed in the calibration validation work reported in this thesis.

Outside detector crystal scattering g03 could eventually be modified to account for outside

detector crystal scattering. Doing so would be highly valuable for a variety of reasons. For one

thing, it might allow distinguishing of detector geometry from attenuation by the distortion versus

decreased amplitude of the backscatter peak. Being able to do this would be very helpful in inverse

problems focusing on unknown radiation source characterization. Some members of Gardner’s

research group are already addressing this problem.

Verify Assumptions Several assumptions were made throughout this work, such as modeling

the detector PMT and the electronic housing as void, only modeling the photons emitted directly by

U-235, and not using the table and aluminum tee in the MCNP model. Further work could be done

to check the validity of these assumptions. For example, the detector PMT could be modeled as a

homogeneous mixture of its constituent components to better model scattering within it. Simulation

of the decay products of all of the uranium isotopes and the local geometry (table and tee) could

improve the HEU computed response spectrum in the secondary peak regions.
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APPENDIX

A

ALTERNATIVE METHODS AND MODELS

This appendix contains a couple of alternative methods for parts of the validation and uncertainty

quantification work, as well as an alternative model for the simulation of detector responses. The

alternatives are compared with the chosen primary methods, and then the reasoning behind the

method chosen is discussed briefly.

A.1 HEU Disc Response: Separate Versus Combined Peaks

At first, the number of full energy peaks chosen to be entered into g03 for simulation were only

those that were over 1% in relative intensity. Seven peaks met this criteria, and so the seven peaks

were matched with their relative channel locations and entered into g03. The resulting spectrum

did not approximate the large lower intensity peak next to the main peak at 186 keV very well in

early simulations. This peak was the result of the interaction between three full energy peaks: one at

144, 163, and the 186 keV peak.

It was thought that combining the two lower energy and intensity peaks may improve the result.

So, their energies were averaged to 150 keV and their intensities summed before entering them into

g03, leaving only six peaks. A comparison of the two responses for the HEU disc case centered at

forty one centimeters from the detector is shown in Figure A.1.
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A.2. FREQENTIST AND BAYESIAN POWER LAW UNCERTAINTY APPENDIX A. ALT. M&M
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Figure A.1 Full simulation of seven peaks vs. six peaks with two combined at 150 keV.

Both responses underestimate the lower energy peaks while slightly overestimating the main

full energy peak at 186 keV. Note: this was a low number of histories run, so the added uncertainty

in the calculation made the 100 keV peaks appear closer to the lead backscatter peaks. In the high

fidelity runs, the underestimation of the backscatter peaks is more apparent.

It is clear though that the combined peak aligns much better with the center of the peak around

150 keV and more closely approximates its amplitude. As a consequence of this result, the six peak

scheme was chosen for the final results.

A.2 Freqentist and Bayesian Power Law Uncertainty

In the main body of this work, it was mentioned that Frequentist uncertainty analysis was performed

on the power law model due to the lack of confidence in the Bayesian code’s ability to analyze

the weighted least squares scheme. Later, the Bayesian code was tested and compared with the

Frequentist calculation. The results of both analyses for the power law parameters are contained in

Table A.1.
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A.3. ALTERNATIVE RESPONSE CALCULATION: MCNP F8 TALLY APPENDIX A. ALT. M&M

Table A.1 Power law parameter means and standard deviations for Frequentist and Bayesian methods.

Frequentist
Parameter Mean Standard Deviation,σ Relative STD,σr e l (%) χ2

v
a 0.027608 1.684E-4 0.6100 8.500E-6
b 0.644237 5.719E-3 0.8877

Bayes
a 0.027608 1.606E-4 5.818E-3 8.501E-6
b 0.64436 5.75E-3 8.923E-3

The values of the parameters and their respective uncertainties are very similar for both methods.

The Bayesian parameters gain a slightly less overfit reduced chi-squared value, and exchange slightly

lower uncertainty in a for greater uncertainty in b. Again, the Frequentist method was chosen for

expedience and direct application of the weighted least squares, however, the methods prove to be

essentially equivalent in this case.

A.3 Alternative Response Calculation: MCNP F8 Tally

Gardner’s DRF model proved to be able to simulate the full energy peaks of responses fairly well, but

needs recalibration for some detectors to reproduce good Compton continua. Additionally it suffers

under the strain of advanced geometries being unable to reproduce the effects of outside detector

scattering events on the detector response. One alternative model was considered and compared to

g03 responses: MCNP’s F8 tally with Gaussian energy broadening (GEB).

MCNP can approximate a detector response to a fair degree with the correct geometry. The same

detector and source model as was used for the the F4 flux tally was used for the F8 tally. Additionally

the power law equation for MCNP (Equation A.1) was fit to the same sources used for Gardner’s

model

f w hm = a + b
p

E + c E 2 (A.1)

where E is the energy of the incident gamma ray, a,b and c the parameters, and fwhm is the full

width at half maximum of the peak. This information was used in a special GEB input of the F8

tally in order to spread the peak to the appropriate width in the resulting response from MCNP. The

response from MCNP is compared with the response created by g03 and the experimental response

in Figure A.2
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Figure A.2 Peak normalized computed responses from MCNP with and without the collimator simulated
and g03 versus the measured response.

Both methods approximate the full-energy peak well, however, where g03 overestimates the

continuum MCNP underestimates. MCNP predicts the electron physics of the valley region better

than g03 (without recalibration of the range law), but underestimates the rest of the Compton

continuum by a good margin. The response from MCNP without the collimator is shown to illustrate

a possible cause of they underestimation. There is a great shift in the continuum without the lead,

so it seems likely that some physics with the lead collimator and aluminum can of the detector are

not well approximated by MCNP’s F8 tally.

g03 was chosen as the main model mainly for two reasons. First, g03 calculates a DRF with far

fewer histories (four orders of magnitude) with similar accuracy and thereby taking much less time

for computation. Second, g03 produces a full DRF for the user which will be useful in further research

with inverse problems, whereas MCNP produces a response directly without a DRF. However, it

may still be useful to give the MCNP calculation a closer examination for its approximations of the

physics in the valley region in order to improve future models.
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