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ABSTRACT 

 Spotted fever group (SFG) Rickettsia are obligate intracellular bacteria that are carried by 

ticks.  One such tick, Dermacentor variabilis is a vector for the etiologic agent of Rocky 

Mountain spotted fever, R. rickettsii.  These ticks also carry a non-pathogenic R. montanensis, 

the agent used in this study.  Interestingly, field data collected from infected D. variabilis 

throughout the United States revealed that the majority of Rickettsia in ticks are non-pathogenic 

species such as R. montanensis.  Although ticks serve as both vector and reservoir hosts for SFG 

Rickettsia, many questions regarding tick-Rickettsia interaction remain unresolved.  Therefore, 

the overall goal of this research was to study the relationship between ticks and Rickettsia, 

specifically examining the molecular mechanisms of rickettsial infection of tick host.  As SFG 

Rickettsia can move between vertebrate and invertebrate hosts, the hypothesis is that conserved 

mechanisms are utilized for invasion of both types of host cell.  Biochemical inhibition assays 

revealed that the tick molecules, PI 3-kinase, protein tyrosine kinases, Src, FAK, Rho GTPase 

Rac1, N-WASP, Arp2/3 complex, actin, and V-ATPase are important for R. montanensis 

invasion.  Further studies were executed to molecularly and functionally characterize the tick 

molecules, Arp2/3 complex and V-ATPase, which are central to rickettsial internalization.  Full 

length cDNA of Arp2/3 complex subunits and V-ATPase from D. variabilis were isolated.  

Transcriptional profiles of Arp2/3 complex subunits and V-ATPase showed greater expression of 

the mRNA in tick ovaries compared to midgut and salivary glands.  In addition, to gain insight 

into rickettsial invasion in nature, Arp2/3 complex inhibition assays were performed in tick 

tissues.  The results demonstrated the involvement of Arp2/3 complex in rickettsial entry into 

midgut, ovary, and salivary glands.  The tick molecules identified in this study may provide 

novel points of intervention in the transmission of tick-borne rickettsial diseases.   
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 General overview of tick-borne rickettsial disease: Rocky Mountain spotted fever 

It has been more than a hundred years since Howard Taylor Ricketts discovered the 

etiologic agent of the prototypical tick-borne rickettsial disease (TBRD) (Gross and Schäfer, 

2011), Rocky Mountain spotted fever (RMSF); however, rickettsial diseases are still prevalent 

throughout the world.  TBRDs are zoonoses in which the epidemiology of the diseases are 

limited by the geographic ranges and seasonal activities of the vectors and reservoirs (Schriefer 

et al., 1994; Azad and Beard, 1998); human behaviors that may increase the risk for tick 

exposure and subsequent infection also influence the epidemiologic characteristics of TBRDs 

(Comer et al., 2001; Chapman et al., 2006).  In the United States, the most common TBRDs 

include RMSF, human monocytotropic ehrlichiosis (HME), human granulocytic anaplasmosis 

(HGA) and Ehrlichia ewingii infection, which are caused by Rickettsia rickettsii, Ehrlichia 

chaffeensis and Anaplasma phagocytophilum, respectively.  During the past decade, the 

prevalence of TBRD has increased in North America, South America and Europe (Figure 1.1) 

(Dumler, 2010), and cases attributed to RMSF have increased by more than 300 % (Hall-Baker 

et al., 2010).   

1.1.1 Epidemiology 

Although Maxey first reported RMSF in medical literature in 1899 (Ricketts, 1991), 

surveillance data has only been collected since 1920 (Hattwick, 1971).  During the past ten years, 

the annual incidence of RMSF has dramatically increased (Hall-Baker et al., 2010).  In 2008, 

annual documented cases of RMSF exceeded that of any other year and the disease was 

distributed throughout most of the United States (Figure 1.2) (www.cdc.gov).   
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Figure 1.1 Reported cases of tick-borne rickettsial disease (TBRD) in the United States from 

1920-2009 (Dumler, 2010).  RMSF = Rocky Mountain spotted fever; HME = human monocytic 

ehrlichiosis; HGA = human granulocytic anaplasmosis; E. ewingii = Ehrlichia ewingii infection; 

nos = not otherwise specified.  Figure from Dumler, 2010. 

 

 

 

Figure 1.2 Geographic distribution and annual reported incidence (per 1,000,000 persons) of 

Rocky Mountain spotted fever (RMSF) in the United States, 2008.  NN= not notifiable.  

(Courtesy of Centers of Disease Control and Prevention) 
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The upward trend of RMSF cases suggests ecological changes affecting disease 

transmission, increased diagnostic testing and/or changes in surveillance and reporting (Hall-

Baker et al., 2010).  In addition, the wide distribution of RMSF might be the result of the 

widespread range of the primary tick vectors; the American dog tick, Dermacentor variabilis 

(East of the Rocky Mountains and in limited area on the Pacific Coast) (Figure 1.3.1), the Rocky 

Mountain wood tick, Dermacentor andersoni (in the Rocky Mountain states) (Figure 1.3.2) and 

the brown dog tick, Rhipicephalus sanguineus (throughout the United States) (Figure 1.3.3) 

(Hall-Baker et al., 2010).  The American dog tick and the Rocky Mountain wood tick have been 

recognized as vectors in the transmission of R. rickettsii for a long time; however, the brown dog 

tick was found to be a natural carrier of R. rickettsii in 2005 (Demma et al., 2005). 

 

Figure 1.3.1 Approximate distribution of the American dog tick, Dermacentor variabilis in the 

United States.  (Courtesy of Centers of Disease Control and Prevention) 
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Figure 1.3.2 Approximate distribution of the Rocky Mountain Wood tick, Dermacentor 

andersoni in the United States.  (Courtesy of Centers of Disease Control and Prevention) 

 

 

Figure 1.3.3 Approximate distribution of the Brown dog tick, Rhipicephalus sanguineus in the 

United States.  (Courtesy of Centers of Disease Control and Prevention) 
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In the United States, RMSF cases are reported every month of the year with the majority 

of the cases reported during late spring and summer coinciding with the period of highest tick 

feeding activity.  In most states, RMSF cases peak during the months of June and July; 

nevertheless, in Arizona, where R. sanguineus is the common tick vector, the most cases occur 

during August and September (Hattwick et al., 1976; www.cdc.gov).   

 The epidemiological data collected by the CDC (2000-2008) have shown that adult 

males, American Indians and people aged 50-69 contract rickettsial disease more frequently than 

other groups.  This distribution is related to the greater recreational or occupational exposures to 

ticks and is not due to the different susceptibility of various ages and sexes of human (Hattwick 

et al., 1976; Demma et al., 2005; www.cdc.gov).  In January 2010, the disease category of 

“Rocky Mountain spotted fever” was classified under a new category of “Spotted Fever 

Rickettsiosis, including Rocky Mountain spotted fever” (www.cdc.gov).  This new category is 

less specific, more inclusive and more accurate; many of the cases previously reported under the 

“Rocky Mountain spotted fever” category were not specifically caused by R. rickettsii.  In the 

United States, in addition to RMSF, two more tick-borne spotted fever rickettsial diseases show 

similar clinical features to RMSF.  These rickettsial diseases are caused by R. parkeri and R. 

species 364D (Table 1.1).  

Table 1.1 Other tick-borne spotted fever rickettsial infections in the United States. 

Species Tick vector Geographic area Clinical features 

R. parkeri A. maculatum     

(Gulf Coast tick) 

Eastern and southern U.S., 

particularly along the coast 

Fever, headache, eschar 

(s), variable rash 

R. species 

364D 

D. occidentalis 

(Pacific Coast tick) 

Northern California, 

Pacific Coast 

Fever, eschar (s) 

(www.cdc.gov) 
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1.1.2 Routes of transmission 

Ticks become infected with R. rickettsii either by transovarial transmission or by feeding 

on the blood of infected animals.  Human infection occurs accidentally through the bite of 

infected ticks.  When the tick attaches and feeds on a human host, a nonvirulent form of R. 

rickettsii, present in salivary glands, is reactivated by the fresh blood meal and is transformed 

into one with high pathogenicity (Hayes and Burgdorfer, 1982).  In addition, humans may 

become infected through abrasion of skin or through mucous membrane contact with infected 

tick feces or bodily fluid during removal of the tick from human or animals.  Inhalation of large 

aerosols in the laboratory is also a potential source of infection (Milstone and Dumler, 2009).  

1.1.3 Clinical manifestations and treatments 

Today, RMSF is still the most lethal and most commonly reported TBRD in the United 

States.  Initial signs and symptoms of highly lethal RMSF include severe headache, high-grade 

fever (102-104 ⁰F), generalized myalgia (especially in back and leg muscles), nausea and 

vomiting, beginning within the first several days after R. rickettsii is inoculated into skin during 

blood feeding of infected ticks.  If left untreated, severe injury can occur sometimes leading to 

multi-organ failure for example acute renal disease.  In common with other rickettsial diseases, 

vascular lesions are responsible for clinical manifestations of this illness.  The widespread 

infection of vascular endothelium leads to encephalitis, interstitial pneumonia, non-cardiogenic 

pulmonary edema and adult respiratory distress syndrome.  Rickettsia rickettsii invasion of the 

endothelial cell network at the site of the tick bite begins a process of local dermal and epidermal 

necrosis that results in an eschar.  Dissemination of the infection further damages vascular 

networks and leads to vasodilation, and maculopapular rash.  The rash is a characteristic of 

RMSF and helpful in establishing a diagnosis; however, some people do not develop the rash 
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(Egermayer, 2001; Parola and Raoult, 2006; Dantas-Torres, 2007; Walker and Ismail, 2008; 

Milstone and Dumler, 2009; Walker and Valbuena, 2009). 

Antimicrobials in which the agent enters the host cells and is active in the intracellular 

environment are ideal treatment for RMSF.  The first line and effective treatment of R. rickettsii 

infection in adults and children of all ages is doxycycline; the mode of action of doxycycline is 

the inhibition of protein synthesis thus bacterial growth by binding to 30S and possibly 50S 

ribosomal subunits of bacteria.  The use of doxycycline is recommended due to the potential of 

tetracycline, also an effective treatment of RMSF, to stain permanent teeth, especially in children 

younger than 8 years (Milstone and Dumler, 2009).  In patients allergic to doxycycline or 

pregnant patients, chloramphenicol can be used; however, the risk for a lethal outcome is higher 

in the patients treated with chloramphenicol than doxycycline.  Although fluoroquinolones and 

macrolides have been suggested as effective treatment in some studies, they have not been 

proven in patients. 

RMSF is problematic because of resulting high mortality rates if the disease is left 

untreated.  Also, the control of the animal reservoirs or vectors is very impractical.  Vaccination 

as a prevention of RMSF might be helpful; however, a licensed vaccine for RMSF is currently 

not available.  Thus, understanding the pathogenesis by which rickettsiae causes disease as well, 

as the development of immune response, is useful for the development of vaccines, 

pharmacological design and other types of intervention which prevent the damage caused by 

rickettsiae.  

1.2 Tick vectors of rickettsiae 

Ticks are ectoparasitic, hematophagous arthropods that transmit a broad range of 

microorganisms, many of which cause diseases in humans and livestock (Sonenshine and Hynes, 
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2008).  They are classified into three families: hard-bodied ticks (Ixodidae), soft-bodied ticks 

(Argasidae) and the Nuttalliellidae.  Ixodid ticks are vectors and reservoirs for SFG rickettsiae.  

Their life cycle involves three post-embryonic parasitic stages: larva, nymph and adult.  Each 

developmental stage of hard ticks takes a blood meal in order to reach the next stage.  Ticks use 

their chelicerae to puncture human skin and their hypostome to anchor themselves.  Then the 

chelicerae rupture superficial small vessels in order to take the blood meal.  The duration of 

feeding is 3-12 days depending on stage, species and conditions.  Female ticks feed for several 

days, whereas male ticks feed repeatedly in small amounts.  Following each blood meal, ticks 

molt and undergo morphological development into the next stage.  In contrast, Argasid or soft 

ticks undergo shorter feeding periods and more complex life cycles (Sonenshine et al., 2005; 

Piesman and Gage, 2005). 

1.2.1 Tick-host immune interactions 

Attachment of the tick to the vertebrate host elicits both innate and adaptive defenses 

against tick infestation.  Adaptive resistance to tick feeding involves both humoral and cell-

mediated immunities that impair tick engorgement, ova production and viability.  Nevertheless, 

ticks modulate host immune responses by the secretion of a wide range of physiologically active 

components through their saliva (Wikel, 1999; Brossard and Wikel, 2004; Hovius, 2009).  Tick 

saliva contains anti-inflammatory molecules, anti-haemostatic substances that promote blood 

feeding, and salivary immunomodulatory components that mediate bacterial transmission and 

prevent the vertebrate host from rejecting them (Figure 1.4) (Wikel, 1999; Brossard and Wikel, 

2004; Nuttall and Labuda, 2004).  

Tick-mediated host immunosuppressive countermeasures impair natural killer (NK) cells, 

dendritic cells (DCs), macrophages and neutrophil functions; inhibit complement system; bind to  
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Figure 1.4 Schematic representation of immunosuppressive activities of tick saliva.  During 

feeding, ticks inoculate their saliva containing several immunosuppressive proteins into host 

skin.  The figure depicts the functions of tick saliva in response to host innate immunity.  IFN-γ 

= interferon-γ, NO = nitric oxide, AMP = antimicrobial peptide, IL = interleukin, TNF-α = tumor 

necrosis factor-α.  Figure is modified from Hovius, 2009. 

histamine; reduce antibody titer; decrease the production of cytokines such as interleukine-12 

(IL-12) and interferon-γ (IFN-γ); block chemokine activity; and inhibit T-cell proliferation and 

host antibody responses (Walker and Ismail, 2008; Hovius, 2009).  In addition, tick salivary 

gland extract has been shown to inhibit antimicrobial peptide production induced by Borrelia 

burgdorferi (Marchal et al., 2009).  Furthermore, tick saliva has been shown to block DCs 

maturation by inhibiting expression of co-stimulatory (CD40, CD80 and CD86) and adhesion 

(CD54) molecules.  The inhibition of DC maturation by tick saliva affects T cell effector 
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functions in that initial activation of T cells by DCs would be impaired (Cavassani et al., 2005;  

Sa-Nunes et al., 2007).  

1.2.2 Tick transmission and reservoir of rickettsiae 

Ticks are often infected with obligate intracellular bacteria which are primarily 

transmitted to the vertebrate host by direct inoculation into host blood vessels.  The ability of 

ticks to transmit rickettsiae was first shown in Ricketts’s classic studies of RMSF (Ricketts 

1906).  Ricketts also demonstrated that female ticks previously fed on infected guinea pigs could 

transmit rickettsiae to uninfected guinea pigs in what he coined horizontal transmission.  

Additionally, ticks could pass rickettsiae from one developmental stage to the next by either 

transstadial or transovarial transmission (Ricketts 1907a; Ricketts 1907b).  From these results, 

Ricketts concluded that ticks were the primary reservoirs of rickettsiae.  In nature, the 

transovarial and transstadial transmission of rickettsiae in tick vectors is a highly efficient 

mechanism ensuring rickettsial survival without requiring the complexity inherent in multi-host 

reservoir systems.  The efficiency of transstadial transmission is close to 100% whereas 

transovarial transmission is 30-100% efficient (Piesman and Gage, 2005).  In contrast, horizontal 

transmission of rickettsiae by feeding of uninfected ticks on infected host animals is not as 

efficient as transstadial and transovarial transmission as some hosts are naturally resistant to 

rickettsiae, immune from earlier infection and/or rickettsemic for only a few days ingesting an 

insufficient quantity of rickettsiae (Piesman and Gage, 2005).  For horizontal transmission, 

uninfected ticks must feed on rickettsemic hosts to ensure that sufficient quantities of rickettsiae 

are ingested to establish infection (Burgdorfer et al., 1966) 
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1.2.3 Vector competence 

Vector competence refers to the ability of arthropod vectors to acquire and transmit the 

pathogen to the new host (Sonenshine et al., 2005).  Vector competence is important for the 

vector-pathogen cycle.  Both genetic and environmental factors contribute to the variation of 

vector competence (Tabachnick, 1994; Beerntsen et al., 2000); however, these factors are 

undetermined for ticks transmitting rickettsiae.  

For the pathogens transmitted by the bite of infected vectors, the midgut is an important 

barrier that prevents the vector from becoming infected.  It is necessary for rickettsiae 

transmitted by the bite of infected ticks to breach this barrier in order to establish a successful 

infection.  After entering the digestive tract of the tick, rickettsiae invade and multiply within 

cells of the midgut epithelium where they escape from the midgut to the hemocoel infecting 

hemocytes.  Infected hemocytes carry rickettsiae to other tissues within the ticks, including 

salivary glands and reproductive organs.  Transovarial transmission only occurs after ovaries 

become infected.  On the other hand, for transmission of rickettsiae to vertebrate hosts during 

blood feeding, tick salivary glands must first -be infected (Sonenshine et al., 2005; Piesman and 

Gage, 2005). 

1.2.4 Dermacentor variabilis tick 

Dermacentor variabilis, commonly called the American dog tick is a seasonally active 

tick that is the primary vector of R. rickettsii in the eastern and south central United States 

(Sonenshine et al., 2005).  This species of tick also transmits Francisella tularensis and 

Anaplasma marginale, the causative agent of tularemia and anaplasmosis, respectively.  In 

addition, non-pathogenic R. montanensis has been reported to be carried by D. variabilis in areas 
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of the United States (Feng et al., 1980; Anderson et al., 1986; Pretzman et al., 1990; Ammerman 

et al., 2004).  

Dermacentor variabilis is a three-host tick in which each developmental stage in the life 

cycle feeds on different hosts (Figure 1.5) (Sonenshine, 2005).  Larvae and adults overwinter in 

the forest or soils.  During spring, D. variabilis larvae emerge from winter diapauses and feed on 

small mammals. Larval activity peaks in mid-April in the southeastern United States and in mid-

May or early June in the northern United States.  After feeding, larvae molt into nymphal ticks 

that feed on small mammals and peak a few weeks after the larval peak.  Thereafter, unfed adults 

begin to emerge and seek medium- or large-sized animals.  Adult ticks become active, 

culminating in June or early July. 

 

 

Figure 1.5 Life cycle of a three-host tick.  In each developmental stage, a three-host tick feed on 

different hosts.  Larvae and nymphs feed on small mammals. Adults feed on medium- or large-

sized animals. Figure is modified from Sonenshine, 2005. 
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1.3 Rickettsial agents and their characteristics 

 Although members of the genus Rickettsia are primarily associated with arthropod 

vectors such as ticks, fleas, lice and mites, their life cycle also involve vertebrate hosts (Figure 

1.6) (Azad and Beard, 1998; Perlman, 2006).  In nature, rickettsiae are adapted to survive within 

arthropod hosts in which they are maintained by vertical (transstadial and transovarial) 

transmission.  Horizontal transmission of rickettsiae can occur during feeding of uninfected 

arthropods, such as ticks, on rickettsemic rodents and other animals (Walker and Ismail, 2008); 

however this process contributes little to the life cycle of rickettsiae.  With the exception of R. 

prowazekii, the role of human hosts in the rickettsial life cycle is only secondary (Azard and 

Beard, 1998).  

   

Figure 1.6 Transmission cycle of tick-borne rickettsiae.  Spotted fever group rickettsiae are 

maintained in nature by transovarial and transstadial transmission in ticks and horizontal 

transmission to uninfected ticks that feed on rickettsemic rodents and other animals. Figure from 

Walker and Ismail, 2008 

1.3.1 Rickettsial classification 

 Rickettsiae are a group of bacteria belonging to the class Alphaproteobacteria.  They are 

members of the order Rickettsiales and the family Rickettsiaceae.  The family Rickettsiaceae is 
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comprised of two genera, Orientia and Rickettsia (Tamura et al., 1995).  Orientia tsutsugamushi 

is the only member in genus Orientia.  The organism is the agent of scrub typhus which is 

transmitted by the larvae of mites (Mullen et al., 2002).  

The genus Rickettsia is composed of several species, some of which are apparently 

harmless (e.g. R. montanensis, R. rhipicephali, R. bellii, R. canadensis), and others that are 

responsible for a number of diseases in human (e.g. R. rickettsii, R. conorii, R. parkeri, R. 

africae, R. slovaca, R. sibirica, R. honei, R. japonica, R. akari, R. felis) (Parola et al., 2005; 

Walker and Ismail, 2008).  The list of human diseases caused by the members of the genus 

Rickettsia along with their associated arthropod vector(s), transmission cycle(s), geographic area 

and mortality rate are provided in Table 1.2 (Walker and Ismail, 2008). 

Based on whole-genome analysis data (Gillespie et al., 2007; Gillespie et al., 2008), the 

genus Rickettsia are classified into four groups: the spotted fever group (R. rickettsii, R. conorii, 

R. sibirica, R. helvetica and several others), typhus group (R. prowazekii and R. typhi), 

transitional group (R. felis, R. akari and R. australis), and ancestral group (R. bellii and R. 

canadensis) (Figure 1.7).  From bioinformatics analysis of the representative rickettsial genomes, 

these four aforementioned rickettsial groups revealed the number of genes with shared 

evolutionarily histories as shown by the Venn diagram in Figure 1.8 (Gillespie et al., 2008). 

1.3.2 Biological characteristics of rickettsiae 

Members of the genus Rickettsia possess general characteristics that are shared among 

species.  These organisms are obligate intracellular, gram-negative bacteria that exist freely in 

the cytoplasm and nuclei of eukaryotic cells (Raoult and Roux, 1997; Azad and Beard, 1998; 

Perlman et al., 2006).  They are small with an average size of 0.3-0.5 µm in width but vary  
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Table 1.2 Rickettsial diseases in humans. 

Disease Organisms Arthropod vector Life cycle Geographic 

area 

Mortality 

rate* 

Tick-transmitted spotted fevers    

Rocky 

Mountain 

spotted fever 

R. rickettsii D. variabilis,        

D. andersoni, 

R. sanguineus,      

A. cajennense and   

A. aureolatum 

Transovarian 

in ticks and 

rodent ticks 

Western 

hemisphere 

High 

Boutonneuse 

fever 

R. conorii R. sanguineus and 

R. pumilio 

Transovarian 

in ticks 

Southern 

Europe, 

Africa and 

southern Asia 

Mild to 

Moderate 

African tick-

bite fever 

R. africae A. hebraeum and  

A. variegatum 

Transovarian 

in ticks 

Africa and 

the West 

Indies 

None 

reported 

Maculatum 

disease 

R. parkeri A. maculatum and 

A. triste 

Ticks Western 

hemisphere 

None 

reported 

Flea-transmitted diseases    

Flea-borne 

spotted fever 

R. felis C. felis Transovarian 

in the cat flea 

Worldwide None 

reported 

Murine 

typhus 

R. typhi X. cheopis and      

C. felis 

Rat-flea for    

X. cheopis and 

Opossum flea 

for C. felis 

Worldwide Low 

Louse-transmitted diseases    

Epidemic 

typhus 

R. prowazekii P. humanus 

humanus 

Human louse Worldwide High 

Epidemic 

typhus 

R. prowazekii Fleas and lice of 

flying squirrels and 

G. volans volans 

Flying 

squirrel, flea 

and louse 

ectoparasite 

United States Low 

Mite-transmitted diseases    

Rickettsialpox R. akari L. sanguineus Transovarian 

in mites 

Worldwide None 

reported 

* High mortality is >15%; moderate mortality is 7-15%; mild-to-moderate mortality is 2-7% and 

low mortality is ≤1% (Walker and Ismail, 2008) 
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Figure 1.7 Classification of the genus Rickettsia and their arthropod vectors. Figure from 

Sunyakumthorn dissertation, 2011. 

 

Figure 1.8 Venn diagram represents the intersections for the four rickettsial groups. Molecular 

phylogenetic analysis of the four groups of Rickettsia is shown in the lower left.  Arthropod 

vectors of each genome and bacteria known to have plasmids are shown.  AG = ancestral group, 

TG = typhus group, TRG = transitional group, SFG = spotted fever group, Br and Bo = the two 

different strains of R. bellii, Ca = R. Canadensis, Pr = R. prowazekii, Ty = R. typhi, Ak = R. 

akari, Fe = R. felis, Ri = R. rickettsii, Co = R. conorii, and Si = R. sibirica.  Figure from Gillespie 

et al., 2008. 
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considerably in length; the length of R. prowazekii and R. rickettsii are 2-4 µm and 2 µm, 

respectively (Weiss, 1973).  

Rickettsiae are nonmotile, coccobacilli, pleomorphic and appear to multiply by binary 

fission (Sunyakumthorn et al., 2008; Milstone and Dumler, 2009).  Unlike other bacteria, 

rickettsiae are difficult to dye by Gram stain procedures; however, the electron micrographs of 

rickettsiae (Figure 1.9) reveal a typical gram-negative-like cell wall (Anacker et al., 1967; 

Anacker et al., 1985; Silverman, 1991; Walker and Ismail, 2008).  When properly stained by 

Giemsa, Castaneda, Macchiavello or Gimenez techniques, the rickettsiae are purple, light blue, 

red or bright red, respectively (Milstone and Dumler, 2009).  

 
 

Figure 1.9 The fine structure of R. prowazekii as revealed in the thin section of the chick yolk 

sac.  CL = capsule-like structure, CM = cytoplasmic membrane, CW = cell wall, IM = 

Intracytoplasmic membrane.  Figure from Anacker et al., 1967. 
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Rickettsia has a small genome with size ranging from 1.1-1.6 Mb (Ogata et al., 2000).  In 

order to survive, rickettsiae have evolved to exploit essential machineries from the cytoplasm of 

the host cells.  By doing this, the rickettsial genome has undergone a severe reduction in size in 

which many genes encoding proteins used in pathways, such as amino acid and nucleotide 

synthesis, and lipid and carbohydrate metabolism, have been lost (Blanc et al., 2007; Darby et 

al., 2007; Fuxelius et al., 2007); thus they can survive only in the host cells.  

Like other gram-negative bacteria, rickettsiae also contain lipopolysaccharide (LPS) in 

the cell wall.  The LPS in rickettsiae play a role in a group-common antigenicity; antibody to the 

LPS of R. rickettsii cross react with LPS from other spotted fever group rickettsiae, and a slight  

cross-reactivity of antibody in the LPS of rickettsiae from typhus group is seen (Chen and 

Sexton, 2008; Jones, 1993).  In addition to LPS, rickettsiae contain two immunogenic proteins, 

outer-membrane protein A (OmpA) and outer-membrane protein B (OmpB).  Although OmpA 

and OmpB elicit a strong response to human antibody in RMSF patients, OmpB is found in all 

groups of rickettsiae but OmpA is found only in spotted fever group rickettsiae (Parola, 2005; 

Walker and Ismail, 2008; Milstone and Dumler, 2009). 

1.3.3 Pathogenicity of tick-borne rickettsiae 

 The genus Rickettsia comprises of intracellular bacteria that are either pathogenic or non-

pathogenic to humans.  Although they are not considered to be pathogenic, many non-pathogenic 

rickettsiae demonstrate pathogenic effects in experimentally infected laboratory animals (Table 

1.3) (Paddock, 2009).  In the past decade, some rickettsiae that were previously characterized as 

non-pathogenic organisms have been reported to cause disease in humans (Table 1.4) (Paddock, 

2009).  Various factors contributing to the pathogenicity of rickettsiae have been described; 

however, many questions regarding rickettsial pathogenicity still need to be answered.   
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Table 1.3 Features of rickettsiae of undetermined pathogenicity in humans.  

Rickettsia 
species or strain 

Tick(s) infected 
with Rickettsia in 

nature 

Frequency with 
which tick(s) will 

bite humans 

Demonstrated 
pathogenicity of 

Rickettsia in 
animals 

Route of 
infection 

R. bellii 

Multiple genera, 
including 
Dermacentor and 
Amblyomma 

Frequent 
Eschars in rabbits 
and guinea pigs 

ID 

R. canadensis 

Multiple genera, 
including 
Haemaphysalis 
and Dermacentor 

Infrequent to 
frequent 

Fever in guinea 
pigs 

IP 

Strain 364D D. occidentalis Frequent 
Scrotal erythema 
in guinea pigs 

IP 

Strain 
Parumapertus 

D. parumapertus Infrequent 
Fever and scrotal 
erythema in guinea 
pigs 

IP 

Strain 
Tillamook 

I. pacificus Frequent Death in mice IP 

R. rhipicephali 

Multiple genera, 
including 
Dermacentor and 
Rhipicephalus 

Frequent 
Fever, scrotal 
swelling and death 
in meadow voles 

IP 

ID = intradermal; IP = intraperitoneal (Paddock, 2009) 

Table 1.4 List of pathogenic rickettsiae previously determined as non-pathogenic organisms to 

humans.  

Agent 
Year of discovery 

(initial designation) 

Year reported as a 
confirmed 

pathogen (interval 
from discovery) 

Initial diagnosis of index 
patient(s) 

R. parkeri 1937 (maculatum 
agent) 

2004 Rickettsialpox 

R. honei 1962 (TT-118) 1992 Queensland tick typhus 
R. slovaca 1968 (strain B, D) 1997 Lyme borreliosis 
R. felis  1990 (ELB agent 1994 Murine typhus 
R. massiliae 1992 (strains Mtu1, 

Mtu5) 
2006 Mediterranean spotted fever 

R. aeschlimannii 1995 (strain PoTiR8 2002 Mediterranean spotted fever 
R. raoultii 1999 (genotypes 

RpA4, DnS14, 
DnS28) 

2006 Tick-borne 
lymphadenopathy 

R. monacensis 2002(R. monacensis 2007 Mediterranean spotted fever 

(Paddock, 2009) 
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Pathogenic rickettsiae are transmitted to and cause disease in humans via the bite of their 

respective arthropod vectors; therefore both rickettsiae-human and rickettsia-arthropod 

interactions must be taken into consideration regarding pathogenicity of rickettsiae.  In this 

section, only factors and their potential functions that influence the pathogenicity of rickettsiae 

are mentioned.  Sequential steps in the pathogenesis of rickettsial infection will be discussed in 

section 1.4 (Interaction of rickettsiae with host cells).   

For tick-borne rickettsiae, bacteria are transmitted mainly through salivary gland 

secretion during feeding of an infected tick.  Thus, the bacteria must be able to localize into tick 

salivary glands in order to be transmitted to humans (Parola, 2005).  The rickettsiae that do not 

establish infection in tick salivary glands seem unlikely to be pathogenic.  For example, R. 

peacockii, originally found in D. andersoni ticks, produce infection in ovaries, midguts and 

malpighian tubules, but not in salivary glands (Niebylski, 1997); therefore limiting subsequent 

transmission to humans.  Rickettsial molecules involved in dissemination of rickettsiae to tick 

salivary glands might contribute to the pathogenicity of rickettsiae; however, these molecules are 

still unknown.  In Borrelia afzelii, a causative agent of the arthropod-borne Lyme disease in 

humans, the OspC protein plays a role in borrelial invasion of tick salivary glands and also 

infection of the mammalian hosts (Fingerle et al., 2007).  Thus it is possible that rickettsial 

molecules, which are involved in human infection, are also associated with rickettsial 

dissemination to tick salivary glands. 

In addition, the species of tick vector in which rickettsiae reside is also important to the 

pathogenicity of rickettsiae (Parola, 2005).  In this context, virulent rickettsiae might not be able 

to cause disease in humans if their arthropod vectors do not take blood meals from humans.  

Ticks serve as vectors and reservoirs for SFG rickettsiae, but studies often focus primarily on 
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mammalian hosts while the molecular basis for tick-rickettsiae interaction remains poorly 

understood.  Thus, many aspects regarding the tick-rickettsiae relationship need to be 

investigated. 

When transmitted to human hosts, rickettsiae use several factors in order to establish 

successful infection.  The candidate rickettsial virulence factors and their potential functions are 

listed in Table 1.5 (Walker and Ismail, 2008; Riley et al., 2010; Haglund et al., 2010).  The 

expression of these particular proteins in pathogenic rickettsiae likely contributes to 

pathogenicity of these organisms. 

Table 1.5 Candidate rickettsial virulence factors. 

Virulence factors Potential function 

Patatin B1 precursor Membranolytic phospholipase A host cell escape 

Haemolysin A Membranolytic traversal of host cell membrane 

Haemolysin C Membranolytic phagosomal escape 

Phospholipase D Membranolytic phagosomal escape 

Dinucleoside polyphosphate 

hydrolase 

Hydrolysis of toxic dinucleoside polyphosphates to 

ATP 

Cytochrome c oxidase Aerobic respiration under optimal aerobic 

conditions 

Superoxide dismutase Neutralizes oxidative stress of reactive oxygen 

species 

Lipopolysaccharide Endotoxin-mediated inflammation 

Surface cell antigens (Sca), except for 

sca4, which is an intracellular protein 

Autotransporter outer-membrane proteins, actin 

based motility (Sca2), cell adherence and invasion 

(Sca1) 

Outer-membrane protein A (OmpA) Spotted-fever-group rickettsial attachment to host 

cell 

Outer-membrane protein B (OmpB) Rickettsial attachment to host cell 

Type IV secretion system (T4SS) Transport of rickettsial proteins or DNA into host 

cytosol 

Actin-tail polymerization proteins 

(RickA) 

Formation of actin tail and mediation of 

intracellular and intracellular rickettsial spread 

(Walker and Ismail, 2008; Riley et al., 2010; Haglund et al., 2010) 
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In the genomic era, the knowledge of rickettsial genome sequences allows researchers to 

identify potential virulence associated proteins.  Comparative genomic analysis of non-

pathogenic R. peacockii and pathogenic R. rickettsii revealed genes that are deleted or mutated in 

R. peacockii.  These genes, which include those coding for an ankyrin repeat containing protein, 

DsbA, Protease II, a putative phosphoethanolamine transferase, RickA, Sca1 and OmpA, may be 

involved in the loss of virulence of R. peacockii, suggesting a role in the pathogenicity of 

rickettsiae (Felsheim et al., 2009).  For examples, in Legionella pneumophila and Coxiella 

burnetii, many different proteins containing ankyrin repeat domains were identified.  These 

proteins are, in fact, effector proteins delivered to eukaryotic cells by type IV secretion system 

(Pan et al., 2008).  In Shigella flexneri, DsbA is important for intracellular survival and virulence 

of the bacteria (Yu, 1998; Yu et al., 2000).  In addition, Protease II is responsible for the entry of 

Trypanosoma cruzi into host cells (Bastos et al., 2005) and phosphoethanolamine transferase is 

required for Neisseria meningitidis binding to endothelial cells (Cox et al., 2003; Takahashi et 

al., 2008).  In R. conorii, a surface protein RickA was identified as an activator of the Arp 2/3 

(actin-related protein 2/3) complex (Gouin et al., 2004).  This process is important in actin 

polymerization, a strategy rickettsiae use to move within the host cells and spread from cell-to-

cell.  In 2005, Simser et al. demonstrated that the rickA gene in non-pathogenic R. peacockii is 

disrupted by an insertion sequence (IS) element, ISRpe1.  This rickettsial IS element was also 

shown to disrupt the sca1 gene in R. peacockii (Simser et al., 2005).  An autotransporter protein, 

Sca1, has recently been demonstrated to enhance R. conorii adherence to mammalian cells (Riley 

et al., 2010).  

Genome comparison of R. peacockii and R. rickettsii has revealed the presence of the 

ompA gene in both species; however, sequence analysis of R. peacockii ompA gene demonstrated 
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three frameshift mutations resulting in an expression of truncated OmpA protein (Baldridge, 

2004; Felsheim et al., 2009).  The three premature stop codons of the ompA gene were also found 

in avirulent strain R. rickettsii Iowa.  The immunodominant, surface-exposed protein, OmpA, 

plays a critical role in the attachment of R. rickettsii to host cells (Li and Walker, 1998).   

 In addition to virulence factors, the physiologic requirements of particular rickettsiae 

may also contribute to the pathogenicity of rickettsiae (Paddock, 2009).  Studies of the growth of 

rickettsiae have illustrated that some pathogenic Rickettsia species including R. rickettsii and R. 

conorii can be cultured at the human body temperature of 37⁰ C, whereas some of the non-

pathogenic bacteria including R. bellii, R. helvetica and R. peacockii, grow poorly or not at all in 

mammalian cell culture (Schaechter et al., 1957; Oaks and Osterman, 1969; Beati et al., 1994; 

Policastro et al., 1997; Labruna, 2004; Kurtti et al., 2005).  Due to the strictly intracellular 

lifestyle of rickettsiae, genetic manipulation of this pathogen is a laborious task, thus hampering 

the identification of virulence factors necessitating further research in order to completely 

understand the pathogenicity of rickettsiae. 

1.4 Interaction of rickettsiae with host cells 

 As previously described, pathogenic tick-borne rickettsiae are transmitted to humans by 

the bite of an infected tick.  The transmission usually occurs several hours after tick attachment 

to the skin.  From the portal of entry in the skin, rickettsiae spread via the blood stream (Figure 

1.10) to body organs including skin, heart, liver, kidneys, lungs, pancreas, gastrointestinal tract 

and brain.  In each site, they attach, enter and proliferate in vascular endothelial cells (Walker, 

1996). 
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Figure 1.10 Transmission of rickettsiae to humans.  Rickettsiae are inoculated into human skin 

during the bite of infected tick.  Rickettsiae spread through the blood stream to body organs and 

eventually infect the endothelial cells.  Figure from www.immunopaedia.org. 

1.4.1 Rickettsial infection of mammalian host cells 

 Although the principal target cells of the genus Rickettsia are endothelial cells, they have 

been shown to invade several cell types in vitro such as mouse lymphoblasts (Cohn et al., 1959), 

sheep erythrocytes (Ramm and Winkler, 1973), chicken embryo cells, mouse fibroblast L-929 

cells (Wisseman et al., 1976), enucleated L-929 and chicken embryo cells (Stork and Wisseman, 

1976), macrophage-like-cell lines (Turco and Winkler, 1982), human endothelial cells (Walker et 

al., 1982), Vero cells (Teysseire et al., 1995), XTC-2 toad tadpole cells (Raoult et al., 2001), 

ISE6 tick cell line (Pornwiroon et al., 2006) and mosquito cell lines (Horta et al., 2006; 

Sakamoto and Azad, 2007).  The main steps of rickettsial infection including rickettsial entry, 

intracellular survival and host actin-based rickettsial cell-to-cell spread are described in the 

following sections. 
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1.4.1.1 Rickettsial entry 

Spotted fever group rickettsiae have been shown to actively induce their own uptake into 

mammalian host cells by a receptor-mediated invasion strategy.  By using this strategy, which is 

also called the zipper mechanism, rickettsiae express surface proteins able to interact with host-

cell surface receptors and induce host intracellular signals.  These signals lead to cytoskeleton 

rearrangements and membrane extension which result in bacterial uptake through a “zippering” 

mechanism (Figure 1.11) (Alonso and Portillo, 2004).   

 
Figure 1.11 Zipper mechanism mediated bacterial entry into eukaryotic cells.  Figure from Alonso 

and Portillo, 2004. 

Two well-known bacteria species have been found to use this zipper mechanism of entry; 

Yersinia pseudotuberculosis uses YadA and invasin while Listeria monocytogenes uses InlA and 

InlB to bind host transmembrane proteins and activate the signal cascades that facilitate their 

internalization into mammalian cells (Alonso and Garcia-del Portillo, 2004; Cossart and 

Sansonett,i 2004; Veiga and Cossart, 2005; Veiga and Cossart, 2007).  In 1995, transmission 

electron microscopy was used to observe R. conorii entry into Vero cells.  As shown in figure 

Membrane 
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1.12, R. conorii used a strategy that resemble the zipper mechanism to facilitate its entry into the 

host cells (Teysseire et al., 1995).   

    

Figure 1.12 Rickettsia conorii entry into Vero cell.  Figure from Teysseire et al., 1995. 

  1.4.1.1.a Rickettsial ligands 

  Since the zipper mechanism was proposed as the mechanism of rickettsial entry into host 

cells, much research has focused on identification and characterization of rickettsial surface 

proteins.  Four outer membrane-associated rickettsial proteins which include OmpA (Sca0), 

OmpB (Sca5), Sca1 and Sca2 have been reported to facilitate rickettsial adherence to and/or 

invasion of mammalian host cells.  These proteins are described as follows: 

  (1) Rickettsial OmpA (rOmpA): rOmpA is an immunodominant surface-exposed protein 

that is found in only spotted fever group rickettsiae.  The size of this protein is found to vary 

from species to species; R. rickettsia strain Sheila Smith expresses a 247 kDa OmpA while R. 

conorii strain Malish 7 expresses 224 kDa OmpA.  The critical role of rOmpA in rickettsial 
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adherence has been demonstrated in R. rickettsii using antibody inhibition assays (Li and 

Walker, 1998).  The results showed that monoclonal antibodies against R. rickettsii, specifically 

the Fab fragment of these antibodies, blocked rickettsial attachment to L-929 cells.  In addition, 

rOmpA extracted from R. rickettsii competitively inhibited the attachment of R. rickettsii to host 

cells (Li and Walker, 1998).  Recently, Hillman et al. (2012) have demonstrated the role of 

rOmpA in R. conorii invasion of human endothelial cells using Escherichia coli as an expression 

host for heterologous rOmpA production.  The E. coli expressing rOmpA at the outer membrane 

was then used to infect host cells and the ability of the bacteria to bind and invade the cells were 

assessed.  The results showed that binding of rOmpA to host cells facilitate the invasion of the 

bacteria. 

  (2) Rickettsial OmpB (rOmpB): rOmpB is a surface rickettsial protein that is associated 

with both antigenicity and pathogenicity of rickettsiae.  The protein is conserved among all 

species of Rickettsia and is expressed as a 168 kDa protein.  The pre-protein then undergoes 

post-translational protease modification to the mature 120 kDa domain which associates with the 

outer leaflet of rickettsial outer membrane (Hackstadt et al., 1992).  The role of rOmpB in 

bacterial adherence and invasion of host cells was investigated by expression of rOmpB on inert 

E. coli.  The expression of rOmpB allows bacterial adherence to and invasion of non-phagocytic 

cells (Uchiyama et al., 2006).  In 2005, rOmpB was identified as a ligand interacting with 

mammalian host cell receptor, Ku70 (Martinez et al., 2005).   

  (3) Sca1: Sca1 is a surface-exposed autotransporter protein that is found in nearly all 

rickettsiae.  The predicted size of Sca1 protein ranges from 594 to 1976 amino acids 

(Ngwamidiba et al., 2006).  Recently, Sca1 has been shown to be expressed on the surface of R. 

conorii with an approximate size of 120 kDa (Riley et al., 2010).  The role of R. conorii Sca1 has 
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been investigated by heterologous expression of the protein in E. coli cells.  The results have 

shown that E. coli expressing R. conorii Sca1 has the ability to attach to but not invade host cells 

(Riley et al., 2010).  The function of Sca1 in R. conorii adherence to host cells has been 

confirmed by protein blocking assay.  In this assay, pre-incubation of Sca1 protein fragment with 

R. conorii inhibited bacterial attachment to host cells (Riley et al., 2010). 

(4) Sca2: Rickettsial Sca2 is found in most of spotted fever group rickettsiae.  The size of 

the protein is approximately 200-220 kDa.  The protein has a conserved autotransporter domain, 

predicted to be exposed on the rickettsial surface, and is expressed during infection of 

mammalian cells (Ngwamidiba et al., 2005; Cardwell and Martinez, 2009).  The Sca2 protein has 

been shown to mediate rickettsial adherence to and invasion of host cells by heterologous 

expression in E. coli.  E. coli expressing Sca2 was shown to have ability to adhere and invade 

many non-phagocytic mammalian cell types including human endothelial cells which are the 

main targets of rickettsial infection.  Furthermore, the pre-incubation of Sca2 protein fragment 

with E. coli or R. conorii has been shown to inhibit the invasion of both bacterial species (Card 

well and Martinez, 2009).   

In addition to the four rickettsial surface proteins described above, rickettsial adhesins, 

Adr1 and Adr2, have been identified as putative interactors of cellular membrane proteins 

(Renesto et al., 2006).  These 30 kDa rickettsial proteins are conserved and ubiquitously found in 

the genome of rickettsiae.  BLAST analysis showed the homologies between these proteins and 

some of other bacterial adhesins including the adhesin/virulence factor Hek of E. coli, the 

putative invasin of Lawsonia intracellularis, and the possible outer membrane adhesin of 

Salmonella enteric subsp.  Moreover, Adr1 has been demonstrated to facilitate R. conorii entry 

by antibody blocking assay (Baraj et al., 2009). 
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1.4.1.1.b Host cell receptors and proteins involved in rickettsial invasion 

As mentioned above, the only mammalian host cell receptor identified to interact with 

rickettsial ligand (rOmpB) is Ku70.  Involvement of Ku70 in R. conorii invasion was 

demonstrated by fluorescence microscopic analysis in which localization of Ku70 to bacterial 

entry sites was observed.  Furthermore, the inhibition of endogenous Ku70 by siRNA impaired 

rickettsial internalization into host cells (Martinez et al., 2005).  Ku70 is a subunit of DNA-

dependent protein kinase that is found in the nucleus, cytoplasm, plasma membrane and lipid raft 

microdomains.  The expression of Ku70 in the plasma membrane is limited to specific cell types 

such as endothelial cells, monocytes and macrophages, which are the primary target cells of 

rickettsiae during infection.  Ku70 is also found to be expressed in the plasma membrane of cell 

lines such as HeLa and Vero cells (Muller et al., 2005).  Recently, studies using E. coli 

expressing R. conorii OmpA revealed α2β1 integrin as a mammalian ligand that interact with 

rOmpA.  The OmpA-α2β1 integrin interaction was illustrated as the OmpB-Ku70 independent 

pathway (Hillman et al., 2012). 

Besides a receptor for rickettsial ligand, a number of mammalian host cell proteins 

required for R. conorii invasion have been identified by various methods: Immunofluorescence 

microscopic analysis revealed the localization of the small GTP-binding protein, Cdc42, and the 

actin nucleating protein, Arp2/3 complex to the sites of rickettsial invasion.  Functional 

inhibition of Arp2/3 complex or Cdc42 by transfection of an Arp2/3 binding derivative of the 

WASP family proteins, Scar or a dominant-negative variant of Cdc42, respectively impaired 

rickettsial invasion (Martinez and Cossart, 2004).  Together, these findings indicate the 

involvement of Cdc42 and Arp2/3 complex in the R. conorii invasion process.  Further 

examination of signaling pathways modulating the activity of Arp2/3 complex and Cdc42 by 
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pharmacological inhibition demonstrated that R. conorii invasion is dependent on 

phosphatidylinositol (PI) 3-kinase, protein tyrosine kinase (PTK), Src-family kinase and actin 

polymerization.  In addition, immunofluorescence microscopy showed that c-Src and its 

downstream target, cortactin were recruited to rickettsial entry sites.  Moreover, tyrosine 

phosphorylation of focal adhesion kinase (FAK), a protein mediating cytoskeleton reorganization 

and invasion of other pathogen (Persson et al., 1997; Martinez et al., 2000) was detected during 

rickettsial invasion of the host cells.  Recently, a study of rOmpB-Ku70 interaction revealed 

additional host proteins that facilitate invasion of R. conorii into mammalian cells.  Depletion of 

the components of endocytic pathway, c-Cbl ubiquitin ligase, clathrin and caveolin-2 by siRNA 

diminished rOmpB-mediated rickettsial invasion of host cells (Chan et al., 2009).  By a 

biochemical inhibition approach, microtubule infrastructure has also been reported in association 

with the invasion of R. conorii into mammalian cells. 

1.4.1.1.c Model of rickettsial invasion of mammalian host cells 

After inoculation into the blood vessels by the bite of infected ticks, rickettsiae spread via 

the blood stream to infect endothelial cells.  The surface membrane proteins (e.g. OmpB, OmpA, 

Sca1 and/or Sca2 of rickettsiae) bind to ligands on mammalian host cells; OmpB and OmpA 

bind to Ku70 and α2β1 integrin, respectively and the receptors for Sca1 and Sca2 are unknown.  

The interaction of rickettsial protein(s) and host cell ligand(s) activate a cascade of signaling 

events.  Initially, c-Cbl ubiquitin ligase ubiquitinates Ku70.  After ubiquitination, the signaling 

molecules, including Cdc42, PTKs, PI 3-Kinase, Src-family tyrosine kinases, FAK, and 

cortactin, coordinately activates the actin nucleating complex, Arp2/3.  This results in the 

induction of actin polymerization and predicted localized recruitment of the components of 

endocytic pathway including clathrin and caveolin-2 at the bacterial entry site (Chan et al., 
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2010).  Ultimately, the reorganization of the actin cytoskeleton results in membrane extrusion 

leading to the bacterial uptake (Figure 1.13). 

 

Figure 1.13 Schematic diagram demonstrated R. conorii invasion of non-phagocytic mammalian 

cells.  The interaction of R. conorii protein surfaces and host cell receptors leads to the activation 

of signaling cascade resulting in actin polymerization at the bacterial entry foci.  The blue boxes 

show the pathways and proteins activated by OmpB-Ku70 interaction.  Dashed arrows and 

question marks represent putative protein interplay during bacterial invasion.  Figure from Chan 

et al., 2010. 

1.4.1.2 Intracellular survival of rickettsiae 

After entering into mammalian cells, rickettsiae avoid destruction within the endosomal 

pathway by escaping from phagosomal vacuoles into the host cytoplasm.  The molecular 

mechanism involved in phagosomal escape of rickettsiae still remains unknown; however, 

hemolysin and phospholipase enzymes have been hypothesized to facilitate this process 

(Silverman et al., 1992; Radulovic et al., 1999; Renesto et al., 2003). The involvement of 

phospholipase A2 in phagosomal escape has been proposed for R. rickettsii, R. conorii and R. 

prowazekii (Winkler and Miller, 1982; Walker et al., 2001).  In genomic analyses, the genes with 
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potential membranolytic activity including tlA, tlC, pat1 and pld, respectively encoding for 

hemolysin A, hemolysin C, patatin B1 precursor (endowed for phospholipase A2) and 

phospholipase D have been found in R. conorii, R. prowazekii and R. typhi genomes (Andersson 

et al., 1998; Ogata et al., 2001; McLeod et al., 2004).  Nevertheless, only tlC and pld were shown 

to be transcribed during the period of active phagosomal escape (Whitworth et al., 2005).  In 

addition, heterologous expression of tlC and plD genes in Samonella, which replicates in the 

endosome, facilitated bacterial escape from the phagosomal vacuole to the host cell cytosol 

(Whitworth et al., 2005).  In R. prowazekii, the plD mutant, generated by site-directed 

mutagenesis, exhibited attenuated virulence in infected guinea pig (Driskell et al., 2009).  These 

evidences suggest that rickettsiae use hemolysin C and phospholipase D in order to escape from 

the phagosome.   

1.4.1.3 Actin-based motility 

After invasion of the host and entry into the cytosol, spotted fever group R. conorii, R. 

rickettsii, R. montanensis, R. parkeri, R australis, and R. monacensis have been shown to induce 

actin polymerization at their surface to promote motility and cell-to-cell spread (Figure 1.14) 

 (Teysseire and Raoult, 1992; Heinzen et al., 1993; Baldridge et al., 2005).   

                     

Figure 1.14 Schematic diagram of actin-based motility system and cell-to-cell spread of spotted 

fever group rickettsiae.  The activation of Arp2/3 complex by RickA initiate actin polymerization 

on rickettsial surface resulting in the movement in the cytosol and spread to adjacent cell of 

rickettsiae.  Figure is modified from Walker and Ismail 2008. 



33 

 

Genomic analysis of R. conorii has identified the rickA gene which encodes a protein that 

can activate the activities of actin nucleating and Y-branching of the Arp2/3 complex; however 

this gene was not found in R. prowazekii, which does not have actin tails (Gouin et al., 2004; 

Jeng et al., 2004).  The RickA protein contains a proline-rich domain, WASP (Wiskott-Aldrich 

syndrome protein) homology 2 (WH2) domain, which binds to actin monomers, and central and 

acidic regions which bind to the Arp2/3 complex (Figure 1.15) (Gouin et al., 2004; Jeng et al., 

2004).   

            

Figure 1.15 Schematic representation of RickA protein.  Rick A contain a proline-rich domain 

(PP) as well as WASP homology 2 (WH2), central (C) and acidic (A) domains.  Figure from 

Goley and Welch, 2006. 

  

The activation of the Arp2/3 complex leads to actin polymerization and induction of the 

reorganization of the Y-branched network into unbranched filaments (Jeng et al., 2004).  The 

propulsive force generated by actin tail assembly push the rickettsiae to the surface of the host 

cell and enables the host cell membrane to protrude into the adjacent cell.  The protrusion is 

taken up, along with the rickettsiae within it and results in the formation of the two membrane 

vacuoles.  Disruption of the double membrane vacuoles then allows the rickettsiae to enter into 

the cytoplasm of the adjoining cell (Goldberg, 2001).  However, there is conflicting evidence 

which includes the unbranched organization of Rickettsia actin tails (Heinzen et al., 1999; Van 

Kirk et. al., 2000), the failure to observe the Arp2/3 complex in the actin filaments (Gouin et al., 

1999; Harlander et al., 2003; Heinzen, 2003; Serio et al., 2010),  and the ability of rickettsiae to 

move in Arp2/3 complex knock down cells (Harlander et al., 2003; Heinzen, 2003; Serio et al., 

2010) that indicate an Arp2/3 complex independent manner of Rickettsia actin-based motility. 



34 

 

Recently, a transposon mutagenesis study has shown that a R. rickettsii Sca2 mutant is 

unable to generate an actin tail or spread directly from cell to cell (Kleba et al., 2010).  The 

sequence analysis of Sca2 revealed domains similar to those found in eukaryotic nucleating 

proteins including putative actin-binding WH2 domains and formin homology 1-like domain 

(Haglund et al., 2010; Kleba et al., 2010); formin is another class of actin-nucleating proteins 

that assemble unbranched actin filaments (Evangelista et al., 2002; Pruyne et al., 2002).  

Moreover, functional study of R. parkeri Sca2 has shown the localization of the protein to actin-

polymerizing surfaces of the bacteria as well as the ability to polymerize actin monomers and to 

elongate actin filaments in vitro (Haglund et al., 2010).  These finding suggest that R. parkeri use 

their surface protein, Sca2 to mimic the activity of host actin nucleating protein, formin, in order 

to facilitate actin-based motility.  Whether rickettsiae polymerize their actin tails by using host 

actin nucleators or mimic the activity of the nucleating proteins or both needs to be further 

investigated.   

1.4.1.4 Host defense against rickettsiae 

 Since rickettsiae are transmitted through the dermis, resident dendritic cells (DCs) are 

thought to play a role in both innate and adaptive immunity against rickettsiae.  Jordan et al., 

(2009) has proposed the role of DCs in initiation of innate immunity during in vivo infection with 

R. conorii.  As shown in Figure 1.16, DCs recognize rickettsiae through Toll-like receptor (TLR) 

4 and TLR4 ligation promotes the activation and proliferation of natural killer (NK) cells.  

Subsequently, interferon-γ (IFN-γ) secreted by NK cells and tumor necrosis factor-α (TNF-α) 

secreted by endothelium and macrophages cooperatively activate nitric oxide synthase 2 (NOS2) 

leading to the production of rickettsiacidal nitric oxide (Jordan et al., 2009).   
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Figure 1.16 Schematic representation of proposed mechanisms by which dendritic cells (DCs) 

mediate activation of natural killer (NK) cells in vivo.  Toll-like receptor (TLR) 4-stimulated 

DCs produce IL-12 that promotes NK cells activation and proliferation and subsequent IFN-γ 

production.  Together with TNF-α (secreted by endothelium and macrophage), IFN-γ activate 

nitric oxide synthase 2 (NOS2) that induce intracellular killing of rickettsiae by nitric oxide 

production.  Figure from Jordan et al., 2009. 

Recently, a study of cell activation in response to R. akari has shown the involvement of TLR2 

in addition to TLR4 in recognition of rickettsiae (Quevedo-Diaz et al., 2010). 

Currently, the concept of rickettsial immunity is not completely defined; however, a model of 

protective immunity in rickettsial infections has been proposed based on in vitro and in vivo 

studies in an animal model of mild disseminated spotted-fever rickettsial disease caused by 

sublethal rickettsial infection (Walker and Ismail, 2008).  As shown in Figure 1.17, once 

encountering rickettsiae in peripheral tissues (for example skin and lung), immature DCs 

undergo maturation, in which the major histocompatibility complex (MHC) and the co-

stimulatory molecules CD40, CD80 and CD86 are upregulated.  They then migrate to secondary  



36 

 

 

Figure 1.17 Hypothetical model of host response to rickettsial infection.  Figure from Walker 

and Ismail, 2008. 
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lymphoid tissues such as draining lymph nodes.  Additionally, IFN-γ and TNF-α secreted by NK 

cells or infected endothelial cells could enhance DCs maturation which is indicated by 

interleukin-12 (IL-12) secretion.  This IL-12, in turn, activates NK cells to produce IFN-γ; IL-12 

mediated activation of NK cells is important for initial clearance of rickettsiae.   

At lymphoid tissues, rickettsiae-infected DCs present rickettsial antigen to naïve CD4+ and CD8+ 

T lymphocytes and provide co-stimulatory signals that activate T cells.  After activation, CD4+ 

and CD8+ T cells undergo proliferation and differentiation into effector cells that produce IFN-γ 

and TNF-α.  In addition to activation by DCs, CD4+ T helper 1 (TH1) cells could be induced, in 

part, by IL-12.  TH1 cells provide help for B-cell proliferation and differentiation into antibody-

secreting cells (plasma cells) thus induces rickettsiae specific antibody production which is 

important for host defense against re-infection.  Interestingly, rickettsiae-infected DCs has been 

shown to activate CD8+ T cells in vitro in the absence of CD4+ TH1 cells (Jordan et al., 2007); 

however, the experiments in which T cells were depleted or adoptively transferred into mice 

demonstrated that CD4+ TH1 cells facilitate protective immunity against rickettsiae through the 

activation of CD8+ cytotoxic T lymphocytes (CTL) (Feng et al., 1997). 

Clearance of rickettsiae in blood and sites of infection are mediated by differentiated B 

and T lymphocytes that migrate back from lymphoid tissues.  Lymphocytes migration is 

promoted by chemokines production e.g. CXC-chemokine ligand 9 (CXCL9) and CXCL10 

produced by infected endothelial cells.  Additionally, IFN-γ and TNF-α, secreted from CD4+ TH1 

cells and CTL, enhance the production of intracellular rickettsiacidal molecules (such as nitric 

oxide) by infected target cells (principally endothelial cell, DCs and macrophages) and therefore 

promote killing capacity of these cells.  Furthermore, killing mechanism of CD8+ T cells by 

perforin-mediated pathway is required for elimination of rickettsiae-infected target cells. 
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1.4.2 Rickettsial infection of tick cells 

While ticks serve as vectors and reservoirs for many Rickettsia species, little research has 

directly explored tick-rickettsiae interaction.  By differential display-display PCR, nine putative 

tick proteins including clathrin-coated vesicle ATPase, peroxisomal farnesylated protein, 

Ena/vasodilator-stimulated phosphoprotein-like protein, α-catenin, tubulin α-chain, copper-

transporting ATPase, salivary gland protein SGS-3 precursor, glycine-rich protein, and Dreg-2 

protein were indentified in response to R. montanensis infection of D. variabilis ticks; however, 

the role of these proteins in rickettsial invasion are currently undetermined (Macaluso et al., 

2003). 

In 2010, Thepparit et al. demonstrated the involvement of histone H2B in R. felis 

internalization of a tick cell line.  Histone H2B is one of the core histones that forms the 

nucleosome complex with histone H1.  Although the primary location of histone is the cell 

nucleus, there is evidence that shows the localization of histone H2B in other cellular 

compartment including the cytoplasm and cell surface (Zlatanova et al., 1990; Khan et al., 1998; 

Herren et al., 2006; Das et al., 2007; Theparrit et al., 2010).  Co-immunoprecipitation of histone 

H2B and R. felis protein lysate showed the interaction of histone H2B and R. felis OmpB protein.  

RNAi-mediated histone H2B-depletion or enzymatic treatment of histones reduced R. felis 

invasion of a tick cell line.  Collectively, these results suggest that histone H2B mediate invasion 

of R. felis into tick cells; however, the molecular mechanism(s) whereby histone H2B mediates 

the internalization of rickettsiae into tick cells is still unknown.   

As mentioned earlier, SFG Rickettsia is maintained in nature via transovarial 

transmission in ticks and transstadial transmission during tick infestation (Sonenshine et al., 

2005).  Although ticks serve as both vectors and reservoirs for SFG Rickettsia, many questions 
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regarding SFG Rickettsia-tick cell interaction remain unresolved.  Because Rickettsia is 

maintained vertically by tick vectors, it is necessary to study the interactions between ticks and 

Rickettsia to completely understand the epidemiology of tick-borne rickettsial diseases.   

The overall goal of this research is to study the interaction between Rickettsia and tick 

vectors, specifically the molecular mechanisms underlying the entry of Rickettsia into tick cells.  

Previous studies in mammalian and Drosophila cells have revealed the signaling molecules 

involved in the uptake of Rickettsia into host cells (Martinez and Cossart, 2004; Martinez et al., 

2005; Chan et al., 2009; Hillman et al., 2012; Reed et al., 2012). As SFG Rickettsia can move 

between vertebrate and invertebrate hosts, the hypothesis for this study is that conserved 

mechanisms are utilized for host cell invasion.  Toward the tested hypothesis, the objectives of 

this study are to identify (chapter 2) and further characterize (chapter 3 and chapter 4) the tick 

molecules central to Rickettsia invasion of host cells.  Ultimately, pathway activated during 

Rickettsia internalization of tick cells is proposed (chapter 5). 
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CHAPTER 2 

SIGNAL TRANSDUCTION EVENTS INVOLVED IN RICKETTSIAL INVASION  

OF TICK CELLS 

2.1 Introduction 

Tick-borne Rickettsia species are obligate intracellular bacteria with varying 

pathogenicity in humans.  A major component of pathogenesis is transmissibility by the tick 

host.  One such tick, Dermacentor variabilis, is a known vector for the etiologic agent of Rocky 

Mountain spotted fever, Rickettsia rickettsii, (Sonenshine et al., 2005) and non-pathogenic R. 

montanensis (Feng et al., 1980; Anderson et al., 1986; Pretzman et al., 1990; Ammerman et al., 

2004).  Interestingly, the majority of Rickettsia detected in infected D. variabilis throughout the 

United States are non-pathogenic Rickettsia such as R. montanensis (Azad and Beard, 1998).  

Likewise, the results from field studies demonstrated a lower infection rate of R. rickettsii 

compared to non-pathogenic Rickettsia in wild-caught D. andersoni, the Rocky Mountain wood 

ticks (Burgdorfer et al., 1981; Burgdorfer, 1988).  Because ticks can acquire Rickettsia during 

feeding and non-pathogenic Rickettsia are prevalent in infected ticks in nature, the current 

research was designed to study the interaction between non-pathogenic R. montanensis and tick 

cells.  

As described above, Rickettsia are obligate intracellular bacteria, therefore invasion of 

host cells is a critical step for subsequent bacterial survival.  Invasion of host cells by Rickettsia 

has been studied and signaling molecules have been identified in mammalian and Drosophila 

cell lines.  After binding to mammalian host receptors, R. conorii induces signaling cascades in 

which Ku70 is initially ubiquitinated by c-Cbl ubiquitin ligase.  Subsequently, signaling 

molecules including Cdc42, protein tyrosine kinases (PTKs), phosphatidylinositol-3’-kinase (PI 

3-Kinase), src-family tyrosine kinases, focal adhesion kinase (FAK), and cortactin, coordinately 

activate the actin nucleating complex, Arp2/3.  This leads to actin polymerization and 



52 

 

recruitment of the components of endocytic pathway including clathrin and caveolin-2 at the 

bacterial entry site.  Hereafter, the rearrangement of the actin cytoskeleton results in membrane 

extrusion leading to bacterial internalization into host cells (Martinez and Cossart, 2004; 

Martinez et al., 2005; Chan et al., 2009; Chan et al., 2010).  Furthermore, studies of R. parkeri 

invasion have demonstrated differences between host factors that are important for rickettsial 

uptake in Drosophila versus mammalian cells.  In Drosophila cells, the GTPases Rac1 and Rac2, 

the WAVE nucleation-promoting factor complex and the Arp2/3 complex were identified to be 

important.  The requirement of the Arp2/3 complex was also found in mammalian cells, while 

the acquirement of WAVE2 and Rho GTPases depended on the specific cell type (Reed et al., 

2012). 

Although ticks serve as both vectors and reservoirs for the spotted fever group (SFG) 

Rickettsia, little is known about rickettsial interactions with tick vectors at the cellular level.  

Delineating the molecular mechanisms of rickettsial infection in tick vectors is critical to 

understanding the ecology of tick-borne rickettsial diseases.  Due to the ability of SFG Rickettsia 

to move between vertebrate and invertebrate hosts, the hypothesis for this study is that conserved 

mechanisms are utilized for cell invasion in both hosts.  By using biochemical inhibition assays, 

the tick signaling molecules involved in R. montanensis invasion were identified.  Ultimately, the 

pathway activated during the uptake of R. montanensis into tick cells is proposed. 

2.2 Materials and methods 

2.2.1 Materials 

 All inhibitors used in this study were purchased from EMD chemical (Billerica, MA).  

The inhibitors are listed in Table 2.1.  DMSO was obtained from Sigma-Aldrich (St. Louis, MO).  

 



53 

 

Table 2.1 Inhibitors used in inhibition assays.  

Inhibitor name Tick target molecule(s) 

Zygosporium mansonii Cytochalasin D Actin polymerization 

CK-666 Arp2/3 Complex 

187-1 N-WASP 

Clostridium difficile Toxin B Rho GTPases (Rho, Cdc42, Rac) 

Rac1 inhibitor Rac1 

Genistein General PTKs 

PP2 Src family PTKs 

Focal Adhesion Kinase Inhibitor I FAK 

PI 3-K Inhibitor XI, HWT PI 3-kinase 

 

2.2.2 Tick cell culture 

 D. variabilis (DVE1) cells (kindly provided by Dr. Timothy Kurtti, University of 

Minnesota) were cultured in L15C medium (Sigma-Aldrich, St. Louis, MO) supplemented with 

10% fetal bovine serum (Hyclone, Waltham, MA), 5% tryptose phosphate broth (Difco, Sparks, 

MD), 0.1% lipoprotein-cholesterol concentrate (LPC, MP Biomedicals, Santa Ana, CA), 0.6% 

HEPES solution (1 M, Sigma-Aldrich), and 1.2% sodium bicarbonate solution (5%, Sigma-

Aldrich).  The cells were maintained in a humidified incubator at 32 ⁰C.  Vero cells were grown 

in DMEM high glucose (Invitrogen, Carlsbad, CA) containing 5% fetal bovine serum and 

maintained in a humidified incubator with 5% CO2 at 34 ⁰C.   For both cell lines, conditioned 

medium was replaced with new medium once a week.  DVE1 cells were subcultured (1:3) once a 

month and Vero cells were passaged (1:6 or 1:12) every 1-2 weeks.    
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2.2.3 Rickettsia culture and purification 

As described by Sunyakumthorn et al. (2012), R. montanensis was grown in Vero cells 

and maintained in a humidified 5% CO2 incubator at 34 ⁰C.  Half of the conditioned medium was 

replaced with new medium once a week. Infected cells were subcultured (1:12) every 2 weeks by 

inoculating Rickettsia-infected cells to uninfected Vero cells.  For each experiment, Rickettsia 

were purified as described by Weiss et al. (1973) with minor modification.  Briefly, Rickettsia 

infected cells were detached using a sterile cell scraper (Sarstedt, Newton NC) and lysed by 

vortexing with sterile 3 mm borosilicate glass beads (Sigma-Aldrich) for 5 min.  Cell lysate was 

then transferred aseptically to 15 ml centrifuge tubes and centrifuged at 4ºC, 16000 x g for 3 min 

to pellet cellular debris.  The supernatant was transferred to a 10 ml syringe and filtered through 

a 2 μm syringe filter.  For all bioassays, the number of Rickettsia was determined by counting 

Rickettsia stained with a LIVE/DEAD BacLight Bacterial Viability Kit (Molecular Probes,  

Carlsbad, CA) in a Petroff–Hausser bacterial counting chamber (Hausser Scientific, Horsham, 

PA) and examined with a Leica microscope (Buffalo Grove, IL).  

2.2.4 Rickettsial internalization assays  

 DVE1 cells (1 x 105) were seeded onto 96-well plates and incubated at 32 ⁰C for 48 h.  

The cells were treated with three different concentrations of inhibitor targeting tick molecules of 

interest or inhibitor vehicle (complete L15C medium or medium containing 0.1% DMSO) for 2 

h.  Rickettsia montanensis was then inoculated onto the treated cells at a MOI of 10 and the plate 

was centrifuged at 700 x g for 2 min to facilitate the binding of Rickettsia to host cells.  After 1 

h, Rickettsia were removed and the cells were added with 150 µl PBS.  The samples were 

centrifuged at 275 x g for 4 min to collect only infected host cells.  After removal of supernatant, 

the cell pellet was washed with 1 ml PBS and centrifuged at 275 x g for 4 min. The samples were 
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stored at -20 ⁰C until used for genomic DNA (gDNA) isolation.  According to the 

manufacturer’s instructions, DNeasy Blood & Tissue Kit (QIAGEN, Germantown, MD) was 

used to extract gDNA from the samples.  At the final step, gDNA was eluted in 35 µl 

DNase/RNase free water.  Numbers of Rickettsia and tick cells were then quantified by probe-

based quantitative PCR (qPCR).  The experiments were performed in quadruplicate for each 

concentration of the inhibitor used and the results were the combination of two independent 

experiments.  

To determine the effect of DMSO on rickettsial internalization of tick cells, different 

concentrations of DMSO (0.1% versus 1%) were tested prior to performing biochemical 

inhibition assays.  The experiment was done one time with triplicate wells.    

To examine whether rickettsial invasion of tick cells occur through an active process, the 

internalization assays were carried out, in triplicate, using either live or formalin-fixed Rickettsia.  

The result is the combination of the two independent experiments. 

2.2.5 Construction of a standard reference plasmid for qPCR 

A standard reference plasmid containing portions of R. montanensis ompB (RmOmpB) 

and D. variabilis calreticulin (DvCRT) genes was generated and used to create a standard curve 

in qPCR assays as described by Sunyakumthorn (dissertation, 2011).  Briefly, fragments of 

DvCRT (132 base-pair, bp) and RmOmpB (106 bp) were amplified using CRTDv321FxbaI (5’-

AAAAAATCTAGAAGGAGAAAAGCAAGGGACTG-3’)/CRTDv452R (5’CAATGTTCTGC 

TCGTGCTTG-3’) and OmpBRm2832F (5’GCGGTGGTGTTCCTAAT AC-3’)/ 

OmpBRm2937RxbaI (5’-AAAAAATCTAGACCTAAGTTGTTATAGTCTGTAGTG-3’) primer 

pairs, respectively (Sunyakumthorn; dissertation, 2011).  The amplicons were then digested with 

XbaI (New England BioLabs, Ipswich, MA) and ligated together.  The ligation product was 
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amplified using OmpBRm2832F (5’-GCGGTGGTGTTCCT AATAC-3’) and CRTDv452R (5’-

CAATGTTCTGCTCGTGCTTG-3’) primers, cloned into pCR4-TOPO vector (Invitrogen) and 

transformed into TOP10 E. coli (Invitrogen). The plasmid was isolated using FastPlasmid Mini 

Kit (Eppendorf, Hauppauge, NY) according to manufacturer’s instruction and submitted to 

Genelab at Louisiana State University, School of Veterinary Medicine for sequencing.  A 

schematic plasmid map is shown in Figure 2.1.   

 

Figure 2.1 A schematic map of a standard reference plasmid (pCR4-DvCRT-RmOmpB) used in 

qPCR assays.  Fragments of DvCRT (132 bp) and RmOmpB (106 bp) were amplified, digested 

with XbaI and ligated together. The ligation product was amplified before cloning into pCR4-

TOPO vector. The schematic plasmid map was created using BVTech Plasmid software. 
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Before using as a standard curve in qPCR assays, the plasmid was linearlized by XbaI 

and diluted to create a ten-fold serial dilution of a standard reference plasmid. 

2.2.6 Quantification of Rickettsia and tick cells by qPCR 

To quantify a number of Rickettsia and tick cells in samples, probe based qPCR was used 

as described by (Thepparit et al., 2011).  Briefly, qPCR reactions were prepared in a volume of 

35 µl composed of 2X LightCycler® 480 Probe Master (Roche, Indianapolis, IN), 0.3 µM each 

DvCRT_TYE665 (TYE665/5’-TGGAGAAGGGCTCGAACTTGGC-3’/IAbRQSp) and 

RmOmpB_HEX (HEX/5’-CGGGGCAAAGATGCTAGCGCTTCACAGTTACCCCG-3’/IABk 

FQ) probes (Sunyakumthorn, dissertation 2011), 0.1 µM each CRTDv321F, CRTDv452R, 

OmpBRm2832F and OmpBRm2937R primers, DNase/RNase-free water and 5 µl of gDNA 

template (samples), water (negative control) or standard reference plasmids. Aliquots of each 

qPCR reactions were transferred from 96-well plate to 384-well plate (10 µl each, Roche) and 

run on LightCycler 480® system II (Roche) using the following conditions; a pre-incubation step 

of 95 ⁰C for 10 min, 45 amplification cycles of 95 ⁰C for 10 sec, 60 ⁰C for 30 sec, and 72 ⁰C for 

1 sec.  The average ratio of RmOmpB and DvCRT genes from the control group was used as a 

reference to calculate the percent relative infection of each sample as shown in the formula 

below. 

 

 % Relative infection = (Number of RmOmpBsample x 100)/Average of Number of RmOmpBcontrol 

                                          Number of DvCRTsample                                                     Number of DvCRTcontrol 

 

2.2.7 Statistical analysis 

 Data were analyzed using GraphPad Prism 5.  A two-way Anaysis of Variance 

(ANOVA) with Bonferroni post test was conducted to examine the effect of rickettsial viability 

and concentration of inhibitor vehicle on Rickettsia invasion of tick cells.  Student’s paired t-test 
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was used to determine the influence of each inhibitor, compared to inhibitor vehicle, on 

rickettsial internalization.  P-values of ≤ 0.05 were considered significantly different. 

2.3 Results 

2.3.1 Invasion of tick cells occurs through a process dependent on live Rickettsia 

 The objective of this study is to use biochemical inhibition assays to elucidate the 

molecular mechanisms underlying rickettsial internalization of tick cells.  The concentration of 

inhibitors used in each experiment was based on literature, solubility, and viability effect of the 

inhibitors on the tick cells.  Most inhibitors were reconstituted in DMSO; therefore the 

concentration of DMSO was optimized to minimize the influence of the chemical on the assays.  

Tick cells were seeded, treated with 0.1% or 1% DMSO, infected with Rickettsia, and extracted 

for gDNA.  Quantitative PCR was performed to enumerate number of intracellular Rickettsia and 

tick cells.  The results showed that neither 0.1% nor 1% DMSO affect percent relative 

internalization of tick cells by R. montanensis (Figure 2.2).   

To examine whether invasion of tick cells occurs through a process that is initiated by 

Rickettsia, internalization assays were performed using either live or formalin-fixed R. 

montanensis.  The results of qPCR showed that live R. montanensis invaded tick cells 

significantly more efficient (P < 0.0001) than non-viable Rickettsia suggesting that rickettsial 

entry into tick cells occur through an active Rickettsia specific process (Figure 2.2).    

2.3.2 Host actin is required for R. montanensis invasion of tick cells 

 Many species of invasive bacteria such as Listeria, Shigella, Rickettsia, Burkholderia, 

and Mycobacterium have ability to manipulate the host actin cytoskeleton in order to invade the 

cells (Dramsi and Cossart, 1998; Gouin et al., 2004; Sousa et al., 2005; Hamaguchi et al., 2008).  

This study was carried out to determine whether actin polymerization is important for  
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Figure 2.2 Invasion of tick cells occurs through a process dependent on live Rickettsia.  Live (L-

Rm) and formalin-fixed (FF-Rm) R. montanensis were used to infect DVE1 cells pre-incubated 

in complete L15C medium or medium supplemented with 0.1% or 1%DMSO.  After 1 h, 

Rickettsia was removed and the cells were washed twice with PBS.  The samples were collected 

by low-speed centrifugation and gDNA was then extracted.  Quantitative PCR assay performed 

to quantify copies of RmOmpB and DvCRT genes.  Percent relative invasion of each FF-Rm was 

compared to L-Rm in each treatment.  The experiment was performed in triplicate for each 

group.  For cells pre-incubated in medium only and medium containing 1% DMSO, the result 

shown is a representative of two independent experiments.  Invasion assay of cell pre-incubated 

in medium supplemented with 0.1% DMSO was performed once.  P ≤ 0.05 was considered 

significantly different.  Three asterisks represent P < 0.0001. 

 

R. montanensis internalization of tick cells as previously described in Drosophila and 

mammalian cells (Martinez and Cossart, 2004; Reed et al., 2012).   Actin polymerization 

inhibitor, cytochalasin D, was used to treat DVE1 cells for 2 h prior to infection with R. 

montanensis for 1 h.  The results showed that disruption of actin polymerization in tick cells 

significantly decreased percent relative rickettsial invasion to 40% (P < 0.0001), 51% (P < 

0.0001) and 70% (P = 0.0003) at 100, 10 and 1 µM of the inhibitor used, respectively (Figure 

2.3).  This indicates that R. montanensis uptake occur through a process that depends on tick 

actin. 

L-R
m

FF-R
m

0

20

40

60

80

100

120

140

160

%
 R

e
la

ti
v

e
 i

n
v

a
s

io
n

***
***

***

L15C medium

L15C + 0.1% DMSO

L15C + 1% DMSO



60 

 

 

Figure 2.3 Actin polymerization is essential for R. montanensis invasion of tick cells.  Tick cells 

were treated with actin depolymerizing agent, cytochalasin-D (Cyt) at 100, 10 and 1 µM 2 h 

prior to infecting with R. montanensis at MOI of 10 for 1 h.  After removal of bacteria, the cells 

were washed twice with PBS and harvested by low-speed centrifugation.  Genomic DNA was 

then extracted from the samples and the numbers of invading Rickettsia and host cells were 

quantified by qPCR.  Percent relative invasion for each concentration of the inhibitor used was 

compared to untreated control.  All treatments were performed in quadruplicate for each 

experiment.  Results were the combination of the two independent experiments.  P ≤ 0.05 was 

considered significantly different.  Two and three asterisks represent P = 0.0003 and P < 0.0001, 

respectively. 

 

2.3.3 Arp2/3 complex is important for R. montanensis invasion of DVE1 cells   

 The actin related protein 2/3 (Arp2/3) complex is a seven subunit protein capable of 

nucleating actin filament (Mullins and Pollard, 1999; Goley and Welch, 2006).  Previous studies 

in Drosophila and mammalian cells revealed the importance of the Arp2/3 complex in rickettsial 

internalization (Martinez and Cossart, 2004; Reed et al., 2012).  The aim of this study was to 

examine whether the molecule is essential for the entry of R. montanensis into tick cells.  The 

cells were treated with CK-666, an Arp2/3 complex inhibitor, at 500, 50, and 5 µM for 2h, 

before infecting with R. montanensis for 1 h.  As shown in Figure 2.4, inhibition of Arp2/3 

complex significantly reduced (P < 0.0001) percent relative invasion to 8% at the highest 
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concentration of the inhibitor used. This result suggests an important role of Arp2/3 complex on 

rickettsial internalization of tick cells.  

 

Figure 2.4 Arp2/3 complex is important for rickettsial internalization of DVE1 cells.  DVE1 tick 

cells were treated with CK-666 (CK), an inhibitor of the Arp2/3 complex, at 500, 50, and 5 µM.  

After 2 h, R. montanensis (MOI of 10) was added and allowed to infect the cells for 1 h.  

Rickettsia was then removed and the cells were washed twice with PBS.  Samples were collected 

by low-speed centrifugation and extracted for gDNA.  Numbers of intracellular Rickettsia and 

host cells were quantified by probe-based qPCR and percent relative invasion of each treatment 

was compared to untreated control.  All treatments were performed in quadruplicate for each 

experiment.  Results were the combination of the two independent experiments.  P ≤ 0.05 was 

considered significantly different.  Three asterisks represent P < 0.0001. 

 

2.3.4 Inhibition of N-WASP has a slight effect on R. montanensis invasion of DVE1 cells. 

 Neural (N) Wiskott-Aldrich syndrome protein (WASP) is a cytoskeleton regulator that 

promotes actin nucleation by binding to and activation of the Arp 2/3 complex (Takenawa and 

Suetsugu, 2007; Bershadsky, 2004).  Although N-WASP is not required for R. parkeri invasion 

of Drosophila and mammalian cells (Reed et al., 2012), in some pathogens, such as Yersinia 

pseudotuberculosis (McGee et al., 2001) and Listeria monocytogenes (Hamon et al., 2006), this 

actin nucleation-promoting factor (NPF) facilitates internalization into host cells.  Therefore, the 

role of N-WASP in R. montanensis entry into tick cells was investigated in this study.  N-WASP 

inhibitor, 187-1, was used to treat tick cells at three different concentrations (100, 10 and 1 µM) 
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for 2 h.  The cells were then infected with R. montanensis for 1 h.  Although inhibition of N-

WASP at the highest concentration of the inhibitor used had a slight effect on R. montanensis 

entry (decreased to 80%), the result was significantly different (P = 0.0183) compared to control.  

This suggests that N-WASP is involved in R. montanensis invasion of tick cells (Figure 2.5).  

 

Figure 2.5 Inhibition of N-WASP affects the ability of R. montanensis to invade tick cells.  

Rickettsia montanensis (MOI of 10) was used to infect DVE1 cells pretreated for 2 h with 100, 

10, and 1 µM N-WASP inhibitor, 187-1.  After 1 h, Rickettsia was removed and the cells were 

washed twice with PBS.  The samples were collected by low-speed centrifugation and extracted 

for gDNA.  Quantitative PCR was performed to quantify number of invading Rickettsia and host 

cells and percent relative rickettsial invasion of each treatment group was compared to untreated 

control group.  All treatments were performed in quadruplicate for each experiment.  Results 

were the combination of the two independent experiments.  P ≤ 0.05 was considered 

significantly different.  An asterisk represents P = 0.0183. 

 

2.3.5 Rho GTPase, Rac1, mediates R. montanensis uptake into tick cells 

 Of the 22 Rho family GTPases, Cdc42 and Rac are the upstream signaling molecules that 

activate WASP and WASP-family verprolin-homologous protein (WAVE) family proteins (Hall, 

1998; Sit and Manser, 2011); WASP and WAVE contain five members which are WASP, N-

WASP, WAVE1, WAVE2, and WAVE3 (Takenawa and Miki, 2001; Takenawa and Suetsugu, 

2007).  Cdc42 has been shown to trigger N-WASP and Rac activates WAVE.  Interactions of 

these molecules lead to Arp2/3 complex-mediated actin polymerization (Ridley, 2006).  In R. 
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conorii, Cdc42 facilitates bacterial entry into mammalian cells (Martinez and Cossart, 2004); 

however, in R. parkeri, Rho GTPases Rac1 and Cdc42 were proposed to cooperatively stimulate 

actin polymerization leading to rickettsial internalization (Reed et al., 2012).  Therefore, a broad-

spectrum Rho family GTPase inhibitor, Clostridium difficile toxin B, which inhibits Rho, Rac, 

and Cdc42, was used to investigate the role of Rho GTPases in R. montanensis entry into tick 

cells.  The results showed that inhibition of Rho GTPases by C. difficile toxin B did not affect R. 

montanensis invasion of DVE1 cells (Figure 2.6).   

 

Figure 2.6 Disruption of Rho GTPases by Toxin B did not affect the process of R. montanensis 

uptake into DVE1 cells.  Tick cells were treated for 2 h with C. difficile toxin B (ToxB), a 

general inhibitor for Rho GTPases, at 1, 0.1, and 0.01 nM.  The cells were then infected with R. 

montanensis at MOI of 10 for 1 h.  After removal of bacteria, the cells were washed twice with 

PBS and collected by low-speed centrifugation.  Genomic DNA was extracted from the samples 

and qPCR was performed to enumerate number of invading bacteria and host cells.  Percent 

relative rickettsial invasion of each treatment group was compare to control group.  All 

treatments were performed in quadruplicate for each experiment.  Results were the combination 

of the two independent experiments.   

Next, Rac1, one of the regulators of actin cytoskeleton rearrangement, was specifically 

targeted using Rac1 inhibitor.  As shown in Figure 2.7, inhibition of Rac1 significantly decreased 

percent relative R. montanensis invasion of tick cells compared to untreated control; decreased to 
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62% (P < 0.0001) and 90% (P = 0.0242) at 1 and 0.1 mM of the inhibitor used, respectively.  

Thus it can be concluded that Rac1 facilitated rickettsial entry into tick cells.   

 

Figure 2.7 Rho GTPase, Rac1, facilitates R. montanensis entry into tick cells.  DVE1 cells were 

treated with Rac1 inhibitor (Rac) at 1, 0.1, and 0.01 mM for 2 h prior to infecting with R. 

montanensis (MOI of 10).  After 1 h, Rickettsia was removed and the cells were washed twice 

with PBS.  The cells were harvested by low-speed centrifugation and gDNA was extracted from.  

Copies of RmOmpB and DvCRT genes were then quantified by qPCR.  Percent relative 

rickettsial invasion of each treatment was compared to untreated control.  All treatments were 

performed in quadruplicate for each experiment.  Results were the combination of the two 

independent experiments.  P ≤ 0.05 was considered significantly different.  Three asterisks and 

one asterisk represent P < 0.0001 and P = 0.0242, respectively. 

2.3.6 Protein tyrosine kinases play a role in R. montanensis invasion of DVE1 cells 

 Studies in many pathogens such as Listeria (Shen et al., 2000; Mostowy and Cossart, 

2009) and Rickettsia (Martinez and Cossart, 2004; Reed et al., 2012) have illustrated that 

phosphorylation of proteins on tyrosine residues mediates internalization of bacteria into host 

cells.  In this study, three different concentrations (500, 50, and 5 µM) of genistein, a specific 

inhibitor of tyrosine-specific protein kinases, was used to treat DVE1 cells prior to infection with 

R. montanensis.  The results (Figure 2.8) showed that inhibition of general tyrosine kinases 

significantly reduced the ability of rickettsiae to invade tick cells compared to untreated control; 

reduced to 31% (P < 0.0001) and 77% (P = 0.0229) at 500 and 50 µM of the inhibitor used, 
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respectively.  This indicated a role for protein tyrosine kinases (PTKs) in R. montanensis 

internalization of tick cells. 

 

Figure 2.8 Protein tyrosine kinases play a role in R. montanensis invasion of DVE1 cells.  Three 

different concentrations (500, 50 and, 5 µM) of genistein (Gen), the inhibitor of general protein 

tyrosine kinases were used to treat tick cells for 2 h.  Rickettsia montanensis was then inoculated 

and allowed to infect the cells for 1 h.  After removal of Rickettsia, the cells were washed twice 

with PBS and collected by low-speed centrifugation.  Genomic DNA was then extracted from 

the cells and qPCR was performed to quantify number of invading Rickettsia and host cells.  

Percent relative rickettsial invasion of each treatment group was compared to untreated control.  

All treatments were performed in quadruplicate for each experiment.  Results were the 

combination of two independent experiments.  P ≤ 0.05 was considered significantly different.  

Three asterisks and one asterisk represented P < 0.0001 and P = 0.0229, respectively. 

Furthermore, studies of R. conorii invasion of mammalian cells revealed the involvement 

of the Src family PTKs and the focal adhesion kinase (FAK) in bacterial uptake (Martinez and 

Cossart, 2004).  The Src and FAK family kinases were shown to regulate actin cytoskeleton 

reorganization (Mitra et al., 2005; Seong et al., 2011); therefore, the importance of these 

molecules in R. montanensis invasion of tick cells was examined in this study.  As shown in 

Figure 2.9, inhibition of Src family PTKs by PP2 significantly decreased (P < 0.0001) percent 

relative rickettsial invasion to 52% at 250 µM of the inhibitor used.   
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Figure 2.9 Src family PTKs facilitate R. montanensis entry into DVE1 cells.  Rickettsia 

montanensis (MOI of 10) was used to infect tick cells pretreated for 2h with PP2 (250, 25, and 

2.5 µM), an inhibitor of Src family PTK.  After 1 h, Rickettsia was removed and the cells were 

washed twice with PBS.  The samples were harvested by low-speed centrifugation and extracted 

for gDNA.  Quantitative PCR was then performed to quantify number of intracellular Rickettsia 

and host cells.  Percent relative rickettsial invasion of each treatment group was compared to 

untreated control.  All treatments were performed in quadruplicate for each experiment.  Results 

were the combination of the two independent experiments.  P ≤ 0.05 was considered 

significantly different.  Three asterisks represent P < 0.0001. 

Likewise, disruption of FAK significantly reduced the ability of R. montanensis to invade 

tick cells to 23% (P < 0.0001) and 72% (P < 0.0001) at 500 and 50 µM of the inhibitor utilized, 

respectively, compared to untreated control (Figure 2.10).  The results suggest that Src family 

PTKs and FAK are important for R. montanensis internalization into DVE1 tick cells. 

2.3.7 Phosphatidylinositol-3’-kinase mediates R. montanensis invasion of DVE1 cells 

 The last molecule investigated in this study was the phosphatidylinositide 3-kinase (PI 3-

kinase); the molecules have been shown to be involved in actin cytoskeleton remodeling (Kotula, 

2012).  In addition, the study of R. conorii invasion of mammalian cells has demonstrated the 

association of the proteins with rickettsial uptake (Martinez and Cossart, 2004).   
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Figure 2.10 Focal adhesion kinase mediates R. montanensis internalization of tick cells.  DVE1 

cells were treated with 500, 50, and 5 µM focal adhesion kinase inhibitor (FAKi) for 2 h. R. 

montanensis was then used to infect the cells at MOI of 10.  After 1 h, Rickettsia were removed 

and the cells were washed twice with PBS.  Samples were collected by low-speed centrifugation 

and gDNA was extracted.  Quantitative PCR was performed to quantify numbers of invading 

bacteria and host cells.  Percent relative rickettsial invasion of each treatment group was 

compared to the untreated control.  All treatments were performed in quadruplicate for each 

experiment.  Results were the combination of the two independent experiments.  P ≤ 0.05 was 

considered significantly different.  Three asterisks represent P < 0.0001. 

Therefore, this study aimed to determine the role of the PI 3-kinase in R. montanensis invasion of 

tick cells.  After treating with three different concentrations (500, 50 and 5 µM) of PI 3-kinase 

inhibitor XI, R. montanensis was added to infect the cells for 1h.  The results showed a 

significant decrease (P < 0.0001) in R. montanensis internalization of DVE1 cells compared to 

untreated control; percent relative invasion was reduced to 40% at the highest concentration of 

the inhibitor used (Figure 2.11).  The results indicate that PI 3-kinase facilitates R. montanensis 

uptake into tick cells.   

2.4 Discussion 

 For SFG Rickettsia, ticks serve as both vector and reservoir; however, most molecular 

mechanisms underlying tick vector competence for Rickettsia such as rickettsial invasion of tick 

cells are undetermined.  As obligate intracellular bacteria, invasion of host cells is very important  
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Figure 2.11 Phosphatidylinositol-3’-kinase plays a role in R. montanensis entry into tick cells.  

DVE1 cells were treated with PI 3-kinase inhibitor, HWT, at 500, 50, and 5 µM for 2 h.  

Rickettsia montanensis was then used to infect the cells at MOI of 10 for 1 h.  After removal of 

Rickettsia, the cells were washed twice with PBS and samples were collected by low-speed 

centrifugation.  Genomic DNA was then extracted from the samples and qPCR assay was 

performed to quantify numbers of invading Rickettsia and host cells.  Percent relative rickettsial 

invasion of each treatment group was compared to the untreated control.  All treatments were 

performed in quadruplicate for each experiment.  Results were the combination of the two 

independent experiments.  P ≤ 0.05 was considered significantly different.  Three asterisks 

represent P < 0.0001. PI3Ki = PI 3-kinase 

for subsequent survival of Rickettsia.   This study aimed to identify tick signaling molecules 

involved in rickettsial uptake into host cells using biochemical inhibition assays.  Because of its 

capability to move between vertebrate and invertebrate hosts, the hypothesis is that conserved 

mechanisms are utilized for rickettsial invasion.  Therefore, the molecules that have been 

identified to be involved in the internalization of Rickettsia into vertebrate cells were targeted in 

this study.  The results showed that inhibition of tick actin polymerization resulted in a decrease 

in R. montanensis invasion of host cells in dose dependent manner (Figure 2.3).  Manipulation of 

host actin was found to be important for not only the uptake of Rickettsia but also the entry of 

several other pathogens such as Listeria, Shigella, Burkholderia, and Mycobacterium (Dramsi 

and Cossart, 1998; Gouin et al., 2004; Sousa et al., 2005; Hamaguchi et al., 2008).  Once bound 
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to host cell receptors, invasive bacteria induce signaling cascades that lead to actin 

polymerization, membrane rearrangement, and bacterial internalization.   

The next protein examined was Arp2/3 complex, a major actin nucleator (Mullins and 

Pollard, 1999; Goley and Welch, 2006).  Similar to the studies in R. conorii and R. parkeri 

invasion of mammalian cells (Martinez and Cossart, 2004; Reed et al., 2012), the results of the 

current study demonstrate that Arp2/3 complex is important for R. montanensis entry into tick 

cells (Figure 2.4). 

Although not required by R. parkeri in order to invade mammalian and Drosophila cells, 

N-WASP, a cytoskeleton regulator that promotes actin nucleation by binding to and activation of 

the Arp 2/3 complex (Takenawa and Suetsugu, 2007; Bershadsky, 2004), facilitates the uptake of 

Yersinia pseudotuberculosis (McGee et al., 2001) and Listeria monocytogenes (Hamon et al., 

2006).  Therefore, the role of N-WASP in R. montanensis internalization of tick cells was 

investigated in this study.  The results indicate that disruption of the protein had a slight effect on 

rickettsial entry into tick hosts (Figure 2.5); however, the effect was shown to be significantly 

different from untreated cells.  The modest effect of the inhibitor on rickettsial invasion might be 

because the inhibitor is ineffective at inhibiting tick N-WASP.  Likewise, the poor solubility of 

the inhibitor in the medium might result in a trivial effect on inhibiting the molecule.  However, 

the highest concentration of the N-WASP inhibitor used in this study was the maximum 

solubility of the inhibitor in medium supplemented with 1% DMSO.  On the other hand, there is 

a possibility that the alternate pathway (Rac dependent) might be cooperatively utilized to 

regulate actin cytoskeleton remodeling during rickettsial invasion of tick cells.  Thus C. difficile 

toxin B was used first to inhibit general Rho GTPases including Rho, Rac and Cdc42; however, 

general disruption of these molecules using toxin B did not affect rickettsial internalization into 
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tick cells (Figure 2.6).  Besides what was described above regarding an ineffective inhibition by 

the inhibitor, it is possible that the inhibitor that targeted molecules non-specifically might not be 

as powerful as a specific inhibitor.  Therefore, a Rac1 inhibitor was used to specifically study the 

function of Rac1 on R. montanensis invasion of tick cells.  The results demonstrate that Rac1 

plays a role in rickettsial entry into tick cells (Figure 2.7), as is the case of the uptake of R. 

parkeri into mammalian cells (Reed et al., 2012).   

 In tick cells, the function of PTKs in Rickettsia internalization is not known.  Similar to 

that found in R. conorii and R. parkeri invasion of mammalian cells (Martinez and Cossart, 

2004; Reed et al., 2012), the current study identified that PTKs were important for R. 

montanensis entry into tick cells (Figure 2.8).  Next, to determine whether the non-receptor 

PTKs, Src family PTKs and FAK were essential for the uptake of R. montanensis into tick cells 

as is the case of R. conorii internalization into mammalian cells (Martinez and Cossart, 2004), 

specific inhibitors were used.  The results illustrated that both Src family PTKs and FAK played 

a role in rickettsial invasion of DVE1 cells (Figure 2.9 and 2.10).   

The last molecule that was investigated in this study was PI 3-kinase, which is important 

in actin cytoskeleton reorganization (Kotula, 2012) and is required for R. conorii uptake into 

mammalian cells (Martinez and Cossart, 2004).  Similar to Martinez and Cossart (2004), PI 3-

kinase was involved in R. montanensis entry into tick cells (Figure 2.11).   

 In summary, tick signaling molecules associated with R. montanensis invasion were 

identified, for the first time, in this study.  A pathway of invasion initiated by the binding of R. 

montanensis to unidentified receptor(s) on the tick cells was postulated and shown in Figure 

2.12.  As discussed above, using inhibitors to disrupt functions of targeted proteins has some 

limitations; therefore utilizing other powerful techniques, such as RNA interference (RNAi) to  
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Figure 2.12 The proposed pathway activated during rickettsial invasion of tick cells.  After 

binding of R. montanensis to unidentified receptor (s) on tick cells, multiple tick molecules 

(colored in orange) including phosphatidylinositol-3’-kinase (PI 3-kinase), protein tyrosine 

kinases (PTKs), Src family PTKs, focal adhesion kinase (FAK), Rho GTPase Rac1, Neural 

Wiskott-Aldrich syndrome protein (N-WASP), and actin-related protein 2/3 (Arp2/3) complex, 

are activated.  The activation of these molecules leads to actin polymerization resulting in 

membrane rearrangements and rickettsial invasion into tick cells.  The molecules and pathways 

with question marks were not examined in this study.  Figure was modified from Chan et al., 

2010. 

specifically silence the expression of genes of interest, will confirm the role of these molecules in 

R. montanensis invasion.  RNAi also has disadvantage such as the potential off-target effects 

which compromise the specificity of RNAi (Boutros and Ahringer, 2008).   However, the lack of 

a complete D. variabilis genome sequence slows down the functional studies of tick molecules 

using RNAi.  Therefore the next studies (see chapter 3 and 4) were carried out to functionally 

characterize and provide molecular details of tick genes involved in SFG Rickettsia 

internalization of tick cells.   

 Compared to the studies in mammalian and Drosophila cells (Martinez and Cossart, 

2004; Reed et al., 2012), Arp2/3 complex and actin are the central molecules that activate during 
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the entry of Rickettsia into all three types of cells including tick.  The upstream signaling 

proteins cooperating to regulate Arp2/3 complex are similar but not identical for these cells.  

Although different species of Rickettsia, molecules targeted, and techniques used in this and 

previous studies make comparison of invasion of mammalian, Drosophila, and tick cells by 

Rickettsia difficult, it can be concluded from what described above that conserved mechanisms 

with a degree of variation are utilized in Rickettsia invasion of vertebrate and invertebrate cells.  

2.5 Reference list 

Ammerman, N. C., K. I. Swanson, J. M. Anderson, T. R. Schwartz, E. C. Seaberg, G. 

E.Glass, and D. E. Norris. 2004. Spotted-fever group Rickettsia in Dermacentor variabilis, 

Maryland. Emerg Infect Dis. 10:1478-1481. 

Azad, A. and C. B. Beard. 1998. Rickettsial pathogens and their arthropod vectors. Emerg. 

Infect. Dis. 4:179-86. 

Boutros, M. and J. Ahringer. 2008. The art and design of genetic screens: RNA interference. Nat 

Rev Genet. 9(7):554-66. 

Burgdorfer, W. 1988. Ecological and epidemiological considerations of Rocky Mountain spotted 

fever and scrub typhus, In D. H. Walker (ed.), Biology of rickettsial diseases, (1 ed., pp. 33-50) 

Boca Raton, FL: CRC, Inc. 

Burgdorfer, W., S. F. Hayes, and A. J. Mavros. 1981. Non-pathogenic rickettsiae in 

Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii, In W. 

Burgdorfer and R. L. Anacker (eds.), Rickettsiae and rickettsial diseases (pp.585-594). New 

York: New York Academic Press, Inc. 

Bershadsky, A. 2004. Magic touch: how does cell-cell adhesion trigger actin assembly? Trends 

Cell Biol. 14:589-93. 

Anderson, J. F., L. A. Magnarelli, R. N. Philip, and W. Burgdorfer. 1986. Rickettsia rickettsii 

and Rickettsia montana from Ixodid ticks in Connecticut. Am. J. Trop. Med. Hyg. 35:187-191. 

Chan, Y. G., M. M. Cardwell, T. M. Hermanas, T. Uchiyama, and J. J. Martinez. 2009. 

Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an 

actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell Microbiol. 11:629-644. 

Chan, Y. G., S. P. Riley, and J, J. Martinez. 2010. Adherence to and invasion of host cells by 

spotted fever group Rickettsia species. Front Microbiol. 1:1-10. 

Dramsi, S. and P. Cossart. 1998. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. 

Cell Dev. Biol. 14:137-166. 



73 

 

Feng, W. C., E. S. Murray, W. Burgdorfer, J. M. Spielman, G. Rosenberg, K. Dang, C. Smith, C. 

Spickert, and J. L. Waner. 1980. Spotted fever group rickettsiae in Dermacentor variabilis from 

Cape Cod, Massachusetts. Am. J. Trop. Med. Hyg. 29:691-4. 

Goley, E. D. and M. D. Welch. 2006. The ARP2/3 complex: an actin nucleator comes of age. 

Nat Rev Mol Cell Biol. 7:713-26. 

Gouin, E., C. Egile, P. Dehoux, V. Villiers, J. Adams, F. Gertler, R. Li, and P. Cossart. 2004. 

The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427:457-461. 

Hamaguchi, M., D. Hamada, K. N. Suzuki, I. Sakata, and I. Yanagihara. 2008. Molecular basis 

of actin reorganization promoted by binding of enterohaemorrhagic Escherichia coli EspB to 

alpha-catenin. FEBS J. 275:6260-6267. 

Hamon, M, H. Bierne, and P. Cossart. 2006. Listeria monocytogenes: a multifaceted model. Nat 

Rev Microbiol. 4:423-34. 

Kotula, L. 2012. Abi1, a critical molecule coordinating actin cytoskeleton reorganization with 

PI-3 kinase and growth signaling. FEBS Lett. 14;586(17):2790-4. 

Macaluso, K. R., D. E. Sonenshine, S. M. Ceraul, and A. F. Azad. 2002. Rickettsial infection in 

Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second 

Rickettsia. J. Med. Entomol. 39:809-813. 

Martinez, J. J. and P. Cossart. 2004. Early signaling events involved in the entry of Rickettsia 

conorii into mammalian cells. J. Cell Sci. 117:5097-5106. 

Martinez, J. J., S. Seveau, E. Veiga, S. Matsuyama, and P. Cossart. 2005. Ku70, a component of 

DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123:1013-

1023. 

McGee, K., M. Zettl, M. Way, and M. Fällman. A role for N-WASP in invasin-promoted 

internalisation. FEBS Lett. 30;509:59-65.  

Mitra, S. K., and D. A. Hanson, D. D. Schlaepfer. 2005. Focal adhesion kinase: in command and 

control of cell motility. Nat Rev Mol Cell Biol. 61:56-68. 

Mostowy, S. and P. Cossart. 2009. Cytoskeleton rearrangements during Listeria infection: 

clathrin and septins as new players in the game. Cell Motil Cytoskeleton. 66:816-823. 

Mullins, R. D. and T. D. Pollard. 1999. Structure and function of the Arp2/3 complex. Curr Opin 

Struct Biol. 9: 244-9. 

Pretzman, C., N. Daugherty, K. Poetter, D. Ralph. 1990. The distribution and dynamics of 

Rickettsia in the tick population of Ohio. Ann. NY. Acad. Sci. 590:227-336. 



74 

 

Reed, S. C., A. W. Serio, W. E. Welch. 2012. Rickettsia parkeri invasion of diverse host cells 

involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway. Cell 

Microbiol. 14:529-545. 

Ridley, A. J. 2006. Rho GTPases and actin dynamics in membrane protrusions and vesicle 

trafficking. Trends Cell Biol. 16:522-9.  

Seong, J., L. Shaoying, and W. Yingxiao. 2011. Live Cell Imaging of Src/FAK Signaling by 

FRET. Cell Mol Bioeng. 2:138–147. 

Shen, Y., M. Naujokas, M. Park, and K. Ireton. 2000. InIB-dependent internalization of Listeria 

is mediated by the Met receptor tyrosine kinase. Cell. 27;103:501-510. 

Sonenshine, D. E. 2005. The biology of tick vectors of human disease. In J. L. Goodman, D. T. 

Dennis, and D. E. Sonenshine (Eds.), Tick-Borne Diseases of Humans (1 ed., pp. 12-36). 

Washington D. C.: ASM press. 

Sousa, S., D. Cabanes, C. Archambaud, F. Colland, E. Lemichez, M. Popoff, S. Boisson-Dupuis, 

E. Gouin, M. Lecuit, P. Legrain, and P. Cossart. 2005. ARHGAP10 is necessary for alpha-

catenin recruitment at adherens junctions and for Listeria invasion. Nat. Cell Biol. 7:954-960. 

Sunyakumthorn, P. 2011. The tick response to rickettsial dissemination during typical and 

atypical rickettsial infection. Unpublished doctoral dissertation. Louisiana State University, 

School of Veterinary Medicine, Baton Rouge, LA. 

Sunyakumthorn, P., N. Petchampai, M. T. Kearney, D. E. Sonenshine, and K. R. Macaluso. 

2012. Molecular characterization and tissue-specific gene expression of Dermacentor variabilis 

a-catenin in response to rickettsial infection. Insect Mol Biol. 21:197-204. 

Takenawa, T. and H. Miki. 2001. WASP and WAVE family proteins: key molecules for rapid 

rearrangement of cortical actin filaments and cell movement. J Cell Sci. 114:1801-1809. 

Takenawa, T. and S. Suetsugu. 2007. The WASP-WAVE protein network: connecting the 

membrane to the cytoskeleton. Nat Rev Mol Cell Biol. 8:37-48. 

Thepparit, C., P. Sunyakumthorn, M. L. Guillotte, V. L. Popov, L. D. Foil, and K. R. Macaluso. 

2011. Isolation of a Rickettsial Pathogen from a Non-Hematophagous Arthropod. PLoS ONE 

6(1): e16396. 

Weiss, E. 1973. Growth and physiology of rickettsiae. Bacteriol. Rev. 37:259-283. 

 

 

 

 

 

 

 



75 

 

CHAPTER 3 

MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF THE TICK ARP2/3 

COMPLEX DURING RICKETTSIAL INFECTION 

 

3.1 Introduction 

Diseases transmitted by ticks, including Rocky Mountain spotted fever (RMSF), are a 

significant concern throughout the United States.  RMSF is a potentially fatal disease caused by 

Rickettsia rickettsii, an obligate intracellular bacterium which is transmitted to humans through 

the bite of infected ticks (Sonenshine et al. 2005).  Dermacentor variabilis is a primary vector for 

pathogenic R. rickettsii (Sonenshine et al. 2005).  This species of tick is also known to carry non-

pathogenic R. montanensis (Feng et al., 1980; Anderson et al., 1986; Pretzman et al., 1990; 

Ammerman et al., 2004).  To date, interactions between spotted fever group (SFG) Rickettsia and 

its host have been extensively studied in mammalian cells (Martinez and Cossart, 2004; Martinez 

et al., 2005; Chan et al., 2009; Hillman et al., 2012; Reed et al., 2012).  Previous studies (see 

chapter 2) from this body of work have revealed the tick molecules involved in R. montanensis 

invasion of host cells.  These molecules, including phosphatidylinositol-3’-kinase (PI 3-kinases), 

protein tyrosine kinases (PTKs), Src family PTKs, FAK, Rac1, and N-WASP, cooperatively 

activate the Arp2/3 complex leading to actin polymerization that drives rickettsial internalization 

into tick cells.   

The goal of this study was to functionally characterize and provide the molecular detail of 

the tick Arp2/3 (Actin-related 2/3) complex. Arp2/3 complex is a multi-subunit protein complex 

that is composed of Arp2, Arp3, ARPC1, ARPC2, ARPC3, ARPC4 and ARPC5 (Higgs and 

Pollard, 2001; Pollard and Beltzner, 2002).  The complex nucleates a new actin filament from the 

site of an existing filament.  Arp2 and Arp3 are actin-related proteins that fold and bind ATP like 

actin does.  These two subunits were suggested to form a dimer that could bind the pointed end 
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and nucleate the filaments that grow in the barb end direction.  The binding of ATP to Arp2 and 

Arp3 and ATP hydrolysis are required for Arp2/3 complex-mediated actin cytoskeleton 

remodeling (Dayel et al., 2001; Le Clainche et al., 2001; Le Clainche, 2003; Dayel et al., 2004; 

Martin et al., 2006).   

Several strategies have been used to describe the interaction among subunits of the 

Arp2/3 complex.  In Acanthamoeba, the interactions between Arp2/3 subunits are as follows: 

Arp2 and ARPC1, Arp2 and ARPC4, Arp3 and ARPC2, Arp3 and either ARPC3 or ARPC4, and 

ARPC4 and ARPC5 (Mullins et al., 1997).  In addition, a crystal structure of bovine Arp2/3 

complex revealed the interactions between ARPC2 and ARPC4 in which the dimer was 

predicted to form at a structural backbone of the complex.  ARPC4 was suggested to interact 

with Arp2, ARPC1 and ARPC5, whereas ARPC2 interacted only with Arp3 (Robinson et al., 

2001).  Furthermore, ARPC1 was described as being in contact with Arp3 in an adjacent 

complex and have the potential to bind an actin subunit in either the mother or daughter filament.  

ARPC3 interacted with Arp3, whereas ARPC5 interacted with ARPC1, ARPC4 and Arp2 

(Robinson et al., 2001). 

Reed et al. (2012) revealed a function for individual Arp2/3 complex subunits from 

Drosophila cells in response to R. parkeri infection using RNA interference (RNAi).  Depletion 

of Arp2/3 complex subunits (Arp2, Arp3, ARPC1, ARPC2, ARPC4 and ARPC5) resulted in a 

decrease in R. parkeri internalization. 

In chapter 2, it was shown that the Arp2/3 complex is essential for the uptake of R. 

montanensis into tick cells.  To gain insight into the molecular mechanisms of Rickettsia 

infection in nature, the present study was carried out at the tissue level to test the same 

hypothesis that the complex is important for rickettsial invasion of D. variabilis.  Genes for all 
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seven subunits of Arp2/3 complex from D. variabilis were isolated and described for the first 

time.  Transcriptional profiles of the Arp2/3 complex subunits in unexposed and R. montanensis 

exposed tick tissues (midgut, ovary, and salivary glands) were investigated.  Ultimately, 

biochemical inhibition assays were conducted to examine the function of tick Arp2/3 complex in 

rickettsial internalization at the tissue level.  The functional study of tick Arp2/3 complex at the 

tissue level provides an insight into the molecular mechanisms of Rickettsia infection in nature.  

3.2 Materials and methods 

3.2.1 Tick infection  

 D. variabilis colonies were maintained on guinea pigs and rats at Louisiana State 

University, School of Veterinary Medicine as described by Macaluso et al. (2001).  To infect 

ticks with R. rickettsii, a needle inoculation technique was used as described by Sunyakumthorn 

(dissertation 2011) with minor modification.  Briefly, four unfed female ticks were washed with 

1% bleach (5 min), 70% ethanol (2 min), and 1% benzalkonium chloride (5 min).  Between each 

wash, the ticks were rinsed once with sterile water.  After the final wash, they were rinsed three 

times and air-dried.  Rickettsia rickettsii infected Vero cells were then thawed and centrifuged at 

16000 x g for 10 min.  The cell pellet was reconstituted in 500 µl sterile phosphate buffered 

saline (PBS, pH7.4) and an equal aliquot was used to inject ticks at the area between Coxa I and 

basis capituli.  After 1 h, the tick’s mouthparts and legs were excised. The ticks were then cut 

along the perimeter of the alloscutum and the dorsal cuticle was removed.  All tissues were then 

collected and added to 600 µl buffer RLT (QIAGEN, Germantown, MD) for RNA and 

subsequently full-length cDNA isolation.  The tissues were lysed by passing through a 27G 

needle several times.  The lysates were kept at -80 ºC until used for RNA extraction and 
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subsequent gene isolation using the SMARTer RACE cDNA Amplification Kit (Clontech, 

Mountain View, CA). 

3.2.2 Tick dissection for full-length cDNA isolation and Arp2/3 complex inhibition assays 

Unfed or partially fed female ticks were washed as mentioned above.  Tick tissues, 

including midgut, ovary, and salivary glands, were dissected out of the ticks and washed in PBS. 

For RNA extraction and subsequent full-length cDNA isolation, TRIzol reagent 

(Invitrogen, Carlsbad, CA) was added and the tissues were passed through 27G needles or 

homogenized by grinding with plastic pestles for several minutes.  The lysates were kept at -80 

ºC until used.   

For invasion assays, each tissue was transferred into a 1.7 ml centrifuge tube containing 

L15C medium (Sigma, St. Louis, MO) supplemented with 10% fetal bovine serum (Hyclone, 

Waltham, MA), 5% tryptose phosphate broth (Difco, Sparks, MD), 0.1% lipoprotein-cholesterol 

concentrate (LPC, MP Biomedicals, Santa Ana, CA), 0.6% HEPES solution (1 M, Sigma, St. 

Louis, MO), and 1.2% sodium bicarbonate solution (5%, Sigma).  The samples were kept on ice 

and all experiments were carried out on the same day. 

3.2.3 Primer design for full-length cDNA isolation  

 To obtain the primers for the isolation of full-length cDNA from D. variabilis (Dv) 

Arp2/3 complex subunits (Arp2, Arp3, ARPC2, ARPC3, and ARPC5), conserved regions of the 

genes from various organisms, such as Ixodes scapularis, Drosophila melanogaster, D. yakuba, 

Pediculus humanus corporis, Aedes aegypti, Anopheles gambiae and Amblyomma maculatum 

(Transcriptome Shotgun Assembly, TSA), were used as templates to design primers for short 

DNA fragment amplifications.  PCRs were then carried out in the presence of D. variabilis 

cDNA.  The amplicons were cloned into pCR4-TOPO vector (Invitrogen) and transformed into 
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TOP10 E. coli (Invitrogen). The plasmid was isolated using FastPlasmid Mini Kit (Eppendorf, 

Hauppauge, NY) according to manufacturer’s instructions and submitted to Genelab at Louisiana 

State University, School of Veterinary Medicine for sequencing.  Analysis of DNA sequence 

was performed using BioEdit software.  Similarity comparison was carried out against Genbank 

nucleotide database using Blastn.  Ultimately, gene specific (GSP) primers used for full-length 

cDNA isolation were designed from the partial sequences of the DvArp2/3 complex subunits 

(Table 3.1).  For ARPC1 and ARPC4, the GSP primers used for cDNA isolation were obtained 

from D. variabilis TSA database (Table 3.1).   

3.2.4 Cloning of tick Arp2/3 complex subunit full-length cDNAs 

 The full-length cDNAs for DvArp2, DvArp3, DvARPC1, DvARPC3, and DvARPC4 

were generated using the SMARTer RACE cDNA Amplification Kit (Clontech) according to the 

manufacturer’s protocol.  Briefly, total RNA was extracted from tissues collected from four 

unfed female R. rickettsii infected ticks using RNeasy mini kit (QIAGEN) as described in the 

manufacturer’s instructions.  The RNA was treated with TURBO DNase (Ambion, Austin, TX) 

and purified using RNA cleanup kit (Zymo Research, Irvine, CA) according to manufacturers’ 

manuals.  One microgram of RNA was used as a template to create 5'- and 3’-RACE-Ready 

cDNAs.  5’- and 3’- RACE fragments of DvArp2/3 complex subunits were then amplified 

utilizing GSP primers shown in Table 3.1.   

 For DvARPC2 and DvARPC5, the GeneRacer Kit (Invitrogen) was used to produce full-

length cDNAs according to the manufacturer’s recommendation.  Briefly, tissues (midgut, ovary 

and, salivary glands) were dissected out of fifteen partially fed (4 days) female ticks and total 

RNA was extracted using TRIzol reagent as described in the manufacturer’s instructions.  

Messenger RNA was then purified from total RNA (200 µg) pooled from all tissues and used to  
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Table 3.1 Primers used in full-length cDNA isolation of DvArp2/3 complex (all subunits).  

Primers                 Sequences (5’ to 3’)     Fragment obtained 

DvArp2 Fw CCGCCGATGAACCCGCTCAAAAACC 3’DvArp2 

DvArp2 Rev CTCGATCATGCGCTCGCGGTTTTTG 5’DvArp2 

DvArp3 Fw GTCCCCCTGGGGCTGAGGGCTATGT 3’DvArp3 

DvArp3 Rev ATGCCAACATGCTGCCACCAAACCA 5’DvArp3 

DvARPC1 Fw TCACCTGCCACGCATGGAACAAGGA 3’DvARPC1 

DvARPC1 Rev CTTGGCACCTGACCCCACTGCAAAC 5’DvARPC1 

DvARPC2 Fw AACAAAGATAAGGGTCAGCA 3’DvARPC2 

DvARPC2 Rev TGCGCGCAATCTCCTCTGTGTTCT 5’ DvARPC2 

DvARPC3 Fw GTGGGCAACGTCTATGCGACAAGGT 3’ DvARPC3 

DvARPC3 Rev TTGTCGCATAGACGTTGCCCACACT 5’DvARPC3 

DvARPC4 Fw GATTCATGATGATGCGTGCCGAGAA 3’DvARPC4 

DvARPC4 Rev GCACAAATACGTGCCCTTGCATTGAG 5’DvARPC4 

DvARPC5 Fw GCTCCCATAGGCTCCAAATGCCAAA 3’DvARPC5 

DvARPC5 Rev GCTGGCTGCATCCTTTACACTTTGG 5’DvARPC5 

 

create RACE-ready first-strand cDNA using NucleoTrap mRNA Mini Kit (Clontech) and 

SuperScript III Reverse Transcriptase (Invitrogen), respectively, according to the manufacturers’ 

protocols.  Both 5’ and 3’ end fragments of DvARPC2 and DvARPC5 were then amplified using 

the GSP primers listed in Table 3.1.  Amplicons were cloned into pCR4-TOPO vector and 

transformed into TOP10 E. coli. The plasmid was isolated using the FastPlasmid Mini Kit 



81 

 

according to manufacturer’s instruction and submitted to Genelab at Louisiana State University, 

School of Veterinary Medicine for sequencing.  Sequence of DNA was analyzed using BioEdit 

software.  Similarity comparison was carried out against protein database in Genbank using 

BlastX.  Amino acid sequence analyses were conducted using web-based software suits.  

Multiple sequence alignment, MUSCLE, was used to create sequence alignment files and 

calculated percent identity (pairwise alignment).  The alignment output was created using 

Multiple Align Show.  ATP binding sites were predicted using NsitePred - web server (Chen et 

al., 2012) and the conserved regions in proteins were identified by using the Simple Modular 

Architecture Research Tool (SMART). 

3.2.5 Cell culture 

 Vero cells were cultured in DMEM high glucose (Invitrogen) containing 5% fetal bovine 

serum (Hyclone) and maintained in a humidified 5% CO2 incubator at 34 ⁰C.  Conditioned 

medium was replaced with new medium once a week and the cells were subcultured (1:6 or 

1:12) every 1-2 weeks with 0.05% trypsin-EDTA (Invitrogen). 

3.2.6 Rickettsia culture and purification 

 Rickettsia montanensis were maintained in Vero cells as described by Sunyakumthorn et 

al. (2012) with minor modifications.  Briefly, half of the conditioned medium was replaced with 

new medium once a week and the bacteria were subcultured every 2 week by passing 1 ml of 

infected cells to uninfected Vero cells.  For rickettsial invasion assays, Rickettsia was purified 

from host cells as described by Weiss et al. (1973) with minor modifications.  Briefly, infected 

Vero cells were detached by scraping and lysed by vortexing with sterile 3 mm borosilicate glass 

beads for 5 min (Sigma-Aldrich, St. Louis, MO).  To pellet cellular debris, cell lysate was 

centrifuged at 4 ºC, 275 x g for 3 min.  The supernatant was then transferred to a 10 ml syringe 
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and filtered through a 2 µm syringe filter.  Prior to infection, the number of Rickettsia was 

enumerated by counting Rickettsia stained with a LIVE/DEAD BacLight Bacterial Viability Kit 

(Molecular Probes, Carlsbad, CA) in a Petroff–Hausser bacterial counting chamber (Hausser 

Scientific, Horsham, PA) and examined with a Leica microscope (Buffalo Grove, IL). 

3.2.7 Expression of DvArp2/3 complex subunit mRNAs in tick tissues infected ex vivo  

 Tissues, including midgut, ovary, and salivary glands, were dissected out of unfed female 

D. variabilis ticks and washed once with PBS.  The tissues were then transferred into sterile 1.7 

ml centrifuge tubes containing 200 µl complete L15C medium and kept on ice until used (within 

the day) in the assays.  Prior to infection, the tubes were centrifuged at 4 ºC, 700 x g for 5 min to 

bring the tissues down to the bottom of the tubes.  One hundred eighty microliters of the medium 

was then removed under a dissecting microscope and R. montanensis (8 x 107 in 30 µl medium 

per tissue) was inoculated into the tubes.  The samples were centrifuged at 4 ºC, 700 x g for 2 

min to facilitate the biding between Rickettsia and tick tissues.  Rickettsia were allowed to infect 

the tissues at 32 ºC for 1 h.  The samples were then washed twice with 1 ml PBS and collected 

by centrifugation at 4 ºC, 275 x g for 4 min.  After each wash, the supernatant was removed 

carefully under a dissecting microscope.   Three samples of the same tissues were pooled and 

800 µl TRIzol reagent was added.  The samples were then lysed by passing through 27G needle 

20 times.  The lysate was used immediately or store at -80 ºC for later use for RNA extraction.  

The experiments were performed twice independently.  

3.2.8 Total RNA isolation and relative quantitative RT-PCR (qRT-PCR)  

 To determine the transcriptional profiles of the Arp2/3 complex subunit genes (all 

subunits) in tick tissues (unexposed and Rickettsia exposed), total RNA and DNA were isolated 

using TRIzol reagent as described in the manufacturer’s protocol.  The RNA was treated with 
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TURBO DNase and extracted with UltraPure Phenol:Chloroform:Isoamyl Alcohol (25:24:1, 

Invitrogen) to inactivate DNase according to the manufacturers’ instruction manuals.  First-

strand cDNA was then synthesized from 75 ng total RNA using iScript reverse transcription kit 

(Bio-Rad, Hercules, CA) according to manufacturer’s instruction.  GSP primers were then used 

to amplify each subunit of the DvArp2/3 complex and the housekeeping gene, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH).  All qPCR reactions were prepared in 96-well plates in a 

35 µl volume composed of 0.1 µM each forward and reverse primers, DNase/RNase-free water, 

2 µl of cDNA (sample) or water (negative control) and 2X LightCycler 480 SYBR Green I 

Master (Roche, Indianapolis, IN) as described by Sunyakumthorn et al., 2012 with minor 

modification.  The mixtures were aliquoted in triplicate 10 µl reactions onto 384-well plates and 

run on LightCycler 480 system II (Roche).  Quantitative PCR assay conditions consisted of a 95 

°C pre-incubation for 10 min, 35 amplification cycles of 95 °C for 15 sec, 60 °C for 30 sec, and 

72 °C for 5 sec followed by a melting curve step of 95 °C for 5 sec and 65 °C for 1 min.  Primers 

used in qRT-PCR assays were designed from either 5’- or 3’-RACE fragments of DvArp2/3 

complex subunits obtained from this study (Table 3.2).  Analyses of the crossing point (Cp) ratio 

of target (DvArp2, DvArp3, DvARPC1, DvARPC2, DvARPC3, DvARPC4, and DvARPC5) and 

reference (GAPDH) gene values were conducted with LightCycler 480 (1.5.0) software (Roche) 

using Basic Relative Quantification analysis (ΔΔCT-Method, Roche,).  The ratio of a target 

DNA sequence to a reference DNA sequence was calculated.  The reference was used for 

normalization of sample-to-sample differences.  No RT reaction (water was added instead of 

Reverse transcriptase) was performed to confirm an absence of genomic DNA.  To confirm the 

infection of tissues in the assays, DNA was extracted from the same sample after RNA isolation  
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Table 3.2 Primers and probes used in qRT-PCR and qPCR assays. 

        Primers               Sequences (5’ to 3’) Experiment   Reference 

DvArp2_123_Fw 

DvArp2_231_Rev 

GGGGTTTGTCAAATGTGGTT 

TTCGATGTCACCTATCTTGTGG 

mRNA 

expression 

This study 

DvArp3_593_Fw 

DvArp3_693_Rev 

ATACGCTGTCTGGTTTGGTG 

GATGCTCGGTCCACACTCTT 

mRNA 

expression 

This study 

DvArpc1_226_Fw 

DvArpc1_338_Rev 

GCAGCTCTACAAGCGAGAGG 

TCACAATGCGGTTACTGTGTG 

mRNA 

expression 

This study 

DvArpc2_356_Fw 

DvArpc2_460_Rev 

AGGAACTGCTTTGCGTCTGT 

CATGGTTTCATCGTCCCTGT 

mRNA 

expression 

This study 

DvArpc3_477_Fw 

DvArpc3_588_Rev 

TTCCAGGAGAAGCTGGATTT 

TGCCCACACTCT TGTCGTAG 

mRNA 

expression 

This study 

DvArpc4_262_Fw 

DvArpc4_474_Rev 

GCAACGAGAAGGAGAAGGTG 

TCTGCTCCGTATGGAAGT TTG 

mRNA 

expression 

This study 

DvArpc5_375_Fw 

DvArpc5_476_Rev 

AGCCTTCCTCCTCCTTGTAGT T 

CCGTTT CTCTGCTCA CTATGT CT 

mRNA 

expression 

This study 

DvGAPDH-926For 

DvGAPDH-

1024Rev 

ACTCCCACAGCAGCATCTTT 

TGCTGTAGCCGTACTCGTTG 

mRNA 

expression 

Sunyakumtthorn 

(dissertation, 

2011 

CRTDv321F 

CRTDv452R 

DvCRT_TYE665 

AGGAGAAAAGCAAGGGACTG 

CAATGTTCTGCTCGTGCTTG 

TYE665/TGGAGAAGGGCTCGAACT

TGGC/IAbRQSp 

mRNA 

expression, 

inhibition 

assays 

Sunyakumtthorn 

(dissertation, 

2011) 

OmpBRm2832F 

OmpBRm2937R 

RmOmpB_HEX 

GCGGTGGTGTTCCTAATAC 

CCTAAGTTGTTATAGTCTGTAGTG 

HEX/CGGGGCAAAGATGCTAGCGC

TTCACAGTTACCCCG/IABkFQ 

mRNA 

expression, 

inhibition 

assays 

Sunyakumtthorn 

(dissertation, 

2011) 
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using TRIzol reagent.  Copies of rickettsial genes (RmOmpB) were quantified using qPCR as 

described in the next section. 

3.2.9 DvArp2/3 complex inhibition assays and qPCR 

Tissues (midgut, ovary, and salivary glands) were dissected out of unfed female ticks and 

washed once with PBS as previously described.  The tissues were then transferred into 

microtubes containing 200 µl complete L15C medium and kept on ice until used in the same day 

for inhibition assays.  After centrifugation at 4 ºC, 700 x g for 5 min to bring the tissues down to 

the bottom of the tubes, the medium was removed under a dissecting microscope.  The samples 

were then treated with 500 µM CK-666, an Arp2/3 complex inhibitor, and incubated at 32 ºC.  

After 3 h, 180 µl of the inhibitor solution was removed and R. montanensis in 30 µl volume of 

500 µM inhibitor solution was used to infect tick tissues (8 x 107 per tissue) for 1 h.  The tissues 

were then washed twice with 1 ml PBS and collected by low-speed centrifugation as previously 

described.  Genomic DNA (gDNA) was then extracted from the samples using the DNeasy 

Blood & Tissue Kit (QIAGEN) and eluted with 35 µl DNase/RNase free water.  The numbers of 

Rickettsia and tick cells were then quantified using probe-based quantitative PCR (qPCR) as 

described by Thepparit (2011).  Briefly, qPCR mixtures (35 µl per reaction) were prepared in a 

96-well plate.  PCR reactions consisted of 0.3 µM each DvCRT_TYE665 and RmOmpB_HEX 

probes, 0.1 µM each CRTDv321F, CRTDv452R, OmpBRm2832F and OmpBRm2937R primers, 

DNase/RNase-free water, and 5 µl of gDNA template (samples), water (negative control), water 

(environmental control during DNA extraction), or standard reference plasmids.  Ten microliters 

of each reaction mixture were transferred into 3 wells of a 384-well plate and run on LightCycler 

480 system II.  Quantitative PCR assay conditions composed of a pre-incubation step of 95 ºC 
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for 10 min, 45 amplification cycles of 95 ºC for 10 sec, 60 ºC for 30 sec, and 72 ºC for 1 sec.  

Percent relative invasion was calculated using a formula shown below.  

 

% Relative invasion = (Number of RmOmpBsample x 100)/Average of Number of RmOmpBcontrol 

                                         Number of DvCRTsample                                                  Number of DvCRTcontrol 

 

The experiments were performed in quadruplicate for each treatment group and the results were 

the combination of the three independent experiments. 

3.2.10 Statistical analysis 

 Analysis of Variance (ANOVA) was conducted using the SAS statistical package 

(Version 9.3) GLM procedure.  For mRNA expression in tick tissues, relative gene expression 

was analyzed using a two-way interaction (rickettsial infection and tick tissues).  Pairwise t tests 

of least-squares means were used to examine the interaction effects of relative mRNA expression 

of each subunit of the DvArp2/3 complex between unexposed- and Rickettsia exposed- tissues or 

between tissues. For biochemical inhibition assays, the same tests were used to study a role of 

DvArp2/3 complex during rickettsial invasion of tick cells.  P-values of ≤ 0.05 were considered 

significantly different. 

3.3 Results 

3.3.1 Cloning and sequence analysis of DvArp2/3 complex subunits 

Full-length cDNA clones corresponding to the transcript of DvArp2/3 complex subunit 

genes (DvArp2, DvArp3, DvARPC1, DvARPC2, DvARPC3, DvARPC4, and DvARPC5) from 

D. variabilis were isolated.  Analysis of DNA sequence using BioEdit revealed a 2718, 1780, 

1852, 1497, 857, 714, and 912 base pair (bp) of DvArp2, DvArp3, DvARPC1, DvARPC2, 

DvARPC3, DvARPC4, and DvARPC5, respectively.  The open reading frame (ORF) lengths, 
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number of deduced amino acid sequences, and estimated molecular weights (MW) of each 

DvArp2/3 complex subunits are shown in Table 3.3.   

Table 3.3 DNA, ORF, amino acid sequence lengths and estimated MW of DvArp2/3 complex 

subunits. 

Subunit DNA sequence 

length (bp) 

ORF length 

(bp) 

Numbers of amino 

acids 

Estimated MW 

(kDa) 

DvArp2 2718 1191 396 45 

DvArp3 1780 1230 409 46 

DvArpc1 1852 1014 337 38 

DvArpc2 1497 903 300 35 

DvArpc3 857 546 181 20 

DvArpc4 714 507 168 20 

DvArpc5 912 555 152 17 

 

Amino acid sequence analyses of DvArp2/3 complex subunits (Figure 3.1-3.8) were 

performed using a web-based multiple sequence alignment (MUSCLE) and the percent identity 

compared to the corresponding subunits of the Arp2/3 complex from Drosophila melanogaster, 

Mus musculus, Homo sapiens, and Saccharomyces cerevisiae are shown in Table 3.4.  As 

mentioned earlier, Arp2 and Arp3 bind to ATP; the proteins were thus searched for ATP binding 

sites using NsitePred - web server.  The predicted ATP binding sites on both proteins are 

underlined in red in Figure 3.1 and 3.2.   
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Figure 3.1 (Following page) Multiple sequence alignment of Arp2 subunit sequences.  Multiple 

sequence comparison by log-expectation (MUSCLE) software was used to create a sequence 

alignment of Arp2 subunits from D. variabilis, D. melanogaster, M. musculus, H. sapiens, and S. 

cerevisiae.  Identical and similar amino acids are highlighted in light red and dark red, 

respectively.  Figure was created using Multiple Align Show program.  ATP binding sites 

predicted by NsitePred - web server are underlined in blue. 
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Figure 3.2 (Following page) Multiple sequence alignment of Arp3 subunit sequences.  Sequence 

alignment of Arp3 subunits from D. variabilis, D. melanogaster, M. musculus, H. sapiens, and S. 

cerevisiae was obtained from multiple sequence comparison by log-expectation (MUSCLE) 

software.  Identical and similar amino acids are highlighted in light red and dark red, 

respectively.  Figure was created using Multiple Align Show and ATP binding sites predicted by 

NsitePred - web server are underlined in blue. 
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Figure 3.3 (Following page) Multiple sequence alignment of ARPC1 subunit sequences.  

Multiple sequence comparison by log-expectation (MUSCLE) software was utilized to generate 

sequence alignment of ARPC1 subunits from D. variabilis, D. melanogaster, M. musculus, H. 

sapiens, and S. cerevisiae.  Identical and similar amino acids are highlighted in light red and dark 

red, respectively.  Figure was created using Multiple Align Show.  
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Figure 3.4 Schematic diagram represented the structure of DvARPC1 subunit.  Numbers 

correspond to amino acids of the protein sequence.  Shaded blue regions are putative WD 

domains predicted by SMART software. 

 

 
 

Figure 3.5 Multiple sequence alignment of ARPC2 subunit sequences.  Sequence alignment of 

ARPC2 subunits from D. variabilis, D. melanogaster, M. musculus, H. sapiens, and S. cerevisiae 

was generated using multiple sequence comparison by log-expectation (MUSCLE) software.  

Identical and similar amino acids are highlighted in light red and dark red, respectively.  Figure 

was created using Multiple Align Show.  
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Figure 3.6 Multiple sequence comparison of ARPC3 subunit.  The DvARPC3 deduced amino 

acid sequence was aligned D. variabilis, D. melanogaster, M. musculus, H. sapiens, and S. 

cerevisiae.  Alignment was performed using multiple sequence comparison by log-expectation 

(MUSCLE) software.  Shaded light red and dark red indicate identical and similar amino acid 

residues, respectively. 

 

Figure 3.7 Multiple sequence alignment of ARPC4 subunit sequences.  Sequence alignment of 

ARPC4 subunits from D. variabilis, D. melanogaster, M. musculus, H. sapiens, and S. cerevisiae 

was conducted using multiple sequence comparison by log-expectation (MUSCLE) software.  

Identical and similar amino acids are shaded in light red and dark red, respectively.  Figure was 

created using Multiple Align Show program.  
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Figure 3.8 Multiple sequence comparison of ARPC5 subunit of Arp2/3 complex.  Multiple 

sequence comparison by log-expectation (MUSCLE) software was used to produce sequence 

alignment of ARPC5 subunits from D. variabilis, D. melanogaster, M. musculus, H. sapiens, and 

S. cerevisiae.  Identical and similar amino acids are highlighted in light red and dark red, 

respectively.  Figure was created using Multiple Align Show. 

As shown in Figure 3.4, putative WD motifs, conserved domains in ARPC1 protein (Welch et 

al., 1997), were also observed in ARPC1 subunit from D. variabilis (4 domains).  

3.3.2 Expression of DvArp2/3 complex subunit mRNAs in tick tissues infected ex vivo 

To explore transcriptional profiles of DvArp2/3 complex (all subunits) in D. variabilis 

tissues (midgut, ovary and salivary glands) in response to R. montanensis infection, tick tissues 

were dissected out of the ticks and infected with Rickettsia.  After 1 h, the tissues were washed 

and collected by low speed centrifugation.  Total RNA was extracted from the samples and the 

levels of DvArp2, DvArp3, DvARPC1, DvARPC2, DvARPC3, DvARPC4, and DvARPC5 

mRNA were measured by qRT-PCR. 
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Table 3.4 Percent identity of DvArp2/3 complex subunits compared to the corresponding 

subunits of Arp2/3 complex from different organisms. 

DvArp2/3 

complex subunits 

D. melanogaster M. musculus H. sapiens S. cerevisiae 

DvArp2 80 % 81 % 81 % 60 % 

DvArp3 83 % 83 % 83 % 58 % 

DvARPC1 51 % 51 % 51 % 36 % 

DvARPC2 79 % 78 % 78 % 36 % 

DvARPC3 67 % 66 % 66 % 46 % 

DvARPC4 86 % 92 % 92 % 65 % 

DvARPC5 59 % 56 % 56 % 26 % 

 

As shown in Figure 3.9 – 3.15, the mRNA of all DvArp2/3 complex subunits was detectable in 

all tick tissues and in both unexposed- and Rickettsia exposed- tissues.  Interestingly, the mRNA 

levels were expressed higher in the ovary than in the midgut and salivary glands with significant 

differences for DvArp3 (P = 0.0496 and 0.0534 in uninfected ovary compared to midgut and 

salivary glands, respectively; P = 0.0031 and 0.0105 in infected ovary compared to midgut and 

salivary glands, respectively), DvARPC4 (P = 0.0217 and 0.0270 in uninfected ovary compared 

to midgut and salivary glands, respectively; P < 0.0001 and P = 0.0012 in infected ovary 

compared to midgut and salivary glands, respectively), and DvARPC5 (P < 0.0001 in uninfected 

ovary compared to both midgut and salivary glands; P < 0.0001 in infected ovary compared to  
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Figure 3.9 Transcriptional profile of Arp2 subunit in D. variabilis tissues. The tissues (midgut, 

ovary, and salivary glands) were dissected out of the ticks then exposed to R. montanensis (8 x 

107 per tissue) for 1 h.  After washing, the samples were collected by low-speed centrifugation 

and extracted for total RNA.  The level of DvApr2 mRNA was measured by qRT-PCR and 

normalized with tick GAPDH mRNA.  Data shown are mean relative expression from two 

independent experiments.  Error bar represents SEM values.  

 

Figure 3.10 Expression of Arp3 subunit mRNA in D. variabilis tissues.  After being dissected 

out, tick tissues including midgut, ovary, and salivary glands were infected with R. montanensis 

(8 x 107 per tissue) for 1 h.  The tissues were then washed and harvested by low-speed 

centrifugation. Total RNA was extracted from the tissues and the level of mRNA expression was 

measured by qRT-PCR.  DvGAPDH mRNA was used for normalization of sample-to-sample 

differences. Data shown are mean relative expression from two independent experiments.  Error 

bar represents SEM values.  Graphs with different letters in the same treatment group 

(unexposed- or Rickettsia exposed- tissues) were considered significantly different (P ≤ 0.05).  

P-values of 0.0496 and 0.0534 represent uninfected ovary compared to midgut and salivary 

glands, respectively. P-values of 0.0031 and 0.0105 represent infected ovary compared to midgut 

and salivary glands, respectively. 
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Figure 3.11 Transcriptional profile of ARPC1 in tick tissues.  Midgut, ovary, and salivary glands 

were dissected out of the ticks and infected with R. montanensis (8 x 107 per tissues) for 1 h.  

After removal of Rickettsia, the tissues were washed and collected by low-speed centrifugation.  

Total RNA was then extracted from the samples and qRT-PCR was performed to measure 

DvARPC1 mRNA level.  DvGAPDH mRNA was used for normalization of sample-to-sample 

differences. Data shown are mean relative expression from two independent experiments.  Error 

bar represents SEM values.   
 

 
 

Figure 3.12 Transcriptional profile of ARPC2 in D. variabilis tissues.  Ticks were dissected and 

tissues including midgut, ovary, and salivary glands were separated out.  Rickettsia montanensis 

(8 x 107) was then used to infect tick tissues for 1 h.  After washing, the samples were harvested 

by low-speed centrifugation and total RNA was extracted from the tissues.  qRT-PCR was then 

performed to measure the level of DvARPC2 expression.  DvGAPDH mRNA was used for 

normalization of sample-to-sample differences.  Data shown are mean relative expression from 

two independent experiments.  Error bar represents SEM values.   
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Figure 3.13 Expression of DvARPC3 mRNA in tick tissues.  Midgut, ovary, and salivary glands 

were dissected out of D. variabilis ticks and infected with R. montanensis (8 x 107 per tissue) for 

1 h.  After removal of the bacteria, the tissues were washed and collected by low-speed 

centrifugation.  Total RNA was then extracted from the samples and the level of DvARPC3 

mRNA was determined by qRT-PCR.  To normalize the differences of samples, DvGAPDH 

mRNA was used.  Data shown are mean relative expression from two independent experiments.  

Error bar represents SEM values.   

 

 

Figure 3.14 Expression of DvARPC4 mRNA in D. variabilis tissues.  Rickettsia montanensis 

was used to infect tick midgut, ovary, and salivary glands (8 x 107Rickettsia per tissue) for 1 h.  

After removal of Rickettsia, tick tissues were washed and collected by low-speed centrifugation.  

Total RNA was then extracted from the tissues and the levels of DvARPC4 mRNA were 

measured by qRT-PCR.  DvGAPDH mRNA was used to normalize the differences among 

samples.  Data shown are mean relative expression from two independent experiments.  Error bar 

represents SEM values. An asterisk remarks a significant difference (P = 0.0311) between 

treatment group (unexposed- or Rickettsia exposed- group) in the same tissue.  Graphs with 

different letters in the same treatment group are significantly different (P ≤ 0.05).  P-values of 

0.0217 and 0.0270 represent uninfected ovary compared to midgut and salivary glands, 

respectively.  P-values of less than 0.0001 and equal to 0.0012 represent infected ovary 

compared to midgut and salivary glands, respectively. 
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Figure 3.15 Transcriptional profile of DvARPC5 in D. variabilis tissues.  Tick tissues including 

midgut, ovary, and salivary glands were dissected out and infected with R. montanensis (8 x 107 

per tissue).  After 1 h, Rickettsia was removed and the tissues were washed with PBS.  The 

samples were then collected by low-speed centrifugation and total RNA was extracted from the 

tissues.  The level of DvARPC5 mRNA was measured by qPCR and normalized with 

DvGAPDH mRNA.  Data shown are mean relative expression from two independent 

experiments.  Error bar represents SEM values.  Graphs with different letters in the same 

treatment group (unexposed- or Rickettsia exposed- tissues) are significantly different (P ≤ 0.05).  

P-value of less than 0.0001 represent uninfected ovary compared to both midgut and salivary 

glands. P-value of less than 0.0001 represent infected ovary compared to both midgut and 

salivary glands 
 

both midgut and salivary glands).  The mRNA level of DvARPC4 was shown to be upregulated 

in response to R. montanensis infection of the ovary (Figure 3.14) and the result was 

significantly different (P = 0.0311) compared to uninfected tissues. 

To confirm the infection of tick tissues in the assays, DNA was extracted from the same 

samples after RNA isolation and the copies of rickettsial gene (RmOmpB) in infected tissues 

were quantified by qPCR.  The average numbers of invading Rickettsia from two independent 

experiments are 1.56 x 104, 1.09 x 104, and 1.93 x 104, in midgut, ovary, and salivary glands, 

respectively. 

3.3.3 DvArp2/3 complex inhibition assay 

In chapter 2, an involvement of the tick Arp2/3 complex in R. montanensis internalization 

was investigated at the cellular level in DVE1 tick cells.  To gain insight into the molecular 
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mechanisms of Rickettsia invasion in nature, an inhibition assay was performed in tissues.  Tick 

tissues, including midgut, ovary, and salivary glands, were removed and treated with 500 µM 

CK-666, an Arp2/3 complex inhibitor, for 3 h.  Rickettsia montanensis was then used to infect 

the tissues (8 x 107 per tissue) for 1 h.  After removal of Rickettsia, the tissues were washed 

twice with PBS and collected by low speed centrifugation.  Genomic DNA was then extracted 

from the samples and number of invading Rickettsia and tick cells were quantified by qPCR.  As 

shown in Figure 3.16, inhibition of DvArp2/3 complex resulted in a decrease in R. montanensis 

invasion of all tissues with significant difference (P = 0.0477) in the ovary. 

 

Figure 3.16 Effect of Arp2/3 complex inhibitor on R. montanensis invasion of D. variabilis 

tissues.  Tick tissues including midgut, ovary, and salivary glands were dissected out prior to 

infection with R. montanensis (8 x 107 per tissue).  After 1 h, Rickettsia was removed and the 

tissues were washed once with PBS.  The samples were collected by low-speed centrifugation 

and extracted for gDNA.  Quantitative PCR assay was then performed to quantify numbers of 

invading Rickettsia and tick cells. The experiments were performed in quadruplicate for each 

treatment group and the results were the combination of the three independent experiments.  An 

asterisk indicates a significant difference (P = 0.0477). 

3.4 Discussion 

 The Arp2/3 complex is an actin nucleator that is found in most eukaryotic cells.  This 

seven-subunit protein is important in the regulation of the actin polymerization, a key process 

*

1%
 D

M
SO

50
0 

uM
 C

K
-6

66

1%
 D

M
SO

50
0 

uM
 C

K
-6

66

1%
 D

M
SO

50
0 

uM
 C

K
-6

66

0

25

50

75

100

125

150

175
Midgut

Ovary

Salivary glands

%
 R

e
la

ti
v
e
 i

n
v
a
s
io

n



103 

 

utilized by SFG Rickettsia to invade host cells.  The current study has identified the full-length 

cDNAs encoding all subunits of Arp2/3 complex from D. variabilis (DvArp2, DvArp3, 

DvARPC1, DvARPC2, DvARPC3, DvARPC4, and DvARPC5).  Multiple sequence alignment 

showed variation in percent identity compared to the corresponding subunits of the Arp2/3 

complex from D. melanogaster, M. musculus, H. sapiens, and S. cerevisiae (Table 3.4).  Ranked 

in order from the most to the least, DvARPC1 is the most diverged of the seven subunits.  

Nonetheless, putative WD domains, the conserved motif in ARPC1, (Welch et al., 1997), were 

observed in ARPC1 isolated from D. variabilis.  WD repeat, also known as the Trp-Asp or 

WD40 motif, is involved in a wide variety of cellular processes such as RNA processing, signal 

transduction, cytoskeleton assembly, and macromolecular protein complex formation (Hudson 

and Cooley, 2000; Smith et al., 1999).  Welch et al. (1997) have suggested the role of ARPC1 

subunit on assembly and maintenance of the Arp2/3 complex structure correlated with the 

capability of WD motif containing proteins in the coordination of multiprotein complexes.  In 

addition, the study postulated that ARPC1 facilitated the binding of Arp2/3 complex with the 

proteins that regulate its functions (Welch et al., 1997).  

On the other hand, amino acid sequence analysis of DvArp2 and DvArp3 revealed the 

putative ATP binding sites which is consistent with the studies demonstrated that ATP binding 

on both Arp2 and Arp3, and ATP hydrolysis on Arp2 were required for Arp2/3 complex-

mediated actin cytoskeleton rearrangement (Dayel et al., 2001; Le Clainche et al., 2001; Le 

Clainche, 2003; Dayel et al., 2004; Martin et al., 2006).   

The next attempt which focused on elucidating the transcriptional profiles of DvArp2/3 

complex subunits (all subunits) in both uninfected- and Rickettsia infected- tick tissues revealed 

that mRNAs of all subunits of the Arp2/3 complex were expressed greater in the tick ovary (both 
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in uninfected- and Rickettsia infected-ovary) than in midgut and salivary glands.  This increase 

in mRNA expression in the ovary compared to the midgut and salivary glands was significantly 

different for DvArp3, DvARPC4, and DvARPC5 mRNAs.  Interestingly, in response to R. 

montanensis infection of the tick ovary, DvARPC4 mRNA level was shown to be significantly 

upregulated.   

Because the level of mRNA expression is not reflective of the protein function(s) and tick 

tissues including midgut, ovary, and salivary glands are essential for both horizontal and vertical 

transmission of SFG Rickettsia (Munderloh and Kurtti, 1995), the role of DvArp2/3 complex 

was further studied at the protein level during Rickettsia infection of the mentioned tick tissues.  

In chapter 2, the importance of the tick Arp2/3 complex during the uptake of R. montanensis was 

examined at the cellular level in DVE1 tick cells; percent relative rickettsial invasion of tick cells 

was reduced to 8% in cells pre-treated with CK-666, the Arp2/3 complex inhibitor, compared to 

untreated control.  In the current study, the inhibition assays were performed ex vivo not only to 

study the function of DvArp2/3 complex at the protein level but also to gain insight into the 

molecular mechanisms of Rickettsia invasion in the nature.  After treatment with CK-666, tick 

tissues (midgut, ovary, and salivary glands) were exposed to R. montanensis for a short period of 

time (1h).  Excitingly, the results showed that disruption of host Arp2/3 complex decreased the 

ability of Rickettsia to invade all tick tissues compared to untreated control with significant 

difference in the tick ovary.  However, the mechanisms by which the Arp2/3 complex functions 

in response to rickettsial infection is still unknown and requires further characterization.   

In summary, the current study provides the first description of all seven subunits of the 

tick derived Arp2/3 complex and the importance of the protein in facilitating the uptake of 

Rickettsia into the tick tissues.  It is interesting to note from this study that mRNAs of DvArp3, 
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DvARPC4, and DvARPC5 were expressed significantly higher in the tick ovary (both in 

uninfected- and Rickettsia infected-ovary) compared to the other tissues, DvARPC4 mRNA was 

significantly upregulated in response to rickettsial invasion of the tick ovary, and inhibition of 

DvArp2/3 complex significantly decreased the entry of Rickettsia into the tick ovary.  These 

findings, in which the results are significantly different in the tick ovary and the multiple 

functions of the Arp2/3 complex, lead to the suggestion that the protein not only play a role 

during Rickettsia infection but also has function(s) in uninfected ovary. Nevertheless, the roles of 

Arp2/3 complex in the uninfected tick ovary are still unknown and need to be further 

investigated. 
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CHAPTER 4 

MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF VACUOLAR ATPASE 

FROM THE AMERICAN DOG TICK DERMACENTOR VARIABILIS 

4.1 Introduction 

Ticks are important vectors of human pathogens, including bacteria, viruses, and 

parasites (Sonenshine, D. E., 2005; Piesman and Gage, 2005).  Among the prokaryotic pathogens 

transmitted by ticks are the obligate intracellular spotted fever group of Rickettsia.  Although the 

specific mechanisms by which Rickettsia invade tick cells is unclear, induced endocytosis and 

phagosomal escape facilitate intracytoplasmic living of Rickettsia.  Toward an understanding of 

the mechanisms of rickettsial survival in the arthropod, previous studies have employed 

molecular techniques such as differential display and subtractive hybridization-polymerase chain 

reaction (PCR) to identify several tick-derived molecules thought to be associated with tick 

response to bacterial infection (Macaluso et al., 2003; Mulenga et al., 2003).  Among the 

putatively identified molecules found to be differentially transcribed in response to rickettsial 

infection is a vacuolar ATPase (V-ATPase). 

The V-ATPase is a vital component of eukaryotic cells as it mediates the acidification of 

intracellular compartments (Nishi and Forgac, 2002; Inoue et al., 2005).  The molecule is 

comprised of multiple subunits separated into the water-soluble V1 and membrane-associated V0 

domains.  The V0 complex contains the proton translocating pore and the V1 complex uses ATP 

to drive proton translocation across the membrane (Nishi and Forgac, 2002; Inoue et al., 2005).  

Together, the enzyme uses ATP hydrolysis to acidify compartments for receptor-mediated 

endocytosis, intracellular trafficking, and protein degradation (Nishi and Forgac, 2002; Inoue et 

al., 2005).   

The structure of V-ATPase has been extensively studied in Saccharomyces cerevisiae 

(Wieczorek et al., 2009; Forgac, 2000).  The yeast V1 domain is a 570 kDa complex consisting of 
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eight different subunits (A-H).  The V0 domain is composed of five different subunits (a, c, c׳, c״ 

and d) with a total molecular mass about 260 kDa (Wieczorek et al., 2009; Forgac, 2000).  

Although it possess eight different subunits of the V1 domain, studies of V-ATPase in the midgut 

of the tobacco hornworm showed that the V0 domain contains only four subunits, which are a, c, 

d and e. (Merzendorfer et al., 2000). 

To gain a better understanding of the interactions between Rickettsia and tick vectors, 

tick-derived molecules must be characterized at the molecular and functional level.  The role of 

V-ATPase in the tick and the influence of Rickettsia on the molecule are unclear.  The aims of 

this study were to test the hypothesis that V-ATPase is involved in rickettsial infection of tick 

cells.  This study is the first description of a tick-derived V-ATPase.  The role of V-ATPase 

during rickettsial infection in tick cells was also assessed using the V-ATPase inhibition assays.  

4.2 Materials and methods 

4.2.1 Tick dissection and tissue preparation 

As previously described by Macaluso et al. (2001), Dermacentor variabilis colonies were 

routinely maintained on rats and rabbits at Old Dominion University.  After feeding for 3-5 days, 

unmated female ticks were removed from host animals, washed twice with 70% ethanol and 

rinsed with distilled water.  Tick tissues, including midgut, ovary, and salivary glands, were 

removed from the ticks and washed in sterile phosphate buffered saline (PBS, 0.137 mM NaCl, 

2.7 mM KCl and 8 mM Na2HPO4, pH 7.4) or 0.1% diethyl pyrocarbonate (DEPC) treated water.  

Ovaries were transferred into microtubes containing RNAlater (Ambion, Austin, TX) for RNA 

extraction.  For protein preparation, all organs were placed in protease inhibitor cocktail (PIC, 

Roche, Indianapolis, IN).  Tissues were immediately processed or stored at -80 ºC until used for 

extraction. 
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4.2.2 Protein and mRNA extraction from tick tissues 

The ovaries from at least five D. variabilis were rinsed with DEPC treated water before 

total RNA and mRNA were extracted from using the NucleoSpin RNAII and NucleoTrap 

mRNA Mini kits (Clontech, Mountain View, CA), respectively, according to the manufacturer’s 

instructions.  For protein extraction, the tissue samples were thawed on ice for 15 min and 

washed once with PBS supplemented with PIC.  The tissues were then lysed by adding 100 µl of 

lysis buffer (100 mN NaH2PO4, 10 mM Tris-Cl, 8M urea, pH 8.0), homogenizing with plastic 

pestle for 15 min and sonicating in a bath sonicator (Crest Ultrasonics, Trenton, NJ) for 10 min.  

The lysate was centrifuged at 16000 x g for 10 min at 4 °C.  The supernatant was then transferred 

to 1.7 ml centrifuge tubes.  The protein solution was diluted two fold and the protein 

concentration was measured by DC protein assay (Bio-Rad, Hercules, CA) according to 

manufacturer’s recommendation. Thirty micrograms of protein from midgut, ovary and salivary 

glands were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and Western immunoblot. 

4.2.3 Cloning of the tick V-ATPase V0 subunit a full-length cDNA 

 

The full-length cDNA for D. variabilis (Dv) V-ATPase V0 subunit a (VATPaseV0a) was 

generated using the SMART RACE cDNA Amplification Kit (Clontech) according to the 

manufacturer’s protocol.  Briefly, 1 µg of mRNA extracted from ovary was used to create 3’ and 

5’-RACE-Ready cDNA. Gene specific (GSP) primers designed from a partial sequence of 

DvVATPaseV0a gene (Macaluso et al., 2003) were used to amplify the 3’ and 5’ end fragments. 

PCR products were cloned into TOPO TA cloning vectors (Invitrogen, Carlsbad, CA) and the 

plasmids were isolated using the SV miniprep kit (Promega, Madison, WI) according to the 

manufacturers’ protocols.  The cloned plasmid inserts were sequenced by the dye terminator 
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method on a 373 automated fluorescence sequencing system (Applied Biosystems, Carlsbad, 

CA) in the biopolymer laboratory at the University of Maryland, Baltimore.  For DNA sequence 

analysis, the MacVector software program (Accelrys, San Diego, CA) was used.  Similarity 

comparison of DNA sequence was carried out against the protein database in Genbank using 

BlastX.  Amino acid sequence analyses were conducted using web-based software suits.  

Multiple sequence alignment, MUSCLE, was used to create a sequence alignment file and 

calculated percent identity (pairwise alignment).  The alignment output was created using 

Multiple Align Show. The topological and transmembrane regions were predicted using 

TopPred.  A potential N-glycosylation site was obtained using NetNGlyc 1.0 Server. 

4.2.4 Construction of plasmid and expression of recombinant DvVATPaseV0a 

The Baculovirus Expression System with Gateway Technology (Invitrogen) was used to 

express recombinant (r) DvVATPaseV0a according to manufacturer’s protocol. Briefly, the open 

reading frame (ORF) of DvVATPaseV0a was subcloned into the pENTR/D-TOPO entry vector 

(Invitrogen) and then transferred into the cloning cassette of the pDEST10 vector (N-terminal 

His fusion vector, Invitrogen).  The cloned ORF DvVATPaseV0a plasmid was transformed into 

DH10Bac E. coli (Invitrogen), which contains the baculovirus shuttle vector (bacmid), to 

produce recombinant bacmid harboring DvVATPaseV0a.  The white colonies of recombinant 

bacmid DNA in a background of blue colonies containing the unaltered parent bacmid were 

selected and isolated from small-scale selective (50 μg/ml kanamycin, 7 μg/ml Gentamycin, 10 

μg/ml tetracycline, 100 μg/ml Bluo-gal, and 40 μg/ml isopropyl-beta-D-thiogalactopyranoside) 

medium.  These recombinant baculoviruses (1µg) were used to transfect 9 x 105 Sf9 insect cells 

(Gibco, Carlsbad, CA) using Cellfectin reagent (Invitrogen) according to manufacturer’s 

recommendation.  The transfected cells were maintained at 27 ⁰C and the culture medium 
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containing the recombinant baculoviruses was collected at 7 days post-transfection as a primary 

viral stock (P1).   

The P1 viral stock (8 µl) was used to infect fresh Sf9 (4 x 105) cells for 2, 3, 4, 5 and 6 

days to determine the optimal harvest time for viral amplification.  After analyzed by SDS-

PAGE and Western blotting, the viral stock was amplified by infecting Sf9 cells (2 x 106) with 

40 µl of the recombinant baculoviruses and incubated at 27 ⁰C for 4 days. The amplified virus 

was diluted 10 fold from 10-3 to 10-8 and the viral titer was determined by end-point dilution as 

described by O’Reilly et.al (1994).  The multiplicity of infection (MOI) was optimized by 

infecting Sf9 cells (8 x 105) with P2 viral stock at MOI of 0.1, 0.3, 0.5, 1, 2, 3, 5 and 10 for 4 

days.  Likewise, the optimal time for harvesting virus was determined by infecting Sf9 cells with 

P2 viral stock at MOI of 1 for 2, 3, 4, 5 and 7 days.  To express the protein, Sf9 cells were 

infected with rDvVATPaseV0a baculoviruses at MOI of 1 and maintained at 27 ⁰C for 4 days.  

The cells were then harvested and washed once with PBS.  Cell pellet was resuspended in lysis 

buffer (100 mM NaH2PO4, 10 mM Tris-Cl and 8 M urea, pH 8.0) and stirred at room 

temperature for 1 h.  The lysate was centrifuged at 16000 x g for 30 min and the pellet was 

analyzed by SDS-PAGE and Western immunoblot. 

4.2.5 Purification of DvVATPaseV0a from polyacrylamide gel 

The infected cells were directly added with lysis buffer and loaded onto NuPAGE 4-12% 

Bis-Tris Zoom gels (Invitrogen).  The gels were then negatively stained with E-zinc Reversible 

Stain Kit (Pierce, Rockford, IL) according to the instructions of the manufacturer.  The unstained 

band of rDvVATPaseV0a was then excised from the gel and the residual stain from the edges of 

the excised gel pieces was erased by soaking them in Tris-glycine buffer (25 mM Tris and 192 

mM glycine).  The excised gel pieces were crushed using a clean pestle and added with 0.5 ml 
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elution buffer (50 mM Tris-HCl, 150 mM NaCl, and 0.1 mM EDTA; pH 7.5).  The mixture was 

then incubated in a rotary shaker at 30 ⁰C overnight and the protein was collected after 

centrifugation. 

4.2.6 Protein identification 

 To confirm peptide sequences of purified rDvVATPaseV0a protein, SDS-PAGE coupled 

with mass spectrophotometry (MS) analysis was performed as described previously by 

Sunyakumthorn et al. (2008).  Briefly, the protein band was excised using the Proteome Works 

Spot Cutter (Bio-Rad), and a MassPrep Station (Waters, Milford, MA) was used as the digestion 

robot.  The peptides were then extracted from the gel plugs and separated by liquid 

chromatography using an Atlantis dC18 column (75 µm by 100 mm; Waters/Micromass, Milford, 

MA).  For analysis, a Q-Tof (quadrupole time-of-flight) Micro (Waters/Micromass) hybrid mass 

spectrometer was used and Electrospray analysis (positive mode) was performed.  ProteinLynx 

Global Server, version 2.0 (Waters/Micromass) was used for data acquisition and analysis.  

Database comparative analysis with an online Mascot (Matrix Science, Boston, MA) tandem MS 

(MS/MS) ion search against the NCBInr/Proteobacteria was carried out. 

4.2.7 Preparation of polyclonal antibody specific for rDvVATPaseV0a 

Polyclonal antibodies to purified rDvVATPaseV0a were generated in BALB/c mice as 

described by Mulenga et al. (2003).  Briefly, three mice were immunized subcutaneously with 

rDvVATPaseV0a protein (~30 µg protein per mouse) emulsified with equal volume of TiterMax 

Gold adjuvant (Sigma-Aldrich, St. Louis, MO), followed by a second injection (~80 µg protein 

per mouse) two weeks later, and a third injection (~60 µg protein per mouse) in two weeks later.  

The mice were bled one week after second and third injection to test for antibodies.  Antiserum 
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from the mouse with the best reactivity toward rDvVATPaseV0a was collected two weeks after 

the third injection and stored at 4 ºC for the immunological studies. 

4.2.8 SDS-PAGE and Western blot analysis 

Transcriptional analysis of the putative DvVATPaseV0a identified mRNA expression in 

tick salivary, midgut, and ovary (Macaluso et al., 2003).  To determine whether DvVATPaseV0a 

was expressed as a protein in the same tick tissues, protein extracts of salivary gland, midgut, 

and ovary were assessed by Western blot using antibodies to rDvVATPaseV0a.  Protein were 

separated by NuPAGE 4-12% Bis-Tris gel (Invitrogen) and electronically transferred to PVDF 

membrane (Bio-Rad).  The membrane was blocked with 5% (w/v) skim milk in tris buffer saline 

(TBS)-Tween (T) buffer (20 mM Tris-HCl, 500 mM NaCl and 0.1% (v/v) Tween-20; pH 7.5) at 

room temperature for 1 h and incubated with either 1: 5000 dilution of anti-6xHis monoclonal 

antibody (Clontech) or a 1:200-500 dilution of polyclonal anti-rDvVATPaseV0a in TBS-T for 2 

h.  Following three washes, the membrane was incubated with horseradish peroxidase-

conjugated goat anti-mouse secondary antibody diluted (Pierce) 1: 20000 at room temperature 

for 1 h and then washed three times with TBS-T.  The bound antibody complexes were detected 

using an enhanced chemiluminescent system (Pierce). 

4.2.9 Cell culture 

Sf9 cells (Gibco) were cultured in SF900 II serum-free medium (Gibco) supplemented 

with penicillin/streptomycin (50 U/ml and 50µg/ml, respectively, Gibco).  DVE1 cells (from D. 

variabilis, kindly provided by Dr. Timothy Kurtti, University of Minnesota) were grown in L15C 

medium (Sigma-Aldrich) supplemented with 10% fetal bovine serum (Hyclone, Waltham, MA), 

5% tryptose phosphate broth (Difco, Sparks, MD), 0.1% lipoprotein-cholesterol concentrate 

(LPC, MP Biomedicals, Santa Ana, CA), 0.6% HEPES solution (1 M, Sigma-Aldrich), and 1.2% 
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sodium bicarbonate solution (5%, Sigma-Aldrich). Vero cells were grown in DMEM high 

glucose (Invitrogen) containing 5% fetal bovine serum (Hyclone).   For all cell lines, conditioned 

medium was replaced with new medium once a week.  Sf9 and DVE1 cells were passaged (1::6) 

at about every 2 and 4 weeks, respectively.  Vero cells were subcultured (1:6 or 1:12) every 1-2 

weeks with 0.05% trypsin-EDTA (Invitrogen).  Sf9 and DVE1 cells were grown in a humidified 

incubator at 27 and 32 ºC, respectively.  Vero cells were maintained in a humidified 5% CO2 

incubator at 34 ºC. 

4.2.10 Rickettsia culture and purification 

Rickettsia montanensis were maintained in Vero cells as described by Sunyakumthorn et 

al. (2012) with minor modification.  Briefly, R. montanensis were fed weekly by replacing half 

of the conditioned medium with new medium. The organisms were subcultured (1:12) every 2 

weeks by inoculating Rickettsia-infected cells to uninfected Vero cells.    

 The isolation of R. montanensis from infected Vero cells was carried out as previously 

described by Weiss et al. (1973) with minor modification.  Briefly, Rickettsia infected cells were 

detached by scraping and lysed by vortexing with sterile 3 mm borosilicate glass beads for 5 min 

(Sigma-Aldrich).  Cell lysate was then transferred aseptically to 15 ml centrifuge tubes and 

centrifuged at 4ºC, 275 x g for 3 min to pellet cellular debris.  The supernatant was transferred to 

a 10 ml syringe and filtered through a 2 μm syringe filter.  For all bioassays, the number of 

Rickettsia was determined by counting Rickettsia stained with a LIVE/DEAD BacLight Bacterial 

Viability Kit (Molecular Probes, Carlsbad, CA) in a Petroff–Hausser bacterial counting chamber 

(Hausser Scientific, Horsham, PA) and examined with a Leica microscope (Buffalo Grove, IL). 
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4.2.11 Expression of VATPaseV0a mRNA in backless D. variabilis 

 The backless D. variabilis was used as a model to study an expression of 

DvVATPaseV0a mRNA in tick tissues (midgut, ovary, salivary glands) in response to R. 

montanensis infection as previously described by Sunyakumthorn et al. (2012). Briefly, six unfed 

female ticks were washed with 70% ethanol followed by 1% benzalkonium chloride solution and 

rinsed three times with sterile water. The ticks were air-dried and afterwards the mouthparts and 

the legs were excised. The ticks were then cut along the perimeter of alloscutum and the dorsal 

cuticle was removed. The backless ticks were individually transferred onto 96-well plate 

containing complete L15B medium and incubated at 34 ºC. After 24 h, three ticks were infected 

with R. montanensis (2.4 x 108 per tick) for 1 h while the other three were kept in the medium 

without exposure to Rickettsia.  Tick tissues were collected by removing and pooling the tissues 

from three different ticks.  The tissues were placed in RNAlater (Ambion, Austin, TX) and the 

samples were kept at -20 ºC until used for RNA extraction.  The experiments were performed 

independently twice.   

4.2.12 Total RNA isolation and relative quantitative RT-PCR (qRT-PCR) 

Total RNA from uninfected- and R. montanensis infected- tick tissues was extracted 

using an RNeasy Mini Kit (QIAGEN, Germantown, MD), treated with TURBO DNase 

(Ambion, Austin, TX), and purified using an RNA cleanup kit (Zymo Research, Irvine, CA) as 

described in the manufacturers’ manuals.  First-strand cDNA was synthesized from 40 ng total 

RNA using iScript reverse transcription kit (Bio-Rad) according to manufacturer’s instruction.  

All qPCR reactions were performed in 96-well plates in a 35 µl volume containing 100 nM of 

each primer (5’-CTCCTGGCCGTGATTTGTAT- 3’ and 5’-GCTGCTCCGTCCTCTGTATC- 3’ 

for V-ATPase, 5’-CTCGTTCTTGGGAATGGAAG-3’ and 5’-CTTGATCTTCATGGTGGAAG 
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G- 3’ for actin), DNase/RNase-free water, 2 µl of cDNA template (samples) or water (negative 

control) and 2X iTaq SYBR Green Supermix with ROX (Bio-Rad).  The mixtures were then 

aliquoted in triplicate 10 µl reactions onto 384-well plates and run on an ABI 7900HT unit 

(Applied Biosystems, Carlsbad, CA) at Louisiana State University, School of Veterinary 

Medicine.  No RT reaction (water was added instead of Reverse transcriptase) was performed to 

confirm an absence of genomic DNA. Results were analyzed with ABI 7900HT sequence 

detection system (SDS v2.3) software.  Data are presented as the percent difference in threshold 

cycle (CT) value (ΔCT = CT Actin – CT V-ATPase). 

4.2.13 DvVATPase inhibition assay 

 DVE1 cells (1 x 105) were seeded onto 96 well-plates (Greiner Bio-One, Monroe, NC) 

and incubated at 32 ºC for 48 h.  The cells were treated with 5, 0.5, and 0.05 µm of the V-

ATPase inhibitor, bafilomycin A1 (EMD Millipore, Billerica, MA), or medium containing 0.1% 

DMSO (inhibitor vehicle control) for 2 h.  Rickettsia montanensis was then inoculated onto the 

treated cells at a MOI of 10 and the plate was centrifuged at 700 x g for 2 min to facilitate the 

binding of Rickettsia to host cells.  After 1 h, Rickettsia was removed and the cells were added 

with 150 µl PBS.  The samples were centrifuged at 275 x g for 4 min to collect only infected host 

cells.  After removal of supernatant, the cell pellet was washed with 1 ml PBS and centrifuged at 

275 x g for 4 min. The samples were stored at -20 ºC until used for genomic DNA (gDNA) 

isolation.  According to the manufacturer’s instructions, gDNA was extracted from the samples 

using DNeasy Blood & Tissue Kit (QIAGEN).  Genomic DNA was eluted in 35 µl 

DNase/RNase free water.  The number of Rickettsia and tick cells were then quantified by 

quantitative PCR (qPCR).  The experiments were performed in quadruplicate for each 
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concentration of the inhibitor used and the results were the combination of two independent 

experiments. 

4.2.14 Quantification of Rickettsia and tick cells by qPCR 

To quantify copies of R. montanensis and DVE1 genes in samples, probe-based qPCRs 

were performed as described in chapter 1.  Briefly, serial dilutions of plasmids containing 

RmOmpB and DvCRT genes were used to create a standard curve.  Quantitative PCRs reactions 

were prepared in volume of 35 µl comprised of LightCycler 480 Probe Master (Roche), 0.3 µM 

each DvCRT_TYE665 and RmOmpB_HEX probes, 0.1 µM each CRTDv321F, CRTDv452R, 

OmpBRm2832F and OmpBRm2937R primers, DNase/RNase-free water and 5 µl of gDNA 

template (samples), water (negative control) or standard reference plasmids.  Ten microliters of 

each reaction mixture were transferred into 3 wells of a 384-well plate and run on LightCycler 

480 system II (Roche).  Quantitative PCR assay conditions consisted of a pre-incubation step of 

95 ºC for 10 min, 45 amplification cycles of 95 ºC for 10 sec, 60 ºC for 30 sec, and 72 ºC for 1 

sec.  Percent relative invasion was calculated using a formula shown below.  

 

% Relative invasion = (Number of RmOmpBsample x 100)/Average of Number of RmOmpBcontrol 

                                         Number of DvCRTsample                                                  Number of DvCRTcontrol 

 

4.2.15 Statistical analysis 

 Analysis of Variance (ANOVA) was conducted using the SAS statistical package 

(Version 9.3) GLM procedure.  For mRNA level measurement in backless ticks, the relative 

gene expression was analyzed using a two-way interaction (rickettsial infection and tick tissues).  

Pairwise t tests of least-squares means were used to examine the interaction effects of relative 

mRNA expression of DvVATPaseV0a between unexposed- and Rickettsia exposed- ticks. For V-

ATPase inhibition assays, the same tests were used to elucidate a role of the V-ATPase inhibitor, 
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bafilomycin A1, on rickettsial invasion of tick cells.  P-values of ≤ 0.05 were considered 

significantly different. 

4.3 Results 

4.3.1 Cloning and sequence analysis of DvVATPaseV0a 

 A full-length cDNA clone corresponding to the transcript of the V-ATPase V0 subunit a 

gene in D. variabilis was isolated using the GSP primers designed from differential display PCR 

(Macaluso et al., 2003). DNA sequence analysis using MacVector revealed a 2856 bp with 2532 

bp ORF (Genbank accession number HM185485).  The deduced amino acid sequence comprised 

843 residues with an estimated MW of 96 kDa.  Amino acid sequence analysis of 

DvVATPaseV0a using a web-based multiple sequence alignment, MUSCLE, showed 77%, 66%, 

44% and 40% identity to VATPaseV0a from Ixodes scapularis, Drosophila melanogaster, Homo 

sapiens, and Saccharomyces cerevisiae, respectively, as shown in Figure 4.1.  In the figure, the 

red open box represents the Asn-Xaa-Ser/Thr (asparagine-any amino acid-serine/threonine) 

sequon, a potential N-glycosylation site, analyzed by NetNGlyc 1.0 Server where Asn was 

predicted to be glycosylated.  Similar to other organisms, DvVATPaseV0a possesses 

transmembrane (eight segments), topological segments which were predicted using TopPred 

software (Figure 4.2).  

4.3.2 Expression, purification and antibody production of rDvVATPaseV0a  

 In this study, full-length of rDvVATPaseV0a was produced as hexahistidine (6xHis) 

fusion protein using the baculovirus expression system in Sf9 insect cells.  The size of the 

protein produced corresponded to an estimated molecular weight (MW) analysis of full-length 

cDNA sequence i.e. ~ 96 kDa.  As the N-terminal of rDvVATPaseV0a contains 6xHis-tag, this 

allows us to detect the 6xHis-tag fused recombinant protein using anti-6xHis monoclonal  
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Figure 4.1 (Following page) Multiple sequence alignment of VATPaseV0a amino acid 

sequences.  Multiple sequence comparison by log-expectation (MUSCLE) software was used to 

create a sequence alignment and calculate percent identity of VATPaseV0a from D. variabilis 

(Genbank accession number HM185485), I. scapularis (Genbank accession number 

XP002414796), D. melanogaster (Genbank accession number NP733274), S. cerevisiae 

(Genbank accession number NP014913.3), and H. sapiens (Genbank accession number 

NP006010).  Identical amino acids are highlighted in pink.  Different composition of similar 

amino acids are highlighted in red (R, H, K), grey (G, S, A), orange (F, Y, W) light red (L, I, V), 

dark blue (T, N, Q, M), medium blue (Q, M) or light blue (D, E).  Figure was created using 

Multiple Align Show program.  The red open box is Asn-Xaa-Ser/Thr sequon in which 

asparagine residue was predicted to be glycosylated using NetNGlyc 1.0 Server. 
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Figure 4.2 Schematic diagram represented the topological and transmembrane regions of 

DvVATPaseV0a protein.  Start and end amino acid positions of each domain are indicated.  

Topological and transmembrane domains are shaded in pink and red, respectively.  

antibody.  The recombinant bacmid containing rDvVATPaseV0a was determined for optimal 

harvest times for amplifying baculovirus stock and then amplified to a high titer for further 

studies.  The result showed the highest level of expression at 4 days post-infection (Figure 4.3) 

and ~ 107 pfu/ml of viral titer.    

 

Figure 4.3 Optimization of harvest times for amplifying rDvVATPaseV0a baculovirus stock. 

The primary stock of rDvVATPaseV0a baculovirus was used to infect Sf9 cells and the cells 

were collected at 2, 3, 4, 5 and 6 days-post infection.  Whole cell lysates were analyzed by 

Western immunoblot probed with anti-6xHis monoclonal antibody.  M is His-tagged protein 

standard (BIONEXUS). U is uninfected Sf9 cells. 

The optimal MOI and the time course induction of rDvVATPaseV0a produced in Sf9 were 

studied and the results showed no different both at different MOI and different times post-

infection (Figure 4.4).   

 

Days post-infection 

M         U           2            3           4            5           6 

60 kDa 

~ 96 kDa 



123 

 

(A) 

 

 

 

 

(B) 

 

 

 

 

 

Figure 4.4 Optimization of MOI and time course expression of rDvVATPaseV0a baculovirus. 

(A) Sf9 cells were infected with rDvVATPaseV0a baculovirus at MOI of 0.1, 0.3, 0.5, 1, 3, 5, 

and 10.  After 4 days, cells were collected and subjected to Western blot analysis.  (B) 

rDvVATPaseV0a baculovirus was used to infect Sf9 cells at MOI of 1 and the cells were 

harvested at 1, 2, 3, 4, 5 and 7 days post-infection. Who cells lysates (from A and B) were 

analyzed by Western immunoblot using anti-6xHis monoclonal antibody.  M is His-tagged 

protein standard (BIONEXUS). U is uninfected Sf9 cells. 

As V0 a subunit of V-ATPase is a membrane embedded protein which results in an insoluble 

protein, so the protein was purified using denaturing purification method.  After running SDS-

PAGE and negatively staining, the major band (indicated by arrow in Figure 4.5A) of 

rDvVATPaseV0a protein was excised and eluted from the gel.  The protein was then 

concentrated and subjected to SDS-PAGE and Western Blot analysis probed with anti-6xHis 

monoclonal antibody.  The results showed the band of purified rDvVATPaseV0a (~ 96 kDa) and 

two upper bands with sizes greater than 140 kDa (Figure 4.5B).  All three protein bands were 

excised and subject to MS analysis.  The resultant peaks of the 96 kDa band searched against the  
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Figure 4.5 SDS-PAGE and Western blot analysis of insoluble portion of Sf9 infected with 

recombinant baculovirus harboring rDvVATPaseV0a and purified rDvVATPaseV0a.  Sf9 cells 

were infected with rDvVATPaseV0a baculovirus at MOI of 1 for 4 days. Insoluble fragment (A) 

was analyzed by SDS-PAGE and stained with Coomassie blue or subjected to Western blot 

probed with anti-6xHis monoclonal antibody. After negatively staining, a major band (indicated 

by arrow) of rDvVATPaseV0a was excised then extracted from the gel. The purified protein (B) 

was analyzed by SDS-PAGE and stained with Coomassie blue or subjected to Western blot 

probed with anti-6xHis monoclonal antibody or anti-rDvVATPaseV0a polyclonal antibody. M is 

His-tagged protein standard (BIONEXUS). 

non-redundant Swissport protein sequence database using ProteinLynx Global SERVER was 

shown to match the V-ATPase protein while the others showed no similarity to any protein in 

this database.  The occurrence of multiple protein bands after purifying and concentrating may 

result from self-binding in the more concentrated protein preparation. To exclude the possibility 

of any protein contamination, the ~96 kDa of purified rDvVATPaseV0a was excised from the gel 
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and subjected to SDS-PAGE and Western blotting.  The results showed the three bands appeared 

in the same positions as they were observed in the first purification.  In this study, a polyclonal 

antibody against rDvVATPaseV0a was generated in BALB/c mice.  Western blotting analysis 

has shown that the rDvVATPaseV0a polyclonal antibody specifically recognized three protein 

bands of rDvVATPaseV0a, but not His-tagged protein standard (Figure 4.5B).  This result 

suggested that the generated antibody can be used for further immune-detection of 

DvVATPaseV0a. 

4.3.3 Detection of VATPaseV0a protein expression in tick tissues 

 To examine whether VATPaseV0a is expressed in D. variabilis, the protein was extracted 

from tick tissues (midgut, ovary and salivary glands) and separated by SDS-PAGE followed by 

Western blotting with anti-rDvVATPaseV0a polyclonal antibody.  The result of the Western blot 

analysis presented in Figure 4.6 revealed a detectable DvVATPaseV0a protein band in the ovary.   

                                

Figure 4.6 Detection of VATPaseV0a in midgut, ovary and salivary glands from D. variabilis 

using rDvVATPaseV0a polyclonal antibody.  Tick tissues, including midgut, ovary, and salivary 

glands, were dissected out of the female unfed ticks and the protein was extracted.  Thirty 

microgram of total proteins from each tissue were then analyzed by SDS-PAGE followed by 

Western immunoblot using anti-rDvVATPaseV0a polyclonal antibody. The arrow indicates a 

DvVATPaseV0a protein band detected in tick ovary. 
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The apparent molecular mass of this detected band was a little bigger than a 96 kDa band of the 

recombinant DvVATPaseV0a which reflected the presence of post-translational modification on 

the protein in tick ovary.  No band was detected in midgut and salivary glands at the same 

amount of protein loading (30 µg) indicated a much lower amount of DvVATPaseV0a in midgut 

and salivary glands. 

4.3.4 Expression of VATPaseV0a mRNA in backless D. variabilis 

To determine a transcriptional profile of VATPaseV0a in D. variabilis tissues (midgut, 

ovary and salivary glands) in response to an early stage of R. montanensis infection, backless 

ticks were generated and exposed to Rickettsia.  After 1 h, the tissues were dissected out of ticks, 

extracted for total RNA and measured for DvVATPaseV0a mRNA level by qRT-PCR.  As 

shown in Figure 4.7, the mRNA was detectable in all tick tissues and in both unexposed and 

Rickettsia-exposed ticks.  In correspondence with the protein expression pattern, which the 

protein was detected only in the ovary at 30 µg of total protein loading, DvVATPaseV0a mRNA 

was expressed higher in the ovary than in the other tissues with significant difference in 

unexposed-ovary compared to midgut (P = 0.0154 ) and salivary glands (P = 0.0155).  However, 

the mRNA level remained unchanged in Rickettsia-exposed ticks (all tissues) compared to 

unexposed control.  

4.3.5 Involvement of tick V-ATPase in R. montanensis infection.  

 To assess the function of tick V-ATPase in response to Rickettsia infection, the V-

ATPase inhibition assays were performed in DVE1 tick cell line.  Tick cells were treated for 2 h 

with different concentration (5, 0.5, and 0.05 µM) of V-ATPase inhibitor, bafilomycin A1, prior 

to infection with R. montanensis (MOI of 10). After 1 h, Rickettsia was removed and the cells  
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 Figure 4.7 Transcriptional profile of VATPaseV0a in D. variabilis tissues. Backless ticks were 

generated by taking off the dorsal cuticle and were exposed to R. montanensis for 1 h. The tick 

tissues (midgut, ovary and salivary glands) were then dissected out and extracted for total RNA.  

The level of DvVATPaseV0a mRNA was measured by qRT-PCR and normalized to tick actin 

mRNA.  Data shown are mean relative expression from two independent experiments.  Error bar 

represents SEM values and *P ≤ 0.05 was considered significantly different.  P-values of 0.0154 

and 0.0155 represent uninfected ovary compared to midgut and salivary glands, respectively.   

were washed twice with PBS.  To exclude the possibility of collecting extracellular Rickettsia, 

the samples were harvested by low-speed centrifugation.  Genomic DNA was then extracted 

from the cells and the percentage of rickettsial infection in comparison to control cells was 

assessed by qPCR.  As shown in Figure 4.8, inhibition of DvVATPase reduced percent relative 

invasion, compared to untreated control, by 27%, at 5 µM (P = 0.0005) and 0.5 (P = 0.0005) µM 

and by 13% at 0.05 µM (P = 0.0877) of inhibitor used. 
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Figure 4.8 Effect of V-ATPase inhibitor on R. montanensis infection of DVE1 cells.  DVE1 

cells were treated for 2h with bafilomycin A1 (BAF) prior to infection with R. montanensis at 

MOI of 10.  After 1 h, Rickettsia was removed.  The cells were washed twice with PBS and 

collected by low-speed centrifugation.  Genomic DNA was then isolated and percent relative 

invasion was assessed by qPCR.  Data shown are mean percent relative invasion from two 

independent experiments.  Error bar represents SEM values.  The asterisks mark significant 

difference from untreated control cells (*P = 0.0005). 

4.4 Discussion 

 V-ATPase is ubiquitously found in and is responsible for acidification of a variety of 

intracellular organelles in eukaryotic cells, such as endosomes and lysosomes.  The enzyme is 

essential for several biological processes e.g. protein sorting, protein processing and degradation, 

coupled transport of small molecule and receptor-mediated endocytosis (Nishi and Forgac, 

2002).  This study was carried out to characterize the V-ATPase V0 subunit a from D. variabilis.  

A full-length cDNA of DvVATPaseV0a (2856 bp with 2532 bp ORF) was isolated and expected 

to code for 843 amino acid protein with an estimated MW of 96 kDa.  Multiple sequence 

alignment (Figure 4.2) showed variation in amino acid sequences among species (77%, 66%, 

44% and 40% identity to I. scapularis, D. melanogaster, H. sapiens, and S. cerevisiae, 

respectively).  Thus, it is interesting to investigate the protein both in molecular and functional 
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level.  The protein was expressed, purified and the polyclonal antibody was raised against 

DvVATPaseV0a. The antibody was then used to confirm the presence of V-ATPase in tick 

tissues. The results showed a detectable protein band (only in ovary) with the MW slightly 

bigger than 96 kDa reflecting post-translational modification in the tick ovary (Figure 4.6).  

Amino acid sequence analysis revealed transmembrane segments and also a potential site for N-

glycosylation which is consistent with the studies of calf VATPaseV0a in which the protein was 

illustrated as a transmembrane glycoprotein (Adachi et al., 1990).  However, further 

investigation is needed to confirm the presence of N-glycosylation of DvVATPaseV0a in the 

tick.   The detection of DvVATPaseV0a band in the tick ovary but not in midgut and salivary 

glands, at 30 µg of protein loading, correspond to the transcriptional pattern (both in unexposed- 

and Rickettsia exposed- ticks) in which the mRNA in the tick ovary was expressed greater 

(significant difference in unexposed-ticks) compared to other tissues (Figure 4.8).   

The functions of V-ATPase in tick ovary are still unknown and need to be characterized.  

However, the increased expression of V-ATPase in tick ovary might be associated with receptor-

mediated endocytosis and protein transport, the two processes that are important for ovulation 

and embryogenesis in which V-ATPase are involved.  In many organisms, such as 

Caenorhabditis elegans (Grant and Hirsh 1999), D. melanogaster (Schonbaum et al. 1995), 

Aedes aegypti (Sappington et al. 1995), and also D. variabilis (Mitchell et al. 2007), vitellogenin, 

a yolk precursor protein, is taken up through receptor-mediated endocytosis pathway during 

oocyte growth.  Studies using RNAi in C. elegans showed that V-ATPase is required for 

ovulation and oogenesis.  Specifically, inhibition of V1 subunit C (Oka and Futai, 2000) and V0 

subunit a (Oka et al. 2001) genes, vha-11, unc-32, of V-ATPase in C. elegans caused embryonic 

lethality.  Moreover, studies of wnt/β-catenin signaling, a cascade important for embryonic 
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development, revealed an involvement of V-ATPase in acidification of the pathway (Cruciat et 

al. 2010).  Taken together, these findings suggest the importance of V-ATPase in the ovary, but 

the mechanisms in which V-ATPase function in the ovary need to be elucidated.   

 As the level of mRNA expression is not reflective of the protein function(s) and tick 

tissues including midgut, ovary, and salivary glands are essential for both horizontal and vertical 

transmission of SFG Rickettsia (Munderloh and Kurtti, 1995), the role of V-ATPase was then 

investigated at the protein level during R. montanensis invasion of backless D. variabilis.  The 

results showed no difference of DvVATPaseV0a mRNA level between unexposed- and 

Rickettsia-exposed ticks which is inconsistent with the studies in ticks chronically infected with 

R. montanensis (Macaluso et al. 2003), in which V-ATPase was upregulated in response to 

Rickettsia infection.  In the current studies, DvVATPaseV0a mRNA was measured in an early 

stage of rickettsial infection (1h) thus making comparison to the previous study by Macaluso et 

al. (2003) difficult.  However, the level of mRNA expression is not reflective of protein function.  

In the current study, the role of V-ATPase in acute rickettsial infection of DVE1 tick cells was 

examined using inhibition assays.  The results showed a significant decrease (dose dependent) in 

percent relative invasion in cells treated with V-ATPase inhibitor (bafilomycin A1) compared to 

untreated control.  Bafilomycin A1 is a well characterized inhibitor for V-ATPase and previous 

studies have shown that V0 domain subunit a (Hanada et al., 1990; Crider et al., 1994; Zhang et 

al., 1994; Wang et al., 2005) and c (Rautiala et al., 1993; Bowman and Bowman, 2002; Bowman 

et al., 2006) are targets of the inhibitor.  The mechanisms in which tick V-ATPase functions in 

response to rickettsial infection is unknown.  Because the role of V-ATPase was examined in the 

early stage of infection, it is possible that V-ATPase might play a role in receptor-mediated 

endocytosis, a process in which Rickettsia enter the cells.  Besides intracellular compartments, 
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V-ATPase is also found on the cell surface.  V-ATPase in clathrin-coated vesicles involves in 

receptor-mediated endocytosis.  In this process, the enzyme undergoes trafficking to endosomes 

and functions in recycling receptors (Forgac, 2000).  In addition, the studies of the V-ATPase V1 

domain showed that subunit B (Holliday et al., 2000) and C (Vitavska et al., 2003) of the protein 

bind to actin filament (F-actin).   In the tobacco hornworm V-ATPase subunit C (VATPaseV1C) 

not only binds to F-actin but also bind to a monomeric G-actin (Vitavska et al., 2005).  The 

biological function of VATPaseV1C and F-actin interaction was speculated to be involved in the 

organization of actin dynamics (Wieczorek et al., 2009).  As previously characterized in 

vertebrate cells, SFG Rickettsia manipulate host actin in order to invade host cells (Dramsi and 

Cossart 1998; Gouin et al., 2004).  These findings lead to the suggestion that V-ATPase is 

involved in rickettsial infection of tick cells via receptor-mediated endocytosis.   

Because V-ATPase plays multiple roles in eukaryotic cells, it was necessary to 

investigate the role of V-ATPase in both uninfected and Rickettsia infected ticks.  The present 

study provides a first description of tick V-ATPase and examined the role of the protein during 

rickettsial invasion.  Further studies are required to investigate the mechanism(s) in which 

Rickettsia manipulate tick V-ATPase.   
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CHAPTER 5 

DISCUSSION OF RESULTS AND FUTURE DIRECTIONS 

 Spotted fever group (SFG) Rickettsia is a group of gram negative obligate intracellular 

bacteria that are maintained in nature via transovarial transmission in ticks and through 

transstadial transmission during tick infestation (Sonenshine et al. 2005).  One species from this 

group, R. rickettsii is the causative agent of a potentially fatal disease known as Rocky Mountain 

spotted fever (RMSF).  The primary tick vector for pathogenic R. rickettsii is Dermacentor 

variabilis (Sonenshine et al. 2005).  This species of ticks also carry R. montanensis (Feng et al., 

1980; Anderson et al., 1986; Pretzman et al., 1990; Ammerman et al., 2004), an agent that was 

used in this study.   Ticks not only serve as vectors but also reservoir for SFG Rickettsia; 

however, many questions concerning SFG Rickettsia tick-cell interaction remain unresolved.  

Because Rickettsia is maintained vertically by the tick hosts, understanding the interactions 

between ticks and Rickettsia is important for full comprehension of the epidemiology of tick-

borne rickettsial diseases. Thus, the overall goal of this research is to study the interaction 

between Rickettsia and tick vector, specifically the molecular mechanisms involved in the 

invasion of SFG Rickettsia in tick cells.  Previous studies have revealed the signaling molecules 

involved in the uptake of Rickettsia into mammalian and Drosophila cells (Martinez and Cossart, 

2004; Martinez et al., 2005; Chan et al., 2009; Hillman et al., 2012; Reed et al., 2012). 

Considering the movement of SFG Rickettsia between vertebrate and invertebrate hosts, the 

hypothesis is that conserved mechanisms are utilized for host cell invasion.  Toward the tested 

hypothesis, the objectives for this study are to identify and further characterize the tick molecules 

central to Rickettsia invasion of host cells.   

 Being an obligate intracellular bacterium, invasion of host cells is a critical step for 

subsequent rickettsial survival.  In order to elucidate the host signaling cascade activated during 
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the entry of Rickettsia, it was necessary to identify the tick molecules involved in Rickettsia 

internalization into the host cells first.  This study has employed biochemical inhibition assays to 

identify the tick proteins involved in the uptake of R. montanensis into DVE1 tick cells.  The 

results revealed tick proteins important for rickettsial invasion and the pathway initiated by R. 

montanensis in order to invade DVE1 cells was proposed. After binding to unidentified receptors 

on tick cells, R. montanensis utilized host proteins including phosphatidylinositol-3’-kinase (PI 

3-kinases), protein tyrosine kinases (PTKs), Src family PTKs, focal adhesion kinase (FAK), Rho 

GTPase Rac1, and Neural Wiskott-Aldrich syndrome protein (N-WASP).  These molecules 

cooperatively stimulate actin related protein 2/3 (Arp2/3) complex leading to actin 

polymerization, cytoskeleton rearrangement and ultimately Rickettsia invasion into tick cells.  As 

mentioned above, D. variabilis is a vector for both non-pathogenic R. montanensis and 

pathogenic R. rickettsii.  Interestingly, the majority of Rickettsia that has been detected in 

infected ticks (D. andersoni and D. variabilis) throughout the United States is non-pathogenic 

Rickettsia such as R. montanensis, R. peacockii, and R. rhipicephali (Azad and Beard, 1998).  

The studies (both field and laboratory) in D. andersoni, the Rocky Mountain wood tick, have 

demonstrated a lower infection rate of R. rickettsii compared to R. peacockii (Burgdorfer et al., 

1981; Burgdorfer, 1988). The mechanisms underlying the low infection rate of R. rickettsii are 

elusive although the interference phenomenon, in which the secondary infection was blocked by 

the primary infection of different Rickettsia species, was described in D. variabilis infected with 

the two species of non-pathogenic Rickettsia (Macaluso et al., 2002). Therefore it is important to 

further study the molecular mechanisms involved in R. rickettsii invasion of tick cells.   

 In the current study, biochemical inhibitors were used to target selected tick molecules in 

order to elucidate their functions in Rickettsia internalization.   However, the effect of inhibitors 
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on tick cell viability and the solubility of the chemical in culturing medium are limiting factors of 

the assays.  RNAi is a powerful technique that is widely used to silence gene expression for 

functional study.  Further investigation will utilize RNAi to confirm the role of the identified tick 

molecules during Rickettsia infection.  However, RNAi carries its own disadvantages, such as 

off-target effects in which an introduced RNA can non-specifically bind multiple genes at the 

same time.  To knock down gene function using RNAi, the sequence of the target gene is needed.  

Because a complete D. variabilis genome sequence is not available, isolating D. variabilis gene 

sequences will be performed next. 

 In addition to identifying cDNA sequences, this study aimed to functionally characterize 

and provide the molecular details of tick signaling molecules involved in rickettsial invasion.  

Actin-related protein 2/3 (Arp2/3) complex, an important regulator for actin polymerization, was 

initially identified as a requirement for bacterial entry.   Full-length cDNA of all subunits of D. 

variabilis (Dv) Arp2/3 complex including DvArp2, DvArp3, DvARPC1, DvARPC2, DvARPC3, 

DvARPC4, and DvARPC5 were isolated.  Amino acid sequence analysis of DvARP2 and 

DvARP3 revealed potential ATP binding sites, which is consistent with other studies that have 

shown ATP binding to both Arp2 and Arp3, as well as ATP hydrolysis on Arp2. These reactions 

are required for Arp2/3 complex-mediated actin cytoskeleton remodeling (Dayel et al., 2001; Le 

Clainche et al., 2001; Le Clainche, 2003; Dayel et al., 2004; Martin et al., 2006).  Furthermore, 

four putative WD motifs were observed in DvARPC1 amino acid sequence.  One of the roles of 

WD motif containing protein is to form macromolecular protein complex; therefore, it was 

suggested that ARPC1 subunit functions in assembly and maintenance of the Arp2/3 complex 

structure and also in mediating the interaction of the complex with the proteins that regulate its 

functions (Welch et al., 1997).   
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The study of Arp2/3 complex mRNA expression in D. variabilis tissues revealed a higher 

expression of all seven DvArp2/3 complex subunit mRNAs in the tick ovary (both in uninfected- 

and Rickettsia infected- ovary) than in the other tissues (midgut and salivary glands); the levels 

of DvArp3, DvARPC4, and DvARPC5 mRNA expression in tick ovary were significantly 

greater compared to midgut and salivary glands.  In response to R. montanensis infection, 

DvARPC4 mRNA was shown to be significantly upregulated in the tick ovary compared to 

uninfected tissue.  Furthermore, functional study of Arp2/3 complex during R. montanensis 

invasion of tick tissues showed that inhibition of the complex by CK-666 generally decreased the 

ability of Rickettsia to invade tick tissues with a statistically significant invasion decrease in tick 

ovary.   

The role of Arp2/3 complex in tick ovary has not been described and merits further 

investigation.  In Drosophila, Arp2/3 complex is essential for oogenesis; Hudson and Cooley 

(2002) demonstrated that arp3 and arpc1 mutants had defects in flies’ egg chambers in which the 

germ line nurse cells failed to transport the cytoplasmic contents to the oocytes.   

Arp2/3 complex is a multisubunit protein and is critical for Rickettsia invasion of tick 

cells; our results show that disruption of Arp2/3 complex almost completely abolished (92% 

decrease) Rickettsia internalization into tick cells.  Therefore the connection between tick 

organisms and rickettsial transovarial transmission with respect to Arp2/3 complex requires 

further study. 

 The next molecule characterized in this study is V-ATPase.  V-ATPase is a multisubunit 

enzyme that can be found not only in intracellular organelles but also on the surface of 

eukaryotic cells.  In cellular bodies such as endosomes and lysosomes, the enzyme is responsible 

for acidification of the organelles whereas in clathrin-coated vesicles located on cell surface, it 
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functions in receptor-mediated endocytosis; the process in which Rickettsia enters host cells.  A 

full-length cDNA of V-ATPase V0 subunit a from D. variabilis (DvVATPaseV0a) was cloned 

and the amino acid sequence analysis revealed eight transmembrane segments and a potential 

site for N-glycosylation. These findings are consistent with studies conducted on calf 

VATPaseV0a in which the protein was illustrated as a transmembrane glycoprotein (Adachi et 

al., 1990).  The protein was expressed and purified and then polyclonal antibody was produced.  

Western blot analysis probed with anti-DvVATPaseV0a antibody revealed a detectable protein 

band (at 30 µg total protein loaded) in tick ovary with a MW slightly bigger than the 

recombinant protein which corresponds to the predicted N-glycosylation of the protein.   

A transcriptional profile of DvVATPaseV0a demonstrated a greater mRNA expression in 

tick ovary than in midgut and salivary glands (significant difference in uninfected-tissues) which 

is consistent with the protein expression pattern in which the DvVATPaseV0a band was detected 

in only the ovary.  To examine the influence of Rickettsia on DvVATPaseV0a transcription, 

mRNA expression was measured during R. montanensis infection of backless ticks.  The result 

showed no difference between uninfected- and Rickettsia infected- tissues.  In contrast, the 

functional study using a V-ATPase inhibitor, bafilomycin A1, revealed a significant decrease in 

percent relative rickettsial invasion of tick cells in comparison to untreated control cells.  

Although the results between mRNA expression and inhibition assays were contrasting, it can be 

concluded that V-ATPase is involved in the uptake of Rickettsia into tick cells because the level 

of mRNA expression is not always reflective of protein function.   

The underlying mechanisms in which tick V-ATPase functions during the entry of 

Rickettsia is unknown.  Considering the experimental design in which the role of V-ATPase was 

measured during the early stages of infection, V-ATPase was speculated to play a role in 
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receptor-mediated endocytosis,  As indicated previously, V-ATPase is also found in clathrin-

coated vesicles on the cell surface, where it functions in receptor-mediated endocytosis.  In this 

process, the low pH of endosomes stimulate the dissociation of ligand-receptor interactions 

leading to recycling of the receptors to the cell surface (Forgac, 2000).  Furthermore, there is 

evidence demonstrating that V-ATPase V1 subunit B and C bind to actin (Holliday et al., 2000; 

Vitavska et al., 2003; Vitavska et al., 2005) and the interaction by subunit C was speculated to be 

involved in actin organization dynamics. As described in vertebrate and invertebrate cells 

(previous and this study, respectively) SFG Rickettsia manipulate host actin in order to invade 

host cells (Dramsi and Cossart 1998; Gouin et al., 2004).  These findings are suggestive of V-

ATPase’s involvement in rickettsial infection of tick cells via receptor-mediated endocytosis.  

Besides receptor-mediated endocytosis, V-ATPase was shown to be involved in the escape of 

some pathogens, such as Listeria monocytogenes, from the phagosome into the cytosol of host 

cells (Beauregard et al., 1997).  Because phagosomal escape is the process that facilitates 

rickettsial survival after entering mammalian cells (Winkler and Miller, 1982; Walker et al., 

2001; Whitworth et al., 2005), it is necessary to further study the escape of Rickettsia from 

phagosome in tick cells.  

Altogether, this dissertation represented, for the first time, the description of tick proteins 

(Arp2/3 complex and V-ATPase) important for the uptake of Rickettsia into tick cells and the 

pathway activated during Rickettsia invasion of tick hosts was proposed as shown in Figure 5.1.   
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Figure 5.1 The proposed pathway activated during rickettsial invasion of tick cells.  After 

binding of R. montanensis to unidentified receptor (s) on tick cells, multiple tick molecules 

(colored in orange) including phosphatidylinositol-3’-kinase (PI 3-kinases), protein tyrosine 

kinases (PTKs), Src family PTKs, focal adhesion kinase (FAK), Rho GTPase Rac1, Neural 

Wiskott-Aldrich syndrome protein (N-WASP), and actin-related protein 2/3 (Arp2/3) complex, 

are activated.  The activation of these molecules leads to actin polymerization resulting in 

membrane rearrangements and rickettsial invasion into tick cells.  V-ATPase then facilitates 

recycling of the receptor to the cell surface.  The molecules and pathways with question marks 

were not examined in this study.  Figure was modified from Chan et al., 2010. 
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APPENDIX A 

COMMONLY USED ABBREVIATIONS 

 

µM – Micromolar 

⁰C – Degree Celsius 

⁰F – Degree Fahrenheit 

AG – Ancestral group 

AMP – Antimicrobial peptide 

ANOVA – Analysis of Variance 

Arp2/3 – Actin related protein 2/3 

ATP – Adenosine tri-phosphate 

CRT – Calreticulin 

CDC – Centers for Disease Control and Prevention 

cDNA – Complementary DNA 

CL – Capsule-like structure 

CM – Cytoplasmic membrane 

CW – Cell wall 

IM – Intracytoplasmic membrane.   

CO2 – Carbon dioxide 

CRT – Calreticulin 

CT – Threshold cycle 

Cyt – Cytochalasin 

CTL – Cytotoxic T lymphocytes  

Da – Dalton 

DC – dendritic cell 

DEPC – Diethylpyrocarbonate 

DMSO – Dimethyl sulfoxide 

DNA – Deoxyribonucleic acid 

dsRNA – Double-stranded RNA 
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DVE1 – D. variabilis cell line 

EDTA – Ethylenediaminetetraacetic acid 

F-actin – Filamentous actin 

FAK – Focal adhesion kinase 

FBS – Fetal bovine serum 

GAPDH – Glyceraldehyde 3-phosphate dehydrogenase 

gDNA – Genomic DNA 

GSP – Gene specific primer 

GTP – Guanosine triphosphate 

HGA – Human granulocytic anaplasmosis 

HME – Human monocytotropic ehrlichiosis  

ID – Intradermal 

IL – Interleukin 

IS – Insertion sequence  

IFN – Interferon 

IP – Intraperitoneal 

ISE6 – Ixodes scapularis cell line 

LPS – lipopolysaccharide 

LSU – Louisiana State University 

MHC – Major histocompatibility complex 

Mb – Mega bases 

MOI – Multiplicity of infection 

mRNA – Messenger RNA 

MW – Molecular weights  

NK – Natural killer  

N-WASP – Neural -Wiskott-Aldrich syndrome protein  

NOS – Nitric oxide synthase 

NN – Not notifiable 
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NO – Nitric oxide 

N-terminus – Amino-terminus 

OmpA – Outer membrane protein A 

OmpB – Outer membrane protein B 

ORF – Open reading frame 

PBS – Phosphate buffered saline 

PCR – Polymerase chain reaction 

PI 3-kinase – Phosphatidylinositol-3’-kinase 

PTK – Protein tyrosine kinase 

PVDF – Polyvinylidene fluoride 

qRT-PCR – Quantitative reverse transcriptase PCR 

qPCR – Quantitative PCR 

RACE – Rapid amplification of cDNA ends 

RMSF – Rocky Mountain spotted fever 

RNA – Ribonucleic acid 

RNAi – RNA interference 

RT-PCR – Reverse transcriptase PCR 

Sca – Surface cell antigens 

SDS-PAGE – Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM – Standard error of means 

SFG – Spotted fever group 

siRNA – Small interfering RNA 

TBRD – Tick-borne rickettsial diseases 

TBST – Tris-buffered saline containing Tween-20 

TE – Tris-EDTA 

TG – Typhus group 

TNF-α – Tumor necrosis factor-α 

TLR – Toll-like receptor  
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TRG – Transitional group 

T4SS – Type IV secretion system 

V-ATPase – Vacuolar ATPase 

WAVE – WASP-family verprolin-homologous protein 
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