Abstract

NICHOLSON, MARK ANDREW. Thermal Loading and Uncertainty Analysis of High Level Waste in Yucca Mountain. (Under the direction of Man-Sung Yim).

Based on the current discharge rate of nuclear reactors the total inventory of SNF in the U.S. will exceed the current design capacity of the Yucca Mountain repository by 2010. This leaves no room for future SNF discharged from the current nuclear fleet or reactors that potentially will be built. Expansion of the Yucca Mountain repository would provide a large economical benefit as siting and developing a second repository would be a drawn out, divisive and expensive process. The goal of this work is to analyze the thermal loading of SNF into Yucca Mountain in order to investigate the feasibility of repository capacity increase without exceeding the thermal limitations set by the DOE. To examine the feasibility of repository capacity expansion, the concept of variable drift spacing using uniform loading and the concept of variable drift thermal loading using a non-uniform following were investigated. To support the work, a thermal analysis model, SRTA, was employed to describe the temperature changes in the rock around the waste packages against thermal design limits as a function of spent fuel characteristics and composition. Results indicated that, by implementing the scheme of variable drift spacing or variable drift thermal loading, the capacity of the repository could be increased from the legislative limit of 70,000 MTU without violating the thermal limits of the drift wall (200°C) and the limit midway between the drifts (96°C). By implementing different loading criteria it was found that the capacity of the repository could be increased by as much as 48% based on the mean estimate. This thesis does not include capacity increases that could result from extending the repository footprint, the number of levels in the repository or the appropriateness of the thermal design limits.

Thermal Loading and Uncertainty Analysis of High Level Waste in Yucca Mountain

by Mark Andrew Nicholson

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science

Nuclear Engineering

Raleigh, North Carolina

2007

Approved By:

Dr. Man-Sung Yim (Chair of Advisory Committee) Dr. J. Michael Doster

Dr. Jeffrey Ray Thompson

Dedication

I would like to thank God for all the blessings he has bestowed upon my family and me. Alisa thank you for all your love, patience, and support. Also thank you for our two beautiful daughters. I would also like to thank my family for supporting me through my academic years.

Biography

Mark Andrew Nicholson received a Bachelors of Science in Nuclear Engineering from North Carolina State University (NCSU) in May 2002. After which he began work with Scientech, LLC (Energy*Solutions*, LLC) working in the Decontamination and Decommissioning division. Mark returned in the spring of 2005 to get his Masters in Nuclear Engineering.

Acknowledgements

I would like to thank my advisors Drs. Yim, Doster, and Thompson. I would like to also thank Dr. Jun Li for helping me and being there to answer questions when I needed help. Without their help this work would not have been possible. Dr. McNelis thank you for your help throughout my thesis work. I would also like to thank Judith Cuta of Pacific Northwest Laboratory for helping me with COBRA-SFS.

List of Figures							
L	ist of	Tables	<i>viii</i>				
L	ist of	Abbreviations	<i>x</i>				
1	1 Introduction1						
	1.1	Objectives	4				
	1.2	Tasks	5				
2	Lit	erature Review	6				
	2.1	Argonne National Lab	6				
	2.2	Bechtel SAIC	7				
	2.3	Electric Power Research Institute	7				
	2.4	Lawrence Berkley National Lab	9				
	2.5	Lawrence Livermore National Lab	10				
	2.6	Sandia National Laboratory	10				
3	Me	thods and Approaches	11				
	3.1	Computer Codes and Tools	11				
	3.2	Design Conditions	11				
	3.3	Assumptions	12				
	3.4	Loading	15				
	3.5	Thermal Limits	17				
4	De	cay Heat Model	18				
	4.1	Stahala Model	18				
	4.2	DOE Database	22				
	4. 4.	 2.1 Burnup Inventory 2.2 Decay Heat Inventory	23				
5	CO	DBRA-SFS	27				
-	5.1	Model Description					
	5.2	COBRA-SFS Results	32				
	5.	2.1 Cask Load of 24 Kilowatt	33				
(יייב בייי	2.2 Cask Load of 13.175 Kilowall	34				
Ø	SIN	npujiea Kepository Thermai Analysis Code	30				
	0.I	I ne SKIA Model	36				
	6.2	2.1 COMSOL Input	 38 41				
	6.	2.2 Boundary Conditions	44 11				
		ole conduction model boundary conditions	·····				

6.2.2.2 Convection Model Boundary Conditions	45
6.2.3 Ventilation Heat Loss Factor 6.2.4 Benchmark Results	45
6.3 Sensitivity Investigation of Input Parameters	50
6.4 Uncertainty of Input Parameters	53
7 Analysis of Capacity Expansion through Variable Drift Spacing and Variable Dri	ft
Thermal Loading	54
7.1 Variable Drift Spacing	54
7.1.1 Peak Temperatures at Drift Wall and at the Midway between the Drifts	55
7.1.2 Repository Capacity with the Implementation of Variable Drift Spacing	56
7.1.3 Main Contributors of Uncertainty in the Analysis of the Variable Drift Spacing Case	58
7.2 Variable Drift Thermal Loading	61
7.2.1 Peak Temperatures at Drift Wall and at the Midway between the Drifts	62
7.2.1.1 Base Case with the Preclosure Period of 50 Years	62
7.2.1.2 Case with Uncertainty Analysis with the Preclosure Period of 50 Years	63
7.2.1.3 Base Case with the Preclosure Period of 75 Years	66
7.2.1.4 Case with Uncertainty Analysis with the Preciosure Period of 75 Years	00 69
7.3 Sonsitivity of the Estimated Canacity to the Uncertainty of Inputs	71
7.5 Sensitivity of the Estimated Capacity to the Uncertainty of Inputs	
8 Discussion	7 3
9 Future Work	78
10 References	80
Appendices	83
Appendix A	84
Appendix B	97
Appendix C	100
Appendix D.	105
Appendix E	107

List of Figures

Figure 1.1: Location of Yucca Mountain (DOE 2007)	2
Figure 2.1: Proposed Repository Layout	8
Figure 3.1: Repository Design (Wigeland, 5)	.13
Figure 3.2: Yucca Mountain Repository Footprint	.15
Figure 4.1: PWR Burnup Inventory Through 2002	.24
Figure 4.2: BWR Burnup Inventory Through 2002	.24
Figure 4.3: PWR Decay Heat Inventory at Emplacement Time of 2017	.26
Figure 4.4: BWR Decay Heat Inventory at Emplacement Time of 2017	.26
Figure 5.1: Non-uniform Loaded Fuel Cask	.28
Figure 5.2: One-eight Section of TN-24P Cask Model	.30
Figure 5.3: Peak Clad Temperature (Ambient Temperature 17.2°C): Cooled 7 Years	.33
Figure 5.4: Peak Clad Temperature (Ambient Temperature: 200°C): Cooled 7 Years	.34
Figure 5.5: Peak Clad Temperature (Ambient Temperature 17.2°C): Cooled 25 Years	.35
Figure 5.6: Peak Clad Temperature (Ambient Temperature 200°C): Cooled 25 Years	.35
Figure 6.1: Conceptual model in COMSOL for the verification of the SRTA code	.40
Figure 6.2: Swept Meshing	.40
Figure 6.3: COMSOL Drift Geometry	.41
Figure 6.4: COMSOL Quarter Symmetry	.42
Figure 6.5: SRTA vs. COMSOL 50 Years Ventilation, 70% Heat Loss Factor	.47
Figure 6.6: SRTA vs. COMSOL 75 Years Ventilation, 70% Heat Loss Factor	.48
Figure 6.7: SRTA vs. COMSOL 50 Years Ventilation, 88% Heat Loss Factor	.49
Figure 6.8: SRTA vs. COMSOL 75 Years Ventilation, 88% Heat Loss Factor	.49
Figure 7.1: Results of Rank Correlation Analysis for Drift Wall Temperature (With Unifor	rm
Loading for 50 Year Preclosure Period)	.59
Figure 7.2: Results of Rank Correlation Analysis for Between Drift Temperature (With	
Uniform Loading for 50 Year Preclosure Period)	.59
Figure 7.3: Results of Rank Correlation Analysis for Drift Wall Temperature (With Unifor	rm
Loading for 75 Year Preclosure Period)	.60
Figure 7.4: Results of Rank Correlation Analysis for Between Drift Temperature (With	
Uniform Loading for 75 Year Preclosure Period)	.60
Figure 7.5: Results of Rank Correlation Analysis for Drift Wall Temperature (With Loading	ng
Scheme 1 – Sequential Loading Scheme, 50 Year Preclosure Period)	.64
Figure 7.6: Results of Rank Correlation Analysis for Between Drift Temperature (With	
Loading Scheme 1 – Sequential Loading Scheme, 50 Year Preclosure Period)	.65
Figure 7.7: Results of Rank Correlation Analysis for Drift Wall Temperature (With Loading	ng
Scheme 1 – Sequential Loading Scheme, 75 Year Preclosure Period)	.68
Figure 7.8: Results of Rank Correlation Analysis for Between Drift Temperature (With	
Loading Scheme 1 – Sequential Loading Scheme, 75 Year Preclosure Period)	.69

List of Tables

Table 1.1: Cumulative SNF Discharged by Year	3
Table 3.1: Model Assumptions	.14
Table 3.2: Repository Thermal Limits	.17
Table 4.1: PWR SNF, Burnup Greater than 10,000 MWd/MTU	.19
Table 4.2: PWR SNF, Burnup Less than 10,000 MWd/MTU	.20
Table 4.3: BWR SNF, Burnup Greater than 10,000 MWd/MTU	.21
Table 4.4: BWR SNF, Burnup Less than 10,000 MWd/MTU	.22
Table 4.5: Key DOE Database Parameters	.23
Table 5.1: TN-24P Cask Design Specifications	.29
Table 6.1: SRTA Input Variables	.37
Table 6.2: Material Input Values	.43
Table 6.3: Parameter Input Values	.43
Table 6.4: Diffusion	.44
Table 6.5: Peak Rock Temperature as the Base Case (50 Years)	.51
Table 6.6: Sensitivity Analysis-5% Increase (50 Years)	.52
Table 6.7: Uncertainty in Input Values	.53
Table 7.1: Characteristic Fuel Assembly for PWR and BWR	.55
Table 7.2: Results of SRTA Analysis Results for the Base Case (81 m drift spacing),	
Preclosure period of 50 Years	.56
Table 7.3: Increase in Capacity Due to the Implementation of Variable Drift Spacing (50	
Years)-Based on the Mean Estimates (1.22 kW/m)	.56
Table 7.4: Increase in Capacity Due to the Implementation of Variable Drift Spacing (50	
Years)-Based on the 95th %ile Estimates (1.22 kW/m)	.56
Table 7.5: Results of SRTA Analysis Results for the Base Case (81 m drift spacing),	
Preclosure period of 75 Years (1.22 kW/m)	.57
Table 7.6: Increase in Capacity Due to the Implementation of Variable Drift Spacing	
(Preclosure period of 75 Years)-Based on the Mean Estimates (1.22 kW/m)	.57
Table 7.7: Increase in Capacity Due to the Implementation of Variable Drift Spacing	
(Preclosure period of 75 Years)-Based on the 95th %ile Estimates (1.22 kW/m)	.57
Table 7.8: Results of SRTA Calculations for the Variable Drift Thermal Loading Schemes	•
(Base Case Input Values with 50 Year Preclosure Period)	.62
Table 7.9: Results of Variable Drift Thermal Loading Analysis - Drift Wall Temperature	
with 50 Year Preclosure Period	.63
Table 7.10: Results of Variable Drift Thermal Loading Analysis – Midway between the	
Drifts Temperature with 50 Year Preclosure Period	.65
Table 7.11: Results of SRTA Calculations for the Variable Drift Thermal Loading Schem	es
(Base Case Input Values with 75 Year Preclosure Period)	.66
Table 7.12: Results of Variable Drift Thermal Loading Analysis - Drift Wall Temperature	;
with 75 Year Preclosure Period.	.67
Table 7.13: Results of Variable Drift Thermal Loading Analysis – Midway between the	
Drifts Temperature with /5 Year Preclosure Period	.68

Table 7.14: Increase in Capacity for Variable Drift Thermal Loading for 35 Drifts (50 Year
Preclosure Period)-Based on Mean70
Table 7.15: Increase in Capacity for Variable Drift Thermal Loading for 35 Drifts (75 Year
Preclosure Period)-Based on Mean70
Table 7.16: Increase in Capacity for Variable Drift Thermal Loading for 35 Drifts (50 Year
Preclosure Period)-Based on 95 th %ile71
Table 7.17: Increase in Capacity for Variable Drift Thermal Loading for 35 Drifts (75 Year
Preclosure Period)-Based on 95 th %ile71
Table 7.18: Capacity Increase Due to 20% Reduction in Uncertainty (95%-ile)-75 Years
with Uniform Loading72
Table 7.19: Capacity Increase Due to 20% Reduction in Uncertainty (95%-ile)-75 Years with
Non-Uniform Loading73

List of Abbreviations

Abbreviation		Definition				
APD –		Areal Power Density				
ATW	_	Accelerator-driven Transmutation of Waste				
BWR	_	Boiling Water Reactor				
CB	_	Crystal Ball				
DHLW	_	Defense High-Level Waste				
DOE	_	Department of Energy				
HTOM	_	High-Temperature Operating Mode				
LBNL	_	Lawrence Berkeley National Laboratory				
LLNL	_	Lawrence Livermore National Lab				
LTOM	_	Low Temperature Operating Mode				
MTU	_	Metric Tons Uranium: the weight of spent nuclear fuel (SNF) after				
Ν₩ΡΔ		Nuclear Waste Policy Act of 1982				
PWR	_	Pressurized Water Reactor				
SNE	_	Spent Nuclear Fuel				
SNL	_	Sandia National Laboratory				
SRTA	_	Simplified Repository Thermal Analysis				
TPA	_	Total-System Performance Assessment				

1 Introduction

Siting a high level nuclear waste repository entails high economic, social, and political costs. Given the difficulty in siting the Yucca Mountain repository and the already identified need for additional capacity, the concept of expanding the capacity of the Yucca Mountain repository is of significant interest to the nuclear industry and the Department of Energy (DOE). As the capacity of the repository is limited by the decay heat inventory of the spent nuclear fuel in relation to the thermal design limits, expanding the capacity requires appropriate schemes for decay heat and spent fuel loading management.

The United States is faced with the disposal of waste from all commercial nuclear power plants since the first nuclear reactor went online. The nuclear waste from these reactors is a large concern for the commercial industry as the waste is currently being stored onsite. Most nuclear plants have started using dry storage as a means to store the spent fuel as the storage in the spent fuel pools is reaching capacity.

In 1983 the Nuclear Waste Policy Act of 1982 (NWPA) was signed, approving the development of a high-level nuclear waste repository. In December 1984, the DOE selected nine locations in six states as candidates for potential repository sites. The NWPA was amended in 1987 by congress that gave direction for the DOE to pursue only Yucca Mountain that is located on federally protected land within the boundaries of the Nevada Test Site in Nye County (Figure 1.1).

There were several reasons for choosing Yucca Mountain as the site suitable for the repository. Reasons for choosing Yucca Mountain included (DOE 2007):

- Remote location of the site. The closest inhabitant is 14 miles away.
- The geological makeup of the site. The geology is comprised of layers of volcanic rock call "Tuff."
- Located in a fairly arid climate that receives, on average, less than 7.5 inches of water a year.
- No natural geologic resources of value.

Figure 1.1: Location of Yucca Mountain (DOE 2007)

Under the amended NWPA, 70,000 metric tons of uranium (MTU) would be allowed to be stored at the Yucca Mountain repository. Of this total mass, the DOE will use ten percent of the capacity for the military/defense waste while the remaining 63,000 MTU is slated for commercial spent nuclear fuel (SNF). At the current discharge rate of nuclear fuel it is expected that by 2010 the planned capacity of 63,000 MTU of commercial SNF will have been reached, as seen in Table 1.1 (Stahala, 57).

	Cumulative SNF
Year	Discharged (MTU)
2003	49,800
2004	51,700
2005	54,200
2006	55,800
2007	57,800
2008	59,600
2009	61,400
2010	63,400

Table 1.1: Cumulative SNF Discharged by Year

As the nuclear industry is faced with the fact that the repository will reach capacity by 2010, it is essential to analyze how spent fuel is loaded into the repository. The current Yucca Mountain repository is based on a single level, fixed drift spacing design for a fixed area or footprint. Studies performed to date investigating the capacity of Yucca Mountain often assume that the loading of spent fuel is uniform throughout the repository and use the concept of a linear loading with areal power density (APD) as the metric. However, use of linear loading or APD can be problematic with the various cooling times involved. The temperature within the repository at any point in time is controlled by the integral of the heat deposited in the repository. The integral of the decay heat varies as a function of pre-loading cooling periods even for a fixed linear loading. A meaningful repository capacity analysis

requires the use of a computer model that describes the time-dependent temperature distributions in the rock from the dissipation of the heat throughout the repository system.

If variations from the current Yucca Mountain repository design are to be considered, expanding the capacity of the repository would be pursued in several ways including: (1) increase the footprint size; (2) implement multiple-levels in the repository for the given footprint; (3) allow the drift distance to vary within thermal limits; and, (4) allow nonuniform loading of wastes into the drifts within thermal limits. Options (1) and (2) have been investigated by other researchers (EPRI, 2006).

The goal of this thesis is to analyze the thermal loading of SNF into Yucca Mountain in order to investigate the feasibility of increasing the repositories capacity without exceeding the thermal limitations set by the DOE. Specifically, options (3) and (4) were investigated for possible expansion of the Yucca Mountain repository capacity. To support the work, a thermal analysis model was employed to describe the temperature changes in the rock around the waste packages against the thermal design limits as a function of spent fuel characteristics and composition.

1.1 Objectives

The purpose of this work is to examine the effect of adopting variable drift spacing and using non-uniform drift loading of SNF on the capacity of the Yucca Mountain repository. A computer model was utilized for efficient repository heat transfer calculations and sensitivity and uncertainty analyses were performed to identify key parameters and to estimate the

4

uncertainty in the results and understand how the repository capacity estimation would be affected by the uncertainty.

1.2 Tasks

Literature research was conducted to review and build upon previous related work. To properly analyze the thermal impact of SNF to the Tuff rock at Yucca Mountain, design parameters had to be determined from literature. Additionally, uncertainties in these parameters were researched in order to conduct a Monte Carlo uncertainty analysis of the repository rock heat transfer calculations.

The loading of spent fuel casks was also analyzed for both uniform and non-uniform (e.g. regionalized) loading to determine if the cask loading strategy has any effect on compliance with the thermal design limits for the Yucca Mountain repository. From the analysis of spent fuel cask loading it will determined if the thermal limits of the repository have been affected or not.

A nominal range sensitivity analysis was performed to determine which input parameters had the greatest impact on the thermal analysis. A five percent increase from the mean input values was assumed for this analysis. Based on this analysis and the design specifications it would be determined which parameters played an important role in the model. It was noted that certain parameters by design are constant such as the waste package spacing with no need for consideration in uncertainty analysis. The final task for this project was to study the effects of implementing variable drift spacing and variable drift thermal loading on the Yucca Mountain repository capacity. The capacity increase of the repository was investigated based on the mean as well as the ninety-fifth percentile estimates. Additionally, a sensitivity analysis was performed on the effect of reducing input parameter uncertainty on repository capacity estimates.

2 Literature Review

In the next several sections, the work of a number of researchers, who analyzed the thermal loading of Yucca Mountain in order to examine the temperature distribution in the repository rock as well as to investigate whether the capacity of the repository could be increased, is reported. In the works cited, the researchers assumed that the repository was loaded uniformly throughout the drifts.

2.1 Argonne National Lab

The SINDA/G software (Gaski 1987) was used by Argonne National Laboratories to investigate the separation of spent nuclear waste to determine if repository capacity could be increased. SINDA/G is a thermal analyzer software package based on a finite difference method. Thermal convection from surface water infiltration through the porous rock was also included in the model. One of the proposed scenarios was to reprocess the spent fuel and remove the elements responsible for the decay heat that causes thermal limits to be reached. Five elements were considered in the separation process, i.e., Plutonium (Pu), Americium (Am), Cesium (Cs), Strontium (Sr), and Curium (Cm). Cs and Sr would be stored for 200-300 years while Pu, Am, and Cm would either be transmuted to a stable isotope or recycled for further power production in nuclear reactors. They found that by

reducing the amount of waste and decay heat the capacity of the repository could be increased by as much as three times (Wigeland 2006).

2.2 Bechtel SAIC

Bechtel SAIC has investigated the thermohydrologic model of the repository using the TOUGHREACT code (Xu, et al. 2004) developed by Lawrence Berkley National Lab (LBNL). The model uses thermal-hydrologic-chemical seepage, which simulates the composition of water that could seep into the drifts and the composition of the gaseous phase. This study of the seepage of water includes the model of fractures in the Tuff rock where water flow can occur (Bechtel 2005).

Bechtel has also studied the impact of ventilation during the preclosure period. The investigation included how the decay heat affects the performance of both waste packages and the emplacement drift. The ventilation model they used simulated the heat transfer processes in and around a waste emplacement drift and predicted the heat removal by ventilation during the preclosure period. They estimated that eighty-eight percent of the heat would be removed during the preclosure period (Bechtel 2004).

2.3 Electric Power Research Institute

The Electric Power Research Institute (EPRI) has been involved in the analysis of increasing the capacity of the repository. EPRI has proposed several different layouts for the repository that would expand the footprint of the mountain. Figure 2.1 shows one scenario of increasing the footprint of the repository (EPRI 2006).

7

Figure 2.1: Proposed Repository Layout

A multi-level repository has also been proposed that would also increase the capacity to a large degree. For this multi-level design a relaxing of the thermal limit between the drifts for a 200-300 year period was also proposed. The computer code used by EPRI for the analysis was TOUGH2. The TOUGH2 code is a general-purpose numerical simulation program for multi-phase fluid and heat flow in porous and fractured media. By using this code they found for the primary block (original footprint) of the three-layer scheme that the capacity could be increased by two to three times (Ibid).

As a result of these analyses, EPRI estimated that the capacity could be increased at least four times the legislative limit to approximately 260,000 MTU. EPRI also hypothesized that with additional characterization of the repository that the capacity could be increased by nine times to approximately 570,000 MTU. Based on the increase in capacity there would be enough storage for the existing fleet and the expansion of the new nuclear fleet for at least several decades (Ibid).

2.4 Lawrence Berkley National Lab

The TOUGH computer code (Pruess et al. 1999) has been developed by Lawrence Berkley National Lab (LBNL) to determine the multi-phase fluid and heat flow in porous and fractured media. TOUGH code is based on an integral finite difference method for space discretization, and first-order fully implicit time differencing. The TOUGH2 code was developed for geothermal reservoir, nuclear waste disposal, unsaturated zone hydrology, and geologic storage of CO_2 (LBNL 2007).

University of California, Berkeley in conjunction with LBNL has studied the expansion of the repository resulting from the implementation of an accelerator-driven transmutation of waste (ATW) fuel cycle. They found that the number of waste packages could be reduced by a factor of ten through transmutation of nuclear waste (Cheon 2005).

LBNL has also studied the moisture conditions in the fractured rock in the repository. This study showed the effect of natural convection of moisture from high temperature locations to

low temperature locations. Their simulation showed the significance of in-drift natural convection on the thermal-hydrological conditions in the fractured rock (Birkholzer 2006).

2.5 Lawrence Livermore National Lab

Lawrence Livermore National Lab (LLNL) used a multiscale thermohydrologic model to predict the thermal-hydrologic conditions in emplacement drifts and the surrounding Tuff rock. The NUFT code that was developed at LLNL was used to simulate a low-temperature operating mode (LTOM) of an expanded footprint (Glascoe 2004). Another study analyzed the impact of buoyant gas-phase flow inside the repository due to water infiltration into the repository. This study was important in showing the failure scenario of a waste package due to corrosion (Buscheck 2000).

2.6 Sandia National Laboratory

Sandia National Laboratory (SNL) developed a method for determining equivalent thermal loads for each type of spent fuel planned for emplacement in a proposed nuclear waste repository. The study included determining the thermal loading of commercial spent fuel and defense high-level waste (DHLW). This work is of importance due to the fact that the characterization of the DHLW was not previously known (Mansure 1991).

SNL has also studied natural convection of a LTOM repository design. The purpose of their study was to model different waste packages and determine the dominant mode of heat transfer. They found that thermal radiation was the dominant mode of heat transfer inside the drift and natural convection affected the variation in surface temperature on the hot waste packages (Itamura 2003).

3 Methods and Approaches

3.1 Computer Codes and Tools

To perform the tasks described in Chapter 2, several computer codes were implemented in this research. A list of codes used for this research follows:

- COBRA-SFS (Michener 1995)
 - Code used to analyze the thermal-hydraulic behavior of multi-assembly spent fuel storage systems.
 - The code is based on a finite difference approach to predict flow and temperature distributions of cask and fuel assemblies under natural and forced convection.
- COMSOL 3.3a (COMSOL 2007)
 - Based on three dimensional finite element approach
- Simplified Repository Thermal Analysis (SRTA) Code (Li, et al. 2007)
 - Based on three dimensional analytical solution
- Crystal Ball (Decisioneering 2007)
 - Monte Carlo simulation software package

3.2 Design Conditions

The design of the Yucca Mountain repository is a complex system and the thermal analysis of the repository can be a rather difficult undertaking. In order to analyze the thermal loading of the repository certain assumptions, which will be described in Section 3.3, were made. The SRTA code is based on an analytical solution that simplifies the thermal analysis.

The code is also based on a conduction model that uses a heat loss factor, which takes into account the loss of heat during the forced ventilation/convection period of the repository or otherwise known as the preclosure period.

The DOE has specified certain design limits in order to achieve the structural integrity of the repository. The limits that cannot be exceeded are the temperatures at various locations in the repository. These limits are based on studies done by the DOE that will be further discussed in Section 3.5.

3.3 Assumptions

The repository design analyzed in this work is based on a high-temperature operating mode (HTOM). The waste packages are spaced so that heat from radioactive decay will boil water in the surrounding rock. This water will vaporize and migrate away from the emplacement drifts to a point between the drifts where the temperature is less than the boiling point. At this point the vapor between the drifts will condense and flow through the system without ever contacting the waste packages that would lead to corrosion and eventual failure of the spent fuel cask. Figure 3.1 illustrates how water passes through the repository system.

Figure 3.1: Repository Design (Wigeland, 5)

Assumptions that were made in the thermal analysis model are given in Table 3.1. The cooling time before the waste is emplaced inside the repository is very important to the thermal analysis since the decay of SNF is exponential. For example, during this twenty-five year period of interim storage, the estimated decay heat reduction was over ninety percent. Ventilation is also an important design aspect of the repository. The rate of ventilation plays a large role when analyzing the amount of heat removed from the waste packages in the drift.

Two models for calculating the temperature distribution for the repository were used; the SRTA code and COMSOL Multiphysics. The SRTA code is based purely on conduction while the COMSOL model is based on conduction and convection. SRTA utilizes a parameter known as the heat loss factor. This parameter takes into account the amount of heat removed from the system during the preclosure period.

Interim Storage ⁽¹⁾	25 years
	20 Jeans
Forced Ventilation ⁽²⁾	50-75 years
Volumetric Ventilation rate ⁽³⁾	15 m ³ /s
	$70\%^{(4)}$ &
Heat Loss Factor ⁽⁴⁾	$88\%^{(5)}$
1 – Wigeland, 4	
2-Wigeland, 5	
3 – DOE 2002a	
4 – NRC 2002	
5 – Bechtel, 108	

Table 3.1: Model Assumptions

The repository outline (see Figure 3.2), for this analysis is a fixed footprint area in the size of 4.9 square kilometers (NRC 2002). Throughout the thermal analysis the design criterion set by the DOE will be followed as closely as possible. Certain aspects such as the distance between drifts can be modified from its original distance of 81 meters. Decreasing the distance between drifts will increase the amount of SNF that can be stored in the mountain. Likewise, if the mass of the waste package (MTU/package) were increased, the capacity would also be increased. Both scenarios will be investigated to study how different techniques can increase the capacity of the repository.

Figure 3.2: Yucca Mountain Repository Footprint

3.4 Loading

The concept of non-uniform loading involves administratively separating the fuel basket of a shipping cask into two or more regions and loading fuel with different burnup, cooling times and enrichments into these regions. Assuming that these loaded casks are directly disposed of at the Yucca Mountain, understanding how regionalized loading patterns might affect the repository thermal design limits, if at all, is of interest. Although the non-uniform loading would not affect the total heat flux coming out of cask surfaces, the spent fuel clad surface temperature is expected to be affected by the loading pattern. Current thermal limit is that the peak clad temperature can not exceed 350°C.

COBRA-SFS (Spent Fuel Storage) was used to analyze the temperature inside the fuel cask under different conditions. Four different loading cases were analyzed for ambient temperatures of 17.2°C and 200°C on the outside of the cask. The peak clad temperature was analyzed in order to investigate if the thermal limit of the clad was violated.

As far as how should the SNF casks be loaded into the proposed repository at Yucca Mountain, current designs assume that the heat load inside the drifts is uniform throughout the repository. However, the fuel burnup varies throughout the total population of spent fuel assemblies. It is proposed for this work that a non-uniform loading of the repository can be utilized if deemed necessary.

The way in which non-uniformity was applied was to analyze loading schemes based on five different scenarios that are discussed in Section 7.2. Non-uniform loading is based on a homogeneous linear heat load for the individual drift and heterogeneous loading of the drifts throughout the repository. Appendix C provides the linear heat load for each of the loading schemes. From this non-uniform loading, the thermal analysis was used to determine whether the amount of waste per package could be increased thus increasing the storage capacity of the repository. The undesirable effects of non-uniform loading could cause unexpected hot spots and moisture to be present in the drifts that have a lower decay heat at an earlier time. Presence of a drift that has a high decay heat located near a drift of low decay heat causes a shift in the location where the moisture can pass through the system as illustrated in Figure 3.1. This can lead to an undesirable outcome as moisture could reach the

drift of lower decay heat possibly causing failure of the waste packages due to corrosion at an earlier time.

Uniform loading based on the adoption of variable drift spacing was also analyzed for possible benefits of increased capacity.

3.5 Thermal Limits

There are thermal design criteria set by the DOE for the Yucca Mountain repository. Table 3.2 gives the three thermal criteria that must not be exceeded. The cladding thermal criterion minimizes the thermal creep in the cladding, which serves as a secondary containment so that radioactive material release is minimized in case the spent fuel cask fails. The drift wall temperature limit was set to avoid stresses in the Tuff rock. The Tuff rock has mineral crystobalite that is dispersed in the rock and changes phase and expands by five percent when temperatures are between 200°C and 250°C (Johnson 1998). The temperature criteria between the drifts was chosen so that water, below the boiling point, would be allowed to pass through the rock system so that saturation in the geological system does not occur.

 Table 3.2: Repository Thermal Limits

SNF cladding temperatures:	≤ 350°C
Drift wall temperature:	≤ 200°C
Mid-drift temperatures:	≤96°C

4 Decay Heat Model

The decay heat model used in this work is based on a multivariable regression analysis that was developed by Mike Stahala (Stahala 2006). ORIGEN-ARP was used in conjunction with SAS 9.1 to fit the multivariable regression (Ibid).

4.1 Stahala Model

Stahala's model is split into seven time regions ranging from one to ten thousand years (Table 4.1-Table 4.4). To account for effects of enrichment, irradiation days, and burnup on the decay heat of SNF, constants (D_1 and β) were transformed into polynomial functions (Stahala, 32-33). These functions include burnup, irradiation days, and enrichment as can be seen in Equations (4.1) through (4.3).

$$Q(t) = e^{D_1} \cdot t^{-\beta} * (burnup / 33,000) \quad (W / MTU)$$
(4.1)

$$D_{1} = \alpha_{1} + \alpha_{2} \cdot \ln\left(\frac{burnup}{33000}\right) + \alpha_{3} \cdot IrradiationDays + \alpha_{4} \cdot enrichment + \alpha_{5} \cdot \ln\left(\frac{burnup}{33000}\right) \cdot IrradiationDays + \alpha_{6} \cdot \ln\left(\frac{burnup}{33000}\right) \cdot enrichment + \alpha_{7} \cdot IrradiationDays \cdot Enrichment + \alpha_{8} \cdot \ln\left(\frac{burnup}{33000}\right)^{2} + \alpha_{9} \cdot IrradiationDays^{2} + \alpha_{10} \cdot enrichment^{2}$$

$$(4.2)$$

$$\beta = \gamma_{1} + \gamma_{2} \cdot \ln\left(\frac{burnup}{33000}\right) + \gamma_{3} \cdot IrradiationDays + \gamma_{4} \cdot enrichment + \gamma_{5} \cdot \ln\left(\frac{burnup}{33000}\right) \cdot IrradiationDays + \gamma_{6} \cdot \ln\left(\frac{burnup}{33000}\right) \cdot enrichment + \gamma_{7} \cdot IrradiationDays \cdot Enrichment + \gamma_{8} \cdot \ln\left(\frac{burnup}{33000}\right)^{2} + \gamma_{9} \cdot IrradiationDays^{2} + \gamma_{10} \cdot enrichment^{2}$$

$$(4.3)$$

Each time region has distinct values of α_i and γ_i . These values are based on the type of assembly (BWR or PWR) as well as burnup values. Table 4.1 through Table 4.4 give the values at each of the time regions.

	Time Regions (Years)						
	1-8	8-49	49-74	74-150	150-300	300-1500	1500-10000
α_1	10.25023	8.355097	9.678154	9.540531	7.937692	9.338127	7.989349
α_2	0.16978	0.840270	1.463955	1.619106	0.680299	-0.801864	-0.653556
α_3	-0.00103	-0.000086	-0.000057	0.000033	0.000301	0.000153	0.000077
α_4	-0.08375	-0.117771	-0.081999	0.110681	0.162211	0.039567	-0.094851
α_5	0.00009	-0.000004	-0.000002	0.000034	0.000112	0.000043	0.000015
α_6	-0.00458	-0.115912	-0.307055	-0.375121	-0.008816	0.389129	0.329830
α_7	-0.00001	0.000002	0.000000	-0.000010	-0.000019	-0.000006	-0.000004
α_8	0.03856	0.323765	0.711786	0.889675	0.325840	-0.867962	-0.719298
α_9	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
α_{10}	0.00632	0.010781	0.015174	0.004219	-0.013763	-0.016375	-0.005921
γ_1	1.41811	0.489392	0.846595	0.818513	0.498310	0.727457	0.556041
γ_2	-0.14328	0.201370	0.371920	0.408705	0.223544	-0.032594	-0.016553
γ_3	-0.00047	-0.000028	-0.000018	0.000003	0.000056	0.000032	0.000021
γ_4	0.00173	-0.025549	-0.016584	0.027626	0.038554	0.017103	-0.000927
γ_5	0.00005	-0.000005	-0.000005	0.000004	0.000019	0.000008	0.000004
γ_6	0.01728	-0.032595	-0.085043	-0.101081	-0.028822	0.040335	0.033854
γ_7	-0.00001	0.000001	0.000001	-0.000002	-0.000003	-0.000001	-0.000001
γ_8	-0.05534	0.078263	0.184688	0.226197	0.115358	-0.089342	-0.074370
γ_9	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
γ_{10}	0.00003	0.002538	0.003817	0.001317	-0.002278	-0.002761	-0.001387

Table 4.1: PWR SNF, Burnup Greater than 10,000 MWd/MTU

	Time Regions (Years)						
	1-8	8-49	49-74	74-150	150-300	300-1500	1500-10000
α_1	10.22298	7.408246	6.859312	4.680701	7.391454	14.8867	10.67194
α_2	0.12504	-0.287601	-1.525997	-2.847634	0.062953	4.4869	2.34838
α_3	-0.00115	-0.000027	-0.000029	-0.000050	0.000165	0.0002	0.00012
α_4	-0.09312	0.163038	0.787007	1.404643	0.083539	-1.3110	-1.01190
α_5	0.00005	0.000026	0.000022	0.000028	0.000073	0.0001	0.00004
α_6	-0.01397	0.020915	0.088262	0.077636	-0.124461	-0.1452	-0.09638
α_7	-0.00001	0.000001	0.000002	-0.000006	-0.000018	0.0000	0.00000
α_8	0.01070	-0.033557	-0.177765	-0.337769	-0.019319	0.5295	0.27571
α_9	0.00000	0.000000	0.000000	0.000000	0.000000	0.0000	0.00000
α_{10}	0.00720	-0.012485	-0.058016	-0.102213	-0.007048	0.0821	0.06904
γ_1	1.56088	0.204601	0.058783	-0.440929	0.082482	1.3752	0.82539
γ_2	0.03370	-0.114245	-0.447213	-0.752950	-0.182871	0.5842	0.30656
γ ₃	-0.00055	-0.000024	-0.000023	-0.000028	0.000015	0.0000	0.00001
γ_4	-0.03569	0.064688	0.232200	0.375353	0.115849	-0.1275	-0.09025
γ ₅	0.00002	-0.000002	-0.000003	-0.000002	0.000007	0.0000	0.00000
γ_6	-0.00534	0.008642	0.026851	0.024772	-0.015862	-0.0187	-0.01279
γ_7	-0.00001	0.000001	0.000001	-0.000001	-0.000003	0.0000	0.00000
γ_8	0.00284	-0.013122	-0.051884	-0.088867	-0.026591	0.0683	0.03572
γ ₉	0.00000	0.000000	0.000000	0.000000	0.000000	0.0000	0.00000
γ_{10}	0.00311	-0.004823	-0.017044	-0.027292	-0.008596	0.0070	0.00543

Table 4.2: PWR SNF, Burnup Less than 10,000 MWd/MTU

	Time Regions (Years)						
	1-8	8-49	49-74	74-150	150-300	300-1500	1500-10000
α_1	10.25149	8.400158	9.817396	9.709196	7.941068	9.126785	7.876528
α_2	0.16923	0.865227	1.556822	1.731366	0.712889	-0.910927	-0.771827
α_3	-0.00103	-0.000086	-0.000062	0.000028	0.000318	0.000160	0.000076
α_4	-0.08444	-0.127824	-0.109054	0.089415	0.180505	0.069097	-0.081438
α_5	0.00009	-0.000004	-0.000005	0.000027	0.000110	0.000047	0.000016
α_6	-0.00524	-0.118637	-0.312477	-0.375814	-0.006016	0.381057	0.328661
α_7	-0.00001	0.000002	0.000000	-0.000010	-0.000019	-0.000006	-0.000004
α_8	0.03999	0.319416	0.699496	0.863702	0.339016	-0.828049	-0.721295
α_9	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
α_{10}	0.00634	0.011594	0.017600	0.006272	-0.015754	-0.018368	-0.006724
γ_1	1.41190	0.503076	0.885973	0.864889	0.511995	0.704230	0.545043
γ_2	-0.14907	0.206494	0.395570	0.436978	0.236018	-0.044235	-0.030350
γ ₃	-0.00047	-0.000028	-0.000019	0.000001	0.000059	0.000033	0.000022
γ_4	0.00368	-0.027813	-0.023522	0.021952	0.040774	0.021301	0.001146
γ_5	0.00005	-0.000005	-0.000005	0.000002	0.000019	0.000008	0.000004
γ_6	0.01833	-0.032578	-0.085770	-0.100740	-0.027748	0.039540	0.033943
γ_7	-0.00001	0.000001	0.000001	-0.000002	-0.000004	-0.000001	-0.000001
γ_8	-0.05581	0.075370	0.179641	0.217993	0.114818	-0.085017	-0.075807
γ ₉	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
γ_{10}	-0.00013	0.002718	0.004441	0.001861	-0.002540	-0.003036	-0.001496

Table 4.3: BWR SNF, Burnup Greater than 10,000 MWd/MTU

	Time Regions (Years)						
	1-8	8-49	49-74	74-150	150-300	300-1500	1500-10000
α_1	10.23037	7.441953	6.926482	5.087464	7.69886	14.55158	10.66535
α_2	0.12252	-0.228984	-1.384585	-2.421957	0.23938	4.07107	2.24751
α_3	-0.00114	-0.000037	-0.000029	-0.000044	0.00018	0.00019	0.00012
α_4	-0.09590	0.149611	0.787302	1.328281	-0.00016	-1.24929	-0.99890
α_5	0.00005	0.000026	0.000022	0.000028	0.00007	0.00006	0.00004
α_6	-0.01406	0.017357	0.077726	0.041692	-0.14220	-0.11683	-0.08634
α_7	-0.00001	0.000002	0.000002	-0.000006	-0.00002	0.00000	0.00000
α_8	0.00989	-0.025647	-0.154352	-0.275980	-0.00386	0.45669	0.25863
α_9	0.00000	0.000000	0.000000	0.000000	0.00000	0.00000	0.00000
α_{10}	0.00742	-0.011774	-0.058711	-0.097053	0.00070	0.07803	0.06710
γ_1	1.56107	0.215331	0.075295	-0.346942	0.15959	1.33830	0.83402
γ_2	0.03222	-0.092873	-0.406715	-0.647305	-0.12459	0.53777	0.30323
γ_3	-0.00055	-0.000027	-0.000023	-0.000027	0.00002	0.00002	0.00001
γ_4	-0.03693	0.060488	0.233179	0.358891	0.09725	-0.12034	-0.08984
γ_5	0.00002	-0.000003	-0.000003	-0.000002	0.00001	0.00000	0.00000
γ_6	-0.00531	0.007445	0.023987	0.016090	-0.02110	-0.01577	-0.01238
γ_7	-0.00001	0.000001	0.000001	-0.000001	0.00000	0.00000	0.00000
γ_8	0.00262	-0.010004	-0.044947	-0.073119	-0.01975	0.05962	0.03460
γ9	0.00000	0.000000	0.000000	0.000000	0.00000	0.00000	0.00000
γ_{10}	0.00326	-0.004594	-0.017299	-0.026217	-0.00695	0.00659	0.00528

Table 4.4: BWR SNF, Burnup Less than 10,000 MWd/MTU

4.2 DOE Database

The total inventory of SNF was compiled by the DOE into a Microsoft Access database (DOE 2002b). This database provides detailed information on every commercial spent fuel assembly ever irradiated and discharged through 2002. Key parameters that were used in the DOE database to analyze the decay heat inventory of the SNF are given in Table 4.5.

Table 4.5:	Key DOE	Database	Parameters
------------	---------	----------	------------

FF_REACTORID	_	The reactor ID number
FF_INITENR	-	The initial enrichment for each assembly (in weight percent)
FF_MAXBURN	_	The final burnup for each assembly (in megawatt days thermal per
		metric ton of uranium)
FF_ASSMTYPE	_	The assembly type used to distinguish between PWR and BWR.
CY_CYUPDATE	_	The cycle start date
CY_CYDNDATE	-	Cycle shutdown date (the discharge date)

4.2.1 Burnup Inventory

The burnup inventory of all SNF assemblies is an important factor to look at when considering what type of heat source would be present once the SNF is emplaced into the mountain. Figure 4.1 and Figure 4.2 show the frequency of burnup for both PWR and BWR respectively for DOE SNF inventory through 2002. When comparing these two figures it can be seen that the PWR burnup inventory has higher burnup values when compared to the BWR inventory. However, some of the BWR assemblies have the highest burnup values at around 66,000 MWd/MTU. These high burnup values are due to recent improvements in the fuel cycle.

Figure 4.1: PWR Burnup Inventory Through 2002

Figure 4.2: BWR Burnup Inventory Through 2002
4.2.2 Decay Heat Inventory

The decay heat inventory of the commercial SNF is a very important parameter because it takes into account factors such as burnup, days irradiated, enrichment, and time to emplacement (or cooling time). These four factors were used in calculating the decay heat by the use of Stahala's model. Burnup of the SNF does not give a true representation of the amount of heat that is deposited into the mountain. One must look at the time to which the fuel is emplaced since the age of fuel varies and the decay heat drops dramatically in the first 25 years.

Figure 4.3 and Figure 4.4 show the decay heat inventory assuming an emplacement time of 2017. The PWR inventory contains higher decay heat values than the BWR inventory. The decay heat for the entire inventory was analyzed and an assembly based on the average decay heat for both PWR and BWR was found and was utilized in the uniform loading case.

Figure 4.3: PWR Decay Heat Inventory at Emplacement Time of 2017

Figure 4.4: BWR Decay Heat Inventory at Emplacement Time of 2017

5 COBRA-SFS

COBRA-SFS (Michener 1995) is a code that is used to analyze the thermal-hydraulic behavior of multi-assembly spent fuel storage systems. The code is based on a finite difference approach to predict flow and temperature distributions of cask and fuel assemblies under natural and forced convection. This code is derived from the family of COBRA codes, which has been validated against data on commercial spent fuel data (Ibid).

A TN-24P cask manufactured by Transnuclear Inc. was modeled to investigate the temperature profiles of the spent fuel cask. COBRA-SFS was used to analyze the potential benefits of loading a cask nonuniformly. Figure 5.1 gives a representation of a non-uniform loaded fuel cask with low burnup assemblies on the inside and high burnup assemblies on the outside. It will be shown that nonuniform loading plays a very important role in the peak cladding temperature.

Figure 5.1: Non-uniform Loaded Fuel Cask

5.1 Model Description

COBRA-SFS was used to model a cask using the design specifications for the TN-24P fuel cask that are given in Table 5.1. Appendix A provides the input file for COBRA-SFS for which the loading of the spent fuel cask was analyzed. Note that the case in Appendix A is for uniform heat load for a one-eighth spent fuel cask as specified in OPER.8 (found in Appendix A). The 1/8th core can be seen in Figure 5.2.

1.	Type:	Prototype Metal Storage Cask
2.	Manufacturer/Vendor:	Transnuclear Inc.
3.	Capacity (assemblies):	
	a. Intact SNF	24 PWR
	b. Consolidated Fuel Rods (@2 assys/can)	42 PWR
4.	Weight (tons)	
	a. Loaded	100
	b. Empty	82.3
5.	Dimensions:	
	a. Overall Length (in)	199.3
	b. Overall Cross Section (in)	89.8
	c. Cavity Length (in)	163.4
	e. Wall Thickness (in)	16.25
	f. Cooling Fin Length (in)	
	g. Lid Thickness (in)	15.4
	h. Bottom Thickness (in)	11.0
	i. Basket Length (in)	162.2
	j. Basket Cross Section (in)	N/A
	k. Thickness of Basket Spears (in)	0.4
6.	Neutron Shield:	
	a. Number of Rods	N/A
	b. Rod Diameter (in)	N/A
	c. Side Thickness (in)	4.2
	d. Lid Thickness (in)	4.2
	e. Bottom Thickness (in)	None
7.	Materials of Construction:	
	a. Cask Body	Forged Steel
	b. Basket	Al/B
	c. Neutron Shield	Polyethylene Resin (sides)
		Granular Polypropylene (lid)
8.	Cavity Atmosphere:	Helium

Table 5.1: TN-24P Cask Design Specifications

Figure 5.2: One-eight Section of TN-24P Cask Model

COBRA-SFS is based on English units. In order to convert watts/MTU to MBtu/(hr·ft³) the following parameters must be used in the conversion:

- 460.9 kg of Uranium per 15 x 15 PWR assembly
- Fuel rod diameter: 0.422 in
- Fuel rod length: 12 ft =144 in
- Number of rods per 15 x 15 fuel assembly: 225

The above dimensions for the 15 x 15 PWR assembly gives the total volume of the assembly as:

$$\pi \left(\frac{0.422in}{2}\right)^2 * 144in * 225 = 4531.69in^3 = 2.6225 \, ft^3$$
(5.1)

The conversion of decay heat is given as:

$$\frac{MBtu}{hr - ft^3} = \left(\frac{watts}{MTU}\right) \left(\frac{0.4609\,MTU}{PWR \cdot assembly}\right) \left(\frac{J}{s}watt}\right) \left(\frac{3600\,s}{hr}\right) \left(\frac{PWR \cdot assembly}{2.6225\,ft^3}\right) \times \left(\frac{9.47817\left(10^{-4}\right)Btu}{J}\right) \left(\frac{MBtu}{1 \times 10^6\,Btu}\right)$$
(5.2)

The decay heat used for the COBRA-SFS analysis was based on a cooling period of seven years for a given burnup of 50,000 MWd/MTU with a decay heat of 2393.5 W/MTU. The decay heat used for the COBRA-SFS analysis was 0.0014354 MBtu/(hr·ft³). This corresponding decay heat correlates to a total of 1 kW per assembly giving the total wattage for the TN-24P cask as 24 kW. The minimum time before SNF can be emplaced into the repository is twenty-five years. The decay heat corresponding to this time period is 1324 W/MTU (7.93974x10⁻⁴ MBtu/(hr·ft³) with the total wattage of the cask being 13.175 kW (or 0.549 kW per assembly in the uniform case).

In terms of how regionalized loading within the cask is conceptualized, this study assumes that 50% and 75% of the assembly power for the uniform case is applied. The cask with a total power of 24 kW is assumed to have 1 kW per assembly for the uniform case. For the case of the cask with a power of 13.175 kW the power of each assembly is approximately 0.549 kW for uniform loading. Taking 50% and 75% of assembly power for the uniform

case, when the total power of the cask is 24 kW or 1 kW per assembly, gives 0.5 kW and 0.75 kW for the non-uniform case respectively. Therefore, for a non-uniform case when 50% of the uniform assembly power is taken, the cask is loaded with 0.5 kW on the inside/outside and 1.5 kW on the outside/inside. Similarly, by taking 75% of the uniform assembly power the cask is loaded with 0.75 kW on the inside/outside or 1.25 kW on the outside/inside. The case for the 13.175 kW cask is done in similar fashion with 50% and 75% of the uniform loading power of 0.549 kW.

5.2 COBRA-SFS Results

Taking into account that the maximum heat load was emplaced into the TN-24P cask one can see how the temperatures for the peak clad temperatures are affected. To see the effect of changing the ambient temperature on the cladding temperature, the ambient temperature surrounding the cask was varied. In one case it was assumed that the fuel cask was stored outside of Yucca Mountain for a period of time during which the mean annual temperature was 17.2°C (DOE 2007). Another scenario for 200°C was analyzed to show the increase in clad temperature due to a higher ambient temperature on the outside of the cask. This higher temperature scenario corresponds to the temperature limit of the drift wall. In reality, since there will be forced ventilation for an extended period (50-75 years for this study), the temperatures inside the drift will be significantly lower than the temperature limit of the drift wall.

5.2.1 Cask Load of 24 Kilowatt

In Figure 5.3 the cask with the highest clad temperature is the cask loaded with 1.5 kW assemblies on the inside and 0.5 kW loaded on the outside. There is little difference in the two casks that have the lower heat load assemblies on the inside.

Figure 5.3: Peak Clad Temperature (Ambient Temperature 17.2°C): Cooled 7 Years

In Figure 5.4 the results show a shift towards and beyond peak clad temperature limit of 350°C. The thermal limit of all loading patterns except for the 0.5 and 0.75 kW assemblies on the inside are violated. By the time most of the fuel is emplaced into the repository there has been a significant amount of decay. The following section discusses the scenario in which the fuel has cooled for twenty-five years before the cask is emplaced in the repository.

Figure 5.4: Peak Clad Temperature (Ambient Temperature: 200°C): Cooled 7 Years

5.2.2 Cask Load of 13.175 Kilowatt

The different loading cases in Figure 5.5 and Figure 5.6 show that after twenty-five years of cooling the temperature is greatly reduced compared to the loading cases for seven years. From this it can be concluded that there is no concern with respect to the cladding surface temperature with the use of non-uniform loading of SNF in the cask.

Figure 5.5: Peak Clad Temperature (Ambient Temperature 17.2°C): Cooled 25 Years

Figure 5.6: Peak Clad Temperature (Ambient Temperature 200°C): Cooled 25 Years

6 Simplified Repository Thermal Analysis Code

Due to a large number of calculations involved, an efficient computational model for a repository thermal analysis was needed. The thermal analysis model selected was based on its ability to calculate repository-horizon average rock temperatures by using an analytic solution model to the heat conduction equation. It was assumed that the modeled repository has line sources laid out parallel to each other covering the entire proposed repository (NRC 2002). The model treats each line source independently with different heat loads. The analytical solution was originally derived by Claesson and Probert (Claesson 1996). The SRTA code was modified to include four running modes. The first two modes in the following list were used to analyze the temperature in the repository.

- 1. Variable burnup data
- 2. Variable drift spacing
- 3. Variable spent fuel age
- 4. Variable waste package payload

6.1 The SRTA Model

The analytical solution derived by Claesson and Probert to solve for a temperature at any given point is given as:

$$\Delta T(x,y,z,t) = \int_{0}^{t} \frac{\alpha q_{rep}^{'}(t')}{4k\sqrt{\pi}} \frac{1}{\sqrt{4\alpha(t-t')}} \left[erf\left(\frac{L-x}{\sqrt{4\alpha(t-t')}}\right) + erf\left(\frac{L+x}{\sqrt{4\alpha(t-t')}}\right) \right] \left[erf\left(\frac{B-y}{\sqrt{4\alpha(t-t')}}\right) + erf\left(\frac{B+y}{\sqrt{4\alpha(t-t')}}\right) \right] \left[exp\left(\frac{-z^{2}}{4\alpha(t-t')}\right) - exp\left(\frac{-(z-2H)^{2}}{4\alpha(t-t')}\right) \right] dt'$$
(6.1)

where:

$\Delta T(x,y,z,t)$	_	increase in temperature at time t at point (x, y, z) in the semi- infinite medium due to one line source [°C]
$q_{\scriptscriptstyle rep}^{"}(t)$	_	time-dependent repository heat flux [W/m ²]
α	_	thermal diffusivity of the semi-infinite medium [m ² /s]
k	_	thermal conductivity of the semi-infinite medium [W/(m-°C)]
L	_	half length of a line source [m]
В	_	half width of a line source [m]
Н	_	depth of a line source below the ground surface [m]
t	_	actual time after activation of heat flux [s]
<i>t</i> '	_	time of integration [s]
x,y,z	_	location of interest [m]

The SRTA code uses an input file called variable.dat that contains all of the data used in the

temperature analysis. Table 6.1 gives the various parameters used in the calculations.

Parameter Description:	Units:	Code Parameters:	Mean Value:	Source:
Density of Tuff Rock	Kg/m ³	rho	2593	DOE 2004
Specific Heat of Tuff Rock	J/(kg-K)	Ср	930	DOE 2004
Thermal Conductivity of Tuff Rock	W/(m-K)	cond	2.603	DOE 2004
Conductivity of Natural Convection	W/(m-°C)	conde_n	0.9	NRC 2002
Factor for ventilation heat losses	_	hloss_fact	0.88	Bechtel 2004
Thermal Conductivity Of Drip Shield	W/(m-°C)	condds	20	DOE 2001
Thermal Conductivity Of Backfill	W/(m-°C)	condbf	-	-
Emissivity of Drip Shield	-	emissds	0.64	Michels 1949
Emissivity of Waste Package	-	emisswp	0.87	NRC 2002
Waste Package Diameter	m	wpdia	1.644	NRC 2002
Waste Package Length	m	wplength	5.275	NRC 2002
Emplacement Backfill Thickness	m	bfthick	0	NRC 2002
Drip Shield Thickness	m	dsthick	0.02	NRC 2002
Drip Shield Diameter	m	ds_idia	2.75	NRC 2002
Emplacement Drift Diameter	m	driftdia	5	NRC 2002

Table 6.1: SRTA Input Variables

Parameter Description:	Units:	Code Parameters:	Mean Value:	Source:
Circumferential Fraction Not Covered By Floor	-	frac_inv	0.75	NRC 2002
Waste Package Payload	MTU	wppayload	7.89	NRC 2002
Time Of Backfill Emplaced	Yr	timeofbackfill	50-300	
Number Of Weights For Gauss Legendre Integration	_	npoints	20	NRC 2002
Ambient Repository Temperature	°C	ambreptemp	20	NRC 2002
Elevation of Repository Horizon	m	elevrep	1072	NRC 2002
Elevation of Ground Surface	m	elevgs	1400	NRC 2002
Inner Waste Package Thickness	m	tss	0.05	NRC 2002
Outer Waste Package Thickness	m	tcs	0.02	NRC 2002
Thermal Conductivity of Inner Overpack	W/(m-°C)	akss	16.62	DOE 2001
Thermal Conductivity of Outer Overpack	W/(m-°C)	akcs	15.49	DOE 2001
Waste Package Length	m	alengthwp		NRC 2002
Effective Thermal Conductivity Of Basket Spent Fuel in Waste Package	W/(m-°C)	aksf	1.00	NRC 2002
Emplacement Drift Spacing	m	driftspace	81	NRC 2002
WPSpacing Along Emplacement Drift	m	wpspace	6.1392	NRC 2002
Repository Drift Angle	radians	angle	-0.304	NRC 2002

Table 6.1 continued: SRTA Input Variables

6.2 Benchmarking Simplified Repository Thermal Analysis (SRTA) Code

The SRTA code was adapted from the Total-System Performance Assessment (TPA) code (NRC 2002) that was developed by the Nuclear Regulatory Commission. For the verification of the SRTA code, COMSOL Multiphysics (COMSOL Inc. 2007) was chosen as the tool for

comparison. COMSOL is used industry wide for research, engineering, and design applications.

The main purpose of SRTA is to analyze the temperature at any given point in the Yucca Mountain repository. As this code utilizes an analytical solution to solve for the temperature in the repository, the time taken to solve the problem is greatly reduced.

The SRTA code is based on a pure conduction model. In order to account for heat loss during the preclosure period a parameter called the heat loss factor is used during the time that the drifts are ventilated. This heat loss factor accounts for the total heat removed during the time of convective heat transfer.

COMSOL Multiphysics is a multi-dimensional finite element analysis and solver package that can be used for various engineering applications. The general heat transfer module with transient analysis was chosen to model a single drift inside of the repository. COMSOL can be a very memory intensive program when the problem contains a high degree of meshing. Due to the complexity and huge memory requirement for COMSOL to simulate the whole repository, several assumptions were made to simplify the model setup. Symmetry conditions were assumed at the vertical planes passing the center of the center drift and midways at both sides of the center drift. This is based on the observation that if the repository is uniformly loaded with the spent fuels, the location of highest temperature point should be the center of the loaded area in the repository. Considering the large distances from the repository loading plane to both the surface and the ground water table (~300 m),

39

symmetry condition was also assumed at the horizontal plane passing the center of the center drift (those dash lines in Figure 6.1). The boundaries at the ground surface and at the water table were assumed at constant temperature.

Figure 6.1: Conceptual model in COMSOL for the verification of the SRTA code

Figure 6.2: Swept Meshing

6.2.1 COMSOL Input

In order to benchmark the SRTA code it was necessary to have consistency between the COMSOL and SRTA models. A three dimensional COMSOL model was used based on a cylindrical heat source with air and Tuff rock regions. Figure 6.3 and Figure 6.4 gives a representation of the drift geometry used in the COMSOL model. A quarter symmetry scheme was used to simplify the temperature analysis of the COMSOL model.

Figure 6.3: COMSOL Drift Geometry

Figure 6.4: COMSOL Quarter Symmetry

In the SRTA and COMSOL models the burnup was taken to be 50,000 MWd/MTU for the entire repository. In both of the codes, the decay heat inventory of SNFs was determined by using the correlation model described in Section 4.

Table 6.2 provides the material input values used in both codes. Additionally, Table 6.3 provides key values for both dimension and other important parameters. These values were kept consistent in both codes in order to obtain a valid benchmark.

Material Properties	Value
Density of Rock:	2593 [kg/m ³]
Specific Heat of Rock:	930 [J/(kg·K)]
Rock Thermal Conductivity:	2.603 [W/(m·K)

Table 6.2: Material Input Values

Dimensions and Parameters	Value
Burnup:	50000 [MWd/MTU]
Enrichment:	4.4% (weight percent)
Days Irradiated:	600 days
Ambient Temperature:	20 [°C]
Length of Drift:	1107 [m]
Drift Diameter:	5 [m]
Waste Package Diameter:	1.579 [m]
Ventilation rate:	$15 [m^{3}/s]$

70% & 88%

Heat Loss Factor:

Table 6.3: Parameter Input Values

The time of interest for analyzing the temperature distribution in the repository starts at the time of SNF emplacement (25 year cooling period) until after the peak temperature occurs between the drifts. As will be seen in the following figures there exists some obvious discontinuities in the plots, this is due to the fact that the decay heat model is split into seven different time regions in order to provide a best-fit line.

In COMSOL the artificial diffusion model was utilized to stabilize oscillations that occur when modeling a convection-dominated problem. Streamline diffusion was applied in the COMSOL model. Streamline diffusion refers to all diffusion occurring along the advection direction. A tuning parameter is required for artificial diffusion. This tuning parameter controls the amount of artificial diffusion being added to the system. A conservative tuning parameter was chosen for this model as can be seen in Table 6.4.

Т	abl	e (5.4:	Diffusion

Diffusion Type	Tuning Parameter Value
Streamline – Petrov-Galerkin/Compensated	0.25

6.2.2 Boundary Conditions

Conduction and convection COMSOL models were analyzed for the comparison with the SRTA code. Sections 6.2.2.1 and 6.2.2.2 describe the boundary conditions used in the modeling of the two different cases.

6.2.2.1 Conduction Model Boundary Conditions

The boundary condition on the top layer of the model is set to a temperature of 20°C Equation (6.2).

$$T = T_0 \tag{6.2}$$

The boundary conditions for the four sides and bottom (based on Figure 6.4) were set as thermally insulated (Equation (6.3)). The thermal insulation boundary condition specifies the domain that is well insulated and takes advantage of symmetry. The gradient across the boundary is set to be zero and the temperature on one side of the boundary is equal to the temperature on the other side. Because there is no temperature difference across the boundary, heat cannot transfer across it.

$$\mathbf{n} \cdot \left(k \nabla T \right) = 0 \tag{6.3}$$

6.2.2.2 Convection Model Boundary Conditions

Similar to the conduction model the top layer has a temperature boundary condition of 20°C and the sides and bottom as thermally insulated. The difference between the two models is that the air regions shown in Figure 6.3 have different boundary conditions other than being thermally insulated. The boundary at the beginning of the air region has a temperature boundary condition of 17.2°C and the boundary at the end of the drift for the air region has a convective flux boundary condition.

The convective flux boundary condition at the end of the drift assumes that all energy passing through boundary does so through convective flux. This condition first assumes that any heat flux due to conduction across the boundary is zero as given in Equation (6.4).

$$\mathbf{n} \cdot (-k\nabla T) = 0 \tag{6.4}$$

Therefore the convective flux terms is:

$$q \cdot \mathbf{n} = \left(\rho C_p u T\right) \cdot \mathbf{n} \tag{6.5}$$

6.2.3 Ventilation Heat Loss Factor

The heat loss factor takes into account the amount of heat removed from the system during the preclosure period. Two different time periods were examined in both the SRTA and COMSOL models. As of the writing of this thesis, the time period for which forced ventilation occurs has not been finalized. Fifty years and seventy-five years were analyzed in order to compare the effect of extend periods of ventilation. The original heat loss factor assumed by the DOE was 70%. A recent engineering study for the Yucca Mountain repository determined that the value of heat loss factor is 88% (Bechtel 2004).

Figure 6.5 and Figure 6.6 provides a comparison between the SRTA and COMSOL conduction models for the 50 and 75 year preclosure period respectively. The data is presented on semi-log plots since the time period covers a large range of values; this scaling reduces the time period to a more manageable range. The convection model obtained from COMSOL was also analyzed in order to compare the heat loss factor and ventilation rate.

The temperature at the drift wall during the preclosure period increases more than the temperature between the drifts. This is due to the fact that most of the heat is removed due to ventilation of the drift during this time. Once the ventilation is turned off a sharp increase in temperature occurs at the drift wall since heat is no longer being removed. The temperature between the drift shows a slow increase in temperature with time since it takes time for heat to conduct to the Tuff rock in this region. Over time the decay heat of the SNF decreases as well as the temperature. Once the heat sinks (the water table and the ground surface) start dissipating the heat, the temperature begins to decrease.

Given the preclosure periods of fifty and seventy-five years it is intuitive that the temperatures at the drift wall and between the drift will be lower with the 75 year preclosure period since the drifts are ventilated for longer periods of time and the decay heat also decreases with time. A 70% ventilation heat loss factor for the SRTA code at fifty years is more conservative than the COMSOL convection model however; when a heat loss factor of 88% was analyzed the SRTA code was in agreement with COMSOL convection model.

The SRTA model is conservative for the drift wall and between drift temperatures when compared to the COMSOL conduction model. Moreover, the COMSOL convection model has much lower values when compared to both conduction models.

Figure 6.5: SRTA vs. COMSOL 50 Years Ventilation, 70% Heat Loss Factor

Figure 6.6: SRTA vs. COMSOL 75 Years Ventilation, 70% Heat Loss Factor

Calculation results showed that the SRTA model with a heat loss factor of 70% is very conservative when compared with the COMSOL convection model. A heat loss factor of 88% was also analyzed for both the conduction models. This 88% heat loss factor is the currently accepted value for the Yucca Mountain repository (Bechtel 2004).

Figure 6.7 and Figure 6.8 show the results of peak rock temperature changes over time when the 88% heat loss factor was adopted. Again the SRTA code predicted higher peak rock temperatures compared to the results from the COMSOL model.

Figure 6.7: SRTA vs. COMSOL 50 Years Ventilation, 88% Heat Loss Factor

Figure 6.8: SRTA vs. COMSOL 75 Years Ventilation, 88% Heat Loss Factor

6.2.4 Benchmark Results

The benchmark of the SRTA code is important in order to verify the results of the temperature analyses. Based on the results of Section 6.2.3 the SRTA code gives results similar to the conduction and convection models in COMSOL. It was beyond the scope of this research to validate the SRTA code. But verification of SRTA was necessary for this research and the COMSOL code, a well established computer model, was used for that purpose.

The benchmark cases given in Figure 6.5 through Figure 6.8 shows that the SRTA code gives a conservative approach to analyzing the temperatures in the repository in comparison to the results from COMSOL. The values at the drift wall and between the drift for the SRTA model were greater when compared to COMSOL model. The drift wall never approached the temperature limit of 200°C set by the NRC. Additionally, the temperature between the drifts given from the SRTA approached but did not exceed the limit of 96°C.

The results obtained from SRTA and the COMSOL conduction model were in better agreement with those from the COMSOL convection model (based on the air flow of 15m³/s). This further supports the use of 88% as the value of the heat loss factor as opposed to using 70% in the remainder of the calculations for this research.

6.3 Sensitivity Investigation of Input Parameters

A related topic of importance in this investigation was the effect of uncertainty. As the modeling exercise relies on the use of computational models, uncertainties are unavoidable

and understanding the uncertainty in the interpretation of the results is important. In order to gain a better understanding of how the parameters affect the SRTA model results and to identify major parameters of importance, a sensitivity analysis was performed. The sensitivity analysis was based on a nominal range sensitivity analysis. Based on the values given in Table 6.1 a five percent increase in the mean was taken to find the temperature at the drift wall and between the drift for a preclosure period of fifty years. Table 6.5 provides the peak rock temperatures predicted as the base case without the changes in input values from the base value.

 Table 6.5: Peak Rock Temperature as the Base Case (50 Years)

Drift Wall (°C)	Between Drift (°C)	
104.36	78.86	

Parameters	Drift Wall (°C)	Between Drift (°C)
rho	103.32	77.71
Ср	103.32	77.71
cond	101.33	77.56
cond_n	104.36	78.86
hloss_fact	102.48	78.34
condds	104.36	78.86
condbf	104.36	78.86
emissds	104.36	78.86
emisswp	104.36	78.86
wpdia	104.36	78.86
wplength	104.36	78.86
dsthick	104.36	78.86
ds_idia	104.36	78.86
driftdia	104.02	78.88
frac_inv	104.36	78.86
ambreptemp	105.36	79.86
elevrep	104.36	78.46
elevgs	104.36	78.96
tss	104.36	78.86
tcs	104.36	78.86
akss	104.36	78.86
akcs	104.36	78.86
aksf	104.36	78.86
wpspace	100.33	76.05
condfloor	104.36	78.86
emissrw	104.36	78.86

Table 6.6: Sensitivity Analysis-5% Increase (50 Years)

The sensitivity analysis showed (see Table 6.6) that some of the input parameters do have a larger impact than others. The three main contributors were the density, specific heat, and thermal conductivity of the Tuff rock. The waste package spacing can play an important role in the determination of rock temperatures. However this parameter was not included in the uncertainty analysis as the parameters is fixed by design and does contain any variability (DOE 1999).

6.4 Uncertainty of Input Parameters

The SRTA code utilizes an input file comprised of different physical properties of the repository design. Uncertainties of these parameters were characterized by various studies as summarized in Table 6.7. It was noted that all of the parameters' uncertainty were represented by the normal distribution. Certain input values have large uncertainties that can account for a large uncertainty in the temperature analysis.

Crystal Ball 7 (CB 7) (Decisioneering 2007) was used to run a Monte Carlo simulation of the SRTA code. The values in Table 6.7 were used to support the Monte Carlo analysis. Full details of the assumptions utilized in CB 7 are supplied in Appendix B along with graphs of the distributions.

Code		Initial Value	Standard		
Parameters:	Units	(the mean)	Deviations	Distribution	Source
akcs	W/(m-°C)	15.49	4.21	Normal	DOE 2001
akss	W/(m-°C)	16.62	2.10	Normal	DOE 2001
cond	W/(m-K)	2.603	0.341	Normal	DOE 2004
condds	W/(m-°C)	20.00	0.77	Normal	DOE 2001
Ср	J/(kg-K)	930	170	Normal	DOE 2004
driftdia	m	5.0	0.089	Normal	Bechtel 2004
emissds	-	0.64	0.05	Normal	Michels 1949
emisswp	-	0.87	0.02	Normal	Bechtel 2004
hloss_fact	-	0.88	0.01	Normal	Bechtel 2004
rho	Kg/m ³	2593	138	Normal	DOE 2004
wpdia	m	1.644	0.089	Normal	Bechtel 2004

Table 6.7: Uncertainty in Input Values

7 Analysis of Capacity Expansion through Variable Drift Spacing and Variable Drift Thermal Loading

Studies performed to date investigating the capacity of Yucca Mountain typically assume that the loading of SNF is uniform throughout the repository (i.e., drift thermal loading is constant throughout the repository with a fixed drift distance). In this study, it is assumed that variable drift spacing or variable drift thermal loading is allowed. As the results of analysis involve uncertainties, uncertainty analysis was performed to better interpret the results. In terms of how to use the results of uncertainty analysis, both the mean and the 95th percentile estimates were used for discussions.

7.1 Variable Drift Spacing

One method to increasing the capacity of the repository is to change the spacing between the drifts. For the case of variable drift spacing, it was assumed that available repository footprint is 4.9km² (1,165 acres – the default input value in NRC's TPA code) (NRC 2002) and that the rock temperature at the midway between the drifts is the limiting criterion and that, by adjusting the distance, an optimum distance between the drift within the thermal limit can be found for the given decay heat load using uniform loading.

The decay heat inventory was determined by assuming that the repository was fully loaded with an average PWR (64.5%) and BWR (35.5%) SNF. The DOE database that was discussed in Section 4.2 was analyzed for the decay heat of the entire SNF inventory. Based on this analysis and the projected SNF inventory (Table 1.1) an assembly, characteristic of

the total average inventory of the U.S. SNF, was selected as given in Table 7.1. The characteristics of SNFs were assumed to have: a burnup of 39,136 and 31949.5 MWd/MTU for PWRs and BWRs, respectively; irradiation days of 366 and 571 days for PWRs and BWRs, respectively; initial enrichment of 3.094 and 3.004 for PWRs and BWRs, respectively; and a cooling period of 25 years. The time to which the repository is to be closed after the initial emplacement of SNF has yet to be determined. Two time periods of 50 and 75 years were examined in order to study the benefits of longer periods of ventilation.

	PWR	BWR
Years Cooled:	25	25
Blend:	0.645	0.355
Burnup (MWd/MTU:	39136	31949.5
Days Irradiated:	366	571
Enrichment:	3.094	3.004

Table 7.1: Characteristic Fuel Assembly for PWR and BWR

7.1.1 Peak Temperatures at Drift Wall and at the Midway between the Drifts

Current design specifications (NRC 2002) state that the drifts must be 81 meters apart. Based on the results of SRTA analysis (as shown in Table 7.2) for the case of using the current drift spacing of 81m, it can be noted that the thermal limits are not exceeded even at the ninety-fifth percentile. This indicate a margin in the current drift spacing design and that the capacity of the mountain could be increased by decreasing the drift spacing. The thermal limit at the drift wall was far less than the limit of 200°C however, the drift wall was very close to the limit of 96°C. From this it is concluded that the temperature between the drifts is the most limiting.

	Temperature (°C)				
Location:	Mean Deviatio		Min/Max	90 th %ile	95 th %ile
Drift Wall	106	10	78/164	119	124
Between Drift	80	7	60/129	90	93

Table 7.2: Results of SRTA Analysis Results for the Base Case (81 m drift spacing), Preclosure period of 50 Years

7.1.2 Repository Capacity with the Implementation of Variable Drift Spacing

Table 7.3 demonstrates how the capacity of the repository could be increased by changing the distance between the drifts. The linear heat load for the variable drift spacing is 1.22 kW/m. Based on the between drift thermal limit of 96°C the SRTA calculations estimated that the spacing between the drifts could be reduced to 63 meters. This implies that the total capacity of the mountain could be increased by 37.1%. This increase in capacity would mean that the repository would not be filled until the year 2023 based on the current nuclear fleets discharge rate of approximately 2000 MTU/year. Based on the analysis for the ninety-fifth percentile the capacity can be increased by 9.8% and the repository filled by 2013.

 Table 7.3: Increase in Capacity Due to the Implementation of Variable Drift Spacing (50 Years)-Based on the Mean Estimates (1.22 kW/m)

Drift Spacing [m]	Drift Wall [°C]	Between Drift [°C]	Total MTU	Increase in MTU
81	104.36	78.86	70000	-
63	110	96	95942	37.1%

Table 7.4: Increase in Capacity Due to the Implementation of Variable Drift Spacing (50
Years)-Based on the 95th %ile Estimates (1.22 kW/m)

Drift Spacing	Drift Wall	Between		Increase in
[m]	[°C]	Drift [°C]	Total MTU	MTU
78.5	124	96	76833	9.8%

A preclosure period of seventy-five years was also studied. Table 7.5 provides the results of SRTA analysis along with uncertainty estimates for the base case (with the standard drift spacing of 81 meters). The thermal limits at the ninety-fifth percentile were not exceeded. The estimated midway between the drifts temperature was 7°C below the thermal limit of 96°C.

 Table 7.5: Results of SRTA Analysis Results for the Base Case (81 m drift spacing),

 Preclosure period of 75 Years (1.22 kW/m)

	Temperature (°C)				
Location:	Mean	Standard Deviation	Min/Max	90 th %ile	95 th %ile
Drift Wall	92	8	71/146	103	107
Between Drift	77	7	58/130	86	89

Based on this analysis and the information in Table 7.6 the capacity of the repository could be increased by 42.6% when the parameters are based on the peak of the mean. This would extend the life of the repository from 2010 to 2025. For the analysis based on the ninety-fifth percentile the capacity can be increased by 15% and the repository closing around 2015.

Table 7.6: Increase in Capacity Due to the Implementation of Variable Drift Spacing (Preclosure period of 75 Years)-Based on the Mean Estimates (1.22 kW/m)

Drift Spacing [m]	Drift Wall [°C]	Between Drift [°C]	Total MTU	Increase in MTU
81	89.03	74.69	70000	-
60.5	106	96	99809	42.6%

Table 7.7: Increase in Capacity Due to the Implementation of Variable Drift Spacing (Preclosure period of 75 Years)-Based on the 95th %ile Estimates (1.22 kW/m)

Drift Spacing	Drift Wall	Between		Increase in
[m]	[°C]	Drift [°C]	Total MTU	MTU
75	111	96	80565	15%

7.1.3 Main Contributors of Uncertainty in the Analysis of the Variable Drift Spacing Case

Rank correlation coefficients indicate the relationship between the ranks of model inputs and output. Thus, rank correlation provides a measure of degree to which the input parameters change with the output of interest, in this case, peak rock temperatures. Positive coefficients indicate that an increase in the input parameter is associated with a positive increase in the temperature. Negative coefficients imply the opposite situation. The absolute value of the rank correlation means a stronger relationship between the parameters and the temperature.

Figure 7.1 through Figure 7.4 contain the uncertainty parameters and the contribution they have in the calculation of the temperature of the drift wall and between the drifts. There are three main contributors that have the most effect on the SRTA model and these are the material properties of the Tuff rock. Thermal conductivity, specific heat, and density of Tuff rock are the main parameters to uncertainty in the model. The order of the importance of these parameters varies depending on the output of interest, i.e., the drift wall temperature or the rock temperature at the midway between the drifts.

Figure 7.1: Results of Rank Correlation Analysis for Drift Wall Temperature (With Uniform Loading for 50 Year Preclosure Period)

Figure 7.2: Results of Rank Correlation Analysis for Between Drift Temperature (With Uniform Loading for 50 Year Preclosure Period)

Figure 7.3: Results of Rank Correlation Analysis for Drift Wall Temperature (With Uniform Loading for 75 Year Preclosure Period)

Figure 7.4: Results of Rank Correlation Analysis for Between Drift Temperature (With Uniform Loading for 75 Year Preclosure Period)
7.2 Variable Drift Thermal Loading

As variable drift thermal loading option assumes that each drift accommodates different types of spent fuel in terms of decay heat, a more realistic representation of the decay heat inventory is necessary. To support this study, the existing inventory of SNF generated until 2002 based on the DOE/RW-859 database (DOE 2002b) was used. The database includes a total of about 160,000 fuel assemblies that corresponds to about 46,757 MTU. This 46,757 MTU became the basis for variable thermal loading study (Li, 2-3).

The footprint size used to accommodate these 46,757 MTU was about 759.60 acres (3.07 km2). The total number of drifts available in this footprint size was 35. Based on the inventory of SNF there is an infinite number of ways to load the repository. Five different loading schemes based on different uniform line strengths for thirty-five drifts were analyzed. These scenarios can be explained as given below. Due to the limitations in the computer model, SRTA, the heat flux from each drift was approximated by the drift average value. The average decay heat load of each drift was calculated for each respective scenario to be used as input to the SRTA code. The linear heat load can be found in Appendix C for each of the five loading schemes.

Loading Scheme 1 starts with a low linear heat load at the center of the repository and gradually increases to a higher linear heat load toward the edge (south end) of the repository. Loading Scheme 2 through 5 is loaded with alternating linear heat loads of varying strengths. The loading starts with a high linear heat load for the first drift and a low linear heat load for the second drift and continues alternating between high and low heat loads until thirty-five

drifts are full. As can be seen in Appendix C the linear heat loads vary in strength from one loading scheme to another.

7.2.1 Peak Temperatures at Drift Wall and at the Midway between the Drifts

7.2.1.1 Base Case with the Preclosure Period of 50 Years

For the base case, it was assumed that each waste package contained 7.89 Metric Tons of Uranium (MTU). The input values were constant for the base case. The input values used for the base case are shown in Table 6.1. The five loading schemes were analyzed for this base case to see if the thermal design limits would be exceeded with any of the loading schemes.

Table 7.8 provides the calculation results with a preclosure period of fifty years. Based on the temperature at the point midway between the drift, the best loading scheme is expected to be Scheme 1 or 2. The temperature at the drift wall for loading Scheme 2 also is very low. Therefore, the thermal loading of drifts for Scheme 2 can be increased in order to increase the capacity of the repository.

Scheme:	1	2	3	4	5
Peak drift wall temperature (°C)	127.1	101.0	100.4	122.5	135.3
Location of the peak drift wall temperature	Drift #33	Drift #10	Drift #4	Drift #2	Drift #1
Peak rock temperature between drift (°C)	85.5	74.3	74.5	74.5	74.1
Location of the peak temperature between drift	Between Drift #32 & #33	Between Drift #10 & #11	Between Drift #14 & #15	Between Drift #8 & #9	Between Drift #25 & #26

Table 7.8: Results of SRTA Calculations for the Variable Drift Thermal Loading Schemes(Base Case Input Values with 50 Year Preclosure Period)

7.2.1.2 Case with Uncertainty Analysis with the Preclosure Period of 50 Years

Table 7.9 results of SRTA analysis along with uncertainty estimates for the temperatures at the drift wall. Based on the ninety-fifth percentile estimates, the thermal limit of 200°C was never exceeded in any of the loading schemes. This indicates that the drift wall thermal limit is not of a concern for the given U.S. SNF inventory based on the average linear drift heat loads. As indicated in the following, the midway between the drifts temperature is to be noted in regards to the thermal limits.

	Drift Wall Temperature (°C)				
Loading Scheme:	Mean	Standard Deviation	90 th %ile	95 th %ile	
Scheme 1	129	13	146	152	
Scheme 2	103	9	115	119	
Scheme 3	102	9	114	118	
Scheme 4	124	12	141	147	
Scheme 5	137	14	156	164	

Table 7.9: Results of Variable Drift Thermal Loading Analysis - Drift Wall Temperaturewith 50 Year Preclosure Period

There were three primary contributors to the uncertainty of the drift wall temperature. These contributors were the thermal conductivity of Tuff rock, specific heat of Tuff rock, and the density of the Tuff rock. Most of the other contributors had less impact on the overall uncertainty evaluation. Figure 7.5 provides the rank correlation of all the parameters that had uncertainty. Only Scheme 1 will be represented here due to the fact that the three main contributors are consistent for Schemes 1 through 5. The results for Schemes 2 through 5 can be found in Appendix D.

Figure 7.5: Results of Rank Correlation Analysis for Drift Wall Temperature (With Loading Scheme 1 – Sequential Loading Scheme, 50 Year Preclosure Period)

The results of SRTA calculations for the midway between the drifts temperature are given in Table 7.10. The ninetieth and ninety-fifth percentile give conservative estimates of the rock temperatures. Based on the ninety-fifth percentile estimates, loading Schemes 2 through 4 never exceeded the limit of 96°C. However, loading Scheme 1 did violate the thermal limit. Results indicated that the capacity of the Yucca Mountain repository could be extended by implementing the proposed non-uniform loading Schemes 2 through 5.

	Midway Between the Drifts Temperature (°C)				
Loading Scheme:	Mean	Standard Deviation	90 th %ile	95 th %ile	
Scheme 1	87	8	98	102	
Scheme 2	76	7	85	88	
Scheme 3	76	7	85	88	
Scheme 4	76	7	85	88	
Scheme 5	75	7	85	88	

 Table 7.10: Results of Variable Drift Thermal Loading Analysis – Midway between the

 Drifts Temperature with 50 Year Preclosure Period

Again the rank correlation is presented in Figure 7.6 for the mid-drift. The three main contributors are the same as the drift wall however the order is slightly different. One can see that material properties of the Tuff rock; specific heat, thermal conductivity, and density are again very important in describing the uncertainty of the temperature calculation. The other parameters have little to no effect on the overall results and could be ignored.

Figure 7.6: Results of Rank Correlation Analysis for Between Drift Temperature (With Loading Scheme 1 – Sequential Loading Scheme, 50 Year Preclosure Period)

7.2.1.3 Base Case with the Preclosure Period of 75 Years

Similar to the analysis in subsection 7.2.1.1 the five loading schemes were analyzed as a base case with a preclosure period of seventy-five years. Results are given in Table 7.11. Again the thermal design limits have not been exceeded in any of the loading schemes as can be seen in Table 7.11. This base case results indicate that the capacity of the repository can be increased by using the variable drift thermal loading schemes based on the average linear head load for each drift. Loading Scheme 2 was used to further analyze the uncertainties in the temperature calculations.

Table 7.11: Results of SRTA Calculations for the Variable Drift Thermal Loading Schemes(Base Case Input Values with 75 Year Preclosure Period)

Scheme:	1	2	3	4	5
Peak drift wall temperature (°C)	107.6	88.1	86.9	101.8	111.1
Location of the peak drift wall temperature	Drift #33	Drift #10	Drift #4	Drift #2	Drift #1
Peak rock temperature between drift (°C)	80.8	71.4	71.4	71.4	71.3
Location of the peak temperature between drift	Between Drift #32 & #33	Between Drift #10 & #11	Between Drift #14 & #15	Between Drift #8 & #9	Between Drift #25 & #26

7.2.1.4 Case with Uncertainty Analysis with the Preclosure Period of 75 Years

Table 7.12 provides the results of SRTA calculations along with uncertainty estimates for the temperatures at the drift wall. The drift wall thermal limit was never exceeded in any of the loading schemes even with the use of the ninety-fifth percentile estimates for the peak rock temperatures. The more limiting thermal limit was the thermal limit at the midway between the drifts.

	Drift Wall Temperature (°C)				
Loading Scheme:	Mean	Standard Deviation	90 th %ile	95 th %ile	
Scheme 1	109	10	123	127	
Scheme 2	89	8	101	104	
Scheme 3	88	8	98	102	
Scheme 4	103	10	116	121	
Scheme 5	113	11	127	132	

Table 7.12: Results of Variable Drift Thermal Loading Analysis - Drift Wall Temperaturewith 75 Year Preclosure Period

As in the case of the fifty-year preclosure period there are three primary contributors to the uncertainty calculations of the drift wall. The contributors to the drift wall are the thermal conductivity of Tuff rock, specific heat of Tuff rock, and the density of the Tuff rock. The other contributors have less impact on the overall uncertainty evaluation. Figure 7.7 provides the rank correlation of all the parameters that contained uncertainty. Only Scheme 1 will be represented here due to the fact that the three main contributors are consistent for Schemes 1 through 5. Schemes 2 through 5 for the seventy-five year preclosure period can be found in Appendix E.

Figure 7.7: Results of Rank Correlation Analysis for Drift Wall Temperature (With Loading Scheme 1 – Sequential Loading Scheme, 75 Year Preclosure Period)

The results of SRTA calculations for the midway between the drifts temperature are summarized in Table 7.13. Based on the ninety-fifth percentile estimates, loading Schemes 2 through 4 never exceeded the limit of 96°C. However, loading Scheme 1 did reach the limit for the ninety-fifth percentile. Based on loading Scheme 1 no further increase in capacity could be applied.

	Midway Between the Drifts Temperature (°C)				
Loading		Standard			
Scheme:	Mean	Deviation	90 th %ile	95 th %ile	
Scheme 1	82	8	92	96	
Scheme 2	72	7	81	84	
Scheme 3	72	6	81	84	
Scheme 4	73	7	81	84	
Scheme 5	72	6	80	84	

 Table 7.13: Results of Variable Drift Thermal Loading Analysis – Midway between the

 Drifts Temperature with 75 Year Preclosure Period

Again the results of the rank correlation analysis are presented in Figure 7.8 for the rock temperature at the midway between the drifts. The three main contributors to the uncertainty of the temperature prediction were the same as at the drift wall with different order pf importance. One can see that material properties of the Tuff rock, i.e., specific heat, thermal conductivity, and density are again very important for the uncertainty of the temperature calculation. The other parameters have little to no effect on the overall results and could be ignored.

Figure 7.8: Results of Rank Correlation Analysis for Between Drift Temperature (With Loading Scheme 1 – Sequential Loading Scheme, 75 Year Preclosure Period)

7.2.1.5 Repository Capacity with the Implementation of Variable Drift Thermal Loading

Based on the results of calculation, the capacity of the repository is expected to be expandable due to that fact that the thermal limits were not exceeded for the assumed variable drift thermal loading scenarios (except for the 95th percentile estimate for loading Scheme 1). Table 7.14 and Table 7.15 provide the estimates of capacity expansion based on using the mean values of input parameters in Table 6.1.

Except for loading Scheme 1, all other loading schemes are expected to provide the similar benefit of capacity increase. Considering the margin in the drift wall temperature limit as discussed in Section 7.2.1.1 and 7.2.1.3, loading Schemes 2 and 3 are expected to be the best choice among the variable drift thermal loading options.

Table 7.14: Increase in Capacity for Variable Drift Thermal Loading for 35 Drifts (50 YearPreclosure Period)-Based on Mean

Scheme:	1*	2	3	4	5
Maximum Capacity per 35 drifts (MTU)	54254	65424	65187	65128	65750
Increase compared to 46757 MTU:	16.0%	39.9%	39.4%	39.3%	40.6%

*Mid-drift temperature was violated at the 95th %ile.

Table 7.15: Increase in Capacity for Variable Drift Thermal Loading for 35 Drifts (75 YearPreclosure Period)-Based on Mean

Scheme:	1	2	3	4	5
Maximum Capacity					
per 35 drifts (MTU)	58372	69158	69069	69158	69217
Increase compared to					
46757 MTU:	24.8%	47.9%	47.7%	47.9%	48.0%

As far as decision making is concerned, which percentile value of the peak temperature distribution should be used as a basis for regulatory decisions is yet to be determined. If we select loading Scheme 2 as the best loading option, how much capacity increase is expected

for loading Scheme 2 given the uncertainties in the results? In this study, the ninety-fifth percentile estimate was used as a conservative basis for discussion.

For a fifty-year preclosure period the estimated percent increase in the capacity with the implementation of loading Scheme 2 was 10.9% for the ninety-fifth percentile as seen in Table 7.16. For a preclosure period of seventy-five years the estimated percent increase in the capacity was 17.3%.

Table 7.16: Increase in Capacity for Variable Drift Thermal Loading for 35 Drifts (50 YearPreclosure Period)-Based on 95th %ile

Scheme:	2		
Maximum Capacity per 35 drifts (MTU)	51861		
Increase compared to 46757 MTU:	10.9%		

Table 7.17: Increase in Capacity for Variable Drift Thermal Loading for 35 Drifts (75 Year Preclosure Period)-Based on 95th %ile

/	
Scheme:	2
Maximum Capacity per 35 drifts (MTU)	54825
Increase compared to 46757 MTU:	17.3%

7.3 Sensitivity of the Estimated Capacity to the Uncertainty of Inputs

The sensitivity of the estimated capacity to the uncertainty of inputs is a subject of interest.

If the results indicate a larger increase in the estimated capacity due to the reduction in

uncertainty, the benefit of further investigations in reducing input parameter uncertainty can

be warranted.

In this study, based on using the ninety-fifth percentile estimate, changes in the estimated capacity increase was noted when the uncertainty in input was reduced. A twenty percent reduction in the standard deviations for the major inputs was assumed for uncertainty reduction. The three main contributors to uncertainty, specific heat, conductivity, and density of Tuff rock were used in this investigation.

From Table 7.18 it can be seen that, under the variable drift spacing scenario, a twenty percent reduction in the uncertainty of all three parameters would result in the reduction in drift spacing from 78.5 to 70.1 meters.

Table 7.18: Capacity Increase Due to 20% Reduction in Uncertainty (95%-ile)-75 Yearswith Uniform Loading

Parameters	Drift Spacing (m)	Total MTU	% Increase
Density of Tuff Rock	74.4	80762.04	15.4%
Specific Heat of Tuff Rock	72.1	84154.74	20.2%
Thermal Conductivity of Tuff Rock	73.6	82229.58	17.5%
All Three Main Contributors	70.1	86687.43	23.8%

Under the variable drift thermal loading scenario (Scheme 2 with a preclosure period of 75 years), 20% reduction in uncertainty is estimated to result in an increase in capacity from 17.3% to 26.3% using the 95th percentiles of the peak temperature distributions. This is shown in Table 7.19.

The estimate of HLW repository development cost ranges roughly between \$60 billion and \$100 billion (Shropshire, et. al., 2007). Increase of repository capacity by 10% means monetary gain in the order of billions. As the cost of reducing the uncertainty in major input parameters is expected to be much lower, the results indicate major benefits of uncertainty

reduction of input parameters for the repository development. However, this observation is based on the use of ninety-fifth percentile estimates. If the decision is based on the mean estimates, there will be no benefit of uncertainty reduction assuming that the current mean values of the input parameters are well estimated and do not change with addition of new data.

 Table 7.19: Capacity Increase Due to 20% Reduction in Uncertainty (95%-ile)-75 Years with Non-Uniform Loading

Parameters	MTU/Cask	Total MTU	% Increase*
Density of Tuff Rock	9.40	55713.80	19.2%
Specific Heat of Tuff Rock	9.57	56721.39	21.3%
Thermal Conductivity of Tuff Rock	9.49	56247.23	20.3%
All Three Main Contributors	9.96	59032.92	26.3%

*Based on 46757 MTU

8 Discussion

Demonstrated in this thesis is the increase in repository capacity that can result from modifying the SNF loading patterns. Based on the current discharge rate of nuclear reactors the total inventory of SNF in the U.S. will exceed the capacity of the Yucca Mountain repository by 2010. This leaves no room for future SNF discharged from the current nuclear fleet (including during the relicensed period) or future nuclear reactors that potentially will be built. Expansion of the capacity of the Yucca Mountain repository would provide a large economical benefit as siting and developing a second repository would expectedly be lengthy, contentious and expensive process.

Two different loading options were analyzed for this research; variable drift spacing and variable drift thermal loading. Analyses using these two loading options showed that by

changing the design specifications of the repository (drift spacing), the amount of waste that could be emplaced in the drifts would be increased - the capacity of the repository would be expanded to accommodate future SNF discharges.

Assuming that the loaded spent fuel casks are directly disposed of at the Yucca Mountain, understanding how different cask loading schemes might affect the repository thermal design limits was of interest. COBRA-SFS was used to analyze the effect of nonuniform loading of spent nuclear fuels into the casks with respect to the peak clad temperature limit of 350°C. Four different loading cases were analyzed for ambient temperatures of 17.2°C and 200°C on the outside of the cask. Results indicated that there is no concern with respect to the cladding surface temperature with the use of non-uniform loading of SNF in the cask over the range of SNF burnup, storage period, irradiation time and enrichment tested.

The burnup of spent fuel was analyzed using data from the DOE database. From this, the decay heat of the SNF was evaluated. Assuming that all the fuel was cooled for a twenty-five year period and that the repository would not be open until 2017, an average was taken to in order to determine the common decay heat profile for both PWR and BWR assemblies. It was determined that the average decay heat was 39,136 and 31,949 MWd/MTU for the PWR and BWR SNF assemblies respectively. In the future these values will most likely increase due to improvements in fuel manufacturing and management resulting in higher burnup fuels.

Using COMSOL Multiphysics the SRTA code was benchmarked with respect to its use for the analyses performed in this research. When compared to the results of the COMSOL conduction and convection models the SRTA code was found to be conservative. The uncertainties in the input parameters of the model were also investigated for variable drift spacing under both uniform drift loading and variable drift thermal loading. Based on the results there were three main parameters that played important roles in the calculation of the temperatures in the repository. These are the thermal conductivity, specific heat, and the density of the Tuff rock. There exist multiple layers of Tuff rock in the system with varying material properties. The SRTA code is unable to account for different Tuff rock layers. In future investigations, it may be helpful to use a code capable of treating multi material layers.

This study showed that using variable drift spacing or variable drift thermal loading would help to increase the capacity of the Yucca Mountain repository. Based on the test case where the decay heat inventory was represented by an average PWR and BWR SNF, variable drift spacing was found to increase the capacity by about 40% using the mean rock temperature estimates. Although this amount of capacity increase does not represent the actual value due to the hypothetical nature of the test case, the result does indicate the benefit of using variable drift spacing.

In the case of variable drift thermal loading, the age-based mixed loading or decay heat-load based mixed loading would also result in a benefit of capacity increase by over 40%, based on the mean estimates. The number may be somewhat optimistic in this case as the heat flux from each drift was approximated in the model by the drift average value. If the possibility

of local hot spots is considered, the estimated benefit would decrease. Nevertheless, the approach seems to have practical benefits in implementing waste loading schemes in the repository.

Uncertainty estimation in the calculation of rock temperatures was facilitated by the use of an efficient repository heat transfer model, SRTA. Although only parameter uncertainty was considered in this study, results showed that the uncertainty in temperature has a major impact in the determination of repository capacity. As the results indicate, the estimate of capacity increase was more than 25% different between the case based on the mean estimates and the case based on the 95th percentile-based estimates. This highlights the importance of reducing the uncertainty in the key input parameters such as thermal conductivity, specific heat, and density of the tuff rocks for the Yucca Mountain repository.

The study of the sensitivity in the uncertainty of density, conductivity, and specific heat of Tuff rock showed that the uncertainty in these parameters has a significant impact on capacity of the repository based on the comparison between the mean and the ninety-fifth percentile estimate cases. For variable drift spacing under uniform loading with a preclosure period of seventy-five years the capacity could be increased by as much as 42.6% based on the mean and 15% based on the ninety-fifth percentile. If the uncertainty in these three parameters is reduced by twenty percent the capacity of the repository will increase by as much as 23.8% based on the ninety-fifth percentile. Analyzing the sensitivity of the specific heat of Tuff rock alone increases the capacity by 20.2% based on the ninety-fifth percentile.

The sensitivity of uncertainties in the density and conductivity of Tuff rock have less impact on the increase of capacity; 15.4% and 17.5% respectively.

Sensitivity of uncertainties in the three parameters for variable drift thermal loading showed a similar result as for the variable drift spacing under uniform loading case. An increase in capacity of 47.9% based on the mean and 17.3% based on the ninety-fifth percentile for non-uniform loading was observed. A twenty percent reduction in uncertainty showed an increase in capacity to 26.3% for all three contributors based on the ninety-fifth percentile. Analyzing the sensitivity in uncertainty for specific heat, conductivity, and density of Tuff individually resulted in an increase in capacity of 21.3%, 20.3%, and 19.2% based on the ninety-fifth percentile. Based on the results of this sensitivity analysis it would be economically viable to analyze the material properties of the Tuff rock in more detail. The analysis of the specific heat alone would be the most beneficial to increasing the capacity of the repository based on the ninety-fifth percentile.

The study also found that the duration of ventilation period prior to the closure of the mountain would have a major impact in the determination of repository capacity; longer ventilation periods would result in an increased capacity. Varying the time of ventilation or preclosure period, however, needs to be justified with respect to the additional cost requirement for the increased repository operation period.

This study showed that the capacity of the Yucca Mountain repository could be increased if proper planning and implementation in the design of the repository was applied. The

uncertainty in the model parameters was also of importance in order to investigate the change in the rock temperatures due to uncertainty. Overall this project demonstrates that the current limit of 70,000 MTU can be increased by optimizing the fuel-loading pattern. This is in addition to gains made by increasing the footprint of the repository or increasing the number of levels in the repository.

9 Future Work

Maximizing the repository capacity at Yucca Mountain is a complex issue. The SRTA code is a simplified model that doesn't take into account certain aspects such as cooling by infiltrating water flowing through the system. The hydrology of the mountain will play a role in determining the thermal response of the mountain under the presence of hot spent nuclear fuels. This aspect could not be analyzed using the analytical approach employed in the current study.

The SRTA code was modified from the original TPA code to include non-uniform loading. As discussed in this thesis the code's capability to analyze uniform loading cases was benchmarked but not for the non-uniform loading cases due to the complex nature of the problem. In the future, computer codes that are capable of modeling such complex problems should be used.

Future work could include the investigation of the effect of fluid flow through fractured media in the repository. From this the amount of heat removed from the system due to fluid cooling and the resulting changes in the thermal response of the Mountain can be estimated. Understanding the uncertainty in this estimation is also desirable. During this research, only a few types of loading schemes were considered. Future work could include optimizing the loading strategies that yield the largest increase in capacity. For example, combining variable drift spacing and variable drift thermal loading is a possible SNF loading strategy. There are other ways to increase the capacity of the repository; including the idea of adopting a multiple-level repository and expanding the repository footprint. These ideas should be investigated further in combinations in order to optimize the capacity estimates for the Yucca Mountain repository.

10 References

- Bechtel SAIC Company, LLC (Bechtel 2004). Ventilation Model and Analysis Report. ANL-EBS-MD-000030 REV 04. Las Vegas, Nevada: Bechtel SAIC, October 2004
- Bechtel SAIC Company, LLC (Bechtel 2005). Drift Scale THC Seepage Model. MDL-NBS-HS-000001 REV 04. Las Vegas, Nevada: Bechtel SAIC. February 2005.
- Birkholzer, J. T., et al. Evaluating the Moisture Conditions in the Fractured Rock at Yucca Mountain: The Impact of Natural Convection Processes in Heated Emplacement Drifts. Berkeley CA: Lawrence Berkley National Laboratory, November 20, 2006.
- Buscheck, T.A., et al. Thermohydrologic Behavior at the Potential Yucca Mountain Nuclear Waste Repository. Livermore, CA: Lawrence Livermore National Laboratory, February 17, 2000.
- Cheon, Myeongguk and Joonhong Ahn. *Expansion of Yucca Mountain Repository Capacity* by ATW Fuel Cycle. GLOBAL 2005 Tsukuba, Japan, 2005.
- Claesson, Johan and Thomas Probert. "Temperature Field due to Time-Dependent Heat Sources in a Large Rectangular Grid – Derivation of Analytical Solution." Svensk Kärnbränslehantering AB, SKB TR-96-12, (January 1996): 7-10.
- COMSOL, Inc., "COMSOL Multiphysics 3.3a", New England Executive Park Suite 350, Burlington, MA 01803, 2007
- CRWMS M&O. License Application Design Selection Report. B00000000-01717-4600-00123 Las Vegas, Nevada: Civilian Radioactive Waste Management System, Management and Operating Contractor, August 30, 1999.

Decisioneering, Inc., "Crystal Ball Risk Analysis Software & Solution," 2007

- Electric Research Power Institute (EPRI 2006). Program of Technology Innovation: Room at the Mountain – Analysis of the Maximum Disposal Capacity for Commercial Spent Nuclear Fuel in the Yucca Mountain Repository. Palo Alto, CA: EPRI, May 2006.
- Gaski, J., SINDA/G, Network Analysis Associates Inc., Fountain Valley, CA, 1987.
- Glascoe, Lee G., et al. *Multiscale Thermohydrologic Model Analyses of Heterogeneity and Thermal-Loading Factors for a Proposed Nuclear Waste Repository*. Livermore, CA: Lawrence Livermore National Laboratory, January 12, 2004.
- Itamura, Michael T., et al. In-Drift Natural Convection Analysis of the Low Temperature Operating Mode (LTOM) Design. Albuquerque, NM: Sandia National Laboratories, 2003

- Johnson, Gary L. Thermal Performance of a Buried Nuclear Waste Container Storing a Hybrid Mix of PWR and BWR Spent Nuclear Fuel Rods. Lawrence Livermore National Lab, September 1998.
- Li, Jun, et al. *Examining Repository Loading Options to Expand Yucca Mountain Repository Capacity*. Proceedings of GLOBAL 2007, pp. 519-525, 2007
- Mansure, Arthur J. and Sharon Patney. *Determination of Equivalent Thermal Loadings as a Function of Waste Age and Burnup*. Albuquerque, NM Sandia National Laboratories, April 1991.
- Michels, Walter C. and Sally Wilford. "The Physical Properties of Titanium. I. Emmisivity and Resistivity of the Commercial Metal." Journal of Applied Physics (June 28, 1949): 1223-1226
- Michener, T.E., et al. COBRA-SFS: A Thermal-Hydraulic Analysis Code for Spent Fuel Storage and Transportation Casks. Pacific Northwest Laboratory. Richland, Washington, September 1995.
- Nitao, J. J., Reference Manual for the NUFT Flow and Transport Code, Version 2.0, Lawrence Livermore National Laboratory Report No. UCRL-MA-130651, 1998.
- Nuclear Regulatory Commision (NRC 2002). Total System Performance Assessment (TPA) Version 4.0 Code: Module Descriptions and User's Guide. Center for Nuclear Waste Regulatory Analyses. San Antonio, Texas, January 2002.
- Pruess, K., C. Oldenburg and G. Moridis. TOUGH2 User's Guide, Version 2.0, Lawrence Berkeley National Laboratory Report LBNL-43134, Berkeley, CA, November 1999.
- Shropshire, D. E., et al., Advanced Fuel Cycle Cost Basis, INL/EXT-07-12107, Idaho National Laboratory, April, 2007.
- Stahala, Mike Peter. High Level Nuclear Waste Repository Thermal Loading Analysis. M.S. Thesis, Department of Nuclear Engineering, North Carolina State University, May 2006.
- TOUGH2 Homepage (LBNL 2007). June 1, 2007. Lawrence Berkeley National Laboratory, June 25, 2007 ">http://www-esd.lbl.gov/TOUGH2/>
- U.S. Department of Energy (DOE 1999). *Design Feature Evaluation #12, Waste Package Spacing and Drift Spacing*. Office of Civilian Radioactive Waste Management, April 1999.

- U.S. Department of Energy (DOE 2001). *Natural Convection Calculations of Waste Package Drift Emplacement*. Office of Civilian Radioactive Waste Management, September 26, 2001.
- U.S. Department of Energy (DOE 2002a). *Yucca Mountain Science and Engineering Report*. Office of Civilian Radioactive Waste Management, February 2002.
- U.S. Department of Energy (DOE 2002b). Spent nuclear fuel discharges from US reactors 2002 RW859_2002.mdb. Energy Information Administration U.S. Department of Energy, 2002.
- U.S. Department of Energy (DOE 2004). *Igneous Intrusion Impacts on Waste Packages and Waste Forms*. Office of Civilian Radioactive Waste Management, April 19, 2004
- U.S. Department of Energy (DOE 2007). April 28, 2006. Office of Civilian Radioactive Waste Management, February 26, 2007 http://www.ocrwm.doe.gov/ym_repository/index.shtml
- Wigeland, Roald A. and Theodore H. Bauer. Repository Benefits of Partitioning and Transmutation. OECD/NEA 9th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation. Nimes, France, September 28, 2006.
- Xu, T., E.L. Sonnenthal, N. Spycher, and K. Pruess, TOUGHREACT user's guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media, Lawrence Berkeley National Laboratory Report LBNL-55460, Berkeley, California, 2004.

Appendices

Appendix A

COBRA-SFS Input

99999	0											COBRA.1
1	1	tn-24	horizontal	heli	um	full-	load	valio	dation	anal	yses	COBRA.3
prop	6	5									-	PROP.1
	1.	0.	100.0		0780		1.24	4	83.33		.0410	PROP.3
	2	200	348 0		0970		1 24	4	119 76		0533	
	3	400	596 0	•	1150		1 24	4	156 25		0641	
	5	600.	811 0	•	1200		1 2/	т <u>.</u> И ^	107 31		0727	
	10	000.	1002 0	•	1200		1 2	+ . 1 ^	192.31		.0121	
	10.	800.	1092.0	•	1200		1.24	4 4	229.30		.0823	
	15.	1000.	1340.0	•	1380		1.24	4 4	265.25		.0907	
10	aLum			5	8.88							PROP.4
2st	teeL				24.							
3re	escu			10	0.69							
4rc	adme			4.0	0000							
5st	tilt			1	19.0							
chan	7	12										CHAN.1
15	59.5	90.0										CHAN.3
1	1	136 0	0									CHAN.5
1	1	0 0	1									CHAN.6
1 0	7 7663 '	5750 1657	2 1984	486								CHAN 7
2 3	30031. 30041	226 6629	3 1410	486	4	1984	563	3				CHAILT
3.0	7882 U	630 6630	5 1/10	563	т	.190+	. 50.	5				
1 3.0	20071	226 6620	5 1/10	. 505	7	10.81	563	2				
5 1	17701	2261 226	6 1410	562	0	1/10	. 50.	2				
5.1		. 5201. 520	0.1410	. 505	٥	.1410	. 50.	5				
6.6	0768.1	/115.49/2	9.0790	. 563		1004	F (2)	2				
1.5	30041	.226.6629	8.1410	.486	11	. 1984	. 56:	3				
8.1	17701	.3261.326	9.1410	.563	12	.1410	.56:	3				
9.1	15351	.423.9943	10.0790	.563	13	.1410	.56	3				
10.0	0768.7	7115.4972	14.1410	.563								
11.3	30041	.226.6629	12.1410	.486	16	.1984	.563	3				
12.1	17701	.3261.326	13.1410	.563	17	.1410	.563	3				
13.1	17701	.3261.326	14.1410	.563	18	.1410	.563	3				
14.1	17701	.3261.326	15.1410	.563	19	.1410	.563	3				
15.0	0768.7	7115.4972	20.0790	.563								
16.3	30041	.226.6629	17.1410	.486	22	.1984	.563	3				
17.1	17701	.3261.326	18.1410	.563	23	.1410	.563	3				
18.1	15351	.423.9943	19.0790	.563	24	.0790	.563	3				
19 1	15351	423 9943	20 1410	563	25	0790	56	3				
20 1	15351	423 9943	21 0790	563	26	1410	563	3				
21 0	768	7115 4972	27 1410	563		0						
22 3	30041	226 6629	23 1410	486	29	1984	563	3				
22.5	17701	3261 326	24 1410	563	20	1410	563	2				
24 1	15251	422 0042	25 0700	562	21	1/10	563	2				
24.1		.423.9945	25.0790	. 505	21	1410	. 50:	5 7				
25.1		.425.9945	20.1410	. 505	22	. 1410	. 50:	5 7				
20.1	17701	.3261.326	27.1410	. 505	22	. 1410	. 50:	5				
27.1		.3261.326	28.1410	. 563	34	.1410	. 50:	3				
28.6	0885.6	0630.6630	35.1410	.563	~-	100.		`				
29.5	50041	.226.6629	30.1410	.486	37	. 1984	. 56:	5				
30.1	17701	.3261.326	31.1410	.563	38	.1410	.56	3				
31.1	17701	.3261.326	32.1410	.563	39	.1410	.563	3				
32.1	15351	.423.9943	33.0790	.563	40	.0790	.563	3				
33.1	15351	.423.9943	34.1410	.563	41	.0790	.563	3				
34.1	17701	.3261.326	35.1410	.563	42	.1410	.563	3				
35.1	17701	.3261.326	36.1410	.563	43	.1410	.563	3				
36.0	0768.7	7115,4972	44,0790	.563								

37.30041.226.6629	38.1410	.486	46.1984	.563
38.17701.3261.326	39.1410	.563	47.1410	.563
39.17701.3261.326	40.1410	.563	48.1410	.563
40.15351.423.9943	41.0790	.563	49.1410	.563
41.15351.423.9943	42.1410	.563	50.1410	.563
42.17701.3261.326	43.1410	.563	51,1410	.563
43 17701 3261 326	44 1410	563	52 1410	563
44 15351 423 9943	45 0790	563	53 1410	563
45 0768 7115 4072	54 1410	563	55.1110	.505
46 30041 226 6620	47 1410	486	56 1984	563
40.30041.220.0023	48 1410	563	57 1/10	563
47.17701.3201.320	40.0700	. 505	57.1410	. 505
40.15551.425.9945	49.0790	. 505	50.0790	. 505
49.15551.425.9945	50.1410	. 505	59.0790	. 505
50.17701.3261.326	51.1410	.563	60.1410	. 563
51.17701.3261.326	52.1410	.563	61.1410	.563
52.17701.3261.326	53.1410	.563	62.1410	.563
53.17701.3261.326	54.1410	.563	63.1410	.563
54.17701.3261.326	55.1410	.563	64.1410	.563
55.0885.6630.6630	65.1410	.563		
56.30041.226.6629	57.1410	.486	67.1984	.563
57.17701.3261.326	58.1410	.563	68.1410	.563
58.15351.423.9943	59.0790	.563	69.1410	.563
59.15351.423.9943	60.1410	.563	70.1410	.563
60.15351.423.9943	61.0790	.563	71.0790	.563
61,15351,423,9943	62.1410	.563	72,0790	.563
62.17701.3261.326	63,1410	.563	73.1410	.563
63 17701 3261 326	64 1410	563	74 1410	563
64 17701 3261 326	65 1410	563	75 1410	563
65 17701 3261 326	66 1410	563	76 1410	563
66 0768 7115 1072	77 0700	563	70.1410	. 505
67 20041 226 6620	69 1/10	. 505	70 1094	562
07.50041.220.0029	00.1410	.400	79.1904	. 505
08.17701.3201.320	09.1410	. 505	80.1410	. 505
69.17701.3261.326	70.1410	. 563	81.1410	. 563
70.17701.3261.326	71.1410	.563	82.1410	.563
71.15351.423.9943	72.1410	.563	83.0790	.563
72.15351.423.9943	73.1410	.563	84.1410	.563
73.17701.3261.326	74.1410	.563	85.1410	.563
74.15351.423.9943	75.0790	.563	86.0790	.563
75.15351.423.9943	76.1410	.563	87.0790	.563
76.17701.3261.326	77.1410	.563	88.1410	.563
77.15351.423.9943	78.0790	.563	89.1410	.563
78.0768.7115.4972	90.1410	.563		
79.30041.226.6629	80.1410	.486	92.1984	.563
80.17701.3261.326	81.1410	.563	93.1410	.563
81.15351.423.9943	82.0790	.563	94.0790	.563
82.15351.423.9943	83.1410	.563	95.0790	.563
83.17701.3261.326	84.1410	.563	96.1410	.563
84.15351.423.9943	85.0790	.563	97.0790	.563
85, 15351, 423, 9943	86.1410	563	98,0790	563
86 15351 423 9943	87 0790	563	99 1410	563
87 15351 423 9943	88 1410	563	100 1410	563
88 15351 423 9943	89 0790	563	101 0790	563
89 15351 423 9943	90 1410	563	102 0790	563
Q0 17701 2761 276	01 1/10	562	103 1/10	563
01 0768 7115 1077	104 0700	562	102.1410	. 505
07 200/1 226 6620	02 1410	. 505	106 1004	562
92.30041.220.0029	95.1410	.480	107 1410	. 505
93.1//01.3201.320	94.1410	. 303	100.1410	. 563
94.15351.423.9943	95.0/90	.563	108.1410	.563
95.15351.423.9943	96.1410	.563	109.1410	.563
96.17701.3261.326	97.1410	.563	110.1410	.563

97.15351.423.9943	98.0790 .563	111.1410 .563		
98.15351.423.9943	99.1410 .563	112.1410 .563		
99.17701.3261.326	100.1410 .563	113.1410 .563		
100.17701.3261.326	101.1410 .563	114.1410 .563		
101,15351,423,9943	102.0790.563	115,1410,563		
102 15351 423 9943	103 1410 563	116 1410 563		
103 17701 3261 326	104 1410 563	117 1/10 563		
104 15251 422 0042	104.1410 .303	110 1410 .505		
104.13531.425.9945	100.0790 .505	110.1410 .303		
105.0768.7115.4972	119.1410 .563			
106.30041.226.6629	107.1410 .486	121.1984 .563		
107.17701.3261.326	108.1410 .563	122 .141 .486		
108.17701.3261.326	109.1410 .563	123 .141 .486		
109.17701.3261.326	110.1410 .563	124 .141 .486		
110.17701.3261.326	111.1410 .563	125 .141 .486		
111.17701.3261.326	112.1410 .563	126 .141 .486		
112.17701.3261.326	113.1410 .563	127 .141 .486		
113,17701,3261,326	114.1410.563	128 .141 .486		
114 17701 3261 326	115 1410 563	129 141 486		
115 17701 3261 326	116 1410 563	130 141 486		
116 17701 2261 226	117 1/10 562	121 141 496		
117 17701 2261 226	110 1410 .505	131 .141 .400		
117.17701.3201.320	110,1410,.503	132 .141 .480		
118.17701.3261.326	119.1410 .563	133 .141 .480		
119.17701.3261.326	120.1410 .563	134 .141 .486		
120.0885.6630.6630	135 .141 .486			
121.21091.321.3299	122.1984 .486			
122.30041.226.6629	123.1984 .563			
123.30041.226.6629	124.1984 .563			
124.30041.226.6629	125.1984 .563			
125.30041.226.6629	126.1984 .563			
126.30041.226.6629	127.1984 .563			
127 30041 226 6629	128 1984 563			
128 30041 226 6629	120.1901 .505			
120.30041.226.6620	130 1084 563			
129.30041.220.0029	130.1984 .505			
130.30041.220.0029	131.1964 .303			
131.30041.220.0029	132.1984 .505			
132.30041.226.6629	133.1984 .563			
133.30041.226.6629	134.1984 .563			
134.30041.226.6629	135.1984 .563			
135.30041.226.6629	136.1984 .486			
136.0663.5750.1657				
2 2 57 0	0			CHAN.5
1 1 0 0	1			CHAN.6
12.1699.1574.806	2.19844.427	8.19844.427	9.9870 .486	CHAN.7
22.1699.1574.806	3.19844.427	10 .141 .486		
32 1699 1574 806	4 19844 427	11 141 486		
42 1699 1574 806	5 19844 427	12 141 486		
52 1699 1574 806	6 10844 427	13 141 486		
62 1600 1574 806	7 10944 427	14 141 486		
72 1000 1574 800	0 10044 427	14 .141 .460		
72.1699.1574.806	8.19844.427	15 .141 .480		
82.1099.15/4.806	10.19844.42/	10 14104 074	17 0400 5000	
91.1518.6198.619	10.14101.9/1	16.14101.9/1	17.8460.5630	
101.1518.6198.619	11.14101.971	18 .141 .486		
111.1518.6198.619	12.14101.971	19 .141 .486		
121.1518.6198.619	13.14101.971	20 .141 .486		
131.1518.6198.619	14.14101.971	21 .141 .486		
141.1518.6198.619	15.14101.971	22 .141 .486		
151.1518.6198.619	16.14101.971	23 .141 .486		
161.1518.6198.619	24.8460.5630			
17.89137.6336.132	18 .0793.097	24.1984 .563	25.519 .563	
18,89137,6336,132	19 ,0793 097	26 .519 563		

19.891 20.891 21.891 22.891 23.891	.37.6336 .37.6336 .37.6336 .37.6336 .37.6336 .37.6336	.132 .132 .132 .132 .132	20 21 22 23 24	.0793 .0793 .0793 .0793 .0793 .0793	.097 .097 .097 .097 .097	27 28 29 30 31	.519 .519 .519 .519 .519 .519	.563 .563 .563 .563 .563				
24.89 25.71 26.71 27.71 28.71 29.71 30.71 31.71	.37.6336 .36.3074 .36.3074 .36.3074 .36.3074 .36.3074 .36.3074 .36.3074	.132 .806 .806 .806 .806 .806 .806 .806	32 26 27 28 29 30 31 32	.519 .0792 .0792 .0792 .0792 .0792 .0792 .0792	.563 .534 .534 .535 .534 .534 .534 .534	32 34 35 36 37 38 39	.0792 .502 .502 .502 .502 .502 .502	2.534 .563 .563 .563 .563 .563 .563	33.5	02.5	563	
32.714 33.560 34.560 35.560 36.560 37.560 38.560 39.560	-36.3074)84.8843)84.8843)84.8843)84.8843)84.8843)84.8843)84.8843)84.8843	.806 .812 .812 .812 .812 .812 .812 .812 .812	40 34 35 36 37 38 39 40 48	.502 .0791 .0791 .0791 .0791 .0791 .0791 .0791 .0791	.563 .971 .971 .971 .971 .971 .971 .971 .971	40. 42 43 44 45 46 47	07901 .361 .361 .361 .361 .361 .361 .361	.971 .563 .563 .563 .563 .563 .563	41.3	61 .5	563	
40.300 41.430 42.430 43.430 44.430 45.430 46.430 47.430 48.430)83 . 3643)83 . 3643	.149 .149 .149 .149 .149 .149 .149 .149	48 42 43 44 45 46 47 48 56	.0791 .0791 .0791 .0791 .0791 .0791 .0791 .0791 .0791 .282	408 408 408 408 408 408 408 408 408 408	48 50 51 52 53 54 55	.0791 .282 .282 .282 .282 .282 .282 .282	. 408 . 563 . 563 . 563 . 563 . 563 . 563	49.2	82 .5	563	
49.265 50.265 51.265 52.265 53.265 54.265 55.265 56.265 57.614	51.9891 51.9891 51.9891 51.9891 51.9891 51.9891 51.9891 51.9891	.989 .989 .989 .989 .989 .989 .989 .989	50 51 52 53 54 55 56 57	.141. .141. .141. .141. .141. .141. .141. .141. .141	8445 8445 8445 8445 8445 8445 8445 .563	56. 57 57 57 57 57 57	1410. .141 .141 .141 .141 .141 .141 .141	8445 .563 .563 .563 .563 .563 .563	57.1	410 .	563	
3 1 4 1 5 1 158.6	1 136 1 0 2 57 1 0 3 1 1 0 5932.15	0 0 0 0 0 0	0 1 0 1 0 1									
6 1 17.89 7 1 13.18	4 1 1 0 918.68 5 1 1 0 96.641	0 0 0 0	0 1 0 1									
rods 1 1 .42 2 .42 3 .42 4 .42 5 .42	1 1 1 120 22 1. 22 1. 22 1. 22 1. 22 1. 22 1. 22 1. 22 1. 22 1.	0 1 2 3 4 5	0 .125 .25 .125 .25 .25	1 2 3 5 5 6	.25 .25 .25 .25 .25	3 4 6 7 8	.125 .25 .125 .25 .25	5 8 9	.25 .25 .25			

CHAN.5 CHAN.6 CHAN.5

CHAN.6 CHAN.5 CHAN.6 CHAN.7 CHAN.5 CHAN.6 CHAN.7 CHAN.5 CHAN.6 CHAN.7

RODS.1 RODS.2 RODS.3

6	.422	0.	6	.125	9	.25	10	.125		
7	.422	1.	7	.25	8	.25	11	.25	12	.25
8	.422	1.	8	.25	9	.25	12	.25	13	.25
9	.422	1.	9	.25	10	.25	13	.25	14	.25
10	.422	1.	10	.125	14	.25	15	.125		
11	.422	1.	11	.25	12	.25	16	.25	17	.25
12	477	1.	12	.25	13	.25	17	.25	18	.25
13	422	1	13	25	14	25	18	25	19	25
14	422	1	14	25	15	25	19	25	20	25
15	422	0	15	125	20	.25	21	125	20	.25
16	422	0. 1	16	25	17	.25	22	25	23	25
17	.722	1	17	.25	10	.25	22	.25	24	.25
10	.422	1.	10	.25	10	.25	25	.25	24	.25
10	.422	U. 1	10	.25	19	.25	24	.25	25	.25
19	.422	1.	19	.25	20	.25	25	.25	26	.25
20	.422	1.	20	.25	21	.25	26	.25	27	.25
21	.422	1.	21	.125	27	.25	28	.125		
22	.422	1.	22	.25	23	.25	29	.25	30	.25
23	.422	1.	23	.25	24	.25	30	.25	31	.25
24	.422	1.	24	.25	25	.25	31	.25	32	.25
25	.422	1.	25	.25	26	.25	32	.25	33	.25
26	.422	1.	26	.25	27	.25	33	.25	34	.25
27	.422	1.	27	.25	28	.25	34	.25	35	.25
28	.422	1.	28	.125	35	.25	36	.125		
29	.422	1.	29	.25	30	.25	37	.25	38	.25
30	477	1.	30	.25	31	.25	38	.25	39	.25
31	422	1	31	25	32	25	39	25	40	25
32	422	<u> </u>	32	25	33	25	40	25	41	25
22	122	0. 1	32	.25	34	.25	40 //1	.25	42	.25
27	.422	1.	24	.25	25	.25	42	.25	42	.25
54 25	.422	1.	54 25	.25	35	.25	42	.25	45	.25
35	.422	1.	35	.25	36	.25	43	.25	44	.25
36	.422	0.	36	.125	44	.25	45	.125	. –	
37	.422	1.	37	.25	38	.25	46	.25	47	.25
38	.422	1.	38	.25	39	.25	47	.25	48	.25
39	.422	1.	39	.25	40	.25	48	.25	49	.25
40	.422	1.	40	.25	41	.25	49	.25	50	.25
41	.422	1.	41	.25	42	.25	50	.25	51	.25
42	.422	1.	42	.25	43	.25	51	.25	52	.25
43	.422	1.	43	.25	44	.25	52	.25	53	.25
44	.422	1.	44	.25	45	.25	53	.25	54	.25
45	.422	1.	45	.125	54	.25	55	.125		
46	.422	1.	46	.25	47	.25	56	.25	57	.25
47	.422	1.	47	.25	48	.25	57	.25	58	.25
48	.422	0.	48	.25	49	.25	58	.25	59	.25
49	.422	1.	49	.25	50	.25	59	.25	60	.25
50	422	1	50	25	51	25	60	25	61	25
51	422	1	51	25	52	25	61	25	62	25
52	422	1	52	25	53	25	62	25	63	25
52	122	1	52	.25	54	.25	63	.25	64	.25
55	.422	1.	55	.25	54	.25	64	.25	65	.25
54	.422	1.	54	125	55	.25	66	125	05	.25
22	.422	1.	22	.125	65	.25	66	.125	60	25
30 57	.422	1.	20	.25	57	.25	67	.25	68	.25
57	.422	1.	57	.25	58	.25	68	.25	69	.25
58	.422	1.	58	.25	59	.25	69	.25	70	.25
59	.422	1.	59	.25	60	.25	70	.25	71	.25
60	.422	0.	60	.25	61	.25	71	.25	72	.25
61	.422	1.	61	.25	62	.25	72	.25	73	.25
62	.422	1.	62	.25	63	.25	73	.25	74	.25
63	.422	1.	63	.25	64	.25	74	.25	75	.25
64	.422	1.	64	.25	65	.25	75	.25	76	.25
65	.422	1.	65	.25	66	.25	76	.25	77	.25

66	.422	0.	66	.125	77	.25	78	.125		
67	.422	1.	67	.25	68	.25	79	.25	80	.25
68	.422	1.	68	.25	69	.25	80	.25	81	.25
69	.422	1.	69	.25	70	.25	81	.25	82	.25
70	472	1.	70	.25	71	.25	82	.25	83	.25
71	.422	1.	71	.25	72	.25	83	.25	84	.25
72	422	1 1	72	25	73	25	84	25	85	25
73	422	1	73	.25	74	.25	85	.25	86	25
74	.722	т. 0	74	.25	75	.25	86	.25	80	.25
74	.422	U.	74	.25	75	.25	00	.25	01	.25
75	.422	1.	75	.25	70	.25	01	.25	00	.25
76	.422	1.	76	.25	77	.25	88	.25	89	.25
//	.422	1.	//	.25	78	.25	89	.25	90	.25
78	.422	1.	78	.125	90	.25	91	.125		
79	.422	1.	79	.25	80	.25	92	.25	93	.25
80	.422	1.	80	.25	81	.25	93	.25	94	.25
81	.422	0.	81	.25	82	.25	94	.25	95	.25
82	.422	1.	82	.25	83	.25	95	.25	96	.25
83	.422	1.	83	.25	84	.25	96	.25	97	.25
84	.422	0.	84	.25	85	.25	97	.25	98	.25
85	.422	1.	85	.25	86	.25	98	.25	99	.25
86	.422	1.	86	.25	87	.25	99	.25	100	.25
87	.422	1.	87	.25	88	.25	100	.25	101	.25
88	422	0	88	25	89	25	101	25	102	25
89	422	1	89	25	90	25	102	25	103	25
00	122	1	90	.25	01	.25	102	.25	101	25
01	.422	т. 0	01	125	104	.25	105	125	104	.25
91	.422	U.	91	.123	104	.25	100	.123	107	25
92	.422	1.	92	.25	95	.25	100	.25	107	.25
93	.422	1.	93	.25	94	.25	107	.25	108	.25
94	.422	1.	94	.25	95	.25	108	.25	109	.25
95	.422	1.	95	.25	96	.25	109	.25	110	.25
96	.422	1.	96	.25	97	.25	110	.25	111	.25
97	.422	1.	97	.25	98	.25	111	.25	112	.25
98	.422	1.	98	.25	99	.25	112	.25	113	.25
99	.422	1.	99	.25	100	.25	113	.25	114	.25
100	.422	1.	100	.25	101	.25	114	.25	115	.25
101	.422	1.	101	.25	102	.25	115	.25	116	.25
102	.422	1.	102	.25	103	.25	116	.25	117	.25
103	.422	1.	103	.25	104	.25	117	.25	118	.25
104	.422	1.	104	.25	105	.25	118	.25	119	.25
105	422	1	105	125	119	25	120	125		
106	422	1	106	25	107	25	121	25	122	25
107	422	1	107	25	108	25	122	25	123	25
102	122	1	102	.25	100	.25	122	.25	124	25
100	.422	1.	100	.25	110	.25	124	.25	124	.25
110	.422	1.	110	.25	110	.25	124	.25	125	.25
110	.422	1.	110	.25	111	.25	125	.25	120	.25
111	.422	1.	111	.25	112	.25	126	.25	127	.25
112	.422	1.	112	.25	113	.25	127	.25	128	.25
113	.422	1.	113	.25	114	.25	128	.25	129	.25
114	.422	1.	114	.25	115	.25	129	.25	130	.25
115	.422	1.	115	.25	116	.25	130	.25	131	.25
116	.422	1.	116	.25	117	.25	131	.25	132	.25
117	.422	1.	117	.25	118	.25	132	.25	133	.25
118	.422	1.	118	.25	119	.25	133	.25	134	.25
119	.422	1.	119	.25	120	.25	134	.25	135	.25
120	.422	1.	120	.125	135	.25	136	.125		
2	2	105				•				
1	422	1	13	000	92	000				
2	477	1 1	22	000	102	000				
2	. TLL 177	1. 1	22	000	112 112	000				
د ۸	.422	⊥. 1	25	000	122	000				
4	.422	⊥.	43	.000	173	.000				

RODS.2 RODS.3

5	.422	1.	53.000	133.000		
6	.422	1.	63.000	143.000		
7	.422	1.	73.000	153.000		
8	.422	1.	83.000	163.000		
9	.422	1.	92.500	172.500		
10	.422	1.	102.500	182.500		
11	.477	1.	112,500	192.500		
12	422	1	122 500	202 500		
13	422	1	132 500	212 500		
14	472	1	142 500	222 500		
15	422	1	152 500	232 500		
16	.722	1	162 500	242 500		
17	.422	1. 75	172 000	242.300		
10	.422	.75	192.000	252.000		
10	.422	.75	102.000	202.000		
19	.422	.75	192.000	272.000		
20	.422	.75	202.000	282.000		
21	.422	.75	212.000	292.000		
22	.422	.75	222.000	302.000		
23	.422	.75	232.000	312.000		
24	.422	.75	242.000	322.000		
25	.422	1.	251.500	331.500		
26	.422	1.	261.500	341.500		
27	.422	1.	271.500	351.500		
28	.422	1.	281.500	361.500		
29	.422	1.	291.500	371.500		
30	.422	1.	301.500	381.500		
31	.422	1.	311.500	391.500		
32	.422	1.	321.500	401.500		
33	.422	1.	331.000	411.000		
34	.422	1.	341.000	421.000		
35	.422	1.	351.000	431.000		
36	.422	1.	361.000	441.000		
37	.422	1.	371.000	451.000		
38	.422	1.	381,000	461,000		
39	.422	1.	391.000	471.000		
40	422	1	401 000	481 000		
41	422	1	410 500	490 500		
42	472	1	420 500	500 500		
43	422	1	430 500	510 500		
11	122	1	440 500	520 500		
44	.422	1	440.300	530 500		
45	.422	1	450.500	540 500		
40	.422	1.	400.300	540.500		
47 10	.422	1.	470.500	550.500		
40	.422	1.	400.300	90.375	00 125	160 125
49	.422	1.	10.375	00.373	90.125	100.125
50	.422	1.	10.250	20.250	90.250	100.250
21	.422	1.	20.375	30.375	100.125	110.125
52	.422	1.	30.250	40.250	110.250	120.250
53	.422	1.	40.375	50.375	120.125	130.125
54	.422	1.	50.250	60.250	130.250	140.250
55	.422	1.	60.375	70.375	140.125	150.125
56	.422	1.	70.250	80.250	150.250	160.250
57	.422	1.	80.375	90.375	160.125	1/0.125
58	.422	1.	90.250	100.250	170.250	180.250
59	.422	1.	100.375	110.375	180.125	190.125
60	.422	1.	110.250	120.250	190.250	200.250
61	.422	1.	120.375	130.375	200.125	210.125
62	.422	1.	130.250	140.250	210.250	220.250
63	.422	1.	140.375	150.375	220.125	230.125
64	.422	1.	150.250	160.250	230.250	240.250

65	.422	0.	160.375	170.375	240.125	250.125	
66	.422	1.	170.250	180.250	250.250	260.250	
67	.422	0.	180.375	190.375	260.125	270.125	
68	.422	1.	190.250	200.250	270.250	280.250	
69	472	0	200.375	210.375	280,125	290.125	
70	.422	1.	210.250	220.250	290.250	300.250	
71	422	<u>0</u>	220 375	230 375	300 125	310 125	
72	422	1	230 250	240 250	310 250	320 250	
72	122	1	240 275	250 275	220 125	220.125	
73	.422	1. 0	240.373	250.575	220.123	240 250	
74	.422	0. 1	250.250	200.230	240 125	240.230 250 125	
75	.422	1.	200.373	210.515	340.123	200.123	
76	.422	0.	270.250	280.250	350.250	360.250	
//	.422	1.	280.375	290.375	360.125	370.125	
78	.422	0.	290.250	300.250	370.250	380.250	
79	.422	1.	300.375	310.375	380.125	390.125	
80	.422	0.	310.250	320.250	390.250	400.250	
81	.422	0.	320.375	330.375	400.125	410.125	
82	.422	1.	330.250	340.250	410.250	420.250	
83	.422	0.	340.375	350.375	420.125	430.125	
84	.422	1.	350.250	360.250	430.250	440.250	
85	.422	0.	360.375	370.375	440.125	450.125	
86	.422	1.	370.250	380.250	450.250	460.250	
87	.422	0.	380.375	390.375	460.125	470.125	
88	.422	1.	390.250	400.250	470.250	480.250	
89	.422	1.	400.375	410.375	480.125	490.125	
90	.422	1.	410.250	420.250	490.250	500.250	
91	422	1	420 375	430 375	500 125	510 125	
92	422	1	430 250	440 250	510 250	520 250	
92	422	1	440 375	450 375	520 125	530 125	
94	422	1	450 250	460 250	530 250	540 250	
05	122	1	460 375	470 375	540 125	550 125	
95	.422	1.	400.373	470.373	540.125	550.125	
90	.422	1.	470.230	400.230	530.230	500.250	
97	.422	1.	490.575	500.575	570.250		
98	.422	1.	490.250	500.250	570.500		
99	.422	1.	500.375	510.375	570.250		
100	.422	1.	510.250	520.250	570.500		
101	.422	1.	520.375	530.375	570.250		
102	.422	1.	530.250	540.250	570.500		
103	.422	1.	540.375	550.375	570.250		
104	.422	1.	550.250	560.250	570.500		
105	.422	0.	571.000				
3	1	120					
4	2	105					
5	0	0					
6	0	0					
7	0	0					
3.0	.059	655.	.366 10.	0.1 409.	.02431000.	.422	
slab	20	18	51				
1				3344.3	0.00		
2				3.4	0.00		
3				185.6	0.00		
4				2954.7	0.00		
5				247.5	29.878	0.5 .887.715	
6				202.9	0.00		
7				88.1	0.00		
8				361.6	0.00		
9				68.7	0.00		
10				332 2	0 00		
11				3 60	0.00		
17				161 20	0.00		
17				101.23	0.00		

RODS.2 RODS.2 RODS.2 RODS.2 RODS.2 RODS.4

- SLAB.1 SLAB.2

1 10.858 1 3 19 3 10.078 2 4 14 7 19 4 11.715 1 5 13 5 17 7 19 4 11.715 1 6 14 7 19 7 19 5 11.715 1 6 14 7 19 7 9 10.078 2 10 14 18 19 10 11.715 1 11 13 3 13 11.715 14 14 14 12 11.715 1 14	13 14 15 16 17 18 19 20			356 194 353 303 95 713 388 6217	5.69 4.48 3.45 3.43 5.22 3.38 3.96 7.60	(0.00 0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	10.858		1	2	18		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	10.858		1	3	19		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	10.078		2	4	14	7	19
5 11.715 1 6 14 6 10.078 1 12 14 7 10.858 1 8 18 8 10.858 1 9 19 9 10.078 2 10 14 18 19 10 11.715 1 13 13 1 11 13 11 11.715 1 14 14 14 14 12 11.715 1 14 14 14 14 14 14 10.155 2 15 14 24 14 15 11.715 1 16 13 16 11.715 1 16 13 16 11.715 1 126 12 14	4	11.715		1	5	13		
6 10.078 1 12 14 7 10.858 1 8 18 8 10.858 1 9 19 9 10.078 2 10 14 18 19 10 11.715 1 11 13 13 11 11.715 14 14 12 11.715 1 14 14 14 14 14 11 10.155 2 15 14 24 14 15 11.715 1 16 13 16 11.715 1 16 13 16 11.715 1 17 14 24 14 17 10.078 1 26 12 18 10.858 1 19 18 19 10.22 14 14 14 21 10.151 1 28 20 20 20 20 20 20 26 11.397 2 27 11 31 20 20 21 16 23	5	11.715		1	6	14		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	10.078		1	12	14		
8 10.858 1 9 19 9 10.078 2 10 14 18 19 10 11.715 1 11 13 13 11 111 13 13 11 11.715 1 14 14 14 14 14 12 11.715 1 14 14 14 14 14 13 11.715 1 14 14 14 14 14 14 10.155 2 15 14 24 14 15 11.715 1 17 14 14 14 16 11.715 1 16 13 16 11.715 126 12 14 10 0.078 2 21 17 22 14 14 21 10.151 1 25 15 15 15 15 16 23 11.280 2 29 10 32 9 9 13 215.64 230	(10.858		1	ð	18		
3 $10,070$ 12 16 14 15 15 10 $11,715$ 1 11 13 11 11 $11,715$ 1 14 14 14 12 $11,715$ 1 14 14 14 12 $11,715$ 1 14 14 14 11 $10,155$ 2 15 14 24 14 15 $11,715$ 1 16 13 16 13 16 $11,715$ 1 16 12 14 14 17 $10,078$ 1 26 12 14 14 11 $10,078$ 1 26 12 14 11 13 22 $11,715$ 1 28 20 0 32 9 24 $11,715$ 1 25 15 11 31 20 27 11.048 2 30 10	o O	10.078		1 2	9 10	19	10	10
10 11.715 1 14 14 11 11.715 1 14 14 12 11.715 1 14 14 14 10.155 2 15 14 24 14 15 11.715 1 16 13 1 1 16 11.715 1 16 13 1 1 17 10.078 1 20 19 2 14 14 14 17 10.078 2 21 17 22 14 2 10 151 1 28 20 2 11.715 1 23 16 2 14 14 14 9 20 2 14 14 14 20 2 11 17 12 14 24 14 24 14 24 14 24 14 14 13 12 16 13 16 13 16 13 16 13 10 14 9 14 14	10	11 715		ے 1	11	13	10	19
1211.715114141410.1552151424141511.7151161314141611.71511714141710.07812612181910.85812019202010.0782211722142110.15112820202211.71512515212311.28022271131202411.71512515212511.68412920202611.3972271131202711.0482301033930215.642301033931215.642311034931215.64237640533217.03235836733217.03235838734217.03237640537238.21238641538238.21238641539238.21143540343.414423.459245148245 <td>11</td> <td>11 715</td> <td></td> <td>1</td> <td>14</td> <td>14</td> <td></td> <td></td>	11	11 715		1	14	14		
13 11.715 1 14 14 14 10.155 2 15 14 24 14 15 11.715 1 16 13 1 16 13 16 11.715 1 17 14 14 14 14 15 11.715 1 16 13 1 16 13 16 11.715 1 26 12 14 14 14 17 10.078 1 26 12 14 14 14 17 10.078 1 26 12 14 14 14 14 14 14 14 10.858 1 20 19 22 14 15 15 11 28 20 22 11.715 1 25 15 15 25 11.684 1 29 20 20 20 215.64 2 29 10 32 9 29 215.64 2 30 10 33 9 30	12	11.715		1	13	13		
1410.1552151424141511.715116131611.715117141710.078126121810.858120192010.07822117221417.15128202211.715123162311.2802411.715125152511.684129202611.3972271131215.64230103329215.64230103330215.64231103431215.64233836733217.03235838734217.032358387238.21237640537238.21237640538238.21238641538238.21243446341343.41243446343343.412453446343343.4124514924623.45924614924623.4	13	11.715		1	14	14		
1511.715116131611.715117141710.078126121810.858119181910.858120192010.07822117221411.715128202211.715123162311.280227112411.715125152511.684129202611.3972271128215.642291032929215.642301033930215.642311034931215.64135932217.0320238.21235838734217.03235838735217.03139736238.21238238.21238641538238.21238641534343.4124444341343.4124444341343.4124534243343.4114734443343.4114734423.4592 <t< td=""><td>14</td><td>10.155</td><td></td><td>2</td><td>15</td><td>14</td><td>24</td><td>14</td></t<>	14	10.155		2	15	14	24	14
1611.715117141710.078126121810.858119181910.858120192010.07822117221411.715128202211.715125152311.280221131202411.715125152511.684129202611.3972271131202711.0482301033930215.642301033930215.642311034931215.64135932217.03235838734217.03235838735217.03139736238.21237640537238.21238641538238.21143540343.41242444341343.41243446343343.4114734423.45924514824524614924623.4592461 <td>15</td> <td>11.715</td> <td></td> <td>1</td> <td>16</td> <td>13</td> <td></td> <td></td>	15	11.715		1	16	13		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	11.715		1	17	14		
1810.858119181910.858120192010.0782211722142110.151128202221.71512316232311.28020202411.715125152511.684129202611.3972271131202711.0482301032929215.642301033930215.642311034931215.64135932217.03233836733217.03237640537238.21237640537238.21239642539238.21143540343.414441343.41241444342343.4124514824523.45924614924623.45924715024723.4591512482492515555502555555 <td>17</td> <td>10.078</td> <td></td> <td>1</td> <td>26</td> <td>12</td> <td></td> <td></td>	17	10.078		1	26	12		
1910.858120192010.0782211722142110.151128202211.715123162311.2802271131202411.71512515-22511.68412920-262611.3972271131202711.04833930215.642301033930215.642311034931215.641359-32217.03233836733217.03235838734217.03235838735217.031397-36238.21237640537238.21238641538238.2124445340343.41241444341343.411473-4423.45924514824523.45924614924623.45924614924623.4592 <td< td=""><td>18</td><td>10.858</td><td></td><td>1</td><td>19</td><td>18</td><td></td><td></td></td<>	18	10.858		1	19	18		
20 10.078 2 21 17 22 14 21 10.151 1 28 20 22 11.715 1 23 16 23 11.280 21 17 22 15 24 11.715 1 25 15 25 11.684 1 29 20 26 11.397 2 27 11 31 20 27 11.048 2 29 10 32 9 29 215.64 2 30 10 33 9 30 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 217.03 2 35 8 38 7 34 217.03 2 35 8 38 7 35 217.03 1 39 7 7 36 238.21 2 38 6 41 5 39 238.21 2 45 1 44 3 41 343.41 2 45 1 46 3 43 3	19	10.858		1	20	19		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	10.078		2	21	17	22	14
22 11.715 1 23 16 23 11.280 24 11.715 1 25 15 25 11.684 1 29 20 26 26 11.397 2 27 11 31 20 27 11.048 2 29 10 32 9 29 215.64 2 30 10 33 9 30 215.64 2 30 10 33 9 30 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 32 217.03 2 33 8 36 7 33 217.03 2 35 8 38 7 34 217.03 2 35 8 38 7 34 217.03 2 35 8 87 7 34 217.03 2 35 8 87 7 34 217.03 1 39 7 7 36 238.21 2 37 6 40 5 39 238.21 1 43 5 40 34 41 34.41 2 42 4 45 3 42 34.41 2 43 4 46 3 43 343.41 2 45 1 48 2 45 23.459 2 46	21	10.151		1	28	20		
23 11.250 24 11.715 1 25 15 25 11.684 1 29 20 26 11.397 2 27 11 31 20 27 11.048 2 29 10 32 9 29 215.64 2 30 10 33 9 30 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 32 217.03 2 33 8 36 7 33 217.03 2 35 8 38 7 34 217.03 2 35 8 38 7 34 217.03 1 39 7 36 238.21 2 37 6 40 5 37 238.21 2 38 6 41 5 40 343.41 2 41 4 44 3 41 343.41 2 45 1 48 2 45 23.459 2 45 1 48 2 45 23.459 2 47 1 50 2 47 23.459 2 47 1 50 2 47 23.459 2 </td <td>22</td> <td>11 280</td> <td></td> <td>T</td> <td>23</td> <td>10</td> <td></td> <td></td>	22	11 280		T	23	10		
24 11.12 1 23 13 25 11.684 1 29 20 26 11.397 2 27 11 31 20 27 11.048 2 29 10 32 9 29 215.64 2 30 10 33 9 30 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 32 217.03 2 33 8 36 7 33 217.03 2 35 8 38 7 34 217.03 2 37 6 40 5 37 238.21 2 37 6 40 5 39 238.21 1 43 5 40 343.41 2 42 4 45 40 343.41 2 42 4 45 3 42 343.41 1 47 3 44 23.459 2 46 1 <t< td=""><td>25 24</td><td>11.200</td><td></td><td>1</td><td>25</td><td>15</td><td></td><td></td></t<>	25 24	11.200		1	25	15		
26 11.397 2 27 11 31 20 27 11.048 2 29 10 32 9 29 215.64 2 30 10 33 9 30 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 32 217.03 2 33 8 36 7 32 217.03 2 34 8 37 7 34 217.03 2 35 8 38 7 35 217.03 2 35 8 38 7 36 238.21 2 37 6 40 5 37 238.21 2 39 6 42 5 39 238.21 1 43 5 40 343.41 2 41 4 44 341 343.41 2 42 4 45 3 42 343.41 2 45 1 49 2 46 23.459 2 47 1 50 2 47 23.459 2 47 1 50 2 47 23.459 2 47 1 50 2 47 23.459 1 51 2 48 2 49 2 46 1 <	25	11 684		1	29	20		
27 11.048 2 29 10 32 9 28 215.64 2 30 10 33 9 30 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 31 215.64 2 31 10 34 9 32 217.03 2 33 8 36 7 34 217.03 2 35 8 38 7 34 217.03 2 35 8 38 7 35 217.03 1 39 7 36 238.21 2 37 6 40 5 37 238.21 2 39 6 42 5 39 238.21 1 43 5 40 343.41 2 41 4 44 34 343.41 2 42 4 45 3 42 343.41 2 43 46 3 44 23.459 2 45 1 49 2 46 1 49 2 46 23.459 2 47 1 50 2 47 1 50 2 47 23.459 1 51 2 48 2 47 1 50 2 47 23.459 1 51 2 46 1 49 2 48 2 <	26	11.397		2	27	11	31	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	11.048		_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	215.64		2	29	10	32	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	215.64		2	30	10	33	9
31 215.64 1 35 9 32 217.03 2 33 8 36 7 33 217.03 2 34 8 37 7 34 217.03 2 35 8 38 7 35 217.03 1 39 7 7 36 238.21 2 37 6 40 5 37 238.21 2 39 6 42 5 38 238.21 2 39 6 42 5 39 238.21 1 43 5 40 343.41 2 41 4 44 3 41 343.41 2 42 4 45 3 42 343.41 2 43 4 46 3 43 343.41 2 45 1 48 2 45 1 49 2 46 23.459 2 46 1 49 2 46 1 49 2 46 23.459 2 47 1 50 2 47 1 50 2 47 23.459 1 51 2 48 2 49 2 50 2 5.545 5.545	30	215.64		2	31	10	34	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	215.64		1	35	9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	217.03		2	33	8	36	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	217.03		2	34	8	37	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 25	217.03		2	35	8	38	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	217.03		1 2	39 37	6	10	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	238.21		2	38	6	41	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	238.21		2	39	6	42	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	238.21		1	43	5		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	343.41		2	41	4	44	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	343.41		2	42	4	45	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	343.41		2	43	4	46	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	343.41		1	47	3		
45 23.459 2 46 1 49 2 46 23.459 2 47 1 50 2 47 23.459 1 51 2 2 48 2 2 47 1 50 2 49 2 50 2 50 2 5 51 2 1 34.65 5.545 5 5	44	23.459		2	45	1	48	2
46 23.459 2 47 1 50 2 47 23.459 1 51 2 48 2 49 2 50 2 50 2 51 2 1 51 2 1 34.65 5.545 5 5 5 5	45	23.459		2	46	1	49	2
47 23.459 1 51 2 48 2 49 2 50 2 51 2 1 34.65 5.545	46	23.459		2	47	1	50	2
48 2 49 2 50 2 51 2 1 34.65 5.545	47	23.459		1	51	2		
+5 2 50 2 51 2 1 34.65 5.545	48 40	2						
50 2 51 2 1 34.65 5.545	49 50	۲ 2						
1 34.65 5.545	51	2						
	1	34.65	5.545					

SLAB.3

SLAB.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1	69 85 14 99 2. 1. 1. 1. 1. 1. 1. 1. 34 1. 34 2. 8	 2.29 5.38 40.61 032 206 369 4.55 5.58 394 834 181 369 369 369 4.65 369 1 	2 4 1 1 4 3 4 0. 0 4 3 1 4 5 6.0 4 1	.806 .009 .386 .531 .295 .665 3505 4094 .563 2716 2480 4700 3250 3615 2730 0450 3913 9	1	2	10	1	4	10	1	7	10	SLAB.6
		1	11	10	1	16	10	1	22	10	1	29	10	SLAB.7
2	8	1	37	10	1	46	10	1	56	10	1	67	10	SLAB.6
4	٩	1 1	79 121	0 T0	1 1	92 122	10 10	⊥ 1	123	10 10	⊥ 1	121 124	9 10	SLAB.7
т	5	1	125	10	1	126	10	1	127	10	1	124	10	SLAB.7
F	0	2	1	8	1	120	10	1	101	10	1	122	10	
2	9	1	129	10	1	130 134	10	1	131	10	1	132	9	SLAB.0 SLAB.7
_		2	2	8										
(1	2	8	8										SLAB.0
0 10	1 2	2	6	0 8	А	1	8							
11	2	2	5	8	4	2	8							
12	9	2	3	8	3	1	9	3	2	10	3	4	10	SLAB.6
	5	3	7	10	3	11	10	3	16	10	3	22	10	SLAB.7
10	0	3	29	10	2	20	10	2	16	10	2	FC	10	
15	9	2	4 67	。 10	3	29 79	10	3	40 92	10	3	106	10	SLAB.0
		3	121	9										
15	9	3	121	9	3	122	10	3	123	10	3	124	10	SLAB.6
		3	125	10	3	126	10	3	127	10	3	128	10	SLAB.7
16	٩	5 2	⊥ 120	15 10	З	130	10	З	121	10	З	132	10	SLAR 6
10	5	3	133	10	3	134	10	3	135	10	3	136	9	SLAB.7
10	4	5	1	8										
10	1 1	4	8 7	ð Q										SLAB.0
21	1	- 6	1	13										
22	2	4	6	8	6	1	18							
23	2	4	5	8	6	1	16							
24	2	4	3	8	5	1	8							
25	2	4	4	8	5	1	14							
26	1	5	1	7										
27	1	7	1	6										
28	1	6	1	17	-	4	-	~	А	2				
29	ל ₁	4	5 1	4 1	5	1	5	6	1	3				
שכ 1	⊥ 2	5 5	⊥ 1	⊥ 2	7	1	2							
JT	2	J	Ŧ	2	í	т	2							
radg 1	7 5	2	3											RADG.1 RADG.2
- 11	.470	.8	1.0	0191	2.	4664	3.0	0576	4.	0478	5.	4091		5 RADG.3

26	.045	.9	1	.1134	2.	0431	3.	0000	4.	2402	5.	6033			5	
34	009	9	1	0211	2	0000	3	0374	4	9158	5	0257			5	
15	273	.5	1	0133	2.	2754	3	6962	1.	0151	5.	0231			5	
-+J E4	201	.0	1	1260	2.	020F	J. 2	0302	4.	0151	J. E	0000			5	
54		. 0	T.	. 1369	۷.	6305	5.	0233	4.	.0	э.	0091			С	
2	8	_									_		_			RADG.2
14	.351	.8	1	.0000	2.	0000	3.	0163	4.	. 2583	5.	1317	6	.2192	8	RADG.3
			7	.0928	8.	2817										RADG.4
24	.325	.8	1	.0000	2.	0000	3.	2078	4.	.4189	5.	0677	6	.1126	8	RADG.3
			7	.1105	8.	0825										RADG.4
31	531	9	1	0463	2	5870	З	0000	4	0000	5	aaaa	6	0503	8	RADG 3
51			7	1002	<u>د</u>	2072	5.	0000			5.	0000	0	.0505	0	
45	FAF	0	1	2020	0. ว	2012	2	0000	4	0000	F	مممم	c	0220	0	
45	.545	.9	1	.2020	۷.	3207	5.	0000	4.	. 0000	э.	0000	0	.0559	õ	KADG.5
			(.1900	8.	2468							_			KADG.4
52	.806	.9	1	.2042	2.	1044	3.	0000	4.	. 0000	5.	0000	6	.1895	8	RADG.3
			7	.3127	8.	1892										RADG.4
63	.665	.8	1	.2602	2.	1329	3.	0210	4.	.0513	5.	1450	6	.0000	8	RADG.3
			7	.3051	8.	0845										RADG.4
74	351	8	1	0928	2	1098	З	0384	4	7477	5	2017	6	2571	8	RADG 3
			7	0000	2.	0580	5.	0001			5.	2011	0		Ŭ	RADG 4
0.4	262	0	1	2010	0. ว	0010	2	0777	4	2120	F	1 2 1 7	c	0710	0	
84	.362	.8	1	.2810	۷.	0818	3.	0727	4.	. 3139	5.	1217	6	.0710	ð	KADG.3
			1	.0579	8.	0000										RADG.4
3	2															RADG.2
14	.295	.8	1	.3139	2.	6861									2	RADG.3
22	.994	.9	1	.9843	2.	0157									2	
1	1	4	1	2	4	5										RADG.10
2	2	8	4	5	12	13	11	10	8	7						
2	1	1	12	12	15	16		10	0							
2	1	4	10	11	24	20	22	22	10	10						
4	2	ð	10	11	24	25	23	22	19	18						
5	-2	8	24	25	29	30	31	26	16	15						
6	-1	5	21	28	29	23	22									
7	-3	2	27	31												
heat	1	0	1													HEAT.1
			3.66				3.66									HFAT.2
10	10	10	1 0	10			0.00									HEAT 4
drag	1.0	1.0 E	1.0	1.0												
uruy	1 0	J			100	1 0										DRAG.1
100.	-1.0				100.	-1.0										DKAG.Z
1	18	0														DRAG.3
7	5	120.	0388	2.	. 1919	2.	.3562	2	5204	2.	. 6846	2.	.8488	2.		DRAG.4
			9657	2.												DRAG.5
7	2	2.	0388	1.	1919	1.	. 3562	1	5204	1.	6846	1.	.8488	1.		DRAG.4
		_	9657	1.												DRAG.5
7	З	∡	0388	1	1919	1	3562	1	5204	1	6846	1	8488	1		DRAG 4
'	5	т.	0657	1	. 1919	1.	. 5502	1	5204	1.	.00+0	1.	.0400	1.		
-	~		1000	1.	1010	4	2562	4	E 20 4	4	6946		0400	4		
(6	7.	0388	1.	. 1919	1.	.3562	1	5204	1.	. 6846	1.	.8488	1.		DKAG.4
			9657	1.												DRAG.5
7	10	11.	0388	1.	. 1919	1.	.3562	1	5204	1.	.6846	1.	.8488	1.		DRAG.4
			9657	1.												DRAG.5
7	15	16.	0388	1.	1919	1.	3562	1	5204	1.	6846	1.	.8488	1.		DRAG.4
•	10	10.	0657	1	1919	±.,		±	JE01							
7	21		0200	1.	1010	1	2562	1	E204	1	6946	1	0100	1		
(21	22.	0000	1	. 1919	т.	. 3302	1	5204	1.	. 6846	т.	. 8488	1.		DRAG.4
		•	9657	1.												DRAG.5
7	28	29.	0388	1.	. 1919	1.	.3562	1	5204	1.	. 6846	1.	.8488	1.		DRAG.4
			9657	1.												DRAG.5
7	36	37.	0388	1.	1919	1.	. 3562	1	5204	1.	6846	1.	. 8488	1.		DRAG.4
-			9657	1												DRAG 5
7	15	۸۵	0200	1 - ·	1010	1	3567	1	5201	1	6816	1	8100	1		
(40	40.	0000	1	. 1919	Τ.	. 5502	1	5204	τ.,	. 0040	т.	.0400	τ.		
_			702/	1.	464-		2555		F A A	-	c c · -		o · · · ·	-		DKAG.5
7	55	56.	8850	1.	. 1919	1.	.3562	1	5204	1.	.6846	1.	.8488	1.		DRAG.4
			9657	1.												DRAG.5
7	66	67.	0388	1.	. 1919	1.	. 3562	1	5204	1.	6846	1.	.8488	1.		DRAG.4

			9657	1.									DRAG.5
7	78	79.	0388	1	. 1919	1.	.3562	152	04	16846	1848	31.	DRAG.4
			9657	1.									DRAG.5
7	91	92.	0388	1	. 1919	1.	.3562	152	04	16846	1848	31.	DRAG.4
			9657	1.									DRAG.5
7	105	106	0388	1	1919	1	3562	1 52	04	1 6846	1 848	R 1	DRAG 4
	100	100.	9657	1	1919			1	• •	1	1		
7	120	125	0200	1	1010	1	2562	1 52	0 1	1 6946	1 0/0	2 1	
(120	135.	0500	1	. 1919	1.	. 5502	1	04	10040	10400	5 1.	
7	1	•	9057	1.	1010	-	2562	F F2	0.4	F 6946	F 040	. г	DRAG.5
(T	1.	8860		1919	. 5	.3562	.5.52	04	.5.6846	.5.8486	5.5	DRAG.4
_		•	9657	.5		_							DRAG.5
7	136	136.	0388	.5.	. 1919	.5	.3562	.5.52	04	.5.6846	.5.848	8.5	DRAG.4
			9657	.5									DRAG.5
2	2	0											DRAG.3
7	9	57.	0388	2	. 1919	2.	.3562	252	04	26846	2848	82.	DRAG.4
			9657	2.									DRAG.5
7	1	8.	0388	1	. 1919	1.	.3562	152	04	16846	1848	31.	DRAG.4
			9657	1.									DRAG.5
3	1	0											DRAG.3
2	1	10	001	15	9999	15							DRAG 4
4	1	0	.001	1.5.		1.5							
2	1	10	001	15	مممم	15							
2	1	10	.001	1.5.	. 99999	1.5							
2	1	10	001	1 5	0000	1 5							
2	10	10	.001	1.5.	.9999	1.5							DRAG.4
bary	19	1	4	2									BDRY.1
1	5.2	4e-8	3.6	56e+2	0.333	3333	.88						BDKY.2
2	4.7	3e-5											
3	4.6	0e-5											
4	1.3	2e-9	7.7	74e+7	0.333	3333	.88						
5	1.8	9e-6											
6	3.2	6e-5											
7	1.1	5e-8	9.8	35e+4	0.333	3333	.88						
8	2.8	2e-5											
9	9.3	6e-5											
10	3.9	4e-6		1.0		.25							
11	2.2	4e-8											
12	1 8	9e-7											
13	4 5	7e-4											
14	5 7	0e-9	80)2e+5	0 333	3333	88						
15	9.1	60-5	0.0		0.555	5555							
16	6 5	6e_5											
10	7.0	50-5											
10	7.0	JE-J											
10	1.1	40-5											
19	1.4	40-4	62	4	62								
1 A	2	0.	63.	1.	63.								BDRY 5
48	18	.820	1										BDEN -
1	1.	1	1.	1									BDRY.6
49	18	.820	1										BDRY.5
1	1.	1	1.	1									BDRY.6
50	18	.820	1										BDRY.5
1	1.	1	1.	1									BDRY.6
51	18	.820	1										BDRY.5
1	1.	1	1.	1									BDRY.6
13	1.053	22.2	7	4	63.	63.							BDRY.8
11	0.39	8	0										BDRY.9
20	.649	15	0										
3	1.0	16	õ										
4	2.0	17	õ										
5	3.0	18	õ										
2 A	3 75	19	12	28	2		8 07	29	2	8 07	30	7	8 07 RURY O
0	5.15	10	77	20	4		0.02	25	<u> </u>	0.02	50 1	-	5.0L DDN1.9

				31 34	2	8.	02 3	2 2	<u>,</u>	8.02	33 36	2	8	3.02 I	BDRY.10
				27	2	o. o	02 3 02 3	0 1	-	0.02	20	2	((3.02 0 07	
7	12 00	11	۵	57	2	٥.	02 3	0 2	_	0.02	29	2		20.5 סים	
(. 1	1 0	14	0												UNI.9 DDV 11
1 2	1.0	0	9 27	1	٨	1	50	2		1 50	2	4		ם 1 המו	DRI.II DDDV 11
2	1.0	9	21	1	4	1	50	5 /	r I	1 50	5	4	-	1 50 1	DDN1.11
				4	4	1	50	0 /	r I	1 50	0	4	-	1 50	DUNI,12
				10	4	1	50 1	0 -	r I	1 50	12	4	-	1 50	
				12	4	1	50 I	1 4	F	1 50	12	4	-	1 50	
				15	4	1.	50 I	4 4	F I	1 50	10	4	-	1 50	
				10	4	1.	50 1		F I	1.50	10	4	-	1 50	
				19	4	1.	50 2	ש ש ה	•	1.50	21	4	-	1 50	
				22	4	1.	50 2	3 ⁴	ŀ	1.50	24	4	-	1.50	
2	1 0	0	0	25	4	1.	50 2	6 4	ŀ	1.50	27	Э	-	1.20	DDV 11
3	1.0	10	0											BI	DRY.II
4	1.0	10	0	2	62	62									
Ζ.	12.853	522.2	3	3	63.	63.								BI	DKY.8
1	1.00	5	0	20	2	-	<i>c</i> ₁			F 64	2.0	2		E C A I	DRY.9
Z	11.31	6	12	28	2	5.	61 2	9 4	<u>,</u>	5.61	30	2		5.61 I	BDRY.9
				31	2	5.	61 3	2 2	-	5.61	33	2		5.61 I	BDRY.10
				34	2	5.	61 3	5 2	-	5.61	36	2		5.61	
				37	2	5.	61 3	8 2	-	5.61	39	2		5.61	
32	15.50	7	0											BI	DRY.9
1	1.00	2	0											BI	DRY.11
2	1.00	3	0												
3	1.00	4	0												
0														BI	DRY.13
calc	1													C	ALC.1
0.0	.0001.	0001	.0001	.0001										C	ALC.2
	500													C	ALC.3
oper	1		3	1									1	01	PER.1
00.			145.	1	e-4.	.0014354	100	185.	0	00001		0.0		01	PER.2
1	1	1	1											01	PER.8
14														0	PER.16
0.	0.0.	0001	0.0	.0002	0.32.	.0627 0.	79.125	4 1.04	1881	1.10				01	PER.17
.2508	1.10.	5643	1.10	.6897	1.10.	.7524 1.	05.815	0 0.80).9404	0.18					
.9405	0.01	L.000	0.0												
outp 1	1101							2						0	UTP.1
endd															
Appendix B

Distributions used in Crystal Ball 7.

Assumption: akcs

Normal distribution with parameters:

Mean	15.486
Std. Dev.	4.2144

Assumption: akss

Normal distribution with parameters:

Mean	16.615
Std. Dev.	2.0991

Assumption: cond

Normal distribution with parameters:

Mean	2.603		
Std. Dev.	0.3413		

Assumption: condds

Normal distribution with parameters:

Mean	20.002		
Std. Dev.	0.7705		

Assumption: Cp

Normal distribution with parameters:

Mean	930
Std. Dev.	170

Assumption: driftdia

Normal distribution with parameters:

Mean	5.0
Std. Dev.	0.089

Assumption: emissds Normal distribution with parameters: Mean 0.64375 Std. Dev. 0.0472

Assumption: emisswp

Normal distribution with parameters:

Mean	0.87		
Std. Dev.	0.0232		

Assumption: hloss_fact

Normal distribution with parameters:

Mean	0.88		

Std. Dev. 0.01

Assumption: rho

Normal distribution with parameters:

Mean	2593
Std. Dev.	138

Appendix C

BWR:	PWR:
0.357	0.643

	BWR	PWR				Linear Heat
Drift #	(W/MTU)	(W/MTU)	# WP's	MTU/Cask	Length (m)	Load (kW/m)
1	179.628	362.152	180	7.89	1057	0.40
2	285.775	478.966	181	7.89	1061	0.55
3	320.218	533.738	181	7.89	1066	0.61
4	410.57	584.204	182	7.89	1070	0.70
5	457.216	623.895	183	7.89	1074	0.76
6	461.127	622.863	184	7.89	1079	0.76
7	503.564	660.995	184	7.89	1083	0.81
8	554.84	665.165	185	7.89	1087	0.84
9	538.118	673.453	186	7.89	1092	0.84
10	498.991	731.148	187	7.89	1096	0.87
11	441.28	730.64	187	7.89	1101	0.84
12	506.223	770.11	188	7.89	1105	0.91
13	539.221	738.976	189	7.89	1109	0.90
14	475.887	850.036	190	7.89	1114	0.96
15	562.615	847.677	190	7.89	1118	1.00
16	606.434	909.771	191	7.89	1122	1.08
17	699.513	875.122	192	7.89	1127	1.09
18	698.186	979.456	190	7.89	1116	1.18
19	740.803	1022.064	187	7.89	1098	1.24
20	813.478	1028.916	184	7.89	1079	1.28
21	852.447	1068.016	180	7.89	1060	1.33
22	876.682	1075.645	177	7.89	1042	1.35
23	882.947	1054.18	174	7.89	1023	1.33
24	934.659	1032.438	171	7.89	1004	1.34
25	929.814	1116.023	168	7.89	986	1.41
26	996.252	1217.838	165	7.89	968	1.53
27	1002.31	1229.655	162	7.89	950	1.55
28	980.046	1312.003	159	7.89	932	1.61
29	1070.406	1289.087	151	7.89	887	1.63
30	1118.015	1333.958	143	7.89	842	1.68
31	1122.981	1355.51	135	7.89	796	1.70
32	1176.543	1400.29	128	7.89	751	1.78
33	1193.558	1422.781	120	7.89	705	1.80
34	1290.641	1368.472	112	7.89	660	1.80
35	1159.616	1475.416	61	7.89	614	1.07

BWR:	PWR:
0.357	0.643

	BWR	PWR				Linear Heat
Drift #	(W/MTU)	(W/MTU)	# WP's	MTU/Cask	Length (m)	Load (kW/m)
1	604.812	1094.927	180	7.89	1057	1.24
2	673.129	1036.946	181	7.89	1061	1.22
3	662.409	871.401	181	7.89	1066	1.07
4	745.803	1010.838	182	7.89	1070	1.23
5	668.552	922.449	183	7.89	1074	1.12
6	797.296	960.192	184	7.89	1079	1.21
7	769.369	979.421	184	7.89	1083	1.21
8	719.6	971.42	185	7.89	1087	1.18
9	764.769	947.305	186	7.89	1092	1.19
10	741.498	1036.501	187	7.89	1096	1.25
11	715.44	881.403	187	7.89	1101	1.10
12	698.874	941.199	188	7.89	1105	1.15
13	789.8	887.258	189	7.89	1109	1.15
14	756.141	961.853	190	7.89	1114	1.20
15	762.586	929.44	190	7.89	1118	1.17
16	750.426	847.706	191	7.89	1122	1.09
17	662.571	819.708	192	7.89	1127	1.03
18	765.87	827.264	190	7.89	1116	1.08
19	691.345	944.42	187	7.89	1098	1.15
20	644.505	863.801	184	7.89	1079	1.06
21	748.513	925.864	180	7.89	1060	1.16
22	633.632	889.11	177	7.89	1042	1.07
23	684.852	883.61	174	7.89	1023	1.09
24	679.942	906.317	171	7.89	1004	1.11
25	672.43	909.499	168	7.89	986	1.11
26	631.731	852.264	165	7.89	968	1.04
27	709.243	883.228	162	7.89	950	1.11
28	688.201	873.293	159	7.89	932	1.09
29	689.848	899.951	151	7.89	887	1.11
30	605.723	863.649	143	7.89	842	1.03
31	657.422	853.743	135	7.89	796	1.05
32	697.62	903.549	128	7.89	751	1.12
33	595.619	909.551	120	7.89	705	1.07
34	687.215	902.782	112	7.89	660	1.11
35	753.426	845.206	61	7.89	614	0.64

BWR:	PWR:
0.357	0.643

	BWR	PWR				Linear Heat
Drift #	(W/MTU)	(W/MTU)	# WP's	MTU/Cask	Length (m)	Load (kW/m)
1	83.85	1539.359	180	7.89	1057	1.37
2	335.402	1289.002	181	7.89	1061	1.28
3	351.579	1278.947	181	7.89	1066	1.27
4	430.995	1239.555	182	7.89	1070	1.28
5	478.212	1129.706	183	7.89	1074	1.21
6	531.649	1042.823	184	7.89	1079	1.16
7	587.925	1018.191	184	7.89	1083	1.16
8	631.003	988.376	185	7.89	1087	1.16
9	689.336	966.689	186	7.89	1092	1.17
10	691.521	1005.357	187	7.89	1096	1.20
11	724.96	978.251	187	7.89	1101	1.19
12	722.406	952.838	188	7.89	1105	1.17
13	744.234	981.437	189	7.89	1109	1.21
14	748.221	937.573	190	7.89	1114	1.17
15	781.865	934.225	190	7.89	1118	1.18
16	780.814	912.847	191	7.89	1122	1.16
17	804.283	888.586	192	7.89	1127	1.15
18	801.167	850.148	190	7.89	1116	1.12
19	795.894	816.823	187	7.89	1098	1.09
20	804.089	791.259	184	7.89	1079	1.07
21	813.454	762.831	180	7.89	1060	1.05
22	805.366	782.439	177	7.89	1042	1.06
23	811.23	759.608	174	7.89	1023	1.04
24	819.79	751.607	171	7.89	1004	1.04
25	828.776	744.414	168	7.89	986	1.04
26	830.507	740.127	165	7.89	968	1.04
27	831.141	724.856	162	7.89	950	1.03
28	828.243	725.988	159	7.89	932	1.03
29	836.833	722.095	151	7.89	887	1.02
30	834.157	718.039	143	7.89	842	1.02
31	836.539	724.589	135	7.89	796	1.02
32	838.427	719.946	128	7.89	751	1.03
33	832.952	729.415	120	7.89	705	1.03
34	840.31	722.103	112	7.89	660	1.02
35	838.218	725.108	61	7.89	614	0.60

BWR:	PWR:
0.357	0.643

	BWR	PWR				Linear Heat
Drift #	(W/MTU)	(W/MTU)	# WP's	MTU/Cask	Length (m)	Load (kW/m)
1	179.628	362.152	180	7.89	1057	0.40
2	1194.544	1406.474	181	7.89	1061	1.79
3	333.846	479.545	181	7.89	1066	0.57
4	1025.51	1418.882	182	7.89	1070	1.72
5	465.124	534.986	183	7.89	1074	0.69
6	1002.114	1361.371	184	7.89	1079	1.66
7	554.872	583.638	184	7.89	1083	0.77
8	981.939	1329.331	185	7.89	1087	1.62
9	589.721	627.165	186	7.89	1092	0.83
10	917.566	1296.755	187	7.89	1096	1.56
11	602.82	623.9	187	7.89	1101	0.83
12	802.811	1251.968	188	7.89	1105	1.47
13	650.556	641.757	189	7.89	1109	0.87
14	887.111	1233.371	190	7.89	1114	1.49
15	634.202	696.465	190	7.89	1118	0.90
16	868.468	1139.138	191	7.89	1122	1.40
17	593.211	672.542	192	7.89	1127	0.87
18	841.235	1044.922	190	7.89	1116	1.31
19	578.786	705.802	187	7.89	1098	0.89
20	840.518	1049.785	184	7.89	1079	1.31
21	570.614	747.786	180	7.89	1060	0.92
22	785.345	1085.638	177	7.89	1042	1.31
23	516.854	785.336	174	7.89	1023	0.93
24	792.201	1057.913	171	7.89	1004	1.29
25	586.67	741.964	168	7.89	986	0.92
26	769.153	1030.067	165	7.89	968	1.26
27	553.348	810.189	162	7.89	950	0.97
28	761.716	1029.013	159	7.89	932	1.26
29	603.276	876.223	151	7.89	887	1.05
30	704.638	991.27	143	7.89	842	1.19
31	590.308	832.943	135	7.89	796	1.00
32	660.893	924.662	128	7.89	751	1.12
33	621.844	935.334	120	7.89	705	1.11
34	698.776	872.807	112	7.89	660	1.09
35	727.277	953.747	61	7.89	614	0.68

BWR:	PWR:
0.357	0.643

	BWR	PWR				Linear Heat
Drift #	(W/MTU)	(W/MTU)	# WP's	MTU/Cask	Length (m)	Load (kW/m)
1	1343.72	1603.721	180	7.89	1057	2.03
2	147.015	261.002	181	7.89	1061	0.30
3	1131.244	1478.338	181	7.89	1066	1.82
4	323.887	350.344	182	7.89	1070	0.46
5	1008.725	1406.51	183	7.89	1074	1.70
6	415.928	426.766	184	7.89	1079	0.57
7	935.354	1354.47	184	7.89	1083	1.62
8	492.893	508.007	185	7.89	1087	0.67
9	878.54	1307.488	186	7.89	1092	1.55
10	538.956	549.914	187	7.89	1096	0.73
11	847.217	1264.037	187	7.89	1101	1.50
12	578.404	586.306	188	7.89	1105	0.78
13	809.309	1230.071	189	7.89	1109	1.45
14	611.562	622.419	190	7.89	1114	0.83
15	778.668	1193.76	190	7.89	1118	1.40
16	636.919	652.197	191	7.89	1122	0.87
17	758.268	1154.508	192	7.89	1127	1.36
18	654.514	685.3	190	7.89	1116	0.91
19	740.062	1120.331	187	7.89	1098	1.32
20	661.538	720.255	184	7.89	1079	0.94
21	718.658	1082.64	180	7.89	1060	1.28
22	664.913	749.264	177	7.89	1042	0.96
23	722.525	1059.066	174	7.89	1023	1.26
24	657.058	777.088	171	7.89	1004	0.99
25	721.192	1019.989	168	7.89	986	1.23
26	646.628	807.409	165	7.89	968	1.01
27	716.685	993.02	162	7.89	950	1.20
28	653.18	825.752	159	7.89	932	1.03
29	706.764	955.737	151	7.89	887	1.16
30	647.448	849.691	143	7.89	842	1.04
31	697.268	933.826	135	7.89	796	1.14
32	654.672	868.454	128	7.89	751	1.07
33	689.48	912.459	120	7.89	705	1.12
34	661.994	884.628	112	7.89	660	1.08
35	674.773	899.248	61	7.89	614	0.64

Appendix D

Rank correlation for non-uniform loading with a preclosure period of 50 years.

Loading Scheme 2: (a) Drift Wall (b) Between Drift

Loading Scheme 3: (a) Drift Wall (b) Between Drift

Loading Scheme 4: (a) Drift Wall (b) Between Drift

Loading Scheme 5: (a) Drift Wall (b) Between Drift

Appendix E

Rank correlation for non-uniform loading with a preclosure period of 75 years.

Loading Scheme 2: (a) Drift Wall (b) Between Drift

Loading Scheme 3: (a) Drift Wall (b) Between Drift

Loading Scheme 4: (a) Drift Wall (b) Between Drift

Loading Scheme 5: (a) Drift Wall (b) Between Drift