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SANDERS, DILLON HUGH. Thermal Jamming in Glass Formers. (Under the direction of Dr. 

Jacob Eapen). 

Theories of the glass transition generally attempt to describe the evolution of glass-

forming liquids toward an amorphous solid state using an array of dynamical and 

thermodynamic properties. The focus of this work is to quantitatively describe the dynamical 

evolution of glass forming liquids, and ultimately the broader class of disordered states, in terms 

of “thermal jamming”, a term that describes the level of kinetic frustration, which depends on the 

thermodynamic state and the fraction of atoms that effectively contribute to diffusion. Motivated 

by the Two-Phase Thermodynamic (2PT) Method for computing liquid thermodynamic 

properties, a hard sphere partitioning approach is proposed which partitions a liquid in such a 

way that its diffusive characteristics are encapsulated by an equivalent system of hard spheres, 

while its vibratory characteristics are modeled as a system of harmonic oscillators. This approach 

relies on a partitioning metric 𝑓 which is defined as the ratio of effective hard spheres in the liquid 

to the total number of atoms in the liquid, and is postulated to be the inverse of the radial 

distribution function at the point of contact. The hard spheres represent the set of atoms whose 

dynamics are well-described using repulsive forces, while the harmonic oscillators symbolize the 

remaining set of atoms that interact through attractive forces. Thus, only a fraction of atoms 

denoted by the ratio 𝑓 contribute to diffusive dynamics. The partitioning metric allows for the 

subsequent calculation of an effective packing fraction 𝜙̂ of the liquid, and the excess entropy. 

These quantities are used to demonstrate two key predictions of the thermal jamming hypothesis: 

1) the approach of 𝜙̂ to a maximally-jammed value as the temperature of the liquid decreases 

towards the mode coupling or glass transition temperature, and 2) and a true universal scaling 

of dynamical quantities with excess entropy that holds among various thermodynamic states and 

across different materials. 

Atomistic simulations are used to study several model systems which adequately recreate 

the dynamics of glassy liquids (Kob-Andersen, Weeks-Chandler-Andersen, harmonic spheres, 

and Dzugutov) are featured in this work. For these systems, the hard sphere partitioning (HSP) 

approach indicates that the effective packing fraction of the hard spheres, 𝜙̂, asymptotically 

approaches the random-close-packed limit for the model glass formers with decreasing 

temperature. Furthermore, the HSP method is used to compute the excess entropy of the hard 



sphere partition, as well as the excess entropy of the liquid. When plotted as a function of the 

excess entropy, the reduced dynamical quantities such as diffusivity portray a strict scaling 

behavior that establishes a direct relationship between the dynamical and thermodynamic 

properties of the liquids. In the context of quasi-universal and universal descriptions of liquid 

dynamics, the HSP approach reveals a new class of universal liquid behavior for all 

thermodynamic states. 

In addition to the model systems studied using atomistic simulations, the application of 

the HSP approach to real glass formers is demonstrated. Eight glass forming liquids, for which 

the reported literature data extends to the glass transition temperature 𝑇𝑔 and below, are 

investigated; these systems, which depict both fragile and strong behavior, allow a richer and a 

broader range of glassy dynamics than allowed by atomistic simulations. The analysis show that 

a true universal scaling with excess entropy is obeyed by all the eight glass formers. This 

universality principally rests on the partitioning of a system into equivalent hard spheres and 

harmonic oscillators, unlike the previous analyses that attempted to model the entire system into 

equivalent hard spheres. At a more fundamental level, the idea of a liquid solely represented by 

repulsive forces may need a revision, particularly for the supercooled states.  

 A separate analysis is conducted from the perspective of string-like cooperative motion, a 

ubiquitous feature of a broad range of jammed systems throughout nature. By conducting a novel 

analysis of string-like structures in four model glass-formers, a shift in the nature of the dynamics 

of strings is revealed as a non-monotonic variation of the population of “cooperative pairs” (two-

member strings) at an important dynamic crossover that occurs at a temperature 𝑇𝑆 for all model 

systems. Additionally, a novel “tracking analysis” is employed to examine the origins of this 

behavior in terms of the creation and annihilation of strings as the dynamics of the liquid evolves 

over time. 

 The twofold analysis of glassy systems in this work provides evidence for the concept of 

thermal jamming, in the form of (i) an effective packing fraction 𝜙̂ from the HSP approach that 

demonstrates asymptotic convergence near critical temperatures in glass formers and (ii) the 

demonstration of a new class of universality in glass formers that envelops all thermodynamic 

states and interatomic/molecular interactions.  
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Chapter 1: Introduction 

 

Kinetically constrained or slow dynamics is commonly observed throughout nature, 

across a wide range of time and length scales. This dissertation focuses on uncovering dynamical 

and thermodynamic features of supercooled liquids and glasses [1-5], which are examples of 

kinetically-arrested matter at the atomic scale, and which have applications in nuclear 

engineering [6-8] and materials science.  

Some key features of slow dynamics appear in  diverse situations such as the movement 

of ants through their colonies [9], the behavior of foams and emulsions under shear stress [10-12], 

the flow of granular materials [13-15], superionic conduction [16-20], and cars moving on a busy 

highway [21, 22]. Slow dynamics at the atomic level [23], while obscure at first glance, is readily 

illustrated by many situations encountered in everyday life, and some common-sense intuitions 

can help to illustrate why atoms in these materials behave the way they do. For instance, a traffic 

slowdown during rush hour is a real-life illustration of kinetically constrained dynamics. On the 

highway, there will be some fast and more reckless drivers, and some slow and more cautious 

drivers. As faster drivers change lanes to move around slower cars, they might often realize they 

are coming upon the car in front of them too quickly and then hit the brakes or swerve quickly 

into the neighboring lane. Upon seeing the first car brake, other cars might overreact and brake 

too much, and the cars behind them might do the same. These sudden, collective movements can 

have consequences that reverberate backwards to the cars following behind, sometimes causing 

intermittent motion that varies across different length scales, dynamic clustering of cars with 

similar speeds, and even traffic jams that last for hours.  

In the context of supercooled liquids and glasses, the origin and the mechanisms of kinetic 

arrest at the molecular level are not fully understood [24]. Glasses are formed when certain “glass-

forming liquids”, abbreviated as GFLs, are rapidly quenched, or supercooled, to temperatures 

below their melting points. Many quantitative or qualitative definitions for what exactly a glass 

is have been proposed, as outlined by Zanotto and Mauro [25]. For the purposes of this work, it 

is accurate enough to describe a glass as a non-equilibrium amorphous solid that lacks crystalline 

order. Rapid quenching allows the liquid to avoid crystallization at the melting temperature, 

which would normally occur with a sufficiently slow rate of cooling. Below the melting point, 
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supercooled liquids exist in a highly viscous state, usually in metastable thermodynamic 

equilibrium. 

 Common sand, silica (SiO2), is perhaps the best-known glass former. When molten sand 

is removed from a furnace, it begins to cool quickly, usually fast enough to avoid crystallization. 

Glass blowers take advantage of the resulting viscous fluid and mold it into the desired object. In 

general, when a supercooled melt gets cooled, its enthalpy drops as shown in Figure 1-1 below. 

The enthalpy continues to drop until it reaches a certain characteristic “glass transition 

temperature” (𝑇𝑔), at which the melt phase falls out of equilibrium and becomes a rigid, solid-like 

glass. 

 

Figure 1-1:  Schematic depicting the change in enthalpy of a generic glass forming liquid (GFL) under 
rapid quenching [5, 25]. At the glass transition temperature 𝑇𝑔, which is less than 𝑇𝑚, the 

thermodynamic melting point, the supercooled liquid falls out of equilibrium and becomes 
a glass. A GFL does not have a unique 𝑇𝑔 as it is typically dependent on the cooling rate. 

Quenching is not the only way to form a glass – other methods such as irradiation [26] and 
compression can also generate glassy states [2].   

 

There are no unique ways to describe the glass transition temperature unambiguously. It 

is commonly observed that 𝑇𝑔 occurs around 
2

3
𝑇𝑚 , where 𝑇𝑚 is the thermodynamic melting point 

[5]. Unlike the melting point, 𝑇𝑔 is not unique and depends on how fast the melt is cooled.  While 

𝑇𝑔 increases with increasing cooling rate, it does not depend strongly on the cooling rate; typically 

𝑇𝑔 changes by 3–5 K for an order of magnitude change in the cooling rate [5].  As evident in Figure 

1-1, the glass transition is not a true first order thermodynamic transition because there is no 
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discontinuous change in the enthalpy, or a thermodynamic phase change with a measurable 

latent heat at 𝑇𝑔. However, the thermodynamic response function, specific heat, shows a distinct 

jump at 𝑇𝑔. The thermal signatures are typically weak for open-network or “strong” glasses such 

as GeO2 and SiO2 while they are more noticeable for “fragile” glasses such as glycerol as shown 

in Figure 1-2 [2]. 

The transition across 𝑇𝑔 is irreversible – upon heating, a noticeable spike in the specific 

heat capacity occurs just above 𝑇𝑔. When going in the other direction by cooling from a high-

temperature liquid, the specific heat capacity usually decreases monotonically. Thus, the glass 

transition is an irreversible process as indicated by the hysteresis in the heat capacity [27-29]. 

Although the heat capacity of the supercooled liquid is always higher than that of the 

corresponding crystal that would exist at the same temperature and pressure, the specific heat 

capacity of a glass is typically close to that of the underlying crystal (see right panel of Figure 1-

2). The abrupt but continuous drop in the specific heat  at 𝑇𝑔 under quenching is often regarded 

as the key signature of a transition from an ergodic supercooled state to a non-ergodic glassy state 

[2, 30]. The rather close agreement suggests that the properties of the glassy state below 𝑇𝑔 are 

dominated by molecular vibrations as in crystalline solids [31].  Thus, the glass transition is a 

manifestation of the breakdown of ergodicity, which is reflected by the loss of configurational 

degrees of freedom at 𝑇𝑔 [30].  

At the microscopic level, rapid quenching slows down the molecular motion, which is 

reflected as a dramatic increase in the viscosity of GFLs over a relatively small temperature 

interval. Angell [2] classified GFLs into two broad categories – “strong” and “fragile”. As shown 

in Figure 1-3 [2], the strong GFLs, which have open-networked bonding structures, depict a near-

exponential (Arrhenius) growth in viscosity while fragile GFLs, which typically interact through 

non-directional or van der Waals interactions, have a pronounced non-exponential increase as 

they near the glass transition temperature. Experiments show that many GFLs attain a viscosity 

of 1013 Poise (1012 Pa·s) at Tg, and thus this viscosity value is regarded as a kinetic marker for 

glass transition. Several crossover temperatures, which ostensibly correspond to different rate 

mechanisms, can be identified. While there is no universal consensus on the origin of these 

crossovers, the non-Arrhenius nature of fragile GFLs has attracted much attention over the last 
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several decades. At the glass transition temperature 𝑇𝑔 the supercooled liquid attains a viscosity 

that is so high that it effectively acts like a solid, at which point it is said to finally be a glass. 

 

 

 

Figure 1-2:  (left) Abrupt drop in specific heat at Tg for several glass formers [1, 2]. (Right) Schematic 
showing the relative magnitudes of specific heats in the glass and the underlying crystal 
states [31].  The figure on the left is reproduced from [1].  

 

Below 𝑇𝑔, the very high viscosity corresponds to a relaxation time for molecular 

rearrangement, which is the average time needed for atoms in the material to attain a state of 

thermodynamic equilibrium, that is too large to be measured in the laboratory. Thus the glass 

transition can be considered a type of kinetic arrest, and the falling out of equilibrium occurs 

when the relaxation time is 𝑂(102 − 103) s. It is, however, important to understand that the glass 

transition is not a true first order thermodynamic phase transition. Rather, it signifies that liquid 

relaxation processes have become much slower than laboratory timescales [32, 33]. This transition 

to a non-equilibrium state is accompanied by loss of configurational degrees of freedom [30] that 

is manifested in changes in thermodynamic properties, such as the sharp but continuous drop in 

specific heat to values close to the corresponding crystal state [31].   
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Figure 1-3:  Strong-Fragile classification of supercooled liquids according to Angell [1, 2]. The figure is 
reproduced from [1].  

 

Section 1.1 Phenomenology of Supercooled Liquids 

 There are several interesting phenomenological attributes of supercooled liquids and 

glasses in addition to the features observed to occur at the glass transition as discussed 

previously. Some of these are briefly discussed below.  

1.1.A Temperature Crossovers and Transitions 

Within the kinetic framework, the glass transition temperature 𝑇𝑔 indicates a demarcation 

of experimentally accessible timescales in the supercooled liquid. As can be observed in Figure 1-

3, the viscosity of the fragile GFLs shows changes in slope that are usually identified as 

temperature crossovers [34]. There is no firm consensus on the physical significance or location 

of these crossovers, although it is generally agreed-upon that a change of relaxation mechanisms 

occurs at the crossover temperatures.  
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In normal liquids, transport coefficients such as viscosity (𝜂) or the self-diffusion 

coefficient (D) exhibit an Arrhenius variation with temperature. For example, the viscosity can be 

written as [23, 35] 

    
 A

B

E T

k T
T A T e    (1.1.1) 

where 𝐸𝐴(𝑇) is the activation energy, 𝑘𝐵 is Boltzmann’s constant and 𝐴(𝑇) is a material-dependent 

constant. For normal liquids, both 𝐸𝐴  and 𝐴 are usually independent of temperature, which 

indicates that the viscosity is controlled by a single relaxation mechanism. Since the viscosity 

increases in an Arrhenius fashion in strong GFLs such as silica or germanium, as indicated in 

Figure 1-3, it can be inferred that there is a single dominant mechanism for viscous transport with 

a constant activation energy. For silica, it has been proposed that diffusion of silicon and oxygen 

atoms controls viscous transport [36]. Reliable viscosity measurements indicate an activation 

energy of 712 kJ/mol for temperatures ranging from 1400 ºC to 1000 ºC [36]. The activation 

energies for self-diffusion of silicon and oxygen atoms are of the same order of magnitude but are 

slightly smaller across the temperature range. It is also speculated that the transport of “defects” 

composed of silicon monoxide (SiO) in the silica melt influences the viscous transport at lower 

temperatures [36]. The concentration of the SiO molecules, or defects, however, is dependent on 

the open network structure of silica.  

The close association between diffusive and viscous transport is encapsulated by the 

Stokes-Einstein relationship (SER), which posits that, the translational (self) diffusion coefficient 

D and viscosity 𝜂 have the relationship [37, 38] 

 
6

Bk T
D

R



   (1.1.2) 

where R is the molecular radius [39]. The SER is remarkably observed to hold in both normal 

liquids and strong GFLs such as silica across wide range of diffusivities and viscosities.  

So-called “fragile” glass-forming liquids, on the other hand, exhibit viscosity that grows 

faster than what is predicted by the Arrhenius Law [40], indicating a rapid increase in the 

activation energy that quickly becomes much higher than the energy associated with chemical 

bonds in the liquid. Thus, the activation energy of fragile glass-forming liquids corresponds not 

to the forming or breaking of individual chemical bonds, or the re-orientation of individual 
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atoms, but rather to one or more processes that involves groups of atoms. These collective 

processes are consistent with a picture of a supercooled liquid as a macroscopically homogeneous 

system where the movements of clusters of atoms are driving the system’s most dominant 

relaxation process, which is also known as the α-relaxation. Theories of the glass transition, most-

notably the model of Adam and Gibbs, place utmost importance on relaxation behavior of 

“cooperatively rearranging regions (CRRs)” [41, 42]. A kinetic “fragility” metric defined as 𝑚 ≡

𝑑(ln 𝜂)/𝑑(1/𝑇) [5] is often used to measure the sensitivity of the change in viscosity, or 

equivalently the α-relaxation time, with temperature. For strong GFLs, the kinetic fragility is 

typically small, and not unexpectedly, it shows a reasonable correlation to the attendant 

thermodynamic changes [43, 44].  

The various temperature crossovers are illustrated using the prototypical viscosity 

variation of a fragile glass-forming liquid ortho-terphenyl (OTP) as shown in Figure 1-4. When a 

glass-forming liquid is quenched, there is some dynamic, structural, or thermodynamic process 

that prevents the liquid from crystallizing as it normally would at the melting point 𝑇𝑚. This 

process occurs above 𝑇𝑚 at the “onset temperature” commonly denoted 𝑇𝑂; at this temperature, 

the first features appear that distinguish the supercooled liquid from the normal liquid [45].  

The slow dynamics observed in supercooled liquids is elegantly described through the 

concept of transport across inherent structures (IS), which are local minima in the rugged 3N-

dimensional potential energy landscape (PEL) with a large number of minima and saddle points 

[23]. The IS formulation of Stillinger and Weber [46, 47] follows the original idea of Goldstein [48]: 

that the dynamics of a supercooled or glass state can be described as predominantly vibrations at 

local potential energy minima. The slow relaxation observed in the glassy states can be described 

as a consequence of the system’s occasional hopping between the inherent structures that are 

separated by “activation” energy barriers. The PEL is temperature-independent, but the 

thermodynamic state of the system determines which regions of the PEL are sampled by the 

system. At high temperatures, the system mostly traverses low energy barriers, and as the system 

becomes more supercooled, it encounters higher energy barriers which are temperature 

dependent.  
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Figure 1-4: The variation of viscosity of the glass-forming liquid ortho-terphenyl (OTP) [24], and the 
approximate location of various temperature crossovers or transitions. The onset of super 
Arrhenius behavior at temperature 𝑇0 coincides with 𝑇∗ of [24, 49], at which collective 
effects of supercooled liquids appear prominently. The Mode Coupling Theory (MCT) 
critical temperature 𝑇𝑐 is coincident with the temperature 𝑇𝑥 [31, 50] reported as the 
transition temperature that marks the approximate boundary between activated and non-
activated dynamics. It also roughly fits the description of the crossover temperature 𝑇𝑑 [51] 
or  𝑇𝐴 [1] of the random first order transition theory (RFOT), below which the dynamics is 
landscape-dominated [1]. Using a derivative analysis [52], two characteristic temperatures 
𝑇𝐴 and 𝑇𝐵 are sometimes reported in the study of viscosity data of GFLs. The former (𝑇𝐴), 
which is a crossover to a non-Arrhenius form, is coincident with  𝑇0, while the latter (𝑇𝐵), 
which represents a dynamic crossover between one VFT (Vogel-Fulcher-Tammann) to 
another VFT form [53], is widely regarded to be same as 𝑇𝑐 [34]. A milder crossover is more 
recently observed using atomistic simulations at 𝑇𝑠, which is above 𝑇𝑐. Several model GFLs 
show a breakdown in the Stokes-Einstein relationship (SER) at  𝑇𝑆  although 
experimentally, this breakdown is regarded at take place at  𝑇𝑐. In this dissertation, 
additional dynamic and thermodynamic evidence based on theoretical modeling and 
simulations are provided in support of 𝑇𝑠, although it is quite close to  𝑇𝑐. The temperatures 
𝑇𝑔 and 𝑇𝐾  represent the glass transition temperature and the Kauzmann temperature, 

respectively; the latter denotes a hypothetical temperature at which the configurational 
temperature of the glass vanishes [3]. For low temperatures, experimental data suggests a 

VFT form for the relaxation time given as  𝜏 = 𝜏0 exp (
𝐴

𝑇−𝑇0
) with 𝑇0 nearly equal to 𝑇𝐾  [54]. 

Other analytical forms that yield lower fitting errors [40] and representation of data, for 
example, based on 𝑇𝑐 rather than on 𝑇𝑔 [50], have also been proposed in recent years in the 

study of slow relaxation of GFLs.  
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Figure 1-5: The variation of inherent structure (IS) energy demarcating the (potential energy) 
landscape-influenced and landscape dominated regions in a model supercooled liquid 
using atomistic simulations [5, 45]; the corresponding temperature is denoted as 𝑇𝑂. The 
figure is reproduced from [5].  

 

The transition state, or kinetic rate, theory allows the calculation of the frequency of hopping from 

one IS to another. As is evident, the viscosity expression in Eqn. (1.1.1) can now be naturally 

accommodated into the PEL picture [23]. Using the PEL formalism, Sastry, Debenedetti, and 

Stillinger [45] noted that at high temperatures the IS energy is fairly constant, as shown in Figure 

1-5. This regime corresponds to free diffusion that is a feature of simple liquids. The IS energy 

starts decreasing at a characteristic temperature, previously identified as 𝑇0 – the onset of super-

Arrhenius behavior for the viscosity. This regime, where viscosity increases modestly, is classified 

as (potential energy) landscape influenced. The IS energy continues to drop, which is accompanied 

by a rapid increase of viscosity. The regime where viscosity changes most is classified as 

landscape-dominated, and the transition temperature is usually denoted as 𝑇𝑐. The IS energy 

flattens out and becomes constant again with further reduction of temperature, and the system 

transitions into a glass at 𝑇𝑔. Thus Sastry, Debenedetti, and Stillinger, working under the energy 

landscape paradigm of Goldstein [48], frame the onset of glassy dynamics as a consequence of 
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the liquid settled deep in the landscape-influenced regime, as opposed to the normal liquid that 

is free to explore its configuration space with little to no constraint by the potential energy 

landscape. 

The crossover to an “activated regime” where the dynamical processes and relaxation 

time are intimately tied to the activation energy barriers is marked by the temperature 𝑇𝑐. It is 

generally accepted that 𝑇𝑐 also represents the critical temperature point of the mode coupling 

theory (MCT) [55, 56], which is described briefly in Section 1.2-B. MCT is a dynamic theory 

involving correlations of density fluctuations. Working with the static structure factor 𝑆(𝐪), the 

MCT equations entail a non-linear feedback mechanism between the structure and the dynamics, 

which strengthens with decreasing temperature. A key prediction is that the 𝛼-relaxation time 

diverges as a power law at a finite temperature as shown by 

  cT T





    (1.1.3) 

where 𝑇𝑐 is the MCT critical temperature and γ is a system-dependent exponent [31]. It is now 

widely accepted that 𝑇𝑐 represents a transition to an activated, or “hopping”, dynamics regime; 

more recent versions of MCT incorporate the activated barrier crossing events [54].  Nevertheless, 

𝑇𝑐 marks the limit of MCT (without the hopping mechanism) and coincides with the start of the 

landscape-dominated regime. It is of interest to note that the numerical value of 𝑇𝑐 is usually 

estimated from simulations using a fitting procedure that is performed over a small temperature 

range. Furthermore, the theoretical or ideal critical point 𝑇𝑐−𝑖𝑑𝑒𝑎𝑙 is lower than what is estimated 

from simulations and is closer to 𝑇0 [57]. 

As is expected, SER is violated for fragile GFLs much more prominently than in strong 

GFLs. Experimental data from 84 GFLs indicate that SER violation occurs below 𝑇𝑐 with the SE 

relationship replaced by a fractional form 𝐷 ~ 𝑇𝜂−0.85 [50]. Recently, atomistic simulations of 

several model GFLs have indicated that SER breaks down at a higher temperature  𝑇𝑐 <  𝑇𝑠 <  𝑇0  

[58, 59]. An earlier study revealed an interesting non-monotonic temperature variation of 

dynamic correlations in a model GFL comprising of harmonic spheres with a dynamic length 

scale peaking near 𝑇𝑠 but below 𝑇𝑐 [60].  The study involved the use of “point-to-set” correlations, 

where a subset of atoms was pinned in place to form a static wall, preventing any movement of 

these atoms but allowing them to interact with the rest of the atoms in the system, which were 

free to move. Dividing the simulation box into small subdivisions, the evolution of particle flow 
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was quantified with respect to the lateral distance z from the wall using an overlap function. By 

performing fits of a stretched exponential (KWW) form to these functions, the authors established 

a dynamic length scale 𝜉𝑑𝑦𝑛 that is the distance required to move away from the static wall so 

that the equilibrium behavior of the system is recovered. A conclusion of this study is that the 

shapes of dynamically heterogeneous regions, which are related to the dynamical length scale, 

change at 𝑇𝑠. Subsequent investigations with three model glass-forming liquids confirmed 

changes in dynamics near 𝑇𝑠 as well as a breakdown of SER [61]. This notion of a shift in the 

nature of heterogeneous dynamics – an important attribute of supercooled liquids and glasses 

[62] – will be addressed in the next section and further explored in Chapter 6 with analyses of 

stringlike cooperative motion in glass-forming liquids. 

Interestingly, this high temperature crossover (𝑇𝑐 <  𝑇𝑠 <  𝑇0) has been reported in 

previous investigations. Using the Kob-Andersen model system [63], the statistical properties of 

“flow events” are observed to change appreciably near 𝑇𝑠 [64]. For example, the shape of the flow 

event distribution displays a pronounced exponential form at temperatures below 𝑇𝑠 but well 

above 𝑇𝑐. In this dissertation, additional dynamic and thermodynamic evidences are presented 

that can establish  𝑇𝑠 to be a genuine crossover temperature that exists above  𝑇𝑐.  

 Below the glass transition temperature, 𝑇𝑔, two important transition temperatures exist - 

𝑇𝐾 and 𝑇0. The former (𝑇𝐾) is named after Kauzmann, who postulated the possibility of vanishing 

excess entropy between the liquid and crystal phases at this characteristic temperature, and the 

latter (𝑇0) is a fitting parameter of the Vogel-Fulcher-Tammann (VFT) form, which is commonly 

used to capture the variation of viscosity over a range of temperatures. Fascinatingly, both 

temperatures are found to be relatively close to each other while noticeably different from 𝑇𝑔 [54]. 

While 𝑇𝐾 has a thermodynamic origin, the physical significance of 𝑇0 is strictly based on kinetic 

considerations. While Kauzmann never entertained the possibility of negative configurational 

entropy for glass – he merely postulated recrystallization as a recourse to the paradoxical 

situation – subsequent work by Gibbs and DiMarzio (GDM)  [42] and Adam and Gibbs (AG) [41] 

led to the idea of thermodynamic glass transition, and relaxation of cooperative rearranging 

regions (CRRs). The viscosity variation with temperature in the AG model is Arrhenius and can 

be stated as 
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where 𝑆𝑐 is the configurational entropy. By assuming that the change in specific heat is 

independent of temperature, 𝑆𝑐 can be written as 
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Finally, the viscosity can be shown to be 
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which remarkably agrees with the VFT form  
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  (1.1.7) 

Equations (1.1.6) and (1.1.7) are identical if 𝑇𝐾 = 𝑇0. The VFT law predicts the variation of viscosity 

𝜂 in terms of a characteristic temperature 𝑇0, at which the viscosity diverges to infinity and total 

dynamical arrest of the liquid occurs. The VFT law has had considerable success at predicting the 

variation of viscosity by fitting to experimental data. The AG model establishes a theoretical basis 

for the VFT law in terms of the increasing size of correlation regions, and configurational entropy, 

which can ostensibly be extracted from specific heat data at  𝑇𝑔. Some have questioned the 

theoretical basis of the VFT Law and view it merely as a useful fitting equation [50]. For example, 

Mauro and co-workers [40], and the Dyre group [65], through the analysis of a large number of 

GFLs, found little or no reason to conclude that viscosity, or equivalently, the relaxation time, 

diverges at finite temperatures. Thus, empirical evidence does not lend a credible mechanistic 

basis to the VFT form; by association, the seminal idea of AG may also be questioned [66]. At the 

same time, one of the most successful theories of glass transition, namely, random first order 

transition theory (RFOT), also predicts a VFT-like divergence of relaxation time under certain 

assumptions [54].  
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1.1.B Configurational Entropy 

Not all of the assumptions that go into the Adam-Gibbs Model rest on completely solid 

ground, as noted in some criticisms of the model [66], but it has seen considerable success in 

describing results from experiments and simulations [67-71], with the principal issue being that 

the configurational entropy is difficult to quantify in general, both in computer simulations and 

experiments. As previously described, the A-G Model establishes the decreasing configurational 

entropy as the driving cause of the rapid divergence of relaxation time (𝜏) when the liquid 

temperature approaches 𝑇0. It has not always been entirely clear how to compute or determine 

the configurational entropy, which is the entropy associated with motion of atoms and contrasts 

with the vibrational entropy associated with the oscillatory movement of atoms around lattice 

sites. Conceptually, the excess entropy 𝑆𝑒𝑥  is defined as 

      , , ,ex liquid crystS T S T S T      (1.1.8) 

 

 

Figure 1-6: Schematic showing the relationships between different entropy components. The liquid 
state entropy can be divided into two components as 𝑆𝑙𝑖𝑞 = 𝑆𝑒𝑥 + 𝑆𝑐𝑟𝑦𝑠𝑡 . Sometimes, the 

excess entropy 𝑆𝑒𝑥  is taken as the configurational entropy 𝑆𝑐, which is strictly incorrect. The 
excess entropy may be taken to be proportional to 𝑆𝑐(𝑇 − 𝑇𝐾), where 𝑇𝐾  is the Kauzmann 
temperature [43]. Figure reproduced from [43].  
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The excess entropy is a measure of the configurational entropy 𝑆𝑐, but they are not the 

same, as shown by the relationships between the various entropy components depicted in Figure 

1-6.  The vibrational entropy 𝑆𝑣𝑖𝑏 can be assumed to be the same as the entropy of the underlying 

crystal – that is, if there is indeed a well-defined crystalline structure at the same thermodynamic 

state (𝜌, 𝑇) [24]. The liquid state entropy can be divided into two components as 𝑆𝑙𝑖𝑞 = 𝑆𝑒𝑥  +

𝑆𝑐𝑟𝑦𝑠𝑡. Sometimes, the excess entropy 𝑆𝑒𝑥 is taken as the configurational entropy 𝑆𝑐, which is 

strictly incorrect [30]. However, the excess entropy may be regarded to be proportional to 𝑆𝑐(𝑇 −

𝑇𝐾), where 𝑇𝐾 is the Kauzmann temperature [43], although the accuracy of proportionality is not 

fully established [68].   

Experimentally, the most common method to estimate 𝑆𝑐 is to use the change in specific 

heat capacity as [30, 68] 

        , ,  ln '

m

T

c p liquid p crystal c m

T

S T C C d T S T     (1.1.9) 

The above expression involving the isobaric specific heat is only valid approximately, as the 

excess entropy also include excess vibrational entropy. The use of the above expression, which is 

strictly valid only under equilibrium thermodynamic conditions, becomes more questionable at 

and below 𝑇𝑔 when the system falls out of equilibrium [30]. In the traditional viewpoint, 𝑆𝑐 

becomes “frozen” when the system transitions into a glassy state at 𝑇𝑔. Thus, the integrand in the 

above equation vanishes, leaving a residual entropy 𝑆𝑐(𝑇𝑚) evaluated at the melting point 𝑇𝑚 or 

at some other reference temperature. The finite entropy, when extrapolated to 0 K, remains a 

point of contention in the glass community. Kivelson and Reis [72] have argued that entropy goes 

to zero at absolute zero Kelvin and the residual entropy is simply an artifact of calorimetric 

measurements along irreversible thermodynamic paths [73]. Mauro and coworkers [30, 74] have 

supported this argument by invoking the principle of “continuously broken” ergodicity at and 

below 𝑇𝑔. However, this viewpoint is not commonly accepted [75-78] and many practitioners in 

the glass field are comfortable with the notion that there is a residual entropy as shown in Figure 

1-6 [79-81]. 

The inherent structure (IS) approach, discussed previously, can be used to access 

configurational entropy from atomistic simulations [82]. In this method, the supercooled liquid 

is simulated for a sufficiently long time that a large number of configuration samples can be 
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generated, and each configuration is minimized, for example, using a steepest-descent or 

conjugate gradient energy minimization method, which moves the system towards the nearest 

local minimum in the potential energy surface. These potential energy “basins” can be treated as 

a set of all points of the accessible configurational space [83]. The total partition function then can 

be expressed as a sum of IS partition functions. Since the number of inherent structures is equal 

to the number of distinct configurations, it will simply be a measure of the configurational 

entropy [83]. Recently, novel methods have been proposed for accessing configurational entropy 

from simulations [84]. In general, the configurational entropy is computed as 𝑆𝑐 = 𝑆𝑡𝑜𝑡𝑎𝑙 − 𝑆𝑣𝑖𝑏 

from numerical simulations; various methods are then devised to partition the states and 

compute the vibrational and total  entropies. 

 

1.1.C Relaxation and Dynamical Heterogeneity 

Diffusivity and viscosity can be theoretically expressed as the integral of time correlation 

functions, or equivalently, computed from the slope of the corresponding mean-square-

displacements (MSD) [85]. In normal liquids, time correlation functions relax exponentially, 

which indicates that the system does not retain the memory of excitation. Further, this implies 

that different regions of the system relax with the same time constant, which signifies spatially 

homogenous dynamics. Correspondingly, the MSD depicts two broad stages; in the first stage, 

the atoms move ballistically, followed by the diffusive region where the MSD slope scales as the 

elapsed time. In contrast, a supercooled system shows a pronounced “plateau region” between 

the ballistic and diffusive regions, where the atoms are trapped in a “cage” formed by the 

neighboring atoms. The time correlation functions in the plateau region shows a discernible non-

exponential temporal behavior, which can be expressed by a stretched exponential function given 

by 

 ( ) exp
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
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  (1.1.10) 

This is known as the Kohlrausch-Williams-Watts (KWW) form; in the above expression 𝛽 denotes 

a material/temperature-specific exponent. Laboratory experiments on common glass-forming 

liquids such as ortho-terphenyl (OTP) and glycerol have demonstrated this relaxation behavior 
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[86]. The stretched exponential form for relaxation, which appears in various scenarios 

throughout nature, can be shown mathematically to result from a heterogeneous system wherein 

the various dynamically-distinct regions each decay in an exponential manner, but with different 

time constants or relaxation times 𝜏 [87]; it is also possible that the relaxation is inherently non-

exponential even locally [54]. The super Arrhenius increase in the viscosity is closely correlated 

to the relaxation behavior of the system – non-exponentially relaxing systems usually depict large 

deviation from Arrhenius behavior [32].  

Spatially distinct or heterogeneous dynamics is commonplace in nature. For example, in 

a traffic jam, one will often be sitting still behind a line of cars and experience a sense of frustration 

as a line of cars in the adjacent lane suddenly begin moving. This behavior, in which spatially 

distinct clusters of objects in jammed systems exhibit different dynamical behavior compared to 

the objects in nearby regions, is called dynamical heterogeneity (DH). A similar spatially 

heterogeneous dynamics is also observed in glasses and supercooled liquids, where dynamically 

similar groups of atoms form spatial clusters [62]. These spatially separated regions have a finite 

life time that is usually of the same order of magnitude as the 𝑎 relaxation time [88, 89]. It is now 

widely regarded that DH is closely correlated to the super-Arrhenius increase of relaxation time 

with decreasing temperature, and the attendant non-exponential relaxation behavior.  

DH is experimentally observed in diverse situations. Keys and coworkers studied a 

granular, two-dimensional system of metal ball bearings percolated by air [13]. By using a camera 

to track the trajectories of the ball bearings, they clearly observed the formation and disintegration 

of fast and slow regions in the system. Another experiment by Russell [90] involved measuring 

the dielectric constant of a very small region above the surface of a supercooled liquid. Within 

that small region, fluctuations were observed in time, indicating the presence of heterogenous 

dynamics. Complex “dynamic hole-burning” experiments have also demonstrated the existence 

of DH in several materials [91].  

In the past few decades, the rapidly increasing practicality of atomistic computer 

simulations have made them instrumental in confirming the existence of dynamical 

heterogeneity in supercooled liquids. Several metrics have been proposed in recent years to 

quantify DH in GFLs. The simplest measure is the deviation from the Gaussian behavior expected 
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in simple liquids. When a liquid becomes supercooled, the non-Gaussian contribution 𝛼2 also 

increases and is usually calculated in terms of the second and fourth moments as 

 
 

 

4

2 2
2

2
( ) 1

5

r t
t

r t
     (1.1.11) 

The above non-Gaussian parameter shows a peak at a certain time when the presence of DH is 

maximal. Spatially heterogeneous dynamics also implies the existence of one or more length 

scales that characterizes the spatial correlations on the mobility of the atoms [92]. Sophisticated 

methods based on space-time multipoint correlations are usually employed to obtain length 

scales in computer simulations [54]. There are, however, no unique ways to define or extract 

length scales theoretically. For example, one can define both static and dynamic length scales. As 

noted in [92], length scales extracted from correlation functions and the attendant susceptibilities 

may not be the scales pertinent to the glass transition. In general, static lengths scale as the 𝑎-

relaxation of the system and are much smaller than the dynamic length scales [93]. The dynamical 

behavior of the length scales can also be considerably different. As discussed previously, the 

dynamical length scale (𝜉𝑑𝑦𝑛) identified in Kob, R-Vargas and Berthier, using point-to-set 

correlations, shows a peak at a characteristic temperature 𝑇𝑠 while the static length scale (𝜉𝑠𝑡𝑎𝑡) 

shows a monotonic increase with temperature [60].  

Perhaps the most striking illustration of DH is captured by quasi-one-dimensional or 

stringlike motion of atoms (or the constituents) in arrested states such as in granular media [13], 

supercooled liquids, colloids [94], and even at grain boundaries [95], and during homogeneous 

melting [96]. This kinetically constrained motion is observed both in experiments and 

simulations, as shown in Figure 1-7. An important study published in 1998 by Donati, Douglas, 

Kob, Plimpton, Poole, and Glotzer reported the existence of stringlike cooperative motion in the 

Kob-Andersen binary Lennard-Jones system [97]. Among the most mobile atoms in the system, 

correlated hops were observed that formed chains consisting of up to tens of atoms. The authors 

viewed this work as direct confirmation of the cooperatively-rearranging regions of the Adam-

Gibbs Model [41, 98], described later in this chapter. DH has also been identified from simulations 

from so-called “propensity maps.” Propensity refers to the trajectory of a molecule or system of 

molecules that evolves over an iso-configurational average, where many independent 
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simulations are run that start with the same configuration of atoms but with different initial 

velocities [99, 100]. 

 

 

Figure 1-7: Kinetically-constrained stringlike motion, for (left) granular media (reproduced from [13]) 
and (right) supercooled liquids. Each color denotes a separate string or cooperatively 
moving atoms. Stationary or non-cooperative atoms exist in the supercooled system (right) 
but are not shown. 

  

The dynamic facilitation (DF) model proposed by Chandler and Garrahan [101] proposes 

that stringlike cooperative motion among atoms occurs as a natural consequence of facilitated, 

hierarchical dynamics [102]. It emphasizes the significance of “excitations,” which are atoms that 

perform short hops typically on the order of an atomic diameter and persist in the new location 

for a relatively long time. A movement in which an atom breaks its nearest-neighbor cage, but 

then quickly moves back to its initial position, is not considered an excitation. The study 

conducted by Keys, et al., of several model supercooled liquids revealed that the size of excitations 

has only a weak dependence on temperature and is almost always smaller than a couple atomic 

diameters [102]. Excitations facilitate other nearby excitations, resulting in hierarchical relaxation 

that gives rise to stringlike cooperative motion. The model is described in more detail later in this 

chapter. 
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An outstanding question is whether stringlike cooperative motion may be used to 

establish meaningful length scales that pertain to the slow dynamics [103]. The most 

straightforward length scale is the length of a string, which may be measured as simply the 

number of atoms in a string. However, strings rarely move in straight lines; they often contort 

and curl around on themselves, so the number of atoms in a string does not necessarily indicate 

the spatial extent of the string. Nevertheless, the average string length, which grows with 

decreasing temperature, may be considered a pertinent length scale associated with the growth 

in size of dynamically fast cooperating regions. A recent investigation by Starr, Douglas and 

Sastry has shown that string lengths can be construed as a metric for spatially heterogeneous 

dynamics and the length of the strings seem to be a quantitative yardstick of the CRRs in Adam 

and Gibbs model and RFOT theory [69].  

 

Section 1.2 Models of Slow Dynamics and Glass Transition 

The preceding descriptions of the most significant phenomenological hallmarks of 

dynamical and thermodynamic behavior in supercooled liquids represent the facts of the field as 

revealed by experiments and computer simulations. Many efforts have been made to assimilate 

these facts into coherent theories that seek to explain the mechanisms that culminate in the glass 

transition, or models that adopt some of the experimental observations and use them to explain 

other features and make predictions. Comprehensive reviews by Berthier and Biroli [54], 

Chandler and Garrahan [101], Cavagna [31], Kirkpatrick and Thirumalai [51], Stillinger and 

Debenedetti [4], Lubchenko and Wolynes [1], Karmakar, Dasgupta and Sastry [92], and Langer 

[104] address the strengths and weaknesses of nearly every glass theory in more detail than is 

provided here. Broadly speaking, theories of slowing down and the glass transition fall into two 

categories – they either have a thermodynamic origin and or a kinetic origin. It is important to 

note that in supercooled liquids, dynamical, structural, and thermodynamic processes are 

inextricably linked, so there is not really a theory or model that focuses entirely on one aspect 

without addressing the others. 
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1.2.A Free Volume Theories 

Free volume models of the glass transition may be thought of as an attempt to begin with 

the fundamentals of diffusive motion in fluids. The simplest formulation of the free volume 

model involves the special system of identical hard spheres, which will be discussed in detail in 

Chapter 2. The success of the VFT form given in Eqn. (1.1.7) in predicting the variation of viscosity 

over several orders of magnitude prompted early theorists to propose a theory based on excess 

or free volume in the melt [36]. In one of the earlier formulations by Turnbull and Cohen [105] 

[106], it was postulated that the fluidity increases free volume, which is defined as the difference 

between the average volume of the molecule and the van der Waals volume associated with each 

molecule. The model begins with the idea that a particle’s diffusive motion is really comprised of 

a cascade of short movements, where the particle’s range of motion is constrained to its local free 

volume V within the “cage” of neighboring atoms. Using the hard sphere (HS) model, the 

diffusion coefficient can then be computed as [106] 
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where 𝑣̅ is the average velocity of particles in the fluid, 𝑝(𝑉) is the probability that the free volume 

lies between 𝑉 and 𝑉 + 𝑑𝑉, 𝑎(𝑉) is a function of the free volume, and 𝑓(𝑉) is a correlation factor 

that accounts for the displacements as atoms bounce off their nearest neighbors within the cage 

inside the free volume. The correlation factor is critical to the free volume model for hard spheres 

at high density, and it is a process not considered by the successful but limited Enskog theory of 

hard spheres. For a random-walk trajectory which is only possible in an effuse, gas-like system 

of hard spheres, 𝑓(𝑉) = 1. A completely jammed or solid state will consequently have 𝑓(𝑉) = 0. 

Various free volume models may assume different functional forms for 𝑓(𝑉), provided they 

satisfy the above conditions in the limits of solid and effuse systems. Obtaining an accurate 

representation of the free volume of the material of interest is the primary challenge and potential 

drawback of free volume models. In [106], a step-function form is used for 𝑓(𝑉), and the jump 

distance is approximated as 𝑎(𝑉) = 𝛼𝑉, a linear function of the free volume 𝑉. This assumption 

is reasonable as it is a simple reflection of the fact that a larger free volume allows for longer 

possible paths for a particle to move across that volume, and it results in an expression for the 

diffusion coefficient: 
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where 𝑉∗and 𝑉𝑓 are the critical volume to allow the residence of another molecule and total free 

volume respectively, and the constant 𝛾 is numerical factor to correct the overlap of free volume 

which lies between ½ and 1. Typically, 𝑉∗ is of the order of 10𝑉𝑓. The incorporation of 

backscattering into the free volume model is important, as it explains the shortcomings in 

equations of state for dense fluids that arise out of taking gas equations of state to high density 

limits and modeling the particles as hard spheres with finite size, most-notably the widely-used 

Carnahan-Starling equation which is derived from the virial expansion of the ideal gas law. 

Assuming the SER, the viscosity variation can be now be written as  

 1 0
0 0

0

exp exp
f

BV B

V T T
  

   
        

  (1.2.3) 

where 𝐵1is a constant and 𝑉0 is the volume of a molecule. If the free volume is assumed to follow 

the relationship 𝑉𝑓 = 𝑉0(𝑇 − 𝑇0)/𝑇0, and with 𝐵 = 𝐵1𝑇0, the viscosity can be expressed in the VFT 

form as shown above [36]. Thus, the early attractiveness of free volume theories stemmed from 

the ability to predict the VFT form, albeit with several approximations. Notably, the free volume 

approach was criticized by Goldstein [107], who proposed the potential energy barrier picture 

described in the earlier section, although some observations on pressure dependence are not 

strong enough to reject the free volume approach [36]. Recent work has shown that free volume 

can be treated as a natural variable to describe the variation of relaxation time with temperature 

[108].  

 

1.2.B Mode-Coupling Theory 

Mode-Coupling Theory (MCT) [55, 56, 109, 110] is the most prominent first-principles 

theory of the glass transition – in contrast to other phenomenological theories of the glass 

transition that rely on the existence of certain observed dynamical features of supercooled liquids. 

MCT has seen some significant successes in explaining both experimental and simulation results, 
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with some notable failures as well. The goal of MCT is to obtain an equation of motion for the 

density correlations of a liquid. The density at a position r in a N-atom system is computed as 
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where 𝛿(𝐫 − 𝐫𝑖(𝑡)) is the Dirac delta function. The Fourier transform of the density is given by: 
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The Dirac delta function conveniently eliminates the integral and reduces the expression to a sum 

of exponential terms in the reciprocal space. The density is now a function of the wave vector k. 

The density correlator or the so-called intermediate scattering function 𝐹(𝑘, 𝑡) is a correlation 

function in the reciprocal length k = |𝐤| space, defined as 
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The density correlator, which is a measure of the system viscosity, decays to small values on a 

time scale indicated as the density relaxation time (often referred to as structural or α-relaxation) 

𝜏, which is sometimes defined as the time at which 𝐹(𝑘, 𝑡) attains one e-folding of its initial value. 

Using a series of steps, which are not outlined here, MCT ultimately results in the equation [54] 
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where M is the memory function or kernel, and  𝑆(𝑘) is the structure factor defined as 𝐹(𝑘, 0), 

which is the only input that is needed in MCT. Solving the above equation yields the most 

important prediction of MCT: that the relaxation time diverges according to a power law as 𝜏 =

𝐴(𝑇 − 𝑇𝑐)𝛾. As described previously, 𝑇𝑐 is called the mode-coupling critical temperature. In some 

range of temperatures, MCT does accurately describe the non-Arrhenius variation in relaxation 

time, one of the principal phenomena that must be encapsulated by any good supercooled liquid 

theory. As temperature approaches 𝑇𝑐, the original formulation of MCT predicts that the 

relaxation time diverges to infinity and the supercooled liquid has finally attained a completely 

non-ergodic state – in which the atoms can no longer achieve thermal equilibrium – and the system 

is said to be in a glassy state. For such a state, the intermediate scattering function will never 
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decay, remaining constant for exceedingly long time scales since the atoms cannot relax, and 

density fluctuations with length scales larger than those associated with vibrational motion 

remain correlated forever. 

For temperatures above the mode-coupling critical temperature, MCT predicts three 

relaxation regimes (see Figure 1-8). As also described earlier in the context of mean squared 

displacement (MSD), at very short time scales atoms undergo ballistic motion where they vibrate 

and move across the free volume that exists between their neighboring atoms. At slightly longer 

time scales the atoms traverse their free volume and begin to collide with neighboring atoms. For 

normal liquids there is enough free volume that atoms can usually push through their 

neighboring atoms, but in dense supercooled liquids atoms are trapped in “cages” formed by 

their neighboring atoms. The time scale at which atoms leave the ballistic regime and rattle 

around in their nearest-neighbor cages is known as 𝛽-relaxation. Eventually atoms push through 

their neighbors and begin 𝛼-relaxation, which corresponds to diffusive motion. The 𝛽-relaxation 

process is unique to dense supercooled liquids. A fully constrained or non-ergodic state can be 

thought of as a state where the caging or 𝛽-relaxation is inordinately long, much longer than the 

timescales associated with typical laboratory measurements.  

MCT has some important successes in when applied to explaining empirical results, one 

of which is the principle of temperature-time superposition that results naturally from the 

method. It states that in the α-relaxation regime, any correlation function 𝛩(𝑡) can be scaled by 

the relaxation time 𝜏(𝑇) at that temperature so that it falls onto a master curve 𝛹(𝑡, 𝑇) [110] 
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This scaling has been widely confirmed in both simulations and experiments of 

supercooled liquids [111]. However, a significant drawback of MCT, that has also been uncovered 

in simulations and experiment, is that the temperature 𝑇𝑐 at which complete dynamical arrest is 

predicted to occur is higher than the glass transition temperature 𝑇𝑔. This has simply not been 

observed in experiments or simulations. So, while MCT describes the dynamical features of 

supercooled liquids as they move towards the glass transition, there is some deficiency in the 

theory that prevents it from correctly predicting where the true glass transition should occur. 
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There are efforts in the glass community to identify other phenomena that may occur at the mode-

coupling temperature [54]. Sastry notes that the mode-coupling temperature is thought to 

correspond to the onset of activated dynamics [112]; other studies have cast doubt on the notion 

that any dynamical or thermodynamic process occurs at 𝑇𝑐.  

 

 

Figure 1-8: Predictions of the shape of the intermediate scattering function 𝐹(𝑘, 𝑡) made by MCT for 
supercooled liquids showing the two main relaxation behaviors. MCT predicts a diverging 
relaxation time at the mode coupling critical temperature 𝑇𝑐 . Figure reproduced from [110].  

 

1.2.C Random First-Order Transition Theory 

Random First-Order Transition Theory, commonly abbreviated as RFOT Theory, is a 

mean-field description that is able to predict a very broad range of quantitative and qualitative 

features of supercooled liquids [1, 51], including the origin of non-Arrhenius viscosity variation, 

connection between liquid entropy and relaxation rates, and the glass transition temperature 

[113]. The theory, which has its origin in mean-field Potts and Ising spin glass models [114-116], 

is microscopic in nature, meaning that it begins by quantitatively defining the potential energy 

function that describes interactions between individual atoms. In principle, if the microscopic 
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functional form of molecular interactions is known, one may map out an analytic description of 

the potential energy surface of an arbitrarily large network of molecules. RFOT recognizes the 

fact that supercooled liquids, unlike crystals, have significant degeneracy in their potential energy 

surface. This means that there are a very large number of minima in the potential energy surface 

for supercooled liquids, below a certain characteristic temperature 𝑇𝑑 [51] or 𝑇𝐴 [1], which 

effectively coincides with the MCT 𝑇𝑐 from a mean-field perspective [51]. For temperatures above 

𝑇𝑑/𝑇𝐴, the transport is dominated by collisional mechanisms, while below it is governed by 

activated or landscape-dominated transport. If activated events are completely neglected, then 

theoretically the system is trapped forever in a glassy state. Thus, without activated transport, the 

MCT 𝑇𝑐 represents a glass-like state. In computer simulations 𝑇𝑑/𝑇𝐴/𝑇𝑐  all mark the transition to 

a very sluggish system, and hence this crossover is often considered as dynamic transition [51]. 

It is generally accepted that the RFOT and MCT approaches merge at the crossover temperature  

𝑇𝑑/𝑇𝐴/𝑇𝑐. While RFOT is more appropriate at temperatures lower than 𝑇𝑑/𝑇𝐴/𝑇𝑐, MCT without 

activated transport is highly successful for describing the dynamics above 𝑇𝑑/𝑇𝐴/𝑇𝑐 [113].  

In essence, RFOT is a thermodynamically rooted approach that seeks to extend the theory 

of the liquid-crystal first-order phase transition to the case of molecules with aperiodic, non-

crystalline, randomized structures as seen in supercooled liquids. This is the origin of the 

“random” descriptor in RFOT. RFOT essentially states that the same microscopic processes that 

drive the liquid-crystal phase transition in normal liquids exist in supercooled liquids, but the 

first-order transition in supercooled liquids “looks” different in the mean-field limit due to the 

presence of random phases that are spatially and morphologically distinct [1]. This is why, for 

instance, there is no latent heat at the glass transition, and the heat capacity across the glass 

transition is smooth and appears closer to a second-order phase transition, in contrast to the 

discontinuity seen in the liquid-crystal phase transition [1]. The first-order transition predicted 

by RFOT occurs at 𝑇𝑑/𝑇𝐴 , at which point the system becomes activated. A second transition is 

predicted at the Kauzmann temperature 𝑇𝐾 when correlation length becomes divergent and the 

supercooled liquid transitions to a glassy state.  

When the system is in the activated regime, it can visit an exponentially large number of 

energy minima, which are statistically similar [92]. Thus, the system can be visualized as visiting 

a mosaic or patchwork of metastable states. Because there are interfaces between the mosaic states 
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there is an associated “surface tension” for generating these interfaces. Configurational entropy 

then acts as a driving force for the nucleation of “droplets” of metastable states [92]. The balance 

between the surface tension and the configurational entropy gives a critical length scale 𝜉, which 

is representative of the size of the CRRs; it can be expressed as [31] 
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where 𝑌 is a generalized surface tension and 𝛩 is a parameter less than or equal to 𝑑 − 1, where 

𝑑 is the dimensionality of the system. Finally, it can be shown that [31] 
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where 𝑇𝐾 is the Kauzmann temperature.  The above comparison shows that the RFOT length scale 

is sharper than that of Adam-Gibbs (AG) theory. Proceeding in the same way as done in Section 

1.1, the viscosity variation with temperature can be expressed as   

 

  

1

0 1

( )
exp

d

d
c

Y T

T TS T





 




 
 

  
 
 

  (1.2.11) 

The above relationship, as previously mentioned, collapses to the VFT form with some additional 

assumptions.  

Implicit in the above derivation is the assumed relationship between the configuration 

entropy 𝑆𝑐 and the Kauzmann temperature given as 𝑆𝑐 = 𝛥𝐶𝑝 (1 −
𝑇𝐾

𝑇
), where 𝛥𝐶𝑝 is the jump in 

the specific heat at the glass transition.  Above the glass transition, the supercooled liquid has a 

higher entropy than the corresponding crystal phase that would have existed if the liquid had 

not been rapidly cooled. But the entropy of the supercooled liquid also decreases faster with 

temperature than the entropy of the crystal. As discussed previously, a small extrapolation of the 

excess entropy to lower temperatures from 𝑇𝑔 will make the liquid entropy equal to that of the 

underlying crystal entropy – this temperature is denoted as the Kauzmann temperature 𝑇𝐾. Any 

further extrapolation of the liquid’s entropy leads to the case in which the liquid entropy becomes 

lower than that of the corresponding crystal, which is improbable although within the bounds of 
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laws of thermodynamics. However, at some smaller non-zero temperature, the extrapolated 

liquid entropy reaches zero, seemingly a violation of the Third Law of Thermodynamics. 

Although this extrapolation results in a paradox, it is not necessarily problematic, as it not certain 

that such extrapolations of the liquid entropy are valid. Indeed, the liquid’s entropy may turn 

sharply at some non-zero temperature and monotonically decrease until it disappears at absolute 

zero. The existence of a true first-order phase transition to a solid would save the “paradox” as 

Kauzmann originally postulated. In this case, the entropy would exhibit a sharp turn and 

decrease in the same manner of that as a solid, resulting in no violation of the Third Law of 

Thermodynamics.  

As discussed previously, a finite configurational entropy at 𝑇𝑔 if extended to 0 K, also 

remains a point of contention in the glass community. Kivelson, Reis and Mauro  [72] [73] [30, 74] 

have argued that all entropy goes to zero at absolute zero Kelvin and any residual configurational 

entropy is simply an artifact of calorimetric measurements along irreversible thermodynamic 

paths. There is, however, considerable opposition to this view [75-78] [79-81] and the traditional 

viewpoint is that glass at absolute zero possesses a finite configurational entropy.  

 

1.2.D Dynamic Facilitation Model 

An attempt to explain the glass transition in terms of processes driven by dynamical 

facilitation (DF) has been proposed by Garrahan and Chandler [117]. The model has its origins 

in early models of simple glass-like systems, in particular the Fredrickson-Andersen (FA) and 

East Models [118], which are variations on so-called “spin glasses” or Ising models that 

represent frustrated behavior in terms of interacting magnetic spins. In such models, the system 

attempts to attain a state of equilibrium indicated by the alignment of the magnetic spins. The 

East model is an Ising model where the spins (either “up” or “down”) are flipped if right 

neighbor (east) spin is up; thus the excitations propagate in the leftward (“west”) direction 

[119]. In the FA model, the spin flips if the left or right neighbor is in the up state [118]. Through 

this process of facilitation, spin excitations propagate across the chain in a hierarchical manner 

[118]. 
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 The DF model of the glass transition extends this idea to three-dimensional molecular 

kinetically arrested systems, where excitations are displacements of atoms from their “initial” 

positions that last for some significant time interval [102]. This definition of excitations excludes 

high-frequency rattling of atoms in the dynamic cages formed by their nearest neighbors, and 

also excludes fleeting hops by atoms out of their nearest-neighbor cage that are quickly reversed. 

Thus excitations correspond to the system crossing potential energy saddle points. As in the East 

model, these excitations are localized, meaning that the atom displacements they correspond to 

are fairly short, typically on the order of an atomic diameter and affecting only the nearest 

neighbors of the excited atoms, and the length scale associated with excitations is virtually 

temperature independent. Also, as in the East model, facilitation is directional and causes the 

propagation of dynamically heterogeneous regions throughout the supercooled liquid. In this 

sense, dynamical facilitation can be thought of as the impetus behind dynamical heterogeneity in 

the sense that the system dynamics is effectively controlled by dynamical facilitation [54, 102]. At 

a given time, some regions of the liquid will feature a higher concentration of excitations than the 

bulk, corresponding to dynamically fast regions of atoms that are undergoing cooperative 

rearrangements. The model assumes that the density of excitations follows the Boltzmann 

distribution, where the energy scale associated with excitations at a given length scale grows 

logarithmically with that length scale. This leads to the key prediction of the DF model - that the 

relaxation time varies with a parabolic form given by 
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where 𝐽 is proportional to the logarithmically varying energy scale of excitations, 𝑇𝑂 is the onset 

temperature of glassy dynamics, and 𝜏0 is the relaxation time at 𝑇𝑂. This parabolic law has shown 

good agreement to experimental data, with the significant caveat that it breaks down entirely 

above 𝑇𝑂 – a worthy tradeoff since the goal is not necessarily to develop a model that encompasses 

high-temperature dynamics in the liquid. This parabolic form acts in competition with the 

predictions of relaxation time from MCT, the VFT law, the Adam-Gibbs Model, and other theories 

of the glass transition; the theory can also predict the calorimetric glass transition [120]. Striking 

images are presented in [102] (shown below in Figure 1-9) from simulations of the growing 

regions of excitations that are caused by dynamic facilitation.  The notion of long-lived, persistent 
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local excitations will be called to mind in Chapter 6, when stringlike cooperative motion in 

supercooled liquids is discussed. 

 

Figure 1-9: Hierarchical dynamics from the dynamic facilitation (DF) model illustrating spatially 
expanding heterogeneous mobilities, reproduced from [102]. In the DF model, longer 
relaxation times at lower temperatures signifies increasing distance between elementary 
excitations, while in RFOT, the mosaic or cooperative rearranging regions (CRRs) grow in 
size with decreasing temperature. 

 

Section 1.3 A Thermal Jamming Perspective 

Although the debate as to whether the origins of the glass transition are thermodynamic 

or dynamical in nature is unresolved, the characteristic behavior of supercooled liquids entails 

some form of frustration at finite temperatures at the glass transition that confers mechanical 

rigidity to the glass. There are strong indicators of kinetic arrest in virtually every theory; for 

example, the ideal mode-coupling theory (MCT) emphasizes the role of dynamical caging of 
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atoms in inhibiting diffusive motion and leading to dynamical arrest at the critical temperature 

𝑇𝑐. The free volume models predict dynamical arrest in a similar fashion to MCT by relating the 

slowing-down of molecules to rapidly decreasing accessible free volume. The Adam-Gibbs model 

and random first order theory (RFOT) relate the diverging relaxation time to the vanishing 

configuration entropy and a diverging length scale. Conceptually, the Adam-Gibbs model and 

RFOT assumes that activated transport, and not jamming, controls the slowing down of dynamics 

[33]. On one hand, kinetic arrest in real space is invoked in the dynamic facilitation models, which 

explicitly postulates that arrested regions stay arrested unless they are in close proximity to 

mobile regions. Thus, RFOT and DF bring out a conceptual dichotomy – the former works in the 

configurational space, while the latter is rooted in real space regions [101]. While jamming is well-

understood in a static packing perspective [121, 122], none of the current theories described 

explicitly connects the jamming phenomena to the slowing down dynamics observed in 

supercooled liquids at finite temperatures. A central goal of this work, therefore, is to develop a 

theoretical framework for describing supercooled liquids in terms of the extent to which they are 

jammed at finite temperatures. The endeavor here is to conceptually consider glass forming 

liquids to be in a “thermally jammed” state with well-defined jamming metrics such as effective 

packing fraction and compressibility, and at the same time develop appropriate metrics to 

characterize the attendant dynamical slow down. The goal is to predict the ageing behavior of 

glass forming liquids all the way to glass transition; no attempt is made to rationalize the existence 

of crossovers associated with 𝑇𝑔 or 𝑇𝐾 or 𝑇0.  

In the case of rigid objects such as hard spheres, which will be discussed in detail in 

Chapter 2, jamming is a geometric phenomenon that may be unambiguously quantified by 

knowing the density or packing fraction 𝜙 of the system. Complete dynamical arrest in a system 

of monodisperse (identical) hard spheres occurs at approximately the random-close-packed 

configuration corresponding to 𝜙𝑅𝐶𝑃~ 0.64, or if the system is carefully prepared so that it 

crystallizes; the packing fraction for the face-centered-cubic lattice is 𝜙𝐹𝐶𝐶 = 0.74. It is intriguing 

that there is at least one scenario in which a fully-quantitative description of jamming is possible 

[121, 122].  

In molecular glass formers that feature “soft” particles whose boundaries are not as clearly 

defined as hard spheres, other factors determine the extent of jamming. This situation is best 
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illustrated by considering an example seen in the “workhorse” model supercooled liquids, the 

binary Lennard-Jones system of Kob and Andersen (KA) [111]. Details of the system are provided 

in the reference, and in Chapter 5. Two features of the system primarily contribute to its status as 

a good model supercooled liquid: the disparate atomic radii and the heavily skewed ratio of 

atoms (80% are of type A, 20% of type B). These characteristics make the system extremely averse 

to crystallization even at low temperatures. The KA system is run at constant density, and the 

temperature and pressure are allowed to vary. As temperature decreases the phenomenological 

features of the glass transition begin to emerge. But since the density of the system doesn’t change, 

the sluggish dynamics and non-Arrhenius variation of transport coefficients that may signify a 

jammed state cannot be as associated with the static jamming process that occurs in rigid systems 

– if 𝜙 were computed for the KA system using the atomic radii from the potential, it would never 

change. Instead, any jamming that accompanies the system’s evolution towards the glass 

transition is related to the decreasing temperature or increasing pressure.   

Thermal jamming descriptors such as the packing fraction that applies to hard spheres 

and rigid systems has not yet been similarly defined for molecular glasses. Consequently, there 

has not yet been a theory of the glass transition formulated in terms of jamming. But there are 

clues in the literature that suggest the route to be taken for establishing such a theory or model. 

An interesting result was observed experimentally for a number of supercooled liquids [53, 123] 

[124]. These studies showed that while dynamic crossovers indicated by shifts in the variation of 

relaxation time occur at very different temperatures depending on the choice of material or the 

pressure at which the sample is prepared, the value of the relaxation time at these crossovers is 

nearly identical. This result indicates that dynamical characteristics of supercooled liquids may 

be more informative than the thermodynamic state variables for describing the liquid’s 

“distance” from dynamical arrest. In addition, the characteristic relaxation time in log scale for 

different temperatures and pressures can be collapsed to one master curve in thermodynamic 

𝑇𝑉∝ space, where  𝑇 and 𝑉 are the system temperature and volume, respectively, and ∝ is an 

empirical constant [125-127]. Dyre and coworkers extended the concept of a simple liquid [128] 

by incorporating the theory of isomorphs [129] that can explain this scaling in the thermodynamic 

space. In a simple liquid, as proposed, there exists strong correlations between the virial and 

potential energy [130]. Such liquids show a “hidden scale invariance” indicating the presence of 

isomorphs along which structure and dynamics are nearly identical [131]. Thus isomorphic 
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liquids at two different state points (𝑇1, 𝑉1) and (𝑇2, 𝑉2) show identical structure and dynamics. 

Similar scaling behavior has been noted where the relaxation behavior can be represented by a 

master curve with a single variable 𝑇/𝑝, where 𝑝 is the pressure of the system, emphasizing the 

role of both temperature and pressure on glass transition [132].  

It is well-known that liquids can be approximated as a collection of hard spheres (HS) 

with a dominant repulsive potential and a weak attractive potential [37]. The collapse of 

structural and dynamic properties implies a quasi-universality in liquids that can be explained 

with model hard spheres [133, 134]. The quasi-universality in hard sphere systems indicates that 

if two liquids have similar structural and dynamical behavior, they both will map to a hard sphere 

system with the same effective packing fraction [134]. Thus, if an effective packing fraction can be 

defined and identified for all supercooled liquids, and in all thermodynamic states, then the 

associated structure and dynamics can be captured by this packing fraction, which will 

quantitatively describe the state of jamming in a thermally excited state. A primary objective of 

this dissertation is to develop a thermal jamming framework that will quantify the extent of 

jamming for any glass forming liquid (GLF) at any given thermodynamic state. Central to this 

development is the idea of quasi-universality and the hard sphere paradigm [134], which is 

extended to supercooled liquids and GFLs. In the next chapter, basic concepts of hard sphere 

theory and jamming are presented.    
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Chapter 2: Hard Sphere Theory 

The most basic conception of jammed matter can be visualized through randomly packed 

identical (monodisperse) spheres arranged inside a container. For a system of hard spheres, 

where the boundaries do not overlap, the extent to which the system volume is occupied by the 

spheres is determined by the “packing fraction” 𝜙, which is the ratio of the total volume of the 

spheres to the total volume of the container. For such a system of hard spheres (HS), the 

compressibility 𝑍 = 𝑝/𝜌𝑅𝑇, which is a dimensionless quantity expressed in terms of the pressure 

(𝑝), number density (𝜌), universal gas constant (𝑅) (which is the product of Boltzmann constant 

𝑘𝐵 and Avogadro’s number 𝑁𝐴), and temperature (𝑇), indicates the extent to which the system 

behavior deviates from that of an ideal gas [85].  The volume or packing fraction of the spheres 

can be expressed as 𝜙 ≡
4

3
𝜋𝜌𝜎𝐻𝑆

3 , where 𝜎𝐻𝑆 is the hard sphere diameter; it is directly proportional 

to a non-dimensional density, which is given by 𝜌̂  ≡ 𝜌𝜎𝐻𝑆
3 = 6𝜙/𝜋. For the limiting case of 𝜙 = 0, 

𝑍 = 1 and the hard sphere system becomes identical to an ideal gas system – this may be 

conceptualized as an infinitely effuse system of hard spheres, or equivalently, hard spheres with 

a diameter of zero. Molecules in a real gas have finite volumes, which is reflected by a non-zero 

packing fraction. As 𝜙 increases, the spheres begin to act like a compressible fluid, and when 𝜙 

exceeds approximately 0.49, an equilibrium hard sphere system can become partially crystallized 

[135]. Through a finite compression process, the hard sphere system can also be brought into a 

metastable state, analogous to that of a supercooled liquid [136]. It is remarkable that a simple 

system of monodisperse hard spheres can approximately represent such a wide range of fluidic 

behavior. 

 

Section 2.1 Hard Sphere Phase Diagram and Jamming Transition  

Figure 2-1 shows a “phase diagram” for hard spheres [121, 137], which relates the pressure 

(compressibility) of the system to the packing fraction. At 𝜙𝑓 ~ 0.49, a situation analogous to 

freezing occurs where the spheres may only rearrange by making short movements, and two 

“branches” emerge on the phase diagram. Between 𝜙𝑓 ~ 0.49 and 𝜙𝑠 ~ 0.55, the hard sphere 

system undergoes a first order transition. The isotropic fluid branch is explored by carefully 
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arranging or percolating the hard spheres so that they may find optimal packing configurations. 

This leads to the densest-possible packing of a face-centered-cubic (FCC) lattice at 𝜙𝐹𝐶𝐶  ~ 0.74. 

Other configurations such as 𝜙𝐵𝐶𝐶  ~ 0.68 (BCC lattice) or 𝜙𝑆𝐶  ~ 0.54 (simple cubic lattice) can 

arise from this branch as well. These configurations are periodic arrangements of atoms that can 

be constructed by translational placements of unit cells along the Cartesian axes. A unit cell is the 

simplest “building block” of the periodic lattice by which the entire lattice can be built. The simple 

cubic unit cell, for instance, is a cubic box with eight atoms located on the eight vertices of the 

cube. The FCC unit cell features atoms on the eight vertices of a cube with six additional atoms 

on the centers of the six faces of the cube; the BCC unit cell also features atoms on the cubic 

vertices but has one additional atom in the center of the cube. 

 

Figure 2-1: A schematic of the phase diagram for hard spheres [137]. 

The metastable branch of the hard sphere phase diagram develops when the spheres are 

compressed rapidly. Having insufficient time to rearrange into optimal packing, the spheres will 

eventually obtain a “random close-packed configuration (RCP)” corresponding to 𝜙𝑅𝐶𝑃 ~ 0.64 

[121]. At this configuration, the hard sphere system can be said to undergo a hard sphere glass 

transition. The hard spheres have formed an amorphous solid that is completely jammed with 

only local vibrational modes surviving [134].  
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Molecular dynamics and Monte Carlo simulations [138] of hard spheres have been used 

to compute 𝑍 near the RCP limit for decades [139, 140], a feat that is arguably not possible in a 

laboratory experiment of hard spheres, since gravity, friction, and finite size effects are 

exceedingly difficult to correct for. Although the simulations can reasonably compute the 

compressibility to 𝜙 close to the RCP limit, the exact value of 𝜙𝑅𝐶𝑃 is not necessarily discernible 

even in simulations. The metrics of jamming in hard sphere systems are thus not unique, and a 

more precise classification of jamming allows for multiple jammed configurations such as locally, 

collectively, or strictly jammed; similarly, the ambiguous RCP configuration [121] is more 

precisely expressed as “maximally random jamming” (𝜙𝑀𝑅𝐽) [122]. 

 

 

Figure 2-2: Liu and Nagel’s jamming phase diagram [141]. The interior of the surface bounded by the 
red curves corresponds to jammed states, which occur under sufficiently small temperature, 
shear stress, and reciprocal density. 

 

Liu and Nagel [141, 142] proposed an important heuristic for understanding the behavior 

of jammed matter in general by proposing a higher-dimensional phase diagram, shown in Figure 

2-2. Three variables – temperature, applied load or shear stress, and reciprocal density – are 

considered, and jammed states are demarcated by the surface bounded by the red curves. While 

qualitatively accurate, a quantitative boundary for the jamming surface has so far only been 
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defined at a single point, “𝐽”, which occurs only in the special case of zero applied load (shear 

stress) and zero temperature [141, 143]. At the point 𝐽, the hard sphere system achieves a jamming 

transition [144] with a power-law scaling that indicates a critical transition. Both thermodynamic 

variables such as temperature or shear stress can alter the jammed state. The jamming surface is 

not, however, sharply defined. As noted by Chaudhuri, Berthier and Sastry [145], who discovered 

a range of possible values for 𝜙𝑅𝐶𝑃 in the vicinity of 0.64 that correspond to the hard sphere glass 

transition, the point 𝐽 is not unique, and it is dependent on the sample’s preparation history. Other 

possible transitions in hard spheres are also known at packing fractions close to point 𝐽. A list of 

these transitions is provided in Table 2-1. 

 

Table 2-1: Static and dynamic transitions in monodisperse hard spheres in the vicinity of Point 𝐽 [121] 

𝜙 Definition Value 

𝜙𝑀𝑅𝐽 Maximally random jammed configuration (geometrical) ~ 0.64 

𝜙𝑑 Liquid HS state splits into an exponential number of states ~ 0.58 

𝜙𝐾 Ideal HS glass transition ~ 0.62 

𝜙𝑀𝐶𝑇 Mode-coupling transition in HS ~ 0.58 

𝜙𝑔 HS glass transition density (compression-rate dependent) 0.58 – 0.62 

𝜙𝐽 Point 𝐽 ~ 0.64 

𝜙𝑅𝐶𝑃 Random-close-packed configuration ~ 0.64 

   

Section 2.2 Hard Sphere Theory  

The monodisperse hard sphere system has long been the subject of intense theoretical 

development in the field of statistical mechanics, as it serves as a suitable approximation of the 

non-ideal gas. Since the hard sphere system is also the only case in which a firm, unambiguous 

jamming criterion may be established, an examination of hard sphere theory is a logical place to 
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begin with respect to understanding the jamming phase diagram. The interatomic potential 

energy of hard spheres is a step function at the hard sphere diameter 𝜎𝐻𝑆 [85]: 
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The equation-of-state (EoS) of a hard sphere system is expressed in terms of the compressibility 

and the packing fraction. In general, it can be written as [37, 146] 

 ( ) 1 ( )Z b g       (2.2.2) 

where 𝜙 is the packing fraction, 𝜎+ is the diameter of the hard spheres approached from the right 

as defined from the interatomic potential, and 𝑔(𝜎+) is the value of the radial distribution 

function at contact; i.e., at 𝑟 = 𝜎+. The direction of approach is specified to avoid the divergence 

of the potential at 𝜎− (approached from the left). The value of 𝑔(𝜎+) may be computed from 

molecular dynamics or Monte Carlo simulations [146]. The area under the first peak of 𝑔(𝑟) is 

equal to the coordination number (CN), the average number of nearest neighbors for every atom 

in the system. It is given by [85] 
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0
( )

r

CN drg r    (2.2.3) 

where 𝑔(𝑟) is the radial (pair) distribution function. For a random-packed-configuration of hard 

spheres with frictionless contact, 𝐶𝑁 = 6  [147]. The term 𝑏 in Equation (2.2.2) is the van der Waals 

co-volume, and in three dimensions 𝑏 = 2𝜋𝜎𝐻𝑆
3 /3. Another relationship that is commonly 

reported is given by [148]: 
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where 𝑉0 is defined as the close-packed molar volume, and is given by 
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The compressibility now can be written as [85] 

 ( ) 1 ( ) 1 4 ( )Z b g g           (2.2.6) 
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The previous equation is a general thermodynamic relationship for the hard sphere fluid; it is can 

be expressed as in terms of a geometric packing fraction 𝜙 and 𝑔(𝜎+), which is purely a structural 

quantity. The most widely-used equation of state for hard spheres was obtained by Carnahan and 

Starling (CS) [149] which uses the following form for 𝑔(𝜎+)  
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The CS EoS then reduces to 
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The CS equation can be derived by using a truncated virial expansion of the pressure in the 

compressibility equation, and has been found to be highly accurate for hard spheres 𝜙 < 0.50 

[150]. However, the CS equation suffers from two limitations: for one, it allows for non-physical 

values of 𝜙. The range of the CS equation is 0 < 𝜙 < 1, and in the context of physical hard spheres 

it is not possible to exceed the FCC packing limit of 𝜙𝐹𝐶𝐶  ~ 0.74, as it is geometrically the densest 

packing configuration. Increasing the density further would either require the spheres to overlap, 

in which case they are no longer hard, or deform, in which case they are no longer spheres. A 

packing fraction of 1 is attainable only if the diameter of the hard spheres is zero, in which case 

this description is also rendered meaningless. The second issue with the CS equation is that it 

simply does not agree well with compressibility data obtained by simulations for dense hard 

sphere packings, since it predicts a divergence in the compressibility at 𝜙 = 1 which is 

significantly higher than where it should diverge (near 𝜙𝑅𝐶𝑃 or 𝜙𝐹𝐶𝐶, depending on which branch 

of the hard sphere phase diagram the system exists). This shortcoming has led many practitioners 

to propose other equations of state that better encompass the compressibility of hard spheres in 

the metastable branch of the hard sphere phase diagram. Some of these equations have been 

developed on the basis of theoretical arguments, others on the basis of fitting functions applied 

to compressibility data from numerical simulations, and yet others are obtained by a combination 

of the preceding approaches [136, 144, 151-157]. 



 

39 
 

For the meta-stable fluid branch, several relationships have been proposed in the past.  

Many relationships are based on the free volume theory, which predicts a behavior of the form 

[144, 158, 159]: 
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where 𝑑 is dimensionality of the system and 𝜙∗ is the maximal packing fraction, which is close to 

𝜙𝑅𝐶𝑃. Using a numerical protocol that is based on inherent structures, and later through 

compression, Speedy [151, 152] proposed an EoS of the following form: 
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Here  𝑑𝑆 is close to 3, and ̂  is the non-dimensional number density scaled to the FCC packing 

density (√2𝜋/6), which is given by 3ˆ2 6 /S HS     . The above equation then can be 

formulated in packing fraction as  
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The parameters for the power-law of Speedy is chosen to fit hard sphere compressibility data 

computed from 200 hard sphere metastable systems that have been thermalized. It features the 

parameter  𝜙∗~ 0.648, which is very close to 𝜙𝑅𝐶𝑃 and indicates the value of 𝜙 at which the 

compressibility diverges for this EoS. While Speedy’s equation is very accurate for hard spheres 

at high density [153], it is invalid for hard spheres at low density where the CS equation works 

well. Odriozola and Berthier (OB) [136] have more recently developed a relationship that is based 

on numerical simulations of fully thermalized polydisperse repulsive spheres and the free 

volume theory. It is very similar to Speedy’s equation and is given by: 
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Given that its functional form is identical to Speedy’s equation, the Odriozola and Berthier EoS is 

also invalid for low values of 𝜙.  

Both Speedy and Berthier and coworkers [144] posit a kinetic glass transition before the 

maximally jammed state that occurs at 𝜙 = 𝜙∗ ~ 𝜙𝑅𝐶𝑃 ~ 𝜙𝐽. According to Speedy [151, 152], the 

hard sphere glasses are reproducible, which implies that structural relaxation time diverges 

before the maximal packing fraction 𝜙∗ is achieved in the system, and the glass transition may 

have a thermodynamic basis [152]. In both approaches, a kinetic glass transition is identified at a 

packing fraction that is smaller than 𝜙∗. Analysis by Speedy, using a large number of glasses 

prepared by different methods, shows that a kinetic glass transition occurs at 𝜙𝑐  ~ 0.57 when the 

root-mean-square (rms) displacements the spheres becomes is approximately the same as their 

diameters. The ideal glass transition, however, occurs at a higher fraction, and for a single 

component fluid it is located near 𝜙𝑐  ~ 0.586. By inspecting the dynamic and thermodynamic 

properties of polydisperse repulsive spheres, and a generalized VFT law, Berthier and coworkers 

have demonstrated a critical volume fraction 𝜙0 ~ 0.635 that signifies a divergence of equilibrium 

or structural relaxation time [160]. Interestingly, the compressibility 𝑍 is finite at 𝜙0 and is 

approximately equal to 34.4, which is at odds with the free volume theory which predicts that 

both 𝑍 and the relaxation time diverge together. Thus, a point "𝐺” is introduced by Berthier and 

coworkers that denotes the critical volume fraction corresponding to the dynamic divergence in 

the relaxation time as temperature 𝑇 → 0  [144, 161]. According to this view, the jamming 

transition at 𝜙∗ occurs deep in the glassy state and it is physically different from that kinetic 

transition at Point 𝐺 (𝜙0 ~ 0.635), the latter is closely related to the Kauzmann packing fraction 

𝜙𝐾, where the configurational entropy vanishes. Further jamming transitions take place over a 

range of packing fractions  * 0.642,0.664  , implying a continuous range of densities where 

hard sphere jamming can occur – this state corresponds to an infinite pressure [144] with the 

average coordination number increasing from zero to around 6 at  𝜙∗, or more precisely at the 

“glass close packed” (GCP) transition 𝜙𝐺𝐶𝑃,. The lower bound for GCP is given by  𝜙𝐺𝐶𝑃 > 0.664, 

which is very close to 𝜙𝑂𝐵
∗  ~ 0.669 that is given by the semi-empirical relationship of Odriozola 

and Berthier [136].  Interestingly, the only theory that predicts a finite compressibility is RFOT 

that predicts an ideal glass transition [144].   
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Although Speedy and Berthier/coworkers agree on the distinguishability of kinetic and 

jamming transitions, Speedy regards the jamming transition as reproducible and confers a 

thermodynamic basis to it while Berthier/coworkers treat the jamming transition as dependent 

on the numerical protocol for generating the jammed states. Ergodicity is lost at 𝜙0 or at 𝜙𝐾 which 

corresponds to the ideal glass transition, according to Berthier/coworkers, and a jamming 

transition occurs when the pressure diverges near 𝜙∗. In an opposing view [162], ergodicity is lost 

at 𝜙∗ with diverging compressibility and relaxation time without any intervening  ideal glass 

transition. Thus Point J controls jamming and the glass transition which occurs when  𝑇/𝑝 → 0 or 

equivalently when  𝑍 → ∞ as 𝜙 → 𝜙∗ [162].  
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Figure 2-3: Compressibility from four equations of state – Carnahan and Starling (CS) [163], Speedy 
[152], Odriozola and Berthier [136] and Liu [148, 164] considered in this work (only the 
metafluid branch is shown for Liu EoS [165]. The random close-packed value of 
𝜙𝑅𝐶𝑃  ~ 0.64 is denoted by a dashed line. 

 

Another equation of state of interest, developed by Liu [164] very accurately encompasses 

both the low-density liquid and metastable fluid branches of the hard sphere phase diagram [165]. 

Liu’s equation is given by 
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  (2.2.13) 

The coefficients for Liu’s equation [165] are provided in Table 2-2. 

 

Table 2-2: Parameters of Liu’s equation of state [164], [165]. 

Parameter Value  Parameter Value 

V1 3.68584  A 0.31416 

V2 2.5848  B 1.573357 

V3 1.9499  C 4.1637 × 1010 

V4 0.172284  D 2.3452 × 1011 

V5 0.16012  E 3.6684 × 1011 

 

Although the functional form of Liu’s EoS is significantly more cumbersome than the 

other equations, it remarkably describes the dense isotropic fluid branch of the phase diagram as 

well as the solid state by cleverly introducing a pole near the RCP packing limit. A plot of Liu’s 

equation, as well as the three other equations of state, is shown in Figure 2-3. 

 Table 2-3 shows a comparison of the average absolute deviations for each of the three 

equations of state as compared to simulation data for the normal fluid and metastable fluid 

branches of the hard sphere phase diagram [164]. Liu’s equation has by far the smallest average 

absolute deviation (AAD) relative to numerical hard sphere compressibility values in both the 

low-density and metastable fluid regimes. Speedy’s equation improves upon the CS equation 

significantly in the metastable fluid branch. Since the Odriozola-Berthier equation is very similar 

to the Speedy equation, it is expected to produce a similar AAD value.  

We have outlined here the fundamentals of describing the thermodynamic and jamming 

behavior of hard spheres in terms of their packing fraction ϕ. The application of hard sphere 

theory to our purposes – describing the dynamical processes of supercooled liquids and glass 

formers from the standpoint of jamming – is part of a larger story that will be made clear in the 

following chapters. In the next chapters, a theoretical framework that quantifies the extent of 
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“thermal” jamming is described, and the use of these accurate hard sphere equations of state will 

be linked to the understanding of jammed dynamics in supercooled liquids – the central focus of 

this work. 

 

Table 2-3: A comparison of the average absolute percent deviations (AAD) of the Carnahan-Starling, 
Speedy, and Liu equations of state compared to hard sphere compressibility data from 
simulations. All values are obtained from reference [165] except for the AAD of the CS 
equation in the metastable branch, which comes from [153]. 

Equation Low-Density Fluid (% AAD) Metastable Fluid (% AAD) 

Carnahan-Starling (CS) 0.196 34.4 

Speedy - 4.70 

Liu 0.0841 0.98 
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Chapter 3: Quasi-Universality and the Hard Sphere Paradigm 

 

Static jamming in systems of rigid objects, as evidenced by hard spheres, only depends 

upon the density. If boundaries of the atoms or other constituents of the system may be firmly 

established, the static packing fraction may be computed without ambiguity, independent of the 

motion of the constituents of the system. In molecular supercooled liquids where atomic 

boundaries are not unambiguously defined, as the temperature is lowered or the pressure is 

increased, the atoms begin to slow down as indicated by the pronounced “caging” period of the 

mean-squared displacement and the attendant prolonged structural relaxation time. The 

dramatic slowdown in the dynamics of model supercooled liquids can be described, under some 

conditions, through the ‘thermal free volume’, which is created by thermal energy working 

against pressure [132, 166]. Relaxing the small pressure limit and insignificant overlap between 

the atoms, the dynamics can be characterized by using an effective hard sphere packing fraction 

at finite temperatures [166]. In the thermal free volume conceptualization, the atoms may be 

thought of as becoming “thermally jammed” as temperature decreases. The jamming hypothesis 

is untested, as discussed in Chapter 2. There are two ways of conceptualizing the glass transition 

in supercooled liquids, as shown in Figure 3-1. 

We adopt the point of view that thermal excitations create a thermal free volume which 

will decrease with decreasing temperature. Unlike the approaches before, it is posited that only 

a subset of the constituent atoms, modeled as hard spheres, in a supercooled liquid or glass 

forming liquid (GFL), will show the features of jammed conditions. Thus, the dynamic slowdown 

arises from the attrition of the thermally excited hard spheres with decreasing temperature – we 

refer to this effect as thermal jamming. This thesis will seek to examine and apply this 

conceptualization of segregated or inhomogeneous dynamics in molecular glass forming 

systems, right up to the glass transition. The road to formulating the thermal jamming framework 

begins with an understanding of hard sphere theory, which was covered in Chapter 2, and two 

key concepts – static/dynamic equivalence [37, 166-168] and quasi-universality and the hard 

sphere paradigm observed in simple liquids [128, 131, 133, 134].  
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Figure 3-1: Two possible interpretations of glass transition in supercooled liquids (Reproduced from 
[162]). In the scenario shown by the left panel, a system, compressed at finite rates, 
becomes non-ergodic and undergoes glass transition well before the critical (static) packing 
fraction 𝜙𝐽 at the infinite pressure limit [169]. In the slow limit of infinite compression, a 

complete loss of configurational entropy occurs at the characteristic temperature/pressure 
state point (𝐾) with the attendant divergence of the structural relaxation time. In this view 
point, jamming, more precisely, static jamming that is brought about by chains of forces 
associated with actual contacts, has no relevance to the phenomenon of glass transition 
[169]. In the mechanism shown by the right panel, the thermodynamic (ideal) glass 
transition, where configurational entropy vanishes, occurs only as 𝑇/𝑝 → 0, and the 
jamming transition coincides along the line of 𝐽 points. 

 

Section 3.1 Static and Dynamic Equivalence  

The idea of using hard spheres as surrogates to capture the properties of realistic gases and 

fluid systems dates back to the work of Van der Waals. It has long been accepted that fluid 

properties are dominated by repulsive forces, and hard spheres represent the idealization of 

severe repulsion [37]. Using equilibrium statistical mechanics, Andersen, Weeks and Chandler 

(AWC) developed a generalized cluster expansion that connects structural/thermodynamic 

properties of a soft sphere system to an equivalent hard sphere system [170]. By choosing an 

effective hard sphere diameter, the Helmholtz free energy and the following function 𝑦(𝑟) =

𝑒𝛽𝑢(𝑟)𝑔(𝑟), where 𝑢(𝑟) and 𝑔(𝑟) are the soft-sphere (SS) potential and radial distribution function, 

respectively, and 𝛽 = 1/(𝑘𝐵𝑇), can be made nearly identical to those of the SS system with the 

same number density. To derive the equivalent hard sphere diameter, the pressure and free 
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energy are set to equal those of the equivalent hard sphere system, and the following volume 

integral is minimized: 

        2 24 4 0HSU r U r

HSr y r e e dr r B r dr
 

 
    

     (3.1.1) 

The function 𝐵(𝑟) = 𝑦𝐻𝑆(𝑟)[𝑒−𝛽𝑈(𝑟) − 𝑒−𝛽𝑈𝐻𝑆(𝑟)] is called the “blip function” [170], and           

𝑦𝐻𝑆(𝑟) = 𝑒𝛽𝑈𝐻𝑆(𝑟)𝑔𝐻𝑆(𝑟). Using this approach, the static and thermodynamic properties of 

realistic fluid system, modeled by a SS system, can be mapped to an equivalent hard sphere 

system.  

The dynamic equivalence between realistic soft sphere and hard sphere systems has been 

established more recently [167, 168] and it is developed in the context of seeking a possible 

universality between the density-driven colloidal glass transition and the thermally-driven 

molecular glass transition [168].  In addition to static structure, dynamic metrics are also involved 

in demonstrating the equivalence. For instance, the following equations show the static 

equivalence and dynamic equivalence involving the reduced diffusivity [168]: 

    ; , / ;HS HS HSg r T g r     (3.1.2) 

    * *, HS HSD T D    (3.1.3) 

In the above set of expressions, 𝜙𝐻𝑆 = 𝜙𝐻𝑆(𝜌, 𝑇),the reduced density 𝐷∗(𝜌, 𝑇) ≡ 𝐷(𝜌, 𝑇)/𝐷0, where 

𝐷0 is the short-time diffusion constant, and 𝐷(𝜌, 𝑇) is the long-time diffusion constant. Similarly, 

the equivalence for structural relaxation time can also be stated. The thermodynamic state 

equivalence is shown using an appropriate equation of state. The CS EoS is usually the equation 

of choice, and the scaling can be written as  

      , 1 4 ;HS HS HS HS HSZ T Z g         (3.1.4) 

As explained in the previous chapter, the CS EoS is reliable for lower densities, and more-accurate 

equations of state (which are empirically derived) are available for the jammed states of hard 

spheres. Using the condition that the height of the main peak of the structure factor of the SS 

system is coincident with that of the HS, Ramírez-González et al. [168] generated an impressive 

mapping to an equivalent hard sphere system. Fig. 3-2 shows the collapse of the inverse of 
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reduced diffusivity, both experimental and simulated, with the effective packing fraction 𝜙𝐻𝑆 

[168]. As evident from Figure 3-2, the underpinning of the SS-HS mapping rests on the self-

consistent generalized Langevin equation (SCGLE) from which universal isodynamical surfaces 

can be generated. Interestingly, the mapping does not work very well for systems with weak or 

ultra-soft repulsive interactions and possibly for attractive interactions as well. It is also worth 

pointing out that there are several methods to generate the equivalence between the SS and hard 

sphere systems. The non-uniqueness indicates a lack of firm theoretical grounds for the mapping 

concept. 

 

 

Figure 3-2:  Scaling of inverse of reduced diffusivity of experimental and simulated systems with the 
effective hard sphere packing fraction derived using the principle of dynamic and static 
equivalence. The line denotes prediction from the self-consistent generalized Langevin 
equation (SCGLE). The outlier corresponds to dendrimer solutions that have ultra-soft 
repulsive interactions. The vertical broken line suggests a limiting effective HS packing 
fraction near 𝜙𝐻𝑆 ~ 0.58, which is typically regarded as the packing fraction at colloidal 
glass transition [171]. The figure is reproduced from [168]. 

 

Investigations by Xu et al. [132], demonstrated the equivalence of glass transitions in 

molecular systems and colloidal glass transition in the hard sphere limit by showing [166] 
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The equivalence, which is strictly true in the limit of zero pressure or equivalently when the 

particles do not overlap, shows that the reduced relaxation time 𝜏 falls onto a single master curve 

with 𝑇/𝑝. When this condition is relaxed, i.e., when the particles can overlap, it is observed that 

the hard sphere system equivalence can be demonstrated with an effective smaller hard sphere 

diameter; the equivalence is shown by using the same approximation used by AWC described 

previously. For several state points, the relaxation time with SS systems can be predicted with an 

equivalent hard sphere system of smaller diameter using the above mapping method and CS EoS 

[166]. 

 

Section 3.2 Surrogate Hard Sphere Glass Transition with Colloidal Systems 

Colloidal systems such as suspensions and emulsions are often well-approximated by 

hard spheres [171, 172]. Upon compression, colloidal systems with polydispersity typically 

undergo a change in phase as shown in Figure 3-3. Similar to non-Arrhenius variation with 

temperature, the viscosity of a colloid exhibits fragility with respect to the packing fraction. The 

viscosity range, which spans only four orders of magnitude, however, is not as broad as in 

molecular systems. The “supercooled region” of colloidal phase starts around the freezing 

packing fraction 𝜙𝑓 and it is widely accepted that a “colloidal glass transition” occurs at around 

𝜙𝑔~ 0.58. which is close to the limiting effective hard sphere packing fraction shown in Figure 

3-3.  

There is no exact one-to-one correspondence between molecular, HS, and colloidal 

systems, but there are significant similarities and some notable differences [171]. The colloidal 

glass transition is driven by changes in density, while the glass transition in molecular GFLs is 

temperature (or pressure) driven (density changes in molecular GFLs under supercooling are 

typically small). There is a unique control parameter, which is the packing fraction in colloidal 

systems even though it is difficult to make measurements at high volume fractions. Although 

density driven, neither the mechanism of glass transition nor the corresponding volume fraction 

is known without ambiguity. The change in viscosity can be fitted to the Doolittle equation as  

𝜂

𝜂0
= 𝐶 exp (

𝐷

𝜙𝑚−𝜙
), where 𝜙𝑚~ 0.64, which is close to 𝜙𝑅𝐶𝑃 [173]. As its functional form is 

identical to the VFT equation, the Doolittle equation predicts a divergence of structural relaxation 
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time at 𝜙𝑚~ 0.64 and the corresponding vanishing of the configurational entropy. Therefore, the 

glass transition can be identified at 𝜙𝑔~ 0.64 from a kinetic perspective. 

 

 

Figure 3-3: Colloidal phases and the corresponding HS phase diagram, reproduced from [171]. A glass 
transition is thought to occur at a packing fraction 𝜙𝑔 ~ 0.58, although there is some 

evidence to suggest that it may occur at the RCP value of ~0.64. The MCT prediction 
suggests a critical packing fraction 𝜙𝑐 that varies from 0.51 to 0.58 [174, 175].  

 

Other experimental and simulation evidence on polymer systems also suggest a diverging 

relaxation time at volume fractions between 0.62 and 0.64 [176]. As with molecular systems, the 

use of VFT-like form is also criticized [171, 177]; several non-diverging functional forms are 

equally capable of capturing the viscosity trend [65]. The early MCT investigations have predicted 

MCT  𝜙𝑐  ~ 0.51, close to the freezing packing fraction, and it was then revised to 𝜙𝑐  ~ 0.58, closer 

to the accepted fraction for glass transition [174]; recent work indicates that it can occur at lower 

fractions near 𝜙𝑐  ~ 0.53  [175]. There is thus no broad consensus on the various packing fraction 

“crossovers”, but the most commonly accepted value for the colloidal glass transition is 𝜙𝑔 ~ 0.58, 

as shown by the lower limit in Fig. 3-3. As is seen in molecular GFLs, it is also unclear whether 

the structural relaxation time truly vanishes at or near the colloidal glass transition. The 

unpleasant hazard of extrapolation exists in both the experimental or numerical studies that are 

needed to establish a genuine divergence in relaxation time at finite volume fractions or 

temperatures.  
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Figure 3-4: Mapping of reduced relaxation time of soft spheres to effective hard spheres using 
Newtonian dynamics and Langevin (Brownian dynamics) [178]. The collapse of 
Newtonian and Brownian at longer times show their equivalence above a critical packing 
fraction 𝜙 ~ 0.49, roughly at the density when the HS fluid becomes metastable. The 
relaxation time appears to diverge at a packing fraction 𝜙 ~ 0.58. 

 

Regardless of the ambiguity in the transitions, recent theoretical work and numerical 

simulations show a class of universal equivalence between atomic and colloidal systems through 

an effective packing fraction [178]. Unlike molecular systems, the colloidal systems are influenced 

through hydrodynamic interactions. While the former can be simulated by model systems 

through Newtonian dynamics (ND), the dynamics of the latter can be captured through Brownian 

dynamics (BD); thus, the short time dynamics in colloids is diffusive, and ballistic in GFLs. Quite 

remarkably, the more interesting long-time dynamics is captured by both ND and BD, which 

indicates that microscopic solvent dynamics are relatively unimportant for colloids. This similarly 

and the near-equivalent collapse of diffusivity and structural relaxation time data to an effective 

hard sphere packing fraction has led to the concept of a dynamic universality class [178].  The key 

idea is that hard spheres with an effective diameter can capture the structure and long-time 

dynamics of soft spheres with both Newtonian and Brownian dynamics. This equivalence is 

shown by the collapse of data of soft spheres with Newtonian dynamics and with Langevin 

(Brownian) dynamics in Figure 3-4. 
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Section 3.3  Quasi-Universality:  Hard Sphere Paradigm and Excess Entropy Scaling 

The previous sections outlined methods of mapping molecular liquids and colloids to hard 

sphere (HS) systems, and the approximate collapse of structural and dynamic variables of 

different systems or states on to a master curve represents a quasi-universality in a broad class of 

liquids. The hard sphere model thus provides a theoretical underpinning or paradigm for 

drawing out the similarities, or sometime equivalences, in liquid structure and dynamics. The 

hard sphere paradigm itself is rooted on the seminal work of Van der Waals, who hypothesized 

that the strongly repulsive forces in liquids are responsible for determining the dynamics of the 

system, while long range attractive forces among the liquid’s atoms give rise to the system’s 

cohesive energy but has a negligible effect on the liquid’s dynamics or structure. But the lack of a 

strict one-to-one correspondence between molecular liquids and the hard sphere system, or 

colloids and the hard sphere system, means that the hard sphere paradigm is only an expression 

of a quasi-universal description of liquid dynamics, and that the hard sphere description is only 

qualitatively correct for describing simple liquid dynamics but shows exceptions to true 

universality from a quantitative standpoint. Various exceptions, revealed both experimentally 

and computationally, have precluded the hard sphere paradigm from constituting a true 

universal description of liquids. 

As described previously, Dyre and coworkers [133, 134] reversed the conventional 

relationship between hard spheres and quasi-universality by asserting that the hard sphere 

similarities are a consequence of quasi-universality. To this end, Dyre and coworkers developed a 

family of exponentially repulsive (EXP) pair potentials that portray quasi-universal behavior. Pair 

potentials that are typically used to probe glassy dynamics are included in this EXP quasi-

universality class. Interestingly, the HS potential is not a member of EXP family but nevertheless 

is a member of the EXP quasi-universality class. The general claim, although untested, is that the 

EXP family of potentials can be regarded as a cardinal reference system from which quasi-

universality can be derived. Thus quasi-universality is conjectured to be apposite only for certain 

potentials that belongs to the family of EXP potentials [133, 134]. This perspective can rationalize 

– but not prove – why certain interatomic potentials show quasi-universality while others do not.  
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In defining quasi-universality, a set of reduced units arises from scaling which are 

experimentally assessable. These reduced units are dependent on the thermodynamic state point; 

according to the isomorph theory of Dyre and coworkers [128, 129], the potential energy 

landscapes of isomorphic state points, which are expressed in terms of reduced units, are 

identical, meaning that reduced units allow for the unification of dynamical behavior among 

different regions of the phase diagram. The reduced units are obtained by taking some variable 

and using dimensional analysis to reduce it to a dimensionless quantity that is experimentally 

accessible. For diffusion coefficient, which has the units of distance squared per time, the scaling 

involves the temperature T and density 𝜌 that define the state point, and the mass of the material 

under study. The use of reduced units allows for a meaningful comparison to be made among 

structural and dynamical properties at different points or curves along the phase diagram, either 

for one material or among different materials. It may be noted here that the reduced units which 

are typically employed in atomistic simulations are state-independent and not experimentally 

accessible [134]; the reduced units for quasi-universality scaling does not need a prior knowledge 

of the system Hamiltonian. The scaling for reduced quantities for energy, length, time, the 

diffusion coefficient, and the viscosity coefficient, is shown in Table 3-1 [134].  

Table 3-1: Physical quantities and scaling for reduced units [134]. 

Physical Quantity Scaling for Reduced Units 

Energy 𝑘𝐵𝑇 

Length 𝜌−1/3 

Time (
𝑚

𝑘𝐵𝑇
)

1/2

𝜌−1/3 

Diffusion Coefficient 𝜌1/3 (
𝑚

𝑘𝐵𝑇
)

1/2

 

Viscosity 
1

𝜌2/3(𝑚𝑘𝐵𝑇)1/2
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The early work of Yaakov Rosenfeld [179] demonstrated that a Lennard-Jones fluid’s 

dynamical properties are strongly predicted by its excess entropy, and that there is a scaling 

relationship observed between dynamical properties and excess entropy that takes an 

exponential form. Rosenfeld (exponential) scaling is based on the Van der Waals description of 

liquids, in which a description of so-called “simple liquids” is formulated in terms of a reference 

hard sphere system. Simple liquids consist of point particles that interact by means of radially-

symmetric pair potentials, such as the Lennard-Jones, Weeks-Chandler-Andersen, and harmonic 

sphere (HARM) model systems studied in this work [37]. Dyre and coworkers have recently 

illuminated this concept by further showing that all simple liquids have strong correlations 

between virial and potential energy fluctuations in a canonical ensemble [128]. As many liquids 

in nature exhibit characteristics that do not fit this classification, Rosenfeld scaling should in 

principle only present a quasi-universal description of a relatively small subset of liquids.  

The excess entropy of a liquid may be computed in a variety of ways. In strict theoretical 

terms, the excess entropy 𝑆𝑒𝑥 is defined as the difference between the entropy of a hard sphere 

system and the entropy of an ideal gas at the same temperature and density [180]: 

 ( , ) ( , ) ( , )ex

liq IGS T S T S T      (3.3.1) 

The following relation holds; it relates the temperature to the total potential energy 𝑈, which 

corresponds to the configurational component of the energy and the excess entropy: 

 
1 exS

T T


 
  

 
  (3.3.2) 

Other thermodynamic properties such as the Helmholtz and Gibbs free energies may also be 

broken into ideal gas and excess terms. For example, the excess entropy can be computed from 

the excess Helmholtz energy as 

 
ex

ex F
S

T 

 
  

 
  (3.3.3) 

The excess entropy can be expanded in terms of different levels of atomic interactions. A 

commonly used approximation is based on two-atom interaction which allows for the calculation 

of the approximate excess entropy 𝑆2 as 
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      2

2

0

2 ( )ln ( ) ( ) 1S N g r g r g r r dr


      (3.3.4) 

This is particularly useful for application in molecular dynamics simulations where 𝑔(𝑟) may be 

easily obtained. 

 Note that the excess entropy 𝑆𝑒𝑥 is different from 𝑆𝑒𝑥 that was defined in the context of 

configuration entropy (see Section 1.1 B). The excess entropy 𝑆𝑒𝑥 is defined as the difference 

between the entropies of the liquid state and the ideal gas at the same thermodynamic state, while 

the 𝑆𝑒𝑥 is defined as the difference between the liquid state entropy and the entropy of the 

underlying crystal at the same state. While 𝑆𝑒𝑥 is always negative, 𝑆𝑒𝑥 as defined is always 

positive. These relationships are shown below: 

 ;ex

liq IG ex liq crystS S S S S S      (3.3.5) 

 Rosenfeld [179] and Dzugutov [181], with the two-body approximation of the excess 

entropy 𝑆2, have established relatively simple scaling laws that predict dynamical properties in 

terms of the excess entropy. Both have obtained reasonable fits to data for liquids that showed an 

exponential scaling with excess entropy. Interestingly Rosenfeld, applying hard sphere theory 

and incorporating the Carnahan-Starling equation of state, establishes an “entropy” packing 

fraction as 

 

1/2

2

2 ( 3)
1 1

3 ( 2)

ex ex ex

ex ex

S S S

S S


   
    

    

  (3.3.6) 

This is an intriguing result as it shows that there is a one-to-one correspondence between the 

packing fractions and the excess entropy 𝑆𝑒𝑥. Therefore, if properties show a scaling behavior 

with excess entropy, they will also show the same behavior with the packing fraction. 

Dyre [180] expands upon the scaling established by Rosenfeld and Dzugutov, in which 

dynamical properties of a liquid show exponential scaling with the system’s excess entropy. This 

is generalized by Dyre to the more general concept of Excess Entropy Scaling (EES), in which the 

scaling of dynamical properties obeys relationships other than exponential scaling. In this 

definition, Rosenfeld scaling is a special case of EES, and any liquid is said to obey EES if its 

reduced dynamical properties are uniquely determined by its excess entropy. EES has been 
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demonstrated in a wide variety of materials; in confirmation of the theory, EES has been observed 

in atomistic simulations of simple Lennard-Jones and repulsive fluids [179], in the Kob-Andersen 

model at various densities and temperatures [111], liquid metals [182], and molecular liquids 

[183]. In these cases, a remarkably distinct collapse of dynamical properties is seen both among 

distinct materials, and within a given material at a wide range of phase points, indicating a 

universality of the scaling. However, various cases have also been uncovered where EES does not 

apply; for instance, in a Hertzian sphere system [184], silicon modeled by the Stillinger-Weber (S-

W) potential [185], and the Fermi-Jagla model glass-former [186]. Dyre notes that liquids that 

exhibit anomalous dynamical behavior, such as diffusion coefficients that increase upon 

isothermal compression (i.e. water and silica), typically do not exhibit EES [180]. Figure 3-5 shows 

violation of EES for the Stillinger-Weber potential. 

 

 

Figure 3-5: Violation of EES for the Stillinger-Weber potential, which is precluded from being 
classified as a simple liquid given its three-body potential energy function. The inset shows 
limited Rosenfeld scaling with density-dependent empirical scaling. Figure is reproduced 
from [180]. 

 While entropy is a measure of the phase space, the excess entropy is a measure of available 

volume in the phase space. EES is a demonstration of the strong relationship between 
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thermodynamics and dynamics in liquids. The scaling indicates that dynamic properties such as 

the diffusion coefficient and viscosity are determined by the liquid’s excess entropy. In his 

original work, Rosenfeld [179] associated the quasi-universal entropy scaling to the one-to-one 

correspondence between excess entropy and the effective packing fraction. It has been later 

shown by Dyre and coworkers [180] that if two thermodynamic states have the same microscopic 

dynamics, they also possess the same excess entropy. This leads to the concept of hidden scale 

invariance (HSI), which indicates that the thermodynamic phase diagram becomes one 

dimensional in structure and dynamics. The isomorph theory, which is a consequence of HSI, 

forms the underpinning of excess entropy scaling [180]. The concept of universality is central to 

this work as it is in one form or another the goal of the various theories of the glass transition 

outlined in Chapter 1.  

The motivation of this thesis is to explore ways to derive a description that shows true 

universality among different thermodynamic states and intermolecular interactions. The 

approach that is taken in this thesis differs from the path taken thus far – namely, to cast the 

structure and dynamics of the entire system comprising all the atoms/molecules into an 

equivalent system of hard spheres. Instead, a liquid system is portioned into a set of harmonic 

oscillators and a set of hard spheres. As shown in the next chapter, a true universality can be 

derived if only a subset of atoms/molecules in the liquid are considered to be hard spheres. While 

the partitioning concept itself is not new, this approach diverges from the conventional wisdom 

of considering a liquid to be dominated by repulsive forces.  
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Chapter 4:   Thermal Jamming Framework 

 

 A truly universal description of the wide range of liquid dynamics in terms of a single 

parameter has been viewed as a “holy grail” in the liquid physics community. As discussed in 

the previous chapter, various successful efforts of establishing quasi-universality among liquids 

using hard spheres and excess entropy representations evokes a suspicion that a universal 

description may not be entirely out of reach. As mentioned previously, the idea of using hard 

spheres as surrogates to capture the properties of realistic gases and liquids dates back to the 

seminal work of Van der Waals. It has long been accepted that fluid properties are dominated by 

repulsive forces and hard spheres provide the idealization of severe repulsion [37]. The quasi-

universality that is brought out through hard sphere mapping and excess entropy scaling 

described in the previous chapter gives credence to this conjecture. Nevertheless, the observed 

scaling is not truly universal and significant exceptions are noted for a number of liquid systems 

[180]. 

In this chapter, we propose a method of establishing a true universal description of liquid 

dynamics by establishing separate partitions for the gas-like and solid-like behavior of liquids, 

which allows for the development of a description of the extent of thermal jamming in dense 

fluids such as supercooled liquids and glass forming liquids (GFLs). Unlike the traditional 

practice of considering the entire liquid state to be comprised of equivalent hard spheres, the 

current work posits that any liquid system can be regarded to be comprised of a set of hard 

spheres (HS) and a set of harmonic oscillators (HO). Thus, any property of the liquid system then 

becomes a weighted average of the contributions from hard spheres and harmonic oscillators. For 

properties such as diffusivity there is no contribution from harmonic oscillators by construction, 

while for extensive properties such as entropy there are contributions from both harmonic 

oscillators and hard spheres. With this partitioning, the attractive forces now have a contribution 

to the properties of the liquid state – a significant departure from the traditional viewpoint of 

dense liquids as approximated by a set of hard spheres.  

The conceptualization treating a liquid as a superposition of two idealizations (HO and 

HS) is itself not new. The overarching challenge is to derive the weights for harmonic oscillators 

and hard spheres. We follow the  Two Phase Thermodynamic (2PT) approach formulated by Lin, 
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Blanco, and Goddard (LBG) [187], and we adopt some of their terminology and notation in this 

work. To our knowledge LBG were the first to establish a quantitative method of partitioning a 

liquid into solid-like and gas-like components, and accurately predict the entropies and free 

energies of a number of liquids with very different atomic and molecular interactions [188-190]. 

However, the 2PT method was not formulated with the goal of demonstrating scaling of 

dynamical properties either within a single material nor among various materials, as the goal of 

LBG was to compute total absolute thermodynamic properties of liquids, and they did not 

dedicate effort to discerning the possible physical significance of the components of 

thermodynamic properties such as entropy that are associated with the hard sphere or harmonic 

oscillator partitions of the liquid. Here we reformulate the 2PT method to establish a framework 

for quantifying thermal jamming in glass-forming liquids.  

 

Section 4.1 Partitioning Postulate 

 

The central idea behind the establishment of this universal description of liquid dynamics, 

which allows for a demonstration of thermal jamming in supercooled liquids, is that a liquid state 

may be modeled as a superposition of a hard sphere and a harmonic oscillator. Depending on the 

thermodynamic or dynamic state of the liquid in question, it may be proportionally more solid-

like than gas-like, or vice-versa. It stands to reason that a liquid very close to crystallization or the 

glass transition should have only a small contribution from the hard sphere component and its 

behavior will be predominately characterized by the harmonic oscillator partition.  

Effuse gases can be very effectively modeled as hard spheres, as has been previously 

discussed. The thermodynamic and dynamic behavior of solids is also well-understood from a 

mathematical standpoint as a crystalline solid is well-modeled as a network of non-interacting 

quantum harmonic oscillators. We first establish the definition of the hard sphere partition of the 

liquid using a “partitioning metric” f, which is the ratio of atoms in the liquid that behave 

effectively as hard spheres (𝑁𝐻𝑆) to the total number of atoms in the liquid (𝑁): 

 HSN
f

N
   (4.1.1) 
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In principle, there could be multiple ways to plausibly compute 𝑁𝐻𝑆 for a liquid. The 

calculation of the partitioning metric 𝑓 is carried out by LBG in [187] somewhat heuristically by 

employing various relationships between the diffusion coefficient of the liquid and that of the 

hard sphere partition. In this work, the emphasis is placed on Equation 4.1.2 as the definition of 

𝑓, which entails a general framework for computing 𝑓 that need not rely on a diffusion-based 

approach at all – other transport coefficients such as viscosity or relaxation time could in principle 

be posited to derive an expression for 𝑓 as well. We frame this discussion of partitioning a liquid 

by positing the following definition of the partitioning metric: 

 
1

( )
f

g  
   (4.1.2) 

where 𝑔(𝜎+) is the value of the radial distribution function for a hard sphere system at the hard 

sphere diameter 𝜎𝐻𝑆 approaching from the right. The numerical bounds of 𝑓 are as follows: as 

𝑓 → 1, the system is entirely fluidic, meaning that the system behavior is represented entirely by 

hard spheres (the system is an hard sphere gas); in the other limit, 𝑓 → 0 entails no partitioning 

and the hard sphere component represents none of the system’s behavior (the system is a solid 

modeled as a set of harmonic oscillators). 

The partitioning postulate is in fact a mathematical conclusion that arises from the 

assumptions used to derive 𝑓 in the original 2PT method [187], but the explicit relationship 

between 𝑓 and 𝑔(𝜎+) was seemingly missed by the authors. The postulate in Equation 4.1.2 is 

arbitrary but it can be rationalized in the following manner. The magnitude of 𝑔(𝜎+) is directly 

proportional to the coordination number of the hard spheres. In the limit 𝑔(𝜎+) → ∞, the 

coordination number of a random close-packed hard sphere system approaches a limiting value 

(of 6) [147], in which case the partitioning metric 𝑓 approaches zero, meaning the system has no 

hard sphere (gas-like) component and has attained a solid state. As implied in [191], other 

functional forms may also be assumed but none is simpler than the relationship in Equation 4.1.2. 

From this cardinal assumption, the methodology used by LBG in the 2PT formulation, which 

involves hard sphere theory, Enskog theory and assumptions about the diffusivity of hard sphere 

systems in the limit of zero pressure, can be reproduced exactly.  

With the partitioning approach, the liquid is deemed to have both solid-like (HO) and gas-

like (HS) properties. Properties that depend on hopping across the potential energy basins such 
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as diffusivity and viscosity are exclusively dependent on the HS partitioning, while properties 

that rely solely on vibrations are attributed to the HO partition. Thermodynamic properties such 

as entropy and free energy that depend on both can then be written as a superposition of the HS 

and HO contributions.  

One subset of atoms are considered mobile and thus the gas-like metrics can be normalized 

to the number of HS atoms (𝑁𝐻𝑆) or to the total number of atoms in the system (𝑁). In this work, 

the normalized metrics with respect to the whole system are denoted with a “hat”; for example, 

number density of the HS partition, and the effective number density for the whole system are 

denoted by 𝜌 and 𝜌̂, respectively, with the functional relationship  and 𝜌̂ = 𝑓𝜌. Similarly, the 

volume fractions can be written as 𝜙 and 𝜙̂, respectively, which satisfies 𝜙̂ = 𝑓𝜙. More generally, 

all HS metrics follow this relationship; the effective system properties are the experimental 

observables, while the HS partition simply refers to an idealized subset of hard spheres. 

Therefore, the physical limits are satisfied by the effective system metrics. As an example, the 

upper limit of the effective volume fraction is bounded by the relation  𝜙̂ ≤ 1 while 𝜙 itself is not, 

since the partitioning metric 𝑓 is bounded by 0 < 𝑓 ≤ 1. The key formulations of the 2PT Method 

which follow from the relation 𝑓 = 𝑔(𝜎+)−1 are discussed below. 

 

Section 4.2 Diffusion Relationships 

 

 The Enskog theory for dense gases relates the diffusion coefficient of a hard sphere 

system in the limit of zero pressure to its diffusion coefficient at nonzero pressure by the 

relationship [37] 

 0

( )

( , )
( , )

HS

HS P
D T

D T
g 






   (4.2.1) 

Thus, the direct consequence of the assumption in Equation 4.1.2 is that the partitioning metric 

relates these diffusivities according to 

 
0( , ) ( , )HS HS

PD T fD T    (4.2.2) 
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The original 2PT formulation by LBG listed the above relationship as a postulate [187]. With the 

fundamental relationship provided in Equations 4.1.2, and the Enskog result, the partition metric 

𝑓 can be written as  

 
0 0

( , ) ( , )

( , ) ( , )

HS HS

HS HS

D T f D T
f

D T f D T

 

 
    (4.2.5) 

Above, the subscript refers to the zero pressure condition (𝑃 = 0). Note that the partition metric 

connects two diffusivities at the same states ( 𝜌 or 𝑓𝜌). The Chapman and Enskog solution gives 

a theoretical expression for zero pressure diffusivity, which can be stated as [85] 
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  (4.2.6) 

where 𝑚 is the mass of the system. Now the partition metric can be connected to the same 

diffusivity but at two different states as 
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D T f




   (4.2.7) 

Implicit in the above relation is the assumption that the HS diameter 𝜎𝐻𝑆 is invariant to changes 

in density. It will be shown later that this is indeed a reasonable assumption. Substituting the 

above equation in Equation 4.2.5, the following expression can be derived 

 
0( , ) ( , )HS HSD T f D T    (4.2.8) 

The above is an example of thermodynamic scaling relationship; it states that the HS diffusivity 

at a density of 𝑓𝜌 (finite pressure) is exactly equal to the zero-pressure HS diffusivity at another 

density 𝜌 (scale factor is unity). Note that 𝐷𝐻𝑆(𝑇, 𝜌) is identically equal to the diffusivity of the 

system  𝐷(𝑇, 𝜌) by construct since there is no diffusion contribution from the HP partition. Thus 

the following relationships are also true by construct.  

 
0
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f
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 

 
    (4.2.9) 

The system diffusivity can be non-dimensionalized from the kinetic theory.  
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  (4.2.10) 

Although not noted by LBG in their original work [187], the above form, except for the constants, 

is virtually identical to the form that of the scaling relationship that is required for probing 

universal scaling behavior. The system diffusivity is also expressible in terms of zero-time 

vibrational density of states  𝐺(0) . The functional form is given by 
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Now the non-dimensional diffusivity can be recast in terms of the number of atoms 𝑁 
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One advantage of the above form is that the system diffusivity 𝐷(𝑇, 𝜌) (and the non-dimensional 

diffusivity Δ) can be evaluated from atomistic simulations. It can either be computed using the 

mean-square-displacement or through the Fourier transform of the velocity autocorrelation 

function that gives the zero-frequency density of states [85]. Equation 4.2.10 allows a further 

reduction to connect Δ and the partitioning function. First Δ can be written as  

 

12
2 23

3
2

0

6 1 ( , )

( , )HS

HS B

m D T

k T D T

 


  

   
    

   

  (4.2.13) 

 

12
2 23

3
2

6 1

HS B

m
f

k T




 

   
    

   
  (4.2.14) 

The above equation connects the non-dimensional diffusivity and the partitioning metric. Noting 

the definition for the effective packing fraction , 𝜙̂ ≡ 𝑓𝜙= 
𝑁𝐻𝑆𝜙

𝑁
= (

𝜋

6
) (𝑓𝜌)𝜎𝐻𝑆

3 , Equation 4.2.14 now 

reduces to a simple relationship given by 

 
2/53/5 ˆf     (4.2.15) 

For a given system, the reduced diffusivity is determined by 𝐷(𝑇, 𝜌) and the material properties 

that are known. The above equation indicates that for a given state, there is a one-to-one 
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correspondence between the effective packing fraction and the partitioning metric 𝑓. Both the 

effective packing fraction 𝜙̂ and 𝑓 are unknowns at this stage.  

 

Section 4.3 Incorporation of Hard Sphere Equations of State 

 

 As discussed in Chapter 2, the compressibility 𝑍(𝜙̂) can also be related to the radial 

distribution function at contact 𝑔(𝜎+); it is given by [85] 

 ˆ ˆ( ) 1 4 ( )Z g       (4.3.16) 

Note that the effective volume fraction 𝑓𝜙= 𝑁𝐻𝑆𝜙/𝑁 is denoted by 𝜙̂. Rearranging this expression 

and using the definition of 𝑓 as exactly equal to 𝑔−1(𝜎+) , the following relationship is then 

obtained: 
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An accurate equation of state is now needed to proceed. The Carnahan and Starling (CS) [149] 

equation of state is accurate for the stable fluid branch as noted in Chapter 2; the radial 

distribution function at contact and compressibility are expressed as  
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Using the CS equation of state the following relationship can be established.  
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The above equation together with 𝑓 = Δ
3

5𝜙̂
2

5 can now be solved iteratively for 𝜙̂ and the partition 

metric 𝑓. Thus, the HS partition can be uniquely determined using the partition postulate, the 
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Enskog expression for diffusivity, and an appropriate equation of state along with the non-

dimensional diffusivity.  Note that the original equations derived by LBG [187] are completely 

equivalent to the results shown here.  

 The inadequacies of the Carnahan-Starling EoS for dense hard spheres, as described in 

Chapter 2, makes it unsuitable for use in the dense GFLs studied in this work. As discussed 

earlier, the equations of state proposed by Speedy [151, 152], Odriozola-Berthier (O-B) [136], and 

Liu [165] are more apposite for GFLs since they are accurate in the metastable fluid branch. The 

semi-empirical equation of state developed by Speedy [151, 152] accurately predicts the 

compressibility in the metastable fluid branch of the hard sphere phase diagram [153]. A 

drawback of the Speedy equation is that it breaks down for the lower-density, isotropic liquid 

branch of hard spheres for which the CS equation is accurate. Another equation of state 

developed by Odriozola and Berthier  [136] has the same mathematical form as Speedy’s equation 

with parameters that differ slightly to reflect its basis on arguments from free-volume theory. As 

noted below, the two equations of state have the same mathematical structure; the Speedy and 

O-B equations are given by 
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  (4.3.21) 

For the Speedy equation, 𝑑 = 2.67 and 𝜙𝑐 = 0.6448088. For the Berthier equation, 𝑑 = 2.82 

and 𝜙𝑐 = 0.669. These parameters are also provided in Table 4-0-1. Note that for both equations 

𝜙𝑐  ~ 𝜙𝑅𝐶𝑃 ~ 0.64. Since neither equation predicts valid compressibility values for low density 

hard spheres, the Carnahan-Starling equation is used in this work to compute 𝜙̂ for effective 

packing fractions 𝜙̂ < 0.30. As noted earlier, the Liu EoS agrees with the numerical hard sphere 

compressibility data in the densest limit [165] more closely than both the Speedy and Odriozola-

Berthier equations. Additionally, Liu’s EoS is applicable along the stable fluid branch. These 

equations of states are chosen in this work as they are either functionally simple and reasonably 

accurate (Speedy, Odriozola-Berthier), or highly accurate (Liu). Using Equation 4.3.21 and the 

general expression 𝑓 = Δ
3

5𝜙̂
2

5 yields 
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  (4.3.22) 

As before, this expression can be solved numerically to obtain 𝜙̂ in terms of the dimensionless 

diffusivity for both Speedy and Odriozola-Berthier equations of state.  

 

Table 4-0-1: Parameters for the Speedy [151, 152] and Odriozola-Berthier [136] hard sphere equations of 
state.  

Parameter Speedy Berthier 

d 2.67 2.82 

𝜙𝑐 0.648088 0.669 

 

While mathematically more complex than the Speedy/O-B form, Liu’s equation predicts 

the entire range of compressibilities in both the isotropic liquid and metastable fluid branches of 

the hard sphere phase diagram with high accuracy [164, 165]. Of special note is the pole 

introduced in Liu’s equation at approximately 𝜙𝑐 = 0.63558 that produces an additional 

asymptotic branch that encompasses the isotropic fluid branch leading to the stable packing 

configuration of the FCC lattice near the limit 𝜙𝐹𝐶𝐶. Liu’s equation is given by 
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The coefficients for Liu’s equation are provided in Table 2-2. 

In this work, the solutions of the packing fraction 𝜙̂ are limited to values less than 𝜙𝑐 = 0.63558 

with Liu’s equation of state.  Proceeding in the same way as was done for the Speedy form, the 

packing fraction can be solved for using the expression.  
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The three significant parameters involved in the Hard Sphere Partitioning method, the 

dimensionless diffusivity Δ, the partitioning metric 𝑓, and the effective packing fraction of the 

hard sphere partition 𝜙̂, are all mathematically related; that is, there is a one-to-one 

correspondence between Δ, 𝑓, and 𝜙̂. This relationship is depicted in Figure 4-1 for the Speedy, 

Odriozola-Berthier, and Liu equations of state. 
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Figure 4-1: The power-law variation of the dimensionless diffusivity with 𝜙𝑐 − 𝜙̂ obtained using the 
Speedy [151, 152], Odriozola-Berthier [136], and Liu EoS [164, 165]. Standard reduced units 
are used for this calculation. At large Δ, Liu’s EoS approaches the other two EoS, and 
exhibits a different power-law exponent at smaller Δ. Above approximately Δ = 10−1, the 
Speedy and Odriozola/Berthier EoS cannot be solved; in this work, the Carnahan-Starling 
EoS is used for these larger values of Δ. 

 

Interestingly, a strict power-law relationship is observed between the partitioning metric 

and dimensionless diffusivity as a function of 𝜙𝑐 − 𝜙̂ for a wide range of Δ for the Speedy and 

Odriozola-Berthier EoS. For the Liu EoS, power-law variation is observed except at larger values 

of 𝜙̂. The Speedy and Odriozola-Berthier results are virtually identical, which is not surprising. 

Fits of a power law of the form Δ = 𝐴(𝜙𝑐 − 𝜙̂)
𝐵

 gives 𝐵𝑆𝑝𝑒𝑒𝑑𝑦 = 1.66503 and 𝐵𝐿𝑖𝑢 = 1.66212; the 
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exponent for Odriozola-Berthier EOS is virtually the same. These power-law exponents are 

intriguingly close to 5/3 for all the equations of state. Generally-speaking, power-law variation 

seen in physical processes indicates, among many possibilities, invariance of time or length scales, 

self-similarity, and self-organizing critical behavior [192].  

The difference in these EoS revealed by this power-law variation with 𝜙𝑐 − 𝜙̂ is worth 

consideration in and of itself; the practitioners who devised these equations of state primarily had 

in mind an empirical agreement with available compressibility data for hard spheres. The Speedy 

and Odriozola-Berthier equations of state are based on the well-known free volume form, but 

Liu’s EoS is more complicated and involves parameters of such extreme magnitude that it can 

only be reasonably viewed as a highly-detailed fitting function, although parts of it are based on 

previously-established functional forms for hard sphere EoS. The hard sphere compressibility 

data in the literature has not been obtained for values of 𝜙 nearly as close to 𝜙𝑐 as depicted in 

Figure 4-2. Likely no attention has been given to the behavior of these EoS so far along in their 

asymptotic approaches to 𝜙𝑐. Through this analysis, the power law exponents are observed to be 

close to 5/3.  

It is instructive to compare the accuracy of the equations of states. In Figure 4-2, the 

predictions of the partitioning metric 𝑓 = 𝑔(𝜎+)−1 is compared to simulation data of hard 

spheres. As expected, the Speedy and Liu equations of state match the simulation data 

significantly better than the “workhorse” Carnahan-Starling equation of state, and the choice of 

these equations of state are appropriate for glass formers. This result does not show the validity 

of the Hard Sphere Partitioning approach, but it underscores the appropriateness of the equations 

of states for the metastable fluid branch. Therefore, with these equations of state the Hard Sphere 

Partitioning method is well-equipped for probing supercooled liquids and GFLs.  
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Figure 4-2: The circles show data from Erpenbeck, et al., representing 𝑔(𝜎+)−1 obtained from 
computer simulations of hard spheres [193] [164, 165]. Standard reduced units are used for 
this calculation.  The Speedy and Liu equations of state bend towards 𝑓 = 0 before the CS 
EoS and attain their maximal values near 𝜙𝑐, and match very well with the numerical 
compressibility data. 

 

Section 4.4 Entropy and Limiting Compressibility  

 

 With the HS and HO partition, the entropies and free energy can be calculated as a 

superposition of each component. Calculation of these properties is outlined in the original LBG 

reference [187]. In this work the property of interest is entropy, particularly the excess entropy 

relative to the ideal gas contribution; as outlined in the 2PT method, other properties such as total 

energy (which may include quantum corrections), free energy, and specific heat may be 

computed. As previously discussed, there excess entropy of relevance is given by 

 
ex

liq IGs s s    (4.4.25) 

Note the smaller case 𝑠 denotes entropy per HS atom; the entropy normalized to the system is 

depicted by the larger case 𝑆, with the relationship 𝑆 = 𝑓𝑠.  In the 2PT approach, the liquid 

entropy is given by 
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 liq HS HOs s s    (4.4.26) 

Thus  𝑠𝑒𝑥 = 𝑠𝐻𝑆 + s𝐻𝑂 − 𝑠𝐼𝐺. The 2PT method allows the calculation of the HO contribution to the 

entropy. This is possible when the Hamiltonian is known a priori. For experimental GFLs, the 

HO portion is not readily calculable. Hence, we define another measure for the excess entropy as 

the difference between the HS entropy and the ideal gas entropy. It is given by 

 
EXC

HS IGs s s    (4.4.27) 

The above measure is typically used in past work  [146, 151, 152] and can be easily computed once 

the HS partition is known.  
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where 𝜙̂ is the effective packing fraction of the hard sphere partition and 𝑍 is the hard sphere 

compressibility. The excess entropy is thus dependent on the choice of the hard sphere equation 

of state (EoS). The excess entropy is of critical importance in this work as it can be directly related 

to the dimensionless diffusivity to demonstrate EES (or lack thereof). The ideal gas entropy 𝑠𝐼𝐺 is 

computed for the hard sphere partition containing 𝑁𝐻𝑆 hard sphere atoms at density 𝑓𝜌: 
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   (4.4.29) 

The above expression has an important caveat in that the value of Planck’s constant h in reduced 

units is not unique when applied to model liquids where explicit unit conversions to physical 

units are not applicable. A method of accounting for this difficulty for model GFLs is discussed 

in Chapter 7.  

 Like the entropy, the system compressibility can be expressed as 𝑓𝑍; an implicit 

assumption here is that the solid phase modeled as harmonic oscillators is incompressible.  

Interestingly, the system compressibility converges to a limiting value when 𝑓 tends to zero. This 

can be easily verified by taking the following limit: 
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Given that the effective packing fraction asymptotically converges to a 𝜙𝑅𝐶𝑃~0.64, the limiting 

value of system compressibility is ~4𝜙𝑅𝐶𝑃 = 2.56.  

 

Section 4.5 Thermal Jamming 

 

The hard sphere partitioning (HSP) method is devised to provide an unambiguous 

jamming metric to liquids in the supercooled states. The HSP approach presumes jamming a priori 

and provides the jamming metrics as the liquid traverses into the deeply supercooled states. Since 

jamming progresses at finite temperatures, in contrast to static jamming, we call the jamming 

phenomenon in glass formers and supercooled liquids “thermal jamming.”   

The effective packing fraction 𝜙̂ of the hard sphere partition of the liquid established by 

the HSP approach provides the extent of thermal jamming in the liquids in the supercooled states. 

When diffusivity of the liquid approaches zero, the partitioning metric 𝑓≡𝑁𝐻𝑆/𝑁 also approaches 

zero and 𝜙̂ approaches the critical packing fraction 𝜙𝑐, which is close to the random-close-packed 

value 𝜙𝑅𝐶𝑃. In general, the value depends on the choice of the hard sphere equation of state 

applied in the HSP approach. According to the Hard Sphere Paradigm, the dynamics of simple 

liquids is well-described by association with the reference hard sphere system, and according to 

one of the prevailing notions, the hard sphere fluid on the metastable branch undergoes a glass 

transition when the packing fraction approaches 𝜙𝑅𝐶𝑃. In the HSP approach, we adopt this axiom 

but additionally incorporate an important caveat – only a subset of the atoms, as determined by 

the partitioning metric 𝑓, experiences the compressibility divergence. The partitioning metric, 

however, is expected to smoothly approach zero without exhibiting a discontinuity. Both the 

effective packing fraction and the partitioning metric are universally related for all glass forming 

liquids and supercooled liquids through the relation 𝑓 = Δ
3

5𝜙̂
2

5, where Δ is the non-dimensional 

diffusivity.  

The HSP approach also provides a method of establishing a universal description of liquid 

dynamics that is capable of spanning the entire range of liquid dynamics. The form of the non-

dimensional diffusivity, which is determined from the kinetic theory of gases, is most appropriate 
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for inquiry into any universal scaling relationships with effective packing fractions or excess 

entropy.  

As will be shown in Chapter 7, the HSP analysis can be performed on real glass formers 

all the way to glass transition temperature and below. A divergence in the pressure or 

compressibility of the HS partition occurs as  𝜙̂ → 𝜙𝑐. However, the divergence is not postulated 

to occur at a specific thermodynamic state. Thus, there is no unique glass transition temperature 

or pressure in this approach, by construct. However, as shown in Chapter 7, the analysis of eight 

glass formers shows that non-dimensional diffusivity, the partitioning metric, compressibility, 

and excess entropy all tend to converge to specific values at the traditional laboratory glass 

transition temperature.  

In the HSP model, the dynamics becomes sluggish because the number of the participating 

diffusive (HS) atoms decreases precipitously on cooling. Relative to the existing theories, the HSP 

approach appears to be closest to the dynamic facilitation (DF) theory [117], although no formal 

correspondence is attempted in this work. No length scales are also identified in this approach 

although such metrics can possibly be constructed from the reduction of the HS atoms with 

decreasing temperature.  

The HSP approach most importantly reveals an important attribute of liquids that seems 

to present a conflict with the seminal Van der Waals conception of liquids that are dominated by 

repulsive interactions among atoms. Numerous studies of simple liquids using the 2PT method, 

upon with the HSP approach is based, have indicated that the partitioning metric 𝑓 for these 

liquids is not large, typically in the vicinity of 30-40%, meaning that 60-70% of the liquid’s 

dynamics is better modeled by a system of harmonic oscillators than by hard spheres. For the 

molecular GFLs studied in this work, 𝑓 is significantly smaller than what is observed for simple 

liquids (see results in Chapter 7). As harmonic oscillators are characterized by attractive 

interactions as opposed to repulsive interactions, the calculation of 𝑓 suggests that liquid behavior 

is dominated by solid-like vibrational modes instead of gas-like diffusion. From at least a practical 

standpoint, the HSP approach predicts that liquid thermodynamics is better described by 

association of the liquid with solid-like vibrations in conjunction with HS gas-like diffusion.  
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Chapter 5: Atomistic Simulation of Supercooled Liquids 

 

Atomistic simulations, or more generally, Molecular Dynamics (MD) simulations allows 

for the quantitative study of a wide range of materials at the atomic level. So-called ab initio MD 

simulations, which are often based on the Density Functional Theory (DFT), can give better 

interatomic forces because electronic interactions are explicitly modeled. Classical MD, however, 

uses empirical interatomic potentials; if finely tuned, these potentials are excellent surrogates for 

real-world interatomic interactions. Both ab initio MD and classical MD use Newton’s laws to 

compute the atomic positions. The earliest attempts at direct simulation of atomistic motion were 

carried out by Rahman [194] and Alder and Wainwright [195] in the 1960s on the rudimentary 

computers that existed at the time. Today, the rapidly increasing access to computational 

resources has expanded the scope of problems that may be addressed by MD. The most 

significant shortcomings of MD – namely, that only relatively short times scales of hundreds of 

nanoseconds, and relatively short length scales on the order of hundreds of nanometers, may be 

accessed even with the fastest computational hardware – are unlikely to be addressed in the near 

future. Still, the success of MD in reproducing dynamical and thermodynamic characteristics of 

materials has kept MD in the forefront of research in statistical mechanics and the physics of 

liquids [196-198]. 

The ease or difficulty of simulating a given material by MD is dependent on several 

factors, such as the number of atomic species, the range and complexity of interatomic 

interactions, or the size of the system needed to accurately compute the desired data. Molecular 

interactions are modeled using interatomic potentials between atoms, for which the 

corresponding interatomic force may be computed. For each atom in the system, the sum of the 

forces exerted on it by its neighboring atoms is computed, which provides the net instantaneous 

acceleration on that atom [199]. Then, a numerical algorithm is used to integrate Newton’s 

equations of motion to obtain the instantaneous velocity of each atom, and the system is finally 

evolved forward in time by a suitably small time step, chosen to minimize numeric error in the 

integration algorithm [199]. 

Monte Carlo methods are sometimes used in conjunction with MD simulations [200]. 

After an initial configuration of atoms is provided, MC randomly provide small displacements to 
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the atoms. Acceptance of the displacements evolves the system to the  “inherent structures” or 

the local minima in the potential energy surface [82]. MC methods are used in the midst of an MD 

simulation if energy minimization is required. Other MD methods use coarse-graining where 

interactions are averaged over relatively large regions of the system [201, 202]. These methods 

allow for the study of systems of significantly larger sizes than with traditional MD, and can 

possibly serve as a good intermediary between the atomic scales of MD and those of the 

continuum simulations commonly performed in engineering and science.  

 

Section 5.1 Fundamentals of Molecular Dynamics 

 

For a many body system, Newton’s equations of motion cannot be solved exactly and thus 

require solutions to be obtained using numeric integration methods. To proceed with the 

integration, the instantaneous acceleration 𝐚𝑖 on an atom 𝑖  is computed using the instantaneous 

force exerted on that atom by each neighboring atom 𝑗 (assuming pairwise interaction) as shown 

below, 

 i ij

i j

F F   (5.1.1) 

and dividing by the mass of atom 𝑖. The instantaneous force is computed from the system 

potential energy 𝑈 as 

 i i

i

U
U


   


F

r
  (5.1.2) 

The interatomic potentials for the systems used in this work are described in the next section, and 

in Appendix A; only pairwise interactions are considered here. One of the most commonly-used 

integration algorithms is the leapfrog method [199], which is a second-order method that is 

computationally-cheap. It also belongs to the family of symplectic integrators that portray 

excellent long-time energy conservation.  The leapfrog algorithm is typically formulated as a two-

step process, where the velocity at a half step is computed, and then used to compute the position 

at the full step. The first half step is given by 
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where Δ𝑡 is a simulation time step chosen to be suitably small so that numeric error in the 

integration is negligible. The second step then involves the following.  
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 The above process is then repeated for all atoms in the system.  After a sufficiently long 

equilibration period, the MD system can attain a state of thermodynamic equilibrium during 

which the pertinent thermodynamic properties can be computed. Various states of 

thermodynamic equilibrium are described using statistical ensembles. A given property A is 

computed as an average over all possible states in an ensemble. As an example, the property A in 

a canonical ensemble can be computed as 
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  (5.1.5) 

In this work two ensembles are used: the micro-canonical ensemble where the total energy, 

volume, and number of atoms are held constant (NVE), and the canonical ensemble where the 

temperature, volume, and number of atoms are held constant (NVT). In a MD simulation, the 

properties are time averaged rather than ensemble-averaged. The ergodic hypothesis, however, 

states that a given property computed over a large number of ensembles is equivalent to the 

average value over a number M of independent measurements that are temporally separated  

[199] as shown below.  
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xTime
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A A
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    (5.1.6) 

The direct integration of Newton’s equations of motion in a system where periodic boundary 

conditions are used (as is the case with all simulations conducted in this work) naturally results 

in a system that exists in the microcanonical (NVE) ensemble – no atoms are added or removed, 

the volume of the system does not change and the total energy of the system remains sensibility 
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constant. For this reason, all thermodynamic properties are measured in the NVE ensemble in 

this work. The canonical (NVT) ensemble can be simulated by invoking a method of controlling 

the temperature, which is equivalent to coupling the system to a heat bath. For this work, the 

crude but effective method of velocity rescaling is used, wherein the velocities of all atoms in the 

system are periodically rescaled by a constant factor so that the desired temperature is achieved. 

The rescaling approach does not strictly generate a NVT ensemble but it is very effective for 

controlling the temperature. For the systems studied in this thesis, rescaling is employed only 

during the equilibration period during which it is ensured that the simulation has attained a 

sufficiently ergodic state at the desired thermodynamic state. After the equilibration period, 

velocity rescaling is turned off and all the equilibrium properties are measured in the NVE 

ensemble. 

 Another crucial characteristic of a MD simulation is the use of periodic boundary 

conditions (PBC) for mimicking an infinitely large system. Under PBC, the spatial limits of the 

system are defined (usually a parallelepiped box), and atoms that wander beyond the boundary 

limits are wrapped around to appear on the other side of the simulation boundary. For example, 

if the system boundary is a square box of side length L, with one corner beginning at the origin 

of the coordinate axis, and the box extending along the axes such that all x, y, and z coordinates 

are always positive, then an atom whose 𝑥-coordinate exceeds 𝐿 at a certain time step will have 

its 𝑥-coordinate decreased by a linear shift of −𝐿 before the potential is computed at the next time 

step. No linear modification is necessary for the other two directions if they do not exceed 𝐿. The 

use of PBC mimics the effect of a larger system than what is technically defined in the simulation 

boundary, as the force/potential energy calculation may be applied over the periodic boundaries 

where atoms interact with the “images” of atoms that are on the other side of the nearest 

boundary. It is not necessary to extend the interaction range to more than one periodic image; 

this is called the minimum-image convention [199]. Creative use of periodic boundaries can allow 

for interesting simulations, such as the study of surface effects by removing the periodicity in one 

spatial dimension. 
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Section 5.2 Model Supercooled Liquids 

 

Realistic glass-forming liquids such as silica (SiO2) have long been studied using MD, but 

the short time scales of MD mean that realistic cooling rates used in laboratory experiments, 

which may be as high as several tens of thousands of Kelvin per second, are in fact too slow to be 

simulated reasonably by MD. Thus, in MD simulations, extremely high cooling rates on the order 

of 1012 to 1015 K/s are sometimes used to keep the total simulation time within reason, which 

many have argued eliminates a significant amount of utility from simulations of realistic glass-

formers. For this reason, practitioners in the glass community frequently use model systems to 

replicate glassy liquid behavior. These systems have advantages over realistic potentials such as 

those for silica in that they often have short interaction ranges, mathematically-simple 

expressions for their potentials that involve a smaller number of discrete calculations to evaluate, 

and model systems can even replicate glassy dynamics without the need for explicit supercooling. 

Model systems that don’t require explicit quenching typically are multicomponent and have their 

interatomic potential parameters adjusted so that crystallization is geometrically difficult or 

impossible to achieve, even at low temperatures. Several model systems such as Kob-Andersen 

(KA) [111], Weeks-Chandler-Andersen (WCA) [203, 204], harmonic springs (HARM) [59] and 

Dzugutov [205, 206] are reported in the literature In this work, four model supercooled liquids 

are featured. The important crossover temperatures are listed in Table 5-1. In all simulations of 

the model systems, standard reduced units are used [199]. Note that the Dzugutov potential is 

only used for the string analysis in Chapter 6, and not for the HSP analysis in Chapter 7. 

 

Table 5-1: Crossover temperatures for the four model supercooled liquids [59]. 

Model System 𝑻𝒄 𝑻𝑺 𝑻𝑶 

Kob-Andersen (KA) 0.42-0.43 0.55-0.60 0.7 - 0.95 

Weeks-Chandler-Andersen (WCA) 0.28 0.40 – 0.45 0.60 – 0.95 

Harmonic Springs (HARM) 5.1 – 5.6 9.0 – 10.0 11.0 – 14.0 

Dzugutov 0.42 - 0.43 0.7 - 0.8 1.0 
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Kob-Andersen (KA) [111]: this could perhaps be considered the workhorse potential for 

modeling supercooled liquid behavior. It is a binary system and it has been studied extensively 

for moe than two decades. The potential is given by the well-known “12-6” Lennard-Jones form 

 

12 6

( ) 4KAU r
r r

 

 

 


    
          

  (5.2.1) 

where 𝛼 and 𝛽 denote one of the two atomic species. The first term is repulsive for small values 

of r, and the second term is attractive. Values of the potential parameters 𝜖𝛼𝛽, which corresponds 

to the energy scale, and 𝜎𝛼𝛽, which corresponds to approximately the ionic diameter and thus a 

pertinent length scale, are provided in Table 5-2. The KA system also features a disparity between 

the mole fraction of the two species, with 80% of the atoms being Type 𝐴 and 20% being Type 𝐵. 

The skewed composition of the system and ionic diameters of the atoms act as inhibiting factors 

for crystallization. 

 

Table 5-2: Potential parameters of the Kob-Andersen potential [111]. 

Kob-Andersen Potential 

𝜎𝐴𝐴 1.0  𝜖𝐴𝐴 1.0 

𝜎𝐵𝐵 0.88  𝜖𝐵𝐵 0.5 

𝜎𝐴𝐵 0.8  𝜖𝐴𝐵 1.5 

 

 

Weeks-Chandler-Andersen (WCA) Potential [203, 204]: a potential predates the KA 

potential; it has the same form as the KA potential, except it is shifted upwards by a factor of 4𝜖𝛼𝛽 

and truncated so that 𝑈(𝑟𝑐𝑢𝑡𝑜𝑓𝑓) = 0 which occurs at a distance of 2
1

6𝜎𝛼𝛽. This turns the attractive-

repulsive KA potential into a solely repulsive potential, also referred to as a soft sphere potential. 

Different variations of the WCA potential exist, using various potential parameters and masses 

for the atoms; we choose to use the same potential parameters as the KA system. 
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Table 5-3: Potential parameters of the Weeks-Chandler-Andersen potential [203]. 

Weeks-Chandler-Andersen Potential 

𝜎𝐴𝐴 1.0  𝜖𝐴𝐴 1.0 

𝜎𝐵𝐵 0.88  𝜖𝐵𝐵 0.5 

𝜎𝐴𝐵 0.8  𝜖𝐴𝐵 1.5 

 

 

Harmonic Sphere (HARM) Potential [59]: this is a computationally “cheap” potential that 

features a short interaction range and simple functional form, which is also a binary soft sphere 

potential. It is given by 
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( ) 1

2

HARM r
U r
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 

 
   

 
  (5.2.2) 

Commonly, the HARM potential features a 50:50 ratio of atom species, with differing ionic 

diameters. Additionally, it has been found that finite size effects are not evident for system sizes 

as small as 1000 atoms [160]. Finite size effects refer to variations in properties such as potential 

energy, or variations in dynamical characteristics of atoms that occur when the length scales of 

the relevant physical processes exceed the width of the simulation cell. 

 

Table 5-4: Potential parameters of the HARM potential [59]. 

HARM Potential 

𝜎𝐴𝐴 1.0  𝜖𝐴𝐴 1.0 

𝜎𝐵𝐵 1.4  𝜖𝐵𝐵 1.0 

𝜎𝐴𝐵 1.2  𝜖𝐴𝐵 1.0 
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Dzugutov Potential [205, 206]: a monoatomic potential with a non-physical “hump” 

added in the potential function near the first nearest neighbor distance as indicated by the radial 

distribution function. The potential function is  
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  (5.2.3) 

 

This system does require explicit quenching to produce glassy behavior. A drawback of this 

system is its tendency to form quasicrystals, which are complex crystal structures that tend to 

exhibit their crystalline order in directions that are skewed from the normal Cartesian axes. This 

becomes evident in the simulations as the potential energy tends to drop in “steps”, indicating 

that portions of the simulation cell are undergoing a quasi-crystalline transformation. 

 

Table 5-5: Potential parameters of the Dzugutov potential [205]. 

Dzugutov Potential 

A 5.82  c 1.1 

B 1.28  d 0.27 

a 1.87  m 16 

b 1.94    

 

The simulation of supercooled liquids can be more difficult in many respects than the 

simulation of low-density “well-behaved” liquids, or crystalline solids. They can be metastable 

because depending on the initial conditions of the simulation the liquid will attempt to explore a 

relatively large sample of configuration space, and time scales significantly longer than those 

allowed by current computer hardware may be necessary to achieve ergodicity of the system at 

low temperatures. Eventually, the divergence of dynamical quantities near the glass transition 
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becomes a stumbling block as relaxation time scales become so large that they may never be 

obtained via simulation, either due to system size or time constraints. To counteract the 

metastable nature of supercooled liquids, one generally tries to use larger simulation cells, often 

much larger than what is needed to merely avoid finite-size effects, in order to increase the range 

of the configuration space that the simulation samples. Results for thermodynamic and dynamic 

properties such as the specific heat, radial distribution function, mean-squared displacement, 

velocity autocorrelation function, and other time/space-dependent correlation functions, are 

typically computed as averages over results from several independent simulations run under 

identical conditions except for the initial velocities of the atoms. This increases the likelihood that 

an ergodic sample of the configuration space is obtained and that correlations between identical 

initial conditions are reduced. The metastability of supercooled liquids near the glass transition 

or mode-coupling temperatures frequently leads to some simulations whose properties differ 

significantly from run to run. Thus, in some cases the use of hundreds of independent simulations 

with different initial conditions may be necessitated. 

  

  



 

81 
 

Chapter 6: Stringlike Cooperative Motion in Supercooled Liquids 

 

A number of studies (as described in Chapter 1) have found evidence of dynamical 

changes in supercooled liquids at the dynamic crossover temperature 𝑇𝑆 [58, 59], [60]. In atomistic 

simulations, 𝑇𝑆 has been identified as existing above the mode-coupling temperature and below 

the onset of super-Arrhenius behavior (see Figure 1-4) and has been most closely associated with 

the breakdown of the Stokes-Einstein relation. Since the dynamical processes are of key 

significance in supercooled liquids, a natural line of inquiry is stringlike cooperative motion, 

observed in molecular dynamics simulations of supercooled liquids in the 1990s, as well as in 

granular matter and other systems in both computer and laboratory experiments [13, 96, 97, 207]. 

Stringlike motion dramatically illustrates the rapidly increasing time and length scales associated 

with dynamical processes in supercooled liquids. 

A simple yet powerful analogy from everyday life can provide a conceptual background 

for understanding why stringlike cooperative motion occurs in jammed systems. Think of a 

group of people attempting to cross a crowded thoroughfare. The group wants to move as 

effectively as possible through the crowd. It doesn’t make sense for them to bunch up into a 

cluster and bludgeon through the crowd, but neither is it prudent for everyone in the group to 

split up as it would cause confusion and risk separation of the group. The natural way that people 

in groups move through crows is in a stringlike manner – one person forges a path, and the others 

follow behind as closely as possible – and the group doesn’t need to confer on this matter. People 

move this way without giving it much thought. Atoms in supercooled liquids, it would seem, 

have the same intuition.  

Now, imagine the crowd is less dense. The more space there is between people in the 

crowd, the less the group must rely on stringlike motion. In voids where there are no people, the 

group tends to cluster together and walk normally, only lining up again when it’s necessary to 

pass between tightly bunched people in the crowd. This analogy serves to convey not just why 

stringlike motion is a natural mechanism for relaxation in jammed systems, but also why there is 

a relationship between the degree of stringlike motion and the density of the system. In this 

chapter, stringlike cooperative motion in supercooled liquids is described in detail, and evidence 

is presented of novel dynamical changes associated with stringlike cooperative motion that occur 
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at the dynamic crossover temperature  𝑇𝑆. This will serve to further corroborate results found in 

the literature, and results presented in the next chapter on the thermal jamming perspective 

applied to supercooled liquids.  

 

Section 6.1 Quantifying Stringlike Motion 

 

In MD simulations, strings are identified by examining a configuration, or “snapshot”, of 

the system at some reference time, and comparing the positions of the atoms in the reference 

snapshot to subsequent snapshots separated by a time interval Δ𝑡. The following algorithm is 

applied to identify two-member strings or “cooperative pairs”: 

  * *
min ( ) (0) , (0) ( )

i j i j
t t  r r r r   (6.1.1) 

This algorithm compares the positions of two atoms in both snapshots, and it is applied to all 

atom pairs so that all cooperative motion between the snapshots is considered exhaustively. If 

atom i has moved to within a distance 𝛿 of atom 𝑗’s position in the second frame, the algorithm’s 

condition is satisfied and atoms 𝑖 and 𝑗 are said to constitute a cooperative pair. After all 

cooperative pairs have been identified, they are linked together into longer strings by joining 

together cooperative pairs that have common members. The parameter 𝛿 has been set in the 

literature to a value somewhat greater than the atomic radius when used to identify strings in the 

Kob-Andersen system [97]. However, others have found that the parameter used in the early 

literature for string analysis of the Kob-Andersen system was too large and resulted in “Y-like 

replacements,” which occur when an atom moves precisely within the shell of size 𝛿 centered on 

the initial positions of two atoms [208]. In this case (illustrated in Figure 6-1), it can be said that 

the first atom has technically replaced two atoms and the identification of a cooperative pair 

becomes ambiguous. For this reason, in this work 𝛿 is set slightly larger than the radius of the 

smaller atom species in the system. For the KA and WCA systems studied in this work,  𝛿𝐾𝐴 =

𝛿𝑊𝐶𝐴 = 0.45 (𝜎𝐵𝐵 = 0.44𝜎𝐴𝐴), which has been demonstrated to eliminate Y-like replacements to 

less than 0.1%, while not qualitatively affecting the string analysis. 



 

83 
 

 

Figure 6-1: A schematic of the string-finding algorithm’s use of the overlap parameter δ for 𝐵 particles 
in the KA/WCA systems. 

 

Several key facts about strings in supercooled liquids should be noted: 

1. For a given temperature, the average string length at a time interval Δ𝑡 between 

snapshots, denoted 𝐿(Δ𝑡), initially increases monotonically. At some time 𝑡𝐿 it attains 

a maximum, after which 𝐿(Δ𝑡) decreases monotonically to zero at long time intervals. 

The time Δ𝑡𝐿 has been observed to scale nearly exactly with the time 𝑡∗ that denotes 

the maximum value of the non-Gaussian parameter. This time is referred to in this 

work as the “peak string formation time” or “peak string population time.” 

 

2. For the Kob-Andersen system, strings are best quantified by considering only the 5% 

of the atoms in the system that have the highest mobility (the magnitude of the 

displacement vector of atoms between the two snapshots at Δ𝑡). In [207], the deviation 

of the extent of particle diffusion from Gaussian behavior in the KA system was 

quantified using the non-Gaussian parameter 𝛼2(𝑡) = 3〈𝑟4(𝑡)〉/5〈𝑟2(𝑡)〉2 − 1 and it 

was found that roughly 5% of the atoms diffused further than the expected Gaussian 

value. Therefore, the top 5% most-mobile ions/atoms has typically been used as a 

benchmark group of atoms used in studies of stringlike motion [16, 209], or in other 

works, an only slightly larger percentage has been used [208]. The examination of 

slightly larger or smaller percentages of mobile atoms does not qualitatively affect the 

nature of string behavior. In this work, the term “mobile” will be used to refer to atoms 

in the system that fall within this highest 5% group of fastest-moving atoms, and 
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slower-moving atoms outside this 5% group will be referred to as “immobile” (this is 

somewhat of a misnomer as these atoms are moving to some extent; rather, they are 

immobile with respect to their having a small impact on string formation). 

 

3. For a given temperature, the probability of finding a string of length l in the system is 

approximately distributed according to an exponential function. It is possible to find 

strings with several tens of members with low probability. As temperature decreases, 

the average string length at the peak string participation time 𝐿(Δ𝑡𝐿) increases, a result 

that may seem counterintuitive. As the system becomes more jammed, atoms are 

increasingly forced to follow the constrained pathways that necessitate relaxation by 

stringlike cooperative motion, according to the DF model [102]. The fraction of mobile 

atoms participating in strings at 𝑡𝐿 increases as well, which also reflects the increases 

reliance on dynamically constrained pathways for relaxation. From a thermodynamic 

standpoint (c.f. RFOT theory), this increased participation of mobile atoms is reflected 

by an increase in the associated length scale.  

 

4. A study by Gebremichael, et. al. [210] focused on the “coherence” of cooperative 

movements in the Dzugutov liquid. It was found that short strings of two or three 

members are most likely to jump in a coherent fashion – that is, the atoms in the string 

all tend to hop at approximately the same time. Longer strings move less coherently, 

meaning the hops of some or all of the atoms occur at different times. 

 

The results from the simulations are discussed next. Figure 6-2 shows the fundamental 

characteristics of strings for the Kob-Andersen system. Panels A and B show the evolution of 

𝐿(Δ𝑡) for A atoms, and the number of A atoms that participate in the string, while panels C and 

D depict 𝑡𝐿, the time when the string length is maximum, and the probability of occurrence of a 

string with a particular length 𝑙. The peak string length and the atoms that participate in the string 

increase monotonically with decreasing temperature (panels A and B). As expected, the string 

length exhibits an exponential distribution with length (panel D).  
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Figure 6-2: Fundamental results for stringlike cooperative motion for the Kob-Andersen system: (A) 
the average string length 𝐿(𝛥𝑡). (B) The percentage of the 5% most-mobile atoms that are 
participating in stringlike motion. (C) The time 𝑡𝐿 at which most strings are seen in the 
system, when 𝐿(𝛥𝑡) attains its maximum value. (D) The probability distribution of string 
lengths for a range of temperatures. 

 

 

A slope change is evident in the Arrhenius plot of the peak string participation time for 

the Kob-Andersen system (Figure 6-2C) near the dynamic crossover temperature 𝑇𝑆, indicating a 

possible shift in the nature of string dynamics as governed by a different activation energy. This 

possibility was outlined by Kob and coworkers in their study of point-to-set correlations in 

supercooled liquids [60]. Since 𝑡𝐿 has been shown to be proportional to the alpha-relaxation time 

𝜏𝛼 and thus the diffusion coefficient, it is possible that string-like motion may drive the relaxation 

of atoms in supercooled liquids. 

Short strings made of two or three members tend to form frequently even in normal 

liquids – perhaps the question is better framed as to determine the extent to which such 
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cooperative motions are merely correlated or imply causation as well. In line with the excitation 

model of Chandler and coworkers [102], correlated cooperative motion of atoms can occur but it 

may not be significant to the dynamic evolution of the system if the displacement of the atoms 

does not persist for a significant period of time. At lower temperatures near 𝑇𝑆 and 𝑇𝑐, longer 

strings are found, and as temperature decreases the system increasingly visits the “landscape 

dominated” regime where configurational rearrangements involve the crossing of saddle points 

on the potential energy surface. At high temperatures it is not clear that a cooperative motion 

necessarily entails the crossing of a saddle point.  
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Figure 6-3: Plots of the fraction of mobile atoms participating in cooperative pairs (l = 2 strings) for 
four model supercooled liquids. 

 

The distinctions discussed in [210] by Gebremichael and others between the behavior of 

short microstrings and longer strings, as well as the above discussion about the significance of 
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cooperative pair formation with respect to activated processes, leads to a new type of study – 

instead of quantifying bulk characteristics of strings such as the average string length, one may 

instead compute the fraction of mobile atoms (here defined as the 5% most-mobile atoms) 

participating in strings of particular lengths. Obviously, there is no analog to the average string 

length when considering only discrete string lengths. This discrete string analysis requires 

barely any additional work – at each time interval Δ𝑡 strings are identified as usual, and the 

numbers of atoms participating in strings of length l = 0 (immobile atoms), 1 (mobile, non-

cooperative atoms), 2, 3, 4, etc. are simply tabulated. The results of this analysis are shown in 

Figure 6-4 for the four model supercooled liquids. 

For each of the model systems interesting behavior is seen at low temperatures below 𝑇𝑆 

as  𝑇𝑐 is approached. Hereafter this data will be referred to as the “participation curve” for 

cooperative pairs. The participation curves appear very nearly symmetric on a logarithmic time 

scale at higher temperatures, but beginning at approximately 𝑇𝑆 the curves lose their symmetry 

and begin to exhibit depressions at approximately the peak string participation time 𝑡𝐿. At the 

lowest temperatures there are multiple inflection points, resulting in a splitting of the curves into 

two “peaks” for the KA and WCA systems.  

Plotting the participation curves for different strings lengths at a given temperature 

reveals an interesting result as well. These plots are shown for the KA and WCA systems in Figure 

6-4 and for the HARM and Dzugutov systems in Figure 6-5. One-member (𝑙 = 1) strings, which 

are atoms whose mobility is within the top 5% of the largest mobilities in the system but have not 

moved cooperatively, are also shown. The dotted lines on these plots show the time at which the 

population of individual, non-cooperatively moving atoms attains a minimum, which is typically 

very close to the time at which the populations of cooperative pairs, three-member microstrings, 

and longer strings attain their maximum values. This indicates that the time scales associated 

with individual atom hops represented by the l = 1 “strings”, appears to drive the time scales of 

microstrings and longer strings. 
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Figure 6-4: Plots of the participation curves for 𝑙 = 1 − 6 strings for the KA and WCA systems, at the 
mode-coupling temperature 𝑇𝐶  and the dynamic crossover temperature 𝑇𝑆. 
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Figure 6-5: Plots of the participation curves for 𝑙 = 1 − 6 strings for the HARM and Dzugutov 
systems, at the mode-coupling temperature 𝑇𝐶  and the dynamic crossover temperature 𝑇𝑆. 



 

89 
 

1.0 1.2 1.4 1.6 1.8 2.0 2.2
10-3

10-2

10-1

100

101

102

103

1.0 1.2 1.4 1.6 1.8 2.0 2.2
100

101

102

103  l = 2

tper

1 / T

 l = 3

 l = 4

 l = 5

 l = 6

tper

1 / T

KA System Ts

 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
10-3

10-2

10-1

100

101

102

103

1.2 1.6 2.0 2.4 2.8
101

102

103  l = 2

tper

1 / T

 l = 3

 l = 4

 l = 5

 l = 6

tper

1 / T

WCA System Ts

 

Figure 6-6: The persistence time 𝑡𝑝𝑒𝑟 of strings of particular lengths 𝑙. For l > 2, 𝑡𝑝𝑒𝑟 is taken to be the 

time interval at which these strings comprise at least 0.5% of the atoms participating in 
string-like motion. As cooperative pairs are found to always comprise a greater percentage 
of string-like atoms than longer strings, 𝑡𝑝𝑒𝑟 is the time interval during which cooperative 

pairs comprise at least 5% of string-like atoms. 

 

Further analysis of this intriguing result may be carried out by calculating a “persistence 

time” 𝑡𝑝𝑒𝑟 for the groups of strings of length l that indicates the time scale for which strings of 

length 𝑙 constitute a significant fraction of the atoms participating in string-like motion. The 

persistence time is calculated by noting the time at which strings of length 𝑙 first attain a certain 

percentage of the string population, and the time at which they last attain at least that percentage, 

as indicated in the plots in Figure 6-4. For l = 3-6, we choose 0.5% of the total string population as 

the threshold for 𝑡𝑝𝑒𝑟; for 𝑙 = 2 one is forced to choose a larger threshold of 5%, as cooperative 

pairs are always significantly more prevalent than the longer strings. Plots of 𝑡𝑝𝑒𝑟 for the KA and 

WCA systems are shown in Figure 6-6. As expected given the results in Figure 6-4, 𝑡𝑝𝑒𝑟 increases 

with decreasing temperature for a given string length 𝑙. At a given temperature, shorter strings 

have longer persistence times. A reasonable explanation for the closeness of the peak population 

time scales for various string lengths that may be drawn from these results is that longer string 

formation is facilitated by shorter string growth. On average, for a large enough sample of strings, 

strings of length 𝑙 will typically not begin to form until there is a significant-enough population 

of [𝑙 – 1] strings. Since successively longer strings have shorter persistence times, strings of length 

𝑙 also typically break up before strings of length [𝑙 – 1]. The competition of these two factors may 

lead naturally to a centering of string population times around a central value controlled by the 

shortest strings in the system.  
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Figure 6-7: Plots of the maximum fraction of mobile atoms participating in strings of length l = 2, 3, 4, 
and 5, for four model supercooled liquids. The temperature scale is normalized to the 
dynamic crossover temperature 𝑇𝑆 for each system. 

 

Of equal (or perhaps more) significance in the results shown in Figure 6-7 is the observation that 

the maximum values of the participation curves for cooperative pairs exhibit either non-monotonic 

variance in temperature, as seen in the KA and WCA systems, or an approximate leveling-off, as 

seen in the Dzugutov and HARM systems, and the maximum or leveling-off point occurs at the 

dynamic crossover temperature 𝑇𝑆. These maximum values for cooperative pairs are shown in 
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Figure 6-7 in Arrhenius plots, along with the corresponding maximum values extracted from the 

participation curves for 𝑙 = 3, 4, and 5 strings, also plotted on Arrhenius scales with temperatures 

normalized to 𝑇𝑆. Three-member microstrings show nearly the same behavior as is seen for 

cooperative pairs, although the non-monotonic variance seen in the KA and WCA systems for 

cooperative pairs is not present. For the longer 4-5-member strings, shifts in the slope of the 

maximum fraction of participation are evident somewhat below 𝑇𝑆 but still above the mode-

coupling temperature. 

 

This study of discrete string populations indicates the presence of shifts in the dynamical 

behavior of strings that are not as apparent in the analyses of bulk stringlike motion featured in 

the literature and in Figure 6-2. These results raise some important questions. First, it is not clear 

whether the peak values of the participation curves constitute length scales associated with string 

dynamics. If this is the case, then the non-Arrhenius variation of the maximum population of 

cooperative pairs suggests that in fact cooperative pair formation is not functioning according to 

activated dynamics at lower temperatures. Longer strings clearly show Arrhenius variance across 

the dynamic crossover temperature 𝑇𝑆. However, it is also not clear that the maximum population 

of strings of a particular length actually constitutes a viable length scale, and therefore caution 

must be exercised when attributing certain interpretations of these results in the context of 

activated dynamics. 

 

Figure 6-8: Illustration of how the incoherent formation of a four-member string might cause the 
string-finding algorithm, which only compares snapshots at 𝑡0 and 𝑡0 + 𝛥𝑡, cannot account 
for the intermediate history of the string, where a cooperative pair forms at 𝑡0 + 𝑡𝑖𝑛𝑡. In this 
scenario, two cooperative pairs are formed within the time interval but the string-finding 
algorithm identifies a four-member string. 
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 Further consideration of the string-finding algorithm in the context of the coherency of 

string formation uncovered by Gebremichael, et. al. [210], illuminates a possible shortcoming in 

the discrete string population analysis. The method employed to link cooperative pairs into 

longer strings necessitates that strings are identified exhaustively – that is, cooperative pairs with 

common members are linked together until no other common members are found, and the 

resulting string excludes its constituent cooperative pairs from being included in the total count 

of cooperative pairs in the system. For example, a four-member string is found by linking together 

three cooperative pairs (see Figure 6-8). Within the time interval Δ𝑡 between the two frames, the 

cooperative pair constituents of the four-member string likely moved at different times – the 

string-finding algorithm cannot say what occurs inside the time interval Δ𝑡. It is impossible to 

know whether a given string was formed coherently. Therefore, the plots in Figure 6-7, while 

interesting in their own right, may merely be a reflection that cooperative pairs are being 

assimilated into longer strings with increasing frequency, causing the population of cooperative 

pairs to drop off, and thus statements about the activated nature of string formation based on the 

participation curves are not necessarily valid. Furthermore, the origin of the depression needs to 

be uncovered, as an intuitive appraisal of the participation curves suggests that the formation of 

the depressions is what leads to the non-monotonicity in the peak values of the curves. If the 

origin of the depression is found, one might reasonably attribute the cause of the depressions to 

be the cause of the non-monotonicity as well. 

 There is no question that these results indicate a dynamical shift related to stringlike 

motion at 𝑇𝑆. To allay concerns that anomalies in the simulations or in the post-analysis are 

responsible for this result, we note that no parameters in the post-analysis were changed in the 

analysis for any system as the temperature was varied, and that the closeness of the results in this 

work to literature data (as indicated in Figure 6-2) shows the string-finding analysis was 

conducted correctly. For each system the distribution of string lengths 𝑃(𝑙) exhibits a very clear 

exponential decay as l increases, which matches results seen in the literature. This indicates that 

sufficiently good statistics were obtained from the simulations to cancel out any transient effects 

that may lead to erroneous results. The next task is to gain more insight into the precise nature of 

this dynamical shift, and why this shift might occur at 𝑇𝑆. 
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Section 6.2 String Tracking Analysis 

 

 A more in-depth analysis is needed to determine the true nature of the formation of 

cooperative pairs and their role in the formation of longer strings. In this situation, an analysis 

inspired by neutronics in nuclear reactors provides a possible answer. Just as the neutron 

population in a reactor may be computed by considering the “gain” and “loss” of neutrons by 

fission, scattering, and absorption [211], one may recreate the participation curves in Figure 6-3 

by considering how strings of particular lengths are created and annihilated, quantifying all of 

these events, and summing them together again to obtain the total population of strings of a given 

length. For example, cooperative pairs may be formed by the confluence of individual atoms 

(either immobile or mobile) that, at one instant, are not moving cooperatively and then suddenly 

undergo a cooperative motion. Cooperative pairs may also be formed by the disintegration of 

longer strings, in which at one instant a long string of atoms is identified as moving cooperatively, 

and then in the next instant all but two members of the long string suddenly stop moving or move 

in different directions so that the motion of all the atoms in the string are no longer correlated, 

leaving only two atoms that continue to move together. By counting all instances of cooperative 

pairs being formed and breaking up, the difference of the two’s sum is the net population of 

cooperative pairs. The goal is to determine whether the behavior of the participation curve for 

cooperative pairs entails one of the two following possibilities: 

 

Explanation 1: The depression in the curve is due to fewer cooperative pairs forming near 

the peak string population time 𝑡∗, and the Arrhenius growth of the population of longer 

strings is due to them forming coherently independent of cooperative pair formation. 

 

Explanation 2: Cooperative pairs are indeed being formed but their population merely 

appears to drop off because they are latching onto other strings to form long strings, which 

are mostly incoherent. The population drop-off is an artifact of the string-finding 

algorithm, which only compares strings between two configurations and cannot say 

anything about the history of the atoms between the configurations. 
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To perform this analysis, a reference time 𝑡0 is chosen as is done normally when applying the 

string-finding algorithm. At every subsequent snapshot 𝑡1, 𝑡2, 𝑡3 , … , 𝑡𝑁, where 𝑡𝑁 is a sufficiently 

large time interval that the average string length 𝐿(𝑡𝑁) decays approximately to zero, the string 

algorithm is applied with respect to the reference frame at 𝑡0. For each time 𝑡𝑖, the following 

information is tabulated for each atom:   

1. Whether or not the atom is participating in a string’s motion, 

2. If the atom is in a string, the length of the string of which it is a member. 

Then, each atom’s membership at time 𝑡𝑖 is compared to its membership at the previous time 𝑡𝑖−1. 

Thus, the history of every atom’s participation in strings is recorded for the entire duration of 𝑡𝑁. 

One may see exactly when an atom transitions from, say, a cooperative pair to a six-member 

string, or when an atom is part of a ten-member string that breaks up, leaving it as a member of 

a shorter string. 
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Figure 6-9: (left) A mirror transformation of mobile, non-cooperatively moving atoms (l = 1) and 
cooperative pairs (l = 2), for the KA system at a low temperature. The two rates are nearly 
identical, indicating that cooperative pairs break up into individual atoms nearly as often 
as they are formed by them. (right) The net rate obtained by taking the difference in the 
mirror transformation rates in the left figure. The net rate is positive before 𝑡𝐿 and negative 
afterwards, indicating that more cooperative pairs are indeed formed from mobile atoms 
than break up into mobile atoms before 𝑡𝐿, where the opposite is true after 𝑡𝐿. 

  

With this analysis, particular “transformations” or permutations of string formation and 

annihilation may considered. The number of atoms that transition from a string of length m to a 

string of length n at time 𝑡𝑖 can be denoted 𝑁𝑚𝑛(𝑡𝑖). For example, 𝑁23(𝑡𝑖) is the number of atoms 
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that were members of cooperative pairs at time 𝑡𝑖−1 and are now members of three-member 

strings at time 𝑡𝑖. If the spacing between all snapshots is equal (as is done with the data used in 

this work), this number can also be considered a rate 𝑅𝑚𝑛(𝑡𝐼). The analysis computes 𝑅𝑚𝑛 at every 

time interval for 𝑚, 𝑛 = [0,10], with a zero-member “string” corresponding to a low-mobility, 

non-cooperative atom that is not within the top 5% most-mobile atoms, and a one-member 

“string” corresponding to a mobile, non-cooperative atom. Of special significance are so-called 

“mirror transformations,” such as (𝑅12, 𝑅21), that correspond to strings being created and 

annihilated by the same process. If mirror transformation rates are added together, they represent 

the net rate of strings of length m being created by strings of length n coming together, or 

annihilated by breaking up into strings of length n. A depiction of mirror transformation rates for 

the KA system at low temperature is shown in Figure 6-9. It is observed that for all mirror 

transformations – not just the one-to-two-member string transformations shown in Figure 6-9 – 

the creation rate is nearly identical to the annihilation rate, indicating that most strings break up 

shortly after they are formed. However, the creation rate is slightly larger than the annihilation 

rate prior to 𝑡𝐿, which is the expected result that must be true if strings are to be formed. The 

annihilation rate becomes larger after 𝑡𝐿. This reflects the monotonic increase before 𝑡𝐿, and 

subsequent decrease after 𝑡𝐿, seen in the bulk string population (Figure 6-2 and Figure 6-3). In the 

last step of the process, all rates corresponding to all permutations of n and m can be summed 

together for a particular string length and then integrated to obtain the total population of those 

strings as a function of time. For example, the sum of all rates 𝑅2𝑚 and 𝑅𝑛2 will give the net rate 

of cooperative pair formation, and the integral of 𝑅𝑛𝑒𝑡 = 𝑅2𝑚 − 𝑅𝑛2 should reproduce the string 

population curve for cooperative pairs depicted in Figure 6-3. The benefit of this complicated 

process is that one is now able to consider only some transformations, while neglecting others, to 

examine the impact of certain string transformations on the population of cooperative pairs. This 

is shown in Figure 6-11 below for cooperative pairs: by considering 𝑅𝑛𝑒𝑡 = 𝑅2𝑚 − 𝑅𝑛2 with 𝑚, 𝑛 <

2 provides the net rate of cooperative pairs that are formed only by the convergence of individual 

atoms, and annihilated only by breaking up into individual atoms.   
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Figure 6-10: Evolution of the reconstruction curves for cooperative pairs in the KA system at T = 0.48 as 
successively longer string transformations are taken into account. 

 

Note that strings longer than two members effectively do not exist in the system at all.  

For this scenario, the string population curve for cooperative pairs no longer exhibits non-
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monotonic variance in temperature and is no longer asymmetric in time. Figure 6-11 (A) shows 

this scenario. As transformations between cooperative pairs and successively longer strings are 

considered (Figure 6-11 (B-D)), eventually the string population curve in Figure 6-3 is attained in 

Figure 6-11 (D). Note that the reconstructed curves are choppier than the original participation 

curves because the time-sampling is much more frequent in the reconstructed curves. 
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Figure 6-11: Plots of the discrete string population reconstruction curves for cooperative pairs in the 
Kob-Andersen system. As the interchange of cooperative pairs with only individual atoms 
(l = 0, 1) is considered, the peak values of the curves exhibit a monotonic increase in 
temperature. As the interchange of cooperative pairs with longer strings is considered, the 
non-monotonic behavior of the plot in Figure is obtained. 
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It is also important to note that the effect of adding longer string interchanges is less 

significant at higher temperatures, where long strings are rare. At the highest temperature T = 1.0 

for the KA system, there is virtually no change at all among the four plots depicted in Figure 6-11. 

This indicates that T = 1.0 is the high-temperature limit in which virtually no long strings exist, 

and the consideration of strings longer than 𝑙 = 2 is mostly unnecessary to reconstruct the 

participation curve. This analysis carries this exact same process to lower temperatures, where 

longer strings do exist, and where the act of excluding the interchange of cooperative pairs with 

longer strings produces dramatic results. 

 

Section 6.3 Discussion 

 

The relatively straightforward analysis of quantifying the population of strings of 

particular lengths (Figure 6-7) reveals a profound result at the dynamic crossover temperature 

that is not evident by an analysis that lumps all strings together. A broad view of the results 

presented in this chapter leaves no doubt that a change in string dynamics is occurring at the 

dynamic crossover temperature. The non-monotonic behavior of the curves for the KA and WCA 

systems indicates that this feature is not necessarily unique to one system (although the KA and 

WCA systems share the same binary Lennard-Jones form of their potential energy function), and 

although the HARM and Dzugutov systems don’t exhibit non-monotonic variation of the 

cooperative pair population, a pronounced shift is evident at 𝑇𝑆 for those systems too. That these 

changes are seen at this particular temperature for these distinct potentials renders extremely 

unlikely the possibility that these results represent a coincidence. 

 The string tracking analysis digs beneath the surface of the initial discrete string analysis 

and provides an explanation for the odd depressions in the participation curves for cooperative 

pairs. The fact that the participation curves for any discrete string length may be “reconstructed” 

using the tracking analysis considering all string interchanges indicates that an accurate 

bookkeeping of string transformations has been developed. The key part of the analysis presented 

here is represented by the stark difference between the top-left and bottom-right plots shown in 

Figure 6-11, which demonstrates how by excluding cooperative pairs that go on to form longer 

strings, or are formed by the breaking up of longer strings, one can pretend that the mechanism 
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for long string formation effectively doesn’t exist, and it becomes apparent that cooperative pairs 

are indeed produced to an increasing extent as temperature is lowered. The other important take-

away from this result is that the significance of long strings becomes more important as 

temperature decreases. The full participation curve at high temperatures may be reconstructed 

only using short string interchanges. This is partially due to the rarity of long strings at high 

temperatures. But the dearth of long strings also means that the participation curves don’t exhibit 

the depression in the vicinity of the string formation time 𝑡𝐿. 

 An effect similar to that observed for cooperative pairs is also seen for three-member 

microstrings. They also act as the constituents of longer strings but to a lesser extent than the 

more-common cooperative pairs. Successively longer strings see a stronger Arrhenius growth as 

temperature decreases, and no decline in their population near 𝑡𝐿. The behavior uncovered by 

this analysis – that two- and three- member strings increasingly join together with other 

correlated atoms and string to form longer strings beginning at 𝑇𝑆 – has possible implications for 

the dynamical facilitation model for string formation of Chandler and coworkers [102]. The 

microstrings identified in this analysis that are “annihilated” by absorption into longer strings 

persist in their displacements for an appreciable time.  

 The conclusion that should be emphasized the most from this chapter is how the discrete 

analysis, and the subsequent explanation of the non-monotonicity by the tracking analysis, 

emphasize the importance of the dynamic crossover temperature 𝑇𝑆. A clear change in string 

dynamics occurs at this temperature, particularly with shorter strings. This is evidence that a 

“jamming” threshold has been crossed, as a change in the nature of the dynamically-constrained 

pathways followed by the atoms has forced string relaxation to rely increasingly on incoherent 

motions. A fundamental observation in the literature has been that the average string length 

increases with decreasing temperature, meaning that the mobile atoms that are trying to explore 

the potential energy landscape are increasingly relying on activated dynamics to achieve 

relaxation. Since coherent motion of long strings is statistically improbable given the caging effect 

experienced by individual atoms, the conjoining of cooperative pairs or three-member 

microstrings is the only mechanism by which the long strings are generated.  

As indicated by Figure 6-4 and Figure 6-5, extrema in the populations of individually-

moving mobile atoms and all discrete string lengths occurs at approximately the same time scale, 
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while the persistence time decreases for successively longer strings at a given temperature. This 

situation is highlighted by the results of the tracking analysis, which shows (in conjunction with 

the analysis of Gebremichael and coworkers [210]) that the short strings are essential components 

of longer strings, and thus can be said to facilitate the formation of longer strings that form 

incoherently as a result of the conjunction of short, coherently-forming microstrings. As long 

strings are rare compared to microstrings, only a small fraction of cooperative pairs or three-

member strings goes on to incoherently join other strings to form the long strings. The long string 

population “draws on” the population of short strings, and few long strings could exist without 

the prior formation of microstrings. If the time scales of the maximum populations of long strings 

differed from those of short strings, it would entail that the long strings are being formed 

coherently – meaning that potentially tens of atoms would hop at nearly the same time, which is 

extraordinarily unlikely. 
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Chapter 7:    Thermal Jamming in Supercooled Liquids 

 

In this chapter a two-pronged thermodynamic and dynamic analysis of supercooled 

liquids is undertaken using the hard sphere partitioning (HSP) approach, from which the thermal 

jamming metrics are established for three model systems and eight real glass forming liquids 

(GFLs) using the assumptions within the methodology outlined in Chapter 4. Three model GFLs 

are featured in the first part of this analysis: the Kob-Andersen (KA) system [111], Weeks-

Chandler-Andersen (WCA) system [203, 204], and the harmonic sphere (HARM) system [205, 

206]. Details of the molecular dynamics (MD) simulations employed to study these systems is 

provided in Chapter 5 and Appendix A. These model systems have been extensively studied in 

their application to modeling the slowing-down behavior of supercooled liquids, and each can 

be classified as a simple liquid as they employ spherically symmetric pair potentials. Each system 

is studied from relatively high temperatures near the onset temperature 𝑇𝑂 at which supercooled 

dynamics is first observed, across the dynamic crossover at 𝑇𝑠, and down to the vicinity of the 

mode-coupling temperature 𝑇𝑐; the important crossover temperatures for the model systems is 

listed in Table 5-1. This ensures that a range of glassy dynamics is incorporated in the results for 

the three systems. For the eight real GFLs, the analysis is performed to the experimental glass 

transition temperature 𝑇𝑔. 

Prior to presenting the analysis, we provide confirmation of the validity of the simulations 

used in this work. Figure 7-1 shows a comparison of the (self) diffusion coefficients of the model 

GFLs computed by two methods – the slope of the mean-squared displacement (MSD), and the 

time integral of the velocity autocorrelation function [85]. Good agreement is seen between the 

two methods, which indicates that sufficiently long correlation time and configuration space 

sampling have been attained such that the integral of the VACF produces a reliable value of the 

self-diffusivity for all the systems. Some deviations are observed at lower temperatures where it 

becomes increasingly difficult to simulate the slow supercooled dynamics, but this error is 

relatively small and the VACF results match reasonably well with the diffusion coefficients 

obtained from the slope of the MSD. This check provides an important check for the density of 

states, the primary input of the partitioning (HSP) method. As shown in Equation 4.1.11, the zero-

frequency mode of the density of states 𝐺(𝜈) is directly proportional to the self-diffusivity D. 
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Figure 7-1: A comparison of reduced (self) diffusion coefficients as a function of inverse temperature 
for the three model GFLs. The diffusivities are evaluated through the mean square 
displacement (MSD) and velocity autocorrelation function (VACF). 

 

The density of states for the KA system is depicted for various temperatures in Figure 7-2. 

As evident the 𝐺(𝜈) converges to a constant value at small frequencies.  
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Figure 7-2: The density of states 𝐺(𝜈) for the A atoms (left) and B atoms (right) in the Kob-Andersen 
system. Note that the plot features a log-log scale that exaggerates the height of 𝐺(0). At 
low frequencies, 𝐺(0) attains a nearly constant value.  

Critical to the success of the HSP method is an accurate calculation of the diffusion 

coefficient from the VACF. The diffusion coefficient calculated from 𝐺(0) should ideally be within 
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a few percent of the value computed from the time integral of the VACF – to observe a result to 

the contrary would indicate that a better-quality simulation is needed to reduce error in the 

diffusion coefficient. This could be remedied by 1) computing the VACF for a longer correlation 

time, and with a smaller time step, or 2) increasing the number of atoms in the simulation cell. 

For the supercooled liquids studied in this dissertation, it is also important to compute the VACF 

as an average of output from many (often hundreds) of independent simulations with different 

initial velocities. As ergodic sampling of the potential energy surface for these systems becomes 

increasingly time-consuming at low temperatures, a large number of independent runs ensures 

that a larger volume of the phase space is explored. With fewer independent runs or smaller 

system sizes, 𝐺(𝜈) becomes choppier and the resolution of 𝐺(0) ∝ 𝐷 becomes more uncertain. 

Since the frequency interval 𝑑𝜈 is inversely proportional to the maximum correlation time used 

when computing the VACF, a sufficiently large 𝑡𝑐𝑜𝑟𝑟 was used such that a “flat” 𝐺(𝜈) is seen as 𝜈 

approaches zero. This flattening, coupled with the smoothing of 𝐺(𝜈) due to adequate sampling 

of the configuration space, provides confidence that 𝐺(0) and the overall shape of the density of 

states is accurate for the model GFLs. The internal consistency of the HSP approach is verified 

through an error analysis as shown in Appendix B. 

 

Section 7.1 Analysis of Model Glass-Formers 

 

As discussed previously, this chapter features thermal jamming analyses of two systems 

– model supercooled liquids and experimental GFLs. We proceed in for each of the two systems 

with a discussion the excess entropy of the hard sphere partition and Excess Entropy Scaling 

(EES). For the model supercooled liquids, a verification of the total entropy is also performed 

using reference values for the entropy from the simulations obtained through the internal energy 

variation with temperature. This total entropy verification is important, as it provides a firm 

ground upon which the implications of the HSP method demonstrated in this work can rest. 
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7.1.A Dynamical Characteristics of the Hard Sphere Partition 

 

Prior to calculating the entropy of the hard sphere partition and ultimately that of the 

entire liquid, the HSP method establishes a quantitative factor 𝑓 that determines the extent of the 

hard sphere partition of the liquid. A plot of the partitioning metric for both particle species of 

the model GFLs is shown in Figure 7-3 in Arrhenius form. 
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Figure 7-3: The partitioning metric 𝑓 as a function of 𝑇𝑐/𝑇 for the model GFLs. 

 

The partitioning metric is ~0.3 at the onset temperature 𝑇𝑂, which is consistent with values 

typically obtained for normal liquids using the CS equation of state and the 2PT method [187, 188, 

191] . Near the mode-coupling temperature 𝑇𝑐, 𝑓 decreases significantly to values on the order of 

10−2. Keeping in mind the definition of 𝑓 this observation means that as the temperature drops 

to 𝑇𝑐 from 𝑇𝑂, the effective number of hard spheres reduces dramatically from ~30% to just ~2%. 

Thus near 𝑇𝑐, the diffusive dynamics is controlled only by a small number of HS atoms.  

The partitioning metric for the model GFLs exhibits power law variation with 𝜙𝑐 − 𝜙̂, 

shown in Figure 7-4. At higher temperatures near 𝑇𝑂, which corresponds to larger 𝜙𝑐 − 𝜙̂, Liu’s 
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EoS predicts values that approach the Speedy and Odriozola-Berthier equations of state; at lower 

temperatures, it deviates. 
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Figure 7-4: At left, the variation of the partitioning metric with 𝜙𝐶 − 𝜙̂ for the KA system, using the 
three equations of states. Speedy and Odriozola-Berthier (O-B) produce very similar 
results, while the Liu EoS predicts a closer approach to 𝜙𝐶 for the same 𝑓. The critical 
packing fraction 𝜙𝐶 for Speedy and O-B equations of state are 0.648088 and 0.669, 
respectively, while it is 0.63558 for the Liu EoS (see Chapter 4). The middle and right plots 

show the variation of 𝑓 with 𝜙𝐶 − 𝜙̂ for the three model GFLs using the Speedy and Liu 
EoS, respectively. 

 

The middle and right panels of Figure 7-4 shows 𝑓 for all three systems using Speedy and 

Liu equations of state. All 𝑓 values fall on the exact same curve, regardless of the choice of EoS or 

the supercooled system, due to the strict one-to-one correspondence between 𝑓 and 𝜙̂. The same 

analysis for the dimensionless diffusivity is shown in Figure 7-5. Since both parameters 𝑓 and 𝜙̂ 

have a one-to-one correspondence with Δ in the HSP approach, the same variation is observed 

between Δ and 𝜙𝑐 − 𝜙̂ as is observed between 𝑓 and 𝜙𝑐 − 𝜙̂. 

A power law variation is observed for both 𝑓 and Δ with the Speedy EoS (and O-B). Small 

deviations are observed for Liu EoS. The origin of the “bend” observed for the Liu equation of 

state is not known;  However, we note that power law variation of Liu equation of state is 

eventually recovered below the “bend” observed in Figure 7-5 (also see Chapter 4); this will be 

more apparent for the analysis of experimental data later in this chapter. 
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Figure 7-5: At left, the variation of the dimensionless diffusivity parameter with 𝜙𝐶 − 𝜙̂ for the KA 
system, using the three EoS. Speedy and Odriozola-Berthier produce very similar results. 

The middle and right plots show the variation of Δ with 𝜙𝐶 − 𝜙̂ for the three model GFLs 
using the Speedy and Liu EoS, respectively. 
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Figure 7-6: At left, the packing fraction 𝜙̂ of the hard sphere partition, calculated for A particles in the 
Kob-Andersen potential using the Speedy, Odriozola-Berthier, and Liu equations of state. 

At right, 𝜙̂ for both particle species of the three model GFLs using the Speedy EoS. 
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Figure 7-6 shows the predicted values of the effective packing fraction 𝜙̂ associated with 

the hard sphere partition. The left panel shows how the three equations of state differ, which is 

mostly to say that the critical packing value 𝜙̂𝑐 is different for each equation; all three demonstrate 

approximately the same behavior in approaching 𝜙̂𝑐. The right panel shows results for the Speedy 

EoS for both particle species of all three model systems; note that rate at which the packing 

fraction approaches its maximal value differs among the systems and particle type. For all three 

systems, it is true that the smaller particle size (in terms of the ironic radius defined by the length 

scale of the potential energy function) exhibits a slower approach to 𝜙̂𝑐 as temperature decreases; 

put another way, at a given temperature, the smaller particles in each system are said to be less 

jammed than the larger atoms as confirmed by the larger diffusivity od the B particles. In the 

context of thermal jamming, this is a critical piece of evidence, as it shows the method is able to 

qualitatively confirm a necessary requirement of characterizing the dynamical slowing down of 

atoms in GFLs.  
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Figure 7-7: The left panel shows the compressibility 𝑍 of the hard sphere partition for OTP using all 
three EoS. At right, the hard sphere compressibility for all eight liquids is plotted using the 
Speedy EoS. 

 

The compressibility 𝑍, depicted above in Figure 7-7 for the model GFLs, shows that it 

increases significantly as temperature decrease.  It is not as clear that any particular value of 𝑍 is 

attained near 𝑇𝑐. The effective compressibility 𝑓𝑍 may also be computed, as shown in Figure 7-8; 
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as discussed in Chapter 4, it saturates near a value of 4𝜙̂𝑐 at the lowest temperatures. Further 

discussion of the implications of 𝑓𝑍 with regards to thermal jamming is given at the end of this 

chapter. Given that 𝜙̂𝑐 differs for each of the three EoS, the saturation levels out at slightly 

different values depending on the EoS used as can be seen in the left panel of Figure 7-8. For the 

Liu EoS, a small non-monotonicity is seen where fZ slightly exceeds 4𝜙̂𝑐 before dropping to the 

expected asymptotic value (~2.54). It is likely this effect is a result of the mathematical complexity 

involved in Liu’s EoS than a physical anomaly. 
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Figure 7-8: At left, the effective compressibility fZ as a function of 𝑇𝑐/𝑇 for the KA system, using 
Speedy and Liu equations of states. For each EoS, the curves converge to nearly 4𝜙𝑐. The 
right panel shows the effective compressibility for three model liquids using the Speedy 
EoS.  

 

7.1.B Verification Using the Total Entropy Calculation 

 

Since the HSP approach is based on the 2PT method, the framework of that method may 

be carried out to compute the total entropy for the model GFLs, which serves as an verification 

of the validity of the results subsequently presented in this chapter, and as a necessary but not 

sufficient condition for accepting the physical inferences from this analysis. However, the 

calculation of the total entropy for the model GFLs in this work present some additional 



 

109 
 

challenges that have not been previously addressed for the application of the 2PT method. This 

total entropy verification requires that the harmonic oscillator partition of the liquid be 

established in addition to the hard sphere partition; then, contributions from both partitions are 

summed to obtain the total entropy [187].  

 

7.1.B.1 Ideal Gas Entropy and Planck’s Constant 

 

To compute the entropy contribution from the hard sphere partition of the liquid to the 

system total entropy, expressions for the ideal gas entropy and excess entropy for hard spheres 

are employed, so the total entropy of the hard sphere partition is 𝑠𝐻𝑆 = 𝑠𝐼𝐺 + 𝑠𝐸𝑋𝐶, where 𝑠𝐸𝑋𝐶 is 

defined such that it is always negative (see Chapter 4). For application to the model GFLs, a 

problem is presented by the inclusion of Planck’s constant in the expression for 𝑠𝐼𝐺 in this 

methodology (Equation 4.4.29). Interatomic potentials are usually designed so that within the MD 

code, a reduced system of units is used so that results are applicable to a family of real materials. 

When using realistic potentials that approximate the behavior of real materials, appropriate unit 

conversions between real (for example, S.I.) units and the reduced units used within the 

simulations are always defined so that reduced simulation output may be converted to the 

appropriate real units. Liquid Argon, for example, features a length conversion scale defined by 

𝜎 = 3.4 Å and a temperature scale defined by 𝜖/𝑘𝐵 = 120 K, in addition to the mass conversion 

factor that is equal to the S.I. mass of Argon [199]. When results (thermodynamic properties, 

transport coefficients, etc.) are computed, the S.I. conversion factors are applied to transform the 

reduced results into physically realistic values. 

The model supercooled liquids in this work were not necessarily intended to model 

realistic materials. For instance, the Kob-Andersen system is approximately based on a binary 

Lennard-Jones potential for amorphous Ni80P20 [111], but the potential parameters have been 

further adjusted (for the purpose of better avoiding crystallization) so that the KA system 

typically studied in the literature and in this work does not accurately describe that material. The 

WCA and HARM potentials only feature repulsive components; thus, none of these potentials 

can be associated with any realistic material. Consequently, the definition of unit conversion 

factors between reduced and real units is ambiguous. The lack of a clear heuristic for defining 
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realistic unit conversions for these model systems leads to some confusion as to the value of 

Planck’s constant, h, which appears in the HSP/2PT Method in Equation 4.4.29. In this thesis, the 

reference material is taken to be Argon; there is precedent in the literature for studying Argon 

(monoatomic Lennard-Jones) that leads to ℎ∗ = 0.185 [212, 213], a value that is obtained by taking 

the energy and time unit conversions for Argon, 𝜖 = 1.67 × 10−21J, 𝜏 = 2.14 × 10−12 s. In reduced 

units, Planck’s constant is then computed as follows: 
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We develop a method for choosing an appropriate value of ℎ∗ for a given model GFL as 

follows: both the magnitude and slope of the total entropy (computed as the sum of the hard 

sphere and harmonic oscillator contributions) changes depending on the value of ℎ∗. An 

independent calculation of the total entropy can be obtained by integrating the heat capacity 𝐶𝑉. 

One begins by invoking the elementary thermodynamic relation, 

 dE TdS PdV    (7.1.2) 

Dividing both sides by the differential 𝑑𝑇, and noting 𝑑𝑉/𝑑𝑇 = 0, 

 V

dE dS
C T

dT dT
    (7.1.3) 

The total entropy is then obtained by integration, 

 V
ref

C
S dT S

T
    (7.1.4) 

The constant that results in the solution of the indefinite integral is a reference entropy, which 

can be taken to be zero and any other constant as appropriate. It is now posited that the most 

appropriate value of ℎ∗ for use in the HSP approach is the value that minimizes the root mean-

squared error (RMSE) between the HSP total entropy and the total entropy obtained by 

integrating 𝐶𝑉. To achieve this, a set of entropy values are computed for temperatures between 𝑇𝑐 

and 𝑇𝑂 for a range of ℎ∗ values, and all entropy data sets are scaled linearly so that the value at 

𝑇𝑂 is the same. Then, the RMSE is computed for all the HSP entropy data sets. 

For the HARM system, a temperature scale 𝑇∗ = 10−4𝑇 is used. This is a matter of 

convenience as the numeric values of the temperatures needed for the HARM system to achieve 
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glassy liquid dynamics are on the order of 10−4. One may arbitrarily assume that the “real” 

temperature conversion is 𝑇∗ = 10−4 K. Using the S.I. value of 𝑘𝐵, the resulting energy scale is 

𝜖 = 1.381 × 10−19 J. Setting the time scale to a reasonable value of 𝜏 = 10−12 s results in 
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This value will serve as a starting value for our search of the correct value of ℎ∗ for the HARM 

system. Figure 7-9 shows how the total entropy varies for the three materials depending on the 

choice of ℎ∗; the optimal choice of ℎ∗ is determined from Figure 7-10. 
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Figure 7-9: Entropy computed for the model GFLs using several values of ℎ∗ in the ideal gas entropy 
component. 

 

Table 7-1: Optimal values of Planck’s constant, in reduced units, for the three model GFLs. 

Model System Optimal Value of ℎ∗ 

KA 0.22 

WCA 0.10 

HARM 0.008 
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Figure 7-10: For the KA, WCA, and HARM systems, the RMSE between the total entropy computed 
using the integral of 𝐶𝑉/𝑇 to the total entropy computed by the 2PT Method using a range 
of ℎ∗ values. Clear minima are observed for each system that determines the optimal value 
of Planck’s constant. 

 

With a solution to the unique problem of how to handle Planck’s constant in the HSP 

approach for model GFLs in hand, the total entropy calculation can proceed. The ideal gas 

entropy of the hard sphere partition, 𝑠𝐼𝐺, and the ideal gas contribution from the hard sphere 

partition to the total entropy, 𝑆𝐼𝐺 = 𝑓𝑠𝐼𝐺, is depicted for the model systems in Figure 7-11, where 

ℎ∗ has been set to the values in Table 7-1 for each of the model systems. The ideal gas entropy is 

computed at the density of the hard sphere partition, 𝑓𝜌 – not the density 𝜌 of the actual liquid 

system. This leads to the seemingly counterintuitive result in which 𝑠𝐼𝐺 increases with decreasing 

temperature. This is due to the corresponding decrease of the hard sphere component’s density, 

which offsets the decrease in temperature by creating an increasingly effuse HS gas of higher 

entropy. 

When 𝑠𝐼𝐺 is multiplied by 𝑓 to obtain the ideal gas contribution from the hard sphere 

component to the total entropy, 𝑆𝐼𝐺 does show a decrease with decreasing temperature. By taking 

the product of 𝑓 and 𝑠𝐼𝐺, the ideal gas entropy now corresponds to the whole system. 
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Figure 7-11: The left plot shows a comparison of the ideal gas entropy 𝑠𝐼𝐺/𝑘𝐵 of the hard sphere 
partition (per atom) for the three model GFLs, for A and B particles separately. At right is 
the contribution of the hard sphere partition’s ideal gas entropy to the total entropy, 
𝑆𝐼𝐺/𝑘𝐵 = 𝑓𝑠𝐼𝐺/𝑘𝐵. For this data, the Speedy EoS is used; results with the Odriozola-
Berthier and Liu EoS are similar.  

 

7.1.B.2 Verification of Total Entropy 

 

Given the appropriate consideration of Planck’s constant in the ideal gas entropy 

calculation for the model GFLs, the total entropy analysis may be carried out. The following plots 

(Figure 7-12 and Figure 7-13) show comparisons of the total entropy computed using the HSP 

approach with the independent calculation of total entropy using the internal energy of the 

system, for the three model GFLs. For the time being, only the total entropy is presented; in the 

next section, a discussion of the various contributions to the total entropy is described. 

For the KA system, the total entropy using ℎ∗ = 0.22 matches very well to independently-

obtained results presented by Kob, Sciortino, and Tartaglia in the literature (Figure 7-12). This 

agreement holds from the onset temperature 𝑇𝑂 down to the mode-coupling temperature 𝑇𝑐 =

0.43. For the WCA and HARM systems, the total entropy computed with the HSP approach is 

compared against the self-consistent (integral of the) specific heat data from independent MD 

simulations in Figure 7-13. 
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Figure 7-12: A comparison of the total entropy computed from MD simulations of the KA system 
computed by taking the integral of 𝐶𝑉/𝑇 (Equation (7.1.4)). Open circles represent the 
results from Sciortino, Kob and Tartaglia [82], and the solid line represents the result from 
this thesis. The total energy is computed at very fine temperature intervals of Δ𝑇 = 0.002. 

 

As can be seen in the preceding figures, the 2PT Method with the inclusion of more 

accurate hard sphere equations of state can accurately compute the total entropy of the model 

GFLs. A demonstration of this methodology’s accuracy has previously not been established for 

dense fluids. It is possible that others had undertaken such analysis previously but were 

unsuccessful, as the Carnahan-Starling EoS used in the 2PT Method breaks down at high densities 

of the hard sphere partition, leading to non-physical results for fluids where 𝑓 is small. The 

inclusion of hard sphere EoS (Speedy, Odriozola-Berthier, Liu) that are more accurate in the 

regime of dense hard spheres allows for this accurate calculation of the entropy. This 

development, on its own, serves as an important contribution to the field of liquid physics, as to 

our knowledge the 2PT approach in the literature has not been modified to incorporate EoS other 

than the Carnahan-Starling EoS. Other modifications have been made in the literature to the 

methodology that have modestly improved its accuracy for fluids in general [191, 214], but these 

modifications have only been demonstrated for less dense liquids. A consequence of this work, 

which primarily strives towards establishing thermal jamming in dense fluids, is a practical 

improvement of the 2PT Methodology for computing thermodynamic properties of glass-

forming liquids. 
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Figure 7-13: (left panel) for the WCA system, comparison of the total entropy computed by the HSP 
approach using the Speedy (triangles) and Liu (circles) equations of state with ℎ∗ = 0.22 to 
the relative entropy computed by integration of the heat capacity obtained from MD 
simulations. (right pabel) The same data the HARM system with ℎ∗ = 0.008. For both 
systems, the entropy calculated by the HSP method has been shifted to match the value 
obtained from the heat capacity at the highest studied temperature. 

 

 As an analysis of thermal jamming in GFLs is the primary scope of this work, the total 

entropy calculation is not a goal in itself, but it is critical to demonstrate that this methodology is 

accurate via comparison to independently-obtained results, as the objective in the following 

sections is to attribute physical significance to the excess entropy of the hard sphere partition. The 

following section provides an analysis of the ideal gas and excess entropy as they contribute to 

the hard sphere partition’s total entropy. 

 

7.1.C Excess Entropy of the HS Partition 

 

As defined earlier, excess entropy that is considered in this thesis is the difference between 

the HS entropy and the ideal gas entropy  𝑠𝐸𝑋𝐶 = 𝑠𝐻𝑆 − 𝑠𝐼𝐺; as defined, 𝑠𝐸𝑋𝐶 is always negative. 

The excess entropy of a hard sphere system at constant density is computed as 
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Note that in the above expression, a dummy variable 𝜂 is used, and the upper bound of the 

integral is evaluated at the hard sphere partition packing fraction 𝜙̂. Analytic solutions to 

Equation 7.1.6 can be constructed for different equations of state; these were also verified through 

numerical means (results not shown).  

Numerical values of 𝑠𝐸𝑋𝐶 are delineated for the KA system (Figure 7-14), WCA system 

(Figure 7-15), and the HARM system (Figure 7-16) below, using the Speedy and Liu equations of 

state. The Odriozola-Berthier EoS produces results very similar to those computed using the 

Speedy EoS. This calculation of the excess entropy of the hard sphere component provides a basis 

for the examination of excess entropy scaling (EES) in model GFLs, but its application in this work 

differs from what has been previously undertaken in the literature as the excess entropy is only 

calculated for a subset (the hard sphere partition) of the liquid, as opposed to the whole liquid. 

Recall that the critical input to the HSP approach, is the diffusion coefficient of the liquid and the 

EoS, in addition to the liquid’s temperature and density. The jamming metrics (f, 𝜙̂) are computed 

entirely in terms of these inputs, and all the components of the hard sphere partition’s entropy 

are computed in terms of these metrics.   
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Figure 7-14: For the KA system, the excess entropy of the hard sphere component 𝑠𝐸𝑋𝐶 . The left panel is 
for A particles and the right panel is for B particles. 
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Figure 7-15: For the WCA system, the excess entropy of the hard sphere component 𝑠𝐸𝑋𝐶 . The left panel 
is for A particles and the right panel is for B particles. 
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Figure 7-16: For the HARM system, the excess entropy of the hard sphere component 𝑠𝐸𝑋𝐶 . The left 
panel is for A particles and the right panel is for B particles. 

 

It is interesting to note the larger difference in the results for the excess entropy between 

the Speedy (which we consider effectively identical to that of Odriozola-Berthier) and Liu EoS, 
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evident in Figure 7-14 through Figure 7-16 at temperatures close to 𝑇𝑐. As mentioned earlier, the 

functional complexity and parameters of large magnitude involved in the Liu EoS may have 

resulted in a leveling-off of the excess entropy not seen using the Speedy form. This behavior’s 

effect on the system-normalized entropy, however, is relatively miniscule, as will be 

demonstrated. This is mostly due to the diminishing contribution of the hard sphere component’s 

entropy to the total entropy, relative to the harmonic oscillator partition’s contribution. 
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Figure 7-17:  The diffusion coefficient (A and B particles) of the model GFLs plotted as a function of the 
respective excess entropy per atom of the corresponding system. The KA and WCA 
systems exhibit similar diffusivities that both differ significantly from that of the HARM 
system. Note that D does not show a universal scaling behavior.  

 

The temperature variation of the diffusion coefficients of the three model GFLs as a function of 

the hard sphere component’s excess entropy 𝑠𝐸𝑋𝐶 is shown in Figure 7-17. The KA and WCA 

systems, which share similar potential functions and parameters, cluster together, but the scale 

of the HARM system’s potential parameters establishes distinctly smaller diffusion coefficients 

for that system compared to the other two. Note that there is no universal scaling behavior for 

the diffusion coefficient. However, the non-dimensional diffusivity Δ (see Chapter 4) does indeed 

portray a universal Rosenfeld (exponential) scaling behavior with excess entropy 𝑠𝐸𝑋𝐶 as shown 

in Figure 7-18. 
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Figure 7-18: The dimensionless diffusivity for the model GFLs, with A and B particles plotted 
separately, as a function of the excess entropy per atom of the hard sphere component 
(computed using the Speedy EoS). A universal Rosenfeld (exponential) scaling behavior 
can be observed with 𝑠𝐸𝑋𝐶for all systems  

 

Excess entropy scaling is thus observed for the hard sphere components of the model GFLs in a 

manner similar that that presented by Dyre [180], and critically, strict adherence to a single master 

curve is exhibited by all three systems for both particle species. Of worthy consideration is the 

fact that the values of the excess entropy for the hard sphere component of the model GFLs are 

of similar magnitude to those obtained in the literature for similar systems using different 

methodologies [180], but are of course computed in an entirely different fashion. We reiterate that 

the physical interpretation of the hard sphere component excess entropy is distinct from that 

which has been previously calculated for liquids by subtracting the ideal gas entropy of a liquid 

from its total entropy.  
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Figure 7-19: Excess entropy scaling for the Kob-Andersen system; the figure is reproduced from [180]. 
Limited non-exponential scaling is observed among various densities until near the mode-
coupling temperature 𝑇𝑐 = 0.43. 

  

Compared to data collected by Dyre for the Kob-Andersen system in Figure 7-19, the HSP 

method’s 𝑠𝐸𝑋𝐶 shows some notable differences; it shows strict expoential variation, or Rosenfeld 

scaling, while literature data for the same material exhibits limited non-exponential scaling with 

excess entropy with the scaling breaking down near 𝑇𝑐. In contrast, 𝑠𝐸𝑋𝐶 computed by the HSP 

method shows strict scaling for the entire temperature range. Also, the magnitude of 𝑠𝐸𝑋𝐶 is larger 

than what is observed in the literature. Note that the physical interpretation of these excess 

entropies is not the same, 𝑠𝐸𝑋𝐶 applied only to a small subset of the atoms while the data in Figure 

4-19 is for the whole system.  

 

7.1.D Excess Entropy Scaling with the System-Normalized Entropy SHS  

 

As noted previously, we have posited that the entropy associated with the hard sphere 

component may be converted to the appropriate corresponding variable for the whole system by 

multiplying by the partitioning metric 𝑓 (see Chapter 4). Of concern in this section is the physical 

interpretation of the excess entropy of the hard sphere component as translated to apply to the 

whole system. By multiplying the hard sphere excess entropy by the partitioning metric 𝑓, the 

contribution of the hard sphere system’s normalized excess entropy is established. This is not 
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equivalent to the excess system entropy that is generally computed for liquids [180], where the 

total entropy of the liquid is computed by taking the temperature integral of the 𝐶𝑉,𝑃/𝑇, and 

subtracting the entropy of the ideal gas computed at the same temperature and density. Strict 

universal behavior is also evident in 𝑆𝐸𝑋𝐶 as shown in Figure 4-20; this follows from the fact that 

since 𝑠𝐸𝑋𝐶 shows universal behavior, and 𝑠𝐸𝑋𝐶 is computed in terms of the partitioning metric f, 

then 𝑓𝑠𝐸𝑋𝐶 = 𝑆𝐸𝑋𝐶 must show universal behavior as well.  
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Figure 7-20: The reduced diffusivity Δ plotted as a function of the system-normalized excess entropy 
𝑓𝑠𝐸𝑋𝐶 /𝑘𝐵 = 𝑆𝐸𝑋𝐶/𝑘𝐵. A and B particle species are plotted separately for the three model 
GFLs. The Speedy EoS is used to compute this data. 

 

One may then proceed to analyze the entropy of the hard sphere partition computed as 

𝑆𝐻𝑆 = 𝑆𝐼𝐺 + 𝑆𝐸𝑋𝐶, where 𝑆𝐼𝐺 = 𝑓𝑠𝐼𝐺 and 𝑆𝐸𝑋𝐶 = 𝑓𝑠𝐸𝑋𝐶. When the dimensionless diffusivity 

parameter Δ is plotted as a function of 𝑆𝐻𝑆, entropy scaling is not observed (Figure 7-21). It does 

not show strict enough adherence to a single curve to indicate universal or quasi-universal 

behavior; this is acceptable as there is no known theoretical basis for claiming that scaling should 

be observed for anything other than the excess entropy. The ideal gas entropy 𝑠𝐼𝐺, which is not 

computed strictly in terms of the partitioning metric like 𝑠𝐸𝑋𝐶 and depends on the 

thermodynamic state of the liquid, is the source of the absence of scaling behavior in 𝑆𝐻𝑆 that is 

observed strictly for 𝑠𝐸𝑋𝐶. 
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Figure 7-21: The dimensionless diffusivity plotted as a function of the entropy of the hard sphere 
partition 𝑆𝐻𝑆, for the model GFLs (A and B particles plotted separately). The Speedy EoS is 
used to calculate these values. 

 

7.1.E Components of Total Entropy 

 

In the following sections we present the total entropy components of the whole system, 

which includes the HO and HS contributions. The HO contributions are evaluated as outlined by 

LBG in the original reference [187]. As is demonstrated in Figure 7-22 for the KA system, the total 

entropy is mostly dominated by the harmonic oscillator contribution at low temperatures near 𝑇𝑐 

– this holds for the other two model GFLs as well. We will briefly discuss how the entropy 

components may be related to the configurational entropy  𝑆𝑐. It would appear that 𝑆𝐻𝑆 

component may be a measure of  𝑆𝑐 but there is not clear evidence for either from a theoretical 

point of view or numerical results. Further verification beyond the scope of this work is needed 

to confirm or reject the possibility that the hard sphere entropy of the HSP method approximates 

the configurational entropy. 
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Figure 7-22: The left panel shows the entropy of the harmonic oscillator partition computed for the 
three model GFLs, with A and B particles plotted separately. The right panel shows the 
hard sphere, harmonic oscillator, and total entropy for A particles in the Kob-Andersen 
system down to the mode-coupling temperature 𝑇𝑐 = 0.43.  

 

 The first-ever application of the HSP/2PT approach to model supercooled liquids in this 

work drives home the already dramatic conclusion – that the hard sphere partition becomes 

increasingly small as the dynamics of the liquid slows, and the harmonic oscillator partition 

dominates the total entropy of the liquid. The model supercooled liquids in this work exhibit 

partitioning that is significantly smaller than the already small values in the vicinity of 0.3 

obtained for simple liquids such as molten KCl [188]. It bears repeating that the incorporation of 

more accurate hard sphere EoS in the metastable region of the hard sphere phase diagram makes 

the accurate analysis of these dense liquids possible, and no significant work has been previously 

published applying the 2PT Method to such liquids.  

In terms of glass theories, the HSP approach is effectively silent on what happens at the 

significant temperatures associated with the onset of glassy dynamics, such as 𝑇𝑆 and 𝑇𝑐. It is 

approximately true that the parameters of the liquid, such as 𝜙̂ and f, generally level off in the 

vicinity of 𝑇𝑐, but as these parameters are tied to the diffusivity Δ of the system, no behavior 

would be revealed that could not have been seen in the temperature variation of D. The HSP 

approach does indicate that as model supercooled approach the mode-coupling temperature, the 
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thermodynamics is very well described by the harmonic oscillator partition and the significance 

of the hard sphere partition diminished, although it never disappears as long as the liquid has 

non-zero diffusivity. The small but non-zero diffusivity near 𝑇𝑐, which results in a 

correspondingly small contribution from the hard sphere partition to the total entropy which is 

dominated by the harmonic oscillator partition, serves as an illustration of the thermal jamming 

that occurs in supercooled liquids and GFLs, since the non-zero diffusivity indicates that atoms 

are still free to diffuse by increasingly rare cage-breaking while the system becomes increasingly 

dynamically-arrested.  

 There is a further application of the HSP approach that deviates from this application to 

molecular dynamics simulations and seeks to expand upon it. The HSP approach can be applied 

to materials where solely the diffusion coefficient and information about the liquid state are 

provided. One issue with this approach is that the lack of detailed dynamical history that would 

normally be provided by simulations precludes the calculation of the total entropy for such 

systems. On the other hand, we have at our disposal a trove of experimental data for GFLs in the 

literature for which transport coefficients have been measured across the whole temperature 

range of glassy dynamics, from the onset temperature 𝑇𝑂 to below 𝑇𝑔. This analysis proceeds in 

the following section. 

 

Section 7.2 Analysis of Experimental Data 

 

Recall that for the HSP method, all that is needed to completely determine the extent of the 

hard sphere partition, as well as all characteristics of the hard sphere partition, is the 

dimensionless diffusivity parameter Δ, which may be computed in terms of the diffusion 

coefficient, temperature, and density of a liquid. Previously in this chapter, materials have been 

studied using input from molecular dynamics simulations, but the power of the partitioning 

method outlined in this work is that it need not be limited to computational studies, and provides 

a straightforward approach of studying liquids where only D and thermodynamic information is 

provided. In this section, the method is applied to data for real supercooled liquids whose 

transport properties have been reported in the literature.  
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 This section employs literature data for eight GFLs: silica (SiO2), glycerol (C3H8O3), 

diopside (MgCaSi2O6), toluene (C7H8), o-terphenyl (C18H14), salol (C13H10O3), boric oxide (B2O3), 

and n-Propanol (C3H8O). References to the literature data used for these materials are presented 

in Table 7-2. By using the diffusion coefficient, the dimensionless diffusivity Δ can be computed 

for each material, which allows for the subsequent calculation of 𝑓 and 𝜙̂. For computing the 

density (which is an input for computing Δ) for the experimental GFLs, the temperature-

dependence of the density of the GFLs is calculated by the formula [215] 

 0( ) 1 ( )g l gT T T         (7.2.1) 

Here, 𝜌𝑔 is the density of the liquid at 𝑇𝑔 and 𝛼𝑙
0 is the thermal expansion coefficient of the liquid.  

The values used for the parameters in Equation (7.2.1) are provided in Table 7-2 and plots of 𝜌(𝑇) 

data are shown in Figure 7-23; given the values of 𝛼𝑙
0 obtained from the literature for these eight 

materials, the density changes only slightly throughout the range of temperatures studied. Note 

that the above equation allows to estimate the GFL density at any temperature; Figure 7-23 shows 

only the density data pertinent to the analysis.  

 

Table 7-2: Input for the analysis with experimental GFLs. The references associated with each 
material in the leftmost column are where the viscosity data is obtained.  

GFLs  𝑇𝑔 (K) [50] 𝑇𝑐 (K) 𝜌𝑔 (kg m-3) R (nm)  𝛼𝑙
0 (K-1) 

Silica [215] 1480 1613 2200 [216] 0.174 0.0003 [217] 

Glycerol [215] 188 249 1332 [216] 0.237 0.0005 [218] 

Diopside [215] 995 1178 3220 [219] 0.235 0.000008 [219] 

Toluene[215, 220] 117 160 857 [221] 0.258 0.000929 [215] 

Salol [215, 222] 220 268 1268 [216] 0.311 0.0005 [223] 

OTP [222] 240 290 1111 [216] 0.340 0.000605 [224] 

Boric Oxide [225] 550 800 1792 [226] 0.186 0.0000135 [227] 

Propanol [228] 96 138 800 [228] 0.219 0.000995 [229] 
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We compute the diffusion coefficient using literature data for the viscosity of the materials, 

obtained from [215, 220, 222], and a combination of the Stokes-Einstein relation (SER) and the 

fractional SER, which has been observed to hold for GFLs below 𝑇𝑐 [50]. The fractional SER is 

given by  

 
6

Bk T
D

R  
   (7.2.2) 

where η is the viscosity and R is the average hydrodynamic or ionic radius. Setting the exponent 

𝛾 = 1 yields the SER, and setting 𝛾 = 0.85 yields the fractional-SER. The values of the average 

ionic radius for the selected GFLs [215] and are listed in Table 7-2. Viscosity data is used instead 

of direct diffusion coefficient data as the experimental methods employed to measure viscosity 

typically allow for data to be obtained over a broader temperature range that comfortably 

encompasses both 𝑇𝑔 and 𝑇𝑂. Plots of the viscosity for the GFLs are shown in Figure 7-24. In most 

cases, the temperature ranges of the experimental data ranges approximately from the mode-

coupling temperature 𝑇𝑐 to very close to 𝑇𝑔.  
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Figure 7-23: The temperature-dependence of the density for the experimental GFLs. The chosen 
temperatures correspond to those where viscosity data is available.  
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Table 7-3: For the eight GFLs studied in [215], the chemical formula and bond type. 

GFLs Chemical Formula Bond Type 

Silica SiO2 Covalent 

Glycerol C3H8O3 Hydrogen 

Diopside MgCaSi2O6 Covalent 

Toluene C7H8 Van der Waals 

Salol C13H10O3 Hydrogen, Van der Waals 

OTP C18H14 Hydrogen, Van der Waals 

n-Propanol C3H8O Hydrogen, Van der Waals 

Boric Oxide B2O3 Covalent 

 

The eight experimental GFLs featured in this work exhibit the entire range of fragility (the 

viscosities of the materials are depicted in Figure 7-24) and feature molecules that interact with a 

variety of bond types (listed in Table 7-3).  
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Figure 7-24: The viscosity of the experimental glass-forming liquids used in this thesis. The dotted 
vertical line indicates the experimental glass transition temperature 𝑇𝑔 at which the GFLs 

attain a viscosity of 1013 𝑃𝑎. 𝑠.  
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Figure 7-25: The dimensionless diffusivity Δ for the experimental data, computed using the viscosity in 
conjunction with the Stokes-Einstein relation. For temperatures above 𝑇𝑐, the regular 
Stokes-Einstein Relation is used, and the fractional SER = 0.85 is used below 𝑇𝑐. When 
available, the calculated diffusion coefficients are compared to independent literature data 
and sufficient agreement is found. 

 

7.2.A Dynamical Characteristics of the Hard Sphere Partition 

 

Figure 4-25 shows the non-dimensional diffusivity of the selected GFLs evaluated with 

the Stokes-Einstein relationship. Much of the analysis that was conducted for the simulations of 

model supercooled liquids may be readily repeated for the analysis of experimental GFLs. First, 

the variation of Δ and 𝑓 with temperature is shown in Figure 7-26. At 𝑇𝑔, 𝑓 for all the materials 

approaches approximately 10−10; this was not achievable for the simulated GFLs, and allows the 

association of a particular partitioning value that is commensurate with the glass transition, much 

in the same way that 𝑇𝑔 is arbitrarily defined by a viscosity value of 1012 𝑃𝑎 ∙ 𝑠. Given that 

significantly lower temperatures are attainable using the experimental GFLs versus the model 
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GFLs studied by atomistic simulations, the partitioning metric is observed to attain 

correspondingly small values. 
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Figure 7-26: The partitioning metric 𝑓 as a function of 𝑇𝑔/𝑇 for the experimental GFLs using the Speedy 

EoS. 

 

The partitioning metric for the experimental GFLs exhibits power law variation with 𝜙𝑐 −

𝜙̂, shown in Figure 7-27. At higher temperatures near 𝑇𝑂, Liu’s EoS predicts values that approach 

the Speedy and Odriozola-Berthier equations of state. These results show clearly how the slope 

of this variation for Liu’s EoS also approaches that of the other two equations of state when 

plotted on a log-log scale. The functional form of the variation of 𝑓 with 𝜙𝑐 − 𝜙̂, does not change 

relative to that which is observed for the model systems, but the lower temperature range 

accessible with the experimental data allows the analytic curve to proceed significantly further 

into the power-law regime for the Liu EoS – and far past the “bend” that corresponds with the 

low-temperature limit (near 𝑇𝑐) for the model GFLs - as depicted in Figure 7-27. The same analysis 

for the dimensionless diffusivity is shown in Figure 7-28. The universality of the dynamical 

properties of the hard sphere partition is therefore verified down to below the glass transition 

temperature. 
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Figure 7-27: At left, the variation of the partitioning metric with 𝜙𝑐 − 𝜙̂, for OTP, using the three 
equations of states. Speedy and Odriozola-Berthier produce very similar results. At right, 

the variation of 𝑓 with 𝜙𝑐 − 𝜙̂, for all experimental GFLs, using the Speedy EoS. 
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Figure 7-28: At left, the variation of the dimensionless diffusivity parameter with 𝜙𝑐 − 𝜙̂ for OTP, using 
the three EoS. Speedy and Odriozola-Berthier produce very similar results. At right, the 

variation of Δ with 𝜙𝑐 − 𝜙̂ for all experimental GFLs, using the Speedy EoS.  
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Figure 7-29: The left plot shows the compressibility 𝑍 of the hard sphere partition for OTP using all 
three EoS. At right, the hard sphere compressibility for all eight liquids is plotted using the 
Speedy EoS. 

 

Similar to the dynamical properties, the compressibility 𝑍 (shown in Figure 7-29) changes 

significantly as the GFLs approach the glass transition temperature. It appears  𝑍  attains a value 

of ~1010 near 𝑇𝑔, which are significantly larger than the values observed by Berthier and Witten 

for hard spheres [144], although the interpretation of these results are not the same; the high 

𝑍 values shown above are only a small number HS atoms that exist at temperatures close to 𝑇𝑔. 

The effective or system-normalized compressibility 𝑓𝑍 which is shown in Figure 7-30 for the 

experimental GFLs saturates at a value of ~4𝜙𝑐 at the lowest temperatures for all systems. For 

the more fragile GFLs, this saturation occurs approximately at the mode-coupling temperature, 

whereas for less fragile liquids (propanol and B2O3, in particular) this convergence occurs well 

above 𝑇𝑐. 
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Figure 7-30: At left, the hard sphere partition’s effective compressibility 𝑓𝑍 as a function of 𝑇𝑔/𝑇 for 

OTP, using the Speedy and Liu equations of state. For each EoS, the curves converge to 
~4𝜙𝑐. The right panel shows the effective compressibility for all eight liquids using the 
Speedy EoS. The liquids converge differently; some show saturation of 𝑓𝑍 at the limit 4𝜙𝑐 
relatively far above 𝑇𝑔; all liquids show convergence before attaining 𝑇𝑔. 

 

What is remarkable is how firmly 𝑓𝑍 saturates well above 𝑇𝑔, for all three EoS. Given that 𝜙𝑐 

differs for each of the three EoS, the saturation levels out at slightly different values depending 

on the EoS used, as can be seen in the left plot of Figure 7-30. The system-normalized 𝑓𝑍 with 

Speed EoS shows a smooth approach to the limiting value. A small non-monotonicity is, however, 

seen for the Liu EoS, where 𝑓𝑍 slightly exceeds 4𝜙𝑐 before dropping to the expected asymptotic 

value, as was seen for the model GFLs; the lower temperatures accessible for the experimental 

GLFs demonstrates how the behavior of 𝑓𝑍 proceeds below the limit achieved for the model 

GFLs. Interestingly, 𝑓𝑍 saturates closer to 𝑇𝑔 for fragile GFLs such as OTP and salol.   
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Figure 7-31: The HS packing fraction 𝜙̂ for the experimental GFLs; the left plot shows 𝜙̂ for OTP 

calculated using the Speedy and Liu EoS. The right plot features 𝜙̂ for all eight liquids 
using the Speedy EoS.  

 

Strong convergence of the effective packing fraction of the hard sphere component is observed 

for the experimental GFLs in Figure 7-31. Convergence to 𝜙𝑐 occurs at different “rates” for the 

various GFLs. Salol and OTP, which are the most fragile liquids of this group, only attain 

saturation in 𝜙̂ relatively close to 𝑇𝑔, while less-fragile liquids like propanol and B2O3 saturate 

significantly above 𝑇𝑔. Note that the temperature range featured for most of the eight liquids 

extends from approximately the onset temperature 𝑇𝑂 to at or below 𝑇𝑔. For the model GFLs, 𝜙̂ 

in the vicinity of 𝑇𝑂 is smaller (~0.5) than is exhibited for the experimental GFLs at 𝑇𝑂. 

 

7.2.B Excess Entropy of the Hard Sphere Component 

 

As was done in the study of the model GFLs, the excess entropy can be computed for the 

experimental liquids, but for a wider temperature range, which allows for the verification of 

excess entropy scaling down to temperatures below 𝑇𝑔. Although the analysis cannot be as 

complete as that which was carried out for the model systems – the total entropy cannot be 

computed using experimental data – the effectiveness of the HSP method as verified with the 
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model systems lends weight to its broadened application to the experimental GFLs. The 

fundamental concept behind the HSP approach is that a one-parameter descriptor of the extent 

of thermal jamming in the hard sphere component of the liquid, which is “extracted” using the 

diffusion coefficient (or in principle, another transport coefficient such as viscosity) and 

assumptions from hard sphere theory; all of this information is available for these materials and 

in principle the same entropy scaling may be demonstrated for these experimentally-determined 

materials as was seen for the model systems. The missing piece is information about the 

corresponding harmonic oscillator (solid-like) component of these experimental GFLs, which 

cannot be determined without the information on the total density of states. 
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Figure 7-32: The excess entropy 𝑠𝐸𝑋𝐶/𝑘𝐵 (per HS atom) for the experimental GFLs. Near 𝑇𝑔, a value of -

60/𝑘𝐵𝑁𝐴 is attained for all materials. 𝑁𝐴 represents the Avogadro number.  

 

The normalized excess entropy (per HS atom) is depicted in Figure 7-32. Interestingly, the excess 

entropy of the hard sphere partition attains a value of approximately  

-60/𝑘𝐵𝑁𝐴 near the glass transition temperature. This value corresponds to the attainment of 

approximately 10−10 for the partitioning metric 𝑓 at 𝑇𝑔 (see Figure 7-26). 
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Figure 7-33: A comparison of the excess entropy of the hard sphere partition (left panel) and its 
contribution to the system entropy (right panel) using the Speedy and Liu equations of 
states for OTP. At higher temperatures the equations of states agree predict similar excess 
entropy but show a dramatic divergence at lower temperatures for 𝑠𝐸𝑋𝐶 . This divergence 
is less dramatic for 𝑆𝐸𝑋𝐶, as the inclusion of the partitioning metric offsets the divergence 

seen in 𝑠𝐸𝑋𝐶 .  

 

A noticeable difference may be observed between the Speedy and Liu EoS when 

computing the excess entropy, as shown in Figure 7-33 (left panel). When using the Liu EoS, 

𝑠𝐸𝑋𝐶/𝑘𝐵 (per HS atom) does not trend as negative with decreasing temperature. The numerical 

accuracy of the EoS and the resulting integrals used to compute 𝑠𝐸𝑋𝐶 have been verified using 

multiple computational methods, so we believe with high confidence that this effect is a genuine 

result of the subtle differences in the EoS that appear very close to the respective packing limits 

attained at 𝜙̂𝑐 for each EoS. When the contribution of the excess entropy to the system-normalized 

entropy is computed (Figure 7-33, right panel), the difference in the results using the two EoS is 

less dramatic, as the multiplication of 𝑠𝐸𝑋𝐶 by 𝑓 offsets the numerical difference.  
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7.2.C Excess Entropy Scaling  

 

A strict exponential excess entropy scaling, spanning over nine orders of magnitude for Δ, is 

exhibited by the experimental GFLs, as depicted in Figure 7-34. The broader temperature range 

allows for confirmation of EES in the hard sphere partition from 𝑇𝑂 down to below 𝑇𝑔. Although 

𝑠𝐸𝑋𝐶 differs significantly between the Speedy/Odriozola-Berthier and Liu EoS, the same scaling 

is obtained regardless of the choice of EoS. Based on the excess entropy scaling observed in model 

and experimental GFLs, the following generalized statement can be formulated: The HSP method, 

which postulates 𝑓 = 𝑔(𝜎+)−1, exhibits strict universal exponential scaling behavior with excess entropy  

𝑠𝐸𝑋𝐶 for all supercooled systems. This is a new definition of a class of universal liquid behavior using 

the HPS method. 
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Figure 7-34: Universal exponential excess entropy scaling as demonstrated by eight GFLs. Although the 
Speedy EoS is used for this evaluation, similar exponential scaling is observed with O-B 
and Liu equations of states.  

 

Figure 4-35 shows the scaling behavior with 𝑆𝐸𝑋𝐶 = 𝑓𝑠𝐸𝑋𝐶. Expectedly, the contribution 

𝑓𝑠𝐸𝑋𝐶 = 𝑆𝐸𝑋𝐶 becomes extremely small, as the hard sphere partition’s contribution to the total 

entropy becomes nearly negligible as the vibrational HO modes become relatively dominant near 

and below 𝑇𝑔; for some GFLs, the HO modes becomes relatively dominant well-before 𝑇𝑔. 
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Figure 7-35: Excess entropy scaling with 𝑓𝑠𝐸𝑋𝐶 = 𝑆𝐸𝑋𝐶 .  An approximate power law scaling is observed 
for nearly the whole range of temperatures (from at or below 𝑇𝑔 to the left, up to near and 

above the onset temperature 𝑇𝑂 on the right).  

 

Section 7.3 Discussion 

 

Through the partitioning metric 𝑓 and the Hard Sphere Partitioning (HSP) approach, we 

have established a formal method to idealize a glass forming liquid into two components – a set 

of non-interacting harmonic oscillators (HO) and a set of hard spheres (HS). It is postulated that 

𝑓, which is the ratio of number of HS atoms to the total number of atoms (𝑓 = 𝑁𝐻𝑆 /𝑁), is 

identically equal to the inverse of the HS radial distribution function at contact. Together with an 

appropriate equation of state for the metastable fluid branch, the HSP approach allows the 

development of formal jamming metrics including an effective packing fraction that converges to 

a certain critical packing fraction at temperatures close to 𝑇𝑐 or 𝑇𝑔. The effective packing fraction 

of the conceptual hard sphere partition 𝜙̂ shows an asymptotic approach to its maximum allowed 

value 𝜙𝑐  ~ 𝜙𝑅𝐶𝑃 for both the model GFLs and experimental GFLs at low temperatures. Thus, the 

HSP model establishes an ideal HS partition that may be considered as indicators of the extent of 

thermal jamming in the liquid. This is a concept very distinct from the usual notion of jamming, 
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which is a static phenomenon based on geometric dimensions. Thermal jamming seeks to ascribe 

a jamming perspective to the slowing down phenomenology observed in supercooled liquids and 

GFLs. In this perspective, slow dynamics is a consequence of disappearance of the equivalent 

hard sphere atoms; strictly speaking, with decreasing temperature, the number of equivalent HS 

atoms decrease while the number of equivalent harmonic oscillators increase.  

 The HSP approach further allows the computation of excess entropy components. With 

the definition 𝑠𝐸𝑋𝐶 = 𝑠𝐻𝑆 − 𝑠𝐼𝐺, where 𝑠𝐼𝐺 is the ideal gas entropy, it is shown that dynamical 

variables in appropriate reduced forms show scaling with excess entropy. A remarkable and non-

trivial observation is that all systems (model and real GFLs) that are investigated in this thesis 

show strict exponential (Rosenfeld) scaling with 𝑠𝐸𝑋𝐶. With a system normalized entropy 𝑆𝐸𝑋𝐶 =

𝑓𝑠𝐸𝑋𝐶, a strict scaling remains although approximated by a power-law form. The generality of 

the central definition of the partitioning metric, 𝑓 = 𝑁𝐻𝑆 /𝑁, leaves open a potentiality of 

numerous alternate formulations of this methodology in terms of other transport coefficients, or 

other hypotheses about the specific variation of f.  Such assumptions will affect the quantitative 

establishment of the hard sphere partition and the calculation of 𝑠𝐸𝑋𝐶 . It remains to be seen 

whether alternative formalisms would change the nature of entropy scaling behavior.  
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Chapter 8: Conclusions 

 

 The dramatic slowdown in the dynamics of supercooled and glass forming liquids can 

be described, under some conditions, through the ‘thermal free volume’, which is created by 

thermal energy working against pressure [132, 166]. In the thermal free volume 

conceptualization, the atoms may be thought of as becoming “thermally jammed” as temperature 

decreases. Relaxing the small pressure limit and insignificant overlap between the atoms, the 

dynamics can be characterized by using an effective hard sphere packing fraction at finite 

temperatures [166]. It is well-known that liquids can be approximated as a collection of hard 

spheres (HS) with a dominant repulsive potential and a weak attractive potential [37]. The 

collapse of structural and dynamic properties implies a quasi-universality in liquids that can be 

explained with model hard spheres [133, 134]; Dyre and coworkers have generalized this concept 

as the hard sphere paradigm [134].  

In this work, we adopt the hard sphere paradigm and the point of view that thermal 

excitations create a thermal free volume which will decrease with decreasing temperature. 

However, departing from the established line of inquiry, it is posited that only a subset of the 

constituent atoms, modeled as hard spheres, in a supercooled liquid or glass forming liquid 

(GFL), will show the features of jammed conditions. Thus, the dynamic slowdown is posited to 

arise from the attrition of the thermally excited hard spheres with decreasing temperature (or 

increasing pressure) – we refer to this effect as thermal jamming. The approach that is taken in 

this thesis differs from the path taken thus far – namely, to cast the structure and dynamics of the 

entire system comprising all the atoms/molecules into an equivalent system of hard spheres. 

Instead, a liquid system is portioned into a set of harmonic oscillators and a set of hard spheres. 

While the partitioning concept itself is not new, this approach diverges from the conventional 

wisdom of considering a liquid to be dominated by repulsive forces. 

Thermal jamming is formalized using the Hard Sphere Partitioning (HSP) approach. We 

extend the original work of Lin, Blanco, and Goddard (LBG) [187] by carefully choosing the 

equations of state along the metastable fluid branch that are appropriate for supercooled liquids 

and GFLs. Unlike the traditional practice of considering the entire liquid state to be comprised of 
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equivalent hard spheres, the HSP approach postulates that any liquid system can be regarded to 

be comprised of a set of hard spheres (HS) and a set of harmonic oscillators (HO). Thus, any 

property of the liquid system then becomes a weighted average of the contributions from hard 

spheres and harmonic oscillators. For properties such as diffusivity there is no contribution from 

harmonic oscillators by construction, while for extensive properties such as entropy there are 

contributions from both harmonic oscillators and hard spheres. With this partitioning, the 

attractive forces now have a contribution to the properties of the liquid state – a significant 

departure from the traditional viewpoint of dense liquids as approximated by a set of hard 

spheres. 

We first establish the definition of the hard sphere partition of the liquid using a 

“partitioning metric” f, which is the ratio of atoms in the liquid that behave effectively as hard 

spheres (𝑁𝐻𝑆) to the total number of atoms in the liquid (𝑁). In principle, there could be multiple 

ways to plausibly compute 𝑁𝐻𝑆 for a liquid. In the HSP approach, the partitioning metric is 

identically equal to the inverse of the HS radial distribution function at contact, i.e., 𝑓 ≡ 𝑔(𝜎+)−1. 

It is the shown that the partitioning postulate is in fact a mathematical conclusion that arises from 

the assumptions used to derive 𝑓 in the original 2PT method [187]. The numerical bounds of 𝑓 

are as follows: as 𝑓 → 1, the system is entirely fluidic, meaning that the system behavior is 

represented entirely by hard spheres (the system is an hard sphere gas); in the other limit, 𝑓 → 0 

entails no partitioning and the hard sphere component represents none of the system’s behavior 

(the system is a solid modeled as a set of harmonic oscillators). With the partitioning approach, 

the liquid is deemed to have both solid-like (HO) and gas-like (HS) properties. Properties that 

depend on hopping across the potential energy basins such as diffusivity and viscosity are 

exclusively dependent on the HS partitioning, while properties that rely solely on vibrations are 

attributed to the HO partition. Thermodynamic properties such as entropy and free energy that 

depend on both can then be written as a superposition of the HS and HO contributions. 

The hard sphere partitioning (HSP) method is devised to provide unambiguous jamming 

metrics to liquids in the supercooled states. The HSP approach presumes jamming a priori and 

provides the jamming metrics such as effective packing fraction and compressibility as the liquid 

traverses into the deeply supercooled states. This is done by incorporating three equations of 

states that are applicable in the metastable fluid branch – Speedy [151, 152], Odriozola and 

Berthier (O-B) [136] and Liu [148, 164]. The goal is to predict the ageing behavior of glass forming 
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liquids all the way to glass transition. The HSP approach does not postulate the significance of 

crossovers or discontinuities associated with the mode coupling critical temperature 𝑇𝑐 or the 

glass transition temperature 𝑇𝑔.  

The effective packing fraction 𝜙̂ of the hard sphere partition of the liquid established by 

the HSP approach provides the extent of thermal jamming in the liquids in the supercooled states. 

When diffusivity of the liquid approaches zero, the partitioning metric 𝑓≡𝑁𝐻𝑆/𝑁 also approaches 

zero and 𝜙̂ approaches the critical packing fraction 𝜙𝑐, which is close to the random-close-packed 

value 𝜙𝑅𝐶𝑃. In general, the value depends on the choice of the hard sphere equation of state 

applied in the HSP approach. According to the hard sphere paradigm, the dynamics of simple 

liquids is well-described by association with the reference hard sphere system, and according to 

one of the prevailing notions in the field, the hard sphere fluid on the metastable branch 

undergoes a glass transition when the packing fraction approaches 𝜙𝑅𝐶𝑃. In the HSP approach, 

we adopt this axiom but additionally incorporate an important caveat – only a subset of the 

atoms, as determined by the partitioning metric 𝑓, experiences the compressibility divergence. 

The partitioning metric, however, is expected to smoothly approach zero without exhibiting a 

discontinuity. Both the effective packing fraction and the partitioning metric are universally 

related for all glass forming liquids and supercooled liquids through the relation 𝑓 = Δ
3

5𝜙̂
2

5, 

where Δ is the non-dimensional diffusivity. The HSP approach also provides a method of 

establishing a universal description of liquid dynamics that is capable of spanning the entire 

range of liquid dynamics. The form of the non-dimensional diffusivity, which is determined from 

the kinetic theory of gases, is most appropriate for inquiry into any universal scaling relationships 

with effective packing fractions or excess entropy.  

In Chapter 7 a two-pronged thermodynamic and dynamic analysis of supercooled liquids 

is undertaken using the HSP approach, from which the thermal jamming metrics are established 

for three model systems and eight real glass forming liquids (GFLs) using the assumptions within 

the methodology outlined in Chapter 4. Three model GFLs are featured in the first part of this 

analysis: the Kob-Andersen (KA) system [111], Weeks-Chandler-Andersen (WCA) system [203, 

204], and the harmonic sphere (HARM) system [205, 206]. The eight experimental GFLs are: silica 

(SiO2), glycerol (C3H8O3), diopside (MgCaSi2O6), toluene (C7H8), o-terphenyl (C18H14), salol 
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(C13H10O3), boric oxide (B2O3), and n-Propanol (C3H8O); the references to the literature data used 

for these materials are shown in Table 7-2. 

A divergence in the pressure or compressibility of the HS partition occurs as  𝜙̂ → 𝜙𝑐. 

However, the divergence is not postulated to occur at a specific thermodynamic state. Therefore, 

there is no unique glass transition temperature or pressure in this approach, by construct. 

However, as shown in Chapter 7, the analysis of eight glass formers shows that non-dimensional 

diffusivity, the partitioning metric, compressibility, and excess entropy all tend to converge to 

specific values at the traditional laboratory glass transition temperature.  Interestingly, with the 

Speedy EoS, the excess entropy of the hard sphere partition attains a value of approximately 

~60/𝑘𝐵 per HS atom for all the experimental GFLs near the laboratory glass transition 

temperature; this value corresponds to the attainment of approximately 10−10 for the partitioning 

metric 𝑓. 

Excess entropy scaling is observed for the hard sphere components of the model and 

experimental GFLs, and critically, strict adherence to a single master curve is exhibited by all GFL 

systems. From this result, the following generalized non-trivial statement is formulated: The HSP 

method, which postulates 𝑓 = 𝑔(𝜎+)−1, exhibits strict universal exponential scaling behavior with excess 

entropy  𝑠𝐸𝑋𝐶 for all supercooled systems. The first-ever application of this methodology to GFLs in 

this work drives home the point that that the hard sphere partition becomes increasingly small 

as the dynamics of the liquid slows, and the harmonic oscillator partition dominates the total 

entropy of the liquid. In the HSP model, the dynamics becomes sluggish because the number of 

the participating diffusive (HS) atoms decreases precipitously on cooling. Relative to the existing 

theories, the HSP approach appears to be closest to the dynamic facilitation (DF) theory [117], 

although no formal correspondence is attempted in this work. No length scales are also identified 

in this approach although such metrics can possibly be constructed from the reduction of the HS 

atoms with decreasing temperature.  

The HSP approach most importantly reveals an important attribute of liquids that seems 

to present a conflict with the seminal Van der Waals conception of liquids that are dominated by 

repulsive interactions among atoms. Numerous studies of simple liquids using the 2PT method, 

upon with the HSP approach is based, have indicated that the partitioning metric 𝑓 for these 

liquids is not large, typically in the vicinity of 30-40%, meaning that 60-70% of the liquid’s 
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dynamics is better modeled by a system of harmonic oscillators than by hard spheres. For the 

molecular GFLs studied in this work, 𝑓 is significantly smaller than what is observed for simple 

liquids. As harmonic oscillators are characterized by attractive interactions as opposed to 

repulsive interactions, the calculation of 𝑓 suggests that liquid behavior is dominated by solid-

like vibrational modes instead of gas-like diffusion. From at least a practical standpoint, the HSP 

approach strongly suggests that liquid thermodynamics is better described by association of the 

liquid with solid-like vibrations in conjunction with HS gas-like diffusion.  

From a different standpoint, the analysis of stringlike cooperative motion presented in 

Chapter 6. A general explanation for the findings presented in this work is that the dynamical 

behavior of string-like groups of atoms in glass formers changes in the vicinity of the crossover 

temperature 𝑇𝑆. The discrete tracking analysis conducted for strings in the three model GFLs 

indicates that long strings become increasingly critical for the relaxation of mobile atoms to occur 

as temperature decreases, while the prevalence of shorter strings is diminished. A peak in the 

non-monotonicity of the relative population of cooperative pairs, as well as crossovers in the 

populations of longer strings occurs at 𝑇𝑆, indicating that a crossover in string dynamics occurs 

at this temperature that is commensurate with other observed behavior at 𝑇𝑆, such as the liquid’s 

deviation from the Stokes-Einstein relation. The increased reliance of mobile atoms on movement 

in the form of longer strings indicates the dominance of kinetically-constrained pathways that 

dominate relaxation behavior near the mode-coupling temperature 𝑇𝑐 – a likely consequence of 

thermal jamming of the atoms in glass formers. 

While this work serves to illuminate a new class of universal scaling in liquids, it also 

raises a number of important questions. First, how can the partitioning approach of the HSP 

method be used to better understand the important transitions in glass forming liquids that occur 

at 𝑇𝑆, 𝑇𝑔, or others among the numerous transition temperatures identified across the span of 

glassy dynamics (see Figure 1-4)? This work has identified one such association at the onset 

temperature 𝑇𝑂 where the partitioning metric attains values approximately observed for simple, 

non-glassy liquids. In Chapter 7, particular values attained by 𝑓, 𝑍, 𝑓𝑍 and 𝑠𝐸𝑋𝐶at 𝑇𝑔 for the 

experimental systems were identified – these are apparent convergence limits that are predicted 

by the HSP model commensurate with the attainment of a particular viscosity at 𝑇𝑔. Application 

of the HSP to a broader range of model GFLs, experimental liquids, and even materials such as 

superionic conductors that exhibit dynamics similar to that of glasses [17], could provide 
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sufficient information to identify transitions and crossovers in glassy liquids with metrics of the 

HSP method.  

Secondly, a more concrete rationalization is desirable for the partitioning postulate. It 

would be interesting to inquire different functional forms and their effect on the strict universality 

that is presented in this thesis. While the inverse relationship between partition metric and the 

HS radial distribution function at contact is physically plausible, a firmer theoretical backing 

would strengthen the HSP approach. Finally, accurate equations of state in the metastable fluid 

branch are key to the success of the method. More refined equations of state would improve the 

predictive capability of the method. The preponderance of theoretical advancements provided in 

this work to establishing a class of universality in liquids, as well as the grounds provided by the 

HSP method for future work in advancing concepts of liquid physics, strongly warrants 

additional attention to the HSP approach in its broad application to glassy liquids and beyond.  
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Appendices 

 

Appendix A: Simulation Details for Supercooled Liquids 

 

The model supercooled liquids featured in this work are described in this section. They are: 

the Kob-Andersen [111] and Weeks-Chandler-Andersen system [203, 204] and the harmonic 

sphere (HARM) system  [205, 206]. For these model systems, all simulation parameters are 

reported in reduced MD units. 

 

A.1 Kob-Andersen System  

 

N = 10,976 (14×14×14 FCC unit cells as initial configuration) 

𝜌 = 1.204 

Δt = 0.001443375 

𝑟𝑐𝑢𝑡 = 2.5𝜎𝐴𝐴  

 

Potential parameters are those used in [111]. The total correlation time used to collect the velocity 

autocorrelation function is 1,500,000 simulation time steps. Simulations were run in the NVT 

ensemble for equilibration and in the NVE ensemble for data collection. The following table 

indicates the number of independent runs (with different initial velocities) conducted for each 

temperature: 

No. of Ind. Runs: KA System Temperatures 

200 0.42, 0.43, 0.44, 0.46 

100 0.48, 0.50, 0.52, 0.55, 0.60 

20 0.65, 0.70 

10 0.80, 1.00, 1.20, 1.40 

 

Final results were produced as the average of the results from each of these independent 
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simulations. For the analysis of stringlike cooperative motion the same simulation parameters 

listed above were used, except the number of atoms was set to N = 6,912 (12×12×12 FCC unit 

cells), and the time step was doubled to Δt = 0.00288675. The temperatures studied were T = 0.48, 

0.50, 0.52, 0.55, 0.60, 0.70, 0.80, and 1.00. For each temperature, the simulations were equilibrated 

in the NVT ensemble for 750,000 time steps, and data was collected over a period of over 500,000 

time steps in the NVE ensemble. Configuration snapshots were printed every 100 time steps. 

Results were averaged over four independent runs per temperature. 

 

A.2 Weeks-Chandler-Andersen System 

 

N = 10,976 (14×14×14 FCC unit cells as initial configuration) 

𝜌 = 1.204 

Δt = 0.001443375 

𝑟𝑐𝑢𝑡 = 2.5𝜎𝐴𝐴  

 

Potential parameters are those used in [111], where the potential is shifted and truncated so that 

only repulsive interactions are considered among the atoms. The total correlation time used for 

the velocity autocorrelation function is 1,500,000 simulation time steps. Simulations were run in 

the NVT ensemble for equilibration and in the NVE ensemble for data collection. The following 

table indicates the number of independent runs (with different initial velocities) conducted per 

temperature: 

No. of Ind. Runs: WCA System Temperatures 

200 0.28, 0.29 

50 0.30, 0.32, 0.34, 0.36 

20 0.38, 0.40, 0.42, 0.45, 0.50, 0.55, 0.60 

 

Results were averaged over the results from each of these independent simulations. For the 

analysis of stringlike cooperative motion the same simulation parameters listed above were used, 

except the number of atoms was set to N = 6,912 (12×12×12 FCC unit cells), and the time step was 
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doubled to Δt = 0.00288675. The temperatures studied were T = 0.36, 0.38, 0.40, 0.42, 0,45, 0.50, 

0.60, 0.70, 0.80, and 1.00. For each temperature, the simulations were equilibrated in the NVT 

ensemble for 500,000 time steps, and data was collected over a period of over 500,000 time steps 

in the NVE ensemble. Configuration snapshots were printed every 100 time steps. Results were 

averaged over four independent runs per temperature. 

 

A.3 Harmonic Sphere (HARM) System 

 

N = 10,648  (22×22×22 cubic unit cells as initial configuration) 

𝜌 = 0.675 

Δt = 0.01 

𝑟𝑐𝑢𝑡 = 𝜎  

 

Potential parameters are those used in [59]. The total correlation time used to compute the 

velocity autocorrelation function is 1,000,000 simulation time steps. Simulations were run in the 

NVT ensemble for cooling, and equilibration and in the NVE ensemble for data collection. Results 

are averaged over 5 independent runs per temperature. For the analysis of stringlike cooperative 

motion the same simulation parameters listed above were used, except the number of atoms was 

set to N = 4,096 (16×16×16 cubic unit cells), and the time step was doubled to Δt = 0.02. The 

temperatures studied were T = 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0, 12.0, 15.0, 20.0, 25.0, and 30.0. For 

each temperature, the simulations were equilibrated in the NVT ensemble for 150,000 time steps, 

and data was collected over a period of over 1,000,000 time steps in the NVE ensemble. 

Configuration snapshots were printed every 100 time steps. Results were averaged over four 

independent runs per temperature. 
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A.4 Dzugutov System 

 

N = 2,048  (8×8×8 cubic unit cells as initial configuration) 

𝜌 = 0.85 

Δt = 0.01 

𝑟𝑐𝑢𝑡 = 𝜎  

 

Potential parameters are those used in [205]. Only results for stringlike cooperative motion were 

compiled for the Dzugutov system. A relatively small system size was used, as larger systems 

exhibit an increased likelihood of partial crystallization. For this reason, many independent runs 

with different initial velocities were conducted, and of those runs the several simulations whose 

potential energy exhibited a constant value after cooling were selected to perform the post-

processing analysis. To perform the explicit cooling, the system was equilibrated at a high 

temperature of T = 1.6 for 50,000 time steps to erase memory of the initial configuration. Then, at 

intervals of 50 time steps the temperature was reduced by 0.001 temperature units until the final 

desired temperature is reached, upon which data collection was begun immediately in the NVT 

ensemble. The temperatures studied were T = 0.42, 0.43, 0.46, 0.49, 0.52, 0.55, 0.65, 0.80, and 1.00. 

Data was collected over a period of over 100,000 time steps. Configuration snapshots were printed 

every 20 time steps. Results were averaged over four independent runs per temperature. 

Dzugutov system is used only for string tracking analysis.  
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Appendix B: Internal Consistency of the Hard Sphere Partitioning Method 

 

Some of the assumptions upon which the hard sphere partitioning (HSP) approach warrant 

additional investigation and verification. As noted above, the partitioning metric can be shown 

to be 𝑓 = 𝐷(𝑇, 𝜌)/𝐷0
𝐻𝑆(𝑇, 𝜌), where D is the diffusion coefficient of the system, and 𝐷0

𝐻𝑆 is the 

theoretical diffusivity of a system of hard spheres at the same density as that of the true system 

and at zero pressure. 
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Figure A-1: Calculation of the error ED
1  for the KA [111], WCA [203], and HARM [204] systems, using 

the Carnahan-Starling, Speedy, and Liu equations of state.   

There is one relation of specific interest: the relative error in the hard sphere diffusion 

coefficient given by 
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This error metric quantifies the extent to which the relationship 𝑓𝐷0
𝐻𝑆(𝑇, 𝜌) deviates from the 

diffusivity of the actual system (evaluated from MD simulations).  

The error 𝐸𝐷
1 , which is shown in Figure A-1 increases with decreasing temperature, as 

accurate calculation of the diffusion coefficient, and thus the HSP parameters including the 

partitioning metric f, becomes more difficult. However, at worst, this error never exceeds 1% for 

any of the three model systems for any temperature. The Carnahan-Starling, Speedy, and Liu 

equations produce nearly the same errors for all systems and temperatures. 

 


