Abstract

Al-QASIR, IYAD IBRAHIM. Thermal Neutron Scattering in Graphite. (Under the direction
of Prof. Ayman I. Hawari).

Generation IV Very High Temperature Reactor (VHTR) concepts, are graphite
moderated and gas cooled thermal spectrum reactors. The characteristics of the low energy
(E <1 eV) neutron spectrum in these reactors will be dictated by the process of neutron
slowing-down and thermalization in the graphite moderator. The ability to accurately
predict this process in these reactors can have significant neutronic and safety implications.
In reactor design calculations, thermal neutron scattering cross section libraries are needed
for the prediction of the thermal neutron environment in the core. Currently used libraries
(ENDF/B-VII) are a product of the 1960s and remain based on many physical
approximations. In addition, these libraries show noticeable discrepancies with

experimental data.

In this work, investigation of thermal neutron scattering in graphite as a function of
temperature was performed. The fundamental input for the calculation of thermal neutron
scattering cross sections, i.e., the phonon frequency distribution and/or the dispersion
relations, was generated using a modern approach that is based on quantum mechanical
electronic structure (ab initio) simulations combined with a lattice dynamics direct method
supercell approach. The calculations were performed using the VASP and PHONON codes.
The VASP calculations used the local density approximation, and the projector
augmented-wave pseudopotential. A supercell of 144 atoms was used; and the integration
over the Brillouin zone was confined to a 3x3x4 k-mesh generated by the Monkhorst-Pack
scheme. A plane-wave basis set with an energy cutoff of 500 eV was applied. The
corresponding dispersion relations, heat capacity, and phonon frequency distribution show

excellent agreement with experimental data.

Despite the use of the above techniques to produce more accurate input data, the



examination of the results indicated persistence of the inconsistencies between calculations
and measurements at neutron energies below the Bragg cutoff (~ 1.8 meV). Consequently,
this motivated the examination of the principal assumption in thermal scattering cross section
calculations for graphite, i.e., the incoherent approximation. For a strongly coherent
scatterer like graphite, the coherent one-phonon scattering law and corresponding cross
section were calculated exactly and without approximations. The required input to perform
such calculation, e.g., the dispersion relations and polarization vectors were taken from the
results of the graphite lattice dynamics calculations mentioned above. As a result,
significant improvements were achieved especially in the scattering law characteristic
behavior at small momentum and energy transfers, and excellent agreement was found
between the calculated inelastic scattering cross sections and the experimental data of

pyrolytic graphite.

Furthermore, a consistent approach for defining the parabolic region in the phonon
frequency distribution of graphite for use in calculations using the incoherent approximation
was developed. This approach is based on the graphite mean square displacement and the
agreement of the one-phonon cross sections as generated using both the incoherent
approximation and the self part of the coherent one-phonon cross section. In this case, the

parabolic energy cutoff was found to be 5.60 meV (equivalent to 65 K).

Finally, the effect of temperature (anharmonicity) on the phonon frequency distribution
was addressed and investigated by estimating the effects of energy shift and broadening of
the distribution as a function of temperature. It was found that in graphite at low energies
an energy shift is expected towards higher values. This is due to negative Gruniesen
parameters. The phonon frequency distribution was broadened using a Lorentzian
distribution, where the broadening effect has linear temperature dependence at high
temperatures. Therefore, the broadening and shift operations are two competing processes
at low energies, resulting in relative differences in the calculated cross sections of less than

10 % at all temperatures.
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Chapter 1 Introduction

1.1 Generation 1V Very High Temperature Reactors (VHTR)

Today, Nuclear power reactors generate electricity for nearly 1 billion people; they
account for approximately 17 percent of worldwide electricity generation and provide half or
more of the electricity in a number of industrialized countries. In the approaching decades,
industrialized countries, and the entire world will need energy and an upgraded energy

infrastructure to meet the growing demands for electric power and transportation fuels [1].

Nuclear power reactors have an excellent operating record and generate electricity in a
reliable, environmentally safe, and affordable manner without emitting noxious gases into the
atmosphere. Concerns over energy resource availability, climate change, air quality, and
energy security suggest an important role for nuclear power in future energy supplies. While
the current Generation II and III nuclear power plant designs provide a secure and low-cost
electricity supply in many markets, further advances in nuclear energy system design can

broaden the opportunities for the use of nuclear energy.

To explore these opportunities, the Generation IV International Forum (GIF) identified
nuclear energy system concepts for producing electricity that excel at meeting the goals of
superior economics, safety, sustainability, proliferation resistance, and physical security. The
Generation IV International Forum (GIF) was established in January 2000 to investigate

innovative nuclear energy system concepts for meeting future energy challenges. GIF


http://www.gen-4.org/

members include Argentina, Brazil, Canada, Euratom, France, Japan, South Africa, South
Korea, Switzerland, United Kingdom, and United States, with the OECD-Nuclear Energy
Agency and the International Atomic Energy Agency as permanent observers. In July 2006,
the GIF voted unanimously to extend an offer of membership to China and Russia, with
formal entry expected in November of 2006. The forum serves to coordinate international
research and development on promising new nuclear energy systems-known as Generation
IV-for meeting future energy challenges. Generation IV nuclear energy systems are future,
next-generation technologies that will compete in all markets with the most cost-effective
technologies expected to be available over the next three decades. Comparative advantages
include reduced capital cost, enhanced nuclear safety, minimal generation of nuclear waste,
and further reduction of the risk of weapons materials proliferation. Generation IV systems
are intended to be responsive to the needs of a broad range of nations and users. The purpose
of Gen IV is to develop nuclear energy systems that would be available for worldwide
deployment by 2030 or earlier. The Generation IV Systems selected in 2002 are: Gas-Cooled
Fast Reactor (GFR), Supercritical-Water-Cooled Reactor (SCWR), Sodium-Cooled Fast
Reactor (SFR), Lead-Cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), and

Very-High-Temperature Reactor (VHTR) [2, and 3].

GIF members have selected six concepts to develop in order to meet the technology
goals for new nuclear systems. One of these systems—the Very-High-Temperature (VHTR),
shown in figurel-1 is uniquely suited for producing hydrogen. The Very-High-Temperature

Reactor (VHTR) system is a graphite-moderated, helium-cooled reactor with thermal neutron


http://nuclear.inl.gov/gen4/gfr.shtml
http://nuclear.inl.gov/gen4/gfr.shtml
http://nuclear.inl.gov/gen4/scwr.shtml
http://nuclear.inl.gov/gen4/sfr.shtml
http://nuclear.inl.gov/gen4/sfr.shtml
http://nuclear.inl.gov/gen4/lfr.shtml
http://nuclear.inl.gov/gen4/msr.shtml
http://nuclear.inl.gov/gen4/vhtr.shtml

spectrum and a once-through uranium cycle. It is primarily aimed at relatively faster deploy
of a system for high temperature process heat applications, such as coal gasification and
thermochemical hydrogen production, with superior efficiency. The reference reactor
concept has a 600-MWth helium cooled core based on either the prismatic block fuel of the
Gas Turbine—-Modular Helium Reactor (GT-MHR) or the pebble fuel of the Pebble Bed
Modular Reactor (PBMR). The VHTR system has coolant outlet temperatures above 1000 °C.
It is intended to be a high-efficiency system that can supply process heat to a broad spectrum
of high temperature and energy-intensive, non-electric processes. The system has the
flexibility to adopt U/Pu fuel cycles and offer enhanced waste minimization. The VHTR
system is highly ranked in economics because of its high hydrogen production efficiency,
and in safety and reliability because of the inherent safety features of the fuel and reactor. It
is rated good in proliferation resistance and physical protection, and neutral in sustainability
because of its open fuel cycle. It is primarily envisioned for missions in hydrogen production

and other process-heat applications, although it could produce electricity as well.

The VHTR can produce hydrogen from only heat and water by using the
thermochemical iodine-sulfur (I-S) process or from heat, water, and natural gas by applying
the steam reformer technology to core outlet temperatures greater than about 1000 °C. A 600
MWth VHTR dedicated to hydrogen production can yield over 2 million cubic meters per
day. The VHTR can also generate electricity with high efficiency, over 50% at 1000 °C,

compared with 32% at 315 °C and 2500 psi in the pressurized water reactor (PWR) [1, 4].



Figure 1-1 The Very-High-Temper ature Reactor (VHTR) [1].

1.2 Graphite asa Neutron Moder ator

Graphite was employed as a moderator in the first reactor CP1, by Enrico Fermi at the
University of Chicago, in 1942. The function of a moderator is to slow down fast neutrons
effectively with minimum absorption of neutrons. Neutrons emitted at fission are fast, with
average energy of 2 MeV. These neutrons are not readily captured by fuel nuclei. Thermal
neutrons are much more efficient in producing fission in (***U, **°U and **’Pu). That is the
fission cross section becomes quite high at thermal energies. Nuclear graphite is employed
with considerable success in nuclear reactors as a moderator because of its low atomic weight,
low neutron absorption cross section, and high neutron scattering cross section. In addition,
the high strength of graphite at elevated temperatures, its exceedingly high sublimation point,

and its excellent resistance to rupture by thermally induced stress make it of great value in



high temperature reactors [5].

The effectiveness of a substance in slowing down neutrons can be characterized by the
average lethargy gain &, and consequently the average number of collisions <#> necessary
to thermalize a fission neutron. Also, moderators have large scattering cross section X _ .
Thus a more appropriate measure of the effectiveness of a substance in slowing down
neutrons is the moderating power &X . However, the scattering process competes with the

absorption process; therefore moderators must have small absorption cross section X . It

%. Table 1-1 shows &,

a

is convenient to define as a figure of merit the moderating ratio

<#>, moderating ratio, and moderating power for several moderators. The cross section

values are evaluated at 2200 m/s [6].

Tablel-1 A, &, <#> moder ating power , and moderating ratio for several moderators

Moderator A 4 (#) &, &z,
H,O 18.015 0.920 16 1.35 71
D,O 20.028 0.509 29 0.176 5670

Be 9.012 0.209 69 0.158 143
Graphite 12.011 0.158 91 0.060 192

In terms of the above data, D,O is the superior moderator. However, light water and

heavy water are both liquids or gases at the operating temperatures, thus neither can serve a



structural function, necessitating the incorporation of a structure. The hydrogen in water
has a large neutron absorption cross section (X, = 0.022 cm™) which makes it impossible to
achieve a critical reactor of natural uranium moderated with water, even though hydrogen is
the best slowing down atom possible. Heavy water has a very small absorption cross section
(X, =3.323x10" cm™) so its large moderating ratio makes it as a superior moderator that
can be used to construct a reactor fueled with natural uranium. However, D,O is very

expensive to be used in commercial reactors.

1.3 Graphite Neutron Cross Section

Fast neutrons emitted by fission slow down by elastic and inelastic scattering. A
scattering is said to be inelastic if any of the internal quantum states of the scatterer are
changed as a result of collision with a neutron, and to be elastic if there is no such change.
That is, in case of the inelastic scattering the nucleus is left in an excited state after the
collision, and in the case of the elastic scattering the nucleus remains in its ground state. At
lower energies (intermediates energies), elastic scattering is the dominant process, resonance
absorption becomes important, no inelastic scattering occurs, since for inelastic scattering
process to occur, the incident neutron energy must be above the threshold energy
corresponding to the lowest excited state of the target nucleus ( 4.4 MeV in '*C). At low
energies neutrons tend to be in thermal equilibrium with the scattering medium, and chemical
binding plays a role in both elastically (Bragg scattering) and inelstically (phonon emission
and absorption) scattered neutrons. Figurel-2 shows the total scattering cross section of

graphite ('*C) from ENDF/B-VII [7]. One can define five different regions in the cross



section behavior, labeled from one to five [6]. In the first three regions the reactions are
nuclear while for regions 4 and 5 the reactions depend on the atomic arrangement and

dynamics.
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Figure 1-2 The graphite total scattering cross section.

Region one corresponds to very high energy neutrons (>10 MeV). At such energies,
neutron wavelengths are very small, thus the probability of neutron interaction with the
nucleus will decrease, and nucleon interactions become possible. Region two, which is
represented by a jagged behavior, corresponds to resonance reaction mechanism, where the
neutron incident energy is comparable to that of the lowest energy levels of the compound
nucleus ’C. Region three has a constant cross section, and is dominated by potential
scattering, that is, the neutrons are elastically scattered by nuclei like billiard ball collisions.
In regions four and five, neutrons have wave lengths that are comparable to the spacing
between atoms, and they no longer interact with the free carbon atom, but instead they

interact with an aggregate of atoms. For crystalline materials like graphite, the planes of



atoms work as a diffracting grating, and neutrons will elastically scatter showing the jagged
behavior known as Bragg scattering, represented by region four. No Bragg scattering
occurs in region five, since below a certain energy (the Bragg energy cutoff), the neutron's
wavelength becomes larger than the interatomic spacing. However, inelastic scattering can
occur in regions four and five where in these regions the dynamics of the graphite lattice
plays an important role, that is, neutrons are inelastically scattered by the creation (dominant

in region four) or annihilation (dominant in region five) of a vibrations known as phonons.

1.4 The Satus of Graphite Thermal Neutron Scattering Cross Section

In nuclear reactor design, the effects of atomic and/or molecular binding become
important as the neutrons slow down and enter the thermal region. The interactions of
thermal neutrons (i.e., absorption and scattering) within the reactor core define the thermal
neutron energy spectrum, which affects several properties such as criticality, safety, and
feedback response. Therefore, the ability to accurately predict the slowing down and
thermalization of neutrons in moderating materials can have significant neutronic and safety

implications on nuclear power generation.

Moderator thermal neutron scattering libraries were generated in the 1960’s based on
many approximations. The libraries were also recalculated and released in 1994 by Los
Alamos National Lab [8]. These libraries introduced some improvements on the coherent
and incoherent elastic scattering, including the multiphonon expansion, extending the

momentum and energy transfer grids beyond that of previous libraries, and the capability of



producing mixed scattering law of materials like BeO and Benzene [8]. However, the same
approximations were used and no significant changes have been made to introduce new
theories and data. In the case of graphite the incoherent approximation was used, and the
same dynamical lattice model was used (Young-Koppel model) [9], even though scattering
law measurements and inelastic scattering cross section measurements show a significant
discrepancy between calculations and measurements. The inelastic scattering cross section
of graphite at 300 K using the same standard library ENDF/B-VI compared to measured data
[10, 11, 12, and 13] is shown in figurel-3. As seen, large discrepancy (~100%) between the
calculated and measured data [11, 12, and 13) is observed. Also, two experimental sets for
graphite with different values are shown, this issue was not addressed to date and will be

interpreted later in this work.
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Figure 1-3 The inelastic scattering cross section in the incoherent approximation at T=300 K
compared to experimental data.



This study will concentrate on investigating temperature dependence of thermal neutron
scattering in graphite. Specifically, the objectives of this study are:

a) To critically review the currently used thermal neutron scattering laws of graphite
as a function of temperature

b) To update models and model parameters introducing the new developments in
solid-state physics, and the coherent part of the inelastic scattering

c) To generate new sets of temperature dependent neutron scattering laws

d) To include the effect of temperature on the graphite dynamical models,

specifically the Anharmonicity effect

1.5 Graphite: The Perfect Single Crystal L attice

Carbon, as one of the elements in the fourth column in the periodic table, it can unite
easily with itself, with hydrogen, and with other elements to give rise to an extraordinary
number of compounds. Carbon can crystallize in different forms (allotropes); graphite,
diamond, carbines, and fullerene [14]. The properties of such allotropes can vary widely, for
example, diamond is the hardest known material and is transparent to visible light. Graphite

can be considered as one of the softest and is opaque.

Carbon atoms can bond together in various ways to form molecules and solids. This kind
of bonding is covalent and takes the forms: sp (as in acetylene C,H,), sp” (as in graphite and
ethylene C,Hy), and sp’ (as in diamond and methane CH,). The graphite structure can be

understood via a look at its bonding sp’. Bonding in graphite exhibits one of the largest
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anisotropies of any solid. The nearest-neighbor bond in graphite is considered stronger than
the nearest neighbor bond in diamond [15]. This strong bond is a covalent sp’ (o-bond), and
has a short length 1.42 A. In contrast, the bonding between planes is very weak and
exhibits a Van der Waals interaction. The spacing between layers is relatively large (3.35
A), that is, more than twice the spacing between atoms within the basal plane. This is due
to the pairing between the hybridized fourth valence electron with another delocalized
electron of the adjacent plane (m-bond). The electron configuration of the six electrons of the
carbon atom in the ground state is / s22s23p2, that is, two electrons are in the K shell, and four
in the L shell. To form an sp” hybridization, the arrangement of the electrons of the L shell
is modified such that one of the 2s electrons is promoted and combined with two of the 2p
orbitals (hence the designation sp’) to form three sp’ orbitals and unhybridized free (or
delocalized) p orbital electron as shown in figure 1-4. The three identical sp” orbitals are in
the same plane and their orientation is120° from each other, as shown in figure 1-5. The
fourth orbital (delocalized non-hybridized p electron) is directed perpendicularly to the plane
of the three sp” orbitals and becomes available to form (7 — bond ) with other atoms [14, 16].
The sp® bond is covalent and is a strong bond, because of the three sp” valence electrons and
the small size of the atom. The sp”is directional and is called a o -orbital, and the bond is
a o-bond. Each sp® hybridized carbon atom combines with three other sp” hybridized
atoms to form a series of planar hexagons, as shown in figure 1-6. Unlike the o -orbital,
the delocalized electron is non symmetric, and called by convention a 7 -orbital, and the
bond is 7 -bond. This electron can move from one side of the plane layer to the other but

can not easily move from one layer to another. As a result graphite is anisotropic.
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Figure1-4 The sp2 hybridization of carbon orbitals.
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Figure1-5The sp2 hybrid orbitals of the carbon atom.

Figure 1-6 A schematic of the sp® hybridized structure of graphite.
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Graphite has two crystalline forms, a hexagonal crystal structure, and a rhombohedral
form as a minor subsistuent (few percent of the well crystalline graphite). Rhombohedral
graphite is thermodynamically unstable, and can be considered as an extended stacking fault
of hexagonal graphite. It is never found in pure form, but always in combination with
hexagonal graphite. Mechanical processes such as grinding and chemical treatments can
increase the relative portion of rhombohedral graphite up to ~20%, which indicates that such

changes are due to the movements of carbon layers with respect to one another.

The fact that the properties of rhombohedral packing are reduced by high temperature
—heat treatment (2000-3000 "C), and it is almost absent in synthetic graphite indicates that the
hexagonal form is more stable [17]. Figure 1-7 shows the hexagonal ABAB- and the
rhombohedral ABCABC-stacking. However, hexagonal graphite is the most common
stacking sequence of graphite. Carbon atoms are joined together in sheets (graphene planes)
and each atom has three nearest neighbors forming a series of continuous hexagons. These

sheets are loosely bound to one another.

Plane A

Plane B

Plane C

Figure 1-7 A schematic of (a) Hexagonal graphite (AB-stacking), and (b) rhombohedral graphite
(ABC —stacking).
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A single sheet of such atoms provides an example of two dimensional crystals, as shown
in figure 1-8. The arrangement of atoms can be described by choosing a small unit such as
OXYZ, then by repeating the unit until the space is filled with identical units. The chosen
unit represents a 2-dimensional unit (unit parallelogram). In such a unit, the lengths OX
and OY are denoted by the vectors a, and b, respectively, where the angle between them
isy . In the case of graphite, the nearest neighbor atomic spacing in the net plane is 1.42 A.
As aresult Ga=b=2.46 A, and y=120°. As we see there are four atoms, one at each corner
(O,X,Y,and Z), and one atom P inside the parallelogram. To describe their positions,
we take the sides of the parallelograma andb as one unit of length. Thus, their coordinates
are 0(0,0), X(1,0), ¥(0,1), Z(1,1), and P(1/3, 2/3). Note that, the atoms at the corners
(0,X,Y,and Z) are identical, and each atom contributes to the unit parallelogram by 1/4,

so the total number of atoms is two located at (0,0)and (1/3, 2/3).

Figure 1-8 A single sheet of graphite which showsthe unit parallelogram.
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The three dimensional unit cell of graphite is shown in figure 1-9, it belongs to space

group number 194 (P6, / mmc) and has four atoms, located
at (0,0,1/4),(1/3, 2/3,1/4),(0,0,3/4), and (2/3,1/3,3/4). Extending the unit cell will

create layers, where no basal plane lies directly over another one.

Figure 1-9 The three Dimensional crystal structure of the graphite hexagonal lattice. The
graphite unit cell isshown in red, and itsatoms are shown in black solid circles.
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Chapter 2 Thermal Neutron Scattering Cross Section

2.1 Neutron Thermalization

The subject of neutron thermalization is interested in two kinds of problems; the study of
the thermal neutron scattering cross section in various materials, and the study of the energy

spectrum of thermal neutrons that develops using these cross sections.

Thermal neutrons have wavelengths comparable to the separation distances of atoms in
solids or liquids; therefore, interference effects take place, that is, neutrons will interact with
an aggregate of atoms rather than with a single atom. As a consequence thermal neutrons
are a useful tool in studying the structure of different scattering systems. Moreover, the
energy of thermal neutrons is of the same order of magnitude as that of excitations in a
scattering medium (e.g., phonons in a solid). Therefore, thermal neutrons are a useful tool
in providing information about the excitation spectra and hence the dynamics of the

scattering medium.

In considering thermal neutron interactions with matter, the thermal motion of atoms can
no longer be ignored (as we see will later, this thermal motion is the basic key in connecting
quantum mechanics, solid state physics, and statistical mechanics to derive an expression for
the thermal scattering cross section), and since these neutrons have energies comparable to
the binding energies of the scattering medium, these atoms can not be assumed to be free,

that is, there is an interaction between the scattering nucleus and its surrounding nuclei.
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Furthermore, thermal neutrons can gain energy due to up scattering or lose energy due to
down scattering. As a result, the thermal neutron scattering cross section is a complicated
function of energy, angle, physical state (solid, liquid, or gas) chemical form, and

temperature [18, 19, and 20].

2.2 Scattering Cross Section Concepts

The interaction probability of neutrons with matter is described by a quantity called the
cross section. Figure 2.1 below shows the geometry of a scattering experiment where a thin
target of area 4 and thickness x containing N  atoms per unit volume is placed in a
mono-directional and mono-energetic beam of neutrons. A neutron detector is placed at
some distance from the target to measure the neutrons scattered in a given direction. The
distance between the detector and the target is large compared to the dimensions of the
detector, so a small solid angle dQ subtended by the detector and the target is well defined.
Experimentally, the number of neutrons dn scattered into the detector per unit time is

proportional to the beam intensity / (per unit area per unit time), atomic density N, target

area A, target thickness x, and the solid angle d€2. Thatis,

dn =99 [N 4xdG. @.1)
dQ

The above equation defines the proportionality factor j—g which is called the

differential scattering cross section. It is defined as the number of neutrons scattered per
second per solid angle dQ divided by the incident flux ®. This definition can be related

to a quantum mechanical expression as follow: a neutron with state ‘l€> interacts with a

17



scattering medium (target) in state |/1> via the interacting potential }, after the interaction,

the neutron has a new state ‘l; ’> and the scattering medium has a state|/1'> .

@tector

Incident

neutrons N

Figure 2-1 The geometry of scattering experiment.

If W(]l;/1> - ‘l;'/l'>) 1s the transition rate from the initial state ‘/g/l> to the final state

‘IE’/I'> , then the differential scattering cross section is written as

( d—GJ _ WQEA> - ‘l?’/l’>). o)
dQ |£2)o| ) ON7(0)

The transition rate based on time-dependent first order perturbation theory can be evaluated

either by using (the first) Born approximation, or Fermi's golden rule. This leads to

. 2
) Y
dQ P)o) E) k\2xh

where m is the neutron mass and 7 1is the reduced Planck’s constant.

VIkA) 2.3)

2.2.1 Trangition Matrix and Born Approximation

The Schrodinger equation describes the interaction of two particles through a potential
V(ﬁ - F,t). In scattering type experiments the incident beam of particles is switched on for

times very long compared with the time a particle would take to cross the interaction region,
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so the interaction potential can be considered as a time-independent potential V(R —7)-

Consider the time-dependent Schrédinger equation:

o n ., n _, 5= p_7 R 7
ih—+—V?+—V2 ¥, (RFt)=VR-F)¥ R Ft) 2.4
o om " oM R zk( ) ( ) ?-k( ) (24)

2

o . h . o
where iha— is the energy operator, —Z—Vf is the neutron kinetic energy operator, and
t m

n’ : — A .
———V3 is the nucleus kinetic energy operator. ¥, (R, r,t) is the exact wave function of

the time-dependent Schrodinger equation which can be written as

v, (R7t)=y,([R)P, (1), 2.5)
e (ﬁ) is the scattering medium wave function, and ¥, (7,¢) is the neutron wave function.
Since the interacting potential effect is small, the scattering medium atoms remain fixed
before and after the collision (Born approximation), as a result the scattered neutrons will be
represented by plane waves with momentum# &'. Thus, equation (2.4) can be simplified to

take into account the neutron Hamiltonian only.

o h_ > P = o (5=
ih—+—V." Y \Rrt)l=VR-r)¥, \Rrt)
{ & om } xk( ) (R-7) xk( ) (2.6)
nk’
There exists a stationary solution corresponding to neutron incident energy £ = >
m
Vi (13 7, t)z ! i (E ?)exp(— iEt/h), (2.7)

V(@2n)’

where ¥, (R7)=y ,¥, s the solution of the time-independent Schrodinger equation:
h s = = =
—Eavr+mR49WM@mPEWM@mL (2.8)

which can be written in terms of the reduced potential U(7 — R) = ;—’?V(? —R) as
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Vv —uG-Ry+k e, (RF)=0- (2.9)
Of interest are wave functions at large r, because the detector is so far from the region of
interaction. As r— o0, U(F —R) -0, and equation (2.9) reduces to
V2 k2 e (7)=0- (2.10)
This equation represents a free particle Schrodinger equation. ¥, (F) is the unperturbed
wave function that corresponds to U(7 —R)—0 represented by a plane wave with

momentum 7 k

pr (7)) =7 2.11)
Let
@, (7t) = ;‘P”"k(F) exp(— iEt/h): 1 exp[i{l;F—Et/h}], (2.12)
(27)’ (27x)’

be the solution of the time-dependent unperturbed Schrédinger equation

L0 h .
lha‘l‘%vr (Dk(l’,t)ZO' (213)

So that ¢, (r,¢) has the standard normalization
j(p;gokdf =5k -k'). (2.14)

The functions ¢, (7,t) form a complete set, so the exact solution ¥,, (ﬁ, F,t) can be
expanded as

¥, (R70)= [el0) 7, (R) o0 dik (2.15)
By substituting equation (2.15) into the left hand side of equation (2.6) and making use of
equation (2.12 and 2.13), the following form is obtained

[ine@ 1, ® o, .0k =VR-7)¥ , (R7.0). (2.16)

Multiplying both sides of equation (2.16) from the left by y, ¢, and integrating over
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dRdF to obtain
ine@) = [[ 1R epFYVE-R) Y (RF,OdRdF . (2.17)

Substituting equations (2.7) and (2.16) into equation (2.17)

PR 1 iot * ik 5 -\ 13 =
lhc(t)z(sze ”X,,e" VG -R)y, ¥, (F)dRdr , (2.18)

where

B0~ ).

. (2.19)

The integrand in equation (2.18) is called a transition matrix element T (| ﬂk} — |/1'k’>),

namely,

T(| k) > | k") = (k'

viak) = | j xo e VFE-R) y, ¥, (F)dR dF . (2.20)
It holds during the period 0<z<t , where ¢, is the duration of the experiment, which is
long compared with the time any scattered particle spends in an interaction with the target.
Integrating equation (2.18) with respect to time between 0 and ¢, , and setting ¢(0)=0

1 l_eiwl

) 2n)’  ho

ct) ”X; X T VFE - R)y, P, (F)dR dF . (2.21)

The transition rate W(|kL) —|k2')) dk’ for scattering into a final state in which the wave

vector k' lies in the interval k’and k'+dk' is

w (k) — |k'A") dk' = tl|c(z)|2d1€'

| (2.22)

3 2 2(1-cosat,)
2n)°n’

2
w't,

7| 2k) — [ k")) dk'.

The above equation represents the probability that a particle, which started out in the state

‘ME> will be found at time ¢, in state ‘k’f('>. The direction of k'is the direction of
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propagation of the scattered particle, that is
dk' = k'? dk'sin® dO do = k' d'dQ) (2.23)
which can be written in terms of dw as follow

dk’ :kdea) Q. (2.24)

For large ¢, (the detector is far from the scattering medium)

. 2(1—-cosmt
i 20=c080L)
t, > w to

) (2.25)

Substituting equations (2.24) and (2.25) into equation (2.22)

rar 7 m r.0\~2 70
W(kA)—|k'A")) dk' = o 7 2k) > | 2'K')| k'6(w) derdQ . (2.26)

The transition rate for scattering into the element of solid angle dQ can be obtained by
integrating equation (2.26) over @, thatis W(kx) —>|k1')) dQ

w(|ka) = |k'2) dQ = —" k'

PR Q. (2.27)

T( k) —>

Ak'))

If the number of neutrons scattered per second form the state |ki) to the state |k} into a
solid angel 4@ is written in term of W(kA)—>|k’A")) as a transition
rate W([kA) —>|k'A")) dQ, then one can write do as

_ W(kn) > [k 0

o - (2.28)
Incident flux
The flux is defined as
Flux=speed x ¢ «(F,) @, (V,1)- (2.29)
.. . hk . 1
But the speed of the incident neutrons is —, and the ¢ «(7,0) @, (F,1) = W , SO
m T
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L nk

Incident flux= .
2n)® m

(2.30)

Thus, by substituting equations (2.30), and (2.27) into equation (2.28), the differential

scattering cross section can be written as

2
do k' m
a:;(mzj )~

2 2.31)

2.2.2 The Double Differential Scattering Cross Section

The double differential scattering cross section is defined as the number of neutrons
scattered per second per solid angle dQ per unit final energy dE’divided by the incident
flux. The double differential scattering cross section is related to the differential scattering

cross section through the relation

d’c K m 2 5
=— k'A'\VkA)| olhwo+E, —E, _
(dﬂ dE’JlE/1>—>1€',1'> k (27[ EZ] K | | >‘ ( O+ L; L, )’ (2.32)

where £, and E, are the initial and final energies of the scattering medium, and 7w - the

energy of excitation- is the difference between the incident and scattered neutron energies.

Even though the interaction potential is short, it is very strong, thus perturbation theory
is not strictly applicable. However, it gives the exact form of isotropic s-wave scattering
when combined with an artificial potential known as the Fermi-pseudopotential, where for
the /™ nucleus at position Ri with scattering length b, and a neutron at position 7, it is

given by

v :2”h2b.§(f—fej). (2.33)
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Experimentally, the total double differential scattering cross section for all possible

2 2 2

: o ) do
states is measured, not only - . To obtain , the sum over
dE (7)) dQ dE'’

!

all the final sates |/1'> and the average over all the initial states|/1> that occur with
probability p, are taken. In addition, the Fermi- pseudopotential is used, and the
delta-function in equation (2.33) is rewritten in an integral form. As a consequence, the
total double differential neutron scattering cross section per atom of a scattering medium

contains A atoms can be written as:

: g ) 5E' _ k; 2 71z ) % > bb, Bexp{— i R, (0)fexpliic- R, (t)}> exp(—iat)dt, (2.34)

N =nN , where N is the number of unit cells in the crystal, and 7 is the number of atoms per
unit cell. The integrand brackets are thermal average of exp{— ik-R ; (0)}exp{z’ K-R i (t)} over

all states | 1) with probability p, , where p, = exp(=E, / k;T)/ Y exp(=E, / ksT).
2.3 Coherent and Incoherent Scattering

An element with various isotopes will scatter neutrons differently. Also if the nucleus
has a spin, the scattering will depend upon whether the neutron spin (1/ 2) and the nucleus
spin (I ) combine to scatter in a state of spin 7 +1/2 or I—1/2. Let b" be the amplitude
of the scattering in the /+1/2 spin state of neutron-nucleus system, and b~ is the
amplitude of the scattering in the /—1/2 state. There are 2(/+1/2)+1=27+2 states for
spin 7+1/2 and 2(I1—1/2)+1=2I stats for 1—1/2. So the probability of interaction in

2042 I+1
(21 +2)+21 2I+1

I+1/2 state is while the probability of interaction in the 7—1/2
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20
(21+2)+21 2I+1

state is So the scattering length is written as

oty L g (2.35)
20+1 2041
and
—  I+1 2 1 2
b’ = b Y + b Y. 2.36
21+1( ) 21+1( ) (236)

If there are several isotopes in the scattering system, where the i isotope has a relative

abundance c,, then equations (2.35) and (2.36) can be generalized to

— I +1 I
b=>» ci— b+ ~—b; ¢, 2.37
z ’{ZI[H ' 21, +1 ’} ( )

i

and

bT:Zci{Ii+1(b+)2+ L (b‘)z}. (2.38)

=21, +1 21, +1

The bound atom coherent and incoherent scattering cross sections o,,, ©,,., aregivenby
o, =4n(b)’  and o, , =40’ - (b))}, (2.39)
where the bound scattering cross section is defined as
o, = 4rb’ = Oon t Oincon (2.40)
The scattering cross section of moderating materials such as Be and graphite is almost
entirely coherent. Carbon-12, the dominant isotope of graphite (%98.89), does not have a

nuclear spin, while carbon-13 has a nuclear spin due to the presence of unpaired spins.

Carbon has o,, =5.50£0.04 barnand o, =5.53+0.03barn [11].

Assuming the scattering length is real, and written in terms of its average value that is

measured experimentally, where the average is taken over the random spin orientation, and
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the random isotopes distribution, then b5, can be substituted for b,b,, so that equation

(2.34) becomes

dgsz, _ %ﬁ% _[<eXp{ Rj, (0)}6Xp{i12 . ﬁj (t)}> exp(— ia)t)dt ) (2.41)

Assuming no correlations between the values of b,and b, if jand j' refer to different
sites, then

— =2 5 2
by=b +(b"-b)o5,. (2.42)
By substituting equation (2.42) into equation (2.41), the double differential scattering cross

section can be written as a sum of coherent and incoherent double differential scattering

contributions [21]

2 2 2
d°o _ do N do ’ (2.43)
dQ dE' dQ dE' o \dQ dE’ o

where

( d’c J _ O K ;LZ T<exp{_,~,g. R, (0)fexpliz- R/(t)}>exp(—ia)t)dt, (2.44)

dQ dE' Adr k27mh N

—00

and

( d’o ,JA h =M Z T<exp{ O)}exp{ir?-ﬁj(t)}>exp(—iwt)dt. (2.45)

dQ dE 4r k27zh9\f

—00

It is common to write equations (2.44) and (2.45) in terms of the intermediate function

I(%,t) and the scattering law S(x, ), such that

S(% o) = T )e " dt, (2.46)

—00

and

o0

- 1 by —ii
SS(K,w)ZM—hI 1, (K,t)e"™dt, (2.47)

—0
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where the intermediate functions are defined as

I(E,t):%ZXexp{—ilZ-ﬁ_/,(O)}exp{iE-ﬁ_/ ). (2.48)

i’

and

1, (&)= % > (expl-iz - R, (0)fexpliz- R, (1)) (2.49)

S(x,w) is known as the scattering law per atom, it may be written as a sum of two

parts:

S(kw) =S, (kw)+S, %), (2.50)

where S (kK,w) is known as the self scattering law per atom, which accounts for
non-interference (incoherent) effects, while S,(x,w) is the distinct scattering law and
accounts for interference (coherent) effects. In coherent scattering there is a strong
interference between the waves scattered from each nucleus. In incoherent scattering there

is no interference and the cross section is completely isotropic. = As a consequence

equations (2.44) and (2.45), becomes

2 i
do | _wkgi ), (2.51)
dQdE')  4r k
and
2 '
do _Zuar K g (2 o). (2.52)
dQdE') T 4r k'

The total double differential scattering cross section now can be written as

d’oc _Lk'

10 4 (K, 0)+ (0 + Ceo)S, (K, )} (2.53)

dQdE' 4r k
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Equation (2.34) is the fundamental expression for calculating the cross section. The detailed
calculations start by calculating the thermal average integrand. This average depends only
on the scattering medium structure and its dynamics. So the problem of neutron scattering
is reduced to a statistical mechanics and quantum mechanics problem. In other words,
equation (2.34) is a combination of two parts, one is nuclear represented by the nuclear

scattering length, and the other is atomic represented by thermal average integrand.

Furthermore, if the atoms in the scattering medium are assumed to be bound to each
other by harmonic forces, an expansion can be performed to allow the decomposition of the
coherent and incoherent double differential scattering cross sections into elastic and inelastic
components. For crystalline materials, this expansion is known as the phonon expansion.
That is, the self and distinct components of the scattering law can be written as

S, =S +'S +°8, +--
S, =S, +'S, +S, +--- (2.54)

Substituting equation (2.54) into equation (2.53), the following expression is obtained

d’ 1 k' - -
F;Eq = E;{Ucoh ;) PSd (K’ a))+ (Ucoh + Ut‘ncoh );) PSS (K’ a))} : (255)

The terms that have superscript P =0 represent 0 phonon creation (or annihilation),
and they represent coherent elastic scattering events, while the terms that have higher
superscripts P =1,2,3,--- represent the creation (or annihilation) of 1, 2, 3,..., phonons
respectively, and they represent inelastic coherent scattering. A scattering event is said to

be inelastic if any of the internal quantum states of the scatterer are changed as a result of the
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collision with a neutron, and is said to be elastic if there is no change. In inelastic scattering
of thermal neutrons from a crystal, the vibrational excitation of the crystal will be changed as
a result of the collision. A quantum of vibrational energy in a crystal is called phonon, and
inelastic scattering is accompanied by the emission or absorption of phonons. In elastic
scattering from a crystal, the crystal as whole recoils so as to conserve momentum with the

neutron, but the resulting change in the neutron energy is negligible.

It is convenient to write the scattering law S(x,w) in terms of the dimensionless

variables a, and £ representing the energy and momentum transfer respectively, that is

S(a, p) = kBTe’B/zS(E,a)) , (2.56)
where,
' _ ' 2.2
a:E +E-2uNEE _ h'x ’ (2.57)
Ak, T 24k, T
and
ﬂ:E-E:_ha)' (2.58)
k,T k,T

E,and E' are the incident and scattered neutron energies respectively, u is the cosine of
the scattering angle, 4 is the ratio of nuclear to neutron masses, k, is Boltzmann constant,
and 7 is the temperature of the scattering medium. Note that S(x,w) has unit of
[energy]_l, while S(e,f) is dimensionless. As a consequence, equation (2.55) can be

written as

d’oc 1 E' s » »
= = o S B)+ (o o, E S lax,B).  (2.59
dQ dEr 47Z'kBT E e coh ; d(a’ )+( coh + incoh )p:() s( K, ) ( )
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2.4 Thermal Neutron Scattering Cross Section Approximations

a) Theincoherent approximation

To calculate the thermal neutron scattering cross section it is necessary to find an
expression for the intermediate function characterized by the dynamics of the system. For
solid moderators many assumptions and approximations are employed in order to simplify
such calculations [18], one of these —and the most important- approximation is the incoherent

approximation: in which the interference effects are neglected by setting S, («, f) equal to
zero, that is, the inelastic (P >1) double differential scattering cross section per atom is

given by

2 '
d o _ O-coh + Uincoh Ee-ﬁ/Z Z PSY (a’ﬂ) . (260)
dE' dQ drk,T \E =

Since graphite is a strong coherent scatterer, interference effects will be significant, and the
incoherent approximation is expected to be inaccurate. The major point of this work is
removing the incoherent approximation by including the coherent one phonon component of

the scattering law.

b) Other Approximations
The other approximations and assumptions that were used to simplify the calculations of
the scattering law are that S, («, f)is assumed to have a Gaussian-like function (Gaussian
approximation), the solid interatomic forces are harmonic, only one kind of atom is  present
in the solid, the solid has one atom per unit cell, the unit cell has a cubic symmetry, and the

vibrational modes of the crystal are described by a continuous spectrum, called the phonon
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frequency distribution p(f)[18]. Based on the above approximation and assumptions,

S, (a, f) may be written as [see Appendix A.1]
LT s 7o
Sg(a,ﬂ):—je e Odr, 2.61)
‘ 27 7

where 7 is time in units of 7/ ,T seconds,and y’(zr) is given by

[1- e’ e 2
V(1) =« jp Al ] dp. (2.62)
2B sinh(f3/2)
The above formulation represents the basis of the computer programs such as GASKET [22]
and LEAPR/NJOY [8, 23], which are used to calculate thermal neutron scattering cross

sections.

2.5 Coherent One Phonon Scattering Cross Section

In order to include the coherent one phonon law the calculation of the thermal neutron
scattering cross section equation (2.44) will be considered to develop an expression for the

coherent one phonon scattering law [19].

The instantaneous position R, ,(¢) of the @™ atom in the /™ unit cell that is displaced from the
equilibrium position by a displacement u,,(¢) is
R, ()=1+d+ii,, (). (2.63)

By substituting the above equation into equation (2.44) and replacing the subscript j by /, d

d*o Coon k' S
(deE’lh ar k 2th%§eXp{’ +d-1-a)

o0

I<exp{— iK U, (O)}exp{i/? Uy, (t)}> exp(— it )dt,

—00

(2.64)
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but

1/2
i (6) = (%} Zwl{éds a explig [ -op)+e, a’ explilg T -wil). (@65

N K

and

iy (0) = (%)NZZ%{@ a,explig 1"+ e ar expl-ilg-1')}.  (2.66)

N s

For simplicity, the following definitions are introduced

A=—ik iy, (0)=—iy. g.a,+ga;
X : (2.67)
B=ik-ii,, (t)= iZhsaS +hial
where
1/2 -~ o
g =( h ] Blas piil
* 2MN o
’ (2.68)

2 . -
h o= h ] K€ ei(ti-[—wst)
' \2MN Jo,

Since the operators 4 and B do not commute, the thermal average expectation value can

be written as

<exp{— iK1, (O)}exp{iz? Uy (t)}> = <exp21 exp Z§> = <exp(21 + §)> exp{% [ﬁ,é]} . (2.69)

Note that A+ B is a linear combination of harmonic displacements, each displacement has

a Gaussian probability function. The probability function for a linear combination of

Gaussian functions is a Gaussian function also.
<exp(,21 ; é)} - exp{l<(A ; B)2>} . (2.70)
2

Thus, equation (2.20) becomes
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<exp{— iK1, (0)}exp{i;? U, (t)}> = <exp A exp 1§> = exp<% (,212 + B> )> exp<2u§> . (2.71)
The following quantites can also be defined

()= {7 (0)) =,

? § f B 2 (2.72)
E<B >=5<(K'”1d(t)) >:_Wd

where the exponential term e™>” is known as the Debye-Waller factor. In this case, 2W

is the mean square displacement of a nucleus multiplied by x°, and the presence of e™”
means the intensity decreases with increasing |/?| . Substituting equations (2.71) and (2.72)

into equation (2.64)

d*c O, k' L B
(deE’]Ch 47r]k27zh9\fzzeXp{m (+d-1-a)

Id I'd

(2.73)

e e Texp<21]§> exp(— it )dt.

—00

2.5.1 Phonon Expansion

Expanding the exponential term exp<2[f?> that appears in equation (2.73) in a Taylor

series gives

A A\ D
expl18) =1+ (A8) oo L3 e 312 .74
p=0

p!

and the double differential scattering cross section can be written as
d’o [ d’o ’ i ’
dE"dQ ) dE'dQ ) =~ pa\dE'dQ ).

(dE e Jm
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The second term in equation (2.74) corresponds to P=1 gives the one-phonon scattering
cross section, in which all the quantum numbers of the oscillating system (crystal) remain
unchanged except for one oscillator, where its corresponding quantum number changes by

unity. The one-phonon coherent scattering cross section is therefore

o \" o,k 1 1 e o
— _coh 7 - i d—l'—d'
[dQ dE’jwh Az k 27zhgv;%;e"p{”f - ) -

e e T<2U§>exp(—ia)t)dt.

Utilizing equation (2.67) to evaluate<21é> , and keeping in mind that
<asa:> =n,+1 and <a:as> =n,, (2.77)

results in

(48) =33 ((e.a, + gia; Y., +hia;)

(2.78)
= Z g.h <ns + 1> + g:hs <ns>

Substituting equation (2.68) into equation (2.78) gives

<211§> = ( h jz (E u )2 {e"q'(i"i)e""’%ns + 1> + e‘i“"(zl‘z)e_"“’&’<ns>}. (2.79)

2MN )5 o,

thus the coherent one phonon double differential scattering cross section is

d’*oc Lph O k_’ 1 L[ 1 jzei,;.(’_‘}') e_Wd, e_W"
dQdE' | 4 k 27 N\2MN )57
coh (280)

(IE: . Eds )2 ¢ . ,‘(,?7‘)-(1'—]") it l'(’?*‘)‘(l.*l.') —iogt
zza)— J.exp(—za)t){e I et <ns + 1> + et e <ns>}lt
s s

—00

which is equivalent to
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Setler(ez, )

d

d’c " o,k 1 1( 1 jZL
dQdE')  4r k27 N\2MN )%

(2.81)
Z Iexp za)t){‘ e (n, +1>+‘e’("“’)’ o (n, >}dt
!
but
J.el(“’m)’dt =2718(0+ w,)
and (2.82)
2 3
%Ze*m” - (2’:) Y o(F+q-7)
Substituting equation (2.79) into equation (2.78) we get
o " o, K y |
coh W= 3
(dQ dE'L ar k 2 v szz 2emem(® e (2.83)

{(n, + 1>5(a)— 0,)5(& G —7)+(n)6(0+ @,)5(k +G 7))

Equation (2.83) is a sum of two terms, the first term which contains <ns +1>, represents a
process in which a phonon is created, while the second term contains <n?> represents
phonon annihilation. The delta functions S(w+w®,) and &(K+§—7) represent the
conservation of energy and momentum respectively. In the limit 7 — 0 only the first
process occurs, since there are no phonons to be created at absolute zero Kelvin. The above

equation can be written in a similar fashion to equation (2.51), that is

o " ok,
(deE’j 4C;znh k S&.0), (259

where
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Recall that for graphite o, , ~0, that is, o, ~0,,. As a consequence the inelastic

incoh
double differential scattering cross section for graphite as a result of the incoherent

approximation (S, (x,®) = 0) can be written as

d’c o, k<wre (-
=T K Srg . 2.86
IQdE 4n k ; . (%.0) (2.86)

By adding the exact coherent one phonon double differential scattering cross section given

by equation (2.84) and subtracting the one phonon double differential scattering cross section

!

. . o 1 - )
in the incoherent approximation 4—% O o (ISS (%, a)))mmh upprox, » ©QUAtION (2.86) becomes
Jn :

d’c o k' P L o
= § S S 2.87
dQ dE' ar k {(; ' (K’ w)jlncoh Approx. " ( ’ (K’ 0))‘0‘ d (K’ a)))exact > ( )

where 'S='S +'S,. Note that the summation for the incoherent approximation in the above

equation starts from P=2.

Appendix A.2 shows the one phonon double differential scattering cross section formula
in the incoherent approximation, while Appendix A.3 shows a step by step derivation of the
one phonon double differential scattering cross section in the incoherent approximation

starting from the coherent one phonon equation (2.83).
2.6 Fundamental Input to scattering Formulation

In order to generate the graphite thermal neutron scattering cross section, there are basic

inputs that are required to perform the calculations such as the temperature of interest 7, the
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mass of the scattering atom relative to that of the neutron 4 (in case of graphite, 4= 11.898
[8]), the bound atom cross section, in fact LEAPR uses the free atom cross section o,
instead, where the bound and free atom cross sections are related together by the relation [18]

A+1

2
o, = (Tj O free - (2.88)

where for graphite o ,, =4.7392b [8]. The basic input to the formula implemented in
LEAPR is represented by equations (2.61 and 2.62) is the phonon frequency distribution.
LEAPR requires the phonon frequency distribution to be represented in a uniform grid. On
the other hand, the basic inputs to the coherent one phonon scattering law represented by
equation (3.84) are dispersion relations, polarization vectors, atomic positions, and
Debye-Waller factor. In the formulation of LEAPR the exponent of the Debye-Waller factor
2W s considered isotropic. In this work, in order to calculate the coherent one phonon
scattering cross section 2/ is treated both isotropically and non-isotropically, see section
(4.3). The dispersion relations and polarization vectors are obtained using the ab initio

simulations of graphite, as will be discussed later.
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Chapter 3 Lattice Dynamics, The Input for Thermal
Neutron Scattering Calculations

The calculation of thermal neutron scattering cross sections requires knowledge of the
dynamics of an atomic system. This includes the atomic structure and the allowed modes of
vibrations as represented by dispersion relations and polarization vectors. The information
can also be used in the form of vibrational (i.e., phonon) frequency spectra. However, the
relation between thermal neutron scattering and lattice dynamics is a mutual relation, that is,
while lattice dynamics is fundamental in studying inelastic neutron scattering, coherent
inelastic neutron scattering is used to measure the dispersion relations (frequencies of
vibrational modes) of crystals and even the atomic displacement pattern in a given normal
mode, and inelastic incoherent neutron scattering is used to measure the phonon frequency

distribution.

3.1 Lattice Dynamics

Assuming a perfect crystal, in which, the atoms are arranged in a pattern that shows
long- range order, and any arbitrary region in the crystal is representative of the bulk
properties of the solid - no surface boundary effects. In this case, the mean feature of the
solid is periodicity, in which one can describe the mean (equilibrium) atomic positions by a
set of mathematical points called the crystal lattice. At any temperature (including 0 K) the
atoms are oscillating around their equilibrium positions (lattice points). Assuming the
oscillations are small (relative to interatomic spacing), developing the phonon frequency

starts by displacing the atoms from their equilibrium positions harmonically. For a
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3-dimensional crystal, the position of the @™ atom in the /™ unit cell is defined as
R(l,d)=R(l)+ R(d). Due to thermal fluctuations, each atom (/,d) is displaced from its
equilibrium position by ﬁ(l,d ), the 7 component of this displacement is u, (l,d) where

171s X, y, or z in Cartesian coordinates.

The total kinetic energy 7 of the crystal is the sum of the kinetic energies of each atom in

the crystal, written as

T:%MZa; , 3.1

ldn

the total potential energy of the crystal @ is assumed to be a result of two-body interactions,
and is a function of the instantaneous positions of all atoms. If @ is written as a Taylor
series in terms of the atomic displacements around the equilibrium position up to the

quadratic term (harmonic approximation), then the following term is obtained

6® 62® ! !
D=0, + ;(Wlun(z,dh z(@un(l,d)aug(l’,d’)]o u, (1, d)u,(I,d"), (3.2)

ldn
1'd'e
the first term @ is just a constant (step function) that represents the equilibrium potential

oD

energy of the crystal. The partial derivative | ———
gy y p ( au” (l, d)

J represents the negative of the
u, =0

n component of the force on the atom at the position (Z ,d ) in its equilibrium position when

all u, (I,d)=0. This term is zero, since the force on each particle must be zero when all

displacements are zero. That is, each term in the sum vanishes when the crystal is in

o)
ou, (1,d )ou,(I',d")

equilibrium. The second partial derivative @, (I,d;l',d")= { J is known
0
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as the atomic force constant.

The equations of motion of the lattice can be established by setting its Lagrangian L,

where
L = Kinetic Energy — Potential Energy
=—2Md .d)-o, - ZCDW (s 'd"Yu, (1, Yu, (1 d"): (3.3)
2z 2
1I'd'o
and
d dL oL
dt - =0. 3.4
a’t(da”(l,d)] ou, (1,d) (34

Thus the equations of motion are

M i, (1,d)==>® ,(1.d;l',d"u,(l',d"). (3.5)

1'd'o

The solution to the above equation has the form of a plane wave traveling through the lattice,

which is given by

1 . . 3
u, (1,d) = ——u, (d)exp|-ilwr — G- R()), (3.6)
VMU
where u, (d) is an amplitude independent of /, and it is the unknown that will be solved for.
The vector gis called the wave vector, its magnitude is equal toz—” , where A the

wavelength of the elastic wave which propagates through the medium, and its direction is the

direction of the wave propagation. Substituting equation (3.5) into equation (3.6) gives,

i Y, (d;1,d) e T EOFOly (1), (3.7)
4 1d'o

Due to periodicity, the infinite set of coupled linear differential equations represented by

equation (3.5) is reduced to a problem of 3r linear homogenous equations (eigenvalue
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problem) in 37 unknowns, u, (d ) Conventionally, equation (3.7) is written as

o’u,(d)=>.D,,(G:d.d")u,(d"), (3.8)
d'o
where
D,,(G;d,d")= 1 S @, (1, d;l'd") e TEOFO), (3.9)

JM M, T

are the elements of the dynamical matrix B(é). For a crystal with » atoms per unit cell, the

dynamical matrix is a 37 x 37 matrix obtained by combining (77,d)and(0,d"). The set of
equations (3.8) has a non-trivial solution only if

D,,(g:d.d")~ 05,4, = 0. (3.10)
Where for each ¢ there are 37 solutions (branches) denoted by a)/2 (c} ), where j=1,2,---,3r

is called the polarization index. The dynamical matrix is a Hermitian matrix, that is,

D,,(G:d.d")=D;, (G:d".d). (3.11)

As a consequence, the eigenvalues a)f (c}) are real, so o, (é) (called the dispersion
relations) are either real or imaginary. For a 3 dimensional crystal with » atoms per unit cell,
there are 3r modes for each value of g. Three of these modes go to zero as ¢ goes to
zero; such modes are called acoustic, where all the atoms of the unit cell move in parallel and

with equal amplitudes, that is, acoustic modes involve a displacement of the center of mass

of the unit cell. The remaining 3(r —1) modes that do not vanish as g goes to zero are

called optical modes [24, 25].

The energy of a mode of vibration of the crystal is called a phonon- a Greek word that

means voice [26]. This energy is distributed throughout the crystal in real space but is
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localized in the space defined by ¢ and j. Acoustic phonons are analogous photons in

optics. Phonons are bosons with zero spin. However, E <E for equal

phonon photon

wavelengths.

. 2(— . . —=jif=. . .
For each eigenvalue o; (q) there exists eigenvectors e (‘],d ) called the polarization
vector whose components are a solution to the set of equations (3.8), which can now be

written as

@ (G)e)(G;d)=>.D,,(G:d.d") e} (G:d"). (3.12)

d'o

The polarization vectors describe the orientation of the atomic vibration corresponding to a

particular mode defined by ¢ and j. Polarization vectors are complex and satisfy the
orthonoramlity conditions

e/ (@d)e; (q:d)=5,

dn

N (3.13)
zeej (q;d )ez;(qéd):5095dd"
J

Traditionally phonons have been calculated by proposing an analytic model for the
interaction between atoms, evaluating the force constants between atoms, and constructing
the dynamical matrix and diagonlizing it. The force constants used in the dynamical matrix
calculation can be estimated in various ways. In some cases they are derived from
thermodynamic properties such as specific heat or compressibility data. Alternatively they
could be deduced from experimental measurements of phonon dispersion relations using
inelastic neutron scattering techniques. Basically both approaches represent the fitting of
theoretical models to experimental data.  This approach suffers from two major deficiencies.

The first is that it is not predictive, producing atomic force constants and dispersion relations
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that are inferred from experimental data. The second is that the results are not unique and can

possibly be reproduced by alternative dynamical models [27].

An alternative way to calculate the atomic force constant is by utilizing the ab initio
(first principle) approach, in which the analytic model is replaced by a full quantum
mechanic electronic structure calculation, with no need for fitting to experimental data. The
calculations of phonons within ab initio approach fall into to two classes [28, and 29]:

e The linear response method: where the dynamical matrix is expressed in terms of
the inverse dielectric matrix describing the response of the valence electron
density to a periodic lattice perturbation.

e The direct method, which has two categories

a) The frozen-phonon method: the phonon energy is calculated as a function
of the displacement amplitude in terms of the difference in the energies of
the distorted and ideal lattices. However, it is restricted to phonons
whose wavelengths are compatible with the periodic boundary conditions
applied to the supercell.

b) The ab initio force constant method, where the forces are calculated
utilizing Hellmann-Feynman theorem by using the supercell method. It
derives from them the values of the force constant matrices assuming a
finite range of interactions, and utilizing the crystal symmetry and
periodicity.

In the linear response method the response to a perturbation is calculated either by
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inverting the dielectric matrix (computationally cumbersome and restrictive) or by iterating
or solving an integral equation for the change in the electron density (can handle
perturbations of arbitrary wave vectors, and only linear effects can be considered). On the
other hand, the direct approach is computationally straightforward; it allows studying both
linear and nonlinear effects. However, a disadvantage is that the supercell size increases

rapidly as the symmetry of the structure decreases [30].

In this work the computer code called PHONON [31], which works within the
framework of the ab initio force constant direct method was used. The ab initio force direct
method is based on a supercell with periodic boundary conditions. The supercell is a finite
crystallite that has the form of a parallelepiped, and is a multiplication of the primitive unit

cell.

As a consequence of using a supercell with periodic boundary conditions in the ab initio
force direct method, PHONON deals with the supercell force constant @7 (I,d;1',d’) rather
than the atomic force constant @, , (l ,d;l'd ’). That is, due to periodic boundary conditions,
displacing the atom (l,d ) causes the same displacement of the corresponding atoms
(I+L,d) in all images of the supercell, where L =(L,,L,,L,) are the indices of the lattice
constants of the supercell. Therefore, a convenient way to calculate the dynamical matrix is
to locate the center of the supercell at the considered atom (/,d). In this case, one can
define an extended supercell which has the same size as the original one, but which includes

atoms on all of its edges and corners. The extended supercell contains more atoms than the
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conventional one. Special care has to be taken when the displaced atom (/,d) in the
original supercell and those of the images (Z +L,d ) are located on surfaces of the extended
supercell and the same distance from the original atom (/,d). Those atoms will influence the

central atom (/,d) with similar strength. To take this effect into account, the supercell force
constant @5 (l,d;/',d") is defined as

(L d;l'd )= wy @, (I,d;l'+ L,d") (3.14)

L

1 ) .
w=—, where n' is the number of equivalent atoms on the surfaces of the extended
n

supercell. PHONON uses the Hellmann-Feynman force F (l,d ) and solves the following

equation

F(ld)== Y &y (Ld;l'd" )u,(l',d"), (3.15)

(1,d)eSC

with respect to the supercell force constants. Hellmann-Feynman forces [32] are calculated
via the ab initio approach. Once the supercell force constants are known, the supercell

dynamical matrix can be defined:

D (G;d.,d')= S — S @ (0,d;1',d") e TEOARE), (3.16)

A/ Mde' I'eSC

Note that atom (0, d )is always placed at the center of the extended supercell. The supercell
dynamical matrix, equation (3.17), and the conventional dynamical matrix, equation (3.9) are
equal in the following cases:
e The interaction range is confined to the interior of the extended supercell. That is, the
force constants at and beyond the extended supercell can be neglected.

e The interaction range spreads out beyond the extended supercell. Then the two
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dynamical matrices are equal at special wave vectors ¢ fulfilling the condition
exp(— iq, -Z)Zl. Usually, the g, wave vectors correspond to high-symmetry
points of the Brillouin zone. Increasing the size of the supercell will increase the
density of the wave vector grid g, and more accurate phonon frequencies can be
achieved. That is, the direct method does not impose any limit to the range of

interaction.

The phonon modes are calculated by diagonalizing the dynamical matrix. Usually the
dispersion relations are calculated along straight lines (high symmetry points) of the
reciprocal space (Brillouin zone) of the crystal. Dispersion relations give detailed
information about modes behavior in such a space. However, it is more common to deal
with the phonon frequency distribution function, or phonon density of states rather than the
individual frequencies. The phonon frequency distribution p(a)) i1s defined such that
plw)dw is the fraction of frequencies in the interval (@, +dw). In the harmonic
approximation, thermodynamic quantities are additive functions of the normal modes w, ((} )
Therefore, all of these functions can be expressed as averages over the phonon frequency

distribution. The phonon frequency distribution is build as a histogram from the relation

1 _
plw)= 3nma)§5(a)—a)j(q)). (3.17)
where
po)= [ plohio= (3.18)

n 1is the number of sampling wave vectors ¢, r is the number of atoms in the primitive
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unit cell, and Aw is the frequency interval of the histogram. Thus, there are 37 phonon
branches (equal to the dimension of the dynamical matrix). The summations run over the
wave vectors ¢ of the first Brillouin zone and all phonon branches j. The wave vectors
are selected randomly with a homogenous distribution over the first Brillouin zone using
Monte Carlo sampling. The first Brillouin zone is defined as the Wigner-Seitz primitive
cell' of the reciprocal lattice, or it could be equivalently defined as the set of points in §

space that can be reached from the origin without crossing any Bragg plane.

The phonon frequency distribution is important in calculating many thermodynamical
quantities such as entropy, internal energy, Helmholtz free energy, and heat capacity. Since
these quantities are additive functions of the normal modes of vibration in the harmonic
approximation, they can be written as averages over the phonon frequency distribution. As

an example, the heat capacity C, and the Helmholtz free energy F are written as [24]

exp( "w)j
, o
< k,T
C, = 3Nk, [ plo ho i do, (3.19)
0 kT ho
exp| —— |—1
[kBTJ
and
T hw
F =3rNk o)In| 2sinh dw, 3.20
ng( ) { (%Tﬂ (3.20)

where 7 is the number of degrees of freedom in the unit cell (» =12 in the case of graphite),

! Wigner--Seitz primitive cell is defined as the smallest volume enclosed by perpendicular planes made at

midpoint of the lines between reciprocal lattice points
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and N is the number of the primitive unit cells.

3.1.1 Graphite L attice Dynamics

As mentioned in chapter one (section 1.5), there is a great difference between the
interplaner and intraplaner of graphite, such that graphite is considered a Lameller or
quasi-two-dimensional structure. The bonding in graphite exhibits one of the largest
anisotropies of any solid. Evidence of the impact of graphite’s structure on its properties
can be seen when examining quantities such as heat capacity, which has been studied
theoretically and experimentally [33-36]. The overall picture drawn by these studies is that
graphite’s heat capacity exhibits 7 > behavior below 2 K (i.e., a pure Debye spectrum ~E2), a
transition region between 2 to 20 K, and a T * region above 20 K (i.e., a linear form of the
phonon spectrum which corresponds to a two dimensional structure). Compared to other
materials, graphite has a smaller elastic continuum region; therefore, it has a smaller
temperature range of 7 Debye behavior, and a smaller parabolic energy range of the phonon

frequency distribution.

The above behavior can be understood by examining the quantum theory of solids,
which successfully explains the specific heat of harmonic crystals either at low or high
temperatures.  According to this theory, for an n-dimensional harmonic crystal, the
low-energy part of phonon density of states varies as E"”, whereas the specific heat at low
temperatures varies as 7" [37]. One of the earliest and most important theories of specific

heat is Debye’s theory. Its importance is due to its simplicity and success for most
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materials. The Debye spectrum of a solid is obtained by assuming isotropic continuum
behavior throughout the frequency range [i.e., if the traveling wave has a wave length which
is long compared with the spacing between the atoms, the crystal will look like an elastic
continuum to the wave]. The Debye approximation for the density of states, p(E), of a
solid is

p(E)=3E*/E), 0<E<E,

3.21
0 E>E, G20

where E,is the cutoff frequency, which leads to the correct normalization of p(E) and
bears no simple relation to the true maximum frequency of the crystal. In the limit of low

temperatures, Debye’s T° law for the specific heat is given by

. 3
C, 2Nk [ T (3.22)
5 e,

where ©, = E, /kp 1is the Debye characteristic temperature [38].

On the other hand, lattice dynamical properties of graphite have been studied extensively
during the last five decades, either through proposed theoretical models or experimentally.
Experimentally, the phonon dispersion relations of bulk phonons have been studied using
various techniques, such as inelastic neutron scattering [39], infrared [40], far-infrared [41]
and Raman spectroscopy [42, and 43]. Surface phonons have been measured by inelastic
He- atom scattering [44], inelastic electron tunneling spectroscopy (IETS) [45],
High-Resolution Electron Energy-Loss Spectroscopy (HREELS) [46-48], and inelastic X-ray
scattering [49]. Theoretical models of lattice vibrations of graphite have been developed

using at several levels;
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1. By proposing simple lattice vibrational models based on the theory of heat capacity
[34, and 37]. Such models assign two vibrational frequencies, one in-plane and the
other is out-of-plane, where the former contributes twice as much as the latter.

2. By using the semi-continuum model, which utilizes the elastic description of the
crystal to solve the vibrational equation of motions [35, 50, and 51]. Such models
give a good description of the low temperature thermal properties of graphite.
However, the high energy part of the phonon frequency distribution is relatively
smooth, because of the continuum nature of the model.

3. By employing atomic interaction models [9, 39, and 52-55], which produce more
detailed phonon frequency distributions. The parameters of these models are fitted to
experimental data such as heat capacity and dispersion relations.

4. By extrapolating phonon frequency distributions from neutron scattering data
[56-59].

5. By calculating phonon dispersion relations [49, 59-64] and generating the phonon
frequency distribution [63-65] via the first principle approach.

6. By measuring the phonon frequency distribution using inelastic neutron scattering

technique [66].

Two phonon frequency distributions will be considered in more details. These are:

-Young and Koppel (YK) phonon frequency distribution [9].

-Nicklow, Wakabayashi, and Smith (NWS) phonon frequency distribution [39].
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3.1.1.1 TheYoung and Koppé (YK) Phonon Frequency Distribution (1965)

This phonon frequency distribution is used in all the ENDF/B evaluations. It was based
on the lattice viabrational theory of graphite proposed by Yoshimori and Kitano in 1956 [52].
In this model Yoshimori and Kitano assumed that an atom in the graphite lattice is subject to
four restoring forces due to: (a) changes in the bond angles proportional to a force constant
M, (b) changes in the bond length between nearest neighbors in the same plane, proportional
to a force constant «, (c) a central force due to changes in the bond length between nearest
neighbors in two adjacent planes, proportional to a force constant x’, and (d) a force due to
the bending of the planes and proportional to the displacement in the c-direction of any
relative to its nearest neighbors in the same plane and proportional to a force constant .
Yoshimori and Kitano determined the force constant x' form compressibility, ' from
specific heat (15-60 K), and xand g from the benzene molecule. They used Houston’s
method to obtain the phonon frequency distribution, where this method is known to be

quantitavely incorrect and results in to spurious singularities in the frequency spectrum.

Young and Koppel in turn, instead of using the same values of k¥ and u obtained by
Yoshimori and Kitano from the benzene molecule, they fit these constants to the specific heat
of reactor grade graphite in the range (300-1000 K). Also they used the root sampling
method to sample the phonon frequency distribution in the first irreducible Brillouin zone
using 47788 equally spaced points. Figure 3-1 shows the phonon frequency distribution of

Young and Koppel [9].
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Figure 3-1 The phonon frequency distribution of Young-K oppel [9].

3.1.1.2 The Nicklow, Wakabayashi, and Smith Phonon Frequency Distribution

R. Nicklow, N. Wakabayashi, and H. Smith (NWS) [39] measured the phonon dispersion
relations of high-quality pyrolytic graphite by using coherent inelastic neutron scattering
techniques and the triple axis spectrometer located at the Oak Ridge high flux isotope reactor.
The data was analyzed using an axially symmetric (AS) model assuming a two body
interaction potential. A general tensor force constant model was used with 12 distinct
parameters. The interaction between atoms is limited to the fourth nearest neighbors. The AS

model was used to calculate the phonon frequency distribution shown in figure 3-2.
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Figure 3-2 The Nicklow et al, phonon frequency distribution (solid line) [39]. Also is shown the
YK spectrum from figure 3-1 asa dotted line[9].

3.2 The Abinitio Approach

Due to advances in computational power, the possibility now exists to perform detailed
quantum mechanical ab initio simulations of atomic systems. Using this approach, it is
possible to predict the various properties of the material of interest. In lattice dynamic
studies, the ab initio approach can be utilized to calculate the forces (Hellmann-Feynman
forces) on the atoms of the system of interest. These forces will be used to calculate the
force constants in order to construct the dynamical matrix and calculate the phonon

frequency distribution [65, and 67].
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3.2.1 Kohn-Sham Equations

Due to advances in computational power, the ability now exists to perform detailed
quantum mechanical ab initio simulations for atomic systems. These simulations are
currently used in fields such as physics, chemistry, and materials science. Ab initio [26] is a
Latin term that means from the beginning. In sciences (especially physics and chemistry) it
means from first principles, it relies on basic and established laws of nature without
additional assumptions or special models. In the ab initio approach the physical properties
of the material of interest are predicted using quantum mechanics and utilizing the fact that if
the total energy of a system is known, then all its physical properties ( that can be related to

the total energy or the differences in total energy) can be calculated.

It is out of question to solve Schrodinger equation for a crystal of N atoms, such a crystal
has N nuclei and ZN electrons (i.e., N+ZN electromagnetically interacting particles). The

exact Hamiltonian of such many-body problem is

= Lions + Tele + ion—ele + Vele—ele + I/[()n—[on
R 2 hz
A=ty - Lyy
2M i ! 2m€ j /

(3.23)

72'80 i,j RI_FJ 872.80 i#] rl_rj‘ 87[80 i,j RI_RJ

1 Ze? 1 e’ 1 Z%e?
“ire 2R 7| e 7 e IR R

where M is the mass of the i nucleus at position R.. m, is the electron mass, and 7
are the electronic position vectors. The first two terms represent the kinetic energy
operators of the ions and electrons respectively. The last three terms represent the
ion-electron I;'H, the electron-electron V?e, and ion-ion VH potential energy operators.

e
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Due to the large difference in mass between electrons and nuclei, electrons respond
instantaneously to the motion of the nuclei. That is, one can think of the nuclei as frozen
particles at fixed positions. This is called the adiabatic approximation or the Born —
Oppenheimer approximation. As a consequence of this approximation, the first term in
equation (3.23) becomes zero (nuclei do not move), the last term reduces to a constant (step
function). That is, the Hamiltonian is left with the kinetic energy operator of the electron
gas, the electron-electron potential energy operator, and the ion-electron potential energy
operator, which can be viewed as external potential to the electrons. The adiabatic
approximation leads to the separation of nuclear and electronic coordinates, that is, ZN

interacting electrons are left moving in external potential of nuclei V, , = Vm. So equation

(2.23) becomes in short notation

(3.24)

The many-body problem is reduced to a many-electron problem. However, even with
this simplification, the many-electron problem is still formidable to solve. Further
simplification is reached using density functional 2 theory (DFT) [68, 69], which is
introduced to model the electron-electron interaction, using the electronic density p(f7 )
instead of using the complicated many-electron wave function. Hohenberg and Kohn [68]
proved that the total energy of an electron gas is a unique functional of the electron density,
and the minimum value of the total energy functional E [p] is the ground state energy of the

system. The density which yields this minimum is the exact single particle ground state

? Functional means a function (operator) that takes functions as its argument, and gives a number as its output, or

a function whose domain is aset of functiuons.
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density. The Coulomb energy of a system of electrons can be reduced by keeping the
electrons spatially separated. The spatial separation can occur to electrons having the same
spin due to the anti-symmetric property of their wave function (electrons are fermions).
The reduction in the energy of the electron system due to the anti-symmetric property of the
wave function is called the exchange energy. Electrons can also be separated spatially if
they have opposite spins. In this case, the = Coulomb energy of the electronic system is
reduced at the cost of increasing the kinetic energy of the electrons. The difference between
the many-body energy of electronic system and the energy of the system calculated in the

Hartree-Fock approximation is called the correlation energy [70, and 71].

Equation (3.24) can be rewritten in terms of its corresponding energy functional, and
introduce the exchange and correlation contributions. The corresponding energy functional
to equation (3.24) is

Elpl=T.[pl+E. [p]+ E..[o]. (3.25)

By adding and subtracting the kinetic energy functional of non-interacting electron gas
T [p] and the Hartree functional E,, [p] , equation (3.25) can be rearranged as

Elpl=Tpl+ E,lpl+ E o]+ (Tlo]-T1p)+ (E._[p]- E4lp).  (326)

But E, [p]-E,[p] is defined as the correlation functional E [p], and T[p]-T[p] is

defined as the exchange functional E [p]. Where E, [p]+ E [p] is written as the
exchange —correlation functional E . [p] Therefore equation (3.26) becomes

Elp]=T.[p]+ E,[p]+ E..[o]+ E..[o] (3.27)

The above expression is called Kohn-Sham energy functional; its corresponding Hamiltonian

56



is called the Kohn-Sham Hamiltonian and is given by

A A

HKS :j-::+I}H(}_’:’p)+Vext(}_;)—’_l}xc(?’p)’ (328)

2

where f =— V? is the kinetic energy operator of a single electron , the Hartree

2m

potential operator, I}H (17 ; p) is given by

) dr (3.29)

Pl
7=

2
A e
VH(F,/?)—FEOI =

A

and the exchange-correlation potential operator, V (77; p) is given formally by the

xc

functional derivative

5 3. [p]
V(7 p)= 25 (3.30)
p(F)
Only the minimum value of the Kohn-Sham energy functional has a physical meaning. At
the minimum the Kohn-Sham energy functional is equal to the ground state energy of the

system [70]. To find the ground state density of a non-interacting single particle, a

Schrédinger- like equation, called Kohn Sham equation is used [69]

A

Hyy, =¢ey,. (3.31)

Where . is the wave function of he electronic state iand & 1s the Kohn-Sham
eigenvalue. The ground state density ,o(z7 ) for a system of ZN electrons is given-in terms

of y, -as
— &, 2
p(F)=2 .l (3.32)
i=1

Both V, (7;p) and V_(F;p) depend on the electronic density p(7) which in turn

depends on y,. Thus, the Kohn-Sham equations are self consistent equations. The

Kohn-Sham equation (3.31) is an exact equation, where the Hamiltonian of the
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many-electron system has been reformulated into a Hamiltonian describing a system of
non-interacting electrons moving in an effective potential Veﬁv =V, (7 p)+ V., (7)+ V., (7 p).
It is worth mentioning that the eigenvalues &, are not the energies of the single particle

electron states. Also the single particle wave functions y;, are not the true eigenfunctions

of the electrons, but the density of these particles is equal to the true electron density.

3.2.2 The Local Density Approximation (LDA)

The exchange-correlation functional E_[p] contains what is missing from 7.[p] and
E,[p] to get T.[p]+E. [p]. Unfortunately, the form of E_[p] is not known.
However, actual calculations need an expression (even approximated) for £, [p] A widely
used approximation is the Local Density Approximation (LDA) [68]; which assumes the
exchange-correlation energy per electron at a point 7 in the electron gase (p(?)) is equal
to the exchange-correlation energy per electron in a homogenous electron gas & (p(?))

that has the same density as the electron gas at point 7, with this assumption, £, [p] reads

£ [p]= e (p@)o(F)ar (3.33)
and the exchange-correlation potential is
5 (. _ 5Exc [p(}j:)] hom hom (,0(7’))
Vie (7’,,0) = 5/?(77) ( (7”))"' p( ) ap(r) (3.34)

The LDA assumes the exchange —correlation energy functional is purely local, that is, the
contribution at each point 7 is independent of other points. This assumption simplifies the
calculations since there are several known expressions for the exchange- correlation energy
of a homogenous electron gas [69, and 72]. It is expected that LDA will work very well in

the limit of high density or in a slowly vary charge-density distribution. However, this
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approximation works remarkably very well for other cases despite its simplicity. Equation
(3.33) has been generalized to consider spin-polarized electron gas with spin up and down
EDp", ot |= [ (o 7). 0 () o) (3.35)

hom
xc

where ¢ (pT(F), ,0¢ (17)) is the exchange-correlation energy per electron of a homogenous

spin-polarized electron gas with spin up and spin down densities pT , ,0i respectively.

3.2.3 The Generalized Gradient Approximation (GGA)

The next step to improve LDA is to make the exchange-correlation contribution depends
both on the magnitude of the electronic density ,0(17 ) and on its gradient ﬁp(? ) That is,
the exchange-correlation contribution to an infinitesimal volume of electron gas depends on
the surrounding densities (gradient of densities will play a role). This approximation
therefore, called the Generalized Gradient Approximation (GGA) [73, 74]. Under this

approximation, equation (3.33) becomes

ES[p]= [ (p).9 (7)ol ) (336)

3.2.4 Periodic Boundary Conditions
So far the many-electron problem is reduced to a single electron problem moving in an
effective potential, in addition, the exchange-correlation term was approximated as discussed

in the above sections.

For an infinite number of atoms we have an infinite number of electrons, where each

electron is represented by a wave function. In order to reduce the number of wave functions,
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the calculations are performed on periodic system. That is a large supercell is constructed
and repeated periodically throughout the space. For crystalline solid the potential is
periodic that is, V(¥ +R)=V(¥), also, the kinetic part is periodic, therefore the total
Hamiltonian is periodic. Since the Hamiltonian is periodic, Bloch’s theorem can be applied,

where the electronic wave function can be written as a sum of plane waves basis set e'**”

v, (7) > v ZCG() iy ZCG( FJE+6). (3.37)

Only a finite number of states are occupied at each & point, wave functions v, ( ) that
have the same k point but different i will be expanded in the basis set with this particular
k point. Whereas, wave functions with another k point, will be expended with a new set
using the new k point. Bloch’s Theorem changes the problem of calculating an infinite
number of electronic wave functions to one of calculating a finite number of electronic wave
functions at an infinite number of k point. Computationally, one can not work with an
infinite basis set. Therefore, few concepts were introduced to reduce and simplify the

computational efforts, these are k point sampling, cutoff energy E_ ., and Pseudopotential

cut >

Approximation.

3.2.5 k Point Sampling

Calculation of many properties, such as density, total energy, number of electrons in a
band, ...etc. requires the integration over the Brillouin zone. Instead of calculating the
finite electronic wave functions at an infinite number of & points, it is possible to represent
these wave functions over a region of k space, at a single point. This is due to the fact

that, electronic wave functions at k points that are very close to each other will be almost
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identical. In this case the integration over the Brillouin zone will be replaced by a sum over

a finite discrete set of states corresponds to different k points.

Different schemes have been proposed to produce sets of k points to perform an
efficient integration (summation) over the Brillouin zone of smooth periodic functions [75,

76]. A general method that is the most widely used was proposed by Monkhorst and Pack

[76] where a uniform set of k points is formed as a linear combination of the reciprocal

lattice vectors  b,, b,,and b,
k =nb, +n,b, +n;b,, (3.38)
n,, n,,and n, are chosen accordingly to the formula

2n, — N, -1
n, =———"—
2N,

1

, (3.39)

where i=1,2,3 , n,=1,2,---.N,, and N, is an integer that determine the number of the

special points in the set ( mesh size).

It is worth mentioning that, the special k points set has to be dense enough in regions

where integral varies rapidly. Also, symmetry can be used to reduce the calculations

(reduce number of k points) by involving only the k points in the reduced Brillouin zone.

3.2.6 Energy cutoff E

cut

The plane wave basis set can be truncated to include only plane waves that have kinetic

energies E less than a particular cutoff energy E

cut ?

61



E<E_,, (3.40)
where
2
Ecut = h_ cut ’ > (341)
2m
and
hY = -2
E=—‘G+k‘ . (3.42)
2m

This corresponds to a sphere with radius ém centered at the origin of reciprocal space.
All vectors that are inside the sphere are taken into the basis set. Therefore, introducing an

energy cutoff to the discrete plane wave basis set produces a finite basis set.

3.2.7 Pseudopotential Approximation

The core region of the nuclei is composed of tightly bound core electrons which respond
very little to the presence of the neighboring atoms. The remaining volume of the atom
contains the valence electron density; which is involved in binding atoms together.
Therefore, most physical properties of solids depend on the valence electrons more than on
the core electrons. The pseudopotential approximation, thus, replaces the strong
electron-ion potential with a much weaker potential called a pseudopotential. The
pseudopotential represents the nucleus and the core electrons so that out side the core region,
the total potential and the pseudopotential have the same behavior [77]. The
pseudopotential approximation was adopted from orthogonal plane wave method (OPW).
The early work of pseudopotentials (up to 70s) was determined empirically by fitting the

potential parameters to experimental measurements. Nowadays, norm-conserving ab initio
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pseudopotential are most commonly used (no fitting to experimental data) [78], such kind of
pseudopotentials are more accurate, transferable, and easier to use. By transferability we
mean; the pseudopotential constructed in one environment (the atom) is capable of describing
the physical properties in different environments (atoms, molecules, solids...). For instance,
the pseudopotential of carbon can be used to study graphite, diamond, fullerene, Nanotube,

either their bulk or surface properties.

Norm-conserving ab initio pseudopotentials are constructed such that [78] the
pseudowave function has the same value as the true wave function outside the cutoff radius
¥, which indicates the radius of the core region. The integrated value of the absolute
square of the wave function has the same norm as the true wave function inside 7,. The
pseudowave function is made smooth as possible inside the sphere of radius 7 and is
connected continuously to the true wave function, that is, it has the same value and the same
derivative as those of the true wave function, at the cutoff radius. Figure 3-3 shows a
schematic illustration of a pseudopotential model and its corresponding pseudowave function
[71], as we see the rapid oscillations of the valence wave function in the core has been
removed. The replacement of the true potential by a weak pseudopotential allows the wave
functions to be expanded using smaller number of plane wave basis states, than it would be
needed in full ionic potential. In construction of the norm-conserving pseudopotential there
are some arbitrarily parameters such as 7.. However, there is no one best pseudopotential

for any given element, there maybe many choices.
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wpseudo

Figure 3-3 A schematic representation of the pseudopotential method [71].

As mentioned earlier good pseudopotentials are accurate and transferable, accuracy and
transferability are competing with smoothness of the pseudopotential. ~Since accuracy and
transferability require the choice of a small cutoff radius 7, (hard potential) in order to
describe accurately the wave function near the ion, this in turn leads to expand the wave
function with large number of plane wave basis states. On the contrary, smoothness
requires a large 7, (soft potential), and fewer number of plane wave basis states are used.
Norm-conserving pseudopotential achieves the goal of accuracy at some sacrifice of
smoothness. Different approaches were proposed to produce highly accurate
pseudopotentials that are smooth such as Ulfrasoft pseudopotential [79] and Projected
Augmented Waves (PAW) [80]. Both approaches are formally related to the OPW equations,
and the pseudowave functions are made as smooth as possible in the core region. The norm

conservation is taken into account after solving the generalized eigenvalue equation.
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3.2.8 Solving Kohn-Sham Equations

So far, the DFT approximations (LDA and GGA) were introduced to simplify and
approximate the exchange correlation term. In addition, Bloch’s theorem was utilized to
expand the wave functions, whereas the energy cutoff concept, the k point sampling, and
pseudopotential approximation were introduced to reduce the number of electrons in the
system of interest, and to reduce the number of basis states used in expanding the wave

function. At this level Kohn-Sham equation can be solved.

By substituting equation (3.37) into equation (3.31) and multiplying by <l€ + G" from left,

the following form is obtained

> (k+ G [k + G (F)=e,co (k). (3.43)

1

where

<I€+G"l€+é> =0¢ s

(3.44)

is utilized in writing the right hand side of equation (3.43), and finding the kinetic energy

contribution
(k+G v k+G>_E‘k+G5@G. (3.45)
For a crystal, the potential I}eff (17 ) is periodic. Therefore, it can be expanded as
7y (F)=37, (Gl (3.46)
G

Thus equation (3.44) becomes

W s
;[E‘k—FG

N () P (e ) P (e G")}Cﬁ’ (£)=eci(k). (47
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The solutions to the above eigenvalue problem are obtained by diagonalizing the
Hamiltonian matrix. After building the system (supercell) with defined atomic types,
positions, and symmetry, choosing the type of the DFT to describe the exchange-correlation
contribution, selecting the pseudopotential approximation, energy cut off, and the k point
sampling mesh, an initial guess for the electron charge density is made. Then the Hartree
and exchange-correlation potentials are calculated, and the Hamiltonian is constructed.
Kohn-Sham equation is solved by diagonalzing the Hamiltonian. From this solution we
obtain Kohn-Sham wave functions. From these wave functions a new density will be
calculated, using this new density, a new Hamiltonian is constructed after calculating the
Hartree and exchange-correlation potentials; again Kohn-Sham equation is solved. This

process is repeated until the solution is self consistent. That is the procedure will converge

to a density p, which generates a Kohn-Sham Hamiltonian which yields as a solution
again p,. Kohn-Sham equations have to be solved self consistently. Only the minimum
value of the Kohn-Sham energy functional has a physical meaning, that is, at the minimum,
Kohn-Sham energy functional is equal to the ground state energy of the system [69]. Figure

3-4 shows a flow chart of solving Kohn-Sham equations.
3.2.9 Hellmann-Feynman Theorem

Hellmann-Feynman theorem simplifies the calculations of the physical forces on the ions

[32]. It states that for any perturbation A, the first derivative of the ground state energy of

the Hamiltonian A , can be calculated by using the variational property of the wave function

v, thatis
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oE oH

Z o\ ==w.dr. 3.48

Y] _[‘//;, oA ¥, ( )
The above equation represents the general form of Hellmann-Feynman theorem. If A,

represents the displacement of 4™ ion, then equation (3.48) represents the negative of the

force acting on the " nucleus. Note that, only the variation in the Hamiltonian is required

to calculate the forces, while the variation in the wave function due to the variationin A 1is

not required.

The variational principle can be used in the frame work of the DFT to derive an explicit

expression of the forces on ions by calculating the change in the energy functional OF [p]

The change in the energy functional given by equation (3.25) is written as

SE|p]= T [pl+ ¢, . [p]+ 6., o]+ GE,. (3:49)

where E, is the nucleus-nucleus interaction is included, which is essential in the total

energy calculation but is only a classical additive in the theory of electronic structure. The
change can be due to a slight nucleus displacement, where a change Jdp in the electronic
density p is necessary to keep the electrons in the ground state of the corresponding new
configuration of the nuclei. The change in JF,, [p] is

ext

S, [p)= [ 6pV..dF + [ pSV,,dF . (3.50)

Thus equation (3.49) can be written as

dr + [ pov,dF + 5E,, (3.51)

Xt

sl (ALl ) [,

The terms indp sum to zero since in the ground state the energy functional satisfies

sEtlp) _otlp]  GE..lp], , _ c (3.52)
5p §p 5p ext > )
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where & is a Lagrangian multiplier that has to be a constant independent of 7 when the
system is in the ground state. So equation (3.51) becomes
SEp)= | poV, dF +E, . (3.53)

The resulting force due to the displacement R , ofnucleus / is given by

olp] _ -[ p Ve g% (3.54)

SR, SR, SR,

As seen the above expression does not involve any change in p but it depends explicitly on

the nuclear position.

In the frame of DFT the electronic wave functions must be eigenstates of the
Kohn-Sham Hamiltonian so that Hellmann-Feynman theorem is applicable. Only the
minimum value of Kohn-Sham energy functional has a physical meaning that is equal to the

ground state energy of electrons.

The ab-initio force-constant direct approach is based on the solution of the Kohn-Sham
equation, where the phonon frequencies are calculated from Hellmann-Feynman forces
generated by a small atomic displacement, once at a time. The force constants are fitted to
the provided Hellmann-Feynman forces by utilizing the crystal symmetry space group and
assuming a finite range of interaction. Hellmann-Feynman forces are calculated using the

soft ware VASP (Vienna Ab initio Simulation Package) [81].

3.2.10 Graphite Ab Initio Calculations

The first ab initio calculation was in 1984 to study structures of graphitic phases of
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carbon and silicon [82]. While the first ab initio study of the dispersion relations was on a
graphite sheet containing 24 atoms in1995 and was compared with other graphitic sheet
structures of BN and BC,N [59]. Both of these studies were performed within the frame work
of LDA. The major breakthrough in the determination of graphite dispersion relations by
first principles calculations were done by Kresse et al, in 1996 using the ab initio force
constant direct method [60], and by Pavone af al, using the linear response theory in 1996
[61]. Both of these calculations employed the LDA and introduced considerable changes in

the behavior of the dispersion relations of graphite.

The discovery of carbon nanotubes paid much attention to investigate their vibrational
properties [62, 64, 66, and 83]. The work on the vibrational properties of carbon nanotubes
renewed the interest in the vibrational properties of graphite by using the first principle
calculations. As a consequence of these studies the dispersion relations of graphite have been
improved quantitatively both computationally and experimentally. As mentioned earlier
graphite has unusual structure, because of the nature of bonding between its atoms. That is,
the very strong local covalent bond between atoms in plane and weak non-local Van der
Waals interactions between planes. However, the DFT does not account for the Van der
Waals interaction properly [84]. The origin of Van der Waals interaction is non-local
correlation between electrons. In addition, the Van der Waals energy is small compared with
the total energy of a typical system. This makes it difficult to be treated accurately. As
mentioned earlier, DFT 1is an exact theory which treats approximately the

exchange-correlation energy via LDA or GGA. These approximations fail for describing the
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large range Van der Waals interaction. In fact, this is not a failure of DFT itself, but an effect
of the local nature of LDA and GGA. That is, the exchange-correlation potential at point 7
is determined by the density and its low-order gradients at the same point7 . The description
of long-range forces such s the Van der Waals requires fully non-local functional. Therefore,
it is not possible to correctly calculate some structure properties that related to Van der Waals
interaction, such as interpalner spacing, or shear elastic constant. ~Calculations of cohesive
properties of graphitic structure are sensitive to the choice of pseudopotential,
exchange-correlation functional, and basis set. Also most of ab initio calculations of Van
der Waals energies do not give correct results that agree with experimental measurements,
but some have been successful due to some cancellation of errors, and specific details of the

calculations [84].

Figure 3-5 shows a flow chart that connecting the ab initio, lattice dynamics, and thermal
neutron scattering cross section theories in terms of computer codes that were used in this
work. Appendix Bl shows an introduction to VASP interface and the input parameters.
Similarly, appendix B2 shows PHONON interface and the input parameters used in the

calculations.
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Figure 3-4 A flow chart for the self-consistent procedure to solve K ohn-Sham equation.
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Figure 3-5 A flow chart that connects the software packagesthat are used to generate
Cross sections.

72



Chapter 4 Results and Discussion

4.1 Ab Initio Calculations
4.1.1 Structure Optimization

In this work the ab initio calculations are performed at 0 K. The first step in
performing ab initio calculations is to optimize the lattice parameters of the unit cell, so that,
the system is relaxed and in its ground state. In order to get the equilibrium lattice constants
corresponding to 0 K, a structure optimization can be performed by relaxing the atomic
positions, and changing the volume and shape of the unit cell, simultaneously, or an energy
versus volume minimization can be used in which the lattice parameters of the system of
interest can be changed for non-cubic systems like graphite in two ways: First, the lattice
constants are varied separately, that is, the first lattice constant is varied while the other one
is kept constant in order to minimize the energy of the system, then its corresponding value
that minimizes the system energy is fixed and used while varying the second lattice constant
for further minimization of the energy system. Second, both lattice constants can be varied
together while keeping a constant ratio between them, this method requires fewer
calculations. In order to optimize the structure, the total energy of the system must
converge with respect to two critical parameters: the energy cutoff and the number of k-point
(see sections 3.2.5 and 3.2.6).

Energy Cutoff
The energy cutoff convergence was conducted using the LDA and PAW pseudopotential.

A 1x1x1 supercell of graphite with lattice parameters, a =2.46A and ¢ =6.70 A [9, and
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54] was built. The energy cutoff was increased in step of 50 eV. The k-mesh-generated
by Monkhorst-pack scheme [76] was set to the default by setting a 0.5 A space between
k-points, this corresponds to a 6x6x2 k-mesh. The self consistent field (SCF)
convergence of Kohn-Sham equation was set to 10° eV. The precision of the calculations
was set to high; (precision is a term used in VASP that influences the accuracy of the wave
functions, the resolution of the Fourier meshes for the representation of the density and the

potential, total energies, forces, and stress of a given structure). Figure 4-1 shows the total

energy per unit cell versus the energy cutoff E in (eV). As seen the total energy of the

cuoff

unit cell starts to converge at energy cutoff equal to 800 eV.
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Figure 4-1 Total energy of the unit cell as a function of the energy cutoff, using a
6x 6 x 2 k-mesh and high precision.

K-mesh
After choosing the energy cutoff, the convergence of the total energy with respect to the

k-mesh was studied, using the same parameters used in studying the energy cutoff. Table

4-1 shows the k-point grids, the number of irreducible k-points, the total number of
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plane-waves used in the expansion, and the computational time in seconds.

Table 4-1 k-pointsgrid, number of corresponding irreducible point, and plane-waves

K-point grid Number of Irreducible points Number of Plane- waves
2x2x2 2 3607
4x4x4 12 21665
6x6x6 36 64980
8x8x8 80 144371
10x10x10 150 270665

That is, on average 1800 plane waves are used to expand each node. The convergence
of the total energy was reached with a grid of 8x8x8 corresponds to 80 irreducible points as

seen in figure 4-2.

-40

41 A

Total Energy per Unit Cell (eV)

-42 T T T T T
2x2x2 4x4x4 6x6x6 8x8x8 10x10x10

k-point grid

Figure 4-2 The total energy of the unit cell as a function of the k-point grids, using high
precision with 800 eV ener gy cutoff.
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Utilizing the energy cutoff, and k-mesh obtained by total energy convergence tests, and
keeping other parameters (precision, and SCF) the same, the graphite structure was
minimized by choosing a c/a ratio, and performing energy versus volume minimization.
That is, the lattice constants were varied simultaneously while keeping a constant ratio
between them. Based on the a = 2.46 A and ¢ = 6.674 A (Vex, = 34.977 A®) [85,and 86]
corresponds to 0 K, the ratio of the lattice constants c/a was fixed, and the c-value was

increased in step of 0.02 A. The total energy of the unit cell was calculated using

E =800eV and 8x8x8 k-mesh. Figure 4-3 shows the total energy per unit cell

cutoff’

versus the volume of the unit cell. The minimum energy corresponds to ¥ = 34.420 A* (%98
of the experimental volume), and the corresponding lattice constants are a = 2.447 A and ¢ =
6.639 A. That is both values are decreased by ~ %0.5. As seen in the figure below, the
energy versus volume curve is very smooth and not jagged, which is a good sign, due to the
use of large energy cutoff and dense k-mesh. Therefore, these lattice constants will be used
in the rest of the calculations. As mentioned, an issue of DFT is to predict lattice parameter ¢
accurately when Van der Waals interaction is involved. By contrast, DFT can predict the
lattice parameter a very well, indicating that, the strong covalent bond between graphite
atoms in the graphitic plane is fairly well described by DFT. Several ab initio studies on

graphitic structure tried to predict the lattice constants at 0 K are summarized in table 4-2.

4.1.2 Dispersion Relations

As mentioned in section 3.1.1, graphite dispersion relations have been studied either
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Figure 4-3 The total energy of the unit cell as a function of its volume, using a high precision
with energy cutoff 800 eV, 8x8x8k-mesh, and c/a=2.713. Thelattice constants correspond
to the minimum energy area = 2.447 A, and c = 6.639 A.

Table 4-2 Comparison of DFT-Calculationsin various approximations for the lattice parameters
of graphitewith experimental values

Reference Method a c
Ref. 82 LDA 2.47 6.73
Ref. 60 LDA 2.443 6.679

LDA 2.449 6.6
Ref. 63
GGA 2.457 7.8
LDA 2.441 6.64
Ref. 86
GGA 2.461 ~9.0
Ref. 87 LDA 2.459 6.828
Ref. 88 LDA 2.44 6.62
Ref. 85 Exp (0K) 2.46 6.674
Ref. 89 Exp (0K) 2.462 6.656
Ref. 90 Exp (300 K) 2.4612 6.7078
This work LDA 2.447 6.639
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either theoretically or experimentally. Using neutron or He-atom scattering techniques, low
vibrational energies (below 50 meV) can be measured. While using the optical (infrared and
Raman) techniques higher energy phonon modes can be detected but it's restricted to those at
the Brillouin zone center (I'-point). The lack of large enough graphite single crystal prevents

the measurement of the full dispersion relations of graphite.

The dispersion relations are calculated or measured along the highest symmetry points of
the first Brilluoin zone of the crystal of interest. Graphite has a hexagonal Brilluoin zone
shown in figure 4-4 [91]. The highest symmetry directions in the reduced Brillouin zone for

studying the dispersion relations are: E, W, MK ,and KT'. The coordinates (L, I, I3)

of the k-point in reciprocal space (shown in table 4-3) is

k =1,b, +1,b, +Lb,. (4.1)
In order to calculate the graphite phonon dispersion relations and the phonon frequency
distribution, we have investigated the supercell size, k-mesh, and energy cutoff. The
calculations were performed using the density functional theory (DFT) in the local density
approximation (LDA). The electron-ion interaction was described by the projector
augmented-wave (PAW) pseudopotential, the 2s and 2p orbitals were treated as valence
orbitals. The Hellmann-Feynman forces were computed from 6 independent displacements

along x, y and z, corresponding to displacement amplitude of 0.03 A.

The first model was a 1x1x1 supercell (4 atoms). The integration over the first

Brillouin zone was confined toa 6x6x2 k-mesh (12 irreducible k-points) generated by the
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-3

Figure 4-4 The first Brilluoin zone of graphite with high symmetry k-points marked. The
irreducible part of the Brilluoin zone is highlighted [91].

Table 4-3 The standard notations for highest symmetry points in the hexagonal Brilluoin zone,
and their corresponding coordinates

Notation Coordinates (11, [, I5)
r (0,0, 0)
M (2,0, 0), (0, 2, 0), ( /2, -, 0)
K (1/3,1/3, 0), (2/3, -1/3, 0)
A 0, 0, )
L (2,0, 12), (0, 2, 2), ( 2, 72, '2)
H (173, 1/3, %), (2/3, -1/3, )
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Monkhorst-Pack scheme [76], corresponding to k-spacing of 0.494x0.494x0.470 A™'. A
plane-wave basis set with default energy cutoff (400 eV) and medium precision were applied.
Figure 4-5 shows the corresponding dispersion relations along the highest symmetry points
compared to experimental data. The dark green circles represent neutron scattering data
[39], the light green circles represent inelastic x-ray scattering data [49], the black, red and
blue circles represent the HREELS data [47, 46, and 48], the yellow circles represent
inelastic He-atom scattering [44], and the pink circles represent infrared and Raman data

[43].

As seen, drastic dispersion relations were obtained, that is the phonon frequencies are
wrong and do not match the experimental data. Also, negative (imaginary) frequencies are
seen due to the very small size of the supercell. That is, due to the strong covalent bond in
the graphitic planes and the too small size of the supercell, the Hellmann-Feynman forces
from outside the supercell are neglected; as a consequence the missing force constants caused

the imaginary frequencies.

The next step was increasing the supercell size to a 2x2x1 supercell (16 atoms). The
integration over the Brillouin zone was confined to a 4x4x3 k-mesh (12 irreducible
k-points) generated by the Monkhorst-Pack scheme, corresponding to a k-spacing of
0.371x0.371x0.371 A'. A plane-wave basis set with energy cutoff (400 ¢V) and medium
precision were applied. Figure 4-6 shows the corresponding dispersion relations along the

highest symmetry points compared to experimental data.

80



et 020
0.0. r g¥ds ¢
. 0%’ ‘
oo ¢ .%
o o % °
pS
e r 0.15
Seo
~~ '.“
N o
a -, =
) ° BRIt PT | >
o ‘s B3 L 010 2
> Cadn ) >
8 D S o0
g pge " of '; 5
o0
g .'“ s o ° [5
e ... L) < L
o) % ‘o s 0.05
NCSU h - o
Ref. 39 [
Ref. 49 '8'.‘._ R
Ref. 47 L WD
Ref. 44 e 0.00
Ref. 46
® Ref 48
® Ref 43
'10 T T T
0.0 0.2 0.4 0.6

Wave Vector (A~ 1)

Figure 4-5 The calculated dispersion relations for graphite along the highest symmetry
directions of the first Brilluoin zone compared to experimental data. Based on a 1x1xl1
supercell,a 6x6x2k-mesh and using a 400 eV energy cutoff with a medium precision.
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Figure 4-6 The calculated dispersion relations for graphite along the highest symmetry
directions of the first Brilluoin zone compared to experimental data. Based on a
2x2x1supercdl, a 4x4x3k-mesh and using a 400 eV energy cutoff with a medium
precision.
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As seen from figure 4-6, significant improvement was achieved by increasing the
supercell size. This is an indication that interactions in graphite are long range and larger
supercells should be investigated. Since the graphite layers are bonded together by weak
Van der Waals forces, only one unit cell (two layers) was used in the z-directions. As a
result of strong intraplanar bonding and the light carbon atomic weight, some vibrational
energies reach (0.20 eV). While the weak interplanar bonding produces very low energy
optical modes of order (0.01 eV). Since graphite unit cell has four atoms, it has twelve
vibrational modes. The lowest three branches, starting from I' are called the acoustical
modes, while the highest branches are called the optical modes. The modes in the figure are
labeled as: A stands for acoustic mode, and (O) for optical mode. The primed optical mode
(O") indicates an optical mode where the two atoms in each layer of the unit cell oscillate
together and in phase, but in opposition to the atoms of the other layer. Non primed optical
mode is a mode where atoms inside the same layer are optical with respect to each other. (L)
stands for longitudinal polarization, (T) stands for in-plane transversal polarization, and (Z)
for out of plane transversal polarization. As it can be seen, unlike the 1x1x1dispersion
relations, the branches of the 2x2x1 are distinguishable, and cover the wide range of
graphite vibrational energies. Good agreement with Raman and infrared data is observed at
the zone center (I" point). However, the agreement with the other experimental data is still
poor especially for the modes (TO, ZO, TA, and ZA), in addition imaginary frequencies still

exist.

The next step was increasing the supercell size toa 4x4x1 (64 atoms). The integration
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over the Brillouin zone was confined toa 2x2x3 k-mesh (4 irreducible k-points) generated
by the Monkhorst-Pack scheme, corresponding to k-spacing of 0.371x0.371x0.314 A™.
A plane-wave basis set with energy cutoff (400 eV) and medium precision were applied.
Figure 4-7 shows the corresponding dispersion relations along the highest symmetry points
compared to experimental data. As seen from the figure, the agreement with experimental
data is improved significantly, especially for the modes (TO, ZO, TA, and ZA). Also the

imaginary frequencies were reduced even though they still appear.

Finally, a 6x6x1 supercell (144 atoms) was used. The integration over the Brillouin
zone was confined to a 4x4x3 k-mesh (6 irreducible k-points) corresponding to a spacing
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Figure4-7 Thecalculated dispersion relationsfor graphite along the highest symmetry directions
of the first Brilluoin zone compared to experimental data. Based on a 4x4x1 supercell, a 2x2x3
k-mesh, and using a 400 eV ener gy cutoff with a medium precision.
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of 0.165x0.165x0.165 A™'. Since high precision was applied, the default energy cutoff
(400 eV) was raised to (500 eV). Figure 4-8 shows the corresponding dispersion relations
along the highest symmetry points compared to experimental data. As seen from figure 4-8,
the LO/TO modes are improved in matching the experimental data compared with the

previous case. Also, the imaginary frequencies are removed.

This case will be used to generate the phonon frequency distribution and proceed in
studying the thermal neutron scattering. Finally, the Niklow et al, [39] calculated
dispersion relations were compared with experimental data, as shown in figure 4-9. As it

can be seen, there is a nice agreement with the dark blue circles; this is not surprising, since
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Figure 4-8 The calculated dispersion relations for graphite along the highest symmetry
directions of the first Brilluoin zone compared to experimental data. Based on a
6x 6 x1supercell,a 3x3x4 k-mesh and using high precision with a 500 eV ener gy cutoff.
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they fitted there central force model to these data they had measured at Oak Ridge National
Laboratory. Also, there is in general good agreement at low frequencies with experimental
data. However, as the vibrational energies get higher the deviation from experimental data

becomes larger at the ZO and LA modes.
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Figure 4-9 The calculated and measured dispersion relations by Nickow et al [39] using the
central force model compared to experimental data.

4.1.3 Phonon Frequency Distribution

The phonon frequency distribution was constructed by using 200 bins according to
equation (3.17), 50000 k wave vectors are randomly selected (by Monte-Carlo sampling) over

the first Brilluoin zone. Figure 4-10 shows the (a) parallel, (b) perpendicular, and (c) total
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phonon frequency distributions. The parallel partial phonon frequency distribution
contributes 1/3 to the total distribution, while the perpendicular partial phonon frequency
distribution contributes 2/3 to the total distribution. As it can be seen, the parallel phonon
frequency distribution has shorter range (~0.112 eV) compared to the perpendicular
distribution which has relatively high energy vibrational modes (~0.20 eV). As mentioned
earlier this is due to weak interplanar bonding and strong intraplanar bonding. As seen from
figure 4-10 (c), the phonon frequency distribution contains sharp peaks known as Van Hove
singularities [92]. These singularities arise from points of zero slope in the dispersion
0(q.J)

relations 0 =0 and they yield discontinuities in the first derivative of the phonon

q

frequency distribution with respect to the frequency; The wave vectors at which Van

ople)
ow
Hove singularities occur are often referred to as critical points of the Brillouin zone. Neutron
scattering from powdered graphite was used to obtain the phonon frequency distribution [66].
The inelastic neutron scattering spectrum has similar features to that of graphite as shown in
figure 4-11. The calculated phonon frequency distribution was used to calculate the heat

capacity of graphite between 0 K and 2000 K. The agreement with experimental data [36] is

good, as shown in figure 4-12.

Figure 4-13 shows the Young-Koppel spectrum compared to the ab initio (NCSU)
spectrum. Note that YK spectrum is normalized in units of (eV). As seen the Young-Koppel
spectrum’s Van Hove singularities (ZA, ZO+TA, ZO, and TO) have good agreement with the

ab initio singularities but they are wider and less pronounced. However, the LO singularity is
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completely missing, and there is an extra one at 0.137 eV. The behavior of YK spectrum up
to the first singular point ZO’ is parabolic and has lower phonon contribution than the NCSU

spectrum. This will affect the cross section values as it will be discussed later.
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Figure 4-10 The calculated phonon frequency distributions of graphite (a) parallel, (b)
perpendicular to the basal plane, and (c) total, based on a 6x6x1 supercell, a 3x3x4
k-mesh, and high precision with a 500 eV energy cutoff, and using 50000 g-wave vectors.
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Figure 4-11 The graphite phonon frequency distribution (a) measured by inelastic neutron
scattering [66]. (b) calculated based on the 6 x6x1 supercell with a 3x3x4 k-mesh, and
high precision with a 500 eV energy cutoff and using 50000 g-wave vectors.
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Figure 4-13 The Young-Koppel phonon frequency distribution [9] compared to the NCSU
distribution.

The next figure 4-14 compares the NWS spectrum with the NCSU spectrum. Note

that, the unnormalized NWS spectrum that appeared in figure 3-2 is renormalized and
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represented in units of (eV) to be consistent with the NCSU spectrum. As seen the NWS
spectrum Van Hove singularities (ZO’, ZA, TO, and LO) have good agreement with the
NCSU Van Hove singularities. However, the TO and LO singularities are much more
pronounced. The ZO+TA and ZO singularity are completely missing, and other extra
singularities appear at 0.09062, 0.09593, and 0.16602 eV. As mentioned, the force constants
of this model were obtained by fitting to neutron scattering data. This data represents low
phonon frequency values (< 0.06 eV). Therefore, there is a good match with the NCSU
spectrum at low energy. However, the NCSU spectrum has higher phonons contribution

compared to NWS spectrum up to the first singular point ZO’.

40
—
o —— NCSU
= —— NWS Ref. 39
N
=
g 301
+—
o}
2 TO
E
Z
S
- 20 1
=
5 LO
g ZO+TA
= 10 - ZA Z0
g zo'
=
o
=
~
0 T T T T
0.00 0.05 0.10 0.15 0.20 0.25
Energy (eV)

Figure 4-14 The NWS Phonon frequency distribution [39] compared to the NCSU distribution.

Figure 4-15 shows the dispersion relations of graphite combined with phonon
frequency distribution, the singular points are labeled and related to the high symmetry points

of the dispersion relations.
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4.2 Thermal Neutron Scattering

4.1.1 Graphite Phonon Frequency Distribution Parabolic Behavior o’

As mentioned earlier (section 2.4), LEAPR calculates the double differential scattering
cross section by using equations (2.61 and 2.62). For solid-type frequency spectra, LEAPR
utilizes the phonon expansion shown in Appendix A (equation A.13), and writes the

scattering law as

oy @ LT 20 e
S(a,f)=e n_o ”jwe { j D dﬁ} dr. 4.2)

For simplicity, the above equation can be written as

S(@.p)= ™ Y o] T,(5). @3
Where
n _L 7 ipt p(IB) el _ipi , ’ ~
AT ( B J;Oe {JA smh(,B'/2)e ap’ | di. (44)

where A is the Debye-Waller coefficient defined by eq (A.11). The T, (,H) functions obey

the recursion relation
B)= [T(B)T,. (B~ BB, (4.5)
where

T,(8)= [e"di = 5(8), (4.6)

—00
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-B/2

T(8)=——P(P), 4.7)
where
____ pPB
Pp) = 2Bsinh(S/2) " 48

In order to utilize equation (4.5), T, (ﬂ) must be a well behaved function. Note that as

goes to zero, 2fsinh(f/2) goes to S°, therefore p(ﬂ) must vary as B> as /3 goes to

zero. That is
limp(B)f~ =c (4.9)

where c is finite positive constant. The behavior of p(ﬂ)as f goes to zero describes the

behavior of neutron scattering for small energy transfers. As mentioned earlier (section
3.1.1), graphite as a quasi-two-dimensional material obeys the Debye behavior for a small
range of phonon frequency distributions, such that the phonon expansion does exist
(harmonic lattice vibrations of crystal) but converges slowly, and is associated with the
emission of many low-frequency phonons. This multiple phonon emission is manifested in
the scattering as a large narrow peak of inelastically scattered neutron in the neighborhood of

zero-energy transfer [93].

LEAPR requires a uniform mesh in frequency space of the phonon frequency
distribution, and assumes that below the first point (the point after (0,0)) there is a parabolic
behavior of the phonon frequency distribution. The phonon frequency distribution input to

LEAPR for solid —type oscillators starts with the point(ﬂl, p(ﬂl)): (0,0). For this point
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LEAPR assigns a value for P(f) by scaling it to the next point (ﬂz,p(ﬂ2 )) using the

p(ﬂz)‘

2
2

relation P(f,) =

In fact the parabolic range of the phonon frequency distribution

affects the peak sharpness of the thermal neutron emission spectra as a function of the
secondary energy, the behavior of the inelastic scattering cross section, and also the decay of
the coherent elastic scattering cross section as will be shown later (Debye —Waller factor
value). Therefore, it is critical to define precisely the energy limit up to which the phonon
frequency distribution has parabolic behavior. Based on the physics of graphite three cases

will be considered for treating the NCSU ab initio phonon frequency distribution.

Case 1: Based on the graphite heat capacity

This choice assumes that the real phonon spectrum and the Debye spectrum match each
other up to a certain energy. The determination of the energy limit of matching is based on
the Debye behavior of the heat capacity. Assuming that the true spectrum and the Debye

spectrum coincide up to frequencies @, such that hw, ~ % ,0,, where w, is the
frequency limit up to which the spectrum has parabolic behavior, and y is a constant (<1).

Note that the heat capacity at low temperatures is mainly a function of p(a)) In the limit

of low temperatures the integrand of the heat capacity, equation (3.19), written as

increases as x” for small values of x, and has a maximum value at x=3.83 as shown in

figure (4-16), where x ::—a;. Therefore, the departure of Debye spectrum from the true
B

spectrum will be reflected in the temperature dependence of the heat capacity for
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temperatures k,7T >hw,/3.83. Thus, if the true spectrum coincides with the Debye
spectrum up to hw, ~ % ,0,, then the Debye expression for the heat capacity will

accurately describe the temperature dependence of the heat capacity in the temperature range
T<y®,/3.83. As mentioned earlier the graphite heat capacity has a Debye behavior up
to 2 K. As aresult y®, ~2*3.83~7.66 K ~ 8 K. That is based on heat capacity
calculation; the graphite phonon frequency distribution has a parabolic behavior up to
(hw=8K = 0.69 meV). This value is in a good agreement with the value obtained by
Egelstaff (iw=9 K = 0.776 meV) in constructing his simplified phonon frequency
distribution [Appendix of Ref. 94]. The corresponding phonon frequency distribution is
represented by 300 points and no parabolic fitting is included. In this case, LEAPR will

treat this spectrum as it has parabolic behavior up to the second point.
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Figure 4-16 The heat capacity integrand in the limit of low temperature.
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Case 2: Based on the graphite mean squar e displacement

Case 1 mentioned above determines a very small parabolic energy range. That is, it is
considering graphite as a two dimensional material rather than quasi two dimensional
material. In fact, the dynamics of a carbon layer is dependent upon where the layer under
consideration is located with respect to other layers. That is, there is a cross over from two
dimensional dynamics to quasi two-dimensional dynamics by moving from a surface layer to
a bulk layer. Recently, the cross-over of the dynamics from nearly two-dimensional to quasi
two-dimensional is studied by utilizing the temperature dependent mean square displacement

of carbon atoms in graphite perpendicular to the plane [95]. The mean square displacement

<ui2 > is a function of the partial phonon frequency distribution p, (a))

<ul2> __Ir Tip[ (a))coth(zzw

daw, (4.10)
2M N

40
where i corresponds to x, y , or z direction, 7 is the number of degrees of freedom in the unit
cell. As seen from equation (4.10) for small @ the phonon frequency distribution should

behave parabolically, since

lim coth(w) » 0. (4.11)
o0

This represents a similar situation to the behavior of P(f) at low £ as represented in

equation (4.8). So, utilizing the mean square displacement in determining the parabolic
energy range is useful in constructing the true P(f) and as a consequence in calculations of
thermal neutron cross section. Tewari et al., [95] calculated the variation of the phonon
frequency distribution as the number of layers is changed, using the unfolding technique for

different numbers of graphite layers ranging from 3 to 13 and then to a very large number.
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In their study, it was found that for an infinite number of layers, the partial phonon frequency
distribution p, (a)) has a parabolic energy range corresponds to 60 K (5.175 meV). As a
consequence, a phonon frequency distribution was constructed by using 160 points (159 bins)
with energy interval (15 K). That is, the fifth point (4th point after (0,0)) corresponds to
energy equal to 5.175 meV (60 K). Since the value of this point is critical, 5x105 g-points

were used in sampling the first Brillouin zone giving an uncertainty in p(E =5.175 meV)
about ~1.3%. The resulting total phonon frequency distribution p(a)) was fitted

parabolically up to this point (5th point), in order to be used in LEAPR.

The parabolic energy cutoff limit could be further tuned such that better matching is
produced between the one-phonon thermal neutron scattering cross section calculated in the
incoherent approximation and the self part of the exact coherent one-phonon thermal neutron
scattering cross section using isotropic Debye-Waller factor, as shown in figures 4-17 and
4-18. This can be achieved by increasing the parabolic energy limit of the phonon spectrum
up to 5.606 meV (65 K). Also 5x10° g-points were used in sampling the first Brillouin zone

to construct p(w) giving uncertainty in p(E = 5.606 meV) about ~1.2%. 148 points (147

bins) were used in constructing this distribution. Figure 4-18, shows better agreement
between the two cross section curves compared to figure 4-17, especially at high energies,
where it is expected that the incoherent approximation and the exact calculation are matching

each other.

Figure 4-19 shows P(f) given by eq (4.8) at 300 K, to illustrate the effect of the

parabolic range in the phonon frequency distribution for the three cases mentioned above.
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As mentioned earlier LEAPR assumes parabolic fitting up to the 2nd point, where P(f,)

p(ﬁz)

was calculated based on the relation P(f3,) ==, this explains why in casel the first two
2

10t

—— NCSU(60 K) T=300 K
— — NCSU-1P-Self (60 K)

100 .

Cross Section(b)

107
10°% 104 10°% 102 107 100
Energy(eV)
Figure 4-17 The one phonon scattering cross section in the incoherent approximation (red solid
line) and the self coherent one-phonon scattering cross section (black dashed line) at 300 K. The
calculations are based on the NCSU phonon spectrum with parabolic range equivalent to 60 K.
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Figure 4-18 The one phonon scattering cross section in the incoherent approximation (red solid
line) and the self coherent one-phonon scattering cross section (black dashed line) at 300 K. The
calculations are based on the NCSU phonon spectrum with parabolic range equivalent to 65 K.
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P(f) points are almost equal’. While for case 2 the first 5 points do so, since the phonon

spectrum was fitted parabolically up to the 5t point. As seen, casel has the highest P(f)

at low betas; this is due to the short parabolic range of the Phonon frequency distribution, and

the use of fine phonon spectrum intervals (0.69 meV).

However, Case 2 has lower P(f)

compared to casel, this is due to the longer parabolic range, and the use of wider phonon

spectrum bins (1.4015 meV).

Moreover, forcing the phonon frequency distribution to have

parabolic behavior for more than 2 points makes P(f) values to be aligned straightly up to

that point.

P(B)

T=300K

—o— Casel
—— (Case2

0.5

Figure4-19 P(,B) at T=300 K for the two cases mentioned above.

From figure 4-19 one can read the following information, for case 1 the phonon

frequency distribution has parabolic behavior up to the second point, while case 2 has

parabolic behavior up to the 5™ point. Also, casel will have the sharpest peaks of thermal

’ The difference between Sinhp and B as P tends toward zero is small.
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neutron emission spectra, while case 2 will have the widest. Moreover, the inelastic
scattering cross section will be higher in casel compared to case 2, as shown in figure 4-20.
The physical behavior of thermal neutron scattering cross section shown in the figure below
will be discussed later. However, the behavior of the two cases is consistent with figure

4-19.
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Figure 4-20 The inelastic scattering cross section in the incoherent approximation and the
corresponding relative difference at T=300 K for the two cases discussed above.

Figure 4-21 show the secondary neutron spectrum at 300 K for the neutron incident

energy 0.0106 eV for the tow cases discussed above. The area under each curve represents
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the total inelastic scattering cross section for this particular energy. As seen from the figure,
case 1 has a sharper peak of inelastically scattered neutron in the neighborhood of
zero-energy transfer compared to case 2, this is due to the fact that, case 1 has a shorter
parabolic range compared to case 2. That is, the shorter the parabolic range of the phonon

spectrum will cause sharper and narrower peak of the inelastically scattered neutron in the

neighborhood of zero-energy transfer.
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Figure 4- 21 The secondary neutron spectrum at 300 K for neutron incident energy 0.0106 eV,
in linear-linear scale (left), and semi-log scale (right).

4.1.2 Cross Section Calculations and Comparison to Experimental Data

From now on, case 2 will be considered only for the rest of calculations, it will labeled by
NCSU. The results based on case 2 (NCSU) will be compared to the corresponding results
based on using the Young-Koppel (YK) [9] and NWS spectrums [39]. The Young-Koppel
(YK) spectrum shown in figure 2-1 was processed in 1960s for generating the scattering cross
section libraries by using GASKET. Later on, the same processed spectrum was used in

LEAPR. The spectrum has a bin width of 5.485 meV (~64 K) and represented by 40 points,
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as shown in figure 4-22. As seen it smoothes out the original one, and has a parabolic
behavior up to 16.455 meV (up to the 4th point) and obeys a Deby temperature of 743.4 K.
However, two things to be mentioned regarding the YK spectra, first, its bin width (64 K) is
almost equal to the parabolic range of the NCSU spectrum (65 K), second, it has a large
parabolic behavior which is not true for a quasi-two dimensional material like graphite. In
this work, the NWS spectrum shown in figure 3-2 is processed by having a parabolic range up
to 65 K, and represented by 145 points (parabolic up to the 5™ point). Figure 4-23 shows a

comparison of the three spectra that will be used in LEAPR.
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Figure 4-22 The YK phonon frequency distribution appeared in the Ref. [9] (dotted ling), and
theoneused in LEAPR [8] (solid line).

Figure 4-24 shows P(/f)as given by equation (4.8) based on the NCSU, YK, and NWS

spectra. The NCSU and NWS spectra have higher phonon density of states at low energies

than the YK spectrum. Therefore, their corresponding P(f) are higher at low £ values.
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As a consequence, it is expected that the cross section generated by using the NCSU and

NWS spectra to be close to each other while that generated by using the YK spectrum is the

lowest.
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Figure 4-23 The phonon frequency distributions used in LEAPR: (ab initio) NCSU (red), YK
(black), and NWS (blue).
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Figure4—24P(,3) at T=300 K for Abinitio (NCSU), Young-K oppel, and NW S spectra.
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Furthermore, as seen from the figure, the flat region shows that the NCSU spectrum has
a parabolic behavior up to the 5th point, and so does the NWS spectrum, while YK spectrum
is parabolic up to the 4th point with a larger bin width. Figure 4-25 shows the inelastic
scattering cross section at 300 K generated in the incoherent approximation using equations

(2.61 and 2.62) using the NCSU, YK, and NWS spectra.
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Figure 4-25 The inelastic scattering cross section in the incoherent approximation equations
(2.61 and 2.62) at T=300 K based on the NCSU, YK (ENDF/B-VII), and NWS spectra,
compared to experimental data (above), the relative difference with respect to YK is shown
(below).
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The curves show a typical behavior for crystalline materials. At neutron energies
above~1eV (region 3), the atom acts as if it is free. That is, the neutron wavelength in this
region is small compared to the atomic spacing, so it interacts with individual atoms. At
lower energies (region 2) neutrons have sufficient incident energy to create phonons (phonon
emission) via its scattering, so the lattice gains energy from the neutron. At very low
energies, of order 1 meV and lower (region 1), the scattered neutron is more energetic than
the incident neutron. That is, the neutron will gain energy from the lattice via phonon
absorption. The cross section in this region has 1/v behavior (or ~A). As it can be seen,
the cross section behavior is consistent with figure 4-8. The NCSU spectrum made some
improvements on the cross section compared to the Young-Koppel and NWS phonon spectra.
However, the deviation from experimental data remains. Two sets of experimental data for
pyrolytic graphite measured by Steyrel [10] and Zhou [13] are shown in the figure and for
reactor grade graphite measured by Egelstaff [12] and Zhou [13]. It is not clear what kind
of graphite the BNL-325 [11] represents. Unfortunately, details regarding this data are not
published, and a little is known about it. However, this data is consistent with Egelstaff [12]
and Zhou [13] data for reactor —grade graphite. As it can be seen, improving the phonon
frequency distribution of graphite by utilizing the ab initio approach was not sufficient to
match the experimental data of Steyrel [10] and Zhou [13]. The relative differences of the
cross section curves with respect to young-Koppel cross section reach ~ 48% (at E = 0.0253

eV) and ~36% (at E = 0.0306eV) for the NCSU and NWS cases, respectively.

The secondary neutron emission spectra for the incident neutron energy E = 0.3011 eV at

T=300 K, is shown in figure 4-26. The emission spectra based on the NCSU and NWS
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phonon frequency distributions have sharper peaks of inelastically scattered neutrons in the
neighborhood of zero energy transfer than in the case of YK, whereas, the emission spectra
based on YK spectrum is smoothed out due to the longer rage parabolic behavior. The area

under each curve represents the cross section corresponding to the incident neutron energy.
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Figure 4-26 The secondary neutron spectrum at 300 K for neutron incident energy 0.3011 eV, in
linear-linear scale (left), and semi-log scale (right) based on the NCSU (red), YK (black), and
NWS (blue) phonon frequency distributions.

As the temperature of the scattering medium increases, the cross section increases

because there are more phonons in the crystal. That is, as the temperature increases, the

average number of phonons <nq]> excited at temperature 7 becomes directly proportional to

>=ke_T

the temperature 7, <n
hay

i That is, the higher the temperature the more excited

phonons. Figure 4-27 shows the NCSU phonon frequency distribution in dimensionless
units at different temperatures. These distributions renormalized as a function of beta. That is,
the horizontal axis which represents the energy transfer is divided by £k,7T" for the
temperature of interest, and the vertical axis which represents the phonons population is

multiplied by k,7 . Note that, both axes become dimensionless, and the area under each
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curve is unity. As seen, as the temperature increases there are higher phonons, and as a

consequence, P(f) will be higher as shown in figure 4-28.
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Figure 4-27 The NCSU phonon frequency distributions as a function of beta, corresponding to
different temperatures T= 478 K (solid), 720 K (dashed), and 1020 K (dotted).
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Figure 4-28 P(B) for NCSU spectrum at 478 K, 720 K, and 1020 K.

The inelastic scattering cross section in the incoherent approximation for 7= 478 K, 720
K, and 1020 K, using NCSU, YK, and NWS spectrums are shown in figures 4-29, 4-30,

and 4-31, respectively. The cross section increases as the temperature increased. The
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relative differences decreases with temperature. The low energy neutrons (cold neutrons)
have cross sections higher than the free cross section, and it changes by an order of

magnitude by raising the temperature from room temperature to about 1000 K.
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Figure4-29 Theinelastic scattering cross section in the incoherent approximation equations (2.61
and 2.62) at T=478 K based on the NCSU, YK (ENDF/B-VII), and NWS spectra, compared to
experimental data (above), thereative difference with respect to YK is shown (below).
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Figure4-30 Theinelastic scattering cross section in the incoherent approximation equations (2.61
and 2.62) at T= 720 K based on the NCSU, YK (ENDF/B-VII), and NWS spectra, compared to
experimental data (above), thereative difference with respect to YK is shown (below).
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Figure4-31 Theinelastic scattering cross section in the incoherent approximation equations (2.61
and 2.62) at T=1020 K based on the NCSU, YK (ENDF/B-VII), and NWS spectra, compared to
experimental data (above), the relative difference with respect to YK is shown (below).

4.1.3 Scattering Law Development and Comparison to Experimental Data

To facilitate comparison to experimental data, a direct relation between the phonon

frequency distribution and the scattering law is constructed for small momentum transfer in
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the coherent approximation [96]. That is,

i S@p)_ plp)
a0 2sinh(4/2

) = P(B). (4.12)

Based on the above relation, figure 4-24 can be utilized to compare the scattering law

Si(e,p)  calculated based on the NCSU, YK, and NWS spectra. Figure 4-17 shows

5, (a, p ) , calculated by LEAPR and using the NCSU, YK, and NWS spectra for f =0.2, 0.3,
a

0.4, and 0.5, at 7=300 K, compared to the data from Wikner [94]. As it can be seen, in the
incoherent approximation, the scattering law has a smooth behavior. The scattering law
curves are consistent with figure 4-24. That is, at = 0.2, 0.3, 0.4, and 0.5 the NCSU
phonon spectrum is higher than the NWS phonon spectrum, which in turn is higher than the
YK phonon spectrum. The overall picture, the incoherent approximation could predict on
average the scattering law shape, but clearly it is not enough to describe precisely the
scattering law.  Another set of experimental data was performed by Carvalho [57] at
T=533 K, such data shows more detailed structure and more points than previous one [94].
In his work, Carvalho determined the scattering law experimentally by utilizing equation
(2.51). In addition, he removed the back ground contribution, separated the elastic peak
from the inelastic scattering, and corrected for the multiple scattering contribution. Figure
4-33 compares the scattering law for £ = 0.15, 0.2, 0.25, and 0.3 in the incoherent
approximation using the NCSU, YK, and NWS spectra with Carvalho data. By examining
figures 4-32 and 4-33, it can be seen that the calculation of the scattering law using the
incoherent approximation fails to reproduce the structure observed experimentally especially
at low a and S values. Most of the time and depending on the value of b the NCSU

spectrum seems to be closest to the experimental values.
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Figure4-33 S (a, f) corresponding to the NCSU, YK, and NWSlibraries, compared to Carvalho data [57] at T=533 K.
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4.3 The Coherent One Phonon Contribution

Since graphite is a strong coherent scatterer, the structure appears in the experimental
results for the scattering law shown in the previous figures can not be explained by the
incoherent approximation. Consequently, examination was performed of restoring the
coherent inelastic component. Earlier work exists in the literature on analyzing coherent
inelastic scattering in Be and graphite [97, 98, and 99]. However, the current work is a
more complete approach that aimed at producing the thermal neutron scattering cross

sections of graphite.

Recall that the inclusion of the one-phonon component in the total double differential
scattering cross section was given by equation (2.87), where the coherent one-phonon
scattering law was given by equation by (2.85). Note that s represents sum over g and .
and the first part of equation (2.85) corresponds to <nq],> and describes an energy gain
process, thatis £ > 0, considering this term, the sum over ¢ and 7 can be replaced by an

integral over «, by utilizing the relation

3 ()= A [ (W (4.13)

Performing this integral will lead to
4 1« F®)
15_(K,w)=mj;2f<n@>5(w+wé,), (4.14)

where K =7 —¢, and ]S_(E,w) corresponds to <nqj> while 'S, (¥,w) corresponds to

<nq],+1> term. Where S (a,f)=e¢”S.(a,-B), and defining the structure factor
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F. (%) as

F &)=Y e (e z,), 4.15)

and noting that

1
<né'>_ exp(ha)qj/kBT)—l’ (4.16)

equation (4.14) can be written in terms of e and S, as

] o 1 o F (&)
S(a.p)= 2Mnk,, T ﬂ(eﬂ —1) AB _,Z,z,“l(a’A“)'

(4.17)

Notice that this replaces @ by f, and assumes that for a small interval Af, the delta
function can be replaced by 1/Af, and l(a,Aa) is the number of the mesh points inside
the interval Ae. Evaluating the scattering law, starts by evaluating the sum in equation
(4.17), where the polarization vectors and dispersion relations are required as input to the
structure factor. After performing the sum, the contribution of each x to the scattering
law is added and stored in an interval Aa, Af, around o and f, that is, the scattering
law is an average over a space A, Af. The sumover x is made over a mesh of points
in the reciprocal space. Due to the crystal symmetry, the number of x vectors can be
reduced by using the reduced first Brillouin zone. That is, to generate the & mesh, reduced

first Brillouin zone is used to generate ¢ mesh. Then by using the translational constraints
K =7 —¢q,the k¥ mesh can be generated. For each reciprocal lattice vetor 7 the structure
factor is calculated for all g vectors and is added to the sum. The effect of the coherent

one phonon cross section contribution appears clearly when compared with the experimental

data [10].
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Figures (4-34 - 4-37) compare the scattering cross section at 300 K, 478 K, 720 K, and
1020 K after adding the coherent one phonon cross section using non-isotropic Debye Waller
factor with cross section in the incoherent approximation. As seen, excellent agreement is
achieved in comparison with experimental data of pyrolytic graphite (p = 2.24 g/cm’) at 300
K [10, and 13]. Since its density is very close to the theoretical density (2.26 g/cm’), it
indicates that pyrolytic graphite can be treated as perfect graphite. However, the BNL-325
[11], Egelstaff [12], and Zhou [13] data represent reactor grade graphite cross section, and it
is not appropriate to be treated in this work, since reactor grade graphite is a porous material
(~30% porosity), and has two phases, graphite crystal (pyrolytic graphite) and binder carbons
which can be treated as amorphous -like carbon. The binder carbons have different lattice
dynamics properties than that of crystalline graphite. As a consequence, the inelastic

scattering crosses section of reactor grade graphite is different than that of pyrolytic graphite.
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Figure 4-34 The inelastic scattering cross section including the coherent one-phonon
(NCSU-1P), using a non-isotropic Debye-Waller factor at 300 K compared to the cross section
in theincoherent approximation using the NCSU and YK spectra, and experimental data.

116



10?

—— NCSU-1P(Non-iso DW)
ENDF/B-VII Ref. 9
a  BNL-325 Ref. 11

~
< 10
=
o
=
Q
Q
A A
2 iy
S 100 - g
@)
101 T T T T T
10° 104 10 102 107 100

Energy (eV)

Figure 4-35 The inelastic scattering cross section including the coherent one-phonon
(NCSU-1P), using a non-isotropic Debye-Waller factor at 478 K compared to the cross section
in theincoherent approximation using the NCSU and YK spectra, and experimental data.
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Figure 4-36 The inelastic scattering cross section including the coherent one-phonon
(NCSU-1P), using a non-isotropic Debye-Waller factor at 720 K compared to the cross section
in theincoherent approximation using the NCSU and YK spectra, and experimental data.
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Figure 4-37 The inelastic scattering cross section including the coherent one-phonon
(NCSU-1P), using a non-isotropic Debye-Waller factor at 1020 K compared to the cross section
in theincoherent approximation using NCSU and YK spectra, and experimental data.

The coherent one-phonon scattering cross section contribution was calculated using a
non-isotropic Debye Waller factor e . Where 2W:<(1<-u)2>. In the incoherent
approximation 2 is considered isotropic. In this work, 2W is treated isotropically and
non-isotrpically. The Isotropic case assumes 2/ is equal in all directions, that is

<uf>=<ui>=<u22> , (4.18)
where the mean square displacement (MSD) is given by equation (4.10). The NCSU phonon
frequency distribution that has a parabolic range up to 65 K was used to calculate the
isotropic displacement for graphite atom. While in the non-isotropic case, the phonon

frequency distribution is separated into three parts representing the partial phonon frequency

distributions p_ (@), o, (w), and p.(w). The partial phonon frequency distributions were
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fitted parabolically up to 65 K. The MSD at 300 K, 478 K, 720 K, and 1020 K for isotropic

and non-isotropic cases are listed in table 4-4.

Table 4-4 | sotropic and non-isotropic M SD for graphite asa function of temperature

T 4 e (ur) =) ()
(K) (A% (A% (A%
300 0.005892 0.002352 0.012994
478 0.008627 0.003070 0.019775
720 0.012503 0.004163 0.029234
1020 0.017413 0.005607 0.041096

As seen from the above table, the MSDs in the x and y directions are equal, due to the
symmetry in the graphite xy-plane. The non-isotropic case has MSD in the z-direction that
is one order of magnitude larger the displacement in xy-plane. However, the isotropic case
greatly underestimates the z-component of MSD.  Due to the graphite structure, which is
highly anisotropic (see section 1.6), 2 should be treated non-isotropically. The effect of

Debye-Waller factor isotropy at 300 K is shown in figure 4-38.

The coherent one phonon scattering cross sections using isotropic and non-isotropic
Debye Waller factor are compared to the one-phonon cross section in the incoherent
approximation, as shown in figure 4-39. Also the figure compares the self part of the

coherent one-phonon scattering cross section with the one-phonon cross section in the
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incoherent approximation, and shows the distinct part of the coherent one-phonon cross
section. As seen at low energies the distinct term has a significant contribution. Figure 4-40,
also compares the self part of the coherent one phonon cross section with one phonon cross

section in incoherent approximation.

10t
T=300K —— 1P-NCSU-(Non-iso DW)
— — 1P-NCSU-(Iso DW)
—
<)
N—’
=
2
3]
O 10° A
9]
72]
|72]
=}
—
@)
10*
10° 10 10° 102 101 10°

Energy(eV)

Figure 4-38 The coherent one-phonon (1P) cross section using a non-isotropic (solid) and
isotropic (dashed) Debye-Waller factor at 300 K.

Figures 4-40 and 4-41 compare the scattering law produced by including the coherent
one-phonon contribution based on equation (2.87), and those produced in the incoherent
approximation using the NCSU, YK, and NWS spectra.  As seen the coherent contribution
effect is clear as wiggles in the scattering law. An excellent agreement was obtained in
comparison with the experimental data [94, and 57], indicating the importance of adding the
coherent contribution to the scattering law, and removing the incoherent approximation as

much as possible.
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Figure 4-39 The coherent one-phonon (1P) scattering cross section using non-isotropic (solid) and isotropic (dashed) Debye-Waller
factor at 300 K compared to the one-phonon scattering cross section in the incoherent approximation, similar comparison is shown
between the self coherent one-phonon scattering cross section and the one-phonon scattering cross section in the incoherent
approximation.
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Figure4-40 S(a,f)/a corresponding tothe NCSU, YK, and NWSlibraries, compared to Wikner et al data,[94], at T=300 K.
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4.4 Anhar monicity

In deriving the equation of motion (chapter three), it is assumed that the crystal is
harmonic and the higher orders (third interactions and higher) of the potential are neglected.
As the temperature of the crystal is raised up, these higher orders become more important.
These higher orders terms represent phonon-phonon interactions; these interactions are
responsible for the thermal expansion and finite thermal conductivity of the crystal. The
presence of these terms prevents the diagonalization of the Hamiltonian, and since these
terms are smaller than the harmonic term (second term), the harmonic frequency w(q, j) of
the mode (g, j)is given by [100]

(g, ))+A(q, ) +i1(q, ), (4.19)
where A(g,j) represents the shift from the harmonic frequency, and I'(gq,j) is a decay
constant (half-width at half maximum). Both are temperature dependent. The real part
shows up as a shift in the center of the peak in the energy distribution of the scattered

neutrons. The main contribution to A(g, j)is due to the thermal expansion contribution,
while for I'(q,j) is due to the thermal conductivity. The imaginary part shows up
experimentally in the broadening of the peak. At temperatures 7 << ho, /k, the thermal

displacements of the atoms in the crystal are small, so the dominant term is the quadratic

term in the Hamiltonian, and it is expected that A(g,j) and I'(q,j) to be small. For
small @(q,j) the probability of two phonons scattering is small, therefore, it is expected

that A(g,j) and I'(gq,j) to be small.

In this section the effect of anharmonicity on the phonon frequency distribution as shift
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and broadening will be discussed. The shift and broadening effects are represented by a

Lorentzian shape function.
4.4.1 Calculations

4.4.1.1 Energy Shift A(q,j,T)
Expansivity &(T)
Due to the thermal expansion contribution, the shift from the harmonic frequency is

written as [101]:
A(g, ), T)==3e(T) (g, ))(q, ), (4.20)
where &(T') is called the thermal expansivity given by
e=pT, (4.21)
where S is the average thermal expansion coefficient
/7:3/3“ +lﬂl, (4.22)
3 3
B, and f, are the linear thermal expansion coefficient parallel and perpendicular to the

basal plane, respectively.

7(q,j) is called Gruniesen parameter [38], given by

AN C))
a(q,j) oV

7(q,))=— , (4.23)

where V' is the volume of the crystal. As it can be seen, the starting point to calculate
A(G,j) is to know the average thermal expansion coefficients £ as a function of

temperature. The experimental data of Bailey and Yates [102] and Morgan [103] is
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interpolated to obtain f, for the temperature of interest [104].

While for [, the

formulae produced by Nihira and Iwata [105] for modeling the experimental data of Bailey

and Yates [102] were used. Table 4-5 shows the thermal expansion coefficients and linear

expansivity as a function of temperature.

Table 4-5 Thermal expansion coefficient and thermal expansivity

T(K) £,(1/K) B, (1/K) B (1/K) &

600 -2.4010 x10™ 2.81927 x10°° 9.2375 x10°® 0.00554
900 3.9122 x107 2.88595 x10°° 9.88065 x10°® 0.00889
1200 8.1140 x1077 2.93194 x10°° 1.03677 x107° 0.01244
1500 1.0633 x10°® 3.01330 x10° 1.07532 x10°° 0.01613
1800 1.1790 x10°® 3.07659 x10°° 1.10413 x10°° 0.01987

Gruniesen Consatant y(q, j)

So far, the thermal expansivity as a function of temperature is known.

To apply

equation 4.20, for each frequency w(q, j), its corresponding Gruniesen constant (g, j) for

the same modes (g, j) need to be calculated. The volume of the unit cell varied by

changing the lattice parameter a uniformly, in steps of 0.01 A, and changing the lattice

parameter ¢ according to the ¢/a= 2.793 (corresponds to T=1200 K).

As a consequence the

dispersion relations are calculated for each volume using a 6x6x1 supercell and 50000 wave

vectors sampled randomly over the full Brillioun zone.

relations with respect to the volume

0w(q, )
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The derivative of the dispersion

was rewritten in the difference form as:



(4.24)

or 2w,

Gruneisen constants are usually positive, since phonon frequencies decrease with unit
cell expansion. However, negative Gruneisen constants exist for the low-acoustic modes.
This effect is well-known in layered materials and known as the membrane effect [106, and
107]. As a consequence, the negativity of the Gruneisen constants for wave vectors
correspond to low frequency values will cause an opposite shift in the phonon frequency.
That is, instead of shifting the frequencies to the left these low frequencies will be shifted to

the right. So far, for each mode (g, /) the frequency @(q,j) and the Gruniesen constant

7(q, j) are known. Therefore, equation (4.20) can be applied exactly.

4.41.2 Broadening T

The effect of temperature is to decrease graphite thermal conductivity K (increase its
thermal resistance). In graphite, heat is transferred by lattice vibrations (phonons) rather
than by electrons or defects. Approximately, the thermal conductivity of graphite can be

expressed as [108]
1
K ZECVZ , (4.25)

where C is the heat capacity per unit volume, v is the phonon speed (speed of sound),

and A is the phonon mean free path that depends on three contributions;

1 + b + 1 , (4.26)
ﬂ’B ﬂ’PH ﬂ’D

1
A

where A, is the mean free path due to scattering of phonons from boundaries (geometrical

127



scattering). It is dominant at low temperatures, A, 1is the mean free path due to lattice
defects, (becomes significant in the case of irradiating graphite), and A,, is the mean free

path due to the phonon-phonon scattering, if the forces between atoms were purely harmonic,
there would be no mechanism for collisions between different phonons (temperature
dependent) [108]. The speed of sound v can be written as

v=A/T, (4.27)

7 is the mean time between collisions. So by combining equation (4.25) and (4.27), it is

given by
3K
T= 4.28
Cv? ( )
Using
1
r=—. (4.29)
T
Equation (4.29) can now be rewritten as temperature dependent
T)v (T
rry = SOV (4.30)
3K(T)

For kT <<hw C(T)is proportional to 7" where n is equal 3 for three dimensional

m b

solids, and for the case of graphite, 2<n <3. Also K (7) is proportional to 1/7. The speed of

sound is assumed to be a weak function of temperature, then
r~7". (4.31)
For kT >>hw, , C,(T)is constant, so
r~T. (4.32)
The asymptotic equations (4.31 and 4.32) agree with [109], and the numerical values of the

physical quantities of equation (4.30) are obtainable.
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Speed of Sound v

The mean sound velocity v, is given by

(2 1))"
Vo= S — 433
" [3(1/,3 V,3D (4.33)

where v, and v, are the transverse and longitudinal sound velocities respectively given by

| o 12
Vi = _[ 1= BJ (4.34)
P Cy
] 12
V= 2_(C11 _Clz) (4.35)
Yo,

where pand C, are the density and the elastic constants, respectively [105]. So to have
the sound velocity as a function of temperature, o and C; should be provided as a

function of temperature. The models of Nihira and Iwata [105] are used to obtain the elastic

constants,
C, (293)(&j for Cy,andC,,
0.959
C,(T)= L+ (1) (4.36)
Cif (293)(@) fOV Cll,Clz,and Cl3
where
f(T)=1.0145-1.990x107*T +3.20x10° 7> (4.37)

At T=293K; C, =106x10", C,=18x10", C,=15x10", C,; =3.65x10" , and

C,, =0.425x10" dyn/cm’.

Table 4-6 shows the numerical values for the elastic constants at the temperatures of interest.
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Table 4-6 Elastic constants of graphite as a function of temperature

T C, x10" C, x10" C,, x10" C,, x10" C,, x10"
(K) (dynfem?) | (dynem?) | (dynfem®) | (dyn/em®) |  (dyn/em’)
600 1.032 1.752 1.460 3.451 4.018
900 1.007 1.710 1.425 3.279 3.817
1200 0.986 1.674 1.395 3.128 3.642
1500 0.968 1.643 1.369 2.999 3.492
1800 0.952 1.617 1.347 2.893 3.368

Table 4-7 shows the calculated density, and speed of sound for the temperatures of
interest. As seen, the sound velocity is a weak function of temperature. In order to
calculate I', the heat capacity per unit volume, and the thermal conductivity are still needed.
For the heat capacity, the values calculated based on the ab initio phonon frequency
distribution were, figure 4-12. Experimental values of the thermal conductivity for

pyrolytic graphite were used [110].

Table 4-7 Volume, density and sound velocity for the temperatures of interest

T Y2 v, X 10° v, X 10° v, X 10°
(K) (gm/cm’) (cm/s) (cm/s) (cm/s)
600 2.2455 1.38097 2.13701 1.51551
900 222621 1.37037 2.12043 1.50386
1200 220604 1.36192 2.10718 1.49457
1500 2.18514 1.35567 2.09736 148770
1800 2.16381 1.35162 2.09095 1.48324
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Table 4-8 shows heat capacity, and thermal conductivity for the temperatures of interest.

Thermal conductivity has two components one parallel (K, ) and the other is perpendicular
(K,) to the layer planes. The K, values are two orders (~300 times) of magnitudes higher

than K, values. That is, K, are negligible, therefore they are not included in the

calculations. Table 4-9 shows I'" values for temperatures of interest, in terms of (THz) and

(eV).

Table 4-8 Graphite heat capacity and thermal conductivity for temperatures of interest

T Heat capacity Cx10° Thermal conductivity
(K) (Jol/mol. K) (Jol/m’. K) (W/m. K)
600 16.441 3.07652 892
900 20.245 3.75579 600.50
1200 22.056 4.05469 448
1500 23.011 4.19017 358.50
1800 23.565 4.24916 293

Table4-9 The FWHM for temperatures of interest in termsof THz and eV

T(K) I' (THz) I (eV)
600 0.26405 0.00109
900 0.47150 0.00195
1200 0.67389 0.00279
1500 0.86229 0.00357
1800 1.06350 0.00440

131



4.4.2 Results

In order to broaden the i bin of the phonon frequency distribution, a Lorentzian shape
function is used; the area of each bin is conserved, after broadening. Let the i™ bin has

height p,(E,) and width AE, such that its area is p,(E,)AE. The Lorentzian function

has the form

A
L(E)=— r2 > (4.38)
7 (E-—E)*+T

where 4, is normalization constant. The area under the Lorentzian function in the interval

[a, b] is

h 4, L4[b-E, LJfa-E,
:[Ll.(E)dE=7{tan (?j—tan ( T j} (4.39)

By setting the right hand side of equation (4.39) equal to the area of the i™ bin, A, can

be determined

7 AE p,(E))

. L[ b-E, Gfa-E
tan —tan
r r

To broaden the density of states, a bin width for constructing density of states equal I"/2

(4.40)

was used, so each two bins have I' width. The effect of the broadening is assumed to be
one [' to the right of the bin of interest and one I" to the left of the bin of interest. The
figures below show the shifted and shifted plus broadened phonon spectra compared to the

original spectrum that neither shifted nor broadened.
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4.4.2.1 Phonon Frequency Distribution

T=600 K

At T=600 K, £=0.00554, and I'=0.00109 eV. The bin width was set equal to
0.000545 eV, so 381 bins are used to represent the DOS at T=600 K to show the shift and
broadening. In order to generate the cross section at 600 K, the shifted and broadened
phonon distributions were reconstructed using 149 bins, and fitted parabolically up to the 5™
point corresponding to 65 K. Figure 4-42 compares the shifted spectrum with the original
spectrum. While figure 4-43 compares the shifted and broadened spectrum with the original

one.
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Figure 4-42 The shifted spectrum and the corresponding original NSCU spectrum at T = 600K .
Both spectra are calculated using the ab initio NCSU models.
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Figure 4- 43 The shifted and broadened spectra compared to the original NCSU spectrum at
T=600 K. Both spectraare calculated using the ab initio NCSU models.

T=900 K

At T=900 K, £=0.00889, and I =0.00195 eV. The bin width was set equal to
0.000975 eV, so 213 bins are used to represent the DOS at T=900 K to show the shift and
broadening. In order to generate the cross section at 900 °K, the shifted and broadened
phonon distribution was reconstructed using 149 bins, and fitted parabolically up to the 5™
point corresponding to 65 K. Figure 4-44 compares the shifted spectrum with the original
spectrum. While figure 4-45 compares the shifted and broadened spectrum with the original

NCSU spectrum.
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Figure 4-44 The shifted spectrum compared to the original NCSU spectrum at T=900 K. Both
spectra are calculated using the ab initio NCSU models.
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Figure 4-45 The shifted and broadened spectra compared to the original NCSU spectrum at
T=900 K. Both spectraarecalculated using the ab initio NCSU models.
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T=1200 K

At T=1200 K, £=0.01244, and I"'=0.00279 eV. The bin width was set equal to
0.001395 eV, so 149 bins are used to represents the DOS at T=1200 K to show the shift and
broadening. In order to generate the cross section at 1200 K, the shifted and broadened
phonon distributions was fitted parabolically up to the 5 point corresponding to 65 K.
Figure 4-46 compares the shifted spectrum with the original spectrum. While figure 4-47

compares the shifted and broadened spectrum with the original NCSU spectrum.
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Figure 4-46 The shifted spectrum compared to theoriginal NCSU spectrum at T=1200 K. Both
gpectra are calculated using the ab initio NCSU models.
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Figure 4-47 The shifted and broadened spectra compared to the original NCSU spectrum at T=
1200 K. Both spectra are calculated using the ab initio NCSU models.

T=1500 K

At T=1500 K, £=0.01613, and I'=0.00357 eV. The bin width was set equal to
0.001785 eV, so 117 bins are used to represents the DOS at T=1500 K to show the shift and
broadening. In order to generate the cross section at 1500 K, the shifted and broadened
phonon distributions was reconstructed using 149 bins, and fitted parabolically up to the 5t
point corresponding to 65 K. Figure 4-48 compares the shifted spectrum with the original
spectrum. While figure 4-49 compares the shifted and broadened spectrum with the original

NCSU spectrum.
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Figure 4-48 The shifted spectrum compared to the original NCSU spectrum at T=1500 K. Both
spectra are calculated using the ab initio NCSU models.
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Figure 4-49 The shifted and broadened spectra compared to the original NCSU spectrum at T=
1500 K. Both spectra are calculated using the ab initio NCSU models.
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T=1800 K

At T=1800 K, £=0.01987, and I'=0.0044 eV. The bin width was set equal to 0.0022
eV, so 95 bins are used to represents the DOS at T=1800 K to show the shift and broadening.
In order to generate the cross section at 1800 K, the shifted and broadened phonon
distribution was reconstructed using 149 bins, and fitted parabolically up to the 5™ point
corresponding to 65 K. Figure 4-50 compares the shifted spectrum with the original spectrum.
While figure 4-51 compares the shifted and broadened spectrum with the original NCSU

spectrum.
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Figure 4-50 The shifted spectrum compared to theoriginal NCSU spectrum at T=1800K. Both
spectra are calculated using the ab initio NCSU models.
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Figure 4-51 The shifted and broadened spectra compared to the original NCSU spectrum at T=
1800 K. Both spectra are calculated using the ab initio NCSU models.

As seen from the above figures, the shift of the frequency @(q, j) is proportional to
(1= 3&(T)y(qg,j)). Therefore, the shift is the highest at higher frequencies. To

summaries, the previous figures are compared to each other, to show the progress of shift and
broadening as a function of temperature. Figure 4-52 shows the results of the shifted spectra

for different temperatures, while figure 4-53 shows the shifted and broadened spectra.
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Figure 4-52 The shifted spectra at different temperatures compared to the original spectrum
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Figure 4-53 The shifted and broadened spectra at different temperatures compared to the
original spectrum calculated at OK.
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4.4.2.2 Cross Section

T=600 K

Figure 4.54 shows the cross section at T=600 K, using the shifted and broadened
spectrum. The cross section is compared to the one generated by using the original
spectrum. The cross section due to the original spectrum shows higher cross section that

reaches a maximum difference of ~ 4% between 0.01 and 0.1 eV.
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Figure 4-54 The scattering cross sections at 600 K generated by using the original NCSU, and
shifted and broadened spectra (above) and the corresponding cross sections relative difference
(below).
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T=900 K

Figure 4-55 shows the cross section at T=900 K, using the shifted and broadened
spectrum. The cross section is compared to the one generated by using the original
spectrum. The cross section due to the original spectrum shows higher cross section that

reaches a maximum difference of ~ 6% between 0.01 and 0.1 eV.
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Figure 4-55 The scattering cross sections at 900 K generated by using the original NCSU, and
shifted and broadened spectra (above) and the corresponding cross sections relative difference
(below).
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T=1200 K

Figure 4-56 shows the cross section at T=1200 K, using the shifted and broadened
spectrum. The cross section is compared to the one generated by using the original
spectrum. The cross section due to the original spectrum shows higher cross section that

reaches a maximum difference of ~ 7% between 0.01 and 0.1 eV.
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Figure 4-56 The scattering cross sections at 1200 K generated by using the original NCSU, and
shifted and broadened spectra (above) and the corresponding cross sections relative difference
(below).
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T=1500 K

Figure 4-57 shows the cross section at T=1500 K, using the shifted and broadened
spectrum. The cross section is compared to the one generated by using the original
spectrum. The cross section due to the original spectrum shows higher cross section that

reaches a maximum difference of ~ 7% between 0.01 and 0.1 eV.
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Figure 4-57 The scattering cross sections at 1500 K generated by using the original NCSU, and
shifted and broadened spectra (above) and the corresponding cross sections relative difference

(below).
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T=1800 K

Figure 4-58 shows the cross section at T=1800 K, using the shifted and broadened
spectrum. The cross section is compared to the one generated by using the original
spectrum. The cross section due to the original spectrum shows higher cross section that

reaches a maximum difference of ~ 7% between 0.01 and 0.1 eV.
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Figure 4-58 The scattering cross sections at 1800 K generated by using the original NCSU, and
shifted and broadened spectra (above) and the corresponding cross section relative difference
(below).
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Chapter 5 Conclusions and Future Work

In this work, graphite thermal neutron scattering cross sections and complete libraries
were generated as a function of temperature, and using different approaches. The first step
was generating the phonon frequency distribution using the lattice dynamics direct method
supercell approach and utilizing quantum mechanical electronic structure (ab initio)
simulations. Due to the strong intraplaner covalent interactions and the weak interplaner
Van der Waal interaction, a 6x6x1 supercell with 144 atoms was used to generate the phonon
frequency distribution.  The VASP code was used to calculate the Hellmann- Feynman
forces by using the local density approximation (LDA), with the projected augmented wave
(PAW) pseudopotential. The integration over the Brillouin zone was confined to a 3x3x4
k-mesh generated by the Monkhorst —Pack scheme, and a plane-wave basis set with 500 eV
energy cutoff was applied. The corresponding dispersion relations and phonon frequency
distribution shown in figure 5-1 exhibit excellent agreement with the experimental data,

illustrating the power and utility of the ab initio approach.

The resulting phonon spectrum was used in the LEAPR module of the NJOY code to
calculate the scattering law, whereas the module THERMR was used to generate the inelastic
scattering cross section, respectively, at different temperatures. However, the examination
of the results indicated persistence of the inconsistencies between calculations and
measurements at neutron energies below the Bragg energy cutoff. Since the phonon
frequency distribution- the only input to the formula of the scattering law built in LEAPR-

was calculated accurately, this led the investigation more deeply into the scattering theory of
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graphite. Therefore, the coherent one-phonon scattering law and cross section were
calculated exactly. The input data required to perform such calculations was taken from ab
initio lattice dynamics results such as the dispersion relations, polarization vectors, and mean
square displacement. As a result, excellent agreement was achieved between calculated and
measured scattering law, and also between the calculated inelastic scattering cross section

and the measured data of pyrolytic graphite, as shown in figure 5-2.
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Figure 5-1Thegraphite dispersion relations and phonon frequency distribution.

Due to the graphite structure, a non-isotropic Debye-Waller factor was used in producing
the one-phonon results, where the perpendicular mean square displacements is one order of
magnitude higher than the parallel on. Furthermore, based on the mean square
displacements as a function of temperature and the agreement of the one-phonon cross
sections as generated using both the incoherent approximation and the self part of the
coherent one-phonon cross section , the parabolic energy range for the graphite phonon

frequency distribution was taken to extend to 5.60 meV (equivalent to 65 K). Such
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parabolic range minimizes the pseudo-inelastic sharp peak around the zero energy transfer.
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Figure 5-2 The graphite thermal neutron scattering cross section including the coherent
one-phonon contribution (NCSU-1p) and the cross section in the incoherent approximation
(NCSU) compared to experimental data of pyrolytic graphite at 300 K.

Finally, the effect of temperature (anharmonicity) on the phonon frequency distribution
in the form of shift and broadening was studied and discussed. The shift and broadening
effects were related to other physical values as a function of temperature. The energy shift
was calculated as mode dependent (by calculating the Gruniesen parameter form the ab initio
dispersion relations) and temperature dependent (by relating the thermal expansivity to the
thermal expansion coefficient). A simple formula was developed for the decay constant I"
as a function of temperature such that its asymptotic behavior agrees with the asymptotic
behavior of more complicated formulae. This formula is responsible for broadening effects

and it relates the graphite thermal conductivity, speed of sound, and heat capacity, as a
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function of temperature. The broadening effect is represented by a Lorentzian shape
function. It was found that in graphite at low energies, the shift was toward the right, unlike
at high energies. This is due to the negative Gruniesen parameters. The shifting and
broadening were found to be two competing processes at low energies, resulting in relative

differences in the calculated cross sections of less than 10% at all temperatures.

Future Work

The methodology used in this study produced accurate thermal neutron scattering cross
section libraries for pyrolytic graphite, and pointed to the need for further investigation of the
structure and dynamics of reactor grade graphite. Unlike pyrolytic graphite, which is a
single phase material (crystalline graphite) and displays the features of perfect graphite,
reactor grade graphite is a two phase material (crystalline graphite and binder carbon) (see
section 4.3), therefore it is expected to have different thermal neutron scattering properties

from pyrolytic graphite.

An accurate thermal neutron scattering cross section library for reactor grade graphite
needs to be developed. This requires the investigation of the dynamics and volume fraction
of the binder phase. However, for the crystalline phase the results of this study should be

applicable.
The graphite moderator of Very High Temperature Reactors (VHTR) is expected to reach

exposure levels of 10?' to 10%* n/cm® over the lifetime of the reactor. This exposure results

in damage to the graphite structure. Therefore, it is expected that alterations in the
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dynamics of the graphite lattice would have an impact on the thermal neutron scattering
properties. In fact, a significant amount of literature over the past fifty years is related to
the effect of neutron radiation on the mechanical, thermal, and electrical properties of
graphite [108, and 111]. However, the potential effect of radiation on the neutronic behavior
(i.e., thermal neutron scattering properties) of this material was rarely investigated.
Recently, an investigation was initiated in this area [112]. The initial results show a
potential noticeable impact on the graphite thermal neutron scattering cross sections.
However, further work is needed to verify these results and accurately assess the magnitude

of the expected impact.
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Appendix A

A.1- Solid-Type Scatterers Scattering Law in the Incoherent Approximation

Starting from equation (2.55), settingS, (E,a))=0, replacingo,, +0,,., by o, and
Eb Ewe et
P I
do__% |Es (z.0) (A1)
dQdE' Az \E
where
K (A.2)

S, (Kw) = ﬁ j 1., (K,t)e™™ dt

where under the assumptions mentioned in section 2.5 the incoherent intermediate function

1, (k) 1s given by

L) = exp{hz’; {y(t)—y(O)}} (A3)
where
i ho y p(o)
y(t):J. coth coswt+isinwt y——=dw (A4)
0 2k, @
and
y(t)-(0)= T{coth ho (coswt —1)+isin a)t}Mda) (A.5)
0 2k @

The phonon frequency distribution is an even function of @, therefore, the integral on

equation (A.5) can be extended from —o0 to o
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—ho

® (a) o 2kaT -
'f 2w sinh ha)/Zk T)(e l)da) (A.6)

So by combining equations (A.6), (A.3), (A.2)and (A.1) we get
-ho

d’c__oy |E 1 7 i, jp(a» e’
dQdE' 4x \ E 27h °, 2 sinh(fiw/2k,T)

(e ~N)dwl|dt (A7)

Utilizing equations (2.57 and 2.58) and defining the dimensionless parameter 7 =

following form is obtained

LI PB) e i
deE \/7” 2”I exp{ 155 s 09 } (A9

The above equation is the LEAPR fundamental equation to calculate the double
differential scattering cross section for solid-type oscillators. The asymmetric scattering law

S(a, p)1is given by

_ L T ipi PP e’ o b
S(a,p) = . J;e exp a_[o 25 sinh(ﬂ/2)( ~1)dp |di (A.9)

Where the relation between the scattering law and the asymmetric scattering law is given by
S(a.p)=e"" S(a.p) (A.10)

The Debye-Waller coefficient A for a Bravais cubic unit cell is is defined as

~ J‘ p(Be’"?

' 2Bsinh(f/2) s a.11)

S(a, f) can be rewritten as
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0 . ®© ' -pB'/2 . R
S(O{,ﬂ) :Le—al jeiﬁt exp aIp(IB) : e e—lﬁt dﬁ’ dt
2z 2 2B sinh(f'/2)

—00

e “*is called the Debye-Waller factor, as we see later it is equivalent to e "

A.2- One Phonon Cross Section in the I ncoherent Approximation

Let us expand the exponential integrand in equation (A.12) as power series, then

[ I I 0. N e TRl
S(@.f)=——e @Y L[ 5 ap' | di
(@.f)=7 ¢ nZ_;,n!Le {a[} 25 snng2° P

Consider the term corresponds to n=1

243" sinh(8'/2)

—00

® RIE: ' g2
Sl(a,f)=ae™ L jei(ﬁ‘ﬂ"‘ [ j pp)_ e dﬂ}df
2r i

But

17 i(p-pi g2 _ ’
Ej.e di =S5(B- B

—0

SO

P e
St f)=ae ™ o  h(512)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

And the one phonon double differential scattering cross section in the incoherent

approximation is

do| _oy [E 1 _.pp) e’
dQdE'| 4z \'E KT 25 sinh(B/2)
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A.3- A Sep by Step Derivation of the One Phonon Scattering Cross Section in the

I ncoherent Approximation Starting From the Coherent One Phonon Equation

Let us start from equation (2.83)-the exact coherent one-phonon double differential

scattering cross section equation- where the subscript is replaced by ¢gj

2
d*o

dQdE'’

X

E' 1 |Ze w, (K ed< )eih?

"4z VE 4mM NS o |5

coh(1ph)

(A.18)

Z o J' ot {e—i<q~z—wq,t>< n, +1> N ei(‘?']’”qf’t)<né,>}aft
] o
The difference between the coherent and incoherent scattering cross section is the
momentum conservation, so let us first relax the momentum constraint. That is
i(R+G)1 2 ’ -, = =
zel( +4)1 :%Zéﬁciq—r) (A.19)
I T

and

qt

> () :(;VTVYI("')M

— —

set Kk, =k =kKk,where x, =g+7 and x =qg—-7,we get

2 0

J.eiw‘”t <nq]. + 1> +

—0o0

2w
—i@,;t —iot
J.e o <nq]. >}e dt

—00

d’c | Eo1 1]
dQdE'| “ar VE

(ph)

W icd
Z ‘ (K edq/ )e”(d

A Tz a)qjl 7

—Wd(~_~ )ei;zd
e ke

d

(A.20)

this equation is equivalent to the one phonon incoherent double differential scattering cross
section, therefore, the subscript coh(lph) was replaced by (1ph) for clarity. Next, to

-, -w

assume we have one atom per unit cell, in this case e ¢ —>e " , e* =1, and édqj — éq/. ,

thus,
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d’c E 1w L Y2 [ oy
K-e.. e "(n. +1)+
e e e T [
m Y B (A.21)
- 2 ° —iwq/t —i i
‘(K q/} I <néj>} 'dt
For cubic crystal, the mean value of (1? . Eq]. )2 is x7/3,
d’c o, [E 1 & o 1 Ffio it y
= [— —e — e (n, + ) +e U (n_ e "dt  (A22
dQdE'|, - 4z VE 4zM 3 Z/:wqj [O{ (ng +1) { q1>}€ (A.22)
Next, to replace the sum by an integral over @, since
7 0, @'
So equation (A.22) becomes
2 0 o0
do _ Ucoh 2 —2 J. ( J-{ io't n +1> la)t< >%_Wtdtda)' (A24)
dQdE' 4 V 47[M
(1ph) 0 o0
but
io't ) 1 —io't ha)' ' . e '
e <n +l> < >— coth2 cosw't +isinw't (A.25)
So equation (A.24) becomes
2 ' 2 00 00 ' '
d’o = Teon 1/2 K_ e Jdtj(p(w)coth ho cosw't +isino't)e"do’  (A.26)
dQdE' iy 4m VE 4zM oy o 2KT
but
s} ’ y 0 A —Ra'/2KT
J‘('D(a’))coth cosw't +isinw't)dw' = J"D(a),) - ¢ - e do’ (A.27)
y @ KT * 20" sinh(hw'/2KT)
so equation (A.26) becomes
dza — O_coh E’ 2 —2W j J-lo(a),) e_x”)’/zKT e—ia)'te—ia)tda)! (A.28)
dQdE' (o) 4z VE 47d\/[ 20" sinh(hiw'/2KT)
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but

1 o0

— e gi = 5(w+ @)
2z =,
SO
d2o_ _ O-CUh EL S o p(a)) eha)/ZKT
dQdE' (o) 4r \ E 2M 2w sinh(fiw/2KT)

Rewrite the above equation in terms of £ rather thanw, we get

o | o, E 1 'k’ s PB) e’
dQE|, " 4r VE KT2MKT® 28 sinh(4/2)

2.2

but

2MKT
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Appendix B

B.1- VASP Input

As mentioned in section 3.2.10, VASP (Vienna Ab initio Simulation Package) is used to
optimize the lattice parameters of the graphite unit cell, and to calculate Hellmann-Feynman
forces. The following discussion pertains to the graphical interface of VASP supported by
MedeA software [113]. Figure B1-1 shows the VASP graphical interface. As seen from
the figure below, it consists of panels; the panels that are relevant to this work (Calculation,

Potentials, SCF, advanced/Restart, and Preview input) will be discussed.

VASP Simiulation,
Caloulation \ Fotertials \ SCF \ Band Striichirs \ pos \ Advariced/Restart \ #idd to Iriput \ Fraviaw nput \

Type of calculation | [ Single Point =

| | Struictine 0 ptimization

Froperties

Mualecular Dyramics © ) [ Genaral Setup
; } - Charge density ™ Bard strusture
MT - Elsslic Fropsities Potartisl:  (LD&) | P

1™ Total lozal poterial 1™ Desiy of stafes | |

) | Spinpofanzation
i e i — Wark tunchan r
| Elgction Io_callzahnh furichon, | [sLifages orl) Enternal pressure: lD

[ ' WPrécizion]  High — —
I Wave hunchions o

Flun | Clase Wit input files |

FigureB1- 1 The VASP interface supported by MedeA software.

a) Calculation

VASP offers four types of calculations, as shown in the figure above. The Single Point
option is used to perform an electronic structure calculation on the geometry of interest. So
for Hellmann-Feynman forces calculation, this option should be used. The other important
option is structure optimization, for relaxing the atomic positions and optimizing the lattice
parameters of the structure of interest at 0 K. Also shown on the right side of the panel is

the type of the Density Functional Theory (DFT) to be chosen, namely the Local Density
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Approximation (LDA) or the Generalized Gradient Approximation (GGA). The Precision

option has three choices that influence the accuracy of calculations- High, Medium, and Low.

b) Potentials
This panel allows the user to choose the pseudopotential for the individual atoms used in
the model. The potential panel, as shown in figureB1-2, allows the use of either the

Projected Augmented Wave (PAW) or the Ultra Soft (US) pseudopotential.

YASP simulation B

Calculstion | |, (Potertisl= _'I \ SCF 1\\ Band Structurs
fFaneral Options s

Fotertizl:  LDA ] Al

Specific Potentials per Element

(@]
(5

Riin Close White: input files

Figure B1- 2 The potential panel in VASP interface.

c) SCF

The choice of the k-mesh is an essential factor in the accuracy of the Self Consistent
Field (SCF) calculation used in solving the Kohn-Sham equations. As shown in figure1B-3,
one can set the k-points in the irreducible part of the Brillouin zone. In addition the panel

shows the spacing of the k-points in (1/A).
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VASP Simulation =
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243

[~ shift ariginta Gamma

—Aetusl meshand sgacing
Conghaint Megh points Spacing [1/&ma)

i Z 0.3n
[ 2 0:371
: 3 0315
Riuri Close it inplt fles

Figure B1- 3 The SCF pand in VASP interface.

d) Advanced/Restart

The advanced settings, shown in figure B1-4, govern the iterative scheme for

determining the wave functions, the real or reciprocal space projection, number of bands,

energy cutoff, and energy cutoff for augmentation charge.

ASP Simulation

EalGLlEiEn \ Prteritials

Advanced Seftings

\ B=nd Strusture \': nos .\{Aﬂmceamésrad}\

Alganthene  Conugate-Gradients  —2
Prajsctior Recipiocal space —!
Spin irterpolation:  WaskodWilkeMusar  —
Murnber of bands:
{Eneiay cutolf for planewave basi|[ 400 &
Cutolt for augmentation charaes: | et

| |nitialize wave functionz with Fandom rumbers —

[E3]

—‘nitial Condiions and Restak —————————

[ritial veave furchons: tram-ziatch —i

Inial chiarge derigity  Atomic charge derisiies:  —

r Fi e cﬁafg_c— denzily

Cloga Wit inpu files <

Figure B1- 4 The Advanced/Restart panel in VASP interface.
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It is unlikely that the initial conditions need to be changed from their default values.

d) Preview I nput

This panel, as shown in figure B1-5, allow the user to see the necessary input files for
running VASP. These files are the POTCAR file which contains the pseudopotential for
each atomic species used in the calculation., the INCAR file which is the main input file for
VASP. It contains a large number of parameter. Most of these parameters are set as default,
the KPOINTS file which contains the k-point mesh coordinates generated by
Monkhorst-Pack scheme, and the POSCAR file which contains the supercell geometry

matrix, and the fractional ionic positions.

EBand Stracturs PDITDE"H H \I Advanced/Restart \I Add o inpuat II'— lI'F;rew'rEW Inprt :I\
seripk -
Flle: || INCAR
KPOINTS
POSCAR

Cloze ] Wwirite: inpuit fles 1

Figure B1- 5 The preview Input panel in VASP interface.
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B.2- PHONON Input

The PHONON software is used to calculate the dispersion relations, phonon frequency
distribution, and corresponding thermodynamical quantities. The necessary input data for

PHONON are discussed below.

a) Symmetry and Unit Cell
Figure B2-1 shows the space group, the lattice parameters (in angstroms) and angles (in
degrees), and the number of non-equivalent particles in the unit cell for the structure of

interest (graphite in this case).

Space Group and Wait Celil

Lattice Constant B (angstrems)
Lattice Domstant € (angstrems)
hngle fAlpha (degress)

Tmgle Beta (degrees):

hngle amna (degress)

Mumber of mon-sguivalent slastic particles

: i 4 ¥
Number of non-equivalent dsplacive particles j

ox_concer) [N i

Figure B2- 1 The symmetry and unit cell inputs panel.

b) Particles Positions

The position of non-equivalent particles is given in fractional coordinates of the unit cell
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basic vectors, as shown in figure B2-2. Utilizing the symmetry of the structure of interest
specified by the given space group, PHONON generates the remaining. For graphite the
displacive coordinates were activated by setting (x, y, z) = (1, 1, 1), and the rotational
coordinates were deactivated by setting (Rx, Ry, Rz )= (0, 0, 0) .

Pasitions of Non-Equivalent Displacive Particles

Next (enter) I

Figure B2- 2 The atomic positions and masses panel.

c) Supercell

The volume of the supercell is a multiple of the volume of the primitive unit cell.
Figure B2-3 shows the transformation matrix L that is used to build the supercell S from the
unit cell C. Also, the displacement in angstrom should be specified to calculate

Hellmann-Feynman forces.

SuperCell Data

Transform. S=CL
from Crys.Cell C L=

to SuperCell S.

Displacement for HF forces in Angstroms:

Supercell Position File: |

Figure B2- 3 The supercell transformation matrix panel.
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Figure B2-4 shows the total number of atoms in the supercell used in the calculations. Also

shown in Cartesian coordinates are the supercell lattice constants.

SuperCall for Hellmann-—Feymman Foroces

Numbez of ltoms in SuperCell: ;:!I

Bacic Vectors of SC
Cartésian Coord. (X¥Z)

attached to Superfell

Figure B2- 4 The cartesian supercell lattice basis vectors.

d) Dispersion Relations

After importing the Hellmann-Feynman files produced by VASP, PHONON calculates
the force constants, and solves the dynamical matrix along the desired direction in the
Brillouin zone. Therefore, one must specify the fractional coordinates of the wave vectors,
and the number of points between these vectors. In addition, PHONON is capable of

providing the polarization vectors, as shown in figure B2-5.

Ware Vectors Data for DMspersion Curves

FHumber af Hain Wawve VYectors

Mumber of Pointz In Babtos=an

Oufput Eigenvectors

Irvreduc . Bepresentations k=0

OE {entex) I

Figure B2- 5 The wave vectors, and eigenvector s panel.
Figure B2-6 shows the coordinates of the 5 wave vectors along which the dispersion relations
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are calculated. Note that the symbol C# stands for I .

Wawve Veotors

Figure B2- 6 The wave vector s coor dinates panel.

€) Phonon Frequency Distribution

To generate the total and partial phonon frequency distribution, PHONON carries out
Monte Carlo sampling of the k-points. One can choose small, middle, large, fine, or can
specify the number of k-points explicitly (e.g., 50000 in figure B2-7). Similarly, one can
choose auto frequency bin width for the phonon frequency distribution, or can specify its bin

width manually.

Density of States

Use MC Sampling k-point Sel ‘I!E
ar number of Sampling: k-points: W

huLo Freguency [nberaral

ar requency Interval in TH=:

Pavtizl Demsity of States
Thermal Displacements:
0K (enter) I

Figure B2- 7 The density of states panel.
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