
ABSTRACT

SOGA, SHOTA. Subspace Methods applied to gPC-based Surrogate Model Construction.
(Under the direction of Hany Abdel-Khalik.)

This thesis employs a recently developed reduced order modeling technique to render

a more efficient use of polynomial chaos method for surrogate model construction. Our

interest is in models containing many input parameters, which are often encountered

in nuclear engineering applications. The existing generalized Polynomial Chaos(gPC)

approach suffers from the curse of dimensionality when applied to models with many

parameters. In this thesis, we hybridize recently developed reduced order modeling tech-

niques based on the proper orthogonal decomposition method with gPC to reduce the

computational cost required to build the surrogate. The goal is to use ROM techniques to

reduce the effective dimension of the model either at the state space or the input param-

eters space. With the dimension of the model reduced, the computational cost required

for gPC can be substantially reduced. We also explore the use of sparse approximation

methods to find only the most dominant components of the gPC therefore further re-

ducing the computational cost. To study the impact of the various reduction techniques,

several hybridization approaches are employed. All developments are demonstrated using

a neutronics model that calculates the neutron distribution inside a reactor. Two types of

reduction are employed, a reduction at the state space and a reduction at the parameter

space. In the state space, we use the traditional POD approaches to find a subspace of

the state space that captures the most dominant variations for the state. At the param-

eters space, we use a recently developed approach that employs gradient information to

find a subspace in the parameter space, referred to as the active subspace. The inactive

subspace, the orthogonal complement to the active subspace, has much higher dimension

than the active subspace, implying that the model depends only on a few degrees of

freedom. This property is used to recast the gPC expansion by constraining it to the

active subspace.
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Chapter 1

Introduction

1.1 Background and Motivation

Nuclear reactor calculations are extremely complicated due to the complex nature

of the physics of radiation interaction with matter as well as the heterogeneous nature

of reactor design, which often contains a great deal of spatial details. The complexity

of these models makes it difficult to execute the engineering-oriented analyses such as

sensitivity and uncertainty analysis, essential to assess the credibility of the simulation.

Any of these analyses require many executions of the model, often proportional to and

exponentially dependent on the number of input parameters. For typical reactor models,

the number of parameters can range from between hundreds to millions depending on the

level of details captured by the model. This renders uncertainty analysis computationally

intractable for reactor calculations. To overcome this problem, the scientific community

has focused on using reduced order modeling techniques to replace the original complex

code with an inexpensive surrogate model that can be executed repeatedly for various

engineering analyses. There are a great number of methods developed over the years

for surrogate model construction, each with its own advantages and disadvantages. A

common theme to these methods is that the computational cost required to build the

surrogate is also dependent on the number of parameters, which makes its construction

difficult. Moreover, the accuracy of the surrogate is often difficult to quantify, which is

a pre-requisite for ensuring the results of all subsequent analyses using the surrogate are

credible. We focus in this thesis on a class of reduced order modeling techniques, referred

to hereinafter as subspace methods. In subspace methods the original dimensions of the
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model are reduced by confining variations to a subspace, called active subspace. The

implication is that variations orthogonal to the active subspace are not significant and

can be ignored. If the size of the active subspace is small enough, huge reduction in the

computational cost for surrogate construction can be achieved. More importantly, using

recent developments, one can show that the errors resulting from the reduction can be

bounded to ensure credibility of the surrogate predictions.

Subspace Approach as Reduced Order Modeling

Historically, engineering applications of reduced order modeling techniques have

gained popularity in the hydraulics community because of the high computational cost

of the models under consideration, but reduced order modeling itself can be traced back

to the mathematics of interpolation, truncated Taylor expansion, Method of Weighted

Residuals and so on. Reduced order modeling are be defined as a process by which solu-

tions to complex models can be described using few degrees of freedom, smaller than the

dimension of the complex solution. For example, assuming the model solution is described

by a function in one dimension evaluated at N points as determined by the discretization

technique used to obtain the numerical solution. If one can approximate this function by

a number of select functions, say r which is less than N , then one has a reduced order

model. This follows as now the function depends on r degrees of freedom rather than

N . One may argue that any engineering model can be considered a reduced order model

of the exact model (often unknown). This follows since the physical phenomenon under

consideration often has large degrees of freedom than engineering models. ROM tech-

niques can be distinguished based on the type of functions employed for the expansion.

Once an appropriate selection is made, one can re-cast the original model into one with

much fewer equations, which can be readily solved more efficiently. The choice of the ex-

pansion functions is fundamental to the success of this reduction approach. This choice

is expected to depend on the model, and therefore expert judgment is often needed to

make an educated choice. Moreover, calculating the errors resulting from this reduction

is an important step of the analysis. This error can be estimated a posteriori, i.e., after

the reduced model is constructed, by comparing its predictions to the original models.

Important examples of such approaches are the spectral expansion method and the

method of weighted residuals [2, 3]. In both methods, a set of orthogonal functions can

be shown to result in a rate of convergence that is exponential with respect to the order

2



of the expansion when the solution is sufficiently smooth [2].

The most common engineering approaches for reduced order modeling are the Proper

Orthogonal Decomposition Galerkin projection approach [4, 5]. The Proper Orthogonal

Decomposition is one of the common subspace approaches found in engineering disci-

plines. In the subspace approach, the structure of the solution to the system of stochastic

PDEs is represented by the linear combination of minimum number of the orthogonal ba-

sis functions or vectors. In this method, the original system of PDEs is projected onto the

reduced order subspace generated by the proper orthogonal decomposition. This method

is extensively applied in fluid dynamics community. One common example is a linear

matrix equation of the form:

Ax = b (1.1)

and some results are demonstrated [4, 5].

The k-Eigenvalue Problem in Neutronics

In neutronics problems, most problems can be categorized into two major matrix

forms:

1) Source-driven problem:

Lφ = qsource. (1.2)

2) Generalized eigenvalue problem:

Lφ =
1

k
Fφ. (1.3)

In the source-driven problem, Eq.(1.2), the structure of the problem is the same as

Eq.(1.1) and the Proper Orthogonal Decomposition Galerkin projection approach can be

easily applied. However, in the case of the generalized eigenvalue problem, the method is

not directly applicable. Historically in nuclear engineering community, generalized eigen-

value problem has been solved by the power iterative method and its variants which

are summarized in the following algorithm??. In this thesis we propose two approaches

to extend the applicability of POD techniques to generalized eigenvalue problems, one

relying on forward and the other on adjoint formulations.
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Algorithm 1 Pseudo Algorithm for Power Iterative Method [6]

Set k0 = kinitial

Set the initial guess, φ0 = φinitial

s = 0

while ||φ(s) − φ(s−1)|| > εφ,1(1− ρ(s)
φ ) or ||k(s) − k(s−1)|| > εk(1− ρ(s)

k ) do

s = s+ 1

Calculate q
(s)
source = 1

k(s−1) Fφ
(s−1)

Solve Lφ(s) = q
(s)
source.

Update k-eigenvalue, k(s) = k(s−1)
∫
dV νfΣfφ

(s)∫
V dV νfΣfφ(s−1)

Approximate the spectral radius of φ(s), ρ
(s)
φ = ||φ(s)−φ(s−1)||∞

||φ(s−1)−φ(s−2)||∞

Approximate the spectral radius of k(s), ρ
(s)
k = ||k(s)−k(s−1)||∞

||k(s−1)−k(s−2)||∞
end while

One can easily show that Lφ(s) = q
(s)
source can be solved by the Proper Orthogonal

Decomposition Galerkin projection approach. The following pseudo-algorithm shows how

this can be applied to the power iterative method 15.
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Algorithm 2 Pseudo Algorithm for Power Iterative Method with POD-Galerkin Method

Denote that a reduced order transform operator as U that is an orthogonal matrix

Set k0 = kinitial

Set the initial guess, φ0 = φinitial

s = 0

Project the matrix operator L onto the reduced order subspace L̃ = UTLU

while ||φ(s) − φ(s−1)|| > εφ,1(1− ρ(s)
φ ) or ||k(s) − k(s−1)|| > εk(1− ρ(s)

k ) do

s = s+ 1

Calculate q
(s)
source = 1

k(s−1) Fφ
(s−1)

Project the source term onto the reduced order subspace, q̃
(s)
source = UT q

(s)
source

Solve L̃φ̃(s) = q̃
(s)
source.

Project back onto the original space, φ(s) = UT φ̃(s)

Update k-eigenvalue, k(s) = k(s−1)
∫
dV νfΣfφ

(s)∫
V dV νfΣfφ(s−1)

Approximate the spectral radius of φ(s), ρ
(s)
φ = ||φ(s)−φ(s−1)||∞

||φ(s−1)−φ(s−2)||∞

Approximate the spectral radius of k(s), ρ
(s)
k = ||k(s)−k(s−1)||∞

||k(s−1)−k(s−2)||∞
end while

This approach is very efficient and one can expect to achieve large reduction in com-

putational cost and time. In addition, it is important to note that this method can be

applied to the other acceleration techniques commonly applied in Nuclear Engineering.

For example, the shifted-inverse power iterative method can be modified with the POD-

Galerkin method shown in the following pseudo algorithm.
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Algorithm 3 Pseudo Algorithm for Shifted-Inverse Power Iterative Method with POD-
Galerkin Method adapted from [7]

Denote that a reduced order transform operator as U

Set a scalar σ that is close to 1/k

Set k0 = kinitial

Set the initial guess, φ0 = φinitial

s = 0

Project the matrix operator L onto the reduced order subspace L̃ = UTLU

while ||φ(s) − φ(s−1)|| > εφ,1(1− ρ(s)
φ ) or ||k(s) − k(s−1)|| > εk(1− ρ(s)

k ) do

s = s+ 1

Calculate q
(s)
source = 1

k(s−1) Fφ
(s−1)

Project the source term onto the reduced order subspace, q̃
(s)
source = UT q

(s)
source

Solve (L̃− σI)φ̃(s) = q̃
(s)
source.

Project back onto the original space, φ(s) = UT φ̃(s)

Update k-eigenvalue, k(s) = k(s−1)
∫
dV νfΣfφ

(s)∫
V dV νfΣfφ(s−1)

Approximate the spectral radius of φ(s), ρ
(s)
φ = ||φ(s)−φ(s−1)||∞

||φ(s−1)−φ(s−2)||∞

Approximate the spectral radius of k(s), ρ
(s)
k = ||k(s)−k(s−1)||∞

||k(s−1)−k(s−2)||∞
end while

The algorithm is almost same with the power iterative method. However, the rate of

convergence is dramatically improved if σ ≈ 1/k and the rate of convergence is given by

[7]

d =
|1/k1 − σ|
|1/k2 − σ|

(1.4)

where k1 is the dominant eigenvalue and k2 is the second dominant eigenvalue. One

can also apply the Rayleigh Quotient Iteration since forming the explicit inverse is not

expensive in the reduced space. However, these approaches require extra dense matrix-

vector multiplications in each iterative step. In addition, modern fast iterative solvers

cannot be applied. Therefore, more efficient algorithms for generalized eigenvalue problem

are desired.
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1.2 Thesis Contents

This thesis develops hybrid reduced order modeling methods to generate surrogates

for models described as generalized eigenvalue problems. Chapter 2 briefly describes the

neutronics model employed and chapter 3 describes the mathematical framework of ROM

methods. Chapter 4 briefly presents theory of the generalized polynomial chaos, sparse

approximation and input parameter reduction. Numerical experiments are documented

in chapter 5 and 6, and concluding remarks are found in chapter 7.
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Chapter 2

Neutronics Problem

In reactor simulation, the determination of the multiplication factor, k, and the

distribution of neutrons in space and energy is the fundamental task for reactor engi-

neers because this knowledge helps one sustain and control the fission chain reaction.

In reactor physics, two major approaches to determine these quantities are the diffusion

approximation and the transport approximations. Neutrons are treated as a diffusive

material like gas molecules in the diffusion approximation. In the transport approxima-

tions, the distribution of neutrons is described by the Boltzmann equation which is an

integro-differential equation, and is much more difficult to solve than diffusion equation.

The diffusion approximation can be derived from the transport equation under some

simplifying assumptions.

2.1 The Diffusion Approximation

The basics of neutron diffusion theory are well presented in the textbooks from Duder-

stadt and Hamilton [8] and Stacey [9]. The neutron diffusion equation can be written

as:

∇J(r, E) + Σt(r, E)φ(r, E) =

∫ ∞
0

dE ′Σs(r, E
′ → E)φ(r, E ′)

+
χ(E)

k

∫ ∞
0

dE ′ν(r, E ′)Σf (r, E
′)φ(r, E ′) (2.1)
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with Fick’s law giving:

J(r, E) = −D(r, E)∇φ(r, E) (2.2)

where r is the position vector, E is the neutron energy, J is the neutron current, φ(r, E)

is the scalar neutron flux, Σ(r, E) is the total macroscopic cross-section, Σs(r, E
′ → E) is

the macroscopic scattering cross-section, χ(E) is the fission yield spectrum, ν(E ′) is the

average number of neutrons born in a fission, Σf (r, E) is the macroscopic fission cross-

section, and D(r, E) is the diffusion coefficients. To solve this equation, one can discretize

the equation directly or combine Eq.(2.1) and Eq.(2.2) to obtain the P0 equation.

In the former case, the neutron energy E is divided into G energy groups and Eq.(2.5)

is integrated over each energy group. That can be written as:

∇Jg + Σg
tφg =

G∑
g′=1

Σg′→g
s φg′ +

χg
k

G∑
g′=1

νgΣ
g′

f φg′ , g = 1, · · ·G (2.3)

Jg = −Dg∇φg, g = 1, · · ·G (2.4)

where Eq.(2.3) can be spatially discretized by the finite element or finite difference method

with appropriate boundary conditions. For the latter case, Eq.(2.1) and Eq.(2.2) are

combined into the P0 equation:

−∇ ·D(r, E)∇φ(r, E) + Σt(r, E)φ(r, E) =

∫ ∞
0

dE ′Σs(r, E
′ → E)φ(r, E ′)

+
χ(E)

k

∫ ∞
0

dE ′ν(r, E ′)Σf (r, E
′)φ(r, E ′) (2.5)

then Eq.(2.5) is discretized into the multi-group neutron diffusion equation:

−∇ ·Dg∇φg + Σg
tφg =

G∑
g′=1

Σg′→g
s φg′ +

χg
k

G∑
g′=1

νgΣ
g′

f φg′ , g = 1, · · ·G (2.6)

which can be solved by the finite element method or finite difference method. For the

finite difference method, see Stacey [9] and Duderstadt and Hamilton [8] for examples.

The k-eigenvalue diffusion equation can be written in block matrix form. For the P0

equation, it is given by:

φ =
[
φT1 · · · φTi · · · φTG

]T
(2.7)
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where φi is a vector of discretized scalar flux in energy group. Then, Eq.(2.6) can be

rewritten in sparse block matrix form:

Lφ = λFφ (2.8)

where

L =


∇ + Σ1

R −Σ2→1
s · · · −ΣG→1

s

−Σ1→2
s ∇ + Σ2

R · · · −ΣG→2

...
...

. . .
...

−Σ1→G
s −Σ2→G

s · · · ∇ + ΣG
R

 (2.9)

F =


χ1ν1Σ

1
f χ1ν2Σ

2
f · · · χ1νGΣG

f

χ2ν1Σ
1
f χ2ν2Σ

2
f · · · χ2νGΣG

f
...

...
. . .

...

χGν1Σ
1
f χGν2Σ

2
f · · · χGνGΣG

f

 (2.10)

where ∇ is a matrix resulted from the discretization of the ∇ operator on the scalar

flux φi and Σg
R is a diagonal matrix defined as the group removal cross-section to be

Σg
R = Σg

t−Σg→g
s resulting from the discretization. The P1 equation can also be discretized

in a similar manner.

2.2 Newton’s Method for k-Eigenvalue Problem

Finding the fundamental eigenpair (eigenvalue and eigenvector) is the computational

burden for large scale problem. Historically in nuclear engineering, this generalized eigen-

value problem is solved by the power iterative method, but the rate of convergence is

slow for models with the dominance ratio very close to 1.0 [10]. Over the past three

decades, a variety of approaches has been proposed to accelerate the convergence of the

solution, eg. Wielandt shift approach [11] and Chebyshev acceleration [12]. Recently, the

Newton-Krylov approach is beging considered for multi-group neutronics calculations

[13]. Newton’s method is characterized by its quadratic convergence and difficulty in

calculating and inverting a Jacobian matrix to obtain the Newton step.

As shown in the previous section, the multi-group diffusion problem can be written

in a generalized eigenvalue form:

Lφ = λFφ (2.11)
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and assume a constraint on the eigenpair denoted by:

f(λ, φ) = 0. (2.12)

Note that it is common to use f(λ, φ) = φTφ−1, so this constraint is used in this section.

Then, finding eigenpairs is equivalent to minimizing a residual function defined by:

R(λ, φ) =

[
Lφ− λFφ

f(λ, φ)

]
. (2.13)

When λ and φ are eigenpairs, the residual function is equal to zero. This is also considered

as an optimization problem, which can be solved by Newton’s method. To find a solution,

expand Eq.(2.13) around the initial guess λ0 and φ0:

R(λ, φ) = R(λ0, φ0) + J(λ0, φ0)

[
∆λ

∆φ

]
+ · · · (2.14)

where ∆λ = λ− λ0, ∆φ = φ− φ0 and the Jacobian matrix is given by [13]:

J(λ, φ) =

[
L− λ0F −Fφ0

2φT0 0

]
(2.15)

Now, setting R(λ, φ) = 0, the equation for the Newton step is given by:

− R(λ0, φ0) = J(∆λ,∆φ)

[
∆φ0

∆λ0

]
(2.16)

Therefore, each Newton step is given by:[
∆φi+1

∆λi+1

]
= J−1(λi, φi)R(λi, φi) (2.17)

It is important to note that the exact Newton’s method is computationally prohibitive to

calculate. Therefore, the inverse of the Jacobian matrix is calculated by iterative methods

such as the Krylov subspace method or a fixed-point iteration. The efficiency of Krylov

subspace method is governed by a preconditioner and incomplete LU factorization is

typically utilized. In addition, a reordering technique must be applied to obtain precon-
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ditioners efficiently. Otherwise, the incomplete factorization takes long time and number

of non-zero elements in preconditioners is extremely large to store. The study on the

Newton’s method in Nuclear Engineering application is a quite recent topic (See [14] for

the details).

2.3 Transport Calculation by T-NEWT sequence

The neutron transport equation is more accurate compared with the diffusion approxi-

mation. The general form of the neutron transport equation is given as:

Ω̂ · ~∇ψ(r, Ω̂, E) + Σt(~r, E)ψ(~r, Ω̂, E) = Q(~r, Ω̂, E) (2.18)

where ψ(~r, Ω̂, E) angular flux, Σt total cross-section, and Q(~r, Ω̂, E) source term. The

source term Q is composed of three components:

1. a scattering source:

S(~r, Ω̂, E) =

∫
4π

dΩ̂′
∫

4π

dE ′Σs(~r, Ω̂
′ → Ω̂, E ′ → E)ψ(~r, Ω̂′, E ′) (2.19)

2. a fission source:

F (~r, Ω̂, E) =
χ(~r, E)

4π

∫ ∞
0

dE ′νf (~r, E
′)Σf (~r, E

′)φ(~r, E ′) (2.20)

and 3. an external source or fixed source: Sext(~r, E). To formulate the k-eigenvalue prob-

lem, recast Eq.(2.18) into an equation of the form:

Ω̂ · ~∇ψ(r, Ω̂, E) + Σt(~r, E)ψ(~r, Ω̂, E) =∫
4π

dΩ̂′
∫

4π

dE ′Σs(~r, Ω̂
′ → Ω̂, E ′ → E)ψ(~r, Ω̂′, E ′)

+
χ(~r, E)

4πk

∫ ∞
0

dE ′νf (~r, E
′)Σf (~r, E

′)φ(~r, E ′) (2.21)

T-NEWT is TRITON sequence to solve 2D transport equation by NEWT in SCALE

developed by Oak Ridge National Laboratory. NEWT is a 2D multi-group discrete-

ordinates radiation transport code with complex geometry developed by Oak Ridge Na-

tional Laboratory. T-NEWT is capable of solving for the k-eigenvalue. Sample input files
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for T-NEWT sequence can be found in the appendix.

2.4 Model Description

For uncertainty quantification, five different neutronics problems are considered. Each

model is assumed to have uncertainties in cross-section data or atomic density values.

Each model has a different number of stochastic variables.

A. 1D Simple Fuel Model

Case A is a simple two-group neutron diffusion equation that consists of uranium (left)

and water (right) with equal widths of w = 50 cm. The two-group diffusion equation for

this model is given by

−D1(x, ξ)
∂2

∂x2
φ1(x, ξ) + Σ1

R(x, ξ)φ1(x, ξ)

=
1

k
χ1(x, ξ)ν1(x, ξ)Σ1

f (x, ξ)φ1(x, ξ) +
1

k
χ1(x, ξ)ν2(x, ξ)Σ2

f (x, ξ)φ2(x, ξ)

−D2(x, ξ)
∂2

∂x2
φ2(x, ξ) + Σ2

R(x, ξ)φ2(x, ξ)− Σ1→2
s (x, ξ)φ1(x, ξ) = 0

where the induced neutrons are assumed to be born only in the energy group 1. Fig. 2.1

shows the geometry of this simple fuel model. A Neumann boundary condition is assigned

to the left boundary whereas a Dirichlet boundary condition is assigned to the right

boundary.

Figure 2.1: The Geometry of the Simple Fuel Model
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The boundary conditions are described as:

d

dx
φg

∣∣∣∣
x=0

= 0

φg|x=2w = 0

In addition, a constraint is imposed on the fluxes:

2∑
g=1

φTg φg = 1

Then, this model is discretized into generalized eigenvalue problem of the form:

Lφ =
1

k
Fφ

where φ =
[
φT1 φT2

]T
where φi is a vector of discretized flux of the energy group i.

Table 2.1 shows the cross-section data for this model. To simulate uncertainty in this

model, the cross-section data are assumed to have uncertainty in the values.

Table 2.1: Test Model A Cross-Section Data [8]

Fuel Moderator

1 of 2 2 of 2 1 of 2 2 of 2

νΣf .008476 .18514 0.0 0.0

Σa 0.01207 0.1210 0.0004 0.0197

D 1.2627 .3543 1.13 0.16

ΣR 0.02619 0.1210 0.0494 0.0197

The thermal group absorption cross-section and the removal cross-section are assumed

to be equal, and hence the total number of stochastic variables is 12. The model is

spatially discretized with equal node width resulting in 1000 total nodes, and hence the

dimension of L and F is 2000 (because the number of unknowns per node is equal to two,

representing the two-group flux).

Fig. 2.2 shows the fast group neutron flux distribution and Fig. 2.3 shows the thermal
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group neutron flux distribution with the reference cross-section values.

Figure 2.2: Fast Group Flux Distribution

Figure 2.3: Thermal Group Flux Distribution
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B. 1D Assembly Model

The test model B is a two-group neutron diffusion model describing a 1-D fuel assembly

model consisting of MOX and UO2 with reflective boundary conditions at both sides [15].

The width of each assembly is 10 cm and consists of 8 fuel pins surrounded on both sides

by water that are spatially discretized with equal node width. Fig. 2.4 and Fig. 2.5 show

the geometry of this model.

Figure 2.4: The Geometry of Assembly

Figure 2.5: The Geometry of Pin Cell

The form of the neutron diffusion equation for this model is given by:

d

dx
Jg(x, ξ) + Σg

R(x, ξ)φg(x, ξ) =

2∑
g′=1,g′ 6=g

Σg′s→g
s (x, ξ)φg′(x, ξ) +

χg(x, ξ)

k

2∑
g′=1

νg
′

f (x, ξ)Σg′

f (x, ξ)φg′(x, ξ)
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with Fick’s law giving an expression for the neutron current:

Jg(x, ξ) = −Dg(x, ξ)
d

dx
φg(x, ξ)

Then, discretize the assembly into I equal width cells where each cell is defined for

x ∈ [xi, xi+1] and the value of the cell edge locations is given by:

xi =
L

I
(i− 1)

Then, this diffusion equation can be discretized using the cell-edge current Jg,i, the cell-

edge flux φg,i, and the cell-average flux φ̄g,i:

Jg,i+1 − Jg,i + Σg
Rφ̄g,ih−

2∑
g′=1,g′ 6=q

Σg′→g
s φ̄g,ih =

χg
k

2∑
g′=1

νg
′

f Σg′

f φ̄g,ih

Dg,i(φg,i+1 − φ̄g,i) +
1

2
Jg,i+1h = 0

Dg,i(φg,i − φ̄g,i) +
1

2
Jg,ih = 0

φ̄g,1 − φg,1 = 0

φg,I+1 − φ̄g,I = 0

where h = xi+1 − xi and the cell-average flux is defined as:

φ̄g,i =

∫ xi+1

xi

φg(x)dx

Then, the model is simplified into generalized eigenvalue problem of the form:

Lx =
1

k
Fx

where x =
[
JT1 JT2 φT1 φT2 φ̄T1 φ̄T2

]T
which represent the discretized quantities. Ta-

ble 2.2 shows the cross-section data for this model. The cross-section data are assumed

to have uncertainty in their values.
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Table 2.2: Test Model B Cross-Section Data [15]. Σ1
f , ν

1
f , µ̄1

0, Σ2→1
s , χ1, µ̄2

0 are all zero.

Cross-Sections Σ1
t Σ1→1

s Σ1→2
s χ1 Σ2

t Σ2→1
s Σ2

f ν2
f

MOX fuel 0.2 0.185 0.015 1 1.2 0.9 0.3 1.5

Uranium fuel 0.2 0.185 0.015 1 1.0 0.9 0.1 1.5

Water 0.2 0.17 0.03 0 1.1 1.1 0 0

with a normalization constraint

h
2∑
g=1

φ̄Tg φ̄g = 1

Figure 2.6: Fast Group Flux Distribution
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Figure 2.7: Thermal Group Flux Distribution

Fig. 2.6 and Fig. 2.7 show the fast and thermal neutron flux distribution for the

reference cross-section values.

C. 2D MOX Fuel Calculation

The test model C is a 2D transport model describing a fresh MOX fuel from the Phase

IV-A Burn-up Credit Benchmark by OECD/NEA Burn-up Credit Working Group [16].

The geometry for this model is an infinite PWR fuel cell lattice as shown in Fig. 2.8.

The Fuel pin pitch is 1.33 cm square pin array, the fuel pellet radius is 0.412 cm and the

cladding thickness is 0.0063 cm. In this model, it is assumed that no air or helium gas is

present.
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Figure 2.8: Geometry of MOX fuel pin cell for PWR

In reference [16], three different types of MOX fuels are considered. However, only

the case A, a typical plutonium composition for material derived from the reprocessing

of thermal reactor UO2 fuel, is considered. Table 2.3-Table 2.4 show the material com-

positions for Case A. These models are evaluated using the SCALE code package with

END/F V 44 energy group cross-section data with CENTRAM. Appendix A shows the

input file for the T-NEWT sequence. In the original benchmark problem, the discrete

ordinates calculations were performed using S8 quadrature and P3 scattering for all mix-

ture. However, in uncertainty quantification, many model evaluations are necessary and

the calculation is reduced by simplying scattering order to 2 in all moderator materials

and 1 for fuels and structural materials.
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Table 2.3: Non-fission material compositions [16]

Nuclide Atoms/Barn.cm

Zr 4.2982E-2

Fe 1.4838E-4

Cr 7.5891E-5

H 6.6724E-2

O 3.3362E-2

Table 2.4: Material Compositions for Fresh MOX Case A [16]

Nuclide Atoms/Barn.cm Nuclide Atoms/Barn.cm
234U 2.7999E-7 235U 1.4838E-4
238U 2.3074E-2 238Pu 2.4700E-5

239Pu 8.0623E-4 240Pu 3.1298E-4
241Pu 1.6533E-5 242Pu 5.3981E-5

16O 4.8992E-2

D. 2D Quarter Assembly Calculation

The test model D is 2D 8×8 quarter assembly model. Appendix A shows the sample input

file for this model. This problem can be found in the SCALE sample problem directory.

However, the fuel composition is modified into MOX fuel as described in the test case C.

Fig. 2.9 shows the geometry of the quarter assembly models.

Fig. 2.10-2.11 show the selected output from the test problem D. Detailed material

composition and geometric information can be found in the sample input in Appendix

A. Fig. 2.10 shows the 1st energy group scalar flux and Fig. 2.11 shows the 44th energy

group scalar flux.
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Figure 2.9: Geometry of Quarter Assembly Model

Figure 2.10: Group 1 Flux

22



Figure 2.11: Group 44 Flux

E. 2D Pin-Cell Model by Diffusion Approximation

The last model to be considered is a pin-cell model using the 44 group finite element

diffusion equation. The geometry for this model is an infinite PWR fuel cell lattice as

shown in Fig. 2.12. The Fuel pin pitch is 1.3127 cm square pin array, the fuel pellet radius

is 0.410 cm and the cladding thickness is 0.0065 cm. No air/helium gap is assumed in

these models. Different from model C, the MOX fuel is irradiated with 40GWd/teHM

followed by one year of cooling in water. Table 2.5 shows the reference values of the

materials of this model. Each atomic density is assumed to have uncertainty in its value

within ± 10% of it reference value. In addition, microscopic cross-section values are also

assumed to have uncertainty within ± 5% of their reference values.
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Table 2.5: Material Compositions for MOX Case A (40GWd/teHM) with one year cool-
ing

Nuclide Atoms/Barn.cm Nuclide Atoms/Barn.cm
234U 7.7718E-7 235U 2.9018E-5
236U 6.1753E-6 238U 2.2365E-2

238Pu 2.5504E-5 239Pu 4.5028E-4
240Pu 2.9067E-4 241Pu 1.8125E-4
242Pu 9.1733E-5 237Np 3.0746E-6
241Am 2.4023E-5 243Am 2.4023E-5

16O 4.8992E-2 242Cm 6.7186E-7
243Cm 6.7186E-7 244Cm 1.3749E-5
245Cm 1.6967E-6 95Mo 4.4441E-5
99Tc 5.3736E-5 101Ru 5.774E-5

103Rh 4.9708E-5 109Ag 1.1408E-5
133Cs 5.7100E-5 143Nd 3.8610E-5
145Nd 2.8038E-5 147Sm 5.2265E-6
149Sm 3.3504E-7 150Sm 1.3820E-5
151Sm 1.5043E-6 152Sm 6.2143E-6
153Eu 7.5074E-6 155Gd 1.4403E-7

Fig. 2.12 shows the triDelaunay mesh used for this model. The number of elements

in this triDelaunay mesh is 1703. Therefore, the dimension of L and F is 74932. The

number of non-zero elements is L is 12869931 and that of F is 71206081. Fig. 2.13-2.14

show sparsity patterns of L and F. Fig. 2.15-2.16 show the sparsity of the reordered L and

F. It is obvious that L and F are highly sparse and reorder L and F saves large amount

of time in incomplete factorization. Fig. 2.17-2.18 show the selected fluxes calculated by

the reference value. Using MATLAB, this large problem can be solved within 40 seconds

using the reverse symmetric Cuthill-Mckee reordering with GMRES.

11.4GB in total.
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Figure 2.12: triDelaunay Mesh for Pin-cell Model
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Figure 2.13: Sparsity of L

Figure 2.14: Sparsity of F
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Figure 2.15: Sparsity of reordered L

Figure 2.16: Sparsity of reordered L
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Figure 2.17: 12th Energy Group Flux

Figure 2.18: 13th Energy Group Flux
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Chapter 3

Subspace Method for Reduced

Order Modeling

The computational cost of the simulation of the nuclear reactor system has signifi-

cantly increased over the past few decades as accuracy requirements have become much

more stringent to gain both regulatory and public acceptance. There are currently several

initiatives around the country aiming to develop advanced codes for reactor simulation.

These codes are expected to be high dimensional and expensive to run. This implies that

surrogate model techniques must be improved to allow one execute engineering applica-

tions such as uncertainty quantification in a practical manner.

In regard to the neutronics problem, the k-eigenvalue problem is the most expen-

sive part of the analysis. Classically, finding the fundamental eigenpair (eigenvector and

eigenvalue) is done by the power iterative method which converges slowly for the models

associated with the dominance ratio very close to 1.0 [10]. Over the past three decades,

a variety of approaches have been proposed to accelerate the convergence of the solution

such as the Wielandt shift approach [11] and Chebyshev acceleration [12]. However, as

the engineering model becomes more detailed, the computational requirements increase

at quadratic rate for memory and cubic rate for computations for the dense matrix. This

makes the execution of the high fidelity models computationally prohibitive unless one

has access to High Performance Computing facilities.

To overcome the challenge, reduced order modeling (ROM) techniques have been

promoted over the past few decades. It is important to note that ROM is referred to

differently in different disciplines. For example, Proper Orthogonal Decomposition, Prin-
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cipal Component Analysis, Snapshot Method, model order reduction and row-rank ap-

proximation are all examples of ROM techniques. The objective of the ROM techniques

is to reduce the computational burden without losing the accuracy of original models

with a known error bound if possible. In ROM, the dimension of the original model is re-

duced to a low-dimensional problem that can be executed with lower computational cost.

With this reduction, the reduced problem can be executed many times for uncertainty

quantification and sensitivity analysis.

Two basic approaches have been applied for surrogate model construction. One of

them is a spectral approach and the other is the input parameter reduction. In the

former approach, the response is expressed as a linear combination of arbitrary orthogonal

basis functions, e.g., trigonometric functions and Legendre polynomials. The generalized

Polynomial Chaos (gPC) expansion is considered to be a spectral method. Note that

many functions other than orthogonal basis functions can also be used. For example,

the sparse grid approximation expands the response as a linear combination of hierarchy

hat basis functions.[17]. The spectral approach has the desirable property that the error

decays at the exponential rate [2].

In the second approach, the effective number of input parameters is reduced by the

finding an active subspace in the input parameter space. This is possible because for

many realistic models the response depends on a few degrees of freedom (DOF), where

each degree of freedom represents a function of all the parameters combined. If linear

functions are employed to describe the relationship between the active DOFs and original

input parameters, the ROM problem reduces to a linear algebra problem, where the

active DOFs are described by a subspace. The implication is that parameter variations

orthogonal to this subspace will produce negligible variations in the response subspace

[18, 19].

In this chapter, recently developed and well-established approaches for ROM are

briefly reviewed. In addition, ROM techniques for the generalized eigenvalue problem are

introduced. The basic idea is to assume that the solution of the forward and the adjoint

problem can be expressed as linear combination of r snapshots of the stochastic partial

differential equation (SPDE) [20].
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3.1 Method of Snapshot

In chapter 2, the multi-group neutron diffusion equation is expressed as a generalized

eigenvalue problem of the form Lφ = λFφ. Now, assume that the multi-group neutron

diffusion equation has uncertainties in cross-section values and atomic densities. Then,

represent the uncertainties by a stochastic variable vector ξ where ξ is s× 1 and s is the

number of uncertain parameters. Now, insert ξ into a generalized eigenvalue problem,

L(ξ)φ(ξ) = λ(ξ)F(ξ)φ(ξ) (3.1)

which is the stochastic generalized eigenvalue problem (SGEP) discretized from SPDE

and further assume that the dimension of φ(ξ) is n×1. For the high fidelity model, solving

the SGEP multiple times is computationally expensive and a surrogate model with high

accuracy is required. This can be achieved by employing Proper Orthogonal Decomposi-

tion (POD) to obtain an optimal low dimensional basis to transform the high dimensional

problem into the low dimensional one: see [4, 5] for a more detailed introduction. In other

words, the goal is to represent the solution to SGEP using a POD-basis:

φ(ξ) ≈
r∑
i=1

αi(ξ)Φi (3.2)

where Φi are the POD basis, αi(ξ) are undetermined coefficients, and r is the dimension of

the POD basisdesired to be as small as possible. In addition, another important objective

of the POD-based method is to find the error bound ε of the form:∣∣∣∣∣
∣∣∣∣∣φ(ξ)−

r∑
i=1

αi(ξ)Φi

∣∣∣∣∣
∣∣∣∣∣ ≤ ε (3.3)

where ε is an upper bound of the errorwhere the undetermined coefficients, α(ξ), are

determined via a minimization problem. Unfortunately, the error bound for this form is

not known for the discrete case. Instead, it is common to use the following expansion:

m∑
j=1

∣∣∣∣∣
∣∣∣∣∣φ(ξj)−

r∑
i=1

αi(ξ
j)Φi

∣∣∣∣∣
∣∣∣∣∣
2

X

≤ ε, (3.4)
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where X denotes the Hilbert space of the spatial variables and ξj denotes the j-th ran-

domly sampled stochastic variables. To determine Φ, multiple approaches are proposed:

the method of snapshot with 1. eigenvalue decomposition [21], 2. singular-value decom-

position (SVD) [22], and 3. the range-finding algorithm [23].

The method of snapshots [24] is the POD procedure to express a solution to the SGEP

by a linear combination of snapshots φ(ξi) denoted by:

φ(ξ) ≈
m∑
j=1

βj(ξ)φ(ξj) (3.5)

where βi(ξ) are undetermined coefficients. In other words, a solution to SGEP is spanned

by snapshots described as:

φ(ξ) ∈ span(φ(ξ1), · · · , φ(ξi), · · · , φ(ξm)). (3.6)

If Φ(ξj) = φ(ξj) in Eq.(3.4) and r = m, then Eq.(3.4) has ε = 0. However, the primary

objective is to find Φi with r << n while minimizing ε.

3.1.1 Eigenvalue Decomposition

Eigenvalue decomposition is one possible method to accomplish this goal. Assume a

matrix Y whose columns are known snapshots of the form:

Y =
[
φ(ξ1) · · · φ(ξm)

]
(3.7)

where the dimension Y is n×m. Now, the expression in this form becomes:

YTYxi = µixi (3.8)

where xi and µi are the i-th eigenpair for the symmetric matrix YTY. Since YTY is a real-

symmetric matrix, µi are always non-negative. Without loss of generality, the eigenvalues

µi are assumed to be descending order, µ1 ≥ · · · ≥ µm. The method of snapshots shows

that an optimal error can be obtained by the POD-basis expressed as [21]:

Φi =
1
√
µi

Yxi (3.9)
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and the optimal error bound for Eq.(3.4) is given by [21]:

1

m

m∑
j=1

∣∣∣∣∣
∣∣∣∣∣φ(ξj)−

r∑
i=1

〈Φi, φ(ξj)〉Φi

∣∣∣∣∣
∣∣∣∣∣
2

X

=
m∑

i=r+1

µi (3.10)

where 〈, 〉 is the inner product defined as:

〈a, b〉 = aT b. (3.11)

3.1.2 Singular Value Decomposition

The same error bound can be obtained by the singular value decomposition (SVD). The

error bound for SVD is derived using the error bound by the eigenvalue decomposition

using the relation between the singular values and eigenvalues. More formal derivation

for the error bound of Eq.(3.4) with the singular value decomposition can be found in

[22].

SVD is one of the most important tools in numerical linear algebra due to its broad

applications in theory and engineering. The SVD is defined as the following manner:

Let A ∈ Cm×n. Then reduced SVD of A is given by:

A = UΣV∗ (3.12)

where

Σ =


σ1

. . .

σn

 (3.13)

with σ1 ≥ · · · ≥ σmin(m,n) ≥ 0 and with U ∈ Cm×m and V ∈ Cn×n are unitary. Now, the

error bound for Eq.(3.4) can be obtained using this definition.

Assume an eigenvalue decomposition for Y∗Y implying Y∗Yxi = µixi and SVD

for Y, Y = UΣV∗. Then, one can obtain the relation between singular values and

eigenvalues:

µi = σ2
i . (3.14)

This can be shown as the following. Since Y∗Y is a real symmetric matrix, we have an
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eigenvalue decomposition of the form:

Y∗Y = XMX∗ (3.15)

where X is an orthogonal matrix and M is a real diagonal matrix with the eigenvalues

of Y on the diagonal. Likewise, using SVD, Y∗Y can be factored as:

Y∗Y = (UΣV∗)∗UΣV∗ = VΣ2V∗ (3.16)

Since V is unitary and Σ2 is a real diagonal matrix, implying that Σ2 = M. Hence,

µi = σ2
i

and V = X. Now, Eq.(3.10) can be written using SVD. Since V = X, it is obvious that

xi = vi. Now, Eq.(3.9) can be written by the singular value and left singular vector:

Φi =
1
√
µi

Yxi =
1

σi
Yvi =

1

σi
UΣV∗vi = ui (3.17)

Then, Eq.(3.10) is written as:

1

m

∣∣∣∣∣
∣∣∣∣∣φ(ξj)−

r∑
i=1

〈Φi, φ(ξj)〉Φi

∣∣∣∣∣
∣∣∣∣∣
2

X

=
m∑

j=r+1

µi =
m∑

j=r+1

σ2
j (3.18)

Therefore, Eq.(3.18) gives an equivalent error bound for SVD. Regardless of whether we

choose SVD or eigenvalue decomposition, both forms have the same error bound.

However, the error bound given by Eq.(3.4) is inconvenient in some cases. Therefore,

we propose a slightly different error bound:∣∣∣∣∣
∣∣∣∣∣φ(ξj)−

r∑
i=1

〈Φi, φ(ξj)〉Φi

∣∣∣∣∣
∣∣∣∣∣
2

≤ ε for ∀j (3.19)

The optimal solution to Eq.(3.19) is not known, but the upper bound can be obtained

with SVD given by: ∣∣∣∣∣
∣∣∣∣∣φ(ξj)−

r∑
i=1

〈Φi, φ(ξj)〉Φi

∣∣∣∣∣
∣∣∣∣∣
2

≤ σr+1 for ∀j. (3.20)
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Proof. Assume an SVD of Y, Y = UΣV∗ where U ∈ Rm×m, Σ ∈ Rm×n, and V ∈ Rn×n.

Then, Eq.(3.19) is written as:∣∣∣∣∣
∣∣∣∣∣φ(ξj)−

r∑
i=1

〈Φi, φ(ξj)〉Φi

∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣φ(ξj)−UrU

∗
rφ(ξj)

∣∣∣∣
2

(3.21)

where Ur represents the first r columns of U denoted as:

Ur =
[
u1 u2 · · · ur

]
(3.22)

and Un−r as:

Un−r =
[
ur+1 ur+2 · · · um

]
(3.23)

and we have the identity:

I = UrU
∗
r + Un−rU

∗
n−r (3.24)

since I = UU∗ =
([

Ur 0
]

+
[
0 Un−r

])([
Ur 0

]
+
[
0 Un−r

])∗
. Then, Eq.(3.21)

can be written in terms of the singular matrices:∣∣∣∣∣
∣∣∣∣∣φ(ξj)−

r∑
i=1

〈Φi, φ(ξj)〉Φi

∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣φ(ξj)−UrU

∗
rφ(ξj)

∣∣∣∣
2

=
∣∣∣∣UΣv∗j −UrU

∗
rUΣv∗j

∣∣∣∣
2

=
∣∣∣∣Un−rU

∗
n−rUΣvj

∣∣∣∣
2

≤ ||Un−r||2 ||Σn−r||2
∣∣∣∣v∗j ∣∣∣∣2

≤ σr+1 (3.25)

since ||Un−r||2 = 1 and
∣∣∣∣v∗j ∣∣∣∣2 = 1.

3.1.3 Range Finding Algorithm

Another way to generate a basis for POD is the range-finding algorithm proposed in [23].

In the range-finding algorithm, instead of Eq.(3.5), the error is calculated according to:

||(I−QQ∗)Y|| ≤ ε. (3.26)
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This approach can be justified by considering Eq.(3.18). In Eq.(3.18), the POD-basis

is given by the dominant left singular vectors of Y. The left singular vectors form a

basis for the range of Y. Therefore, a good approximation of the range of Y will be a

good candidate for Q. If ε in Eq.(3.26) is small, then Q is a good approximation of the

range of Y. The range-finding algorithm to calculate the POD basis is summarized in

Algorithm 4.

Algorithm 4 Range Finding Algorithm for the POD-Procedure [23]

Given an n×m matrix Y of snapshots, a tolerance ε, and an integer
k, the following algorithm computes a POD basis Q such that
Eq.(3.26) holds with probability at least 1-min {m,n}10−k.

1. Draw standard Gaussian vectors ω(1), . . ., ω(k) of length n.

2. For i = 1, 2,. . . , r, compute y(i) = Yω(i).

3. j = 0

4. Set Q = 0n×0

5. while max
{∣∣∣∣y(j+1)

∣∣∣∣ , ∣∣∣∣y(j+2)
∣∣∣∣ , · · · , ∣∣∣∣y(k+1)

∣∣∣∣} ≥ ε/(10
√

2/π)

(a) j = j + 1

(b) Overwrite y(j) by (I−Q(j−1)(Q(j−1))∗)y(j)

(c) q(j) = y(j)/
∣∣∣∣y(j)

∣∣∣∣
(d) Q(j) =

[
Q(j−1) q(j)

]
(e) Draw a standard Gaussian vector ω(j+r) of length n.

(f) y(j+r) = (I−Q(j)Q(j)∗)Aω(j+r)

for

� Overwrite y(i) by y(i) − q(i)〈q(i), y(i)〉
end for

6. end while

7. Q = Q(j)
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Note that a better error bound for this form can be obtained using SVD given by:

min
Q
||(I−QQ∗)Y|| = σi+1 (3.27)

where Q = Ui and Ui is a partitioned matrix of U = [Ui Um−i]. This is known as

the optimality of the singular value decomposition [25]. In other words, SVD is optimal

and more accuracy in the sense of Eq.(3.26). However, SVD would be computationally

more expansive than the range-finding algorithm. Therefore, the range-finding algorithm

is preferred for large scale problems.

3.1.4 Implementation of Method of Snapshots by k-Least Squares

Assume that a solution to the SGEP can be written as a linear combination of the

POD-basis given by:

φ(ξ) ≈
r∑
i=1

α(ξ)Φi = Qα(ξ) (3.28)

where Q is the POD-basis and α(ξ) is the vector of undetermined coefficients. Then, plug

Eq.(3.28) into the SGEP:

L(ξ)φ(ξ) = λ(ξ)F(ξ)φ(ξ)⇒ L(ξ)Qα(ξ) = λ(ξ)L(ξ)Qα(ξ) (3.29)

where L and F are discretized matrices of dimension n × n and L(ξ)Q and F(ξ)Q are

reduced matrices with dimension n× r. Eq.(3.29) is called as overdetermined generalized

eigenvalue problem. See [26] for its properties and how to solve this problem in general.

Since L(ξ)Q and F(ξ)Q are no longer square, traditional approaches such as the power

iterative method and Krylov-type subspace methods are not applicable to this prob-

lem. Therefore, Eq.(3.29) is transformed to an optimization problem to find a desired

eigenpair. As discussed in Chapter 2, define a residual objective function:

R(α(ξ), λ(ξ)) =

[
L(ξ)Q− λ(ξ)L(ξ)Q

α(ξ)Tα(ξ)− 1

]
(3.30)

where the second row of R(α(ξ), λ(ξ)) is equivalent to φ(ξ)Tφ(ξ) = 1 which is justified

by:

φ(ξ)Tφ(ξ) ≈ α(ξ)TQTQα(ξ) ≈ α(ξ)Tα(ξ). (3.31)
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Note that the primary difference between Eq.(2.13) and Eq.(3.31) is that Eq.(2.13) be-

comes zero when λ(ξ) and φ(ξ) are an eigenpair, but Eq.(3.31) is not guaranteed to be-

come zero even when λ(ξ) and α(ξ) are an eigenpair. This is due to the fact that Qα(ξ)

is an approximation of φ(ξ) and the error in the approximation prevents Eq.(3.31) from

becoming zero. Therefore, Eq.(3.31) must be solved by finding a local minimum corre-

sponding to an eigenpair:

min
α(ξ),λ(ξ)

||R(α(ξ), λ(ξ)||2 (3.32)

To find a local minimum, R(α(ξ), λ(ξ)) is expanded around the initial guess α0 and λ0

using a multivariate Taylor expansion:

R(α(ξ), λ(ξ)) = R(α0, λ0) + J(α0, λ0)

[
∆α

∆λ

]
+ · · · (3.33)

where ∆α = α(ξ) − α0 and ∆λ = λ(ξ) − λ0. It is important to note that J is no longer

sparse. J is a dense matrix with dimension n× r. The Jacobian matrix J(α0, λ0) is given

analytically by:

J(α(ξ), λ(ξ)) =

[
L(ξ)Q− λ0F(ξ)Q −F(ξ)Qα0

2α0 0

]
(3.34)

Now, by neglecting the higher order terms, the Newton step is obtained by solving the

least-square problem: [
∆α

∆λ

]
= −J†(α0, λ0)R(α0, λ0) (3.35)

where J†(α0, λ0) is the Moore-Penrose pseudo-inverse. Note that Eq.(3.35) can be solved

by two different ways. The first approach is to factor J(α0, λ0) by using the QR decom-

position, J = Q2R2 and the Newton step is then given by:[
∆α

∆λ

]
= −R−1

2 Q∗2R(α0, λ0) (3.36)
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This approach is known to be numerically stable but computationally expensive. The

second approach is to use the normal equation given by:

− J∗(α(ξ), λ(ξ))R(α0, λ0) = J∗(α(ξ), λ(ξ))J(α(ξ), λ(ξ))

[
∆α

∆λ

]
. (3.37)

Then, the Newton step is obtained by:[
∆α

∆λ

]
= − (J∗J)−1 J∗R(α0, λ0) (3.38)

This approach is known to be computationally cheaper than the first approach but nu-

merically unstable if the condition number of J is large. Since the Jacobian matrix is

typically ill-conditioned1, the second approach should be used with caution. Now, these

approaches are denoted by k-LS method because the over-determined eigenvalue problem

is solved by a least-square approach.

3.2 Discrete POD-Galerkin Method

The implementation of the method of snapshots described above may not have a

unique solution. The overdetermined eigenvalue problem has been studied recently [26],

and due to its formulation, there are concerns regarding its convergence to a correct an-

swer. Therefore, instead of directly implementing the method of snapshots, the Galerkin

projection is applied so that the dimension of the resulting system is square.

As a simplification, first consider a source driven problem, and then generalize it to

an eigenvalue problem. A common stochastic linear problem can be written as:

A(ξ)x(ξ) = s(ξ) (3.39)

where A(ξ) is a n × n linear operator, s(ξ) is the stochastic source term, and x(ξ) is

the solution to the system. Using the POD procedure described in the previous section,

a solution to a stochastic linear equation can be written as a unique combination of

1This is the reason why a preconditioner is needed for JFNK methods.
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solutions generated from realizations of x(ξ) described as:

x(ξ) ≈
m∑
r=1

α(ξ)Φi = Qα(ξ). (3.40)

Then, plugging Eq.(3.40) to Eq.(3.39), a stochastic linear equation can be written in

terms of the undetermined coefficients α(ξ):

A(ξ)Qα(ξ) = s(ξ) (3.41)

where A(ξ)Q is n × r. In order to avoid having to solve a over-determined system, we

want to reduce the system to be r× r. This can be achieved by projecting Eq.(3.41) onto

1. Q, 2. the range of A, or 3. the range of s(ξ). In the discrete Galerkin projection, one

common approach is that Eq.(3.41) is projected onto Φi given by:

〈Φi, A(ξ)x(ξ)〉 = 〈Φi, s(ξ)〉 for i = 1, · · · , r. (3.42)

In matrix form, Eq.(3.42) can be written as:

Q∗A(ξ)Qα(ξ) = Q∗s(ξ). (3.43)

Now, A is reduced to Q∗A(ξ)Q which is r × r. Note that A is a sparse matrix and

Q∗A(ξ)Q is a dense matrix. Likewise, it is not surprise that the same procedure can be

applied to the eigenvalue problem in Eq.(3.29). Projecting Eq.(3.29) onto Q:

Q∗L(ξ)Qα(ξ) = λQ∗F(ξ)Qα(ξ) (3.44)

which is a reduced-order eigenvalue problem. It is important to discuss when this ap-

proach will work and will not work. Unfortunately, this approach is not guaranteed to

preserve the eigenvalue of interest. To show this, denote Eq.(3.44) as:

Q∗L(ξ)Qα(ξ) = λRQ∗F(ξ)Qα(ξ) (3.45)

where λR is a right eigenvalue. Now, consider an adjoint problem to a reduced order
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eigenvalue problem that is obtained by the transposing Q∗LQ and Q∗FQ:

Q∗L∗(ξ)Qα∗(ξ) = λLQ∗F∗(ξ)Qα∗(ξ) (3.46)

where λL(ξ) is a left eigenvalue and α∗(ξ) is the adjoint solution. Now, one can prove

that λR = λL must hold when 〈α∗(ξ), α(ξ)〉 6= 0.

Without loss of generality, since Q∗L(ξ)Q is non-singular, Eq.(3.44)-3.46 can be writ-

ten in the form:

A(ξ)α(ξ) = kR(ξ)α(ξ) (3.47)

where A(ξ) = (Q∗L(ξ)Q)−1Q∗F(ξ)Q and kR(ξ) = 1/λR(ξ). Note that A(ξ) is not always

non-singular depending on the structure of F(ξ). Now, we can apply the properties of an

eigenvalue problem of the form, Eq.(3.47).

Theorem 1. Suppose A(ξ) is a square matrix and k is an eigenvalue of A(ξ). Then k

is also an eigenvalue of the matrix A∗(ξ)2.

Proof. Assume that q(k) is the characteristic polynomial of A(ξ). Then,

qA(ξ)(k) = det(A(ξ)− kI)

= det((A(ξ)− kI)∗)

= det(A∗(ξ)− kI)

= qA∗(ξ)(k)

which implies that A(ξ) and A∗(ξ) have the same characteristic polynomial. Then, when

k is an eigenvalue of A(ξ), qA(ξ)(k) = 0. Equivalently, qA∗(ξ)(k) = 0 which implies A(ξ)

and A∗(ξ) have the same eigenvalues.

From Theorem 1, an adjoint equation of a reduced order model must have the same

eigenvalues. In other words, if an eigenvalue of the adjoint system cannot be calculated

accurately, and then the reduced-order system should get the same and inaccurate eigen-

value as the adjoint system shown in the above theorem. From Eq.(3.46), the adjoint

solution obtained should be of the form:

φ∗(ξ) ≈ Qα∗(ξ) (3.48)

2This proof can be found in most of elementary linear algebra books
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and Eq.(3.48) holds if and only if

φ∗(ξ) ∈ span {Φ1, · · · ,Φr} (3.49)

which is in general not true. Since Φi spans the forward solutions and there is no relation-

ship between a forward solution and an adjoint solution, Φi typically does not span φ∗(ξ).

Therefore, an adjoint system of a reduced order problem cannot be calculated accurately

resulting in an inaccurate eigenvalue in an adjoint problem and forward problem. Hence

the discrete POD-Galerkin method is in general not applicable to an eigenvalue problem

and cannot be trusted unless Q spans the adjoint solution.

3.3 Mixed Forward-Adjoint Basis Approach

From the discussion above, it is obvious that the discrete POD-Galerkin method may

fail because the SGEP is projected onto an inappropriate space which does not span an

adjoint solution. Therefore, the SGEP must be projected onto a space which spans an

adjoint solution. From Theorem 1, one can easily find that for 〈α∗, α〉 6= 0, when QL

spans an adjoint solution:

λR = λL =
φ∗(ξ)L(ξ)φ(ξ)

φ∗(ξ)F(ξ)φ(ξ)

≈ α∗(ξ)Q∗LL(ξ)QRα(ξ)

α∗(ξ)Q∗LF(ξ)QRα(ξ)
(3.50)

Then, λR and λL are eigenvalues of the matrix pencil (Q∗LL(ξ)QR,Q
∗
LF(ξ)QR). Therefore,

a reduced eigenvalue problem given by:

Q∗LL(ξ)QRα(ξ) = λQ∗LF(ξ)QRα(ξ) (3.51)

which preserves an eigenvalue of the original problem as long as QL spans the adjoint

solution. Since QL forms a basis for or an adjoint solution lies in the span of an adjoint

solution, it is intuitive that orthogonal matrix QL should be generated by the realizations

of adjoint solutions with randomly perturbed cross-section values. To do this, add adjoint
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solutions into Eq.(3.6) and weight it by γ:

φ∗(ξ) ∈ span
{
γφ(ξ1) + (1− γ)∗φ(ξ1), · · · , φ(ξm) + (1− γ)φ∗(ξm)

}
(3.52)

where γ ∈ [0, 1). It is obvious that unless γ is close to 1. Eq.(3.52) spans an adjoint

solution. Now, form Ỹ =
[
γφ(ξ1) + (1− γ)φ∗(ξ1)) · · · φ(ξm) + (1− γ)φ∗(ξm)

]
. Then,

the left orthogonal basis can be obtained by:

Ỹ = ŨΣ̃Ṽ
∗

(3.53)

where QL is equal to Ũ. Then, Eq.(3.29) can be reduced by projecting onto QL:

QLL(ξ)QRα(ξ) = λQLF(ξ)QRα(ξ). (3.54)

Unlike the overdetermined eigenvalue problem, Eq.(3.54) is guaranteed to have r so-

lutions. It also preserves the eigenvalue of interest. However, it introduces r − 1 new

eigenvalues which does not exist in the original problem and which could be larger than

the largest eigenvalue in the original problem. Therefore, the power method is no longer

applicable in a reduced order problem. Hence, different approaches such as the Newton

Method should be used for solving a reduced order problem.

It is important to note that extra attention must be paid to the initial guess of α(ξ)

because of QR. Depending on how QR is computed, QR can be a flipped image of φ(ξj).

In such a case, the initial guess also must be flipped by multiplying -1. Otherwise, the

solution converges to a different eigenpair.

Other Benefits of ROM

In this chapter, state-level ROM techniques based on POD-procedure are discussed.

ROM techniques are introduced to reduce the size of the problem dimension. However,

there are also other benefits. Consider a large scale problem which requires distributed

memory. In such a problem, one needs an efficient preconditior to solve a linear sys-

tem or an eigenvalue problem. To computer such a preconditioner, one needs to pay

extra attention to distributed algorithms in order to minimize the amount of memory

required to store such a preconditioner and appropriate iterative schemes to minimize
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the computational time. To perform such a task, one needs to be highly experienced

with distributed computing and to have strong background in linear algebra. On the

other hand, ROM techniques free researchers from such tasks. Once matrix operators are

reduced using POD-basis, then one no longer needs to consider any preconditioner and

distributed computing since the dimension of the problem is small compared with the

original system and a personal computer is sufficient to solve a reduced order system. In

addition, a reduced order system is no longer sparse, and therefore only direct solvers are

required which is far simpler than the iterative methods.
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Chapter 4

generalized Polynomial Chaos for

Uncertainty Quantification

Uncertainty Quantification (UQ) is a rapidly growing discipline in reactor simulation due

to its importance in the safety and economics of the associated nuclear reactor system.

UQ is the process of determining uncertainties in the results propagated from uncertain-

ties in the input parameters such as uncertainties in the cross-section data input to the

neutronics models. To perform UQ, sampling methods such as Monte Carlo method (MC)

are commonly utilized for UQ. MC is a non-intrusive approach. In addition, another de-

sirable feature of MC is that the curse of dimensionality does not affect its convergence

rate. Regardless the number of stochastic variables, MC will converge with O(n−1/2).

This property is well-suited for an engineering model with hundreds and thousands of

stochastic variables in the input parameter space. However, O(n−1/2) is slow and the

computational cost is typically large for reactor simulation. Therefore, in order to ac-

celerate the convergence rate in MC, Quasi-Monte Carlo method (QMC) is widely used

for a model with few stochastic variables [27]. QMC typically exhibits a faster conver-

gence rate than MC. However, the convergence rate of QMC is affected by the curse of

dimensionality and typically the convergence rate decreases as the number of stochastic

variables increases.

Recently, two approaches have emerged as alternatives to MC: the sparse grid approx-

imation (SG), and the generalized polynomial chaos (gPC). In SG methods, the response

is approximated by a linear combination of hierarchical hat basis functions built on the

Smolyak-type sparse grid [17]. SG approximation also suffers from the curse of dimension-
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ality. However, the dimension-adaptive sparse grid approximation has been proposed to

overcome the curse of dimensionality and the dimension-adaptive SG shows an excellent

convergence rate [28].

In gPC, a spectral decomposition approach is used to expand the response function

in terms of an orthogonal function basis [29]. gPC can be implemented intrusively and

non-intrusively. In the intrusive gPC implementation, the stochastic model equations are

converted into a system of deterministic equation by Galerkin projection to solve not only

for the reference solution but also for all the coefficients of the orthogonal basis functions.

Then, gPC can calculate the higher order moments of the response relatively easily.

Although this approach provides detailed information about response uncertainties, it has

several drawbacks. First, the Galerkin projection is computationally expensive for a model

with complicated geometry and many stochastic variables. This is the case for reactor

simulation. In addition, the number of orthogonal basis vectors exponentially grows with

the number of stochastic variables. Intrusive gPC has been applied for an eigenvalue

problem and the application to neutronics problem has been studied in [30]. In non-

intrusive gPC implementations, the response is sampled and a Vandermonde-like system

of equations is constructed to find the coefficients for the orthogonal basis functions.

Both intrusive and non-intrusive gPC face the curse of dimensionality. However, the

sparse approximation has been proposed for non-intrusive gPC.

Orthogonal Polynomial Basis

In gPC, a stochastic response is approximated by orthogonal basis functions. Assume

that the input parameters have s stochastic variables represented by ξ = [ ξ1 ··· ξi ··· ξs ]T

where each ξi has its own probability density function where ξ ∈ Y and Y is stochastic

space. Then, response is represented by the chaos expansion given by:

R(ξ) =
∞∑
i=0

aiΨi(ξ) (4.1)

where ai is the i-th polynomial chaos coefficient and Ψi(ξ) is the i-th multivariate orthog-

onal basis function. Note that in a case of Legendre polynomials, Ψi(ξ) can be expressed
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as:

Ψ0(ξ) = P0(ξ1) = · · · = P0(ξs)

Ψ1(ξ) = P1(ξ1)
...

Ψs+1(ξ) = P1(ξs)

Ψs+2(ξ) = P2(ξ1)

Ψs+3(ξ) = P1(ξ1)P1(ξ2)
...

and Pi(ξj) is a univariate i-th order orthogonal polynomial of ξj. Note that it has an

orthogonal relationship given by:∫
dξkPi(ξk)Pj(ξk)w(ξk) = δij

∫
dξkP

2
i (ξk)w(ξk) (4.2)

where w(ξk) is a weighting function. Using this orthogonality, the orthogonal property

for the multivariate function is given by:∫
dξΨi(ξ)Ψj(ξ)w(ξ) = δij

∫
dξΨ2

i (ξ)w(ξ) (4.3)

where w(ξ) =
∏s

k=1w(ξk). The type of the orthogonal function Pj(ξk) is determined by

the type of a continuous probability distribution of ξk. This is called the Askey scheme

[31]. Table 4.1 shows the Askey scheme for the continuous hyergeometric polynomials.

Table 4.1: Askey scheme of continuous hypergeometric polynomials

Distribution Density function Polynomial P Weight function

Normal 1
2π
e−

x2

2 Hermite e−
x2

2

Uniform 1
2

Legendre 1

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi (1− x)α(1 + x)β

Exponential e−x Laguerre e−x

Gamma xαe−x

Γ(α+1)
Generalized Laguerre xαe−x
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In practice, Eq.(4.1) is truncated at a finite expansion order M :

R(ξ) =
M∑
i=0

aiΨi(ξ). (4.4)

There are multiple approaches how the polynomial chaos expansion is truncated. The

most common approach is the total order expansion where the order of expansion is up

to a fixed order. In this case, the number of term M with an expansion of total order p

involving s stochastic variables is given by:

M + 1 =
(s+ p)!

s!p!
. (4.5)

It is obvious that the number of polynomial terms exponentially increases with s and

p. This is called the curse of dimensionality. In a stochastic partial differential equation,

this problem is quite common and the computational cost can get easily intractable in

most cases.

Once the chaos expansion has been obtained, the mean and variance of the response

R can be obtained. The mean value of R can be obtained by:

µ(R(ξ)) =
1

V

M∑
i=0

ai

∫
Y

dξ Ψi(ξ) (4.6)

where V is the volume of the stochastic space, Y . In addition, the variance of R(ξ) is

obtained by:

Var(R(ξ)) = µ(R(ξ)2)− µ(R(ξ))2

=
1

V

∫
Y

dξ

(
M∑
i=0

aiΨi(ξ)

)2

−

(
1

V

M∑
i=0

ai

∫
Y

dξ Ψi(ξ)

)2

=
1

V

M∑
i=0

M∑
j=0

aiaj

∫
Y

dξ Ψi(ξ)Ψj(ξ)−
1

V 2

M∑
i=0

M∑
j=0

aiaj

∫
Y

dξ Ψi(ξ)

∫
Y

dξ Ψj(ξ).

(4.7)

It is important to note that when the multivariate orthogonal basis function is a Legendre
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polynomial, the mean is simplified to:

µ(R(ξ)) =
1

V

M∑
i=0

ai

∫
Y

dξ Ψi(ξ)

=
1

V

M∑
i=0

ai

∫
Y

dξ
Ψ0(ξ)

Ψ0(ξ)
Ψi(ξ)

=
1

VΨ0(ξ)

M∑
i=0

ai

∫
Y

dξ Ψ0(ξ)Ψi(ξ)

=
a0

V
V = a0 (4.8)

since Ψ0(ξ) = 1. Also, the variance is obtained from:

Var(R(ξ)) = µ(R(ξ)2)− µ(R(ξ))2

=
1

V

∫
Y

dξ

(
M∑
i=0

aiΨi(ξ)

)2

− a2
0

=
1

V

M∑
i=0

M∑
j=0

aiaj

∫
Y

dξ Ψi(ξ)Ψj(ξ)− a2
0

=
1

V

M∑
i=0

a2
i

∫
Y

dξ (Ψi(ξ))
2 − a2

0

=
1

V

M∑
i=1

a2
i 〈Ψi(ξ),Ψi(ξ)〉. (4.9)

Of note is that the last inner product is easily calculated by using the orthogonal property

of the Legendre polynomial:∫ 1

−1

dxPm(x)Pn(x) =
2

2n+ 1
δmn. (4.10)

4.1 Intrusive Polynomial Chaos

We will first assume that the multi-group diffusion equation Eq.(2.5) has uncertainties

in the cross-section values. The uncertainties propagate to uncertainties in the flux dis-

tribution and the responses of interest. To describe these uncertainties, the stochastic
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variable ξ, which is a vector, is introduced into Eq.(2.5) and integrated over the energy

group:

−∇ ·Dg(r, ξ)∇φg(r, ξ) + Σg
t (r, ξ)φg(r, ξ)

=
G∑

g′=1

Σg′→g
s (r, ξ)φg′(r, ξ) +

χg(r, ξ)

k(ξ)

G∑
g′=1

νg(r, ξ)Σ
g′

f (r, ξ)φg′(r, ξ), g = 1, · · ·G (4.11)

where r ∈ Ω and ξ ∈ Y . In most cases, an analytical solution to this stochastic partial

differential equation is not known and extremely hard to solve for large problems like an

assembly model due to large number of stochastic variables.

4.1.1 Source-Driven Problem

To simplify the problem, consider first the fission source-driven problem of Eq.(4.11)

denoted as:

−∇·Dg(r, ξ)∇φg(r, ξ)+Σg
t (r, ξ)φg(r, ξ)−

G∑
g′=1

Σg′→g
s (r, ξ)φg′(r, ξ) = sg(r, ξ), g = 1, · · ·G

(4.12)

where the fission source term is given by:

sg(r, ξ) =
χg(r, ξ)

kref

G∑
g′=1

νg(r, ξ)Σ
g′

f (r, ξ)φrefg′ (r) (4.13)

where kref and φrefg′ (r) are a solution to a reference case. To solve Eq.(4.12), the scalar

flux is expanded by the generalized polynomial chaos expansion described by:

φg(r, ξ) =
∞∑
i=0

fg,i(r)Ψi(ξ) (4.14)

where fg,i(r) are the undetermined coefficients of the multivariate polynomial Ψi(ξ).

Then, assume that each fg,i(r) can be decomposed by a set of orthogonal functions
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Φj(r):

fg,i(r) =
∞∑
j=1

αg,ijΦj(r) (4.15)

where Φj(r) satisfies the orthogonal property given by:

〈Φj(r),Φk(r)〉 = δij〈Φj(r),Φj(r)〉. (4.16)

Now, combining Eq.(4.14) and Eq.(4.15), the scalar flux can be represented as:

φg(r, ξ) =
∞∑
i=0

∞∑
j=1

αg,ijΦj(r)Ψi(ξ). (4.17)

Note that Φj(r) can be chosen from any family of orthogonal functions. Therefore, with-

out loss of generality, Φj(r) can be assumed to be generated by the POD procedure

described in the Chapter 3. To solve for αij, first of all Eq.(4.17) is truncated to the finite

number of terms denoted as:

φg(r, ξ) ≈
M∑
i=0

r∑
j=1

αg,ijΦj(r)Ψi(ξ). (4.18)

Then, substitute Eq.(4.18) into Eq.(4.12):

−∇ ·Dg(r, ξ)∇
M∑
i=0

r∑
j=1

αg,ijΦj(r)Ψi(ξ) + Σg
t (r, ξ)

M∑
i=0

r∑
j=1

αg,ijΦj(r)Ψi(ξ)

−
G∑

g′=1

Σg′→g
s (r, ξ)

M∑
i=0

r∑
j=1

αg′,ijΦj(r)Ψi(ξ) = sg(r, ξ), g = 1, · · ·G (4.19)

where the only unknowns are αg,ij and αg′,ij. To determine these unknowns, the Galerkin

projection (more broadly the method of weighted residuals) is applied to Eq.(4.19) by

projecting Eq.(4.19) onto Pl(ξ) and Φm(r). That is, multiply Ψl(ξ) and Φm(r) to Eq.(4.19)
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and integrate it over the stochastic space and spatial domain given by:

−
M∑
i=0

r∑
j=1

αg,ij

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)∇ ·Dg(r, ξ)∇Φj(r)Ψi(ξ)

+
M∑
i=0

r∑
j=1

αg,ij

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)Σg
t (r, ξ)Φj(r)Ψi(ξ)

−
M∑
i=0

r∑
j=1

G∑
g′=1

αg′,ij

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)Σg′→g
s (r, ξ)Φj(r)Ψi(ξ)

=

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)sg(r, ξ), g = 1, · · ·G (4.20)

where all terms are now deterministic coefficients except αg,ij and αg′,ij. To simplify

Eq.(4.20), denote that:

Dg,ijlm =

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)∇ ·Dg(r, ξ)∇Φj(r)Ψi(ξ)

Σt
g,ijlm =

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)Σg
t (r, ξ)Φj(r)Ψi(ξ)

Σs
g′→g,ijlm =

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)Σg′→g
s (r, ξ)Φj(r)Ψi(ξ)

sg,lm =

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)sg(r, ξ) (4.21)

and Eq.(4.20) can be written as:

−
M∑
i=0

r∑
j=1

αg,ijDg,ijlm +
M∑
i=0

r∑
j=1

αg,ijΣ
t
g,ijlm

−
M∑
i=0

r∑
j=1

G∑
g′=1

αg′,ijΣ
s
g′→g,ijlm = sg,lm, g = 1, · · ·G. (4.22)

Now, Eq.(4.22) can be written as the dense matrix equation for αg,ij and αg′,ij and is

ready to be solved.
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4.1.2 k-Eigenvalue Problem

Different from the fission source-driven problem, the k-eigenvalue problem is more com-

plicated to solve, yet the formulation is almost the same. Assume that the reciprocal of

k-eigenvalue can be expanded by the chaos expansion given by:

1

k(ξ)
= λ(ξ) =

∞∑
i=0

λiΨi(ξ) (4.23)

where λi are the undetermined coefficients of the chaos expansion for λ(ξ). Of note is

that the expansion does not necessarily need to be the reciprocal of k. It could be the

case that:

k(ξ) =
∞∑
i=0

kiΨi(ξ) (4.24)

where ki are undetermined coefficients of the chaos expansion for k(ξ). Both equations

can be used for the intrusive polynomial chaos formulation of for the diffusion equation,

but the resulting system of equations are slightly different. In this chapter, only Eq.(4.23)

is considered, but the same argument is valid for Eq.(4.24).

Similar to the source problem, the scalar flux is expanded using the chaos expansion

and the POD basis. First of all, Eq.(4.23) is truncated to a finite number of terms:

1

k(ξ)
= λ(ξ) =

M∑
i=0

λiΨi(ξ) (4.25)

Then, substitute Eq.(4.18) and Eq.(4.25) into Eq.(4.11):

−∇ ·Dg(r, ξ)∇
M∑
i=0

r∑
j=1

αg,ijΦj(r)Ψi(ξ)

+ Σg
t (r, ξ)

M∑
i=0

r∑
j=1

αg,ijΦj(r)Ψi(ξ)−
G∑

g′=1

Σg′→g
s (r, ξ)

M∑
i=0

r∑
j=1

αg′,ijΦj(r)Ψi(ξ)

= χg(r, ξ)
M∑
k=0

λkΨk(ξ)
G∑

g′=1

νg(r, ξ)Σ
g′

f (r, ξ)
M∑
i=0

r∑
j=1

αg′,ijΦj(r)Ψi(ξ), g = 1, · · ·G (4.26)
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Taking the Galerkin projection onto the basis yields the following deterministic equation:

−
M∑
i=0

r∑
j=1

αg,ij

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)∇ ·Dg(r, ξ)∇Φj(r)Ψi(ξ)

+
M∑
i=0

r∑
j=1

αg,ij

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)Σg
t (r, ξ)Φj(r)Ψi(ξ)

−
M∑
i=0

r∑
j=1

G∑
g′=1

αg′,ij

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)Σg′→g
s (r, ξ)Φj(r)Ψi(ξ)

=
M∑
i=0

r∑
j=1

M∑
k=0

G∑
g′=1

αg′,ijλk∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)χg(r, ξ)Ψk(ξ)νg(r, ξ)Σ
g′

f (r, ξ)Φj(r)Ψi(ξ), g = 1, · · ·G. (4.27)

To simplify the above equation, denote as the following:

Dg,ijlm =

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)∇ ·Dg(r, ξ)∇Φj(r)Ψi(ξ)

Σt
g,ijlm =

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)Σg
t (r, ξ)Φj(r)Ψi(ξ)

Σs
g′→g,ijlm =

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)Σg′→g
s (r, ξ)Φj(r)Ψi(ξ)

sg′,ijklm =

∫
Y

dξ

∫
Ω

dr Ψl(ξ)Φm(r)χg(r, ξ)Ψk(ξ)νg(r, ξ)Σ
g′

f (r, ξ)Φj(r)Ψi(ξ) (4.28)

and Eq.(4.27) simplifies to:

−
M∑
i=0

r∑
j=1

αg,ijDg,ijlm +
M∑
i=0

r∑
j=1

αg,ijΣ
t
g,ijlm

−
M∑
i=0

r∑
j=1

G∑
g′=1

Σs
g′→g,ijlm =

M∑
i=0

r∑
j=1

M∑
k=0

G∑
g′=1

αg′,ijλksg′,ijklm, g = 1, · · ·G (4.29)

where the number of equation is gr(M+1) and the number of unknowns are (gr+1)(M+

1). Therefore, Eq.(4.29) is under-determined system. An additional M + 1 equations can

54



be obtained by considering the normalization constraint:

G∑
i=1

∫
Ω

dr φg(r, ξ)φg(r, ξ) = 1. (4.30)

Then, the above equation can be transformed by the POD-gPC expansion described in

Eq.(4.18):

G∑
i=1

M∑
j=0

r∑
k=1

M∑
l=0

r∑
m=1

αg,jkαg,lmΨk(ξ)Ψm(ξ)

∫
Ω

dr Φj(r),Φl(r) = 1 (4.31)

since Φi(ξ) is an orthogonal function:

G∑
i=1

M∑
j=0

r∑
k=1

M∑
m=0

αg,jkαg,jmΨk(ξ)Ψm(ξ) = 1 (4.32)

and taking a Galerkin projection onto the stochastic basis results in the following (M+1)

equations,

G∑
i=1

M∑
j=0

r∑
k=1

M∑
m=0

αg,jkαg,jm

∫
Y

dξ Ψk(ξ)Ψm(ξ)Ψn(ξ) = δn0 for n = 0, . . . ,M (4.33)

To solve this system of equations, Newton’s Method discussed in the Chapter 2 can be

applied.

Limitation of the Intrusive Approach

Even though intrusive gPC is mathematically possible and optimal in L2 norm, it is

common that the method is computationally infeasible. Consider Eq.(4.28) as an example.

To obtain sg′,ijklm, a symbolic or numerical integration over ξ and r must be performed.

However, r has 3 dimensions and ξ has s dimensions. When the geometry is complicated

such as with an assembly configuration, the numerical integration on r is very expensive

because most coefficients such as D(r, ξ) and Σ(r, ξ) are discontinuous functions with

respect to r. In addition, numerical integration over ξ is more expensive since the number

of stochastic variables is s, which could be more than 100 even for a simple configuration.

These difficulties with numerical integration make intrusive gPC intractable for reactor
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simulation and only applicable to a small and simple problem with a few stochastic

variables.

4.2 Non-Intrusive Polynomial Chaos

In most cases, intrusive gPC is not applicable for reactor simulation mainly because its

difficulties and computational costs in numerical integration. An alternative approach

is to find αg,ij and ki(ξ) with a non-intrusive method broadly known as non-intrusive

generalized polynomial chaos. In non-intrusive gPC, the k-eigenvalue and scalar fluxes

are sampled with random perturbation of cross-section values and αg,ij and ki(ξ) are

obtained by solving the Vandermonde-like matrix.

In non-intrusive gPC, no modification in source code is required. An existing code

treated is as a black-box that is evaluated many times to sample solutions and a matrix

equation describing a relation between stochastic inputs and outputs is constructed.

Then, a matrix equation is solved to recover the relation. Since no modification to the

existing code is required, the non-intrusive approach is preferable in most cases and this

approach can be easily implemented.

Assume that a black-box accepts perturbed cross-section values as input parameters

and generates spatially-discretized fluxes and k-eigenvalue as outputs. Then, denote that

a particular realization of the k-eigenvalue and scalar fluxes generated by a random

perturbation of cross-section values by k(ξi) and φg(ξ
i)for i = 1, · · · ,m. For simplicity,

denote a collection of scalar fluxes as:

φ(ξi) =
[
φ1(ξi)T φ2(ξi)T · · · φG(ξi)T

]T
. (4.34)

Then, φ(ξi) can be expressed by POD and the chaos expansion:

φ(ξi) ≈
M∑
j=0

r∑
k=1

αjkΨj(ξ
i)Φk (4.35)

where Φk is an orthonormal vector generated by the POD procedure. The purpose of the

POD approach is that it can reduce the computational cost significantly. If POD is not

applied, then the chaos expansion must be applied to each nodal point for each energy

group, which results in the number of unknowns begin (M + 1)nG whereas the number
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of unknowns with POD is (M+1)r. This reduction represents a significant saving in cost

and time. Using the orthogonality of Φk, Eq.(4.35) can be written as:

〈Φk, φ(ξi)〉 =
M∑
j=0

αjkΨj(ξ
i) for k = 1, · · · r. (4.36)

Now, Eq.(4.36) can be summarized as a matrix equation of the form VA = B where

V =


Ψ0(ξ1) Ψ1(ξ2) · · · ΨM(ξ1)

Ψ0(ξ2) Ψ1(ξ2) · · · ΨM(ξ2)
... · · · . . .

...

Ψ0(ξm) Ψ1(ξm) · · · ΨM(ξm)

 (4.37)

A =


α01 α02 · · · α0r

α11 α12 · · · α1r

... · · · . . .
...

αM1 αM2 · · · αMr

 (4.38)

and

B =


〈Φ1, φ(ξ1)〉 〈Φ2, φ(ξ1)〉 · · · 〈Φr, φ(ξ1)〉
〈Φ1, φ(ξ2)〉 〈Φ2, φ(ξ2)〉 · · · 〈Φr, φ(ξ2)〉

... · · · . . .
...

〈Φ1, φ(ξm)〉 〈Φ2, φ(ξm)〉 · · · 〈Φr, φ(ξm)〉

 . (4.39)

In addition, the k-eigenvalue can be expanded using a chaos expansion:

k(ξi) =
M∑
j=0

kjΨj(ξ
i). (4.40)

and Eq.(4.40) can be expressed as a matrix equation of the form Va = b where

a =
[
k0 k1 · · · kM

]T
(4.41)

and

b =
[
k(ξ1) k(ξ2) · · · k(ξm)

]
. (4.42)

Since the both matrix equations have the same matrix V, they can be solved at the same
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time,

V
[
A a

]
=
[
B b

]
. (4.43)

It has been recommended m to be 2M to solve Eq.(4.43) accurately [32]. This oversam-

pling is mathematically justified by considering the relation between the Monte Carlo

method and the Vandermonde-like matrix of multivariate orthogonal polynomials dis-

cussed in the following section.

4.2.1 A Property of Multivariate Orthonormal Vandermonde-

like Matrices

A matrix V is commonly called a Vandermonde-like matrix. A univariate Vandermonde-

like matrix is defined as:

Vu =


p0(x1) p1(x1) · · · pm(x1)

p0(x2) p1(x2) · · · pm(x2)
...

...
. . .

...

p0(xn) p1(xn) · · · pm(xn)

 (4.44)

where pi(xj) is i-th order polynomial of xj. The properties of a Vandermonde-like matrix

of three term recursion are well-known and there exists an efficient algorithm to solve

a matrix equation with a Vandermonde matrix. However, a multivariate Vandermonde-

like matrix is not well-studied to the best knowledge of the author. To examine the basic

properties of a multivariate Vandermonde-like matrix, define an orthonormal multivariate

Vandermonde-like matrix as:

V =


Ψ0(ξ1) Ψ1(ξ1) · · · ΨM(ξ1)

Ψ0(ξ2) Ψ1(ξ2) · · · ΨM(ξ2)
... · · · . . .

...

Ψ0(ξm) Ψ1(ξm) · · · ΨM(ξm)

 (4.45)

where Ψi(ξ) is an orthonormal polynomial such that∫
Y

dξ w(ξ)Ψi(ξ)Ψj(ξ) = δij (4.46)
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Then, the following theorem holds.

Theorem 2 (Diagonal Scaling for an orthonormal Vandermonde-like matrix). There

exists D ∈ Rm×m for a multivariate orthonormal Vandermonde-like matrix such that

lim
m→∞

κ2(DV) = lim
m→∞

||DV||2
∣∣∣∣(DV)†

∣∣∣∣
2

= 1 (4.47)

where κ2(DV) is a 2-norm condition number for DV.

Proof. Assume that a stochastic random vector ξi is sampled from the probability dis-

tribution p(ξ) 6= 0 where ξ ∈ Y . Now, Eq.(4.46) can be rewritten using the Monte Carlo

method with importance sampling,∫
Y

dξ w(ξ)Ψi(ξ)Ψj(ξ) =

∫
Y

dξ
p(ξ)

p(ξ)
w(ξ)Ψi(ξ)Ψj(ξ)

= lim
m→∞

V

m

m∑
k=1

w(ξk)

p(ξk)
Ψi(ξk)Ψj(ξ

k)

=
V

m

m∑
k=1

w(ξk)

p(ξk)
Ψi(ξ

k)Ψj(ξ
k) +O

(
1√
m

)
(4.48)

Now, assume that the diagonal components of D are given by [D]ii =
√

V w(ξi)
mp(ξi)

. Then, the

theorem can be proven by showing that the singular values of limm→∞DV is 1. Assume

a reduced singular value decomposition of DV = UΣQ∗. Then,

V∗D∗DV = V∗D2V = QΣ2Q∗ (4.49)

Now, (i, j)-th component of V∗D2V is given by

(V∗D2V)ij =
V

m

m∑
k=1

w(ξk)

p(ξk)
Ψi(ξ

k)Ψj(ξ
k)

= O
(

1√
m

)
+

∫
Y

dξ w(ξ)Ψi(ξ)Ψj(ξ)

= δij +O
(

1√
m

)
(4.50)

Therefore,

lim
m→∞

(V∗D2V)ij = δij ⇒ lim
m→∞

V∗D2V = I (4.51)
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which implies that limm→∞Σ = I. Hence,

lim
m→∞

κ2(DV) = 1 (4.52)

Since diagonal scaling does not change the solution of the linear system, it is natural

to consider the diagonally scaled Vandermonde-like system based on Theorem 2:

DV
[
A a

]
= D

[
B b

]
(4.53)

Theorem 2 justifies the oversampling in [32]. If a sufficient number of samples is collected,

then Theorem 2 guarantees that it converges to the exact gPC coefficients. In addition,

consider the normal equations of the Vandermonde-like system:

V∗D2V
[
A a

]
= V∗D2

[
B b

]
(4.54)

Since the off-diagonal components of V∗D2V in Eq.(4.54) approach zero if m is suffi-

ciently large, one may neglect them. Then, such an approximation becomes equivalent to

the Monte Carlo method and if the samples are collected by advanced methods such as

Latin Hypercube, it is equivalent to the Quisi-Monte Carlo method. However, neglecting

the off-diagonal components makes the solution to Eq.(4.54) erroneous. Therefore, the

Vandermonde-like system is more accurate than the Monte Carlo method in general.

Sample Node Distribution

The Askey scheme gives information on an optimal orthogonal basis function based on

the probability density distribution of a stochastic variable [31]. However, the Askey

scheme does not give any information on how the stochastic variables are sampled for

non-intrusive polynomial chaos. A similar research has been conducted in approximation

theory over centuries and sufficient knowledge exists to address these problems.

For Legendre polynomials, non-intrusive gPC can be considered as a multivariate

interpolation problem since it interpolates responses by a specific class of polynomials.

The accuracy of an interpolation is dramatically influenced by a node set. In approxi-

mation theory, how well an interpolation approximates a function with a give node set
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is given by the Lebesgue constant Λn(X) where X denotes the node set [2]. A Lebesgue

constant measures how accurate a polynomial interpolation is with a given node set and

polynomials, compared with the optimal interpolant of the same (or lower) degree in the

maximum norm: ∣∣∣∣∣∣f − P interp
N (X)

∣∣∣∣∣∣
∞
≤ (1 + ΛN(X))

∣∣∣∣∣∣f − P optimal
N

∣∣∣∣∣∣
∞

(4.55)

where X denotes the node distribution, P interp
N (X) denotes the polynomial interpolation

of order N , and P optimal
N is the optimal interpolant of an order of N (or less). In order

for a polynomial interpolant to be accurate, Λn(X) should be as small as possible. It is

important to note that Theorem 2 allows us to modify the sampling probability distri-

bution of ξi as desired because Theorem 2 guarantees the convergence of non-intrusive

gPC expansion regardless of what kind of sampling probability distribution is used.

The value of Λn(X) depends in a very sensitive way on the node distribution and

the type of a polynomial basis function. For example, in non-intrusive gPC expansion,

the Legendre polynomials are used for a uniform distribution. Therefore, assume that we

choose the equidistat node distribution as the sampling distribution. Now, the Lebesgue

constant for the Legendre polynomial is given by [2]:

Λn(Xeq) = O
(

2n

n lnn

)
(4.56)

which grows exponentially. This Lebesgue constant shows that an interpolation by the

chaos expansion with equidistat node distribution could be totally inaccurate and the

accuracy decreases as the number of samples increases. Therefore, even if a stochastic

variable in the original problem is uniformly distributed, it does not imply a stochas-

tic variable should also be sampled uniformly. Rather, a stochastic variable should be

sampled so that it minimizes a Lebesgue constant.

An optimal node distribution for a given polynomial is still under investigation. How-

ever, for Legendre and Chebyshev polynomials, sufficient information is available for our

applications. The smallest possible Lebesgue constant is shown as [2]

Λn(Xmin) =
2

π

(
lnn+ γ + ln

4

π

)
+O(1). : (4.57)

61



where γ is given by

Γ(1− x) = 1 + γx+O(x2). (4.58)

We want a node distribution that is as close as possible to Eq.(4.57). The Chebyshev

node distribution has been considered as a good candidate. For the Legendre polynomials

with the Chebyshev node distribution is O(
√
n) which is better than Eq.(4.56). Moreover,

the Chebyshev polynomials with the Chebyshev node distribution is known tobe semi-

optimal [2]:

Λn(Xmin) =
2

π

(
lnn+ γ + ln

8

π

)
+O(1). (4.59)

which is almost near the optimal value. From this fact, it is natural to consider that

instead of using the Legendre polynomials, the Chebyshev polynomials with the Cheby-

shev node distribution will be more accurate than the Legendre polynomials, and the

Chebyshev polynomial can be projected back to the Legendre polynomial easily.

Unfortunately, the above argument does not consider the multivariate cases. When

the number of variables increases, the sampling approaches suffer from the curse of di-

mensionality. Assume that the number of stochastic variables is s. Then, if n Chebyshev

nodal points are sampled in each stochastic variable, then the total number of samples

is ns (assuming full-tensor expansion). As s increases, the number of samples is unac-

ceptably large. Therefore, the Chebyshev node distribution cannot be directly used in

multivariate cases unless the cost of sampling is cheap.

An intuitive aid to the curse of dimensionality is to randomly sample stochastic vari-

ables according to a probability density function that simulates the Chebyshev node

distribution. The Chebyshev node distribution is discrete, but there exists a continu-

ous probability density function corresponding to the Chebyshev node distribution. The

Chebyshev node distribution is given by:

xj = − cos

(
πj

N

)
for i = 0, 1, · · · , N (4.60)

and the corresponding continuous probability density function is given by:

µ(x) =
1

π
√

1− x2
. (4.61)

Now, one can sample x according to Eq.(4.61) randomly instead of using Eq.(4.60). Then,
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Eq.(4.61) can be easily extended to multivariate cases:

µ(x1, x2, · · · , xs) =
s∏
i=1

1

π
√

1− x2
i

. (4.62)

Now, Eq.(4.62) can be used to sample nodal points randomly. If a sufficient number of

samples is collected, then it will be close to the Chebyshev node distribution.

4.3 Sparse Approximation

Now, the nodal points can be sampled randomly using the Chebyshev continuous prob-

ability density distribution. However, non-intrusive gPC still requires many evaluations

of the existing code, which could be computationally expensive. In nuclear engineering

applications, each simulation code takes from hours to days.

How can gPC be used with the limited number of samples accurately? This question

can be answered when the coefficients of the gPC expansion is sparse, where only a few

terms of them are dominant [33]. Assume that only a few terms of the coefficients are

important and the rest of the terms are negligible or close to 0. Then, the orthonormal

Vandermonde-like system can be treated as an optimization problem described as a P0

minimization problem given by:

(P0) : min ||x||0 subject to Vx = b (4.63)

where ||x||0 is the number of non-zero entries, defined as 0-norm, and V is an orthonormal

Vandermonde-like matrix. The properties of sparsity approximation can be found in a

textbook, eg. [33]. The application of the sparse approximation in the non-instructive

gPC can be found in [34].

Orthogonal Marching Pursuit

Our primary interest is in how this P0 optimization problem can be solved. One famous

algorithm to solve the P0 problem is the Orthogonal Marching Pursuit (OMP) [33]. OMP

is considered to be a greedy algorithm because it tries to find a local optimizer to minimize

the residual and to update a solution until the residual meets the user-specified tolerance.

In OMP, the method tries to find the support of a solution S by sweeping all components
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of a solution individually and to quantify the value over the support by the least-squares

problem. OMP can be summarized as follows:

First, consider that the initial guess to Eq.(4.63) is x0 = 0 and the initial support

S0 = ∅ is an empty set. Now, the residual to the initial guess is given by r0 = b−Vx0 = b.

Then, we are interested in a scalar multiplication of a canonical vector that minimizes

the initial residual r0. So, find the support of the solution to minimize the residual by

solving:

Find j such that min
j
||Vx̂j − r0|| (4.64)

where x̂j is a scalar multiplication of a canonical vector êj. This can be done greedily by

sweeping all j and finding the minimal value of ||Vx̂j − r0||. Denote the j that minimizes

||Vx̂j − r0|| as j1 and add it to the support:

S1 = S0 ∪ {j1} (4.65)

Then, obtain a sparse solution for the original system on the new support S1 by solving

the least-squares problem:

min
xS1

||VS1xS1 − b||2 (4.66)

where VS1 is defined as a matrix of size m × |S1| that contains the columns from V

that belong to the support S1 and xS1 is defined as a vector of size |S1| × 1. Then, xS1

is projected onto the support S1 of x denoted by x1. Now, the residual is updated with

new candidate solution, r1 = b − Vx1. Then, the same procedure is repeated until the

user-specified tolerance is met. The procedure for OMP is summarized in Algorithm 5.
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Algorithm 5 Orthogonal Marching Pursuit

Given a m× P multivariate Vandermonde-like matrix V and P × 1

vector b, a tolerance ε, the following algorithm computes a sparse

approximation solution for Vx = b.

1. Set k = 0.

2. x0 = 0.

3. r0 = b−Vx0.

4. S0 = ∅.

5. while ||rk||2 ≥ ε, repeat the following steps:

(a) k = k + 1.

(b) Find j such that minj ||Vx̂j − rk−1||

(c) Update the support Sk = Sk−1 ∪ {j}

(d) Find the new solution by minxSk ||VSkxSk − b||2
(e) Update the solution xk by xSk .

(f) Calculate the new residual rk = b−Vxk

6. Output: xk.

As can be seen in Algorithm 5, OMP is a greedy algorithm and not efficient. When

P is large, then OMP takes long time to compute.

Dantzig Selector

When the number of available samples is small, then OMP may not be viable. In this

case, a common alternative to OMP is l1 optimization approach (also commonly P1
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optimization) described as:

(P1) min
x
||x||1 Subject to b = Vx (4.67)

Different from the P0 problem, the P1 problem tries to minimize the l1 constraint. The

l1 problem is typically solved by linearizing the P1 problem. Consider that the solution

to Eq.(4.67) can be decomposed into two parts, x = u − v where u, v ∈ RP
+ are both

non-negative vectors. Denote that z =
[
uT vT

]T
and 1 as a vector with all components

1. Then, ||x||1 can be written as:

||x||1 = 1T (u+ v) = 1T z. (4.68)

Likewise, Vx can be written as:

Vx = V(u− v) =
[
V −V

] [u
v

]
=
[
V −V

]
z. (4.69)

Therefore, Eq.(4.67) can be written in linear programming form:

min
z

1z Subject to b =
[
V −V

]
z and z ≥ 0. (4.70)

Eq.(4.70) is considered to have a classical linear programming structure, which can be

easily solved by the optimization toolbox in MATLAB. Recently, an efficient variant of

Eq.(4.67) referred to as the Dantzig Selector, was proposed by Candes and Tao [35] (See

[36] how to solve l1 constraint linear problem). In the Dantzig selector, the P1 problem

is treated as:

min
x
||x||1 Subject to

∣∣∣∣VT (b−Vx)
∣∣∣∣

1
≤ ε (4.71)

where ε is user-defined tolerance. Then, the Dantzig selector can be cast into linear

programming form that can be easily solved using MATLAB. It is given by:

min
u,v

1Tu+ 1Tv Subject to


u ≥ 0

v ≤ 0

ε1 ≤ VT (b−Vx) ≤ ε1

(4.72)
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where u is an auxiliary variable with u ≥ |x|. Eq.(4.72) also can be solved by the op-

timization toolbox in MATLAB. Further, there is a third party MATLAB toolbox that

can solve the Dantzig selector using the dual-primal interior-point method [37].

The sparse approximation is potentially capable of solving gPC with a very limited

number of samples if the solution is sparse and highly applicable to nuclear reactor

simulation in such a case.

4.4 Input Parameter Reduction

The sparse approximation can reduce the number of samples efficiently if and only if

the response function is sparse with respect to the input parameters. However, when

the number of input parameters is larger and they are not sufficiently sparse, then an

alternative approach is input parameter reduction, where the number of input parameters

is reduced by the sensitivity of the response with respect to the input parameters.

Assume the k-eigenvalue expressed in terms of the stochastic variables, k(ξ). Now,

the sensitivity of the k-eigenvalue with respect to each stochastic variable is given as:

∂k(ξ)

∂ξi
= Sensitivity of k(ξ) w.r.t. ξi. (4.73)

Then, the sensitivity represents the importance of each stochastic variable at ξi. For

instance, consider a case where a function only depends on two stochastic variables,

f(ξ1, ξ2) and each sensitivity at ξ1 = 1 and ξ2 = 2 is given by ∂f(ξ1,ξ2)
∂ξ1

= 10 and ∂f(ξ1,ξ2)
∂ξ2

=

10−6. Now, when (ξ1, ξ2) ≈ (1, 2), there is little contribution from the stochastic variable,

ξ2. In such a case, the second stochastic variable is negligible. However, even though the

second stochastic variable can be neglected, this is only applicable when (ξ1, ξ2) ≈ (1, 2).

Therefore, the sensitivity information must be collected over the domain of the stochastic

variables to identify the importance of each stochastic variable. Likewise, when many

stochastic variables exist, the change in response only depends on a few combinations of

stochastic variables.

Assume that the upper script denotes i-th sample and the sensitivity vector of the

k-eigenvalue at ξ = ξi is represented by:

S(ξi) =
[
∂k(ξ)
∂ξ1

∣∣∣
ξi

∂k(ξ)
∂ξ2

∣∣∣
ξi
· · · ∂k(ξ)

∂ξn

∣∣∣
ξi

]T
(4.74)
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which represents the importance of each variable at ξ = ξi. Now, the sensitivity matrix

for the k-eigenvalue is written as:

S =
[
S(ξ1) S(ξ2) · · · S(ξm)

]
(4.75)

where m is the number of samples collected to obtain the sensitivity matrix. Now, to

identify the dominant direction of the sensitivity matrix, take SVD on S:

S = UΣV∗ (4.76)

where U contains the information on the dominant sensitivity vector in each row, Σ

contains the magnitude or importance of each dominant sensitivity vector in U, and

each column of ΣV∗ contains information on how U can represents S(ξi). Note that U

is called the active subspace of the k-eigenvalue for the input parameter space because

any other orthogonal directions to U has little contribution in k-eigenvalue [38].

Once the important directions for the stochastic variables are identified, then the k-

eigenvalue can be approximated by a small number of pseudo-stochastic variables given

by:

α = U∗rξ (4.77)

where Ur is the first r dominant columns of U. Now, the k-eigenvalue can be approxi-

mated as:

k(ξ) ≈ k(Urα) = k(α). (4.78)

It is important to note that the error bound for the input parameter reduction for the

k-eigenvalue is not known. Therefore, to validate the accuracy of the input parameter

reduction, cross-validation must be performed. Otherwise, the input parameter reduction

cannot be trusted. The common approach to validate the input parameter reduction is to

benchmark k(Urαi) against new set of k(ξj) and one can get the statistical upper bound

of the error using order statistics.

Another important remark is that when the original stochastic variables are reduced

to the pseudo stochastic variables, the probability distribution of the original stochastic
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variables is not preserved. That is, α will have different probability distribution. There-

fore, gPC cannot be applied to the pseudo-stochastic variables. Instead, the k-eigenvalue

is recovered with respect to each component of α by the polynomial interpolation de-

scribed by:

k(α) =
∞∑
i=1

aiΨi(α) (4.79)

where ai is the set of undetermined coefficients and Ψi(α) are multivariate orthogonal

polynomials that can approximate k(ξ). If the domain of α is bounded, then a Chebyshev

polynomial is a good candidate. Then, an appropriate function must be chosen based on

α. Now, the mean can be calculated by:

µ(k(ξ)) =
1

V

∫
dξk(α(ξ)) =

1

V

M∑
i=0

∫
dξaiΨ(α(ξ)) (4.80)

and the variance can be calculated with the similar manner. As can be seen, the orthog-

onal properties of gPC are lost in the input parameter reduction. Therefore, analytic

evaluation of the mean and variance is difficult and a numerical integration technique

should be applied.
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Chapter 5

Numerical Results for POD

Methods

Numerical results are obtained by simulating the test models described in Chapter 2. For

simplicity, the normalization constraint is changed to:

φTφ = 1. (5.1)

Test Model A

To verify the proposed methods in the chapter 3, test model A, a 1D two-group simple fuel

model is used. The cross-section values in Table 2.1 are assumed to have uncertainties.

Each cross-section valueis assumed to be normally distributed with standard deviation

of 10% of its reference value from the reference value. The thermal group absorption

cross-section and the removal cross-section are assumed to be equal, and hence the total

number of stochastic variables is 12. The model is spatially discretized with equal node

width resulting in 1000 total nodes, and hence the dimension of L and F is 2000 (because

the number of unknowns per node is equal to two, representing the two group flux). The

generalized eigenvalue problem was solved by the power iterative method with a tolerance

10−12 for the residual.

First, the POD procedure is applied to this model. To apply the POD procedure, 100

random flux solutions, φ(ξi) are generated by randomly perturbing cross-section values

. Fig. 5.1 and Fig. 5.2 show the plots of 100 realizations of fluxes. Both figures show

each flux has a similar shape to different perturbations. Therefore, a solution should be
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expressed by a linear combination of 100 flux solutions.

Figure 5.1: 100 Realizations of Fast Flux Solutions

Figure 5.2: 100 Realizations of Thermal Flux Solutions

To verify this assumption, 100 extra random flux solutions, φ̃(ξj), are generated by

randomly perturbing cross-section values. Fig. 5.3 shows the error given by the following

equation,

max
j

∣∣∣∣∣
∣∣∣∣∣φ̃(ξj)−

r∑
i=1

aijφ(ξj)

∣∣∣∣∣
∣∣∣∣∣
2

. (5.2)
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where r is the number of snapshots. It is obvious that when the number of snapshots

increases, the L2 error decreases exponentially. Even though the dimension of the original

problem is 2000, the actual numerical rank of the problem is only about 50 based on

Fig. 5.3.

Figure 5.3: L2 Error of the POD procedure with 100 samples

The same numerical test was performed on the adjoint solutions. 100 adjoint flux

solutions φ∗(ξj) were generated from randomly perturbing cross-section values, and 100

extra adjoint flux solutions φ̃∗(ξj) were generated for the numerical test. Fig. 5.4 shows

the error given by the following equation,

max
j

∣∣∣∣∣
∣∣∣∣∣φ̃∗(ξj)−

r∑
i=1

a∗ijφ
∗(ξj)

∣∣∣∣∣
∣∣∣∣∣
2

. (5.3)
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Figure 5.4: L2 Error of the POD procedure with 100 samples for the Adjoint Flux

Fig. 5.4 shows almost the same result compared with the forward solutions. Therefore,

the forward flux and the adjoint flux both live in the low-dimensional subspace. Hence,

reduced order modeling is possible.

It is important to note that the numerical rank of the POD-basis does not change

with the number of nodes. To demonstrate this property, the test model A was solved by

different mesh sizes with the dimensions of L equal to 500, 1000, and 2000. Fig. 5.5 shows

the POD-Error obtained by these mesh sizes. From the figure, the POD-Error does not

depend on the mesh size. This fact allows us to determine the number of the POD-basis

in a relatively coarse mesh and then use it for the fine mesh to minimize the number of

executions. The same fact can be shown for the adjoint flux.
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Figure 5.5: Effect of the Mesh Refinement on the POD-Error

Now, we need to find r and Φi to construct the reduced order model. As discussed in

Chapter 3, the optimal POD-basis can be obtained from the singular value decomposition

or the eigenvalue decomposition. Fig. 5.6 shows the POD-basis for the fast neutron flux.

Fig. 5.7 shows the POD-basis for the thermal neutron flux. It can be seen that the POD-

basis keeps the same level of the continuity that the solution of the problem. Since the

scalar fluxes can be represented by the linear combination of the POD-bases, the POD-

bases can also be represented by the linear combination of the scalar fluxes. Since the

scalar fluxes have C0 continuity, then the POD-basis should also have the C0 continuity.

This fact allows us to interpolate the coarse POD-basis to fine POD-basis using an

appropriate interpolation scheme. In other words, the POD-basis can be used in the

similar manner such as the Multi-grid approach. Also, the first three POD-bases for the

adjoint solution are shown in Fig. 5.8 and Fig. 5.9
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Figure 5.6: First Three POD-basis for the Forward Flux of the Fast Flux Part

Figure 5.7: First Three POD-basis for the Forward Flux of the Thermal Flux Part
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Figure 5.8: First Three POD-basis for the Adjoint Flux of the Fast Flux Part

Figure 5.9: First Three POD-basis for the Adjoint Flux of the Thermal Flux Part
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Using these POD-bases, the generalized eigenvalue problem can now be reduced using

the POD-Galerkin method, the adjoint approach (γ = 0 and γ = 0.0005), and the k-

LS method. Each method is benchmarked against 100 realizations of forward solutions

generated by randomly perturbing cross-section values. That is,

max
i=1,...,100

∣∣∣∣φ(ξi)− φPOD(ξi)
∣∣∣∣

2
. (5.4)

Fig. 5.10 shows the worst relative L2 norm errors in flux. As can be seen, as the dimension

of the POD-basis increases, the L2 norm errors exponentially decay. One of the inter-

esting observations is that even though the POD-Galerkin approach is not guaranteed

to work with the k-eigenvalue problem, in this problem it worked. Actually, it showed

the best results for the flux errors. In addition, the adjoint approach (γ = 0) shows the

worst performance in the flux calculation. The adjoint approach (γ = 0.0005) improved

the result in the flux compared with the adjoint approach (γ = 0).

On the other hand, Fig. 5.10 shows the relative errors in the k-eigenvalue and the

adjoint approach (γ = 0) shows the best results. The dimension of the generalized eigen-

value problem was reduced from 2000 to 16 to achieve errors on the order of machine

precision. In other words, the k-eigenvalue has lower dimension of the active subspace

than flux in terms of the number of state variables. In addition, the adjoint approach

(γ = 0.0005) showed the second to the best performance. Note that the POD-Galerkin

method showed the worst performance as expected.
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Figure 5.10: Worst Relative L2 Norm Error in Flux with Different POD Approaches

Figure 5.11: Worst Relative Error in k-Eigenvalue with Different POD Approaches
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In addition, Fig. 5.12 and Fig. 5.13 show the performance of each method to calculate

the flux at the dimension of the POD-basis equal to 15 and 30. When r = 15, the

performance of each method is not so different. However, when r = 30, the POD-Galerkin

method exhibit the best performance among all. In addition, the adjoint approach (γ =

0.0005) shows better results than the adjoint approach (γ = 0). Overall, the adjoint

approach (γ = 0) is not well-suited to recovering the forward solution from the reduced

space. On the other hand, Fig. 5.14 shows the performance of each method to calculate

k-eigenvalue at the dimension of the POD-basis equal to 15. Opposite from the flux case,

the adjoint approach (γ = 0) showed superior performance when finding the k-eigenvalue.

Figure 5.12: Relative L2 Norm Errors in Flux with the POD-basis (r = 15)
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Figure 5.13: Relative L2 Norm Errors in Flux with the POD-basis (r = 30)

Figure 5.14: Relative Errors in k-Eigenvalue with the POD-basis (r = 15)
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Test Model B

The same numerical test is also applied on test model B. In this model, the geometry is

equally divided into 512 cells with equal width. The macroscopic cross-sections for each

isotope are assumed to be normally distributed with standard derivation of 10% of its

value. Fig. 5.15-5.18 show the realizations of 20 thermal and fast currents and fluxes.

From the plots, it can be seen that currents and fluxes do not change their values with

microscopic cross-section perturbations.

Figure 5.15: 20 Realizations of Cell-Edge Current in Fast Energy Group
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Figure 5.16: 20 Realizations of Cell-Edge Current in Thermal Energy Group

Figure 5.17: 20 Realizations of Cell-Averaged Fast Flux
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Figure 5.18: 20 Realizations of Cell-Averaged Thermal Flux

Fig. 5.19-5.22 show the adjoint solutions for the currents and fluxes. Recall that the

adjoint solutions are obtained by simply transposing L and F operators. One important

observation is that the adjoint solutions are close to zero almost everywhere, except at

a few points (See the magnitude of Fig. 5.19-5.22). Even though these adjoint solutions

are correct, when the generalized eigenvalue problem is projected onto these adjoint so-

lutions, information on the fluxes and currents will be lost. This causes a serious problem

when the eigenvector is recovered from the reduced space since such information is al-

ready lost. This can be partially remedied by using γ > 0.
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Figure 5.19: 20 Realizations of Adjoint Part of Cell-Edge Current in Fast Energy Group

Figure 5.20: 20 Realizations of Adjoint Part of Cell-Edge Current in Thermal Energy
Group
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Figure 5.21: 20 Realizations of Adjoint Part of Cell-Averaged Fast Flux

Figure 5.22: 20 Realizations of Adjoint Part of Cell-Averaged Thermal Flux
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Now, Fig. 5.23-5.26 show the first three POD-bases of the forward solutions.

Figure 5.23: First Three POD-bases of Fast Current Part
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Figure 5.24: First Three POD-bases of Thermal Current Part

Figure 5.25: First Three POD-bases of Fast Flux Part
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Figure 5.26: First Three POD-bases of Thermal Flux Part

Fig. 5.27-5.30 show the first three POD-bases for the adjoint solution. As can be

expected from the adjoint solution, the majority of the POD-basis is almost zero and an

only few of components are dominant.
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Figure 5.27: First Three POD-bases of Adjoint Solution of Fast Current

Figure 5.28: First Three POD-bases of Adjoint Solution of Thermal Current
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Figure 5.29: First Three POD-bases of Adjoint Solution of Fast Flux

Figure 5.30: First Three POD-bases of Adjoint Solution of Thermal Flux
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Fig. 5.31-5.32 show errors resulted from the POD methods defined by Eq.(3.4). One

important note is that the actual errors in the POD-based methods do not match with

Fig. 5.31-5.32. It is simply because these error estimates do not consider any effects of

stochasticity in the original problem.

Figure 5.31: POD-Error in Eq.(3.4) for the Forward Solution

Figure 5.32: POD-Error in Eq.(3.4) for the Adjoint Solution
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Now, these POD-bases are utilized to reduce the computational cost of the model B.

To demonstrate the reduction, the mesh size is now refined to 1024. Since in the model

B, the cell-edge current, the cell-edge flux, and the cell-averaged flux for thermal and fast

group are computed together, the error is computed by the following equation:

max
j=1,··· ,25

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 Jedge(ξ

j)

φedge(ξ
j)

φaverage(ξ
j)

−
 JPOD

edge (ξj)

φPOD
edge (ξj)

φPOD
average(ξ

j)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(5.5)

where the eigenvector is normalized by:∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 Jedge(ξ

j)

φedge(ξ
j)

φaverage(ξ
j)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= 1∀j. (5.6)

The POD-Galerkin method, the adjoint approach (γ = 0), the adjoint approach (γ =

0.0005), and the k-LS approach are benchmarked against 25 realizations of the solution

generated by randomly perturbing the macroscopic cross-section values. Fig. 5.33 shows

the error obtained by Eq.(5.5). As expected, the adjoint approach (γ = 0) is highly

unstable to recover the eigenvector compared with the model A. As discussed previously,

this is due to the fact that the adjoint POD-basis has almost zero everywhere except a

few points. On the other than, the adjoint approach (γ = 0.0005) shows slightly better

results around r = 150. However, the adjoint approach (γ = 0.0005) is still unstable for

recovering the eigenvector. On the other hand, the k-LS approach demonstrates almost

monotonic convergence. This agrees with the intuition that as the number of the basis

increases, the error decreases. The POD-Galerkin method shows a good result in this

model even though it is not guaranteed to work with generalized eigenvalue problem.
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Figure 5.33: Comparison of the POD-Based Methods by Eq.(5.5)

Fig. 5.34 shows the relative error in the k-eigenvalue. The most significant observation

is that the adjoint approach (γ = 0) shows an excellent convergent rate compared to

other POD-based methods, even though it did a poor job with fluxes. Note that when

r ≈ 80, the adjoint approach (γ = 0) showed a steep peak error. This is due to the

fact that Newton’s mMthod failed to converge to the dominant eigenvalue of the original

problem, but it instead converged to the newly introduced eigenvalue. If all eigenvalues

are computed by the QZ algorithm, then one can find the appropriate eigenvalue easily.

The reduced eigenvalue problem is small enough to use QZ algorithm to calculate all

eigenvalues. The adjoint approach (γ = 0.0005) also shows good convergence. On

the otehr hand, the POD-Galerkin method shows the worst results for the k-eigenvalue

problem as expected. One interesting observation is that the k-LS approach showed

almost monotonic convergence in the k-eigenvalue. Fig. 5.35 shows a performance

study of each method when calculating the k-eigenvalue with the dimension of the POD-

basis equal to 100. As expected, the adjoint approach(γ = 0) shows the best performance

compared to other methods and the adjoint approach (γ = 0.0005) is the second best.

The POD-Galerkin projection shows the worst performance in this problem since the

basis for the forward solution do not form the basis for the adjoint solution.
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Figure 5.34: Comparison of the POD-based Methods using Relative Error in k-
Eigenvalue

Figure 5.35: Comparison of the POD-based Methods by Relative Error in k-Eigenvalue
at r = 100

Fig. 5.36-5.38 shows the L2 norm errors in the eigenvector from the POD-based meth-
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ods at r = 50, r = 100, and r = 150. Overall, the k-LS method showed the best per-

formance compared to the other methods. This is due to the fact that the k-LS method

does not rely on the adjoint solutions at all. The adjoint approach (γ = 0.0005) showed

the second best performance at r = 150. However, it also showed poor performance at

r = 50 and 100. The adjoint approach (γ = 0) and the POD-Galerkin method showed

poor performance in the flux recovery.

Figure 5.36: Comparison of the POD-based Methods using Eq.(5.5) at r = 50
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Figure 5.37: Comparison of the POD-based Methods using Eq.(5.5) at r = 100

Figure 5.38: Comparison of the POD-Based Methods by Eq.(5.5) at r = 150
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Test Model E

The same numerical test is applied to the test model E. In this model, each atomic

density is assumed to be uniformly distributed within 10% of its reference value and each

microscopic cross-section value is assumed to be uniformly distributed within 5% of its

reference value. Therefore, the number of total input parameters is 37×(44×(44+2))=

74888.1 Fig. 5.39 shows the singular value decomposition of 500 forward and adjoint

solutions generated by random perturbations in atomic densities and microscopic cross-

sections.

Figure 5.39: Singular Value Plot for Forward and Adjoint Solutions

Now, using these solutions as thePOD-bases, the 2D multi-group diffusion problem

is reduced. Different from previous two numerical tests, the methods are benchmarked

against only one realization of a randomly generated eigenpair for each r because of its

high computational cost. The methods are also benchmarked against 300 realizations

at selected dimension of r. In this model, the value of γ is chosen to be 0.8. Fig. 5.40-

5.41 show a comparison of the POD-based methods described in Chapter 3. Fig. 5.40 is

consistent with test model A but not with test model B. The k-LS method shows a slow

convergence rate when compared to other methods. It is important to note that for flux

12D Scattering, Absorption, and Fission

97



calculations the traditional POD-Galerkin approach shows the best result. This is due to

the fact that the basis for forward solutions forms the basis for the adjoint solutions in

this problem.

Figure 5.40: Comparison of POD-Based Method for the Scalar Flux

Figure 5.41: Comparison of POD-Based Method for the k-Eigenvalue
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For the case of k-eigenvalue, the adjoint approach (γ = 0) shows the fastest conver-

gence rate as expected. Based on Fig. 5.41, the effective rank is approximately 180, which

is far less than the original dimension of the problem (74932). It is important to note

that the majority of computational time is spent on the projection procedure of L and

F. The original system requires reordering techniques and Krylov-type iterative methods

to be solved in reasonable amount of time. On the other hand, the reduced system no

longer requires any sophisticated approaches to minimize the computational time.

Fig. 5.42-5.45 show the comparison of the POD-based methods with 300 realizations

of the k-eigenvalue with randomly perturbed atomic densities and microscopic cross-

sections at r = 50, 100, 150, and 200. Overall, the k-LS method shows the worst results

compared to the other results. As expected, the adjoint approach (γ = 0) shows the best

results and fastest convergence rate. The adjoint approach (γ = 0.8) shows second worst

at r = 50 and 100. However, it gradually improves as r increases.

Figure 5.42: Comparison of POD-Based Method for the k-Eigenvalue at r = 50

99



Figure 5.43: Comparison of POD-Based Method for the k-Eigenvalue at r = 100

Figure 5.44: Comparison of POD-Based Method for the k-Eigenvalue at r = 150
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Figure 5.45: Comparison of POD-Based Method for the k-Eigenvalue at r = 200

Fig. 5.46-5.49 show the comparison of the POD-based methods with 300 realizations

of fluxes at r = 50, 100, 150, and 200. Different from the k-eigenvalue, the POD-Galerin

method shows the best results in L2 norm errors. The adjoint approach (γ = 0.8) shows a

large fluctuation in its error at r = 100. Other than that, the adjoint approach (γ = 0.8)

gives the second best results. The adjoint approach (γ = 0) shows the second worst

performance. In this model, the k-LS method shows consistently worst results for k-

eigenvalues and fluxes.
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Figure 5.46: Comparison of POD-Based Method for the Flux at r = 50

Figure 5.47: Comparison of POD-Based Method for the Flux at r = 100
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Figure 5.48: Comparison of POD-Based Method for the Flux at r = 150

Figure 5.49: Comparison of POD-Based Method for the Flux at r = 200

Overall, POD-based methods can reduce the model order successfully. The adjoint

approach (γ = 0) shows consistently the best results in the k-eigenvalue calculation, but

its flux recovery is not accurate when compared to the POD-Galerkin method. Therefore,
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it is natural to use the adjoint approach (γ = 0) for the k-eigenvalue calculations and

to use the POD-Galerkin method for the flux calculations. Most of the computational

cost in the state-level ROM lies in the projection procedure to generate the reduced

order model. Once the reduced order matrices are generated, the generalized eigenvalue

problem can be solved instantly. Therefore, solving both of the POD-Galerkin method

and the adjoint approach (γ = 0) is the best option for us.
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Chapter 6

Numerical Results for generalized

Polynomial Chaos

First of all, Theorem 2 should be numerically verified. Assume that the Vandermonde-

like matrix of orthonormal polynomials is constructed with Legendre polynomials and

Chebyshev polynomials. According to Theorem 2, the probability distribution of the

random number can be of any form. For simplicity, the uniform distribution is chosen

for the Legendre polynomials and Eq.(4.62) is chosen for the Chebyshev polynomials.

Fig. 6.1 shows the demonstration of Theorem 2 with 12 stochastic variables and the

order of expansion is 5. The horizontal axis shows how many times the Vandermonde-

like system is over-sampled. Note that the square Vandermonde-like system requires 6188

samples. As can be seen, the condition number decays quickly to the theoretical lower

limit of 1. This agrees with Theorem 2.
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Figure 6.1: Condition Number of Legendre and Chebyshev Polynomials

Another important observation is that the condition number for the Chebyshev poly-

nomials is smaller than that of Legendre polynomials. This also agrees with the fact

that the Lebesgue constant for the Chebyshev polynomials is better than that of the

Legendre polynomials. If the coefficients of the Chebyshev polynomials are known, then

the coefficients of the Legendre polynomials can be easily obtained and vice versa. There-

fore, without loss of generality, the Chebyshev polynomials can be used for performing

non-intrusive polynomial chaos, and then the Legendre polynomials are recovered after

finding the coefficients of the Chebyshev polynomials.

Now, test model A is evaluated using non-intrusive gPC. Each macroscopic cross-

section is assumed to be uniformly distributed within ± 10% of the reference value.

In this model, the Legendre polynomials are used. First of all, the state variables of

model A are reduced by the POD-Galerkin method as described in Chapter 3. Then,

the k-eigenvalue and forward solutions can be sampled less computational time than the

original model. The accuracy of the POD-Galerkin method in test model A can also

be found in Chapter 3. Fig. 6.2 shows the coefficients of the Chebyshev polynomials

up to 5th order obtained by L2 regularization with 12376 samples. It can be observed

that the magnitude of the coefficients decays quickly and it only depends on a few of

polynomials. Therefore, in this problem the sparse approximation is valid. Fig. 6.3 shows

the comparison of the coefficients up to 4th-order obtained by L1 regularization with
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L1 magic [37] and L2 regularization. The sparse approximation successfully recovered

the dominant coefficients. Even though L1 optimization can recover the dominant co-

efficients with fewer samples, it cannot recover the remaining coefficients. To compare

L1 and L2 regularization, 250 realizations of the k-eigenvalue are generated by random

perturbation of the macroscopic cross-sections. Fig. 6.4 shows the relative errors in the

k-eigenvalue with L1 and L2 regularization with the order of expansion equal to 4. Twice

over-sampled Vandermonde-like system (n = 3640) showed that the best result is around

1 pcm. On the contrary, the square Vandermonde-like system (n = 1820) showed the

worst results around 40 pcm of errors. L1 regularization (n = 750) showed better results

than the square Vandermonde-like system (n = 1820), but it is not as accurate as the

over-determined Vandermonde-like system (n = 3640).

Figure 6.2: Coefficients of Legendre Polynomials obtained from L2 regularization
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Figure 6.3: Comparison of Coefficients obtained from L1 and L2 Regularization Problem

Figure 6.4: Comparison of Relative Error in k-eigenvalue with L1 and L2 Regularization
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Fig. 6.5 shows the comparison of L1 regularization with differing number of samples

with the order of expansion up to 5. As observed in Fig. 6.5, the accuracy increases with

the number of samples.

Figure 6.5: Comparison of L1 Regularization with Different Number of Samples

Unfortunately, test model A is a very simple case and is not realistic. Therefore, the

sparse approximation is applied to test model C.

In test model C, the microscopic cross-section is assumed to be uniformly distributed

within ± 10% of its reference value. A 44 energy group cross-section is used and 8

isotopes, U-234, 235, 238, 239, Pu-238, 239, 240, and 241 are perturbed randomly. In

addition, only three reaction types are considered. They are: fission, capture, and γ-

n reactions. Therefore, the total number of input parameters is 44 × 8 × 3 = 1056.

Unfortunately, according to Eq.(4.5), the number of samples to recover the coefficients of

the chaos expansion by the non-intrusive approach is enormous. Therefore, in this model,

instead of state-level reduced-order modeling, the input parameter reduction is applied.

First, the sensitivity of the model C is sampled by randomly perturbing the cross-section

values using the adjoint method. Note that these adjoint solutions can also be used for
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model order reduction as well. SAMS from SCALE automatically calculate the relative

sensitivity as:

Srelative
Σgr

=
Σg
r

k

∂k

∂Σg
r

(6.1)

To obtain the sensitivity with respect to the input parameters, the following equation is

used:

Sξi =
∂k

∂ξi
=

G∑
g=1

R∑
i=1

∂k

∂Σg
i

∂Σg
i

∂ξi
(6.2)

where R is the number of macroscopic cross-sections, i is the reaction type, g is the energy

group index, and ξi is i-th component of the stochastic vector. Then, the sensitivity matrix

can be constructed in terms of the stochastic variables instead of cross-sections.

Using the sensitivity information obtained the input parameter space is reduced.

Fig. 6.6 shows the errors of the input parameter reduction calculated by the following

equation,

max
j=1,···25

∣∣k(ξj)− k(UrU
T
r ξj)

∣∣
k(ξj)

. (6.3)

Figure 6.6: Input Parameter Reduction of the Pin-Cell Model
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Why didthe input parameter reduction work so well in this case? It is because the

k-eigenvalue is almost a linear function with respect to the input parameter space in this

model with this specific perturbation. In other words, there is only one important di-

rection in the input parameter space. Hence, large input parameter reduction is possible

for this problem. It is important to note that many models are not linear at all. In such

cases, one cannot expect this degree of reduction. The non-linear case is demonstrated

with the model E.

Using input parameter reduction, the k-eigenvalue and scalar fluxes can be recovered

in terms of the reduced input parameter space. Note that when the original input param-

eter is projected onto the reduced space, it does not preserve the probability distribution

of the original input parameters, and gPC is no longer applicable. Instead, polynomial

interpolation is used with orthogonal polynomials. From Fig. 6.6, in order to achieve

1pcm the dimension of r = 11 is required. Now, the k-eigenvalue and scalar flux are

represented by the reduced input parameter with

k(α) =
M∑
i=0

kiPi(α) (6.4)

and

φ(α) =
M∑
i=0

φi(x)Pi(α) (6.5)

where φi(x) can be represented in the POD-basis such that

φi(x) =
N∑
j=1

φijΦj(x) (6.6)

Note that the POD-basis, Φj(x), is obtained at the same time as the sensitivity matrix

is computed. Even though the POD-basis is not used to reduce the dimension of the

model, it can still reduce the computational cost of the interpolation tremendously as

discussed in Chapter 3. In this problem N is chosen to be 20. In order to minimize the

number of polynomials, multivariate Chebyshev polynomials are chosen for Pi(α) and

the Orthogonal Marching Pursuit Algorithm is used instead of the L1 regularization. The

reason behind using the Orthogonal Marching Pursuit method is that the computational

cost of the L1 regularization increases rapidly as the dimension of the Vandermonde-like
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matrix increases. Even though the L1 regularization can typically find a more accurate

solution with less number of samples, the Orthogonal Marching Pursuit algorithm will

require less computational time. Fig. 6.7-6.10 show the coefficients of the Chebyshev

polynomials for the k-eigenvalue and scalar flux recovered by L2 regularization and the

Orthogonal Marching Pursuit algorithm. It can be seen that the Orthogonal Marching

Pursuit algorithm successfully recovers the dominant coefficients.

Figure 6.7: Coefficients of k-eigenvalue Interpolation recovered by OMP and L2 Regu-
larization
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Figure 6.8: Coefficients of 1st POD-basis, φ1j, recovered by OMP and L2 Regularization

Figure 6.9: Coefficients of 2nd POD-basis, φ2j, recovered by OMP and L2 Regularization
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Figure 6.10: Coefficients of 3rd POD-basis, φ3j, recovered by OMP and L2 Regulariza-
tion

Now, the recovered coefficients for the k-eigenvalue and scalar flux are validated by

500 realizations of the k-eigenvalues and fluxes generated by random perturbation of

cross-section values. Fig. 6.11-6.12 show the relative errors in the k-eigenvalue and flux

in the terms of L2 norm.
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Figure 6.11: Relative Error in k-Eigenvalue with L2 Regularization and OMP

Figure 6.12: Relative L2 Error in Flux with L2 Regularization and OMP
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The Orthogonal Marching Pursuit and the input parameter reduction demonstrated

excellent results in test case D. However, these approaches are not applicable for large

systems such as an assembly model.

To see the applicability of these methods, test model D, which models a quarter-

assembly, is now evaluated using these approaches. In the test model D, each microscopic

cross-section value is assumed to be uniformly distributed within ± 5% of its reference

values. 44 energy group cross-sections are used and 8 isotopes (U-234, 235, 238, 239, Pu-

238, 239, 240, and 241) are perturbed randomly. In addition, only three reaction types are

considered. They are: fission, capture, and ν̄. Note that ν̄ is perturbed instead of (γ, n)

reaction. Hence, the total number of input parameters is 1056. Now, the input parameter

reduction is applied to this model. Fig. 6.13 shows the worst errors obtained from 25 real-

izations of solutions with input parameter reduction. In order to get 1 pcm, it is apparent

that more than 400 pseudo-input parameters are required. Even though the model is still

highly linear, the non-linearity plays a significant roles in the number of the pseudo-input

parameters to obtain 1 pcm errros. This number of input parameters is computationally

prohibitive even with the model order reduction scheme described in Chapter 3. Fig. 6.14

shows the required number of samples required by the L2 regularization with a 5th or-

der expansion. Even though L1 regularization and the Orthogonal Marching Pursuit do

not require as many samples as L2 regularization shown in Fig. 6.14, we do not have

any tools to predict the number of samples needed for L1 regularization and the Or-

thogonal Marching Pursuit. That is, the sparsity of the problem cannot be determined

unless we obtain the solution by L2 regularization. Even when one tries to apply the

Orthogonal Marching Pursuit algorithm to this problem, the number of columns is too

large and a greedy algorithm like the Orthogonal Marching Pursuit algorithm becomes

computationally intractable. Therefore, application of the sparse approximation results

in computational costs that are unreasonable for a small problem like this. Therefore,

generalized Polynomial Chaos expansion is in general not applicable to reactor simulation

even with state-level reduction, input parameter reduction and sparse approximation.
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Figure 6.13: Error in Input Parameter Reduction

Figure 6.14: Estimated Number of Samples Required to achieve desired accuracy by L2

Regularization with 5th Order Expansion
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Chapter 7

Conclusions & Outlook

7.1 Conclusion

This thesis has presented new approaches to reduce a generalized eigenvalue problem

in order to perform Uncertainty Quantification in the context of large scale nuclear reac-

tor simulation. The POD-based methods described in this thesis can be applied to any

generalized eigenvalue problem encountered in various engineering disciplines as long

as the solution to the generalized eigenvalue problem has a low numerical rank. The

numerical rank of the model can be estimated by the Proper Orthogonal Decomposi-

tion and the model is reduced by the forward POD-basis and adjoint POD-basis. Then,

the generalized Polynomial Chaos method can be applied to the reduced order form of

the diffusion model with the sparse approximation. It demonstrated that the number

of samples required can be reduced by the sparse approximation. In addition, the input

parameter reduction is applied to realistic transport models with the polynomial interpo-

lation. The input parameter reduction can reduce the number of input parameters when

the model is highly linear. However, the curse of dimensionality played significant role in

the polynomial interpolation even after the input parameter reduction. In a realistic neu-

tronics model, the non-intrusive generalized Polynomial Chaos method and polynomial

interpolation are not applicable to constructing the surrogate models.
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7.2 Future Work Recommendations

Future work with these POD-based methods will include the application to the neu-

tron transport problem. The methods described can be applied to any neutronics codes,

ranging from the diffusion approximation to the transport equation. Potential codes in-

clude NEWT, a component of the SCALE package from Oak Ridge National Laboratory,

NESTLE, and any proprietary code uses the neutronics models. It also could be applied

to the eigenvalue problem in structural engineering problems.

One interesting application of state-level reduction and input parameter reduction is

to the dimension-adaptive sparse grid approximation. The POD-based methods can re-

duce the computational time required in the sparse grid approximation. Input parameter

reduction can reduce the number of input parameters into hundreds or several thousands

that could be dealt with the dimension-adaptive sparse grid approximation. Combining

these subspace methods can make the sparse grid approach more effective for UQ. No

method has so far successfully demonstrated Uncertainty Quantification of large scale

high fidelity reactor model, but this approach may enable to demonstrate UQ of such

systems.
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Appendix A

t-newt input files

A.1 Input File for MOX Pin-Cell Model

The following code listing is for a fresh MOX fuel pincell by T-NEWT sequence.

1=tsunami−2d
2MOX Unit Ce l l

3xn44

4read comp

5u−234 1 0 2 .7999 e−07 300 end

6u−235 1 0 5 .857 e−05 300 end

7u−238 1 0 0.023074 300 end

8pu−238 1 0 2 .47 e−05 300 end

9pu−239 1 0 0.00080623 300 end

10pu−240 1 0 0.00031298 300 end

11pu−241 1 0 0.00016533 300 end

12pu−242 1 0 5 .3981 e−05 300 end

13o−16 1 0 0.048992 300 end

14zr 2 0 0.042982 300 end

15f e 2 0 0.00014838 300 end

16cr 2 0 7 .5891 e−05 300 end

17h 3 0 0.066724 300 end

18o 3 0 0.033362 300 end

19end comp

20read c e l l d a t a

21l a t t i c e c e l l squarep i t ch p i t ch= 1.33 3

22f u e l r= 0.412 1

23c l ad r= 0.475 2 end

124



24end c e l l d a t a

25read sams

26nohtml

27end sams

28read model

29MOX Unit Ce l l

30read parm

31echo=yes saveang f l x=yes

32eps inne r= 1 .00E−07
33epsthrm= 1.00E−07
34epsouter= 1.00E−07
35epse i gen= 1.00E−07
36gptepsouter= 1.00D−07
37pr txsec= yes

38sn=4

39end parm

40read mate r i a l s

41mix=1 pn=1 end

42mix=2 pn=1 end

43mix=3 pn=1 end

44end mate r i a l s

45read geometry

46g l oba l un i t 1

47com=”f r e s h ”

48cuboid 1 0 .665 0 0 .665 0

49c y l i nd e r 2 0 .412 s i d e s=5

50c y l i nd e r 3 0 .475 s i d e s=5

51media 1 1 2

52media 2 1 −2 3

53media 3 1 1 −3
54boundary 1 5 5

55end geometry

56read bounds

57a l l=r e f l

58end bounds

59end model

60end

61=s h e l l

62cp f t 4 2 f 0 01 ${RTNDIR}/ f t 4 2 f 0 01
63cp f t 9 2 f 0 01 ${RTNDIR}/ f t 9 2 f 0 01
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64cp s e n l i b . sen ${RTNDIR}/ s e n l i b . sen

65cp bonamist . sen ${RTNDIR}/bonamist . sen

66cp worf ${RTNDIR}/worf

67cp i worker0002 ${RTNDIR}/ i worker0002

68cp f t 3 1 f 0 01 ${RTNDIR}/ f t 3 1 f 0 01
69end

Appendix–A/input scale.inp

A.2 Input File for Quarter Assembly Model

The following code listing is for a quarter assembly model.

1=tsunami−2d
21/4 assembly model

3xn44

4read comp

5u−234 1 0 2 .7999 e−07 579 end

6u−235 1 0 5 .857 e−05 579 end

7u−238 1 0 0.023074 579 end

8pu−238 1 0 2 .47 e−05 579 end

9pu−239 1 0 0.00080623 579 end

10pu−240 1 0 0.00031298 579 end

11pu−241 1 0 0.00016533 579 end

12pu−242 1 0 5 .3981 e−05 579 end

13o−16 1 0 0.048992 579 end

14z i r c 2 2 1 579 end

15h2o 3 den=0.7135 1 579 end

16boron 3 den=0.7135 600e−6 579 end

17n 4 den=0.00125 1 595 end

18z i r c 2 5 1 579 end

19h2o 6 den=0.7135 1 579 end

20boron 6 den=0.7135 600e−6 579 end

21h2o 7 den=0.7135 1 579 end

22boron 7 den=0.7135 600e−6 579 end

23z i r c 2 8 1 579 end

24b4c 9 den=2.52 1 579 end

25end comp

26read c e l l d a t a

27l a t t i c e c e l l squarep i t ch p i t ch =1.4300 3
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28f u e l d =0.9294 1

29gapd=0.9484 4

30c ladd=1.0719 2 end

31end c e l l d a t a

32read sams

33nohtml

34end sams

35read model

361/4 assembly model

37read parm

38echo=yes saveang f l x=yes

39eps inne r= 1 .00E−06
40epsthrm= 1.00E−06
41epsouter= 1.00E−06
42epse i gen= 1.00E−06
43gptepsouter= 1.00D−06
44pr txsec= yes

45sn=4

46end parm

47read mate r i a l s

48mix=1 pn=0 com=”f u e l ” end

49mix=2 pn=0 com=”c lad ” end

50mix=3 pn=1 com=”water ” end

51mix=4 pn=0 com=”gap” end

52mix=5 pn=0 com=”guide tube” end

53mix=6 pn=0 com=”CRout−c lad ” end

54mix=7 pn=0 com=”CRout−abs” end

55mix=8 pn=0 com=”CRin−c lad ” end

56mix=9 pn=0 com=”CRin−abs” end

57end mate r i a l s

58read geom

59uni t 1

60com=’ f u e l rod ’

61c y l i nd e r 10 .4647

62c y l i nd e r 20 .4742

63c y l i nd e r 30 .53595

64cuboid 40 4p0 .715

65media 1 1 10

66media 4 1 20 −10
67media 2 1 30 −20
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68media 3 1 40 −30
69boundary 40 2 2

70uni t 5

71com=’ guide tube ’

72c y l i nd e r 10 .45

73c y l i nd e r 20 .52

74c y l i nd e r 30 .6502

75c y l i nd e r 40 .6934

76cuboid 50 4p0 .715

77media 7 1 10

78media 6 1 20 −10
79media 3 1 30 −20
80media 5 1 40 −30
81media 3 1 50 −40
82boundary 50 2 2

83uni t 11

84com=’ r i g h t h a l f o f f u e l rod ’

85c y l i nd e r 10 .4647 chord +x=0

86c y l i nd e r 20 .4742 chord +x=0

87c y l i nd e r 30 .53595 chord +x=0

88cuboid 40 0 .715 0 .0 2p0 .715

89media 1 1 10

90media 4 1 20 −10
91media 2 1 30 −20
92media 3 1 40 −30
93boundary 40 1 2

94uni t 12

95com=’ top ha l f o f f u e l rod ’

96c y l i nd e r 10 .4647 chord +y=0

97c y l i nd e r 20 .4742 chord +y=0

98c y l i nd e r 30 .53595 chord +y=0

99cuboid 40 2p0 .715 0 .715 0 .0

100media 1 1 10

101media 4 1 20 −10
102media 2 1 30 −20
103media 3 1 40 −30
104boundary 40 2 1

105uni t 51

106com=’ r i g h t h a l f o f guide tube ’

107c y l i nd e r 10 .45 chord +x=0
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108c y l i nd e r 20 .52 chord +x=0

109c y l i nd e r 30 .6502 chord +x=0

110c y l i nd e r 40 .6934 chord +x=0

111cuboid 50 0 .715 0 .0 2p0 .715

112media 7 1 10

113media 6 1 20 −10
114media 3 1 30 −20
115media 5 1 40 −30
116media 3 1 50 −40
117boundary 50 1 2

118uni t 52

119com=’ top ha l f o f guide tube ’

120c y l i nd e r 10 .45 chord +y=0

121c y l i nd e r 20 .52 chord +y=0

122c y l i nd e r 30 .6502 chord +y=0

123c y l i nd e r 40 .6934 chord +y=0

124cuboid 50 2p0 .715 0 .715 0 .0

125media 7 1 10

126media 6 1 20 −10
127media 3 1 30 −20
128media 5 1 40 −30
129media 3 1 50 −40
130boundary 50 2 1

131uni t 53

132com=’ 1/4 instrument tube ’

133c y l i nd e r 10 .6502 chord +x=0 chord +y=0

134c y l i nd e r 20 .6934 chord +x=0 chord +y=0

135cuboid 40 0 .715 0 .0 0 .715 0 .0

136media 3 1 10

137media 5 1 20 −10
138media 3 1 40 −20
139boundary 40 1 1

140g l oba l un i t 10

141com=’ 1/4 assembly ’

142cuboid 10 10 .725 0 .0 10 .725 0 .0

143array 1 10 p lace 1 1 0 0

144media 3 1 10

145boundary 10 15 15

146end geom

147read array
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148ara=1 nux=8 nuy=8 typ=cubo ida l pinpow=yes

149f i l l

15053 12 12 12 52 12 12 12

15111 1 1 1 1 1 1 1

15211 1 1 1 1 5 1 1

15311 1 1 5 1 1 1 1

15451 1 1 1 1 1 1 1

15511 1 5 1 1 5 1 1

15611 1 1 1 1 1 1 1

15711 1 1 1 1 1 1 1 end f i l l

158end array

159read bounds

160a l l=r e f l

161end bounds

162end model

163end

164=s h e l l

165cp f t 4 2 f 0 01 ${RTNDIR}/ f t 4 2 f 0 01
166cp f t 9 2 f 0 01 ${RTNDIR}/ f t 9 2 f 0 01
167cp s e n l i b . sen ${RTNDIR}/ s e n l i b . sen

168cp bonamist . sen ${RTNDIR}/bonamist . sen

169cp worf ${RTNDIR}/worf

170cp i worker0002 ${RTNDIR}/ i worker0002

171cp i newt ${RTNDIR}/ i newt

172end

Appendix–A/scale inpt.inp
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