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ABSTRACT 

Equine Herpesvirus-1 (EHV-1) is an important ubiquitous enzootic equine 

pathogen, causing significant economic losses to the horse industry. Despite extensive 

vaccination protocols, EHV-1 continues to be a major cause of epidemic abortion, perinatal 

mortality, respiratory disease and neurologic disease. EHV-1 infections are usually dealt 

with by using management practices that limit spread of the disease and secondary 

complications, providing symptomatic relief to infected horses, but no specific treatment is 

available. New therapeutic or virucidal agents could have great utility in slowing both the 

progression and spread of the disease in an epidemic situation. 

A number of porphyrins and their derivatives have been tested to have activity 

against HIV, vaccinia, and coronavirus. Porphyrin based compounds were suggested to 

inhibit virus infection by reducing the fusogenic potential of the virus (Vzorov et al., 

2002). However, the mechanism of action of porphyrin-based compounds is not well 

understood. While current antiherpetic agents target viral DNA replication, interference 

with the upstream replicative events such as fusion would not adversely affect the host cell 

metabolism, and makes them important targets for chemotherapeutic intervention of virus 

dissemination. 

We screened a number of porphyrin and platinum compounds for EHV-1 antiviral 

activity by testing their ability to interfere with EHV-1 infection of rabbit kidney and 

equine cell cultures during the entry and post entry events of the viral life cycle in order to 

determine if compounds act at the level of binding, penetration, replication, or egress. We 

identified Cu (III) tetrasulfonated phenylporphyrin and Fe (II) tetrasulfonated 
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phenylporphyrin as lead candidate antiviral compounds on the basis of their in vitro 

efficacy, cytotoxicity and therapeutic index. 

These compounds exhibited high antiviral potency during virus-to-cell fusion 

events, as well as no apparent cytotoxicity in cell culture assays at EHV-1 inhibitory 

concentrations. Specifically, selected porphyrin compounds inhibited free virus, gB-

mediated virus entry, reduced the extent of virus spread, and cell-to-cell fusion in the virus-

free cell fusion system. The EHV-1 antiviral properties and other pharmacological 

characteristics make porphyrins auspicious candidates for the treatment of EHV-1 

infections and may promote understanding of membrane fusion events of EHV-1 life 

cycle.
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CHAPTER I. INTRODUCTION 

STATEMENT OF PROBLEM 

Equine Herpesvirus-1 (EHV-1) is an important ubiquitous enzootic equine 

pathogen, causing significant economic losses to the large (hundred billion dollars) horse 

industry. Despite extensive vaccination protocols, EHV-1 continues to be a major cause of 

epidemic abortion, perinatal mortality, respiratory disease and occasionally neurological 

disease in horses. Furthermore, with increasing interactions within the equine industry, the 

potential losses during EHV-1 outbreaks are no longer confined to individual farms. In 

devastating recent outbreaks, an unusually high number of horses exhibited the 

neurological form of the disease, EHV-1 Myeloencephalopathy (EHM). There is a growing 

concern in the U.S. horse industry over the increased number of neurologic cases of EHV-

1 reported in recent years, as well as the occurrence of several high-profile outbreaks. The 

Center for Emerging Issues, part of the Department of Agriculture's Animal and Plant 

Health Inspection Service, recently labeled the neurologic form of EHV-1 as a potentially 

emerging disease. 

There is a pressing need for potent antiviral compounds to treat both disseminated 

as well as neurological forms of infections. EHV-1 infections are usually dealt with using 

management practices that limit spread of the disease, providing symptomatic relief to 

infected horses, including the use of steroids, non-steroidal anti-inflammatory agents, 

antibiotics for secondary bacterial infections as well as other compounds used to treat 

EHV-1-associated neurological symptoms like paresis, paralysis, distention of the urinary 

bladder, stiffness of pelvis or ocular damage, but no specific treatment is available. The 

current antiviral treatments options are based on extrapolation from established regiments 
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for nucleoside analogs such as acyclovir used for treatment of human infections with HSV-

1 and VZV and have not been shown to change the outcome of EHV-1 infections 

significantly. There are no controlled studies reporting on the efficacy of the known 

antiherpetic agents in the treatment or prevention of EHM, nor describing their 

pharmacokinetics, bioavailability, and safety in horses. New therapeutic or virucidal agents 

could have great utility in slowing both the progression and spread of the disease in an 

epidemic situation. 

While, current antiherpetic agents target viral DNA replication, fusion events of 

virus entry are the upstream replicative event, interference with which does not adversely 

affect the host cell metabolism, and makes them important targets for chemotherapeutic 

intervention of virus dissemination. The molecular events of the membrane fusion at the 

onset of herpesvirus infection are currently under extensive investigation in multiple 

laboratories and are still undetermined. Multiple viral surface glycoproteins are known to 

participate in the fusion events that may occur via endocytosis as well as pH-independent 

membrane fusion. Preliminary data indicates that the porphyrin based compounds inhibit 

virus infection by reducing the fusogenic potential of the virus (Dairou et al., 2004). 

Substantial work performed by Dr. Marzilli of the LSU Department of Chemistry and his 

collaborators at Emory University, Atlanta, GA has shown that specific porphyrin-based 

compounds exhibited strong and specific antiviral activities against different viruses such 

as HIV. Additional preliminary work in our laboratory has confirmed the antiviral 

properties of porphyrin compounds against coronaviruses, vaccinia, HSV-1 as well as 

EHV-1. The molecular basis for these antiviral activities is not known and it is the subject 

of the proposed investigations. 
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HYPOTHESIS 

The central hypothesis of the investigations was that select porphyrin compounds 

can specifically inhibit membrane fusion phenomena required for virus entry and virus 

spread through specific interactions with one or more viral glycoproteins required for 

membrane fusion. 

STATEMENT OF RESEARCH OBJECTIVES 

The overall objective of the current investigation was to determine what specific stage 

of EHV-1 infection and viral components are affected by the porphyrin compounds. 

Objective I 

To conduct screening tests to determine preliminary antiviral and cytotoxic effects 

of the available chemical compounds, including porphyrin, pthalocyanine, and platinum 

derivatives. 

Specific Aims 

1. To screen available chemical compounds for EHV-1 antiviral activity and to 

identify lead candidate compounds on the basis of their low in vitro toxicity and 

antiviral potency. 

2. To elucidate the mechanism of action of the antiviral compounds by localizing 

the effect of the compounds to the specific stages of virus life cycle such as 

attachment, virus to cell fusion, replication, assembly, or cell to cell spread. 

Objective II 

To conduct definitive tests to measure the antiviral effects of porphyrins and to 

unequivocally identify potential antiviral substances and the stage and components of 

EHV-1 viral infection that they affect. 
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Specific Aims 

1. To quantify the EHV-1 antiviral activity and cytotoxicity of the lead candidate 

antiviral compounds by determining the 50% effective concentration, 50% 

cytotoxic concentration, and therapeutic index of the compounds. 

2. To assay the effects of antiviral compounds on virus entry, infectious virus 

production and plaque formation. 

3. To determine whether selected porphyrin compounds specifically inhibit gB-

mediated virus entry and virus spread. 

LITERATURE REVIEW 

Historical Perspective 

In medicine one must pay attention not to plausible theorizing, but to experience and 

reason together.        ~Hippocrates 

If your horse says no, you either asked the wrong question, or asked the question wrong.   

         ~Pat Parelli 

Origins of Herpes 

More than 25 centuries have passed since investigations of herpesviruses have 

begun. Over the centuries, the inquiry has progressed from the basic classification of 

human cutaneous lesions and the individual accounts of animal diseases to be attributed to 

herpesviruses later, to the description of epidemiology of herpes infections, the discovery 

of etiological agents responsible for the disease, and ultimately, to the molecular 

characterization of the Herpesviridae family.  

The first written documentation of the herpesvirus infection is dating back to 

ancient Greece. The word 'herpes' comes from the Greek word herpein, used by 
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Hippocrates (460 BC-377 BC) to describe lesions that creep or crawl, referring to the 

sequential appearance and local extensions of lesions in human HSV-1 infection (Wildy, 

1973). Description of lesions resembling human herpes was also mentioned in Sumerian 

Tablet dated to 3rd millennium BC and the Egyptian Ebers Papyrus, around 1500 BC 

(Roizman and Whitley, 2001).  Then, from Avicenna (880-1036 AD) and Gulielmus 

Salicetto (13th century) until the beginning of the 19th century, the term ‘herpes’ have 

changed to ‘formica’ (Latin: ant), ‘furfur’ (Latin: bran, scales) and, then, back to ‘herpes’ 

(Beswick, 1962). While historical account of human herpesvirus infections are dated far 

back, the clinical conditions caused by Equine Herpes Virus -1 and other animal 

herpesviruses have only been described over the past four centuries. Nonetheless, 

understanding the nature of the members of Herpesviridae family took centuries and paved 

the way to the discovery and our current knowledge of EHV-1.  

Horses in Human History 

Until about 1 million years ago, there were artiodactyls, the one-toed horses of 

Equus species including the domestic horse, Equus caballus, all over Africa, Asia, Europe, 

North America, and South America, in enormous migrating herds that must easily have 

equaled the great North American bison herds, or the huge wildebeest migrations in Africa. 

In the late Pleistocene there was a set of devastating extinctions that killed off most of the 

large mammals in North and South America. All the horses of North and South America 

died out, along with the mammoths and saber-tooth tigers. These extinctions seem to have 

been caused by a combination of climatic changes and overhunting by humans, who had 

just reached the New World. To date, only two truly "wild" groups survived Przewalski's 

horse and the Tarpan. The Tarpan became extinct in the 19th century and Przewalski's, 
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discovered in 1879 in Mongolia, is endangered and until recently was considered extinct in 

the wild (Galosi et al., 2001). 

Humans of Paleolithic period left visual record of their fascination with horses and 

other large herbivorous mammals, whose images were predominant over other animals. 

One of the most common subjects of Ice Age art is the horse; the wild animal that was 

sometimes used for food and whose speed and grace was admired by early humans.  The 

earliest known cave wall art is in Chauvet Cave at Vallon-Pont d’Arc near Avignon, 

France. It is dated to be about 32,000 years old and depicted large elaborate scenes of 

horses (Bednarik, 1998; Clottes, 2002). Horses were immortalized in sculptures, as in 

35,000 year old small ivory horse carving found at Hohle Fels Cave in southwestern 

Germany. The earliest domestication of horses is most likely to have occurred in the 8000 

BC to 5000 BC window. The earliest evidence of domestication is in Ukraine at 

approximately 4,000 BC as seen by the fenced enclosures and the specific wear of the 

equine teeth consistent with a bid use. The earliest uncontroversial evidence of horses used 

as trained animals are the chariot burials of the Sintashta-Petrovka culture of Southern Ural 

Mountains in northern Kazakhstan, dating to around 2000 BC.  The horse first appears in 

written history in 1700 BC, while the Trojan War of 1218 BC and Hippocrates 460-377 

BC were yet to come. In about 1000 BC riding was initiated in the civilized lands of the 

Near East, and ever since, the horses have carried our civilization on their backs.  

Earliest Identification of the Diseases Attributed to the Pathogen 

Horses were the foundation of veterinary medicine. In the 19th century practice, the 

horse continued to be the main focus of veterinary work in peace and war. As the cities 

grew, increase in the number of horses made the manure disposal too difficult, and thus, 
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the horse has lost to bicycles in major cities and to the railroads for distance travel. Then, 

with invention of internal combustion engine, the generated “horsepower” no longer 

required veterinary services. Horses still held their own on the farm, for local transport, 

and for sport for those who could afford them.  

Herpes viruses of humans and horses co-evolved with their hosts. While modern 

EHV-1 causes respiratory disease, epidemic abortion as well as perinatal mortality, and 

occasionally neurological disease in horses, it should be considered that the historic 

accounts of human and equine clinical conditions now attributed to the herpesviruses, 

could actually have had other etiology: viral, bacterial, fungal, or even now an extinct 

pathogen. 

In North America, the record of animal diseases was seldom mentioned in the 

literature of the colonial period (Berjeau, 1864; Leonard, 1979; Robertson, 1890; 

Rockwell, 1868). Noah Webster in his “Brief History of Pestilential Diseases”, published 

at Hartford in 1799, and George Fleming, prominent British veterinarian, in his “Animal 

Plagues”, published at London in 1871, left the best and most complete descriptions of 

animal plaques that occurred in America prior to 1800 (Flemming, 1871). Horses 

commonly had conditions called colds, with clogged sinuses, copious defluxions that could 

have been easily attributed to respiratory disease caused by EHV-1 and secondary bacterial 

infections. These were treated by steaming the upper respiratory tract by means of a nose 

bag with boiling water as an early advent of modern nebulization. The respiratory tract was 

often subject to inflammation in the form of bronchitis, congestion of the lungs, or 

pneumonia. In “The Illustrated Horse Doctor”, Edward Mayhew attributed many such 

cases to neglect, for example, letting an animal stand for hours in cold, wet weather after 
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subjecting the animal to hard labor (Mayhew, 1861). Herpes virus reactivation from 

latency upon stress and immune suppression could have easily been to blame. Aside of 

continuous steaming, a poultice was held with bandage around the throat. A waterproof 

jacket applied to the thorax, and a flannel kept moist in cold water was wrapped around the 

chest. Diethyl ether, a general anesthetic and analgesic and laudanum, an opium tincture, 

medications were also used. In pneumonia, the standard treatment was steam and dosing 

with solution of diethyl ether, aconite (a local topical analgesic in neuralgia, sedative in 

acute laryngitis, antipyretic, negative chronotrope) and belladonna (atropine, also an 

antidote of aconitum), the latter two being toxic hallucinogenic compounds at higher 

doses.  Brain disorders, such as EHV-1 myeloencephalopathy, must have been truly 

frightening to horse owners, with phrenitis (old term for encephalitis) often leading to 

violent behavior and was said to be the result of an injury caused by the carter flailing the 

head with the butt of his whip. An infectious abortion of mares was a veritable scourge to 

horse breeders. In 1889-90, the virulence reached its climax in North America. In Illinois, 

nearly 2,500 foals were lost to EHV-1 with about 5,000 surviving. In some towns the 

losses reached 75% (Williams, 1889). 

EHV-1 Discoveries 

The discovery of etiological agents responsible for disease goes alongside the 

development of technology (Table I-1). In the 1890s, advances in microbiology, pathology, 

and immunology have impacted the veterinary medicine. The first virus was discovered in 

1882, the agent of tobacco mosaic disease by Dmitry Iosifovich Ivanovsky (1864-1920), a 

Russian-Ukrainian scientist considered the father of Virology (Ivanovsky, 1882). 

However, the viral etiology of the epizootic abortion of mares as differentiated from 
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bacterial abortion was not determined until 1936 by William Wallace Dimock and Phil 

Edwards at the Kentucky Agriculture Experimental Station, Lexington (Dimock and 

Edwards, 1933; Dimock and Edwards, 1936). They described the gross pathological 

changes of aborted fetuses, including intranuclear inclusion bodies in the fetal lungs and 

livers, and gave clinical observations of viral abortions (Dimock et al., 1942). Later, the 

equine abortion virus was cultivated in laboratory animals and tissue culture (Anderson 

and Goodpasture, 1942; Doll et al., 1953; Randall et al., 1953), and a more extensive 

pathological findings were made by Drs. Westerfield and Dimock (Westerfield and 

Dimock, 1946). Only, in 1963, the virus was shown by electron microscopy to be a 

member of the herpes group (Plummer and Waterson, 1963).  

History of Antiherpetics 

The first successful demonstration of antiviral therapy for a herpesvirus infection is 

attributed to the reduction in mortality in HSV encephalitis achieved with vidarabine 

therapy (Whitley et al., 1977). This therapy introduced an entirely new era of antivirals, but 

was associated with toxicity and difficulties in drug administration. For mucocutaneous 

and visceral HSV infections, the real advance was the discovery of acyclovir and the 

demonstration of its mechanism of action, attributed to Dr. Gertrude Elion, a Nobel Prize 

winner in medicine for the discovery of modern antivirals (de Miranda et al., 1982; Elion, 

1982, 1983). Her approach was revolutionary, she used her understanding of the structure 

of nucleic acids to synthesize molecules to specific targets, rather than simply screening 

randomly chosen molecules, method still often relied on today. In fact, it was researchers 

trained by Elion who first saw the anti-HIV potential of 3'-azido-3'-deoxythymidine 

(AZT), at the time an unused anti-cancer drug from the 1960s (Sepkowitz, 2001). 
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 Acyclovir was the first selective inhibitor of herpes replication. Having one of the 

most remarkable safety profiles of any therapeutic agent, acyclovir became the treatment 

of choice for all HSV and VZV infections. Twenty years after the success of acyclovir, it is 

now a generic medication and remains the foundation of antiherpetic therapeutics. Other 

medications have been licensed, the most widely known are valaciclovir and famciclovir 

(Crumpacker, 1996; De Clercq, 1993; Stein, 1997). 

History of Porphyrins 

The answer to the ancient questions of why the grass is green and the blood is red 

was given by Hans Fischer, for which he earned the Nobel Prize for Chemistry in 1930, 

“for his researches into the constitution of haemin and chlorophyll and especially for his 

synthesis of haemin” (Fischer, 1999). Both haemin (the oxidized ferric form of heme, also 

called hematin) and chlorophyll are members of a family of vivid compounds, the 

modified tetrapyrroles or porphyrins, which were dubbed the “pigments of life”(Battersby, 

2000; Battersby et al., 1980) and which Nature uses in numerous roles in the biosphere 

among the broad array of its varied life forms. The origin of word porphyrin comes from 

Greek word for purple, porphuros. Hemin crystals were discovered in 1853 (Olbrycht, 

1953). 

Porphyrias are a group of inherited and acquired metabolic disorders of heme 

biosynthetic pathway enzymes, leading to overproduction and accumulation of porphyrin 

derivatives that manifest in skin, neurologic, cardiovascular, and digestive disturbances 

accompanied by extremely severe pain. The severe forms of condition has been suggested 

as an explanation for vampire and werewolf legends, due to photosensitization, sensitivity 

to sulfur containing garlic, increased hairgrowth, and other symptoms.  
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Table I-1. Historical landmarks of understanding the nature of Herpesviridae and 
EHV-1 infection 

Date Event Reference 
484 -

425 BC 
First accounts of a herpesvirus when Herodotus drew an association between 
cutaneous eruptions and fever caused by HSV-1 

(Roizman and Whitley, 
2001) 

25 BC-
50 AD 

Celsius described an actual herpetic lesion caused by VZV (Roizman and Whitley, 
2001) 

129-
200 AD 

Galen recognized that recurrent HSV lesions develop at the same anatomical 
location, regional distribution now understood to be due to the infection of the 
nerve innervating the specific area  

(Roizman and Whitley, 
2001) 

1847 First infectious disease control technique in human hospital, a hand scrub 
between patients 

(Best and Neuhauser, 
2004) 

1882 Discovery of the first virus, tobacco mosaic virus, by Ivanovsky (Ivanovsky, 1882) 
1883 The most enlightening description of HSV recurrences was published by Unna (Unna, 1883) 
1893 Although previously well characterized, the HSV transmissibility was first 

recognized 
(Whitely et al., 1998) 

1910 Isolation of human and veterinary patients with contagious diseases became 
standard as well as the use of sterile instruments, gowns, masks, and gloves for 
surgical procedures in large university human hospitals 

 

1930s The milestone of HSV biology, an observation was made by Andrews and 
Carmichael that recurrent infections occurred only in adults who carried 
neutralizing antibodies, an occurrence in sharp contrast to the behavior of other 
known infectious agents of that time. 

(Andrews and 
Carmichael, 1930) 

1936 Viral etiology of the epizootic abortion of mares was differentiated from 
bacterial abortion 

(Dimock and Edwards, 
1933) 

1938-
1939 

Doerr and Burnet and Williams understood the true nature of HSV latency and 
reactivation 

(Roizman and Knipe, 
2001) 

1940 Description of gross pathological changes of aborted fetuses, including 
intranuclear inclusion bodies in the fetal lungs and livers, and clinical 
observations of viral abortions  

(Dimock, 1940) 

1941 First report of HSV-1 infection in the brain (Smith et al., 1941) 
1942 Equine abortion virus was cultured in laboratory animals and tissue culture  (Anderson and 

Goodpasture, 1942) 
1950 Complement-fixation test for equine virus abortion (Doll and Hull, 1950) 
1953 Adaptation of equine abortion virus in Syrian hamsters (Doll et al., 1953) 
1954 Early steps to recognition of equine rhinopneumonitis and abortion as clinical 

conditions caused by a single agent. 
(Doll et al., 1954) 

1956 Agglutination of horse erythrocytes by tissue extracts from hamsters infected 
with equine abortion virus 

(McCollum et al., 1956) 

1953 
and 

1963 

EHV-1 was isolated as two presumably serologically distinct herpesviruses 
EHV-1, as equine abortion in 1953 and rhinopneumonitis virus, EHV-2, 
isolated from the respiratory tract of a colt with a runny nose and a cough in 
1963 

(Doll et al., 1953; 
Plummer and Waterson, 
1963) 

1961 Electron microscopic study of equine abortion virus 13 years post HSV-1 
visualization in 1948 

(Tajima et al., 1961) 

1963 Virus was shown by electron microscopy to be a member of the herpes group (Plummer and Waterson, 
1963) 

1969 EHV-1 and EHV-4 recognized as separate strains (Plummer et al., 1969) 
1974 Isolation of latent herpes viruses in horses (Iurov and Sologub, 1974) 
1992 EHV-1 genome cloned (Telford et al., 1992) 
1959 Live-attenuated vaccine developed (Doll et al., 1959) 
1961 Preventative vaccination against EHV abortion introduced (Doll, 1961) 
2002 Myeloencephalopathy outbreaks (Stierstorfer et al., 2002) 
2002 Acyclovir used as a treatment for EHV-1 infections (Wilkins, 2003) 
2003 Preliminary results indicated EHV-1 myeloencephalopathy is due to atypical 

stain of EHV-1 
(Goehring et al., 2006) 
(Allen, 2006) 
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Taxonomy of EHV-1 

Method of Classification and Properties of Subfamilies 

As discussed earlier, although the diseases caused by herpesviruses have been 

known for centuries, the discovery of etiological agents responsible goes alongside the 

development of technology. HSV-1 has been isolated in 1940, but the big development 

occurred between 1950 and 1956 with the application of tissue culture to isolate the other 

members of the Herpesviridae family. Identifying these new and apparently related viruses 

was what led to a scientific desire for them to be classified. Current classification of 

Herpesviridae family came into being in 1981.  

Equine herpes virus 1 (EHV-1) is a member of family Herpesviridae, subfamily 

Alphaherpesvirinae, genus Varicellovirus as classified by the Herpesvirus Study Group of 

the International Committee on the Taxonomy of Viruses (ICTV) (Fauquet and Mayo, 

2001). Herpesviruses are highly disseminated in nature and most animal species have at 

least one herpesvirus (Table I-2). Of nearly 160 herpesviruses that have been characterized, 

seven herpesviruses have been isolated so far from horses and are divided into two 

subfamilies: the alphaherpesvirinae (equine abortion virus (EHV-1), equine arterivirus 

(EHV-3), equine rhinopneumonitis virus (EHV-4), EHV-8, and EHV-9) and the 

gammaherpesvirinae (EHV-2, EHV-5). In each subfamily the viruses belong to the same 

genus, varicellovirus (EHV-1,-3,-4,-8, and -9) and radinovirus (EHV-2 and -5) 

respectively. 

Herpesviridae classification scheme is used to depict evolutionary relatedness and 

to predict biological properties of newly identified members in relation to well known 

ones. As such, human herpesvirus 1 is considered a model for properties of the viruses that 
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belong to the Alphaherpesvirinae subfamily including EHV-1, although it belongs to a 

different genus than the EHV-1. On the other hand, Pseudorabies Virus (PRV) of swine 

and Varicella Zoster Virus (HSV-3, VZV; human chicken pox virus) are the other two well 

studied viruses that are members of the Varicellovirus genus and are often used for 

extrapolation of some of EHV-1 properties yet unknown. 

Memberships in the Herpesviridae family are assigned based on the architecture of 

the virion and include large, dsDNA genome, enveloped viruses. The family is subdivided 

into three subfamilies – the Alphaherpesvirinae, the Betaherpesvirinae, the 

Gammaherpesvirinae, and Ictalurivirus – on the basis of biological properties (Roizman et 

al., 1981). The subfamilies are further subdivided into genera based on DNA sequence 

homology, similarities in genome sequence arrangement, and relatedness of important viral 

proteins.  

Members of Alphaherpesvirinae subfamily are associated with variable host range, 

relatively short reproductive cycle, rapid spread in culture with efficient destruction of 

infected cells (cytolytic), and capacity to establish latent infections primarily, but not 

exclusively in the sensory ganglia, and therefore, significant primary and recurrent 

infection. The subfamily contains the genera Iltovirus, Mardivirus, Simplexvirus, and 

Varicellovirus. 

By comparison, members of Betaherpesvirinae are characterized by restricted host 

range, long reproductive cycle, and slow infectious cycle with cytomegalia in cell culture. 

The virus can be maintained in latent form in secretory glands, lymphoreticular cells, 

kidneys, and other tissues. The subfamily consists of the genera Cytomegalovirus, 

Muromegalovirus, and Roseolovirus (van Regenmortel et al., 2000).   
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Table I-2. Select members of the Herpesviridae family. Well studied or clinically 
significant viruses are represented. 
Subfamily      Genus Species Vernacular Name/Disease Condition 

Al
ph
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Iltovirus Gallid herpesvirus 1  
Mardivirus Gallid herpesvirus 2 Marek's disease virus type 1 
 Gallid herpesvirus 3 Marek's disease virus type 2 
 Meleagrid herpesvirus 1 Turkey herpesvirus 
Simplexvirus  Ateline herpesvirus 1  
 Bovine herpesvirus 2 bovine mammillitis and pseudo-lumpy skin disease 
 Cercopithecine 

herpesvirus 1 
also known as Herpes B virus, causes a Herpes 
simplex-like disease in Macaques 

 Human herpesvirus 1 (Herpes simplex virus type 1)  oral and/or genital 
herpes (predominantly orofacial) 

 Human herpesvirus 2 (Herpes simplex virus type 2)  oral and/or genital 
herpes (predominantly genital) 

Varicellovirus Bovine herpesvirus 1 infectious bovine rhinotracheitis, vaginitis, 
balanoposthitis, and abortion in cattle 

 Bovine herpesvirus 5 encephalitis in cattle 
 Suid herpesvirus 1  (pseudorabies virus) PRV 
 Equid herpesvirus 1 Equine rhinotracheitis virus, abortion in horses 
 Equid herpesvirus 3 coital exanthema in horses 
 Equid herpesvirus 4 rhinopneumonitis in horses 
 Equid herpesvirus 8  
 Equid herpesvirus 9  
 Canid herpesvirus 1 severe hemorrhagic disease in puppies 
 Caprine herpesvirus 1 conjunctivitis and respiratory disease in goats 
 Felid herpesvirus 1 viral rhinotracheitis and keratitis in cats 
 Duck herpesvirus 1 duck plague 
 Human herpesvirus 3 Varicella-zoster virus, chickenpox and shingles   
 Phocid herpesvirus 1  
Mardivirus Gallid herpesvirus 2 Marek's disease 
Iltovirus Gallid herpesvirus 1 infectious laryngotracheitis in birds 

Be
ta

he
rp

es
vi

rin
a

e 

Cytomegalovirus       Human herpesvirus 5 (Human cytomegalovirus)   CMV: causes 
infectious mononucleosis, retinitis, etc. 

Roseolovirus Human herpesvirus 6  Human B-cell lymphotrophic virus or roseolovirus: 
causes "sixth disease" (known as roseola infantum 
or exanthem subitum)    

 Human herpesvirus 7      closely related to HHV-6; causes roughly the same 
symptoms 

 Suid herpesvirus 2 inclusion body rhinitis in swine 

G
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Lymphocryptovirus Human herpesvirus 4 (Epstein-Barr virus)   lymphocryptovirus: causes 
infectious mononucleosis, Burkitt's lymphoma and 
nasopharyngeal carcinoma    

Rhadinovirus Alcelaphine herpesvirus 1 wildebeest herpesvirus 
 Bovine herpesvirus 4  bovine malignant catarrhal fever 
 Equid herpesvirus 2 equine cytomegalovirus infection 
 Equid herpesvirus 5  
 Human herpesvirus 8 Kaposi's sarcoma-associated herpesvirus – KSHV, 

primary effusion lymphoma and some types of 
multicentric Castleman's disease 

  Ictalurivirus   Ictalurid herpesvirus 1 Channel catfish virus 
  Acipenserid herpesviruses  1, 2, & 3 
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Gammaherpesviruses infect T or B lymphocytes, produce no infectious progeny, 

and are implicated in neoplastic transformation of lymphocytes. The host range of 

members of Gammaherpesvirinae subfamily is limited to the taxonomic family or order of 

their natural host. Latent virus is frequently demonstrated in lymphoid tissues. Subfamily 

includes Lymphocryptovirus and Rhadinovirus genera (van Regenmortel et al., 2000). 

At first, EHV-1 was isolated as two presumably serologically distinct herpesviruses 

EHV-1, an equine abortion or rhinopneumonitis virus (e. g. (Doll et al., 1953)) and EHV-2, 

isolated from the respiratory tract of a colt with a runny nose and a cough (Plummer and 

Waterson, 1963). The type 1 thought 4 virus designations were proposed by Plummer in 

1969 (Plummer et al., 1969). First report of HSV-1 infection in the brain dates to 1940s 

(Smith et al., 1941). 

Evolutionary Relatedness and Coevolution with the Host  

The herpesviruses are believed to be of ancient origin, at least 300 million years old 

(Davidson, 1993). They have coevolved with their hosts, mainly mammals, birds, and fish, 

with possible multiphyletic origins and lateral transfers. Evolution occurred via three 

mechanisms - cumulative point mutations, gene duplication, and gene capture (McGeoch 

et al., 2006). Another ancestral relationship of herpesviruses links them to bacteriophages 

via similarities of their capsid proteins and assembly mechanisms (Steven et al., 2005; 

Steven and Spear, 1997). Phylogenetic reconstruction of herpesvirus evolution is generally 

based on nucleotide or amino acid sequence comparisons of specific proteins and varies 

depending on the particular protein chosen for analysis (Figure I-1). The analysis of DNA 

polymerase, major capsid protein, DNA-packaging tegument protein and glycoprotein B 

sequences revealed that the genome closest to a consensus herpesvirus genome is that of 
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human herpesvirus 6, suggesting that this genome is closest to a progenitor herpesvirus 

(Karlin et al., 1994). Chicken and other avian species were found to be more natural or 

more ancient hosts of herpesviruses. 

Originally, by DNA-DNA hybridization studies, the EHV-1 and EHV-3 types 

exhibit only 2 to 5% homology. As much or more genetic relatedness was reported 

between herpesviruses of other animal species, 8-10% base sequence homology between 

HSV-1 and PRV (Ludwig et al., 1972) and 14% between HSV-1 and BHV-1 (Sterz et al., 

1973). The DNA homology among alphaherpesviruses supports the hypothesis that the 

alpha class is of relatively recent ancestry (Alba et al., 2001; Karlin et al., 1994). The equid 

herpesvirus 1 has the most random herpesvirus genome and stands out as the consensus 

alphaherpesvirus, suggesting it may approximate an ancestral alphaherpesvirus. The most 

similarity among alphaherpesviruses is between EHV-1 and PRV-1. There is also great 

similarity between VZV, HSV-1 and EHV-1 (Karlin et al., 1994; Telford et al., 1992). 

Other studies suggest that closely related EHV-1 and EHV-4 are evolutionary nearest to 

BHV-1, then VZV, then, HSV-1 and HSV-2, and at last GHV-2 (Alba et al., 2001).  

Complete genomes are often a mosaic, where genes were acquired from different 

sources and have undergone lateral transfer, transposition, and recombination events in the 

course of evolution. When genomic comparison was followed by protein sequence 

alignments, again the sequence closest to the consensus sequence of Herpesviridae was 

HHV-6,  with EHV-1 identified as being second to dominate the hierarchy. Similarities 

among EHV-1 and HHV-6 include the fact that both viruses are lymphotropic and can 

infect T-cell,s but are also associated with infection of monocytes, epithelial cells and the 

central nervous system. 
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Figure I-1. Evolutionary relatedness of herpesviruses. 
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It could be speculated that herpesvirus ancestors inhabited the avian species first, 

and later, underwent transfer from birds to mammals, and then, potentially from humans to 

horses and back to humans. The estimates of the time of virus transfer between host species 

indicate a considerable antiquity, close to the end of the Cretaceous period. The three 

subfamilies are estimated to have arisen 180 to 220 million years ago (McGeoch et al., 

1995), before major mammal evolution and therefore became a diverse group of viruses. 

Within the subfamilies, the phylogenetic tree patterns reflect patterns in the tree lineages of 

mammalian hosts, suggesting coevolution (cospeciation) of the host and virus lineages, and 

thus enabling to estimate the division between EHV-1 and EHV-4 to be less than 5 million 

years ago, separation from PRV and BHV-1 at 83.4 million years ago when artiodactyls 

(“even-toed”) and perissodactyls (“odd-hoofed” mammals) have evolved, and from VZV  

and HSV-1 more than 92 million years ago when primates and ungulates (hoofed animals) 

advanced (Karlin et al., 1994; McGeoch and Cook, 1994; McGeoch et al., 1995; McGeoch 

et al., 2000). Molecular resource partitioning principle is that coexisting life forms strive to 

establish independent niche with respect to resources, to avoid competition for host 

resources.  Therefore, avoidance of competition between ancestral viruses, led to spatial 

and/or temporal isolation aka distinct host specificity, cellular tropism, sites of 

reactivation, and latency.  

Clinical Isolates and Laboratory Strains 

EHV-1 field isolates were obtained by culture of diagnostic material (nasal swab or 

blood or tissue samples) on Rabbit kidney (RK-13), equine dermal (NBL-6) cell lines, or 

primary equine (equine embryonic lung or equine fetal kidney) cell types (Table I-3). 

Strains can be adapted to grow on bovine and hamster cells with mutation in gC (Sugahara 
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et al., 1997). The majority of EHV-1 field isolates are archive material held at the Animal 

Health Trust (United Kingdom isolates) and the Gluck Equine Research Center (U.S. and 

Canadian isolates). Additional isolates, or purified DNA from isolates, originating from 

outbreaks in other countries are maintained by G. Fortier (Laboratoire Frank Duncombe, 

France), M. Studdert (University of Melbourne, Australia), S. Raidal (Murdoch University, 

Australia), C. van Maanen (Animal Health Service, The Netherlands), C. Galosi (Cátedra 

de Virología, UNLP, Argentina), and K. van der Meulen (University of Ghent, Belgium). 

Neuropathogenic strain AB4 and nonneuropathogenic strain V592 and other strains 

were compared on a DNA level to identify a variation in a single amino acid that is 

strongly associated with neurologic versus nonneurologic disease outbreaks. The amino 

acid is located within a highly conserved region of the genome that encodes a key viral 

enzyme, the DNA polymerase gene, which is conserved in all herpesviruses (Nugent et al., 

2006). Mutation did not alter the kinetics of viral replication, and therefore, had minimal 

effect on viral shedding that is important for horizontal spread in a population (Goodman 

et al., 2007). 

Table I-3. Known EHV-1 parental strains. 

Virus Isolation, year & place Passage, cells & # Reference 
Kentucky A 1953, Kentucky Hamster 400, LM  
Kentucky D 1952, Kentucky Hamster 94 PubMed 13944111 
Ab4 1980, England ED 12 PubMed 1318606 
V592 England  PubMed: 10805982 
Ab1 England   
HSV25A Australia  PMID: 9870583 
Kentucky T431 1980, Kentucky ED 4  
Karpas 1966, France EK PubMed 5909615 
438/77  1981, Australia  PubMed 6270790 
HH-1 1967, Hokkaido   
2104 1986, Hokkaido FHK3 ∗ 

                                                 
∗ EQ-Primary equine kidney cells, ED – equine dermal cells, FHK – fetal horse kidney cells, BK – primary 
bovine kidney cells, MDBK – Madin-Darby bovine kidney cells, LM – mouse L cells 
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Architecture of Herpes Virion 

EHV-1 has been studied in the laboratory for more than 50 years (Girard et al., 

1963; Reczko et al., 1965; Reczko and Mayr, 1963) and its properties have been well 

characterized either directly or by extrapolation of the findings with HSV-1, VZV, or of its 

closest relatives, PRV and BHV-1. Alphaherpesvirinae family is usually represented by 

Herpes simplex virus type 1 (HSV-1). However, HSV-1 is a Simplexvirus genus member. 

Varicellovirus genus of the Alphaherpesvirinae is typifed by Varicella Zoster Virus 

(VZV). In subsequent review of the architecture and life cycle of EHV-1, the findings that 

are true for all alphaherpesviruses and those specific to the varicellovirus genus or EHV-1 

will be described and noted accordingly. However, the review is broadened to include the 

most detailed knowledge of herpesvirus virology, even if certain aspects have not been 

confirmed specifically for EHV-1. Therefore, a collective knowledge of herpes virology 

researchers is reviewed below as related to Equine Herpes Virus 1. 

EHV-1 virion consists of four structural units: DNA core, capsid, tegument, and the 

envelope (Figure I-2). All herpesviruses have the same basic structure, a rigid icosahedral 

capsid surrounded by a membrane envelope. The capsid is encircled by the tegument 

proteins and contains the virus DNA in a highly condensed form in which it is protected 

from mechanical and other damage.  

The Envelope 

 Equine herpesvirus 1 virions are about 120-200 nm in diameter, slightly 

pleomorphic, spherical and are enveloped in a cell-derived bilipid membrane. Outer 

covering of the virion has a typical trilaminar appearance (Epstein, 1962), and appears as if 

an arrangement of patches of altered cellular membranes (Armstrong et al., 1961; Falke et 
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al., 1959; Morgan et al., 1968). Projected from the surface of the envelope are roughly 800 

distinct spikes of viral glycoproteins (Table I-4) dispersed over the entire surface varied in 

length, spacing, and in the angles at which they emerge from the membrane (Abodeely et 

al., 1970; Abodeely et al., 1971; Grunewald et al., 2003; Klingeborn and Pertoft, 1972), in 

clusters, and/or in transmembrane contact with tegument proteins (Grunewald et al., 2003). 

Their distribution was nonrandom, suggesting functional clustering. Gycoprotein B, for 

example, contributes about 5% of the envelope spikes. At least 11 membrane proteins are 

present on the surface of the virion envelope (Roizman and Knipe, 2001). The copy 

number of individual proteins can exceed 1,000 per virion (Spear, 2004; Steven and Spear, 

1997). These proteins are the target for neutralizing antibodies and therefore, the potential 

targets for viral vaccines. 

 Herpesvirus envelope proteins play essential roles in the initial stages of virus 

infection, i.e., virion attachment and penetration (Spear and Longnecker, 2003) to select 

cell types. Additionally, they are also important in mediating proper assembly and egress 

of virus particles in the late phase of the replicative cycle (Mettenleiter, 2004), and their 

function will be discussed in further detail in the review of EHV-1 life cycle. 

 Lipid rafts, specific microdomains on the surface of cellular membranes were found 

to play a critical role in virus replication because of localizing and concentrating viral 

components in such microdomains for entry, assembly, and budding of the virus. Rapid 

redistribution of cell-surface anchored viral protein such as gB within membrane lipid rafts 

would bring protein species in the proximity of each other to form multimers and to 

interact with cellular receptors during early stages of virus infection, serving as a platform 

for cell signaling and entry (Bender et al., 2003). 
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Figure I-2. EHV-1 virion. Herpesvirus virion consists of  a core containing a linear, 
double stranded DNA, an icosadeltahedral capsid, approximately 100-110 nm in diameter, 
comprised of 162 capsomeres with a fissure running down the long axis as well as an 
amorphous, sometime asymmetric material that surrounds the capsid, designated as the 
tegument, and an envelope containing viral glycoprotein spikes on its surface. The arrow 
shows a transmembrane contact between a glycoprotein and the tegument. 
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Table I-4. Herpesviridae glycoproteins. 

Characteristics EHV-1 
ORF 

HSV-1 PRV VZV ORF 

Envelope glycoprotein (gK) 6 UL53 gp04 5/gp06 
Envelope protein (gN) 10 UL49.5 gp08 9A/gp10.5 
Tegument/type 2 membrane protein, required for gB 
fusion 

15 UL45 - ± 

Envelope glycoprotein (gC) ; role in cell entry 16/gp13 UL44 gp30/gIII 14/gp16/gpV 
Probable integral membrane protein, along with US3  
role in disrupting the nuclear lamina during egress 

17 UL43 gp29 15/gp17 

Membrane-associated phosphoprotein 26 UL34 gp20 24 
Envelope glycoprotein (gB); role in cell entry 33/gp14 UL27 gp14/gII 31/gp33/gII 
Envelope glycoprotein (gH) complexes with gL; role 
in cell entry 

39 UL22 gp36 37/gp39 

Integral membrane protein ; role in virion egress, 
multiple membrane spanning protein 

41 UL20 gp38 39/gp41 

Envelope glycoprotein (gM) type 3 52 UL10 gp48 50/gp51 
Envelope glycoprotein (gL) 62 UL1 gp56 60/gp61 
Envelope glycoprotein (gG) 70 US4 gp67 - 
Envelope glycoprotein (gp300) 71 US5 - - 
Envelope glycoprotein (gD) 72 US6 gp68 - 
Envelope glycoprotein (gI) type 1 73 US7 gp69 67/gpIV/gp68 
Envelope glycoprotein (gE) type 1 74 US8 gp70 68/gpI/gp69 
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The Tegument 

The tegument is a term originally introduced by Roizman and Furlong, to describe 

the amorphous protein structures contained between the capsid and the envelope that 

serves as a delivery compartment for proteins that are required early in the course of 

infection. These structures had no distinctive features in electron-microscopic sections but 

appeared to be fibrous on negative staining (Morgan et al., 1959). Subsequently, 

immunoelectron microscopy indicated that the tegument is an ordered structure with 

structural polarity, but is devoid of a unique geometrical organization (Stefan et al., 1997). 

Tegument surrounds the nucleocapsid and consists of proteinaceous globular material 

which may be variable in amount, thus leading to variation in virion size. The tegument 

occupied about two-thirds of the volume enclosed within the membrane, and the capsid 

occupied about one-third (Grunewald et al., 2003). Innermost portion of the tegument 

located adjacent to the capsid exhibits icosahedral symmetry, resulting from the interaction 

of a large tegument protein, UL36, with the pentons (VP5) of the capsid (Machtiger et al., 

1980; McNabb and Courtney, 1992a; Newcomb et al., 1996; Zhou et al., 1999). The 

outermost part interacts with virus envelope membrane, sometimes in transmembrane 

contact with envelope glycoproteins. 

The tegument of HSV-1 and EHV-1 contains about 20 proteins, including VP1/2 

(UL36), VP11/12 (UL46), VP13/14 (UL47), VP16 (UL48, -trans-inducing factor, alpha-

TIF), VP22(UL49), ICP0, ICP4, and the virion host shutoff protein (UL41) as well as the 

products of the genes US2, US3, US10, US11, UL11, UL13, UL14, UL16, UL17, UL21, 

UL37, UL51, and UL56 shown in Table I-5 (Copeland et al., 2008; Mettenleiter, 2002b; 

Mettenleiter, 2004; Schimmer and Neubauer, 2003). 
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PRV tegument proteins UL36 and UL37 have been shown to physically interact 

and UL36 possibly interacts with the major capsid protein (Klupp et al., 2002). UL36 is 

present in the deepest layers of the tegument and attaches to the major capsid protein 

(VP5) on capsid vertixes (McNabb and Courtney, 1992b; Zhou et al., 1999). UL48 located 

within both the inner and outer tegument layers (Schmitz et al., 1995), has been shown to 

interact with cytoplasmic tail of gH (Gross et al., 2003). In PRV, there is evidence of UL49 

interaction with gE/I and M (Fuchs et al., 2002). New tegument protein interactions which 

could be potential targets for future antivirals are UL11-UL16, UL36-UL48, UL46-UL48, 

UL47-UL48, and UL48-UL49 (Vittone et al., 2005). 

Table I-5. Tegument proteins of Herpesviridae. 

Characteristics EHV-1 ORF HSV-1 VZV 
Latency associated transcript, EICP0 63 ICP0  

 64 ICP4  
 3? UL56 2? 
 8 UL51 7 

Tegument protein 11 VP22(UL49) 9 
Tegument phosphoprotein; transactivator of 
immediate-early genes 

12 alphaTIF (Vmw65) 
VP16 (UL48) 

10 

Tegument protein 13 VP13/14 (UL47) 11 
Tegument protein 14 VP11/12 (UL46) 12 
Tegument/envelope protein 15 UL45 ± 
Tegument protein ; virion host shutoff protein 19 VHS(UL41) 17 
Tegument protein 23 UL37 21 
Large tegument protein 24 VP1/2 (UL36) 22 
Tegument protein 40 UL21 38 
ORF 45 45 UL17 43 
Tegument protein 46 UL16 44 
ORF 48 48 UL14 46 
Tegument protein, probable serine-threonine protein 
kinase 

49 UL13 47 

Myristylated tegument protein, role in virion 
envelopment 

51 UL11 49 

ORF 68 68 US2 - 
Serine-threonine protein kinase 69 US3 66 
Tegument protein, type 2 membrane protein 76 US9? 65 
Virion protein 66 US10 64 
  US11  
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The Nucleocapsid 

 The morphologically distinctive herpesvirus capsid has been well studied in order 

to understand the dynamics of virus assembly (Baker et al., 1990; Newcomb et al., 2003). 

A thick-walled, spherical, ~ 120 nm in diameter nucleocapsid is isometric and composed 

of 162 capsomers arranged in 5:3:2 axis of symmetry, triangulation class T = 16 

icosahedral symmetry as shown in Figure I-3 (Caspar and Klug, 1962; Wildy et al., 1960). 

Twelve capsomers at the vertices are "pentons". The remainder 150 capsomers are 

“hexons”, 9.5x12.5 nm in longitudinal section with a channel of 4 nm in diameter running 

from the surface along their long axis (Watson et al., 1963). Hexons are located at the 

edges and faces of the capsid and fall into three classes (P – peripentonal, E- edge, and C-

center), depending on their positions on the surface lattice (Steven et al., 1986). EHV-1 

hexons are composed of six molecules of major capsid protein (hexamers of VP9 (148 

kDa)) and six of VP26 (UL35, 12kDa), which occupy the top of each hexon (Newcomb et 

al., 1989) (Table I-6). 
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Figure I-3. Types of capsomers present on the T-16 capsid surface lattice. P – 
peripentonal hexon, E- edge hexon, C-center hexon, 5 penton. 
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Eleven of the 12 pentons are pentamers of VP9, while the 12th is a unique vertex, a 

portal, cylindrical structure composed of twelve UL6, and contains an axial channel 

through which DNA is introduced into the capsid. By further extrapolation from HSV-1, 

portal protein UL6 interacts with the DNA cleavage and packaging proteins (putative 

terminase subunits) UL15 and UL28. Capsomers are connected in groups of three by 320 

triplexes, heterotrimers formed from two copies of VP23 (34kDa) protein and a single 

copy of VP19c (50kDa) that lie above capsid floor (Okoye et al., 2006; Trus et al., 1996). 

Scaffolding protein UL26.5 participates in capsid formation but thereafter is lost and is not 

found in the mature capsid or virion. EHV-1 capsids also contain several other proteins, 

including, VP19 (59 kDa, -360 copies), VP23 (36 kDa, -660 copies), and VP26 (12 kDa, -

1,300 copies) (Newcomb et al., 1989; Perdue et al., 1975). The number of polypeptide 

species contained in the virions generally varies from 35 to 45. Virus capsid assembly is 

under the control of tightly regulated program that includes the involvement of viral 

scaffolding proteins and cellular chaperonins, maturational proteolysis, and conformational 

changes on an epic scale. 

Table I-6. Protein components of capsid shell. 

Components of capsid shell required 
for capsid assembly 

EHV-1 HSV-1 

Major capsid protein ORF 42 (VP9) VP5 (UL19) 
Assemblin (protease), capsid assembly protein 
/capsid scaffold protein (Peptidase family 
S21)  

ORF 35 (protease) and 
ORF 35.5 (capsid 
assembly protein) 

VP21 (UL26) and VP22a 
(UL26.5) 

Form triplexes to connect capsomers  VP23 (UL18) and VP19c 
(UL38) 

Portal protein  UL6 
DNA packaging protein ORF 27 UL33 
  VP26 (UL35) 
Terminase subunits, DNA cleavage and 
packaging proteins, form part of the terminase 

 UL15 and UL28 

 VP19, VP9, VP23, VP26 VP24 (UL26) 
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The Core 

The core of mature virion consists of a fibrillar spool on which one molecule of 

linear double stranded DNA is wrapped in a form of a torus with regularly spaced (~26 Å 

for HSV-1) concentric layers (Furlong et al., 1972; Zhou et al., 1999), the arrangement 

similar to those in dsDNA bacteriophages such as λ, T4, and P22 (Brown, 2002; Prevelige 

and King, 1993). DNA is densely coiled in a “liquid crystalline” arrangement (Booy et al., 

1991) with the ends of the proteinaceous fibers anchored to the underside of the capsid 

shell.  

The Viral Genome 

EHV-1 has a double-stranded linear DNA genome of approximately 150 kbp 

(96x106 Da), has a base composition of 56.67% G + C, and contains 80 open reading 

frames able to encode proteins for the production of progeny genomes and mRNAs as 

shown in Table I-7 (Telford et al., 1992; Whalley et al., 1981). All herpesvirus genomes 

have a unique long (UL) and a unique short (US) region, bounded by inverted repeats 

(Figure I-4). After infection of susceptible cells, the linear viral genomes of herpesviruses 

form circular molecules via ligation of the genomic ends. 

Table I-7. Genome characteristics of clinically important alphaherpesviruses 

Genome Genus Strain Length,nt G+C% Protein  % coding 
EHV-1 Varicello Ab4 150,224 56 80 83 
EHV-4 Varicello NS805567 145,597 50 79 85 
HSV-1 Simplex 17 152,261 68 77 79 
HSV-2 Simplex HG52 154,746 70 77 79 
VZV (HSV-3) Varicello Dumas 124,884 46 73 89 
SVV (CeHV-9) Varicello Delta 124,784 40 74 88 
CeHV-1 (B Virus)  Simplex E2490 156,789 74 75 76 
PRV-1 (SuHV-1) Varicello Several 143,461 73 69 73 
BHV-1 Varicello several 135,301 72 70 84 
BHV-5 Varicello SV507/99 137,821 74 70 83 
MDV (GHV-2)  Mardi 1 177,874 44 105 77 
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The EHV-1 genome is is divided into segments of a long unique region, UL (112.9 

kbp); an internal repeat, IRS (12.7 kbp); a unique short segment, US (11.9 kbp); and a 

terminal repeat, TRS (12.7 kbp). In addition, UL is flanked by a short inverted repeat of 32 

bp (TRL/IRL) (Telford et al., 1992; Yalamanchili and O'Callaghan, 1990).  An organization 

of TRL-UL-IRL-IRS-US-TRS is typical of an alphaherpesvirus. US region is found in either 

possible orientation relative to the fixed UL segment. As a consequence, virus DNA 

consists of an equimolar mixture of the two isomeric forms (P and I). The same genome 

arrangement and isomerization are also reported for BHV-1 (Hammerschmidt et al., 1988), 

EHV-3 (Atherton et al., 1982; Sullivan et al., 1984), PRV (Stevely, 1977), and VZV 

(Davison, 1984).  

EHV-1 Glycoproteins 

 Through the use of multiple glycoproteins and other virus-specified proteins 

alphaherpesviruses have evolved mechanisms to deal with multiple membrane barriers 

during  entry via fusion of the viral envelope with cellular membranes, intracellular virion 

morphogenesis and egress, cell-to-cell spread, and virus-induced cell fusion (Mettenleiter, 

2002a; Mettenleiter, 2002b; Roizman and Knipe, 2001; Spear, 2004; Spear and 

Longnecker, 2003). The EHV-1 specifies at least 14 glycoproteins: gB/gp14 (Guo, 1990; 

Osterrieder et al., 1996; Pilling et al., 1994), gC/gp13 (Allen and Coogle, 1988; Allen and 

Yeargan, 1987; Matsumura et al., 1993), gD (Audonnet et al., 1990), gE (Audonnet et al., 

1990), gG (Colle et al., 1992), gH (Robertson et al., 1991), gI (Audonnet et al., 1990), 

gK/UL4 (Zhao et al., 1992), gL (Telford et al., 1992), gM (Osterrieder et al., 1996; Pilling 

et al., 1994), gN(HSV-1 UL49.5), gp10, gp2, and gp21/22a, most of which share high 

homology to those of herpes simplex virus type 1 (HSV-1) as prototypic virus for studying 
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the Alphaherpesvirinae subfamily (Audonnet et al., 1990; Birch-Machin et al., 2000; 

Crabb et al., 1991; Elton et al., 1991; Flowers et al., 1995b; Kukreja et al., 1998a; 

Osterrieder et al., 1995; Stokes et al., 1996; Tewari et al., 1994; Wellington et al., 1996b; 

Whalley et al., 1995; Whalley et al., 1989). In addition to those glycoproteins similar to 

HSV-1, EHV-1 also possesses at least three unique glycoproteins, designated gp10, gp2, 

and gp21/22a (Allen and Coogle, 1988; Allen and Yeargan, 1987). The functions of 

several individual EHV-1 envelope proteins, such as glycoprotein B (gB), gC, gD, gE, and 

gM, have been analyzed in some detail. EHV-1 also encodes several non-glycosylated 

membrane associated proteins: UL20, ORF76/US9, ORF37/UL24, 17/UL43, and 

26/UL34.  

 Viral glycoproteins have three parts: the external ectodomain, which interacts with 

the host; a transmembrane segment, typically a single alpha-helix, and the internal part, the 

endodomain (Figure I-5). All known glycoproteins that are capable of membrane fusion 

are trimers for at least part of the infectious cycle. Viral glycoproteins are also key 

determinants of membrane-associated events occurring during virion morphogenesis and 

egress from infected cells. 

Glycoprotein B 

EHV-1 gB (gp14) is highly conserved with the gB (HSV, CMV, EBV) and gpII 

glycoproteins (PRV, VZV) of other herpesviruses, suggesting that this glycoprotein has a 

similar overall structure, synthesis, maturation, and function in each virus (Bell et al., 

1990; Guo, 1990; Whalley et al., 1989). 

 The gene encoding gB includes a transcription unit composed of a CAT box, a 

TATA box, a ribosome-binding sequence, a polyadenylation signal and an open reading 
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Figure I-5. Herpesviridae glycoproteins and their putative orientations in the cellular 
membrane. 
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frame (ORF) 33 of 3.4 kb beta-gamma gene transcribed from left to right (Bell et al., 1990; 

Guo, 1990). The primary translation product is 980 amino acids, 118K molecule which is 

cotranslationally glycosylated to the large precursor molecule of 138K form by the 

addition of high mannose oligosaccharides. The 138K form is then proteolytically cleaved 

to two smaller forms, 77-75K and 55-53K, linked by a disulfide bond(s) to form a 145K 

complex. The 77-75K species contains both high mannose and hybrid oligosaccharides 

while the 55-53K form of gB contains some complex oligosaccharides (Sullivan et al., 

1989). The amino acid sequence of gB has the characteristic features of membrane 

glycoprotein including a 20-aa signal sequence at the N-terminus, marking it for 

translocation into the lumen of the endoplasmic reticulum (ER) (McGeoch et al., 1987; 

Perlman and Halvorson, 1983; Wellington et al., 1996a), a 743-aa surface domain, a 40-aa 

membrane anchoring region, a 108-aa hydrophilic cytoplasmic domain at the C-terminus 

and eleven potential sites for N-linked glycosylation (Guo, 1990; Sullivan et al., 1989; 

Whalley et al., 1989). The cytoplasmic domain of gB is the longest among HSV-1 

glycoproteins, implying a crucial role for this domain in gB-mediated functions. HSV-1 gB 

contains at least one Pleckstrin homology (PH) domain, a large family of cellular proteins 

implicated in lipid binding and signaling functions (DiNitto et al., 2003). 

Alphaherpesvirus gB possess similar secondary and tertiary structures (Riggio et 

al., 1989). The glycoprotein has three-stranded coiled coils at the trimer axis, reminiscent 

of class I, and a long three-stranded beta-sheet with a structure similar to that of a class II 

motif but with different strand topology (Steven and Spear, 2006). Members of both 

classes accomplish fusion through a large-scale conformational change, triggered by a 

signal from a receptor-binding component. 
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EHV-1 gB is essential for virus growth and is required for direct cell-to-cell spread 

in vitro since gB-negative virus exhibits significant reduction in viral titers and no plaque 

formation when grown and titrated on noncomplementing cells (Neubauer et al., 1997b). 

gB monoclonal antibodies also inhibit cell-cell fusion via complement-dependent 

neutralizing antibody (Wellington et al., 1996c). There is a variety of evidence indicating 

that gB plays important roles in membrane fusion phenomena during virus entry and virus-

induced cell fusion. Single amino acid substitutions and truncations of the carboxyl 

terminus of HSV-1 gB cause extensive virus-induced cell fusion (Baghian et al., 1993; 

Bzik et al., 1984b; Cai et al., 1988b; Gage et al., 1993). Transient co-expression of gB with 

gD, gH and GL causes cell-to-cell fusion, which is substantially increased by carboxyl 

terminal truncations of gB (Foster et al., 2001b; Haan et al., 2001; Klupp et al., 2000; 

Pertel, 2002). These results suggest a direct role for gB in membrane fusion and that 

perturbations of the carboxyl terminal domains of gB facilitate gB-mediated cell-to-cell 

fusion.  

Alphaherpesviridae gB is viewed as the primary component of herpesvirus 

membrane fusion machinery. HSV-1 mutant viruses lacking gB are not able to enter into 

cells (Cai et al., 1987) due to a post-attachment defect that can be resolved by polyethelene 

glycol (PEG) mediated fusion of viral and cellular membranes (Cai et al., 1988a). 

Interesting is that attachement of the gB-negative EHV-1 virions to target cells is similar to 

that of the wild type virus (Neubauer et al., 1997b), but treatment with PEG, a fusogen, 

while enhances the virus production does it to a lesser extend than in a similar experiment 

with gB-negative PRV, suggesting that EHV-1 gB might not be as stringently required for 

virus penetration as are its homologs in other Alphaherpesvirinae (Neubauer et al., 1997b). 
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Glycoprotein B has been shown to interact with a paired immunoglobulin-like type 2 

receptor (PILP) alpha to gain entry into the cells devoid of other herpes virus entry 

mediators (Satoh and Arase, 2008). 

 Glycoprotein B along with major nucleocapsid protein are some of the most 

antigenic EHV-1 proteins (Ahmed et al., 1993). An antigenic determinant recognized by an 

anti-gB monoclonal antibody is present in the N-terminus of the surface domain (Guo, 

1990). Strong virus-neutralizing activity of antibodies to the extracellular portion of gB, 

amino acids 1 to 844, expressed in insect cells using a recombinant baculovirus, showed 

that post-translational modification of the EHV-1 gp14 is important for the expression of 

epitopes necessary for the induction of neutralizing antibodies (Osterrieder et al., 1994). 

A number of studies of EHV-1 gB have addressed immune responses to and 

vaccine potential of recombinant gB. Plasmid DNA recombinant intramuscular vaccines 

expressing the gB, gC and gD glycoproteins of EHV-1 significantly reduced virus 

excretion but failed to protect against cell-associated viremia following respiratory 

challenge of ponies with EHV-1 virulent Ab4 strain (Minke et al., 2006). In another study, 

vaccination of mice with baculovirus-expressed gB prevented clinical signs of infection, 

induces rapid clearance of virus from the lungs, reduced pulmonary lesions, and increased 

T cell peribronchiolar and perivascular aggregations in mice challenged with EHV-1 

(Packiarajah et al., 1998). Baculovirus-expressed EHV-1 glycoprotein B vaccinated mice 

also showed significantly higher rate of litter survival, increased body weight of young, 

and no virus presence in the fetal tissues when challenged during pregnancy (Kukreja et 

al., 1998b). Mice infected with EHV-1 (RacL11) gB-negative virus, did not develop 

disease, even when viruses were grown on complementing cell lines, and gB-negative 
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virus immunization, protected animals from developing disease inducing both virus-

neutralizing antibodies and EHV-1-specific splenic T-cell response following challenge 

with wild-type EHV-1 (Neubauer et al., 1997a). 

Glycoprotein C  

Glycoprotein C, gp13, is a gamma-1 gene product, encoded by of ORF 16, a 2.8-kb 

mRNA (Matsumura et al., 1993). The protein has the characteristic features of a 

membrane-spanning protein: an N-terminal signal sequence, a hydrophobic membrane 

anchor region, a charged C-terminal cytoplasmic tail, and an exterior domain with nine 

potential N-glycosylation sites (Allen and Coogle, 1988). 

The glycoprotein C of EHV-1 and other alphaherpesviruses functions as a major 

virus attachment protein through binding to glycosaminoglycans (GAG), heparan sulfate 

(HS), a heparin-like moiety on the cell surface (Herold et al., 1991; Kari and Gehrz, 1992; 

Li et al., 1995; Mettenleiter et al., 1990; Okazaki et al., 1991). The main function of gC 

binding to GAGs seems to be to aid concentration of the virus on cell surfaces, enabling 

the more stable interaction of gD with an entry receptor. It has also been shown that while 

PRV gC binds to heparin only in conjunction with gB (Mettenleiter et al., 1990), EHV-1 

gC binds to heparin separately from gB, similarly to that in HSV-1 (Herold et al., 1994; 

Sugahara et al., 1997). Hydrophilic regions of the gC may be responsible for binding to 

heparin (Sugahara et al., 1997). Interestingly, that the gC of strains adapted to non-equine 

cells have been shown to have higher affinity for heparin due to amino acid substitutions of 

the hydrophilic regions gC, amino acid residues 92 to 175, resulting in the glycoprotein 

becoming more cationic(Sugahara et al., 1997). This and other cell attachment and entry 
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adaptations of EHV-1 may explain the expansively broad cell tropism of EHV-1 compared 

to other alphaherpesviruses. 

Another important function of gC is its ability to to bind and inactivate the C3b 

component of complement facilitating immune evasion (Eisenberg et al., 1987; Friedman 

and Nashold, 1984; Huemer et al., 1995; Huemer et al., 1993; Lubinski et al., 1999; 

Lubinski et al., 1998). Since complement is one of the most critical defence mechanisms of 

the innate immunity against cerebral infection by viruses, the function EHV-1 gC is 

important in myeloencephalopathy presentation of EHV-1 disease. 

Glycoprotein C is an important virulence factor of alphaherpesviruses in vivo. 

Infection of mice with a EHV-1 mutant virus that lacked gC ORF does not cause EHV-1-

related disease, while wild-type virus infected mice exhibit massivie body weight losses, 

high virus titers in the lungs, and viremia (Osterrieder, 1999). Amino acids 152 to 275 of 

EHV1 gC specifies one of EHV-1 type-specific epitope (Crabb and Studdert, 1995). 

Immunization of mice with EHV-1 gC shows accelerated clearance of EHV-1 by virus 

specific antibodies, high levels of virus neutralising antibodies, and by cell mediated 

immune responses from the respiratory tissues following intranasal challenge (Packiarajah 

et al., 1998; Tewari et al., 1995). IgG2b is the predominant antibody isotype produced in 

BALB/c (H-2K(d)) mice against gC derived from EHV-1-infected cells, while equal 

amounts of IgG2a/2b are found in the serum of C3H mice (H-2K(k)), indicative of a T-

helper(1) response (Alber et al., 2000). 

Glycoprotein D 

The envelope glycoprotein D (gp17/18, gp60?), a 392 amino acids EHV-1 protein 

is encoded by a unique short (Us) segment of the EHV-1 genome  with 26% and 20% of its 
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residues matching PRV gp50 and HSV-1 gD, respectively (Audonnet et al., 1990; Colle 

and O'Callaghan, 1995; Elton et al., 1992; Flowers et al., 1991; Flowers and O'Callaghan, 

1992; Love et al., 1992; Whalley et al., 1991; Whittaker et al., 1992),(Elton et al., 1992; 

Whalley et al., 1991). A 3.8-kb mRNA encoding gD is synthesized as a late (beta-gamma) 

transcript. It initiates 91 and 34 nucleotides downstream of the CCAAT and TATA 

elements, respectively (Flowers and O'Callaghan, 1992). Glycoprotein D exhibits features 

typical of a transmembrane protein: a hydrophobic N-terminal signal sequence followed by 

a cleavage site (Arg35 and Ala36), four potential N-linked glycosylation sites, and a 

hydrophobic membrane-spanning domain near the carboxyl terminus followed by a 

charged membrane anchor sequence (Flowers et al., 1991; Wellington et al., 1996a). 

Glycoprotein D proteins are first detected at 6 hr after infection with maximal 

synthesis of gD between 5 and 8 hr post-infection, resulting in 43.206-kDa polypeptide 

which then undergoes processing (Flowers et al., 1995a). Polypeptides of 55 and 58 kDa 

are detectable in EHV-1-infected cells 2.5 hr apart. A 55-kDa protein is a high-mannose N-

linked oligosaccharides precursor to the 58-kDa species, a mature polypeptide possessing 

complex type oligosaccharides and observed in the membrane fraction of EHV-1 

virions(Flowers et al., 1995a; Flowers and O'Callaghan, 1992). 

Importantly, gD has been shown to act as the viral ligand for entry receptors 

expressed on cell surface (Spear et al., 2000). As a result, gD is essential for replication in 

vitro gene, absolutely required for virus entry and virus-induced cell-to-cell fusion to occur 

(Csellner et al., 2000). As discussed earlier, HSV-1 gD has the ability to bind HVEM, 

nectin-1, nectin- 2, and other cell surface receptors to mediate virus entry. In addition, cells 

that express gD are resistant to herpes infection in a dose-dependent manner due to a 
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saturation of the corresponding entry receptors (Campadelli-Fiume et al., 1988b; Johnson 

et al., 1990). No gD receptor for EHV-1 have been isolated to date and studies show that 

EHV-1 may utilize a unique unknown to date cellular receptor or employ an alternate entry 

strategy in the absence of the gD receptor. Noteworthy, is that several dozens of 

mammalian species encode already identified and cloned herpes virus entry mediators on 

their cell surface, just as most mammals possess the specie-specific herpes virus. It is 

likely that EHV-1 cell surface receptor of gD can be identified in the near future. 

X-ray structures of HSV-1 gD alone and in complex with HVEM have been 

determined, revealing that a portion of gD assumes an Ig-like fold with unconventional 

disulfide-bonding patterns (Carfi et al., 2001) and a hairpin loop in the complex with 

HVEM (Spear and Longnecker, 2003). N-terminal end of gD has a critical role in its 

functional interactions with all but nectin-1 entry/fusion receptors (Yoon et al., 2003; Zago 

and Spear, 2003). 

Glycoprotein D plays an important role in eliciting the protective immune response 

against EHV-1 infection, and numerous studies using various expression systems that 

included Escherichia coli, baculovirus and plasmid DNA evaluated its potential as a 

subunit vaccine (Flowers et al., 1995b; Ruitenberg et al., 2001; Wellington et al., 1996b). 

Regardless of the expression system and therefore, despite the lack of glycosylation, 

inoculation of gD protein alone or in combination with gD DNA evoked neutralizing 

antibody responses and protected vaccinated mice against a challenge with EHV-1, 

reducing clinical signs of infection such as lung pathology, fetal loss and fetal damage, 

showing accelerated clearance of virus from the lungs, and inducing accumulation of 

mononuclear cells, predominantly lymphocytes (T cells) (Packiarajah et al., 1998; Walker 
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et al., 2000; Weerasinghe et al., ; Zhang et al., 1998). The protective effects of primarily 

CD4+ T cells, were confirmed by adoptive transfer from spleen of baculovirus gD-

immunized donors to recipients that were challenged with live EHV-1. (Tewari et al., 

1994). EHV-1 gD DNA induces IgGa antibody production consistent with T-helper 1 

(Th1) type  of immune response which is maintained after the protein boost, despite the gD 

protein alone to directing a Th2 response (Love et al., 1993; Ruitenberg et al., 2000; 

Ruitenberg et al., 1999; Tewari et al., 1994). Antibody isotype can also be species specific, 

where immunization elicited predominantly an IgG1 response in BALB/c mice (indicative 

of a T-helper(2) response) and an IgG2a/2b response (indicative of a T-helper(1) response) 

in C3H  mice(Alber et al., 2000). 

Phenotypically complemented gD-negative EHV-1 also induces protective immune 

responses following intranasal or intramuscular inoculation of mice (Csellner et al., 2000). 

Glycosylation was also not required to elicit EHV-1 gD-specific antibodies including 

virus-neutralizing antibody in horses (Weerasinghe et al., 2006). In foals and adult horses, 

recombinant baculovirus-expressed EHV-1 gD induces virus-neutralizing antibody, 

including colostrally-derived, and significantly decreases viral shedding, however does not 

protect foals born from vaccinated mares (Foote et al., 2005; Freeman and Ellis, 1984). 

Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, 

IgG(T) and IgA (Foote et al., 2005). 

Entry of EHV-1 has been suggested to also occur via endocytic/phagocytic 

pathway, as an alternative way to infect important cell populations. Interaction between 

integrins and RSD motif of EHV-1 gD were shown to be important in such entry of the 

virus into CHO-K1, the chinese hamster ovary, cells (Van de Walle et al., 2008). 
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Glycoprotein H and Glycoprotein L 

The 2517 bp UL22 gene encodes the 838 aa glycoprotein H (gH). gH is a type I 

membrane glycoprotein containing an 18 aa signal peptide, a long 785 aa ectodomain, a 

single 21 aa transmembrane hydrophobic domain close to the C-terminus, and a 14 aa C-

terminal cytoplasmic tail. The 675 bp UL1 gene encodes the 224 aa glycoprotein L. gL 

contains a 25 aa signal peptide; however, unlike other herpesvirus glycoproteins, gL does 

not contain a transmembrane domain. It appears that gL is not an integral membrane 

protein; rather, its membrane association and incorporation into virus particles is 

dependent on its heterodimer interaction with gH (Dubin and Jiang, 1995). When gH is 

expressed in transfected cells in the absence of gL, the resulting gH polypeptide is neither 

folded or processed correctly. The malformed gH remains in the endoplasmic reticulum 

and undergoes self-aggregation (Foa-Tomasi et al., 1991; Forrester et al., 1991; Roberts et 

al., 1991). Similarly, cells infected with a gL-null virus do not produce virions containing 

gH. When cells are infected with a gH-null virus, gL is neither correctly processed nor 

incorporated into the plasma membrane or viral envelope (Hutchinson et al., 1992; Roop et 

al., 1993). Due to the lack of a transmembrane region, the gL polypeptide is secreted into 

the medium (Dubin and Jiang, 1995). When both UL22 and UL1 genes are cotransfected 

into cells, the antigenic conformation of the gH/gL heterodimer is identical to that of virus 

infected cells, indicating that no other viral proteins are necessary for heterodimer 

formation. The mutual interaction of both glycoproteins is mediated by the N-terminal 

region of the first 69 aa of gL after cleavage of the 25 aa signal peptide (Roop et al., 1993), 

while gH interacts through a central region of the its extracellular domain. A properly 

formed gH/gL heterodimer is required for both attachment virus entry and virus-induced 
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cell-to-cell fusion. Although viruses lacking gH/gL are unable to enter cells, they are able 

to attach to the cell surface. Therefore, the role of gH/gL in virus entry is during the virus 

envelope plasma membrane fusion event and is not required for virion or receptor binding. 

The Herpes Virus Life Cycle 

Virus Attachment and Entry 

Binding Receptors 

Recent developments in molecular studies of HSV-1 entry, maturation, and spread 

have contributed to deeper understanding of EHV-1 life cycle and pathogenesis (Figure I-

6). Initial contact of the virus to the cell surface membrane is through receptor binding 

(Figure I-7), where positively charged residues of glycoprotein C and to a lesser extend 

glycoprotein B, attach to the glycosaminoglycan proteoglycans on cell surface, primarily to 

the heparan sulfate moieties of ubiquitous in mammals heparin sulfate proteoglycans 

(Osterrieder, 1999; Shieh et al., 1992; Sugahara et al., 1997; WuDunn and Spear, 1989). 

The receptor interaction at this point is reversible and the changes in the virion envelope 

required for fusion and entry do not occur. Presence of heparin sulfate is not essential for 

virus entry, while gC is also dispensable for either virus entry or replication; their 

interaction however, confers approximately 10-fold increase in the efficiency of virus 

attachment (Banfield et al., 1995; Heine et al., 1974). 

After initial attachment via gB and gC, alphaherpesvirus gD binds additional cell 

surface receptors, and thus, confers susceptibility of a certain cell type to the virus 

infection. Interaction of gD with specific cellular receptors results in its conformational 

changes and subsequent interaction with gH/gL and gB initiating the fusion of viral and 

cellular membranes (Csellner et al., 2000).  
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Figure I-6. EHV-1 life cycle. 
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Figure I-7. Events of virus entry into the cell. 
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The importance of alphaherpesvirus gD-receptor binding for virus entry and spread 

is exemplified by the fact that soluble forms of these receptors (HveA, HveC, and HIgR 

variants) inhibit virus entry into susceptible cells via their interaction with gD. (Cocchi et 

al., 1998a; Krummenacher et al., 1998; Rux et al., 1998). Only alphaherpesviruses (except 

VZV) encode members of the gD family.  

Betaherpesvirus and gammaherpesviruses rely on other viral proteins to serve as 

ligands for cellular receptors. Also, as will be discussed below, endocytic uptake of HSV 

virions from the cell surface is rapid and independent of any known gD receptor (Cassiani-

Ingoni et al., 2005), EHV-1 can potentially employ the same strategy during entry of non-

equine cells lacking herpes virus entry mediators. No specific gD receptor have been 

identified for EHV-1 at this time (Frampton et al., 2005). The increase of EHV-1 gB-

negative titers by polyethylene glycol (PEG) treatment, is considerably lower compared to 

gB-negative pseudorabies virus, suggesting that EHV-1 gB might not be as stringently 

required for virus penetration as are its homologs in other Alphaherpesvirinae (Neubauer et 

al., 1997b). 

Several human and animal cellular receptors have been identified for various 

alphaherpesviruses, by their ability to mediate virus entry into normally herpesvirus 

resistant Chinese hamster ovary (CHO) cells (Figure I-8). These receptors include HveA, a 

member of the TNF receptor family (Montgomery et al., 1996), as well as several nectins, 

which are members of the immunoglobulin superfamily (Cocchi et al., 1998a; Cocchi et 

al., 1998b; Geraghty et al., 1998; Warner et al., 1998). Various homologs of some of these 

receptors have also been isolated from other cell-types (Foster et al., 1999; Shukla et al., 

2000). HSV-1 gD and by analogy all gD homologues specified by alphaherpesviruses bind 
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Figure I-8. The three classes of cell surface receptors for HSV entry. The tumor 
necrosis factor (TNF) receptor family includes HveA. The immunoglobulin superfamily 
consists of nectins and PILR-alpha. The third family includes 3-O-sulfated heparin sulfate. 
Only viral attachment can occur in the absence of an HSV entry receptor. 

 
these receptors and facilitate virus entry into susceptible cells. The importance of gD 

binding to receptors for virus entry and spread is exemplified by the fact that soluble forms 

of HveA, nectin-(HveC, and HIgR variants) have been shown to bind to HSV-1 gD 

(Cocchi et al., 1998a; Cocchi et al., 1998b; Krummenacher et al., 1999) and inhibit virus 

entry into susceptible cells. HveA and nectin-1 (HveC) are associated with lipid rafts 

during herpes simplex virus entry (Cassiani-Ingoni et al., 2005). 

 Immunoglobulin-like type 2 receptor (PILR) alpha is a cellular receptor associates 

with gB and required for HSV-1 infection (Satoh et al., 2008). HSV-1 infection of human 

primary cells expressing both HVEM and PILRalpha was blocked by either anti-
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PILRalpha or anti-HVEM antibody, suggesting that both gB and gD receptors are required 

for HSV-1 infection.  

The corresponding receptors in the equine cells have not been yet identified. 

However, unlike EHV-4, EHV-1 has a remarkably broad cell tropism and is known to 

infect and replicate efficiently in dozens of cell lines empowered by unknown mechanism 

in the otherwise common to alphaherpesviruses entry process. One study, noted the 

flexibility of EHV-1 to adapt to a non-equine cell line by incorporation of mutations in 

glycoprotein C that strengthened its affinity to heparan sulfate moieties (Sugahara et al., 

1997). gC and gB of EHV-1 strains bound to heparin regardless of their passage history, 

whereas heparin markedly interfered with infection only by the strains adapted to non-

equine cells. Therefore, gC may function as a major viral attachment protein in EHV-1 

entry into non-equine cell cultures. Another study proposed that EHV-1 utilizes a unique 

gD-binding receptor for entry into the cells, different from known mediators of herpes 

simplex virus, based on studies that EHV-1 was able to enter efficiently into CHO cells 

lacking HveA as well as HveB and HveC (Frampton et al., 2005). Additional consideration 

is that current EHV-1 strains used have been passaged solely in non-equine cell lines. The 

receptors of alphaherpesvirus entry described below have been studied extensively and 

identified for dozens of mammalian cells, therefore, a brief review of the current 

knowledge is included for completeness.  

Tumor Necrosis Factor Receptor Family 

Herpesvirus entry mediator A (HveA), also known as HVEM, TNFRSF14, ATAR, 

LIGHTR, TR2, and CD40-like protein precursor, is a member of the tumor necrosis factor 
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receptor (TNFR) family and is present and expressed at high levels in lymphocytes. It has 

been studied by various disciplines of biology under various designations.  

HveA is also found on some epithelial cells, carcinomas, lymphoid dendritic cells, 

other leukocytes, and fibroblasts (Cassiani-Ingoni et al., 2005). Human HveA is expressed 

in various tissues including liver, lung, kidney, spleen, and peripheral leukocytes, and it is 

the principal mediator for HSV-1 entry into human lymphoid cells, but not a primary 

mediator in other cell types (Montgomery et al., 1996). The cytoplasmic region of this 

receptor was found to bind to several TNFR-associated factor (TRAF) family members, 

which may mediate the signal transduction pathways that activate the immune response. 

Although a TNF receptor, HveA binds ligands with no structural similarity to TNF. 

The natural ligands for HveA include LIGHT, lymphotoxin-alpha, and B and T 

lymphocyte attenuator (BTLA) (Mauri et al., 1998; Sedy et al., 2005). LIGHT can function 

as a second signal for T-cell activation, and the interactions between LIGHT and HveA are 

the focus of investigations into the regulation of immune responses (Jung et al., 2003). 

HveA binding to BTLA, an Ig family member, which inhibits T cell proliferation is 

probably an important pathway regulating lymphocyte activation and/or homeostasis in the 

immune response (Sedy et al., 2005). The interaction between HveA and gD has been 

suggested to initiate the signaling pathway leading to nuclear factor (NF)-kappaB 

activation (Teresa Sciortino et al., 2007). 

Immunoglobulin Superfamily 

The second family of herpes simplex virus entry receptors is a part of the 

immunoglobulin superfamily and includes several isoforms present in various mammalian 

cells, each diverse due to alternative mRNA splicing. The prototype molecule of the family 
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is the poliovirus receptor, PVR/CD155. Nectin1, also known as poliovirus related receptor 

type 1(PRR1), is assigned to CD111 as a member of a new family of receptors 

(Campadelli-Fiume et al., 2000). 

The family also includes nectin2/PRR2 and nectin3/PRR3. All members are 

structurally related and consist of three immunoglobulin (Ig) domains, one variable (V)-

type domain and two constant (C)-type domains. Nectins are highly conserved among 

mammalian species in respect to structure, function, and the ability to mediate herpesvirus 

entry (Milne et al., 2001; Shukla et al., 2000). The nectins are expressed in a variety of cell 

types including epithelial cells, fibroblasts, keratinocytes, and neural and hematopoietic 

cells (Cocchi et al., ; Geraghty et al., 1998; Takai et al., 2003). As adhesion molecules, 

nectins localize to cell-to-cell junctions of endothelial and epithelial cells, in which the 

carboxyl-terminal domains bind to L-afadin, a PDZ-binding protein that anchors the 

receptors to the cytoskeleton and adherens junctions (Takahashi et al., 1999). Nectin-1α, 

also known as herpesvirus entry mediator C (HveC) and the mRNA splice variant isoform, 

nectin-1β, Herpesvirus Immunoglobulin-like receptor (HIgR), contain common 

ectodomain and are capable of mediating entry of human and animal alphaherpesviruses, 

including HSV-1 and -2, pseudorabiesvirus (PRV-1), and Bovine herpesvirus (BHV-1) 

(Geraghty et al., 1998). HveC and HIgR are expressed in human cells of epithelial and 

neuronal origin and are therefore the primary candidates for co-receptors that mediate entry 

into epithelial cells at the initial site of infection and into neuronal cells for the 

establishment of latency (Cocchi et al., 1998a; Geraghty et al., 1998). Nectin-2α, Herpes 

Virus Entry Mediator B (HveB), and nectin-2δ are also mRNA splice variants, and they 

mediate the entry of HSV-2, PRV, and certain viable mutant forms of HSV-1 but not wild-
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type HSV-1 (Lopez et al., 2000; Warner et al., 1998). Other nectin splice variants have 

been identified (Cocchi et al., 2004b; Takai and Nakanishi, 2003). 

3-O-sulfated Heparan Sulfate 

Heparan sulfate proteoglycans can function as entry mediators for HSV-1as 

modification of heparan sulfate by D-glucosaminyl 3-O-sulfotransferase isoforms-3 and/or 

-5, creates 3-O-sulfated heparan sulfate (3-OS HS) generates a gD-binding site. 3-O-

sulfated heparan sulfates are broadly distributed on human cells and tissue and mediate 

HSV-1 but not HSV-2 entry (Shukla et al., 1999). 

By analogy with other alphaherpesviruses, EHV-1 was suspected to attach to cells 

through a nonessential interaction of gC with heparan sulfate proteoglycan and through an 

essential interaction of gD with one of three cellular receptors: nectin-1, herpesvirus entry 

mediator (HVEM), or a specifically modified heparan sulfate (Spear, 2004).  Binding of 

gD and HveA receptor causes the former to undergo a conformational change in which a 

C-terminal segment of the ectodomain polypeptide chain is released from a strong 

intramolecular contact (Carfi et al., 2001; Krummenacher et al., 2005) and may interact 

with gB or the gH/gL complex to trigger molecular rearrangements and, ultimately, fusion 

(Figure I-9). The precise functions of gB and gH/gL in entry process are unknown. Both 

are required for entry and both receive the signal from gD, to which they respond, by 

undergoing a conformational change. gD itself is thought not to participate in the fusion 

process (Cocchi et al., 2004a; Jones and Geraghty, 2004). Neither gB nor gH/gL has an 

obvious fusion peptide, but an indication that gB might be a fusion effector comes from the 

notable syncytial phenotype caused by certain mutations within the cytoplasmic domain of 

gB (Bzik et al., 1984a; Foster et al., 2001a; Gage et al., 1993; Heldwein et al., 2006).  
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Figure I-9. Sequential protein-protein interactions during EHV-1 entry into the cell. 
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Virus-to-Cell Membrane Fusion 

After binding of gD to a HSV-1 virus entry receptor, the last step in virus entry is 

fusion of the virion envelope with the plasma membrane of the target cell (Morgan et al., 

1968). Potentially, receptor binding triggers a conformational change in gD that translates 

to a change in gB and gH/gL, resulting in activation of the HSV-1 membrane fusion 

machinery (Figure I-9). Alphaherpesviruses can utilize two distinct entry pathways, 

depending on the type of cell encountered, entering some cells through pH-independent 

fusion with plasma membrane and other cells through an endocytic pathway, where low-

pH environment of the endosome triggers fusion of the virion envelope with cellular 

membranes. Studies of HSV-infected cells at early times post infection using electron 

microscopy (EM) have detected virions fusing with the plasma membrane as well as 

virions inside membrane-bound vesicles (Campadelli-Fiume et al., 1988a; Fuller et al., 

1989; Fuller and Spear, 1987; Sodeik et al., 1997). The details of the fusion mechanism are 

unknown but have been under investigation for quite some time (Campadelli-Fiume et al., 

2000; Spear et al., 2000). Entry via endocytosis is a recent postulate, based on the study in 

which inhibitors of endocytosis (energy depletion or hypertonic medium) and endosome 

acidification (weak base ammonium chloride or the ionophore monensin), blocked virus 

entry into the cells expressing herpesvirus entry receptors (Nicola et al., 2003; Nicola and 

Straus, 2004). Endocytic uptake of HSV virions from the cell surface is rapid and 

independent of any known gD receptor (Cassiani-Ingoni et al., 2005).  

 Herpes simplex virus entry into cells requires four glycoproteins, gB, gD, gH, and 

gL, regardless of the entry pathways taken. Glycoprotein B is in the form of a trimer, while 

gH forms a noncovalent complex with gL (Cairns et al., 2005; Farrell et al., 1994; 
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Heldwein et al., 2006; Hutchinson et al., 1992; Ligas and Johnson, 1988; Peng et al., 1998; 

Sarmiento and Spear, 1979).  Virus-induced membrane fusion is subdivided into three 

sequential phases (Figure I-10Figure I-10). During Phase I, two membranes are brought 

into close proximity through viral glycoprotein binding of cellular receptors. In 

alphaherpesviruses, such as EHV-1, gC interacts with heparan sulfate glycosaminoglycans 

(HSGAG) (Osterrieder, 1999), gB interacts with HSGAG and paired immunoglobulin-like 

type 2 receptor (PILR) alpha (Roller et al., 2008), and gD interacts with HveA and other 

receptors on cell surface (Spear et al., 2000). Glycoprotein D is the only interaction 

required for Phase I. Binding of gD to one of its receptors triggers conformational change 

that exposes the normally hidden receptor binding residues of gD. This results in transient 

interaction between gD and gH/gL, where gH/gL carries out Phase II hemifusion, followed 

by stable complex between gD and gB, where gB completes Phase III full fusion.  

 

 

Figure I-10. Phases of virus-induced membrane fusion. During Phase I, two membranes 
are brought into close apposition. Phase II marks the mixing of the outer membrane leaflets 
leading to formation of a hemifusion intermediate. A fusion pore stably forms and expands 
in Phase III, thereby completing the fusion process. 
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 Specifically, Phase II involves the initiation of lipid mixing between the two 

apposed membranes and is completed when the outer membrane leaflets are mixed to form 

an intermediate called hemifusion. In Phase III the mixing of the inner membrane leaflets 

continues from hemifusion to the pore formation and expansion and until completion of the 

fusion process (Atanasiu et al., 2007; Subramanian and Geraghty, 2007). Interestingly, 

Varicella zoster virus (VZV) fusion formation occurs upon expression of the gH/gL 

complex alone. In contrast, Pseudorabies virus (PRV) requires expression of gH, gL and 

gB, while the Herpes simplex virus (HSV) types 1 and 2 require the quartet of gH, gL, gB 

and gD. EHV-1 core fusion complex is not defined, but suspected to parallel the HSV-1 

model and include gH, gL, gB and gD. 

Virion Transport to the Nucleus 

After fusion of the virion envelope with the plasma or endosome vesicle membrane 

of the infected cell, the capsid and the associated tegument complex are deposited into the 

cytoplasm. Some tegument proteins disassociate from the complex and remain in the 

cytoplasm. The remaining capsid-tegument complex is then transported along the 

microtubule network utilizing the cell’s dynein motor to be docked at the nuclear pore 

complex (NPC), potentially disrupting the microtubule interactions in the process (Sodeik 

et al., 1997; Ward et al., 1998). VP1/2 gene is required for the release of the DNA from 

nuclear pore associated capsids and its deposition into the nucleus (Batterson and 

Roizman, 1983; Copeland et al., 2008; Knipe et al., 1979; Ojala et al., 2000). Change in 

NPC conformation allows translocation of the genome as a densely packaged, rod-like 

structure, rapidly and efficiently ejected through dilated NPCs towards the nucleus into the 

nucleoplasm, where it is transcribed and replicated to propagate the infection. After release 
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of the genome, empty capsids dissociate from the NPC (Batterson and Roizman, 1983; 

Lycke et al., 1988; Sodeik et al., 1997). 

Biosynthesis 

Coordinate Gene Expression 

During the course of infection, more than 80 genes are expressed in highly 

regulated cascade fashion. As with other alphaherpesviruses such as herpes simplex virus 

type 1 (HSV-1), varicella-zoster virus (VZV), bovine herpesvirus 1 (BHV-1), and 

pseudorabies virus (PRV), expression of EHV-1 genes is temporally regulated and 

coordinately expressed in an immediate-early (IE or α), early (E or β), and late (L or γ) 

fashion. The regulation of this cascade of gene expression is governed by the action of at 

least four characterized EHV-1 regulatory proteins: the sole IE protein (IEP), the EICP22 

protein (formerly known as IR4), the EICP27 protein (formerly known as UL3), and the α-

gene transactivating factor (α-TIF). α-TIF protein, a γ gene product present in the 

tegument, activates initial transcription of alpha genes, which contain the 

“TAATGArATT” promoter response element, which binds cellular Oct-1 bound to viral 

DNA. Meanwhile, VP16 is released from its interaction with VHS and the tegument 

complex and binds to a cellular protein, the host cell factor (HCF) or C-1 (Katan et al., 

1990; Kristie and Sharp, 1990). HCF carries VP16 into the nucleus and the VP16-HCF 

complex binds to Oct-1. The viral gene expression is then autoregulated, expression of β 

genes activated, then γ gene expression is activated by α and β genes, viral genome 

replication is initiated as γ genes turn off α and β genes late in infection (Roizman and 

Knipe, 2001). RNA polymerase II transcription of viral DNA takes place in the nucleus 

(Alwine et al., 1974; Costanzo et al., 1977). 
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Viral alpha genes are expressed at peak levels at 2 to 4 hours post infection. Out of 

six α genes: ICP0, ICP4, ICP22, ICP27, ICP47, and US1.5, five stimulate viral β gene 

expression in at least some cell types. In particular, ICP4 is required for all post-α gene 

expression (Clements et al., 1977; Dixon and Schaffer, 1980), and its effect is exerted at 

the transcriptional level (Godowski and Knipe, 1986). ICP4 or possibly it’s also 

responsible for downregulation of itself and ICP0, gene products of ORF P and ORF O 

(Gelman and Silverstein, 1987; Petzoldt et al., 1987). The absence of ICP4 at low grade 

infection leads to a 100 fold decrease in virus yield (Sinclair et al., 1994; Stow and 

Davison, 1986). 

The β genes products, involved in viral DNA replication and nucleotide 

metabolism, are produced at peak levels between 4 and 8 hours post infection, and are 

subdivided into two groups based on timing of expression. β1 genes such as single-stranded 

DNA binding protein, ICP8, and the large subunit of ribonucleotide reductase, ICP6, are 

expressed shortly after the synthesis of the alpha proteins. The β2 genes such as viral 

thymidine kinase encoded by UL23, are expressed with a certain delay after α gene 

expression possibly due to presence of ICP27 requirement for expression (Roizman and 

Knipe, 2001). 

The γ (late) genes are produced at peak levels only after viral DNA replication has 

started, and require ICP4, ICP27 and ICP8 for efficient levels of transcription. γ1 (leaky-

late) genes, are expressed throughout infection and their transcription is increased only a 

few fold after DNA replication has occurred. γ2 genes, which do not accumulate in 

appreciable amounts until after DNA replication (Wagner et al., 1985). Typical γ1 genes 

include the major capsid protein ICP5, gB, gD, and ICP34.5, whereas typical γ2 genes 
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include gC, UL41 (VHS), UL36, UL38, UL20, and gK. Over 30 viral structural proteins 

have been identified in the alphaherpesvirus particle, eight of which are associated with the 

capsid (McNab et al., 1998; Steven and Spear, 1997; Thurlow et al., 2005). 

Viral Inhibition of Host Protein Synthesis 

While making their own proteins, herpesviruses shut off the synthesis of cellular 

proteins through degradation as well as inhibition of further synthesis and processing of 

host mRNA. The virion host shutoff protein (VHS) is a structural component of the virion 

and functions without the need for de novo protein synthesis upon infection (Fenwick and 

Walker, 1978; Nishioka et al., 1978). In complex with the translation factor eIF-4H  

protein induces endoribonucleolytic cleavage of 5’ end of mRNA (Frink et al., 1981)  

(Elgadi and Smiley, 1999; Karr and Read, 1999; Kwong et al., 1988; Roizman and Knipe, 

2001; Zelus et al., 1996). Early in the infection VHS accelerates the degradation viral 

mRNAs as well as cellular, thus facilitating the transition from α to β to γ gene expression 

(Kwong and Frenkel, 1987; Oroskar and Read, 1987). As a γ1 gene product, newly made 

VHS accumulates late in infection. VHS is unable to degrade the viral mRNAs that 

predominate at this late stage of infection as it is immediately incorporated with VP16 into 

a tegument complex to be delivered to the next cell for inhibition of protein synthesis (Lam 

et al., 1996) 

Viral Genome Replication  

Parental viral DNA is circularized upon being deposited into the nucleus of the 

infected cell. After the β genes have been expressed and translated, several proteins 

assemble on the parental circular viral DNA initiating replication in a “theta” structure, 

which then transitions to a rolling circle mechanism producing head-to-tail concatemers of 
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viral DNA (Ishov and Maul, 1996; Jacob et al., 1979; Uprichard and Knipe, 1996). There 

are seven viral proteins absolutely required and sufficient for viral DNA replication. These 

are the viral DNA polymerase, UL30 (Purifoy et al., 1977), its accessory protein, UL42 

(Conley et al., 1981), an origin-binding protein, UL9, the single stranded DNA binding 

protein , ICP8, and the helicase-primase complex of UL5, UL8, and UL52 (Challberg, 

1986; Wu et al., 1988). Host DNA polymerase α- primase, DNA ligase, and topoisomerase 

II are also required. Although only one origin of replication (Ori) is needed for replication 

in vitro, viral genomes of alphaherpesviruses has three. Studies in vivo have shown that the 

origins have distinct functional properties.  OriS, a palindromic sequence of ~45 bp that is 

located in the “c” repeats flanking the unique short (US) region of the genome and present 

in two copies. OriL, a palindromic sequence of ~144 bp, is located at the center of the 

unique long (UL) region of the genome (Deb and Doelberg, 1988; Igarashi et al., 1993; 

Knopf et al., 1986; Lockshon and Galloway, 1986; Polvino-Bodnar et al., 1987; Roizman 

and Knipe, 2001). OriL contributes significantly to morbidity and mortality of HSV-1 

infection in mice and is required for efficient viral replication and reactivation in neurons 

(Balliet and Schaffer, 2006). Both oriL and oriS contain palindromic sequences as core 

elements, share greater than 90% homology, and reside within the promoter/enhancer 

regions of genes essential for viral replication. UL9 binds to either oriL or oriS and begins 

to unwind the viral DNA. UL9 then recruits the single stranded DNA binding protein, 

ICP8, to the unwound portion of the viral DNA. At this point, UL9 and ICP8 engage the 

remaining five proteins to the replication forks. The helicase–primase and viral DNA 

polymerase complexes assemble at each replication fork and initiate theta form replication 

that switches the rolling circle form of replication through an unknown mechanism. UL9 is 
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not required for rolling circle replication because it is not origin dependent. The rolling 

circle replication forms long head-to-tail concatemers of viral DNA, which become 

cleaved into individual units during packaging of viral DNA into capsids (Roizman and 

Knipe, 2001). 

Capsid Assembly and DNA Packaging 

Following initiation of DNA replication and transcription  γ genes encoding capsid 

proteins, capsid assembly proceeds by way of small oligomers of major capsid (VP5) and 

scaffold proteins added to the edges of the growing capsid and secured in place by 

triplexes (VP23) (Nicholson et al., 1994; Rixon et al., 1996). Assembly requires the 

individual subunits to be synthesized in an assembly-inactive form that is subsequently 

triggered to polymerize, either by recognition of a growing surface or by binding to a 

scaffolding protein (Figure I-11). 

The process is initiated in the cytoplasm and is completed in the nucleus, so most 

of the proteins are able to localize to the nucleus on their own, while VP5, VP26 (outer tip 

of hexons), and VP23, can be carried to the site. VP5 uses a triplex protein VP19C or a 

scaffolding protein pre-VP22a. VP23 uses VP19C, while VP26 uses both VP5 and VP19C 

or pre-VP22a (Nicholson et al., 1994; Rixon et al., 1996). Once in the nucleus, VP5-pre-

VP22a complexes come together as a result of self assembly of pre-VP22a, which is lost as 

DNA is packaged. The triplex proteins VP19C and VP23 are then added to form a partial 

capsid.  Hexons and pentons made up of VP5. The individual capsomers are linked by 

triplex structures consisting of VP19C and VP23, the two minor capsid proteins. Each 

triplex consists of one molecule of VP19C and two molecules of VP23 (Newcomb et al., 

1993).  
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Figure I-11. Packaging of viral DNA. 
  



61 

 

 Eventually a single portal complex (comprised of 12 copies of UL6) is incorporated 

into the growing structure at a unique vertex (Dasgupta and Wilson, 1999; Newcomb et al., 

2001) and nascent capsid closes forming the procapsid. The portal complex is an integral 

part of the capsid structure and harbors the binding sites for the terminase complex (UL15 

with UL28 and possibly UL33) (Adelman et al., 2001; Beard et al., 2002; Davison, 2002; 

White et al., 2003; Yu and Weller, 1998). The portal not only functions as a DNA-

translocating machine in conjunction with nonstructural viral factors (terminase/ATP) but 

also interacts with the minor proteins that seal the portal after DNA packaging and reopen 

it for genome ejection at onset of infection. Procapsid matures undergoing structural 

transformation. This process results in the conversion of the spherical procapsid into a 

more angular form. The internal protein scaffold (VP21 and VP22a) is cleaved by the viral 

protease and is displaced from inside the capsid as the DNA genome is packaged into the 

capsid (see Figure I-11). The internal protein VP24 is retained (Sheaffer et al., 2000). 

 Many aspects of capsid assembly and DNA packaging in the herpesviruses are 

similar to those in dsDNA bacteriophages such as λ, T4, and P22 (Brown, 2002; Prevelige 

and King, 1993) (Figure I-11). Cleavage of DNA concatemers by the terminase complex) 

occurs at specific sites and requires the pac1 and pac2 packaging signals to generate unit-

length genomes (Deiss et al., 1986; Smiley et al., 1990; Varmuza and Smiley, 1985). The 

process of encapsidation of viral DNA requires several gene products, including UL6, 

UL15, UL17, UL28?, UL32, UL33, UL36? and UL37? (Brown, 2002; Lamberti and 

Weller, 1998; Roizman and Knipe, 2001; Taus et al., 1998). UL17 and UL32 have been 

implicated in targeting of capsids or capsid proteins to the sites of DNA packaging 

(Lamberti and Weller, 1998; Taus et al., 1998). Of the three capsid-associated DNA 
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packaging proteins, UL17, UL25, and UL6, only UL17 and UL6 appear to be components 

of the procapsid (Thurlow et al., 2006). Subsequent to DNA cleavage, UL25 is required 

and added for packaging process for retention of DNA within the capsid, potentially 

sealing it (McNab et al., 1998; Stow, 2001). By further extrapolation from HSV-1, portal 

protein UL6 interacts with the DNA cleavage and packaging proteins (putative terminase 

subunits) UL15 and UL28 to form part of the terminase enzyme, a protein complex 

essential for the cleavage of newly synthesized, concatemeric herpesvirus DNA and 

packaging into preformed  capsids (Ladin et al., 1980; Ladin et al., 1982). Another DNA 

cleavage and packaging protein is encoded by the UL 33 gene associates with capsids 

(Beard and Baines, 2004). The mature capsid is then able to proceed along the viral egress 

pathway. 

According to separation by density gradient centrifugation, three capsid species 

have been identified for EHV-1 based on their sedimentation properties, Lights which are 

abortive and correspond to A-capsids of HSV-1, Intermediate - (B-capsids), and Heavy - 

minor component (C-capsids) containing packaged DNA. Both A and B capsids represent 

dead-end products of infection. In the absence of DNA packaging, cleavage of the protein 

scaffold and structural transformation of the procapsid still occur forming B capsids, 

devoid of DNA as are lights but containing an additional protein, VP22, (Newcomb et al., 

1989; Newcomb et al., 1993). Abortive light (A) capsids contain neither DNA nor the 

scaffolding proteins (Baker et al., 1990).  

Egress and Envelopment 

The egress occurs via a two-step process, the “de-envelopment re-envelopment” 

pathway. Primary envelopment occurs at the inner nuclear membrane, followed by the 
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fusion of primary envelope with the outer nuclear membrane and subsequent de-

envelopment and loss of the envelope, primary tegument, UL31, and UL34 and 

translocation of the capsid into the cytoplasm of the infected cells (Enquist et al., 1998; 

Mettenleiter, 2000). (Gershon et al., 1994; Granzow et al., 2001; Harms et al., 2000; 

Reynolds et al., 2002; van Genderen et al., 1994). The mechanism and the role of major 

glycoproteins in virion de-envelopment from the perinuclear space is unclear (Cai et al., 

1987; Granzow et al., 2001; Jayachandra et al., 1997; Steven and Spear, 1997; Steven et 

al., 1997). Final tegumentation and envelopment (re-envelopment) occur in cytoplasmic 

compartments. 

Herpesvirus tegument is highly complex. At least 15 proteins have been identified 

that are part of the HSV-1 tegument. Even more proteins make up the tegument of other 

herpesviruses such as VZV or CMV (Gibson et al., 1996; Spengler et al., 2001). 

Tegumentation is an intricate pattern of redundant protein-protein interactions 

(Mettenleiter, 2002a). The tegument proteins interact with the capsid on one side and the 

viral envelope proteins on the other side linking the structural components of the virus 

particle (Mettenleiter, 2002b).  

The steps in capsid tegumentation are still largely undefined. Virion morphogenesis 

still proceeds in the absence of several tegument proteins, including UL13, US3, UL41, 

UL46, UL47, and UL49 (Frame et al., 1987; Mettenleiter, 2002a; Rafield and Knipe, 1984; 

Roizman and Knipe, 2001). UL36 and UL37 appear to be the only tegument proteins 

conserved in all herpesvirus subfamilies, and the absence of the HSV-1 UL36 and UL37 

proteins abolishes virus maturation (Desai et al., 2001; Desai et al., 2000; Klupp et al., 

2001). The absence of UL48, (α-TIF), which is responsible for transducing α gene 



64 

 

promoters and makes up a major part of the virus tegument, interferes with virion 

assembly, affecting tegumentation and reenvelopment in the cytoplasm (Batterson et al., 

1983; Heine et al., 1974; Mossman and Smiley, 1999). UL48 has been shown to interact 

with other tegument components, UL49 and UL41 (VHS), and may potentially interact 

with gB, gD, and gH (Read et al., 1993; Smibert et al., 1994; Zhu and Courtney, 1994). 

UL39 or PRV interacts with gE/I &M. HSV-1 capsid protein VP26 interacts with dynein 

light chains RP3 and Tctex1 and also plays a role in retrograde cellular transport (Douglas 

et al., 2004).  

Following tegumentation in the cytoplasm, capsids acquire their final envelope by 

budding into endosomes or cytoplasmic vesicles derived from the trans-Golgi Network 

(TGN). Following the final envelopment step, nascent virions egress to extracellular 

spaces, potentially utilizing the cellular transport machinery. The late stages in viral egress 

are still unclear and may differ depending on the cell type that is infected. 

In the absence of capsids, tegument assembly could proceed anchored on UL49 

instead of UL36 and UL37, resulting in the formation of light (L) particles, that  

(McLauchlan and Rixon, 1992; Mettenleiter, 2002b; Rixon et al., 1992). L particles appear 

to contain the full complement of tegument proteins as well as an authentic envelope 

containing all appropriate glycoproteins. 

Latency 

Productive infection of respiratory epithelial cells, endothelial cells and 

lymphocytes is characterized by active expression of all viral genes in a highly ordered 

temporal cascade as described above. In contrast, latent infection of sensory neurons is 

characterized by profoundly restricted viral-gene expression, the failure to synthesize viral 



65 

 

DNA, and the absence of infectious virus. In the trigeminal ganglia, circulating T-

lymphocytes and lymphoid tissues draining the respiratory tract of their hosts, 

Trigeminal ganglia, circulating T lymphocytes and lymphoid tissues draining the 

respiratory tract, are the sites for establishment and maintenance of the lifelong state of 

latency characteristic of all herpesviruses. In latently infected animals, reoccurrence of 

viremia and shedding of the virus in nasal secretions of horses has been produced by 

immune suppression through the administration of corticosteroids (Slater et al., 1994). The 

cycle of a persistent latent infection with intermittent reactivation and shedding is thought 

to keep EHV circulating within the equine population. Viremia occurring in primary and 

all recrudescing infections occurs subclinically and poses a threat of inducing abortion, as 

well as neurological disease. 

Many different stressors, such as parturition, transportation, inclement weather, 

corticosteroid treatment, or mixing of social groups, can result in the reactivation of 

previously latent EHV-1 infection (Slater et al., 1994). The virus remains latent in the 

trigeminal nerve ganglia and lymphocytes of infected horses for life. 

EHV-1 Economic, Epidemiologic, and Clinical Significance 

Economic Significance 

Horse industry is large and diverse involving recreation, showing, racing, sport, 

breeding, as well as work, and impacts national, state, and local economies. There are 

about 9.2 million horses in the United States. The recreational segment accounts for $31.9 

billion of the total economic impact, followed by the horse show segment at $28.7 billion 

and the racing segment at $26.1 billion. The horse industry pays $1.9 billion in taxes to all 

levels of government. In terms of total effect on the gross domestic product, California 
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leads the way at $6.97 billion a year, followed by Texas ($5.23 billion), Florida ($5.15 

billion), Kentucky ($3.54 billion), and Louisiana ($2.45 billion). Texas has the most horses 

with 978,822, followed by California (698,345), Florida (500,124), Oklahoma (326,134), 

and Kentucky (320,173). There are 164,000 horses in Louisiana, and 54,200 Louisianans 

are involved in the industry as horse owners, service providers, employees, and volunteers, 

while even more participate as spectators (LLP, 2005). 

World-wide equine herpesvirus-1 continues to be a major cause of epidemic 

abortion, perinatal mortality, respiratory disease and occasionally neurological disease in 

horses (Allen et al., 2000; Bryans, 1989; Whalley, 1998). Herpes virus infections are 

economically detrimental to the industry. Abortion is the most dramatic outcome of EHV-1 

infection, and an epidemic outbreak can be financially disastrous for breeders, with loss of 

clients and large insurance payments. Equine herpesvirus infection also renders horses 

more susceptible to other diseases, and in young animals, strangles (Streptococcus equi) 

and rattles (Rhodococcus equi) are already of significance to the industry. In addition, 

considerable losses are encountered due to quarantine of the racing facilities during 

respiratory herpesvirus outbreaks in adult equine population. Neurologic cases have been 

on the rise, and demand advanced and costly veterinary care. Nonetheless, with the animal 

health as the outmost goal, the effort and the expense to combat EHV-1 infection has been 

considerable throughout past decades. 

Epidemiology 

Equine herpesvirus-1 (EHV-1) is an alpha herpesvirus which causes upper 

respiratory tract infections in horses. These infections may be mild or asymptomatic and 

can result in serious sequelae such as abortion, neonatal syndrome, peracute pulmonary 
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vasculitis, myeloencephalopathy, ocular disease and secondary bacterial infections. As a 

primary respiratory pathogen, no contributing factors are necessary for the outbreak of 

disease.  However, environmental and management factors still play a role in the incidence 

of disease and its prevention (Sellon, 2001). Risk factors contributing to an outbreak 

include: overcrowding, heavy parasite burden, poor nutritional state, climatic extremes, the 

presence of concurrent disease and mixing of horse populations (Allen et al., 2002b). In 

addition, air quality, sanitation, storage and quality of feed and prolonged periods of 

transport impact the incidence of infection and disease (Sellon, 2001). 

 EHV-1 is enzootic in most equine populations with horses being exposed early in 

life to the virus.  It is estimated that 80%-90% of horses are infected by EHV-1 or its close 

relative, EHV-4, by two years of age (Allen et al., 2002a; Gilkerson et al., 1999b), 

determined that 30% of broodmares and racehorses on a stud farm were positive for EHV-

1 antibodies. Once a horse is infected with EHV-1 it is infected for life (Figure I-12). The 

virus becomes latent in the trigeminal nerve ganglia and in the T lymphocytes of the 

lymphoid tissue draining the upper respiratory tract (such as the submandibular and 

retropharyngeal lymph nodes) (Allen et al., 2002b). Under periods of stress the virus can 

be reactivated. Stressors include parturition, lactation, weaning, inclement weather, 

prolonged transportation times, surgery, mixing of different groups of animals as well as 

the use of certain medications such as corticosteroids (Huang Ja et al., 2002). The animal 

with a reactivated infection may or may not show obvious clinical signs but it can shed 

virus in its nasal secretions and potentially infect other horses. The ability to become latent 

is one of the factors contributing to the amplification and maintenance of the virus within 

equine populations (Huang Ja et al., 2002). A latently infected mare can pass the infection 
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to her foal that then also can become latently infected. Periodically throughout the horse’s 

life the infection can become reactivated and be passed horizontally to other horses. The 

cycle of infection, latency, reactivation, viral shedding and infection or re-infection 

maintains the virus within the population. It should be noted that as the risk of re-infection 

or reactivation remains with the horse throughout its life, so does the risk of development 

of any of the sequelae associated with EHV-1 infection. The risk of abortion, neurological 

disease and severe respiratory disease does not diminish with time (Huang Ja et al., 2002).   

 The virus is transmitted via close contact with an infected horse shedding virus in 

its nasal secretions or through aerosolized respiratory secretions. Fomites and the ingestion 

of contaminated feed are possible sources of infection with virus. An important source of 

infection for pregnant mares is the fetus, placenta or any birth fluids from an aborted EHV-

1 infected fetus (Leblanc, 1999). The incubation period for the respiratory form of EHV-1 

infection is 2 to 10 days. 

EHV-1 upper respiratory tract infection is primarily a disease of young horses aged 

from weaning to 2-3 years. It is unusual for foals under the age of 3 months to show 

clinical signs (unless they were congenitally infected), especially if their mothers were 

vaccinated. Maternal antibodies are most likely responsible for the protection of these foals 

(Huang Ja et al., 2002). 

The virus is circulated year round within the horse population. As mentioned 

above, the virus goes into latency and can be reactivated at times of stress, providing a 

source of infection for other horses. The immunity to the virus is weak and short-lived (3 

to 5 months) whether a horse is vaccinated or not, so it is possible for horses to be re-

infected (Carman et al., 1997). Respiratory tract infections are a major cause of lost 
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training days in thoroughbred race horses (Wood et al., 1999). Respiratory tract infections 

may be caused by a variety of different pathogens, including bacterial and viral agents. 

Which respiratory pathogen is responsible at any given time in any year varies depending 

on the particular population of horses involved and the management practices employed, 

but EHV-1 is one of the more common viral pathogens. There is no data available that 

gives the annual incidence of infections caused by EHV-1 or the proportion of upper 

respiratory tract infections attributable to EHV-1 (Huang Ja et al., 2002). In addition to the 

economic losses secondary to lost training days within the racing industry, EHV-1 is 

significant because of the potentially serious sequelae that may follow infection with the 

virus. These sequelae include abortion, neonatal death, myeloencephalopathy, severe 

respiratory disease, ocular disease and secondary bacterial infections. 

The presence of EHV-1 carriers in the horse population makes eradication of EHV-

1 difficult. Therefore, management should focus on disease prevention, through 

vaccination and management strategies, rather than eradication or treatment regimes.  

Recent Outbreaks 

There is a growing concern in the U.S. horse industry over the increased number of 

neurologic cases of EHV-1 reported in recent years, as well as the occurrence of several 

high-profile outbreaks. The Center for Emerging Issues, part of the Department of 

Agriculture's Animal and Plant Health Inspection Service, recently labeled the neurologic 

form of EHV-1 as a potentially emerging disease. 

Despite the availability and use of currently approved vaccination protocols for 

EHV-1, in January of 2003, EHV-1 swept through the University of Findlay’s English 

riding facility, infecting 90% of the 138 horses. During the outbreak, both respiratory and 
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neurological forms of the disease were seen.  Forty-two of these horses exhibited severe 

neurological symptoms and were admitted to the Ohio State Veterinary Hospital where 

they all subsequently died or were euthanized (Cassiani-Ingoni et al., 2005). Significant 

outbreaks prior to Ohio have been reported in Southwestern Virginia, March 1998; 

Johnson County Wyoming, July 2001; Northern Virginia, April 2002; and Canada, 

October 2002 and January 2003. Most recently, a subsequent outbreak of respiratory and 

neurological disease has been reported in horses at the Pennsylvania National Racecourse 

outside of Philadelphia (Grantville, PA). The recrudescence of latent infections may lead to 

disease despite maintenance of closed populations. Furthermore, with increasing 

affiliations within the equine industry, the potential devastating losses during EHV-1 

outbreaks are no longer confined to individual farms. 

Minimum four cases of equine herpes closed the Northville Downs racetrack in 

February 2005, cancelling the live horse racing for a month. In December prior to that, the 

racetrack was quarantined after two horses were found to have equine herpes and were 

euthanized. A third horse was discovered to have the disease in January in a separate barn, 

which alarmed state officials and the barn was under quarantine until February (Cassiani-

Ingoni et al., 2005). 

Several cases of equine herpes virus were reported at Truro Raceway N.S. in 

February 2005, and the local Racing Commission sent out a cautionary advisory to 

racetracks (Cassiani-Ingoni et al., 2005). In 2006, 11 outbreaks of the neurologic form of 

EHV-1 were reported, four in Maryland and one each in Colorado, Florida, Georgia, 

Michigan, New Jersey, Pennsylvania, and Wisconsin (AVMA News Bulletin March 6, 

2007). Early 2007 outbreaks included six horses in Virginia, one in Maryland and others. 
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Transmission and Seroprevalence 

Transmission of EHV-1 occurs via the respiratory route after contact (direct or 

indirect) with infected nasal secretions, aborted fetuses, placenta, or placental fluids 

(Timoney, 1992). Indirect contamination is also possible through fomites such as human 

hands, endoscopes, and feed and water buckets (Huang Ja et al., 2002). Within a few hours 

of infection the virus penetrates the epithelial surfaces of the upper and lower respiratory 

tracts (Figure I-13). It replicates and disseminates into the stroma, causing collapse of the 

lamina propria. Infection then spreads to the draining lymph nodes of the respiratory tract 

where the virus infects lymphocytes, monocytes and dendritic cells. The infection of these 

immune cells causes immunosuppression and thereby increases the likelihood of secondary 

bacterial infections. Cell associated viremia results in the dissemination of the virus 

throughout the body. The virus is endothelialtropic, and the interleukin-2 molecules 

released during inflammation induce the expression of leukocyte adhesion molecules on 

endothelial cells.  Virus is passed onto vascular endothelial cells by the attached infected 

leukocytes. Infection of the blood vessels occurs within 24 hours of exposure (Mair, 1999). 

Endothelial cell infection and ensuing virus replication causes vasculitis and thrombosis. 

Vasculitis and thrombosis can cause abortion when it occurs in the vessels supplying the 

fetus and placenta, and it can cause neurological disease when it occurs in the CNS 

(Wilson, 1997). 

An important mechanism by which herpesviruses evade the immune system is 

through the suppression of class I MHC molecules. Herpesviruses also evade the immune 

system through latency, which is established in the neurons of the trigeminal nerve ganglia 

and in the T lymphocytes of the lymphoid tissue draining the upper respiratory tract 
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(Huang Ja et al., 2002). During latency only one viral gene is expressed, thereby 

preventing neuron apoptosis. When the host undergoes stress of any nature, proteins made 

by the host under these conditions activate expression of the herpesvirus. The virus 

replicates, travels down the axons, and reinfects epithelial cells. It is then shed by the host 

and infects other hosts. 

EHV-1 is enzootic in most equine populations world-wide. The seroprevalence of 

EHV-1 has been increasing over the past decade, reaching approximately 30% according 

to a 1999 survey (Gilkerson et al., 1999a). Studies showed that vaccinations do not alter 

the prevalence of EHV-1 antibody-positive foals, such that the cycle of EHV-1 infection 

continues in vaccinated mares and their unvaccinated unweaned foals. Foals as young as 

11 days old become infected (Foote et al., 2003; Foote et al., 2004). The virus also can be 

carried and spread in fetal tissues, the placenta, and the uterine fluids from mares that have 

aborted. Virus spread via nasal secretions among weanlings and adults completes the cycle 

of EHV-1 transmission to incorporate entire horse population. 

Prophylaxis 

EHV-1 infections are usually dealt with using management practices that limit 

spread of the disease, providing symptomatic relief to infected horses, and treating 

potential secondary bacterial infections with antibiotics. Treatment of neurologic outbreaks 

with the anti-HSV-1 agent acyclovir (inhibitor of viral DNA replication) did not produce 

substantial benefits. Of particular importance to the management of EHV infections is the 

fact that these viruses establish latency or unapparent infection that can recur in times of 

immune suppression. Upon primary infection of young horses, many will develop 

rhinopneumonititis, but all will remain subclinically infected throughout their life 
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periodically shedding the virus to infect new horses. Vaccination against EHV-1 helps to 

reduce the severity of illness, but it does not prevent the latent infection or the neurological 

disease caused by EHV 1.  

Vaccination  

Of particular importance to the management of EHV infections is the fact that these 

viruses establish latency or unapparent infection that can recur in times of immune 

suppression. EHV-1 circulates in vaccinated populations of mares and their unweaned 

unvaccinated foals, continuing the infectious cycle (Foote et al., 2004). Upon primary 

infection of young horses, many will develop rhinopneumonititis, but all will remain 

subclinically infected throughout their life, periodically shedding the virus to infect new 

horses. 

As of molecular interest, generally, all herpesviruses have evolved mechanisms to 

facilitate virus-entry into cells through the use of multiple glycoproteins embedded within 

their viral envelope. The glycoproteins are efficient primary targets of virus-specific 

neutralizing antibody, development of which is coincident with resolution of clinical signs 

and resistance to homologous reinfection for 3 to 4 month. When used in conjunction with 

appropriate management practices, the current EHV-1 vaccines help to curtail the 

respiratory disease and abortion but are ineffective to prevent the neurological form of 

disease (Allen et al., 1999a). Horses become seriously ill despite regular vaccinations in 

very short intervals. In devastating recent outbreaks, an unusually high number of horses 

exhibited the neurological form of the disease. This is alarming because this form of EHV-

1 infection used to be sporadic and contained to individual animals of an affected herd. 

Better treatment options are in high demand. 
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Since 1930s, there is ongoing research to design the vaccination programs for 

EHV-1, but still numerous limitations are encountered. At its simple, vaccine 

administration is complicated by practical difficulty to match the duration of immunity and 

the risk period for the disease. 

A modified live EHV-1 vaccine of monkey cell line origin was shown to be 

associated with neurologic disease in 486 of 60,000 recipients, prompting its withdrawal 

from the US market in 1977 (Studdert et al., 1981). There are no reports of EHV-1 

myeloencephalopathy associated with use of a modified live vaccine currently approved 

for use in horses in the United States. However, there are several limitations with the 

current vaccine regimen. Immunity induced by the vaccine only lasts two to three months, 

and thus, a year round vaccination program must be administered (Cassiani-Ingoni et al., 

2005).  Additionally, whereas these vaccines have been shown to experimentally reduce 

disease, the efficacy of vaccination against EHV-1 in the field has yet to be firmly 

established.  

Although both sporadic and epizootic EHV-1 abortions occurred in immunized 

mares, the numbers of fetal and neonatal foal losses decreased significantly (chi 2 = 15.75; 

p less than 0.001) from 11.8% (343 of 2897 pregnancies) during the seasons 1969-1973 to 

8.9% (334 of 3763 pregnancies) in the years 1975-1982 during which EHV-1 vaccinations 

had been carried out (Frymus et al., 1986). 

All horses at risk of contracting an EHV-1 infection should be vaccinated. 

Vaccinating young horses against EHV-1 does not prevent respiratory infection; however, 

vaccination does reduce the severity of clinical signs and the level and duration of viral 

shedding.  Therefore, goals of vaccination against EHV-1 respiratory infection should 
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include minimizing the intensity of clinical signs and limiting spread of the virus within 

the population.  As immunity arising from EHV-1 vaccination is short lived, booster 

vaccinations are required. A typical vaccination schedule begins with two vaccinations, 3 

weeks apart, just prior to weaning followed by a booster every 3 to 6 months, depending 

on the risk of exposure.  Athletic horses that compete in shows and/or races will require 

more frequent vaccination.  Vaccination should be given 7-10 days prior to an event in 

case a local vaccine reaction occurs (Huang Ja et al., 2002).          

 In order to prevent abortions, pregnant mares can be vaccinated with a killed EHV-

1 vaccine.  Modified live virus vaccines should not be given to pregnant mares.  As the 

neurological form of the disease may be immune mediated, vaccination is unlikely to offer 

protection against this EHV-1 manifestation (McClure and Lunn, 1999).  No vaccines to 

date have demonstrated definite protection against the neurological form of EHV-1 

infection (Huang Ja et al., 2002), (Goodman et al., 2006) 

Management                                 

Overcrowding, heavy parasite burdens, poor feed and air quality, transportation, 

inclement weather, and mixing of horse populations have been associated with a higher 

incidence of infection and disease with EHV-1. Management regimes aimed at preventing 

EHV-1 infections should include isolating incoming horses from the resident population 

for a minimum of three weeks and minimizing stressors. Regular vaccination and 

deworming programs can contribute to reducing the risk of infection. Maintaining the 

general health of horses can be achieved by providing good quality nutrition, a clean 

environment and protection from the elements (Huang Ja et al., 2002; Sellon, 2001).  
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Mares that have aborted should be isolated, contaminated stalls and paddocks 

should be cleaned and disinfected, bedding burned, staff should use protective wear to 

avoid animal to animal transfer, and facility quarantined for 30 days after the last abortion 

(Leblanc, 1999; Mair, 1999).  Booster vaccination (inactivated) during an outbreak may 

limit the spread of infection and protect some horses (Mair, 1999). 

Prevention is achieved by segregating horses based on age (young horses away 

from the mares) and keeping mares in small groups isolated from temporary or new 

populations. Any newly acquired animals should be placed in quarantine for 3 weeks 

before being introduced to the resident population (Mair, 1999). Minimizing the stress on 

mares (stressors, such as parturition, transportation, inclement weather or mixing of social 

groups), especially later in gestation, may be of benefit in preventing reactivation of a 

latent infection. Vaccinating pregnant mares with an inactivated vaccine at 5, 7 and 9 

months gestation has helped reduce the incidence of EHV-1 related abortion. The mares in 

addition should receive a yearly booster. If other horses are kept on the property, the 

pregnant mares preferably should be handled first (Mair, 1999). 

In any presentation of EHV-1 infection isolation of infected horses and a 3 week 

quarantine of the farm are paramount. Facilities must be either left empty for three weeks 

or disinfected appropriately. The most effective strategy to curtail the infection is to keep 

horses minimally stressed and physically segregated, the method poorly applicable to the 

modern horse industry with densely populated intermingling high stress environments of 

race tracks, boarding stables, and show events. It is important that large equestrian events 

have requirements for entry of the horse into a facilty and a good plan for temporary 

quarantine of new arrivals as well as rapid infection and disease control response.  
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Figure I-12. Pathogenesis of EHV-1 infection. 
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EHV-1 Pathogenesis and Clinical Presentation 

Respiratory 

Of the two most common viruses, EHV-4 is by far more commonly isolated from 

cases of herpesvirus respiratory disease (Foote et al., 2004; van Maanen, 2002), while 

respiratory infection by EHV-1 has the greater potential for clinically severe sequelae 

including abortion, neonatal foal death, neurological disorders, peracute pulmonary 

vasculitis, and ocular disease. Disease severity depends on previous exposure or infection, 

health status, concurrent infections and the virulence of the particular EHV-1 strain (Huang 

Ja et al., 2002).  Among the eight equine herpesviruses identified to date, EHV-1 is one of 

the most pathogenic herpesviruses of horses.  

Equine respiratory disease associated with EHV-1 infection of the upper airway 

mucosal epithelium is a condition routinely seen primarily in young horses, weanlings and 

up to 2 year old horses in training or performing (Timoney, 1992). Clinical signs include 

depression, poor appetite, nasal discharge and cough. Clinical upper respiratory tract 

disease (URTD) caused by EHV-1 is acute and infection spreads rapidly within a 

population via aerosolized respiratory secretions or virus-contaminated fomites. The 

majority of respiratory infections run a subclinical course. Older horses generally show 

mild or subclinical signs, while younger horses are usually protected by passive immunity 

(Mair, 1999). Diagnosis cannot be made on the basis of presenting clinical signs alone and 

requires laboratory confirmation. 

Natural infection with EHV-1 occurs by inhalation or ingestion, after which the 

virus attaches to, and rapidly replicates in, cells of the nasopharyngeal epithelium and 

associated lymphoreticular tissues, causing necrosis, exudation, and infiltration of 
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phagocytic cells (Figure I-13). The incubation period is from 2 to 10 days (Timoney, 

1992). Bronchial and pulmonary tissues also become infected, particularly in foals, 

predisposing them to secondary bacterial pneumonia. The respiratory form is referred to as 

rhinopneumonitis and is characterized by rhinopharyngitis and tracheobronchitis. 

Clinical signs are the most severe and viral shedding greatest during the first few 

days of infection. Bilateral nasal discharge is most common clinical finding. Initially the 

discharge is serous, in 2-3 days of infection, the discharge becomes mucopurulent with 

inflammatory cells and desquamated respiratory cells, and commonly progresses to 

purulent with an advent of a secondary bacterial infection (Huang Ja et al., 2002). Affected 

horses may be febrile (39˚ - 42˚C) and the viremia may coincide with a second fever spike 

(Timoney, 1992). For 9–14 days starting from 4–6 days post EHV-1 infection, an extensive 

cell-associated viremia is detectable (Gibson et al., 1992). 

Migration of virus-infected phagocytes into the circulation results in a T 

lymphocyte associated viremia. Viremia is associated with, T-cell lymphopenia and 

appearance of blastic cells (McCulloch et al., 1993) and may occur in the presence of virus-

neutralizing antibodies (Doll and Bryans, 1963; Mumford et al., 1987). T-lymphocytes are 

the most susceptible of the peripheral blood mononuclear cells (PBMC) and carry EHV-1 

to distal organs (Scott et al., 1983). Both neutropenia and lymphopenia are often present. 

Other clinical signs include mandibular and/or retropharyngeal lymphadenopathy, 

conjuctivitis with mild ocular discharge, depression, anorexia, coughing, and respiratory 

distress (Huang Ja et al., 2002; Timoney, 1992). Juvenile horses may develop vesicular and 

erosive lesions in the mucous membranes of the upper respiratory tract (van Maanen, 

2002). By contrast, infections with EHV-4 are restricted to respiratory tract epithelium and 
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associated lymphatic glands. Leukocyte associated viremia is not found with EHV-4 

infections (Timoney, 1992). Complete recovery from uncomplicated infection generally 

occurs within several weeks, (Mair, 1999). 

EHV-1 viremia occurring in primary and all recrudescing infections occurs 

subclinically, but poses a threat of inducing abortion, as well as neurological disease. The 

ability of EHV-1 to spread from cell-to-cell without an extracellular phase, via virus 

mediated cell-to-cell fusion, enables it to avoid inactivation by circulating neutralizing 

antibody and permits dissemination to other tissues. Trigeminal ganglia, circulating T 

lymphocytes and lymphoid tissues draining the respiratory tract, are the sites for 

establishment and maintenance of the lifelong state of latency characteristic of all 

herpesviruses. Immunity following recovery lasts only 3-6 month and reinfection and 

asymptomatic viral shedding may occur at these times (Timoney, 1992). 

The cycle of a persistent latent infection with intermittent reactivation and shedding 

keeps EHV-1 circulating within the equine population. 

Peracute Pulmonary Vasculitis 

This is a more recently described, sporadic condition affecting young adult horses, 

where EHV-1 induces nonneurological fatal disease, characterized by prominent 

vasculotropism. In this syndrome, horses exhibit high fever, depression, loss of appetite, 

and respiratory distress with no neurological signs.  Clinical deterioration is rapid and 

mortality rates from respiratory failure are high (Huang Ja et al., 2002; van Maanen, 

2002).   The main target of the virus in this condition is the pulmonary endothelium, and 

post-mortem examination shows severe pulmonary vasculitis with acute edema, 

leukocytosis, and perivascular hemorrhage (Blunden et al., 1998; Hamir et al., 1994). 
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Figure I-13. Virus spread among tissues and body systems. In response to infection, re-
infection or reactivation from latency, the respiratory epithelium is invaded by the virus, 
which gains access to the subepithelium and lamina propria. Here the virus is able to infect 
the monocytes, endothelial cells of the blood vessels as well as lymphocytes in route for 
lymphatic vessels. Once the lymph nodes are infected, infected lymphocytes leave the node 
resulting in a cell-associated viremia and spread of the virus to various sites around the 
body via the blood and lymph vessels. Endothelial cells at distal sites are then infected 
resulting in inflammation and vasculitis. Thrombosis, ischemia, and infarction lead to 
further tissue necrosis and organ dysfunction. 
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Abortion and Neonatal Disease 

Equine herpesvirus type-1 is the most common cause of infectious abortion in 

horses (Leblanc, 1999), accounting for diagnosed 10% of abortions in thoroughbreds (van 

Maanen et al., 2000).  The prevalence of EHV-1 abortion varies and it may appear as 

sporadic cases or as abortion “storms” on stud farms, with few to large number of mares 

affected. The risk for abortion is increased if the mares are kept in crowded conditions and 

if they are exposed to new horses (Leblanc, 1999).  An infected, re-infected or reactivated 

mare can then provide a source of infection for non-immune mares resulting in abortion 

storms and cases of neonatal syndrome and death (Murphy et al., 1999). 

The period between infection and abortion varies from 9 days to 4 months but most 

mares abort within 21 days (Powell, 1991). Ninety-five percent of abortions usually occur 

late in gestation, typically between 7 to 11 months (Powell, 1991) in a mare showing no 

clinical signs. The mare is potentially infectious to other horses for 4 weeks. While the 

future reproductive ability of a mare is not compromised (Huang Ja et al., 2002), it is 

recommended not to re-breed the mare for 30 days. The risk of abortion remains in future 

pregnancies due to reactivation of a latent infection or re-infection at that time. The aborted 

fetus, placenta and birth fluids are a potential source of infection for other mares and 

should be removed and disposed (Powell, 1991). 

 To result in abortion, EHV-1 must infect in sequence three separate types of cell 

and three separate organ systems. In response to infection, re-infection or reactivation from 

latency, as described previously, the respiratory epithelium of the affected mare is invaded 

by the virus, which gains access to the subepithelium and lamina propria. Here the virus is 

able to infect the monocytes, endothelial cells of the blood vessels as well as lymphocytes 
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reaching lymphatic vessels. Once the lymph nodes are infected, infected lymphocytes 

leave the node resulting in a cell-associated viremia and spread of the virus to various sites 

around the body via the blood and lymph vessels. Endothelial cell infection triggers 

inflammatory cascade which combined with direct cell damage may lead to thrombosis, 

ischemia, and infarction.  

 Consequently, microcotyledons of the placenta undergo necrosis and premature 

separation of the placenta may be triggered. If the thrombosis and infarction are severe, the 

fetus dies of hypoxia and is expelled. He may not be positive for viral antigen. If the 

thrombosis is localized and is not severe, the virus may reach the fetus and affect various 

organ systems. The foal then dies because of viremia, interstitial pneumonia, and focal 

liver necrosis (Leblanc, 1999) and is expelled. It is also possible for thrombosis and 

infarction to be minimal and cleared, allowing for the birth of a normal foal (Allen et al., 

1999b).  

Foals that are infected by EHV-1 in the mare and are born alive, are either sick at 

birth or become ill within the first few days and up to 2 weeks from birth. Clinical signs 

may include weakness, depression, difficulty nursing, pyrexia, lymphopenia, and 

respiratory distress secondary to interstitial pneumonia. The foals may also have evidence 

of gastrointestinal disease (watery diarrhea) and neurological signs such as visual and 

vestibular (Dixon et al., 1978). Secondary bacterial infections with Salmonella species and 

Escherichia coli are common. EHV-1 has a predilection for vascular epithelium of the 

nasal mucosa, lung, adrenal, thyroid, and CNS. The disease progression is rapid and 

mortality due to interstitial pneumonia that results in hypoxia and respiratory failure is at 

100%. 
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Myeloencephalopathy 

The neurological form of EHV-1 is an uncommon but serious manifestation of 

infection with the virus. Neurologic outbreaks occur concurrently with respiratory illness 

or abortion, or they may occur alone (Hahn et al., 1999; Timoney, 1992). The exact 

reasons why some EHV-1 infections are associated with a high incidence of neurological 

disease, whereas others are not, or why horses show different clinical manifestations of 

infection during an outbreak are still under investigation (Wilson, 1997).  

There is no breed or sex selectivity to EHV-1 myeloencephalopathy, though 

pregnant mares in early to mid gestation may be more susceptible. Route of infection and 

the immune status of the horse seem to be contributing factors. While foals may develop 

the disease; it is much more common in older horses. The majority of EHV-1 infections 

that lead to neurologic sings represent reinfection rather than a primary infection (Wilson, 

1997).  Therefore, immunological reaction to the EHV-1 infection leading to vasculitis and 

thrombosis was thought to be partially responsible for the observed neurological damage.  

Supporting this, one study showed that vaccinated horses were significantly more 

likely to develop a neurological manifestation of infection than were non-vaccinated 

animals (Wilson, 1997). In contrast another study showed that vasculitis was not present in 

vessels in which endothelial cells did not support viral replication, suggesting that certain 

EHV-1 strains may be particularly neurotropic. Although unproven, it was proposed that 

the 1-p and 1-b substrains may preferentially produce the neurological form (Wilson, 

1997). The propensity of certain EHV-1 isolates to induce myeloencephalopathy was also 

considered to be a reflection of marked endotheliotropism rather than specific 

neurotropism (Hasebe et al., 2002).  Thus, virus recognition and infection of specific cell 
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types, neuronal, endothelial, or lymphocytic, through various cellular receptors may be the 

ultimate basis for the specific clinical manifestations associated with EHV-1 infection 

outbreaks. 

The acute onset of clinical signs of diffuse multifocal hemorrhagic 

myeloencephalopathy usually peaks within 48 hours and appears to be the result of 

vasculitis and thrombosis of arterioles in the brain and especially the spinal cord (Hasebe 

et al., 2002; Wilson, 1997). The primary lesion is a vasculitis (arteritis), with neural 

parenchyma affected by secondary hemorrhagic and ischemic infarction. The vasculitis 

and thrombosis of arterioles in the brain and especially the spinal cord lead to functional 

impairment of blood flow and metabolic exchange. Sometimes hypoxic degeneration and 

malacia with hemorrhage into adjacent neural tissues of the white and to a lesser extent, the 

grey matter occurs (Wilson, 1997). 

Clinical signs are variable and depend on the location and severity of the lesions 

(Wilson, 1997). A fever occurs (up to 41.1 ˚C), with or without a cough and serous nasal 

discharge. The horse may begin to show signs of clumsiness or stiffness, progressing to 

paresis and ataxia of the trunk and limbs with dog sitting and lateral or complete 

recumbency (Timoney, 1992). Paralysis or paraplegia of the hind limbs leading to 

recumbency, if it occurs, is usually within the first 24 hours. Paralysis may be so severe 

that the horse cannot lift its head, though appetite and mentation remain normal. Conscious 

proprioceptive deficits can be observed (Wilson, 1997) as well as loss of sensation and 

sensory reflexes in the perineal area, inguinal areas and hind limbs(Timoney, 1992). 

Hindlimb edema is a frequent sign, and may be accompanied by scrotal edema (Wilson, 

1997). There is often bladder distention that leads to urinary incontinence and vulvar or 
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penile flaccidity with cystitis as a common complication. Tail elevation, decreased or loss 

of tail tone is inconsistent finding. Depression, nystagmus, eye deviation, and other signs 

of brainstem involvement may occur (Hahn et al., 1999).Clinical signs are most commonly 

bilaterally symmetrical, though may be unilateral (Wilson, 1997).  

Morbidity rates range from less than 1% to almost 90% of exposed horses, while 

mortality rates range from 0.5% to 40% (Wilson, 1997). Time to recovery depends on 

severity of first signs and ranges from several days to 18 months (Hahn et al., 1999), 

clinically varying from complete recovery, through recovery with retention of neurological 

deficits, to death (Timoney, 1992).. Horses that are only mildly affected may recover in as 

little as hours to days. Recumbent horses may die in coma or convulsion, and many are 

euthanised due to secondary complications, however recumbent horses should not be 

preemptively euthanised, as many can make a full recovery (Wilson, 1997). Recurrence of 

neurological signs in recovered horses has not been documented (Wilson, 1997). 

Ocular Disease 

A potentially serious complication following equine herpesvirus -1 infection, 

particularly in foals, is severe ocular disease. Upon recovery from mild, transient EHV-1 

infection foals may develop visual impairment secondarily to chorioretinitis (Slater et al., 

1992). Uveitis and chorioretinitis have also been reported in foals following an outbreak of 

EHV-1 myeloencephalopathy (McCartan et al., 1995), with nursing foals of mares with 

EHM being at highest risk of developing this manifestation of EHV-1. Virus is capable of 

producing ocular and neural damage, even without obvious neurological impairment 

(Slater et al., 1992). Currently, it is unclear whether ocular disease represents a separate 

complication in itself or whether it is another manifestation of EHM. 
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Laboratory Diagnosis 

Respiratory 

Respiratory EHV-1 infection can be diagnosed by virus isolation from 

nasopharyngeal swabs or PCR. PCR is a more sensitive method. Antigen capture ELISA 

can be used, but it is the least sensitive approach. Samples should be taken in the early 

febrile period of the disease (van Maanen, 2002).  Differentiation from equine influenza, 

equine viral arteritis, EHV-4, and other respiratory infections can only be made with acute 

and convalescent serum samples in addition to virus isolation (Timoney, 1992). Virus can 

be isolated in a variety of cell cultures, including those derived from the horse, monkey 

(Vero), and rabbit (RK-13). By contrast EHV-4 cannot be propagated in cell lines of non-

equine origin, providing additional method of virus differentiation. 

Abortion 

The diagnosis of EHV-1 abortion is made through history, the gross and 

histological findings on necropsy, virus isolation and evidence of viral antigen in fetal 

tissues (Timoney, 1992). An aborted fetus secondary to EHV-1 infection will usually not 

be autolyzed. Clinical specimens for viral abortion diagnosis include placenta, fetal lung, 

liver, thymus, adrenal glands and spleen sent for virus isolation, immunofluorescence, PCR 

and histological examination. One set of tissues is submitted on ice and a second set in 

formalin. The chance of diagnosing a viral abortion is cut in half if the placenta specimen 

is not provided. Gross lesions at necropsy include severe pulmonary edema, interstitial 

pneumonia, myocardial and adrenal gland petechiation, multifocal hepatic necrosis and 

thymic necrosis. On histological examination, focal hepatic necrosis, pulmonary 

inflammation and lymphoid necrosis in the lymph nodes, spleen, thymus and Peyer’s 
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patches are characteristic. The finding of eosinophilic intranuclear inclusions in fetal 

tissues by histopathologic examination of the liver, thymus and bronchial epithelium is 

supportive (Leblanc, 1999). Confirmation is most easily and rapidly obtained by the 

demonstration of viral antigens in infected cells by immunofluorescence examination of 

cryostat sections of affected tissue. Serology from aborted mares is not very useful because 

of the delay between infection and abortion (Powell, 1991). 

Neonatal Disease 

As for abortion cases, the diagnosis of neonatal disease secondary to EHV-1 

perinatal infection is often based on history, clinical signs, necropsy findings as well as 

immunofluorescence and virus isolation from tissue at necropsy. If a foal has not had 

colostrum, it may have significant virus neutralizing antibodies demonstrable by serology. 

(Leblanc, 1999). As compared to septic and premature foals, EHV-1 infected foals 

commonly have higher mortality, white blood cell counts less than 3x109/L, and icterus. 

Despite common profound hepatic necrosis in the herpes positive foals, liver enzymes may 

not be elevated (Perkins et al., 1999). On gross examination at necropsy, foals will have 

interstitial pneumonia with heavy edematous lungs and potentially, areas of atelectasis and 

evidence of secondary bacterial infection. Splenic and thymic hypoplasia, adrenocortical 

hyperplasia, hemorrhage and necrosis as well as ventricular subepicardial and 

subendocardial petechiae may be evident (Bryans et al., 1997; Hartley and Dixon, 1979). 

On histological examination, lung tissue from affected foals shows congestion, edema and 

focal necrotizing bronchiolitis. Hyaline membrane formation may be present.  Intranuclear 

inclusion bodies may be found in bronchiolar epithelial cells and hepatocytes, but 

generally may not be as clearly evident in organs of older foals (Hartley and Dixon, 1979; 
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Leblanc, 1999; Savage, 1999). The liver may have foci of hepatocellular necrosis (Savage, 

1999), while massive thymic parenchymal necrosis may be evident (Hartley and Dixon, 

1979). EHV-1 in liver, spleen, and lung can often be detected by immunohistology and 

electron microscopy (Jonsson et al., 1989). 

Myeloencephalopathy 

Diagnosis of EHV-1 associated central nervous system disease is more difficult. 

Presumptive diagnosis of EHV-1 myeloencephalopathy can be made from the history. 

Sudden onset and early stabilization of neurological signs are characteristic of EHV-1. 

When there is a recent history of fever, abortion, or viral respiratory disease in the horse or 

its herdmates, EHV-1 should be suspected (Wilson, 1997). Clinical specimens include 

nasal swabs, whole blood, cerebrospinal fluid, acute and convalescent sera, brain, and 

spinal cord from horses with central nervous system disease. Infection may be assumed if a 

significant increase in specific antibody can be demonstrated between acute and 

convalescent sera, but most horses with EHV-1 myeloencephalopathy do not show a four-

fold rise in serum neutralizing titer and in some, there is even a decline(Wilson, 1997). 

Antibodies to EHV-1 in the CSF are a variable finding (Wilson, 1997). Elevated protein 

and CSF to serum albumin ratio reflect vasculitis and leakage into CSF (Wilson, 1997). 

Xanthochromia and an elevated protein level in CSF are supportive evidence for EHV-1 

(Hahn et al., 1999). The virus may be isolated from nasal swabs and buffy coat of the 

blood from acutely affected horses, but the virus shedding has often ceased at the time of 

onset of neurological signs. The virus is difficult to isolate from central nervous system 

tissue post mortem (Timoney, 1992; Wilson, 1997). At necropsy, a brownish patchy 

discoloration may be seen grossly in the brain and spinal cord. Histologically, vasculitis 
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with ischemic and hemorrhagic infarction as well as perivascular edema and necrosis of 

parenchyma are observed (Timoney, 1992). 

Ocular Disease 

On histological examination of ocular disease in foals, a mononuclear cell infiltrate 

is present in the cerebral cortex, cerebellar choroid plexus and cervical dorsal root 

ganglion. The optic nerve is demyelinated. Bilateral degeneration of the neurosensory 

retina, retinal pigment epithelium and choroidal layers is evident in the eyes.  

EHV-1 Treatment 

Current Recommendations 

EHV-1 infections are usually dealt with using management practices that limit 

spread of the disease, providing symptomatic relief to infected horses, and treating 

potential secondary bacterial infections with antibiotics. Current recommendations of 

treatment of EHV-1 infections in horses include the use of steroids, non-steroidal anti-

inflammatory agents, and nucleoside analogs as well as some other compounds used to 

treat EHV-1-associated neurological symptoms like paresis, paralysis, ataxia, distention of 

the urinary bladder, stiffness of pelvis or ocular damage, but no specific treatment is 

available. 

Supportive Care 

EHV-1 infected horses should be kept quiet and have adequate supportive care. 

Stall rest in a well ventilated, dust-free environment is essential for the EHV-1 infected 

horse showing respiratory signs. Antibiotics may be given prophylactically to prevent 

secondary bacterial infections (van Maanen, 2002). More specific antibiotics are prescribed 

to target any secondary infections that develop (Wilson, 1997). Supportive treatment for 
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neonatal disease including fluid therapy, antibiotics, steroids and assisted ventilation are 

minimally effective (Dixon et al., 1978).  

Treatment of equine myeloencephalopathy is limited to supportive therapy and 

management of patient comfort and secondary complications. Horses should be 

encouraged to remain standing, and slings should be used to support moderately affected 

horses that cannot stand on their own. Recumbent horses should be rolled every 2 to 4 

hours to reduce the risk of myonecrosis and decubital ulcers. Intravenous fluids are 

indicated in dehydrated patients. To maintain gastrointestinal system, laxatives or bran 

mashes should be given, and manual evacuation of the bowel may be necessary to prevent 

impaction and to maintain patient comfort. Some horses may need to be fed and watered 

via a stomach tube or intravenously. Cystitis is a frequent complication, especially in 

recumbent horses. Careful catheterization may be indicated, as well as treatment with 

antibiotics. Urine scald can be prevented and managed with washing of the perineum and 

application of repellent ointment, as well as wrapping the tail to keep it out of the way 

(Wilson, 1997).  

Corticosteroids 

The treatment with corticosteroids is recommended because vasculitis, hemorrhage, 

and edema are prominent early lesions of EHV-1 myeloencephalopathy and may have an 

immune basis. However no objective data to document their efficacy is available, and their 

use has to be weighed against the detrimental effects on immune function thus 

exacerbating virus shedding as well as the possibility of inducing laminitis. 

A short course glucocorticoid treatment with prednisolone acetate (1 to 2 mg/kg 

q24hr) or dexamethasone (0.05 to 0.25 mg/kg q12hr for 2-3 days) is used to treat 
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inflammatory conditions by blocking the release of arachidonic acid (Cassiani-Ingoni et 

al., 2005). Experiments with HSV 1 in the past showed that the viral yield increased when 

cells were treated with dexamethasone (Cassiani-Ingoni et al., 2005). The beneficial anti-

inflammatory effects of corticosteroids can be dramatic, but substantial complications may 

ensue including immunosuppression, prolonged virus shedding, delayed healing, and 

corticosteroid-associated laminitis. 

Non-steroidal Anti-inflammatory Agents 

Non-steroidal anti-inflammatory drugs (NSAIDs), such as phenylbutazone or 

flunixin meglumine, are typically given to febrile horses to reduce the fever, thereby 

encouraging horses to eat and drink (Allen et al., 2002b). Flunixin meglumine, a cyclo-

oxygenase inhibitor, is a potent analgesic, antipyretic, and anti-inflammatory agent. It can 

be used to treat EHV-1-induced vasculitis in the CNS at 1.1 mg/kg (Cassiani-Ingoni et al., 

2005). Dimethyl sulfoxide can be used to relieve typical IC, where symptoms including 

pelvic pain, perineal pain, nocturnal urinary urgency, urinary frequency and constant 

sensation of the urge to void. 

Nucleoside Analogs in Treatment of EHV-1 infection 

Dosing protocols for known antiviral drugs used to treat EHV infections are 

currently based on extrapolation from well established dosage regiments used for treatment 

of human infections with HSV-1 and VZV and have not proved to be effective (Huang Ja 

et al., 2002). Data describing the pharmacokinetics, bioavailability, and safety of acyclovir 

in horses are lacking. 

Acyclovir, a synthetic purine nucleoside analog with viral DNA replication 

inhibitory activity against several human herpesviruses, has been shown to exert an 
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inhibitory effect on EHV-1 in vitro (Smith et al., 1983). Nucleoside analogues such as 

acyclovir and pencyclovir have been used off label with variable effects in the treatment of 

EHV-1 myeloencephalopathy. Several cases showing significant improvement when 

treated with acyclovir were reported, but it is not known whether acyclovir actually 

influenced the outcome in these cases (Friday et al., 2000; Murray et al., 1998). Treatment 

of neurologic outbreaks with the acyclovir did not produce substantial benefits (Cassiani-

Ingoni et al., 2005).  

EHV-1 and -3, HSV-1 and -2, and cercopithecine herpesvirus virus were all 

sensitive in vitro to 9,((2-hydroxy-1-(hydroxymethyl)ethoxyl) methoxyl) guanine (BIOLF-

62), another nucleoside analogue, at concentrations of less than 0.55 micrograms/ml 

(Cassiani-Ingoni et al., 2005). 

Antivirals 

The common classes of antiviral agents currently in overall use are nucleoside and 

pyrophosphate analogues, direct non-nucleotide DNA polymerase or reverse transcriptase 

inhibitors, and endogenous cytokines, while countless other classes are being investigated. 

Newest class of antiviral agents was developed to combat HIV-1 infections and 

includes such compounds as Amantidine and Rimantidine, which inhibit the M2 protein of 

the virus to decrease hydrogen ion influx through a specific H+ ion channel, inhibiting viral 

uncoating during entry and coating process at egress.  Currently available fusion inhibitors 

such as Enfuviritide and T1249 were also developed against HIV-1. Amprenavir is a 

sulfonamide compound that was introduce in the market as an HIV protease inhibitor. 

Despite the success of this drug, it has some shortcomings including gastrointestinal side 

effects and long term metabolic disturbances (Hanlon et al., 2004; Miller et al., 2004). 
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Current Antiherpetics 

 Nucleoside analogues such as acyclovir and ganciclovir have been the 

mainstay of therapy for alphaherpesviruses, such as HSV, VZV, and CMV infections (see 

Table I-8). Active compounds currently available for the  treatment of herpes virus 

infections include the nucleoside analogues: acyclovir (Zovirax, GlaxoSmithKline, 

Middlesex, UK) and its valyl-ester prodrug valacyclovir (valtrex, GlaxoSmithKline, 

Middlesex, UK), the valyl-ester prodrug of pencyclovir - famciclovir (famvir, Novartis, 

New York, NY), penciclovir, vidarabine, and ganciclovir (cytovene, Hoffmann LaRoche) 

and its prodrug valganciclovir (valcyte, Hoffmann LaRoche, Nutley, NJ), the acyclic 

nucleoside phosphate (ANP) derivative cidofovir (vistide, Gilead Sciences, Boulder, CO), 

the pyrophosphate analogue foscarnet  (foscavir, Astra-Zeneca, Boston, MS) as well as the 

CMV antisense molecule fomivirsen (vitravene, Novartis, New York, NY). More 

specifically, antiviral agents currently lisensed for the treatment of HSV and VZV 

infections include acyclovir, valacyclovir, famciclovir, penciclovir, foscarnet. For CMV 

infections: ganciclovir, valganciclovir, cidofovir, foscarnet, and fomivirsen. Except for the 

CMV antisense molecule, all compounds terminate viral DNA synthesis by inhibiting the 

viral DNA polymerase (Table I-8).  

While some of these antiviral therapies are considered safe and efficacious 

(acyclovir, penciclovir), some have toxicities associated with them (ganciclovir and 

foscarnet). Several of the currently available therapies can result in mild to severe side 

effects making the discovery of less toxic drugs desirable. Prolonged use of these 

compounds in the clinical setting has led to the emergence of human viral resistance 

against most of these drugs. Because nucleoside analogues share a similar mechanism of 
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action, treatment options are limited once resistance develops. Efforts over the last decade 

have focused on the identification and development of improved therapies including less 

toxic compounds with novel mechanisms of action.  

Acyclovir, 2-amino-1,9-dihydro-9-[(2-hydroxyethoxy)methyl]-6H-purin-6-one, is a 

white, crystalline powder with the molecular formula C8H11N5O3  and a molecular weight 

of 225 (Figure I-14). Recently, acyclovir was shown to inhibit the wild-type HIV strain 

infection at a 50% inhibitory concentration (IC50) of ~ 5 µM (McMahon et al., 2008). 

Current published dosing of acyclovir for treatment of EHV-1 starts with the 

loading dose of 27 mg/kg of acyclovir every 8 h for 2 days, followed by a maintenance 

dose of 18 mg/kg every 12 h, will maintain effective serum acyclovir concentrations (L. K. 

Maxwell, 2008). Small interfering RNA (siRNA) designed against ORF of gB and origin-

binding viral helicase resulted in reduction of viral replication in the murine model of 

respiratory disease (Fulton et al., 2009). 

Table I-8. Antiviral compounds against alphaherpesviruses. 

Compound Trade Name Chemistry Clinical 
Application 

2nd generation foscarnet pyrophosphate analogue HSV, VZV, 
CMV 

 cidofovir acyclic nucleoside phosphonate 
derivative 

CMV 

acyclovir Zovirax, GlazoSmithKline  HSV, VZV 
valacyclovir valtrex, GlaxoSmithKline valyl-ester prodrug HSV, VZV 
famciclovir famvir, Novartis valyl-ester prodrug of penciclovir HSV, VZV 
 penciclovir  HSV, VZV 
 Valtrex/Zelitrex  HSV, VZV 
 Denavir  HSV, VZV 
 Abreva  HSV, VZV 
 vidarabine  HSV, VZV 
ganciclovir cytovene, Hoffmann LaRoche  CMV 
valganciclovir valcyte, Hoffmann LaRoche ganciclovir prodrug CMV 
cidofovir vistide, Gilead Sciences acyclic nucleoside phosphate (ANP) 

derivative 
 

foscarnet foscavir, Astra-Zeneca pyrophosphate analogue  
fomivirsen vitravene, Novartis CMV antisense molecule CMV 
 Cytovene, Valcyte  CMV 
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Figure I-14. Chemical structure of Acyclovir, 2-amino-1,9-dihydro-9-[(2-
hydroxyethoxy)methyl]-6H-purin-6-one. 
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CHAPTER II. ANTIVIRAL SCREENING 

INTRODUCTION 

Hypothesis and Goals 

The central hypothesis of the proposed investigations is that porphyrin compounds 

can specifically inhibit membrane fusion phenomena required for virus entry and virus 

spread. Such inhibition would be achieved via interactions with one or more viral 

glycoproteins required for membrane fusion. It is expected that the antiviral activity can be 

enhanced by further modification of the chemical structure of the porphyrin compounds. 

Our immediate goal addressed in this chapter, was to identify a few relatively small 

organic compounds that possess strong antiviral properties against EHV-1 infections. 

Specifically, two classes of compounds were investigated: porphyrin and platinum 

compounds. Representatives of these classes of compounds have been already found to 

possess potent antiviral activities against human immunodeficiency virus (HIV), vaccinia, 

and coronaviruses (Vzorov et al., 2003). The following chapter describes our approach to 

define the molecular basis for their actions in cell culture experiments and to further 

modify their chemical structure to enhance their antiviral potency. 

It was envisioned that the proposed investigations will lead to the development of 

antiviral strategies used as prophylactic treatment for successful combating EHV-1 acute 

infections of horses. 

Significance of EHV-1 Infections and Need for Therapeutic Options 

The development of new antiviral or virucidal compounds for the prophylactic and 

therapeutic treatment of EHV1 infection is necessary to avoid economic loss to the horse 

industry. Louisiana ranks fifth nationwide in terms of economic impact on its horse 
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industry, contributing over $2.45 billion to the state's economy (Deloitte-Consulting, 

2005). As described previously, EHV-1 is enzootic in most equine populations. The 

seroprevalence of EHV-1 has been increasing over the past decade, reaching 

approximately 30% according to a recent survey (Gilkerson et al., 1999a). Clinical upper 

respiratory tract disease (URTD), rhinopneumonitis, caused by EHV-1 infection of the 

upper airway mucosal epithelium is an acute condition seen primarily in young horses. 

Infection spreads rapidly within a population via aerosolized respiratory secretions or 

virus-contaminated fomites. Although, the majority of respiratory infections run a 

subclinical course, viremia occurring in primary and all recrudescing infections have a 

great potential for clinically severe sequelae such as late term abortion, neonatal foal death, 

neurological disorders (paresis/paralysis), myeloencephalopathy, ocular disease, or death 

by peracute pulmonary vasculitis. Diagnosis cannot be made on the basis of presenting 

clinical signs alone and requires laboratory confirmation.  

Current EHV-1 vaccines help to curtail the respiratory disease and abortion, but are 

ineffective against the neurological form of infection. Horses become seriously ill despite 

regular vaccinations in very short intervals. In devastating recent outbreaks, an unusually 

high number of horses exhibited the neurological form of the disease. This is alarming 

because this form of EHV-1 infection used to be sporadic and contained to individual 

animals of an affected herd. Better treatment options are in high demand. Currently, 

several compounds have been used to address EHV-1-associated neurological symptoms 

like paresis, paralysis, ataxia, distention of the urinary bladder, stiffness of pelvis or ocular 

damage, but no specific treatment is available. Dosing protocols for known antiviral drugs 

used to treat EHV infections are based on extrapolation from well established dosage 
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regiments used for treatment of human infections with HSV-1 and VZV. Vaccine 

ineffectiveness to curtain neurologic manifestation of the infection or virus spread through 

the population, as well as limited therapeutic options, make the development of vaccine 

and other prophylactic strategies, as well as options for antiviral treatments of affected 

horses necessary. 

Literature Review of Porphyrins 

Classes of Potential Microbicides 

Porphyrins are a group of naturally occurring and intensely colored compounds, 

whose name is drawn from the Greek word porphura, a word for purple (Anderson, 1999; 

Milgrom, 1997). Porphyrins were originally under consideration as topical microbicide, 

specifically for intravaginal application for HIV prophylactic. There are various groups of 

potential microbicides (see Table II-1): polyanionic molecules, surfactants, various natural 

products, peptides, heterocycles, and various virucidal agents. The specific microbicides 

exemplifying each group are those that are best described, since they have been evaluated 

for their potent anti-HIV activity. 

The first generation antiviral/microbicides candidates were surfactants, with most 

notable of these products, nonoxynol-9 (N-9). It has been shown to be ineffective in 

preventing HIV, or even harmful (Roddy et al., 1993). The second generation microbicides 

were polymers. Having more focused spectrum of activity, they interfered with viral 

attachment to host cells. Several efficacy trials with different polymers, such as PRO 2000, 

Carraguard, Cellulose Sulfate, and Dextrin-2-Sulfate, have been underway. Several other 

entry inhibitors are currently in pre-clinical stages of development. The latest generation of 

microbicides targets attachment, a critical step of the viral life cycle, during which the 



100 

 

virus binds to the receptors on the cell surface. The future of the anti-HIV microbicide 

development would likely focus on attachment and fusion inhibitors or co-receptor 

blockers. The main consideration in such microbicide or any antiviral design, is the level 

of toxicity at therapeutic doses, potential for rapid establishment of resistant isolates, as 

well as the expense of production using currently available technology.  

Table II-1. Examples of potential microbicides evaluated for anti-viral activity. 

Group Potential Microbicides 
Polyanionic 
molecules 

napthalene sulfonates, sulfated polysaccharides, polycarboxylates 
and polyoxometalates 

Buffers engineered lactobacillus, hydrogen peroxide/peroxidases, 
Buffergel 

Surfactants  N-9, Benzalkonium chloride, C31G-Savvy, Chlorhexidine zinc 
gel, detergents 

Entry blockers Carraguard/PG515, PRO2000 gel, Emmelle/Dextrin-2-Sulfate 
Fusion inhibitors CCR5 inhibitors, soluble CD4 
Natural products tannins, plant lectins, betulinic acid derivatives and macrolides 
Peptides natural and synthetic surface active agents, CPFs, T20, T21 and 

lexitropsins 
Proteins negatively charged albumins and cyanovirin-N 
Heterocycles bicyclams, monensins, porphyrins, diaminoacridones and 

phenazines 
Virucidal agents azodicarbonamide 
Antiretroviral agents non-nucleoside RT inhibitors, inhibitors of post-fusion 

replication, nucleoside RT inhibitors (e.g. Tenofovir), NNR-TIs 
(UC-781), protease inhibitors 

 

Structure of Porphyrins 

Tetrapyrrole is a term referred to a member of class of compounds whose 

molecules have four rings of the pyrrole type (C4H5N), generally linked together on 

opposite sides by single-atom bridges, usually the four methine (=C-) bridges (Figure II-1). 

The common arrangements of the four rings for which this name is used are macrocyclic, 

as in the porphyrins and linear, as in the bile pigments (Figure II-2). The famous members 

of this family include bilirubin, chlorophylls, cytochrome, and heme as part of 



101 

 

hemoglobin. Natural tetrapyrroles are critical for biological processes of energy and 

electron transfer like photosynthesis or in the respiratory chain. Synthetic tetrapyrroles, 

like phtalocyanines become more important not only as colors, but also as photoactive 

compounds in photovoltaic, photomedicine, molecular electronics and other fields. 
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Figure II-1. The macrocyclic tetrapyrrolic ring system named porphyrin. 

Bilirubin Chlorophyll        Cytochrome P450             Heme
 

Figure II-2. Examples of natural tetrapyrroles. These critical to life molecules play 
important biological roles. They are natural pigments containing four pyrrole rings joined 
by one carbon each into a macrocyclic tetrapyrrole. 
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Current Use of Porphyrins 

Porphyrins are in use as photodynamically activated agents for cancer, psoriasis, 

and macular degeneration. Porphyrins in photodynamic therapy or porphyrin based 

detection treatment (PDT) are used as tumor localized photosensitizer (chelated metal 

without a central metal or with a diamagnetic central metal), which reacts with molecular 

oxygen and other substrates to generate highly cytotoxic species that destroy tumor tissue. 

Photosensitizer are molecules, which, when excited by light energy, can utilize this 

energy to induce photochemical reactions to produce lethal toxic agents. In a cellular 

environment within the immediate area of light illumination, these agents (singlet oxygen 

(1O2), hydroxyl radicals (•OH), and superoxide (O2
−) ions) can interact with cellular 

components including unsaturated lipids, amino acid residues, and nucleic acids; and 

ultimately, result in cell death and tissue destruction (Detty et al., 2004; Ian J. Macdonald, 

2001). 

Structure-Activity Relationship of Porphyrins 

Synthetic porphyrins are most readily synthesized from pyrrole and benzaldehyde 

derivatives and constitute two main groups, the metallo-TPPS4 (sulfonated tetraphenyl 

porphyrin) derivatives (Figure II-3) and phthalocyanines (sulfonated tetra-arylporphyrins) 

(Figure II-4). 

Substantial work performed by Dr. Marzilli of the LSU Department of Chemistry 

and his collaborators at Emory University, Atlanta, GA has shown that specific porphyrin-

based compounds exhibited strong and specific antiviral activities against different viruses 

such as HIV and vaccinia (Figure II-5). In our laboratory, different groups of antiviral 

compounds have been tested against Respiratory Bovine Coronavirus (RBCoV) infection. 
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Figure II-3. Structures of a synthetic 5,10,15,20-Tetraphenylporphyrin, TPP,  
C44H30N4 . 
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Figure II-4. Structures of phthalocyanine, tetrabenzotetraazaporphyrin. 
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Figure II-5. Structures of synthetic porphyrins which were effective against HIV. 
Sulfonated, halogenated tetraaryl porphyrins and sulfonated tetraaryl porphyrins with large 
or electron-donating substituents like tetranaphtyl porphyrins and tetraanthracenyl 
porphyrins were the most efficient compounds against HIV (Dixon et al., 2005). 

 
Importantly, some of these compounds have showed exceptional antiviral properties 

(Vzorov et al., 2003). The molecular basis for these antiviral activities and their action 

against herpesviruses are not known and is the subject of the proposed investigations. 

Virucidal as well as antiviral activities can be found in “natural” and “synthetic” 

porphyrins. Both classes exist as “free base” form without any central metal or as “metallo-

porphyrin” with different metal ions in the centre. A number of studies have investigated 

the detailed structure–activity relationships of porphyrins (Dixon et al., 2005; Vzorov et 

al., 2002). Porphyrins were originally under consideration as topical microbicides. They 

were later shown to inhibit cell fusion induced by the HIV-1 Env protein and to block 

binding of gp120 to the CD4 receptor. Active over a range of pH values, while having no 

detectable activity against normal bacterial flora, the compounds have been shown to 

inhibit transmission of cell-associated HIV and inactivate a broad range of isolates. None 

of the tested natural compounds were able to inhibit an HIV infection for more than 80% 

(Vzorov et al., 2002). 
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Metallated tetrapyrroles are present in most organisms and participate in essential 

biochemical processes that include photosynthesis, oxygen transport, drug metabolism, 

transcriptional regulation, nitric oxide synthesis, and oxidative phosphorylation. In nature, 

metallation of tetrapyrroles is catalyzed by a group of enzymes named chelatases. Heme is 

an iron porphyrin coordination complex. Metallation in the laboratory can be achieved by 

heating with Fe(II)Cl2x4H2O in the presence of nitrogen air (Marzilli, 2004 Baton Rouge, 

LA, May 2004). Addition of naphthalene group (C10H8) extends the porphyrin structure. 

These compounds have two additional benzene rings attached on the periphery of the 

porphyrin structure (for example, TNap1P and TNap2P in Figure II-5). 

Overall, for coronavirus, HIV and vaccinia, the most effective compounds were a 

combination of porphyrins with sulfonate groups which are associated with antiviral 

activity and low toxicity (Dixon et al., 2005). With sulfonation using chlorosulfonic acid, 

the chlorosulfonyl compounds can be converted into derivatives with free sulfonic acid, a 

sulfonamide or a sulfonate ester (Rocha Gonsalves et al., 1996; Sobral et al., 2002). 

Sulphonation significantly increases solubility of porphyrin compounds in polar solvents 

including water, circumventing the need for alternative delivery vehicles (Ali and van Lier, 

1999; Detty et al., 2004; Nyman and Hynninen, 2004; Phillips, 1995).  

 
Properties of Porphyrins Favorable as Therapeutic Compound 

The different attributes of porphyrins such as independence of pH changes, stability 

against different redox situations, affinity for serum proteins, favorable pharmacokinetic 

properties, and no photoactivity renders them attractive candidates as antiviral or virucidal 

compounds against EHV-1 infections, especially against the neurological form of the viral 

infection. Most of them are non-toxic, inexpensive, and form stable complexes with a 
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variety of metal ions (chelate). The time required for complete elimination of porphyrins 

from biological tissues is reported to be about a week and most porphyrins are known to be 

non-toxic. These compounds may also be modified to increase their half-life in blood. 

Porphyrins Mechanism of Antiviral Action 

The mechanisms of action and the stage in the viral life cycle at which the 

porphyrins inhibit the virus, is not well understood yet.  In case of HIV infection, the 

antiviral effect may be due, at least in part, to inhibition of the reverse transcriptase. 

Metalloporphyrins as well as natural porphyrin class showed significant inhibition of RT 

activity. A second way of action may be inhibition of the HIV protease. Furthermore, 

natural porphyrins seem to inhibit HIV virus entry mediated by the Env glycoprotein 

interaction with its cellular receptors CD4+, CCR2 (Vzorov et al., 2003).  

Stages of the EHV-1 Life-cycle as Targets for Porphyrin Therapy 

Cell Tropism and Spread 

Natural infection with EHV-1 occurs by inhalation or ingestion, after which the 

virus attaches to, and rapidly replicates in, cells of the nasopharyngeal epithelium and 

associated lymphoreticular tissues, causing necrosis, exudation, and infiltration of 

phagocytic cells. Bronchial and pulmonary tissues also become infected, particularly in 

foals, predisposing them to secondary bacterial pneumonia. 

Migration of virus-infected phagocytes into the circulation results in a T 

lymphocyte associated viremia. T-lymphocytes are the most susceptible of the peripheral 

blood mononuclear cells (PBMC) and carry EHV-1 to distal organs (Scott et al., 1983). 

Viremia is associated with, T-cell lymphopenia and appearance of blastic cells (McCulloch 

et al., 1993) and may occur in the presence of virus-neutralizing antibodies (Doll and 
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Bryans, 1963; Mumford et al., 1987). For 9–14 days, starting from 4–6 days post EHV-1 

infection, an extensive cell-associated viremia is detectable (Gibson et al., 1992). The 

ability of EHV-1 to spread from cell-to-cell without an extracellular phase, via virus 

mediated cell-to-cell fusion, enables it to avoid inactivation by circulating neutralizing 

antibody and permits dissemination to other tissues. 

Virus Entry and Neutralizing Antibodies 

Recent developments in molecular studies of HSV-1 entry, maturation, and spread 

have contributed to deeper understanding of EHV-1 life cycle and pathogenesis. Herpes 

simplex virions have evolved mechanisms to deal with multiple membrane barriers during 

virus-entry and cellular egress through the use of multiple glycoproteins (gB, gC, gD, gE, 

gI, gJ, gH, gK, gL, gM) and other virus-specified proteins. Initially, virions attach to 

ubiquitous glycosaminoglycans, e.g., heparan sulfate moieties on cell surfaces via 

glycoproteins gC and gB. Subsequently, viral glycoprotein gD interacts with specific 

cellular receptors embedded in plasma membranes initiating the fusion of viral and cellular 

membranes. These receptors include members of the immunoglobulin superfamily (nectin-

1, nectin-2, and CD155) and HveA (or HVEM), a member of the tumor necrosis factor 

(TNF) superfamily (Campadelli-Fiume et al., 2000; Whitbeck et al., 1997). Viral 

glycoproteins gB , gH and gL are directly involved in fusion of the viral envelope with 

plasma membranes (Hagglund et al., 2002). Generally, all herpesviruses have evolved 

mechanisms to facilitate virus-entry into cells through the use of multiple glycoproteins 

embedded within their viral envelope. The glycoproteins are efficient primary targets of 

virus-specific neutralizing antibody, development of which is coincident with resolution of 

clinical signs and resistance to homologous reinfection for 3 to 4 month. Viral 
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glycoproteins are also key determinants of membrane-associated events occurring during 

virion morphogenesis and egress from infected cells, where cell-to-cell transmission of 

herpesviruses occurs either by release of virions to extracellular spaces or through virus-

induced cell-to-cell fusion. 

Latency 

Trigeminal ganglia, circulating T lymphocytes and lymphoid tissues draining the 

respiratory tract, are the sites for establishment and maintenance of the lifelong state of 

latency characteristic of all herpesviruses. The cycle of a persistent latent infection with 

intermittent reactivation and shedding is thought to keep EHV circulating within the 

equine population. In latently infected animals, reoccurrence of viremia and shedding of 

the virus in nasal secretions of horses has been produced by immune suppression through 

the administration of corticosteroids (Slater et al., 1994). 

SPECIFIC OBJECTIVES 

This chapter describes the initial experiments conducted with large number of 

porphyrin, phthalocyanine, and platinum compounds for preliminary determination of their 

potential antiviral and cytotoxic effects. The tests were designed to screen the available 

compounds for their inhibition of free virus as well as interference with virus entry and 

production. A number of leading compounds were then selected based on their in vitro 

efficacy (EC50, 50% effective concentration), toxicity to the cells (CC50, cytotoxic 

concentration), cell localization, and therapeutic index (TI=CC50/EC50). The chemical 

structures of the selected substances were then then modified by the collaborating 

laboratory of Dr. Marzilli, and the resulting change in quantity of the EHV-1 antiviral 

activity and cytotoxicity was determined. 
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EXPERIMENTAL DESIGN 

During lytic replication, EHV-1 destroys the host cells that it infects, observed as 

rounding of the cells, multinucleated giant cell formation (syncytia), and presence of 

acidophilic inclusions. The antiviral activity of potential therapeutic agents against EHV-1 

can be determined by evaluating the inhibition of this virus-induced cell killing, or 

cytopathic effect (CPE). 

Initially, experiments to determine cytotoxicity of the different compounds to the 

rabbit kidney cells, RK13, were performed. RK13 cells were chosen, since it is a standard 

cell line used for EHV-1 propagation, research, and diagnosis. Based on preliminary data 

from Dr. Marzilli’s laboratory and our studies with coronavirus and vaccinia, the baseline 

concentration of antiviral in cell culture media was chosen at 50µg/ml. For those 

compounds that were found to be cytotoxic at this concentration, two-fold dilutions were 

performed to determine optimal concentration that does not exhibit an obvious cytopathic 

effect on the cells. Second, a collection of up to a 100 antiviral drugs was tested in the 

EHV-1 cytopathic effect inhibition assay. The set of drugs tested included platinum, 

tetraphenylporphine, sulfonated and metallo-porphyrin compounds and others. The initial 

screen was followed by a plaque reduction assay to determine the 50% effective 

concentration (EC50) of compounds showing positive results.  

Following primary and secondary screenings, subsequent chemical modifications 

of leading compounds was performed by the Dr. Marzilli’s group at the LSU Chemistry 

Department to ascertain whether antiviral properties were improved or diminished, while 

cytotoxicity avoided. 
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MATERIALS AND METHODS 

Cells 

 RK13 cells, rabbit kidney epithelial cells, were obtained from American Type 

Culture Collection (ATCC CCL-37, Rockville, MD). Cells were propagated and 

maintained in Dulbecco's Modified Eagles Medium (DMEM; Sigma Chemical Co., St. 

Louis, MI) containing sodium bicarbonate, 15 mM Hepes, and supplemented with 7% heat 

inactivated fetal bovine serum (FBS). The equine dermal cells, ED (ATCC CCL-57), 

equine fetal tracheal cells, EFTr (Primary cell line, field strain provided by Dr. Corstvet, 

LSU SVM, Baton Rouge, LA), and Vero (African Green Monkey Kidney Cells, ATCC 

CCL-81) were maintained in Dulbecco modified Eagle’s minimum essential medium 

(DMEM) supplemented with 15 mM Hepes, and 7% fetal bovine serum (FBS) and 

incubated at 37°C, 5% CO2.   

Viruses 

The NY1, NY2, VA, and RacL11∆gp2/EGFP viruses were kindly provided as 

ethanol precipitated DNA by Dr. Osterrieder of the Cornell University School of 

Veterinary Medicine, Ithaca, NY. Neurologic field Isolates, NY1 (New York) and NY2, 

were collected a few years apart, from the animals of the same herd. VA (Virginia) isolate 

was obtained from the brain tissue of a horse with clinical symptoms of encephalitis. To 

establish infectious virus stocks, viral DNA was transfected into RK13 cells using 

SuperFect Transfection Reagent (Cat. No. 301305, Qiagen Inc., Valencia, CA) according 

to the manufacturer’s instructions. The virus strain Ab4, parental strain of 

RacL11∆gp2/EGFP recombinant virus, was isolated in the late 1950s from an aborted foal 

and exhibits high virulence both in the natural host and in laboratory animals, such as the 
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Syrian hamster and the mouse. The EHV-1 Ab4 genome has been cloned into bacterial 

artificial chromosomes (BAC), which facilitated the construction of mutant viruses 

constitutively expressing the green fluorescence protein (GFP) under the human 

cytomegalovirus immediate early promoter (HCMV-IE). Specifically, a portion of an F 

plasmid and an EGFP expression cassette HCMV-IE promoter were substituted for gene 

71 encoding glycoprotein gp2 to create a RacL11∆gp2/EGFP recombinant virus. Deletion 

of the gp2 glycoprotein does not appreciably affect virus entry and virus replication, while 

a slight reduction (5%) in plaque size is observed (Neubauer et al., 2002).  

Antiviral Compounds 

About a hundred different inorganic and organic compounds, either commercially 

available or synthesized by the collaborating laboratory of Dr. Marzilli, LSU Chemistry 

Department were kindly provided by Dr. Marzilli (Louisiana State University, Baton 

Rouge, LA) and stored at 3-5°C in containers not permissive to light. Due to patent 

considerations, some of the tested compounds are referred to as they were named upon 

synthesis at the laboratory of Dr. Marzilli and not by the corresponding nomenclature of 

porphyrin chemistry (Moss, 1988). The chemical nomenclature of porphyrin and porphyrin 

derivatives and the abbreviations used are as follows: meso-tetraphenylporphirine (TPP); 

5,10,15,20-tetrakisphenylporphyrin (H2TPP); and 5,10,15,20-(4-chlorosulfonylphenyl) 

porphyrin (H2TPPS4). An “S” at the end of the abbreviation indicates that the parent 

porphyrin was sulfonated and the derivatives are mixtures with variable numbers and/or 

positions of the sulfonates on the ring. Cu(II)-5,10,15,20-tetrakis(4-[p-sulfobenzyl] 

sulfoamidonylphenyl) porphyrin (Cu(II)TPPS4) is a sulfonated tetraphenylporphyrin with 

a copper moiety/chelate at the meso position, while Fe(III)-5,10,15,20-tetrakis(4-[p-
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sulfobenzyl] sulfoamidonylphenyl) porphyrin (Fe(III)TPPS4) is a sulfonated 

tetraphenylporphyrin with an iron moiety/chelate, and for simplicity, will be referred to as 

metalloporphyrins in this paper. Distilled water was used as solvent to prepare 2 mg/ml 

stock solution for each test chemical. Several compounds were provided dissolved in 

dimethyl sulfoxide (DMSO, (CH3)2SO) as solvent. DMSO is miscible with water and prior 

to their use in assays, solutions of porphyrin compounds were diluted in excess of 100-fold 

in water. Therefore, DMSO was not expected to influence the outcome of the assays via its 

function to enhance membrane penetration and transport. Preparation of solutions and all 

experiments were done under red light to prevent chemicals degradation or phototoxicity 

upon exposure to light. ChemDraw Pro 11.0 (CambridgeSoft Corporation, Cambridge, 

MS) program was used to present chemical structures of the compounds. All stock 

solutions of compounds were in the range of pH 8.5 to 9. 

Initial Screening Assay: Antiviral Effect on Free Virus 

The initial screen of antiviral compounds was a cell-based assay with endpoint 

detection performed using visual inspection and calculation of ratio of the number of 

infected cells (EGFP fluorescent cells) counted by FACS to that of untreated control 

(Figure II-6). RK13 cells were plated in triplicates in 24-well tissue culture plates (Greiner, 

Frickenhausen, Germany), at a density of 2 x 105 cells per well and incubated overnight in 

a humidified 5% CO2-air at 37°C. At 80% confluency, cell monolayers were infected with 

EHV-1 RacL11∆gp2/EGFP at a multiplicity of infection of 10 and 0.1 PFU/cell in DMEM 

25 mM Hepes medium. Prior to infection, virus was incubated with 50 µg/ml 

concentrations of the compounds for 30 min at 37°C. Virus was allowed to enter the cells 

during one hour incubation at 37°C. Then, EHV-1 infected cell monolayers were washed 
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with phosphate-buffered saline (PBS) to remove residual drug and the virus that has not 

entered, overlaid with fresh 2% FBS DMEM, and incubated at 37°C for 8 h, at which time 

the cells were harvested, washed and subjected to FACS analysis to determine the percent 

of infected cells via GFP fluorescence. Acyclovir was used as control antiviral, applied at a 

concentration 50, 25 and 5 µg/ml. Cells infected with viruses at the same multiplicity of 

infection (M.O.I.) of 10 and 0.1 PFU/cell and without adding any of the compounds served 

as a control of a 100% infection. Those compounds that show more than 50% reduction in 

EGFP fluorescence at the M.O.I. of 10 were selected for further testing.  

Cytotoxicity Assays and 50% Cytotoxic Concentration 

 Current assays to monitor the viability of cells include vital dye uptake, tritiated 

thymidine uptake, and tetrazolium salts (e.g. MTT, WST-1). We used the following assays 

to determine compound cytotoxicity: (i) Cytopathic effects produced in RK13 cells were 

determined by daily visual inspection and qualitative assessment of cells exposed to serial 

dilutions of the candidate microbicides; (ii) The effects of the compounds exerted during 

two population doublings of RK13, ED, and EFTr cells determined by staining the cells 

with trypan blue and visually counting the cells that incorporated the dye. Briefly, serial 2 

to 10-fold dilutions of the compounds, 0.1 to 100 µg/ml, were added to 20%, 40%, 60%, or 

80% confluent monolayer of RK13, ED, EFTr or Vero cells, without viral challenge. Then, 

plates were left at 37°C and 5% CO2 for 3 days and examined for toxicity effects by using 

trypan blue exclusion test. Alternatively, the treated cells were incubated under normal 

growth condition for 48 hours and then, stained with neutral red containing medium to 

access cell viability. The cells were subsequently washed, the dye was extracted in each 

well, and the absorbance was read using a spectrophotometer.  The 50% Cytotoxic 
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Concentrations (CC50) were calculated. Therapeutic Index (TI) values were calculated as 

the ratio of 50% cytotoxic concentration to %50 Inhibitory Concentration of each 

compound (TI=CC50/IC50). Compounds were scored as active if TI > 10, moderate if TI > 

1.5 < 10, inactive if TI < 1.5.  

  

Figure II-6. Diagram of initial antiviral screening assay. 
 

 

Figure II-7. Diagram of the modified screening assay. 
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Confocal Microscopy 

 For laser scanning confocal-microscopy experiments, RK13 cells were cultured in 

eight-well chamber slides (Lab-Tek II; Nalge Nunc International, Naperville, Illinois). 

Twenty-four hours after being seeded, the cells were EHV-1 or mock infected and further 

incubated in the presence or absence of the antiviral compounds. At various times post 

infection, the cells were fixed with paraformaldehyde and permeabilized with 0.5% Triton 

X-100 in order to maintain the integrity of cellular structures. For cell surface biotinylation, 

prior to fixation cells were washed with TBS-Ca/Mg and incubated for 15 minutes at RT in 

EZ-Link Sulfo-NHS-LC Biotin cell impermeable biotinylation reagent (Pierce Chemical, 

Thermo Fisher Scientific Inc., Rockford, Illinois), which reacts with primary amines on 

cell surface proteins. Cells were then washed with TBS and fixed with electron microscopy 

grade 3% paraformaldehyde (Electron Microscopy Sciences, Fort Washington, 

Pennsylvania) for 15 minutes, washed twice with PBS-50 mM glycine, and permeabilized 

with 1.0% Triton X-100. For cell surface labeling, biotinylated cells were reacted with 

1:1000 diluted Alexafluor 647 conjugated streptavidin for 20 minutes. For Golgi and ER 

organelle labeling, cells were incubated with 1:750 dilution of Alexafluor 488 conjugated 

lectins GSII and concanavilin A, respectively. TGN was identified with a donkey anti-

TGN46 primary antibody and an Alexafluor 488 conjugated sheep anti-donkey secondary 

antibody. Specific immunofluorescence was examined using a Leica TCS SP2 laser 

scanning confocal microscope (Leica Microsystems Inc., Bannockburn, IL) fitted with a 

CS APO 63x Leica objective (1.4 numerical aperture). Individual optical sections in the z-

axis, averaged 6 times, were collected at set zoom in series in the different channels at 

1024 x 1024 pixel resolution. Images were compiled and rendered in Adobe Photoshop.  
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Modified Screening Assay: Effect on Virus Entry and Replication 

To analyze whether antiviral compounds affected viral particles prior to and at 

entry steps of the infection, the virus EHV-1 RacL11∆gp2/EGFP was incubated with the 

compounds for 30 min at room temperature and then added to the cells (see Figure II-7). 

Then, after the incubation time of 1.5 hours at 4°C and another hour at 37°C the wells were 

washed and fresh DMEM 25 mM Hepes medium was added.  To determine if the 

antivirals act at the level of binding, penetration, or post-entry, the antiviral compounds 

were added to the infected cell monolayers for 10 minutes and then, removed by a wash, 

either during the 4°C period, at the time that the cells were transferred to 37°C, or 

immediately after the 1 hr incubation at 37°C respectively. High resolution pictures of the 

EGFP fluorescent virus infected cells were taken 12 hours post infection and the numbers 

of infected cells were counted as percent of control, number of infected cells without the 

antiviral compounds. 

Cytopathic Effect Inhibition Assay and 50% Inhibitory Concentration 

To determine the efficacy of antiviral compounds, a cell-based assay utilizing 

cytopathic effect inhibition (CPE) or reduction in the number of viral plaques was set up. 

The basic assay involved infection of RK13 cells as described above, however 

neurological isolates (NY1, NY2, and VA) were tested in the presence of various 

concentrations of test compounds in addition to EHV-1 RacL11 virus. Cells were seeded at 

a density of 2 x 10e5 cells per well and grown in triplicate wells in 24-well plates 

overnight. Each drug was added at least eight different concentrations within 0.1 to 30 

µg/ml range of concentrations, at the time of the infection and maintained until completion 

of the assay. 
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EHV-1 (0.1 to 5 PFU/cell) was exposed to serial dilutions (0.1-30 µg/ml) of the 

candidate microbicides for 30 min at 37°C. After incubation for 1 h at 37°C, the virus 

inoculum was aspirated, and a maintenance medium overlaid containing 1% 

methylcellulose and the appropriate compound concentration added. The plates were 

incubated at 37°C in 5%CO2 for 2-3 days and observed daily for CPE. The end point 

titration was determined as the drug dilution that inhibited 100% of the CPE in triplicate 

wells. The plates were fixed with 5% formaldehyde and stained with crystal violet. The 

viral titer in the presence of each concentration of drug was determined by counting the 

plaques. The ability of the compounds to inhibit EHV-induced cell killing was determined 

as reduction in plaque number and diameter. Median inhibitory concentration or the IC50 

(or EC50, 50% effective concentration) calculated as the concentration required for 50% 

inhibition. Reported IC50 values are the average and standard deviation of three separate 

determinations per experiment, with each experiment repeated three times. The IC95 

values were extrapolated via polynomial of order three. 

Image Analysis and Quantitation 

For most experiments, high resolution pictures of the fluorescent virus infected 

cells were taken under fluorescent microscope magnification of x40 at 12 hours post 

infection and the numbers of infected cells were counted as percent of control. Image 

analysis was done using the Leica microscopy software (Leica Microsystems Inc., 

Bannockburn, Illinois). Image masks of fluorophore were generated from the image 

fluorogram data by defining the specific regions of interest with a bounding box. To 

determine an percentage of the surviving virus, pixel enumeration and intensity statistics 

within the Leica software package was applied to a series of individual sections.  
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RESULTS 

Initial Screening of Antiviral Compounds for Inhibition of EHV-1 
Infection 

Using a recombinant, BAC progeny EHV-1 strain, RacL11-∆gp2-GFP, as a model 

target, we conducted antiviral activity testing of up to 100 different inorganic compounds 

synthesized by the collaborating laboratory of Dr. Marzilli of Louisiana State University 

(LSU) Chemistry Department, Baton Rouge, LA. RacL11 encodes a portion of the F 

plasmid and an EGFP expression cassette under the human cytomegalovirus immediate 

early promoter (HCMV-IE) that was substituted for EHV-1 non-essential gene 71 

encoding glycoprotein gp2 (Neubauer et al., 2002). 

The screening assays were used to estimate the antiviral and cytotoxic effects of the 

compounds and to identify lead candidate antiviral compounds on the basis of their in vitro 

efficacy and toxicity. Tests were done as cell-based assays with end-point detection 

performed using visual inspection, Leica image analysis software and FACS detection of 

percent infected cells showing green fluorescence from EGFP gene encoded by the 

recombinant EHV-1. The chemical structure of the compounds used in initial screening 

was undisclosed to the investigators to avoid bias in selecting compounds as well as due to 

patent and other intellectual property issues. Only compounds selected for further testing 

were matched to corresponding structural formula, otherwise the compounds were referred 

to as they were numbered upon synthesis at the laboratory of Dr. Marzilli (Louisiana State 

University, Baton Rouge, Louisiana).  

Initial experiments showed that many of the compounds had potent virucidal 

activity against the virus, since exposure to virus-stocks for as little as few minutes 

inactivated more than 99% of the virus (results not shown). These compounds were 
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selected and further tested for their effect on virus during replication stage of infection. 

The results of a representative experiment are shown in Figure II-8. Infected cells were 

treated with antiviral compounds once the virus has already entered the cell: virus envelope 

and cellular membrane were fused and the capsid released into the cytoplasm. 

Treatment with compound LGmP 250 (sulfonated tetraphenoxyphenyl porphyrin) 

and LGmP 73’((3-Cl)4-SO3 tetraphenyl porphyrin)  resulted in about 90 and 70% 

inhibition of the viral infection respectively, while LGmP 73, 74, and 249 had practically 

no effect (Figure II-8). Those compounds that when used post entry showed more than 

40% reduction in virus infection at the MOI of 10 were selected for further testing and are 

shown in Table II-2. 

 

Figure II-8. Blinded initial screening of the antiviral compounds. Inhibitory effect of 
photodynamic compounds on post entry events of virus infection resulted from 
photoinactivation of EHV-1 and decreased cell growth due to cytotoxicity of the 
photodynamic effects (49, 49’, 249, and 250) and chloro groups (73’, 74, and 74’). 
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Table II-2. A selection of the compounds tested. 
Compounds 

in  
Solvent 
H2O or 
DMSO 

Class of Compound Sulfonate/ 
Metallo group 

Fluorescence/ 
Photodynamic 

properties 

Cytotoxicity 
CC50 

Inhibition of 
Free Virus, % 

25 µg/ml 
LGmP 17 H2O   F-  87 
LGmP 37  H2O H2TPPS4 M-; S+    
LGmP 38     F-  98 
LGmP 39 H2O Cu(II)-tetrasulfonated phenyl porphyrin Cu; S+ F- >100 90 
LGmP 44 H2O 2-fluoro-4-sulfo porphyrin M-; S+ F+  95 
LGmP 45 H2O 4 chloro-3-sulfo porphyrin M-; S+ F+  95 
LGmP 46 H2O 2,6-difluoro-tetrasulfonated phenyl 

 

M-; S+ F+  100 
LGmP 47 H2O (4-F)3-sulfo- tetraphenyl porphyrin  F+  100 
LGmP 49  H2O   M- F+  50 
LGmP 69 H2O (2-F)3-sulfo-tetraphenyl porphyrin M-; S+ F+  90 
LGmP 71     F-  5 
LGmP 73  H2O 3-fluoro-4-sulfonato porphyrin M-; S+ F+  100 
LGmP 74  H2O chloro M- F+  100 
LGmP 96  H2O   M- F+  20 
LGmP 106 H2O Phthalocyanine  F-  95 
LGmP 128     F-  0 
LGmP 129  H2O  insoluble  F-  0 
LGmP 149  DMSO      0 
LGmP 176  DMSO    F-  100 
LGmP 177  DMSO      0 
LGmP 179     F-  40 
LGmP 179b  DMSO Cis-Platinum, Pt(NH3)2Cl2  F+  82 
LGmP 188  H2O    F-  0 
LGmP 196     F+  98 
LGmP 199  H2O    F-  0 
LGmP 200c H2O    F-  82 
LGmP 205a  DMSO Platinum  F-  0 
LGmP 210a  DMSO Platinum  F-  10 
LGmP 212a  DMSO Porphyrin  F-  0 
LGmP 213a  DMSO Platinum  F-  10 
LGmP 226        
LGmP 241 H2O Porphyrin  F-  0 
LGmP 246 H2O Fe (III)-tetrasulfonated phenyl porphyrin M+; S+ F- >100 100 
LGmP 248       70 
LGmP 249  H2O Metalloporphyrin  M+ F-   
LGmP 250  H2O tetra-(phenoxyphenyl sulfonated 

 

M-; S+ F+  95 
LGmP 252 H2O Cu(II) tetra OCH3SO3 phenylporphyrin M+; S+ F- >100 65 
LGmP 273  Italian lab  F+ >30 100 
LGmP 275 H2O Novel photodynamic porphyrin, H2TPPS8 M-; S+ F+ >100 100 
LGmP 276 H2O Novel Cu H2TPPS8 M+; S+ F- >30 100 
LGmP 277 insol Italian lab M+  >30 100 
LGmP 278  Italian lab M-  >30 100 
LGmP 279 H2O Novel, Naphthalene H2TPPS8 M- F+ >30 100 
LGmP 280 H2O Novel Cu, naphthalene H2TPPS8 M+; S+ F- >100 100 
LGmP 282 H2O Novel Cu, fluoride H2TPPS8 M+; S+ F- >100 100 
LGmP 284 H2O Novel photodynamic naphthalene 

 

M- F+ >30 100 
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Cytotoxic Effects of Antiviral Compounds 

Cytotoxicity tests were conducted for each individual compound. Different 

concentrations of the compound were added to rabbit kidney cells, RK13, equine dermal 

cells, ED, equine fetal tracheal cells, EFTr, and African green monkey kidney cells, Vero, 

at 20 , 40, 60, or 80% confluency to reach concentrations of 100 µg/ml, 50 µg/ml, 30 

µg/ml, 25 µg/ml, 15 µg/ml, 10 µg/ml, 5 µg/ml, and 1 µg/ml in the culture medium. Cells 

were examined after 12 hr, 24 hr and 36 hr post infection. The observed cytotoxic effects 

included rounding and shrinking, vacuolization, membrane blebbing/budding, loss of 

confluency, reduction of growth rate, nuclear damage, and cellular debris. Examples of 

cytotoxic effects observed are shown in Figure II-9. The results were recorded and used to 

select compounds without significant cytotoxic effect. Cytotoxicity of compounds was 

directly related to their fluorescence and therefore photoactivity. 

Tetrapyrrole compounds with chloro group, such as LGmP 45 ((4-Cl)3-SO3 

tetraphenyl porphyrin), LGmP 73’((3-Cl)4-SO3 tetraphenyl porphyrin), LGmP 74, LGmP 

74’ and others were proven to be cytotoxic even if assayed in the absence of light (results 

not shown). The chloro group was the only common feature of these compounds and was 

assumed to have contributed to the cytotoxic effect. Therefore, LGmP 73’ was ruled out as 

a potential antiviral. 

 

Figure II-9. Cytotoxic effects of antivirals as observed on phase-contrast microscopy. 

Apoptosis Reduced growth rate Cellular debrisUntreated healthy cells Apoptosis Reduced growth rate Cellular debrisUntreated healthy cells
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Photoactivation 

 A flaw of the initial screening approach was that many of the compounds were 

photodynamic as seen by their red fluorescence when examined under fluorescent 

microscope (Figure II-10), and therefore, inactivated virus and damaged the cells via light 

activated production of reactive oxygen species (ROS). As an example, 0.2 µg/ml LGmP 

46 inhibited virus by 90% upon exposure to visible and UV spectrum, and only 50% in the 

dark (Figure II-11).  Thus, the exceptionally good antiviral properties all fluorescent 

compounds were most likely due to photoactivity against EHV-1. 

 As mentioned previously, the fluorescent compounds were also cytotoxic at 

concentrations inhibitory to virus infection, resulting in decreased rates of cell growth. 

Photoinactivation of viruses by diamagnetic porphyrins have been studied previously 

(Horowitz et al., 1992). The light-activated compounds react with molecular oxygen to 

produce reactive oxygen species and radicals; in a biological environment these toxic 

species (singlet oxygen (1O2), hydroxyl radicals (•OH), and superoxide (O2
−) ions) interact 

with unsaturated lipids; amino acid residues; and nucleic acids causing biochemical 

disruption to the cell(Detty et al., 2004; Ian J. Macdonald, 2001). If the homeostasis of the 

cell is altered significantly, then the cell enters apoptosis. Therefore, all subsequent 

experiments with photodynamic compounds were conducted in dark room conditions to 

minimize the photoinactivation effect and to evaluate other mechanism of their antiviral 

function.  

Cellular Distribution, Cytotoxicity, and Stability of Antiviral Compounds 

We capitalized on the fluorescent property of the porphyrins to evaluate their 

cellular localization during our preliminary investigations of the cytotoxic effects on RK13 
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Figure II-10. Illustration of GFP-expressing virus infected cells in the presence of 
photoactive porphyrin. Cells exhibit green fluorescence and syncytia formation 
characteristic of recombinant GFP-expressing EHV-1 RacL11 infection in the presence of 
0.2 µg/ml photodynamic antiviral compound LGmP 37, H2TPPS4 (red fluorescence), 
examined under fluorescent microscope at x100 magnification. 

 

 

Figure II-11. Inhibition of viral infection by photoactive antiviral compound in the 
presence and absence of visible and UV spectrum. Prior to infection of RK13 cells, 
EHV-1 RacL11/EGFP virus was incubated with indicated concentration of LGmP 46 in 
the absence (gray bars) or presence (black bars) of visible and UV exposure. 
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cells (Figure II-12, A and B). Compounds were observed to rapidly enter the cytoplasm of 

both EHV-1 RacL11 and mock infected cells and remain within cytoplasm potentially as 

either aggregates or as content of endoplasmic vesicles. 

If compounds were added to the cells post infection, they were also seen to 

concentrate in the nucleus, most likely due to EHV-1 induced modification of cell 

architecture. If the compounds were preincubated with a virus prior to virus infection, no 

nuclear staining was observed, as no infection was detected due to complete inhibition of 

the infection by the compounds.  

Confocal microscopy was considered to obtain more detailed information about the 

internalization and intracellular localization of compounds (Figure II-12, C-E). However, 

non-photoactive/non-fluorescent compounds could not be evaluated since there is no 

available marker to localize them to the organelles. The pattern of distribution of 

photoactive compounds is suspected to be due to the onset of apoptotic changes in the cell. 

To evaluate stability of antiviral compound upon storage, the activity of several 

compounds was retested after three weeks of refrigeration. Most compounds showed 

significant stability or an increase in antiviral activity (Figure II-13), potentially due to 

evaporation, while other compounds were unstable in storage (results not shown) and were 

eliminated from further investigations. 

Modified Screening of Antiviral Compounds Based on Their Activity on 
EHV-1 Attachment, Fusion and Post-entry Events 

A new set of compounds was synthesized, containing various metals in the meso 

position. Presence of the metal group was expected to decrease or fully abolish 

photoactivity of these compounds, and therefore, diminish their cytotoxicity. Compounds 

selected based on initial screening and ruling out cytotoxic compounds and those newly 
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Figure II-13. Effect of storage on antiviral activity of Fe(III)TPPS4. Increase in 
antiviral activity of Fe(III)TPPS4, potentially due to evaporation of the solvent, was seen 
after refrigerated storage for 3 weeks.  

Figure II-12. Differential cellular localization of antiviral compounds within cellular 
compartments. RK13 cells infected (A) and mock infected (B) with GFP fluorescent 
RacL11 virus were subjected to antiviral treatment for the duration of infection (12 hours), 
starting at one hour post infection at a concentration of 20 µg/ml in cell culture media. 
Porphyrin-based antiviral compound is seen exhibiting red fluorescence under UV 
exposure. Arrows denote nucleus, arrow head indicates cytoplasmic vacuolization. 
Porphyrin compound is seen as red fluorescence. Green fluorescence is the GFP 
expression from the recombinant EHV-1 genome. C, D, E) Laser scanning confocal-
microscopy images showing individually stained ER, Golgi and surface cellular 
compartmentsof RK13 cells, respectively. 

C D E 
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synthesized, were tested for their ability to interfere with EHV-1 infection. Since most of 

the selected compounds efficiently inactivated the free virus, to better differentiate their 

antiviral properties and to determine at what stages of viral infection they might exert their 

antiviral properties, a time course assays were conducted. RK13 cells were precooled to 

4°C, and each well inoculated with EHV-1 RacL11∆gp2/ EGFP virus, and the infected 

cells were incubated for 1 hour at 4°C to allow virus binding. Washing the cells at this 

time, removed any unattached virus. The shift to 37°C at this step allowed virus 

penetration into the cells. 

To evaluate effect of antiviral compounds on attached virus, following a 1 hour 

attachment at 4°C, the antiviral compounds were added, cells were incubated for 10 more 

minutes at 4°C, washed and transferred to 37°C to allow virus entry. To evaluate effect of 

antiviral compounds on fusion step of virus entry, antiviral was added  post 1 hr at 4°C  

and the cells immediately transferred to 37°C for 10 min, then washed, and transferred to 

37°C to continue infectious cycle. To evaluate effect of the antiviral compounds on post 

entry events, antiviral was added for 10 min at the step after the virus has entered the cells 

(post 1 hr at 4°C and additional 1hr at 37°C). At 12 hours post infection, numbers of 

infected cells were counted and are shown in as percent of untreated control, a number of 

infected cells without the antiviral compounds. The extent of inhibition of infection was 

determined from the percent of virus that survived. 

The results of antiviral effect on attachment, fusion and post entry were taken 

together to select most active compounds for further studies (Figure II-14, A-B). Most 

compounds had minimal effect on post entry events, inhibiting the virus survival at most 

by 45%. LGmP 73’ inhibited post entry events by 70%, however had minimal effect on 
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attachment and fusion. Treatment of attached virus or virus undergoing fusion event with 

LGmp 39, 46, 179b, 210a, 213a, or 246 compounds, reduced virus survival by 50% or 

more. LGmP 39, 46, 179b and 246 reduced virus survival by 75% or more, when these 

compounds were added during onset of fusion. 

 The chemical structures of the selected most active compounds were one non-

metallated sulfonated porphyrins LGmP 46 (2,6-difluoro-tetrasulfonated phenyl 

porphyrin), two metallated sulfonated porphyrins, LGmP 39 (Cu(II)-tetrasulfonated phenyl 

porphyrin) and LGmP 246 (Iron (III)-tetrasulfonated phenyl porphyrin), as well as three 

platinum compounds LGmP 179b (Cis-Platinum, Pt(NH3)2Cl2), LGmP 210a, and LGmP 

213a. Selected compounds were tested at higher concentration of 10µg/ml, for their effect 

on free virus, attached virus, virus undergoing fusion, and virus that has entered the cell 

(Figure II-15). Platinum compounds LGmP 210a and LGmP 213a showed only 40% 

reduction in the free virus survival and post entry. Compounds, LGmP 39 (Cu(II)-

tetrasulfonated phenyl porphyrin) and LGmP 246 (Iron (III)-tetrasulfonated phenyl 

porphyrin), have near identical effect on every stage of virus infection tested. These two 

compounds have identical chemical structure with the exception of a different metal 

chelate. 

Leading Compounds and Synthesis of Derivatives 

The leading compounds chosen for further investigations were LGmP 39, Cu (II) 

tetrasulfonated phenylporphyrin, and LGmP 246, Fe (III) tetrasulfonated phenylporphyrin 

(Figure II-16). Since platinum compounds had less effect on free virus, only porphyrin 

compounds were chosen for further investigation. For the antiviral compounds of interest 

and at specifically selected concentrations of the compounds, cell viability was determined 
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Figure II-14. Modified antiviral screening assay based on the effects of antiviral 
compound at 5 µg/ml on various steps of virus life cycle during GFP-expressing EHV-
1 RacL11 virus infection of RK13 cells. To determine if the antivirals act at the level of 
binding, penetration, or post-entry, the antiviral compounds were added for 10 minutes 
followed by a wash: either during the 4°C attachment period, at the time that the cells were 
transferred to 37°C to allow fusion, or immediately after the 1 hr incubation at 37°C, 
respectively. No drug was added to the control wells, however all washes were performed 
as with other wells. 
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Figure II-15. The effect of antiviral compounds at various stages of viral infection. 
RacL11∆gp2/EGFP infected RK 13 cells were exposed to the antivirals at 10 µg/ml at 
different times post infection:  10 min at 4°C to test the compounds effect on the 
attachment (white), 10 minutes when the cells were shifted to 37°C to test the compounds 
effect on the fusion (light gray), after 1 hour at 37°C for 12 hours to test the drugs’ effect 
on post-entry events (dark grey), and for the entire time of infection, including a 20 
minutes virus preincubation with compounds (black). Pictures were taken under 
fluorescence microscopy 12 hours post infection. Cells harvested, washed in PBS and 
analyzed via FACs. Graphed are the % infected cells when the drug was applied at 
different times of infection. 

 
using metabolic rate assays, while cell proliferation was ascertained using cellular growth 

curves (results not shown). LGmP 46 was an excellent antiviral compound, however due to 

photoactivity was more cytotoxic, reaching 50% cytotoxic concentration (CC50) at 200 

µg/ml. The CC50 of LGmP 37 (5,10,15,20-(4-chlorosulfonylphenyl)porphyrin), a parent 

compound of LGmP 39 and LGmP 246, was only 50 µg/ml, however it was chosen for 

further studies for comparative purposes. LGmP 37 is a non-metallated tetrasulfonated 

phenylporphyrin. The 50% cytotoxic concentration of Cu (II)  tetrasulfonated 

phenylporphyrin (LGmP  39) was 450 μg/ml. The 50% cytotoxic concentration of Fe (III) 

tetrasulfonated phenylporphyrin (LGmP 246) was 600 μg/ml. 
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Multiple antiviral assays for selected compounds were conducted to using identical 

conditions such as cell number, confluency of cell monolayer, incubation temperature, and 

incubation time were followed throughout the performed experiments. These two selected 

compounds were used to synthesize new compounds with further modified chemical 

structure. Presence of the central metal was expected to retain low cytotoxicity properties 

of compounds due to the absence of photoactivity. Sulfonation has been shown to yield 

compounds that are more soluble in polar solvents, such as water, thus eliminating the use 

of DMSO(Phillips, 1995), and to increase antiviral activity against HIV (Dixon et al., 

2005) and, as shown here, against EHV-1. Additional sulfonation was expected to yield 

more active antiviral properties of the compounds. 

New porphyrin compounds synthesized were LGmP 265, 276, 280, and 282. LGmP 

276 has a higher level of sulfonation but otherwise identical to LGmP 39 (Figure II-17). 

LGmP 275 is a photodynamic non-metallated equivalent of LGmP 276 (Figure II-18). 

LGmP 280 was derived from LGmP 276 by addition of naphthalene groups, while LGmP 

282 was derived from LGmP 276 by addition of fluoride. 

Evaluation of Antiviral Properties of Novel Compounds 

Newly synthesized compounds were tested for their ability to inhibit virus 

infection. The result of antiviral assays showed little deviation in the antiviral properties of 

the newly synthesized compounds from that of their parental set (Figure II-19). Decrease 

of virus survival attributed to the effect of LGmP 275 was actually the result of decrease in 

cell numbers, due to the cytotoxic effects of this photoactive compound. LGmP 37 was 

much less effective at corresponding concentrations of antiviral compounds and reached 

IC50 for free virus at about 15 µg/ml. Presence of central metal, Cu(II) or Fe(III), reduced 
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Figure II-16. Chemical structure of leading compounds, metal chelates of 5,10,15,20-
(4-chlorosulfonylphenyl)porphyrin. M represents Cu(II) in LGmP 39 (C44H28CuN4, MW 
676.28 ) and Fe(III) in LGmP 246 (C44H28FeN4). Position of SO3

- at the center of benzene 
ring indicates that the parent porphyrin compound, LGmP 37, was sulfonated and the 
derivatives are mixtures with variable positions of the sulfonates on the ring. 

 

Figure II-17. Chemical structure of newly synthesized compound, Cu(II) -5,10,15,20-
tetrakis(4’-[p-sulfonylbenzyl]sulfonylamidophenyl)porphyrin. Compound, named 
LGmP 276, was derived by additional chlorosulfonation of LGmP 39, where M represents 
Cu(II). 
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Figure II-18. Chemical structure of newly synthesized compound, 5,10,15,20-
tetrakis(4’-[p-sulfonylbenzyl]sulfonylamidophenyl)porphyrin. Compound, named 
LGmP 275, was derived by additional chrolosulfonation of LGmP 37 and is 
photodynamic. Expanded view of hydrogens is shown. 

 
IC50 to about 3 g/ml (LGmP 39 and LGmP 246). Higher levels of sulfonation and 

additional naphthalene or fluoride moieties, as for compounds LGmP 276, 280, and 282, 

did not improve IC50 (Figure II-20).  

Further study of the newly synthesized compounds revealed that although at 

concentrations effective to inactivate free virus in solution, virus that has attached to the 

cell surfaces is not susceptible to the antivirals unless much higher concentrations were 

used (Figure II-21). At concentrations above 100 g/ml, antivirals started to exhibit 

increasing cytotoxic effects. No significant difference in ability to inactivate attached virus 

was noted among the compounds studied. 
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Figure II-19. Inhibition of EHV-1 RacL11/EGFP virus infection of RK13 cells at 
various concentrations of antiviral compounds. The effect of antiviral treatment on free 
virus was tested at a range of concentration for parental LGmP 39 compound, 5,10,15,20-
(4-chlorosulfonylphenyl)porphyrin), its Cu(II), LGmP 39, and Fe(III), LGmP 246, metal 
chelates, as well as on the higher sulfonation LGMP 37 derivative, LGmP 275, and its 
Cu(II) chelate, LGmP 276. 

 

 

Figure II-20. Inhibition of EHV-1 RacL11/EGFP virus infection of RK13 cells at 
various concentrations of new antiviral compounds. LGMP 276 (Cu(II)-5,10,15,20-
tetrakis(4’-[p-sulfonylbenzyl]sulfonylamidophenyl)porphyrin) and its naphthalene (LGmP 
280) and fluoride (LGmP 282) derivatives. 
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Figure II-21. Inhibition of virus attached to cellular membranes at high 
concentrations of antiviral compounds. Following 1 hour at 4°C, EHV-1 RacL11/EGFP 
virus infection of RK13 cells was treated for 10 min at 4°C with indicated concentrations 
of new antiviral compounds, the cells were then washed and infection allowed to proceed. 
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DISCUSSION 

There is a pressing need for effective antiviral compounds to treat disseminated as 

well as neurological forms of EHV-1 infections. Porphyrins have been shown to possess 

strong antiviral properties against HIV and Vaccinia. Preliminary results in our laboratory 

indicated antiviral activity of porphyrins against EHV-1 and Coronaviruses.  

Out of the first set of tested compounds, most showed 99% inhibition of free virus 

even at concentrations as low as 5 µg/ml. However, most of these compound exhibited 

high level of cytotoxicity, which was attributed to their photodynamic properties, seen in 

cell culture as high level of red fluorescence. Subsequently, all assays were performed in a 

dark room environment. Experimental conditions such as confluency of RK13 cell 

monolayer used for infections, number of infected cells, incubation temperatures and times 

were maintained consistent. 

For all compounds selected following the screening assays, exposure of the free 

virus to the antiviral compounds prior to attachment, resulted in zero virus survival at 50 

µg/ml or 25 µg/ml concentration of compounds in culture medium. At 5 µg/ml 

concentration of antiviral compounds in culture medium overlaying the cells at the onset of 

infection, 20% of the virus survived. 

After repeating the experiment, we concluded that most of the antiviral properties 

of photodynamic compounds seen initially were most likely due to photoinactivation of 

EHV-1 (free radicals and singlet oxygen). Photoactivity of porphyrins is utilized in 

palliative photodynamic therapy (PDT) of cancer. For antiviral activity, the important 

consideration is that the agent is not phototoxic to the cells. In our investigations we were 

interested in the potential of porphyrins for light-independent inhibition of virus infection 
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and not a photodynamic mechanism. New compounds were synthesized with metals 

incorporated into the meso position in an attempt to abolish photodynamic properties. 

To further study the effect of porphyrins on the cells, we were interested in 

determining the cellular compartments where porphyrins would localize. We were unable 

to study localization of porphyrins inside the cellular compartments using confocal 

microscopy, short of using analytical chemistry analysis of nucleus and cytoplasmic 

fractions to identify localization. Photoactive porphyrins and metallated non-fluorescent 

porphyrins have drastically different antiviral and cytotoxic properties, so we cannot 

assume that their cellular uptake and localization would be identical. Metallated non-

fluorescent porphyrins may or may not localize to the cytoplasm as do the photoactive 

porphyrins. 

Interesting to note that without the virus present, the fluorescent compounds 

localized to the cytoplasm and within vacuoles and did not enter the nucleus, while in the 

presence of infection porphyrins freely enter the nucleus and occupy the cytoplasm. Thus, 

potentially, virus infection modifies the nuclear envelope rendering it permeable to the 

porphyrin compounds. 

Irrespective of localization of the fluorescent porphyrins, these compounds were 

highly cytotoxic with or without the virus infection, and cytoplasmic distribution could be 

due to initiation of apoptosis by the cell. Metallation of porphyrins abolished the 

fluorescence, making them significantly less toxic to the cells. The photodynamic 

compounds that contained chloro group remained cytotoxic, even in the absence of light 

activation. An initial screening of almost 100 porphyrin and platinum compounds as well 

as a detailed screening of 18 different compounds revealed that Cu (II) tetrasulfonated 
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phenylporphyrin and Fe (III) tetrasulfonated phenylporphyrin possessed strong virucidal 

and antiviral activities against EHV-1, inhibiting 100% of EHV-1 infectivity at a 

concentration of 10 μg/ml  and 15 μg/ml, respectively. The photoactive compound 

H2TPPS4, a precursor/parental compound to the two metalloporphyrins, was used as 

control in subsequent experiments. Antiviral compounds showed the most dramatic 

inhibitory effect on free virus. Virus undergoing fusion was also significantly affected. 

Much less inhibition of virus infection was seen with antiviral treatment of virus attached 

to the cellular membranes or virus that has already entered into the cytoplasm.  

The excellent antiviral activity and low toxicity of the selected porphyrin 

compounds led to their selection for further evaluation against additional laboratory and 

clinical virus strains, which were also inhibited effectively. The selected two compounds 

were used to design new compounds of modified chemical structure. Additional 

sulfonation of compounds did not lead to improvement in their antiviral properties against 

free virus nor virus attached to cell surfaces. Addition of fluoride or naphthalene groups, 

also did not improve antiviral properties. A more detailed analysis of chemical structures 

in correlation to their antiviral or cytotoxic properties could not be conducted due to 

proprietary limitations. Such analysis was left up to the researchers that developed and 

patented the compounds and is not presented here. Porphyrin compounds were shown to 

specifically inhibit free virus particles as well as membrane fusion phenomena required for 

virus entry and virus spread, and the antiviral activity was enhanced by modification of the 

chemical structure of the porphyrin compounds via primary sulfonation and metallation. 

However, neither secondary sulfonation, nor the addition of naphthalene or fluoride 

moieties, improved the effectiveness of compounds to inhibit EHV-1.   
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CHAPTER III. ANTIVIRAL ACTIVITY OF PORPHYRIN 
COMPOUNDS AGAINST FUSION EVENTS OF EHV-1 

INFECTIVITY AND SPREAD 

INTRODUCTION 

Motivation to Study EHV-1 

Equine herpesvirus 1 (EHV-1), a member of Alphaherpesvirinae family, genus 

Varicellovirus, is ubiquitous to the equine population worldwide, with seroprevalence 

reaching up to 80% (Carvalho et al., 2000; Taouji et al., 2002). With 9.2 million horses in 

the United States and horse industry contribution of $39 billion in direct economic impact 

(Deloitte-Consulting, 2005), EHV-1 is responsible for economically detrimental diseases: 

epizootic respiratory diseases in race horses and clinically serious diseases such as abortion 

among mares at the late stage of gestation, perinatal mortality, as well as occasional 

outbreaks of disseminated necrotizing myeloencephalitis. Of particular importance to the 

management of EHV-1 infections, is the fact that these viruses establish latency, regardless 

of natural or vaccine-induced immunity, and can recur in times of immune suppression. 

Vaccination against EHV-1 reduces the severity of respiratory illness and occurrence of 

abortion, but it does not prevent spread to newborn foals, the latent infection or the 

neurological disease caused by the virus (Foote et al., 2004).  

Current EHV-1 Treatment 

EHV-1 infections are usually dealt with using management practices that limit 

spread of the disease, providing supportive symptomatic relief to infected horses, treating 

potential secondary bacterial infections with antibiotics. Because vasculitis, hemorrhage, 

and edema are prominent early lesions of EHV-1 myeloencephalopathy (EHM) and may 
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have an immune basis, controversial treatment with corticosteroids is often recommended 

(Friday et al., 2000). 

EHV-1 Antivirals 

 Multiple nucleoside analogue anti-viral agents show activity against EHV-1 in 

vitro and in laboratory animals (de la Fuente et al., 1992; Rollinson and White, 1983; 

Smith et al., 1983). Treatment of neurologic outbreaks with acyclovir (9-[2-

hydroxyethoxymethyl]guanine) (Schaeffer, 1982), a viral DNA replication inhibitor active 

against several human herpesviruses, has been attempted in horses with a few reports of 

reduced mortality in a study group of up to seven horses (Friday et al., 2000; Murray et al., 

1998).  There is a lack of statistically significant data on increase of survival. Patent 

restrictions have only recently been lifted from acyclovir and its use in treatment of EHV-1 

is on the rise. Although acyclovir is a remarkably low toxicity drug, in an already 

compromised equine patient with EHV-1 infection, nephrotoxicity, myelosuppression, 

gastrointestinal disturbances and fetotoxicity can occur. In addition to toxicity issues, 

resistance and cross-resistance is on the rise in human herpes patients. Acyclovir resistant 

strains of HSV-1 are becoming more common and account for growing fraction of new 

infections worldwide. Data describing the pharmacokinetics, bioavailability, and safety of 

acyclovir in horses, is limited. Dosing protocols to treat EHV-1 infections are currently 

based on extrapolation from well established dosage regiments used for treatment of 

human infections with HSV-1 and VZV.  

Rationale for Fusion Inhibitors 

There is a need for EHV-1 antivirals that are less toxic than acyclovir and target 

aspects of the herpes replicative cycle other than DNA replication. Therefore, development 
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of new class of antiviral agents that prevent entry of herpes into cells is a promising 

prospect for therapy. Characterizing the viral and host determinants that impact entry 

inhibition sensitivity will provide information that can be used to guide the clinical 

application. 

Hypothesis 

Herpes viruses infect cells by fusion of the viral envelope with the cellular 

membranes and can spread from cell to cell via fusion of adjacent cells, mediated by viral 

glycoproteins expressed on infected cell surfaces. While the majority of antiviral 

compounds in use today interfere with function of viral genome replication enzyme, 

several compounds have been described to interfere with virus infection at the stage of 

virus penetration into the cell. The desirable antiviral compounds for in vivo use will 

inhibit viral infectivity through interference with membrane fusion events critical to the 

virus lifecycle.  

The central hypothesis of the these investigations is that selected tetraporphyrin-

derived compounds can specifically inhibit membrane fusion phenomena required for virus 

entry and virus spread through specific interactions with one or more viral glycoproteins 

required for membrane fusion. 

Objectives 

The aim of the previous part of the study was to conduct screening tests to 

determine preliminary virucidal and cytotoxic effects of the commercially available and 

newly synthesized porphyrin compounds. A select group of compounds with virucidal 

properties was analyzed by definitive tests in order to measure the observed effects and 

identify potential antiviral substances. Further experiments were conducted to increase the 
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information base relative to the mechanism of antiviral and cytotoxic effects, specifically, 

to identify individual stages of virus lifecycle (attachment, virus to cell fusion, infectious 

virus production, and cell-to-cell spread), which are affected by selected antiviral 

compounds and to determine what specific viral and cellular components are affected by 

the compounds. 

Antiviral compounds were tested for their ability to interfere with EHV-1 infection 

of rabbit kidney and equine cell culture during the entry and post entry events of the viral 

life cycle in order to determine if antivirals act at the level of binding, penetration, or post-

entry. Specifically, selected porphyrin compounds were tested to determine whether they 

selectively inhibit glycoproteins-mediated membrane fusion events of virus entry and virus 

spread. 

Porphyrins: Overview, Antiviral Properties and Synthesis 

A number of attributes of porphyrins such as stability over the range of pH and 

ionic strengths, favorable pharmacokinetic properties, low toxicity and cost, render them 

attractive pharmaceutical candidates. Previous studies indicated that some porphyrins 

inhibit the interaction between the human immunodeficiency virus (HIV-1, HIV-2) 

envelope protein, gp120 and its receptors, by directly interacting with gp120 (Song et al., 

1997; Vzorov et al., 2002; Vzorov et al., 2003).   

 Synthetic porphyrins, namely the sulfonated derivatives of the 

tetraphenylporphyrin, have also been shown to be active against HSV-1, HSV-2, and pox 

virus (Vzorov et al., 2002; Vzorov et al., 2003). Sulfonamide (-SO2NH-) group occurs in 

numerous biologically active compounds, including antimicrobial drugs, saluretics, 

carbonic anhydrase inhibitors, insulin-releasing sulfonamides, antithyroid agents and a 
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number of other agents with biological activities (Chen-Collins et al., 2003; Remko and 

von der Lieth, 2004). 

 Iron containing porphyrins called hemes (Figure III-1, A) are the best known 

natural porphyrins found in hemoglobins, myoglobins, peroxidase, catalase, bilirubin, and 

cytochromes. Micromolar concentrations of synthetic metalloporphyrins have been shown 

to have in vitro activity against human immunodeficiency (HIV) and vaccinia viruses 

(Neurath et al., 1992). Both, natural and synthetic porphyrins exist without any central 

metal, in a “free base” form (Figure III-1, D), or as metaloporphyrins with various metal 

ions in the center (Figure III-1, B, C). While “free base” porphyrin derivatives are in daily 

clinical use as photodynamic agents for cancer, it is critical for virucidal porphyrins to be 

non-phototoxic and thus, non-cytotoxic. Introduction of a central metal compound 

abolishes photodynamic properties, potentially reducing cytotoxicity. Virucidal as well as 

antiviral activities can be attributed to either class of compounds.  

A screen of different porphyrins and other compounds presented in the previous 

chapter revealed that sulfonated metalloporphyrins, Cu (II) tetrasulfonated 

phenylporphyrin and Fe (III) tetrasulfonated phenylporphyrin, possessed strong virucidal 

and antiviral activities against as well as low cytotoxicity.  

Fusion Process 

 Herpes simplex virus entry into cells requires four glycoproteins, gB, gD, gH, and 

gL. Glycoprotein B forms a trimer (Heldwein et al., 2006) and gH establishes a 

noncovalent complex with gL (Cairns et al., 2005; Hutchinson et al., 1992; Peng et al., 

1998).  Virus-induced membrane fusion is subdivided into three sequential phases. During 

Phase I, two membranes are brought into close proximity through viral glycoprotein 
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binding of cellular receptors. In alphaherpesviruses, such as EHV-1, gC interacts with 

heparan sulfate glycosaminoglycans (HSGAG) (Osterrieder, 1999), gB interacts with 

HSGAG and paired immunoglobulin-like type 2 receptor (PILR) alpha (Roller et al., 

2008), and gD interacts with HveA and other receptors on cell surface (Spear et al., 2000). 

Glycoprotein D is the only interaction required for Phase I. Binding of gD to one of its 

receptors triggers conformational change that exposes the normally hidden receptor 

binding residues of gD. This results in transient interaction between gD and gH/gL, where 

gH/gL carries out Phase II hemifusion, followed by stable complex between gD and gB, 

where gB completes Phase III full fusion. Specifically, Phase II involves the initiation of 

lipid mixing between the two apposed membranes and is completed when the outer 

membrane leaflets are mixed to form an intermediate called hemifusion. Phase III begins 

when the inner membrane leaflets are mixed and continues the pore formation and 

expansion until completion of the fusion process (Atanasiu et al., 2007; Subramanian and 

Geraghty, 2007). Interestingly, Varicella Zoster Virus (VZV) fusion formation occurs upon 

expression of the gH/gL complex alone. In contrast, Pseudorabies Virus (PRV) requires 

expression of gH, gL and gB, while the Herpes Simplex Virus (HSV) types 1 and 2 require 

the quartet of gH, gL, gB and gD. EHV-1 core fusion complex is not defined, but 

suspected to parallel the HSV-1 model and include gH, gL, gB and gD.  

MATERIALS AND METHODS 

Cells  

 Rabbit kidney epithelial cells, RK13, were obtained from the American Type 

Culture Collection (ATCC CCL-37, Rockville, MD). Cells were maintained in Dulbecco 

modified Eagle’s minimum essential medium (DMEM) supplemented with 15 mM Hepes, 
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and 7% fetal bovine serum (FBS) and incubated at 37°C, 5% CO2.  Cell lines ED (Equine 

Dermal, ATCC CCL-57), EFTr (Equine Fetal Trachea Cells, primary cell line, field strain 

provided by Dr. Corstvet, LSU), Vero (African Green Monkey Kidney Cells, ATCC CCL-

81), and COS7 (African Green Monkey Kidney Cells , ATCC CRL-1651) were propagated 

in DMEM with 15 mM Hepes and 7% FBS.  

Viruses and Determination of Virus Titer 

 EHV-1 RacL11-∆gp2-GFP, NY-1, NY-2 and VA virus strains were kindly 

provided by Dr. Osterrieder (Cornell University School of Veterinary Medicine, Ithaca, 

NY). RacL11 encodes the F plasmid and an EGFP expression cassette under the human 

cytomegalovirus immediate early promoter (HCMV-IE) that was substituted for EHV-1 

non-essential gene 71 encoding glycoprotein gp2. Deletion of the gp2 glycoprotein does 

not appreciably affect virus entry and virus replication, while a slight reduction (5%) in 

plaque size is observed (Neubauer et al., 2002). The parental wild-type HSV-1 strain used 

in this study, HSV-1 (KOS), was originally obtained from Dr. Priscilla A. Schaffer 

(Harvard Medical School, Boston, MS). HSV-1 KOS-EGFP was provided by Dr. Prashant 

Desai (The John Hopkins University, Baltimore, MD). Virus stocks of EHV-1 and HSV-1 

were grown on RK-13 and Vero cells respectively. To determine the number of infectious 

virus particles, the virus stocks were subjected to 3 cycles of freezing and thawing to 

release virus from the cells or were sonicated. To infect the RK13 cells in triplicate wells, 

the virus suspension was diluted tenfold across wells of the 24-well plate, starting at 20 uL 

of virus stock and 180 uL of media. After 1 h of adsorption at 37°C in DMEM 

supplemented with 25 mM Hepes, methylcellulose overlay medium (DMEM containing 

1.5% methylcellulose and 2% FBS) was added to the infected cell monolayers. The plates 
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were incubated at 37°C for several days and then fixed with methanol. The cell monolayers 

were stained with 0.1% crystal violet, plaques were counted for each dilution, and the 

number of virus particles in the original virus stock estimated. 

Porphyrin Antiviral Compounds 

 According to the chemical nomenclature of porphyrin and porphyrin derivatives, 

compounds are designated as follows: meso-tetraphenylporphirine (TPP); 5,10,15,20-

tetrakisphenylporphyrin (H2TPP); and 5,10,15,20-(4-chlorosulfonylphenyl)porphyrin 

(H2TPPS4). An “S” at the end of the abbreviation indicates that the parent porphyrin was 

sulfonated and the derivatives are mixtures with variable numbers and/or positions of the 

sulfonates on the ring. Cu(II)-5,10,15,20-tetrakis(4-[p-sulfobenzyl]sulfoamidonylphenyl) 

porphyrin (Cu(II)TPPS4) is a sulfonated tetraphenylporphyrin with a copper 

moiety/chelate at the meso position, while Fe(III)-5,10,15,20-tetrakis(4-[p-sulfobenzyl] 

sulfoamidonylphenyl) porphyrin (Fe(III)TPPS4) is a sulfonated tetraphenylporphyrin with 

an iron moiety/chelate, and for simplicity, will be referred to in this paper as 

metalloporphyrins (Liébecq, 1992). Compounds were either commercially available 

(Kadish et al., 2003) or synthesized from compounds obtained from Sigma-Aldrich Corp. 

(St.Louis, MO) by the collaborating laboratory of Dr. Luidgi Marzilli (Chemistry 

Department, Louisiana State University, Baton Rouge, LA). Distilled water was used as 

solvent for each test chemical. Preparation of solutions and all experiments were done 

under red light to prevent chemicals degradation or phototoxicity upon exposure to light. 

All compounds were stored at 3-5°C in containers not permissive to light. ChemDraw Pro 

11.0 (CambridgeSoft Corporation, Cambridge, MA) program was used to present chemical 

structures of the compounds. 
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Determination of 50% Inhibitory Concentration of Antiviral Compounds 

 EHV-1 strain RacL11 at 2x10e5 PFU was incubated with indicated concentrations 

from 0 to 20 µg/ml of porphyrin in media for 20 min at 37°C, then was used to infect 

RK13 cells for 1 hour at 4°C, following which the media was replaced with fresh 

containing the same concentrations of antiviral compounds, and the infection was allowed 

to proceed at 37°C for 2 days. Virus titers were determined by endpoint titration of virus 

stocks on RK13 cells (Cassiani-Ingoni et al., 2005). The effect of porphyrins at various 

concentrations was determined as the ratio of virus surviving the treatment with 

metalloporphyrins to the untreated control. 

Neutral Red Uptake Cytotoxicity Assay 

 The procedure used to determine cell viability via spectrophotometric  assay was 

essentially as described by Ellen Berenfreund and James Borrero of Rockefeller University 

(Borenfreund and Puerner, 1985). Tissue culture grade Neutral Red (NR) dye was 

purchased from SIGMA (Cat. No. 289) in a liquid form at 3.3 mg/ml. Fresh stock solution 

and Neutral Red Medium was prepared within 30 minutes of each experiment. Cells were 

seeded in 96-well tissue culture plates. Antiviral compounds were serially diluted to eight 

different concentrations in the range from 2,500 mg/ml to 1 mg/ml, and added to overlay 

the 50% confluent cell monolayers. The treated cells were incubated under normal growth 

condition for 48 hours and then, stained with neutral red containing medium to access cell 

viability. The cells were subsequently washed, the dye was extracted in each well, and the 

absorbance was read using a spectrophotometer. The 50% cytotoxic concentration (CC50) 

was calculated.  
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Antiviral Effect on Kinetics of Infectious Virus Production 

 Analysis of one-step growth kinetics of total infectious virus was as described 

previously (Mettenleiter, 1989 ). Briefly, approximately 8 x 105 cells of the RK13 cell 

monolayers were infected with RacL11-∆gp2-GFP at MOI of 5 or MOI of 0.1. Virus 

adsorbed to cell surfaces at 4°C for 1 h. Thereafter, prewarmed media was added, and virus 

was allowed to penetrate the cells for 2 h at 37°C. Any remaining extracellular virus was 

inactivated by low-pH treatment (0.1 M glycine, pH 3.0). Cells were rinsed and overlaid 

with DMEM supplemented with 2% FBS with or without Cu(II) TPPS4 or Fe(III)TPPS4 

antivirals. Cells and supernatants were harvested immediately thereafter (4 h) or after 6-, 8-

, 10-, 12-, 20- or 32-hours post infection and frozen. The samples were then subjected to 3 

cycles of freezing and thawing to release virus from the cells and virus titers were 

determined by endpoint titration of virus stocks on RK13 cells. 

Antiviral Effect on Kinetics of Virus Entry 

 All antiviral compounds were tested for their ability to interfere with EHV-1 

infection during virus entry and infectious virus production. The RacL11-∆gp2-GFP virus 

was preincubated with or without each compound for 20 minutes at room temperature, and 

then, the treated virus stock was used to infect cells for 1 hour at 4°C to allow virus 

binding. Subsequently, infected cells were incubated for 2 hours at 37°C to allow virus 

penetration, washed with PBS, and overlaid with fresh DMEM with 25 mM Hepes. 

Alternatively, infected cells were exposed for 10 minutes to the antiviral compounds added 

at various times post-infection, as follows: 1) immediately following the 1 hr attachment at 

4°C; 2) at the time that the cells were transferred from 4°C to 37°C; and 3) after the 1 hr 

incubation at 37°C to determine the relative antiviral efficacy of each compound at the 
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binding, penetration, or post-entry lifecycle steps, respectively. The relative inhibition of 

viral infection was determined at 12 hour post infection, based on the percent reduction in 

the number of cells emitting fluorescence and thus infected, as determined either via FACS 

or direct cell counts. Alternatively, cells were inspected under fluorescent microscope at 48 

hours post infection. 

Evaluation of Antiviral Effect on Virus Spread 

 The antiviral effect on cell to cell spread and virus-induced cell fusion was 

determined via comparison of plaque size and the extend of multinucleation of EHV-1 

RAcL11 infected RK13 (rabbit kidney) cell monolayers treated with Cu(II)TPPS4 or Fe 

(III) TPPS4 or neither (Muggeridge, 2000; Turner et al., 1998). Virus was adsorbed to cell 

monolayers for 1 hour at 4°C. Thereafter, prewarmed media was added, and virus was 

allowed to penetrate the cells for 2 h at 37°C. Cells were then rinsed and overlaid with 

methylcellulose overlay medium (DMEM containing 1.5% methylcellulose and 2% FBS) 

containing the indicated amount of antiviral. At 72 hpi, the number of infected cells per 

viral plaque as well as the number of nuclei per polykaryocytes and frequency of their 

occurrence within the plaque were counted microscopically using Leica software in two 

independent assays. Polykaryocytes were defined as cells containing more than one 

nucleus. Average values and standard deviation were then calculated. 

Construction of Plasmids Expressing EHV-1 Glycoproteins 

 The glycoprotein genes amplified from the EHV-1 genomes were cloned in the 

pcDNA™3.1 vector (Cat. No. V795-20, Invitrogen Corporation, Carlsbad, CA), under the 

control of the Cytomegalovirus (CMV) early promoter, as detailed elsewhere. This vector 

is suitable for constitutive expression in mammalian cells.  
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Assay for Virus-Free Cell-to-Cell Fusion 

 Rabbit kidney (RK13) cells were seeded at approximately 8 × 105 cells per well in 

six-well culture dishes. Transfections were performed with SuperFect Transfection 

Reagent (Cat. No. 301305, Qiagen Inc., Valencia, CA) with 2 µg of each glycoprotein-

encoding plasmid. The amount of DNA was equalized by adding appropriate amounts of 

pcDNA™3.1 /V5-His-TOPO® vector (Cat. No. K4800-40, Invitrogen Corporation, 

Carlsbad, CA). DNA was mixed in 150 µl of MEM without serum, and 10 µl of SuperFect 

Transfection Reagent was added and mixed. After 10 min of incubation at room 

temperature, 830 µl of medium containing 10% fetal calf serum was added, and the 

transfection mixture was dispersed in duplicate wells onto the cell monolayer. Cells were 

incubated at 37°C for 4 hours when transfection mixture was replaced by medium with 

10% fetal calf serum. Cells were further incubated at 37°C for 9 to 24 hours as indicated, 

then fixed with 80% ethanol, incubated with a monoclonal antibody (MAb) directed 

against V5, and scored for syncytium formation. Nuclei in 100 polykaryocytes per assay 

were counted microscopically using Leica software in two independent assays. 

Polykaryocytes were defined as cells containing more than one nucleus. Average values 

and standard deviation were then calculated (Muggeridge, 2000),(Turner et al., 1998). 

Polyethylene Glycol Reversal Experiments 

 EHV-1 RAcL11 at an MOI of 1 was diluted in PBS with or without 100 µg/ml of 

heparin sodium salt or 5 µg/ml of porphyrin.  RK13, CHO-K1, EFTr cells were inoculated 

with virus suspension. Virus was adsorbed to cell monolayers for 1 h at 4°C and shifted to 

37°C for an additional hour. Viral inoculum was then removed and cells washed with PBS, 

citrate buffer (135 mM NaCl, 10 mM KCl, 40 mM citric acid [pH 3.0]), or  
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overlaid for 30-60 s with PEG50 (50% PEG 6000-8000 in MEM or PBS wt/vol) wt/wt. 

PEG50 was removed by consecutive addition of PBS to make a 1:2 and 1:4 dilution of 

PEG50 in a well. Cells not exposed to PEG were treated similarly in PBS without PEG. 

Wells were carefully washed three times in PBS or DMEM supplemented with 5% fetal 

calf serum, overlaid with methylcellulose medium or DMEM containing 8% FBS and 

incubated further for 2 days at 37°C. The cell monolayers were stained with 0.1% crystal 

violet and plaques were counted. To determine virus yields after PEG treatment, cells were 

incubated in DMEM and harvested at 10 h postinfection. 

Statistics 

 The results of the experiments were graphed and statistically analyzed using 

SigmaPlot (SYSTAT Software Inc., San Jose, CA) and other applicable software. 

RESULTS 

Chemical Structure 

Porphyrins are readily synthesized from pyrrole and aromatic aldehyde derivatives 

and can be modified into sulfonamide and metal complex derivatives by using the process 

of chlorosulfonation (Gonsalves et al., 1996). The basic compound is TPP, meso-

tetraphenylporphyrine (Figure III-1, D). A 5,10,15,20 (4’-sulfonphenyl) porphyrin or 

H2TPPS4 was obtained by chlorosulfonation of 5,10,15,20-tetrakisphenylporphyrin 

(H2TPP) to 5,10,15,20-(4-chrorosulfonylphenyl) porphyrin, which was then hydrolyzed to 

its water soluble by-product H2TPPS4 (L. Marzilli, LSU, Baton Rouge, LA, May 2004). In 

most cases, the product of the synthesis is a mixture of compounds, tetraphenyl porphyrin 

derivatives, containing variable numbers of sulfonates and/or positions of the sulfonates on 

the ring. Compounds are negatively charged and water soluble. EHV-1 inhibitors, Cu(II) 
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tetrasulfonated phenylporphyrin  and Fe(III) tetrasulfonated phenylporphyrin were 

synthesized via metallation of water-soluble porphyrin (Figure III-2) , H2TPPS4 with 

Cu(II) or Fe(II)  oxide (Figure III-1, B and C), dichloride and tetrachlorde. Fe(III) or Cu(II) 

chelates were inserted into H2TPPS4 by metallation process. H2TPPS4 heated with 

Fe(II)Cl2x4H2O in the presence of nitrogen for 30 min, then stirred in air, cooled and 

evaporated. Then dissolved in water and excess of iron removed (L. Marzilli, LSU, Baton 

Rouge, LA, May 2004). The molecular mass of Cu(II) tetrasulfonated phenylporphyrin is 

1134 g/mol and that of Fe(III) tetrasulfonated phenylporphyrin is 1126 g/mol, considering 

the chemical structures of C48H24O12 N4Na4S4Cu1 and C48H24O12 N4Na4S4Fe1 formula 

respectively. 

Concentration of Antiviral Required to Inhibit Virus Infection 

 Rabbit kidney (RK-13) cells were the cells of choice to conduct the experiments, 

since these cells are primarily used to study the equine herpesviruses and are the 

recommended cell type in laboratory diagnosis of field infections by virus neutralization 

assays. The virus was subjected to the porphyrins in solution prior to infection and 

throughout the infectious life-cycle, at 0 to 20 µg/ml concentration of porphyrin in media 

(Figure III-3). The effect was cumulative including that contribution from antiviral effect 

on free virus as well as attachment, fusion and post entry events of the virus life cycle. 

 Once virus had attached to the cell surfaces, the cells were thoroughly rinsed to 

remove virus that may have remained unattached. The media was then replaced with fresh 

media containing the respective concentrations of the antiviral compounds and the 

infection was allowed to proceed. The effect of porphyrins at various concentrations was 

determined as the ratio of the virus surviving the treatment with porphyrins to the untreated  
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Figure III-1. Chemical structures of common porphyrin, heme[Fe(II) 
protoporphyrin-IX complex] (A), and tetrasulfonated phenyl metaloporphyrins used 
in this study, Fe (III)TPPS4 (B), Cu(II)TPPS4 (C), and H2TPPS4 (D). Porphyrins have 
aromatic groups at the meso position. H2TPPS4 has hydrogen substituents on the pyrrole 
rings, while the central nitrogens have NH. Cu(II) tetrasulfonated phenylporphyrin 
(Cu(II)TPPS4)  and Fe(III) tetrasulfonated phenylporphyrin (Fe(III)TPPS4) were 
synthesized via metallation of water-soluble porphyrin, H2TPPS4, with Cu(II) or Fe(II)  
oxide. 
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Figure III-2. Metallation of H2TPPS4 Porphyrin. The chemical reaction of addition of 
metal ( M = Cu or Fe) to the meso position of the water-soluble tetraporphyrin. 

 

control infection. Metalloporphyrins, Cu(II)TPPS4 and Fe(PPP)TPPS4, inactivated all 

virus particles at the concentrations as low as 10 μg/ml. 

 At metalloporphyrin concentrations of around 2.5 μg/ml or less, virus survival was 

reduced only by 15 % or less. At concentration of 2.5 - 5 μg/ml the virus survival had 

dramatically decreased. Both metalloporphyrins followed a similar porphyrin 

concentration to virus survival curve, although they contain different metals at their meso 

position. The parental compound, TPPS4 had minimal effect on the virus at concentrations 

up to 7.5 μg/ml, while virus survival dropped linearly from 100 % to 30%, when the 

concentration was raised to 20 μg/ml. Addition of the metal at the meso position has 

significantly increased antiviral function of sulfonated tetraporphyrin compound on virus 

infection, irrespective of the metal compound added. Based on the result of these 

experiments, most of the subsequent studies were conducted at minimum effective dose of 

20 μg/ml. At 20 μg/ml the molar concentration of each compound is around 18 μM. By 

comparison at 20 g/ml of acyclovir the molar concentration of acyclovir is 80 μM, while 

2 g/ml is 8 μM. 
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Figure III-3. Inhibitory concentration of antiviral compounds on virus infection. 
2x10e5 PFU of EHV-1 strain RacL11 was incubated with indicated concentrations of 
compounds for 20 min at 37°C, then used to infect RK13 cells for 1 hour at RT, following 
which the media was replaced with fresh containing the same compound concentrations, 
and the infection was allowed to proceed at 37°C for 2 days, when plaques were counted. 
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Cytotoxic Effects of the Antiviral Compounds 

 To establish that the compounds have antiviral activity at the concentrations that 

can be achieved without inducing toxic effects to the cells, cytotoxic effects of the 

compounds as well as cell viability and proliferation were evaluated by using Neutral red 

uptake assay. The results were then confirmed by trypan blue dye exclusion cell viability 

assay and propidium iodide apoptosis assay. Neutral red uptake assay is based on the 

ability of viable cells to incorporate and bind the supravital dye, neutral red. Neutral red is 

a weak cationic dye that readily penetrates cell membranes by non-ionic diffusion and 

accumulates intracellularly in lysosomes/endosomes. Microtitration plate cultures were 

exposed to range of drug concentrations during the log phase of growth and viability was 

determined. Alterations of the cell surface or the lysosomal membrane due to the toxic 

effects of porphyrins would lead to lysosomal fragility, decreasing uptake and binding of 

neutral red dye. Spectrophotometry was used to quantitate the amount of neutral red 

uptake. 

  The assay was used to determine cytotoxic concentration of the compound that 

reduced cell viability to 50% and 100%, CC50 and CC100, respectively. Inhibitory 

concentration 50, IC50, is the concentration of a compound required to inhibit the effect of 

the virus in vitro by 50% of the control value. The relative effectiveness of the compound 

to inhibit viral infection compared to inducing cell death is defined as the therapeutic index 

(USDHHS, 2005).  Therapeutic index, TI, is CC50/IC50 or the ratio of the amount of the 

compound that causes toxic effects to the amounts needed for therapy. A narrow 

therapeutic range and thus smaller TI is less desirable, since even a small increase in the 

amount of drug may lead to toxicity.  
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 Metallopophyrins reached cytotoxic dose lethal to all the cells at 1.25 mg/ml and 

median cytotoxic concentration of 0.6 mg/ml and 0.45 mg/ml for Fe(III)TPPS4 and 

Cu(II)TPPS4 respectively. Inhibitory concentrations of the compounds were obtained from 

three sets of independent experiments such as shown in Figure III-3. Metalloporphyrins 

reached 50% inhibitory concentration at around 3-3.5 µg/ml, while their parental strain 

reached IC50 at the 4-fold higher concentration. Therapeutic indexes (TI) were computed 

as the ratio between CC50 and IC50 (Table III-1). Iron metalloporphyrin had a higher two-

fold higher TI than its copper counterpart. The parental strain had extremely narrow 

therapeutic range, as expected due to it phototoxic properties in the absence of the central 

metal. Compounds with higher TI are better candidates as antiviral medication, due to 

safety considerations. By comparison, the EC50 of acyclovir against HSV-1 virus infection 

of MDBK cells was reported as 2.88 µg/ml and CC50 of 9.12x10e, resulting in a TI of 

3.16x10e4 and one of the safest medications available (Bean, 1992; Clercq, 1995; Wiltink 

and Janknegt, 1991). 

Table III-1. Quantitation of cytotoxic concentrations and therapeutic indexes of 
antiviral compounds. Cytotoxicity is expressed as concentration-dependent reduction 
of the uptake of the Neutral Red dye evaluating both cell integrity and growth 
inhibition. 

Chemical denomination  CC100 
μg/ml  

CC50 
μg/ml  

IC50 
 μg/ml  

TI 
Fe (III) tetrasulfonated phenylporphyrin  ~1250  ~600  3.0  200 
Cu (II) tetrasulfonated phenylporphyrin  ~1250  ~450  3.5  118 
Tetraphenoxyphenyl sulfonate porphyrin  ~625  ~50  13  4 
 

Antiviral Effects of Porphyrins: Reduction of Infectious Virus 
Production 

 RK13 cell monolayers were infected with RacL11-∆gp2-GFP at MOI of 5 (Figure 

III-4) or MOI of 0.1 (Figure III-5). Three hours into infection, once the virus has attached 
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and entered the cell initiating replication, porphyrin compounds were added to the media 

overlaying the cell. One hour later and at specified intervals thereafter, supernatants of 

infected cells and the infected cells were collected and total infectious virus yield 

determined by plaque assay. 

The exponential phase of the virus growth from 4 to 20 hours post adsorption, was 

graphed on a logarithmic versus linear scale, and therefore, follows a linear pattern. The 

relative growth rate (RGR) in the presence of either compounds or in their absence 

remained the same, as indicated by similarity of slope (dy/dx) of all three functions.  

Decreasing growth rate after 20 hours post adsorption is evident by the leveling of the 

slope over time. 

The kinetics of virus growth is depicted as virus titers determined as the sum of the 

extracellular free virus in the supernatants and the intracellular infectious virus. The 

 

Figure III-4. Inhibitory effects of metalloporphyrins on virus replication at high 
MOI. Monolayers of RK13 cells were infected with EHV-1 RacL11 at an MOI of 5. At 4 
hours post infection the cells were treated with antivirals. At indicated times post infection, 
cells and supernatant were harvested, and the total infectious virus production was 
measured by plaque assay. Viral titers as mean PFU/ml at each time point are shown in a 
logarithmic vs. linear scale. The error bars represent the average of three independent 
experiments. 
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intracellular and extracellular titers of EHV-1 are generally about equal at each time point 

(Schimmer and Neubauer, 2003). The viral titers of treated versus untreated virus were 

decreased by approximately two logs throughout infection. For example, at 12 hpi, the 

untreated virus titer was 3x10e6 PFU/ml, while porphyrin treated virus titer was 1x10e4 

PFU/ml. Such large difference in virus yield cannot be explained by the porphyrin 

inactivation of the extracellular fraction alone. From previous experiments (Figure III-3), it 

is expected that the extracellular fraction of the treated viruses is not infectious, since free 

virus is easily inactivated by the porphyrins at this concentration. However, to definitively 

prove porphyrin effect on intracellular fraction of infectious virus, the experiment should 

be conducted with virus titers determined for intracellular and extracellular fraction 

individually.  

 

Figure III-5. Inhibitory effects on virus replication as shown by reduction at low 
MOI. Monolayers of RK13 cells were infected with EHV-1 RacL11 at an MOI of 0.1. At 
4 hours post infection the cells were treated with antivirals. At indicated times post 
infection, cells and supernatant were harvested, and the total infectious virus measured by 
plaque assay. Viral titers as mean PFU/ml at each time point are shown in a logarithmic vs. 
linear scale. The error bars represent the average of three independent experiments. 



159 

 

 

 

Figure III-6. Antiviral effects at 48 hpi on RK13 cells infection with RacL11 virus at 
MOI 5i. A). Cells were pretreated with compound for at 37°C 1 hour before infection. B). 
Untreated cells. C).Virus pretreated with compound for 1 hr at 4°C before infection. D). 
Cells were infected in the presence of the compound for 1 hour at 4°C to allow virus to 
attach. E). Following 1hr at 4°C, infected cells were overlaid with antiviral media and 
incubated for 1hr at 4°C. F). Following 1hr at 4°C, infected cells were overlaid with 
antiviral media and incubated for 1hr at 37°C. G). Antiviral compounds were added at 2 
hpi following 1 hr at 4°C and 1 hr at 37°C. H). Acyclovir treatment. 



160 

 

Qualitative Assessment of Antiviral Effect during Early Stages of Viral 
Infection at MOI 5 

Infected cells were exposed for 10 minutes to the antiviral compounds added at 

various times post-infection, immediately following attachment, once attached, as well as 

during and post fusion to determine the relative antiviral efficacy of each compound at the 

binding, penetration, or post-entry infectious life cycle (Figure III-6). The RK13 cells were 

subjected to the Cu(II)TPPS4 or Fe(III)TPPS4 antivirals in the media for 1 hour, and then, 

washed thoroughly to remove any residual extracellular antiviral and infected with EHV-1 

RacL11 at MOI of 5 (Figure III-6). The pre-treatment of cells with antivirals had no 

detectable effect on virus infection at 48 hours post infection as was evident by no change 

in the amount of green fluorescence of pre-treated and untreated infected cells (Figure III-

6, A and B). Treating the cells for longer time and with higher concentration of 

metalloporphyrin prior to infection did not yield any detectable inhibition of virus 

infection. Mixing the virus and antiviral and either incubating the solution for 1 hour or 

using it to immediately infect the cells lead to no infection (Figure III-6, C and D). When 

the antiviral containing media was used to overlay the infected cells once the virus was 

allowed to attach to the cellular envelope for 1 hour at 4°C, a temperature not permissive 

for viral fusion events, there was no effect detected on viral infection at an MOI of 5. 

(Figure III-6, E). Metallated tetraporphyrins Cu(II)TPPS4 and Fe(III)TPPS4 at 20 µg/ml 

concentration prevented attachment of the EHV-1 RacL11 at MOI of 5 to the RK13 cells 

monolayers, but once the virus had attached the compounds had no effect on the virus. 

To further evaluate the effect of metallated tetraporphyrins on virus entry events, 

the compounds were added to the virus infected cells when the virus had already attached 

to the cells and the fusion events of the virus and cellular envelopes were just initiated by 
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raising the temperature to 37°C. About 25% decrease in the number of infected cells was 

observed at 48 hours post infection (Figure III-6, F). If the antivirals were added post 

fusion events, no effect on the virus infection was detected at an MOI of 5 (Figure III-6, 

G). Acyclovir at 2 μg/ml was used as control antiviral to show its effect of significant 

inhibition of virus infection at post-entry events of virus life cycle (Figure III-6, H).   An 

acyclovir concentration of 2 μg/mL was selected based on reports of the in vitro 

susceptibility of HSV-1 and several EHV-1 isolates to this concentration, a breakpoint 

concentration defining in vitro susceptibility of the virus to acyclovir. Virus isolates are 

defined as sensitive to acyclovir in vitro at IC50 of <2 μg/mL and resistant to acyclovir if 

their IC50 is ≥ 2 μg/mL (Bacon et al., 2003; Safrin et al., 1994). 

Quantitative Assessment of Antiviral Effect during Early Stages of Viral 
Infection 

 The above experiment was repeated for MOI of 5, 1, 0.1 and 0.01. Virus or cells 

alone or the virus-infected cells during early events of virus infection were subjected to 

antiviral treatment (Figure III-7 A and B). The amount of surviving virus was measured by 

counting the number of infected cells as percent of untreated control using Fluorescent-

Activated Cell Sorting (FACS). Pretreating the cells with either antiviral had no significant 

effect on virus at all MOIs. Treating the virus for 1 hour or infecting the cells in the 

presence of either compound inhibited the infection by 100%. Exposing the virus-infected 

cells to either antiviral, once the virus has attached to cell surfaces, but prior to the onset of 

fusion events or post completion of fusion events had decreased the viral survival from 

100% to about 40% as MOI decreased from 5 to 0.01. Exposing the virus-infected cells to 

either antiviral during the fusion of the virus particle with cellular membrane decreased the 

virus survival by about 20% at an MOI of 5, and by 75% at MOI of 0.01, 0.1 and 1. 
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Antiviral Effect on Viral Cell-to-Cell Spread and Syncytium Formation 

 Although the entry of direct binding of free virions to target cells followed by 

fusion, entry and replication is an important initial route of infection, most pathogenic 

viruses prefer to move between cells without diffusion through the extracellular 

environment, but via cell-to-cell spread. EHV-1 RacL11 virus, being no exception, has 

natural propensity to mediate syncytium formation. To evaluate the effect of antiviral 

compounds on cell-to-cell spread and syncytium formation, RK-13 cells were infected 

with GFP- expressing virus, EHV-1 RacL11 and subjected to the antiviral treatment from 3 

to 72 hours post infection. Presence of metalloporphyrins decreased the average number of 

infected cells per virus plaque from 50 to 30 cells/plaque (Figure III-8, D). The distribution 

of the number of nuclei per syncytia (polykaryocyte) followed a bell-curve shape with the 

majority of polykaryocytes within one standard deviation from the mean. The average 

number of nuclei per polykaryocyte for Cu(II)TPPS4 was 3.6±1.9.  The average number of 

nuclei per polykaryocyte for Fe(III)TPPS4 was 1.2±0.8.  The number of nuclei per 

polykaryocyte of untreated virus was 6±1.3. The size of polykaryocytes decreased by 75% 

when treated with Fe(III)TPPS4 and by 40% when treated with Cu(II)TPPS4 as compared 

to that of untreated virus infection. Therefore, exposure of the viral infection to 

metalloporphyrins had reduced the plaque size by 40% and reduced the extent of cell-to-

cell fusion by 40-75%. 

PEG-mediated Fusion of Antiviral Compound Treated EHV-1 

 Polyethylene glycol (PEG) is a membrane-fusing reagent that is used to restore 

infectivity of the virus blocked at entry by binding of neutralizing compounds to its 

envelope. PEG-mediated fusion experiments were conducted to evaluate whether the 
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Figure III-7. Time of addition experiment. A) Cu(III)TPPS4. B) Fe(II)TTPS4. 
Quantitation of antiviral effects on free virus as well as attachment, fusion and post entry 
events of the virus life cycle. 
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Figure III-8. Inhibition of Virus Spread. Antiviral effect of porphyrin on plaque 
formation of GFP-expressing virus, EHV-1 RAcL11 on RK13 (rabbit kidney) cell 
monolayers 72 hpi: untreated (A) and treated with 15 µg/ml Cu(II)TPPS4 (B) or Fe (III) 
TPPS4 (C), and corresponding, reduction of plaque size (D) and the extend of cell to cell 
fusion (E). 

 

Figure III-9. Polyethylene glycol induced fusion of antiviral compound treated EHV-1 
RacL11/EGFP. Virus survival is presented as percent of control. 
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porphyrin renders virus particle permanently non-infectious, even if required entry step of 

fusion is bypassed by PEG (Figure III-9). The titers of infectious virus were only 

marginally increased, indicating that the antiviral permanently disabled the virus particle. 

Virus-Free Cell Fusion System 

 To further evaluate the effect of antivirals on fusion during cell-to-cell spread, a 

virus-free cell fusion system was used. Four envelope glycoproteins of the herpesviruses, 

gB, gD, and gH/gL complex have been shown capable of inducing cell-to-cell fusion in the 

absence of any other viral components, when they are expressed from the plasmid vectors 

transfected into the cells (Browne et al., 2001). Glycoproteins were amplified from the 

EHV-1 and HSV-1 genomes and cloned into the pcDNA™3.1 vector under the control of 

CMV early promoter, so they can be easily expressed in the mammalian cells to high 

levels. Co-transfection of these glycoproteins results in syncytia formation in the absence 

of active virus infection. The expression of all four glycoproteins together on the same 

cellular membrane is required to induce syncytium formation. COS7 cells were used for 

the assay, since they can be transfected with much higher efficiency, then RK13 cells. 

Expression of HSV-1 gB, gH/gL, and gD resulted in formation of polykaryocytes of about 

3 to 20 nuclei each (Figure III-11, A-C). Significant reduction of fusion was observed if 

the transfected cells were exposed to Cu(II)TPPS4 (Figure III-11, D-F) or Fe(TPPS4) at 75 

µg/ml at 6 hours post transfection. Metallo-porphyrin treated cells formed polykaryocytes 

of about 2 to 6 nuclei/cell. The virus-free cell fusion experiment was repeated for EHV-1, a 

less established system then HSV-1. In the absence of antiviral, the fusion observed was 

about 3 to 15 nuclei/cell (Figure III-12, A-B), while post Cu(II)TPPS4 treatment, the 

amount of cell-to-cell fusion has reduced to 2 to 4 nuclei/cell (Figure III-12, C-D). 
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Figure III-10. Diagram of the viral envelope glycoproteins and their corresponding 
cellular envelope receptors. 
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Figure III-11. Virus-free cell fusion system. COS7 were cells co-transfected with HSV-1 
gB1511, gH/gL, and gD-V5. At 6 hours post transfection, cells were either mock treated 
(A-C) or treated with 75 µg/ml of Cu(II)TPPS4 ( D-E). The cells were than stain with V5 
antibody for visualization of syncytia formation (65X magnification). 

 

 

Figure III-12. Virus-free cell fusion system. COS7 cells co-transfected with EHV-1 gB-
V5, gH-V5, gL-V5, and gD-V5. A-B). No antiviral added. C-D). Antiviral (Cu(II)TPPS4) 
added at 6 hours post transfection at 75 µg/ml (65X magnification). 
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DISCUSSION 

Chemical Structure and Function 

 Two synthetic compounds were selected for detailed studies based of their virucidal 

and antiviral properties against EHV-1 as well as their low cytotoxicity in cell culture 

assays. These compounds, Cu(II)TPPS4 and Fe(III) TPPS4, were derived by insertion of 

Cu(II) or Fe(III) into 5,10,15,20 –tetrakis(4’-sulfophenyl) porphyrin (H2TPPS4) 

respectively. H2TPPS4 is a sulfonated derivative of tetraphenylporphyrin and has been 

shown to be active against HIV-1, HSV-1 and HSV-2 (Vzorov et al., 2002).  Modification 

of porphyrins to extend their chemical structure by sulfonation resulted in improvement of 

antiviral properties. Metalloporphyrins, Cu(II)TPPS4 and Fe(III)TPPS4, inactivated all 

free virus particles at the concentrations as low as 10 μg/ml. Addition of the metal at the 

meso position significantly increased antiviral function of sulfonated tetraporphyrin 

compound on virus infection, irrespective of the metal compound added. The addition of 

metal, copper or iron chelate also resulted in significant decrease of cytotoxicity due to 

elimination of photodynamic properties. The parental compound, H2TPPS4, had extremely 

narrow therapeutic range, as expected due to it phototoxic properties. Metalloporphyrins 

had sufficiently safe therapeutic index, with iron metalloporphyrin reaching a two-fold 

higher therapeutic index then its copper counterpart. 

 Current legislation demands that new drugs go through extensive toxicity testing 

before they are released starting with cytotoxicity testing in vitro. Cytotoxicity is a 

complex event in vivo, with a wide spectrum of effects, from simple cell death to subtle 

functional change of the cell leading to complex metabolic aberrations. To prove absence 

of toxicity would require not only to show cell viability and minimal changes in its growth 
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and phenotype, but also a subtle analysis of minor metabolic changes or alterations in cell 

to cell signaling, that are beyond the scope of this study. The assay used in this study was 

chosen as it is a baseline in modern drug testing, providing sufficient information to 

estimate potential therapeutic range of the compounds. 

Antiviral Effect of Metalloporphyrins: Reduction of Infectious Virus 
Production 

  Antiviral compounds did not affect the relative growth rate of the virus, but 

decreased the production of infectious virus progeny on RK13 cells dramatically, by two 

logs throughout infection. In our experiments, the antiviral effect on the sum of the 

extracellular free virus in the supernatants and the intracellular infectious virus was 

evaluated. Such large difference in virus yield cannot be explained by the metalloporphyrin 

inactivation of the extracellular free virus alone, because the intracellular and extracellular 

titers of EHV-1 are generally about equal at each time point (Schimmer and Neubauer, 

2003), therefore two-times and not two-log difference would have been seen. Thus, the 

degree of porphyrin effect on virus infection would depend on ability, quantity and kinetics 

of porphyrin diffusion across cellular membranes. While, the parental compound, 

H2TPPS4, is known to enter the cells, further experiments would be needed to show if 

there is cytoplasmic localization of metalloporphyrins and the effect of metalloporphyrins 

on intracellular infectious virus alone. 

Antiviral Effect of Metalloporphyrins: Inhibition of Early Stages of Viral 
Infection 

EHV-1 entry into the cells is a carefully orchestrated process of recognition of 

cellular receptors, triggering of fusion, fusion, and release of capsid into the cytoplasm. 

Pretreating cells with antivirals prior to infection had no effect on infection. Therefore, it is 
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likely that metalloporphyrins do not interact with the cell membrane or receptors directly, 

and remain extracellular, and thus, were unable to interfere with infection once removed by 

washing the cells. Since the parental compound is able to localize inside the cell, a small 

amount of metalloporphyrins is expected to enter the cell, but the antiviral concentration 

intracellularly may be too low or metalloporphyrin binding sites quickly saturated to have 

any detectable antiviral effect on virus infection. Alteration of cellular membrane by virus 

infection may render cell envelope more permissive to metalloporphyrins explaining the 

inhibitory effect on intracellular virus fraction seen as drastic decrease in virus production 

in the presence of metalloporphyrins. 

Metallated tetraporphyrins interfere with ability of the virus to attach to the cell 

surface, either by directly binding to the free virus but not the cell, or by interfering with 

virus attachment to the cellular membranes in other ways. Since metalloporphyrins do not 

interact with cellular envelope as shown by no effect on infection by pretreating cells with 

antivirals, they most likely interact with the proteins embedded in the viral envelope and 

not with a viral envelope itself, which is derived from a cellular membrane. 

Virus that attached to the cellular membranes but did not undergo fusion is also 

susceptible to the antivirals, but to a limited degree. The fusion of the viral envelope and 

cellular membrane during virus entry is significantly affected by the metalloporphyrins. 

The antiviral effect on viral replication events post fusion is evident, but also limited. At all 

stages of the virus life cycle, higher amount of virus used for infection resulted in more 

virus survival. Thus, more porphyrin compounds were available to interact with fewer 

virus particles, indicating a saturation effect on the virus-porphyrin interaction. Complete 
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inhibition of the virus at each stage of virus entry may be potentially reached if the 

porphyrin to virus ratio is increased further. 

PEG experiments suggest that interaction with porphyrin renders the virus particle 

permanently non-infectious, even if required entry step of virus-induced fusion is bypassed 

by PEG-induced fusion. The study in which the virus is subjected to the antivirals, and 

then, purified by ultracentrifugation and used for infection would help to show if the virus 

is infectious once antivirals are washed off or does the porphyrin permanently disables the 

virus by direct binding. To conduct this experiment we would need to determine if the 

porphyrin is still present in association with the virus post purification by ultracentrifu-

gation. However, there is no suitable detection method for metalloporphyrins, short of 

mass spectrometry and other analytical techniques. 

Antiviral Effect of Metalloporphyrins: Reduction of Cell-to-Cell Spread 
and Syncytia Formation 

 Metalloporphyrins exhibited inhibitory effects on virus spread, reducing the plaque 

size and the extent of cell-to-cell fusion. It is highly unlikely that inhibition of viral 

replication could account for the mechanism(s) by which compounds achieved almost five-

fold inhibition of spread in RK13 cells. Acyclovir by comparison, reduces replication, but 

has no effect on the spread of the virus via either virus-to-cell fusion or cell-to-cell fusion. 

EHV-1 expresses a number of membrane glycoproteins that function in both entry of virus 

particles and movement of virus from an infected cell to an uninfected cell or cell-to-cell 

spread.  

 Multiple, viral proteins are involved in cell-to-cell spread and syncytia formation, 

such as gH/gL, gB, gK,UL20, UL11, and gE/gI (Cheshenko and Herold, 2002; Foster et 

al., 2008; Navarro et al., 1992; Schimmer and Neubauer, 2003). While, gB, gD, gH/gL are 
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required for virus-to-cell fusion during entry, complex of gE/gI is required for efficient 

cell-to-cell spread, yet not required for entry fusion events (Polcicova et al., 2005).  

Antiviral Effect of Metalloporphyrins: Interaction with Viral 
Glycoproteins 

 The cell-to-cell and the virus-to-cell fusion require direct protein–protein 

interactions among gD, gB, and gH/gL. Both metalloporphyrins decreased the syncytium 

formation in a virus-free cell fusion system, indicating that the porphyrins have direct 

effect on at least one of the four glycoproteins. Glycoprotein B mediates attachment and is 

required for virus entry, cell-to-cell spread and syncytia formation and is the primary 

candidate for direct inhibition by metalloporphyrins (Cassiani-Ingoni et al., 2005). 

Cytoplasmic domain of gB is a potential target for interaction with metalloporphyrins, 

based on its known function in cell-to-cell spread (Cassiani-Ingoni et al., 2005). 

SUMMARY 

The continuous circulation of EHV-1 in equine populations despite regular 

vaccinations and apparent ineffectiveness of currently available vaccines in preventing or 

ameliorating neurological manifestations of EHV-1 infections as well as limitations of 

EHM treatment options, necessitates the discovery of new antiviral drugs that can 

effectively manage this important infection of horses.  

Glycoprotein conformational changes and interactions induce structural alterations 

in the membrane that leads to membrane fusion. Tetraporphyrins block these early phases 

of viral infection, exerting maximal effect when the virus is exposed to the antiviral at the 

time of initial infection or at any time through the end of the attachment and fusion 

processes. Tetraporphyrins also considerably curtail the spread of the virus via virus-to-cell 

and cell-to-cell fusion.  Our results suggest that tetraporphyrins may be used as effective 
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virucidal and antiviral agents to prevent and to treat disseminated disease and neurological 

outcomes of EHV-1.  

Future work should focus on further delineating the mechanism of antiviral and 

virucidal effects of these compounds, their cellular distribution, in depth toxicity studies, 

and their effect against in vivo EHV-1 infections of mice, specifically, the efficacy of these 

drugs to prevent acute viral infections in respiratory and myeloencephalopathy EHV-1 

mouse models.  
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CHAPTER IV. CONCLUDING REMARKS 

FINAL COMMENTS 

EHV-1 antiviral properties and their pharmacological characteristics make 

porphyrins auspicious candidates for the treatment of EHV-1 infections. Porphyrin 

compounds were shown to specifically inhibit free virus particles as well as membrane 

fusion phenomena required for virus entry and virus spread, and the antiviral activity was 

enhanced by modification of the chemical structure of the porphyrin compounds via 

primary sulfonation and metallation. An initial screening of almost 100 porphyrin and 

platinum compounds as well as a detailed screening of 18 different compounds revealed 

that Cu (II) tetrasulfonated phenylporphyrin and Fe (III) tetrasulfonated phenylporphyrin 

possessed strong virucidal and antiviral activities against EHV-1. These compounds, 

Cu(II)TPPS4 and Fe(III)TPPS4, were derived by insertion of Cu(II) or Fe(III) into 

5,10,15,20 –tetrakis(4’-sulfophenyl) porphyrin (H2TPPS4) respectively. 

The selected two compounds were used to synthesize new compounds of extended 

chemical structure. Additional sulfonation of compounds did not lead to improvement in 

their antiviral properties against free virus nor virus attached to cell surfaces. Addition of 

fluoride or naphthalene groups, also did not improve antiviral properties.  

Glycoprotein conformational changes and interactions induce structural alterations 

in the cellular membrane that leads to membrane fusion. Antivirals block the early phases 

of viral infection, exerting maximal effect when the virus is exposed to the antiviral at the 

time of initial infection or at any time at the end of the attachment and throughout fusion 

processes. Polyethylene glycol experiments suggest that interaction with porphyrin renders 

virus particles permanently non-infectious. Cu(II)TPPS4 and Fe(III)TPPS4 antiviral 
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compounds did not affect the relative growth rate of the virus, but decreased the production 

of infectious virus progeny on RK13 cells dramatically, by two logs throughout infection, 

most likely by direct inactivation of infectious virus progeny. Thus, the degree of 

porphyrin effect on virus infection at the stages post entry would depend on ability, 

quantity and kinetics of porphyrin diffusion across cellular membranes. 

  The cell-to-cell and the virus-to-cell fusion require direct protein–protein 

interactions among gD, gB, and gH/gL. Both metalloporphyrins decreased the syncytium 

formation during virus infection and in virus-free cell fusion system, indicating that the 

porphyrins have direct effect on at least one of the four glycoproteins. Cytoplasmic domain 

of gB is a potential target for interaction with metalloporphyrins, based on its known 

function in cell-to-cell spread.  

CURRENT AND FUTURE RESEARCH CHALLENGES 

 A number of experiments can be performed to add further detail to our 

understanding of EHV-1 infection and its inhibition by metalloporphyrin compounds. 

Purifying the antiviral treated virus and quantifying infectious particles remaining, would 

determine if the effect of the porphyrins on the virus particle is a permanent inactivation or 

not. Adsorption of 35S-labeled HSV-1 and detection of bound virus by liquid scintillation 

radioisotope counting could be considered for precise quantitation of virus able to bind to 

the cells following antiviral treatment in the presence of varied antiviral concentrations. 

Further experiments would be needed to show if there is cytoplasmic localization of 

metalloporphyrins and to estimate the effect of metalloporphyrins on intracellular 

infectious virus alone. Surface Plasmon Resonance (SPR) using a Biacore 2000 instrument 

can be considered to study the interaction between the antiviral and virus particles. SPR 
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aids the study interactions between a wide range of molecules including proteins, 

nucleotides, pharmaceuticals, and surface active agents. In order to limit the spread of the 

infection in vivo, a consideration should be made at what dose of medication the horse is to 

be treated, the treatment regiment, achievable blood concentration and the cost of the 

compound administration, as well as potential side-effects such as hypersensitivity. 
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APPENDIX: EHV-1, EHV-4, HSV-1, AND HSV-3 GENE 
NOMENCLATURE 

EHV-1 
ORF 

EHV-
4 

HSV-1 VZV Function Product 

1 1 UL56  possibly vesicular trafficking type 2 membrane protein, UL56 
family 

2 2   unknown type 2 membrane protein, 
membrane protein V1 

3 3   unknown potentially envelope-associated, 
myristylated tegument protein 
CIRC 

4 4 UL55  unknown nuclear protein UL55 
5 5 UL54 4 RNA metabolism and transport, 

RNA-binding protein, shuttles 
between nucleus and cytoplasm, 
inhibits pre-mRNA splicing, 
exports virus mRNA from nucleus, 
exerts most effects post-
transcriptionally 

expression regulator 

6 6 UL53 5 virion morphogenesis, membrane 
fusion 

envelope glycoprotein K, type 3 
membrane protein, contains a 
signal peptide, 4 
transmembrane domains 

7 7 UL52 6 DNA replication helicase-primase primase 
subunit 

8 8 UL51 7 virion morphogenesis tegument protein UL51 
9 9 UL50 8 nucleotide metabolism deoxyuridine triphosphatase 

10 10 UL49A 9A virion morphogenesis, membrane 
fusion 

type 1 membrane protein, 
contains a signal peptide, 
complexed with envelope 
glycoprotein M 

11 11 UL49 9 virion morphogenesis, possibly 
RNA transport to uninfected cells 

tegument protein VP22 

12 12 UL48 10  regulation, virion morphogenesis, 
transactivates immediate early 
genes 

transactivating tegument protein 
VP16 

13 13 UL47 11 possibly regulation, modulates 
transactivating tegument protein 
VP16, RNA-binding protein 

tegument protein VP1314 

14 14 UL46 12 possibly regulation, modulates 
transactivating tegument protein 
VP16 

tegument protein VP1112 

15 15 UL45  possibly membrane fusion, 
membrane protein, tegument-
associated 

membrane protein UL45,type 2  

16 16 UL44 14 cell attachment, binds cell surface 
heparan sulphate, binds 
complement C3b,   

envelope glycoprotein C, type 1 
membrane protein, contains a 
signal peptide to block 
neutralization 

17 17 UL43 15 possibly membrane fusion envelope protein UL43, type 3 
membrane protein, 11 
transmembrane domains 

18 18 UL42 16 DNA replication, dsDNA-binding DNA polymerase processivity 
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protein subunit 
19 19 UL41 17 cellular mRNA degradation, 

mRNA-specific RNase 
tegument host shutoff protein 

20 20 UL40 18 nucleotide metabolism ribonucleotide reductase 
subunit 2, small 

21 21 UL39 19 nucleotide metabolism ribonucleotide reductase 
subunit 1, large 

22 22 UL38 20 capsid morphogenesis, complexed 
1:2 with capsid triplex subunit 2 to 
connect capsid hexons and pentons 

capsid triplex subunit 1 

23 23 UL37 21 virion morphogenesis, complexed 
with large tegument protein 

tegument protein UL37 

24 24 UL36 22 capsid transport, complexed with 
tegument protein UL37, ubiquitin-
specific protease (N-terminal 
region) 

large tegument protein 

25 25 UL35 23 capsid morphogenesis, possibly 
capsid transport, located externally 
on capsid hexons 

small capsid protein 

26 26 UL34 24 nuclear egress, type 2 membrane 
protein, interacts with nuclear 
egress lamina protein 

nuclear egress membrane 
protein 

27 27 UL33 25 DNA encapsidation, interacts with 
DNA packaging terminase subunit 
2 

DNA packaging protein UL33 

28 28 UL32 26 DNA encapsidation, possibly capsid 
transport 

DNA packaging protein UL32 

29 29 UL31 27 nuclear egress, interacts with 
nuclear egress membrane protein 

nuclear egress lamina protein 

30 30 UL30 28 DNA replication, DNA polymerase 
catalytic subunit 

 

31 31 UL29 29 DNA replication, possibly 
regulation  

single-stranded DNA-binding 
protein,contains a zinc-finger 

32 32 UL28 30 DNA encapsidation DNA packaging terminase 
subunit 2 

33 33 UL27 31 cell entry, cell-to-cell spread, 
possible membrane fusogen, binds 
cell surface heparan sulphate 

envelope glycoprotein B, type 1 
membrane protein, contains a 
signal peptide  

34 34  32 unknown protein V32 
35 35 UL26 33 capsid morphogenesis, serine 

protease (N-terminal region), minor 
scaffold protein (remainder of 
protein, clipped near C terminus) 

capsid maturation protease, N-
terminal protease domain acts 
in capsid maturation and is a 
capsid protein , C-terminal 
domain is the minor capsid 
scaffold protein 

35.5 35.5 UL26.5 33.5 capsid morphogenesis, clipped near 
C terminus 

Major capsid scaffold protein 

36 36 UL25 34 DNA encapsidation, located on 
capsid near vertices, 
possiblystabilizes the capsid and 
retains the genome 

DNA packaging tegument 
protein UL25 

37 37 UL24 35 unknown nuclear protein UL24 
38 38 UL23 36 nucleotide metabolism,  thymidine kinase 
39 39 UL22 37 cell entry, cell-to-cell spread, 

possible membrane fusogen, 
envelope glycoprotein H, type 1 
membrane protein, contains a 
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complexed with envelope 
glycoprotein L 

signal peptide 

40 40 UL21  virion morphogenesis, interacts 
with microtubules 

tegument protein UL21 

41 41 UL20  virion morphogenesis, membrane 
fusion 

envelope protein UL20, type 3 
membrane protein, 4 
transmembrane domains 

42 42 UL19 40 capsid morphogenesis, 6 copies 
form hexons, 5 copies form pentons 

major capsid protein 

43 43 UL18 41 capsid morphogenesis, complexed 
2:1 with capsid triplex subunit 1 to 
connect capsid hexons and pentons 

capsid triplex subunit 2 

44/47 44/47 UL15 42/45 DNA encapsidation contains an 
ATPase domain 

DNA packaging terminase 
subunit 1 

45 45 UL17 43 DNA encapsidation, capsid 
transport, capsid-associated product 

DNA packaging tegument 
protein UL17 

46 46 UL16 44 possibly virion morphogenesis 
product 

tegument protein UL16 

48 48 UL14 46 virion morphogenesis tegument protein UL14 
49 49 UL13 47 protein phosphorylation, PK family 

product 
tegument serine/threonine 
protein kinase 

50 50 UL12 48 DNA processing, maturation and 
packaging of DNA 

deoxyribonuclease 

51 51 UL11 49 virion morphogenesis envelope-
associated 

myristylated tegument protein 

52 52 UL10 50 virion morphogenesis, complexed 
with envelope glycoprotein N 

envelope glycoprotein M, 
membrane fusion type 3 
membrane protein, 8 
transmembrane domains 

53 53 UL9 51 DNA replication DNA replication origin-binding 
helicase 

54 54 UL8 52 DNA replication helicase-primase subunit 
55 55 UL7 53 virion morphogenesis tegument protein UL7 
56 56 UL6 54 DNA encapsidation dodecamer 

located at one capsid vertex in place 
of a penton 

Minor capsid portal protein 

57 57 UL5 55 DNA replication helicase-primase helicase 
subunit 

58 58 UL4 56 Unknown, colocalizes with 
regulatory protein ICP22 and 
nuclear protein UL3 in small, dense 
nuclear bodies 

nuclear protein UL4 

59 59 - 57 possibly virion morphogenesis 
product 

protein V57 

60 60 UL3 58 unknown colocalizes with 
regulatory protein ICP22 and 
nuclear protein UL4 in small, dense 
nuclear bodies 

nuclear protein UL3 

61 61 UL2 59 DNA repair uracil-DNA glycosylase 
62 62 UL1 60 cell entry, cell-to-cell spread 

complexed with envelope 
glycoprotein H 

envelope glycoprotein L, 
contains a signal peptide 

63 63 RL2 61 regulation, cellular protein 
degradation, latency contains a 
RING finger, disrupts ND10, 

ubiquitin E3 ligase, ICP0 
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proteasome-dependent degradation 
of several cellular proteins 

64/64.1 64 RS1 62 regulation transcriptional regulator ICP4 
65 65 US1 63 regulation, cell cycle regulation 

required for expression of a subset 
of late genes, host range 
determinant 

regulatory protein ICP22 

66 66 US10 64 unknown virion protein US10 
67 67 - - unknown, colocalizes with nuclear 

lamins, Virulence determinant 
virion protein V67 

68 68 US2 - Unknown, possibly envelope-
associated, interacts with 
cytokeratin 18 

virion protein US2 

69 69 US3 66 protein phosphorylation, apoptosis, 
nuclear egress tegument protein, 
phosphorylates nuclear egress 
lamina protein, mediates 
phosphorylation of HDAC1 and 
HDAC2 and other cellular and viral 
proteins, PK family 

serinethreonine protein kinase 
US3 

70 70 US4 - cell-to-cell spread type 1 membrane 
protein, contains a signal peptide, 
gD family product 

envelope glycoprotein G 

71 71 US5 - unknown type 1 membrane protein, 
contains a signal peptide 

envelope glycoprotein J 

72 72 US6 - cell attachment type 1 membrane 
protein, contains a signal peptide, 
binds cell surface receptors, gD 
family 

envelope glycoprotein D 

73 73 US7 67 cell-to-cell spread type 1 membrane 
protein, contains a signal peptide, 
complexed with envelope 
glycoprotein E to form an Fc-
receptor, gD family 

envelope glycoprotein I 

74 74 US8 68 cell-to-cell spread type 1 membrane 
protein, contains a signal peptide, 
complexed with envelope 
glycoprotein I to form an Fc-
receptor, gE family 

envelope glycoprotein E 

75 75 US8A - Unknown, type 2 membrane protein 
product 

membrane protein US8A 

76 76 US9 65 axonal transport type 2 membrane 
protein, tegument-associated, 
localizes envelope proteins 

membrane protein US9 

 
Proteins that are not conserved in both HSV-1 and VZV are encoded by genes 1, 2, 

3, 15, 34, 59, 67, 68, 70, 71, 72 and 75. Poorly conserved are genes 48, 62, 63, 73 and 
76. The best conserved proteins have counterparts in all mammalian herpesviruses and 
include those involved in DNA replication and packaging and capsid structure, such as 
those encoded by genes 42, 43, 47/44 and 57.  
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