
ABSTRACT

STEHLE, NICHOLAS DAVID. Spatial Domain Decomposition Methodology for Particle Transport
Problems with Diffusive Subdomains. (Under the direction of Dmitriy Y. Anistratov.)

In this work we develop methodologies for domain decomposition for particle transport

problems in transport and diffusive regions for 1D slab, and 2D Cartesian geometries. Here we

use a set of low-order equations based off the second moment method to solve problems in the

entire domain, and use a transport solver in areas of the domain where there are significant

transport effects. Our methodologies are based off the Linear Discontinuous (LD) and Lumped

Linear Discontinuous (LLD) transport equations for 1D, and the Simple Corner Balance method

for 2D. Domains are split into diffusive and transport regions according to metrics developed

based off the Quasidiffusion (Eddington) factors. To couple the domains, boundary conditions

were developed from an asymptotic diffusion analysis on the transport discretization. Numerical

results are presented, which show that this method can successfully identify diffusive regions,

and solve the transport problem with a sufficient level of accuracy compared to one solved

without using domain decomposition.
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Chapter 1

Introduction

Simulating the interaction of radiation with matter has been a major subject of study in com-

putational physics for many years. This is a complex task where particles (x-rays, neutrons,

etc.) that interact with the surrounding material, but not each other, are modeled to see their

distribution through various mediums. Most of these problems can be solved using a linear

Boltzmann equation, which can be solved either using deterministic or stochastic methods.

Deterministic algorithms require that the equation is discretized and the resulting system of

equations is solved. This resulting system is relatively large and complex, so iterative methods

must be used to solve it. Stochastic methods solve this problem using Monte Carlo techniques.

[1]

For several decades the nuclear industry has been the driving motivation for solving and

analyzing discrete ordinate problems. Simulating neutron movement in reactors answers ques-

tions about power distribution, heat transfer, cycling schemes, and so on. These methods can

be expanded from neutron transport into electron and thermal radiation transport problems.

Using the source iteration approach in a deterministic method, the nth iteration can be

interpreted in terms of angular fluxes of particles that had exactly n collisions if the initial

guess is zero. It follows that optically thick, highly scattering problems will take a long time

to converge because the particles will experience numerous scattering interactions. Similar

problems will arise in stochastic methods too. Transport problems in such domains can be

solved using a diffusion approximation, which are highly accurate and have a significantly

smaller computational demand.

A diffusion approximation can be coupled with transport sweeps to ”accelerate” the con-

vergence of an iterative method. This is done by following each transport iteration with solving

a set of low order (diffusion-like) equations designed to improve the result. The set of low

order equations must be carefully developed to avoid stability difficulties which can greatly

reduce their usefulness [2]. Well known techniques such as Diffusion Synthetic Acceleration
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(DSA), Quasidiffusion (QD), and the second moment method (SM) have shown to be robust

and accurate for solving optically thick problems with high scattering. [3] [4]

A method for analyzing a set of discrete equations is to preform an asymptotic diffusion

analysis of the transport equation discretization. [5] This is where the total cross section is made

arbitrarily large, while the source and absorption cross sections are inversely scaled. Following

an expansion of the angular flux, the leading order solution to this problem becomes the diffusion

approximation for a given discretization. This analysis proves a given discretization of the

transport equation will have an accurate diffusion approximation that can be solved efficiently.

Diffusion approximations tend to lose accuracy where transport effects are dominant, for ex-

ample, near boundaries or areas with significant absorption. Therefore a domain decomposition

method can be employed so that the transport equation is used in areas where transport effects

are significant, and the diffusion approximation elsewhere. [4] This method can therefore be

used to significantly reduce CPU time to solve radiative transfer problems while still retaining

an accurate solution to the problem compared to if it were solved only using the transport

equation.

We should note that this domain decomposition method is not used in the traditional sense

of computer science, where parallel architecture is used to solve the same set of equations in

different parts of the domain. These methods methods of domain decompositions have been used

to split either the spatial, angular or energy domains into subregions to be solved independently.

[6], [7] [8] This allows computers to solve each region on a separate processor with a goal of

spending less time solving the transport equation. Some of these methods typically showed a

degradation in performance due to communication between processors.

Another form of domain decomposition is used where two different sets of equations are used

to solve the transport problem. Klar has suggested method for solving radiative heat transfer

problems using both the transport equation and a diffusion approximation; and a similar method

is proposed for gas hydrodynamics. [9] Here all the spacial domains are decoupled, where they

are solved independently of one another and connected by interface conditions.

To effectively utilize a domain decomposition method, regions where transport effects are

significant have to be determined. This can be done using a variety of methods that quantify if

the flux in a region is linearly anisotropic. These metrics for transport effects can then be used

to determine if a region should be solved using either the transport equation or if a low-order

diffusion approximation is sufficient. In his paper, Klar uses a similar method where he looks

at how a density function deviates from the local Maxwellian in the transition from kinetic

theory to macroscopic fluid equations. A conundrum arises here because evaluating the flux in

a region requires the solution to the problem, that is, the solution to a problem is needed before

solving the problem itself. Any measure of transport effects to split the domain will then need

to be estimated on the fly, or diffusion areas will need to be predetermined based off intuition.

2



In this thesis, computational methods are developed for solving transport problems using a

domain decomposition method. We show that a reasonably accurate solution can be obtained

using multiple domains compared to a single domain for a set of representative test problems.

We start by looking at the transport problem in 1D slab geometry, and 2D Cartesian geometry.

We then develop a set of low-order equations that will both accelerate the transport solution

and solve the problem for both types of domains. Metrics are developed to analyze transport

effects and numerical results are provided to demonstrate the performance of the proposed

approach.

In the first chapter of this thesis we provide a general framework for the tools that will be

needed for using a domain decomposition algorithm. In the second chapter, we develop more

specific equations and methodologies for 1D slab geometry. In the third chapter, we present

numerical results from the methods developed in the previous chapter. In the fourth chapter,

we develop derive the equations needed for domain decomposition in 2D slab geometry. We

present the numerical results for this methodology in chapter five. In the last chapter we give

our conclusions of the work presented. The 1D results for this paper will be presented at the

22nd International Conference on Transport Theory in Portland. [10] A summary of the 2D

results will be presented at the ANS winter meeting. [11]

1.1 The Transport Problem

Here we look at various forms of the transport problem. The general equation for steady-state,

one group, particle transport is

~Ω · ∇ψ(~r, ~Ω) + σt(~r, ~Ω)ψ(~r, ~Ω) =

∫
4π
σs(~r, ~Ω

′ → ~Ω)ψ(~r, ~Ω′)d~Ω′ +Q(~r, ~Ω), (1.1)

ψ(~rs, ~Ω) = ψin(~rs, ~Ω) for ~Ω · ~es < 0. (1.2)

ψ is the angular flux, σt and σs are the total and scattering cross sections. The first

term in the balance equation, ~Ω · ∇ψ(~r, ~Ω), represents the streaming operator. The second

term, σt(~r, ~Ω)ψ(~r, ~Ω), describes the collision rate density in the phase space of particles in the

domain. The scattering term,
∫

4π σs(~r,
~Ω′ → ~Ω)ψ(~r, ~Ω′)d~Ω′, describes particles scattering thus

changing direction. The last term is the external source, Q(~r, ~Ω), which accounts for all particles

appearing in the problem domain from sources in the domain itself. The boundary condition,

Eq. 1.2, describes the incoming flux at the surface of the boundary ~rs. [12]. Other variables of

note should be the scalar flux :

φ(~r) =

∫
4π
ψ(~r, ~Ω)d~Ω (1.3)
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and particle current

~J(~r) =

∫
4π

~Ωψ(~r, ~Ω)d~Ω (1.4)

For the rest of this study we will assume isotropic scattering, that is σs(~r, ~Ω) = 1
4πσs(~r). The

equations presented here are general and can be used for a variety geometries. We will consider

both 1D and 2D cases in this paper.

1.1.1 1D Slab Geometry

Here we use Eq. 1.1 for single dimensional slab geometry. The equations simplify to

µ
∂

∂x
ψ(x, µ) + σtψ(x, µ) =

1

2
σs

∫ 1

−1
ψ(x, µ′)dµ+

1

2
Q(x), (1.5a)

0 ≤ x ≤ L, −1 ≤ µ ≤ 1, (1.5b)

ψ|x=0 = ψ+
in(µ), µ > 0 (1.5c)

ψ|x=L = ψ−in(µ), µ < 0 (1.5d)

The angular direction µ is described as the cosine of the azimuthal angle θ, i.e. µ = cos(θ).

The scalar flux for slab geometry would then be

φ(x) =

∫ 1

−1
ψ(x, µ)dµ. (1.6)

These equations will be discretized by the Linear Discontinuous (LD) and Lumped Linear

Discontinuous (LLD) method used in this paper. [13]

1.1.2 2D Cartesian Geometry

Evaluating Eq. 1.1 for 2D Cartesian geometry would become

µ
∂

∂x
ψ(~r, ~Ω) + η

∂

∂y
ψ(~r, ~Ω) + σt(~r)ψ(~r, ~Ω) =

1

4π
σs(~r)

∫
4π
ψ(~r, ~Ω′)d~Ω′ +

1

4π
Q(~r) (1.7)

Here ~Ω = [µ, η] where µ = sin(θ) cos(γ), and η = sin(θ) sin(γ). The angles θ and γ are the

azimuthal and the polar angle respectively, where they are defined for 0 ≤ θ ≤ π and 0 ≤ γ ≤ 2π.

Note that ~r = [x, y]. The boundary conditions for this problem are

ψ(~r, ~Ω)|x=0 = ψinleft(
~Ω), for µ > 0, (1.8a)

4



ψ(~r, ~Ω)|x=X = ψinright(
~Ω), for µ < 0, (1.8b)

ψ(~r, ~Ω)|y=0 = ψinbottom(~Ω), for η > 0, (1.8c)

ψ(~r, ~Ω)|y=Y = ψintop(~Ω), for η < 0. (1.8d)

The problem domain here would be defined for 0 ≤ x ≤ X, 0 ≤ y ≤ Y . These equations will

be approximated by the Simple Corner Balance Method (SCB) that will be derived later. [14]

[15].

1.2 Second Moment Method

There are several ways to solve the transport problem, the most basic is the source iteration

method. [1] This is an iterative technique where the transport equation is iterated by

Lψs+1 = Sψs +Q. (1.9)

The operator L, represents the streaming and collision terms, while the S operator represents

the scattering term; this is a generalization of Eq. 1.1. Here the superscript s is the iteration

index. The solution for the angular flux is calculated iteratively by continually updating the

scattering term. This method can be very slow to converge in areas of high scattering, so often

times a low order acceleration method is used. This can be done through DSA like algorithms

such as the second moment (SM) method [16]. These methods calculate the scalar flux and

currents explicitly through a set of low order equations. These equations are formed by taking

moments of the transport equation. The acceleration method can then be described as a two

step process,

Lψs+
1/2 = Sψs +Q, (1.10a)

φs+1 = Dψs+
1/2. (1.10b)

The angular flux to the solution of the transport problem is used to calculate the scalar flux

through a diffusion approximation. This solution is then fed back into the scattering term of the

high order transport problem. Diffusion Synthetic Acceleration (DSA) techniques for solving

this problem would involve estimating the difference in the solution and the iteration and using

that to accelerate the problem. This SM method will be applied to both the 1D slab, and the

2D Cartesian balance equations.
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1.2.1 1D Slab Geometry

Consider Eq. 1.5a. To form the low order equations we will integrate the transport equation

over all directional angles, µ, which yields,

d

dx
J(x) + σaφ(x) = Q(x). (1.11)

The absorption cross section is defined as σa = σt − σs. We can again integrate the transport

equation, Eq. 1.5a, with respect to the angular direction µ, to take another moment giving

d

dx

∫ 1

−1
µ2ψ(x, µ)dµ+ σtJ(x) = 0. (1.12)

The first term in this equation can be expanded by defining a second moment closure term F

as:

F (x) =

∫ 1

−1

(
1

3
− µ2

)
ψ(x, µ)dµ. (1.13)

Using this definition, Eq. 1.12 is rewritten as:

1

3

d

dx
φ(x) + σtJ(x) =

∂

∂x
F (x). (1.14)

Using Eq. 1.11 and Eq. 1.14, we can solve explicitly for the scalar flux φ(x) and the current

J(x). To do this, however, we need to develop boundary conditions to close the system of

equations. This can be done by finding the incoming current at either end of the slab; first

consider the right boundary Eq. 1.5d:

J−in =

∫ 0

−1
µψ (L, µ) dµ. (1.15)
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This can then be expanded:

J−in =

∫ 0

−1
µ

(
ψ − 1

2
φ− 3

2
µJ

)
dµ+

∫ 0

−1
µ

(
1

2
φ+

3

2
µJ

)
dµ

=

∫ 0

−1
µψdµ+

1

4
φ− 1

2
J − 1

2
φ+

1

2
J

=

∫ 0

−1
µψdµ+

1

4

∫ 1

−1
ψdµ− 1

2

∫ 1

−1
µψdµ− 1

4
φ+

1

2
J

=
1

4

∫ 1

−1
ψdµ− 1

2

∫ 1

0
µψdµ+

1

2

∫ 0

−1
µψdµ− 1

4
φ+

1

2
J

=
1

4

∫ 1

−1
ψdµ− 1

2

∫ 1

−1
|µ|ψdµ− 1

4
φ+

1

2
J

=
1

4

∫ 1

−1
(1− 2|µ|)ψdµ− 1

4
φ+

1

2
J.

Rearranging this equation, we arrive at,

1

4
φ(L)− 1

2
J(L) =

1

4

∫ 1

−1
(1− 2|µ|)ψ(L, µ)dµ− J−in. (1.16)

A similar method can be used for the left boundary condition at x = 0 arriving at:

1

4
φ(0) +

1

2
J(0) = J+

in +
1

4

∫ 1

−1
(1− 2|µ|)ψ(0, µ)dµ. (1.17)

We now have a complete set of equations that can be solved. This is done by solving the

transport equation, Eq. 1.5a

µ
∂

∂x
ψs+

1/2(x, µ) + σtψ
s+1/2(x, µ) =

1

2
σsφ

s(x) +
1

2
Q(x). (1.18)

This solution, ψs+1/2, is then used to calculate the closure term, from Eq. 1.14,

F s+
1/2(x) =

∫ 1

−1

(
1

3
− µ2

)
ψs+

1/2(x, µ)dµ. (1.19)

Now we solve the low-order second moment (LOSM) equations:

d

dx
Js+1(x) + σaφ

s+1(x) = Q(x), (1.20a)

1

3

d

dx
φs+1(x) + σtJ

s+1(x) =
d

dx
F s+

1/2(x). (1.20b)
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The solution to the low-order second moment equations, is then fed back into the transport

equation, Eq. 1.18, and the process is repeated until the solution has converged.

1.2.2 2D Cartesian Geometry

To develop the set of low-order equations, the same method is used of integrating the transport

equation, Eq. 1.7, over all angular directions. The zeroth moment would then be,

∂

∂x
Jx(x, y) +

∂

∂y
Jy(x, y) + σaφ(x, y) = Q(x, y). (1.21)

Jx and Jy, denote the components of the current. We will then integrate the equation two more

times with weights µ and η, which will yield,

∂

∂x

∫
4π
µ2ψ(x, y, ~Ω)d~Ω +

∂

∂y

∫
4π
µηψ(x, y, ~Ω)d~Ω + σtJx(x, y) = 0, (1.22a)

∂

∂x

∫
4π
µηψ(x, y, ~Ω)d~Ω +

∂

∂y

∫
4π
η2ψ(x, y, ~Ω)d~Ω + σtJy(x, y) = 0. (1.22b)

Defining other second moment closure terms,

Fxx(x, y) =

∫
4π

(
1

3
− µ2ψ(x, y, ~Ω)

)
d~Ω (1.23a)

Fyy(x, y) =

∫
4π

(
1

3
− η2ψ(x, y, ~Ω)

)
d~Ω (1.23b)

Fxy(x, y) = −
∫

4π
η µψ(x, y, ~Ω)d~Ω (1.23c)

Expanding these equations we can now simplify Eq. 1.22

1

3

∂

∂x
φ(x, y) + σtJx(x, y) =

∂

∂x
Fxx(x, y) +

∂

∂y
Fxy(x, y), (1.24a)

1

3

∂

∂y
φ(x, y) + σtJy(x, y) =

∂

∂x
Fxy(x, y) +

∂

∂y
Fyy(x, y). (1.24b)

Similar to the 1D version, this set of low order equations is explicitly solved for both the scalar

flux, φ(x, y), and the current, ~J(x, y). To close this system we need to develop boundary

conditions. This is done by finding the incoming current from Eq. 1.8; for the left cells we

would have:

J leftx,in(y) =

∫ 1

0

∫ 1

−1
µψ(~r, ~Ω)|x=0dµdη. (1.25)
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Making a linear anisotropic expansion of the angular flux we have

J leftx,in(y) =
1

4π

∫ 1

0
=

∫ 1

−1
µ [φ(1, y) + 3µJx(1, y) + 3ηJy(1, y)] dµdη + rleft(y), (1.26)

which can be simplified to,

J leftx,in(y) =
1

4π
[φ(1, y) + 2Jx(1, y)] + rleft(y). (1.27)

The difference in the angular flux and the approximation, rleft is defined by,

rleft(y) =

∫ 1

0

∫ 1

−1
µψ(~r, ~Ω)|x=0dµdη −

1

4π

[
φ̃(1, y) + 2J̃x(1, y)

]
Note that we have defined φ̃ and ~̃J in the residual to be the solution from the transport equation.

Doing a similar method for the other boundaries we get,

Jrightx,in (y) =
1

4π
[−φ(X, y) + 2Jx(X, y)] + rright(y), (1.28)

Jbottomy,in (y) =
1

4π
[−φ(x, 1) + 2Jy(x, 1)] + rbottom(x), (1.29)

J topy,in(y) =
1

4π
[−φ(x, Y ) + 2Jy(x, Y )] + rtop(x). (1.30)

Each of the residuals of the P1 expansion are defined using the transport solution. The complete

iteration process is defined by first solving the transport equation, Eq. 1.7,

µ
∂

∂x
ψs+

1/2(~r, ~Ω) + η
∂

∂y
ψs+

1/2(~r, ~Ω) + σt(~r)ψ
s+1/2(~r, ~Ω) =

1

4π
σs(~r)φ

s(~r) +
1

4π
Q(~r). (1.31)

Then, we calculate the second moment closure terms, Eq. 1.23,

F s+
1/2

xx (x, y) =

∫
4π

(
1

3
− µ2ψs+

1/2(x, y, ~Ω)

)
d~Ω (1.32a)

F s+
1/2

yy (x, y) =

∫
4π

(
1

3
− η2ψs+

1/2(x, y, ~Ω)

)
d~Ω (1.32b)

F s+
1/2

xy (x, y) = −
∫

4π
η µ2ψs+

1/2(x, y, ~Ω)d~Ω (1.32c)

This step is followed by solving the low-order second moment equations,Eq. 1.21 and Eq. 1.24,

1

3

∂

∂x
φs+1(x, y) + σtJ

s+1
x (x, y) =

∂

∂x
F s+

1/2
xx (x, y) +

∂

∂y
F s+

1/2
xy (x, y), (1.33a)
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1

3

∂

∂y
φs+1(x, y) + σtJ

s+1
y (x, y) =

∂

∂x
F s+

1/2
xy (x, y) +

∂

∂y
F s+

1/2
yy (x, y). (1.33b)

Here, the second moment terms F , and residuals for the boundary conditions r∗ are calculated

from the transport iteration. These equations are solved for over the whole domain, and the

solution is used in the transport equation. This iteration process continues until we arrive at a

solution.

1.3 Algorithm

The method for domain decomposition used in this paper is based off the Second Moment

method outlined earlier. A problem domain will be split into multiple regions where the trans-

port equation will be solved, hereafter referred to as transport subdomains, and diffusion sub-

domains. The LOSM equations will be used for multiple purposes,

1. To solve for the scalar flux and current everywhere in the problem domain.

2. To accelerate the solution of highly diffusive areas

3. To provide an approximation of the angular flux in the diffusion subdomain to the trans-

port subdomain.

The angular approximations for the interfaces between subdomains will be estimated using

either a P1 approximation or from an asymptotic diffusion analysis of a transport discretization

scheme. These approximations will then be used as transport boundary conditions at the

interface of transport and diffusion subdomains. The algorithm for this method can be seen in

Figure 1.1.

This method of domain decomposition method includes a few unique aspects. For one, the

code automatically evaluates which areas in the problem domain are diffusive and does not

solve the transport equation in those areas. The primary difference is this algorithm uses a

fully consistent low-order discretization of the transport problem over the whole domain. By

doing this we solve for the scalar flux everywhere without having to solve the transport problem

everywhere. The low order set of equations is used everywhere, so production codes only have

to modify the boundary conditions on their transport solvers by using the set of low order

equations presented.
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Figure 1.1: Proposed Algorithm for Solving Transport Problems
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Chapter 2

Methodology for the LD Scheme in

1D Slab Geometry

In this chapter we look at how to develop discretized versions of the transport equation devel-

oped in Sec. 1.1.1. Here we use the Linear Discontinuous (LD) / Lumped Linear Discontinuous

(LLD) Methods. We then develop the low-order second moment equations for the LD/LLD

using the methods outlined in Sec. 1.2.1. We also consider an alternative set of low order

equations that we develop from the Quasidiffusion (QD) method. We also develop a set of

metrics for evaluating transport effects, and their associated discretized versions. We conclude

this chapter by developing a set of boundary conditions to estimate the angular flux in the

transport subdomains at the interfaces between subdomains.

2.1 LD / LLD Method

The transport equation for 1D slab geometry used is given by Eq. 1.5a. This problem is

discretized by dividing the spacial domain into N spatial cells, and using a quadrature set to

define the angular directions. The abscissa of the quadrature will be the angular direction.

The spacial coordinates x will be subscripted by i + 1/2 for cell-edge values while cell average

coordinates, and width will be defined as

xi =
1

2

(
xi+1/2 + xi−1/2

)
,

∆xi = xi+1/2 − xi−1/2, ∆xi+11/2 = xi+1 − xi,

where

i = 1 . . . N, 0 = x1/2 < . . . < xi+1/2 < . . . < xN+1/2 = X.
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Similarly the angular direction µm will be defined for m = 1 . . .M , for a given quadrature set.

The cell-edge angular flux will be defined by:

ψm,i+1/2 = ψ
(
xi+1/2, µm

)
, (2.1)

while the cell-average flux is given by

ψm,i =
1

∆xi

∫ xi+1/2

xi−1/2

ψ (x, µm) dx. (2.2)

The linear (first) spatial moment of the angular flux is

ψ̂m,i =
6

∆x2
i

∫ xi+1/2

xi−1/2

(x− xi)ψ (x, µm) dx. (2.3)

The LD method [17] approximates the angular flux in the ith cell as

ψm(x) = ψm,i +
2

∆xi
(x− xi)ψ̂m,i xi−1/2 ≤ x ≤ xi−1/2. (2.4)

The complete set of LD equations are

µm
(
ψm,i+1/2 − ψm,i−1/2

)
+ σt,i∆xiψm,i =

1

2
(σs,iφi +Qi) ∆xi, (2.5a)

θiµm
(
ψm,i+1/2 + ψm,i−1/2 − 2ψm,i

)
+ σt,i∆xiψ̂m,i =

1

2

(
σs,iφ̂i + Q̂i

)
∆xi, (2.5b)ψm,i+1/2 = ψm,i + ψ̂m,i, µm > 0

ψm,i−1/2 = ψm,i − ψ̂m,i, µm < 0
(2.5c)

θi =

3, σt,i∆xi ≤ τ∗

1, σt,i∆xi ≥ τ∗
(2.5d)

Here τ∗ is a parameter used to define diffusive regions for the lumping parameter θ. This

determines if the LD method (θ = 3) or the LLD method (θ = 1) is used. The scalar flux, φ(x),

is calculated for cell average and cell edge by:

φi =

M∑
m=1

ψi,mwm, φi+1/2 =

M∑
m=1

ψi+1/2,mwm. (2.6)
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Here wm is the quadrature weight. Similarly the first linear moment of the scalar flux is defined

by:

φ̂i =
M∑
m=1

ψ̂i,mwm. (2.7)

2.2 The Second Moment Method for the LD Scheme

Here we will develop the SM method for the LD/LLD equations for slab geometry using low

order equations. [17] Starting with the discrete equations for LD/LLD defined by Eq. 2.5 and

using the method outlined in Sec. 1.2, we can solve Eq. 2.5c for ψ̂i,m and substitute this into

Eq. 2.5b for µm > 0.

θiµm
(
ψm,i+1/2 + ψm,i−1/2 − 2ψm,i

)
+ σt,i∆xi

(
ψm,i+1/2 − ψm,i

)
=

1

2

(
σs,iφ̂i + Q̂i

)
∆xi.

Solving for ψm,i, we have

ψm,i =
θiµm + σt,i∆xi
2θiµm + σt,i∆xi

ψm,i+1/2 +
θiµm

2θiµm + σt,i∆xi
ψm,i−1/2 −

1

2

(
σs,iφ̂i + Q̂i

)
∆xi

σt,i∆xi + 2θiµm
. (2.8)

Similarly for µm < 0 we can substitute ψ̂i,m from Eq. 2.5c into Eq. 2.5b

θiµm
(
ψm,i+1/2 + ψm,i−1/2 − 2ψm,i

)
+ σt,i∆xi

(
ψm,i − ψm,i+1/2

)
=

1

2

(
σs,iφ̂i + Q̂i

)
∆xi.

Again, solving for ψm,i, we get something analogous to Eq. 2.8,

ψm,i = − θiµm − σt,i∆xi
σt,i∆xi − 2θiµm

ψm,i−1/2 +
θiµm

σt,i∆xi − 2θiµm
ψm,i+1/2 +

1

2

(
σs,iφ̂i + Q̂i

)
∆xi

σt,i∆xi − 2θiµm
. (2.9)

We now make the following definitions:

τm,i =
σt,i∆xi
µi

, (2.10)

α±m,i =
τm,i

2θi ± τm,i
. (2.11)
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Note some of the properties of Eq. 2.11

1 + α−m,i =
2θi

2θi − τm,i
, 1 + α+

m,i =
2 (θi + τm,i)

2θi − τm,i
,

1− α−m,i =
2 (τm,i − θi)
2θi − τm,i

, 1− α+
m,i =

2θi
2θi + τm,i

.

Using the above relations and substituting our definitions from Eq. 2.11 and Eq. 2.10 into

Eq. 2.8 and Eq. 2.9 we can arrive at:

ψm,i =
1

2

(
1 + α+

m,i

)
ψm,i+1/2 +

1

2

(
1− α+

m,i

)
ψm,i−1/2−

α+
m,i

2σt,i

(
σt,iφ̂i + Q̂i

)
, µm > 0, (2.12a)

ψm,i =
1

2

(
1 + α−m,i

)
ψm,i+1/2 +

1

2

(
1− α−m,i

)
ψm,i−1/2−

α−m,i
2σt,i

(
σt,iφ̂i + Q̂i

)
, µm < 0. (2.12b)

We can now define:

αm,i =
τm,i

2θi + |τm,i|
. (2.13)

Since αm,i is an odd function i.e. αm,i (−τm,i) = −αm,i (τm,i) we can condense Eq. 2.12a and

Eq. 2.12b to arrive at a new set of closed equations for the LD/LLD method:

µm
(
ψm,i+1/2 − ψm,i−1/2

)
+ σt,i∆xiψm,i =

1

2
(σs,iφi +Qi) ∆xi, (2.14a)

θiµm
(
ψm,i+1/2 + ψm,i−1/2 − 2ψm,i

)
+ σt,i∆xiψ̂m,i =

1

2

(
σs,iφ̂i + Q̂i

)
∆xi, (2.14b)

ψm,i =
1

2
(1 + αm,i)ψm,i+1/2 +

1

2
(1− αm,i)ψm,i−1/2 −

αm,i
2σt,i

(
σs,iφ̂i + Q̂i

)
. (2.14c)

From our definition of αm,i we make further definitions:

ρi =
1

2

M∑
m=1

µmαm,iwm. (2.15)

γm,i = αm,i − 3ρiµm (2.16)

Notice some properties of γm,i; first by numerically integrating it over all µ

M∑
m=1

γm,iwm =

M∑
m=1

αm,iwm − 3ρi

M∑
m=1

µmwm = 0.
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Secondly, note that taking the first moment of γm,i will yield:

M∑
m=1

µmγm,iwm =
M∑
m=1

µmαm,iwm − 3ρi

M∑
m=1

µ2
mwm = 0.

Making further definitions for the cell-edge and cell-average currents, along with the first linear

moment of current we say:

Ji =
M∑
m=1

µmψm,iwm, Ji+1/2 =

M∑
m=1

µmψm,i+1/2wm, (2.17)

Ĵi =
M∑
m=1

µmψ̂m,iwm. (2.18)

We can now define the cell-edge and cell average second moments of the angular flux

F̃i+1/2 =

M∑
m=1

µ2
mψm,i+1/2wm, F̃i =

M∑
m=1

µ2
mψm,iwm. (2.19)

Having these definitions we can now integrate Eq. 2.5a and Eq. 2.5b over all angular directions

and get:

Ji+1/2 − Ji−1/2 + σa,i∆xiφi = Qi∆xi, (2.20a)

θi
(
Ji+1/2 + Ji−1/2 − Ji

)
+ σa,i∆xiφ̂i = Q̂i∆xi. (2.20b)

Taking the first angular moments of Eq. 2.5a and Eq. 2.5b by integrating them with respect

to µ yields:

F̃i+1/2 − F̃i−1/2 + σt,i∆xiJi = 0, (2.21a)

θi

(
F̃i+1/2 + F̃i−1/2 − 2F̃i

)
+ σt,i∆xiĴi = 0. (2.21b)

From here we make the definitions,

Fi =
M∑
m=1

(
1

3
− µ2

m

)
ψm,iwm, (2.22a)

Fi+1/2 =
M∑
m=1

(
1

3
− µ2

m

)
ψm,i+1/2wm, (2.22b)

noting that,

Fi =
1

3
φi − F̃i
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Fi+1/2 =
1

3
φi+1/2 − F̃i+1/2

Rewriting Eq. 2.21a and Eq. 2.21b using the above definition:

1

3

(
φi+1/2 − φi−1/2

)
+ σt,i∆xiJi = Fi+1/2 − Fi−1/2, (2.23a)

θi
3

(
φi+1/2 + φi−1/2 − 2φi

)
+ σt,i∆xiĴi = θi

(
Fi+1/2 + Fi−1/2 − 2Fi

)
. (2.23b)

Taking Eq. 2.14c and integrating it over all µm we get

φi =
1

2

(
φi+1/2 + φi−1/2

)
+

3

2
ρi
(
Ji+1/2 − Ji−1/2

)
+ Γ0,i, (2.24)

where

Γn,i =
1

2

M∑
m=1

µnmγm,i
(
ψm,i+1/2 − ψm,i−1/2

)
wm, n = 0, 1. (2.25)

Similarly, taking Eq. 2.14c and integrating it over all µ with respect to µ we get:

Ji =
1

2

(
Ji+1/2 + Ji−1/2

)
+
ρi
2

(
φi+1/2 − φi−1/2

)
−

3ρi
2

(
Fi+1/2 − Fi−1/2

)
− ρi
σt,i

(
σs,iφ̂i + Q̂i

)
+ Γ1,i. (2.26)

We now have the resulting set of six low order equations for each cell, to solve for the scalar

flux, φ, and the current J , for both the cell-average, and cell-edge values. To close the system

we need to develop boundary conditions. This method is described in Sec. 1.2.1, where we take

the discrete forms of Eq. 1.17 and Eq. 1.16. Doing this, we get the equations needed to close

our low-order set:
1

4
φ1/2 +

1

2
J1/2 = J+

in +
1

4
Bleft, (2.27a)

1

4
φN+1/2 −

1

2
JN+1/2 =

1

4
Bright − J−in, (2.27b)

where,

Bleft =

M∑
m=1

(1− 2|µm|)ψm,1/2wm, (2.28a)

Bright =
M∑
m=1

(1− 2|µm|)ψm,N+1/2wm, (2.28b)

In conclusion, our low-order equations can be summarized using the following equations:

Ji+1/2 − Ji−1/2 + σa,i∆xiφi = Qi∆xi (2.29a)
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θi
(
Ji+1/2 + Ji−1/2 − Ji

)
+ σa,i∆xiφ̂i = Q̂i∆xi (2.29b)

1

3

(
φi+1/2 − φi−1/2

)
+ σt,i∆xiJi = Fi+1/2 − Fi−1/2 (2.29c)

θi
3

(
φi+1/2 + φi−1/2 − 2φi

)
+ σt,i∆xiĴi = θi

(
Fi+1/2 + Fi−1/2 − 2Fi

)
(2.29d)

φi =
1

2

(
φi+1/2 + φi−1/2

)
+

3

2
ρi
(
Ji+1/2 − Ji−1/2

)
+ Γ0,i (2.29e)

Ji =
1

2

(
Ji+1/2 + Ji− 1/2

)
+
ρi
2

(
φi+1/2 − φi−1/2

)
− 3ρi

2

(
Fi+1/2 − Fi−1/2

)
− ρi
σt,i

(
σs,iφ̂i + Q̂i

)
+ Γ1,i (2.29f)

1

4
φ1/2 +

1

2
J1/2 = J+

in +
1

4
Bleft (2.29g)

1

4
φN+1/2 −

1

2
JN+1/2 =

1

4
Bright − J−in (2.29h)

Notice that the set can be condensed by substituting Eq. 2.29e into Eq. 2.29a and Eq. 2.29d,

also substituting in Eq. 2.29f into Eq. 2.29b and Eq. 2.29c. This method is fully consistent with

the transport equations.

2.3 The Quasidiffusion Method

Here we look at low-order quasidiffusion equations that can be used to solve transport problems

[18]. Similar to the Second Moment method, the equations derived here are fully consistent

with the LD/LLD method presented in Section 2.1. Each method has its individual advantages

for solving transport problems which will be discussed later. Starting with the modified set

of LD/LLD equations, Eq. 2.14, we integrate over all directions with respect to µ to arrive at

Eq. 2.20. However, here we define the cell average and cell-edge quasidiffusion (Eddington)

factors as:

Ei =

M∑
m=1

µ2
mψm,iwm

M∑
m=1

ψm,iwm

, (2.30a)
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Ei+1/2 =

M∑
m=1

µ2
mψm,i+1/2wm

M∑
m=1

ψm,i+1/2wm

, (2.30b)

Using the above definitions we can now rewrite Eq. 2.21 as

Ei+1/2φi+1/2 − Ei−1/2φi−1/2 + σt,i∆xiJi = 0, (2.31a)

θi
(
Ei+1/2φi+1/2 + Ei−1/2φi−1/2 − 2Eiφi

)
+ σt,i∆xiĴi = 0. (2.31b)

Once again, we can integrate Eq. 2.14c over all µ however, we will rewrite it this time as

φi =
1

2

(
1 +G+

i

)
φi+1/2 +

1

2

(
1−G−i

)
φi−1/2 +

3

2
ρi
(
Ji+1/2 − Ji−1/2

)
. (2.32)

Here we have defined G±i as

G±i =

M∑
m=1

γm,iψm,i±1/2wm

M∑
m=1

ψm,i±1/2wm

. (2.33)

Once again, we will take Eq. 2.14c and take the first moment of it. By using our definition of

γm,i in Eq. 2.16, we can expand αm,i in terms of γm,i and ρi.

Ji =
1

2

(
Ji+1/2 + Ji−1/2

)
− ρi
σt,i

(
σs,iφ̂i + Q̂i

)
+

1

2

M∑
m=1

µmγm,i
(
ψm,i+1/2 − ψm,i−1/2

)
wm +

3

2
ρi

M∑
m=1

µ2
m

(
ψm,i+1/2 − ψm,i−1/2

)
wm (2.34)

Using our definition of quasidiffusion (Eddington) factors defined in Eq. 2.30, and the following

definition we can simplify the above equation to

H±i =

M∑
m=1

µmγm,iψm,i±1/2

M∑
m=1

ψm,i±1/2wm

. (2.35)
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The final form of the equation is then,

Ji =
1

2

(
Ji+1/2 + Ji−1/2

)
+

1

2

(
H+
i + 3ρiEi+1/2

)
φi+1/2 −

1

2

(
H−i + 3ρiEi−1/2

)
φi−1/2 −

ρi
σt,i

(
σs,iφ̂i + Q̂i

)
. (2.36)

We have now developed all the low order Quasidiffusion equations. However, to close the set

of equations we need to develop the proper boundary conditions. The boundary conditions to

the QD method are the following [18]

J1/2 = CL
(
φ1/2 − φ+

in

)
+ J+

in, (2.37a)

JN+1/2 = CR
(
φN+1/2 − φ−in

)
+ J−in, (2.37b)

where we have defined,

CL =

∑
µm≤0

µmψm,1/2wm∑
µm≤0

ψm,1/2wm
, (2.38a)

CR =

∑
µm≥0

µmψm,N+1/2wm∑
µm≥0

ψm,N+1/2wm
. (2.38b)

and φ±in is defined as the incoming scalar flux at either side of the domain as defined by

φ+
in =

∑
µm≥0

ψm,1/2wm, (2.39a)

φ−in =
∑
µm≤0

ψm,N+1/2wm. (2.39b)

The complete set of low-order QD equations are defined by Eq. 2.20, Eq. 2.31, Eq. 2.32, Eq. 2.36,

and with boundary conditions given by Eq. 2.37. Similar to the SM method we solve this set

of equations for the scalar flux and current everywhere in the problem domain.

2.4 Metrics for Evaluating Transport Effects

Metrics for measuring transport effects can be developed by looking at various derivations of

the diffusion equation [19]. The diffusion equation can be derived in a number of ways, and

typically have higher order terms that can be neglected in diffusive regions, or factors that will

20



develop certain properties. The idea presented here is to observe these higher order terms and

factors to measure how they deviate from their ”ideal” values for diffusive regions. We consider

two different low-order equations and analyze how they tend to the diffusion equation.

First consider the PN equations, where we expand the transport equation, Eq. 1.5a, using

spherical harmonics. [20] Taking the zeroth and first Legendre polynomial moments of the

transport equation we develop the P1 equations.

dφ1

dx
+ σaφ0 = Q (2.40a)

2

3

dφ2

dx
+

1

3

dφ0

dx
+ σtφ1 = 0 (2.40b)

φn =

∫ 1

−1
Pn(µ)ψ(x, µ)dµ (2.40c)

We can note that the first two Legendre moments, i.e. φ0, and φ1 correspond to the scalar

flux φ and the current J respectively. Generally by setting the derivative of the higher moment

terms to zero i.e. dφ2
dx = 0 we can close the set of equations. The result is the one dimensional

steady state balance equation and Fick’s Law or the P1 equations.

dJ

dx
+ σaφ = Q (2.41a)

1

3

dφ

dx
+ σtJ = 0 (2.41b)

We now can develop a ratio between the higher moment’s derivative ( dφ2
dx ) and the other

leading order terms, in Eq. 2.40b, to see if it is sufficiently small to be neglected.

M1(x) = 2

∣∣∣∣dφ2

dx

/
dφ

dx

∣∣∣∣ . (2.42)

If M1 � 1 then that term is negligible and the resulting P1 equations ( Eq. 2.41a, Eq. 2.41b )

are valid in that area.

Using the Low-Order Quasidiffusion (LOQD) equations [18], we can develop other metrics

to further study the properties of a problem domain. These equations are given by

dJ

dx
+ σaφ = q, (2.43a)

dEφ

dx
+ σtJ = 0, (2.43b)
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E(x) =

∫ 1

−1
µ2ψ(x, µ)dµ∫ 1

−1
ψ(x, µ)dµ

. (2.43c)

Where E(x) is defined to be the quasidiffusion factor which provides closure to this set of

equations. Notice in Eq. 2.43b, if E = 1
3 then this equation reduces to Fick’s law. One can note

that the second LOQD equation 2.43b can be rewritten as

E
dφ

dx
+
dE

dx
φ+ σtJ = 0. (2.44)

This allows us to construct another two metrics to test for transport effects,

M2(x) =

∣∣∣∣E(x)− 1

3

∣∣∣∣ . (2.45)

M3(x) =

∣∣∣∣dEdx
∣∣∣∣ . (2.46)

Similar to M1(x), if M2(x) � 1 and M3(x) � 1 then there are minimal transport effects and

the diffusion equation is valid. It should be noted that using the LOQD method, the Eddington

factor (E) may be deemed constant by M3, however it may not be equal to 1
3 as indicated by

M2. This can lead to a so-called modified diffusion approximation, where the diffusion equation

can be used, however E 6= 1
3 . This indicates the need to apply all transport metrics and not

just one.

2.5 Calculation of Metrics

This section develops the discrete version of the metrics used in case of LD/LLD method. First

consider M2(x), which requires the calculation of the Quasidiffusion factor Eq. 2.43c. This

is done numerically for cell average and cell edge values by Eq. 2.30. Having E(x) defined,

cell-average and cell-edge M2(x) are given by

M2,i =

∣∣∣∣Ei − 1

3

∣∣∣∣ , (2.47a)

M2,i+1/2 =

∣∣∣∣Ei+1/2 −
1

3

∣∣∣∣ . (2.47b)

To evaluate M1 we use the following finite difference derivatives,

dφ

dx

∣∣∣∣
x=xi

=
φi+1/2 − φi−1/2

∆xi
, (2.48)
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dφ

dx

∣∣∣∣
x=xi+1/2

=
φi+1 − φi
∆xi+1/2

. (2.49)

A similar finite differencing scheme can be used for the second Legendre moment, φ2, thus

allowing us to numerically approximate M1 in a cell by

M1,i = 2

∣∣∣∣φ2,i+1/2 − φ2,i−1/2

φi+1/2 − φi−1/2

∣∣∣∣ , (2.50)

where the high-order Legendre moment,

φ2,i+1/2 =
M∑
m=1

1

2

(
3µ2

m − 1
)
ψm,i+1/2wm. (2.51)

From Eq. 2.4 we can approximate the derivative of angular flux by:

d̂ψm
dx

∣∣∣∣
x=xi

=
2

∆xi
ψ̂m,i. (2.52)

With this we can approximate the spatial derivatives of the scalar flux and the P2 moment at

the cell center in the following way

d̂φ

dx

∣∣∣∣
x=xi

=
2

∆xi
φ̂i, (2.53)

d̂φ2

dx

∣∣∣∣
x=xi

=
2

∆xi
φ̂2,i. (2.54)

As a result, we have an alternative way of calculating M1

M̂1,i = 2

∣∣∣∣∣ d̂φ2

dx

∣∣∣∣
x=xi

/
d̂φ

dx

∣∣∣∣
x=xi

∣∣∣∣∣ = 2

∣∣∣∣∣ φ̂2,i

φ̂i

∣∣∣∣∣ . (2.55)

We can now calculate M3(x) using a finite differencing scheme for either the cell edge or cell-

average values.
dE

dx

∣∣∣∣
x=xi

=
Ei+1/2 − Ei−1/2

∆xi
(2.56)

dE

dx

∣∣∣∣
x=xi+1/2

=
Ei+1 − Ei
∆xi+1/2

(2.57)
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From here it is a simple substitution of

M3,i =

∣∣∣∣dEdx
∣∣∣∣
x=xi

, (2.58a)

M3,i+1/2 =

∣∣∣∣dEdx
∣∣∣∣
x=xi+1/2

. (2.58b)

If we define

ϕ2(x) =

∫ 1

−1
µ2ψ(x, µ)dµ (2.59)

Then the QD factor, Eq. 2.43c, can be rewritten as

E(x) =
ϕ2(x)

φ(x)
, (2.60)

and the derivative is,

dE

dx
=

1

φ2

(
φ
dϕ2

dx
− ϕ2

dφ

dx

)
=

1

φ

(
dϕ2

dx
− Edφ

dx

)
. (2.61)

Using a similar method to that of Eq. 2.52, we integrate Eq. 2.4 over all µ with respect to µ2

and take the derivate. To calculate the derivative we say

d̂ϕ2

dx

∣∣∣∣
x=xi

=
2

∆xi
ϕ̂2,i, (2.62)

ϕ̂2,i =

M∑
m=1

µ2
mψ̂m,iwm. (2.63)

Using the alternative forms of the derivatives we can calculate Eq. 2.61 using Eq. 2.62 and

Eq. 2.53 to get

M̂3,i =

∣∣∣∣∣ d̂Edx
∣∣∣∣∣
x=xi

=

∣∣∣∣ 2

φi∆xi

(
ϕ̂2,i − Eiφ̂i

)∣∣∣∣ . (2.64)

2.6 Boundary Conditions at Subdomain Interfaces

To solve the transport equation in a transport subdomain we need to develop proper boundary

conditions to use at the interface of transport and diffusion subdomains. One way to formulate

boundary conditions is to use the P1 approximation of the angular flux:

ψ(x, µ) =
1

2
φ(x) +

3

2
µJ(x). (2.65)
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φ and J are from the solution of a low-order problem. Hereafter, we refer to this boundary

condition as the P1 boundary condition. Evaluating this at the cell edge in discrete coordinates,

ψm,i+1/2 =
1

2
φi+1/2 +

3

2
µmJi+1/2. (2.66)

This linear anisotropic approximation is a suitable estimate, however the asymptotic diffusion

analysis of the LD/LLD method in the interior of the diffusion domain gives something slightly

different. Asymptotic analyses have been done before and have proven that the LD/LLD

method does limit to a discretization of the diffusion equation for discrete ordinate problems.

[17] Here we expand on this concept to develop an approximation of the angular flux at the cell

boundaries. We start with the LD/LLD equations stated in Eq. 2.5. We start by introducing

the ansatz,

ψm,j =
∞∑
k=0

εkψ
[k]
m,j , (2.67)

For optically thick problems, we scale the cross sections accordingly to see the limit of the

equations. We do this by

σt,i =
σ̃t,i
ε
, σa,i = εσ̃a,i, q̃i = εQi

Therefore we rewire the LD/LLD set of equations,

µm
(
ψm,i+1/2 − ψm,i−1/2

)
+
σ̃t,i
ε

∆xiψm,i =
∆xi

2

([
σ̃t,i
ε
− σ̃a,iε

] M∑
n=1

ψn,iwn + q̃i

)
, (2.68a)

θiµm
(
ψm,i+1/2 + ψm,i−1/2 − 2ψm,i

)
+
σ̃t,i
ε

∆xiψ̂m,i =

∆xi
2

([
σ̃t,i
ε
− σ̃a,iε

] M∑
n=1

ψ̂n,iwn + ˆ̃qi

)
, (2.68b)

ψm,i+1/2 = ψm,i + ψ̂m,i, µm > 0

ψm,i−1/2 = ψm,i − ψ̂m,i, µm < 0
(2.68c)

By taking the O(ε−1) equations we can see from Eq. 2.68a and Eq. 2.68b that

σ̃t,i∆xi

(
ψ

[0]
m,i −

1

2

M∑
n=1

ψ
[0]
n,iwn

)
= 0 (2.69a)
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σ̃t,i∆xi

(
ψ̂

[0]
m,i −

1

2

M∑
n=1

ψ̂
[0]
n,iwn

)
= 0 (2.69b)

Which tells us that the cell average angular flux has the isotropic solution,

ψ
[0]
m,i =

1

2
φ

[0]
i , (2.70a)

ψ̂
[0]
m,i =

1

2
φ̂

[0]
i . (2.70b)

Taking the O(ε0) equations we see

µm

(
ψ

[0]
m,i+1/2 − ψ

[0]
m,i−1/2

)
+ σ̃t,i∆xiψ

[1]
m,i =

∆xiσ̃t,i
2

M∑
n=1

ψ
[1]
n,iwn, (2.71a)

θiµm

(
ψ

[0]
m,i+1/2 + ψ

[0]
m,i−1/2 − φ

[0]
i

)
+ σ̃t,i∆xiψ̂

[1]
m,i =

∆xiσ̃t,i
2

M∑
n=1

ψ̂
[1]
n,iwn, (2.71b)

ψ
[0]
m,i+1/2 =


1
2

(
φ

[0]
i + φ̂

[0]
i

)
, 1 ≤ i ≤ N, µm > 0,

1
2

(
φ

[0]
i+1 − φ̂

[0]
i+1

)
, 0 ≤ i ≤ N − 1, µm < 0.

(2.71c)

By making the following definitions:

φ
[0]
1/2 = φ

[0]
1 − φ̂

[0]
1 , (2.72a)

φ
[0]
i+1/2 = φ

[0]
i + φ̂

[0]
i = φ

[0]
i+1 − φ̂

[0]
i+1, 1 ≤ i ≤ N − 1 (2.72b)

φ
[0]
N+1/2 = φ

[0]
N + φ̂

[0]
N , (2.72c)

we can now rewrite Eq. 2.71c as

ψ
[0]
m,i+1/2 =

1

2
φ

[0]
i+1/2,

1 ≤ i ≤ N, µm > 0

0 ≤ i ≤ N − 1, µm < 0.
(2.73)

Note that from our definition,

φ
[0]
i+1/2 − φ

[0]
i−1/2 = 2φ̂

[0]
i .

Now solving for ψ
[1]
m,i and ψ̂

[1]
m,i in Eq. 2.71a and Eq. 2.71b gives,

ψ
[1]
m,i =

1

2
φ

[1]
i −

µm
σ̃t,i∆xi

(
ψ

[0]
m,i+1/2 − ψ

[0]
m,i−1/2

)
, (2.74a)

ψ̂
[1]
m,i =

1

2
φ̂

[1]
i −

θiµm
σ̃t,i∆xi

(
ψ

[0]
m,i+1/2 + ψ

[0]
m,i−1/2 − φ

[0]
i

)
. (2.74b)
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Taking the O(ε1) terms of Eq. 2.68c we see,

ψ
[1]
m,i+1/2 = ψ

[1]
m,i + ψ̂

[1]
m,i, µm > 0, (2.75a)

ψ
[1]
m,i−1/2 = ψ

[1]
m,i − ψ̂

[1]
m,i, µm < 0. (2.75b)

By taking Eq. 2.74 and putting it into Eq. 2.75a, we find,

ψ
[1]
m,i+1/2 =



1
2

(
φ

[1]
i + φ̂

[1]
i

)
−

µm
σ̃t,i∆xi

[
ψ

[0]
m,i+1/2 − ψ

[0]
m,i−1/2 + θi

(
ψ

[0]
m,i+1/2 + ψ

[0]
m,i−1/2 − φ

[0]
i

)]
, µm > 0

1
2

(
φ

[1]
i+1 − φ̂

[1]
i+1

)
−

µm
σ̃t,i+1∆xi+1

[
ψ

[0]
m,i+3/2 − ψ

[0]
m,i+1/2 − θi

(
ψ

[0]
m,i+3/2 + ψ

[0]
m,i+1/2 − φ

[0]
i+1

)]
, µm < 0.

(2.76)

Since we are finding the diffusion limit we can set θi = 1 by definition of the LLD method.

Using this, Eq. 2.73, and our definition of φ
[0]
i+1/2, Eq. 2.72a, we can simplify the above equation

for the interior of the problem.

ψ
[1]
m,i+1/2 =


1
2

(
φ

[1]
i + φ̂

[1]
i

)
− µm

2σ̃t,i∆xi

(
φ

[0]
i+1/2 − φ

[0]
i−1/2

)
, µ > 0,

1
2

(
φ

[1]
i+1 − φ̂

[1]
i+1

)
− µm

2σ̃t,i+1∆xi+1

(
φ

[0]
i+3/2 − φ

[0]
i+1/2

)
. µ > 0,

(2.77)

Using the anstaz expansion from earlier we can rewrite the angular flux now to O(ε2) by

ψm,i+1/2 = ψ
[0]
m,i+1/2 + εψ

[1]
m,i+1/2 +O(ε2) . . .

From our definitions in Eq. 2.73 and Eq. 2.77 we can solve for the limit.

ψm,i+1/2 =


1
2

(
φ

[0]
i + φ̂

[0]
i

)
− µm

2σt,i∆xi

(
φ

[0]
i+1/2 − φ

[0]
i−1/2

)
+O(ε), µm > 0,

1
2

(
φ

[0]
i+1 − φ̂

[0]
i−1

)
− µm

2σt,i+1∆xi+1

(
φ

[0]
i+3/2 − φ

[0]
i+1/2

)
+O(ε), µm < 0,

(2.78)

It has been previously shown [17] that φ[0] meets the diffusion equation. Therefore we can

approximate the cell-edge angular flux on the interior of the diffusion domain as:

ψm,i+1/2 =


1
2

(
φi + φ̂i

)
− µm

2σt,i∆xi

(
φi+1/2 − φi−1/2

)
, µm > 0,

1
2

(
φi+1 − φ̂i+1

)
− µm

2σt,i+1∆xi+1

(
φi+3/2 − φi+1/2

)
, µm < 0,

(2.79)

27



These equations are used to formulate the boundary conditions and define the angular flux

coming from the diffusion domain and going into the transport subdomain. These will be our

boundary conditions.

2.7 Domain Decomposition in 1D Slab Geometry

All the equations needed for our domain decomposition algorithm defined in Sec. 1.3 have been

developed. Here we present the equations used in each step of our method used for solving

transport problems. In the transport iterations we use the set of LD/LLD equations, Eq. 2.5,

µm

(
ψ
s+1/2
m,i+1/2 − ψ

s+1/2
m,i−1/2

)
+ σt,i∆xiψ

s+1/2
m,i =

1

2
(σs,iφ

s
i +Qi) ∆xi, (2.80a)

θiµm

(
ψ
s+1/2
m,i+1/2 + ψ

s+1/2
m,i−1/2 − 2ψ

s+1/2
m,i

)
+ σt,i∆xiψ̂

s+1/2
m,i =

1

2

(
σs,iφ̂i

s
+ Q̂i

)
∆xi, (2.80b)ψ

s+1/2
m,i+1/2 = ψ

s+1/2
m,i + ψ̂

s+1/2
m,i , µm > 0,

ψ
s+1/2
m,i−1/2 = ψ

s+1/2
m,i − ψ̂

s+1/2
m,i , µm < 0,

(2.80c)

θi =

3, σt,i∆xi ≤ τ∗,

1, σt,i∆xi ≥ τ∗.
(2.80d)

Following this we calculate the second moment closure terms in the transport domains,

F
s+1/2
i+1/2 =

M∑
m=1

(
1

3
− µ2

m

)
ψ
s+1/2
m,i+1/2wm, (2.81a)

F
s+1/2
i =

M∑
m=1

(
1

3
− µ2

m

)
ψ
s+1/2
m,i wm, (2.81b)

Γ
s+1/2
n,i =

1

2

M∑
m=1

µnmγm,i

(
ψ
s+1/2
m,i+1/2 − ψ

s+1/2
m,i−1/2

)
wm, for n = 0, 1. (2.81c)

In diffusion subdomains, where we don’t calculate the high order solution ψs+1/2, we set the

closure terms to their diffusion values, i.e.

F
s+1/2
i+1/2 = 0, (2.82a)

F
s+1/2
i = 0, (2.82b)

Γ
s+1/2
n,i = 0, for n = 0, 1. (2.82c)
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From here we can now solve the LOSM equations in the entire problem domain,

Js+1
i+1/2 − J

s+1
i−1/2 + σa,i∆xiφ

s+1
i = Qi∆xi, (2.83a)

θi

(
Js+1
i+1/2 + Js+1

i−1/2 − Ji
)

+ σa,i∆xiφ̂
s+1
i = Q̂i∆xi, (2.83b)

1

3

(
φs+1
i+1/2 − φ

s+1
i−1/2

)
+ σt,i∆xiJ

s+1
i = F

s+1/2
i+1/2 − F

s+1/2
i−1/2 , (2.83c)

θi
3

(
φs+1
i+1/2 + φs+1

i−1/2 − 2φs+1
i

)
+ σt,i∆xiĴ
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The scalar flux from the solution of the LOSM equations are then used in the transport equations

and iterated until a solution is found. The initial guess, φ0, for the transport iterations comes

from solving the LOSM equations, where F = Γ0 = Γ1 = 0. Notice that the LOSM equations

are used everywhere in the problem domain for every iteration. To approximate the angular

flux at the boundaries of these domains we use the asymptotic boundary conditions,

ψ
s+1/2
m,i+1/2 =


1
2

(
φsi + φ̂si

)
− µm

2σt,i∆xi

(
φsi+1/2 − φ

s
i−1/2

)
, µm > 0,

1
2

(
φsi+1 − φ̂si+1

)
− µm

2σt,i+1∆xi+1

(
φsi+3/2 − φ

s
i+1/2

)
, µm < 0.

(2.84)

This concludes our discussion of the equations and methodologies needed to solve transport

problems in 1D slab geometry using the LD/LLD transport equations and the Low-Order

Second Moment method.
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Chapter 3

Numerical Results for 1D Problems

Here we analyze the numerical results from three test cases. Each test is designed specifically to

explore certain aspects of the accuracy of the algorithm for various problems. These problems

are tailored to show distinct diffusive domains and areas where transport effects dominate. All

cases were run using the double S4 Gauss-Legendre quadrature, with the pointwise convergence

criteria of ε = 10−15. We start by looking at the solution to the tests themselves without any

domain decomposition. In the next section we analyze the metrics for each test developed in

Sec. 2.4 to quantify transport effects. To fully utilize our methodology, we need to consider

estimations of the metrics based off of one transport iteration and compare to the converged

solution already presented. We also consider the boundary conditions applied between domains,

developed in Sec. 2.6, where we look at the effects of imposing these approximations at domain

interfaces without actually using a full domain decomposition. Finally, we conclude with an

analysis of the error of a full domain decomposition method to one without any. In the final

section we use the QD method in place of the LOSM method for a non-diffusive test.

3.1 Test Problems

We first consider the solution to the three problems where we analyze the scalar flux. The first

test (Test A) is a two region problem with pure absorber σt = 2, for 0 ≤ x ≤ 1, with ∆x = 0.1,

followed by a pure scattering medium σt = 100, σs = 100, for 1 ≤ x ≤ 11 for ∆x = 1.0. There

is an incident flux on the left hand side of ψ|x=0 = 1, and vacuum boundary on the right. The

scalar flux for Test A is given in Figure 3.1. This test has an optically thick, highly diffusive

area on the right side of the domain where transport effects should be negligible. The left side

of the domain is a pure absorber with an incident flux where we should see significant transport

effects. This test highlights two distinctly different regions for diffusive and transport domains.
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Figure 3.1: Test A Scalar Flux

Test B is characterized by two distinct regions. The left side of the domain is a weak

absorber σt = 1.0 and σs = 0.5, with an external source Q = 0.5, for 0 ≤ x ≤ 10 where

∆x = 1.0. The right side of the problem is defined as a weak diffusive area with σt = 10.0 and

σs = 9.9 with a weak external source Q = 0.1, for 10 ≤ x ≤ 30 where ∆x = 0.5. Test B has

vacuum boundary conditions on both sides of the domain. The solution is given in Figure 3.2.

Unlike Test A, this problem has an external source both in the absorption section, and another

smaller one in the diffusive area. This test shows more of a ’gray’ area between diffusive and

transport subdomains.
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Figure 3.2: Test B Scalar Flux

Test C is very similar to Test B, however the source in the right hand side of the domain

is removed, i.e. q = 0.0 for 10 ≤ x ≤ 30. The solution to this problem is given in Figure 3.3,

and notice it is given on a log scale. This allows for a small amount of absorption in the high-

scattering area, though it still retains a large total cross section and scattering ratio of .99. This

problem is not diffusive even though it shows several characteristics of a diffusive problem.
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Figure 3.3: Test-C Scalar Flux

3.2 Metrics

Here we analyze how the metrics developed earlier quantify diffusive regions for each test

case. Each metric shows something different and this is highlighted for each test. The metrics

presented are calculated for the cell-average values using Eq. 2.50, Eq. 2.47a, and Eq. 2.58a

for M1, M2, and M3 respectively. Note that all the following metrics are calculated from the

converged solution to the transport problem with no domain decomposition.

Figure 3.4 shows the various metrics for Test A. As stated earlier these values measure how

diffusive a region in a problem is, so the smaller a metric is, the more diffusive that area is.

Every metric gives the same general trend where it is large in the absorbing region and very

small in the center of the ’diffusive’ region. In the areas where the metrics are large, that is,

near boundaries and in the first region, are areas where transport effects typically dominate.

This test provides a good basis for what the extremes of how the metrics trend in diffusive

areas.
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Figure 3.4: Test A Metrics

The results for the metric calculations in test B are shown in Figure 3.5. The first thing to

notice is that all the metrics do not trend the same way as was the case in test A. Again we

have a diffusive area on the right, which the metrics M2 and M3 show, however M1 does not.

This indicates that the first term in Eq. 2.40b is small, but not as small as it was previously in

test A. Since M2 is close to zero, this indicates that E is close to 1
3 . We can also conclude from

M3 that the second term in Eq. 2.44 is negligible as well, and that E is constant. Thus, there

is a valid diffusion equation in this region.
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Figure 3.5: Test B Metrics

The results from test C show a similar trend to those in test B, however M2 no longer indi-

cates the right side of the problem is not diffusive. All of the metrics trend very similarly in the

first (left) region of the domain as in test B indicating that the region is not diffusive. However,

in the second (right) region M2 remains fairly constant and M3 is very small throughout this

area. This means that the quasidiffusion factor E is constant however it is not equal to 1
3 as it

should be for the diffusion equation. Therefore, a modified diffusion equation can be valid if E

were updated to be approximately 0.336037.

Each metric accurately predicts where diffusive areas are as seen by test A. Test B showed

where M1 is inconclusive in this problem for predicting a diffusive region, however M2 and M3

accurately predict and describe it. This shows how sensitive the metrics are, because test B is

not that diffusive M1 doesn’t clearly show whether the diffusion approximation is accurate or

not.
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Figure 3.6: Test-C Metrics

3.3 Approximate Calculation of Metrics

The values presented for the metrics earlier in this paper for the test problems were all calculated

using the converged solution of the transport problem without any domain decomposition. To

effectively use the method proposed for solving transport problems one would have to estimate

the metric values from a single transport iteration over the entire domain. This allows one to

use the developed metrics to split the problem into subdomains without solving the transport

problem everywhere. Here we present the results of the metrics when they are calculated from

a single transport iteration, where the scattering source is calculated by means of the scalar

flux that was obtained as a solution of the diffusion equations.

There will naturally be some loss in accuracy by estimating the metric values from one

specific iteration vs. the converged transport solution. It can be seen in Figure 3.7 that the

metrics are well estimated for test A even with one iteration. Comparing this plot to Figure 3.4,

we see that all the metrics take the same shape, and same order of magnitude. One can note
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Figure 3.7: Test-A Metric Comparison

that the values for the metrics well inside the diffusion domain are marginally less than the

values for those of the converged solution.

The results for test B show similar details to those in test A. Figure 3.8 shows again a similar

trend to Figure 3.5 where the metrics have the same shape and closely approximates the values.

Again, the values shown for one iteration tend to underestimate the converged solution. For

test C, Figure 3.9, we see several of the same trends in the previous two tests. Comparing this

figure to Figure 3.6 we see they are similar as well.

These results show that the metrics can accurately predict diffusive regions in the problem

from only one transport iteration based on a diffusion-scattering source. All the metrics are

small where the diffusive regions are, even if the shapes and values are slightly different. This

means that one can set a tolerance for the metrics to define what a diffusive region is and the

estimates of the metrics will do a similar job of defining diffusive regions compared to those

calculated from converged solution. We can note that most of the estimates have a fairly large

relative error, however the effect of this is negligible for our purposes.
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Figure 3.8: Test-B Metric Comparison

3.4 Discretization Methods for Calculating Metrics

Previously it was shown that there were multiple ways of calculating each of the metrics. Here

we present the results of calculating the metrics for various methods based off one transport

iteration. Most of them can be estimated for both cell-average and cell-edge values. Due to

the discretization of the LD/LLD method, we can estimate the derivatives in several fashions.

First we will consider M1, which can be calculated at the cell center, using traditional finite

differencing methods, Eq. 2.50, or by estimates using linear moments Eq. 2.55. Note that the

indices in Eq. 2.50 can be modified to calculate M1 at the cell edges, i.e.

M1,i+1/2 = 2

∣∣∣∣φ2,i+1 − φ2,i

φi+1 − φi

∣∣∣∣ (3.1)

Here we will only consider Test A because it is the test where M1 is not constant. As seen

in Figure 3.10, the alternate method of calculating M1, as denoted by M∗1,i, does have the same
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Figure 3.9: Test-C Metric Comparison

shape as the traditional finite difference method, however it is significantly lower at the same

points in the diffusive region. Both the cell average and cell edge values for M1 do fall along the

same line as expected. This means the method using linear moments is more likely to predict

a region as diffusive than the finite difference method.

M2 can also be calculated for both cell-edge and cell-average values, using Eq. 2.47a or

Eq. 2.47b respectively. Here we only consider Test B because it exhibits all the properties of

the relationship between the cell edge and cell averages values. The most obvious characteristic

in Figure 3.11 is that the values for cell-edge and cell-average do not line up in the diffusive

region. We take note that there is a jump in the cell average line after the interface of the two

regions at x = 10. This is an intrinsic property of the LLD method, where the angular shapes

of the cell-edge and cell-average LLD angular fluxes differ in highly diffusive regions. This leads

to the observed differences in the cell-edge and cell-average E.

Now consider M3 where it can be calculated using a finite difference method, Eq. 2.58a, or

using linear moments, Eq. 2.64, denoted by M∗3 . We notice in all cases, Figure 3.12, M3 behaves
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Figure 3.10: Test A M1

differently for each test. Consider Test A shown in Figure 3.12a; the linear moment method

of calculating the metric is not consistent with the finite differencing methods. The metric

is typically lower in the diffusive region for all values. However, in test B, Figure 3.12b, we

see that the cell-edge finite difference method and the linear moment method seem to be more

consistent with one another than finite difference method for both the cell-edge and cell-average

values. In Test C, we notice the same relation between the cell-average and cell-edge values as

we do in Test A.

In case of a particular transport discretization method one needs metrics that will indicate

subdomains where the second-moment terms in the low-order equations can be evaluated by

their diffusion values. The analysis of the LSOM equations consistently discretized with the

LD/LLD scheme shows that one should use metrics based on the cell-edge values of the QD

factors. It is also possible to use metrics calculated by means of cell-average E.
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Figure 3.11: Test B M2

3.5 Boundary Condition Effects

Now that a method for where to split the domains has been established, we must consider

the effects of splitting the domain. Earlier we introduced two methods for applying boundary

conditions for the transport subdomains based off of the P1 expansion, Eq. 2.66, and the asymp-

totic diffusion limit, Eq. 2.79. We can see the effect of the boundary conditions themselves by

dividing the domain into regions and injecting the approximate boundary (interface) conditions

into the transport domain from the diffusion subdomain. We will still continue to solve the

problem by doing transport sweeps through the whole domain, however we will be dividing the

domains into multiple parts.

For Test A we will set a metric tolerance of 10−6 and 10−9 which will define a diffusion

domain of 3 ≤ x ≤ 10 and 4 ≤ x ≤ 9 respectively. We will use Eq. 2.66, denoted by [P1],

and Eq. 2.79, denoted by [Asy.], to apply an angular flux for µm ≤ 0 at x = 3 and 4, and for

µ ≥ 0 at x = 9 and 10. The relative error of the problem solved with approximated boundary

conditions compared to the converged solution is shown in Figure 3.13. Notice that for all cases
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Figure 3.12: M3 For All Test Cases

in the diffusion domain specified that the boundary conditions developed with the asymptotic

diffusion limit always yield smaller error. It can also be noted that the error goes straight to

this limit and remains constant in this domain for the most conservative case of ε = 10−9,

using asymptotic boundary conditions. The cases that were solved with the diffusion boundary

conditions typically yield higher error throughout the domain than the asymptotic diffusion

conditions. For all cases the further we go into the diffusion domain, or when the metric

tolerance is decreased, then the error drops for the entire domain as well, regardless of the

boundary condition.

A similar analysis was done for Test B. A metric tolerance of 10−4, 10−5, and 10−6 were

selected which resulted in diffusion domains of 14 ≤ x ≤ 27.5, 15.5 ≤ x ≤ 26, 17 ≤ x ≤ 25.

This shows the same trends, Figure 3.14, as in Test A only a bit clearer. For the same diffusion
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Figure 3.13: Test A Boundary Effects

domain, the asymptotic boundary conditions always provide a lower error than the P1 expansion

throughout the whole domain. Similarly, by increasing the tolerance and moving further into

the diffusion domain, the error decreases everywhere.

In test C the weakly diffusive area is obtained by setting the tolerance for the metrics at 10−6

and 10−9 which yielded subdomains of 13.5 ≤ x ≤ 25.5 and 15.5 ≤ x ≤ 23.5, the results can be

seen in Figure 3.15. Due to the small scalar flux in this domain, the solution is very sensitive

to any errors introduced, hence the error increases so much on that side of the problem domain

compared to the other tests. The asymptotic boundary conditions here show a reduction in

error inside the diffusive domain, however the P1 boundary conditions keep error at a constant

level inside that area.

The main conclusions we can draw from these tests are that the boundary conditions do

produce a small amount of error in the solution. Logically, this is greatest at interfaces between

subdomains where the boundary condition is implemented. Error can be reduced throughout

the entire domain by decreasing the size of a diffusion subregion, and as a result applying the

boundary conditions further into the diffusion region. It is safe to conclude that using the
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Figure 3.14: Test B Boundary Effects

boundary conditions derived using the asymptotic diffusion analysis in Eq. 2.79 provide much

better approximation of the angular flux than the estimation based off the P1 approximation.
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Figure 3.15: Test-C Boundary Effects

3.6 Domain Decomposition

In this section a full domain decomposition technique is applied, where unlike the last section,

the transport equation will not be solved in the diffusive region. We use the same domains

outlined in the previous section for each of the tests. Results will be compared to the trans-

port solution calculated not using a domain decomposition. All problems were ran using the

boundary conditions defined by the P1 approximation and the asymptotic diffusion analysis.

From Figure 3.16 we see the error associated with applying the full domain decomposition

methodology for Test A. Similar results to the boundary condition analysis show that by in-

creasing the tolerance and making a smaller diffusion domain reduces the error throughout the

problem. Missing points in the figure are due to zero error which can not be shown on a log

scale. We see that the error remains well below 10−7 for both cases and well below 10−10 for

the majority of the problem with a higher tolerance.

The results from Test B have similar characteristics as Test A, which are shown in Fig-
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Figure 3.16: Test-A Domain Decomposition

ure 3.17. We note that going further into the diffusion domain reduces the error throughout

the problem. Note that inside the determined diffusion domain the error tracks asymptotically

along the same line regardless of how far into the diffusion domain the boundaries are set.

The order of error is not significantly higher than that of the error found in only applying

the boundary conditions. The associated error is consistent with the value of the metrics used

to define the diffusion subregion. Hence, this result shows that one can control the error by

optimizing domain decomposition.

In test C, Figure 3.18, there is a significant amount of error introduced using the domain

decomposition method compared to the other two tests. Note that there are no diffusion

domains in this test, so using the a diffusion approximation such as the second moment method

would be incorrect. Thus using the method presented we should expect large errors since we are

unable to reproduce the transport solution in these areas. It is possible to get the solution of

this transport problem approximately using modified diffusion equations in the right subdomain

as presented in Sec. 2.3. We discuss these results in the next section.

From these tests we can see that this method does accurately produce results similar to
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Figure 3.17: Test-B Domain Decomposition

a method solved not using domain decomposition. All results were converged for a pointwise

convergence criteria of 10−15. We note that in the diffusive areas of the domains, where we do

not need to solve the transport equations, we modify the low order equations, Eq. 2.29, so they

represent a true diffusion approximation. We do this by forcing the low order closure terms i.e.

F , Γ0, and Γ1 to be 0.0 in the diffusion subdomain. Otherwise these terms, which depend on

the angular flux, could only provide a solution as good as that obtained from the first iteration.

This also provides us with a true diffusion approximation.
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Figure 3.18: Test-C Domain Decomposition

3.7 Domain Decomposition using Quasidiffusion Low-Order Equa-

tions

To this point we have used the second moment method for the low-order equations. By using

the Quasidiffusion method as an alternate set of low order equations, we can see an improvement

in certain results. There are a few key points that should be noted in test C. First, is that from

the metrics it can be seen that there are no diffusion regions but transport effects are weak on

the right side of the domain. This is because the QD factor, although relatively constant as

indicated by M3, is not 1
3 . This can be seen in Figure 3.6. Therefore, using a modified diffusion

equation can be considered as a good approximation for this transport problem.

From Figure 3.19 it can be seen that the approximate method based on the low-order

quasidifussion equations does have a significant advantage over the method based on the low-

order second moment equations in the right side of the domain. Looking at the set of equations

used in Sec. 2.3, we note that they use Eddington factors instead of a value of 1
3 . However, like
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(b): Asymptotic BC for 13.5 ≤ x ≤ 25.5
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(c): Diffusion BC for 15.5 ≤ x ≤ 23.5
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(d): Asymptotic BC for 15.5 ≤ x ≤ 23.5

Figure 3.19: Test C Domain Decomposition using Quasidiffusion Method

the metrics, the Eddington factors, defined by Eq. 2.30, are calculated from the angular flux.

Since this method does not calculate the angular flux in the ”diffusion” region, these factors are

based off a single transport iteration across the entire domain. Due to the accuracy limitations

of only doing one transport iteration we can only get an estimate of what the modified diffusion

coefficient should be. This will then propagate through, and is shown where this method

generates the solution with the relative error, 10−2, in the domain with weak transport effects.
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Chapter 4

Methodology for SCB Scheme in 2D

Cartesian Geometry

Only one dimensional problems have been considered so far. Here we present a look at two

dimensional steady state problems. Using analogous techniques and metrics we will show how

the method of domain splitting discussed earlier can be applied to higher dimensional problems.

It is thought that by accomplishing this method in two dimensions, it can then be easily applied

to three dimensional problems without any difficulty. We will use the simple corner balance

(SCB) method for solving transport problems, and again develop the second moment equations

for our set of diffusive low order equations.

4.1 Simple Corner Balance Scheme

In this section we look at the equations needed to solve the two dimensional steady state

transport problem. [21]. We start with the time independent, two dimensional, fixed source,

linear Boltzmann equation in Cartesian geometry, Eq. 1.7. Here we will use the following

discretization by taking points from the four corners as represented in Figure 4.1 [3]. By

integrating Eq. 1.7 over a corner of the cell, we can arrive at the set of balance equations for the

Simple Corner Balance method, where the angular fluxes ψ1L, ψ2B, ψ3, etc are at the locations

defined in Figure 4.1. We present them here in matrix from and drop the (m, i, j) index for

brevity.

50



v
1

v
1B

v
1R

v
2

v
2B

v
2R

v 3 v 3R

v 3T

v4v4L

v4T

∆yj

6

?

∆xi� -

Figure 4.1: Location of points in Rectangular Cell For SCB

µ∆y

2


−ψ1L

ψ2R

ψ3R

−ψ4L

+
µ∆y

4


1 1 0 0

−1 −1 0 0

0 0 −1 −1

0 0 1 1



ψ1

ψ2

ψ3

ψ4

+
η∆x

2


−ψ1B

−ψ2B

ψ3T

ψ4T



η∆x

4


1 0 0 1

0 1 1 0

0 −1 −1 0

−1 0 0 −1



ψ1

ψ2

ψ3

ψ4

+
σt∆x∆y

4


ψ1

ψ2

ψ3

ψ4

 =
σs∆x∆y

(4π)4


φ1

φ2

φ3

φ4

+
∆x∆y

(4π)4


q1

q2

q3

q4

 (4.1)
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Here, the points ψ1L, ψ1B, ψ2L, ψ2R . . . are defined by their downstream values, that is,

ψ1L =


ψ1,i,j,m µm < 0

ψ3,i−1,j,m µm > 0

ψin1,i,j,m i = 1, for µm > 0

ψ1B =


ψ1,i,j,m ηm < 0

ψ4,i,j−1,m ηm > 0

ψin1,i,j,m j = 1, for ηm > 0

(4.2a)

ψ2R =


ψ1,i+1,j,m µm < 0

ψ2,i,j,m µm > 0

ψin2,i,j,m i = Nx, for µm < 0

ψ2B =


ψ2,i,j,m ηm < 0

ψ3,i,j−1,m ηm > 0

ψin2,i,j,m j = 1, for ηm > 0

(4.2b)

ψ3R =


ψ4,i+1,j,m µm < 0

ψ3,i,j,m µm > 0

ψin3,i,j,m i = Nx, for µm < 0

ψ3T =


ψ2,i,j+1,m ηm < 0

ψ3,i,j,m ηm > 0

ψin3,i,j,m j = Ny, for ηm < 0

(4.2c)

ψ4L =


ψ4,i,j,m µm < 0

ψ3,i−1,j,m µm > 0

ψin4,i,j,m i = 1, for µm > 0

ψ4T =


ψ1,i,j+1,m ηm < 0

ψ4,i,j,m ηm > 0

ψin4,i,j,m j = Ny, for ηm < 0

(4.2d)

We can note that this set of equations is consistent with the fully lumped Bilinear Dis-

continuous Equations. [14] Here we have defined the Simple corner balance equations for 2D

rectangular geometry, with Eq. 4.1. The downstream values are defined by Eq. 4.2, with bound-

ary conditions Eq. 4.3.

ψm|i=1 = ψinleft(
~Ω), for µ > 0, (4.3a)

ψm|i=Nx = ψinright(
~Ω), for µ < 0, (4.3b)

ψm|j=1 = ψinbottom(~Ω), for η > 0, (4.3c)

ψm|j=Ny = ψintop(~Ω), for η < 0. (4.3d)

4.2 Second Moment Method for SCB

Here we will develop a low-order set of equations for the Simple Corner Balance equations based

off the second moment method. [15], [22] We start by taking the zeroth angular moment and

integrating the balance equation, Eq. 4.1 in discrete form i.e. using a quadrature set. The
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result is,

∆y
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∆x
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
−Jy,1B
−Jy,2B
Jy,3T

Jy,4T



∆x

4


1 0 0 1

0 1 1 0

0 −1 −1 0

−1 0 0 −1



Jy,1

Jy,2

Jy,3

Jy,4

+
σa∆x∆y

4


φ1

φ2

φ3

φ4

 =
∆x∆y

4


q1

q2

q3

q4

 (4.4)

We now integrate, in discrete form, the balance equation with weight µm to get,

∆y

2


−Ẽxx,1L
Ẽxx,2R

Ẽxx,3R

−Ẽxx,4L

+
∆y

4


1 1 0 0

−1 −1 0 0

0 0 −1 −1

0 0 1 1



Ẽxx,1

Ẽxx,2

Ẽxx,3

Ẽxx,4

+
∆x

2


−Ẽxy,1B
−Ẽxy,2B
Ẽxy,3T

Ẽxy,4T



∆x

4


1 0 0 1

0 1 1 0

0 −1 −1 0

−1 0 0 −1



Ẽxy,1

Ẽxy,2

Ẽxy,3

Ẽxy,4

+
σt∆x∆y

4


Jx,1

Jx,2

Jx,3

Jx,4

 = 0, (4.5)

where,

Ẽαβ =
∑
m

Ωα,mΩβ,mψmwm. (4.6)

Now we integrate the balance equation with weight ηm.

∆y
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Ẽxy,2R

Ẽxy,3R
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Ẽxy,4

+
∆x

2


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53



We now introduce,

Êαβ =
∑
m

(
1

3
δαβ − ΩαΩβ

)
ψmwm (4.8)

and the obtain the following low-order second moment equations
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−Êxx,1L
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Êxy,4

+
∆x

2


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Êyy,3
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(4.9b)

Here δαβ is the Kronecker delta function, and α, β = x.y.

Now, consider the face average values defined in Eq. 4.2. These are defined by their down-

stream values, and thus when integrating over them, they can be split into two components for

Ωα ≥ 0 and Ωα ≤ 0. Consider ψ1L, the lower left face,

J i,jx,1L =
∑
m

µmψ
i,j
1L,mwm =

∑
µm≥0

µmψ
i−1,j
3,m wm +

∑
µm≤0

µmψ
i,j
1,mwm.
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By using the P1 approximation for the angular flux, we can rewrite the equation as,

J i,jx,1L =
∑
µm≥0

µmψ
i−1,j
2,m wm +

∑
µm≤0

µmψ
i,j
1,mwm

=
∑
µm≥0

µm
1

4π

(
φi−1,j

2 + 3
[
µmJ

i−1,j
x,2 + ηmJ

i−1,j
y,2

])
wm+

∑
µm≤0

µm
1

4π

(
φi,j1 + 3

[
µmJ

i,j
x,1 + ηmJ

i,j
y,1

])
wm+

∑
µm≥0

µm

[
ψi−1,j

2,m − 1

4π

(
φi−1,j

2 + 3
[
µmJ

i−1,j
x,2 + ηmJ

i−1,j
y,2

])]
wm+

∑
µm≤0

µm

[
ψi,jm,1 −

1

4π

(
φi,j1 + 3

[
µmJ

i,j
x,1 + ηmJ

i,j
y,1

])]
wm

=
∑
µm≥0

µm
1

4π

(
φi−1,j

2 + 3µmJ
i−1,j
x,2

)
wm +

∑
µm≤0

µm
1

4π

(
φi,j1 + 3µmJ

i,j
x,1

)
wm + ri,j1L

= αx

(
φi−1,j

2 − φi,j1

)
+ βx

(
J i−1,j
x,2 + J i,jx,1

)
+ ri,j1L

Here we have defined,

αx =
1

4π

∑
µm≥0

µmwm, (4.10)

βx =
3

4π

∑
µm≥0

µ2
mwm, (4.11)

and the residual from the P1 approximation as:

ri,j1L =
∑
µm≥0

µmψ
i−1,j
2,m +

∑
µm≤0

µmψ
i,j
1,mwm − αx

(
φ̃i−1,j

2 − φ̃i,j1

)
− βx

(
J̃ i−1,j
x,2 + J̃ i,jx,1

)
. (4.12)

Here φ̃ and J̃ represent the scalar flux, and current obtained from the high-order transport

equations. A similar method can be used for the other seven cell face values.

J i,jy,1B = αy

(
φi,j−1

4 − φi,j1

)
+ βy

(
J i,j−1
y,4 + J i,jy,1

)
+ ri,j1B (4.13a)

J i,jx,2R = αx

(
φi,j2 − φ

i+1,j
1

)
+ βx

(
J i,jx,2 + J i+1,j

x,1

)
+ ri,j2R (4.13b)

J i,jy,2B = αy

(
φi,j−1

3 − φi,j2

)
+ βy

(
J i,j−1
y,3 + J i,jy,2

)
+ ri,j2B (4.13c)

J i,jx,3R = αx

(
φi,j3 − φ

i+1,j
4

)
+ βx

(
J i,jx,3 + J i+1,j

x,4

)
+ ri,j3R (4.13d)

J i,jy,3T = αy

(
φi,j3 − φ

i,j+1
2

)
+ βy

(
J i,jy,3 + J i,j+1

y,2

)
+ ri,j3T (4.13e)
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J i,jx,4L = αx

(
φi−1,j

3 − φi,j4

)
+ βx

(
J i−1,j
x,3 + J i,jx,4

)
+ ri,j4R (4.13f)

J i,jy,4T = αy

(
φi,j4 − φ

i,j+1
1

)
+ βy

(
J i,jy,4 + J i,j+1

y,1

)
+ ri,j4T (4.13g)

Similarly, we have

αy =
1

4π

∑
ηm≥0

ηmwm (4.14)

βy =
3

4π

∑
ηm≥0

η2
mwm (4.15)

The residuals for Eq. 4.13 are defined as:

ri,j1B =
∑
ηm≥0

ηmψ
i,j−1
4,m +

∑
ηm≤0

ηmψ
i,j
1,mwm − αy

(
φ̃i,j−1

4 − φ̃i,j1

)
− βy

(
J̃ i,j−1
y,4 + J̃ i,jy,1

)
, (4.16a)

ri,j2R =
∑
µm≥0

µmψ
i,j
2,m +

∑
µm≤0

µmψ
i+1,j
m,1 wm − αx

(
φ̃i,j2 − φ̃

i+1,j
1

)
− βx

(
J̃ i,jx,2 + J̃ i+1,j

x,1

)
, (4.16b)

ri,j2B =
∑
ηm≥0

ηmψ
i,j−1
3,m +

∑
ηm≤0

ηmψ
i,j
2,mwm − αy

(
φ̃i,j−1

3 − φ̃i,j2

)
− βy

(
J̃ i,j−1
y,3 + J̃ i,jy,2

)
, (4.16c)

ri,j3R =
∑
µm≥0

µmψ
i,j
3,m +

∑
µm≤0

µmψ
i+1,j
4,m wm − αx

(
φ̃i,j3 − φ̃

i+1,j
4

)
− βx

(
J̃ i,jx,3 + J̃ i+1,j

x,4

)
, (4.16d)

ri,j3T =
∑
ηm≥0

ηmψ
i,j
3,m +

∑
ηm≤0

ηmψ
i,j+1
2,m wm − αy

(
φ̃i,j3 − φ̃

i,j+1
2

)
− βy

(
J̃ i,jy,3 + J̃ i,j+1

y,2

)
, (4.16e)

ri,j4L =
∑
µm≥0

µmψ
i−1,j
3,m +

∑
µm≤0

µmψ
i,j
4,mwm − αx

(
φ̃i−1,j

3 − φ̃i,j4

)
− βx

(
J̃ i−1,j
x,3 + J̃ i,jx,4

)
, (4.16f)

ri,j4T =
∑
ηm≥0

ηmψ
i,j
4,m +

∑
ηm≤0

ηmψ
i,j+1
1,m wm − αy

(
φ̃i,j4 − φ̃

i,j+1
1

)
− βy

(
J̃ i,jy,4 + J̃ i,j+1

y,1

)
. (4.16g)

Using a similar method to that of above we can now expand the the face average Ẽ in Eq. 4.5,
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and Eq. 4.7 using the P1 equations as well.

Ẽi,jxx,1L =
∑
µm≥0

µ2
mψ

i−1,j
2,m wm +

∑
µm≤0

µ2
mψ

i,j
1,mwm

=
∑
µm≥0

µ2
m

1

4π

(
φi−1,j

2 + 3
[
µmJ

i−1,j
x,2 + ηmJ

i−1,j
y,2

])
wm+

∑
µm≤0

µ2
m

1

4π

(
φi,j1 + 3

[
µmJ

i,j
x,1 + ηmJ

i,j
y,1

])
wm+

∑
µm≥0

µ2
m

[
ψi−1,j

2,m − 1

4π

(
φi−1,j

2 + 3
[
µmJ

i−1,j
x,2 + ηmJ

i−1,j
y,2

])]
wm+

∑
µm≤0

µ2
m

[
ψi,jm,1 −

1

4π

(
φi,j1 + 3

[
µmJ

i,j
x,1 + ηmJ

i,j
y,1

])]
wm

=
∑
µm≥0

µ2
m

1

4π

(
φi−1,j

2 + 3µmJ
i−1,j
x,2

)
wm +

∑
µm≤0

µ2
m

1

4π

(
φi,j1 + 3µmJ

i,j
x,1

)
wm +Ri,jxx,1L

By making the following definitions,

ξxxx =
3

4π

∑
µm≥0

µ3
mwm, (4.17a)

ξxyx =
3

4π

∑
ηm≥0

µ2
mηmwm, (4.17b)

ξyyy =
3

4π

∑
ηm≥0

η3
mwm, (4.17c)

ξxyy =
3

4π

∑
µm≥0

η2
mµmwm, (4.17d)

ρxx =
1

4π

∑
µm≥0

µ2
mwm, (4.17e)

ρyy =
1

4π

∑
ηm≥0

η2
mwm. (4.17f)

we can now write the face average Ẽ in terms of the P1 expansion for the left and right sides

of the cell,

Ẽi,jxx,1L = ρxx

(
φi−1,j

2 + φi,j1

)
+ ξxxx

(
J i−1,j
x,2 − J i,jx,1

)
+Ri,jxx,1L (4.18a)
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Ẽi,jxx,4L = ρxx

(
φi−1,j

3 + φi,j4

)
+ ξxxx

(
J i−1,j
x,3 − J i,jx,4

)
+Ri,jxx,4L (4.18b)

Ẽi,jxx,2R = ρxx

(
φi,j2 + φi+1,j

1

)
+ ξxxx

(
J i,jx,2 − J

i+1,j
x,1

)
+Ri,jxx,2R (4.18c)

Ẽi,jxx,3R = ρxx

(
φi,j3 + φi+1,j

4

)
+ ξxxx

(
J i,jx,3 − J

i+1,j
x,4

)
+Ri,jxx,3R (4.18d)

Where the residuals are defined as:

Ri,jxx,1L =
∑
µm≥0

µ2
mψ

i−1,j
2,m wm +

∑
µm≤0

µ2
mψ

i,j
1,mwm

− ρxx
(
φ̃i−1,j

2 + φ̃i,j1

)
− ξxxx

(
J̃ i−1,j
x,2 − J̃ i,jx,1

)
(4.19a)

Ri,jxx,4L =
∑
µm≥0

µ2
mψ

i−1,j
3,m wm +

∑
µm≤0

µ2
mψ

i,j
4,mwm

− ρxx
(
φ̃i−1,j

3 + φ̃i,j4

)
− ξxxx

(
J̃ i−1,j
x,3 − J̃ i,jx,4

)
(4.19b)

Ri,jxx,2R =
∑
µm≥0

µ2
mψ

i,j
2,mwm +

∑
µm≤0

µ2
mψ

i+1,j
1,m wm

− ρxx
(
φ̃i,j2 + φ̃i+1,j

1

)
− ξxxx

(
J̃ i,jx,2 − J̃

i+1,j
x,1

)
(4.19c)

Ri,jxx,3R =
∑
µm≥0

µ2
mψ

i,j
3,mwm +

∑
µm≤0

µ2
mψ

i+1,j
4,m wm

− ρxx
(
φ̃i,j3 + φ̃i+1,j

4

)
− ξxxx

(
J̃ i,jx,3 − J̃

i+1,j
x,4

)
(4.19d)

For the top and bottom of the cells we have

Ẽi,jyy,1B = ρyy

(
φi,j−1

4 + φi,j1

)
+ ξyyy

(
J i,j−1
y,4 − J i,jy,1

)
+Ri,jyy,1B (4.20a)

Ẽi,jyy,2B = ρyy

(
φi,j−1

3 + φi,j2

)
+ ξyyy

(
J i,j−1
y,3 − J i,jy,2

)
+Ri,jyy,2B (4.20b)

Ẽi,jyy,3T = ρyy

(
φi,j3 + φi,j+1

2

)
+ ξyyy

(
J i,jy,3 − J

i,j+1
y,2

)
+Ri,jyy,3T (4.20c)

Ẽi,jyy,4T = ρyy

(
φi,j4 + φi,j+1

1

)
+ ξyyy

(
J i,jy,4 − J

i,j+1
y,1

)
+Ri,jyy,4T (4.20d)
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Where the residuals here are defined as

Ri,j1B,yy =
∑
ηm≥0

η2
mψ

i,j−1
4,m wm +

∑
ηm≤0

η2
mψ

i,j
1,mwm

− ρyy
(
φ̃i,j−1

4 + φ̃i,j1

)
+ ξyyy

(
J̃ i,j−1
y,4 − J̃ i,jy,1

)
(4.21a)

Ri,j2B,yy =
∑
ηm≥0

η2
mψ

i,j−1
3,m wm +

∑
ηm≤0

η2
mψ

i,j
2,mwm

− ρyy
(
φ̃i,j−1

3 + φ̃i,j2

)
+ ξyyy

(
J̃ i,j−1
y,3 − J̃ i,jy,2

)
(4.21b)

Ri,j3T,yy =
∑
ηm≥0

η2
mψ

i,j
3,mwm +

∑
ηm≤0

η2
mψ

i,j+1
2,m wm

− ρyy
(
φ̃i,j3 + φ̃i,j+1

2

)
+ ξyyy

(
J̃ i,jy,3 − J̃

i,j+1
y,2

)
(4.21c)

Ri,j4T,yy =
∑
ηm≥0

η2
mψ

i,j
4,mwm +

∑
ηm≤0

η2
mψ

i,j+1
1,m wm

− ρyy
(
φ̃i,j4 + φ̃i,j+1

1

)
+ ξyyy

(
J̃ i,jy,4 − J̃

i,j+1
y,1

)
(4.21d)

Now looking at the cross terms, Ẽxy we see

Ẽi,jxy,1L = ξxyy

(
J i−1,j
y,2 − J i,jy,1

)
+Ri,jxy,1L (4.22a)

Ẽi,jxy,1B = ξxyx

(
J i,j−1
x,4 − J i,jx,1

)
+Ri,jxy,1B (4.22b)

Ẽi,jxy,2R = ξxyy

(
J i,jy,2 − J

i+1,j
y,1

)
+Ri,jxy,2R (4.22c)

Ẽi,jxy,2B = ξxyx

(
J i,j−1
x,3 − J i,jx,2

)
+Ri,jxy,2B (4.22d)

Ẽi,jxy,3R = ξxyy

(
J i,jy,3 − J

i+1,j
y,4

)
+Ri,jxy,3R (4.22e)

Ẽi,jxy,3T = ξxyx

(
J i,jx,3 − J

i,j+1
x,2

)
+Ri,jxy,3T (4.22f)

Ẽi,jxy,4L = ξxyy

(
J i−1,j
y,3 − J i,jy,4

)
+Ri,jxy,4L (4.22g)

Ẽi,jxy,4T = ξxyx

(
J i,jx,4 − J

i,j+1
x,1

)
+Ri,jxy,4T (4.22h)
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Here the residuals are defined as:

Ri,jxy,1L =
∑
µm≥0

µmηmψ
i−1,j
2,m wm +

∑
µm≤0

µmηmψ
i,j
1,mwm − ξxyy

(
J̃ i−1,j
y,2 − J̃ i,jy,1

)
(4.23a)

Ri,jxy,1B =
∑
ηm≥0

µmηmψ
i,j−1
4,m wm +

∑
ηm≤0

µmηmψ
i,j
1,mwm − ξxyx

(
J̃ i,j−1
x,4 − J̃ i,jx,1

)
(4.23b)

Ri,jxy,2R =
∑
µm≥0

µmηmψ
i,j
2,mwm +

∑
µm≤0

µmηmψ
i+1,j
1,m wm − ξxyy

(
J̃ i,jy,2 − J̃

i+1,j
y,1

)
(4.23c)

Ri,jxy,2B =
∑
ηm≥0

µmηmψ
i,j−1
3,m wm +

∑
ηm≤0

µmηmψ
i,j
2,mwm − ξxyx

(
J̃ i,j−1
x,3 − J̃ i,jx,2

)
(4.23d)

Ri,jxy,3R =
∑
µm≥0

µmηmψ
i,j
3,mwm +

∑
µm≤0

µmηmψ
i+1,j
4,m wm − ξxyy

(
J̃ i,jy,3 − J̃

i+1,j
y,4

)
(4.23e)

Ri,jxy,3T =
∑
ηm≥0

µmηmψ
i,j
3,mwm +

∑
ηm≤0

µmηmψ
i+1,j
2,m wm − ξxyx

(
J̃ i,jx,3 − J̃

i+1,j
x,2

)
(4.23f)

Ri,jxy,4L =
∑
µm≥0

µmηmψ
i−1,j
3,m wm +

∑
µm≤0

µmηmψ
i,j
4,mwm − ξxyy

(
J̃ i−1,j
y,3 − J̃ i,jy,4

)
(4.23g)

Ri,jxy,4T =
∑
ηm≥0

µmηmψ
i,j
4,mwm +

∑
ηm≤0

µmηmψ
i,j+1
1,m wm − ξxyx

(
J̃ i,jx,4 − J̃

i,j+1
x,1

)
(4.23h)

We now have a complete set of equations that can be substituted into Eq. 4.4, Eq. 4.5, and

Eq. 4.7, to solve for the scalar flux, x- and y- components of the current for all cells in the

interior of the domain. To solve along the edges and corners of the domain, we will need to

modify the factors developed above. In the case of the boundary conditions defined in Eq. 4.3,

we can define the incoming current at any point by

J inr,∗ =
∑

Ω·n≤0

Ωr,mψ
in
∗,mwm (4.24)

Here r = x or y and ∗ = 1L, 2B, 3R, 4T . . .. One can then use this definition to rewrite Eq. 4.13,

and their associated residuals Eq. 4.16. For the bottom cells, ∗ = 1, 2 we would have

J i,1y,∗B = −αyφi,1∗ + βyJ
i,1
y,∗ + J in,iy,∗ + ri,1∗B (4.25a)

ri,1∗B =
∑
ηm≤0

ηmψ
i,1
∗,mwm + αyφ̃

i,1
∗ − βyJ̃ i,1y,∗ (4.25b)

J in,iy,∗ =
∑
ηm≥0

ηmψ
in
∗B,mwm (4.25c)
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For the top cells, ∗ = 3, 4 we would have

J
i,ny

y,∗T = αyφ
i,ny
∗ + βyJ

i,ny
y,∗ + J in,iy,∗ + r

i,ny

∗T (4.26a)

r
i,ny

∗T =
∑
ηm≥0

ηmψ
i,ny
∗,mwm − αyφ̃

i,ny
∗ − βyJ̃

i,ny
y,∗ (4.26b)

J in,iy,∗ =
∑
ηm≤0

ηmψ
in
∗T,mwm (4.26c)

For the left cells, ∗ = 1, 4 we would have

J1,j
x,∗L = −αxφ1,j

∗ + βxJ
1,j
x,∗ + J in,jx,∗ + r1,j

∗L (4.27a)

r1,j
∗L =

∑
µm≤0

µmψ
1,j
∗,mwm + αxφ̃

1,j
∗ − βxJ̃1,j

x,∗ (4.27b)

J in,jx,∗ =
∑
µm≥0

µmψ
in
∗L,mwm (4.27c)

For the right cells, ∗ = 2, 3 we would have

Jnx,j
x,∗R = αxφ

nx,j
∗ + βxJ

nx,j
x,∗ + J in,jx,∗ + rnx,j

∗R (4.28a)

rnx,j
∗R =

∑
µm≥0

µmψ
nx,j
∗,m wm − αxφ̃nx,j

∗ − βxJ̃nx,j
x,∗ (4.28b)

J in,jx,∗ =
∑
µm≤0

µmψ
in
∗R,mwm (4.28c)

We now look at the boundary conditions needed for the first moment equations. For the left

cells, i = 1, and ∗ = 1, 4, the boundary equations would be

Ẽ1,j
xx,∗L = ρxxφ

1,j
∗ − ξxxxJ1,j

x,∗ +R1,j
xx,∗L + εin,jxx,∗L (4.29a)

Ẽ1,j
xy,∗L = −ξxyyJ1,j

y,∗ +R1,j
xy,∗L + εin,jxy,∗L (4.29b)

R1,j
xx,∗L =

∑
µm≤0

µ2
mψ

1,j
∗,mwm − ρxxφ̃1,j

∗ + ξxxxJ̃
1,j
x,∗ (4.29c)

R1,j
xy,∗L =

∑
µm≤0

µmηmψ
1,j
∗,mwm + ξxyyJ̃

1,j
y,∗ (4.29d)

ε1,jxx,∗L =
∑
µm≥0

µ2
mψ

in
∗L,mwm (4.29e)
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ε1,jxy,∗L =
∑
µm≥0

µmηmψ
in
∗L,mwm (4.29f)

For the right cells, where i = nx, and ∗ = 3, 4, we would have

Ẽnx,j
xx,∗R = ρxxφ

nx,j
∗ + ξxxxJ

nx,j
x,∗ +Rnx,j

xx,∗R + εin,jxx,∗R (4.30a)

Ẽnx,j
xy,∗R = ξxyyJ

nx,j
y,∗ +Rnx,j

xy,∗L + εin,jxy,∗R (4.30b)

Rnx,j
xx,∗R =

∑
µm≥0

µ2
mψ

nx,j
∗,m wm − ρxxφ̃nx,j

∗ − ξxxxJ̃nx,j
x,∗ (4.30c)

Rnx,j
xy,∗R =

∑
µm≥0

µmηmψ
nx,j
∗,m wm − ξxyyJ̃nx,j

y,∗ (4.30d)

εnx,j
xx,∗R =

∑
µm≤0

µ2
mψ

in
∗R,mwm (4.30e)

εnx,j
xy,∗R =

∑
µm≤0

µmηmψ
in
∗R,mwm (4.30f)

For the bottom cells, j = 1, and ∗ = 1, 2, the boundary equations would be

Ẽi,1yy,∗B = ρyyφ
i,1
∗ − ξyyyJ i,1y,∗ +Ri,1yy,∗B + εin,iyy,∗B (4.31a)

Ẽi,1xy,∗B = −ξxyxJ i,1x,∗ +Ri,1xy,∗B + εin,ixy,∗B (4.31b)

Ri,1yy,∗B =
∑
ηm≤0

η2
mψ

i,1
∗,mwm − ρyyφ̃i,1∗ + ξyyyJ̃

i,1
y,∗ (4.31c)

Ri,1xy,∗B =
∑
ηm≤0

µmηmψ
i,1
∗,mwm + ξxyxJ̃

i,1
x,∗ (4.31d)

εi,1yy,∗B =
∑
ηm≥0

η2
mψ

in
∗B,mwm (4.31e)

εi,1xy,∗B =
∑
ηm≥0

µmηmψ
in
∗B,mwm (4.31f)

For the top cells, j = ny, ∗ = 3, 4

Ẽ
i,ny

yy,∗T = ρyyφ
i,ny
∗ + ξyyyJ

i,ny
y,∗ +R

i,ny

yy,∗T + εin,iyy,∗T (4.32a)

Ẽ
i,ny

xy,∗T = ξxyxJ
i,ny
x,∗ +R

i,ny

xy,∗T + εin,ixy,∗T (4.32b)

R
i,ny

yy,∗T =
∑
ηm≥0

η2
mψ

i,ny
∗,mwm − ρyyφ̃

i,ny
∗ − ξyyyJ̃

i,ny
y,∗ (4.32c)
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R
i,ny

xy,∗T =
∑
ηm≥0

µmηmψ
i,ny
∗,mwm − ξxyxJ̃

i,ny
x,∗ (4.32d)

ε
i,ny

yy,∗T =
∑
ηm≤0

η2
mψ

in
∗T,mwm (4.32e)

ε
i,ny

xy,∗R =
∑
ηm≤0

µmηmψ
in
∗T,mwm (4.32f)

We now have a fully developed set of equations for describing the face average cell values that

can be used in Eq. 4.4 - Eq. 4.7. This set of low order equations can be further simplified from

twelve equations and unknowns ( φ, Jx, and Jy in each corner) to eliminate currents. By doing

this we reduce the computational power needed to solve this coupled set of equations.

4.3 Metrics in Two Dimensions

Previously we have developed metrics that measure transport effects. For now we will only

consider the metrics M2 and M3 that are based off the quasidiffusion factor E. Looking at a

more general version of Eq. 2.43c, [23] we would have:

¯̄E =

∫
4π

~Ω~Ωψ(~r, ~Ω)dΩ∫
4π
ψ(~r, ~Ω)dΩ

. (4.33)

We see that the quasidiffusion factor E is now a tensor, with multiple components: Exx, Eyy,

and Exy = Eyx. Consequently, M2, and M3, now have multiple components as well. M2 would

be defined:
¯̄M2 = ¯̄I

1

3
− ¯̄E (4.34)

The individual components of M2 would be:

M2,xx(x, y) =
1

3
− Exx(x, y), (4.35a)

M2,yy(x, y) =
1

3
− Eyy(x, y), (4.35b)

M2,xy(x, y) = M2,yx(x, y) = Exy(x, y). (4.35c)

For M3 we would now have,
¯̄M3 = ∇ ¯̄E, (4.36)
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where its components would be,

M3,xx(x, y) =
∂

∂x
Exx(x, y), (4.37a)

M3,yy(x, y) =
∂

∂y
Eyy(x, y), (4.37b)

M3,xy(x, y) =
∂

∂x
Exy(x, y), (4.37c)

M3,yx(x, y) =
∂

∂y
Eyx(x, y). (4.37d)

To calculate these metrics numerically, based on the SCB discretization, we would simply

calculate the quasidiffusion factor E for each corner point by

Ei,jk,xx =

∑
m

µ2
mψ

i,j
k,mwm∑

m

ψi,jk,mwm
, (4.38a)

Ei,jk,yy =

∑
m

η2
mψ

i,j
k,mwm∑

m

ψi,jk,mwm
, (4.38b)

Ei,jk,xy =

∑
m

µmηmψ
i,j
k,mwm∑

m

ψi,jk,mwm
, (4.38c)

where k = 1 . . . 4, is the corner index. We can then calculate M2 for each corner easily by

M i,j
k,2xx =

∣∣∣∣13 − Ei,jk,xx
∣∣∣∣ , (4.39a)

M i,j
k,2yy =

∣∣∣∣13 − Ei,jk,yy
∣∣∣∣ , (4.39b)

M i,j
k,2xy =

∣∣∣Ei,jk,xy∣∣∣ . (4.39c)

For M3 we need to consider partial derivatives. To obtain these values we use finite difference

approximation across two adjacent corners in the same cell.

M i,j
k,3x∗ =

2

∆xi

∣∣∣Ei,jk′′,x∗ − Ei,jk′,x∗∣∣∣ , (4.40a)
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M i,j
k,3y∗ =

2

∆yj

∣∣∣Ei,jk′′,x∗ − Ei,jk′,x∗∣∣∣ . (4.40b)

We generalize ∗ = x, y, and k = 1, 2, because of the discretization. k′ and k′′ would be two

adjacent corners, for the first equation where we calculate the x-derivative, k′ = 1, 4, and

k′′ = 1, 3 respectively. For the second equation for the y-derivative, we would have k′ = 1, 2,

and k′′ = 3, 4.

4.4 2D Boundary Conditions

Here we develop the boundary conditions to couple the transport and diffusion subdomains.

Similar to the one dimensional version, we approximate the angular flux as a linearly anisotropic

function and expand the angular flux using the P1 approximation,

ψm(x, y) =
1

4π
(φ(x, y) + 3µmJx(x, y) + 3ηmJy(x, y)) . (4.41)
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Chapter 5

Numerical Results for 2D Problem

In this chapter we look at the numerical results to two test problems. In the first section we

outline test problems and their solutions. These test cases are extensions of the ones done for

the 1D results and expanded to multiple dimensions. We then look at the metrics developed

in Sec. 4.3, for the converged solution. We compare these metrics to those estimated from the

solution of a single transport iteration. The Second Moment residual terms are presented as

another measure of how far the flux is from being linearly anisotropic. All these results help

to define what areas in the problem domain can be considered diffusive to define the different

domains. The final domain decomposition results are presented last where diffusion subdomains

are imposed, and the relative error of the method is presented compared to a solution obtained

without any domain decomposition.
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5.1 Test Problems

In this section we consider tests which are analogous to the one dimensional problems. We

start with a two dimensional version of Test A, which can be seen in Figure 5.1a. This is a

two region problem defined by a pure absorbing region on the bottom and left sides of the

domain σt = 2 cm−1 and σs = 0 cm−1. This area is defined by ∆x = 0.1 cm for 0 ≤ x ≤ 1,

and ∆y = 0.1 cm for 0 ≤ y ≤ 1. The interior of the domain is a pure scattering media where

σt = σs = 100 cm−1. The spacial mesh for 1 ≤ x ≤ 11 is ∆x = 1 cm, and 1 ≤ y ≤ 11 is ∆y = 1

cm. There is an incident flux on the left and bottom sides of the domain where ψin = 1.0. The

scalar flux solution to this problem is presented in Figure 5.1a.

ψin  = 1

ψin  = 1

σt  = 100 
σs  = 100

σt  = 2
σs  = 0

10 cm1 cm

10 cm

1 cm

Δx = Δy = 1cm

Δx = Δy = 0.1cm

(a): Test-A Map

σt  = 10
σs  = 9.9
q = 0.01

σt  = 1.0
σs  = 0.5
q = 0.5

20 cm10 cm

20 cm

10 cm

Δx = Δy = 0.5cm

Δx = Δy = 1cm

(b): Test-B Map

Another test, analogous to Test B, in two dimensions is again defined by a two region

problem, shown in Figure 5.1b. The absorbing area domain, 0 ≤ x ≤ 10, and 0 ≤ y ≤ 10, has

cross sections σt = 1.0 and σs = 0.5, and a external source q = 0.5. Each spatial cell is one

mean free path thick in the x- and y- directions where ∆x = ∆y = 1. The highly scattering

domain, 10 ≤ x ≤ 30, and 10 ≤ y ≤ 30, are defined by cell widths ∆x = 0.5 and ∆y = 0.5.

Here the cross sections are σt = 10 and σs = 9.9, with a very small external source of q = 0.01.

The scalar flux for this problem is given in Figure 5.1b. For these problems we ran with a

point-wise convergence criteria of ε = 10−12 and used the Abu-Shumay’s q461214 quadrature

set. [24].
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5.2 2D Metric Results

In this section we analyze the metrics developed in Section 4.3. These metrics provide a way

of determining what areas in a problem domain are diffusive. From Test A, we know the

high scattering domain to be the definition of a diffusive area, so we expect that in that area

the metrics will be small. The results presented here represent the metrics calculated without

domain decomposition and from the final solution. The graphs for M2 can be seen in Figure 5.1.
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Figure 5.1: M2 for Test A

From these graphs we can see that the metrics are small in the pure scattering region,

noticing that most of the values for the metrics are below 10−5. Another obvious fact about

these graphs is that they are symmetric and show that the smallest values are well within the

diffusive area along the line of symmetry for the xx and yy moments. For the xy moment, we

see that the smallest values are perpendicular to the axis of symmetry.
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Figure 5.2: M3 for Test A

Figure 5.2 shows M3 calculated for Test A. The upper two graphs Figure 5.2a and Fig-

ure 5.2b, show the x-derivatives of the components of ¯̄E, from Eq. 4.35, while the lower two

graphs, Figure 5.2c and Figure 5.2d show the y-derivatives.

The results for Test B are not quite as dramatic as those in Test A, which can be seen

in Figure 5.3 and Figure 5.4. For M2 we notice that the diffusive domain, where M2,xx and

M2,yy ≤ 10−5, does not occur until x, y = 15 which is approximately 100 mean free paths into

the domain. This is true too for Test A, where each cell is 100 mean free paths and the gradient

for the metric is much steeper.

70



x

y

Log
10

( | M
2xx

| )

 

 

5 10 15 20 25

5

10

15

20

25

−10

−9

−8

−7

−6

−5

−4

−3

−2

(a): log10(M2,xx)

x

y

Log
10

( | M
2yy

| )

 

 

5 10 15 20 25

5

10

15

20

25

−10

−9

−8

−7

−6

−5

−4

−3

−2

(b): log10(M2,yy)

x

y

Log
10

( | M
2xy

| )

 

 

5 10 15 20 25

5

10

15

20

25

−12

−10

−8

−6

−4

−2

(c): log10(M2,xy)

Figure 5.3: M2 for Test B

Figure 5.4 shows M3 calculate for test B. The upper two graphs show the x-derivatives

of the Exx and Exy, while the bottom two show the y-derivatives of Eyy and Eyx. We note

that these metrics identify diffusive regions next to the boundary, which is why we consider all

metrics presented rather than any single one.

Each of these plots shows the metrics calculated from the converged transport solution

with no domain decomposition. These graphs accurately show where all the diffusive domains

are, and highlight areas of strong transport effects. Compared to 1D, there are more effects

here, which is why we must consider many different versions of the metrics to accurately define

the diffusive domains. This estimate can not be based off the converged solution however, the
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Figure 5.4: M3 for Test B

metrics will need to be calculated after a single transport iteration to utilize the full methodology

presented.
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5.3 Metric Estimations in 2D

Here we look at the metrics that are calculated using only one transport iteration. The scatter-

ing term on the right hand side of the transport equation is based off a diffusion approximation

of the whole domain. This approximation will allow us to estimate the location of diffusive

areas for establishing subdomains. We first consider Test A.
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Figure 5.5: M2 Estimation for Test A

The metrics presented in Figure 5.5 and Figure 5.6 are the metrics estimated after one

iteration. These figures can be compared to Figure 5.1 and Figure 5.2 respectively. We see
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Figure 5.6: M3 Estimate for Test A

many of the same trends in both sets of figures, showing that this is an accurate estimation.

To quantitatively evaluate the relative errors in the metrics we will use a L1-norm,

‖M −Mtr‖L1

‖Mtr‖L1

. (5.1)

Mtr is a metric computed by a known solution obtained from a converged solution of the

transport problem with no domain decomposition. The relative errors of M2 and M3 can be

seen in Table 5.1. Notice that many of the values, e.g. M2,xx and M2,yy have the same error,

this is because these metrics are symmetric to one another so it should follow that their error

would be the same too.
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Table 5.1: Error in Test A Metrics

Metric ‖M −Mtr‖L1/‖Mtr‖L1

M2,xx 0.0482656

M2,yy 0.0482656

M2,xy 0.107730

M3,xx 0.659710

M3,xy 0.165611

M3,yy 0.659710

M3,yx 0.165611

Table 5.2: Error in Test B Metrics

Metric ‖M −Mtr‖L1/‖Mtr‖L1

M2,xx 0.0168471

M2,yy 0.0168471

M2,xy 0.0225931

M3,xx 0.0788289

M3,xy 0.231046

M3,yy 0.0788289

M3,yx 0.231046

The results for estimating the metrics in test B can be seen in Figure 5.7 and Figure 5.8.

These values represent the metrics calculated after one iteration and can be compared with

those from the converged transport solution in Figure 5.3 and Figure 5.4 respectively. The

error in these metrics is shown in Table 5.2.
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Figure 5.7: M2 Estimate for Test B

We can see from these results that our estimates of the metrics are sufficiently accurate

for our purpose. The most important thing we need from these metrics is that they show the

correct order, so that they can be captured by some user defined tolerance. This allows us to

determine where the diffusive areas are for a domain decomposition method.
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Figure 5.8: M3 Estimate for Test B

5.4 Second Moment and Residual Terms

To evaluate the quality of the developed metrics, we can analyze the second moment and

residual terms. These terms would be close to zero if the angular flux is linearly anisotropic.

The residuals defined in Eq. 4.8, Eq. 4.16, Eq. 4.19, Eq. 4.21, and Eq. 4.23, can confirm our

metric values in determining if a region is diffusive.
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Figure 5.9: ri,j for Test A

Figure 5.9 shows the residuals used in Eq. 4.4. The graph on the left shows the residuals

calculated for r1B, r2B, r3T , and r4T , while the graph on the right shows r1L, r2R, r3R, and r4L.

This plot shows the log10(r), so the values corresponding to different colors show what order

of magnitude the value is. Notice that the center of the domain is typically well below 10−8,

indicating that this area is fairly diffusive.

78



x

y

 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

(a): log10(Rxx)

x

y

 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

−7

−6

−5

−4

−3

−2

−1

(b): log10(Rxy) for Left and Right Face Values

x

y

 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

−7

−6

−5

−4

−3

−2

−1

(c): log10(Rxy) for Top and Bottom Face Values

x

y

 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

(d): log10(Ryy)

Figure 5.10: ri,j for Test A

The residual terms, R, calculated to be used in Eq. 4.5 are presented in Figure 5.10a

and Figure 5.10b, likewise the residuals used in Eq. 4.7 are presented in Figure 5.10c and

Figure 5.10d. These all show trends similar to the metrics, indicating which areas can be

considered diffusive. The last set of terms, Ê, are shown in Figure 5.11. These Eddington-like

terms are described by Eq. 4.8, and show the same trends as one sees for M2 in Figure 5.1.
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Figure 5.11: Êi,j for Test A

For all figures, we see that for cells inside the diffusion domain, most of the values are

relatively small < 10−5. This means that the right hand side of most of the low-order equations

is relatively small well inside a diffusion domain. This indicates that one could set these values

to 0.0 if it is known beforehand what areas are diffusive. Doing this will transform the SM

equations into a diffusion approximation, and save the effort of having to solve the transport

equation in these areas.
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5.5 Domain Decomposition

Here we look at the effects of splitting the problem into multiple areas to see the effects of not

solving transport in diffusive areas. We do not use the metrics to divide the domain, but rather

to use them as verification of where we impose the diffusion areas. We use the same bounds as

in the 1D case only extend them for both x and y bounds.
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Figure 5.12: Domain Decomposition of Test A, 2D

In Figure 5.12 we see the effects of imposing a diffusion subdomain in each problem at (a)

3 ≤ x, y ≤ 10, and (b) 4 ≤ x, y ≤ 9. The plots show the relative error of the scalar flux on

a log scale. The areas of greatest error are at the subdomain boundaries and attenuate from

there. We evaluate the relative error associated with each test in the L1 norm. The results for

Test A are shown in Table 5.3. We note that moving further inside the diffusive domain does

reduce both the overall error and the maximum error. In Table 5.4, we see the largest metrics

found in the diffusion domain for each case. Notice that the values decrease for smaller diffusion

domains, indicating that we have a better approximation for the diffusion area, therefore error

should decrease throughout the problem domain.
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Table 5.3: Error in Test A Domain Decomposition

Diffusive Domain ‖φ− φtr‖L1/‖φtr‖L1 max |φerror|
2 ≤ x, y ≤ 10 5.97743× 10−4 2.55427× 10−4

3 ≤ x, y ≤ 9 5.64821× 10−6 5.54038× 10−6

Table 5.4: max |M | in Test A Diffusion Domain

Metric 2 ≤ x, y ≤ 10 3 ≤ x, y ≤ 9

M2,xx 4.3568× 10−6 1.2602× 10−6

M2,yy 4.3568× 10−6 1.2602× 10−6

M2,xy 7.2996× 10−6 2.0778× 10−6

M3,xx 7.9641× 10−6 1.6577× 10−6

M3,xy 9.6736× 10−6 1.6416× 10−6

M3,yy 7.9641× 10−6 1.6577× 10−6

M3,xy 9.6736× 10−6 1.6416× 10−6

Figure 5.13 shows the results of imposing a diffusion subdomain in test B for diffusion

regions defined by (a) 14 ≤ x, y ≤ 27.5, (b) 15.5 ≤ x, y ≤ 26, and (c) 17 ≤ x, y ≤ 25. The

integral norm, and maximal values can be seen in Table 5.5. All the figures are on the same

scale, for each test, so it is easy to see the effects of splitting the boundary. We note that the

largest source of error is always right at the interface of the regions, and this in turn affects

the solution of the rest of the problem. Therefore, pushing the subdomain boundaries further

into the diffusion area makes the approximations for the boundary conditions more accurate,

and subsequently reduces error. In Table 5.6, we see the maximum error found in the diffusion

domains. Here we observe the same trends as test A, where the metrics decrease the further

we go into the diffusion domain, and making the diffusion approximation more accurate.

Table 5.5: Error in Test B Domain Decomposition

Diffusive Domain ‖φ− φtr‖L1/‖φtr‖L1 max |φerror|
14 ≤ x, y ≤ 27.5 5.97743× 10−4 2.55427× 10−4

15.5 ≤ x, y ≤ 26 1.75911× 10−8 2.15391× 10−6

17 ≤ x, y ≤ 25 1.90811× 10−9 3.85300× 10−7
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(a): 14 ≤ x, y ≤ 27.5, P1 Boundary Conditions
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(b): 15.5 ≤ x, y ≤ 26, P1 Boundary Conditions
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(c): 17 ≤ x, y ≤ 25, P1 Boundary Conditions

Figure 5.13: Domain Decomposition of Test A, 2D

Table 5.6: max |M | in Test B Diffusion Domain

Metric 14 ≤ x, y ≤ 27.5 15.5 ≤ x, y ≤ 26 17 ≤ x, y ≤ 25

M2,xx 3.6464× 10−5 3.0585× 10−6 4.9750× 10−7

M2,yy 3.6464× 10−5 3.0585× 10−6 4.9750× 10−7

M2,xy 1.4903× 10−6 3.8417× 10−8 2.5764× 10−9

M3,xx 7.5525× 10−5 6.2211× 10−6 1.1925× 10−6

M3,xy 1.2313× 10−6 3.1407× 10−8 1.8503× 10−9

M3,yy 7.5525× 10−5 6.2211× 10−6 1.1925× 10−6

M3,yx 1.2313× 10−6 3.1407× 10−8 1.8503× 10−9
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Chapter 6

Conclusions

In this study we analyzed how transport problems can be decomposed into multiple transport

and diffusion domains to improve efficiency while still maintaining a required level of accuracy.

1D problems were studied using the Linear Discontinuous method, and 2D problems were

solved using the Simple Corner Balance method. The Second Moment method was used to

develop a set of low-order equations that would provide a solution everywhere and accelerate the

convergence of the transport solution. Metrics for measuring transport effects were developed

to determine how to split the domain, and different boundary conditions were used to couple

the different kinds of domains.

In the 1D problems we saw a variety of results that showed a proof of concept. We deter-

mined in test A that a domain that is highly scattering can be successfully decomposed, while

still generating a solution that is close to what is expected. It should be noted that test A is

diffusive in terms of an asymptotic analysis, with scaling parameter 10−2, meaning that even

better results can be generated if the problem were more optically thick (i.e. corresponds to

a smaller scaling parameter). These ideas were expanded for 2D transport and similar results

were obtained. The results show that the greatest error in the domains always took place at

the boundaries of the domain. This tells us that the limiting factor for not generating better

results are the boundary conditions that couple transport and diffusion domains.

Test B in both 1D and 2D was meant to represent another type of problem where domains

may only be slightly diffusive. Here the results show that we still get adequate solutions to

the transport problem using the proposed domain decomposition method. We note that in

our methodology we used a true diffusion equation for our low-order equations. That is, we

modified our low order equations so that any second-moment terms would be set to zero.

We showed the proposed metrics enable one to quantify transport effects and determine

the spatial range of diffusive domains.The algorithm developed in this paper can be applied to

many production codes because it consists of a set of low order equations used in conjunction
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with whatever transport method is being used. This set of low order equations can be solved

everywhere and provide boundary conditions to the transport solver to limit where it is used.

This will increase the efficiency of the transport calculations by not having to solve the transport

problem everywhere, while still maintaining a desirable level of accuracy.

6.1 Future Work

This study can be expanded upon especially in terms of the 2D results. The discretized second

moment low-order equations used can be simplified by eliminating part of the unknowns. This

can significantly reduce the size of the matrix that is needed to be inverted, thus reducing the

computational load in terms of execution time and the memory needed.

Better boundary conditions can be determined in the 2D case. The next step is to reproduce

some necessary details of the asymptotic diffusion analysis on the SCB method. This derivation

should improve the interface conditions coupling the different regions based on the asymptotic

expansion of the angular flux. An analysis using different quadratures can be used to see if any

one shows a significant advantage.
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