
ABSTRACT 

AVETIAN, MATTHEW ISHKHAN. Simplified MC Simulation for Coupled 

Neutron/Gamma Transport Through a 1-D Slab of Hydrogen-1 For Secondary Gamma 

Production. (Under the direction of Dr. John K. Mattingly). 

 

Sandia National Laboratory and Oak Ridge National Laboratory have developed a 

training simulation environment that calculates gamma detector responses using 

computational photon transport. This program cannot currently calculate detector responses 

due to secondary photons produced by neutron capture or inelastic scatter reactions. Sandia 

and Oak Ridge desired a simple neutron/gamma coupled transport program that would 

correctly model the physics of secondary photon generation from neutron capture and 

inelastic scatter. This simplified program will be used in an augmented implementation of 

their training environment program that includes secondary photons from neutron capture 

and inelastic scatter. The program developed for this thesis (called SimpleMCn) uses the 

Monte Carlo (MC) method to simulate the history of neutron transport, secondary photon 

creation, and secondary photon transport. In addition to implementing unbiased (i.e. analog) 

transport simulations, SimpleMCn also implements neutron transport using implicit capture 

and forced collision biasing, and it implements a method to estimate the flux at a point (i.e., it 

implements a point detector tally). In order to develop the transport physics models, 

implement the preceding biasing options and the point detector tally, and Demonstrate these 

methods in a simplified program, hydrogen-1, was specifically chosen for the transport 

medium because it demonstrates these essential methods for secondary photon generation 

from neutron capture without also introducing the additional, complicated bookkeeping 

necessary to generate secondary photons via inelastic scatter. SimpleMCn simulates neutron 

transport and secondary photon production in a one dimensional slab of hydrogen-1, and the 



source is modeled as a beam of mono-energetic and mono-directional neutrons, impinging on 

the slab. SimpleMCn, and its coupling to the counterpart photon transport code SimpleMC 

were verified against MCNP tallies of neutron and gamma reflection and transmission versus 

radial location, direction and energy. The position, direction and energy distributions of those 

tallies from SimpleMCn and SimpleMC matched those from MCNP for analog transport 

simulations, simulations involving implicit capture, forced collision biasing, and point 

detector tallies. Relative to analog simulations, implicit capture biasing (in an optically thick 

medium) increased the number of secondary photons generated by a factor of 333, and forced 

collision biasing (in an optically thin medium) increased the number of secondary photons 

generated by 1.5. These results demonstrate that SimpleMCn, coupled to SimpleMC, 

correctly simulates neutron transport and Secondary photon generation, and that the implicit 

capture and forced collision biasing methods increase the efficiency of simulation of 

secondary photon generation via neutron capture.  
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CHAPTER 1 

Introduction 

1.1 Motivation and Goals 

 

Computational modeling of radiation physics is an important endeavor to many fields 

and applications of science and engineering.  From radiation shielding to reactor design, the 

applications of computational radiation simulation are numerous. However, the application of 

computational radiation transport to radiation source location and identification for 

emergency response training has been limited. Sandia National Laboratory and Oak Ridge 

National Laboratory have developed a training simulation environment that employs 

computational photon transport to calculate detector responses. Currently, the program 

cannot calculate these responses with photons produced by neutron capture or inelastic 

scatter interactions. Sandia and Oak Ridge desired a simple neutron/gamma coupled transport 

program that will model the physics, which they could then use as a basis for the 

implementation in the training environment program. 

It has been the goal of this thesis to develop and implement a simple Monte Carlo 

simulation of neutron transport with the generation of gammas from neutron capture for 

Sandia and Oak Ridge. The program, known as SimpleMCn, has also been benchmarked 

with a program known as MCNP. In addition to the simulation of neutron transport and 

gamma production, SimpleMCn was developed to work with another code on photon 

radiation simulation, SimpleMC, to determine both the neutron and photon reflection and 

transmission by a 1-D slab. SimpleMCn and SimpleMC, which will be referred to as 

SimpleMCn/g, have the purpose of generating the correct albedo and transmission results of 
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neutrons entering a 1-D slab of hydrogen. While other materials will be needed besides 

hydrogen-1 for the end application, the compilation of cross sections for other materials is 

primarily a book keeping endeavor. Hydrogen-1 has been specifically picked because the 

neutron interaction cross sections are only scatter and capture.  This material choice allows 

the focus on proving that SimpleMCn/g is capable of correctly simulating neutrons and the 

secondary gammas produced from neutron capture in the slab. In addition to proving correct 

physical simulation, the biasing techniques of implicit capture, forced collision, and Russian 

roulette used in SimpleMCn will be tested as well.  

1.2 Prior Work 

 

 Due to the limitations of early computers, several mathematical methods and schemes 

were developed in order to maximize the computational resources available. For MC 

radiation transport simulation, these were mainly achieved by algebraic manipulations of the 

original equations or using substitutions to formulate them into equations that required either 

fewer or less complicated calculations to obtain a result[1][2]. Such examples applicable to 

this work are two methods developed to sample the Klien-Nishina for Compton scatter; the 

Khan rejection scheme [3] and the Koblinger direct sampling method [4]. Others include the 

general rejection method developed by Khan [5] to sample arbitrary probability distribution 

functions (PDF).  

 Authors Park and Miller developed a random number generator in reference [6] that 

is considered by Press et. al. to be a good minimal generator. It will pass many statistical 

tests, though it has the issue of not being portable to 64-bit computers. This problem was 
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solved by Schrage with the development of the approximate factorization of m method in 

reference [7]. While the generator will suffice for many basic needs, it is not considered 

reliable for many applications with rare events or applications with large number of calls on 

the random number generator as it has a low period (2.1 x 10
9
). Press et. al. have developed a 

random number generator in reference [8] that uses the Bays-Durham shuffle [9] and 

L’Ecuyer’s method of coupling two generators in reference [10], which is the random 

number generator used in SimpleMCn/g. 

 Integration of both open and closed functions has been well described by Carnahan et. 

al. in reference [11]. More modern versions of these methods and coded examples are 

provided in [8] by Press et. al. Other methods, such as the rejection scheme developed by 

Kahn in [5], are further mentioned in [12]. 

 Neutron interactions will fall into one of two primary categories; either absorption or 

scatter. Scatters may be either elastic, where energy and momentum are conserved, or 

inelastic, in which energy is not conserved and the nucleus is left in an excited state. For 

absorption, interactions are subdivided into either capture or fission. It is important to note 

that SimpleMCn currently does not simulate fission interactions, so absorption reactions are 

only capture [13].  

The neutron interactions that result in the production of gamma rays are inelastic 

scatter and neutron capture. For inelastic scatter, energy from the neutron is given to the 

nucleus, which is left in an excited state and will relax to the ground state by emitting one or 

more photons [14]. Neutron capture is an interaction that will frequently result in gamma 
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rays, however other particles are also ejectable, such as protons, deuterons, tritons, alpha 

particles and other light nuclei[15]. For interactions products that relax via gamma ray 

emission, the relaxation will occur via a cascade of energy level transitions, meaning that 

multiple gammas of different energies will be emitted[13]. 

 Photon interactions fall into two primary categories of either absorption or scatter. 

Scatter interactions are either Compton or coherent scattering. In coherent scatter, the photon 

retains its original energy, thought the direction is changed. Because no energy is lost, and it 

is a reaction for low energy photons, it is not modeled in SimpleMC. Compton scattering 

changes the direction and energy of the photon in accordance with the Klien-Nishina 

formula. For absorption interactions, either the photon will disappear due to photoelectric 

absorption, or from pair production. Pair production will only occur for photons with 

energies that exceed twice the rest mass energy of an electron, where the photon will 

dissociate into an electron and a positron [16]. 

 Authors Everett and Cashwell provide perhaps the first practical guide to neutron MC 

transport in reference [17]. However due to the limits of computers at the time (1959), they 

do not provide an accurate nor reliable method for the simulation of thermal neutrons. In the 

text itself the authors state "It is impractical to deal with the actual case of a distribution of 

neutron energies in the thermal range, ..." [17]. However, with the progress made in 

computers, it eventually became practical to follow thermal neutrons. Cashwell and Carter 

provide a new MC transport guide in reference [18], where the free gas thermal treatment of 

neutrons is described. 
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 Reference [17] by Everett and Cashwell also provides a practical guide to MC 

transport simulation of photons. However, with the development of better sampling 

techniques from the Klein-Nishina provided in references [3] and [4], Cashwell and Carter 

provide a more modern practical guide to MC photon simulation in reference [18]. 

 In regards to MC biasing options, the first notable appearance of the most common 

biasing options appears in [18] by Carter and Cashwell. Here they discuss implicit capture, 

Russian roulette and forced collisions. These biasing options are also explained and 

expanded on in the MCNP manual [19]. 

 The coupling of neutron and gamma transport, explained by both Carter and Cashwell 

[18] and the MCNP manual [19], is done by following the neutron simulation until either 

neutron capture or inelastic scatter occur and result in a gamma ray. These interactions are 

the genesis of the photon history sites, which follow the MC simulation as prescribed. 

1.3 Novel Elements 

 

 

 The demands of the thesis required a code that would calculate the albedo and 

transmission versus energy and direction for both neutrons and photons from a one 

dimensional slab and a neutron source. This required that a simplified neutron-photon 

coupled Monte Carlo simulation be developed. SimpleMC, a photon transport code 

developed by Oak Ridge, was provided. A Monte Carlo transport code for neutrons was 

developed, SimpleMCn, from scratch. Since there was no immediate coupling of the two 

programs, SimpleMC was modified slightly to accept new input data of gamma position, 
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direction and energy from SimpleMCn. Figures 1 and 2 below contain flow charts that 

demonstrate the analog steps of neutron and photon histories in SimpleMCn/g 

 

Figure 1 Flow chart showing the analog steps of neutron history in SimpleMCn. 



7 

 

 

 

 

Figure 2 Flow chart illustrating the analog steps of photon history in SimpleMC. 

  

SimpleMCn is a MC transport code designed to efficiently produce secondary gamma 

rays from neutron interactions in a one dimensional slab. Several basic biasing options were 

implemented to maximize the production of secondary gamma rays. These methods are 

implicit capture, where the neutron will generate a photon at each scatter, and forced 

collisions, where the neutrons are not allowed to escape and are required to interact inside the 

slab. In order to implement these biasing options without the loss of accuracy, the method of 

history termination known as Russian roulette was also implemented in SimpleMCn.  
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1.4 Organization of Thesis 

 

This work is organized with an explanation of fundamental methods required by any 

Monte Carlo simulation in Chapter 2. This is followed by the physics of radiation simulation 

of photons and neutrons including computational recipes for the methods used in the 

simulation of certain properties and sampling. This chapter also covers the biasing options of 

implicit capture, forced collision, Russian roulette and the point detector estimator. The 

results of SimpleMCn/g are shown and compared to MCNP in Chapter 3 and the conclusion 

is provided in Chapter 4. 

  



9 

 

 

 

 

CHAPTER 2 

Monte Carlo Simulation of Radiation Transport 

 

Monte Carlo (MC) is a computational method in which a probabilistic model is made 

and a number of stochastic trials are run, from start to finish, to determine a property or 

solution of the model. These histories will either lead to a success or failure, which are tallied 

as either a 1 or 0 respectively. With a large number of histories, the mean of the successful 

trials will result in a statistically certain result. During a given history, properties are changed 

by randomly sampling from probability distribution functions (PDFs). These PDFs are 

usually determined by either the physics or geometry of the model. The success or failure of 

a history is tabulated either during the history run or at the termination, depending on the 

property or solution desired. 

Consider finding π using the area of a unit circle inscribed in a square, the ratio of the 

two areas is π/4. If random points within the square were taken and all the points that were 

found within the circle were tallied, the ratio of accepted tallies to the total should be π/4, or 

about .785. If only 10 points are sampled, then 7 are expected to be accepted: π/4 ≈ .7. If the 

number of samples is increased to 1000, then we would expect about 785 to be accepted: π/4 

≈ .785. With random sampling, we are not required to get exactly the expected number of 

points found within the circle. It is possible to get some variation in the end result, but the 

more samples taken the less this variation will matter, i.e. losing or gaining a point in a 

sample of 10 is more catastrophic then the same loss or gain in 1000. This method of 
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sampling is similar to the sampling from a PDF and is an example of tallies that are taken at 

the end of the history. 

2.1 The Random Number Generator 

 

 Random sampling is the most important process for any MC calculation, and while 

the sampling process may be complicated, it based on a rather simple method. A pseudo-

random number from 0 to 1 is generated and then multiple mathematical manipulations are 

applied to select the randomly sampled result. The most important property of a random 

number generator is that numbers are evenly sampled between the end points of 0 and 1, 

which is a property to be exploited later. As one would expect, the process of picking this 

random number is inherently important to Monte Carlo simulations. There are multiple 

methods available to generate a random number and each method has different properties 

that make them desirable for certain applications compared to another competitive method, 

but ultimately the user or developer will have to decide on a generator.    

While some generators are considered more robust than others [6][10][20], they all 

require a seed number to start the calculation. The seed number starts the random number 

generator calculations, and if it is the same each time, the sequence of random numbers will 

be entirely predictable. The most common way of selecting a random seed is to use the 

computer clock. 

 SimpleMC and SimpleMCn utilize a floating random number generator developed by 

Press et. al[8]. They recommend using two random number generators, both developed by 

L’Ecuyer[10],   with a Bays-Durham shuffle [9] to develop a “perfect” generator. Both 
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random number generators work by taking the division and modulus of integers m and a.  

The equation used by both generators is known as the approximate factorization of m [7]: 

 m aq r    (2.1.1) 

and 

 [ / ], (mod)q m a r m a    (2.1.2) 

where [] represents the integer part, and a and m are integers. 

So that each generator is different, the a and m in one generator are not the same in the other:  

m1 =2147483563, a1 = 40014, m2 = 2147483399, a2 = 40692 

If r<q and 0<z<m-1, where z is a given integer, then it can be shown that a(z mod q) and 

r[z/q] lie within 0,..,m-1, and that : 

 
( (mod)q) r[z/ q]             if 0 

 mod  
(  mod q) r[z/ q] m    otherwise

a z
az m

a z

  
  

  
  (2.1.3) 

The shuffle's purpose is to extend the period of the random number generator. The 

shuffle uses an array, which is preloaded by one of the generators and both numbers from 

each generator are used. One is used to adjust the selected array value to get a "final" 

number, while the second is used to replace the array's value. This process, given in detail in 

Figure 1, then takes the final number and converts it into a real number between 0 and 1. The 

final number also seeds the next process of finding a new random number. 

 This three step process will evenly produce numbers from 0 to 1 without any notable 

dependence on the previous number. It has a large period (>2*10
18

) before the number 

pattern is repeated. Currently, SimpleMCn/g does not use any method to adjust the initial 

seeding of the random number generator, which needs to be negative, so each trial will use 
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the same sequence of random numbers. Figure 3 provides an author generated pseudo-code 

of the random number generator used in SimpleMCn/g. 

 

 
Figure 3 Pseudo-code for the random number generator used in SimpleMCn/g. 
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2.2 The Rejection Technique 

 

 Most PDFs used in MC simulation of radiation transport are not uniform over 0 to 1. 

One method to transform a random number into a sampled value is to use the cumulative 

distribution function (CDF) P(x): 

 ( ) ( )
x

P x p x dx


    (2.2.1) 

where p(x) represents the PDF. 

 An illustration of a continuous CDF, drawn from a normal distribution, is given in 

Figure 2, which represents the probability of finding a value of x or less. 

 

 

Figure 4 CDF of the normal distribution. 
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Since the values of P(x) are between 0 and 1, a random number ξ can be used to select an x 

value where equation (2.2.1) is transformed into an inverse function that yields x given ξ. 

Looking back at Figure 2, this would be the same as picking a spot on the y axis and then 

going over to the CDF and then drawing a line down to the corresponding x value. 

  Selecting a value using an inverse function can be computationally costly, as the math 

to solve an inverse function can be quite complex. An alternate method, known as the 

rejection technique, was developed to sample directly from the PDF. The rejection method 

starts with two random numbers where the first is used to find the domain position, x, of the 

sampling by the following equation: 

 1( )x a b a       (2.2.2) 

where a is the lower bound of the domain, b is the upper bound, ξ1 is the random number and 

x is the resulting randomly sampled value. 

The second is used to find the range value, y: 

 max 2y y    (2.2.3) 

The resulting range value, y, must be less than the PDF’s value for the sampled domain 

value, x, to be accepted (see Figure 5). If it is not below this value, the process is repeated, 

starting with two new random numbers, until there is an accepted domain value. x then 

becomes the sampled value for that step of the simulation. From this method, one can 

tabulate the frequency of sampling each possible value of the property and the resulting 

distribution (provided enough histories are sampled) will be the PDF. In other words, the 
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rejection technique will turn random numbers from a random number generator into pertinent 

history values. 

 

 

Figure 5 Illustration of the rejection technique. x is used to determine the domain value, 

y is used to determine the range value. If y is less than p(x) then x becomes the sampled 

value. 

  

There are other techniques, such as importance functions, and dividing a single PDF 

into two so that efficiency of sampling an accepted value goes up. While these methods are 

useful in MC, they were not used in this work [12][19][21].  

2.3 A General Particle History 

 

In neutron-photon coupled MC radiation transport, there are several layers of 

complexity that are present due to the different physical interactions exhibited by neutrons 

and photons. The general steps for both sets of particles are fundamentally the same. 

However, physical properties like cross sections and scatter angle selection are significantly 
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different. In addition, when a neutron’s energy drops to thermal, the energy it carries is 

similar in magnitude to the energy of the nuclei in the slab. This results in the possibility of 

an upscatter in the neutron’s energy, which is an interaction that doesn’t occur for photons or 

for neutrons at high energy. This is treated through an approximation that is exclusive to the 

neutron portion of the MC calculation. 

Before beginning the discussion of the basic structure of MC for radiation, it would 

be prudent to discuss the setup of the test case for SimpleMC and SimpleMCn. A source of 

mono-directional mono-energetic neutrons of 1 MeV are sent into a 10 cm slab of hydrogen-

1 at an angle of 90
o
 from the slab plane. For reasons that will be explained later, two cases 

were modeled: an “optically thick” slab (i.e. one that is many mean free paths thick), where 

the density is 1g/cc, and an “optically thin” slab (i.e. one that is only 1 mean free path think), 

where the density is 0.03g/cc. A mean free path is defined as the average distance at which 

the particle will interact, which is 

 

 
 

where Σ is the interaction cross section.  

All the above properties are user definable; the above settings were chosen for the testing of 

SimpleMCn/g. Please see Figure 6 for an illustration of the test case model. 
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Figure 6 The test case for the coupling of SimpleMCn and SimpleMC 

 

Interactions in the slab will result in neutrons that either emerge as reflected or 

transmitted, or they will be absorbed within the slab. The neutrons lost through neutron 

capture will generate the secondary gammas subsequently used in SimpleMC. These 

secondary gammas then continue through their interactions to be tallied as either a reflection 

or transmission (from the perspective of the neutron source).  

 As the particle’s history is simulated, it will interact with the medium. For both 

SimpleMC and SimpleMCn, the position of the interaction is determined by using the total 

cross section of the material and a random number to determine the distance from the current 

position along the particle’s current direction [19]. The probability of an interaction 

happening between L and L+dL is: 

  

 (L)dL e t L

tp dL


    (2.3.1) 



18 

 

 

 

 

were L is the path length and Σt is the total cross section. 

 Taking the CDF, the random number is equal to: 

 
0

1t t
L

s L

te ds e  
      (2.3.2) 

From this it follows that the path length is: 

  

 
 

t

1 ξ

Σ

log
L


    (2.3.3)  

The interaction type is then determined by taking the ratio of the cross sections to the 

total cross section and placed so that they form segments of a number line from 0 to 1. A 

random number is generated and its position on the number line determines the interaction 

type. See Figure 5 for an illustration of this sampling method. 

 

 

Figure 7 An example of how a cross section is selected. If the value of the random 

number falls between Σi-1 /Σt and Σi / Σt then the interaction associated with Σi is 

selected. 

  

All interactions fall into two general categories, scatter and absorption. If absorption 

occurs, the particle’s history is terminated and the necessary properties are tabulated. In the 
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case of SimpleMCn/g, only histories resulting in a reflection or transmission result in tallies. 

After the history has been terminated and tabulated, a new particle is sampled from the start 

of the simulation.  

If the interaction is a scatter, then the history is continued, however, the particle’s 

energy and direction have now changed. These properties are usually interrelated, and 

generally the scatter angle is found first. Most commonly, the scatter angle is sampled from a 

PDF, and this scatter then determines the energy of the scattered particle. 

 One issue that is true for all scatter interactions is that the polar scatter angle is found 

with respect to the incident particle’s direction. The polar scatter angle and the azimuthal 

angle are used with a rotation algorithm to find the new particle’s direction. Since the 

azimuthal angle is independent of the polar angle, it is sampled from a uniform distribution 

between 0 and 2π radians: 

 2s    (2.3.4) 

 The rotation yields the following equations [18]: 

            cos cos cos sin sin coss s s         (2.3.5) 
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 

 


 

   
  

   (2.3.6) 

where θ’ is the new polar direction, ψ’ is the new azimuthal direction, θ is the original polar 

direction, ψ is the original azimuthal direction, θs  is the polar scatter angle, and ψs is the 

azimuthal scatter angle given in (2.3.4).  

The direction cosines are determined from: 
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       2cos sin cos 1s s sw w w        (2.3.9) 

where u, v, and w are the original x, y, and z direction cosines and u’, v’, and w’ are the x, y, 

and z scatter direction cosines, respectively. 

2.4 Photons 

 

 Because photons are neutral and massless particles, they are physically the simplest 

of the two radiation particles. Photons will primarily interact with either the atom as a whole, 

the nucleus, or with individual electrons, and have three interactions important to accurate 

simulation: photoelectric absorption, pair production, and Compton scatter. The following 

sections present the physical description of each process and how they are modeled in 

SimpleMC. 

2.4.1 Photoelectric Absorption 

 

 In photoelectric absorption, the photon interacts with the atom as a whole, wherein 

the photon will entirely disappear.  The atom releases the excess energy by ejecting an 

electron with the energy of the photon minus the binding energy of the electron: 

 be
E E E     (2.4.1) 

In SimpleMC this process terminates the existence of the photon, meaning that the particle’s 

MC history ends.  
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 The resulting vacancy in the atom maybe filled by a free electron or by a higher 

orbital electron where one or more characteristic X-rays may be generated. Because these X-

rays are usually reabsorbed close to the generation point, through photoelectric absorption, 

they are not modeled in SimpleMC. 

2.4.2 Pair Production 

 

 Pair production is an interaction type that occurs to photons with an energy above 

twice the electron rest mass, 1.022 MeV. If such a photon passes near the nucleus, it has the 

opportunity to dissociate into an electron and a positron. Any excess energy above 1.022 

MeV will be shared between the particles and the recoil nucleus. While the electron will pass 

through the medium as a free electron, the positron will interact with another electron and 

annihilate, usually within the immediate vicinity of its birth. This then creates two photons of 

0.511 MeV (rest-mass energy of an electron/positron) that, to conserve momentum, travel in 

opposite directions [16][22]. 

 In SimpleMC, pair production is simplified to the termination of the incoming photon 

and the emergence of two annihilation photons, starting in the same position of the incident 

photon. This is an acceptable approximation because the positron annihilates near its 

generation point. To avoid tracking multiple particles, the pair production photons in 

SimpleMC are modeled as “one” photon, although the weight (a feature discussed later) is 

multiplied by 2. Since the direction selection is isotropic, with a large number of histories the 

average result will be the same as if both photons were tracked individually. This allows the 

two photons to be modeled by one particle which now has twice the importance as before. 
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The direction of the photon is sampled randomly and the rest of its history continues 

unaltered.  

2.4.3 Compton Scatter 

 

 Compton scatter is the process in which a photon interacts with an electron, but 

unlike in photoelectric absorption, only a portion of the photon’s energy is imparted into the 

electron. The electron is assumed to be at rest, and the photon is scattered through an angle, 

θ, from the original direction, see Figure 6. Since the scatter angle can vary from 0 to π 

radians, the energy lost from the photon can be anywhere from 0 to a significant fraction of 

the photon’s incident energy. Naturally, the lost energy is imparted to the electron, which 

goes through a recoil angle determined by the conservation of momentum [16]. 

 

 

Figure 8 Illustration of a Compton scatter interaction taken from [16]. 

 

 The equation for the scattered photon’s energy, the Compton scatter equation, is [16]: 
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E
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 
   (2.4.2)  

where    
 

    
 , θs is the scatter angle, E is the incident energy, E’ is the emergent energy, 

and mec
2
 is the rest mass of the electron. 

            The angular distribution for Compton scatter is determined by the Klein-Nishina [16] 

formula: 
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  (2.4.3) 

where, σc is the Compton cross section,   is the solid angle, and r0 is the classical electron 

radius,  

   
  

        
 

where e is the electron charge, me is the electron mass, and εo is the permittivity of free 

space. 

 In practice, directly sampling the scatter angle from the Klein-Nishina differential 

cross-section is difficult, so other sampling routines are used to obtain the resulting scatter 

angle and energy. While there are several available methods, SimpleMC only uses two of 

them. For energies less than 1.4 MeV, the Kahn Rejection scheme is used. For energies that 

are higher than 1.4, the Koblinger direct sampling method is used. 
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2.4.3a Kahn Rejection Method 

 

Kahn rejection sampling draws on the ratio, r, of the Compton wavelength after the 

scatter, λ’, to the wavelength before, λ. To implement this, we use the Klein-Nishina as a 

function of the wavelength[3]: 

 2 '
( , ') Z r ( )[( ) ( ) ( ' )( ' 2)]

' '
c e

  
       

  
        (2.4.4) 

where       
 

 
. 

This can then be recast into a PDF of the initial wavelength and the ratio, where the ratio, r, is 

what we wish to sample: 

                                     

where, 

  
  

 
 

   
   

    
  

   
  

    
 

and, 
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Since K has no dependence on r, it may be ignored. We then note that A1 + A2 = 1, and g1 and 

g2 are PDF’s with conditional probability distributions (CPD): 

      
 

 
                

   

 
   

 

 
  

Condition: 0<r≤1  

From the sampled ratio, we can determine the scatter wavelength:       and thus the 

scatter energy of the photon. We can also find the scatter angle (2.4.5) and thus the new 

direction with equations (2.3.7)-(2.3.9). 

  1 cos s       (2.4.5) 

Faw and Shultis provided a logic diagram shown below in Figure 7. Since Faw and Shultis 

use a different set of variables, the flow chart in Figure 7 has been modified to remain 

consistent the variables used in this thesis. 
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Figure 9 Kahn rejection flow chart for sampling the scatter angle of a photon from 

Compton scatter taken from [3]. 

 

2.4.3b Koblinger Direct Sampling Method 

 

 The Koblinger direct sampling method utilizes a theorem to efficiently find the scatter 

energy of the photon where other methods become inefficient or computationally costly [4]. 

The theorem requires a PDF with the following properties:  
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1) The PDF must integrate to one over all space, 

         
 

  

 

2) The PDF can be written as: 

           
 
    Where                    

 The Klein-Nishina PDF fits the requirements of this theorem when written as follows: 

       
 

 
 

 

  
 

 

  
  

where         ,   
 

    
       

 

  
 

and 

  
   

 

 
 

  
 

  
 

    
      

  
 

  
    

  
 

    

The condition that the PDF be greater or equal to zero puts the lower limit of 1.396 MeV on 

the incident photon energy. Koblinger provides greater detail of the derivation of this 

method, but the result is that the term for x is selected via the inequality: 

 
1

10 0
( ) ( )

i i

j jj j
p x p x



 
     (2.4.6) 
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where                
    

 
. 

Then x is found from: 

   2

1

1
x

i

i

d
p

      (2.4.7) 

where ξ2 is another random number independent of the random number ξ1 in(2.4.6). 

The results for each of the four terms in eq (2.4.7) are respectively, 

         

      

  
 

      
 

         
  

 
 
 
 

where        and        .  

The random number ξ2 selects how far in the integral we need to go in equation 

(2.4.7), where ξ1 determines which of the terms above we use to determine x. Once the x is 

selected, the scatter energy is α’=α/x and the scatter angle is found by placing this in the 

Compton scatter equation (2.4.2)  to produce: 

           
   

 
 

Again, the new direction cosines are found using equations (2.3.7)-(2.3.9) from earlier. 
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2.5 Neutrons 

 

 Similar to photons, neutrons do not possess charge. Neutrons interact directly with the 

nuclei of the medium. Neutron interactions with nuclei will produce one of several possible 

results; elastic scatter, inelastic scatter, fission, and capture. Neutron capture and inelastic 

scatter may generate secondary gamma rays. It is important to remember that neutron 

interactions that produce gamma rays are the important reactions for SimpleMCn. These 

gamma rays are to be used by SimpleMC and are the reason for the development of 

SimpleMCn. Hydrogen-1 only has two major cross sections; elastic scatter and neutron 

capture [23], where neutron capture will only result in the production of a secondary gamma. 

Hydrogen-1 was chosen for the testing of SimpleMCn because it exercises all the necessary 

mechanics of simulating neutron transport and secondary gamma production. 

2.5.1 Neutron Capture 

 

 Neutron capture does not necessarily result in only gamma rays as secondary 

radiation. Neutron capture can result in the release of nucleons (e.g. (n,p) and (n,xn)) and 

other nuclei (e.g. deuterons, tritons, and alpha particles). However, the problem of neutron-

gamma coupled transport is of particular interest for SimpleMCn/g, so this work focuses on 

the interactions and modeling of neutron capture that leads to secondary gamma radiation. 

The capture of neutrons in hydrogen-1 results in a single gamma ray of 2.223 MeV [22]. 

Consequently, in SimpleMCn, once a neutron is captured its history is terminated and a 

photon history of 2.223MeV with a randomly sampled direction is created. 
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2.5.2 Elastic Scatter 

 

 Although the hydrogen-1 cross-section is known exactly, there are no models that 

predict the scatter angle probability with respect to the incident energy [23]. For an arbitrary 

nucleus, experimental data tables of neutron scatter angle are provided, and the rejection 

technique is applied on these experimental PDFs. In hydrogen-1, neutrons with energy below 

1 MeV, in the center of mass frame, have a uniform distribution for scatter cosine PDF [23]. 

As a result, SimpleMCn samples the scatter cosine uniformly between -1 and 1. 

       

 After the scatter cosine is selected, the energy of the neutron is selected using the following 

equation: 

 
   1 1

2
E E

  


  
   (2.5.1) 

where    
   

   
 
 

and A is the atomic mass of the scatter nucleus in units of neutron mass.  

2.5.2a Free Gas Treatment of Thermal Neutrons 

 

 In the case of thermal neutrons, the kinetic energy of the particle is on the same order 

as that of the nuclei in the medium through which they interact. This occurs at around 10 kT, 

where k is the Boltzmann constant and T is the temperature of the medium. The consequence 

is that neutrons may upscatter in energy, resulting in neutrons with a longer life, more 

scatters, and a greater chance of escaping the medium. If this property is not accounted for, 

then the resulting albedo or transmission tabulations will be below the expected results. To 

account for this, SimpleMCn uses a method known as the free gas model for neutrons that 
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fall below the energy of, 9 kT, where k is the Boltzmann constant and T is the temperature of 

the slab. This method is widely used on thermal neutrons due to the fact that it can accurately 

produce thermal flux results without the use of look-up tables. 

 The free gas model works on the principle that the energy of the nuclei of the medium 

and the neutrons are comparable to each other so that both the neutron and the nuclei are 

considered energetically free, much like a gas. Due to the fact that the medium is no longer 

being treated as a solid, the energy-scatter selection process will change as well as the cross 

sections at the thermal energies. It is important to note that SimpleMCn does not currently 

account for neutron scatter on molecules or the crystalline structure of a material, known in 

MCNP as the S(α,β) method, which can occur at thermal energies as well [24]. This has not 

been included since it is not a reaction that would occur in a slab of hydrogen-1. 

 For the free gas treatment, the neutron energy and incident directions are fixed 

quantities entering the scatter, while the nucleus energy and the angle at which the nucleus 

and neutron intersect is randomly selected. The energy selection PDF for the nucleus is the 

Maxwell-Boltzmann distribution. Recall that the Maxwell-Boltzmann distribution does allow 

for particles with large, though not infinite, energy (see Figure 8), and computers have 

difficulty dealing with large numbers, so for practicality, the energy is limited so that the 

energy selection includes 99.875% of the distribution. From scattering kinematics, the new 

energies of both particles and scatter directions are determined [18].  



32 

 

 

 

 

 

Figure 10 Illustration of the Maxwell-Boltzmann distribution of  thermal neutrons 

taken from [13]. 

 

 From the Maxwell-Boltzmann distribution, 

 1/2 (E/kT)

3/2

2
( )

( )
M E E e

kT





   (2.5.2) 

we acquire the following equation for the probability of selecting the target nucleus speed, V, 

with a cosine of the neutron and nucleus direction vectors, µt : 

  
2 23 2

1

2

2
, V

tp V V e  



   (2.5.3) 

where    
 

   
 

 

 
 and A is the mass of the target nucleus in units of the mass of a neutron.  

The effective scattering cross section in the laboratory frame of reference is: 

      
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Where vn is the speed of the neutron. From the cosine law, the relative velocity between the 

neuron and the nucleus is: 

 
1

2 2 22rel n n tv v V v V       (2.5.5) 

It is assumed that the scattering cross section of a nucleus is independent of the relative 

velocity, i.e.: 

 0( )s rel sv constant     (2.5.6) 

Going further into the calculation of the cross section, it is easier to use the dimensionless 

variables of  

                

Placing (2.5.5) and (2.5.6) and the dimensionless variables into equation (2.5.4) along with 

several mathematical manipulations, the end result is: 

    
2

0
33

1

2 02

2

3

eff as
s E a x a x xe dx

a








    
    (2.5.7) 

which, completing the integral, results in: 
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  (2.5.8) 

Equation (2.5.8) represents the effective scatter cross section of the nucleus and is the model 

used in SimpleMCn to choose between scatter and capture when the neutron energy is less 

than 9 kT.  

 At this point it would be prudent to explain the reason the nucleus energy is limited, 

and why this is done with minimal loss in accuracy of the results. In equation(2.5.7), the 
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integral on the right is proportional to the density function for the target velocity. The 

equation is simply transformed to the variable x. This density function decreases rapidly as 

the value of x increases. Referring to Figure 8, as the energy you wish to find increases, the 

probability of finding a nucleus at that energy decreases rapidly and will eventually be zero. 

Using the variable x, the total probability of selecting a value above 3 is only 0.00125 of the 

total distribution. Limiting the x value to 3 means we retain 99.875% of the original 

probability distribution results. Compared to the amount of computational time that would be 

saved, this is a minor error in the overall calculation and in the final result. 

 We now have the energy of the nucleus and the effective cross section, so next we 

will need to find the cosine of the direction vectors for which the scatter will take place. This 

can be obtained by manipulation of equation (2.5.7) to find: 

    
1

2 2 22t tf C a x ax      (2.5.9) 

which can be sampled analytically using: 
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 

  (2.5.10) 

This direction cosine and uniformly sampling an azimuthally angle will fix the direction 

cosines of the target nucleus (ut,vt,wt). We now have the direction cosines of the incident 

neutron (u,v,w), and the direction cosines of the target nucleus (ut,vt,wt). In the center-of-

mass frame of reference, the scattering is assumed to be isotropic. This means standard 

collision kinematics are used and the direction of flight for the scattered neutron are sampled 
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uniformly from a unit sphere (uo,vo,wo). From here we can calculate the final neutron's 

energy and direction cosines and transform them into the laboratory frame of reference:  
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where: 
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Above: 
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While the above description contains all the information necessary to develop the free 

gas model, it may be difficult to follow each of the necessary steps. For this, it may be easier 

to follow the flow diagram in Figure 11 by Carter and Cashwell showing all the steps 

necessary to find the neutron's scatter energy and direction cosines. Equation (2.5.10) is used 

in SimpleMCn to find the scatter angle of the thermal scatter. Then equations (2.5.11)-

(2.5.14) are used to find the scatter energy and final direction cosines of the scattered 

neutron.  
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Figure 11 Flow chart from Carter and Cashwell [18] for the free gas treatment of 

neutrons. 
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2.6 Biasing Options 

 

 The following section discusses several basic biasing techniques used in MC 

radiation transport simulation to reduce computation time while still preserving the expected 

value of the results. Biasing methods generally exploit features of geometry, radiation 

interaction, or weight to drive particle histories toward a desired condition. For this 

exploitation to work, the property of weight, which determines the particles’ contribution to 

the tally, is adjusted to reflect any changes caused by the biasing. In analog simulations the 

weight is never changed; the particle starts and dies with a weight of 1 and is only terminated 

if the particle is captured or escapes. However, in biased simulations, the weight is adjusted 

by the biasing technique for a more efficient calculation. 

 Remember SimpleMCn/g’s goal is to accurately simulate secondary gamma 

production from the capture of neutrons. The simplest biasing options available that would 

improve the calculation’s efficiency are implicit capture and forced collision. Both of these 

options end the particle history using a method called Russian roulette. Finally, the point 

detector used in SimpleMC is a method of estimating the flux at a point without requiring 

particles to actually reach the point. 

2.6.1 Implicit Capture 

 

 Implicit capture allows the neutron to continue living by implying a capture at each 

interaction point, which then creates secondary radiation. The weight of the neutron is 

lowered by multiplying the current weight with the ratio of the elastic scatter cross section to 

the total.  
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  (2.6.1) 

Where Σs is the elastic scatter cross section, Σt is the total cross section, ωn is the neutrons 

pre-interaction weight and ωn’ is the weight, after implicit capture. 

The physical analogy to this operation is that a fraction of the interacting neutron is captured 

and the remaining fraction scatters [21]. The scattered neutron fraction continues to 

contribute to the overall history of the MC simulation with the new weight assignment given 

in equation(2.6.1), while the captured fraction produces secondary gammas with a weight 

assignment given in equation(2.6.2). 

 c
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  (2.6.2) 

Where Σc is the capture cross section, ωy is the photon weight assignment, and ωn is the 

neutron weight before implicit capture. 

 SimpleMC uses implicit capture; however since photons do not lead to secondary 

radiation, the method is simply used to keep the photon history going within the slab, 

allowing for a greater chance for escape. The weight is adjusted in the same manner the 

neutron weight is in SimpleMCn: 

 ' 1
p

y y

t

 
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  (2.6.3) 

Where Σp is the photoelectric absorption cross section, ωy is the pre interaction gamma 

weight and ωy’ is the weight after implicit capture. 
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After applying the change in weight, the photon may either Compton scatter or go through 

pair production. 

2.6.2 Russian Roulette 

 

 Russian roulette is method of terminating the history of a particle early, principally 

since the particle’s weight will never reach a weight of zero when implicit capture is 

employed. The concept is to set a threshold for the minimum weight that a particle is allowed 

to reach [21]. In SimpleMCn/g, when the particle's weight drops below this threshold, the 

weight of the particle is either restored to the original weight, or the particle's history is 

terminated. This termination utilizes a random number ξ, and the ratio of the current weight 

to the starting weight: 

 
o





   (2.6.4) 

where ω is the current particle weight and ωo is the starting weight. 

If the condition in (2.6.4) is met, then the particle’s weight is reset to ωo and continues with 

the rest of its properties unchanged (position, energy, etc.). If the condition is not met, then 

the particle dies and any related tallies are scored before starting a new history [12]. In this 

way, SimpleMCn/g can produce the same expected tallies obtained by the analog simulation, 

while spending less computational time on particles with weights that are so low they are 

unlikely to contribute to the tally. 
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2.6.3 Forced Collisions 

 

 Forcing collisions is a biasing method meant for optically thin transport media. An 

optically thin case is considered to be 1 mean free paths or less in thickness [21]. In these 

model cases, most of the particles will pass through the material before interacting in the 

material. The developer can either add more trials to the MC simulation or implement the 

forced collision biasing option. This biasing option keeps the particle from physically 

escaping the material, generating a fraction of the particle that would escape and a fraction 

that stays within the transport medium. The fraction that stays within the slab continues to 

contribute to the particle history, increasing the number of interactions and thus contributing 

to the tally [19].  

This is implemented in SimpleMCn/g by adjusting the distance at which the 

interaction can be sampled and forcing the particle to interact in the slab. The particle 

fraction, ω
†
,  that would escape the slab in the particle’s current direction is the weight of the 

particle multiplied by escape probability: 

 † t D

oe  
   (2.6.5) 

where D is the maximum distance the particle can travel and remain in the medium in its 

current direction and ωo is the original particle weight. 

 Therefore the collided fraction and thus new weight is given by: 

 * (1 )t De  
    (2.6.6) 

where ω* is the particle weight after applying the forced biasing option 
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Since the interaction is now forced to occur within distance D, a new method is 

needed to select the interaction distance L. A ratio is formed of the probability of interacting 

within a distance L and the allowable distance D, and the random number ξ represents that 

ratio: 

 
(L)

(D)

P

P
    (2.6.7) 

where, 

 (L) 1 tL
P e

 
    (2.6.8) 

and  

 (D) 1 e tD
P

 
    (2.6.9) 

Solving for L, equation (2.3.3) is replaced by the following equation to determine the 

forced interaction distance: 

 
ln(1 (1 e ))t D

t

L
 

 
 


  (2.6.10) 

2.6.4 Point Detector Tally 

 

In order to estimate a detector’s response at a particular location, the flux must be 

estimated at that location. The point detector tally works by estimating the likelihood that a 

scattering photon will reach the detector’s position. The weight that the detector records is 

adjusted to reflect the probability of scattering into the direction of the detector, and to travel 

through the material without any interactions [19]. 

The probability of the particle scattering towards a non-point detector is: 
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 ( )p pp d    (2.6.11) 

where p  is the direction vector from the collision to the detector and pd  is the solid angle 

subtended by the detector.  

The probability of reaching the detector without a collision is: 

 0

( )

R

t s ds

e
 

  (2.6.12) 

where R is the distance between the interaction point and the point detector. 

Combining these two factors yields the probability that the particle will scatter 

towards the detector and reach it uncollided: 

 0

( )

( )

R

t s ds

p pp d e
 

    (2.6.13) 

Now inserting the weight of the incident particle and reducing the detector size to 

zero: 

 0

( )

2

( )
R

t s ds
pp

tally w e
r

 
   (2.6.14) 

The azimuthal component of the scatter direction is uniformly distributed, so equation 

(2.6.14) becomes: 

 0

( )

2

( )

2

R

t s ds
p

tally w e
r





 
   (2.6.15) 

where μ is the cosine of the polar angle. 

For photons, p(μ) is determined by the Klein-Nishina cross-section using either Kahn 

rejection or Koblinger direct sampling.  
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CHAPTER 3 

Results 

 

The process of confirming the operation of SimpleMCn/g was to tally neutron and 

gamma reflection and transmission in: 

1.    radial location 

2.    polar angle with respect to the slab normal 

3.    azimuthal angle with respect to the x-axis 

4.    emergent energy distributions  

SimpleMCn/g tallies were compared to the same tallies from MCNP. See Figure 10 for an 

illustration of these tallies. It is important to note that the radial tallies are set from the entry 

point of the neutron beam. The polar and azimuthal angles are binned with respect the exit 

location of the escaping particle. Since the primary goal of this thesis is to produce secondary 

gamma rays in a computationally efficient way, the number of photons produced per neutron 

history was also recorded to compare the efficiency of the biasing options and demonstrate 

their effectiveness. 

  



45 

 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 12 Illustraion of the (a) radial distribution, where the cross hairs represent the 

entry point of the source neutrons into the slab, and the (b) azimuthal and (c) polar 

binning of the emerging particles. (d) a 3-d representation of the polar and azimuthal 

binning, which occur at the location the particle exits the slab. 

 

At the start of the project, there was a discrepancy between the analog sets of neutron 

tallies, indicating that the neutrons in SimpleMCn were not “living” as long as the neutrons 
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in MCNP. The tallies, shown in Figure 13, for SimpleMCn were much lower than those of 

MCNP, except for in energy. For the energy distribution, the reflected tallies at higher 

energies are practically the same, but differed greatly at lower energies. Where MCNP 

exhibits a local maximum in the neutron spectrum near 0.01 eV, SimpleMCn immediately 

begins to fall off. This was an indication that thermal neutron scattering wasn’t adequately 

modeled in SimpleMCn, and this missing physics was responsible for a longer life of these 

neutrons in MCNP. The effects of this on the secondary gammas are shown in Figure 12.
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(a) (b) 

(c)  (d) 

Figure 13 The (a) radial, (b) polar, (c) azimuthal, and (d) energy distribution of the neutrons from SimpleMCn 

before the thermal treatment of the neutrons. Note the discrepancy for the neutrons at low energy. 
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 (a) 
 

(b) 

 (c) 
 

(d) 

Figure 14 The (a) radial, (b) polar, (c) azimuthal, and (d) energy distribution of the photons from SimpleMC 

before the thermal treatment of neutrons in SimpleMCn.
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After identifying that the issue was with the treatment of thermal neutrons [18], the 

free gas treatment of neutrons, covered in section 2.5.2a, was discovered and applied in 

SimpleMCn. The resulting analog distributions became identical for both the neutrons in 

Figure 13, and the photons in Figure 14. The issue with the transmitted neutron tallies in 

Figure 13 is that SimpleMCn does not employ a lower energy level cutoff limit, where 

MCNP does. The transmitted results are from neutrons with energies less than the MCNP 

energy cutoff of 1*10
-11

 MeV. For this analog test case, SimpleMCn produces 0.446 photons 

per neutron history. Figures 13-14 confirm that the analog treatment of neutrons in 

SimpleMCn and the coupling of secondary photons with SimpleMC is functioning correctly. 

Note that with the geometry of the problem (a beam of neutrons directly into a slab), 

the azimuthal distribution is expected to be, and is, an entirely flat distribution.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15 The (a) radial, (b) polar, (c) azimuthal, and (d) energy distributions of neutrons from SimpleMCn 

after the free gas treatment of neutrons
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 16 The (a) radial, (b) polar, (c) azimuthal, and (d) energy distributions of photons from SimpleMC 

using input from SimpleMCn after the application of the free gas treatment on thermal neutrons.
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The next step is to test, in the same manner, the different neutron biasing options to 

ensure that they produce the same tallied results. First is the implicit capture of neutrons, 

shown in Figure 15. Again, the distributions for the reflected neutrons are equivalent The 

issue of the optically thick slab persists in the MCNP results. This provides confirmation that 

the neutron histories are properly simulated with implicit capture. The number of photon 

histories produced is increased to 148.785 photons per neutron. This is a factor of 333 

increase in the production of photons over the analog case, which shows that implicit capture 

is an effective biasing option for the production of secondary gamma rays.  

The results for the secondary gammas, which were modeled using analog transport, 

are presented in Figure 16. The photon distributions are equivalent to the MCNP results, 

proving that not only are the neutron histories being simulated correctly with implicit 

capture, but that the photon production from this method is correct.  
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 (a) 

 
(b) 

 
(c) 

Figure 17 The (a) radial, (b) polar, and (c) energy distributions of neutrons from 

SimpleMCn using implicit capture.
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(a) 

 
(b) 

 
(c) 

Figure 18 The (a) radial, (b) polar, and (c) energy distributions of photons from 

SimpleMC using input from SimpleMCn using implicit capture.

1.00E-05 

1.00E-04 

1.00E-03 

1.00E-02 

1.00E-01 

1.00E+00 

0 0.2 0.4 0.6 0.8 1 

Frequency 

Radial Bin (cm) 

SimpleMC reflected 

MCNP reflected 

SimpleMC transmitted 

MCNP transmitted 

1.00E-04 

1.00E-03 

1.00E-02 

1.00E-01 

1.00E+00 

0 0.2 0.4 0.6 0.8 1 

Frequency 

Polar Bin (cosine) 

SimpleMC reflected 

MCNP reflected 

SimpleMC transmitted 

MCNP transmitted 

1.00E-04 

1.00E-03 

1.00E-02 

1.00E-01 

1.00E+00 

1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 

Frequency 

Energy Bin (MeV) 

SimpleMC reflected 

MCNP reflected 

SImpleMC transmitted 

MCNP transmitted 



55 

 

 

 

 

For the forced collision option, the 10 cm thick slab with a density of 1 g/cc was too 

optically thick for the neutrons. In order to properly test the selection of a forced distance 

within the slab, the neutrons needed to have a high probability of escaping uncollided. This 

meant the optical thickness needed to be adjusted, and so the density was lowered to about 

three percent of the original value, 0.03 g/cc, so that the slab was approximately 1 mean free 

path for the neutrons.  

With this reduction of optical thickness, the number of analog neutron tallies dropped 

significantly, from 0.446 photons per neutron to 0.003 photons per neutron. However, the 

forced collision biasing for 1 mean free path resulted in an increase to 0.008 photons per 

neutron, which is a 1.5 factor increase in the number of secondary photons produced in 

analog simulation. While not as large an increase as the implicit capture biasing, it is 

important to remember that the use of forced collision biasing is intended for optically thin 

media. 

 The SimpleMCn neutron distribution tallies using forced collision biasing are shown 

in Figure 17; note that the MCNP data is from an analog simulation.  One can see that both 

the reflected and transmitted data match with MCNP, meaning the forced option is correctly 

simulated and that using 1 mean free path has allowed both MCNP and SimpleMCn to tally 

transmission data. Figure 18 displays the photon data from SimpleMC, and though the 

numbers of photons tallied are low, the tallies match the MCNP results in the polar and 

energy distributions.
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 (a) 

 
(b) 

 
(c) 

Figure 19 The (a) radial, (b) polar, and (c) energy distributions of neutrons from 

SimpleMCn using the forcing biasing option.  
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(a) 

 
(b) 

 
(c) 

Figure 20 The (a) radial, (b) polar, and (c) energy distributions of photons from 

SimpleMC using input from SimpleMCn with forcing. 
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 Table 3.1 compares the numerical results of implementing the biasing options in 

SimpleMCn/g. Note that the results are in either gammas per neutron or gammas per second. 

Also, for the displayed run times, a standard desktop computer with the clock speed time of 

3.1 GHz. 

 

Table 3.1: Summary of photon histories from analog and biasing options 

Optical 

Setting 

Analog 

(γ/n) 

Run Time 

(γ/s) 

Implicit 

Capture 

(γ/n) 

Run Time 

(γ/s) 

Forced 

(γ/n) 

Run Time 

(γ/s) 

Optically 

Thick 
0.446 334 148.785 11700 N/A N/A 

Optically 

Thin 
0.003 75 N/A N/A 0.008 95 

 

  

The last test to check is the point detector using photons generated from SimpleMCn. 

The detector is placed 100 cm away from the neutron entry point, at a 45
o
 angle form the 

normal. This results in the x-y-z coordinates of 0.0, 70.71068, 70.71068. Since 2.223 MeV 

photons are the highest energy photons that are produced in SimpleMCn, the point detector is 

set to 100 bins, evenly divided from 0 to 2.223 MeV. The results are shown in Figure 21. 
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Figure 21 Point detector tally for photons from SimpleMCn/g. Both the neutrons and 

photons were analog treated. 

  

 As one can see, the point detector results are nearly identical to MCNP. The slight 

discrepancy at lower energies is from the fact that the Klien-Nishina model breaks down at 

low energies due to Doppler broadening of the electron [19].
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CHAPTER 4 

Conclusion 

 

The preceding results demonstrate that SimpleMCn is able to simulate neutron 

transport as well as efficiently producing secondary gamma rays from neutron capture, a 

principle goal of this work. The results also demonstrate that the coupling of photons 

generated from SimpleMCn with SimpleMC is functioning accurately. With the test case 

provided, the analog, implicit capture and forced collision cases matched the MCNP 

benchmark results. In addition, the implicit capture method increased the number of 

secondary gammas by a factor of 333 and the forced collision method increased their 

production by a factor of 1.5.  

Matching the analog results of SimpleMCn/g and MCNP demonstrates that the 

physical simulation of the neutrons and photons are correctly modeled. The matching results 

for the biasing options shows that these methods are correctly implemented in SimpleMCn. 

These results, in conjunction with the fact that the implicit capture and forced collision 

biasing options increase the number of secondary gammas, confirm that SimpleMCn is 

capable of efficiently simulating secondary gamma production from neutron capture.  

4.1 Future Work 

 

There are several aspects of SimpleMCn and SimpleMC that need to be developed 

before it can complete the overall goal of real-time training simulation. The most important 

feature would be to develop the programs so that they may be interfaced to a computer aided 

drafting (CAD) program. The data provided by these two programs would be used to 
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generate the radiation field in the built environment much like light is rendered in computer 

programs. In order to reach this point, both SimpleMCn and SimpleMC would need to be 

combined into one integrated program that could be attached to an already developed CAD 

program. In order for this to be viable, the integrated program will also need to be rewritten 

in to a language designed for graphics processing units (GPU), such as CUDA. While the 

programs operate correctly individually, there is a user benefit to making one integrated 

program that executes a single coupled transport simulation. 

In addition, both SimpleMCn and SimpleMC will need to have their cross sections 

restructured. Currently, cross-sections are hard coded into both programs. SimpleMC has the 

macroscopic cross sections hardcoded. This means that the user will need to manually change 

the photon cross sections every time they wish to make run with a new density of the 

material. Since more materials will be added to the programs in the future, having to keep the 

cross sections added to the program would mean extra data that would need to be 

downloaded with the program. Ideally, the goal would be to have a section of the program 

pull the relevant cross section data from an online source like ENDF or XCOM, but that 

work is beyond the current scope of this thesis. 

Another subject that would need to be developed for the future coupled SimpleMCn/g 

program is the addition of detector response. While the point detector in SimpleMC will find 

the flux impingent on a detector at an arbitrary location in the environment, it will not 

directly correlate to the detector’s response. There are multiple types of detectors each 

exploiting one of many different detection methods. These different methods respond 



62 

 

 

 

 

differently, even if the radiation flux on them is the same. In simulations, the radiation flux is 

converted into the detector response through models known as detector response functions. 

These detector response functions will need to be added into the coupled SimpleMCn/g 

program if the user wishes to train personnel using actual detectors available to the trainees. 
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