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ABSTRACT 

Edwardsiella ictaluri encodes a type III secretion system (T3SS) required for 

intracellular replication. Analysis of in vitro gene expression indicates the T3SS translocon 

proteins express and secrete in acidic pH. Expression of other T3SS genes, however, requires 

that phosphate be limited in the culture media, in addition to acidic pH. Responses to 

environmental stimuli are mediated through the T3SS-encoded regulatory proteins EsrA, EsrB, 

and EsrC. Mutations in these genes result in differing phenotypes. Mutation of EsrA results in 

moderately reduced expression of T3SS genes, but translocon protein secretion is retained in the 

mutant. However, the EsrA mutant is attenuated intracellularly and in vivo. Mutation of EsrB 

results in severely decreased T3SS gene expression and translocon protein secretion, leading to 

intracellular and in vivo attenuation. EsrB is also required for expression of type VI secretion 

system (T6SS)-related proteins through the modulation of EsrC expression. EsrC mutation has 

an effect on T3SS gene expression, but less so than EsrB, and does not abolish T3SS translocon 

secretion. EsrC mutation, however, does inhibit expression of T6SS-related proteins, indicating 

one of its functions is to coordinate expression of the T6SS with that of the T3SS. The EsrC 

mutant is not attenuated intracellularly, but does exhibit attenuated virulence in vivo. Expression 

of the T3SS also is dependent on two plasmids carried by strains of E. ictaluri virulent for 

channel catfish. Mutation of both of the plasmids results in severe decreases in T3SS gene 

expression, resulting in attenuation of E. ictaluri intracellularly and in vivo. The plasmids do not 

encode proteins with homology to known regulatory proteins, but may integrate into the genome 

near putative regulatory genes, thereby modulating their expression. The results presented here 

demonstrate that E. ictaluri responds to conditions mimicking the intracellular environment by 

expression a T3SS, which is required for intracellular survival. The expression of this T3SS 

absolutely is dependent on EsrB, and EsrA and EsrC are required for optimal T3SS expression. 
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CHAPTER 1 

 I�TRODUCTIO� A�D LITERATURE REVIEW 

 

EDWARDSIELLA ICTALURI 

Edwardsiella ictaluri is a Gram-negative bacterium of the family Enterobacteriacae and 

is the etiological agent of enteric septicemia of catfish (ESC), a destructive disease in channel 

catfish (Ictalurus punctatus) production. Edwardsiella ictaluri was isolated, named, and 

characterized by Hawke et al. (Hawke 1979; Hawke et al. 1981). Edwardsiella ictaluri may have 

been present in the catfish industry as early as 1969 (Mitchell and Goodwin 1999). At 

temperatures between 22°C and 28°C, channel catfish populations are at risk for infection 

(Francis-Floyd et al. 1987), correlating to heavy spring and fall outbreaks of ESC. 

Edwardsiella ictaluri strains isolated from fish are quite homogeneous. Waltman et al. 

(Waltman et al. 1986) surveyed 119 isolates and found little biochemical activity or diversity 

among the strains. Plumb and Vinitnantharat (Plumb and Vinitnantharat 1989) also found few 

biochemical differences among forty isolates of E. ictaluri from areas including the Southeast, 

Midwest, and Northeast US, as well as Thailand. Edwardsiella ictaluri isolates are also 

serologically homogeneous (Plumb and Vinitnantharat 1989; Bertolini et al. 1990; Newton and 

Triche 1993). However, Bader et al. (Bader et al. 1998) surveyed 20 isolates of E. ictaluri and 

found four genotypes of E. ictaluri not identified by biochemical differences. 

Generally, E. ictaluri strains carry two conserved plasmids. Isolates from fish species 

other than channel catfish, however, vary in plasmid profile (Newton et al. 1988; Reid and Boyle 

1989; Lobb et al. 1993). Isolates capable of channel catfish pathogenesis carry two conserved 

plasmids, pEI1 and pEI2 (Newton et al. 1988; Bertolini et al. 1990). Both plasmids are 

sequenced, and both carry genes encoding proteins homologous to type III secretion system 

(T3SS) proteins of Salmonella and Shigella (Fernandez et al. 2001). 
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Externally, E. ictaluri infection results in many clinical signs, including a distended 

abdomen caused by fluid accumulation and petechial hemorrhaging of the skin near the mouth 

and at the base of fins. Behavioral changes occur, including reduced feeding and abnormal 

swimming. Internal examination of diseased fish shows petechial hemorrhaging of the liver, 

spleen, anterior and posterior kidney, intestine, and muscle. The liver also will exhibit multifocal 

white spots of necrosis. Chronic infection results in the erosion of the skull, leading to a lesion 

along the frontal bones of the skull. 

The preferred entry of E. ictaluri into the channel catfish is unknown. Studies indicate 

infection occurs following exposure in the olfactory sac via the nerves (Miyazaki and Plumb 

1985; Shotts et al. 1986; Morrison and Plumb 1994; Wolfe et al. 1998), through the gut (Shotts et 

al. 1986; Baldwin and Newton 1993), by intraperitoneal injection (Areechon and Plumb 1983), 

and immersion (Newton et al. 1989). Baldwin and Newton (Baldwin and Newton 1993) found E. 

ictaluri present in the trunk kidney 15 minutes following intragastric intubation and in 

phagocytic cells within 24 hours.  

The pathology of E. ictaluri in channel catfish is well characterized. Following 

intragastric intubation, E. ictaluri is present in the kidneys within 15 minutes and the liver in 30 

minutes (Baldwin and Newton 1993). Edwardsiella ictaluri is isolated from the liver and kidneys 

in both natural and experimental infections (Jarboe et al. 1984; Miyazaki and Plumb 1985; Shotts 

et al. 1986; Newton et al. 1989; Mqolomba and Plumb 1992; Baldwin and Newton 1993). Other 

tissues affected by E. ictaluri infection include the skin, muscle, spleen, intestine, and brain, and 

can persist in tissues up to 65 days post-infection (Mqolomba and Plumb 1992). 

Within 24 hours following gut exposure, enteritis occurs in the intestine characterized by 

mononuclear cell infiltration (Shotts et al. 1986). Bacteria are present along the brush border at 

30 minutes, and dilated and vacuolated cells, possibly macrophages, are present near the 
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basement membrane (Baldwin and Newton 1993). After an hour post-infection, enterocytes are 

necrotic. Lesions in the intestine are also reported following natural infections (Jarboe et al. 

1984; Shotts et al. 1986) or infection by immersion (Newton et al. 1989).  

Infection of the brain by E. ictaluri also occurs, resulting in meningoencephalitis. 

Infection of the channel catfish olfactory sac leads to damage of the epithelium within hours 

(Morrison and Plumb 1994). Inflammation of the olfactory sacs spreads into the tissues, and 

nerves are infected by E. ictaluri, leading to infection of the brain. While this brain infection 

occurs in the acute stage of infection, it does not always result in chronic disease, which is 

characterized by the formation of a hole along the midsagittal plane of the skull. 

Inflammation of infected tissues is characterized by the presence of mononuclear cells 

commonly containing intracellular E. ictaluri (Shotts et al. 1986; Baldwin and Newton 1993). 

The presence of degenerate macrophage-like cells in the intestine following infection, and the 

presence of E. ictaluri in connective tissues only when adjacent to degenerate leukocytes 

indicates E. ictaluri disseminates by infection of macrophages (Baldwin and Newton 1993). 

Edwardsiella ictaluri is survives within host cells. Shoemaker et al. (Shoemaker et al. 

1997) found macrophages from immune channel catfish have the ability to kill E. ictaluri; 

however, macrophages from naive fish have a diminished ability to kill, especially if the bacteria 

are coated with anti-E. ictaluri antibody. Klesius and Sealey (Klesius and Sealey 1996) found 

extracellular products of E. ictaluri attract macrophages to an exoantigen injection site. 

Edwardsiella ictaluri also survives in channel catfish neutrophils (Ainsworth and Dexiang 1990; 

Waterstrat et al. 1991). 

Edwardsiella ictaluri infects a number of cultured cell lines of fish and mammals 

(Skirpstunas and Baldwin 2002). Booth et al. (Booth et al. 2006) developed a gentamicin 

exclusion assay using primary cultures of channel catfish head kidney-derived macrophages to 
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study the intracellular replication of wild type and mutant strains of E. ictaluri. Wild type E. 

ictaluri exhibits rapid intracellular replication between four and eight hours post-infection. 

Replication of E. ictaluri in channel catfish macrophages is dependent on the activity of an acid-

inducible urease system (Booth 2005) and a type III secretion system (T3SS) (Thune et al. 2007). 

Channel catfish production is a $400 million dollar industry (Anonymous 2003b). 

Edwardsiella ictaluri causes mortalities in over 60% of foodsize fish operations (Anonymous 

2003b), and over 50% of fingerling operations report losses due to ESC (Anonymous 2003a). In 

total, ESC is the leading cause of fry and fingerling disease-related mortality. Treatment for ESC 

outbreaks includes medicated feed containing Terramycin, Romet, or Aquaflor and reducing or 

eliminating feeding during an outbreak. Medicated feed is the primary treatment at 18% of 

facilities, whereas 27% of farms use medicated feed in conjunction with other treatments 

(Anonymous 2003a). Medicated feed is expensive, and it may not be efficacious, as sick catfish 

typically do not eat. In addition, E. ictaluri develops resistance to the antibiotics contained in the 

feed (Cooper et al. 1993; Starliper et al. 1993; DePaola et al. 1995; Welch et al. 2009). Recently, 

florfenicol was approved for use in aquaculture. Unfortunately, E. ictaluri already can develop 

resistance to florfenicol (Welch et al. 2009). Despite the availability of commercially produced 

vaccines, few facilities report using vaccination against E. ictaluri infection. Only 11% of fry 

and fingerling operations (Anonymous 2003a) and 16% of foodsize channel catfish producers 

(Anonymous 2003b) vaccinate fish against E. ictaluri.  

Despite the enormous economic impact of this organism, little is known about virulence 

genes associated with pathogenesis in channel catfish. Cooper et al. (Cooper et al. 1996) found 

E. ictaluri encodes a chondroitin sulfatase gene involved in virulence. Chondroitinase activity is 

the cause of the erosion of the skull along the sagittal line of the cranium seen in chronic brain 

infections. However, mutation of chondroitinase prevents both acute and chronic disease in 
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catfish. Lipopolysaccharide (LPS) is also an important determinant in E. ictaluri virulence. An O 

side-chain mutant of E. ictaluri is highly attenuated in vivo (Lawrence et al. 2001), with the LPS 

mutant more susceptible to killing in normal serum. However, the mutant is still able to survive 

within neutrophils (Lawrence et al. 2003). 

Moore and Thune (Moore and Thune 1999; Moore et al. 2002) identified immunogenic 

proteins of E. ictaluri. Those identified include proteins homologous to Rhizobium 

leguminosarum proteins involved in a protein secretion system. This type of secretion system is 

classified as a type VI secretion system (T6SS). Edwardsiella tarda encodes a similar T6SS 

recently characterized by Zheng and Leung (Zheng and Leung 2007). The E. tarda T6SS 

contains both apparatus and effector genes, and mutagenesis of a majority of these genes results 

in attenuation in vivo. Edwardsiella ictaluri encodes a locus containing genes homologous to 

those in the E. tarda T6SS. Each E. ictaluri gene has high homology with the E. tarda 

counterpart suggesting homologous function. Zheng and Leung (Zheng and Leung 2007) 

determined the entire locus is expressed in one transcript and is under control of the T3SS-

encoded regulation protein EsrC. Three proteins, EvpC, EvpI, and EvpP, are secreted, but the 

functions of these proteins in virulence are unknown. EvpC has homology to Hcp (hemolysin co-

regulated protein), a common type of T6SS protein that forms a hexamer structure and may serve 

as the tube which allows translocation of T6SS proteins. EvpI has homology to Vgr (valine-

glycine repeats) proteins also common to T6SS. EvpP has no homologs outside Edwardsiella in 

the genetic database. Secretion of EvpP is dependent on both EvpC and EvpI, which are also 

dependent upon each other for secretion (Zheng and Leung 2007). This dependence suggests 

EvpC and EvpI function in some capacity within the secretory structure of the T6SS. 

Edwardsiella ictaluri is historically characterized a urease-negative bacterium (Hawke et 

al. 1981; Waltman et al. 1986). However, Booth (Booth 2005) reports a urease system is 
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involved in pathogenesis of E. ictaluri. Edwardsiella ictaluri strains carrying mutations in the 

urease operon are unable to replicate in channel catfish-derived macrophages and are attenuated 

in channel catfish immersion challenges. Wild type E. ictaluri tolerates, but does not replicate in 

pH levels as low as 2.5. At pH 5.5, however, E. ictaluri is able to modulate the pH of its 

environment to more neutral conditions and flourish. The pH modulation is urea-dependent and 

lost with mutations in the urease system. 

 Thune et al. (Thune et al. 2007) conducted a signature-tagged-mutagenesis (STM) 

project to identify virulence factors involved in the pathogenesis of E. ictaluri in channel catfish. 

Of the 50 virulence-related mutants identified, three are in genes associated with a T3SS. The 

first mutation is found in EsaU, a protein homologous to SsaU of the Salmonella pathogenicity 

island 2 (SPI-2) T3SS involved in intracellular survival. The EsaU mutant is attenuated in vivo 

and ex vivo in head kidney-derived channel catfish macrophages and channel catfish ovary cells. 

The other two STM T3SS mutations occur in the plasmids of E. ictaluri. A pEI1 mutation is in 

an open reading frame (ORF) encoding an amino acid sequence similar to SspH1, SspH2, and 

SlrP of Salmonella and IpaH of Yersinia (Fernandez et al. 2001), all of which are secreted 

effector proteins of a T3SS. The second plasmid mutation is in pEI2 upstream of an ORF 

encoding a sequence similar to Spa15 of Shigella and InvB of Salmonella (Fernandez et al. 

2001), both of which are chaperone proteins of secreted T3SS effector. These findings indicate a 

T3SS encoded within the E. ictaluri genome is important for pathogenesis within channel catfish 

and, more specifically, involved in E. ictaluri replication within channel catfish cells. 

The ability of E. ictaluri to survive in channel catfish macrophages and other phagocytic 

cells gives it an advantage against the immune response of channel catfish. The discovery of a 

T3SS similar to the SPI-2 T3SS that enables Salmonella to replicate intracellularly suggests the 

T3SS of E. ictaluri acts to provide a similar benefit intracellularly. The finding that an E. ictaluri 
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T3SS mutant, esaU-, is unable to replicate within macrophages supports the hypothesis that the 

E. ictaluri T3SS is required for intracellular survival. Further study and characterization of the E. 

ictaluri T3SS will provide insight to an important method of immune avoidance and 

pathogenesis of E. ictaluri and may lead to improved methods of prevention and treatment of 

ESC. 

TYPE III SECRETIO� SYSTEMS 

This review will focus primarily on the SPI-2 T3SS of Salmonella, because of the 

homology to the Edwardsiella T3SS. However, the E. tarda T3SS was recently characterized 

and provides insight to the possible function of the E. ictaluri T3SS. Many reviews are available 

covering T3SS translocation, distribution, function, evolution, and other topics of a variety of 

T3SS in other pathogens (Mecsas and Strauss 1996; Finlay and Falkow 1997; Hueck 1998; 

Galan and Collmer 1999; Bennett and Hughes 2000; Hensel 2000; Francis et al. 2002; Holden 

2002; Page and Parsot 2002; Knodler and Steele-Mortimer 2003; Parsot et al. 2003; Waterman 

and Holden 2003; Macnab 2004; Saier 2004; Ehrbar and Hardt 2005; Jones 2005; Patel and 

Galan 2005; Sorg et al. 2005; Troisfontaines and Cornelis 2005; Abrahams and Hensel 2006; 

Galan and Wolf-Watz 2006; Schlumberger and Hardt 2006; Angot et al. 2007). 

T3SS are found only in Gram-negative bacteria and function to translocate effector 

proteins involved in virulence directly from the bacterial cytoplasm to the host cytoplasm in an 

energy-dependent manner. T3SS are homologous to flagellar systems. The system includes inner 

and outer membrane components as well as a periplasm-spanning domain that resembling the 

flagellar basal body. Furthermore, apparatus proteins of the T3SS share homology with basal 

body proteins. The translocon is constructed outward from the outer membrane domains in a 

fashion similar to that of flagellar construction, i.e., by adding protein subunits to the end of a 

growing chain.  
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The apparatus proteins of T3SS are rather unremarkable, regardless of the T3SS function; 

the various functions of T3SS among bacteria result from the effector proteins encoded and 

translocated by the system. The effector proteins modulate the activities of host cells, generating 

a pathogenic effect that varies among bacterial species. The homogeneity of the apparatus makes 

the discovery of a T3SS relatively easy, but identifying genes encoding effector proteins is more 

difficult due to their generally unconserved nature. 

In the case of Salmonella, there are two T3SS encoded by separate pathogenicity islands. 

SPI-1 encodes a T3SS for translocation of proteins that induce bacterial uptake into cells and is 

required for the invasion of Peyer’s patches in the mammalian host gut. SPI-1 effectors induce 

membrane ruffling of the target cell, leading to bacterial uptake, in addition to modulating the 

host immune response. The second T3SS, encoded by SPI-2, is required for the intracellular 

replication of Salmonella. Although it is used for intracellular replication, Brown et al. (Brown et 

al. 2005) report that the SPI-2 system is expressed prior to host cell invasion. The SPI-2 effector 

proteins act to create a suitable environment for Salmonella in many ways: 1) by creating a 

spacious vacuole referred to as a Salmonella-containing vacuole (SCV); 2) by directing 

intracellular trafficking of cell vesicles to the SCV, providing building blocks for the SCV; 3) by 

remodeling the actin cytoskeleton; and 4) by modulating or subverting the host immune 

response. SPI-2 effector proteins of known function are involved in one or more of the above 

processes. Most of the identified SPI-2 effectors are encoded outside of the pathogenicity island, 

indicating acquisition by horizontal transfer of genes. 

Bacteriophages are associated with the horizontal transfer of some SPI-2 T3SS effector 

genes. Gifsy phages are active in Salmonella and involved in systemic virulence in mice 

(Figueroa-Bossi et al. 1997; Figueroa-Bossi and Bossi 1999; Figueroa-Bossi et al. 2001). Not all 

strains of Salmonella contain each Gifsy phage, however. SspH1 is an effector protein contained 
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within the Gifsy-3 phage sequence (Figueroa-Bossi et al. 2001), but Miao et al. (Miao et al. 

1999) found SspH1 in only one Salmonella serotype. SseI is an SPI-2 effector that is carried by 

the Gifsy-2 phage (Figueroa-Bossi et al. 2001; Ho et al. 2002). SspH2 is encoded in a region 

surrounded by possible phage genes, indicating it may be carried by a phage as well (Miao and 

Miller 2000). 

SALMO�ELLA PATHOGE�ICITY ISLA�D 2 T3SS 

The SPI-2 T3SS translocates at least 20 proteins, most of which are involved in the 

assembly and maintenance of the SCV or intracellular trafficking within the host cell. Many of 

the effector proteins are encoded outside the pathogenicity island; SseF, SseG, and SpiC are the 

only known effector proteins encoded within the SPI-2 island. The proteins SseB, SseC, and 

SseD have the notation of effectors (Sse = Salmonella secreted effector), but their function is to 

generate the translocon apparatus on the surface of the bacterial cell as opposed to a virulence 

function in the host cell. This apparatus serves as the conduit for transfer of effector proteins 

from the bacterium to the host cell. 

A group of proteins called Salmonella translocated effectors (STE) share a common 

secretion signal in their amino termini (Brumell et al. 2000; Miao and Miller 2000). Within the 

amino termini is the conserved sequence WEK(I/M)xxFF (hereafter referred to as the WEKI 

sequence), where x is any amino acid. Deletion of EKIx from the SspH2 sequence inhibits 

translocation (Miao and Miller 2000). Initially, seven proteins were identified as having the 

WEKI sequence: SifA, SifB, SseI, SseJ, SspH1, SspH2, and SlrP (Brumell et al. 2000; Miao and 

Miller 2000). Later, SopD2 was identified as another protein containing the WEKI translocation 

sequence (Brumell et al. 2003; Brown et al. 2006).  

There are many Salmonella effector proteins possessing an internal leucine-rich repeat 

(LRR) region. LRR are involved in protein-protein interactions in eukaryotes (Kobe and Kajava 
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2001); however, little is known regarding the function of these repeats in Salmonella effectors. 

The LRR of SspH1 mediates the interaction between SspH1 and the host cell nuclear protein 

PKN1, a serine/threonine kinase involved in NF-κΒ activation (Haraga and Miller 2006). The 

LRR of the Salmonella effectors SspH2 and SlrP, however, do not bind PKN1, indicating PKN1 

binding is not a function shared by the LRR of Salmonella effector proteins. 

Translocon Proteins. The translocon of the SPI-2 T3SS consists of the proteins SseB, SseC, and 

SseD, which are proteins encoded within SPI-2 and secreted by the T3SS. The proteins are not 

translocated to the host cell, however. Instead, they assemble on the outside of the cell, forming 

the syringe, or translocon. Mutation of these proteins attenuates Salmonella (Hensel et al. 1998), 

because there is no longer a conduit available for translocation of proteins across the bacterial 

and host cell membranes.  Nikolaus et al. (Nikolaus et al. 2001) found that all three translocon 

proteins are required for translocation of effectors. SseB, SseC, and SseD are detected on the 

surface of Salmonella (Beuzon et al. 1999; Nikolaus et al. 2001; Chakravortty et al. 2005), and 

are observed as a polar structure with few copies on the bacterial surface. Klein and Jones (Klein 

and Jones 2001) determined that both SseC and SseD associate loosely with the membrane and 

are required for virulence. In the absence of SseB, however, SseC and SseD are secreted, but do 

not associate with the bacterial surface (Nikolaus et al. 2001). SseE, encoded in the same operon 

as SseB, SseC, and SseD, is not characterized, but may serve as a chaperone or accessory role 

(Coombes et al. 2004).  

Salmonella-Containing Vacuole Biogenesis. Salmonella resides intracellularly within a 

spacious vacuole. Genesis and maintenance of the SCV are reviewed (Knodler and Steele-

Mortimer 2003; Steele-Mortimer 2008). The formation and maintenance of the SCV is 

dependent upon both the SPI-1 and SPI-2 T3SS. During Salmonella infections, the Golgi 

network surrounds the SCV, and only bacteria in vacuoles associated with the Golgi replicate 
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(Salcedo and Holden 2003). Salmonella inhibits the fusion of lysosomes to the SCV in 

phagocytic cells (Harrison et al. 2004). In non-phagocytic cells, however, Salmonella does not 

prevent acidification of the SCV or fusion of lysosomes (Drecktrah et al. 2007). Acidification of 

the SCV within non-phagocytic cells is delayed, however, but not mediated by the T3SS. 

SifA is involved in the formation of Salmonella induced filaments (Sifs). Stein et al. 

(Stein et al. 1996) first discovered sifA while studying mutations lacking Sif formation. Beuzon 

et al. (Beuzon et al. 2000) determined SifA is a secreted effector of the T3SS, and mutation of 

sifA results in the inability of Salmonella to maintain the SCV. The instability of the SCV results 

in the inability to replicate within macrophages (Beuzon et al. 2000; Brumell et al. 2001; Salcedo 

et al. 2001; Ruiz-Albert et al. 2002; Boucrot et al. 2003). Interestingly, sifA-deficient strains 

escape the SCV (Beuzon et al. 2000) and are able to live in the cytosol of epithelial cells, but not 

macrophages (Beuzon et al. 2002; Brumell et al. 2002b) or dendritic cells (Petrovska et al. 2004). 

SifA directs Sif formation along microtubules and associates the SCV to Sifs (Brumell et al. 

2002a).  

Along with SseF and SseG, which are described later, SifA redirects the transport of 

sphingolipid-containing vesicles normally in the exocytotic pathway to the SCV (Kuhle et al. 

2006) and mediates the juxtanuclear position of the SCV by recruiting microtubular motor 

proteins (Abrahams et al. 2006). Inhibition of host kinesin or dynein prevents Sif formation, 

indicating these cellular proteins are important for SCV construction and maintenance (Guignot 

et al. 2004).  Dynein localization to the SCV requires Rab7, which recruits Rab7-interacting 

lysosomal protein (RILP). Normally, RILP associates with the dynein motor complex, and 

directs vesicles to intracellular areas rich in lysosomes. However, SifA uncouples Rab7 from 

RILP, inhibiting lysosomes from fusing to the SCV (Harrison et al. 2004). If RILP couples with 

Rab7, lysosomes fuse to the SCV, and Salmonella does not replicate (Marsman et al. 2004). SifB 
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also associates with the SCV membrane, but moves away from the vacuole along Sifs, an action 

dependent upon SifA (Freeman et al. 2003).  

SseJ is involved in SCV maintenance and trafficking. SseJ localizes to the SCV and 

moves away from it along Sifs (Freeman et al. 2003). Birmingham et al. (Birmingham et al. 

2005) found SseJ negatively affects Sif formation in the first 8-10 hours. Ruiz-Albert et al. 

(Ruiz-Albert et al. 2002) found SseJ and SifA have complementary activities by observing the 

loss of SCV membrane in a sifA mutant, but not an sseJ mutant. In a double mutant, no vacuolar 

loss was observed. SseJ is homologous to the GDSL family of lipases (Ohlson et al. 2005), and is 

shown in vitro to have deacylase activity, indicating SseJ induces lipid modifications. 

PipB and PipB2 also associate with SCV and Sifs (Knodler et al. 2002). PipB and PipB2 

are encoded in a pathogenicity island also containing SPI-1 effector genes (Wood et al. 1998; 

Knodler et al. 2002). The function of PipB is unknown, but mutation of pipB does not result in 

attenuation (Wood et al. 1998; Pfeifer et al. 1999). Knodler et al. (Knodler et al. 2003) found 

PipB2 localizes to detergent resistant microdomains in host membranes rich in cholesterol. 

Cholesterol accumulation in the SCV membrane is also T3SS-dependent (Catron et al. 2002). 

PipB2 localizes to SCV and Sifs near the periphery of host cells (Knodler et al. 2003), and 

results in extension of Sifs along microtubules, affecting the distribution of late 

endosomes/lysosomes (LE/Lys) in host cells (Knodler and Steele-Mortimer 2005). This effect is 

mediated by a pentapeptide repeat, which is not shared with PipB. PipB2 associates with kinesin 

through the pentapeptide repeat, driving transport along microtubules, and is sufficient for 

kinesin-1 recruitment to the SCV (Henry et al. 2006). Interestingly, a sifA/pipB2 double mutant 

is more virulent than a sifA mutant indicating the functions of PipB2 contribute to virulence 

defects in sifA strains (Henry et al. 2006).  
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SifA and myosin II act in concert against the effects of PipB2 and SseJ, and vice versa, to 

maintain the perinuclear location of the SVC (Wasylnka et al. 2008). A SPI-1 effector, SopB, 

activates myosin II following infection with Salmonella. The interaction between SifA/myosin 

and SseJ/PipB2 demonstrates the dynamic and complicated nature of the SPI-2 T3SS in 

providing a suitable intracellular environment for growth. The involvement of SopB indicates an 

interaction between the effectors of the SPI-1 and SPI-2 systems for the maintenance of the SCV. 

SopD2 associates with the SCV and endosomes (Brumell et al. 2003) via its amino 

terminus. A reduced capacity for Sif formation is observed in sopD2 mutants, but only appears 

relevant in macrophages, because infection with sopD2 mutants in epithelial cells shows no 

replication defect (Jiang et al. 2004). Brown et al. (Brown et al. 2006) determined the signal for 

localization to endocytic vesicles is contained within the STE WEKI sequence. Short peptides 

derived from SifA, SseJ, and SspH2, proteins also containing the WEKI sequence, localize to 

vesicles, but the amino acid sequence surrounding the STE sequence also influences localization. 

Modulation of Intracellular Trafficking. There are three translocated effector proteins encoded 

within SPI-2: SseF, SseG, and SpiC. All are involved in modulating intracellular trafficking of 

the host cell. Deiwick et al. (Deiwick et al. 2006) determined that SseF and SseG interact 

physically, and are functionally linked. SseF and SseG associate with endosomal membranes and 

microtubules inside host cells (Kuhle and Hensel 2002; Kuhle et al. 2004) and are required for 

host endocytic structure alteration (Guy et al. 2000). Kuhle et al. (Kuhle et al. 2006) found SseF 

and SseG are required for exocytic transport of vesicles to the SCV, perhaps to deliver nutrients 

and membrane materials. Strains deficient for SseF and SseG do not recruit dynein to the SCV, a 

protein involved in directing vesicle transport. SseF and SseG are also required for maintenance 

of the SCV in a juxtanuclear postion (Abrahams et al. 2006; Deiwick et al. 2006). SseG contains 
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a Golgi-targeting domain for localization to the Golgi network. SCV that do not associate with 

the Golgi do not permit bacterial replication (Salcedo and Holden 2003).  

SpiC is reported in the literature as a translocated and non-translocated T3SS protein. Yu 

et al. (Yu et al. 2002) and Freeman et al. (Freeman et al. 2002) were unable to detect secretion of 

SpiC from Salmonella. The spiC mutant also does not secrete other T3SS effector proteins 

properly, resulting in a virulence defect. The conclusion was that SpiC is either involved with the 

apparatus or acts as a chaperone. The genes encoded in the same operon as spiC are the 

apparatus genes ssaCDE, suggesting SpiC may also be an apparatus protein. 

Uchiya et al. (Uchiya et al. 1999), however, found that SpiC interferes with intracellular 

trafficking in macrophages and detected SpiC in the cytosol of macrophages infected with 

Salmonella, indicating SpiC is translocated. Lee et al. (Lee et al. 2002) used a yeast two hybrid 

system to demonstrate SpiC associates with a host protein similar to vesicular trafficking 

proteins. Suppression of this host protein, called TassC, allows spiC mutants to survive in 

macrophages, indicating SpiC is involved in preventing TassC activity. SpiC also associates with 

Hook3, which also is involved in intracellular trafficking (Shotland et al. 2003). Hook3 is found 

in infected and non-infected cells, and its expression is associated with disruption of the Golgi 

and late endosomes and lysosomes (LE/Lys). Shotland et al. agree with Yu et al. (Yu et al. 2002) 

and Freeman et al. (Freeman et al. 2002) regarding the inability of spiC mutants to secrete other 

effector proteins. The group speculated a similar situation as found in Shigella and Yersinia 

whereby secreted effectors are involved in the secretion of other effectors. Yu et al. (Yu et al. 

2004) found that SsaM, a SPI-2 T3SS apparatus protein, interacts with SpiC within the bacterial 

cell, possibly as a mechanism for ordered secretion of translocon and effector proteins. 

Remodeling of the Actin Cytoskeleton. Meresse et al. (Meresse et al. 2001) observed SPI-2-

dependent accumulation of actin to the SCV, forming a meshwork around the vacuole. De novo 
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actin assembly occurs following Salmonella invasion, and treatment of host cells with actin 

depolymerization agents decreases intracellular Salmonella replication, indicating actin 

modifications are important for Salmonella virulence. 

SPI-2 translocated proteins are involved in modulating actin polymerization. SspH2 binds 

filamin through its N-terminus and profilin through its C-terminus (Miao et al. 2003). Filamin 

crosslinks filamentous actin and profilin modulates the conversion of G-actin to F-actin. The 

association with profilin, however, is not a direct interaction. In vitro, the presence of SspH2 

inhibits actin polymerization, but mutations in sspH2 do not prevent vacuole-associated actin 

polymerizations. SspH2 shares 97% homology in the first 61 amino acids with SseI, which also 

associates with filamin. At the C-terminus, SspH2 shares 77% homology to SspH1; however, 

SspH1 does not associate with profilin as SspH2 does, indicating that high levels of homology 

between effector protein amino acid sequences are not sufficient to presume homologous 

function between proteins. 

Lawley et al. (Lawley et al. 2006) found SseI is involved in systemic disease. SseI 

localizes to areas of actin polymerization within the host cell through an interaction of the N-

terminus with filamin (Miao et al. 2003). Worley et al. (Worley et al. 2006) found that SseI binds 

the host protein TRIP6 and promotes in vitro motility of phagocytes, leading to systemic spread 

away from the intestine of the mouse. Cells positive for CD18 carry Salmonella from the GI tract 

through the bloodstream to the spleen and liver, indicating Salmonella is disseminated by 

leukocytes. 

SteC is also an effector required for the formation of the F-actin meshwork surrounding 

the SCV (Poh et al. 2007). SteC has kinase activity dependent upon a conserved lysine residue. 

Mutation of the Lys residue has no affect on localization of the protein, but the F-actin mesh 

does not form. 
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Host Immunity Avoidance. The SPI-2 T3SS has many roles in the subversion of host immune 

function by Salmonella. Type III secretion system activity interferes with the trafficking of 

oxidase-containing vacuoles to the SCV, inhibiting the oxidative burst resulting from NADPH 

oxidase (Vazquez-Torres et al. 2000). Gallois et al. (Gallois et al. 2001) found flavocytrochrome 

b558 is excluded or removed from the SCV, preventing construction of the NADPH oxidase 

complex; mutants deficient in SPI-2 processes are unable to achieve this exclusion. Reactive 

nitrogen processes also are inhibited during Salmonella infection. iNOS is present in vacuoles 

containing SPI-2-deficient bacteria, but when infected with wild type strains, Salmonella inhibits 

production of reactive nitrogen intermediates (RNI) rather than surviving in the presence of the 

RNI (Chakravortty et al. 2002; Fang and Vazquez-Torres 2002; Bjur et al. 2006).  

Uchiya et al. (Uchiya et al. 2004) determined Salmonella upregulates expression of IL-10 

in the infected host cell. COX-2 expression is also induced by SPI-2 T3SS, resulting in increased 

PGE2 and PGI2 production (Uchiya and Nikai 2004), and COX-2 inhibitors abolish growth of 

wild type Salmonella in macrophages. COX-2 activity is increased through ERK1/2 

phosphorylation in a SpiC-dependent manner. In addition, the SPI-2 system affects the 

JAK/STAT pathway, inhibiting cytokine production (Uchiya and Nikai 2005).  

The SPI-2 system is involved in decreasing MHC-II activity in dendritic cells (Cheminay 

et al. 2005). Multiple SPI-2 T3SS effector proteins are involved in the inhibition of antigen 

presentation (Halici et al. 2008). However, the function of each protein in altering presentation 

was not evaluated.  

SspH1 localizes to the host nucleus and downregulates expression of IL-8 through 

inhibition of NF-κΒ-mediated gene expression (Haraga and Miller 2003). SspH1 binds a 

serine/threonine kinase protein kinase N1 (PKN1) (Haraga and Miller 2006), a process mediated 

by the LRR of SspH1. The LRR of SspH2 or SlrP, however, is not sufficient for this interaction. 
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Constitutive activation of PKN1 results in decreased NF-κΒ expression, and using RNAi against 

PKN1 results in an increase in NF-κΒ expression. This suggests SspH1 associates with and 

activates PKN1, resulting in a decrease in NF-κΒ activity. 

SseL is produced by bacteria within macrophages and found primarily in the cytoplasm 

of infected cells (Coombes et al. 2007).  SseL is a de-ubiquitinase involved in a delayed 

cytotoxic effect in macrophages (Rytkonen et al. 2007). A lack of SseL results in the 

accumulation of ubiquinated proteins in infected cells. The authors suggest this effect likely 

affects the signaling cascade involved in cytotoxicity rather than proteasome-dependent 

degradation of ubiquinated proteins. 

Other Proteins Translocated by the SPI-2 T3SS. Some proteins are secreted by the SPI-2 

T3SS, but their function is not known. SlrP is a LRR-containing protein containing the STE 

WEKI sequence. Mutation of SlrP results in attenuation of Salmonella in mice (Tsolis et al. 

1999), and SlrP is involved in the inhibition of MHC-II antigen presentation (Halici et al. 2008). 

GogB has a partial LRR, but lacks a WEKI motif (Coombes et al. 2005a). GogB is secreted by 

both the SPI-1 and SPI-2 T3SS and localizes to the host cytoplasm. SseK1 and SseK2 are 61% 

homologous to each other, but differ in their N-termini (Kujat Choy et al. 2004). SseK1 and 

SseK2 are similar to proteins of Escherichia coli involved in attachment and effacement. The 

first 32 amino acids of SseK1 localize it to the host cytosol. SseK2 is involved in long-term 

infection of the mouse (Lawley et al. 2006).  

SALMO�ELLA PATHOGE�ICITY ISLA�D 2 T3SS REGULATIO� 

Many in vitro conditions induce the SPI-2 T3SS. The SPI-2 T3SS is activated by low 

magnesium ion concentrations (Garcia Vescovi et al. 1996; Soncini et al. 1996; Beuzon et al. 

1999; Deiwick et al. 1999; Hansen-Wester et al. 2002; Hautefort et al. 2003; Norte et al. 2003; 

Shin and Groisman 2005), low calcium ion concentrations (Deiwick et al. 1999; Garmendia et al. 
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2003; Linehan et al. 2005), low inorganic phosphate concentrations (Beuzon et al. 1999; Deiwick 

et al. 1999; Hansen-Wester et al. 2002; Lober et al. 2006), low osmolarity (Lee et al. 2000; 

Garmendia et al. 2003; Linehan et al. 2005), low pH (Cirillo et al. 1998; Beuzon et al. 1999; Lee 

et al. 2000; Garmendia et al. 2003; Hautefort et al. 2003; Coombes et al. 2004; Feng et al. 2004; 

Kim and Falkow 2004; Lober et al. 2006; Walthers et al. 2007), in response to ppGpp levels 

(Thompson et al. 2006), and in the presence of cation chelators (Kim and Falkow 2003; Kim and 

Falkow 2004). Miao et al. (Miao et al. 2002) found SPI-2 T3SS genes express in both low and 

moderate levels of calcium and magnesium and at both neutral and acid pH; however, alkaline 

pH represses expression. SPI-2 T3SS activity is also positively affected by the presence of 

natural resistance-associated macrophage protein (Nramp) (Zaharik et al. 2002), providing a 

potential mechanism of recognition of the intracellular environment.  

Expression of SPI-2 T3SS genes is regulated by at least three two-component regulatory 

systems: SsrAB, PhoPQ, and OmpR/EnvZ. PhoQ, EnvZ, and SsrA are membrane sensor kinase 

proteins that phosphorylate the response regulators PhoP, OmpR, and SsrB, respectively, which 

in turn regulate expression of many virulence-associated genes. SsrA and SsrB are encoded 

within the SPI-2 locus and are required for T3SS expression (Shea et al. 1996; Valdivia and 

Falkow 1996; Cirillo et al. 1998; Deiwick et al. 1999; Worley et al. 2000; Garmendia et al. 2003; 

Feng et al. 2004; Deiwick et al. 2006; Dieye et al. 2007; Walthers et al. 2007). SsrB controls 

regulation of T3SS genes both within and outside the SPI-2 locus (Worley et al. 2000). 

Interestingly, SsrB is active in the absence of SsrA, indicating SsrB can be phosphorylated by 

other kinases (Walthers et al. 2007). 

PhoP and PhoQ have long been associated with Salmonella virulence (Groisman et al. 

1989; Miller et al. 1989; Behlau and Miller 1993; Belden and Miller 1994; Garcia Vescovi et al. 

1996; Soncini et al. 1996). Both the PhoPQ and OmpR/EnvZ systems are involved in expression 
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of T3SS genes (Deiwick et al. 1999; Lee et al. 2000; Worley et al. 2000; Feng et al. 2003; 

Garmendia et al. 2003; Feng et al. 2004; Kim and Falkow 2004; Bijlsma and Groisman 2005; 

Brown et al. 2005; Merighi et al. 2005; Lober et al. 2006). PhoPQ and OmpR/EnvZ act on ssrA 

and ssrB in Salmonella, but do not modulate expression of other T3SS genes (Lee et al. 2000; 

Worley et al. 2000; Feng et al. 2003; Garmendia et al. 2003; Feng et al. 2004; Bijlsma and 

Groisman 2005). phoP expression is greatly affected by pH changes intracellularly (Martin-

Orozco et al. 2006), indicating it is a mediator of the SPI-2 T3SS activity in acidic conditions. 

SlyA, originally identified as a cytolysin (Libby et al. 1994), is encoded in the Salmonella 

genome and is involved in the regulation of the SPI-2 T3SS regulators SsrAB (Feng et al. 2004; 

Linehan et al. 2005). SlyA is required for survival inside macrophages (Daniels et al. 1996; 

Norte et al. 2003) and resistance to oxidative stress within macrophages (Buchmeier et al. 1997). 

SlyA has redundancy with OmpR, because both are involved in the responses to low osmolarity 

and calcium concentration (Linehan et al. 2005). Okada et al. (Okada et al. 2007) found SlyA 

binds directly to the promoter of ssrA, and mutation of slyA results in loss of SPI-2 T3SS 

function. Expression of slyA may also be modulated by PhoP (Norte et al. 2003); however, 

Navarre et al. (Navarre et al. 2005) found little influence of PhoP on slyA.  

In addition to regulating gene expression, environmental conditions regulate secretion of 

proteins. Acidic conditions are required for secretion, but not expression of SPI-2 translocon 

proteins (Beuzon et al. 1999; Nikolaus et al. 2001; Hansen-Wester et al. 2002; Coombes et al. 

2004; Chakravortty et al. 2005). Beuzon et al. (Beuzon et al. 1999) found SseB accumulates in 

cells at neutral pH, but upon a shift to a pH less than 5.0, SseB is detected extracellularly within 

minutes. In the absence of acidic pH, SseB is not degraded intracellularly, but rather accumulates 

within the cell (Coombes et al. 2004). Coombes et al. (Coombes et al. 2004) hypothesized 

growth of Salmonella to stationary phase induces expression of sseB, suggesting relaxed control 
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of SPI-2 regulation in stationary phase or a separate regulatory mechanism. Acidic pH is also 

required for localization of the apparatus protein SsaC to the outer membrane and 

oligomerization of SsaC subunits (Rappl et al. 2003).  

SsaL of Salmonella is homologous to SepL, a protein of Es. coli, and is required for 

secretion of SPI-2 encoded effector proteins (Coombes et al. 2004; Deng et al. 2004), but is not 

required for secretion of effector proteins encoded outside of the pathogenicity island. 

Expression of ssaL requires an acidic minimal media and SsrB. A lipoprotein, YfgL, is also 

required for optimal SPI-2 gene expression (Fardini et al. 2007). 

SPI-2 genes are induced intracellularly. Eriksson et al. (Eriksson et al. 2003) used 

microarray to study intracellular SPI-2 gene expression. Upregulation of regulatory, apparatus, 

and effector genes is slightly, moderately, or strongly induced, respectively. Based on genes 

involved in ion transport, the researchers conclude magnesium and phosphate are limiting 

intracellularly. However, iron, potassium, and amino acids are available to intracellular 

Salmonella. 

The route of Salmonella entry affects SPI-2 T3SS gene expression. Drecktrah et al. 

(Drecktrah et al. 2006) found SPI-2 genes are expressed faster following SPI-1 induced uptake 

than when taken up via phagocytosis. Expression is also greater in non-opsonized than opsonized 

bacteria, although expression of some SPI-2 genes are not affected. Interestingly, the pH changes 

of the vacuole are also dependent on opsonization; acidification is more rapid following non-

opsonized uptake. 

Response Regulator Binding Domains. Feng et al. (Feng et al. 2004) studied the ability of SsrB 

to bind SPI-2-related promoters. SsrB protects regions of DNA upstream of ssrA, ssrB, and sseI 

in a DNaseI protection assay, indicating those regions contain SsrB binding sites. The C-

terminus of SsrB is sufficient for transcriptional activation of those genes. The SsrB N-terminus 
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contains a phosphorylation domain that, when phosphorylated, modifies the structure of the C-

terminus, resulting in an active state. The amino acid residue subject to phosphorylation is an 

aspartic acid residue, and substitution of this amino acid with alanine prevents transcription of 

sseI. Walthers et al. (Walthers et al. 2007) found additional SsrB binding sites upstream of the 

SPI-2 T3SS genes ssaB, sseA, ssaG, and ssaM. 

Feng et al. (Feng et al. 2003) observed OmpR binding to the ssrA promoter 

intracellularly, but not in vitro, suggesting that the signal received by EnvZ is related to the 

macrophage environment and cannot be replicated in vitro. However, Lee et al. (Lee et al. 2000) 

found that OmpR modulates ssrA expression intracellularly and when cultured in broth at pH 4.5. 

Both of these studies used a different strain of Salmonella, however. Feng et al. (Feng et al. 

2004) also found an OmpR binding site upstream of sseI.  

PhoP regulates ssrB expression by binding the promoter region and inducing expression 

(Bijlsma and Groisman 2005). While a binding region is not upstream of ssrA, PhoP controls 

ssrA post-transcriptionally by binding a portion of the 5’ untranslated region. PhoPQ is a 

negative regulator of the SPI-1 T3SS required for invasion, indicating that PhoPQ may act to 

turn off SPI-1 and turn on SPI-2. PhoP activity downregulates HilA, a protein required for SPI-1 

T3SS gene expression (Behlau and Miller 1993; Bajaj et al. 1996).  

Salmonella Pathogenicity Island 2 T3SS �egative Regulators. Nucleoid binding proteins are 

negative regulators of the SPI-2 T3SS. YdgT is a protein of Salmonella homologous to Hha, 

which negatively regulates virulence gene expression of Es. coli (Fahlen et al. 2000; Fahlen et al. 

2001). Mutation of ydgT results in Salmonella strains overproducing virulence genes, resulting in 

attenuation (Coombes et al. 2005b). Initially, there is enhanced intracellular growth, but with 

time the overproduction results in attenuation, suggesting strict control over both up- and 

downregulation of the SPI-2 T3SS is required for virulence of Salmonella. Deletion of ssrB 
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inhibits the early-enhanced virulence of ydgT mutants, indicating that loss of ydgT does not 

abolish the requirement for ssrB. Hha also is found in Salmonella and is responsible for a 

majority of the repressor activity involved in SPI-2 T3SS expression (Silphaduang et al. 2007). 

When ydgT and hha are mutated, SseB is overexpressed in non-inducing conditions, but 

expression of hha in trans lowers expression of SseB to less than that of a wild type phenotype. 

Salmonella pathogenicity island 2 T3SS expression is negatively regulated by the 

nucleoid-associated protein Fis (Lim et al. 2006). The apparatus gene ssaG contains four Fis-

binding domains in its promoter region. Expression of ssaG and survival within macrophages 

decreases with a fis mutation. Expression of ssrA is also reduced in a fis mutant; Fis interacts 

with the promoter regions of both ssaG and ssrA (Kelly et al. 2004). In addition, Fis regulates 

SPI-1 expression (Wilson et al. 2001). Fis is involved in the upregulation of T3SS genes in 

relation to relaxed supercoiling of the bacterial genome (Ó Cróinín et al. 2006). Mutations in fis 

result in greater relaxation of the genome, making DNA sequences more accessible to 

transcriptional factors. 

H-NS is an additional nucleoid binding protein that negatively regulates SPI-2 T3SS 

expression (Lucchini et al. 2006; Navarre et al. 2006; Walthers et al. 2007). H-NS binds curved 

DNA containing AT-rich regions, potentially silencing foreign gene expression (Lucchini et al. 

2006; Navarre et al. 2006). Pathogenicity islands within Salmonella likely are acquired by 

horizontal transmission, based on their higher AT content than the rest of the genome, indicating 

H-NS would preferentially bind these regions. SsrB, however, relieves repression of H-NS on 

SPI-2 gene promoters (Walthers et al. 2007). Removal of H-NS results in uncontrolled 

expression of Salmonella pathogenicity islands and reduces bacterial fitness (Lucchini et al. 

2006), supporting the findings of Coombes et al. (Coombes et al. 2005b) that overexpression of 

SPI-2 genes results in attenuated virulence. 
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 SPI-2 T3SS expression is negatively regulated by HilA, a regulator of the SPI-1 

invasion-associated T3SS (Thijs et al. 2007). HilA interacts with the promoter of ssaH and 

repress its expression. Other proteins of the SPI-1 T3SS regulatory cascade affect SPI-2 T3SS 

expression. Dieye et al. (Dieye et al. 2007) found sirA, hilC, and invF repress expression of sifB.  

TYPE III SECRETIO� SYSTEM GE�E EXPRESSIO� A�ALYSIS USI�G GFP 

Detection of green fluorescent protein (GFP) expression from various promoters of the 

SPI-2 T3SS by fluorescence-activated cell sorting (FACS) is used to determine in vitro 

conditions sufficient for induction of T3SS promoters. Analysis of expression in media 

commonly is done by measuring the fluorescence of bacterial-sized particles from cultures (Kim 

and Falkow 2004; Yu et al. 2004; Linehan et al. 2005). Similar methods are used to measure 

expression of bacterial cells cultured intracellularly.  

Valdivia and Falkow (Valdivia and Falkow 1996) measured fluorescence of bacterial-

sized particles from lysed macrophages infected by Salmonella strains carrying promoter fusions 

to gfp. This method of detection is used in many studies evaluating promoter fusions to GFP 

(Lee et al. 2000; Garmendia et al. 2003; Bijlsma and Groisman 2005; Lim et al. 2006). Hautefort 

et al. (Hautefort et al. 2003), however, measured fluorescence of Salmonella carrying GFP-

promoter fusions from infected macrophage lysates and labeled the Salmonella using indirect 

fluorescence with a phycoerythrin-conjugated anti-Salmonella antibody. Bacteria were analyzed 

using the phycoerythrin signal rather than by size. The number of total bacteria and the number 

of bacteria expressing the particular promoter were able to be determined, as opposed to the 

method described above in which particle size is used. Using the antibody method, the number of 

bacteria producing GFP can be separated from the population not expression GFP. Hautefort et 

al. (Hautefort et al. 2003) constructed promoter fusions to GFP and inserted them into the 

genome as a single copy rather than being expressed from a plasmid. This eliminated problems 
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with differential copy number of plasmids that lead to differential fluorescence (Hansen-Wester 

et al. 2002). In addition, Hautefort et al. were able to insert the fusion in a segment of DNA such 

that the native gene was not disrupted, avoiding loss of virulence phenotypes. 

Using GFP expression as a reporter has proven to be ineffective in some instances. 

Hansen-Wester et al. (Hansen-Wester et al. 2002) found that SPI-2 expression is improperly 

regulated when genes are expressed from medium copy plasmids with native promoters. A 

similar problem may arise when analyzing activity of reporter genes fused to promoters and 

expressed from plasmids. However, Dieye et al. 2007 found sifA fusion expression is not 

detected as a single insertion in the chromosome, but can when expressed from plasmid, 

suggesting supercoiling or chromatin structure has an effect on expression. Knodler et al. 

(Knodler et al. 2005) reported that cloning vectors and fluorescent proteins can impair the ability 

of Salmonella to replicate in mammalian cells and in mice.  

THE EDWARDSIELLA TARDA T3SS 

Edwardsiella tarda encodes a T3SS similar to that of the SPI-2 T3SS. An E. tarda gene, 

esrB, similar to ssrB of Salmonella, results in attenuation when mutated (Srinivasa Rao et al. 

2003). Secreted proteins EseB, EseC, and EseD of E. tarda are homologous to SseB, SseC, and 

SseD of Salmonella and are present in the supernatant of E. tarda cultures, indicating E. tarda 

encodes a T3SS similar to the SPI-2 T3SS of Salmonella (Srinivasa Rao et al. 2004). The 

EseBCD proteins form a complex after secretion, supporting the proposal that these proteins 

serve as the translocon of a T3SS (Zheng et al. 2007). Secretion of EseB and EseD is dependent 

on a putative chaperone protein, EscC (Zheng et al. 2007), and mutation of escC prevents 

secretion of EseB and EseD. Mutation of esrB reduces secretion of the E. tarda T3SS proteins 

EseB, EseC, and EseD, indicating EsrB acts as a regulator of the E. tarda T3SS. 
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Edwardsiella tarda replicates within fish phagocytes (Srinivasa Rao et al. 2001; Okuda et 

al. 2006) similar to intracellular replication of Salmonella. Okuda et al. (Okuda et al. 2006) 

found the T3SS is required for survival and replication of E. tarda in murine macrophages, and 

anti-apoptotic genes are upregulated in a NF-κΒ dependent manner by wild type E. tarda 

compared to strains with T3SS mutations. Conversely, Okuda et al. (Okuda et al. 2008) report 

that wild type E. tarda downregulates NF-κΒ activity in epithelial cells, and like in 

macrophages, a T3SS-deficient mutant is unable to replicate in the epithelial cells. 

The genome of E. tarda has not been sequenced, but the pathogenicity island encoding 

the E. tarda T3SS was sequenced by Tan et al. (Tan et al. 2005), identifying 35 ORFs encoding 

putative T3SS apparatus, effector, chaperone, and regulatory proteins. Mutation of various genes 

within the island attenuates E. tarda in fish phagocytes, and LD50 values increase at least 10 

times that of wild type E. tarda. Edwardsiella tarda encodes an AraC-type regulator protein, 

EsrC, which Salmonella does not encode in SPI-2 (Tan et al. 2005; Zheng et al. 2005). Mutation 

of esrC increases LD50 values and decreases secreted T3SS proteins. In addition, proteins 

associated with a type VI secretion system (T6SS) do not secrete in the esrC mutant. Expression 

of esrC is dependent upon the EsrA and EsrB two-component system, and expression of some E. 

tarda T3SS genes is EsrC-dependent.  

Edwardsiella tarda T3SS Regulation. Expression of the E. tarda T3SS does not require acidic 

media or low phosphate concentrations, in contrast to the SPI-2 T3SS. Edwardsiella tarda T3SS 

promoter activity and protein secretion is achieved by culture in Dulbecco’s Modified Eagle 

Medium at pH 7.0 (Srinivasa Rao et al. 2004; Tan et al. 2005; Zheng et al. 2005). EsrA and EsrB 

are involved in regulation of the E. tarda T3SS (Srinivasa Rao et al. 2003; Tan et al. 2005; 

Zheng et al. 2005), and mutation of esrB decreases expression of putative translocon proteins 

EseB, EseC, and EseD (Srinivasa Rao et al. 2004). Similar to Salmonella, EsrA and EsrB are 
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required for intracellular replication within macrophages (Srinivasa Rao et al. 2003; Tan et al. 

2005). EsrC is also involved in intramacrophage replication; however the effect of esrC mutation 

is less than that of esrA or esrB (Zheng et al. 2005). Expression of EsrC is dependent upon EsrA 

and EsrB, and EsrC is also involved in the expression of secreted translocon proteins of the T3SS 

(Zheng et al. 2005). However, EsrC is not involved in controlling T3SS apparatus gene 

expression. In addition to regulating E. tarda T3SS genes, EsrC regulates expression of T6SS 

genes (Zheng et al. 2005; Zheng and Leung 2007). 

Because the E. tarda genome is not sequenced, the presence of genes homologous to SPI-

2 regulators, such as OmpR/EnvZ, PhoPQ, or SlyA, is not known. Therefore, association of these 

proteins with regulation of the E. tarda T3SS regulation has not been studied. However, genes 

involved in phosphate transport (pstSCABphoU) are associated with virulence in E. tarda 

(Srinivasa Rao et al. 2003; Srinivasa Rao et al. 2004). The PST operon is involved in phosphate 

transport, and mutation of PST genes results in decreased T3SS gene expression indicating low 

intracellular concentrations of inorganic phosphate downregulate the E. tarda T3SS. The role of 

PST in virulence, however, may be a result of reduced fitness due to the bacteria being unable to 

maintain intracellular phosphate concentrations. Low inorganic phosphate concentrations in 

culture media induce SPI-2 T3SS gene expression; however, low phosphate media conditions are 

an extracellular signal as opposed to PST mutants, which would cause a low phosphate signal 

intracellularly due to the inability to import phosphate. 

THE EDWARDSIELLA ICTALURI T3SS 

Edwardsiella ictaluri encodes a T3SS homologous to the E. tarda T3SS and the SPI-2 

T3SS (Thune et al. 2007). A list of genes encoded by the E. ictaluri T3SS pathogenicity island is 

provided in Table 1.1 along with their putative functions and homologous genes in E. tarda and 

Salmonella. The E. ictaluri T3SS is necessary for replication of the bacterium in channel catfish 
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macrophages and pathogenesis in the channel catfish host. In 2001, T3SS-like genes were 

sequenced from the plasmids of E. ictaluri by Fernandez et al. (Fernandez et al. 2001). However, 

the sequence of the pathogenicity island was not determined until later (Thune et al. 2007). 

Within the pathogenicity island, there are genes similar to the SPI-2 T3SS, including regulatory, 

apparatus, chaperone, and effector genes (Figure 1.1). A schematic describing the putative 

construction of the E. ictaluri T3SS is provided in Figure 1.2. 

Edwardsiella ictaluri encodes a protein in the T3SS pathogenicity island that is 

homologous to the effectors SseF and SseG. However, the sequence in E. ictaluri is a hybrid of 

the two proteins; that is, the predicted amino acid sequence of the single open reading frame has 

similarities to both SseF and SseG of Salmonella. Interestingly, SseF and SseG associate 

physically and functionally for virulence (Deiwick et al. 2006), suggesting the single protein of 

E. ictaluri may have a similar function as the two Salmonella proteins SseF and SseG.  

SpiC is a SPI-2 effector protein encoded at the beginning of an operon containing the 

apparatus genes ssaCDE. Edwardsiella ictaluri does not have a gene with high homology to 

spiC, but it does encode EsaB, which has minor homology to SpiC and is encoded in a similar 

position as spiC: at the beginning of an operon encoding the apparatus genes esaCDE (Figure 

1.3). It is unknown if EsaB is an effector protein of the E. ictaluri T3SS, but its positioning 

relative to that of spiC in Salmonella suggests the possibility. 

 

 
 
Figure 1.1. Schematic representation of the Edwardsiella ictaluri type III secretion system 
pathogenicity island genetic organization.  
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Table 1.1. Genes of the Edwardsiella ictaluri type III secretion system (T3SS) and homologs in 
E. tarda and Salmonella pathogenicity island 2 (SPI-2).  

E.ictaluri E. tarda SPI-2 
Encoded within the E. ictaluri 

T3SS  
Putative function 

esaB esaB spiC (ssaB) Yes Putative translocated effector 

esaC esaC ssaC Yes Apparatus 

esaD esaD ssaD Yes Apparatus 

esaE esaE ssaE Yes Apparatus 

esaG esaG ssaG Yes Apparatus 

esaH esaH ssaH Yes Apparatus 

esaI esaI ssaI Yes Apparatus 

esaJ esaJ ssaJ Yes Apparatus 

esaK esaK ssaK Yes Apparatus 

esaL esaL ssaL Yes Apparatus 

esaM esaM ssaM Yes Apparatus 

esa� esa� ssa� Yes Apparatus 

esaO esaO ssaO Yes Apparatus 

esaP esaP ssaP Yes Apparatus 

esaQ esaQ ssaQ Yes Apparatus 

esaR esaR ssaR Yes Apparatus 

esaS esaS ssaS Yes Apparatus 

esaT esaT ssaT Yes Apparatus 

esaU esaU ssaU Yes Apparatus 

esaV esaV ssaV Yes Apparatus 

esaW esaW sty1410 Yes Apparatus 

escA escA sscA Yes Chaperone for translocon proteins 

escB escB sscB Yes Chaperone for EseG 

escC escC sseA Yes Chaperone for translocon proteins 

escD - - No; pEI2 Chaperone for EseI 
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Table 1.1 continued. 

E.ictaluri E. tarda SPI-2 
Encoded within the E. ictaluri 

T3SS  
Putative function 

eseB eseB sseB Yes Translocon protein 

eseC eseC sseC Yes Translocon protein 

eseD eseD sseD Yes Translocon protein 

eseE eseE sseE Yes Possible translocon chaperone 

eseG eseG 
sseF and 

sseG 
Yes Translocated effector 

eseH - 
sspH1and 

sspH2 
No; pEI1 

Translocated effector; downregulates immune 
response or inhibits actin polymerization 

eseI - 

hypothetical 
not yet 

associated 
with SPI-2 

No; pEI2 
Translocated effector; downregulates immune 

response 

eseJ - 
sspH1 and 

sspH2 
No; genomic 

Translocated effector; downregulates immune 
response or inhibits actin polymerization 

eseK - 
sspH1 and 

sspH2 
No; genomic 

Translocated effector; downregulates immune 
response or inhibits actin polymerization 

eseL - 
sspH1 and 

sspH2 
No; genomic 

Translocated effector; downregulates immune 
response or inhibits actin polymerization 

eseM - 
sspH1 and 

sspH2 
No; genomic 

Translocated effector; downregulates immune 
response or inhibits actin polymerization 

esrA esrA ssrA Yes Membrane sensor kinase 

esrB esrB ssrB Yes Cytosolic response regulator 

esrC esrC - Yes AraC-type transcriptional activator 

slt slt - Yes soluble lytic transglycosylase 

orf29/30 

orf 29 

and  
orf 30 

- Encoded near the T3SS Possibly a T3SS effector 
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Figure 1.2. Schematic representation of the Edwardsiella ictaluri type III secretion system 
(T3SS). The T3SS translocates proteins from the bacterial cytoplasm to the host cytoplasm. 

encoded apparatus proteins (Esa) assemble in the inner membrane, periplasmic space, 
and outer membrane to form a channel for effector proteins (Ese) to pass. Translocon proteins 
(EseBCD) function as a conduit between the bacterial and host cell membranes to translocate 
effector proteins. Chaperone proteins (Esc) bind effector proteins to keep them in an inactive 

teria. The identification of the E. ictaluri proteins in the membranes is based 
Es. coli T3SS proteins. The image is adapted from Pallen et al. 
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Figure 1.3. Comparison of the  Edwardsiella ictaluri esaB operon to the spiC (ssaB) operon of 
Salmonella. Although similar in size and organization, predicted amino acid sequences are not 
greatly homologous. EsaC/SsaC and EsaD/SsaD are predicted apparatus genes, but SpiC is a 
secreted effector of SPI-2 T3SS, suggesting EsaB may have a similar function. Percent identity 
and similarity between significant amino acid alignments are given below each alignment. NSA 
indicates no significant alignment between the sequences. 
 

The homology of E. ictaluri T3SS proteins to SPI-2 encoded proteins suggests a similar 

function. Edwardsiella ictaluri does not induce filaments as Salmonella does, and likewise, no 

genes are identified that encode proteins with similar amino acid sequences to Salmonella 

proteins involved in Sif formation. Edwardsiella ictaluri, however, does encode proteins with 

homology to Salmonella effectors involved in intracellular trafficking (SseF, SseG, and SpiC) 

and immune modulation (SspH1), suggesting the T3SS of E. ictaluri provides a similar benefit of 

modulating trafficking of vesicles. 

Many SPI-2 effector proteins are encoded outside of the pathogenicity island. Both 

plasmids of E. ictaluri contain a putative T3SS gene (Fernandez et al. 2001). pEI1 encodes a 

gene with a predicted amino acid sequence similar to T3SS secreted proteins SspH1 and SspH2 

of Salmonella, YopM of Yersinia, and IpaH of Shigella. The similarities to YopM and IpaH 

primarily are in a region encoding leucine rich repeats. However, both the amino and carboxy 
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termini of SspH1 and SspH2 have homology to the pEI1-encoded protein. pEI2 encodes a small 

protein with minor homology to chaperone proteins of organisms containing T3SS. Generally, a 

chaperone protein is a small protein with an acidic isoelectric point (pI) (Page and Parsot 2002). 

The molecular weight (MW) of the predicted pEI2 protein is 16.5 kDa, and its theoretical pI is 

4.78 as predicted by ProtParam (Gasteiger et al. 2005). This dissertation also describes the 

finding of a potential effector gene three base pairs downstream of the pEI2 chaperone sequence, 

possibly transcriptionally linked to the chaperone. Furthermore, analysis of the genome reveals at 

least four other sequences with homology to T3SS secreted effectors of Salmonella and Shigella. 

Further analysis of the genome may identify more genes involved in T3SS translocation, which 

will lead to a better understanding the factors involved in pathogenesis of E. ictaluri.  

The E. ictaluri T3SS pathogenicity island encodes proteins with amino acid sequences 

similar to SsrA and SsrB of Salmonella and EsrA and EsrB of E. tarda. SsrA and SsrB are 

required for pathogenesis of Salmonella, and EsrA and EsrB are required for E. tarda 

pathogenesis. Like E. tarda, E. ictaluri encodes a third regulatory gene, esrC. EsrC has 

homology to AraC-type transcriptional activators, but its function in E. ictaluri is unknown. EsrC 

in E. tarda is necessary for virulence, and involved in the regulation of T3SS and non-T3SS 

virulence factors (Zheng et al. 2005).  

Analysis of E. ictaluri T3SS gene expression will provide valuable insight into the 

pathogenic mechanisms of this organism. Type III secretion systems are found throughout Gram-

negative bacteria, both in plant and animal pathogens, and in non-pathogenic bacteria as well. 

The E. ictaluri T3SS not only has homology to SPI-2 of Salmonella, a pathogen of higher 

vertebrates, but also to Ralstonia solaraceum, a plant pathogen, and to Chromobacterium 

violaceum, an environmental opportunistic human pathogen (Thune et al. 2007). The study of 

these and other T3SS may result in treatments applicable to a wide variety of T3SS-encoding 
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organisms. T3SS activity is affected negatively by a variety of chemicals (Muschiol et al. 2006; 

Hudson et al. 2007; Negrea et al. 2007; Pan et al. 2007). Furthermore, the T3SS has been used as 

an experimental delivery system for potential vaccines by fusing the translocation signal of T3SS 

effector proteins to immunogenic proteins of pathogens (Husseiny and Hensel 2005; Panthel et 

al. 2005; Wilson and Nickerson 2006; Husseiny et al. 2007). The study of the E. ictaluri T3SS 

may also provide insight into the spread and distribution of this SPI-2 type of T3SS among 

Gram-negative bacteria.  

TYPE VI SECRETIO� SYSTEMS 

Edwardsiella ictaluri encodes a T6SS homologous to the E. tarda T6SS (Figure 1.4) 

necessary for virulence (Zheng and Leung 2007). T6SS were recently reviewed by Filloux et al. 

(Filloux et al. 2008), Bingle et al. (Bingle et al. 2008), and Pukatzki et al. (Pukatzki et al. 2009). 

A number of plant and animal pathogens including Salmonella, Vibrio, Francisella, 

Pseudomonas, and others encode T6SS. Many T6SS have a role in virulence, particularly with 

intracellular survival. Interestingly, the E. tarda and the Salmonella T6SS are both regulated by 

T3SS-encoded regulatory genes. The E. tarda T6SS is positively regulated by EsrC, which is 

under EsrB control (Zheng et al. 2005; Zheng and Leung 2007), and the Salmonella T6SS 

protein SciS is under negative control by SsrB (Parsons and Heffron 2005). Furthermore, 

Parsons and Heffron (Parsons and Heffron 2005) report SciS is involved in limiting Salmonella 

replication within  macrophages, in opposition of SPI-2 T3SS effects. The limited replication 

results the ability of Salmonella to persist longer intracellularly. Mutation of sciS results in 

hyper-replication intracellularly and an attenuated phenotype because of the unregulated 

intracellular expression. The T6SS of E. tarda is required for virulence in vivo, but whether it is 

involved in intracellular replication is not known. 
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Figure 1.4. Schematic representation of the Edwardsiella ictaluri and E. tarda type VI secretion 
system (T6SS) genetic loci. The open reading frames of the T6SS of E. ictaluri (A) and E. tarda 
(B) are arranged in the same order between the two species, and the nucleotide sequences across 
the entire pathogenicity island are 88% identical.  
 
 
OBJECTIVES A�D HYPOTHESES 

The goal of this dissertation research was to characterize expression of the E. ictaluri 

T3SS to determine its role in channel catfish pathogenesis. The objectives of this research were 

threefold: 1) characterize in vitro expression of the E. ictaluri T3SS; 2) characterize regulatory 

genes involved in T3SS gene expression in vitro; and 3) characterize the role of the E. ictaluri 

plasmids in pathogenesis. The hypotheses for each of the above objectives were 1) E. ictaluri 

T3SS gene expression is upregulated in conditions mimicking those of the intracellular 

environment of a macrophage, including nutrient limitation and acidic pH; 2) mutation of each 

T3SS regulatory gene will result in virulence defects both ex vivo and in vivo; and 3) mutations 

in T3SS-related genes carried on the plasmids of E. ictaluri will result in virulence defects ex 

vivo and in vivo due to disruption of the T3SS genes. 

The second chapter demonstrates E. ictaluri T3SS expression in a number of culture 

conditions, with strong upregulation of the T3SS when E. ictaluri is exposed to acidic 

environments with low inorganic phosphate concentrations. Acidic pH alone upregulates the 

translocon operon, and translocon proteins are identified in the supernatants of pH 5.5 cultures. 

Expression of other T3SS genes in low phosphate, acidic media is confirmed using quantitative 
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real-time PCR (qPCR) and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), 

with protein spot identification by peptide-mass-fingerprinting matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (PMF MALDI-TOF/TOF MS). 

The third chapter describes the mutagenesis of E. ictaluri T3SS regulatory genes esrA, 

esrB, and esrC. T3SS gene expression was evaluated in each mutant strain using qPCR to 

determine the effect of each mutation on gene expression. Each mutation causes a decrease in 

expression of T3SS genes assayed, but mutation of esrB has the greatest effect, and expression of 

esrC is dependent on EsrB. Interestingly, even though mutation of esrC results in decreased 

T3SS gene transcription, the mutant is able to replicate equally to the wild type in channel catfish 

head kidney-derived macrophages (HKDM) up to 10 hrs post-infection. Both esrA and esrB 

mutants are significantly attenuated for replication in HKDM. All three of the mutants, however, 

are attenuated in a channel catfish infection assay. 

The fourth chapter describes the characterization of mutants created in the plasmids of E. 

ictaluri by signature tagged mutagenesis (STM) (Thune et al. 2007). One mutant strain carries a 

mutation in pEI1 at the 3' end of eseH. A second STM mutant carries a mutation in pEI2 about 

100 nt upstream of  escD. Upon further analysis, another gene is found three bases downstream 

of escD encoding a protein with homology to proteins from Pseudovibrio, Shigella, Vibrio, Es. 

coli, Chromobacterium, and Salmonella. Both of the STM plasmid mutants are severely 

attenuated in macrophages and in three channel catfish challenges evaluating catfish mortality, 

competition with wild type, and persistence in channel catfish head kidney. However, analysis of 

T3SS gene expression in the pEI1 and pEI2 mutants demonstrates they are severely deficient in 

expression of a majority of T3SS genes. Protein analyses corroborate the qPCR findings by 

showing the proteins EseB and EseD are missing in whole cell lyastes of the pEI1 and pEI2 

mutants grown in T3SS expression-inducing conditions. The cause of the severe downregulation 
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is unknown, but may be associated with integration of the plasmid into the genome near putative 

regulatory genes. Additionally, four putative T3SS effector genes, eseJ, eseK, eseL, and eseM, 

which have homology to sspH1 and sspH2 of Salmonella, are encoded in the genome. Analyses 

of the amino acid sequences suggest each is a T3SS translocated effector gene. 

The final chapter describes the general conclusions of the studies. The E. ictaluri T3SS is 

upregulated in acidic, low-phosphate media, conditions that mimic the intracellular environment. 

The expression of the T3SS is dependent upon the T3SS regulatory genes esrA, esrB, and esrC. 

Mutation of these genes results in attenuation of virulence in vivo, and the esrA and esrB mutants 

are incapable of replication in HKDM. The esrC mutant, however, is able to replicate in channel 

catfish macrophages for up to 10 hrs post-infection. Finally, the plasmids carried by E. ictaluri 

have an integral, but unknown function in the virulence of E. ictaluri. Mutation of each of the 

plasmids results in complete attenuation in vivo and ex vivo and results in drastic downregulation 

of T3SS gene expression, indicating that the plasmids function in T3SS expression.   
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CHAPTER 2 

I� VITRO EXPRESSIO� OF THE EDWARDSIELLA ICTALURI  

TYPE III SECRETIO� SYSTEM  

 

I�TRODUCTIO�   

Edwardsiella ictaluri is a Gram-negative bacterium of the family Enterobacteriacae and 

the etiological agent of enteric septicemia of catfish (ESC). Edwardsiella ictaluri was isolated, 

named, and characterized by Hawke et al. (Hawke 1979; Hawke et al. 1981). Enteric septicemia 

of catfish is the leading cause of disease-related mortality in channel catfish (Ictalurus punctatus) 

production facilities (Anonymous 2003a; Anonymous 2003b). External signs of acute infection 

include petechial hemorrhaging and lethargy. Internal signs include petechial hemorrhaging and 

necrotic foci on organs, as well as fluid accumulation (Jarboe et al. 1984; Shotts et al. 1986; 

Newton et al. 1989; Baldwin and Newton 1993). Chronic infection also occurs, characterized by 

lesions on the head, causing the formation of a mid-cranial hole. Fish in the chronic stage also 

exhibit disordered swimming and listlessness because of meningoencephalitis. Despite the 

enormous economic impact of this organism, little is known about the genetic determinants 

involved in the pathogenesis in channel catfish. 

Type III secretion systems (T3SS) are ubiquitous in Gram-negative bacteria. Type III 

secretion systems translocate effector proteins from the cytoplasm of bacteria across the bacterial 

and host cell membranes to the cytoplasm of a host target cell. Many recent reviews are available 

describing structure, function, and evolution of T3SS (Macnab 2004; Saier 2004; Ehrbar and 

Hardt 2005; Jones 2005; Patel and Galan 2005; Sorg et al. 2005; Troisfontaines and Cornelis 

2005; Abrahams and Hensel 2006; Galan and Wolf-Watz 2006; Schlumberger and Hardt 2006; 

Angot et al. 2007). Type III secretion system apparatus proteins generally are conserved; the 

effector proteins vary, however, resulting in the differing functions of T3SS among species. 

Functions of T3SS include induction of uptake into host cells (Shigella and Salmonella), 



 
 

55 
 

prevention of phagocytosis (Yersinia), induced attachment/effacement (Escherichia), and 

induction of intracellular replication (Salmonella and E. tarda).  

A pathogenicity island encoding a T3SS was recently identified and sequenced in E. 

ictaluri (Thune et al. 2007). Mutation of the T3SS apparatus gene esaU results in attenuated 

virulence both in channel catfish macrophages and in vivo, indicating the T3SS is required for 

intracellular replication and virulence. The T3SS is arranged similarly to the E. tarda T3SS, 

which is involved in replication within fish macrophages (Tan et al. 2005; Okuda et al. 2006). 

The E. ictaluri and E. tarda T3SS are similar to the Salmonella pathogenicity island 2 (SPI-2) 

T3SS involved in intracellular replication. 

An understanding of the conditions required for expression of the E. ictaluri T3SS will 

provide insight as to potential environments within the host that result in expression of the T3SS. 

Determining how and when the T3SS is expressed will provide valuable information to enable 

further studies concerning in vivo expression of the system and development of preventative 

measures. In this study, expression of the E. ictaluri T3SS was analyzed in a variety of in vitro 

growth conditions. Environmental conditions, particularly low pH and low phosphate, positively 

influence transcription of E. ictaluri T3SS genes. Furthermore, T3SS translocon proteins require 

acidic pH for secretion into the culture supernatant. 

MATERIALS A�D METHODS 

Bacterial Strains and Growth Conditions. Bacterial strains and plasmids used in this study are 

listed in Table 2.1. Edwardsiella ictaluri strains were grown in Luria Bertani broth (LB) 

supplemented with either fish peptone (LB-FP) or mannitol salts (LB-Man). For minimal media, 

E. ictaluri defined minimal media MM19 (Collins and Thune 1996) was used. Edwardsiella 

ictaluri was also grown on trypticase soy agar supplemented with 5% sheep blood (BA, Remel 

Products, Lenexa, KS). 



 
 

56 
 

Table 2.1. Bacterial strains and plasmids used in Chapter 2. 

Bacterial Strains or Plasmid Description  Source 

Edwardsiella ictaluri 

93-146  
 
 
65ST (esaU-) 
 
 
eseH-gfp+ 

 

esaB-gfp+ 

 

esaM-gfp+ 

 

esaR-gfp+ 

 

escB-gfp+ 

 

escC-gfp+ 

 

esrA-gfp+ 

 

esrC-gfp+ 

 

-promgfp+ 

 

kmprom 

 

 
Wild type E. ictaluri isolated from a moribund channel 
catfish from a natural outbreak at a commercial facility 
in 1993 
Derived from parental wild type strain 93-146; carries an 
insertion of a signature-tagged mutagenesis tag S/T in 
the esaU gene 
93-146 carrying a gfp+ construct under control of the 
eseH promoter between serC and aroA Cmr  
93-146 carrying a gfp+ construct under control of the 
esaB promoter between serC and aroA Cmr  
93-146 carrying a gfp+ construct under control of the 
esaM promoter between serC and aroA Cmr  
93-146 carrying a gfp+ construct under control of the 
esaR promoter between serC and aroA Cmr  
93-146 carrying a gfp+ construct under control of the 
escB promoter between serC and aroA Cmr  
93-146 carrying a gfp+ construct under control of the 
escC promoter between serC and aroA Cmr  
93-146 carrying a gfp+ construct under control of the 
esrA promoter between serC and aroA Cmr  
93-146 carrying a gfp+ construct under control of the 
esrC promoter between serC and aroA Cmr  
93-146 carrying a promoterless gfp+ construct between 
serC and aroA Cmr  
93-146 carrying a gfp+ construct under control of the km 
promoter between serC and aroA Cmr 

  
LSU aquatic disease 
laboratory 
 
(Thune et al. 2007) 
 
 
This work 
 
This work 
 
This work 
 
This work 
 
This work 
 
This work 
 
This work 
 
This work 
 
This work 
 
This work 

Escherichia coli  

XL1 Blue MRF’ 
 
SM10λpir 

 
(mcrA)183 (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-

1 recA1 gyrA96 relA1 lac [F’ proABlacIqZ.M15 

Tn5(Km)] 
thi1 thr1 leuB supE44 tonA21 lacY1 recA-::RP4-2-
Tc::Mu Kmr λ::pir 

  
Stratagene, La Jolla, CA 
 
(Simon et al. 1983) 

Plasmids 

pBluescript SK- 
 
Cloning vector 

  
Stratagene, La Jolla, CA 

pBS::serCaroA pBluescript carrying the serC-aroA region of E. ictaluri 
genomic DNA 

 This work 

pBS::SA∆Tn pBS::serCaroA with a cryptic transposase removed from 
between the serC and aroA regions and a BstZ17I 
recognition site inserted 

 This work 

pZep08 gfp+ promoter trap vector Kmr Apr Cmr  (Hautefort et al. 2003) 

pZep::eseH pZep08 carrying the promoter for the E. ictaluri type III 
secretion system (T3SS) pEI1-encoded effector gene 
eseH 

 This work 

pZep::esaB pZep08 carrying the promoter region for the E. ictaluri 
(T3SS) apparatus operon (esaBCDE) 

 This work 
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Table 2.1 continued. 

Bacterial Strains or Plasmid Description  Source 

pZep::esaM pZep08 carrying the promoter region for the E. ictaluri 
T3SS apparatus operon esaM (esaMV�OPQ) 

 This work 

pZep::esaR pZep08 carrying the promoter region for the E. ictaluri 
T3SS apparatus operon esaR (esaRSTU) 

 This work 

pZep::escB pZep08 carrying the promoter region for the E. ictaluri 
T3SS chaperone and effector operon escB (escB, eseG) 

 This work 

pZep::escC pZep08 carrying the promoter region for the E. ictaluri 
T3SS translocon operone (escAC, eseBCDE) 

 This work 

pZep::esrA pZep08 carrying the promoter region for the E. ictaluri 
T3SS regulatory gene esrA 

 This work 

pZep::esrC pZep08 carrying the promoter region for the E. ictaluri 
T3SS regulatory gene esrC and apparatus operon (esrC, 
esaGHIJWKL) 

 This work 

pZep::orf29/30 pZep08 carrying the promoter region for the E. ictaluri 
T3SS associated gene orf29/30 

 This work 

pZep:: -promgfp+ pZep08 carrying a promoterless gfp+ construct  This work 

pZep::kmprom pZep08 carrying the promoter for the Km resistance 
gene 

 This work 

pBS::SA∆Tn::eseHgfp+ pBS::SA∆Tn with the eseH promoter fusion to gfp+   This work 

pGP704 R6K ori mob Ampr; suicide vector used for allelic 
exchange 

 (Miller and Mekalanos 
1988) 

pGP::SA∆Tn::eseHgfp+ pGP704 carrying the the SA∆Tn::eseHgfp+ construct  This work 

pGP::SA∆Tn::esaBgfp+ pGP704 carrying the the SA∆Tn::esaBgfp+ construct  This work 

pGP::SA∆Tn::esaMgfp+ pGP704 carrying the the SA∆Tn::esaMgfp+ construct  This work 

pGP::SA∆Tn::esaRgfp+ pGP704 carrying the the SA∆Tn::esaRgfp+ construct  This work 

pGP::SA∆Tn::escBgfp+ pGP704 carrying the the SA∆Tn::escBgfp+ construct  This work 

pGP::SA∆Tn::escCgfp+ pGP704 carrying the the SA∆Tn::escCgfp+ construct  This work 

pGP::SA∆Tn::esrAgfp+ pGP704 carrying the the SA∆Tn::esrAgfp+ construct  This work 

pGP::SA∆Tn::esrCgfp+ pGP704 carrying the the SA∆Tn::esrCgfp+ construct  This work 

pGP::SA∆Tn::orf29/30gfp+ pGP704 carrying the the SA∆Tn::orf29/30gfp+ construct  This work 

pGP::SA∆Tn::-promgfp+ pGP704 carrying the the SA∆Tn::-promgfp+ construct  This work 

pGP::SA∆Tn::kmprom pGP704 carrying the the SA∆Tn::kmprom construct  This work 
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Low phosphate MM19 (MM19-P) was formulated similar to MM19, except salts 

containing phosphate are removed. In order to maintain similar levels of sodium and potassium 

in the media, an additional 2.5 g sodium chloride (NaCl) and 4.0 g potassium chloride (KCl) 

were added. Phosphate provides the buffering capacity in MM19, and removal of the phosphate 

results in pH instability of the media, so 2-(N-Morpholino)ethanesulfonic acid (MES) and 3-(N-

Morpholino)propanesulfonic acid (MOPS) were used to buffer pH 5.5 and 7.0 low phosphate 

media, respectively. Each buffer was added to a final concentration of 80 mM. Minimal 

phosphate required for growth was maintained by adding 0.5 ml/L of a solution of 125 mM 

Na2HPO4 • 7H2O and 125 mM KH2PO4, resulting in 0.125 mM phosphate in MM19-P. 

Edwardsiella ictaluri cultures were grown at 28º C with aeration unless otherwise noted. 

Antibiotics were added as appropriate in the following concentrations: ampicillin 200 µg/ml 

(Ap), chloramphenicol 12.5 µg/ml (Cm), colistin 10 µg/ml (Col), and kanamycin 50 µg/ml (Km). 

Escherichia coli strains were cultured in LB broth with appropriate antibiotics at 37° C with 

aeration.  

D�A Manipulation. Genomic DNA was isolated using a protocol previously described by 

Ausubel et al. (Ausubel et al. 1994). Briefly, cells were collected by centrifugation at 3700 x g 

for 5 minutes and resuspended in TE. Cells were lysed with 0.5% SDS in the presence of 50 

µg/ml RNase A and 100 µg/ml proteinase K. Protein was extracted by using phenol:chloroform: 

isoamyl alchol (25:24:1) with a chloroform wash. DNA was ethanol precipitated in the presence 

of 0.12 M sodium acetate, collected by centrifugation at 3700 x g, and resuspended in water. 

Plasmid DNA was isolated using the Qiagen Miniprep Kit (Qiagen Inc., Valencia, CA.). 

Restriction digests were done using enzymes purchased from New England Biolabs (Ipswich, 

MA), and DNA was purified from restriction digests using the Qiaquick Kit or Minelute Kit 

(Qiagen). 
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D�A Sequence Analysis. Percent identity and percent similarity across homologous sequences 

were determined using the Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1997). 

Gene and operon predictions were done by using FGENESB to determine putative open reading 

frames and operons and BPROM to determine putative promoter regions for genes (SoftBerry, 

Inc., Mount Kisco, NY). In addition, open reading frames were verified using ORF finder 

(http://www.ncbi.nlm.nih.gov/projects/gorf/). 

T3SS Promoter Fusion to gfp+. In order to evaluate expression of the T3SS effector protein 

EseH, the eseH promoter (PeseH) was fused to green fluorescent protein (GFP) and inserted into 

the E. ictaluri genome between serC and aroA. pBS::serCaroA was constructed by amplifying a 

portion of the E. ictaluri genome containing serC, aroA, and the non-coding region between 

serC and aroA using primers serCspeI and aroAapaI (Table 2.2). The resulting PCR product was 

digested with SpeI and ApaI (New England Biolabs) following manufacturer’s protocol and 

ligated into the SpeI and ApaI site of pBluescript resulting in pBS::serCaroA (Figure 2.1A).  

Following construction of pBS::serCaroA, inverse PCR was done using primers 

serCBstZ17I and aroASalI (Table 2.2). The product of this PCR amplification removed a 

transposase region, which may have complicated allelic exchange because of multiple 

homologous regions elsewhere in the genome. The inverse PCR product was gel purified using 

Qiaquick Kit (Qiagen), and its 3’ ends were phosphorylated using polynucleotide kinase (PNK, 

New England Biolabs) following the manufacturer’s protocols. PNK-treated DNA was purifed 

using Qiaquick Kit (Qiagen), and the DNA was self-ligated using T4 DNA Ligase (New England 

Biolabs) following manufacturer’s instructions. The resultant plasmid had 843 nt removed from 

the serC/aroA intergenic region of pBS::serCaroA and a BstZ17I site inserted into the serCaroA 

intergenic sequence (Figure 2.1B). This plasmid was called pBS::SA∆Tn. 
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The eseH promoter region was amplified using primers containing 5’ �otI and 3’ XbaI 

sites engineered into the primers (Table 2.2). This PCR product was digested with �otI and XbaI 

(New England Biolabs), and ligated into the �otI and XbaI region of pZep08 (Figure 2.1C) 

(Hautefort et al. 2003), placing it upstream of a promoterless GFP variant gfp+ and removing the 

Km cassette. The resultant plasmid was electroporated into Es. coli XL1 Blue MRF’, and cells 

were selected for Cm and Ap resistance and Km sensitivity. The resultant plasmid was called 

pZep::PeseH (Figure 2.1D). 

 

Table 2.2. Oligonucleotides used for construction of Edwardsiella ictaluri type III secretion 
system gene promoter fusions to gfp+. Underlined portions indicate �otI recognition sites added 
to the primer, incorporating the site into the 5’ end of the PCR product. Italicized portions 
indicate XbaI recognition sites added to the primer, incorporating the site into the 3’ end of the 
PCR product.  

 Forward primer sequence Reverse primer sequence 

serCspeI  
 

ATTCACTAGTCGGTAATGGAGATCAGCC - 

aroAapaI 
 

ATATAGGGCCCGCCCTTTGGCAAACAGCG - 

serCBstZ17I 
  

ATAATAGTATACTTCCCACGATGGCCTCTC - 

aroAsalI 
  

ATAATAGTCGACTGTAGAGAAGGCGCTGGT - 

pZep08 
 

TGGGGTAATGACTCTCTAGC CGTCATTTCTGCCATTCATCC 

serCaroA 
 

CGGTAATGGAGATCAGCC GCCCTTTGGCAAACAGCG 

eseH 

 
TTTAAGCGGCCGCATTACATCTAAGAAA TTTCACTCTAGATGTGAAATTTTCCCATT 

escC 

 
TTTAAGCGGCCGCACTGGAAACGTCGCTC TTTCACTCTAGAAGGGAAACCTCCTATTGACG 

escB 

 
ATTATTGCGGCCGCTGATCGCTCTTATGGGG ATATATTCTAGAGGGGATCTCCAAAGAGTC 

esaB 

 
ATTATTGCGGCCGCACTCGGCACGGCCATG TATATATCTAGAGACATTAGGGTAAAGCGA 

esaM 

 
ATTATTGCGGCCGCAGCCCGTAAAGCGCAAG ATATATTCTAGAGAATATTCTCCGCGATCGT 

esaR 

 
TTTAAGCGGCCGCTTCGGGCTGCAATAGCT TTTCACTCTAGACAGGTATTCACCCTATGCC 

esrA 

 
ATATATGCGGCCGCAACCGCGTGATAATCTG ATTATTTCTAGAAGGGAACTCCTTTATGTG 

esrC 

 
ATTAATGCGGCCGCTCAGGTGATGACCCGATA ATATATTCTAGAGGTGATGGGCAACGGTTGA 

orf29/30 ATTATTGCGGCCGCAGGTTCATGATGTCTGTG 
 

ATATATTCTAGAGAAGAGACCTCCCAATCG 
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Figure 2.1 (Following page). Schematic maps of plasmids used in chapter 2. pBS::serCaroA (A) 
was constructed by amplifying the genomic  region of Edwardsiella ictaluri containing serC and 
aroA and inserting it into the speI and apaI sites of pBluescript. pBS::SA∆Tn (B) was generated 
by inverse PCR of pBS::serCaroA, removing the transposase region between serC and aroA. The 
restriction site BstZ17I was engineered into the PCR primer for a cloning site between serC and 
aroA. pZep08 (C) is a promoter trap vector used for fusion of promoter regions of interest to 
gfp+ (Hautefort et al. 2003). Insertion of the promoter region is accomplished by digestion of 
pZep08 with �otI and XbaI, removing the kanamycin (Km) cassette and replacing it with a 
promoter of interest. The promoter region of eseH was amplified by PCR and inserted into 
pZep08 at the �otI and XbaI sites placing it upstream of a promoterless gfp+ generating 
pZep::PeseH (D). Expression of gfp+ is dependent upon the promoter activity of the DNA region 
inserted. The eseH promoter fusion to gfp+ in pZep::PeseH was amplified and inserted into the 
BstZ17I site of pBS::SA∆Tn generating pBS::SA∆Tn::eseHgfp+ (E). The region of 
pBS::SA∆Tn::eseHgfp+ containing serCaroA::eseHgfp+ was removed by digestion with ApaI 
and SpeI, then blunt ended and inserted into the EcoRV site of pGP704 generating pGP::SA∆Tn:: 
eseHgfp+ (F). This plasmid was conjugated to E. ictaluri, resulting in allelic exchange at the 
native serC/aroA region. Recombination maintained the sequences of serC and aroA, but 
removed the intergenic transposon sequence and added eseH-gfp+ fusion and chloramphenicol 
(Cm) resistance into the region, as determined by DNA sequencing of the region following 
allelic exchange. 
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The promoter-gfp+ fusion was amplified, including the Cm cassette, using pZep08 

forward and reverse primers (Table 2.2). The resultant blunt-end PCR product was purified using 

Minelute kit (Qiagen), DNA ends were phosphorylated using PNK (New England Biolabs), and 

the product was ligated into the BstZ17I site of pBS::SA∆Tn. The resultant plasmid was 

electroporated into Es. coli XL1 Blue MRF’ and selected for Cm and Ap resistance. Correct 

insertion was verified using differential PCR with pZep08 and serCaroA primers (Table 2.2) and 

differential restriction digest using �otI and XbaI (New England Biolabs). The resultant plasmid 

was called pBS::SA∆Tn::eseHgfp+ (Figure 2.1E). 

The promoter fusion, Cm cassette, and flanking serC and aroA regions were excised 

using ApaI and SpeI (New England Biolabs), and the ends were blunt ended using the Klenow 

fragment (New England Biolabs). The resultant DNA was PNK treated and ligated into the 

EcoRV site of pGP704 using T4 DNA Ligase (New England Biolabs). The resultant plasmid was 

electroporated into Es. coli SM10λpir cells. Resultant colonies were selected for Cm and Ap 

resistance. Correct insertion was verified by differential PCR using pZep08 and serCaroA 

primers, digestion using either �otI, XbaI, or HindIII (New England Biolabs), and DNA 

sequencing. The resulting plasmid was called pGP::SA∆Tn::eseHgfp+ (Figure 2.1F). 

Insertion of the eseHgfp+ sequence into the E. ictaluri genome between serC and aroA 

was accomplished using allelic exchange. Es. coli SM10λpir carrying pGP:: SA∆Tn::eseHgfp+ 

was used as a donor strain to transfer the plasmid to E. ictaluri by conjugation. E. ictaluri and Es. 

coli were mixed at a 2:1 ratio (CFU E. ictaluri : CFU Es. coli) and filtered through a GN-6 25 

mm 0.45 µm Metricel Membrane Filter (Pall Corp., Ann Arbor, MI). Filters with cells were 

placed cell-side up on BA and incubated for 24 hrs. Following incubation, cells were 

resuspended in 3 ml media by vortexing vigorously. Cultures were plated on LB-FP 
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supplemented with Cm and Col. Resultant colonies were replicate plated onto LB-FP with Cm 

and Col and LB-FP with Cm and Ap. Correct insertion of the eseHgfp+ construct between serC 

and aroA was verified by PCR followed by DNA sequencing of PCR products. 

In order to detect expression of other T3SS promoters, the promoter regions of esaB, 

esaM, esaR, escB, escC, esrA, esrC, and orf29/30 were amplified by PCR using specific primers 

(Table 2.2) incorporating �otI and XbaI restriction sites in the 5’ and 3’ ends, respectively. esaB, 

esaM, esaR, escB, escC, and esrC are the first genes of putative operons within the island, and 

each has a predicted promoter region upstream of their respective translational start sites. esrA is 

encoded downstream of slt, possibly within the esaR operon; however, there is a predicted 

promoter sequence upstream of esrA. orf29/30 appears to be a single gene located near the 5’ end 

of esrB at the outer edge of the pathogenicity island with a promoter region upstream of the 

predicted translational start site. PCR products were gel purified (Qiagen) and digested with �otI 

and XbaI (New England Biolabs). Digested PCR products were purified and ligated to the �otI 

and XbaI site of pZep08, similar to the insertion of the eseH promoter described above. This 

resulted in the insertion of each target promoter region upstream of gfp+.  

As a positive control for fluorescence, the Km promoter and gene upstream of gfp+ in 

pZep08 were left intact, resulting in a transcriptional linkage between Km and gfp+, allowing 

expression of gfp+ from the Km promoter. For a negative control, pZep08 was digested with 

eagI, removing the first 35 nt of km and 155 nt upstream of the km start. The remaining DNA 

was ligated at the eagI ends, resulting in a promoterless construct. 

Resultant pZep plasmids containing T3SS promoter regions fused to gfp+ and the control 

constructs were digested with �otI and XhoI to excise the promoter region and a partial sequence 

of gfp+ (Figure 2.2). The excised DNA was inserted into the �otI/XhoI site region of pGP:: 

SA∆Tn::eseHgfp+, replacing the eseH promoter region with the new promoter region and  
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Figure 2.2 (Following page). Construction of Edwardsiella ictaluri type III secretion system 
(T3SS) gene promoter fusions to gfp+. The esaB promoter region was inserted into pZep08 
upstream of gfp+. Resulting plasmids were digested with �otI and XhoI. The fragment 
containing the promoter and partial gfp+ region was inserted into the �otI/XhoI site of 
pGP::SA∆Tn::eseHgfp+ replacing the eseH promoter with the desired esaB promoter. This 
procedure was repeated for all additional T3SS promoter fusions.  
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generating pGP::SA∆Tn::esaBgfp+. This allowed for rapid construction of promoter fusions in 

the pGP704 backbone. PCR and DNA sequencing was used to verify the correct sequence of 

each construct. Es. coli strains carrying pGP:: SA∆Tn variants with T3SS promoter fusions to 

gfp+ were used as donors for conjugation to wild type (WT) E. ictaluri for transfer of the 

plasmid. Following conjugation, allelic exchange resulted in insertion of the fusions into the 

genome between serC and aroA, which was verified by using PCR and DNA sequencing. 

Measurement of GFP Activity from Promoter Fusion Strains. Cultures grown to late log 

phase were pelleted and resuspended in phosphate buffered saline adjusted to the same pH as the 

culture. Cultures were concentrated to an OD of about 1 – 1.1 units for 200 µl of culture. 

Fluorescence (excitation: 491 nm; emission: 512 nm) and OD600 of each sample were measured 

using a SpectraMax M2 microplate reader (Molecular Devices, Sunnyvale, CA). Fluorescence 

readings were divided by OD to normalize fluorescence readings within each treatment. 

R�A Isolation. Total RNA was isolated using Bacteria RNAprotect RNeasy Mini Kit (Qiagen) 

and subjected to DNase treatment with Baseline Zero DNase (Epicentre Biotechnologies, 

Madison, WI) to remove contaminating DNA. Following DNase treatment, RNA samples were 

diluted to 20 ng/µl for RT-PCR and 10 ng/µl for quantitative PCR. 

RT-PCR. Reverse transcriptase PCR (RT-PCR) was conducted using the AffinityScript Multiple 

Temperature cDNA Synthesis Kit (Stratagene, La Jolla, CA) using gene specific 

oligonucleotides to prime the reverse transcriptase at the 3' end of the desired transcripts (Table 

2.3). RT-PCR reactions were incubated 1 hr at 50° C, followed by incubation at 70° C to 

inactivate the reverse transcriptase. Resulting cDNA was used as template for PCR using gene 

specific primers (Table 2.3) and Phusion High Fidelity DNA Polymerase (New England 

Biolabs). Absence of contaminating DNA in RNA samples was verified by the absence of PCR 

products using the DNase-treated RNA as template. PCR was conducted under the following 
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conditions: denaturation at 98° C for 30 sec, 35 cycles of 98° C for 10 sec, 56° C for 30 sec, and 

72° C for 30 sec, and a final extension period of 72° C for 7 min. 

For determination of transcriptional linkages, RT-PCR was conducted as described 

above. To determine linkage of escD and eseI, a specific primer for eseI was used to prime the 

reverse transcriptase for cDNA amplification. Polymerase chain reactions were done using the 

eseI cDNA as template using primers specific to both eseI and escD (Table 2.3). Reactions were 

done using Phusion High Fidelity DNA Polymerase and cycling conditions described above. 

Quantitative Real Time PCR. High Capacity RNA-to-cDNA Kit (Applied Biosystems, Foster 

City, CA) was used to generate cDNA from total RNA. Reaction conditions were 37° C for 60 

min to amplify cDNA and 95° C for 5 minutes to inactivate the reverse transcriptase. The 

resulting cDNA was used as template for relative quantitative real-time PCR (qPCR) reactions 

using the Power SYBR Green PCR Master Mix (Applied Biosystems) and gene specific primers 

(Table 2.4). Reaction conditions were 95° C for 10 min, 40 cycles of 95° C for 15 sec followed 

by 60° C for 1 min. Following amplification, a dissociation curve was run for each sample at 95° 

C for 15 sec, 60° C for 1 min, slowly to 95° C to measure fluorescence at each step, and 60° C 

for 15 sec, which ensured amplification of only the single target amplicon. When a target 

amplicon contained within an operon was amplified, it is assumed that the remaining genes in the 

operone are also present. Reactions were run using cDNA amplification reactions lacking reverse 

transcriptase to ensure amplification did not occur from contaminant DNA. 

 Data were collected using an Applied Biosystems 7500 Fast Real Time PCR System 

using Sequence Detection Software v1.4 (Applied Biosystems). Relative quantitation was 

conducted using 16s rRNA as the endogenous gene. Expression values were determined for each 

condition by comparing target gene ∆Ct values to those of MM19 pH 7.0 cultures (calibrator) 

using the ∆∆Ct method (Livak and Schmittgen 2001; Schmittgen and Livak 2008). 
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Table 2.3. Oligonucleotide sequences used for reverse transcriptase PCR (RT-PCR). Reverse 
transcriptase PCR primers were used for cDNA synthesis from total RNA. Amplification of 
cDNA was done using 5’ and 3’ primers.  

Gene RT-PCR primer 5' primer 3' primer 

esaM TTCTCCATCACGCGATCG GCGGCAAACCGAACTTTG CCGCTGAAATCCACAGTG 

esaR TGAACGGCATGGAGATCG CCGGTTTTCCATACAGGT GATGGCGATAAAGGGCAA 

escC AAAGTCATGCCCGATAGC ATGAGCCAACACGTCACT CTTCAGGGTGGCGTTAAG 

escD CTGTTTCGGTAGCGTGAC CCCTACAAGAAAACTTCCTC GCGTCGTAATAAGTAGTCCA 

eseH GGTATTCACGCTCATAATCC ACACCCGGCTGGATGTCT CCTGTCCTCACAGCTTGA 

eseI TCTGGCAAACGACGTAGATT GCCACACTGGAGCAAATG CTCGTTGCTTAATGTCTGGG 

esrA TGCTCGCTCTTATTGGCG GGCATGACGGTAAACCTG GCGATTATAGACCTGCGC 

esrB CTTGCGCATCAGGTTGAG GAAGACCATGCCTTGCTG CGATATCCCGGTTGCGAT 

esrC CTTGGCGACTGACTGAAG GGATGCCGACGATGAAAC GCGTTACAGAATCCGGAC 

orf29/30 TTCTCGGTCTCCGTCGTC GCTGTATCTTTGTGCCCG GTATGTCCCAGCCTATCC 

 

 

 

 

Table 2.4. Oligonucleotide sequences used for quantitative PCR in Chapter 2.  

Gene  5' Primer  3' Primer 

escB CTTTACCTTGCGATTTGCCTGCGT AACAGGCACTCCGCCATATGAAAC 

escC AATGCAAGACCTACAGCAGCGTCA GCGTTGCGATCTCTTGCTGTAACG 

eseH AAGAGGCTGGATGTCTCTGGTACT GGTAGCCTTGGCATAGGAGTGTTA 

eseI GCAACCCTGCTTAGCAAGTGGAAA TCAAAGCCTTCCTGGGCCTAATGGA 

esrA AGAGCGAGCATCTGAACAGCATCA AGTAAGTCATGCTGCTCCTGCGTA 

esrB CAATGCAGCATGCATCACTGGGAA TCAGCGATATCCCGGTTGCGATTA 

esrC AAAGTTTGGGATGGCGCCGAA GAGAAATGGGCGGCGTTACAGAAT 

16s  AACGCGAAGAACCTTACCTGGTCT GCTCGTTGCGGGAATTAAACCCAA 
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Whole Cell Lysate and Supernatant Protein Preparation. Whole cell lysate proteins were 

prepared similar to Moore and Thune (Moore and Thune 1999). Briefly, cell cultures were 

pelleted by centrifugation at 3,000 x g for 15 min at 4° C. Supernatant was set aside for 

extracellular protein isolation (described below), and cells were washed three times with 

phosphate buffered saline (PBS) pH 7.0 or pH 5.5, depending on the pH of the bacterial culture 

media. Pellet volume was estimated, and cells were resuspended at a rate of 1 ml of sterile 

distilled water per 100 µl of cell pellet. Phenylmethylsulphonyl fluoride (PMSF) was added to a 

final concentration of 1 mM, and the suspension was incubated on ice for 10 min to inhibit 

protease activity. Cells were dismembranated by sonication at 45% amplitude using a Fisher 500 

sonic dismembranator (Fisher Scientific, Pittsburgh, PA). Sonicated suspensions were incubated 

at 4° C for 1 hr, then centrifuged at 12,000 x g at 4° C for 30 min to remove cellular debris. The 

supernatant containing the whole cell lysate proteins was collected, and 10% thimerosal was 

added to a final concentration of 0.01% (Moore and Thune 1999).  

Supernatants from above were filtered through a 0.22 µm cellulose acetate low protein-

binding filter (Corning Inc., Corning, NY). Trichloroacetic acid (TCA, Ricca Chemical Co., 

Arlington, TX) was added to a final concentration of 10%, and samples were incubated at 4˚ C 

for 16 hrs to precipitate extracellular proteins. Precipitates were pelleted by centrifugation at 

24,000 x g for 30 min at 4° C. Pellets were air dried 10 min, resuspended in 1 ml sterile water, 

and stored at -80° C in 100 µl aliquots. Protein concentrations for both the whole cell lysate and 

extracellular proteins were estimated using the Bio-Rad Protein Assay Kit (Bio-Rad 

Laboratories, Hercules, CA). 

2D-PAGE Analysis. Protein samples were purified by using the ReadyPrep 2-D Cleanup Kit 

(Bio-Rad Laboratories) and resuspended in the appropriate volume of rehydration buffer to 

achieve a concentration of 100 µg of protein per 185 µl of rehydration buffer for whole cell 
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lysate preps. Because of varying concentrations of protein in supernatants due to differences in 

protein secretion in acidic and neutral pH, extracellular protein samples (100 µl) were each 

cleaned and resuspended in 185 µl rehydration buffer. Each extracellular protein sample was the 

equivalent of the amount of protein precipitated from 20 ml of culture. Immobilized pH gradient 

(IPG) strips (11 cm, pH 4-7) (Bio-Rad Laboratories) were rehydrated using 185 µl of protein 

sample in rehydration buffer. Strips were allowed to rehydrate for 24 hrs at room temperature. 

Isoelectric focusing was done by using a Bio-Rad Protean IEF Cell (Bio-Rad Laboratories). 

Focusing conditions were maintained by the following program at 20° C: rapid ramping to 250 V 

for 15 min; slow ramping to 2000 V for 1 hr; hold at 2000 V for 3 hrs; linear step to 5000 V for 1 

hr; hold at 5000 V for 3 hrs; rapid ramping to 8000 V for 1 hr; 8000V for 40,000 VHrs.  

Focused IPG strips were equilibrated using ReadyPrep 2-D Starter Kit Equilibration 

Buffers (Bio-Rad Laboratories), loaded onto a Criterion precast 12.5% gel (Bio-Rad 

Laboratories), and separated for 55 min at 200 V. Gels were removed and fixed with a solution 

of 10% methanol and 7% acetic acid for 1 hr. Gels were stained with Sypro Ruby stain (Bio-Rad 

Laboratories) for at least 3 hrs. Following staining, gels were washed in fixative for 1 hr and 

rinsed three times with distilled water. Gels were imaged under UV light using a Bio-Rad Gel 

Doc XR and Quantity One software (Bio-Rad Laboratories). Each protein sample was isolated 

and analyzed by 2D-PAGE in triplicate to ensure reproducibility. 

Protein Digestion and Mass Spectrometry. Nevada Proteomics Center, University of Nevada, 

Reno analyzed selected proteins by trypsin digestion and MALDI-TOF/TOF analysis. Spots 

were digested using a previously described protocol with some modifications (Rosenfeld et al. 

1992). Samples were washed twice with 25 mM ammonium bicarbonate (ABC) and 100% 

acetonitrile, reduced and alkylated using 10 mM dithiothreitol and 100 mM iodoacetamide and 

incubated with 75 ng sequencing grade modified porcine trypsin (Promega Corp., Madison, WI) 



 
 

72 
 

in 25 mM ABC for 6 hours at 37° C. Samples were spotted onto a MALDI target with ZipTipµ-

C18 (Millipore Corp., Billerica, MA). Samples were eluted with 70% acetonitrile, 0.2% formic 

acid and overlaid with 0.5 µl 5 mg/ml MALDI matrix (α-Cyano-4 hydroxycinnamic acid 10 mM 

ammonium phosphate). All mass spectrometric data were collected using an ABI 4700 

Proteomics Analyzer MALDI-TOF/TOF mass spectrometer (Applied Biosystems), using their 

4000 Series Explorer software v. 3.6. The peptide masses were acquired in reflectron positive 

mode (1-keV accelerating voltage) from a mass range of 700 – 4000 Daltons, 1250 laser shots 

were averaged for each mass spectrum. Each sample was internally calibrated on trypsin’s 

autolysis peaks 842.51 and 2211.10 to within 20 ppm. Any sample failing to internally calibrate 

was analyzed under default plate calibration conditions of 150 ppm. Raw spectrum filtering/peak 

detection settings were S/N threshold of 3, and cluster area S/N optimization enabled at S/N 

threshold 10, baseline subtraction enabled at peak width 50. The twelve most intense ions from 

the MS analysis, which were not on the exclusion list, were subjected to MS/MS. The MS/MS 

exclusion list included known trypsin masses: 842.51, 870.54, 1045.56, 1126.56, 1420.72, 

1531.84, 1940.94, 2003.07, 2211.10, 2225.12, 2239.14, 2283.18, 2299.18, 2678.38, 2807.31, 

2914.51, 3094.62, 3337.76, 3353.75. For MS/MS analysis the mass range was 70 to precursor 

ion with a precursor window resolution of -1 to +4 Da with an average 2500 laser shots for each 

spectrum, CID on, metastable suppressor on. Raw spectrum filtering/peak detection settings were 

S/N threshold of 5, and cluster area S/N optimization enabled at S/N threshold 6, baseline 

subtraction enabled at peak width 50.The data was then stored in an Oracle database (Oracle 

database schema v. 3.19.0 Data version 3.90.0). 

MALDI Data Analysis. The data was extracted from the Oracle database and a peak list was 

created by GPS Explorer software v 3.6 (Applied Biosystems) from the raw data generated from 

the ABI 4700. Analyses were performed as combination MS + MS/MS. MS peak filtering 
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included mass range 700 – 4000 Da, minimum S/N filter 10. A peak density filter of 50 peaks 

per 200 Da with a maximum number of peaks set to 65. MSMS peak filtering included mass 

range of 60 Da to 20 Da below each precursor mass. Minimum S/N filter 10, peak density filter 

of 50 peaks per 200 Da, cluster area filter used with maximum number of peaks 65. The filtered 

data were searched by Mascot v 1.9.05 (Matrix Science) using NCBI nr database (NCBI 

20070908), containing 5,454,477 sequences. Searches were performed without restriction to 

protein species, Mr, or pI and with variable oxidation of methionine residues and 

carbamidomethylation of cysteines. Maximum missed cleavage was set to 1 and limited to 

Trypsin cleavage sites. Precursor mass tolerance and fragment mass tolerance were set to 20 ppm 

and ± 0.2 Da, respectively.  

Peak lists were also created using ABI’s 4000 Series Explorer software v. 3.6 Peaks to 

MASCOT feature. MS peak filtering included mass range 700 – 4000 Da, minimum S/N filter 0. 

A peak density filter of 50 peaks per 200 Da with a maximum number of peaks set to 200. 

MSMS peak filtering included mass range of 60 Da to 20 Da below each precursor mass. 

Minimum S/N filter 0, peak density filter of 50 peaks per 200 Da, cluster area filter used with 

maximum number of peaks 200. The filtered data were searched by Mascot v 2.1.03 (Matrix 

Science) using NCBI nr database (NCBI 20070908), containing 5,454,477 sequences. Searches 

were performed without restriction to protein species, Mr, or pI and with variable oxidation of 

methionine residues and carbamidomethylation of cysteines. Maximum missed cleavage was set 

to 1 and limited to Trypsin cleavage sites. Precursor mass tolerance and fragment mass tolerance 

were set to 20 ppm and ± 0.2 Da, respectively. These files were analyzed using Proteome 

Software’s Scaffold software. 

Statistical Analyses. For measurement of GFP fluorescence, cultures and readings were 

conducted in triplicate. The mean fluorescence of each strain was calculated with standard error. 
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Each qPCR reaction was done in triplicate. Ct, ∆Ct, and ∆∆Ct values were calculated using 

Applied Biosystems Sequence Detection Software v1.4 (Applied Biosystems). ∆∆Ct values for 

each reaction were converted to fold expression using the equation 2-∆∆Ct. Fold expression values 

were log transformed for homoscedasticity, and mean log fold expression and standard error 

were calculated.  

Statistical differences in treatments were determined by analysis of variance (ANOVA) 

using the general linear model (Proc GLM) of Statistical Analysis Systems v9.1 (SAS Institute, 

Cary, NC). Where ANOVA indicated a significant difference, posthoc tests were used to 

determine pairwise differences. For GFP fluorescence data, Dunnett’s one-tailed test was used to 

determine if fluorescence levels of T3SS promoter fusions were higher than negative controls. 

For qPCR data, Tukey’s HSD was used for pairwise comparisons of T3SS gene expression in 

different culture conditions. Expression comparisons among different genes were not done. 

Differences were considered significant where P ≤ 0.05, except for GFP fluorescence data, which 

were considered significant  if P < 0.005.  

RESULTS  

Identification of a Putative T3SS Effector Gene on pEI2. Edwardsiella ictaluri carries two 

plasmids, pEI1 and pEI2, in all strains isolated from channel catfish (Newton et al. 1988; 

Bertolini et al. 1990). Fernandez et al. (Fernandez et al. 2001) sequenced both plasmids and 

report a putative T3SS-related gene carried by each. The gene on pEI1, orf1, encodes an amino 

acid sequence with homology to T3SS translocated effector proteins from Salmonella, Shigella, 

and Yersinia. This gene is named eseH for Edwardsiella secreted effector H. A pEI2 gene, orf1, 

encodes a protein with homology to a T3SS chaperone protein of both Salmonella and Shigella 

and is named escD for Edwardsiella secretion chaperone D.  
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  Upon further analysis of the pEI2 DNA sequence, three bases downstream from escD is 

an open reading frame encoding a protein with homology to OspB of Shigella flexneri and Vibrio 

parahaemolyticus and hypothetical proteins of Chromobacterium violaceum, Es. coli, and 

Salmonella enterica (Table 2-5). However, the similarity of all proteins is only in the carboxy 

half of the amino acid sequence, except for the C. violaceum protein, which has homology only 

in the amino terminus. Recently, a sequence was added to the genetic database from 

Pseudovibrio spp. that has homology to E. ictaluri protein along the entire length of the amino 

acid sequence. Of these proteins, only the function of Shigella OspB is known (Zurawski et al. 

2009). OspB, along with other Shigella effector proteins, works to dampen inflammatory 

cytokine production in host cells. The E. ictaluri ospB-like gene is named eseI. Figure 2.3G 

shows the positioning of eseI in relation to escD. 

 

Table 2.5. Percent identity and similarity of Edwardsiella ictaluri EseI to proteins of other 
pathogens. 
Protein 
 

EseI amino acids 
(comparison amino acids) 

Percent  
Identity 

Percent 
Similarity 

Pseudovibrio sp. 

hypothetical 
 

22 – 331 
(25 – 325) 

 

35 53 

Chromobacterium 

violaceum hypothetical 
 

244 – 332 
(34 – 123) 

53 76 

Salmonella enterica subsp. 

Enterica hypothetical  
179 – 302  

(148 – 261) 
 

31 57 

Vibrio parahaemolyticus 
putative OspB 
 

154 – 302 
(125 – 261) 

29 50 

Es. coli hypothetical 
 

171 – 301 
(129 – 249) 

 

30 52 

Shigella flexneri OspB 164 – 330 
(125 – 282) 

25 44 
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Figure 2.3. Putative operons of the Edwardsiella ictaluri type III secretion system (T3SS). The 
E. ictaluri T3SS is encoded within operons in the pathogenicity island. The first gene of each 
putative operon is used to identify each operon. esrC encodes a regulatory protein and seven 
apparatus proteins (A). esaB encodes four apparatus proteins (B). escB encodes a chaperone and 
effector protein (C). escC encodes two chaperone proteins and four effector proteins that make 
up the translocon (D). esaM encodes six apparatus proteins (E). esaR encodes four apparatus 
proteins, a murein transglycosylase (slt), and possibly the regulatory protein EsrA. However, 
esrA may express independently of esaR (F). esrB is a single gene added to demonstrate its 
association with esrA. escD is carried on pEI2 and encodes a chaperone protein and effector 
protein (G). Arrows indicate putative promoter regions. 
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Transcriptional Linkages in pEI2-Encoded T3SS Genes. eseI is encoded three bases 

downstream of the stop codon for escD, suggesting transcriptional coupling exists, and 

FGENESB (Softberry Inc., Mount Kisco, NY) predicts the pEI2-encoded genes escD and eseI 

are transcriptionally linked (Figure 2.3G). Reverse transcriptase PCR verifies this linkage. 

Amplification of cDNA using primers specific for escD and eseI and a cDNA template generated 

from an eseI-specific RT-PCR reaction indicates escD and eseI are transcriptionally linked 

(Figure 2.4). Individual products are amplified from the eseI-specific cDNA as well as a larger 

product when pairing escD and eseI primers. Amplification of each of these products from a 

single eseI-specific message indicates both escD and eseI are transcribed on the same message 

and, therefore, are transcriptionally linked. The transcriptional coupling of these two genes 

suggests EscD is a chaperone for EseI. 

 
 

 
 
Figure 2.4. Transcriptional linkage of Edwardsiella ictaluri escD and eseI. Reverse transcriptase 
PCR was conducted to show a transcriptional linkage between escD and eseI. An escD/eseI band 
was amplified using the 5' primer of escD and the 3' primer of eseI. Generation of the products 
from a single cDNA sequence indicates escD and eseI expression is linked. 
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T3SS Promoter Regions Induce gfp+ Expression in Many Conditions. Promoter regions for 

T3SS-related operons (Figure 2.3) were evaluated for their ability to express gfp+ in E. ictaluri. 

In addition to the promoter regions indicated in Figure 2.3, the promoter for orf29/30 encoded at 

the end of the T3SS pathogenicity island (Thune et al. 2007), and the promoter for the putative 

T3SS effector protein eseH were also fused to gfp+ to evaluate their expression. Promoter 

fusions were inserted singly between serC and aroA to eliminate variation associated with copy 

number and expression instability associated with plasmids (Hansen-Wester et al. 2002). 

Hautefort et al. (Hautefort et al. 2003) used a similar method to create promoter fusions and used 

flow cytometric analyses to measure fluorescence of promoter-gfp+ fusions in Salmonella. In 

this study, however, mixed results were encountered when using flow cytometric analyses on an 

inducible purA promoter fusion E. ictaluri strain in comparison to a non-fluorescing strain 

(unpublished results). Therefore, fluorescence was measured using an M2 SpectraMax plate 

reader (Molecular Devices, Sunnyvale, CA). Unfortunately, the plate reader also was unable to 

measure the fluorescence of cultures consistently. Cultures were concentrated 2-10x before 

fluorescence of a positive control could be detected. Comparing fluorescent values among 

growth conditions proved difficult because of variations in OD readings among treatments. 

Therefore, comparisons were done only against control readings within the same culture 

condition. Because of the issues in measuring fluorescence, differences were not considered 

significant unless P < 0.005. 

Edwardsiella ictaluri T3SS promoter activity is detected in both neutral and acidic 

MM19 (Figures 2.5 and 2.6). Culture at pH 7.0 results in significant detection of more promoter 

fusions, but there are greater levels of fluorescence detected in acidic media with esaB and escC 

fusions. Both esrA and esrC fusions lose significance in acidic media, as does orf29/30. 

Fluorescence trends are similar in MM19-P (Figures 2.7 and 2.8). Many promoter fusions are 
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detected at pH 7.0, but a greater increase in fluorescence occurs in acidic cultures. Activity of 

orf29/30 is not detected in pH 5.5, indicating acidic conditions repress the orf29/30 promoter. 

Once again, esrA and esrC are not detected in acidic pH. Contrary to normal phosphate 

conditions, esrC is not detected in low phosphate pH 7.0, but when cultured in MM19-P pH 5.5, 

expression of the esrC promoter is significantly higher than WT, but not the promoterless gfp+ 

strain. Activity of esaM is detected in both pH 7.0 and pH 5.5 low phosphate media, but not in 

either of the regular phosphate pH conditions. Fluorescence of the eseH fusion is detected only in 

MM19-P pH 7.0. Fluorescence of GFP expressed from the esaR promoter is not detected in any 

growth condition. 

Other media conditions were also evaluated, including low magnesium at pH 5.5 and 7.0 

and MM19 at pH 4.5 (data not shown), and the results are similar to the above: neutral pH results 

in more promoters being detected, but acidic pH results in greater fluorescence of some T3SS 

promoter fusions. orf29/30 consistently fluoresces significantly in all neutral pH conditions 

assayed, and is insignificant in all acidic conditions assayed. Fluorescence from the esaR 

promoter is not detected in any condition studied. Fluorescence from esaM, eseH, esrA and esrC 

promoters are generally low, even when significantly higher than controls. 

Fluorescence measurements of T3SS promoter fusions to gfp+ suggest an upregulation in 

acidic conditions for apparatus and translocon operons (esaB and escC). Low phosphate also 

appears to induce expression of esaM. While two T3SS-related operons are upregulated in acidic 

media, orf29/30 has reduced fluorescence in these conditions. However, the gfp+ fusion data 

seem unreliable based on the problems encountered measuring fluorescence, and the low levels 

of fluorescence observed. To verify results from the promoter fusions, RT-PCR was used to 

evaluate the presence of T3SS transcripts during culture in the conditions used to assay gfp+ 

expression from T3SS promoters. 
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Figure 2.5. Edwardsiella ictaluri type III secretion system (T3SS) gene promoter activity in 
minimal media (MM19) at pH 7.0. Edwardsiella ictaluri strains carrying T3SS promoter fusions 
to gfp+ were grown to late log phase in MM19 pH 7.0, and fluorescence was measured as 
relative fluorescence units (RFU). The strain kmprom serves as a positive control, and the wild 
type (WT) and –promgfp+ strains serve as negative controls. Bars indicate the mean (± SEM) of 
triplicate samples. * indicates a significant difference from WT, and # indicates a significant 
difference from –promgfp+ (P ≤ 0.005).  
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Figure 2.6. Edwardsiella ictaluri type III secretion system (T3SS) gene promoter activity in 
minimal media (MM19) at pH 5.5. Edwardsiella ictaluri strains carrying T3SS promoter fusions 
to gfp+ were grown to late log phase in MM19 pH 5.5, and fluorescence was measured as 
relative fluorescence units (RFU). The strain kmprom serves as a positive control, and the wild 
type (WT) and –promgfp+ strains serve as negative controls. Bars indicate the mean (± SEM) of 
triplicate samples. * indicates a significant difference from WT, and # indicates a significant 
difference from –promgfp+ (P ≤ 0.005).  
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Figure 2.7. Edwardsiella ictaluri type III secretion system (T3SS) gene promoter activity in low 
phosphate minimal media (MM19-P) at pH 7.0. Edwardsiella ictaluri strains carrying T3SS 
promoter fusions to gfp+ were grown to late log phase in MM19-P pH 7.0, and fluorescence was 
measured as relative fluorescence units (RFU). The strain kmprom serves as a positive control, 
and the wild type (WT) and –promgfp+ strains serve as negative controls. Bars indicate the mean 
(± SEM) of triplicate samples. * indicates a significant difference from WT, and # indicates a 
significant difference from  –promgfp+ (P ≤ 0.005). NA indicates the promoter fusion 
fluorescence was not assayed.  
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Figure 2.8. Edwardsiella ictaluri type III secretion system (T3SS) gene promoter activity in low 
phosphate minimal media (MM19-P) at pH 5.5. Edwardsiella ictaluri strains carrying T3SS 
promoter fusions to gfp+ were grown to late log phase in MM19-P pH 5.5, and fluorescence was 
measured as relative fluorescence units (RFU). The strain kmprom serves as a positive control, 
and the wild type (WT) and –promgfp+ strains serve as negative controls. Bars indicate the mean 
(± SEM) of triplicate samples. * indicates a significant difference from WT, and # indicates a 
significant difference from –promgfp+ (P ≤ 0.005). NA indicates the promoter fusion 
fluorescence was not assayed.  
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The T3SS of E. ictaluri Is Expressed in Varying Conditions. The promoter fusions are not 

definitive in showing expression of promoters in the conditions assayed. Therefore, RT-PCR was 

used to detect the presence of T3SS gene mRNA in various culture conditions. RT-PCR analyses 

were conducted on apparatus, translocon, regulatory, and effector genes (Table 2.3). 

For pH 5.5 and pH 7.0 cultures with or without phosphate limitations, most transcripts 

are detected strongly except for esaR (Figure 2.9), which also is not detected in the gfp+ fusions. 

To determine if growth to late log influenced the presence of T3SS message, RNA isolated from 

mid-log phase cultures were also analyzed by RT-PCR, and similar results were seen as when 

grown to late log (data not shown).  

Similar to the results from GFP fluorescence, orf29/30 detection is reduced at pH 5.5 

compared to pH 7.0 (Figure 2.9). To verify this, the RT-PCR reactions for orf29/30 were 

repeated, and the results demonstrate a visible decrease in PCR product intensity from the pH 5.5 

sample relative to pH 7.0 sample (Figure 2.10). This indicates orf29/30 expression is 

downregulated in acidic pH in contrast to T3SS genes, which are expressed in both neutral and 

acidic pH. Therefore, it is unlikely that orf29/30 is associated with the E. ictaluri T3SS based on 

downregulation in acidic culture conditions. 

 

 
 
Figure 2.9. Reverse transcription PCR (RT-PCR) results for Edwardsiella ictaluri type III 
secretion system (T3SS) gene expression. Presence of E. ictaluri T3SS message in cultures of 
wild type E. ictaluri grown in pH 7.0 or pH 5.5 MM19 and a T3SS-deficient E. ictaluri strain, 
esaU-, grown in MM19 pH 5.5 media was determined by RT-PCR. ND indicates genes were not 
assayed in those conditions. 
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Figure 2.10. Effect of acidic pH on Edwardsiella ictaluri orf29/30 expression. Reverse 
transcription PCR (RT-PCR) was used to detect the presence of orf29/30 message during culture 
in pH 7.0 and pH 5.5 MM19. Absence of orf29/30 message in pH 5.5 indicates orf29/30 is not 
expressed in acidic conditions, suggesting its expression pattern differs from that of E. ictaluri 
type III secretion system genes. 
 

Edwardsiella ictaluri has a temperature window of 22 – 28° C in which it causes disease 

of channel catfish (Francis-Floyd et al. 1987). To determine if temperature has an effect on T3SS 

expression, RNA was harvested from E. ictaluri cultured to late log phase at 18°C and 32°C. 

When grown in temperatures outside of the ESC temperature window at pH 7.0, message is 

detected for the same genes as in all other conditions tested (data not shown). Edwardsiella 

ictaluri grown in rich media (LB-mannitol) also has the same message profile as in other 

conditions (data not shown), indicating rich media does not inhibit T3SS expression. 

Thune et al. (Thune et al. 2007) identified a T3SS-deficient mutant, 65ST, using 

signature tagged mutagenesis. The mutation occurs in the T3SS apparatus gene esaU and results 

in a strongly attenuated virulence phenotype intracellularly and in vivo. The mutation will 

hereafter be referred to as esaU-. Reverse transcription PCR was used to determine if the 

transposon insertion in esaU results in any effect on expression of other T3SS genes. Of the 

genes assayed, none expresses differently than in the WT strain, indicating the transposon 

insertion does not affect T3SS expression (Figure 2.9). 

The results of the RT-PCR studies indicate some level of T3SS expression in all 

conditions studied. Few differences are observed in PCR product intensity to determine if any 

conditions result in a higher level of expression. However, orf29/30 activity is greatly reduced in 
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acidic conditions, mirroring results from gfp+ expression analysis. Expression of the T3SS is not 

temperature dependent, indicating temperatures outside of the “ESC window” do not prohibit 

T3SS expression. The RT-PCR results offer qualitative data in regards to the presence of 

message in different conditions, but the data cannot be quantified to determine differences in 

expression of regulatory, translocon, or effector genes. Upregulation of genes will likely be an 

indicator of T3SS activity, i.e., secretion of proteins. Therefore, expression of regulatory, 

translocon, and effector genes were evaluated using qPCR. 

The E. ictaluri T3SS Is Upregulated in Acidic Phosphate-Limited Conditions. Reverse 

transcription PCR results indicate T3SS genes are expressed in a number of conditions, and the 

GFP fluorescence data indicate upregulation of some T3SS genes in acidic conditions. 

Quantitative PCR was used to measure differences in the expression of T3SS genes in various 

pH and phosphate concentration conditions. The expression of regulatory, translocon, and 

effector genes was evaluated. Because orf29/30 appears to have a different expression pattern 

than T3SS genes, it was not evaluated further by qPCR. The apparatus genes esaB and esaM 

analyzed by gfp+ fusion and RT-PCR above were also excluded, because expression of the T3SS 

translocon and effectors are a better indicator of active T3SS protein secretion. Studies 

conducted on the SPI-2 T3SS demonstrate that expression of T3SS genes is detected in 

conditions that do not result in active secretion of the T3SS effector proteins, so the system is not 

truly active in those conditions. The goal for these qPCR reactions was to determine when the E. 

ictaluri T3SS may be upregulated to identify when protein secretion may occur. 

Modulation of gene expression was determined by relative quantification using 

expression in MM19 pH 7.0 as the calibrator sample and E. ictaluri 16s rRNA as the endogenous 

control. When WT E. ictaluri is cultured at pH 5.5, there is a significant decrease in expression 

of the regulatory genes esrA and esrC (Figure 2.11), but a significant increase in expression of 
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the escC operon (Figure 2.12), which encodes the translocon proteins EseB, EseC, and EseD. 

These findings support the results observed for esrA, esrC, and escC promoter fusions. This 

suggests EsrA and EsrC are not necessary for upregulation of the escC operon. The expression of 

the other T3SS-related genes, however, is unchanged in this culture condition, indicating acidic 

pH is not sufficient for expression of the entire system.  

Culture in MM19-P pH 7.0 does not result in an increase of either regulatory or non-

regulatory T3SS genes. When cultured in MM19-P at pH 5.5, however, T3SS gene expression 

increases significantly. esrC expression in MM19-P pH 5.5 is significantly higher than in MM19 

pH 7, again similar to the results observed in the esrC promoter fusion to gfp when cultured in 

MM19-P pH 5.5. The translocon operon again is upregulated in the low phosphate acidic media. 

The operon encoding escB and eseG also increases in expression in MM19-P pH 5.5, as does 

expression of the pEI1-encoded putative effector gene eseH. Expression of eseI increases in both 

of the low phosphate conditions, but because of variability in results among triplicate samples, 

the differences are not significant. These results indicate that phosphate limitation, in addition to 

acidic pH media, results in an increase in expression of T3SS pathogenicity island-encoded 

regulatory, translocon, and effector genes, as well as the pEI1-encoded putative effector eseH. 

Expression of esrA and esrB generally is similar in all conditions; all log expression 

values are within 0.5 logs of expression in MM19 pH 7.0. esrC appears to be affected more by 

environmental conditions than esrA and esrB based on the range of expression values observed 

among the culture conditions. This suggests EsrC may be a regulator through which T3SS gene 

expression is modulated in response to environmental conditions. 

Results from qPCR indicate expression of the operon encoding the translocon proteins is 

upregulated in acidic conditions, but both esrA and esrC are significantly downregulated in  
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Figure 2.11. Effect of media pH and phosphate concentration on expression of Edwardsiella 

ictaluri type III secretion system (T3SS) regulatory genes. Quantitative PCR was used to 
estimate the expression of E. ictaluri T3SS regulatory genes esrA, esrB, and the esrC operon 
containing esrC and the apparatus genes esaGHIJWKL in neutral and acidic MM19 and low 
phosphate MM19 (MM19-P). Bars represent the mean (± SEM) of the log fold expression from 
triplicate samples. Values with the same letter within gene group are not significantly different 
(P > 0.05). 

 

 

 

esrA esrB esrC

-1.5

-1.0

-0.5

0.0

0.5

1.0
MM19 pH 7.0 MM19 pH 5.5

MM19-P pH 7.0 MM19-P pH 5.5

A

B

AB

C

A

A

A

A

AC

B

AB

C

T3SS Gene Amplified

L
o
g
 F
o
ld
 E
x
p
re
s
s
io
n



 
 

89 
 

 

 

 

 

 
Figure 2.12. Effect of media pH and phosphate concentration on expression of Edwardsiella 

ictaluri type III secretion system (T3SS) non-regulatory genes. Quantitative PCR was used to 
estimate the expression of the E. ictaluri T3SS non-regulatory genes encoded by the escB/eseG 

operon, the escC operon containing the translocon genes eseBCD, the pEI1-encoded eseH, and 
the pEI2-encoded escD/eseI operon in neutral and acidic MM19 and low phosphate MM19 
(MM19-P). Bars represent the mean (± SEM) of the log fold expression of triplicate samples. 
Values with the same letter within gene group are not significantly different (P > 0.05). 
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MM19 pH 5.5. This is interesting, because the esrC operon also encodes apparatus genes, which 

would presumably be required for construction of the T3SS apparatus to allow secretion of 

translocon proteins. The shift in expression of esrC in MM19 pH 5.5 and MM19-P pH 7.0 

compared to MM19-P pH 5.5 indicates that acidity or phosphate limitation alone has a negative 

effect on expression, but in an acidic and low phosphate environment, an increase in expression 

occurs. Both escB/eseG and eseH are expressed in MM19-P pH 5.5, but show little activity in 

other conditions. Expression of the pEI2-encoded chaperone escD and eseI genes is not 

significantly upregulated above MM19 pH 7.0 expression in the conditions assayed; however, 

decreased phosphate concentration appeared to have a slightly positive effect at either pH. 

The Translocon Proteins Are Secreted to the Culture Supernatant in Acidic Media. 

Analyses of whole cell lysate and extracellular proteins were conducted by using 2D-PAGE to 

determine if the increased transcription of T3SS genes correlates to translation and secretion of 

T3SS proteins. Whole cell lysate and supernatant proteins were isolated from WT E. ictaluri 

grown to late log phase in MM19 pH 7.0, pH 5.5, and MM19-P pH 5.5. To determine if the 

secretion of any proteins to the supernatant is T3SS-dependent, the T3SS mutant esaU- (Thune 

et al. 2007) was also evaluated. Protein spots of interest were identified by PMF MALDI-

TOF/TOF MS. 

Edwardsiella ictaluri whole cell lysate protein gels are uniform among the three culture 

conditions (Figure 2.13). The 2D gels of the pH 5.5 whole cell lysates were analyzed by PMF 

MALDI-TOF/TOF MS to confirm protein identities. A majority of the proteins visible on whole 

cell lysate gels are metabolic and housekeeping genes. However, the T3SS proteins EscA 

(chaperone), EseB (translocon), and EseD (translocon) are identified. In addition to T3SS 

proteins, type VI secretion system (T6SS) proteins are also identified. Corresponding T3SS and 
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T6SS proteins are present, albeit at reduced levels in WT pH 7.0 and esaU- whole cell lysate 

gels, indicating expression of those proteins is not pH or esaU dependent. 

Extracellular protein samples were loaded onto the IPG strips based on the amount of 

sample per a given volume of supernatant rather than based on the protein concentration. The 

reason for this was to compare relative amounts of secretion rather than the proteins present or 

absent in a particular concentration of protein. That is, for each bacterial culture, precipitated 

proteins from 200 mls were resuspended in 1 ml of water and divided into 100 µl aliquots; 

therefore, a 100 µl volume of supernatant protein is the equivalent of the secreted protein in 20 

mls of culture. 

Two-dimensional polyacrylamide gel electrophoresis analysis of the supernatant proteins 

verifies that T3SS proteins are secreted to the culture supernatant at pH 5.5, but not pH 7.0 

(Figure 2.14). Proteins are abundant in the WT pH 5.5 supernatant, but greatly reduced in both 

the WT pH 7.0 and esaU- pH 5.5 supernatants. Protein spot identification by PMF MALDI-

TOF/TOF MS demonstrates the T3SS translocon proteins EseB, EseC, and EseD are secreted to 

the pH 5.5 supernatant. Spots for EseB and EseD are very close together, as demonstrated in the 

WT pH 5.5 whole cell lysate gel (Figure 2.13B). The concentration of both EseB and EseD in the 

supernatant causes the spots to focus together, making it difficult to determine the boundaries of 

each spot. EseB appears to be expressed at higher levels, because vertical and horizontal streaks 

that originate from the EseB/EseD spot are also identified as EseB. To ensure EseD is present in 

the supernatant, a section of the upper right edge of the spot was analyzed by PMF MALDI-

TOF/TOF MS and verified to contain EseD. Corresponding spots are absent from pH 7.0 

supernatants and reduced or absent from pH 5.5 esaU- culture supernatants. Protein samples 

from MM19-P pH 5.5 cultures are similar to pH 5.5 cultures with normal inorganic phosphate 

concentrations (data not shown). In addition to the identification of T3SS proteins in the 
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Figure 2.13 (Following page). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 
analyses of Edwardsiella ictaluri whole cell lysate proteins. Whole cell lysate proteins collected 
from E. ictaluri cultured in MM19 at pH 7.0 (A), pH 5.5 (B), and the esaU- type III secretion 
system (T3SS)-deficient mutant at pH 5.5 (C) were separated by 2D-PAGE. Spots corresponding 
to T3SS proteins EscA, EseB, EseD, and the type VI secretion system proteins EvpA, EvpB, and 
EvpC are labeled. Gels were run in triplicate, and a representative gel is shown. 
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Figure 2.14 (Following page). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 
analyses of Edwardsiella ictaluri extracellular proteins. Extracellular proteins collected from E. 

ictaluri cultured in MM19 at pH 7.0 (A), pH 5.5 (B), and the esaU- T3SS-deficient mutant at pH 
5.5 (C) were separated by 2D-PAGE. Spots corresponding to the type III secretion system  
translocon proteins EseB, EseC, EseD, and the type VI secretion system protein EvpC are 
labeled. Circles indicate regions in gels where a protein spot would occur, but is absent in the 
culture supernatant. Gels were run in triplicate, and a representative gel is shown. 
 

 



 
 

95 
 

 
 



 
 

96 
 

supernatant, a T6SS protein, EvpC, is identified (Figure 2.14). EvpC is secreted regardless of pH 

or an intact T3SS. However, EvpC appears to be secreted at lower levels in pH 7 media or in the 

esaU mutant at pH 5.5 than in WT pH 5.5. 

The results of the 2D-PAGE analyses of whole cell lysate and extracellular proteins 

indicate that the translocon proteins EseB, EseC, and EseD are translated at both pH 5.5 and 7.0, 

and also produced by the esaU- strain. However, each protein is secreted only in pH 5.5 media in 

a T3SS-dependent fashion. In addition to finding secreted T3SS proteins in culture supernatants, 

a protein homologous to a T6SS secreted protein of E. tarda (Zheng et al. 2005) is identified 

extracellularly. Contrary to T3SS translocon proteins, secretion of EvpC is not abolished in the 

esaU- strain, although it is reduced. EvpC, unlike T3SS translocon proteins, is secreted to the 

supernatant at pH 7.0. However, it appears EvpC is secreted in greater amounts at pH 5.5. EvpC 

is found in all whole cell lysate protein preparations as are the T6SS proteins EvpA and EvpB.  

The translocon genes of E. tarda are secreted in pH 7.0 media (Srinivasa Rao et al. 2004; 

Zheng et al. 2007). However, the E. tarda cultures were grown for 24 hrs in Dulbecco’s 

Modified Eagle Medium (DMEM) without aeration. Edwardsiella ictaluri, on the other hand, 

reaches late log phase after about 16 hours of culture, which is when total RNA was harvested 

from cells in this study. To determine if growth to stationary affects E. ictaluri T3SS expression, 

E. ictaluri was cultured 24 hours in MM19 pH 7.0, and total RNA was harvested for qPCR 

analysis. Expression of both esrA and esrB in stationary phase is comparable to expression when 

cultured to late log phase (Figure 2.15). However, expression of esrC, escB/eseG, eseH, and the 

translocon operon are significantly decreased (Figure 2.15 and 2.16), whereas expression of eseI 

is unchanged in stationary phase. These results indicate 24-hour culture of E. ictaluri to 

stationary phase in MM19 pH 7.0 does not induce T3SS expression. Because of poor growth of 

E. ictaluri in anaerobic conditions, T3SS gene expression was not evaluated in those conditions. 
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Figure 2.15. Effect of culture to stationary phase on Edwardsiella ictaluri type III secretion 
system (T3SS) regulatory gene expression. Quantitative PCR was used to estimate the 
expression of E. ictaluri T3SS regulatory genes esrA, esrB, and the esrC operon containing esrC 
and the apparatus genes esaGHIJWKL following culture to late log (16 hrs) or stationary phase 
(24 hrs) in MM19 pH 7.0. Bars represent the mean (± SEM) of the log fold expression of 
triplicate samples. * indicates a significant difference in expression of the target gene between 
culture conditions (P < 0.05). 
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Figure 2.16. Effect of culture to stationary phase on Edwardsiella ictaluri type III secretion 
system (T3SS) non-regulatory gene expression. Quantitative PCR was used to estimate the 
expression of E. ictaluri T3SS non-regulatory genes encoded by the escB/eseG operon, the escC 
operon containing the translocon genes eseBCD, the pEI1-encoded eseH, and the pEI2-encoded 
escD/eseI operon following culture to late log (16 hrs) or stationary phase (24 hrs) in MM19 pH 
7.0. Bars represent the mean (± SEM) of the log fold expression of triplicate samples. * indicates 
a significant difference in expression of the target gene between culture conditions (P < 0.05). 
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DISCUSSIO� 

 The T3SS of E. ictaluri, like those of E.tarda and Salmonella, is involved in intracellular 

replication (Thune et al. 2007). Little is known about how the T3SS influences pathogenesis of 

E. ictaluri in the channel catfish host, which proteins are secreted, what their function is, or what 

regulates expression of the T3SS. The SPI-2 T3SS is activated in conditions that mimic the 

intracellular environment, including low pH and inorganic phosphate. However, the E. tarda 

T3SS is active and able to secrete T3SS proteins in neutral media, but other conditions such as 

low pH or nutrient limitation have not been evaluated for E. tarda T3SS activity. Because of E. 

ictaluri’s dependence on the T3SS for intracellular replication, it was hypothesized that 

expression of the T3SS would be induced by exposure to an environment containing acidic or 

low phosphate conditions. Using T3SS promoter fusions to gfp+, RT-PCR, and quantitative real-

time PCR, E. ictaluri T3SS gene expression is detected in neutral media, but expression of the 

T3SS operons esrC, escC, escB, and the pEI1-encoded eseH is significantly upregulated in acidic 

MM19 and acidic MM19-P. 2D-PAGE analyses support the findings of the T3SS promoter 

fusions and qPCR data, because E.ictaluri T3SS protein secretion to the supernatant is detected 

in the acidic conditions that upregulate translocon gene expression. T3SS translocon proteins 

EseB, EseC, and EseD are abundant in the supernatants of E. ictaluri acidic media cultures, as is 

the T6SS protein EvpC. 

pEI2 Encodes a Protein Homologous to T3SS Secreted Effectors. Genetic analysis of pEI2 

reveals an open reading frame, eseI, downstream of escD that is transcriptionally linked to escD. 

EseI has homology to proteins among many genera including Pseudovibrio, Vibrio, Salmonella, 

Shigella, Escherichia, and Chromobacterium. However, only the homolog of Shigella, OspB, is 

characterized. EseI and OspB share homology only in the C-terminus. 



 
 

100 
 

OspB is a secreted effector of Shigella (Buchrieser et al. 2000; Santapaola et al. 2002; 

Lucchini et al. 2005; Santapaola et al. 2006) and is localized to the nucleus of the host cell, 

affecting the innate immune response of the host cell by reducing cytokine production (Zurawski 

et al. 2009). The sequence similarity between EseI of E. ictaluri and OspB of Shigella suggests a 

similar function of the E. ictaluri protein; however, the active site of OspB is not reported, so it 

may not be in the homologous C-terminus. The N-terminus of OspB targets the protein to the 

nucleus and early endosomes (Zurawski et al. 2009), suggesting either the N-terminus of EseI 

has a different function or the signal required for nuclear localization is different.  

In Shigella, Spa15 is a chaperone for OspB (Page et al. 2002). The similarity of EscD to 

Spa15 (Fernandez et al. 2001) and the proximity of it in relation to eseI suggest escD and eseI 

are transcriptionally linked, which is verified by RT-PCR analysis. Encoding a chaperone and 

effector in a single transcriptional unit ensures the effector protein is not expressed without its 

chaperone.  

Besides EseI, E. ictaluri encodes a second plasmid-encoded protein, EseH, homologous 

to T3SS proteins of other organisms involved in the downregulation of the host inflammatory 

response. EseH has homology to SspH1 from Salmonella that downregulates NF-κΒ activity in 

host cells, suggesting that the E. ictaluri T3SS also has a downregulating effect on the host 

immune response. The T3SS of E. tarda either up- or downregulates cytokine production 

depending on what cell type it infects (Okuda et al. 2006; Okuda et al. 2008). Edwardsiella 

ictaluri upregulates host IL-8 expression during infection of channel catfish (Chen et al. 2005); 

however, no studies are reported evaluating if the IL-8 response is facilitated or limited by the E. 

ictaluri T3SS.  

E. ictaluri T3SS Gene Promoter Fusions to GFP Produce Variable Results. The initial plan 

of this research was to construct E. ictaluri strains containing promoter fusions to gfp+ for two 
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reasons. The first was to have a rapid method of culturing E. ictaluri in varying conditions and 

assaying the cultures for green fluorescence to determine T3SS-inducing conditions. The second 

reason was for tracking the expression of T3SS genes intracellularly using fluorescence 

microscopy. The promoter fusions are inserted into a non-coding region of the E. ictaluri 

genome between serC and aroA in a similar manner to that used by Hautefort et al. (Hautefort et 

al. 2003). Single genomic inserts are preferred to expression from a plasmid vector to eliminate 

possible variability associated with plasmid instability or copy number variations (Hansen-

Wester et al. 2002). Hautefort et al. (Hautefort et al. 2003) were able to reliably detect 

Salmonella carrying single inserts of T3SS promoter-gfp+ fusions using FACS, but attempts 

using FACS to detect fluorescence of an inducible E. ictaluri purA promoter fusion to gfp were 

only moderately successful (unpublished results). No attempts to use FACS with any of the E. 

ictaluri T3SS promoter fusions were made, because all T3SS promoters produce less than 60% 

the fluorescence of the purA promoter (unpublished results).  

 Fluorescence detection using the spectrophotometer also proved difficult. Because of the 

low nutrient growth conditions, culture densities were usually low, requiring concentration for 

detection of fluorescence. In addition, E. ictaluri produces autofluorescence levels that confound 

fluorescence analysis. The low level of fluorescence generated by the promoter fusions also 

makes them irrelevant for fluorescence microscopy, because they are difficult to visualize unless 

present in high densities, which likely would not occur in cell culture until perhaps late in the 

infection process. 

The problems encountered with the promoter fusions are not universal. Promoters for the 

genes orf29/30, esaB, and escC are detectable using the spectrophotometer, and growth in 

different conditions demonstrates the environmental influence on these promoters. The reason 

the other promoters are not detected is unknown. Dieye et al. (Dieye et al. 2007) found that gfp+ 
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fusions to the promoter for the SPI-2 T3SS gene sifA cannot be detected when expressed as a 

single insertion into the genome, and suggested that surrounding DNA structure has an effect on 

promoter activity. Expression of T3SS genes in Salmonella is dependent upon relaxation of DNA 

(Ó Cróinín et al. 2006), suggesting that the DNA surrounding the fused promoter insertion is not 

as susceptible to DNA relaxation as the native promoter regions. 

The insertion of the promoter fusions between serC and aroA in the E. ictaluri genome 

could have resulted in a similar problem. In order to insert DNA between serC and aroA, a 

transposase sequence with multiple copies in the genome was deleted. Perhaps portions of 

regulatory regions of the transposase were not removed, allowing them to affect activation of the 

T3SS promoter fusions. It is possible regulatory regions or termination sequences for serC or 

aroA could have affected expression of the promoter fusions. However, any DNA sequence in 

the area of insertion that could inhibit promoter activity likely would affect expression of all 

promoter fusions inserted. Another possibility is that not enough of the promoter regulatory 

region was included for gfp+ fusions, leading to inefficient regulation of the promoter.  

Edwardsiella ictaluri T3SS Genes Are Expressed in Many Conditions. The limited findings 

from the promoter fusion suggest that culture pH has an effect on the expression of T3SS genes. 

Fusions using the promoters for esaB and escC are strongly upregulated in acidic conditions, 

whereas the promoter for orf29/30 is consistently active only in neutral media. RT-PCR analyses 

of total RNA demonstrate many E. ictaluri T3SS genes are expressed to some degree in all 

culture conditions assayed. However, the analysis is not effective in determining up- or 

downregulation of most T3SS genes. Similar to the promoter fusion results above, however, 

orf29/30 expression is noticeably reduced in acidic media compared to neutral media, indicating 

downregulation of orf29/30 in acidic conditions. Surprisingly, an operon encoding T3SS 

apparatus genes (esaR) is not detected in any condition. Perhaps the primers used for esaR RT-
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PCR analysis are not sufficient for efficient amplification, but the same lack of detection is 

observed for the esaR promoter fusion, suggesting low to no expression of this operon in the 

conditions assayed. Secretion of translocon proteins in acidic media, however, suggests the 

proteins encoded by the esaR operon are expressed and translated, allowing for secretion of the 

translocon proteins. Furthermore, analysis of secreted protein from the T3SS-deficient E. ictaluri 

strain esaU-, which has a mutation in the esaR operon, indicates expression of that operon is 

required for secretion of EseB, EseC, and EseD. Therefore, secretion of translocon proteins in 

acidic media indicates EsaR is present, but expression is undetectable using the esaR promoter 

fusion or RT-PCR. 

The esaR operon encodes apparatus proteins predicted to be required in low 

concentration. Operons such as escC and esaB both are detected by gfp+ promoter fusion, and 

they encode proteins that associate into multimers, either within the membrane or outside the 

membrane. The requirement for multiple copies of proteins for construction of the translocon or 

membrane-spanning pores suggest higher expression of those genes, which would be detected 

more easily by promoter fusions or RT-PCR than esaRSTU, which encodes proteins all predicted 

to be monomeric components of the apparatus. 

The gfp+ fusion and RT-PCR results for orf29/30 suggest orf29/30 is not associated with 

the E. ictaluri T3SS. GFP fluorescence is reduced to negative-control levels in all acidic media 

assayed, and RT-PCR results demonstrate a decline of fluorescence intensity in acidic cultures 

compared to pH-neutral cultures. This is contradictory to the findings by Zheng et al. (Zheng et 

al. 2005) whom found expression of E. tarda orf29 and orf30 is dependent on the T3SS 

regulatory protein EsrC. While esrC expression is significantly downregulated in MM19 pH 5.5, 

similar to the GFP and RT-PCR results for orf29/30, esrC is upregulated in MM19-P pH 5.5, a 

condition in which orf29/30 promoter activity is not detected.  
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Orf29 and Orf30 of E. tarda are hypothesized to be effector proteins of the T3SS based 

on the presence of a high number of coiled regions in the predicted secondary structure and a 

lack of homology to conserved T3SS apparatus proteins (Zheng et al. 2005). While expression of 

orf29 and orf30 of E. tarda is dependent upon EsrC, expression was only evaluated in neutral 

media; therefore, the effect of acidic pH on the expression of orf29 and orf30 in E. tarda is 

unknown. Perhaps esrC has an influence on orf29/30 expression in E. ictaluri cultured in neutral 

culture conditions, but the regulation is lost in acidic environments. 

The DNA region upstream of orf29/30 of E. ictaluri also is different from E. tarda. There 

is a transposase insertion between esrB and orf29/30 in E. ictaluri (Thune et al. 2007) that is not 

present in E. tarda, which may affect the expression of orf29/30 in E. ictaluri. Alternatively, 

orf29/30 may be involved in other aspects of T3SS not associated with acidic environments. The 

gfp+ fusion and RT-PCR analyses indicate that T3SS genes are being transcribed in neutral 

conditions, albeit at a lower level than in acidic conditions. The T3SS may have a function in 

neutral conditions in which the other low phosphate or acid induced genes are either not required 

or not required in great amounts. 

Environmental Cues Influence Expression of the E. ictaluri T3SS. Quantitative PCR analyses 

give a better indication of T3SS gene expression in different culture media than either the 

promoter fusions or RT-PCR. Analyses of apparatus genes were not conducted using quantitative 

PCR, so further evaluation of the esaR operon was not done. qPCR analyses focused on putative 

effector, translocon, and regulatory genes, because of the assumption that the expression of those 

genes is more indicative of T3SS secretion activity.  

 The operon encoding the translocon proteins is the only one found to be upregulated in 

acidic minimal media with normal phosphate. Upregulation of the translocon operon in acidic 

media indicates a departure from the observed regulation of the SPI-2 translocon. Many studies 
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with Salmonella conclude that acidic pH induces secretion and construction of the SPI-2 

translocon, but that translocon gene expression is not increased by acidic pH (Beuzon et al. 1999; 

Nikolaus et al. 2001; Hansen-Wester et al. 2002; Coombes et al. 2004; Chakravortty et al. 2005).  

Most E. ictaluri T3SS gene upregulation occurs in MM19-P pH 5.5. Low phosphate 

growth conditions are also a strong inducer of SPI-2 T3SS expression (Beuzon et al. 1999; 

Deiwick et al. 1999; Hansen-Wester et al. 2002; Lober et al. 2006). Lober et al. (Lober et al. 

2006) used microarray analysis of intracellular Salmonella to determine that the intracellular 

environment is phosphate-limited based on expression of a number of low phosphate-inducible 

genes. The upregulation of the E. ictaluri T3SS in conditions similar to conditions that induce 

SPI-2 T3SS is an indication that the T3SS is expressed and active intracellularly. Thune et al. 

(Thune et al. 2007) found a T3SS-deficient mutant to be highly attenuated for intracellular 

replication, supporting the findings that the T3SS is induced in conditions that mimic the 

intracellular environment of a macrophage.  

Effect of phosphate starvation on T3SS gene expression is not reported in E. tarda. 

However, E. tarda phosphate-specific transport (PST) mutants that are inhibited in the transport 

of phosphate into bacterial cells exhibit downregulated expression of esrC and esaC (Srinivasa 

Rao et al. 2004; Zheng et al. 2005). Mutation of PST, however, likely results in a different signal 

than low environmental phosphate. The inability to import phosphate may create an internal 

signal as opposed to the extracellular signal created by decreased phosphate in the media. An 

internal low phosphate signal may result in a different signal cascade than in response to an 

externally low phosphate signal, thereby resulting in dissimilar changes in gene expression in the 

two conditions.  

Because of the inability of PST mutants to import phosphate, the decreased T3SS 

expression may result in a physiological shortage. The PST mutants may lack the phosphate 
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concentrations necessary to fulfill their physiological phosphate requirements or lack the ability 

of sensor kinases to phosphorylate response regulators, thereby impeding signal cascades. 

Because expression of esaC and esrC is dependent on EsrB (Zheng et al. 2005) and EsrB 

requires phosphorylation for activation, the inability of PST mutants to import phosphate may 

result in the inability of EsrB to regulate T3SS gene expression. 

Although E. ictaluri T3SS genes are upregulated in response to phosphate limited acidic 

media, detection of gene transcription is not a guarantee of translation. Some T3SS genes of 

Yersinia are thought to have post-transcriptional control over translation (Anderson and 

Schneewind 1997). The structure of the mRNA protects itself from being translated unless it 

comes in contact with the T3SS apparatus, at which time the message is translated and the 

protein translocated. Also, PhoP can post-transcriptionally regulate SsrA expression in 

Salmonella (Bijlsma and Groisman 2005). Whether or not transcriptional upregulation is 

indicative of T3SS activity, the results of this study indicate E. ictaluri T3SS gene expression is 

upregulated in the presence of conditions likely to be encountered intracellularly: low pH and 

low phosphate. 

Secretion of E. ictaluri T3SS Translocon Proteins In Vitro Is pH-Dependent. Acidic media 

induces secretion of the translocon proteins to the culture media, similar to the response in 

Salmonella (Beuzon et al. 1999; Coombes et al. 2004), but different from E. tarda (Srinivasa 

Rao et al. 2003; Srinivasa Rao et al. 2004; Zheng et al. 2007). The correlation of translocon 

secretion to the outside of the cell in a pH-dependent manner makes sense if the T3SS is 

involved in intracellular replication as it is in Salmonella. It is interesting, however, that 

translocon secretion occurs for E. tarda, but not E. ictaluri, in neutral pH conditions. Perhaps the 

evolutionary paths of each organism have led to differences in regulatory control of their T3SS. 
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Edwardsiella tarda causes a much different disease in channel catfish, indicating it either lacks 

some of the virulence mechanisms of E. ictaluri or does not regulate them in the same way. 

Although expression of the E. ictaluri T3SS effector genes eseG (escB operon), eseH, 

and eseI is detected, their respective proteins are not detected in the whole cell lysate or 

supernatant. The predicted isoelectric points (pI) of of EseH and EseI, 5.54 and 6.32, 

respectively, both predict the proteins would fall in the range of the IPG strips used for 2D-

PAGE analysis (pH 4-7). EseG, however, has a predicted pI of 7.09, and may be only on the 

boundaries of the gel. Supernatant effector proteins may simply be obscured by other protein 

spots from the whole cell lysate gels. However, that likely is not the case in the supernatant gels. 

Possible explanations for effector proteins not being detected in the supernatant are numerous. 

First, the proteins may not be expressed or secreted at a high enough level for detection. Second, 

an apparatus or translocon protein may serve as a cap that prevents secretion of effector proteins 

unless contact is made with a host membrane. Third, presence of T3SS mRNA does not indicate 

presence of protein. As described above, some T3SS genes of Yersinia are regulated post-

transcriptionally by the mRNA, so genes are transcribed, but secretion and presumably 

translation is dependent on relieving mRNA secondary structure (Anderson and Schneewind 

1997). RNA signalling for T3SS protein is reviewed by Sorg et al. (Sorg et al. 2005).  

Deiwick et al. (Deiwick et al. 2002) studied the SPI-2 proteome and found that many 

proteins are not produced at a high enough level for detection using silver staining, which has a 

comparable detection level to the Sypro Ruby stain used in this study for 2D gel visualization. 

Proteins had to pulse labelled with [35S] methionine/cysteine for visualization of most SPI-2 

T3SS-related proteins. These findings, along with observations that the SPI-2 T3SS is expressed 

in low numbers on the surface of Salmonella (Nikolaus et al. 2001; Chakravortty et al. 2005), 

suggest that production of effectors, and possibly the apparatus and translocon proteins, is low. 
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Determination of E. ictaluri T3SS effector production and secretion may require 

alternative methods, such as production of antibodies against the native effector proteins or 

fusing an epitope tag to the effector proteins. Alternatively, if in vitro secretion of effector 

proteins is limited by a cap on the T3SS apparatus, mutation of the cap protein may result in less 

restrictive protein secretion. Similar to the results described here, the secreted T3SS proteins of 

E. tarda visible on 2D gels were also limited to translocon proteins (Tan et al. 2002; Srinivasa 

Rao et al. 2004; Zheng et al. 2005). 

The SPI-2 T3SS translocates over twenty proteins. Only a few of those proteins, 

however, are encoded within the T3SS pathogenicity island. The remaining effector proteins are 

encoded throughout the genome. Edwardsiella ictaluri also encodes putative T3SS effectors 

outside the T3SS pathogenicity island. However, no effector genes outside the E. tarda T3SS are 

identified. Because of the small number of known T3SS effectors in E. ictaluri and E. tarda, it is 

difficult to predict functional homologies between the E. ictaluri and E. tarda T3SS. While the 

apparatus and regulatory genes are highly homologous, the function of the T3SS in each 

organism will be defined by the effectors they secrete. Two putative effector proteins outside of 

the E. ictaluri T3SS have been identified, EseH and EseI. Both are homologous to proteins 

involved in downregulation of the host immune response, but EseH also has homology to actin 

polymerization-modulating proteins of Salmonella (Miao et al. 2003). It is unknown if E. tarda 

encodes homologous proteins.  

Both E. ictaluri and E. tarda modulate expression of host cell cytokines (Chen et al. 

2005; Okuda et al. 2006; Okuda et al. 2008). Host cytokine modulation by E. tarda is dependent 

on an intact T3SS; however, cytokine modulation depends on what type of cell the bacteium has 

infected (Okuda et al. 2006; Okuda et al. 2008). Infection of channel catfish with E. ictaluri 

results in an increase in IL-8 production (Chen et al. 2005). No work, however, is reported that 
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uses E. ictaluri T3SS mutants to determine if the E.ictaluri T3SS modulates the increased IL-8 

production in the catfish host. Analysis of E. ictaluri T3SS mutants on the production of host 

cytokines may give insight into the comparative functions of the E. ictaluri and E. tarda 

secretion systems.  

Both E. ictaluri and E. tarda have homologous T6SS as well, and both secrete EvpC to 

the supernatant in similar conditions as secretion of the T3SS translocon proteins. This suggests 

a functional and regulatory link between the T3SS and T6SS. In E. tarda, EsrC is verified as 

being a regulator of the T6SS, demonstrating crosstalk between two types of secretion systems, 

likely for coordinated expression and secretion. EvpC secretion is not dependent on the T3SS in 

either organism; however, E. ictaluri extracellular protein 2D-PAGE results indicate a lower 

concentration of EvpC in the supernatants of a T3SS-deficient strain. Perhaps the inability of the 

T3SS results in the accumulation of T3SS proteins in the cell, resulting in feedback inhibition of 

the system. The function of the Edwardsiella T6SS is unknown, but it is required for E. tarda 

virulence (Zheng and Leung 2007). 

Future Work. Future work is needed to determine the role of EsrA and EsrB on E. ictaluri 

T3SS gene expression, and to determine the importance of the E. ictaluri AraC-like regulator 

EsrC. The EsrC homolog of E. tarda is important for expression of some E. tarda T3SS genes, 

as well as T6SS-related virulence genes (Tan et al. 2005; Zheng et al. 2005). Expression of EsrC 

is dependent on the E. tarda EsrAB two-component regulatory system, indicating some effects 

of EsrA and EsrB on T3SS gene expression is through regulation of EsrC. The qPCR results 

from this study indicate esrC expression is upregulated in acidic, low phosphate media, but its 

relationship to esrAB is unknown. Because the activity of E. tarda EsrC is only evaluated in 

neutral pH culture conditions, it is unknown if other culture conditions effect esrC expression or 

activity. The differences seen in expression of T3SS genes between E. ictaluri and E. tarda may 
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be indicative that while their T3SS are homologous, they serve different purposes in 

pathogenesis. Further analysis of both the E. tarda and E. ictaluri T3SS will be required to 

determine the degree of homology between secreted effectors in both sequence and function. 

Further analysis of the putative T3SS genes encoded by the E. ictaluri plasmids also is 

needed. Thune et al. (Thune et al. 2007) reported the attenuation of E. ictaluri carrying Km 

insertions in the E. ictaluri plasmids in or near the coding regions of suspected T3SS-related 

genes eseH and escD. Interestingly, both mutants carry the native and mutant copies of the 

plasmids, suggesting the mutations have a gene copy number effect rather than a knockout effect. 

Characterization of these mutants and their role in E. ictaluri virulence will provide further 

knowledge concerning the pathogenesis of E. ictaluri. 

This work is the first to describe expression of the E. ictaluri T3SS in response to 

environmental stimuli. The environmental conditions simulated are those potentially experienced 

within the intracellular environment of a macrophage phagosome. Further work is needed to 

measure expression of T3SS genes within the macrophage to verify the in vitro responses are 

analogous to intracellular responses. A T3SS mutant, esaU-, is completely attenuated for 

replication within the macrophage (Thune et al. 2007), indicating that a functioning T3SS is 

required for replication within the phagosome. Study of the T3SS and the factors involved in its 

expression in relation to pathogenesis within channel catfish will provide valuable insight into an 

important facet of the virulence mechanisms employed by this pathogen. 
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CHAPTER 3  

MUTAGE�ESIS OF THE EDWARDSIELLA ICTALURI T3SS-E�CODED 

REGULATORY GE�ES 

 
I�TRODUCTIO� 

Edwardsiella ictaluri causes enteric septicemia of catfish (ESC) and is found throughout 

the Southeastern United States, the primary region of channel catfish production (Anonymous 

2003a; Anonymous 2003b). Edwardsiella ictaluri encodes a Salmonella pathogenicity island 2 

(SPI-2) class of type III secretion system (T3SS) required for replication within host cells (Thune 

et al. 2007). Encoded within the E. ictaluri T3SS pathogenicity island are the putative regulatory 

genes esrA, esrB, and esrC. EsrA, EsrB, and EsrC are homologous to E. tarda EsrA, EsrB, and 

EsrC. EsrA and EsrB of both E. ictaluri and E. tarda are homologous to SsrA-SsrB proteins of 

Salmonella, which serve as a two component regulatory system required for expression of the 

SPI-2 T3SS (Shea et al. 1996; Valdivia and Falkow 1996; Cirillo et al. 1998; Deiwick et al. 

1999; Worley et al. 2000; Garmendia et al. 2003; Feng et al. 2004; Deiwick et al. 2006; Dieye et 

al. 2007; Walthers et al. 2007). Salmonella, however, does not have a homolog to EsrC in the 

SPI-2 T3SS. EsrC is homologous to AraC/XylS type transcriptional regulators, which are 

generally involved in positive regulation of gene transcription (Gallegos et al. 1997).  

The T3SS of E. ictaluri has strong homology to the T3SS of E. tarda (Srinivasa Rao et al. 

2003; Srinivasa Rao et al. 2004; Tan et al. 2005; Zheng et al. 2005). Expression of E. tarda esrC 

is dependent on the expression of EsrA and EsrB. Mutation of esrB and esrC results in decreased 

expression of the E. tarda T3SS translocon proteins EseB, EseC, and EseD, which greatly 

attenuates E. tarda intracellularly and in vivo (Srinivasa Rao et al. 2004; Zheng et al. 2005). A 

mutation in esrC, however, maintains some ability to replicate intracellularly (Zheng et al. 2005).  

EsrC also regulates expression of the type VI secretion system (T6SS) in E. tarda. 

Expression of T6SS proteins is reduced in an esrC mutant, suggesting EsrC has a crosstalk 
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function between secretion systems (Zheng et al. 2005). Edwardsiella tarda T6SS proteins have 

homology to E. ictaluri proteins recognized as immunogenic by the channel catfish immune 

system (Moore and Thune 1999; Moore et al. 2002). Edwardsiella ictaluri secretes a T6SS 

protein, EvpC, in both pH 7.0 and pH 5.5 conditions, whereas the T3SS translocon proteins are 

secreted only in acidic media, indicating regulation of the two systems is different (Chapter 2). 

Expression of the SPI-2 T3SS is greatly dependent on acidic pH and low phosphate in 

vitro (Cirillo et al. 1998; Beuzon et al. 1999; Deiwick et al. 1999; Lee et al. 2000; Hansen-

Wester et al. 2002; Garmendia et al. 2003; Hautefort et al. 2003; Coombes et al. 2004; Feng et al. 

2004; Kim and Falkow 2004; Lober et al. 2006; Walthers et al. 2007). The effect of 

environmental conditions on expression of the SPI-2 T3SS is primarily through expression and 

activation of the SsrAB two-component regulatory system. However, expression of ssrAB is 

affected by two other global two-component regulators PhoPQ and OmpR/EnvZ (Lee et al. 

2000; Worley et al. 2000; Feng et al. 2003; Garmendia et al. 2003; Feng et al. 2004; Bijlsma and 

Groisman 2005) and also SlyA (Okada et al. 2007). The involvement of multiple regulatory 

systems for expression of the T3SS presents a complex network of signaling and activation. 

The E. ictaluri T3SS, like the SPI-2 T3SS, is upregulated when cultured in acidic media 

with limited inorganic phosphate (Chapter 2). Expression of T3SS-related genes is detected at 

neutral pH and with normal phosphate concentrations, but at a much lower level than when 

cultured in acidic media with limited inorganic phosphate. Conversely, the E. tarda T3SS is 

active at neutral pH in Dulbecco’s Modified Eagle Medium. The differences in conditions 

required for T3SS induction between E. tarda and E. ictaluri suggest differences in T3SS 

expression regulation and potentially different functions of the T3SS effector proteins. The T3SS 

of both organisms, however, is required for intracellular replication (Srinivasa Rao et al. 2004; 

Tan et al. 2005; Zheng et al. 2005; Okuda et al. 2006; Thune et al. 2007; Okuda et al. 2008) 
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In this study, the EsrAB two-component regulatory system of E. ictaluri was mutated by 

gene replacement in both reading frames, and the AraC-type regulator EsrC was mutated by 

deleting the putative helix-turn-helix DNA binding domains. Quantitative PCR was used to 

determine the effect of the T3SS regulatory gene mutations on expression of E. ictaluri T3SS-

related chaperone, effector, and translocon genes. To determine effects on subsequent virulence 

phenotypes, the mutants were evaluated for their ability to survive in channel catfish 

macrophages and in channel catfish. The results demonstrate that T3SS-encoded regulators 

control virulence gene expression inside and outside of the T3SS pathogenicity island. Mutation 

of all three genes reduces T3SS expression; however, mutation of esrB results in greater loss of 

T3SS gene expression than mutation of esrA or esrC. Loss of EsrC, however, negatively effects 

production of the putative T6SS secreted protein EvpC, indicating that EsrC has a role in 

coordinating expression of E. ictaluri virulence genes other than those in the T3SS. Only 

mutations in esrA and esrB affect intracellular replication within channel catfish macrophages; 

however, all T3SS regulatory genes are required for virulence in channel catfish. These studies 

indicate each E. ictaluri regulatory gene is important for infection of channel catfish and suggest 

differences in the regulation of the T3SS between E. ictaluri and E. tarda. This study 

demonstrates the dependence of T3SS expression on EsrB and indicates EsrC has a function in 

virulence beyond T3SS gene regulation. 

MATERIALS A�D METHODS 

Bacterial Strains and Culture. The bacterial strains and plasmids used in this study are listed in 

Table 3.1. Escherichia coli strains were cultured with aeration in Luria-Bertani (LB) broth 

supplemented with appropriate antibiotics at 37º C. Edwardsiella ictaluri strains were grown in 

LB supplemented with mannitol salts at 28º C with antibiotics as appropriate. E. ictaluri also was  

cultured in MM19 (Collins and Thune 1996) at pH 5.5 and 7.0 and low phosphate MM19 
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Table 3.1. Bacterial strains and plasmids used in Chapter 3. 

Bacterial Strains or Plasmid Description  Source 

E. ictaluri 

93-146  
 
Wild type E. ictaluri isolated from a moribund channel 
catfish from a natural outbreak at a commercial facility 
in 1993 

  
LSU aquatic diagnostic 
laboratory 

65ST (esaU-) Derived from parental wild type strain 93-146; carries an 
insertion of an STM tag S/T in esaU  

 (Thune et al. 2007) 

∆esrA::km 93-146 with nucleotides 112 – 2610 of esrA deleted, Kmr  This work 

∆esrB::km 93-146 with nucleotides 58 – 564 of esrB deleted, Kmr  This work 

∆esrC::km 93-146 with nucleotides 70 – 402 of esrC deleted, Kmr  This work 

∆esrC 93-146 with nucleotides 70 – 402 of esrC deleted  This work 

∆esrA::km/pesrA 93-146 with nucleotides 112 – 2610 of esrA deleted 
carrying pesrA, Kmr Apr   

 This work 

∆esrB::km/pesrB 93-146 with nucleotides 58 – 564 of esrB deleted 
carrying pesrB, Kmr Apr 

 This work 

∆esrC/pesrC 93-146 with nucleotides 70 – 402 of esrC deleted 
carrying pesrC, Apr 

 This work 

WT/pesrA 93-146 carrying pesrA, Apr  This work 

WT/pesrB 93-146 carrying pesrB, Apr  This work 

WT/pesrC 93-146 carrying pesrC, Apr  This work 

Escherichia coli  

XL1 Blue MRF’ 
 
(mcrA)183 (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-

1 recA1 gyrA96 relA1 lac [F’ proABlacIqZ.M15 

Tn5(Km)] 

  
Stratagene, La Jolla, CA 

CC118λ pir ∆(ara-leu) araD ∆lacX74 galE galK phoA20 thi-1 rpsE 

rpoB argE (Am) recA1 λpir lysogen 

 (Herrero et al. 1990) 

SM10λ pir thi1 thr1 leuB supE44 tonA21 lacY1 recA-::RP4-2-
Tc::Mu Kmr λ::pir 

 (Simon et al. 1983) 

Plasmids 

pBluescript SK- 
 
Cloning vector 

  
Stratagene, La Jolla, CA 

pBS::∆esrA pBluescript carrying esrA with nucleotides 112 – 2610  
deleted and replaced with an EcoRI recognition site 
inserted between KpnI and XbaI 

 This work 

pBS::∆esrA::km pBluescript carrying esrA with nucleotides 112 – 2610  
deleted and km inserted at EcoRI site 

 This work 

pBS::∆esrB pBluescript carrying esrB with nucleotides 58 - 564 
deleted and replaced with an EcoRI recognition site 
inserted between KpnI and XbaI 

 This work 
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Table 3.1 continued. 

pBS::∆esrB::km pBluescript carrying esrB with nucleotides 58 - 564 
deleted and km inserted at EcoRI site 

 This work 

pBS::∆esrC pBluescript carrying esrC with nucleotides 70 - 402 
deleted and replaced with an EcoRI recognition site 
inserted between KpnI and XbaI 

 This work 

pBS::∆esrC::km pBluescript carrying esrC with nucleotides 70 - 402 
deleted and km inserted at EcoRI site 

 This work 

pGP704 R6K ori mob Apr; suicide vector used for allelic 
exchange 

 (Miller and Mekalanos 
1988) 

pGP::∆esrA::km pGP704 with ∆esrA::km inserted at KpnI and XbaI  This work 

pGP::∆esrB::km pGP704 with ∆esrB::km inserted at KpnI and XbaI  This work 

pGP::∆esrC::km pGP704 with ∆esrC::km inserted at KpnI and XbaI  This work 

pGP::∆esrC pGP704 with ∆esrC at KpnI and XbaI  This work 

pBBR1-MCS4 Broad-host-range cloning vector, Apr  (Kovach et al. 1995) 

pesrA pBBR1-MCS4 carrying esrA at XbaI and XhoI  This work 

pesrB pBBR1-MCS4 carrying esrB at XbaI and XhoI  This work 

pesrC pBBR1-MCS4 carrying esrC at XbaI and XhoI  This work 

 

 (MM19-P) at pH 5.5. Antibiotics were used in the following concentrations: kanamycin (Km) 

50 µg/ml, colistin (Col) 10 µg/ml, and ampicillin (Ap) 200 µg/ml. Edwardsiella ictaluri strains 

isolated from channel catfish or macrophage were cultured on trypticase soy agar plates 

supplemented with 5% sheep blood (BA, Remel Products, Lenexa, KS). 

Specific Pathogen Free Channel Catfish. Channel catfish egg masses obtained from production 

facilities with no history of E. ictaluri outbreaks were disinfected with 100 ppm free iodine and 

hatched in a closed recirculating aquaculture system at the specific-pathogen-free (SPF) aquatic 

laboratory at the LSU School of Veterinary Medicine. Commercial catfish diets were used to rear 

fish at a rate of 2 to 3% body weight per day. Catfish used for immersion infections were 

between 10 and 20 g at exposure to E. ictaluri, and those used for harvesting head kidney-

derived macrophages (HKDM) were between 500 and 750 g at the time of harvest. 
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D�A Protocols. Genomic DNA was isolated similar to the protocol described by Ausubel et al. 

(Ausubel et al. 1994). Briefly, cells were pelleted by centrifugation at 3700 x g for 5 minutes and 

resuspended in TE. Cells were lysed with 0.5% SDS in the presence of 50 µg/ml RNase A and  

100 µg/ml proteinase K. Phenol:chloroform:isoamyl alcohol (25:24:1) was used to extract  

protein followed by a chloroform wash. DNA was ethanol precipitated in the presence of 0.12 M 

sodium acetate. Precipitated DNA was collected by centrifugation at 3700 x g and resuspended 

in water. Plasmid DNA was isolated using the Qiagen Miniprep Kit (Qiagen Inc., Valencia, 

CA.). Restriction digests were conducted using enzymes purchased from New England Biolabs 

 (Ipswich, MA), and DNA was purified using the Qiaquick Kit or Minelute Kit (Qiagen). 

T3SS Regulatory Gene Mutagenesis. Deletion mutants were constructed using a modified 

fusion PCR procedure. Polymerase chain reaction was used to amplify 5' and 3' regions of the 

target genes using gene specific primers (Table 3.2). Rather than using fusion PCR to join the 5’ 

and 3’ regions, ligation at restriction sites was used (Figure 3.1). Restrictions sites for KpnI and 

XbaI were added to P1 and P2 primers, respectively. EcoRI sites were added to the P3 and P4 

primers. Following amplification using P1 and P2 primers paired with P3 and P4 primers, 

respectively to amplify the 5’ and 3’ flank regions, 5’ and 3’ PCR products were digested and 

ligated via the EcoRI sites. The ligation product was used as template for PCR using primers P1 

and P2 (Figure 3.1), resulting in deletion of an internal sequence of the gene of interest. The 

construct was ligated into pBluescript at KpnI and XbaI sites, and a Km cassette was inserted 

into the EcoRI deletion site. The construct containing the deletion mutant with the antibiotic 

marker and flanking regions was excised from pBluescript usking KpnI and XbaI and ligated into 

pGP704, a suicide vector for E. ictaluri. The vector was transferred to E. ictaluri via conjugation, 

and mutagenesis occurred by allelic exchange. Successful recombinants were identified by 

resistance to Km and AP sensitivity.  
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Table 3.2. Oligonucleotide sequences used for PCR in the mutagenesis of Edwardsiella ictaluri 
type III secretion system regulatory genes. Bold text indicates a KpnI site, underlined is an EcoRI 
site, and italicized is an XbaI site.  

Primer Primer Type Sequence 

5’ esrA-F P1 5’-TATATAGGTACCAACCCTACCCATATTGCC-3’ 

5’ esrA-I P3 5’-TATATAGAATTCGTTCAGCAGCAGCGTCAC-3’ 

5’ esrB-F P1 5’-ATATATGGTACCCGCGGGACATTATCAGGA-3’ 

5’ esrB-I P3 5’-TATATAGAATTCATTACGGATGCCATCGGC-3’ 

5’ esrC-F P1 5’-TATATAGGTACCCGTCTGCAACGATACGCT-3’ 

5’ esrC-I P3 5’-TATATAGAATTCCAGCCTGAGCATGGTTTC’3’ 

3’ esrA-F P2 5’-TATATATCTAGAGCTGCCACTGATTCGGAG-3’ 

3’ esrA-I P4 5’-TATATAGAATTCGGCCTGACGTTGGTACAT-3’ 

3’ esrB-F P2 5’-ATATATTCTAGATGCGAGAAAAGCGCGATC-3’ 

3’ esrB-I P4 5’-TATATAGAATTCAACCTGATGCGCAAGCTG’3’ 

3’ esrC-F P2 5’-TATATATCTAGACCATTGTTGATGAGGGCC-3’ 

3’ esrC-I P4 5’-TATATAGAATTCCACTTCAGTCAGTCGCCA-3’ 

 

Because both esrA and esrB are single genes (Figure 3.2A), the insertional mutations will 

not cause polar effects on transcriptionally linked downstream genes. However, esrC may be 

transcriptionally linked to downstream apparatus genes (Figure 3.2B). To ensure expression of 

these genes is not compromised by an antibiotic cassette insertion, esrC must be a markerless in-

frame deletion. To accomplish this, the process described above was conducted to create a 

∆esrC::km insertion mutant. Following successful recombination and creation of a ∆esrC::km 

mutant, a second conjugation was done, this time using a pGP704 vector carrying only the ∆esrC 

construct without the Km cassette. Successful recombination was identified by the loss of Km 

resistance. In-frame mutagenesis was conducted in this manner in order to have a trait (Km 

resistance) to select against for markerless deletion mutagenesis. PCR and DNA sequencing 

verified all mutations. 
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Figure 3.1. Schematic describing construction of Edwardsiella ictaluri type III secretion system 
(T3SS) regulatory mutants. The 5’and 3’ ends of T3SS regulatory genes were amplified by PCR 
along with at least 800 nt of DNA flanking the genes. The 5’ and 3’ fragments were ligated via 
EcoRI ends resulting in the in-frame deletion of an internal coding sequence. Deletion constructs 
were inserted into pBluescript. A Kanamycin (Km) resistance gene was inserted into the EcoRI 
site, and constructs were inserted into the E. ictaluri genome via allelic exchange, resulting in 
mutation of the regulatory genes at their native locus. For esrC, a second allelic exchange was 
done using the markerless deletion construct to remove the Km cassette, resulting in a markerless 
in-frame esrC mutation. 
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Figure 3.2. Genetic organization of Edwardsiella ictaluri type III secretion system regulatory 
genes. esrA and esrB are encoded adjacent to each other in the opposite direction (A). esrC may 
be the first gene of an operon encoding esaGHIJWKL (B). 
 
 

Complementation of T3SS Regulatory Mutants. Edwardsiella ictaluri genomic DNA was 

used as template for PCR to amplify the T3SS regulatory genes esrA, esrB, and esrC. Included in 

the amplified product were at least 250 bases of upstream DNA containing the promoter regions 

of the genes. Primers for PCR (Table 3.3) were designed to contain the restriction sites for XbaI 

and XhoI in their 5' and 3' ends, respectively. Following amplification, PCR products were 

digested with XbaI and XhoI (New England Biolabs) and ligated into the XbaI and XhoI region 

of pBBR1-MCS4 resulting in pesrA, pesrB, and pesrC. Plasmids were maintained in the Es. coli 

strain CC118λpir. For conjugation of the complementation plasmids into E. ictaluri, Es. coli 

SM10λpir was used as the donor strain. In addition to conjugating the complementation plasmids 

to the appropriate E. ictaluri mutant strains, each complementation plasmid was conjugated to E. 

ictaluri 93-146 to determine to what extent, if any, the presence of the complementation plasmid 

has on gene expression and virulence of the wild type (WT) strain.   

R�A Isolation. Total RNA was isolated using RNAprotect Bacteria RNeasy Mini Kit (Qiagen) 

and quantified using 260/280 absorbance ratios. Total RNA was treated with Baseline Zero 

DNase (Epicentre Biotechnologies, Madison, WI) to remove contaminating DNA and adjusted to 

a concentration of 10 ng/µl. 
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Table 3.3. Oligonucleotides used for construction of complementation plasmids for esrA, esrB, 
and esrC mutants in Edwardsiella ictaluri. Underlined sequences are XbaI sites and bolded 
sequences are XhoI sites.  

Primer Sequence 

esrA-For 5’-ATTTAATTTCTAGAATGCAGGTGATGCCGGAAA-3’ 

esrA-Rev 5’-TTTAATTCTCGAGGCTGGAGGTTTAATCCGCCT-3’ 

esrB-For 5’-ATTTAATTTCTAGACGATGCATTCCACAAATCCA-3’ 

esrB-Rev 5’-ATTTAATTCTCGAGATACGCTAAAGGGGTTGGCC-3’ 

esrC-For 5’-TTTAATTTCTAGAATCGACTGCCTCAATGACGC-3’ 

esrC-Rev 5’-TTTAATTCTCGAGACCGTGACCATGTTTAGGCG-3' 

  

Quantitative PCR. Edwardsiella ictaluri WT and mutant strains were cultured to late log phase 

in MM19-P pH 5.5 to determine the effect of T3SS regulatory gene mutation on T3SS gene 

expression. Reverse transcriptase PCR (RT-PCR) was conducted by using the High Capacity 

RNA-to-cDNA Kit (Applied Biosystems, Foster City, CA). Quantitative real-time PCR (qPCR) 

was conducted using cDNA generated from the RT-PCR reaction as template. Amplification of 

cDNA was accomplished using T3SS gene specific primers (Table 3.4) and Power SYBR Green 

PCR Master Mix (Applied Biosystems). Relative quantification was done using 16s rRNA as the 

endogenous control and expression in MM19 pH 7.0 as the calibrator. Cycling was done as 

follows: 1x 95º C 10 min followed by 40x 95º C 15 sec and 60º C 1 min. A dissociation curve 

was done for each reaction to verify that the amplified product was specific. Reactions were run 

using cDNA amplification reactions lacking reverse transcriptase to ensure amplification did not 

occur from contaminant DNA. 

Whole Cell Lysate and Extracellular Protein Preparation. Whole cell lysate and extracellular 

protein preparations were done as described in Chapter 2. Briefly, E. ictaluri strains were 

cultured in MM19 pH 5.5 to late log phase. Bacteria were pelleted, and the supernatant was set 

aside for extracellular protein precipitation. Bacterial pellets were washed in phosphate buffered  
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Table 3.4. Oligonucleotides used for quantitative PCR in Chapter 3. Putative functions of 
translational products of the genes in Edwardsiella ictaluri are given. Multiple functions indicate 
more than one type of protein is encoded by the operon. 

Gene Putative Function(s) 5' Primer 3' Primer 

escB chaperone; effector CTTTACCTTGCGATTTGCCTGCGT AACAGGCACTCCGCCATATGAAAC 

escC chaperone; translocon AATGCAAGACCTACAGCAGCGTCA GCGTTGCGATCTCTTGCTGTAACG 

eseH effector AAGAGGCTGGATGTCTCTGGTACT GGTAGCCTTGGCATAGGAGTGTTA 

eseI chaperone; effector GCAACCCTGCTTAGCAAGTGGAAA TCAAAGCCTTCCTGGGCCTAATGGA 

esrA regulatory AGAGCGAGCATCTGAACAGCATCA AGTAAGTCATGCTGCTCCTGCGTA 

esrB regulatory CAATGCAGCATGCATCACTGGGAA TCAGCGATATCCCGGTTGCGATTA 

esrC regulatory; apparatus AAAGTTTGGGATGGCGCCGAA GAGAAATGGGCGGCGTTACAGAAT 

16s   AACGCGAAGAACCTTACCTGGTCT GCTCGTTGCGGGAATTAAACCCAA 

 

saline pH 5.5  three times before being resuspended in water at a rate of 1 ml of water per 100 µl 

of pelleted cell volume. Phenylmethylsulphonyl fluoride (PMSF) was added as a protease 

inhibitor to a final concentration of 1 mM and incubated on ice for 10 min. Bacterial suspensions 

were subjected to dismembranation by sonication using a Fisher 500 sonic dismembranator at 

45% amplitude for 1min per ml of suspension. Samples were pelleted by centrifugation at 12,000 

x g for 30 min at 4° C, and supernatants were collected. Thimerosal was added to each sample 

for a final concentration of 0.01% (Moore and Thune 1999) to prevent microbial contamination. 

Whole cell lysates were stored at -80º C until two-dimensional polyacrylamide gel 

electrophoresis (2D-PAGE) analysis. 

Supernatants from above were filtered through a 0.22 µm cellulose acetate low protein-

binding filter (Corning Inc., Corning, NY) to remove any remaining bacteria. Tricholoroacetic 

acid (80%) was added to a final concentration of 10% and incubated 16-24 hrs at 4º C. Proteins 

were pelleted by centrifugation at 24,000 x g for 30 min at 4º C. Pellets were air dried briefly and 

resuspended in 1 ml water. Samples were vortexed well and stored at -80º C in 100 µl aliquots. 
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2D-PAGE. The Bio-Rad Protein Assay (Bio-Rad Laboratories) was used to determine the 

concentration of protein samples. A similar amount of whole cell lysate protein was analyzed for 

each E. ictaluri strain. However, extracellular proteins were loaded based on the amount of 

supernatant from which they were precipitated in order to compare relative amounts of protein 

secreted by each strain.  

Whole cell lysate and extracellular protein samples from above were purified by using 

ReadyPrep 2-D Cleanup Kit (Bio-Rad Laboratories). Whole cell lysates were resuspended in 

rehydration buffer at a rate of 100 µg of protein per 185 µl rehydration buffer. Each 100 µl 

extracellular protein prep was cleaned and resuspended in 185 µl of rehydration buffer. The final 

concentration of extracellular protein in rehydration buffer varied with the amount of protein 

secreted by each E. ictaluri strain. 

Immobilized pH gradient (IPG) strips, pH 4 – 7 (Bio-Rad Laboratories) were rehydrated 

using 185 µl of each protein prep resuspended in rehydration buffer. Strips were allowed to 

rehydrate 24 hrs at room temperature. Following rehydration, isoelectric focusing was conducted 

using a Bio-Rad Protean IEF Cell (Bio-Rad Laboratories). Each protein sample was focused 

using the following program at 20° C: rapid ramping to 250 V for 15 min; slow ramping to 2000 

V for 1 hr; hold at 2000 V for 3 hrs; linear step to 5000 V for 1 hr; hold at 5000 V for 3 hrs; rapid 

ramping to 8000 V for 1 hr; 8000V for 40,000 VHrs; rapid ramping to 500 V until strips were 

removed. Following isoelectric focusing, strips were removed and processed for the second 

dimension. 

Focused IPG strips were prepared for SDS-PAGE by washing with ReadyPrep 2D Starter 

Kit Equilibration Buffers I and II for 15 min each. Following equilibration, strips were loaded 

onto Criterion precast 12.5% gels (Bio-Rad Laboratories). Gels were subjected to electrophoresis 

for 55 min at 200V, then removed and fixed for 1 hr in 10% methanol and 7% glacial acetic acid. 
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Following fixation, gels were stained with Sypro Ruby stain (Bio-Rad Laboratories) for at least 3 

hours, washed in fixative for 1 hr to destain, rinsed three times in water, and imaged under UV 

light using a Bio-Rad Gel Doc XR and Quantity One software (Bio-Rad Laboratories). Each 

protein sample was isolated and analyzed by 2D-PAGE in triplicate to ensure reproducibility. 

Bacterial Survival and Replication in Channel Catfish Macrophages. Head kidney-derived 

macrophages (HKDM) were collected from channel catfish and infected with E. ictaluri WT and 

mutant strains as described by Booth et al. (Booth et al. 2006). Briefly, HKDM were harvested 

and seeded into poly-D-lysine-coated cell culture plates and used in a gentamicin exclusion 

assay. HKDM were infected with E. ictaluri strains at an MOI of 10:1 HKDM:bacteria. 

Macrophages were lysed at designated time points using a solution of 1% Triton X-100. Lysates 

were serially diluted and plated on BA. Colony forming units (CFUs) per well were calculated.  

Channel Catfish Infection Challenge. Twenty-liter tanks were stocked with 25 channel catfish 

each. For immersion, water levels were dropped to 4 L, and bacterial cultures were added for a 

final concentration of approximately 3 x 1011 CFU/L with aeration maintained. After 1 hour, the 

water supply was restored. Tanks were observed daily for mortalities. Mortalities due to E. 

ictaluri were confirmed by streaking liver tissue from each mortality onto BA plates and 

verifying the presence of E. ictaluri. Sampling continued until 3 days passed without a mortality.  

Statistical Methods. For qPCR samples, cultures were grown in triplicate for RNA samples. 

Each qPCR reaction was also done in triplicate. Ct, ∆Ct, and ∆∆Ct values were calculated using 

Applied Biosystems Sequence Detection Software v1.4 (Applied Biosystems). ∆∆Ct values for 

each reaction were converted to fold expression using the equation 2-∆∆Ct. Fold expression was 

log transformed for homoscedasticity. Mean log fold expression for each strain was calculated 

with standard error.  
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For macrophage studies, fold increase was determined by dividing the CFU/well of 

bacteria at 10 hours by the mean CFU/well at hour 0 and subtracting 1 to adjust for the number 

of bacteria present at hour 0. Mean fold replication was then calculated with standard error. For 

mortality challenge, daily mortalities were recorded, and cumulative percent mortality was 

determined for each tank. Mean cumulative percent mortality was calculated with standard error 

and reported in graphs. Percent mortality for each tank was arcsine transformed and analyzed as 

below. Mortality data reported in graphs is non-transformed cumulative percent mortality, but 

statistical significance in each graph is based on arcsine-transformed data. 

Statistical differences were determined by analysis of variance (ANOVA) using the 

general linear model (Proc GLM) of Statistical Analysis Systems v9.1 (SAS Institute, Cary, NC). 

Where ANOVA indicated a significant difference, Tukey’s HSD posthoc test was used to 

determine pairwise differences. Differences were considered significant if P ≤ 0.05.  

RESULTS 

 Construction of Regulatory Gene Mutations. Mutations in the E. ictaluri T3SS regulatory 

genes esrA, esrB, and esrC were made by allelic exchange. An internal portion of each gene was 

deleted, and for esrA and esrB, a Km cassette was inserted into the deleted region, yielding 

strains ∆esrA::km and ∆esrB::km. Because esrA and esrB do not have genes encoded downstream 

from them on the same strand (Figure 3.2A), the insertion of km does not cause polarity issues. 

However, esrC may be the first gene of an operon (Figure 3.2B), and insertion of km may cause 

polar effects on downstream apparatus genes. Therefore, a markerless deletion mutant of esrC 

was created, resulting in strain ∆esrC. In addition, a double mutant, ∆esrC/∆esrB::km, was made 

by creating the ∆esrB::km mutation in the ∆esrC strain.  

Mutation of EsrA results in the removal of amino acids 112 – 2610 from the amino acid 

sequence. Native EsrA contains between two and six transmembrane domains as determined by 
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using the computer programs DAS (Cserzo et al. 1997), TMpred (Hofmann and Stoffel 1993), 

TMHMM Server v. 2.0, and Mobyle to predict transmembrane helices. Deletion and subsequent 

insertion of a Km cassette produces a truncated predicted sequence of 63 amino acids, which 

results in the deletion of all but one transmembrane domain and no kinase motifs recognizable by 

Motif Scan (Hulo et al. 2008). 

Mutation of esrB results in the deletion of amino acids 58 – 564, and with the Km 

cassette, a predicted amino acid sequence is produced with a length of 51 amino acids, 24 of 

which are from the inserted Km sequence. The resultant amino acid sequence has no homology 

to helix-turn-helix (HTH) DNA-binding motifs as determined by three HTH domain prediction 

programs: GYM 2.0 (Gao et al. 1999; Narasimhan et al. 2002), NPS@ Helix Turn Helix Motif 

Prediction (Combet et al. 2000), and Motif Scan (Hulo et al. 2008). Motif Scan also does not 

identify significant matches to any type of amino acid motif contained in the abbreviated esrB 

sequence. 

Mutation of EsrC results in the removal of amino acids 101 – 211. Using HTH domain 

predictors, two possible HTH domains are identified in native EsrC. The first is between amino 

acids 139 – 160  or 143 – 164, based on analysis by NPS@ (Combet et al. 2000) and GYM (Gao 

et al. 1999; Narasimhan et al. 2002), respectively. GYM identifies a second sequence beginning 

around amino acid 177 that has weak homology to HTH (Gao et al. 1999; Narasimhan et al. 

2002). However, using Motif Scan (Hulo et al. 2008), this second sequence is identified as a 

strong match between amino acids 178 – 222, while the first is identified as a weak match. In 

either circumstance, the EsrC deletion results in the loss of the first HTH sequence and a loss of 

the majority of the second sequence. Using the above programs to detect motifs in the EsrC 

deletion sequence, no significant HTH sequences are identified. 
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Deletion of E. ictaluri T3SS Regulatory Genes Affects Expression of Genome and Plasmid-

Encoded Genes. Quantitative PCR was used to measure the expression of T3SS genes in each of 

the regulatory mutants. Genes assayed are listed in Table 3.3 and represent regulatory, 

chaperone, translocon, and effector genes of the T3SS. In the graphs, qPCR data from WT E. 

ictaluri is included as a reference for non-induced expression of T3SS genes. Comparisons in the 

text to gene expression of mutant strains, however, are generally in relation to the expression of 

T3SS genes in WT E. ictaluri cultured in MM19-P pH 5.5, because regulatory mutants were 

cultured in acidic, low phosphate media.  

Expression of esrA is not affected by mutation of either esrB or esrC (Figure 3.3). 

Expression of esrB similarly is not affected by mutation of either esrA or esrC. Expression of 

esrC, however, is significantly reduced in both the ∆esrA::km and ∆esrB::km strains, indicating 

esrC expression is modulated by the E. ictaluri EsrAB two-component regulatory system.  

Expression of genomic and plasmid T3SS-related genes, with the exception of eseI, is 

significantly reduced in all of the mutants (Figure 3.4). Although T3SS gene expression is 

decreased in each mutant, there are differences in the scale of downregulation. Mutation of esrA 

and esrC decreases expression of escB/eseG approximately one log from WT expression, but 

mutation of esrB results in a near 2.5 log decrease in expression, which is significantly lower 

than both the esrA and esrC mutations. Similarly, expression of the escC operon is reduced in 

both the esrA and esrC mutants, but expression in ∆esrB::km is significantly lower than in 

∆esrA::km or ∆esrC and about 2 logs lower than in WT. 

T3SS regulators also affect the expression of eseH, which is not encoded in the 

pathogenicity island, but rather on pEI1. Mutation of esrA decreases eseH expression, but not 

significantly (P = 0.0574). However, mutation of esrB and esrC have a significant impact on 

eseH expression. Because EsrB is required for expression of esrC, and deletion of esrB, esrC, or  
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Figure 3.3. Effect of Edwardsiella ictaluri type III secretion system (T3SS) regulatory gene 
mutagenesis on expression of T3SS regulatory genes. Quantitative PCR was used to measure 
expression of the E. ictaluri T3SS regulatory genes esrA, esrB, and the esrC operon containing 
esrC and the apparatus genes esaGHIJWKL in wild type (WT) E. ictaluri and strains carrying 
T3SS regulatory gene mutations  in esrA (∆esrA::km), esrB (∆esrB::km), esrC (∆esrC), and a 
esrB/esrC double mutant (∆esrC/∆esrB::km). Bacteria were cultured in pH 5.5 low phosphate 
minimal media (MM19-P). Data for WT cultured in minimal media (MM19) pH 7.0 is presented 
as a comparison for uninduced T3SS gene expression. Bars indicate the mean (± SEM) of the log 
fold expression of triplicate samples. Values with the same letter within each gene group are not 
significantly different (P > 0.05). 
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Figure 3.4. Effect of Edwardsiella ictaluri type III secretion system (T3SS) regulatory gene 
mutagenesis on expression of T3SS non-regulatory genes. Quantitative PCR was used to 
measure expression of E. ictaluri T3SS non-regulatory genes encoded by the escB/eseG operon, 
the escC operon containing the translocon genes eseBCD, the pEI1-encoded eseH, and the pEI2 
encoded escD/eseI operon in wild type (WT) E. ictaluri and strains carrying T3SS regulatory 
gene mutations in esrA (∆esrA::km), esrB (∆esrB::km), esrC (∆esrC), and a esrB/esrC double 
mutant (∆esrC/∆esrB::km). Bacteria were cultured in pH 5.5 low phosphate minimal media 
(MM19-P). Data for WT cultured in minimal media (MM19) pH 7.0 is presented as a 
comparison for uninduced T3SS gene expression. Bars indicate the mean (± SEM) of the log fold 
expression of triplicate samples. Values with the same letter within gene group are not 
significantly different (P > 0.05). 
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both results in a similar amount of eseH expression, the effect of EsrB on eseH may be through 

regulation of EsrC. None of the mutations has a significant impact on expression of a pEI2-

encoded gene, eseI. All mean values of eseI expression in the mutants were slightly less than WT 

expression, and similar to each other. The inability of T3SS regulatory mutants to affect eseI 

expression indicates eseI expression is not modulated by T3SS regulatory genes. 

Double mutation of esrB and esrC has a similar effect on T3SS gene expression as the 

single esrB mutant, indicating the esrB mutation is the dominant phenotype. The dominance of 

EsrB makes it difficult to determine from this data what the role of EsrC is in regards to control 

of other genes. EsrB is expressed in ∆esrC, and it continues to modulate T3SS gene expression. 

It is possible EsrC could activate T3SS gene expression in the absence of EsrB, but because EsrB 

is required for esrC expression, an esrB mutant strain would need be engineered such that esrC is 

still be expressed to determine the effect of EsrC alone on T3SS gene expression. 

These data suggest mutation of esrB has a much more profound effect on T3SS gene 

expression than either esrA or esrC. T3SS genes are expressed, albeit at reduced levels in esrA 

and esrC mutants, indicating expression is influenced, but not dependent on EsrA or EsrC. EsrB 

and EsrC may act in concert for full activity of the T3SS. The inability of the esrA mutant to 

match the effect of esrB on T3SS gene expression suggests EsrB activity is not dependent solely 

on EsrA for activation, and EsrB can be phosphorylated by other kinases. However, full activity 

of the T3SS requires EsrA, as evidenced by the significant decreases in T3SS expression in the 

esrA mutant. The finding that T3SS regulators modulate expression of a gene encoded outside of 

the T3SS, eseH, indicates that the effects of the regulators are not limited to the pathogenicity 

island-encoded genes. 

Regulatory Mutants Exhibit Different Protein Secretion Phenotypes. Mutations in T3SS-

encoded regulatory genes decrease expression of T3SS translocon genes. However, measurement 
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of gene activity by qPCR does not provide information on the ability of the regulatory mutants to 

produce and secrete proteins. Wild type E. ictaluri cultured in MM19 pH 5.5 secretes the 

translocon proteins EseB, EseC, and EseD into the supernatant (Chapter 2). The inability of E. 

ictaluri to produce and secrete these proteins to the cell surface would inhibit the activity of the 

T3SS. Therefore, the secreted proteins of each T3SS regulatory mutant were analyzed to 

determine their abilities to secrete translocon proteins. 

EseB and EseD are T3SS translocon proteins with molecular weights of 21.6 and 21, 

respectively, and isoelectric points (pI) of 5.15 and 5.32, respectively. Because of their 

similarity, they run to similar positions in the gel, making it difficult to determine if both are 

present. However, both proteins are identified from WT whole cell lysate and extracellular 

proteins (Chapter 2, Figures 2.13 and 2.14). EseB is abundant in the extracellular protein 

fraction, as evidenced by the gel streaking that originates from its spot. The abundance of EseB 

masks the appearance of EseD on extracellular protein 2D gels. For the purposes of these studies, 

because eseB, eseC, and eseD are encoded by the same operon, expression and secretion of EseD 

is assumed by the expression and secretion of EseB and EseC, as it is in WT E. ictaluri.  

Each single mutant has a different protein secretion pattern in vitro; however, the 

∆esrC/∆esrB::km strain has a phenotype more like ∆esrB::km than ∆esrC (Figure 3.5), which is 

similar to the findings of qPCR. Mutation of esrA does not have a noticeable effect on the 

secretion of EseB, EseC, or EseD into the supernatant (Figure 3.5A) compared to WT (Figure 

3.5E). There likely is less protein secreted by the esrA mutant, due to the decrease in translocon 

gene expression shown by qPCR. However, the decrease in expression is not enough to affect 

translocon secretion. 

The esrB mutant has severely reduced secretion of EseB, EseC, and EseD into the 

supernatant (Figure 3.5B). The 2D-PAGE images correlate to the findings of qPCR, which  
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Figure 3.5. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analyses of 
extracellular protein products of Edwardsiella ictaluri type III secretion system (T3SS) 
regulatory gene mutants. Extracellular proteins from T3SS regulatory gene mutants ∆esrA::km 
(A), ∆esrB::km (B), ∆esrC (C), and ∆esrC/∆esrB::km (D) cultured in pH 5.5 minimal media were 
collected and separated by 2D-PAGE. Extracellular proteins secreted by wild type E. ictaluri 
cultured in MM19 pH 5.5 are shown (E) for a comparison of normal secretion. Known 
supernatant proteins are labeled. Circles indicate areas on the gel in which the protein(s) are 
present when secreted. 2D-PAGE gels were run in triplicate, and a representative gel is shown. 
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demonstrate that mutation of esrB severely decreases translocon gene expression. Also, the 

protein spot corresponding to a putative T6SS protein, EvpC, is missing. These 2D-PAGE 

findings also strengthen the notion that EsrB is active in the absence of EsrA, because protein 

secretion is maintained in the esrA mutant. Furthermore, EvpC secretion is also maintained in the 

esrA mutant. 

Deletion of esrC, like mutation of esrA, does not prevent the expression or secretion of 

translocon proteins (Figure 3.5C). The presence of EseB, EseC, and EseD extracellularly 

supports the qPCR findings that mutation of esrC does not result in a loss of translocon 

expression. Furthermore, the data demonstrate that EseB, EseC, and EseD are secreted readily in 

a ∆esrC background, indicating EsrC is not required for translocon protein expression. The 

ability to secrete the translocon proteins also suggests EsrC does not have a significant impact on 

the expression of apparatus genes that would be required for secretion of the translocon. 

However, similar to the esrB mutant, deletion of esrC results in the loss of EvpC secretion. 

Because EsrB is required for esrC expression (Figure 3.3), and EsrC is required for secretion of 

EvpC, it is likely that EsrC controls expression of evpC, and perhaps more T6SS-related gene 

expression, and the loss of EvpC in ∆esrB::km is due to the reduced expression of EsrC as 

opposed to a direct effect of EsrB on evpC expression.  

Mutation of esrB and esrC Decreases Translocon Protein Production. To determine if the 

loss of protein secretion in ∆esrB::km and ∆esrC is a result of decreased translational activity, a 

secretion deficiency, or both, the whole cell lysate proteins from both strains were separated by 

2D- PAGE (Figure 3.6). Corresponding spots for the T3SS protein EscA and the T6SS proteins 

EvpA and EvpC are absent in whole cell lysates from both strains. T3SS proteins EseB and 

EseD, however, are both present in the esrB mutant, indicating some expression of those genes  
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Figure 3.6 (Following page). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 
analyses of whole cell lysate proteins of Edwardsiella ictaluri type III secretion system (T3SS) 
regulatory gene mutants. Whole cell lysate proteins from E. ictaluri T3SS regulatory gene 
mutants ∆esrB::km (A) and ∆esrC (B) cultured in MM19 pH 5.5 were collected and separated by 
2D-PAGE. Whole cell lysate protein of the wild type (WT) strain (C) demonstrates the amount 
of T3SS and T6SS protein found intracellularly when cultured in MM19 pH 5.5. Known whole 
cell lysate proteins are labeled. Circles indicate areas in which the protein(s) are present in WT 
whole cell lysates. 2D-PAGE gels were run in triplicate, and a representative gel is shown. 
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still occurs in the absence of EsrB. The lack of extracellular EseB and EseD, therefore, may be 

due to suboptimal expression of the translocon, expression defects for T3SS apparatus genes, or 

a combination of both. EseB is also found in the esrC mutant, but EseD is not present. This may 

indicate EseD is secreted at a similar rate as it is produced, but EseB expresses at a high enough 

level to accumulate intracellularly as well as being secreted. Although they are secreted in high 

amounts, both EseB and EseD accumulate intracellularly in WT E. ictaluri, as does the T6SS 

protein EvpC (Figure 3.6C). 

The results of the 2D-PAGE analyses of extracellular and intracellular proteins indicate 

differential importance of the regulators for protein production. Mutation of esrA results in near-

normal secretion of T3SS translocon proteins and T6SS EvpC. Mutation of esrB has a significant 

effect on the secretion of E. ictaluri translocon proteins, correlating to the decreased expression 

results obtained by qPCR. In addition, EvpC is not secreted to the ∆esrB::km culture supernatant. 

Mutation of esrC results in a decrease, but not a loss of translocon secretion. Mutation of esrC, 

however,  does result in the loss of EvpC secretion. Analyses of whole cell lysates for the esrB 

and esrC mutant strains indicate EseB and EseD production occurs in the esrB mutant in low 

levels, suggesting the lack of EseB and EseD in the supernatant is in part possibly due to a T3SS 

secretion defect. 

Replication of E. ictaluri T3SS Regulatory Mutants in Channel Catfish Macrophages. Both 

the esrA and esrB mutants are attenuated for replication in channel catfish macrophages (Figures 

3.7 and 3.8). After 10 hours, each mutant has less than a fold increase while the WT strain has 

greater than 10 fold replication. However, it is surprising that mutation of esrA results in an 

inability to replicate intracellularly as ∆esrA::km is able to secrete translocon proteins 

comparable to WT E. ictaluri in vitro, and T3SS gene expression is not greatly reduced. 

Interestingly, the esrC mutant has a similar fold increase as the WT after 10 hours (Figure 3.9),  
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Figure 3.7. Replication of an Edwardsiella ictaluri ∆esrA::km strain in channel catfish 
macrophages. Head kidney-derived channel catfish macrophages were infected with the 
following E. ictaluri strains: wild type (WT), WT carrying the esrA complementation plasmid 
(WT/pesrA), ∆esrA::km, and ∆esrA::km carrying the esrA complementation plasmid 
(∆esrA::km/pesrA). Bars indicate the mean fold replication (± SEM) 10 hrs post-infection during 
triplicate gentamicin exclusion assays. * indicate a significant difference from WT fold increase 
(P < 0.05). 
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Figure 3.8. Replication of an Edwardsiella ictaluri ∆esrB::km strain in channel catfish 
macrophages. Head kidney-derived channel catfish macrophages were infected with the 
following strains of E. ictaluri: wild type (WT), WT carrying the esrB complementation plasmid 
(WT/pesrB), ∆esrB::km, and ∆esrB::km carrying the esrB complementation plasmid 
(∆esrB::km/pesrB). Bars indicate the mean fold replication (± SEM) 10 hrs post-infection from 
triplicate gentamicin exclusion assays. * indicate a significant difference from WT fold increase 
(P < 0.05). 
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Figure 3.9. Replication of an Edwardsiella ictaluri ∆esrC strain in channel catfish macrophages. 
Head kidney-derived channel catfish macrophages were infected with the following strains of E. 

ictaluri: wild type (WT), WT carrying the esrC complementation plasmid (WT/pesrC), ∆esrC, 
and ∆esrC carrying the esrC complementation plasmid (∆esrC/pesrC) Bars indicate the mean 
fold replication (± SEM) 10 hrs post-infection from triplicate gentamicin exclusion assays.  
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indicating there is not attenuated intracellular virulence as a result of the mutation. The ability of 

∆esrC to replicate intracellularly comparably to WT suggests EsrC regulation is not required 

early in the infection process as it pertains to macrophages. However, there may be an effect 

beyond the initial 10 hrs of host cell infection. The esrBC double mutant has a phenotype similar 

to that of the esrB mutant (Figure 3.10). 

Plasmids were constructed containing the native esrA, esrB, and esrC open reading 

frames and promoter regions for complementation of the regulatory gene mutations. Because E. 

ictaluri encodes possible virulence genes on plasmids (Fernandez et al. 2001; Thune et al. 2007), 

the introduction of complementation plasmids could affect the stability of or gene expression 

from the native plasmids. Therefore, each complementation plasmid was conjugated into the WT 

strain, as well as into each appropriate mutant strain.  

Each complemented mutant and WT strain was evaluated for replication within channel 

catfish macrophages. All WT strains carrying a complementation plasmid replicated similarly to 

the WT strain, indicating the presence of the complementation plasmid has no adverse effect on 

replication of E. ictaluri within macrophages (Figures 3.7 to 3.9). The esrA and esrB mutant 

strains are able to replicate in macrophages when esrA or esrB is supplied in trans from the 

complementation plasmid (Figures 3.7 and 3.8). Complementation of esrC in the esrC-deficient 

strain also replicates at a level similar to the WT strain (Figure 3.9) indicating the 

complementation plasmid does not have a negative effect intracellularly. 

The results of the gentamicin exclusion assays in channel catfish macrophages indicate 

that esrA and esrB are required for replication of E. ictaluri in the early stages of macrophage 

infection, and their mutation can be complemented by expression of native esrA and esrB from a 

plasmid. Mutation of esrC, however, has no effect on replication of E. ictaluri intracellularly, 

indicating it is not required for replication within macrophages in the first 10 hours following  
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Figure 3.10. Replication of an Edwardsiella ictaluri esrB and esrC double mutant in channel 
catfish macrophages. Head kidney-derived channel catfish macrophages were infected with the 
following strains of E. ictaluri: wild type (WT), ∆esrB::km, ∆esrC, and the ∆esrC/∆esrB::km 
double mutant. Bars indicate the mean (+SEM) fold replication 10 hrs post-infection from 
triplicate gentamicin exclusion assays. * indicates a significant difference from WT fold 
replication (P < 0.05); ## indicate a significant difference from ∆esrC fold increase (P < 0.05). 
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infection. However, it is possible EsrC is required intracellularly later than 10 hours after 

infection of macrophages. Furthermore, because EsrC is required for secretion of the T6SS 

protein EvpC, the ability of the esrC mutant to replicate intracellularly suggests the E. ictaluri 

T6SS is not required for the early stages of macrophage infection. 

T3SS Mutations Prevent Channel Catfish Mortality Caused by E. ictaluri. Channel catfish 

were infected by immersion with WT E. ictaluri and T3SS regulatory gene mutants, both with 

and without complementation plasmids. WT strains carrying the complementation plasmids were 

included to determine if the presence of the plasmid or the regulatory gene encoded on the 

plasmid has an adverse effect on pathogenesis in vivo. 

Infection with the WT strain results in 70% mortality. Wild type E. ictaluri carrying the 

complementation plasmids for esrA and esrB produce statistically similar mortality rates (Figures 

3.11 and 3.12). However, the presence of the esrC complementation plasmid reduces the WT 

mortality to about 40% (Figure 3.13). Because pesrA and pesrB do not affect pathogenesis of 

WT E. ictaluri in channel catfish, it is likely the decrease in mortality for WT carrying pesrC is 

due to overexpression of EsrC from the plasmid rather than the presence of the expression 

plasmid.  

All T3SS regulatory mutants are unable to cause mortality in fish (Figures 3.11 to 3.13). 

The esrBC double mutant also causes no mortality (data not shown). Complementation of 

∆esrA::km and ∆esrB::km with pesrA and pesrB, respectively, restores the virulence effect of E. 

ictaluri (Figures 3.11 and 3.12). However, ∆esrC complemented with pesrC does not result in 

restored virulence (Figure 3.13). The complemented esrC mutant has only about 10% mortality, 

which is significantly higher than uncomplemented ∆esrC, but also significantly less than WT or 

WT carrying pesrC.  
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Figure 3.11. Cumulative mortality of channel catfish following infection by ∆esrA::km 

Edwardsiella ictaluri. Channel catfish were experimentally infected by immersion with wild type 
E. ictaluri (WT), WT carrying the esrA complementation plasmid (WT/pesrA), ∆esrA::km, and 
∆esrA::km carrying the esrA complementation plasmid (∆esrA::km/pesrA). Bars indicate the 
mean (± SEM) of triplicate challenge tanks. Mortality curves with the same letter indicate no 
significant difference in cumulative percent mortality (P > 0.05). 
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Figure 3.12. Cumulative mortality of channel catfish following infection by ∆esrB::km 

Edwardsiella ictaluri. Channel catfish were experimentally infected by immersion with wild type 
E. ictaluri (WT), WT carrying the esrB complementation plasmid (WT/pesrB), ∆esrB::km, and 
∆esrB::km carrying the esrB complementation plasmid (∆esrB::km/pesrB). Bars indicate the 
mean (± SEM) of triplicate challenge tanks. Mortality curves with the same letter indicate no 
significant difference in cumulative percent mortality (P > 0.05). 
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Figure 3.13. Cumulative mortality of channel catfish following infection by ∆esrC Edwardsiella 

ictaluri. Channel catfish were experimentally infected by immersion with wild type E. ictaluri 
(WT), WT carrying the esrC complementation plasmid (WT/pesrC), ∆esrC, and ∆esrC carrying 
the esrC complementation plasmid (∆esrC/pesrC). Bars indicate the mean (± SEM) of triplicate 
challenge tanks. Mortality curves with the same letter indicate no significant difference in 
cumulative percent mortality (P > 0.05). 
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The differences between WT and strains carrying pesrC are unexpected. 

Complementation with pesrC was expected to restore virulence of the mutant strain and to not 

affect WT virulence. While pesrC slightly increases mortality of the mutant, it greatly decreases 

mortality caused by the WT strain. This indicates a partial ability of pesrC to complement esrC 

mutation in trans, but also an overall negative effect of pesrC on E. ictaluri virulence. 

These data show that each regulatory gene is required for virulence in vivo. Mutations to 

esrA and esrB can be complemented in trans using an expression vector carrying esrA or esrB, 

respectively. However, deletion of esrC is unable to be fully complemented in trans. The 

presence of the esrC complementation plasmid also reduces the virulence of the WT strain, 

which the esrA and esrB complementation plasmids do not. Because complementation is done 

using a plasmid, the gene copy number of esrC is higher than in WT E. ictaluri, perhaps 

resulting in unfavorable levels of esrC expression that affect the signaling cascade of the T3SS 

and possibly other virulence mechanisms outside the T3SS. 

Effect of esrC Complementation Plasmid on Expression of T3SS Genes. Because of the 

differences seen in mortality of channel catfish when challenged with the WT and ∆esrC strains 

carrying pesrC, expression of T3SS gene expression was measured by using qPCR in both of the 

E. ictaluri strains carrying the esrC complementation plasmid. The WT strain carrying pesrC has 

significantly higher expression of each of the T3SS regulatory genes than the parent WT strain 

(Figure 3.14), a finding surprising considering that ∆esrC has no effect on expression of esrA or 

esrB. ∆esrC/pesrC also has significantly higher expression of esrB than the parent ∆esrC strain; 

however, esrA is not significantly higher. Complementation of esrC in either the WT or mutant 

strain increases esrC expression higher than that observed in WT E. ictaluri. Expression of esrC 

from the plasmid also increases expression of the escC operon and escB/eseG for both WT and 

mutant strains (Figure 3.15). However, pesrC is not able to restore expression of eseH in ∆esrC,  
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Figure 3.14. Effect of pesrC on expression of Edwardsiella ictaluri type III secretion system 
(T3SS) regulatory genes. Quantitative PCR was used to measure expression of E. ictaluri T3SS 
regulatory genes esrA, esrB, and the esrC operon encoding esrC and the apparatus genes 
esaGHIJWKL in wild type (WT) and ∆esrC E. ictaluri strains carrying an esrC complementation 
plasmid and cultured in T3SS expression-inducing media. Bars indicate the mean (± SEM) of the 
log fold expression of triplicate samples. Values with the same letter within gene group are not 
significantly different (P > 0.05). 
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Figure 3.15. Effect of pesrC on expression of Edwardsiella ictaluri type III secretion system 
(T3SS) non-regulatory genes. Quantitative PCR was used to measure expression of E. ictaluri 
T3SS non-regulatory genes encoded by the escB/eseG operon, the escC operon containing the 
translocon genes eseBCD, the pEI1-encoded eseH, and the pEI2 encoded escD/eseI operon in 
wild type (WT) and ∆esrC E. ictaluri strains carrying an esrC complementation plasmid and 
cultured in T3SS expression-inducing media. Bars indicate the mean (± SEM) of the log fold 
expression of triplicate samples. Values with the same letter within gene group are not 
significantly different (P > 0.05). 
 

 

escB/eseG eseBCD eseH escD/eseI

0

1

2

3
WT ∆esrCWT/pesrC ∆esrC/pesrC

A

B

C

A B

B

C

A

B

A

B

A

A

A

A

A

T3SS Gene(s) Amplified

L
o
g
 F
o
ld
 E
x
p
re
s
s
io
n



 
 

153 
 

nor does it result in increased expression of eseH in the WT strain. Expression of eseI is not 

increased significantly by pesrC in either strain. 

The results of these analyses demonstrate that expression of esrC from a multicopy 

plasmid has a strong effect on the expression of many T3SS genes. The extra copies of esrC not 

only result in increased expression of itself, but also the regulatory gene esrB, which may have a 

confounding effect on the expression of esrC, because esrC is regulated by EsrB. 

Overexpression of the regulators leads to the increased expression of other T3SS genes, and 

likely other genes both inside and outside the T3SS not measured in this study. The increased 

expression of these genes may be the cause of the differences in virulence noted in the channel 

catfish immersion challenge for the E. ictaluri strains carrying the esrC complementation 

plasmid. 

DISCUSSIO�  

Mutations of E. ictaluri T3SS regulatory genes result in decreased T3SS gene expression 

in E. ictaluri T3SS-inducing media. However, each mutation has a different gene expression 

phenotype. Mutation of esrA results in reduced T3SS gene expression and protein secretion. The 

decreased T3SS expression results in the inability to replicate in macrophages and an attenuated 

virulence in channel catfish. Mutation of esrB, however, results in large-scale decreases in T3SS 

gene expression and protein secretion, and results in loss of EvpC secretion. Like ∆esrA::km, 

∆esrB::km also is unable to replicate in macrophages, and has attenuated virulence in channel 

catfish. Mutation of esrC reduces T3SS gene expression, though not to the degree of esrB 

mutation. ∆esrC has visibly reduced, but not absent T3SS translocon protein secretion, and like 

∆esrB::km, has no detectable EvpC secreted. ∆esrC, surprisingly, is able to replicate 

intracellularly as well as WT E. ictaluri, but is attenuated for virulence in vivo. 
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EsrB Controls the E. ictaluri T3SS. Like Salmonella and E. tarda, the two-component 

regulatory system encoded within the T3SS pathogenicity island is necessary for optimal 

expression of the T3SS. As demonstrated by mutation of esrB, T3SS activity is arrested at the 

transcriptional level without EsrB. Mutation of esrB results in substantially greater reductions in 

gene expression and protein production than either ∆esrA::km or ∆esrC. The importance of EsrB 

in T3SS expression is mirrored in E. tarda (Srinivasa Rao et al. 2003; Srinivasa Rao et al. 2004; 

Tan et al. 2005; Zheng et al. 2005) and with SsrB of Salmonella (Shea et al. 1996; Valdivia and 

Falkow 1996; Cirillo et al. 1998; Deiwick et al. 1999; Worley et al. 2000; Garmendia et al. 2003; 

Feng et al. 2004; Deiwick et al. 2006; Dieye et al. 2007; Walthers et al. 2007). Not surprisingly, 

∆esrB::km is avirulent both intracellularly and in vivo. 

Like SsrB of Salmonella (Parsons and Heffron 2005), EsrB also has a role in the 

expression of the T6SS of E. ictaluri. However, this interaction may not be direct in E. ictaluri, 

because EsrC also regulates the T6SS of both E. ictaluri and E. tarda (Zheng et al. 2005; Zheng 

and Leung 2007). Because expression of esrC is dependent on EsrB, (Figure 3.3) and mutations 

in both esrB and esrC result in abolished EvpC expression and secretion (Figures 3.5 and 3.6), 

the effect of EsrB on the T6SS is likely to be through transcriptional regulation of esrC. As 

opposed to SsrB of Salmonella, which has a negative effect on the T6SS, EsrB and EsrC of 

Edwardsiella appear to positively affect expression of the T6SS protein EvpC. The T6SS of 

Salmonella, however, is not active until about 24 hrs post-infection. The analyses done in this 

study are done after in vitro culture of E. ictaluri to late log phase, and therefore do not indicate 

what occurs earlier. The Edwardsiella T6SS may be expressed only after a certain amount of 

T3SS gene expression. 

EsrC Serves an Accessory Role for T3SS Gene Expression, but Is Required for T6SS 

Expression. Mutation of EsrC does not prohibit expression or secretion of T3SS proteins, 
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contrary to findings in E. tarda (Zheng et al. 2005). However, EsrC does appear to be required 

for optimal T3SS expression in conjunction with EsrB. Both proteins are required for WT levels 

of T3SS gene expression, and since EsrB is required for esrC expression, mutation of esrB 

results in loss of both proteins. What is unknown, however, is the effect EsrC has on T3SS gene 

expression in the absence of EsrB. In order to study that scenario, EsrC would need to be 

expressed independently of EsrB, most likely with an EsrB-independent promoter fused to esrC. 

However, the fact that T3SS protein expression and secretion occurs in the absence of EsrC 

indicates its presence is not required for T3SS expression. This finding is different than what is 

reported for E. tarda. EsrC of E. tarda absolutely is required for expression and secretion of 

T3SS translocon proteins (Zheng et al. 2005). The results of this study, however, indicate both 

EsrB and EsrC are required for optimal virulence of E. ictaluri in channel catfish. 

A model of gene regulation by EsrB and EsrC is given in Figure 3.16. In this model, EsrB 

is activated by sensor kinases that detect environmental signals. Because T3SS expression occurs 

in the absence of EsrA, EsrB likely can be activated by other sensor kinases similar to SsrB of 

Salmonella (Walthers et al. 2007). EsrB activates expression of regulatory, translocon, and 

effector genes encoded within the T3SS pathogenicity island, including esrC. Expression of EsrC 

enhances the transcriptional activity of EsrB and activates virulence genes outside the T3SS, 

including the T6SS. 

EsrC may regulate genes outside the T3SS independently of EsrB activity. Mutation of 

esrC is sufficient to abolish production of the T6SS protein EvpC in this study, and similar 

results are described for E. tarda (Zheng et al. 2005). EsrC and EsrB are also required for 

expression of Orf29 and Orf30 in E. tarda. Both orf29 and orf30 are encoded on the outer edge 

of the T3SS pathogenicity island upstream of esrB. However, in E. ictaluri, orf29 and orf30 are a 

single large open reading frame and are separated from the T3SS by a transposase insertion not  
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Figure. 3.16. Proposed Edwardsiella ictaluri type III secretion system (T3SS) regulation model. 
Environmental stimuli induce phosphorylation of EsrB by EsrA and possibly other sensor 
kinases. Activated EsrB upregulates activity of T3SS gene promoter regions in the pathogenicity 
island (PAI) and increases gene expression. EsrC enhances EsrB activation of T3SS gene 
expression. EsrC also activates expression of the type VI secretion system (T6SS) pathogenicity 
island and possibly other virulence genes. 
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present in E. tarda. Zheng et al. (Zheng et al. 2005) hypothesize that Orf29 and Orf30 are T3SS 

translocated effectors based on their dependence on EsrB and EsrC for expression and the 

presence of coiled-coil regions in the predicted structure of the proteins. Expression of E. ictaluri 

orf29/30 was not evaluated in this study to determine if T3SS regulators are required for 

orf29/30 regulation. Transcription of orf29/30, however, is reduced in low phosphate, acidic 

media as shown in Chapter 2, indicating orf29/30 is downregulated in conditions that increase 

T3SS gene expression in an EsrB- and EsrC-dependent manner. These results call into question 

whether or not orf29/30 is T3SS-related. Further analysis of orf29/30 is required to determine if 

it encodes T3SS secreted effectors and its relationship to EsrB and EsrC. 

Mutation of esrB and esrC in this study result in similar expression levels of eseH, a 

putative T3SS effector encoded by pEI1, an E. ictaluri plasmid. The similar expression levels 

suggest EsrC regulates eseH expression, because expression of eseH is decreased in the ∆esrC 

mutant in which EsrB is present. Conversely, the inability of pesrC to restore or upregulate eseH 

expression (Figure 3.15) in either the WT or the ∆esrC strain suggests EsrC has no regulatory 

control over eseH. Further work is required to determine the effects of EsrB and EsrC on gene 

expression outside the T3SS pathogenicity island.  

The phenotypic differences in esrC mutations between E. ictaluri and E. tarda are 

significant and more dissimilar than expected. Translocon gene expression is not detected using 

promoter fusions to lacZ in an E. tarda esrC-deficient background, and no extracellular 

translocon proteins are detected (Zheng et al. 2005). Conversely, in an E. ictaluri esrC mutant, 

translocon gene expression is detected by using qPCR and is still significantly higher than in the 

WT strain cultured in non-inducing media. Furthermore, extracellular translocon proteins are 

present in high amounts. Whereas the E. ictaluri esrC mutant is not attenuated intracellularly, an 

E. tarda esrC mutant is moderately attenuated for intracellular replication. However, both E. 
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ictaluri and E. tarda esrC mutants are attenuated significantly in vivo, indicating both genes 

ultimately are required for virulence. 

There could be a functional difference in the esrC mutations made. Zheng et al. (Zheng et 

al. 2005) deleted amino acids 34 – 200 in E. tarda EsrC, while amino acids 101 – 211 of E. 

ictaluri EsrC are deleted in this study. Although no HTH or other regulatory motif is detected in 

the mutated EsrC sequence of E. ictaluri, it is possible the difference results in a protein with 

partial functionality. However, Zheng et al. (Zheng et al. 2005) made additional deletions in both 

the N- and C-termini and found similar phenotypes in all mutations, making it unlikely that the 

differing esrC mutant phenotypes between E. ictaluri and E. tarda are due to differences in 

construction of the mutation. EsrC of E. tarda and E. ictaluri shares 98% homology across the 

entire amino acid sequence, suggesting their active regions would operate similarly in both 

species, and that mutation would result in similar phenotypes. 

It is possible the regulatory control maintained by EsrC is different in the two species. 

EsrC does have an effect on E. ictaluri T3SS gene expression, as demonstrated by the decreased, 

but not absent expression of translocon genes. E. tarda EsrC may have developed stronger 

control over T3SS gene expression through evolution of stronger EsrC recognition sequences 

upstream of T3SS genes, providing EsrC greater control over T3SS gene expression. The 

differences in regulation of the T3SS between E. ictaluri and E. tarda in response to 

environmental conditions as described in Chapter 2 could be a function of differential regulation 

of the T3SS by EsrC.  

The differences in T3SS regulation and the effect of EsrC may not be surprising, 

however. Although both organisms are of the same genus and encode homologous T3SS, their 

host range and pathogenesis are quite different. Edwardsiella ictaluri is generally restricted to 

the channel catfish, whereas E. tarda will infect other fish species in addition to a number of 
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higher vertebrates. The ability of E. tarda to infect higher vertebrates may involve not only 

different virulence mechanisms, but also different regulation of those mechanisms. The 

differences observed in the function of EsrC between E. ictaluri and E. tarda may be part of 

what determines the respective niches of these two organisms. 

The methods used for analyzing T3SS gene expression of E. tarda and the methods used 

in this study may be a partial source of the differences in phenotype between the two species. 

Studies evaluating E. tarda T3SS gene expression have employed T3SS gene promoter fusions 

to lacZ carried by plasmids to study up- and downregulation of genes in WT and mutant strains 

of E. tarda (Tan et al. 2005; Zheng et al. 2005). Hansen-Wester et al. found expression of SPI-2 

genes from plasmids resulted in improper regulation of those genes. This study used qPCR to 

measure the quantity of message produced at a given point in time, relying on native gene 

expression rather than reporter gene expression. Edwardsiella ictaluri T3SS gene promoter 

fusions to GFP were attempted in Chapter 2, but were limited in their usefulness. However, this 

study and those evaluating the E. tarda T3SS used similar methods of protein production and 

secretion analysis, and those results demonstrate a difference in the phenotypes of E. tarda and 

E. ictaluri in regards to T3SS expression. Therefore, it is difficult to determine of the differences 

seen in the expression of the E. ictaluri and E. tarda T3SS are real or possibly due to variations 

in the methods used to measure expression. 

EsrA and EsrB Are Required for Intracellular Survival and Pathogenesis in Channel 

Catfish. The reduced intracellular replication of an esrB mutant is not surprising, considering the 

severe effects observed in gene expression and protein secretion. However, it is curious that 

mutation of esrA results in a phenotype similar to esrB mutation intracellularly and in vivo. 

∆esrA::km has significantly less T3SS gene expression than WT E. ictaluri; however, T3SS 

genes are still expressed significantly higher than ∆esrB::km, and in many cases not much 
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differently than ∆esrC, which was not attenuated intracellularly. Differences between the esrA 

and esrC mutants, however, were observed in translocon expression, suggesting that decreased 

expression of the translocon in ∆esrA::km might result in reduced ability to construct the 

translocon and secrete proteins. However, ∆esrA::km secreted easily detectable amounts of 

translocon proteins to the supernatant suggesting they are not limiting (Figure 3.5). It is possible 

that EsrA is more involved in the expression of T3SS genes not expressed, such as apparatus 

genes in the esaB, esaM, or esaR operons. Alternatively, EsrA may serve as a sensor kinase for 

response regulators other than EsrB that have affects on gene expression outside of the T3SS 

pathogenicity island. 

∆esrA::km was observed to grow slower than the other mutant and WT strains of E. 

ictaluri used. This growth defect is lost when ∆esrA::km is complemented with pesrA, suggesting 

esrA mutation affects growth of E. ictaluri. Because EsrA is a putative membrane protein, the 

mutation of EsrA may affect membrane dynamics, resulting in reduced growth. However, 

mutation of esrA in E. tarda or SsrA in Salmonella is not reported to affect bacterial growth. 

Another possibility for the severe virulence defect of ∆esrA::km, while still expressing 

and secreting T3SS proteins, is that efficient pathogenesis requires strict control of gene 

expression, and any departure from that control will result in abnormal expression and 

attenuation. Expression of the SPI-2 T3SS is complex, and departures from the ordered 

expression and secretion of T3SS effectors can have significant impacts (Coombes et al. 2005; 

Lucchini et al. 2006). The inability of an esrA mutant to infect macrophages or fish may be the 

result of subtle inefficiencies in T3SS gene expression, as opposed to the gross lack of T3SS 

gene expression as observed in the esrB mutant.  
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EsrC Is Expendable in Early Macrophage Infection. Deletion of esrC has no effect on the 

ability of E. ictaluri to replicate within channel catfish macrophages. This assay, however, only 

measures the replication within the first 10 hrs post-infection. Both the esrA and esrB mutants, 

however, exhibit severe decreases in intracellular replication within the 10 hr period. This 

demonstrates the importance of EsrB for intracellular survival and further obscures the role of 

EsrC. Because E. ictaluri is dependent on the T3SS for intracellular survival (Thune et al. 2007), 

the early T3SS expression required for intracellular survival must not be dependent on EsrC. 

This further supports the conclusion that expression of the translocon proteins is not EsrC-

dependent, as opposed to requirement of EsrC in E. tarda for translocon expression. However, 

protein expression at later intracellular stages may be EsrC-dependent and may involve the EsrC-

regulated T6SS. 

 As mentioned above, the Salmonella T6SS functions to attenuate intracellular growth, an 

effect that occurs 24 hrs after macrophage infection. Mutation of the T6SS results in hyper-

replication intracellularly and hypervirulence in mice (Parsons and Heffron 2005). The function 

of the Edwardsiella T6SS is not known, although Zheng et al. (Zheng and Leung 2007) found 

that mutagenesis of the E. tarda T6SS results in in vivo attenuation, suggesting that the T6SS 

does not have a similar function to the Salmonella T6SS. Based on our intracellular replication 

results for ∆esrC, EsrC is not required for the establishment of a hospitable environment 

intracellularly. Perhaps the T6SS is involved in escaping the macrophage or infecting non-

phagocytic cells. The latter may be unlikely, however, because Thune et al. (Thune et al. 2007) 

found E. ictaluri invades non-phagocytic cells poorly. 

The lack of eseH expression seen in ∆esrC, coupled with the observation that ∆esrC is 

not attenuated for growth in macrophage, suggests that activity of EseH is not required for early 

intracellular replication. EseH has homology to both SspH1 and SspH2 of Salmonella, which do 
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not have homologous functions. SspH1 is involved in Salmonella’s resistance to host immunity 

(Haraga and Miller 2003; Haraga and Miller 2006). SspH2 is involved in actin remodeling (Miao 

et al. 2003) and is upregulated intracellularly, but SspH1 is not (Miao et al. 1999). Also, sspH1 is 

not regulated by EsrB, but sspH2 is. These comparisons are interesting and suggest that EseH 

may function more like SspH1, which downregulates host immune responses, because EseH 

expression is not required intracellularly. Furthermore, the qPCR results for ∆esrC and 

∆esrB::km suggest the regulator of eseH is EsrC, not EsrB.  

Mutation of esrA and esrB, but �ot esrC, Can Be Complemented In Trans. Plasmids 

carrying copies of the native T3SS regulatory genes restore virulence deficiencies of ∆esrA::km 

and ∆esrB::km in macrophages and in vivo. ∆esrC is not attenuated ex vivo, and 

complementation of ∆esrC does not adversely affect replication of the WT or mutant strains 

intracellularly. However, pesrC does not complement esrC activity in the esrC mutant in vivo. 

This is not a result of a negative interaction of the expression plasmid with the native E. ictaluri 

plasmids, because pesrA and pesrB are both able to restore virulence to esrA and esrB mutants 

both intracellularly and in vivo.  

Complementation was done using the expression vector pBBR1-MCS4, which is shown 

to have about 30 to 40 copies in Es. coli (Antoine and Locht 1992), indicating a medium copy 

number. Expressing esrC from pBBR1-MCS4, therefore, introduces a significant increase in the 

gene copy number of esrC in E. ictaluri. The scope of regulation by EsrC is unknown, and it is 

possible that excess EsrC expression by the plasmids has effects elsewhere in the genome that 

affect virulence. Type III secretion system expression is tightly regulated in other organisms and 

over-expression can result in unfit bacteria (Coombes et al. 2005; Lucchini et al. 2006).  
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However, it is unclear why esrB expressed from a plasmid does not have the same 

deleterious effect on in vivo virulence. EsrB has a much greater impact on T3SS gene expression 

than EsrC, and because EsrB regulates esrC, one might conclude that an increase in esrB 

expression would also lead to an increase in EsrC. However, in that instance, there will still only 

be one copy of esrC for expression, which could limit the amount of esrC for transcription.  

Conversely, while expression of esrB stays constant in various culture media (Chapter 2), 

esrC expression is upregulated in acidic low phosphate media. Perhaps even though esrB is 

expressed from a plasmid for complementation, by virtue of its stable expression, it does not 

express to a level in which it induces severe overexpression of virulence genes. Because esrC 

responds to environmental cues, expression would be magnified further by expression from each 

copy of the plasmid. This would result in a much greater amount of EsrC present, and therefore, 

a greater amount of gene expression activated by EsrC. Complementation of an E. tarda esrC 

mutant results in restored phenotypes in vitro and in vivo. 

Although the presence of pesrC affects virulence of E. ictaluri in vivo, it does not inhibit 

bacterial replication ex vivo. This suggests the effects of pesrC are not detrimental for replication 

in the macrophage, and further supports the notion that EsrC regulation is important for 

pathogenesis only after the first 10 hours of infection. Studies done measuring intracellular 

replication of E. tarda demonstrate moderate differences between WT E. tarda and an esrC 

mutant after five hours of growth in the macrophage. However, at five hours WT E. ictaluri has 

low intracellular replication, but between five and ten hours exhibits rapid intracellular 

replication. This suggests a more prominent role in early intracellular replication for EsrC in E. 

tarda than in E. ictaluri. 

Overabundant production of EsrC may result in EsrC binding similar, but non-optimal 

recognition sequences and upregulating genes it normally would not control. Some evidence of 
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such an action is provided by analysis of the effects of ∆esrC on esrA and esrB expression. 

Mutation of esrC does not result in a significant decrease in esrA or esrB expression indicating 

EsrC does not regulate esrA and esrB. However, when expressed from a plasmid, EsrC 

significantly upregulates both esrA and esrB. This sort of abnormal regulation could occur with 

other genes, resulting in abnormal gene expression and reduced fitness of the bacteria.  

Overproduction of SPI-2 T3SS genes results in attenuation in vivo (Coombes et al. 2005; 

Lucchini et al. 2006). Overexpression of EsrC may reduce the fitness of E. ictaluri in vivo, 

resulting in reduced fitness and possibly making the complementation plasmid less stable. 

Instability of the plasmid could result in the complementation plasmid curing from the bacteria. 

If pesrC were unstable and eliminated from the bacterium, the phenotype would revert to that of 

the parental strain. This would explain the virulence pattern exhibited in the channel catfish 

challenge by the WT and mutant strains carrying the esrC complementation plasmid: 

complementation results in decreased virulence of the WT and increased virulence of ∆esrC. In 

retrospect, sampling isolates from channel catfish livers for Ap resistance conferred by the 

complementation plasmid would determine if the plasmid was present in the bacteria upon death 

of the fish. Analysis of pesrC stability in E. ictaluri would be important in determining the 

reason for the differential virulence effect in vivo. 

Future Work. Further study of other potential virulence regulators is required. SPI-2 of 

Salmonella is under the regulation of a number of global regulators including PhoPQ, 

OmpR/EnvZ, and SlyA. Whether or not expression of the T3SS of E. ictaluri is under control of 

similar regulators is unknown. To assist in determining the regulons of both EsrB and EsrC, 

further analysis is required to identify genetic sequences recognized by EsrB and EsrC. Feng et 

al. (Feng et al. 2004) used DNaseI protection assays to determine SsrB-binding domains 

upstream of the SPI-2 T3SS genes ssrA, ssrB, and sseI. Walthers et al. (Walthers et al. 2007) 
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found additional SsrB-binding domains upstream of ssaB, sseA, ssaG, and ssaM. Feng et al. 

(Feng et al. 2003; Feng et al. 2004) also determined OmpR binding domains occur upstream of 

SPI-2 T3SS genes ssrA and sseI. Additionally, PhoP binds the ssrB regulatory region and post-

transcriptionally controls the expression of ssrA (Bijlsma and Groisman 2005). This type of 

analysis is important to determine which genes EsrB and EsrC regulate. Elucidation of regulatory 

systems involved in T3SS expression and other virulence mechanisms will provide further 

insight into the pathogenesis of E. ictaluri. Furthermore, regulatory analysis may provide 

important evolutionary data regarding the association of T3SS regulation to global regulators 

within bacteria. 
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CHAPTER 4 

EDWARDSIELLA ICTALURI PLASMIDS ARE IMPORTA�T FOR  

PATHOGE�ESIS I� CHA��EL CATFISH 

 

I�TRODUCTIO� 

All isolates of Edwardsiella ictaluri from channel catfish carry two plasmids, one being 

5,643 nt and the other 4,807 nt (Lobb and Rhoades 1987; Newton et al. 1988). The larger 

plasmid is designated pCL1 and the smaller plasmid pCL2 by Lobb and Rhoades (Lobb and 

Rhoades 1987); Newton et al. (Newton et al. 1988) named them pEI2 and pEI1, respectively. 

The nomenclature established by Newton et al. (Newton et al. 1988) will be used hereafter. Both 

plasmids were sequenced by Fernandez et al. (Fernandez et al. 2001), and putative virulence-

related genes are encoded by each plasmid. No virulence function of the E. ictaluri plasmids is 

reported in the literature. 

On pEI1, eseH encodes a protein with homology to IpaH of Shigella flexneri and SspH1, 

SspH2, SseI, and SlrP of Salmonella enterica serovar Typhimurium. Each of the homologous 

proteins is a translocated effector of a type III secretion system (T3SS), a common virulence 

protein secretion system of Gram-negative pathogens. IpaH, secreted by the Mxi-Spa T3SS, is 

multicopy on the Shigella invasion plasmid (Hartman et al. 1990), and is localized to the nucleus 

of host cells (Toyotome et al. 2001) where it inhibits NF-κΒ activation of genes. SspH1 is 

secreted by both the SPI-1 and SPI-2 T3SS and like IpaH, localizes to the host nucleus, 

inhibiting NF-κΒ gene regulation (Haraga and Miller 2003; Rohde et al. 2007). SlrP is also 

secreted by both Salmonella T3SS (Miao and Miller 2000), but no specific function is attributed 

to this protein. Both SlrP and SspH2 have a role in the inhibition of MHC-II antigen presentation 

in dendritic cells, whereas SspH1 and SseI do not (Halici et al. 2008). SspH2 is secreted only by 

the SPI-2 T3SS (Miao et al. 1999; Miao and Miller 2000). SspH2 associates via its amino 

terminus with filamin of the host cell, localizing to areas of actin polymerization (Miao et al. 
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2003). There it associates with profilin, inhibiting it from binding G-actin, thereby inhibiting 

actin polymerization. SseI is involved in the systemic spread of Salmonella by directing the 

motility of infected cells (Worley et al. 2006). Interestingly, SspH1, SspH2, and SseI are 

encoded by bacteriophages and are spread horizontally (Miao and Miller 2000), which may 

explain their homology to proteins in E. ictaluri. 

On pEI2, escD encodes a protein with similarities T3SS chaperones: low molecular 

weight, acidic isoelectric point (pI), and predicted helical structure (Bennett and Hughes 2000). 

Immediately downstream of escD is eseI, a gene encoding a protein with homology to OspB of 

Shigella (Chapter 2). OspB is a T3SS secreted effector of Shigella (Buchrieser et al. 2000; 

Santapaola et al. 2002; Lucchini et al. 2005; Santapaola et al. 2006) that localizes to the nucleus 

of host cells and affects activity of NF-κΒ, leading to decreased cytokine expression (Zurawski 

et al. 2009). 

Recently, two mutations identified in pEI1 and pEI2 resulted in an avirulent phenotype 

(Thune et al. 2007). A pEI1 mutation in the 3’ end of eseH is carried by the E. ictaluri mutant 

strain 217UV. Given the homology of EseH to SPI-2 T3SS proteins involved in intracellular 

replication, this mutation may disrupt a portion of E. ictaluri’s ability to reside in host cells, 

causing attenuation. However, EseH also has homology to SspH1, which is involved in the 

modulation of the host immune response by Salmonella. Therefore, mutation of this E. ictaluri 

gene may affect the ability of E. ictaluri to evade immune detection. 

The second mutant, strain 166ST, carries a mutation in a region of pEI2 about 125 nt 

upstream of escD and eseI, possibly in a regulatory region. EscD and EseI are putative E. ictaluri 

T3SS chaperone and effector proteins, respectively. If the mutation is in a regulatory region of 

the escD/eseI operon, the attenuation may be related to modified expression of escD and eseI 

caused by the transposon insertion into the regulatory region.  
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In this study, the sequences of putative T3SS effector genes were used to survey the E. 

ictaluri genome to identify potential effector genes encoded outside of the pathogenicity island. 

From this search, four sequences in the genome were found with homology at the nucleotide and 

amino acid levels to EseH. The ability of the plasmid mutants to infect channel catfish was 

evaluated. Both mutants have significantly attenuated replication in channel catfish and virulence 

in vivo. Finally, quantitative PCR and two-dimensional polyacrylamide gel electrophoresis (2D-

PAGE) were used to evaluate the expression of T3SS genes in the plasmid mutants. Expression 

of T3SS regulatory, chaperone, translocon, and effector genes are reduced significantly in both 

mutants, indicating the avirulent phenotype of the mutants is not related to the sequences 

mutated within the plasmids. The effect of the plasmid mutations on T3SS gene expression may 

be due to the plasmid integration into the genome via homologous sequences, thereby affecting 

gene expression in the vicinity of integration. These are the first studies to evaluate the 

relationship of E. ictaluri plasmids to the pathogenesis of E. ictaluri in channel catfish. 

MATERIALS A�D METHODS 

Bacterial Strains and Growth Conditions. Bacterial strains used in this paper are described in 

Table 4.1. Edwardsiella ictaluri was grown in brain-heart infusion (BHI) or Luria-Bertani broth 

(LB) supplemented with mannitol at 28°C in a Cell-Gro Tissue Culture Rotator (Lab-Line, 

Melrose, IL). Edwardsiella ictaluri was also cultured in E. ictaluri defined minimal media 

(MM19) (Collins and Thune 1996) at pH 7.0 or pH 5.5. A low phosphate media based on the 

MM19 formula (MM19-P, Chapter 2) at pH 5.5 was also used for culture of E. ictaluri strains. 

Isolates of E. ictaluri from channel catfish tissues or channel catfish macrophages were cultured 

on trypticase soy agar supplemented with 5% sheep blood (BA, Remel Products, Lenexa, KS). 

Antibiotics were used in the following concentrations when applicable: kanamycin (Km) 50 

µg/ml and colistin (Col) 10 µg/ml. 
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Table 4.1. Bacterial strains used in Chapter 4. 

Bacterial Strains or Plasmid Description  Source 

Edwardsiella ictaluri 

93-146 
 
 
166ST (escD-) 
 
217UV (eseH-) 

 
Wild type E. ictaluri isolated from a moribund channel 
catfish from a natural outbreak at a commercial facility in 
1993 
93-146 with a transpositional mutation upstream of escD 
on pEI2, Kmr 
93-146 with a transpositional mutation in the 3’ end of 
eseH on pEI1, Kmr 

 

 
LSU aquatic 
diagnostic laboratory 
 
(Thune et al. 2007) 
 
(Thune et al. 2007) 

 

 

Specific Pathogen Free Channel Catfish. Egg masses were obtained from Ben Hur 

Aquaculture Research Facility and disinfected with 100 ppm iodine before being hatched in a 

closed recirculating aquaculture system at the LSU School of Veterinary Medicine specific 

pathogen-free (SPF) laboratory. Fish were fed a commercially prepared diet at 2-3% body weight 

per day. Fish used for immersion challenges were 20 – 40 g; fish used for isolation of head 

kidney-derived macrophages were 500 – 750 g. 

Edwardsiella ictaluri Mutant Construction. Edwardsiella ictaluri mutants eseH- and escD- 

were constructed by signature-tagged mutagenesis (STM) as described by Thune et al. (Thune et 

al. 2007). Briefly, E. ictaluri was subjected to random transposon insertional mutagenesis. 

Genomic DNA from strains showing a virulence deficiency were sequenced from the 

transpositional insertion to determine the insertion site. Of the attenuated strains identified, one 

mutation was found in both of the E. ictaluri plasmids. Mutant 166ST (escD-) has a mutation in 

pEI2 in a region upstream of escD and eseI. Mutant 217UV (eseH-) carrues a mutation in pEI1 at 

the 3' end of eseH. Positioning of STM mutations in the plasmids is described in Figure 4.1. 

D�A Manipulation. Genomic DNA was isolated using a protocol previously described 

(Ausubel et al. 1994). Briefly, bacterial cells were pelleted by centrifugation at 12,000 x g for 5 

minutes and resuspended in TE. Cells were lysed using 0.5% SDS in the presence of 50 mg/ml 

RNase A and 100 µg/ml proteinase K. Protein was extracted by using phenol:chloroform:  
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Figure 4.1. Schematic representations of Edwardsiella ictaluri plasmids. Shown on the maps are 
the type III secretion system-related genes of interest (eseH, escD, eseI), genes involved in 
plasmid replication (rom, rep), repeat regions within pEI2, insertion sites of signature-tagged 
mutagenesis mutations (217UV and 166ST), pEI1 IS4-related genes homologous to sites in the 
genome, and regions of homology between plasmids pEI1 and pEI2.     
 

isoamyl alchol (25:24:1) with a chloroform wash. DNA was ethanol precipitated in the presence 

of 0.12 M sodium acetate and resuspended in water. Plasmid DNA was isolated using the Qiagen 

miniprep kit (Qiagen Inc., Valencia, CA ). Restriction digestion was done using enzymes 

purchased from New England Biolabs, Inc. (Ipswich, MA). 

Southern Hybridization. Southern hybridization by was conducted using a probe to the STM-

inserted Km cassette to determine the presence of a single km insert into the mutant E. ictaluri 

genomes. A km-specific probe was amplified by PCR using Taq DNA polymerase (Applied 

Biosystems, Foster City, CA) and km-specific primers Km757 (5’-GAAGCCCTGCAA 

AGTAAA-3’) and Km1635 (5’-GCTCAGAAGAACTCGTCAA-3’) using the following 

amplification cycle: 1x 95º C for 5 min; 35x 95º C for 30 sec, 54º C for 30 sec, 72º C for 1 min; 

1x 72º C for 7 min. Products were purified using the Minelute Kit (Qiagen, Inc., Valencia, CA). 
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Plasmid and genomic DNA from strains wild type 93-146 (WT), eseH-, and escD- were 

digested to completion using BsaI (New England Biolabs, Inc., Ipswich, MA) and separated on a 

1% agarose gel. The DNA was transferred to an ECL Hybond N+ nylon membrane (Amersham 

Biosciences, Piscataway, NJ) and hybridized to WT, eseH-, or escD- genomic and plasmid DNA. 

Hybridization was detected using ECL detection reagents (Amersham Biosciences). 

Intracellular Survival in Catfish Macrophages. A gentamicin exclusion assay previously 

described by Booth et al. (Booth et al. 2006) was used to determine the ability of each mutant to 

replicate intracellularly. The channel catfish head kidney was removed aseptically, ground 

through sterile mesh, and diluted with channel catfish macrophage media (CCMM) to yield 

approximately 107 macrophages/ml. Wells of a 24 well plate were seeded with 1 ml of the cell 

suspension and incubated 16 hrs at 28° C with 5% CO2.  

Macrophages were infected with approximately 1 X 104 colony forming units (CFU) of 

complement opsonized WT, escD-, or eseH- E. ictaluri for a multiplicity of infection (MOI) of 

10 macrophage to one bacterium. At times 0, 5, and 10 hrs, the media was removed, and 100 µl 

1% Triton X-100 (Fisher Scientific, Fair Lawn, NJ) was added to wells and incubated at room 

temperature for 10 min. The lysate was serially diluted, plated on BA, and incubated 48 hrs at 

28° C. CFUs were counted, and CFUs/well were determined. Percent uptake was calculated by 

dividing the mean CFU/well at time 0 by the number of bacteria added to the wells. Fold 

replication was calculated by dividing CFU/well of bacteria at time 5 or 10 by the mean 

CFU/well at time 0 and subtracting 1 to adjust for the number of bacteria present at time 0.  

Experimental Challenge in Channel Catfish. Fingerling fish were stocked into 20-L tanks at a 

rate of 25 fish per tank. Fish acclimated 4 weeks prior to challenge and were fed 1.5% body 

weight per day. Three challenges were conducted to evaluate the ability of eseH- and escD- to 

infect channel catfish: mortality, persistence in head kidney, and in vivo competition with WT. 
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For mortality, 12 tanks of 25 fish were used for infection by WT, escD-, and eseH- with 

three tanks per treatment. Water in tanks was lowered to 4 L during immersion, and water flow 

was turned off. Catfish were challenged with approximately 1x1011 CFU/L of each E. ictaluri 

strain, and after 1 hr, water flow was restored to the challenge tanks. Fish were monitored daily 

for mortalities. Upon death, fish were removed, and a sample of liver was taken and streaked 

onto BA for verification that E. ictaluri was present at death. 

For persistence challenges, tank water levels were lowered to 4 L, and fish were 

challenged with approximately 3x1011 CFUs/L of each E. ictaluri strain. After 15 minutes, water 

flow was restored. Short- and long-term persistence in the head kidney were monitored. For 

short-term persistence, samples were taken at hours 0, 0.5, 2, 4, 8, and 12. Long-term persistence 

was evaluated on days 1 through 7. At each time point, three fish per treatment were sampled. 

Fish were euthanized in water containing 1 g/L tricaine methanesulfanate (MS-222). Head 

kidney tissue was removed aseptically, weighed, and homogenized in 500 µl sterile saline. 

Homogenates were serially diluted to 10-2 and 100 µl of each dilution were spread onto BA 

plates. Following incubation for 48 hrs at 28º C, colonies were counted and CFU/g of tissue were 

calculated. 

For the competitive challenges, tank water was lowered to 4 L and fish were challenged 

with 6x1010 CFU/L of both the WT and mutant strains. Following 1 hr, water flow was restored. 

The first four mortalities were collected, and liver tissue were aseptically collected and 

homogenized in 0.5 ml sterile saline. The suspension was serially diluted to 10-8, with each 

dilution done in triplicate. Dilutions were plated onto BHI and BHI supplemented with Km. 

Following incubation for 48 hrs at 28º C, colony counts were recorded. Only bacteria carrying 

the Km cassette (mutants) grew on BHI-Km, but all viable bacteria grew on BHI. The difference 

between the count on BHI and BHI-Km represents the number of WT E. ictaluri remaining at 
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death. From this information, a competitive index was calculated using the equation (Mutant 

CFU recovered / WT CFU recovered) ÷ (Mutant CFU input / WT CFU input). Values nearer to 

zero indicate higher attenuation.  

R�A Isolation. Total RNA was isolated using the Bacteria RNAprotect RNeasy Mini Kit 

(Qiagen) from E. ictaluri strains grown to late log phase in MM19 pH 7.0 and MM19-P pH 5.5. 

Following purification, total RNA was treated with Baseline Zero Dnase (Epicentre 

Biotechnologies, Madison, WI) to remove DNA contamination. RNA samples were adjusted to 

10 ng/µl. 

Quantitative Real-Time PCR. DNase treated RNA (10 ng) was used as template for 

quantitative PCR (qPCR). The High Capacity RNA-to-cDNA Kit (Applied Biosystems) was 

used to generate cDNA under the following conditions: 1x 37° C for 60 min followed by 1x 95° 

C for 5 min to heat inactivate the reverse transcriptase. Quantitative PCR using the Power SYBR 

Green PCR Master Mix (Applied Biosystems) was used to amplify cDNA using gene specific 

primers listed in Table 4.2. Primers used correspond to operons and individual genes associated 

with the E. ictaluri T3SS. Polymerase chain reaction was cycled under the following conditions: 

1x 95° C for 10 min, 40x 95° C 15 sec and 60° C for 1 min. Following each qPCR reaction, a 

dissociation curve was used to verify the purity of each target PCR product. Each qPCR reaction 

also was conducted using cDNA reactions conducted in the absence of reverse transcriptase as 

template to ensure contaminant DNA was not amplified. Data were collected and analyzed using 

an Applied Biosystems 7500 Fast Real Time PCR System using Sequence Detection Software 

v1.4 (Applied Biosystems). Relative quantitation was done using 16s rRNA as the endogenous 

control gene. Quantitative PCR from WT cultured in MM19 pH 7.0 was used as the calibrator 

for ∆∆Ct  quantification.  
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Table 4.2. Oligonucleotides used for quantitative PCR in Chapter 4.  

Gene  5' Primer  3' Primer 

escB CTTTACCTTGCGATTTGCCTGCGT AACAGGCACTCCGCCATATGAAAC 

escC AATGCAAGACCTACAGCAGCGTCA GCGTTGCGATCTCTTGCTGTAACG 

eseH AAGAGGCTGGATGTCTCTGGTACT GGTAGCCTTGGCATAGGAGTGTTA 

eseI GCAACCCTGCTTAGCAAGTGGAAA TCAAAGCCTTCCTGGGCCTAATGGA 

esrA AGAGCGAGCATCTGAACAGCATCA AGTAAGTCATGCTGCTCCTGCGTA 

esrB CAATGCAGCATGCATCACTGGGAA TCAGCGATATCCCGGTTGCGATTA 

esrC AAAGTTTGGGATGGCGCCGAA GAGAAATGGGCGGCGTTACAGAAT 

16s  AACGCGAAGAACCTTACCTGGTCT GCTCGTTGCGGGAATTAAACCCAA 

 

Whole Cell Lysate Protein Purification. Whole cell lysate  proteins were collected from WT, 

eseH-, and escD- strains of E. ictaluri cultured to late log phase in MM19 pH 5.5 similar to the 

procedure described by Moore and Thune (Moore and Thune 1999). Bacteria were pelleted by 

centrifugation at 3800 x g for 5 min, and pellets were washed 3x with PBS at the appropriate pH 

and resuspended in water at a rate of 1 ml of water per 100 µl cell pellet volume. 

Phenylmethanesulphonyl fluoride (PMSF) was added to samples for a final concentration of 1 

mM. Cell suspensions were sonicated using a Fisher 500 sonic dismembranator (Fisher 

Scientific, Pittsburgh, PA) at 45% amplitude for 1 min per ml of cell suspension or until 

suspensions turned from milky to clear. Following sonication, samples were incubated at 4° C 

for 1 hr. Whole cell lysate samples were pelleted by centrifugation at 12,000 x g for 30 min at 4° 

C to remove cellular debris, and supernatants were collected. Thimerosal was added to each 

sample for a final concentration of 0.01% to prevent microbial contamination (Moore and Thune 

1999). Whole cell lysate samples were stored at -80° C until two-dimensional polyacrylamide 

gel electrophoresis (2D-PAGE) was conducted. 
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2D-PAGE Analysis. Whole cell lysate sample concentrations were estimated using Bio-Rad 

Protein Assay (Bio-Rad Laboratories, Hercules, CA). Protein samples were purified by using the 

ReadyPrep 2D Cleanup Kit (Bio-Rad Laboratories). Samples were suspended in rehydration 

buffer at a rate of 100 µg protein per 185 µl rehydration buffer. Protein samples were used to 

passively rehydrate 11 cm pH 4-7 immobilized pH gradient (IPG) strips (Bio-Rad Laboratories) 

for 24 hrs at room temperature. Following rehydration, IPG strips were subjected to isoelectric 

focusing using a Bio-Rad Protean IEF Cell (Bio-Rad Laboratories). Focusing conditions were 

maintained by the following program at 20° C: rapid ramping to 250 V for 15 min; slow ramping 

to 2000 V for 1 hr; hold at 2000 V for 3 hrs; linear step to 5000 V for 1 hr; hold at 5000 V for 3 

hrs; rapid ramping to 8000 V for 1 hr; 8000V for 40,000 VHrs; rapid ramping to 500 V until 

strips were removed.   

Immobilized pH gradient strips were prepared for PAGE separation using the 2D Starter 

Kit Equilibration Buffers I and II (Bio-Rad Laboratories). Equilibrated IPG strips were 

transferred to wells of a precast 12.5% Criterion SDS-PAGE gel (Bio-Rad Laboratories). 

Proteins focused by isoelectric point on IPG strips were separated on the basis of molecular 

weight by electrophoresis at 200 V for 55 min. Following electrophoresis, gels were removed 

and washed in fixative (10% methanol, 7% glacial acetic acid) for 1 hr. Following fixation, gels 

were stained with Sypro Ruby protein stain (Bio-Rad Laboratories) per manufacturer’s 

instructions. Gels were washed in fixative an additional hour to destain. Following destaining, 

gels were washed 3x with distilled water and imaged under UV light using a Bio-Rad Gel Doc 

XR and Quantity One software (Bio-Rad Laboratories).   

Statistical Analyses. For the persistence study, CFU/g data were log transformed, and mean log 

CFU/g and standard error for each time point were calculated. Daily mortality data are reported 

as mean cumulative percent mortality (+ SEM). However, statistical analyses were done using 



 
 

180 
 

arcsine transformed cumulative percent mortality. For gentamicin exclusion assays, percent 

invasion at time 0 (number of bacteria isolated at time 0 / number of bacteria added to wells) and 

mean percent increase at each time point (CFU at each time / CFUs at time 0) were calculated 

with standard error. Quantitative PCR data were calculated using the ∆∆Ct method. Values were 

converted to fold increase log transformed. Means and standard errors of the log-transformed 

data were calculated.  

 Analysis of variance (ANOVA) was done for each of the above data sets using the 

general linear model (Proc GLM) of Statistical Analysis Systems (SAS) v9.1 (SAS Institute, 

Cary, NC). When ANOVA showed a significant difference, Tukey’s HSD was used to adjust the 

P values for pairwise comparisons. Differences were considered significant if P < 0.05.  

RESULTS 

Edwardsiella ictaluri Encodes Putative T3SS Effector Genes Outside the T3SS 

Pathogenicity Island. The STM insertion in pEI1 is found in eseH, which encodes a protein 

with homology to SspH1, SspH2, SseI, and SlrP of Salmonella enterica serovar Typhimurium 

and the Shigella secreted effector IpaH  (Fernandez et al. 2001). Homologies of these proteins 

are given in Table 4.3. Each of these proteins, including EseH, contains a region of leucine rich 

repeats (LRR) (Venkatesan et al. 1991; Tsolis et al. 1999; Miao and Miller 2000). Currently, 

only the function of the LRR of SspH1 is reported (Haraga and Miller 2006). The LRR of SspH1 

mediates an interaction with the host cell protein PKN1, resulting in decreased NF-κΒ activity. 

SspH1 and IpaH9.8 ubiquitinate PKN1 in the host nucleus, affecting the function of NF-

κΒ (Rohde et al. 2007). OspB of Shigella is involved in a similar effect of downregulating the 

host immune response (Zurawski et al. 2009). A gene on pEI2, eseI, encodes a protein with 

homology to OspB. It is interesting that both plasmids encode proteins with homology to 

translocated effectors involved in the modulation of host immune responses. 



 
 

181 
 

SspH1, SspH2, SseI, and SlrP share a conserved translocation sequence in the first 140 

amino acids of each protein. Along with SseJ, SopD2, SifA, and SifB, these proteins are called 

Salmonella translocated effectors (STEs) (Brumell et al. 2000; Miao and Miller 2000; Brumell et 

al. 2003; Brown et al. 2006). The conserved amino sequence is WEK(I/M)xxFF (hereafter 

referred to as the WEKI sequence), where x is any amino acid.  

EseH of E. ictaluri has high homology to STE-containing proteins in its first 141 amino 

acids (Table 4.3), and contains other conserved translocation sequences of STE proteins (Figure 

4.2). The presence of conserved Salmonella SPI-2 translocation signals in EseH suggests EseH is 

a translocated effector of the E. ictaluri T3SS. SspH2 and SseI are Salmonella enterica serovar 

Typhimurium effector proteins shown to bind filamin in the mammalian host cell via the first 61 

amino acids (Miao et al. 2003). EseH of E. ictaluri also shares homology with this sequence, 

having a percent identity and similarity of 66/85 to SspH2 and 65/83 to SseI. SspH1 modulates 

actin polymerization of the host cell (Miao et al. 2003), and SseI directs infected cell motility, 

resulting in systemic spread of E. ictaluri (Worley et al. 2006). EseH is also similar in the 

carboxy terminus (amino acids 267 – 619) to SspH1, SspH2, SlrP, and IpaH. The carboxy 

terminus of SspH2 mediates binding to the host cell protein profilin, resulting in inhibition of 

actin polymerization within the host cell (Miao et al. 2003). 

Table 4.3. Percent identity and similarity of amino acid sequences between EseH of 
Edwardsiella ictaluri and type III secretion system effectors of Salmonella and Shigella. 
Homologies were determined using BLAST (Zhang et al. 2000). NSA = no significant alignment 

Amino Acids SspH1 SspH2 SlrP SseI IpaH9.8 

EseH 1-619 
(whole sequence) 
 

 
54/69 

 
57/72 

 
43/57 

 
57/72 

 
38/55 

EseH 1-141 
(amino terminus) 
 

 
40/53 

 

 
60/75 

 

 
36/57 

 

 
57/72 

 
NSA 

 
EseH 267-619 
(carboxy terminus) 

 
55/70 

 
58/73 

 
45/62 

 
23/34 

 
40/57 
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The DNA sequence of eseH was used to query the genome of E. ictaluri to identify 

similar genetic sequences. Four open reading frames homologous to eseH are found in the 

genome (Table 4.4). These putative genes are named eseJ, eseK, eseL and eseM. These 

sequences were identified from contigs constructed during the E. ictaluri genome-sequencing 

project. The sequence of eseK, however, is not included in the final assembly of the E. ictaluri 

genome. The amino and carboxy termini are all similar in length, but the length of the LRR 

portions vary. Each protein sequence also has a WEKI sequence (Figure 4.2). The presence of 

the WEKI sequence in each of the EseH homologs suggests each is an E. ictaluri T3SS 

translocated effector protein.  

The finding of putative effector genes in both E. ictaluri plasmids and in the genome of 

E. ictaluri outside of the T3SS pathogenicity island is consistent with the SPI-2 T3SS-related 

effectors of Salmonella. Three SPI-2 effectors are encoded within the pathogenicity island, but a 

majority is encoded elsewhere in the genome. The finding of six putative effector genes, eseH, 

eseI, eseJ, eseK, eseL, and eseM, outside of the E. ictaluri pathogenicity island indicates a 

similar situation, and presents the possibility that other effector genes are encoded in the E. 

ictaluri genome. A number of hypothetical genes were mutated, resulting in attenuation of E. 

ictaluri, in the STM mutagenesis study conducted by Thune et al. (Thune et al. 2007). Although 

the genes do not match T3SS translocated effectors of other organisms, some may be 

Edwardsiella-specific proteins translocated by the T3SS. 

STM Insertions Occur at One Site. Plasmid DNA from WT and mutant strains was isolated, 

linearized, and separated by agarose gel electrophoresis. As expected, WT E. ictaluri 93-146 

carries two plasmids, pEI1 and pEI2, which are approximately 4.8 kb and 5.6 kb, respectively 

(Newton et al. 1988; Bertolini et al. 1990; Fernandez et al. 2001). Both mutant strains, however, 

carry three plasmids: pEI1, pEI2, and the respective STM mutant plasmid (Figure 4.3A). 
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A Salmonella SspH1 - MFNIRNTQPS 
Salmonella SspH2 - MPFHIGSGCL 

E. ictaluri EseH - MPLHVGTGHI 

E. ictaluri EseJ - MPLYVGTGCF 

E. ictaluri EseK - MPLYVGSGYF 

E. ictaluri EseL -  no match  

E. ictaluri EseM – MPLYIGTGCF 

 

B Salmonella SspH1 - WEKIQVFF 
Salmonella SspH2 - WEKMKEFF 

E. ictaluri EseH - RENIQEFF 

E. ictaluri EseJ - HEKIQVFF 

E. ictaluri EseK - RENVHEYF 

E. ictaluri EseL - WEKIKAFF 

E. ictaluri EseM – HEKIQAFF 

 

C Salmonella SspH1 - EAQQCLAELCH 
Salmonella SspH2 - EALECIWTICH 

E. ictaluri EseH - EALNCLWEICH 

E. ictaluri EseJ - EVLNCLREICY 

E. ictaluri EseK - EALTCIQEICH 

E. ictaluri EseL - EALSCIREICH 

E. ictaluri EseM – EVLNCLREICY 

 

D Salmonella SspH1 - SKEILSITLDDAGNY 
Salmonella SspH2 - SQEILSVTLDDAGNY 

E. ictaluri EseH - GQEMLSVILGDADTY 

E. ictaluri EseJ - GQEIVSVTLDDTGTY 

E. ictaluri EseK - GQEMLSVILGDDEKY 

E. ictaluri EseL - GREILSVTIDAD-TY 

E. ictaluri EseM - GREILSVTIDAD-TY 

 
Figure 4.2. Alignment of Salmonella translocated effector (STE) conserved amino-terminus 
domains to Edwardsiella ictaluri putative type III secretion system (T3SS) effector proteins. 
Edwardsiella ictaluri putative effector protein sequences encoded outside the T3SS 
pathogenicity island have strong homology to conserved translocation signals of SspH1 and 
SspH2 of Salmonella (Miao and Miller 2000). The sequences span similar amino acid positions 
in each protein. The first nine amino acids of SspH1 and SlrP differ from other STE proteins, 
including SspH2. Edwardsiella ictaluri sequences align to the SspH2 sequence 
MPx(I/V)GxGx(L/F) rather than the SspH1 sequence MFNIxNxQ, where x is any amino acid 
(A). The WEKI sequence of Salmonella, WEK(I/M)xxFF, is required for translocation and is 
shared among all STE as well as E. ictaluri proteins (B). Two other conserved regions were 
described in the amino termini of STE (C and D) that are also similar in E. ictaluri proteins. 
Shaded amino acids match the Salmonella consensus sequences or have a biochemically similar 
amino acid in that position. 
 



 
 

 

Table 4.4. Percent identity and similarity of leucine rich repeat proteins encoded by 
ictaluri. Homologies were determined by BLAST 

Protein (AA) EseH (619) 

EseH (619)  

EseJ (792) 69/76 

EseK (929) 65/77 

EseL (717) 62/70 

EseM (792) 70/79 

 
 
 
 
 
 
 
 

Figure 4.3. Single insertion of the signature
ictaluri plasmid mutants. Genomic and plasmid DNA digested with 
agarose gel (A). Southern hybridization was conducted using a probe for the inserted kanamycin 
cassette (B). Arrows indicate the mutant plasmid in each strain.
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Table 4.4. Percent identity and similarity of leucine rich repeat proteins encoded by 
. Homologies were determined by BLAST (Zhang et al. 2000).  

EseJ (789) EseK (929) EseL (717) 

69/76 65/77 62/70 

 59/69 72/80 

59/69  63/75 

72/80 63/75  

70/79 57/68 79/86 

 
Figure 4.3. Single insertion of the signature-tagged mutagenesis transposon in Edwardsiella 

plasmid mutants. Genomic and plasmid DNA digested with BsaI was separated on a 1% 
agarose gel (A). Southern hybridization was conducted using a probe for the inserted kanamycin 
cassette (B). Arrows indicate the mutant plasmid in each strain. 

Table 4.4. Percent identity and similarity of leucine rich repeat proteins encoded by Edwardsiella 

 

EseM (792) 

70/79 

70/79 

57/68 

79/86 

 

Edwardsiella 

was separated on a 1% 
agarose gel (A). Southern hybridization was conducted using a probe for the inserted kanamycin 
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Southern hybridization verifies that the transpositional insertion site is limited to the 

plasmids and that a double-insertion event did not occur. For each strain, a single band is 

detected in the genomic and plasmid DNA preps (Figure 4.3B). The detected band from the 

genomic DNA is from plasmid DNA collected with the genomic DNA. Both bands are in the 

same position, indicating that insert occurs once in each strain in the plasmid. The km probe does 

not hybridize to WT genomic or plasmid DNA (data not shown).  

Plasmid Mutants Are Attenuated for Replication in Channel Catfish Macrophages. A 

gentamicin exclusion assay (Booth et al. 2006) was used to determine the ability of STM E. 

ictaluri plasmid mutant strains to replicate within channel catfish macrophages. Bacterial entry 

into the macrophages is not significantly different among strains in the gentamicin exclusion 

assays (Table 4.5), indicating the mutations do not affect the ability of E. ictaluri to enter host 

cells. However, uptake for E. ictaluri strains is between 14 and 117% depending on the 

experiment, indicating a wide range of uptake among macrophages of different experimental 

fish. The insignificant differences in uptake indicate the mutations do not affect E. ictaluri’s 

ability to infect macrophages. 

   

Table 4.5. Percent uptake of signature-tagged mutagenesis Edwardsiella ictaluri plasmid mutants 
by channel catfish macrophages. Mean percent uptake (± SEM) of wild type (WT), escD-, and 
eseH- strains of E. ictaluri by channel catfish macrophages was calculated from triplicate 
gentamicin exclusion assays. Values with the same letter in a row are not significantly different 
(P > 0.05). 

Experiment WT escD- eseH- 

1 
 

88 ± 17 
a 

46 ± 17 
a 

117 ± 17 
a 

2 
 

30 ± 4 
b 

28 ± 4 
b 

14 ± 4 
b 

3 
 

54 ± 4 
cd 

30 ± 4 
c 

58 ± 4 
d 
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 Replication within macrophages was significantly different between the WT and mutant 

strains (Figure 4.4). After 10 hours, the mutants replicated less than 1 fold in macrophages, 

whereas WT increased close to 35 fold. The greatest replication for the WT strain occurs 

between 5 and 10 hours. The ability of the mutants to survive within macrophages is not 

compromised, as evidenced by their isolation and culture after 10 hours within macrophages, but 

their ability to proliferate in or spread among the cells appears lost. Generally, there is low 

replication in macrophages in the first 5 hours even for WT, indicating the bacteria are not 

initially able to replicate well within macrophages. This suggests de novo synthesis of virulence 

factors, such as the T3SS, is required for replication. 

 

 
Figure 4.4. Replication of signature-tagged mutagenesis Edwardsiella ictaluri plasmid mutants 
in channel catfish macrophages. Wild type (WT) E. ictaluri replicates greater than 30-fold in 10 
hrs within macrophages. However, both STM mutant strains escD- and eseH- replicate poorly in 
the same timeframe. Bars indicated the mean (± SEM) fold increase of triplicate gentamicin 
exclusion assays. * indicate a significantly lower fold increase than WT at that time (P < 0.05). 
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Signature-Tagged Mutagenesis E. ictaluri Plasmid Mutants Are Attenuated In Vivo. 

Specific pathogen-free channel catfish were challenged with WT and STM plasmid mutant 

strains of E. ictaluri to characterize the virulence phenotype of the mutants. Three challenges 

were done evaluating mortality, persistence within the channel catfish head kidney, and in vivo 

competition with WT E. ictaluri.  

 During the mortality challenge, mortalities began on day 4 post-challenge in fish 

challenged with the WT strain (Figure 4.5), resulting in cumulative mortality of 77% after 18 

days. Infection with either plasmid mutant results in no mortality. These data demonstrate the 

severe virulence attenuation of the E. ictaluri mutant strains. However, the data do not discern if 

the mutants have lost the ability to infect the host or have lost the ability to replicate in vivo. 

 In order to evaluate the ability of the mutants to infect and replicate within channel 

catfish, short- and long-term head kidney persistence of the strains in vivo was determined. Both 

mutants are detected in channel catfish head kidney tissue within 30 min of immersion and 

continue at a relatively constant level for seven days after challenge (Figure 4.6). However, 

levels of WT bacteria in the head kidney increase significantly over the same time period. Wild 

type CFU/g values are significantly higher than either the eseH- and escD- strains starting on day 

2 and continuing throughout the remainder of the challenge. These data demonstrate that the 

mutant strains of E. ictaluri infect channel catfish and survive in vivo as well as WT E. ictaluri 

for at least 7 days. However, mutant strains are unable to replicate normally in vivo, whereas the 

WT increases up to four logs higher than the initial density. 

 Competitive indices indicate a significant decrease in virulence for the STM mutants. 

Neither mutant strain is competitive in vivo with the WT strain, because at death, only WT 

bacteria are isolated from the tissue, resulting in a competitive index of 0 for each mutant. This 



 
 

188 
 

data also indicates that defects created by transpositional mutagenesis of the E. ictaluri plasmids 

cannot be complemented by the activity of the WT strain present in the fish. 

The combined results of these in vivo challenges demonstrate that both plasmid mutants 

are attenuated for virulence, but can persist in head kidney tissue for at least a week. These data 

indicate the bacteria can survive within the fish, but the ability of E. ictaluri to replicate and 

spread in vivo is reduced. The inability of the mutants to survive in competition with the WT 

strain demonstrates a significant loss of virulence and suggests that products of the WT strain do 

not complement the virulence deficiencies of the plasmid mutants. 

 

 
Figure 4.5. Cumulative mortality of channel catfish following infection with signature-tagged 
mutagenesis (STM) Edwardsiella ictaluri plasmid mutants. Wild type (WT) infection results in 
channel catfish mortality as early as four days post-immersion, resulting in 77% mortality. 
However, immersion with STM mutant strains escD- and eseH- resulted in no mortality. Data 
indicates the mean (± SEM) cumlulative percent mortality for each E. ictaluri strain from 
triplicate challenge tanks. * indicate significantly higher mortality (P < 0.05). 
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Figure 4.6. Persistence of signature-tagged mutagenesis Edwardsiella ictaluri plasmid mutants in 
channel catfish head kidney tissue. Channel catfish were infected with wild type (WT) and 
plasmid mutant strains of E. ictaluri. Head kidney tissue was sampled at the designated time 
points and CFU/g of tissue were estimated. Bars indicate mean (± SEM) log CFU/g of triplicate 
samples. * indicate significant differences from WT at that time point (P  <  0.05).  
 
 

Mutant Plasmids Result in Decreased Expression of T3SS Genes. To determine if the 

mutations in the E. ictaluri plasmids affect expression of other T3SS-related genes, quantitative 

PCR was conducted on total RNA isolated from E. ictaluri cultures grown in MM19-P pH 5.5. 

Both plasmid mutants exhibit substantial decreases in the expression of T3SS regulatory, 

chaperone, and effector genes. Expression of esrB and esrC is not detected in the strains, and 
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expression of esrA is significantly reduced (Figure 4.7). Similarly, escB/eseG expression is not 

detected, and expression of both the translocon genes eseBCD and the pEI1-encoded eseH is 

severely reduced (Figure 4.8). 

 Of the genes assayed, only eseI is expressed normally in the two mutants. Other genes, 

including the T3SS regulatory genes, are significantly reduced compared to expression seen in 

WT cultured in MM19-P pH 5.5. The significant defect in expression of T3SS genes may be 

related to the severe decrease in esrB expression, which is required for expression and secretion 

of T3SS proteins (Chapter 2). Mutation of esrB, however, does not result in the same degree of 

esrA and eseH downregulation as seen in the eseH- or escD- strains, suggesting that other factors 

are involved in the loss of T3SS gene expression. These data suggest that the mutations in the E. 

ictaluri plasmids affect T3SS gene expression, likely upstream of EsrAB two-component 

control. The data also indicate expression of escD/eseI is not under similar regulation as the E. 

ictaluri T3SS, because eseI is still expressed when other T3SS-related genes are not.  

Verification of Reduced T3SS Proteins in Bacterial Whole Cell Lysates. To verify the 

reduced expression of T3SS genes in the plasmid mutants, whole cell lysate proteins were 

collected and separated by 2D-PAGE. The T3SS translocon proteins EseB and EseD, as well as 

the chaperone protein EscA, were all absent from the whole cell lysates of eseH- and escD- E. 

ictaluri (Figure 4.9A and B). These proteins are readily detected in the whole cell lysate from 

WT E. ictaluri cultured in MM19 pH 5.5 (Figure 4.9C). Furthermore, EseB and EseD are present 

in esrB-deficient E. ictaluri whole cell lysates, indicating the T3SS expression defect of the STM 

plasmid mutants is more severe than observed in an esrB mutant. Also missing from the whole 

cell lysates are the T6SS proteins EvpA and EvpC. Both of these proteins are detectable in the 

whole cell lysate of the WT strain. The absence of EscA, EseB, and EseD in the STM mutant 

whole cell lysates verifies the qPCR data showing significant decreases in T3SS expression. 
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Figure 4.7. Effect of signature-tagged mutagenesis Edwardsiella ictaluri plasmid mutation on 
expression of type III secretion system (T3SS) regulatory genes. Quantitative PCR analyses were 
used to measure expression of the E. ictaluri T3SS regulatory genes esrA, esrB, and the esrC 
operon containing esrC and the apparatus genes esaGHIJWKL from wild type (WT), eseH-, and 
escD- strains cultured in low phosphate minimal media (MM19-P) at pH 5.5. Bars indicate the 
mean of the log fold expression (± SEM) of triplicate samples. Values with the same letter within 
gene group are not significantly different (P > 0.05).  
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Figure 4.8. Effect of signature tagged mutagenesis Edwardsiella ictaluri plasmid mutation on 
expression of type III secretion system (T3SS) non-regulatory genes. Quantitative PCR analysis 
was used to measure expression of the E. ictaluri T3SS genes encoded by the escB/eseG operon, 
the escC operon containing the translocon genes eseBCD, the pEI1-encoded eseH, and the pEI2-
encoded operon containing escD and eseI from wild type (WT), eseH-, and escD- strains 
cultured in low phosphate minimal media (MM19-P) at pH 5.5. Bars indicate the mean of the log 
fold expression (± SEM) of triplicate samples. Values with the same letter within gene group are 
not significantly different (P > 0.05). 
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Figure 4.9 (Following page). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 
analyses of signature-tagged mutagenesis Edwardsiella ictaluri plasmid mutant whole cell lysate 
proteins. Whole cell lysate protein from eseH- (A), escD- (B), and wild type (C) strains of E. 

ictaluri were collected from cultures in MM19 pH 5.5 media and separated by 2D-PAGE. Labels 
indicate protein spots corresponding to type III secretion system translocon proteins EseB and 
EseD or type VI secretion system proteins EvpA, EvpB, and EvpC. Circles indicate areas where 
proteins should appear, but are missing. Gels were run in triplicate, and a representative gel is 
shown. 
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Identification of Potential Plasmid Integration Sites in the E. ictaluri Genome. The 

combined results of the qPCR and 2D-PAGE analyses indicate the virulence defects in plasmid 

mutant strains are not due to the specific insertion sites in the respective plasmids, but rather 

through some other mechanism. This is surprising, because no sequence in the plasmids encodes 

a known regulatory protein. Interestingly, the plasmids have regions of homology to each other 

(Figure 4.1), and pEI1 has IS4-related sequences that are shared throughout the E. ictaluri 

genome, and in some cases, these regions are upstream of hypothetical regulatory genes of 

unknown function. 

Eleven regions in E. ictaluri genomic DNA have a 100% match to over 850 nt of the 

pEI1 IS4 sequence. An additional fourteen regions have a greater than 90% match. These regions 

of homology provide areas capable of homologous recombination and integration of the plasmid. 

These regions are located near hypothetical protein kinases, phage genes, transcriptional 

regulators, transposases, the putative E. ictaluri T3SS secreted effector EseJ, heat shock proteins, 

an ammonia transporter possibly involved with the urease system, and hemaglutinnins.  

pEI2 has less homology in the genome than pEI1. The greatest homology occurs over a 

327 nt sequence in which there is 88% homology to the genome. This region of pEI2 is 890 nt 

away from the region mutated by signature-tagged mutagenesis. However, pEI1 and pEI2 share 

86% homology across a 359 nt sequence in addition to 84% and 76% homology across 122 nt 

and 139 nt sequences, respectively. These regions of homology may allow for the combination of 

pEI1 and pEI2, and integration of both plasmids into the genome via the IS4 sequence in pEI1. 

Furthermore, the pEI1/pEI2 homologous region occurs in the genome near the putative E. 

ictaluri T3SS effector gene eseL, and is downstream of the putative effector gene eseJ. Although 

there is no evidence that integration of either plasmid into the genome occurs, there are 

compelling hypothetical interactions that may occur to modulate expression of virulence genes. 
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DISCUSSIO� 

A signature-tagged mutagenesis project identified two mutations in the plasmids of E. 

ictaluri resulting in attenuation (Thune et al. 2007). Both mutant strains are unable to replicate 

within HKDM, and both are strongly attenuated in vivo. In addition, the mutations result in 

severe downregulation of many T3SS-related genes, including the regulatory genes esrA, esrB, 

and esrC. This effect on the T3SS indicates that the attenuated phenotype of the mutants is not 

solely due to the mutation of eseH or escD, but rather due to another mechanism that effects 

T3SS gene expression. 

Edwardsiella ictaluri Encodes Putative Effector Proteins Outside of the T3SS Pathogenicity 

Island. EseH has homology to many T3SS translocated proteins, with the highest similarity to 

SspH2 of Salmonella. In addition, it shares 85% and 83% similarity to the first 61 amino acids of 

SspH2 and SseI, respectively, which is the sequence required for these proteins to bind filamin 

(Miao et al. 2003). Based on these homologies, EseH may be an effector involved in survival of 

E. ictaluri within host cells, possibly with a role in modulating cytoskeletal elements during the 

spacious vacuole formation. EseH also has homology to SspH1 encoded by Salmonella, which 

downregulates the host immune response (Haraga and Miller 2003; Haraga and Miller 2006). 

However, homologous sequence does not guarantee a homologous function. SspH1 and SspH2 

have 68% homology (Miao et al. 1999), but do not share a common function. Mutation of esrC 

results in a significant decrease in eseH expression (Chapter 3), but the esrC mutant was able to 

replicate as well as WT E. ictaluri in HKDM, suggesting EseH is not required for early 

intracellular survival. 

Four sequences similar to eseH are found in the genome, indicating that, like Salmonella, 

E. ictaluri encodes additional T3SS effector genes outside of the pathogenicity island. These four 

proteins, along with EseH, contain LRR regions and homology to conserved sequences of 
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Salmonella STE proteins (Brumell et al. 2000; Miao and Miller 2000) required for translocation 

by the T3SS. In addition, the genes encoding EseH, EseJ, EseK, EseL, and EseM in E. ictaluri 

have high DNA and protein sequence homology to each other, with the only significant 

differences being in the length of the LRR regions.  

The fact that eseH and eseI are encoded on a multicopy plasmid, i.e., a high gene copy 

number, suggests a need for producing large quantities of this protein during the course of an 

infection. Interestingly, both plasmids encode proteins with homology to proteins of other 

pathogens involved in the downregulation of the host immune responses (Haraga and Miller 

2003; Haraga and Miller 2006; Zurawski et al. 2009). If the plasmid-encoded proteins have 

similar functions to SspH1 and/or OspB, perhaps the higher copy number of the plasmid allows 

for increased production of the proteins, thereby allowing for rapid responses against host 

immune defenses. However, if EseH has a function more like EseH or EseI, which are involved 

in host cell actin dynamics (Miao et al. 2003; Worley et al. 2006), the higher copy numbers may 

allow increased expression for a more rapid modulation of the host cell cytoskeleton. 

Edwardsiella ictaluri Plasmid Mutants Are Attenuated Ex Vivo and In Vivo. Macrophage 

infections demonstrate the WT strain survives and replicates well during a 10 hr period with the 

most rapid growth occurring after 5 hours. For both escD- and eseH-, however, the number of 

intracellular bacteria increases only slightly, indicating the bacteria are able to survive, but not 

replicate well within the macrophage. Whether the mutant bacteria are replicating very slowly or 

are killed at a similar rate as replication is not known. 

 The results of the immersion challenges indicate each mutant is highly attenuated. 

Neither of the mutants causes mortality during the course of a three week challenge, while the 

WT strain causes 77% mortality. The persistence challenge results indicate the mutants colonize 

the head kidney as well as the WT, because at 30 minutes post-immersion, both mutants and the 
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WT were found in similar numbers in the head kidney. Over the 7 day experiment, both mutant 

strains remain relatively stable in numbers, but the WT increases in concentration as time 

progresses. The competition challenge supports the findings of the mortality and persistence 

challenges, where neither of the mutant strains are present in liver tissue at the time of death, but 

large numbers of the WT strain are present. Disappearance of the mutant strains suggests they 

cannot compete or survive during a co-infection with the WT strain. It also indicates that protein 

expression of the WT strain does not complement the attenuation of the mutant strains. Based on 

the results of these experiments, it is apparent that both plasmid mutants are able to survive in the 

fish for at least a week, but they are unable to grow or spread. 

Mutations in the E. ictaluri Plasmids Cause a Defect in T3SS Gene Expression. The 

expectations of the plasmid mutants were that the transpositional inserts cause a regulation defect 

for expression of escD/eseI in escD- and a functional defect in EseH in eseH-, resulting in 

attenuation for both mutants. However, qPCR and 2D-PAGE analyses demonstrate that the 

mutant strains have a severe defect in T3SS gene expression. This is interesting, because the 

mutated DNA regions in the plasmid do not have any homology to regulatory genes. Yet, the 

level of downregulation is similar to the severe loss of T3SS gene expression noted in an esrB 

mutant (Chapter 3). However, in the esrB mutant, the downregulation of esrA and eseH is less 

than that of both escD- or eseH-. Because expression of these genes is more reduced, it is likely 

that the effect of the plasmid mutations is on a global regulatory system that controls expression 

of esrA and esrB, and possibly other regulatory genes or virulence genes.  

The SPI-2 of T3SS of Salmonella is in part controlled by regulatory systems outside of 

SPI-2, including PhoPQ, OmpR-EnvZ, and SlyA  (Deiwick et al. 1999; Lee et al. 2000; Worley 

et al. 2000; Feng et al. 2003; Garmendia et al. 2003; Norte et al. 2003; Feng et al. 2004; Kim and 

Falkow 2004; Bijlsma and Groisman 2005; Brown et al. 2005; Linehan et al. 2005; Merighi et al. 
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2005; Lober et al. 2006). Feng et al. (Feng et al. 2003) and Lee et al. (Lee et al. 2000) found 

OmpR binds DNA upstream of esrA and activates expression. PhoP regulates both ssrA and ssrB 

at the translational and transcriptional levels, respectively (Bijlsma and Groisman 2005). The 

role of these regulatory systems on gene expression is unknown in E. ictaluri, but the plasmid 

mutations, which result in abrogated esrA and esrB expression, may affect these systems. 

The E. ictaluri plasmids may integrate into the genome and affect expression of genomic 

genes near the sites of insertion. pEI1 carries genes with homology to the IS4 family of insertion 

sequences. Although there are regions for potential integration, this phenomenon has not been 

observed in E. ictaluri. Integration and excision may be induced under conditions involved in 

upregulation of the E. ictaluri T3SS. In that scenario, the signature-tagged mutagenesis plasmid 

mutations may affect either a plasmid’s ability to integrate or to affect the function of the 

plasmid once integrated into the genome. There is much yet to be determined in regards to the 

roles of the plasmids in virulence, but the homology of the plasmids between each other and the 

genome suggest a possible role for combination or integration. Conversely, the insertion of the 

STM tag, which is approximately 2.5 kb, may have affected plasmid supercoiling, allowing these 

areas of homology to become available for integration. In other words, the mutations may allow 

the plasmids to integrate or combine when they otherwise would not. 

The E. ictaluri genome is interspersed with transposase and phage sequences. The 

activity and functionality of these regions are not known, but the homologous DNA regions 

repeated throughout the genome make rearrangements possible. How these rearrangements could 

affect virulence is unknown. The appearance of five homologous genes related to T3SS effector 

genes also suggests movement and copying of genes. Perhaps the plasmid-encoded eseH is the 

source of those other genomic sequences. If pEI1 has the ability to integrate and excise from the 
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genome, over time some DNA sequences may have remained in the genome and evolved to the 

eseH-like sequences reported in this study.  

Concluding Remarks. The importance of the putative effector genes encoded by pEI1 and pEI2 

cannot be determined from this work. The T3SS expression phenotypes indicate the plasmid 

mutations are not the primary factor in attenuation. The potential for genomic gene expression to 

be disrupted by mutation in the plasmids makes it difficult to formulate methods to study these 

plasmid-encoded genes. Furthermore, if the plasmids integrate and affect expression of T3SS 

genes, it may be difficult to determine all areas of the genome affected by integration. Equally 

challenging is discerning if a decrease in virulence in a plasmid T3SS gene is a product of an 

effect on the T3SS, or if there are additional regions of the genome affected, as is the case in the 

analysis of these STM plasmid mutants. 

The study of the STM mutants, however, does give insight into some aspects of EscD and 

EseI. Expression of eseI is the same in the plasmid mutants as observed in the WT strain. T3SS 

genes, however, were greatly downregulated in the STM mutants. Parallel to that is the effect of 

esrA, esrB, and esrC deletion on T3SS gene expression. T3SS genes are downregulated in each 

of those mutants; however, eseI maintains a stable expression level. These results indicate EscD 

and EseI are not T3SS-regulated genes, because mutation of EsrA, EsrB, or EsrC does not affect 

their transcription. Both SspH1 and SlrP of Salmonella are expressed independently of either 

SsrB or HilA, which regulate the SPI-2 and SPI-1 T3SS, respectively (Miao and Miller 2000). 

However, both SspH1 and SlrP are secreted by both Salmonella T3SS; therefore regulatory 

dependence of a gene on the T3SS regulators is not a determining factor for secretion by that 

system.  

Further research is needed to determine how mutations in the plasmids can have such a 

profound effect on the expression of an entire T3SS, particularly when those mutations do not 
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occur in a gene homologous to known regulators of gene expression. Also, the functions of the 

plasmid-encoded T3SS proteins of E. ictaluri need to be studied to determine their contribution 

to virulence. Further research to identify other secreted effectors encoded in the genome and 

determine the functions of the E. ictaluri T3SS effectors will be important in developing 

strategies to combat this devastating disease. In addition, learning about the similarities of 

effectors of a lower vertebrate pathogen and effectors of higher mammal pathogens may help 

advance the understanding of the development and distribution of the effector proteins of these 

ubiquitous secretion systems. 
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CHAPTER 5 

GE�ERAL CO�CLUSIO�S 

 The E. ictaluri T3SS is required for survival within macrophages. Its expression is 

induced in conditions mimicking the intracellular environment, and mutation of regulatory genes 

required for expression result in virulence defects intracellularly and in vivo. The T3SS genetic 

structure and sequences are highly homologous to the T3SS of E. tarda. However, there are 

significant differences in the regulation and expression of the respective T3SS. The similarities 

and differences are summarized in Table 5.1. Although differences appear to exist, both T3SS 

function to allow intracellular replication, similar to the SPI-2 T3SS. Edwardsiella ictaluri shares 

many characteristics of the SPI-2 T3SS, including expression in response to acidic, low 

phosphate conditions, homologous T3SS protein sequences, and the encoding of effector genes 

outside the T3SS pathogenicity island (Table 5.1).  

 This is the first work to study the expression of the E. ictaluri T3SS and the regulatory 

genes involved in controlling expression of the system. The findings of this study support 

hypotheses presented. However, the hypothesis that EsrC is required for T3SS gene expression is 

proven incorrect. That hypothesis was based on the findings in E. tarda that EsrC is required for 

the expression and secretion of translocon proteins (Zheng et al. 2005). Although mutation of 

esrC in E. ictaluri results in a significant decrease in translocon gene expression, it does not 

prohibit expression, and translocon proteins continue to be secreted from the ∆esrC strain. The 

hypothesis that the plasmid mutations result in attenuation due to the inability to produce EseH 

or EseI also was incorrect. While both mutations result in significant attenuation, the effect 

appears to be associated with regulation of the T3SS system upstream of EsrA/EsrB regulation 

rather than being directly attributable to the mutation of escD/eseI or eseH in the respective E. 

ictaluri mutant strains.  
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Table 5.1. Comparison of type III secretion system (T3SS) gene organization, expression, and 
protein function among Edwardsiella ictaluri, E. tarda, and Salmonella pathogenicity island 2. 

 Salmonella SPI-2 E. tarda E. ictaluri 

Role of T3SS in 
virulence 

Intracellular replication Intracellular replication Intracellular replication 

In vitro expression of 
T3SS genes 

Many inducing conditions 
including low pH or low 

phosphate; translocon 
genes not upregulated in 

acidic 

Induced in neutral pH, no 
nutrient limitation reported 

Expression in many 
conditions, but upregulated 

in acidic and low 
phosphate; low phosphate 

alone does not induce 

Secretion of T3SS 
translocon proteins 

Acidic pH required Neutral pH Acidic pH required 

Relationship between 
EsrB and EsrC 

EsrC homolog not encoded EsrC dependent on EsrB EsrC dependent on EsrB 

Effect of EsrC on T3SS EsrC homolog not encoded 

Regulates expression of 
translocon, but not 

apparatus genes 

Partially regulates 
expression of translocon 

genes, effect on apparatus 
genes unknown 

Effect of EsrC on the 
type VI secretion 
system (T6SS) 

EsrC homolog not encoded; 
T6SS negatively regulated 

by SsrB 

Required for T6SS 
expression and protein 

secretion 

Required for T6SS 
expression and protein 

secretion 

Intracellular replication 
of esrA/ssrA mutant 

Attenuated Attenuated Attenuated 

Intracellular replication 
of esrB/ssrB mutant 

Attenuated Attenuated Attenuated 

Intracellular replication 
of esrC mutant 

EsrC homolog not encoded Moderately attenuated Not attenuated 

In vivo virulence of 
esrA/ssrA mutant 

Attenuated Attenuated Attenuated 

In vivo virulence of 
esrB/ssrB mutant 

Attenuated Attenuated Attenuated 

In vivo virulence of 
esrC mutant 

EsrC homolog not encoded Attenuated Attenuated 

Effector genes encoded 
outside pathogenicity 
island 

Yes ??? Yes 

orf29/30 association 
with T3SS 

orf29/30 homolog not 
encoded 

Possible effector; expressed 
in same conditions as 

T3SS; regulated by EsrC 

Downregulated in 
conditions that upregulate 
the T3SS; relationship to 

EsrC not determined  
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Edwardsiella ictaluri Encodes Putative T3SS Effector Proteins Outside the Pathogenicity 

Island. The first putative T3SS genes discovered in E. ictaluri are carried on the E. ictaluri 

plasmids pEI1 and pEI2 (Fernandez et al. 2001). Thune et al. (Thune et al. 2007) reported that 

mutations in the T3SS-like pEI1 and pEI2 genes attenuate E. ictaluri virulence in channel catfish 

and also characterized an attenuated strain with a mutation in esaU, a putative T3SS apparatus 

gene. Using the sequence associated with esaU to probe the partially completed E. ictaluri 

genome, Thune et al. (Thune et al. 2007) discovered a pathogenicity island encoding a SPI-2 

type T3SS. The SPI-2 T3SS secretes effector proteins involved in the intracellular survival and 

replication of Salmonella (Ochman et al. 1996). Thune et al. (Thune et al. 2007) reported a 

similar role for the T3SS of E. ictaluri, as did researchers studying the E. tarda T3SS (Srinivasa 

Rao et al. 2004; Tan et al. 2005; Zheng et al. 2005). 

Salmonella pathogenicity island 2 T3SS effector genes are scattered throughout the 

Salmonella genome, but are generally under control of the SPI-2 encoded regulatory protein 

SsrB. The occurrence of putative T3SS genes on both plasmids (Fernandez et al. 2001) suggests 

E. ictaluri also carries T3SS genes outside its T3SS pathogenicity island. Probing the E. ictaluri 

genome database using the eseH DNA sequence uncovered four putative effector genes outside 

of the T3SS pathogenicity island: eseJ, eseK, eseL, and eseM. However, the sequence of eseK is 

omitted from the final genome assembly, calling into question its existence in the genome. Each 

of these proteins contains a leucine rich repeat (LRR) region of various lengths, and each 

contains conserved sequences of Salmonella T3SS secreted proteins (Brumell et al. 2000; Miao 

and Miller 2000). These proteins are at least 57% identical and 68% similar to each other, and 

the homology increases if the LRR regions are excluded from analysis. The Salmonella proteins 

with the greatest homology are SspH1 and SspH2. SspH1 localizes to the host nucleus and 

modulates NF-κΒ activity (Haraga and Miller 2003; Haraga and Miller 2006). SspH2, on the 
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other hand, associates with host actin polymerization-related proteins filamin and profilin (Miao 

et al. 2003) and is involved in the inhibition of MHC-II presentation in dendritic cells (Halici et 

al. 2008).  

SspH1 and another LRR protein of Salmonella, SlrP, are secreted by both the SPI-1 and 

SPI-2 T3SS (Miao and Miller 2000). However, SspH2 and other LRR proteins are secreted only 

by the SPI-2 T3SS. Both SlrP and SspH1 differ from SspH2 and the other LRR proteins in their 

first nine amino acids. All five of the E. ictaluri proteins have sequences matching the conserved 

sequence of SspH2 rather than SspH1. These and other N-terminal sequence homologies suggest 

these E. ictaluri LRR proteins are translocated by the E. ictaluri T3SS. 

Two T3SS-related genes, escD and eseI, are located in an operon on pEI2. EseI has 

homology to proteins of many pathogens encoding a T3SS, including OspB of Shigella. OspB is 

the only characterized protein with homology to EseI. OspB is secreted by the Shigella T3SS 

(Buchrieser et al. 2000; Santapaola et al. 2002; Lucchini et al. 2005; Santapaola et al. 2006), 

localizes to the nucleus, and downregulates NF-κΒ induced expression of host immune 

responses (Zurawski et al. 2009). EscD has homology to Spa15 (Fernandez et al. 2001), which is 

the chaperone of OspB (Page et al. 2002).  

Expression of eseI is not affected by mutation of any of the three T3SS regulatory genes. 

Also, culture of WT E. ictaluri to stationary phase does not affect eseI expression, whereas other 

T3SS genes are negatively affected. Moreover, in the STM mutants that significantly reduced all 

T3SS gene expression, eseI expression is maintained in comparable levels to the WT strain. 

However, SlrP and SspH1 of Salmonella are not regulated by the SPI-2 T3SS genes, but are 

secreted by the SPI-2 T3SS (Miao and Miller 2000). Interestingly, eseI appears to be upregulated 

in the presence of acidic pH and low phosphate concentrations similar to the T3SS. This suggests 

that more than one regulatory protein is responsible for activation of gene expression in response 
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to those particular environmental conditions. As demonstrated by the mutation of esrB, however, 

this other regulatory gene does not modulate expression of T3SS genes. However, perhaps the 

regulator of escD/eseI is involved in regulation of esrA and esrB. 

No work is reported for gene sequences of putative E. tarda T3SS effectors outside the 

T3SS pathogenicity island. Given the high homology of both the T3SS and T6SS between E. 

ictaluri and E. tarda, it is possible that other T3SS effector genes are shared. However, given the 

host ranges of E. ictaluri and E. tarda, it would not be surprising that E. tarda has a much 

different arsenal of T3SS effectors than E. ictaluri. Further work is needed to determine the 

proteins secreted by the E. ictaluri T3SS and how their function contributes to the pathogenesis 

of E. ictaluri in channel catfish. 

Type III Secretion System Gene Expression Is Upregulated in Response to Environmental 

Conditions. Edwardsiella ictaluri T3SS promoter fusions to gfp+ and RT-PCR of T3SS 

transcripts indicates T3SS genes are expressed in many culture conditions. However, significant 

upregulation of translocon genes occurs in acidic media. Furthermore, phosphate-limited acidic 

media upregulates expression of T3SS regulatory, chaperone, and effector genes. The T3SS 

upregulation in response to acidity and low phosphate is similar to the SPI-2 T3SS (Cirillo et al. 

1998; Beuzon et al. 1999; Deiwick et al. 1999; Lee et al. 2000; Hansen-Wester et al. 2002; 

Garmendia et al. 2003; Hautefort et al. 2003; Coombes et al. 2004; Feng et al. 2004; Kim and 

Falkow 2004; Lober et al. 2006; Walthers et al. 2007). Acidic pH is required for secretion of the 

E. ictaluri T3SS translocon proteins EseB, EseC, and EseD, analogous to the requirements for 

SPI-2 T3SS translocon protein secretion and construction (Beuzon et al. 1999; Nikolaus et al. 

2001; Hansen-Wester et al. 2002; Coombes et al. 2004; Chakravortty et al. 2005), indicating 

regulation of the E. ictaluri T3SS is similar to SPI-2. However, whereas E. ictaluri translocon 
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gene expression is upregulated in acidic conditions, acidic media does not induce upregulation of 

SPI-2 translocon genes.  

Interestingly, expression of the E. tarda T3SS is much different. Edwardsiella tarda 

secretes T3SS translocon protein in neutral media (Srinivasa Rao et al. 2004; Tan et al. 2005; 

Zheng et al. 2005). While E. ictaluri expresses T3SS genes to some extent in neutral pH, no 

translocon proteins are observed in pH 7.0 culture supernatants. Edwardsiella tarda cultures 

were grown in Dulbecco’s Modified Eagle Medium without aeration for 24 hrs. Edwardsiella 

ictaluri does not grow well without aeration, so T3SS gene expression was not evaluated under 

those conditions. Culture of E. ictaluri in MM19 pH 7.0 for 16 hrs approaches late log phase, 

and culture for 24 hrs enters late stationary phase. Culturing E. ictaluri to stationary phase in 

MM19 pH 7.0 results in significantly less T3SS gene expression than when cultured for 16 hrs, 

indicating growth to stationary phase does not increase T3SS gene expression. However, protein 

secretion in stationary phase was not analyzed. While the qPCR results in this study indicate 

gene expression is not increased in stationary phase, translocon protein secretion may be induced 

in stationary phase without an increase in translocon gene expression. Coombes et al. (Coombes 

et al. 2004) also speculated growth to stationary phase may induce SPI-2 T3SS secretion. These 

results suggest that the E. ictaluri and E. tarda T3SS are expressed in response to different 

environmental conditions. 

It is interesting that E. ictaluri is more similar to Salmonella than E. tarda in terms of 

T3SS expression conditions. The homology between the T3SS of E. ictaluri and E. tarda would 

suggest expression to be similar to SPI-2 T3SS expression, and the fact that the systems are 

required for intracellular survival of both species suggests intracellular conditions (acidity, 

nutrient limitation) induce T3SS expression in both organisms. Perhaps the T3SS of E. tarda is 

more loosely regulated than that of E. ictaluri, resulting in expression in more conditions. 
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However, the expanded host range of E. tarda, ranging from fish to higher vertebrates, may 

require that the E. tarda T3SS operates in a different manner than the E. ictaluri T3SS. 

An important point to make is in regards to the methods used to measure T3SS gene 

activity between this study and those evaluating E. tarda T3SS gene expression. Promoter 

fusions to GFP, RT-PCR, and qPCR were used in this study to evaluate expression of T3SS 

genes in different media and different E. ictaluri mutants. The promoter fusions and RT-PCR 

were limited in their ability to measure gene expression, leading to the use of quantitative PCR to 

measure expression of the native genes from their native loci in the genome and plasmids. 

Studies measuring E. tarda T3SS gene expression, however, used T3SS gene promoter fusions to 

lacZ, and expressed the fusions from a plasmid rather than as single inserts in the genome 

(Zheng et al. 2005). While reporter genes are widely used and can be accurate for evaluation of 

gene expression, Hansen-Wester et al. (Hansen-Wester et al. 2002) found that SPI-2 T3SS genes 

were improperly regulated when expressed from a plasmid. The differences in methodologies 

used to measure T3SS gene expression may have resulted in some of the phenotypic differences 

observed. However, both this study and those evaluating the T3SS of E. tarda employed 2D-

PAGE analyses to study intracellular and secreted proteins, and the results from 2D-PAGE 

analysis support some of the differences observed between E. ictaluri and E. tarda.  

Furthermore, the growth curves for the two bacteria in the different media used for 

culture may have resulted in the measurement of T3SS gene expression at different phases in the 

growth curve. A growth curve was conducted for E. ictaluri in each media condition evaluated in 

this study, and a culture time was chosen based on the amount of time required for E. ictaluri to 

reach late log phase, which correlated to different culture times for different media. Generally, 

acidic pH took longer to reach late log, presumably from the stressful conditions of acidic pH 

minimal media. Low phosphate conditions shortened the growth curves, presumably because of 
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the consumption of the available phosphate. However, by sampling the different media at 

different time points, every RNA and protein sample were taken at the same phase of bacterial 

growth to maintain consistency among the samples.  

Another important point to make is that these measurements are taken at a single 

timepoint. This is not reflective of dynamics that may take place over the course of culture. 

Differential regulation of genes may occur at different timepoints corresponding to a hierarchy of 

T3SS gene expression. Further analysis of gene expression at different time points and in 

different media is required for a better understanding of the temporal expression of E. ictaluri 

T3SS genes in vitro. 

Orf29/30 Expression Differs from T3SS Expression. orf29 and orf30 of E. tarda are 

hypothesized to be T3SS-related genes based on their transcriptional dependence on EsrC, 

proximity to the T3SS, and the finding of coiled-coil regions (Zheng et al. 2005). Edwardsiella 

ictaluri also encodes a region with homology to orf29 and orf30, although the open reading 

frames are fused into one open reading frame that maintains homologous amino acid sequences 

to both orf29 and orf30 of E. tarda (Thune et al. 2007). The combination of orf29 and orf30 in E. 

ictaluri suggests these proteins may be physically linked in their function. 

Expression of orf29/30 in E. ictaluri does not occur with T3SS gene upregulation. While 

the T3SS is upregulated in acidic conditions, orf29/30 expression is not detected in acidic 

conditions, but is present at neutral pH. This does not demonstrate that Orf29/30 is not secreted 

by the E. ictaluri T3SS, but it does beg the question why a T3SS effector would be 

downregulated in conditions when the T3SS is upregulated. The dependence of orf29/30 on EsrC 

was not studied in this dissertation; however, EsrC expression was also upregulated in acidic, 

low phosphate media. Further work is required to determine the relationship between orf29/30 

and T3SS regulatory proteins and evaluate the role, if any, of orf29/30 in the E. ictaluri T3SS.  
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EsrB Is Required for E. ictaluri T3SS Gene Expression in Response to Acidic, Low 

Phosphate Media. Mutation of esrB results in reduced expression of translocon and effector 

genes relative to WT even when cultured in non-inducing conditions. Neither mutation of EsrA 

nor EsrC has as severe an effect on T3SS expression as EsrB. In comparison, mutation of esrA 

and esrC results in decreased expression of T3SS genes, but expression is still higher than that 

observed in WT cultured in non-inducing media. These results demonstrate an absolute 

requirement of EsrB for T3SS gene expression.  

In the case of both E. tarda and E. ictaluri, the expression of the T3SS is dependent on 

expression of EsrB (Srinivasa Rao et al. 2004; Tan et al. 2005; Zheng et al. 2005; Lan et al. 

2007). EsrB is homologous to SsrB, which controls the SPI-2 T3SS. Mutation of esrB or ssrB 

significanlty affects T3SS expression of all three bacteria and attenuates their virulence. 

However, Salmonella does not have a SPI-2 homolog to esrC. The presence of the second 

transcriptional activator suggests regulation of the Edwardsiella spp. T3SS varies from that 

observed in Salmonella. Zheng et al. (Zheng et al. 2005) found EsrC to be important for 

expression of translocon genes, but is not required for apparatus gene expression. Furthermore, 

EsrC is absolutely required for secretion of E. tarda translocon proteins. EsrC of E. ictaluri is 

required for optimum expression of the T3SS, but EsrB has a greater influence on T3SS gene 

expression. Furthermore, mutation of esrC does not abolish secretion of E. ictaluri translocon 

proteins, whereas esrB mutation does. Mutation of esrB in E. tarda has a similar effect on 

translocon secretion (Tan et al. 2005). Further research is required to determine the genes 

regulated by EsrB and EsrC to determine what interaction, if any, is required between EsrB and 

EsrC for optimum expression of the T3SS. 

EsrC Serves an Accessory Role for T3SS Gene Regulation in E. ictaluri. Mutation of esrC in 

E. tarda completely inhibits protein secretion to the E. tarda culture supernatant (Zheng et al. 
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2005) and is similar to the effect observed in an esrB mutant (Tan et al. 2005). Mutation of esrC 

in E. ictaluri, on the other hand, results in reduced T3SS gene expression, but not to the extent of 

an esrB mutant. Protein secretion, however, is not abolished in ∆esrC. The differences observed 

in the regulatory capabilities of EsrC may be a determinant for the difference in the 

environmental conditions that induce T3SS expression between E. ictaluri and E. tarda.  

 Although EsrC is not critical for expression of T3SS genes, it is required for expression 

of the putative T6SS protein EvpC. EvpC is also absent in ∆esrB::km, but that is likely a result of 

control of esrC expression by EsrB. Both esrB and esrC mutants exhibit similar EvpC expression 

and secretion phenotypes, indicating a link between the expression of the two systems. 

Specifically, EsrC appears to coordinate expression of the T6SS with expression of the T3SS. 

EsrC is equally important for T6SS protein expression in E. tarda (Zheng et al. 2005). Further 

research is required to determine the level of regulatory control EsrC has over T6SS expression. 

EsrC Is �ot Required for Intracellular Survival of E. ictaluri. Edwardsiella ictaluri carrying 

a mutation in esrC is able to replicate in channel catfish macrophages as well as a the parental 

WT strain. This indicates the genes regulated by EsrC are not required for intracellular survival. 

Furthermore, this indicates EsrC does not have a prominent role in T3SS expression, because the 

E. ictaluri T3SS is required for intracellular survival (Thune et al. 2007). The esrA and esrB 

mutants present further evidence for the T3SS role in intracellular replication as both are unable 

to replicate intracellularly.  

EsrA and EsrB mutations in E. tarda also result in the inability to replicate intracellularly 

(Tan et al. 2005). Mutation of esrC, on the other hand, results in a moderate decrease in 

intracellular replication (Zheng et al. 2005). Because mutation of esrC in E. ictaluri does not 

affect intracellular survival, but moderate attenuation is observed when esrC is mutated in E. 

tarda, the importance of EsrC for intracellular survival appears to be different in the two species. 
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The amino acid sequences of the two proteins, however,  are 98% homologous, suggesting the 

two proteins would act similarly. The differences in T3SS expression, EsrC influence on T3SS 

expression, and the requirement of EsrC for intracellular survival suggest that although 

homologous, the T3SS of E. ictaluri and E. tarda behave in significantly different ways. Further 

research is required to determine the effect of EsrC on virulence as it relates to T3SS and T6SS 

expression and intracellular survival. 

Edwardsiella ictaluri and E. tarda Encode Homologous T6SS. Type VI secretion systems are 

not well characterized. However, studies indicate that the T6SS is required for intracellular 

replication for Francisella tularensis, Salmonella enterica, and Vibrio cholerae (Filloux et al. 

2008). However, the Salmonella T6SS, when expressed, works against the effects of the SPI-2 

T3SS and is inhibited by SsrB (Parsons and Heffron 2005). The Salmonella T6SS is not 

expressed until at least 24 hours post-infection, and works in part to attenuate intracellular 

replication, allowing Salmonella to maintain an ordered pathogenesis. It is unknown whether the 

E. ictaluri and E. tarda T6SS mediate similar effects. Because esrC mutants in Edwardsiella do 

not abolish replication in the macrophage, it is likely that the T6SS is not required for early 

macrophage growth, suggesting the Edwardsiella T6SS may be similar to the T6SS of 

Salmonella. Further analysis of the Edwardsiella T6SS will be beneficial in determining the 

requirement for EsrC regulation and how EsrC regulation relates to EsrB regulation. 

The notion that Edwardsiella T6SS proteins mediate intracellular growth attenuation is 

intriguing; however, it is odd that SsrB inhibits the Salmonella T6SS, while EsrB upregulates 

expression of EsrC, a protein positively controlling T6SS expression. EsrB would be 

upregulating a protein involved in opposing its activity. However, that may also be an important 

method of feedback inhibition. As more EsrC is accumulated, more T6SS expression will occur, 
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which would then oppose the activity of the T3SS, thereby preventing possible negative effects 

of T3SS overexpression.  

The findings of esrC overexpression in E. ictaluri, however, do not support this notion. 

Expression of esrC from an expression vector used for complementation does not significantly 

decrease macrophage replication, which would be expected if the EsrC-dependent T6SS is 

involved in intracellular growth attenuation. In fact, overexpression of esrC results in an overall 

increase in nearly all T3SS genes including genes not shown to be affected by deletion of esrC.  

Mutations in the E. ictaluri Plasmids Affect Function of the T3SS. Edwardsiella ictaluri 

carries two plasmids found in all strains isolated from channel catfish (Newton et al. 1988; 

Bertolini et al. 1990). There are no reports of successful attempts to cure either of the plasmids, 

indicating both are stable and required for virulence. Each plasmid is small and, other than eseH 

and escD/eseI, contains little more than the genes necessary for replication (Fernandez et al. 

2001). There are various small unidentified open reading frames on the plasmid, but none that 

match proteins involved in plasmid addiction.  

Thune et al. (Thune et al. 2007) mutated both E. ictaluri plasmids by transpositional 

mutagenesis. Mutations occur in or near the T3SS-related genes on both plasmids, greatly 

attenuating both. However, the attenuation appears to be unrelated to the T3SS-related genes 

mutated. Both mutants have significantly reduced T3SS gene expression indicating the mutation 

of the plasmids has some effect on the global regulation of the T3SS and not the individual 

components thought to be affected by the transposon insertion into the plasmids. Moreover, the 

mutant strains carry native copies of the plasmids in addition to the mutant copies, indicating the 

virulence defects cannot be complemented. This suggests that the copy number of the plasmids 

must be strictly controlled in order to maintain a virulent phenotype. How the plasmids have 

such strong control of T3SS gene expression, however, is a difficult phenomonon to explain. 
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pEI1 has significant homology across at least 800 nt in over 30 regions of the genome. 

This homology may allow for pEI1 to insert into the genome and somehow modulate virulence 

genes, although pEI2 has little homology to the genome and likely does not have the ability to 

integrate like pEI1. However, pEI1 and pEI2 share a homologous sequence, suggesting pEI1 and 

pEI2 may be able to recombine and insert into the genome via the pEI1 sequence homology. 

Regions in the genome with homology to the pEI1 800 nt sequence include areas upstream of 

hypothetical sensor kinase and response regulator genes, phage genes, transposase sequences, 

and putative T3SS effector genes. The association of the homologous sequences to potential 

regulatory genes suggests that plasmid integrations can have an important effect on the 

expression of genes. However, the role of these regulatory genes is currently unknown. Further 

research is required to determine other regulatory systems encoded by E. ictaluri to resolve what 

role they play in T3SS regulation. However, based on the findings of this study, the E. ictaluri 

plasmids are clearly important to the pathogenesis of E. ictaluri, and their role in virulence 

requires further study.  

Hypothesized T3SS Regulatory Cascade. The findings of these studies indicate the E. ictaluri 

T3SS can be induced by environmental conditions. Acidic pH and low phosphate concentration 

were found to induce T3SS transcription, but other signals are likely to modulate T3SS 

expression, as well. Furthermore, there may be other signals required for expression and 

secretion. Effector proteins are not detectable in vitro, suggesting their secretion is not induced in 

the conditions assayed. However, Deiwick et al. (Deiwick et al. 2002) found that many T3SS 

proteins of Salmonella are not produced at high enough levels for analysis by SDS-PAGE. Study 

of E. ictaluri T3SS translocated effectors will likely require the use of protein-specific antibodies 

or epitope tags fused to the protein sequence to determine signals required for specific effector 

protein secretion. 
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EsrA and EsrB are homologous to the SsrAB two-component regulatory system of 

Salmonella, in which SsrA is a membrane-bound sensor kinase that phosphorylates SsrB, a 

response regulator, once a stimulus is detected. SsrB then induces T3SS promoter activity 

resulting in transcription of genes within the regulon. Therefore, based on the Salmonella SsrAB 

system, EsrA receives a signal and phosphorylates EsrB, thereby activating it for upregulation of 

T3SS promoter activity. EsrB activates expression of translocon, chaperone, and effector genes, 

as well as the AraC-type regulator EsrC. Salmonella does not encode an EsrC homolog to base 

function from, but limited findings in E. tarda indicate EsrC can regulate T3SS gene expression 

as well as modulate expression of non-T3SS genes, such as the T6SS. EsrC of E. ictaluri and E. 

tarda appear to have somewhat different effects on gene expression within the T3SS, but both 

are absolutely required for virulence in vivo.  

Analysis of EsrB and EsrC transcriptional control in E. ictaluri indicates EsrB is required 

for expression of the T3SS, and EsrC activity enhances EsrB-dependent T3SS gene expression 

(see Chapter 3, Figure 3.16). EsrC induces expression of the T6SS, which has a yet unknown 

function. EsrC may also regulate the pEI1-encoded gene eseH and other putative T3SS effector 

genes encoded throughout the E. ictaluri genome. The coordinated efforts of EsrB and EsrC, as 

well as other possible virulence gene regulators, results in an efficient, coordinated response to in 

vivo stimuli. Further work is required to determine other in vitro and in vivo stimuli required for 

expression of the E. ictaluri T3SS. Analysis of DNA sequences recognized by EsrB and EsrC 

will provide a tool for identification of genes potentially regulated by these proteins, and perhaps 

elucidate the roles they have in overall virulence gene expression. 

Concluding Remarks. The T3SS of E. ictaluri has proven to be a complex system that requires 

extensive study. The continued study of the E. ictaluri T3SS is important for finding treatments 

for E. ictaluri or for manipulating the T3SS to prevent disease. The study and understanding of 
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T3SS-containing pathogens of animals and humans is advancing quickly. Similar studies in 

T3SS-containing pathogens of fish need not keep up with human pathogen research, but do need 

to advance the understanding of T3SS used by pathogens of lower verterbrates. As the 

knowledge base advances for mammals and humans, and treatments against T3SS are developed, 

similar methods of treatment may be applicable to fish, providing an understanding of the T3SS 

in the pathogen of interest is known. Many chemicals have already been shown to inhibit T3SS 

expression (Muschiol et al. 2006; Hudson et al. 2007; Negrea et al. 2007; Pan et al. 2007).   

Edwardsiella ictaluri has plagued the channel catfish industry for over 30 years with no 

end in sight. An understanding of how this pathogen operates within the host is required before 

any significant treatment, cure, or preventative can be developed. 
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APPE�DIX 

ABBREVIATIO�S COMMO�LY USED I� THIS DISSERTATIO� 

2D-PAGE – Two-dimensional polyacrylamide gel electrophoresis 

ANOVA – Analysis of variance 

Ap – Ampicillin 

BA – Blood agar plates 

BLAST – Basic Local Alignment Search Tool 

CCMM – Channel catfish macrophage media 

cDNA – copy DNA 

CFU – Colony forming unit 

Cm – Chloramphenicol 

Col – Colistin 

DMEM – Dulbecco’s Modified Eagle Medium 

Esa – Edwardsiella secretion apparatus (T3SS-related) 

Esc – Edwardsiella secretion chaperone (T3SS-related) 

ESC – Enteric septicemia of catfish 

Ese – Edwardsiella secreted effector (T3SS-related) 

Esr – Edwardsiella secretion regulator (T3SS-related) 

Evp – Edwardsiella virulence protein (T6SS-related) 

FACS – Fluorescence-activated cell sorting 

GFP – Green fluorescent protein 

HKDM – Head kidney-derived channel catfish macrophages 

HTH – Helix-turn-helix 

IEF – Isoelectric focusing 
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IPG – Immobilize pH gradient 

Km – Kanamycin  

LB – Luria Bertani broth 

LE/Lys – Late endosomes and lysosomes 

LRR – Leucine rich repeat 

MM19 – E. ictaluri defined minimal media 

MM19-P – E. ictaluri defined minimal media with low phosphate concentration 

MOI – Multiplicity of infection 

NF-κΒ – Nuclear factor-kappa beta 

ORF – Open reading frame 

PCR – Polymerase chain reaction 

pEI1 – E. ictaluri plasmid 1 

pEI2 – E. ictaluri plasmid 2 

pI – Isoelectric point 

PMF MALDI-TOF/TOF MS – Peptide mass fingerprinting matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry 

PMSF – Phenylmethylsulphonyl fluoride  

qPCR – Quantitative PCR 

RT-PCR – Reverse transcriptase PCR 

SCV – Salmonella containing vacuole 

SDS-PAGE – Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM – Standard error of the mean 

Sif – Salmonella-induced filament 

Slt – Soluble lytic transglycosylase 
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SPI-1 – Salmonella pathogenicity island 1 

SPI-2 – Salmonella pathogenicity island 2 

SPF – Specific pathogen-free 

Ssa – Salmonella secretion apparatus 

Sse – Salmonella secreted effector 

Ssp – Salmonella secreted protein 

Ssr – Salmonella secretion regulator 

STE – Salmonella translocated effector containing the WEKI translocation sequence 

STM – Signature tagged mutagenesis 

T3SS – Type III secretion system 

T6SS – Type VI secretion system 

TCA – Trichloroacetic acid 

WEKI – Conserved amino acid translocation signal shared by a group of Salmonella T3SS 

secreted effectors 

WT – Wild type 
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