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ABSTRACT 

Edwardsiella ictaluri is a gram negative bacterium that is the causative agent of 

enteric septicemia of catfish. In 2011, this bacterium was identified as the causative agent 

of massive death in zebrafish populations in U.S. In this project, we found that isolates of 

E. ictaluri from zebrafish comprise a unique strain that differs from the type strain of E. 

ictaluri phenotypically as well as genetically. Also, strains of E. ictaluri from zebrafish 

are non-infectious in channel catfish Ictalurus punctatus by immersion. 

Here we sequenced two zebrafish strains of E. ictaluri and compared the 

potential virulence genes in these strains with their homologous genes from a typical 

catfish strain. One of the major differences between the catfish strain and the zebrafish 

strain was found in the O-antigen biosysnthesis cluster. The catfish strain and the 

zebrafish strain each contained unique genes in their O-antigen biosynthesis cluster and 

the entire O-antigen biosynthesis cluster of the zebrafish strain of E. ictaluri was nearly 

identical to that of E. piscicida C07-087. The differences in the O antigen were further 

confirmed by observing the different banding patterns of the purified LPS samples from 

the catfish and the zebrafish strain of E. ictaluri. 

Comparative genomic DNA analysis revealed that the major part of the type III 

secretion system is present and consistent among the zebrafish strains and the catfish 

strain but single nucleotide polymorphisms (SNPs) were found in certain type III 

secretion system genes. The type IV secretion system harbored the most variations 

between the catfish strain and the zebrafish strain. Other potential virulence related 



xi 

 

systems, the type VI secretion system and the urease system, are conserved between the 

catfish and zebrafish strains of E. ictaluri with only few SNPs. 

In addition, to protect against outbreaks of edwardsiellosis in zebrafish 

populations, the wild type zebrafish strain of E. ictaluri was mutated with the goal of 

generating attenuated strains that could serve as live attenuated vaccines. Both of our 

mutants, the ureG and esrC mutant, were proven to be fully attenuated by immersion in 

zebrafish. Further study is needed to test their efficacy as live attenuated vaccines.  



CHAPTER I. INTRODUCTION AND LITERATURE REVIEW 

Edwardsiella Genus 

The genus Edwardsiella, in the family Enterobacteriaceae, is named after P.R. 

Edwards in memory of his contributions to enteric bacteriology [1]. Prior to 2014, there 

were three known bacterial species in the genus, Edwardsiella tarda, Edwardsiella 

hoshinae and Edwardsiella ictaluri [2-5]. Edwardsiella tarda was the first species 

validated as a new taxon in the Edwardsiella genus by DNA hybridization [6]. In 

addition, because of the characters of E. tarda, the Edwardsiella genus was classified as a 

member of the Enterobacteriaceae family [7]. In 1980, another bacterial species, 

Edwardsiella hoshinae, was described and classified in the Edwardsiella genus [4]. The 

E. hoshinae strains comprised a new DNA hybridization group and were 37-58% related 

to E. tarda [4]. The other member in this genus Edwardsiella ictaluri, known as the 

causative agent of enteric septicemia of catfish (ESC), was characterized as a new species 

in 1981 [5]. DNA hybridization studies suggested that E. ictaluri is closely related to E. 

tarda and the relative binding ratio can reach to 56-60% at 60°C [5]. 

Differences in host range have been noted among the different species of 

Edwardsiella. Edwardsiella tarda and E. ictaluri both can cause disease in various kinds 

of fish but E. tarda can also infect humans, marine mammals and reptiles [8-10]. 

Edwardsiella hoshinae is also found in reptiles and birds [11]. The diversity of E. tarda 

presents both phenotypically and genetically [12, 13]. In addition, E. tarda displays 

serological heterogeneity, and the strains are classified into 61 O antigen groups and 45 H 

antigen groups based on the international serotyping scheme [14]. Genetically, two 

genotypes are defined, DNA group I and DNA group II.  The DNA group II has higher 
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similaritity to E. ictaluri [15]. Recently, based on further characterization of the original 

E. tarda strains, clusters of E. tarda from fish and eel are proposed as two novel species 

in this genus, E. piscicida and E. anguillarum, respectively [16, 17]. Although E. tarda 

can be associated with fish kills, E. piscicida may be the more frequent reason for disease 

outbreaks in the U.S. catfish industry [18]. Edwardsiella piscicida was first characterized 

as a new species based on the analysis of European and Asian strains but later, forty-four 

isolates from diseased catfish in the U.S. were recognized as E. piscicida [16, 18]. 

Abayneh et al. [16] have shown that most of the E. piscicida strains studied so far are 

also highly pathogenic to zebrafish Danio rerio by intramuscular injection while the 

typical E. tarda can cause disease in adult zebrafish only by intraperitoneal (ip) injection 

[19]. Strains of E. ictaluri are highly infectious in channel catfish, Ictalurus punctatus. 

The LD50 of E. ictaluri when injected into channel catfish is appromaximately 104 

CFU/ml [20]. Biochemically, E. tarda and E. ictaluri share many characters but unlike E. 

tarda, E. ictaluri does not produce indole or H2S in sulfide indole motility (SIM) medium 

or H2S in the triple sugar iron (TSI) slant medium. In addition, E. tarda can grow at 42°C 

and is motile at 37°C while E. ictaluri cannot grow well above 30°C and is non motile 

outside the range of 22-28°C [21]. Edwardsiella piscicida, previously classified as E. 

tarda, cannot be distinguished from E. tarda by typical biochemical tests. However, 

many, but not all, E. piscicida strains are found to be negative for degradation of β-

methyl- D-glucoside, citric acid and L-proline. These characters can potentially 

differentiate E. piscicida from E. tarda [16].  

Initial isolation and characterization of E. ictaluri. Edwardsiella ictaluri was first 

isolated from diseased channel catfish Ictalurus punctatus in 1976 [22, 23]. In 1981, it 
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was identified as the causative agent of ESC and was described as a new bacterial species, 

most closely related to E. tarda, in the family Enterobacteriaceae [5]. It is a gram-

negative, rod-shaped bacterium with peritrichous flagella and is motile at 25°C. 

Edwardsiella ictaluri is described as being negative for indole, urease, H2S production, 

citrate utilization, and gas production from glucose [5, 21]. Edwardsiella ictaluri is not 

particularly fastidious, can be isolated on standard bacteriological media such as TSA 5% 

blood agar plates but is slow growing upon primary isolation. For in vitro growth on TSA 

5% blood agar plates, it takes approximately 48 hours to form 2 mm diameter colonies at 

28°C [23]. The optimum water temperature range in which E. ictaluri causes disease is 

22-28°C [24]. 

Outbreaks of enteric septicemia of catfish. From 1981 to 1990, ESC spread throughout 

the U.S. where catfish farming is practiced, primarily Mississippi, Arkansas, Alabama 

and Louisiana [25]. During this period it became the most economically important 

disease in the catfish industry causing millions of dollars of losses yearly. Early on, it was 

believed to be a disease that only affected ictalurid catfishes but in recent years, the host 

and geographic ranges of E. ictaluri have expanded. Cases have been reported from 

cultured freshwater catfish Pangasius hypophthalmus [26], walking catfish Clarias 

batrachus [27], and yellow catfish Pelteobagrus fulvidraco [28] A few non-catfish 

species such as Nile tilapia Oreochromis niloticus [29], green knife fish Eigemannia 

virescens [30], devario Danio devario [31], rosy barb Puntius conchonius [32], and Ayu 

Plecoglossus altevelis have also been mentioned as possible hosts in the literature.  

The homogeneity of E. ictaluri. Edwardsiella ictaluri has historically been considered a 

homogeneous species in terms of biochemical phenotype, isozymes, plasmids, serotype 
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and genotype [21, 33]. There are 2 plasmids that are typically maintained in E. ictaluri 

from catfish, designated as pCL1 and pCL2 by Lobb et al. or pEI1 and pEI2 by Newton 

et al [23, 34]. DNA sequences of both plasmids have homology to parts of the Type III 

secretion system which functions to transfer effector proteins to the host cells [35].  

However, recent data indicate that plasmids in isolates from fish species other than 

channel catfish vary [23, 34, 36-38]. Therefore, it is interesting to know whether the 

differences between isolates from various fish are due to or partially due to the proteins 

encoded by the plasmids. Serologically, catfish isolates of E. ictaluri are believed to be 

homogenous when analyzed using monoclonal antibody [39] and only the isolate from 

the green knife fish is serologically different from the catfish isolates. The serological 

difference is believed to reside in the O polysaccharide antigen [23]. 

Zebrafish Danio rerio and initial isolation of the zebrafish strain of E. ictaluri. The 

zebrafish Danio rerio is a tropical freshwater fish. It is a member of the minnow family 

Cyprinidae. The original range of the species is the Himalayan region of India, but the 

fish now has been introduced to many different parts of the world through the aquarium 

trade.  In recent years it has become an important laboratory fish due to its hardiness and 

ease of reproduction in captivity. The genome of Danio rerio has been sequenced and 

many transgenic strains are important in human biomedical research. Acute bacterial 

diseases are not common in cultured populations of zebrafish. Those that occur are 

usually chronic or asymptomatic infections caused by Mycobacterium spp, most often M. 

chelonae [40, 41]. Although species like M. marinum and M. haemophilum have been 

associated with outbreaks of morbidity and mortality, these outbreaks are generally 

protracted and the onset of mortalities is not acute [42, 43]. Acute mortalities in zebrafish 
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facilities are more likely to be associated with minimal or uncompensated physiologic 

stress due to poor water quality. Opportunistic pathogens may then be responsible for 

environmental gill disease or septicemia caused by secondary gram-negative bacterial 

infections (e.g., Aeromonas spp., Pseudomonas spp., Pleisiomonas spp.).  

Acute bacterial diseases were not previously reported from laboratory or pond 

populations of zebrafish, however in 2011, E. ictaluri was determined to be the cause of 

high mortality rates at zebrafish rearing facilities in 4 different states [38]. From these 

outbreaks and other strains sent to the Louisiana Aquatic Diagnostic Laboratory (LADL) 

at Louisiana State University (LSU) for identification, a total of 8 isolates of E. ictaluri 

from zebrafish were collected and archived. The highly infectious nature of E. ictaluri in 

zebrafish emphasizes the utility of quarantine in preventing the introduction and spread of 

this contagious pathogen into a laboratory with valuable zebrafish colonies [38].  

Pathological comparison of edwardsiellosis in channel catfish and zebrafish. Catfish 

affected by acute ESC develop septicemia and high mortalities over a short period of time 

[44, 45]. Catfish can develop chronic ESC as well, characterized by meningoencephalitis. 

Infected fish may swim erratically and exhibit an open ulcer in the top of the head [23]. 

Clinical signs are minimal in the acute phase of the disease; however, in the sub-acute 

and chronic phases clinical signs such as hemorrhagic ulcers or petechial hemorrhage in 

the skin may be obvious. Fish may also hang in the water with head up and tail down or 

swim lethargically. Other signs may include focal areas of necrosis (white spots) in the 

liver and swelling of the spleen and head kidney.   

Clinical signs in zebrafish usually include hemorrhage in the skin near the eyes, on 

the ventral surface of the head and abdomen, and at the base of fins. Abdominal swelling 

5



due to ascites is a common clinical sign. Histopathology reveals necrotic foci in the 

kidney, spleen, liver, hematopoietic tissue, nasal pits and the intestine. Other clinical 

signs include, pale gills and liver, swollen spleen and occasionally skin ulcers.  It is 

common for zebrafish primarily infected with E. ictaluri, to also have secondary infection 

with Aeromonas, Plesiomonas or Pseudomonas spp. [38, 46]. These faster growing 

colonies can overgrow and obscure E. ictaluri colonies, complicating the diagnosis.   

The pathogenesis of E. ictaluri infection in channel catfish. Edwardsiella ictaluri is an 

enteric bacterium, so the intestine is one of the important routes for the bacteria to enter 

to the host. However, this is not the only route it can gain entrance into the host. The 

bacterium can potentially invade via the nares and travel to the olfactory organs and brain. 

The bacterium may also enter the gill or through skin abrasions on the fish [47-49]. The 

host innate immune response, especially via phagocytes, is designed to exclude these 

invading bacteria. Detailed mechanisms have been reviewed previously [50, 51]. Briefly 

phagocytes in the host can successfully engulf and destroy the bacteria since the 

phagosome that carries the bacteria can fuse with lysosomal elements, which contain 

bactericidal agents, to form the phagolysosome. A combination of defense mechanisms 

work in concert in the phagolysosome to kill the engulfed bacteria. First, low pH inhibits 

bacterial replication, degradative enzymes in the phagolysosome can then lyse the 

engulfed bacteria and reactive oxygen species decompose the components of the bacteria.  

However, E. ictaluri has evolved multiple mechanisms to escape the phagocyte killing 

and proliferate in the host cells [52-55]. During E. ictaluri infection, depending on the 

ratio of bacteria and immune cells as well as the status of the host cells, the bacteria may 

be able to survive and replicate intracellularly, even with the existence of bactericidal 
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molecules, such as reactive oxygen species and nitrous oxide. The immune cells, 

specifically macrophages, may become a vehicle for bacterial dissemination in the host 

[56], in a similar fashion to how macrophages function during Salmonella infection [57]. 

So far, studies indicate that E. ictaluri has the ability to invade epithelial cells [58], 

macrophages [59] and neutrophils [60]. Evidence from multiple references indicate that E. 

ictaluri can gain entry through actin polymerization, disrupting junctions of the host cells 

and being internalized by receptor-mediated endocytosis [58, 61].  

Once E. ictaluri enters the host, it can live both intracellularly and extracellularly. 

Early studies demonstrated the low antibody titers in the host, strong cell mediated 

immunity with stimulators e.g. lipopolysacchrides (LPS), and bacterial cell replication in 

head kidney derived macrophages (HKDM) [59, 62, 63]. All these studies indicate that E. 

ictaluri is more favorably adapted to survive the intracellular environment. 

For E. ictaluri, as well as other members of the Enterobacteriaceae, including 

Salmonella typhi, E. tarda and E. piscicida, the first step in initiation of infection is 

adhesion and invasion of the host epithelial cells. The surface structures of the bacterial 

cells contribute the most to this step, through the action of adhesins, flagella, fimbria, pili, 

LPS and secretion systems. As a result, these virulence factors have become the emphasis 

of the comparative studies between E. ictaluri strains. 

Genome-wide Study of Edwardsiella spp.  

Development of whole genome sequencing techniques. The first gold standard 

nucleotide sequencing method was developed by in 1975 by Edward Sanger. This 

sequencing method used four kinds of dideoxynucleoside triphosphate (ddNTP), the 

analogues of the normal deoxynucleoside triphosphates, to terminate reactions in four 
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tubes. The sequencing results were then read manually from the various DNA bands after 

electrophoresis on a denaturing polyacrylamide gel [64]. Sanger sequencing was used for 

the 13-year-long human genome project [65]. Following this project, the need for a high 

efficiency and low cost sequencing method was realized. Pyrosequencing, a method 

based on the detection of pyrophosphate (PPi) during reactions, was developed for 

confirmatory sequencing and de novo sequencing. This method can detect sequences 

within real time and is cost-effective [66]. However, the specificity and sensitivity of this 

sequencing method were a concern [67]. The limits of previous sequencing methods were 

the driving force behind the development of next-generation sequencing (NGS) 

techniques. Next generation sequencing methods are good for their high throughput, high 

efficiency and low cost. There are two widely used platforms, the LifeTechnologies Ion 

Torrent Personal Genome Machine (PGM) and the Illumina MiSeq. The Illumina Miseq 

method is based on the detection of fluorescence when a fluorescently labeled nucleotide 

is added to a growing strand [65, 68]. In contrast, the mechanism behind the Ion Torrent 

sequencing method is the sensing of hydrogen ions that are released upon incorporation 

of a nucleotide into a DNA strand [65, 68].  

Genomic studies of the Edwardsiella genus. With the development of novel sequencing 

techniques, the genomes of more bacterial strains have been revealed. To date, a total of 

13 strains in the Edwardsiella genus have been sequenced including seven E. tarda 

strains, two E. ictaluri strains, three E. piscicida strains and one Edwardsiella hoshinae 

strain. Genome sequencing provides clues for classification of the unknown bacteria and 

specifies the intra/inter-species taxonomic relationships of the originally defined species. 

In addition, it can also present hints for virulence factor identification. Comparative 

8



genomic studies have shown that E. tarda strains can be grouped into two major 

genotypes, EdwG I and EdwG II [69]. Now the newly sequenced bacterial strain, which 

was originally known as E. tarda EdwG I from fish, is considered a novel new species 

and has been named E. piscicida. Other researchers, who analyzed the genomes of the 

EdwG I strains from eel by comparative genomic analysis and phylogenetic comparison 

found that the bacteria isolated from eel should also be classified as a new species, 

Edwardsiella anguillarum sp. nov [70].  

Virulence Factors 

Lipopolysaccharides (LPS). As an outer layer of the outer membrane in gram-negative 

bacteria, lipopolysaccharide (LPS) is a key component in terms of pathogenesis. The LPS 

molecules can interact with each other and form a barrier to prevent harmful hydrophobic 

molecules such as antibiotics and complement from disturbing the cell. They also have an 

effect on the host cell membrane permeability and can even participate in destroying the 

host cells [71-73]. The LPS molecule has three regions: lipid A, core oligosaccharide and 

O polysaccharides. The hydrophobic lipid A is embedded in the membrane, and joined to 

the inner core, leaving the outer core connected to the hydrophilic O-polysaccharides 

(Figure 1.1).  Based on the structural differences, LPS samples are classified into three 

categories, the smooth, semi-rough and rough LPS [74]. 

Structurally, the O-polysaccharides display the most inter-species and intra-species 

variations compared to the lipid A and the core oligosaccharides. The variations in the O-

antigen length are associated with the differences in virulence of Pseudomonas 

aeruginosa, Shigella flexneri and Brucella abortus [75-77]. Research has suggested that 

in the Enterobacteriaceae, the LPS O-antigens tend to present a bimodal length 

9



distribution and the bacteria with short O-antigen chains display a low level of 

complement resistance and are highly attenuated [78]. Studies of LPS in model Gram-

negative organisms E. coli and Salmonella suggest the essential role of LPS in cell 

viability, however this is strain-dependent [71]. 

 

Figure 1.1 The schematic representation of LPS structures. This figure is adapted from 

Reyes et.al [74] 

 

Secretion systems. In gram-negative bacteria, secretion systems are designed to transport 

virulence factors, nutrients, extracellular appendages and DNA to maintain the 

communication between bacterial cells, as well as between bacterial cells and host cells 

[79, 80]. There are seven types of known secretion systems, including the type I secretion 

system (T1SS) to the type VI secretion system (T6SS) and the chaperon-usher (CU) 

system. Among those, the type I, type III, type IV and type VI secretion systems are one-

step transport systems, which work independently of the general secretion pathway and 

twin-arginine translocation pathway, transferring the substrates across the bilayer of the 

cell membrane directly. This review will focus primarily on T3SS and T4SS. 
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Type III secretion systems include chaperones, effectors, the injectisome, the translocon, 

secretion signals and regulators (Figure 1.2). The T3SS forms an injectisome, also known 

as the type III system apparatus, to transport effector proteins in a one-step way from the 

cytoplasm of the bacterial cell directly to the host cell. The injectisome structure consists 

of approximately twenty-five proteins and is relatively conserved among bacterial species. 

Eight of the twenty-five proteins in the injectisome share high similarity with the flagellar 

components [81].  Thus, the type III secretion system is divided into flagellar and non-

flagellar types [82]. The T3SS we described here is the non-flagellar type that can 

translocate effectors to the host cells instead of secreting the components of the flagellum.  

 

Figure 1.2 Schematic representations of the type III secretion systems. (A) The non-

flagellar type of T3SS which transfers effectors to the host cells (B) The flagellar type of 

T3SS which secretes extracytoplasmic components of the flagellum. This image is 

adapted from Buttner et al. [83]. 

 

Upon assembly completion, most T3SS are in an off mode until bacteria-host 

contact activates the system to inject effectors into the host. The effectors secreted by 

T3SS can facilitate bacterial invasion, survival and intracellular replication. Many 

reviews are available covering the function of T3SS in various bacteria [84-90]. 

More specifically, injection of effectors into host cells can impair cell signaling and host 

responses. In Salmonella, a closely related bacterium to E. ictaluri in the 
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Enterobacteriaceae family, T3SS effectors can prevent phagosome maturation, inhibit 

apoptosis and affect host inflammation pathways [91-93]. In addition, T3SS effectors can 

also subvert cellular trafficking [94-96]. Examples of how T3SS effectors manipulate 

host cell pathways are described in many enteric pathogenic bacteria, e.g. E. coli [97, 98] 

and Shigella [99, 100].  

In addition to T3SS, bacteria have also evolved other secretion systems to bring 

about transport across the membrane barrier. One example of that is the T4SS (Figure 

1.3). The T4SS can be categorized into three groups based on their functions, including 

the contact mediated conjugation system which delivers DNA substrates to bacterial or 

eukaryotic cells; the effector translocator, which is also contact mediated, transferring 

protein effectors to eukaryotic cells; and the DNA uptake and release systems to 

communicate with the extracellular milieu [101]. All of the three types of T4SS are 

present in gram-negative bacteria, but only the conjugation subfamily is found in gram-

positive bacteria [102, 103]. 

 

Figure 1.3 The conjugation, effector translocator, and DNA release/uptake subfamilies of 

T4SS. This figure is adapted from Alvarez-Martinez and Christie [101]. 
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Vaccine Studies in Fish  

Vaccines are biological preparations that help build host immunity against certain 

pathogens. They can stimulate the natural immune processes and will not induce 

resistance like antibiotics do. Thus, vaccines are considered an effective way of 

controlling diseases in fish as well as other animals. The first licensed and widely used 

vaccine in fish was a bacterin made from formalin killed Yersinia ruckeri for protection 

against enteric redmouth disease in trout [104]. This is the first generation of vaccines 

that used formalin-killed bacteria by immersion to induce humoral immunity. Later 

generations of vaccines were designed based on the immunogenic proteins or peptide 

antigens that have protective potential. These vaccines are recombinant, DNA, subunit 

and vector type vaccines [105]. In the 1990s, more research emphasized the production of 

modified live vaccines (MLV). Modified live vaccines are made primarily of genetically 

altered live bacteria cells and these cells can survive in the host but lose their ability to 

cause overt disease. The attenuated bacterial pathogens comprising the MLV were shown 

to be efficacious as vaccines for fish [106, 107]. This kind of vaccine does not require an 

adjuvant to induce the immune response since the attenuated live bacteria have the ability 

to infect the host, remain viable in the host for several days and induce cellular immunity 

(CD4 or CD8 T-cell responses) and later humoral responses [107]. These vaccines can be 

given to fish in multiple ways, including intramuscular (IM) or intraperitoneal (IP) 

injection, immersion or orally by mixing vaccines with feed [108]. 

Vaccine studies with E. ictaluri. The modified live E. ictaluri strain RE-33 was reported 

to be efficacious as a vaccine against E. ictaluri infection in channel catfish in 1999 [109]. 

This vaccine was developed by using rifampicin to induce a rough phenotype of E. 
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ictaluri and this rough appearance live strain was proved to be LPS O-side chain negative 

[110]. The efficacy of this live vaccine was tested and relative percent survival ranging 

from 58.4 to 77.5 [111]. The strain RE-33 was later developed into a commercial product 

AQUAVAC-ESC™ (Merck) which is a licensed vaccine against enteric septicemia of 

catfish. Studies of vaccination by immersion exposure on eyed channel catfish (Ictalurus 

punctatus) eggs proved the safety and efficacy of this live E. ictaluri vaccine 

(AQUAVAC-ESC™) [112].  Research conducted at LSU to optimize the efficay of 

vaccines against ESC focused on the production of live attenuated strains with defined 

mutations in virulence genes. Initially, a mutated strain of E. ictaluri in aromatic 

metabolism pathway named LSU-E1 and an adenine-auxotrophic strain LSU-E2 were 

examined and found efficacious as immersion vaccines [113, 114]. Later attenuated 

strains were identified with a technique known as signature tagged mutagenesis [115]. 

Work is continuing with type III secretion system mutants in various effector proteins to 

produce a more efficacious vaccine against ESC [115]. Studies in other labs proved that 

the novobiocin-resistant E. ictaluri AL93-58 and O polysaccharide (OPS) mutant strain 

93–146 R6 can be potential vaccine candidates as well [105]. 

However, all of these vaccines have their own limitations and they are all designed 

based on attenuation of the catfish strain of E. ictaluri. Since the zebrafish strains of E. 

ictaluri can be differentiated from the traditional catfish strain from various aspects 

including monoclonal antibody recognition [38], and possibly vary in their surface 

antigens, a newly designed vaccine specific against the zebrafish strain of E. ictaluri is 

needed to provide better protection in zebrafish. This leads to our study which focuses on 

reproduction of disease through developing laboratory challenge models of E. ictaluri 
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infection in zebrafish, constructing the attenuated strain using a parent strain from 

zebrafish, to control E. ictaluri infections in zebrafish colonies.    

Objectives and Hypothesis.  

One of our objectives is to find the answer to this question: how the newly 

identified zebrafish strain of E. ictaluri become highly virulent in zebrafish while the 

typical catfish strain has never been reported as a causative agent in zebrafish in natural 

outbreaks historically? Therefore, in the following chapters, we mainly focused on the 

investigation of the differences in the genome by comparing the sequences of the known 

virulence factors from the catfish and zebrafish strain of E. ictaluri. Our hypothesis is that 

there are differences in the genome between catfish and zebrafish strain of E. ictaluri that 

may contribute to the variations in pathogenesis. Meanwhile, an effective vaccine against 

edwardsiellosis for zebrafish is needed urgently. Thus, another objective is to attenuate 

the zebrafish strain for vaccine development purpose. We hypothesized that by mutating 

esrC and ureG genes, we can attenuate the zebrafish strain to create potential vaccine 

candidates.  
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CHAPTER II. PLASMID AND WHOLE GENOME SEQUENCING 

OF TWO ZEBRAFISH STRAINS OF EDWARDSIELLA ICTALURI 

AND COMPARATIVE GENOMIC ANALYSIS WITH A TYPICAL 

CATFISH STRAIN 

Introduction 

Zebrafish strains of Edwardsiella ictaluri. Edwardsiella ictaluri, first isolated from 

channel catfish Ictalurus punctatus in 1976, was described as the causative agent of 

enteric septicemia of catfish (ESC) [1, 2]. In 2013, the zebrafish Danio rerio was 

reported as a natural host of Edwardsiella ictaluri following the description of infections 

in laboratory populations [3]. Specimens submitted to the Louisiana Aquatic Diagnostic 

Laboratory (LADL) in 2011 from the Department of Biological Sciences of Louisiana 

State University (LSU) and the University of Massachusetts at Amherst were found to be 

infected with E. ictaluri. Strains LADL11-100 and LADL 11-194 isolated from zebrafish 

samples were further identified as the primary cause of high mortality in both facilities 

and were archived as type strains from zebrafish. Research at Mississippi State 

University, College of Veterinary Medicine, had previously shown that zebrafish can be 

used as an experimental model for edwardsiellosis by injection and immersion using a 

catfish strain, however, a high dose was required to cause mortality by immersion [4]. 

The strains isolated from zebrafish have been shown to be virulent for zebrafish but not 

for channel catfish by immersion. This led to our study of examining the differences in 

potential virulence genes in representative strains from the catfish and zebrafish by whole 

genome sequencing.  

Plasmids. The plasmid is a self-replicating extrachromosomal DNA molecule that can 

carry important virulence factors in many pathogenic bacterial species [5-9], including 

Salmonella spp. [10], Edwardsiella tarda [11] and the catfish strain of E. ictaluri [12]. 
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Since the two plasmids in zebrafish strains of E. ictaluri are of different sizes than the 

catfish strain plasmids pEI1 and pEI2, sequencing these plasmids can provide us with 

additional insight into virulence genes that might vary between the two strains and affect 

their virulence in different hosts.  

Next-generation sequencing (NGS). Next-generation sequencing, the non-Sanger-based 

sequencing technology, allows large scale DNA templates to be sequenced at the same 

time. The development of NGS has revolutionized genetic research in the past five years. 

There are three major platforms released in 2011 including the Ion Torrent ™ Personal 

Genome Machine (PGM), Pacific Biosciences’ RS and the Illumina MiSeq [13]. Of these, 

the Ion Torrent sequencing platform is known for its efficiency and cost effectiveness. 

The essential mechanism for ion torrent technology is the use of a semiconductor chip 

that can translate the chemical signal to digital information. In this process, template 

DNA is fragmented and then flanked by the Ion Torrent sequencing adaptors. These 

fragments are then amplified on the beads before being applied to the Ion Torrent chips. 

When sequencing starts, dNTPs flow through the chips. If a nucleotide incorporates, the 

chip will sense the proton released and send an electrical signal to the PGM [14]. 

Single nucleotide polymorphism (SNPs). A single nucleotide polymorphism (SNP) is a 

DNA sequence variation among individuals. Mapping of SNPs provides fundamental 

new insights into biology, evolution, pharmacogenomics and diseases in humans and 

other species [15-18]. In the bacterial genome, a SNP can fall in the coding or non-coding 

region. It is possible for SNPs that occur in the coding region to have no effect on amino 

acid sequences due to degeneracy of the genetic code. These are referred to as 
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synonymous SNPs. Other SNPs that can change the amino acid sequences of the proteins 

are called non-synonymous SNPs.  

Since the zebrafish strains of E. ictaluri can be differentiated from the catfish strain 

of E. ictaluri in many aspects, e.g. biochemical and plasmid size profiles, motility, as 

well as host specificity [3], we hypothesized that there are differences at the DNA level 

between catfish and zebrafish strains. In this study, both the plasmids and the whole 

genome of zebrafish strains of E. ictaluri LADL11-100 and LADL11-194 were 

sequenced. All the resulting data were compared with those derived from the catfish 

strain of E. ictaluri available from the National Center for Biotechnology Information 

(NCBI) website. Lists of SNPs were obtained after comparing the genome sequences of 

each zebrafish strain to that of the reference catfish strain LADL93-146. Here, we mainly 

focused on the non-synonymous SNPs in zebrafish strains of E. ictaluri. All of these 

valuable data reveal the differences at the genomic level between catfish and zebrafish 

strains of E. ictaluri. 

Materials and Methods 

Plasmid sequencing. All strains used in this study are listed in Table 2.1. To prepare for 

plasmid sequencing, E. ictaluri LADL 11-100 was grown in Bacto porcine brain-heart 

infusion (BHI) broth overnight at 28°C.  

Plasmids, named pEIZ1 and pEIZ2 from the zebrafish strain of E. ictaluri, were 

isolated and further separated by electrophoresis. Each plasmid was purified by cutting 

the band from the gel and purifying them using a gel extraction kit (Qiagen). The 

plasmids were then digested with restriction enzyme BstZ17I and inserted into the 

plasmid pBluescript SK-. The resulting plasmids, pBSEIZ1 and pBSEIZ2, were 

28



electroporated into E.coli XL1 Blue MRF’ to sustain the plasmids. Plasmids were 

isolated and sent to LSU GENELAB, together with appropriate primers, for sequencing. 

All primers designed for amplifying and sequencing of the plasmids are listed in Table 

2.2. Plasmid sequences were compared with the published pEI1 and pEI2 plasmid 

sequences on the NCBI website (accession numbers AF244083.1 and AF244084.1). 

Table 2.1 Bacterial strains and plasmids used in Chapter II. 

Bacterial strains or 

plasmids 

Description Source 

Bacterial strains   

E.ictaluri LADL 11-194 Wild type E.ictaluri 

isolated from 

zebrafish Danio 

rerio in a natural 

outbreak in 2011 at 

University of 

Massachusetts, 

Amherst 

Louisiana Aquatic 

Diagnostic Laboratory 

E.ictaluri LADL 11-100 Wild type E. ictaluri 

isolated from 

zebrafish Danio 

rerio in a natural 

outbreak in 2011 at 

Louisiana State 

University 

Louisiana Aquatic 

Diagnostic Laboratory 

E.coli XL1 Blue MRF’ (mcrA)183 (mcrCB-

hsdSMR-mrr)173 

endA1 supE44 thi- 1 

recA1 gyrA96 relA1 

lac [F’ 

proABlacIqZ.M15 

Tn5(Km)] 

Stratagene, La Jolla, 

CA 

Plasmids   

pBluescript SK- Cloning vector Stratagene, La Jolla, 

CA 
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Table 2.2 Oligonucleotide sequences used for amplifying and sequencing of the two 

plasmids in E. ictaluri LADL11-100.  

Primer name Primer type Sequences 

pEIZ1   

pEI1R1 R CTGACCAGGCAGCTTTATAC 

F7 F CAGAACAGGCGGTATTT 

F4 F CGTCACTGCCTGCGATATAA 

R2 R CGCACCTTGGTAGGTGCTGT 

Ra R CCACCTCTGACTTGAGCACC 

F1 F GCAATGGCTCCCTAATC 

Fa F CGCATTGAACATAACATCCG 

pEIZ2   

3R R GGAATGAGTTTAAGGTAGCT 

 F AGATACGCTCGGAAAG 

 F CAGCAGCGTGGTAAA 

 R AAGAGCGGAGCTATTC 

3F F GACAGACAGGAAAAGAGGGT 

 

The missing genes from the plasmids were searched against the genome of 

zebrafish strains of E. ictaluri LADL11-100 to check the existence of certain genes in the 

genome under the RAST/SEED viewer (RAST=Rapid Annotation using Subsytems 

Technology) [19, 20]. 

Genome sequencing and polymorphism discovery. Edwardsiella ictaluri LADL11-100 

and LADL11-194 were grown in BHI broth for 18 hours and the genomic DNA, 

extracted using High Pure PCR Template Preparation Kit (Roche Applied Science). 

30



Genomic DNA was eluted into the low TE buffer of Ion Torrent ion plus fragment library 

kit (Life Technologies). Both genomic DNA samples, which were isolated from E. 

ictaluri LADL 11-100 and LADL 11-194, were treated with RNase to remove any RNA 

contamination before sending to the Division of Biotechnology and Molecular Medicine 

(BioMMED) at Louisiana State University for sequencing. Both samples were sequenced 

with the Ion Torrent PGM using a 316D chip. The resulting sequences were aligned to 

the catfish strain of E. ictaluri LADL 93-146 (NCBI accession no. CP001600). The SNPs 

were detected based on the genome-wide comparison results of E. ictaluri LADL11-100, 

LADL11-194 and LADL93-146.  

Genome assembly and annotation. The CLC Genomics Workbench version 7.5 (CLC 

Bio) was used for de novo assembly. The requirement of a minimum of eleven 

nucleotides in common at the ends of the reads was chosen when assembling the reads. 

The fastq and sff files were imported and assembled to the reference genome. The results 

from both files were merged to one file for each strain. The resulting contigs were sent to 

Sequencher 5.2.4 (Gene Codes Corporation) to check and further assemble manually. All 

the genes in the assembled contigs were annotated using the RAST server [21, 22].  

SNP analysis and protein structure prediction. All detected SNPs from LADL 11-100 

and LADL 11-194 were compared manually to eliminate the unique one in each strain, 

generating a whole list of SNPs that are shared by both strains. These SNPs were further 

analyzed by NextGENe software to find those SNPs that are in the coding region as well 

as non-synonymous SNPs. All predicted genes with SNPs in the zebrafish strain of E. 

ictaluri were categorized into clusters of orthologous groups (COG).  
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Comparative genome studies. The assembled contigs from the zebrafish strain of E. 

ictaluri LADL11-100, together with the genome sequences from E. piscicida (NCBI 

CP004141) and catfish strain of E. ictaluri LADL93-146 (NCBI CP001600) were 

submitted to a genome alignment package Mauve to view gene arrangements, the 

similarities of the genes as well as the potential aligned locations for each assembled 

contig [23]. In addition, contigs from LADL11-100 and LADL 11-194 were sent to 

CONTIGuator for draft genome generation with the genome sequence of LADL93-146 

as a reference [24]. The draft genome from zebrafish strain of E. ictaluri LADL11-100 

was aligned to catfish strain of E. ictaluri LADL93-146 as well as E. piscicida C07-087 

in a sequence-based manner to show the similarities among these strains. This was done 

in SEED viewer [21]. Meanwhile, the unique genes in LADL11-100 were extracted when 

compared to LADL93-146 and these genes were blasted on NCBI website to search for 

their potential functions. 

Results 

Plasmid sequence comparison between catfish strain LADL 93-146 and zebrafish 

strain LADL11-100. The plasmid sequencing results of a zebrafish strain of E. ictaluri 

are compared to the plasmid sequences in the catfish strain on the NCBI website (Figure 

2.1).  Plasmids are named pEIZ1 and pEIZ2 based on the similarities to the plasmids 

pEI1 and pEI2 of the catfish strains. The sizes of the plasmids in the zebrafish strain are 

3,930 bp (pEIZ1) and 3,363 bp (pEIZ2) while the sizes of the plasmids in catfish strains 

are 4,807 (pEI1) and 5,643bp (pEI2). These two plasmids have been shown to be 

consistently seen in zebrafish isolates of E. ictaluri [3].  
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Plasmid pEIZ1 contains the same eseH, orf4, oriV, orf5 and RNAi sequences as 

pEI1, but the ISEI1 sequences in pEI1 from 2,479 to 3,337bp are absent in pEIZ1. 

Plasmid pEIZ2 shares the same ori2, ori3, RNAi and rep sequences with pEI2 but is 

missing eseI, the potential chaperon for eseI, and ori3 sequence. 

Genome sequencing and polymorphism discovery. Sequencing produced an output 

total of 5,506,555 and 4,634,986 reads for LADL 11-100 and 11-194, respectively, of 

which, 4,020,880 and 2,894,144 are usable reads with the average read length being 

221bp and 217bp. For LADL 11-100, a total of 891 million bases were produced and 

among those, 808 million bases can be aligned to a typical catfish strain LADL 93-146, 

indicating 91% bases were aligned. In LADL 11-194 sequencing result, 569 million of 

628 million total bases were aligned. The average G+C content of both zebrafish strains 

is 57.4% that is identical to that of catfish strain LADL 93-146. 

Genome assembly and annotation. All the reads from NGS outputs are uploaded into 

CLC workbench for primary assembly, resulting in 220 contigs for LADL11-100 and 225 

contigs for LADL11-194. These assembled contigs are then checked manually for 

misassembly and other errors in Sequencher, yielded 128 and 130 contigs that 

are >1,000bp for LADL 11-100 and LADL 11-194, respectively. The maximum length of 

the contigs from each strain is approximately 160kb. The program RAST predicts a total 

of 3,613 coding DNA sequences (CDS) and 85 RNAs for LADL 11-100 and 3,638 CDS 

and 94 RNAs for LADL 11-194. The predicted genes are categorized based on the 

potential functions of each gene (Figure 2.2). 
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Figure 2.1 Comparison of the plasmids in catfish and zebrafish strains of E. ictaluri. The dark region in pEI1 and pEI2 

represent the sequences missing in pEIZ1 and pEIZ2. The size of each plasmid, the coding regions and origin of 

replication on the plasmids are marked.
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Figure 2.2 The subsystems in zebrafish strain of E. ictaluri LADL11-100 (A), LADL11-

194 (C) and catfish strain LADL93-146 (B).  

 

SNP analysis. For strains LADL11-100 and LADL11-194, 8,708 and 8,501 SNPs were 

discovered respectively, using E. ictaluri LADL93-146 genome sequence as the reference. 

The SNPs from LADL11-100 and LADL11-194 were checked manually and 8,287 SNPs 

are found consistently in zebrafish strains. The SNPs that are not in the coding region or 

the synonymous ones are removed from the list, resulting in a list with 2,224 non-

synonymous SNPs. The proteins that carry these SNPs are categorized into 20 groups. 

Among these, 7% of the SNPs were located in the genes encoding cell wall, membrane or 

envelope biogenesis related proteins. Detailed information of orthologous groups is 

shown in Figure 2.3. All the non-synonymous SNPs from both LADL11-100 and LADL 

11-194 are listed in the appendix. 
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Figure 2.3 Orthologous group categories of proteins that are encoded by the genes 

carrying SNPs. [J] Translation, ribosomal structure and biogenesis; [A] RNA processing 

and modification; [K] Transcription; [L] Replication, recombination and repair; [B] 

Chromatin structure and dynamics; [D] Cell cycle control, cell division, chromosome 

partitioning; [Y] Nuclear structure; [V] Defense mechanisms; [T] Signal transduction 

mechanisms; [M] Cell wall/membrane/envelope biogenesis; [N] Cell motility; [Z] 

Cytoskeleton; [W] Extracellular structures; [U] Intracellular trafficking, secretion, and 

vesicular transport; [O] Posttranslational modification, protein turnover, chaperones; [C] 

Energy production and conversion; [G] Carbohydrate transport and metabolism; [E] 

Amino acid transport and metabolism; [F] Nucleotide transport and metabolism; [H] 

Coenzyme transport and metabolism; [I] Lipid transport and metabolism; [P] Inorganic 

ion transport and metabolism; [Q] Secondary metabolites biosynthesis, transport and 

catabolism; [R] General function prediction only; [S] Function unknown. 

 

Comparative genome studies.  All the contigs from LADL11-100 submitted to 

MAUVE are compared to the sequences from E. ictaluri LADL 93-146 as well as E. 

piscicida C07-087 to compute the alignment of all the contigs with the similarities of 

each gene shown as the coverage of each box (Figure 2.4). 
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Figure 2.4 The overall alignment of the contigs from zebrafish strain of E. ictaluri 

LADL11-100 (the middle line) to E. ictaluri LADL93-146 (the last line) and E. piscicida 

C07-087 (the first line). The full coverage in a box indicated the perfect identity. 

 

MAUVE provides the overall alignment of the genomes, however, it also provides 

multiple potential locations for the short contigs. Therefore, CONTIGuator was used to 

align the contigs to catfish strain and more importantly, generate the draft genomes. 

There were 111 of 128 and 111 of 130 contigs from zebrafish strains LADL11-100 and 

LADL11-194 aligned to the catfish strain of E. ictaluri by CONTIGuator (Figure 2.5). Of 

the genome from LADL11-100, a total of 3,619,029 bp were aligned to the catfish strain 

LADL93-146 while 3,634,092 bp from the genome of LADL 11-194 aligned. In both 

cases, approximately 95% of the catfish strain genome was covered. 
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Figure 2.5 Generation of the draft genomes for zebrafish strains LADL11-100 and 

LADL11-194 from the assembled contigs. (A) Contigs from LADL11-100 align to 

LADL93-146; (B) Contigs from LADL11-194 align to LADL93-146. 

 

The aligned contigs are assembled as draft genomes in scaffold fasta files which 

are used to generate the BLAST dot plots against E. ictaluri LADL93-146. The draft 

genome of LADL11-100 is also compared with genome of E. piscicida C07-087 for 

purposes of comparison (Figure 2.6). The plotting of LADL11-100 against LADL93-

146 is much closer to a straight line, compared to the irregular broken plot of the 

genome of E. piscicida. It can be concluded that the draft genome of LADL11-100 is 

more similar to the catfish strain of E. ictaluri in terms of gene arrangement than to E. 

piscicida, since 91% of the sequenced bases of the zebrafish strain match the genome of 

the catfish strain.  
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Figure 2.6 The blast dot plots of draft genomes from zebrafish strain of E. ictaluri 

LADL11-100 and the catfish strain of E. ictaluri LADL93-146(A) or E. pisicicida C07-

087(B).   

 

Since there are unaligned contigs from both LADL11-100 and LADL11-194, the 

contigs from both zebrafish strains are uploaded into RAST for annotation. There are 

3,225 and 3,227 putative genes detected from zebrafish strains of LADL11-100 and 

LADL11-194, respectively.  The annotated contigs are studied in SEED viewer to extract 

the unique genes in LADL11-100 and LADL11-194 and potential functions are assigned 

to the unique genes (Table 2.3). When comparing the genes between catfish and zebrafish 

strains of E. ictaluri, we find 26 unique putative genes in LADL11-100 including 14 that 

are phage-related, and 29 unique genes in LADL11-194 including 14 phage-related 

putative genes. 
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Table 2.3 Lists of the putative unique genes in zebrafish strain of E. ictaluri LADL11-

100 (A) and LADL11-194 (B). The “peg” numbers are the catalog number for each gene. 

A. 
Category Subcategory Subsystem Role LADL11-

100 
Amino Acids 
and 
Derivatives 

Lysine, 
threonine, 
methionine, 
and cysteine 

Lysine degradation L-lysine permease peg.1042 

Cell Wall and 
Capsule 

Gram-Negative 
cell wall 
components 

LOS core 
oligosaccharide 
biosynthesis 

Beta-1,3-
glucosyltransferase 

peg.179 

Clustering-
based 
subsystems 

no subcategory CBSS-
211586.9.peg.2729 

Acyl-CoA 
thioesterase YciA, 
involved in 
membrane 
biogenesis 

peg.1532 

Membrane 
Transport 

Cation 
transporters 

Transport of 
Nickel and Cobalt 

Additional 
component NikL of 
nickel ECF 
transporter 

peg.2215 

Nucleosides 
and 
Nucleotides 

Purines GMP synthase GMP synthase 
[glutamine-
hydrolyzing], ATP 
pyrophosphatase 
subunit (EC 
6.3.5.2) 

peg.2678 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage packaging 
machinery 

Phage portal 
protein 

peg.1813, 
peg.2332 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage packaging 
machinery 

Phage terminase, 
large subunit 

peg.1815, 
peg.1816, 
peg.2330 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage tail fiber 
proteins 

Phage tail fiber 
assembly protein 

peg.2350 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage tail proteins Phage minor tail 
protein 

peg.2337, 
peg.2339, 
peg.2340, 
peg.2342, 
peg.2343 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage tail proteins Phage tail assembly peg.2338 
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Table 2.3 A-continued 

Category Subcategory Subsystem Role LADL11-
100 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage tail proteins Phage tail assembly 
protein I 

peg.2346 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage tail proteins Phage tail length 
tape-measure 
protein 1 

peg.2341 

Regulation 
and Cell 
signaling 

no subcategory cAMP signaling in 
bacteria 

Prophage Clp 
protease-like 
protein 

peg.1810, 
peg.1811, 
peg.2333 

Respiration ATP synthases F0F1-type ATP 
synthase 

ATP synthase F0 
sector subunit b 
(EC 3.6.3.14) 

peg.65 

Respiration no subcategory Formate 
hydrogenase 

Putative formate 
dehydrogenase 
oxidoreductase 
protein 

peg.1414, 
peg.1415 

Virulence, 
Disease and 
Defense 

Resistance to 
antibiotics and 
toxic 
compounds 

Copper 
homeostasis 

Multidrug 
resistance 
transporter, 
Bcr/CflA family 

peg.1179 

 

B. 
Category Subcategory Subsystem Subsystem LADL11-

194 
Amino Acids 
and 
Derivatives 

Lysine, 
threonine, 
methionine, 
and cysteine 

Lysine degradation Lysine degradation peg.2596 

Cell Wall and 
Capsule 

Capsular and 
extracellular 
polysacchrides 

Sialic Acid 
Metabolism 

Sialic Acid 
Metabolism 

peg.3568 

Cell Wall and 
Capsule 

Gram-
Negative cell 
wall 
components 

LOS core 
oligosaccharide 
biosynthesis 

LOS core 
oligosaccharide 
biosynthesis 

peg.3553 

Clustering-
based 
subsystems 

no 
subcategory 

CBSS-
211586.9.peg.2729 

CBSS-
211586.9.peg.2730 

peg.1880 

Clustering-
based 
subsystems 

no 
subcategory 

Primosomal 
replication protein 
N clusters with 
ribosomal proteins 

Primosomal 
replication protein 
N clusters with 
ribosomal proteins 

peg.1087 

Cofactors, 
Vitamins, 
Prosthetic 
Groups, 
Pigments 

Quinone 
cofactors 

Menaquinone and 
Phylloquinone 
Biosynthesis 

Menaquinone and 
Phylloquinone 
Biosynthesis 

peg.1961, 
peg.3347 
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Table 2.3 B-continued 

Category Subcategory Subsystem Role LADL11-
194 

Dormancy and 
Sporulation 

no subcategory Persister Cells Persister Cells peg.1124 

Membrane 
Transport 

Cation 
transporters 

Transport of 
Nickel and Cobalt 

Transport of 
Nickel and Cobalt 

peg.2945 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage packaging 
machinery 

Phage packaging 
machinery 

peg.869, 
peg.3124 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage tail proteins Phage tail proteins peg.3113, 
peg.3114, 
peg.3116, 
peg.3117, 
peg.3119 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage tail proteins Phage tail proteins peg.3118 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage tail proteins Phage tail proteins peg.3110 

Phages, 
Prophages, 
Transposable 
elements, 
Plasmids 

Phages, 
Prophages 

Phage tail proteins Phage tail proteins peg.3115 

Regulation 
and Cell 
signaling 

no subcategory cAMP signaling 
in bacteria 

cAMP signaling in 
bacteria 

peg.867, 
peg.868, 
peg.3123 

Respiration ATP synthases F0F1-type ATP 
synthase 

F0F1-type ATP 
synthase 

peg.20 

Respiration no subcategory Formate 
hydrogenase 

Formate 
hydrogenase 

peg.1731 

Virulence, 
Disease and 
Defense 

Resistance to 
antibiotics and 
toxic 
compounds 

Copper 
homeostasis 

Copper 
homeostasis 

peg.2118 

 

The annotated draft genomes are also blasted against LADL93-146 as well as E. 

piscicida C07-087 for a sequence identity check (Figure 2.7). The differences in color 

represent the various similarity levels. For the most part, the outer circle shows dark blue 
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indicating a high similarity (>99%) between catfish and zebrafish strains of E. ictaluri 

while the inner circle exhibits light green color which means a slightly lower similarity 

(~95%) between zebrafish strain of E. ictaluri and E. piscicida.  

 

Figure 2.7 The overall protein identities between the draft genome of E. ictaluri 

LADL11-100 and the genome E. ictaluri LADL93-146 (outer circle); the identities 

between LADL11-100 and E. piscicida C07-087 (inner circle). 

 

Discussion 

The plasmids in enteric bacteria often encode important virulence factors and 

examples include the plasmids in Escherichia coli, Shigella spp., Yersinia spp, and 

Salmonella [25-28]. In previous studies, the plasmids in the catfish strain of E. ictaluri 

pEI1 and pEI2 were sequenced and it was shown that eseI, eseH and escD genes on those 

plasmids could affect pathogenesis [29, 30]. In addition, eseI and escD, encoded in pEI2, 

are type III secretion system homologous proteins. Another group demonstrated that an 

eseI mutant has decreased ability for adherence and reduced virulence [12]. In this study, 

the plasmids in the zebrafish strain of E. ictaluri were sequenced and the results indicated 

that eseI and escD were absent from the plasmids as well as the genome. One possible 
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explanation for that is genetic redundancy. However, since these genes are important 

virulence factors, they may contribute or partially contribute to the fact that zebrafish 

strains are not infectious in channel catfish by immersion (data shown in chapter V). 

Previous studies indicated that, under low pH or low phosphate condition, eseI of the 

catfish strain of E. ictaluri is required to be upregulated to facilitate bacterial survival 

[31]. Therefore, it will be of interest to study the mechanism of E. ictaluri survival inside 

zebrafish cells. Since eseI and escD are missing, it is possible that the zebrafish strain has 

employed other virulence factors to replace them or utilize a completely different way to 

adhere to the cell and fight against the harsh environment in the host.   

In this study, the genomic DNA from zebrafish strains of E. ictaluri was also 

sequenced to generate short reads. These reads are successfully assembled, resulting in 

128 contigs for E. ictaluri LADL11-100 and 130 contigs for LADL11-194. MAUVE 

alignment provides the potential locations for each contig in the genome using the 

genome from catfish strain as a reference. Using the software CONTIGuator, the draft 

genomes of both zebrafish strains were generated for further analysis. 

The overall similarities between the proteins in E. ictaluri LADL11-100 and E. 

piscicida C07-087 is relatively high, >=95%. However, even higher similarities are seen 

to the proteins from E. ictaluri LADL93-146, with >=99% similarities to the proteins in 

the catfish strain. This indicates the close relationships within E. ictaluri species, and also 

between E. piscicida and E. ictaluri. The close relationship between catfish and zebrafish 

strains of E. ictaluri has also been proved by repetitive sequence mediated PCR (rep-PCR) 

using different primer sets (personal communication with Dr. Matt Griffin). 
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Many unique genes are found in zebrafish strains of E. ictaluri when compared to 

a representative catfish strain and 14 unique putative genes in zebrafish strains are phage 

related. The incorporation of phage functions to drive the diversity of the genome through 

frequent transfer of phage material by recombination, thus it can possibly affect virulence 

and transmissibility [32, 33]. BLAST searching of these phage related genes provides us 

with a hint of the potential source of the phage. It is possible that there are phages 

carrying virulence factors from E. piscicida to the zebrafish strain of E. ictaluri and this 

has resulted in the differences in virulence of E. ictaluri strains from zebrafish and catfish. 

The category of the genes that have SNPs indicated that 7% of the genes are cell 

wall, membrane, and envelope biogenesis related. Since these are all potential virulence 

factors, it would be interesting to zoom in to all of these genes in the future and determine 

the potential effects of SNPs in these genes.  

To summarize, in this study, we sequenced and assembled the short reads of the 

genomic DNA from the zebrafish strain of E. ictaluri to generate contigs and the draft 

genomes. We also identified the differences at the DNA level and determined the 

phylogenetic relationship between catfish and zebrafish strains of E. ictaluri by 

comparative genomic analysis. Even though these differences were identified, the overall 

similarity between the genomes of catfish and zebrafish strains of E. ictalulri are 

relatively high, the existence of the non-synonymous SNPs in many genes are observed 

and these SNPs can affect the sequences of the protein they encoded. All of these data 

provide valuable information to direct further study on E. ictaluri and illuminate the 

mechanism of host specificity. 
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CHAPTER III. COMPARISON OF THE LIPOPOLYSACCHRIDE O-

ANTIGEN BIOSYNTHESIS GENE CLUSTER IN ZEBRAFISH AND 

CATFISH STRAINS OF EDWARDSIELLA ICTALURI. 
 

Introduction 

Lipopolysaccharide (LPS) is a component of the gram negative bacterial outer 

membrane that consists of three unique regions, lipid A, the core oligosaccharides and O 

side chain polysaccharides. It is the major ligand for host cell recognition by LPS binding 

protein (LBP), CD14 and the Toll-like receptor 4 (TLR4)–MD-2 complex which leads to 

inflammation in the host [1-3].  Moreover, LPS can determine the permeability of the 

bacterial cell and the host cells. In fact, LPS forms a barrier on the bacterial surface to 

prevent the entry of antibiotics and anti-metabolites into the cell and can also make the 

host cell membrane more permeable by modulating the expression and localization of 

host cell surface markers, like toll-like receptor 4 (TLR4) and CD14, to facilitate its 

survival in harsh environments [4, 5].  

The zebrafish strain of E. ictaluri can be differentiated from a typical catfish strain 

by failure of monoclonal antibody recognition of the LPS by Mab Ed9 [6], exhibiting 

autoagglutination following broth culture, and weak or no motility [7]. Changes in LPS 

can possibly affect all of the characters above since research has shown that LPS, more 

specifically O-antigen mutants of the typical catfish strain, can autoagglutinate in broth 

and have weaker or no motility [8]. Thus, it is necessary to investigate the differences in 

LPS composition between catfish and zebrafish strains of E. ictaluri. 

Within the LPS, the O-polysaccharide region varies significantly from one 

bacterial strain to another while the lipid A and core are relatively conserved [9]. The O- 

polysaccharide region can have a number of repeating units from zero to above one 
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hundred in addition to a large repertoire of sugar components and linkage options [10]. 

The different numbers of O-antigen repeating units and different sugar structures or 

compositions can influence the virulence of the cells [11-16].  

  

Figure 3.1 The LPS biosynthesis process. The O antigen unit is assembled in the 

cytoplasm, flipped to the periplasm side of the inner membrane and polymerized in the 

periplasm. Then the assembled O-antigen is ligated to the lipid A-core complex in the 

periplasm. This whole molecule is transported to the cell surface. The enzymes needed 

for these processes are: 7. Wzx; 8. Wzy, Wzz; 9. MsbA; 10. WaaL; 11. LptBCFG; 12. 

LptA; 13. LptDE. The lipid A appears as yellow circles; red and blue ovals represent the 

core and O antigen, respectively [17].  

 

In the gram negative bacterial chromosome, genes encoding for O-antigens are in 

close proximity and form a cluster with lower G+C content than the rest of the genome, 

possibly because these genes are laterally transferred from other bacteria [18]. The O-

antigen cluster usually consists of the following genes: a gene encoding an O-antigen 
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flippase that flips the synthesized O units from the cytoplasm to the peptidoglycan side of 

the inner membrane; an O-antigen polymerase gene that determines the length of the O-

antigen; and genes that encode many enzymes that work in concert in the sugar synthesis 

and transfer pathways during LPS biosynthesis [19, 20]. After the O-antigen is 

polymerized, it is integrated with the core-lipid A complex which is assembled separately 

and then the whole molecule is transferred from the periplasm to the outer membrane. 

This synthesis process is shown in Figure 3.1 [17].  

The O-antigen biosynthesis cluster in the catfish strain of E. ictaluri was 

previously sequenced and characterized [21]. The genes for core oligosaccharide and 

lipid A biosynthesis were previously reported in E. tarda [22]. Hence, it is interesting to 

search for the existence of the O-antigen cluster as well as the genes that encode core 

oligosaccharides and lipid A in the genome of the zebrafish strain of E. ictaluri, and to 

characterize and compare them with the homologous genes in the catfish strain and other 

closely related bacteria. 

Materials and Methods 

Genome sequencing, O-antigen biosynthesis cluster detection and analysis. The 

genome sequencing method was previously described in Chapter II. To determine the 

existence of an O-antigen biosynthesis cluster in the zebrafish strain, all sequences of the 

genes that were previously mapped in the catfish strain of E. ictaluri O-antigen 

biosynthesis gene cluster were used as query to search for matching sequences in the 

zebrafish strain LADL 11-100. The BLAST method was chosen on Rapid Annotation 

using Subsystem Technology (RAST)/SEED viewer interface for the purpose of 

searching for related sequences [23, 24]. All matched nucleotide sequences together with 
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the undetected sequences in intergenic regions were translated and were sent for BLAST 

at the National Center for Biotechnology Information (NCBI) website for identifying the 

homologous sequences in other bacterial species based on the similarity of amino acid 

sequences. To show the phylogenetic relationship of the genes in O-antigen biosynthesis 

clusters, CLUSTALX (version 1.81) and MEGA 4.0 with the bootstrap test (500 

replicates) were used for multi-alignment of protein sequences and to create phylogenetic 

trees [25, 26]. 

For detection of the genes encoding core and lipid A, the sequences of E. tarda 

EIB202 (accession number CP001135) were acquired from the NCBI website. In the 

genome sequences of E. tarda, 23 genes and 11 genes related to core and lipid A 

biosynthesis were found. These sequences were used for BLAST on RAST/SEED viewer 

interface to search against zebrafish strain LADL 11-100 as well as BLAST at NCBI 

website to find homologous genes in the catfish strain of E. ictaluri LADL 93-146 and E. 

piscicida which is a new member in the Edwardsiella genus. 

Lipopolysaccharide isolation, SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

and staining. Lipopolysaccharides from both catfish and zebrafish strains of E. ictaluri 

were extracted using LPS Extraction Kit (iNtRON Biotechnology, Inc. Korea). The 

resulting LPS samples were then separated on a 15 % SDS gel with a 4% stacking gel 

following by silver straining using PlusOne Silver Staining Kit (GE. Healthcare, Freiburg, 

Germany) to observe the LPS profile of both samples. 

Lipopolysaccharide composition and structural analysis. Both catfish and zebrafish 

strains of E. ictaluri were grown on trypticase soy agar supplemented with 5% sheep 

blood (BA, Remel Products, Lenexa, KS) at 28 °C for 24 hours and these plates were sent 
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to the Complex Carbohydrate Research Center (CCRC) (Athens, GA, USA) for LPS 

extraction and further compositional analysis. Combined gas chromatography/mass 

spectrometry (GC/MS) was used to analyze glycosyl composition. This technique was 

performed on the per-O-trimethysilyl (TMS) derivatives of the monosaccharide methyl 

glycosides produced from the LPS sample by acidic methanolysis. The procedure was 

previously described in detail [27, 28]. 

Results 

LPS O-antigen biosynthesis cluster in the zebrafish strain differs from that of the 

catfish strain. As shown in Figure 3.2, the structure of O-antigen cluster from zebrafish 

strain of E. ictaluri (LADL 11-100) is virtually identical to that of E. piscicida, but quite 

different from that of the catfish strain of E. ictaluri (LADL 93-146). Meanwhile, the 

identity on the gene level of the two clusters from strain LADL 11-100 and E. piscicida 

C07-087 is 92%.  

Further, by comparing all the genes in the O-antigen cluster in catfish and 

zebrafish strain of E. ictaluri, unique genes in each O-antigen cluster are identified. All 

the proteins that are encoded by the O-antigen biosynthesis cluster from the zebrafish 

strain of E. ictaluri, the potential functions of those proteins, the percentage of 

similarities to the homologous proteins in the catfish strain and/or their closely related 

proteins are listed in Table 3.1.   

The genes of the O-antigen gene clusters that vary between catfish and zebrafish 

strains of E. ictaluri are divided into three groups: group I includes the genes shared by 

both zebrafish and catfish strains but with low similarities; group II includes the unique 
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genes in the zebrafish strain LADL 11-100 and group III includes the unique genes in the 

catfish strain LADL 93-146.  

 

Figure 3.2 Maps of O-antigen biosynthesis gene clusters in E. ictaluri, E. piscicida and   

E. coli. 

Table 3.1 Characteristics of the ORFs in zebrafish strain O-antigen biosynthesis cluster.  

Protein         G +C 
content 
of gene 

(%) 

No. of 
residues 

Putative 
function 

Related protein(s) 

Protein (accession no.) No. of 
residues 

Identity 
(%) 

DcuC 60.3 452 C4-
dicarboxylate 
transporter 

DcuC of Edwardsiella 
piscicida C07-087 
(AGH73259.1) 

452 98 

    DcuC of Edwardsiella 
ictaluri LADL93-146 
(AAL25626.1) 

452 100 

Wzx 34.7 324 O unit 
flippase 

Wzx of Edwardsiella 
piscicida C07-087 
(AGH73260.1) 

324 100 

    Wzx of Edwardsiella 
ictaluri  LADL93-146 
(AAL25627.1) 

415 36 

    Wzx of Escherichia coli  
G1216 (ADC54955.1) 

417 25 

WbcK 29.4 317 family 2 
glycosyl 
transferase 

WbcK of Edwardsiella 
piscicida C07-087 
(AGH73261.1) 

317 95 

    WbcK of Edwardsiella 
tarda  EIB202 
(YP_003295248.1) 

323 47 

    WbcK of Escherichia coli 
(AIG56919.1) 

319 28 

54



Table 3.1 - continued 

Protein         G +C 
content 
of gene 

(%) 

No. of 
residues 

Putative 
function 

Related protein(s) 

Protein (accession no.) No. of 
residues 

Identity 
(%) 

  Wzy 29.5 453 O antigen 
polymerase 

Wzy of Edwardsiella piscicida 
C07-087 (AGH73262.1) 

  453 100 

Wzy of Edwardsiella ictaluri  
LADL93-146 (AAL25628.1) 

  387 26 

Wzy of Escherichia coli  
G1216 (ADC54957.1) 

  357 26 

WeiA 35.7 268 Glycosyltran
sferases 
group 2 

WeiA of Edwardsiella 
piscicida C07-087 
(AGH73263.1) 

  268 99 

    WeiA of Escherichia coli  
G1216 (ADC54956.1) 

  269 41 

    WbcL of Yersinia 
enterocolitica serotype O : 3 
(CAA87700) 

  292 38 

WeiB 34.4 359 Glycosyltran
sferases 
group 1 

WeiB of Edwardsiella 
piscicida C07-087 
(AGH73264.1) 

359     98 

    WeiB of Escherichia coli  
G1216 (ADC54958.1) 

360     39 

WeiC 34.4 372 Glycosyltran
sferases 
group 1 

WeiC of Edwardsiella 
piscicida C07-087 
(AGH73265.1) 

372 100 

    WeiC of Escherichia coli  
G1216 (ADC54959.1) 

363 43 

    WbcN of Yersinia 
enterocolitica serotype O : 3 
(CAA87702) 

344 33 

WeiD 
(WbiH) 

32.2 347 Glycosyltran
sferases 
group 1 

WeiD of Edwardsiella 
piscicida C07-087 
(AGH73266.1) 

347 95 

    WbeiH of Edwardsiella 
ictaluri LADL93-146 
(AAL25632.1) 

345 48 

    WeiD of Escherichia coli  
G1216 (ADC54960.1) 

358 42 

    WbcQ of Yersinia 
enterocolitica serotype O : 3 
(CAA87705) 

349 37 

Gne 41 323 UDP-N-
acetylglucosa
mine 4-
epimerase 

Gne of Edwardsiella ictaluri  
LADL93-146 (AAL25633.1) 

323 100 

    Gne of Edwardsiella piscicida 
C07-087 (YP_007628627.1) 

328 94 

    Gne of Escherichia coli  
G1216 (ADC54961.1) 

337 26 
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Figure 3.3 Comparison of Wzx protein and its homologous proteins in E. ictaluri LADL 11-100, LADL 93-146, E. piscicida C07-087, 

E. coli G1216 and other bacteria. A. Phylogenetic tree based on the similarities of Wzx proteins in listed bacterial strains. The 

sequences from 9 closely related bacterial strains are shown in addition to zebrafish strain LADL 11-100 and catfish strain LADL 93-

146. B. Multi-alignment of Wzx amino acid sequences with its homologous proteins. The asterisks at the bottom line of the alignment 

indicate perfect matches among all listed strains; one and two dots represent highly and moderately conserved residues, respectively. 

Dashes refer to the missing amino acid sequences. 
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Figure 3.4 Comparison of Wzy and its homologous proteins in E. ictaluri LADL 11-100, LADL 93-146, E. piscicida C07-087, E. coli 

G1216 and other bacteria. A. Phylogenetic tree based on the similarities among Wzy proteins in listed bacterial strains. The respective 

proteins from 9 closely related bacterial strains are shown in addition to zebrafish strain LADL 11-100 and catfish strain LADL 93-

146. B. Multi-alignment of Wzy amino acid sequences with its homologous proteins. Symbols are described in Figure 3.3. 
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Figure 3.5 Comparison of WeiD and its homologous proteins in E. ictaluri LADL 11-100, LADL 93-146, E. piscicida C07-087,  

E. coli G1216 and other bacteria. A. Phylogenetic tree based on the similarities of WeiD proteins in listed bacterial strains. The 

respective proteins from 10 closely related bacterial strains in addition to zebrafish strain LADL 11-100 and catfish strain LADL  

93-146 are shown. B. Multi-alignment of WeiD amino acid sequences with the homologous proteins. Symbols are described in  

Figure 3.3
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Three genes in group I are wzx, wzy and weiD which encode a flippase, a 

polymerase and a glycosyltransferase, respectively. Phylogeny evolution analysis and 

sequence alignment of the proteins of the O-antigen biosysnthesis cluster from zebrafish 

and catfish strains are further analyzed to show their respective homology and 

phylogenetic relationships. The closest neighbors of the Wzx protein encoded by the 

zebrafish strain are the respective proteins in E. piscicida, and the second closest relative 

is the homologous protein from E. tarda. The proteins from the catfish strain are quite 

different, with 36% amino acid similarities. This phylogenetic relationship also applies to 

Wzy from the zebrafish strain of E. ictaluri which shared 26% of the amino acids with 

Wzy in the typical catfish strain. See Figure 3.3 and 3.4 for details. WeiD shares 58% of 

the amino acids with the corresponding protein WbiH in the catfish strain but is 95% 

identical to the homologous protein in E. piscicida. See Figure 3.5 for WeiD protein 

analysis (Figure 3.5).  

Four genes belonging to group II are wbcK, weiA, weiB and weiC.  Amino acid 

sequences of WbcK, WeiA, WeiB and WeiC proteins share no homology with any 

sequences in the catfish strain. However, they are highly homologous to the proteins in a 

closely related bacterium, E. piscicida C07-087 and have higher similarities to E. coli 

G1216 than to the catfish strain of E. ictaluri. The phylogenetic relationships between 

these proteins and their homologous proteins in closely related bacteria are revealed. The 

sequences corresponding to each protein are aligned to the closely related protein in the 

catfish strain of E. ictaluri, E. piscicida, E. tarda or E.coli and a phylogenetic tree is 

created to show the evolutional relationships of these O-antigen related proteins among 

various bacterial strains. 
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Figure 3.6 Comparison of WbcK and its homologous proteins in E. ictaluri LADL 11-100, E. tarda EIB 202, E. piscicida C07-087, E. 

coli G1216 and other bacteria. A. Phylogenetic tree based on the similarities of WbcK proteins in listed bacterial strains. The 

respective proteins from 9 closely related bacterial strains in addition to zebrafish strain LADL 11-100 are shown. Catfish strain 

LADL 93-146 does not have a protein that is matching to WbcK. B. Multi-alignment of WbcK amino acid sequences with the 

homologous proteins. Symbols are described in Figure 3.3. 
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Figure 3.7 Comparison of WeiA protein in E. ictaluri LADL 11-100, E. tarda, E. piscicida C07-087, E. coli G1216 and other bacteria. 

A. Phylogenetic tree based on the similarities of WeiA proteins in listed bacterial strains. The respective WeiA proteins from 8 closely 

related bacterial strains in addition to zebrafish strain LADL 11-100 are shown. Catfish strain LADL 93-146 does not have a protein 

that matches to WeiA. B. Multi-alignment of WeiA amino acid sequence with the homologous proteins. Symbols are described in 

Figure 3.3. 
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Figure 3.8 Comparison of WeiB and its homologous proteins in E. ictaluri LADL 11-100, E. tarda, E. piscicida C07-087, E. coli 

G1216 and other bacteria. A. Phylogenetic tree based on the similarities of WeiB proteins in listed bacterial strains. The WeiB protein 

sequences from 11 closely related bacterial strains in addition to zebrafish strain LADL 11-100 are shown. Catfish strain LADL 93-

146 does not have a protein that matches to WeiB. B. Multi-alignment of WeiB amino acid sequences with its homologous proteins. 

Symbols are described in Figure 3.3. 
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Figure 3.9 Comparison of WeiC protein in E. ictaluri LADL 11-100, E. tarda, E. piscicida C07-087, E. coli G1216 and other bacteria. 

A. Phylogenetic tree based on the similarities of WeiC proteins in listed bacterial strains. The sequences from 10 closely related 

bacterial strains in addition to zebrafish strain LADL 11-100 are shown. Catfish strain LADL 93-146 does not have a protein that 

matches to WeiC. B. Multi-alignment of WeiC amino acid sequences with its homologous proteins. Symbols are described in Figure 

3.3.
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Interestingly, WbcK, WeiA, WeiB and WeiC are all glycosyltransferases. The 

BLAST of the amino acid sequences of WbcK, WeiA, WeiB and WeiC found no 

homologous proteins in the catfish strain, however, homologous proteins are found in E. 

piscicida, with higher than 90% similarities. This indicates that the glycosyltransferases 

that relate to O antigen biosynthesis are quite different between the zebrafish and catfish 

strains of E. ictaluri. Figures 3.6-3.9 for the analysis results of WbcK and WeiABC. The 

results of multi-alignment of the WbcK, WeiA, WeiB and WeiC amino acid sequences 

with their homologous proteins are demonstrated in these figures. 

The unique sequences that belong to group III are insA, insB, wbiB and wbiM. The 

2 insertion sequences (insA and insB) on the cluster exist in the catfish strain LADL 93-

146 [21], but they are absent from the O-antigen clusters in zebrafish strain LADL 11-

100 as well as E. piscicida C07-087.The other two genes wbiB and wbiM encode 

glycosyltransferases. The proteins that are encoded by the unique genes in the LPS 

biosynthesis cluster from the catfish strain are listed in Table 3.2. 

To investigate the evolutionary relationships of proteins encoded by the O-antigen 

biosynthesis cluster among various bacterial strains, the unique proteins encoded by the 

O-antigen cluster in the catfish strain, WbiB and WbiM, were analyzed. Blast and 

phylogenetic trees both suggest that WbiB and WbiM proteins from the catfish strain of  

E. ictaluri are homologous to proteins in Salmonella enterica, which is another enteric 

bacteria that is closely related to E. ictaluri. Detailed results are shown in Figure 3.10 and 

3.11. 
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Table 3.2 Characteristics of the unique ORFs in catfish strain O-antigen biosynthesis cluster. 

Protein G +C 

(%) 

No. of 

residues 

Putative function Related protein(s) 

Protein (accession no.) No. of 

residues 

Identity 

(%) 

WbiB 

(AAL25629.2) 

31.8 261 Glycosyltransferase  lacto-N-neotetraose 

biosynthesis 

glycosyltransferase lgtB of 

Neisseria meningitides 

(WP_002226737.1) 

258 20 

    beta-1,4 galactosyltransferase 

of Pasteurella multocida 

(WP_032854432.1) 

280 20 

WbiM 

(AAL25631.1) 

34.3 366 Glycosyltransferase, 

group 1  

glycosyl transferase [Vibrio 

cholerae] (WP_001931828.1) 

362 41 

    glycosyl transferase of 

Providencia rustigianii 

(WP_006816207.1) 

366 38 
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Figure 3.10 Comparison of WbiB protein and its homologous proteins in E.ictaluri LADL 93-146, S. enterica and other closely 

related bacteria. A. Phylogenetic tree based on the protein similarities of WbiB in listed bacterial strains. The sequences from 9 closely 

related bacterial strains in addition to catfish strain LADL 93-146 are shown. B. Multi-alignment of WbiB and its homologous 

proteins. Symbols are described in Figure 3.3. 
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Figure 3.11 Comparison of WbiM protein and its homologous proteins in E. ictaluri LADL 93-146, S. enterica and other bacteria. A. 

Phylogenetic tree based on the protein similarities to WbiM in catfish strain of E. ictaluri. The sequences from 9 closely related 

bacterial strains in addition to catfish strain LADL 93-146 are shown. B. Multi-alignment of WbiM in catfish strain of E. ictaluri and 

its homologous proteins. Symbols are described in Figure 3.3.
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The core and lipid A related genes are relatively conserved. The genes related to core 

and lipid A biosynthesis are found in all strains that are investigated, including E. 

piscicida, catfish and zebrafish strains of E. ictaluri.  The exceptions are the waaE and 

wabK genes. These two genes, waaE and wabK, exist in E. piscicida and the catfish 

strain of E. ictaluri but not in the draft genome of the zebrafish strain of E. ictaluri. Both 

of them encode glycosyltransferases and are related to the inner core biosynthesis. The 

zebrafish and catfish strains of E. ictaluri share identities with all the genes in the core 

and lipid A except waaE and wabK. Detailed data appear in Table 3.3.  

Table 3.3 Putative genes related to core and lipid A biosynthesis. 

Core 

oligosaccharides 
(from E. tarda 

EIB 202) 

Putative Function E. ictaluri 

LADL11-100 

(n.t.) 

E.  piscicida 

C07-087 

(n.t.) 

E. ictaluri  

LADL93-

146 (n.t.) 

Inner core     

waaE 

(ETAE_0071) 

glycosyltransferase involved 

in cell wall biogenesis 

No hits found 

 

771/777 

(99%) 

732/777 

(94%) 

waaA 

(ETAE_00725) 

3-deoxy-D-manno-

octulosonic-acid transferase 

1199/1275  

(94%) 

 

1273/1275 

(99%) 

1197/1275 

(94%) 

wabH 

(ETAE_0073) 

glycosyltransferase 

 

1017/1095  

(92%) 

1092/1095 

(99%) 

1016/1095 

(93%) 

wabG 

(ETAE_0074) 

glucuronic acid transferase 1063/1128  

(94%) 

1123/1128 

(99%) 

1062/1128 

(94%) 

waaQ 

(ETAE_0075) 

heptosyl III transferase 1005/1077  

(93%) 

1075/1077 

(99%) 

1005/1077 

(93%) 

wabN 

(ETAE_0076) 

deacetylase 

 

901/972 

 (92%) 

970/972 

(99%) 

902/972 

(93%) 

wabK 

(ETAE_0077) 

glycosyltransferase 

 

No hits found 1209/1212 

(99%) 

346/388 

(89%) 

walR 

(ETAE_0078) 

glycosyltransferase 274/307 

 (89%) 

1105/1107 

(99%) 

309/355 

(87%) 

ETAE_0079 glycosyltransferase 

 

1015/1153 

 (88%) 

1155/1158 

(99%) 

1021/1160 

(88%) 
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Table 3.3 - continued. 

Core 

oligosaccharides 
(from E. tarda 

EIB 202) 

Putative Function E. ictaluri 

LADL11-100 

(n.t.) 

E.  piscicida 

C07-087 

(n.t.) 

E. ictaluri  

LADL93-

146 (n.t.) 

waaL 

(ETAE_0080) 

lipid A core - O-antigen 

ligase and related enzyme 

1024/1134 

 (90%) 

1127/1134 

(99%) 

1023/1134 

(90%) 

waaC 

(ETAE_0081) 

ADP-heptose:LPS 

heptosyltransferase I 

 

909/966  

(94%) 

 

964/966 

(99%) 

911/966 

(94%) 

rfaF 

(ETAE_0082) 

ADP-heptose:LPS 

heptosyltransferase II 

997/1062 

 (93%) 

1059/1062 

(99%) 

996/1062 

(94%) 

rfaD 

(ETAE_0083) 

ADP-L-glycero-D-manno-

heptose-6-epimerase 

918/965 

(95%) 

964/965 

(99%) 

919/965 

(95%) 

Outer core     

wzzE 

(ETAE_0102) 

lipopolysaccharide 

biosynthesis protein 

979/1038 

 (94%) 

 

1035/1038 

(99%) 

978/1038 

(94%) 

wecB 

(ETAE_0103) 

UDP-N-acetylglucosamine  

2-epimerase 

1073/1131 

 (94%) 

 

1127/1131 

(99%) 

1074/1131 

(95%) 

wecC 

(ETAE_0104) 

UDP-N-acetyl-D-

mannosaminuronate 

dehydrogenase 

1204/1263 

 (95%) 

 

1260/1263 

(99%) 

1204/1263 

(95%) 

rffG 

(ETAE_0105) 

dTDP-D-glucose 4,6-

dehydratase 

1029/1071 

 (96%) 

 

1064/1071 

(99%) 

1024/1071 

(96%) 

rffH 

(ETAE_0106) 

glucose-1-phosphate 

thymidylyltransferase 

852/882  

(96%) 

882/882 

(100%) 

849/882 

(96%) 

wecD 

(ETAE_0107) 

TDP-D-fucosamine 

acetyltransferase 

642/696 

 (92%) 

690/696 

(99%) 

641/696 

(92%) 

wecE 

(ETAE_0108) 

TDP-4-oxo-6-deoxy-D-

glucose transaminase 

1078/1131 

 (95%) 

 

1130/1131 

(99%) 

1076/1131 

(95%) 

wzxE 

(ETAE_0109) 

 

membrane protein involved 

in the export of O-antigen 

and teichoic acid 

1200/1251 

 (95%) 

1245/1251 

(99% 

1201/1251 

(96%) 

wecF 

(ETAE_0110) 

4-alpha-L-fucosyltransferase 1027/1077 

 (95%) 

1074/1077 

(99%) 

1025/1077 

(95%) 

wzyE 

(ETAE_0111) 

putative enterobacterial 

common antigen polymerase 

1326/1389 

 (95%) 

1378/1389 

(99%) 

1328/1389 

(96%) 
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Table 3.3 - continued. 

Core 

oligosaccharides 

(from E. tarda 

EIB 202) 

Putative Function E. ictaluri 

LADL11-100 

(n.t. ) 

E.  

piscicida 

C07-087 

(n.t.) 

E. ictaluri  

LADL93-

146 (n.t.) 

wecG 

(ETAE_0112) 

UDP-N-acetyl-D-

mannosaminuronic acid 

transferase 

683/728 

 (93%) 

739/741 

(99%) 

693/741 

(94%) 

Lipid A     

htrB 

(ETAE_0468) 

lipid A biosynthesis lauroyl 

acyltransferase 

863/929 

 (92%) 

 

925/929 

(99%) 

863/929 

(93%) 

lpxC  

(ETAE_0643) 

UDP-3-O-acyl N-

acetylglucosamine 

deacetylase 

875/916 

 (95%) 

913/918 

(99%) 

875/916 

(96%) 

lpxD 

(ETAE_0747) 

 

DP-3-O-(3-

hydroxymyristoyl)-

glucosamine N-

acyltransferase 

943/1023 

 (92%) 

 

1019/1023 

(99%) 

947/1023 

(93%) 

fabZ 

(ETAE_0748) 

(3R)-hydroxymyristoyl-(acyl 

carrier protein) dehydratase 

440/456 

 (96%) 

456/456 

(100%) 

440/456 

(96%) 

lpxA 

(ETAE_0749) 

UDP-N-acetylglucosamine 

acyltransferase 

755/789 

 (95%) 

786/789 

(99%) 

758/789 

(96%) 

lpxB 

(ETAE_0750) 

lipid-A-disaccharide synthase 1080/1186 

 (91%) 

1178/1185 

(99%) 

1083/1187 

(91%) 

msbB 

(ETAE_1445) 

lipid A biosynthesis (KDO)2-

(lauroyl)-lipid IVA 

acyltransferase 

874/963 

 (90%) 

 

960/963 

(99%) 

875/963 

(91%) 

lpxK 

(ETAE_2171) 

tetraacyldisaccharide 4-

kinase 

 

893/992 

 (90%) 

995/996 

(99%) 

893/996 

(90%) 

msbA 

(ETAE_2172) 

lipid transporter ATP-

binding/permease protein 

1641/1755  

(93%) 

1752/1755 

(99%) 

1644/1755 

(94%) 

ETAE_2369 

 

lipopolysaccharide 

glycosyltransferase 

798/893 

 (89%) 

936/945 

(99%) 

832/936 

(89%) 

ETAF_2432 

(Edwardsiella 

tarda FL6-60) 

UDP-2,3-diacylglucosamine 

hydrolase 

714/769 

 (92%) 

780/780 

(100%) 

724/780 

(93%) 
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LPS composition analysis.  LPS banding patterns as well as the LPS sugar composition 

analysis reveal significant differences in LPS samples between catfish and zebrafish 

strains of E. ictaluri. Purified LPS from the catfish strain of E. ictaluri, when analyzed by 

SDS-PAGE, demonstrates a ladder-like pattern while similar bands between 10 and 37 

kD are not visible in the LPS from the zebrafish strain. In fact, only two bands, including 

one between 10 and 15 kD and the other one between 25 and 37kD, are strongly visible 

in the gel for the zebrafish strain LPS sample. There is also a diffused band appearing 

between 75 and 150 kD in the LPS sample from zebrafish strain of E. ictaluri.  Therefore, 

the results in Figure 3.12 obviously demonstrate the differences in the LPS between 

zebrafish and catfish strains of E. ictaluri. 

 
 

Figure 3.12 LPS samples from zebrafish and catfish strain of E. ictaluri. Lane 1 is the 

LPS sample from zebrafish strain LADL11-100 and lane 2 is the catfish strain LADL 93-

146 LPS. 

 

Analysis of the LPS from the two strains by GC/MS are shown in Table 3.4 and 

3.5. Both strains have glucose and heptose as their major sugars, however, LPS samples 

from zebrafish strain contain less glucose and more heptose than the LPS samples from 

catfish strain. Other sugars that were detected in these 2 samples are ribose, xylose, 
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galacturonic acid (GalA), mannose, galactose and 2-keto-3-deoxy-octanoate (KDO). 

Obvious differences were observed in the molar percentages of galactose, glucose and 

KDO. The KDO makes up 21.3% of total molar percentage in zebrafish strain LPS 

samples, while in the catfish strain, KDO only comprises 2% of the total LPS samples. 

Therefore, we can conclude from this analysis that the LPS samples from the catfish 

strain and the zebrafish strain have the same sugar composition but different sugar 

percentage ratios.  

Table 3.4 Monosaccharide composition of LPS sample from zebrafish strain of E. ictaluri 

LADL 11-100. 

     Monosaccharide Weight (µg) % by mole 

Arabinose (Ara) nd - 

Ribose (Rib) 2.2 1.1 

Rhamnose (Rha) nd - 

Fucose (Fuc) nd - 

Xylose (Xyl) 0.2 0.1 

Glucuronic Acid (GlcA) nd - 

Galacturonic acid (GalA) 12.8 4.9 

Mannose (Man) 1.3 0.5 

Galactose (Gal) 9.1 3.8 

Glucose (Glc) 40.1 16.6 

N-Acetyl Galactosamine (GalNAc) nd - 

N-Acetyl Glucosamine (GlcNAc) nd - 

N-Acetyl Mannosamine (ManNAc) nd - 

Heptose 145.7 51.7 

KDO 68.1 21.3 

                 Sum 279.6 100.0 

                 % carbohydrates 0.23  

1Data are obtained from 121.80 mg wet bacterial cells; nd = not detected. 
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Table 3.5 Monosaccharide composition of LPS sample from catfish strain of E. ictaluri 

LADL 93-146. 

     Monosaccharide Weight (µg) % by mole 

Arabinose (Ara) nd - 

Ribose (Rib) 0.3 0.2 

Rhamnose (Rha) nd - 

Fucose (Fuc) nd - 

Xylose (Xyl) 0.7 0.6 

Glucuronic Acid (GlcA) nd - 

Galacturonic acid (GalA) 5.6 3.4 

Mannose (Man) 2.3 1.5 

Galactose (Gal) 17.3 11.3 

Glucose (Glc) 56.8 37.3 

N-Acetyl Galactosamine (GalNAc) nd - 

N-Acetyl Glucosamine (GlcNAc) nd - 

N-Acetyl Mannosamine (ManNAc) nd - 

Heptose 77.8 43.6 

KDO 38.6 2.0 

                 Sum 199.4 100.0 

                 % carbohydrates 0.30  
1Data are obtained from 65.93 mg wet bacterial cells; nd = not detected. 

 

Discussion 

Genome sequencing can provide us with valuable information concerning the 

existence of certain important virulence factors; the identity of genes that are essential for 

certain pathways and an understanding of the evolutionary relationship among bacterial 

species. In this study, all the genes related to LPS biosynthesis are examined in the 

genome of zebrafish strain LADL 11-100 and compared to those in the catfish strain 

LADL 93-146 as well as some other closely related bacteria. Genes associated with core 

and lipid A biosynthesis are found to have high similarities except for two transferases. 

This result is in accordance with the previous finding that the structures of the core and 

lipid A of the lipopolysaccharide molecule are highly conserved among bacteria in the 
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same genera [9]. The O-antigen biosynthesis cluster is also found in the genome of the 

zebrafish strain E. ictaluri LADL11-100. The O-antigen biosynthesis cluster was further 

characterized and compared with the respective proteins in the catfish strain and other 

closely related strains. Here we present that O-antigen biosynthesis clusters in zebrafish 

and catfish strains vary significantly in the structure of the clusters and the identities of 

protein sequences. The gene arrangement of the cluster in the zebrafish strain of E.ictaluri 

LADL11-100 is identical to that of E. piscicida C07-087 and the protein sequences 

share >90% identity with the homologous proteins in E. piscicida C07-087.  Analysis of 

the O-antigen biosynthesis cluster in the catfish strain has shown the existence of two 

insertional sequences, which can possibly make this cluster different from other O-

antigen biosynthesis clusters in the strains of the Edwardsiella genus. The differences in 

the gene cluster structure indicate that horizontal gene transfer, caused by insertional 

sequences, which are probably the reason for the variation of the O-antigen biosynthesis 

cluster in the catfish strain. Meanwhile, these variations also lead to the changes of the 

identities of protein sequences. The amino acid sequences of proteins encoded by this 

cluster in zebrafish strain LADL11-100 are more closely related to the proteins in E. 

piscicida C07-087 and E. tarda strains than to the typical catfish strain of E. ictaluri 

LADL93-146. Meanwhile, according to the result of our phylogeny analysis on WbiB 

and WbiM (Figure 3.10 and Figure 3.11), these unique proteins in catfish strain of E. 

ictaluri are phylogenetically close to Salmonella enterica. It is possible that the O-antigen 

biosynthesis clusters in Salmonella enterica and the E. ictaluri catfish strain originated 

from a similar source by horizontal gene transfer. 
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Intriguingly, E. piscicida is highly virulent in the zebrafish Danio rerio by 

intramuscular injection [29] and whether this bacterium can cause mortality in zebrafish 

by immersion remains unknown. E. tarda, which is phylogenetically more distant from 

the zebrafish strain of E. ictaluri is virulent in zebrafish embryos but not adult fish by 

immersion [30]. Zebrafish Danio rerio are not susceptible to infection by the catfish 

strain of E. ictaluri by immersion unless a high dose of bacteria are applied to the fish. 

However, even in the case of high dose exposure, the overall mortality of zebrafish is 

still relatively low [31]. The typical catfish strain differs in its O-antigen biosynthesis 

cluster when compared to the zebrafish strain of E. ictaluri. Whether the age of zebrafish 

can be a factor that influences E. ictaluri infection is not clear, but we predict that the 

changes in the O-antigen biosynthesis cluster, to a certain extent, contribute to the various 

levels of infectivity in the host since the O antigen is important for host colonization, 

invasion and immune evasion and modifications of O antigen can affect the infectivity in 

specific hosts [32-34]. Our results also show that different genes in the O-antigen 

biosynthesis cluster can lead to the differences in O antigen profile as we observed from 

the SDS-PAGE. Taken together, the vital functions of the O-antigen in bacterial infection 

and the differences in the DNA and protein levels of the O antigen biosynthesis cluster, 

which are associated with the different banding patterns of LPS samples, reveal the clues 

for the host specificity.  

Within the O-antigen biosynthesis cluster, two of the putative genes that show 

relatively low similarities between catfish and zebrafish strains are wzx and wzy which 

encode a flippase and an O-antigen polymerase, respectively [35]. Studies of the wzx 

gene have shown that mutations in this gene can abolish or delay the expression of 
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certain bands in the LPS profile [36]. Other studies on LPS biosynthesis have shown that 

LPS can be synthesized in vitro using Wzy and another protein named Wzz which 

functions as a regulator to guide the synthesis of LPS of specific length. Wzy, as the sole 

enzyme in the assembly process, works in a distributive manner to add the O subunit to 

the growing chain [37, 38]. Mutations in the wzy gene can change the LPS phenotype 

completely from smooth to rough and influence serum sensitivity [19]. All of these 

indicate that the low similarities of Wzx and Wzy can lead to changes in LPS banding 

profiles and possibly affect the infectivity in the host. 

There are an additional four genes on the O-antigen biosynthesis cluster from the 

zebrafish strain of E. ictaluri that do not have corresponding genes on the O-antigen 

biosynthesis cluster from the catfish strain. These genes encode glycosyltransferases 

which function to transfer sugars to form an oligosaccharide on a carrier lipid, 

undecaprenyl phosphate (UndP) before being flipped to the periplasm side of the inner 

membrane [20]. These transferases tend to bind preferred sugars and are probably related 

to the differences in sugar compositions of LPS samples from catfish and zebrafish 

strains of E. ictaluri [39, 40]. The changes in these genes explain, to some extent, the 

significant variation in sugar composition of LPS samples from the catfish and zebrafish 

strains.  

Among all the reported sugars in the LPS samples, the sugar that varies the most in 

terms of molar percentage is KDO. This eight-carbon sugar is part of the inner core and 

also the molecule that connects lipid A with the rest of the LPS. In addition to the 

changes in KDO percentage, a low level of glucose is observed. Glucose only makes up 

16.6 % of the total sugars in the LPS of zebrafish strain compared to 37 % in the LPS of 
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the catfish strain. It’s been shown that in Haemophilus ducreyi, the virulent and avirulent 

strains tend to have different ratios of sugar contents in the LPS [41]. Differences in sugar 

compositions can influence the ability for bacteria to be phagocytosed by the host cells 

and their efficient intercellular movement in the host. Thus, the differences in sugar 

composition can affect virulence of bacteria [42, 43].  

The different banding patterns of the LPS purified from catfish and zebrafish 

strains of E. ictaluri are probably the result of variations on the O-antigen biosynthesis 

cluster between the two strains. The ladder-like pattern of LPS from the catfish strain in 

this study is the same as the results in previous studies [44, 45]. However, the LPS from 

zebrafish strains contain far less bands. After silver staining, only one low-molecular-

mass band, one high-molecular-mass band and one diffused band arranged from 75 kD to 

150 kD are obvious. All the other bands in catfish LPS sample are not present in 

zebrafish LPS sample. It has been shown that all the bands in LPS samples from catfish 

strains are highly immunogenic and mutations in certain genes that result in O antigen 

deficient organisms can also fully attenuate the strain [21, 45]. In fact, each band on the 

SDS-PAGE represents the lipid A- core complex with a specific number of O-antigen 

repeat units attached [46]. Therefore, the absence of many of the bands in the LPS of the 

zebrafish strain reveals the structural differences between catfish and zebrafish strain  

LPS samples. Thus, different banding patterns on SDS-PAGE can explain or partially 

explain why the zebrafish strain lacks virulence by immersion exposure in the catfish 

host [44, 47]. 

Even though the zebrafish strain LPS sample didn’t exhibit ladder-like pattern 

bandings, based on the colony morphology of the zebrafish strain E. ictaluri as well as 
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the observed bands of the LPS samples from zebrafish strain, the LPS samples should 

still be considered as smooth type LPS since there are indications of the existence of O-

antigen. It’s possible that many of the components of the O-side chains in the catfish 

strain LPS are not in the zebrafish LPS molecule at the same level. It’s also possible that 

LPS samples from the zebrafish strain actually contain bands of different sizes than that 

of the catfish strain and these zebrafish strain specific bands cannot be detected by the 

silver stain method very well. Other groups have shown that certain O-antigen mutants of 

catfish strain E. ictaluri exhibit autoagglutination and weaker or no motility [8]. Our 

zebrafish strain of E. ictaluri also autoagglutinates and shows weaker motility [7]. Early 

studies indicate that LPS usually confers the negative charge because of phosphorylation 

and the changes in the surface charge can possibly lead to autoagglutination [48, 49]. To 

explain the autoagglutination, we predict that the variations in O-antigen biosynthesis 

clusters can change the LPS structural composition and also the charge, thus leading to 

autoagglutination, For many years, it has been known that the catfish strain of E. ictaluri 

is resistant to complement killing by the alternative pathway. One reason for that is the O 

side chains can help prevent complement, more specifically, C3 from binding to the cell 

in the alternative pathway [50, 51].  In contrast, reduced LPS exposes the cell surface to 

complement binding and thus increases membrane disruption and killing [52]. It is 

possible that the LPS molecule of the zebrafish strain is truncated or reduced in O side 

chain length, no longer protecting bacteria from being killed by catfish complement 

system and thus is avirulent in catfish.  

To our knowledge, this is the first study that characterized the differences in gene 

organization and protein profiles derived from LPS gene clusters of bacteria in the genus 

78



 

Edwardsiella. Here we provide an overview of the differences in the LPS biosynthesis 

cluster at the DNA and protein level. Lateral gene transfer, acting as an important role in 

the evolution of bacteria, is apparently responsible for some of the changes in gene 

arrangement among members of this genus.  In the case of E. ictaluri, strains pathogenic 

for catfish, probably obtained alien genes by insertional sequences. Variations in gene 

expression in different strains of this bacterial species may be associated with the newly 

observed host specificity of zebrafish and catfish strains of E. ictaluri. Finally, this study 

provides directions for further research aiming to investigate the pathogenesis of bacteria 

in the Edwardsiella genus. 
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CHAPTER IV. DIFFERENCES IN OTHER POTENTIAL 

VIRULENCE FACTORS BETWEEN CATFISH AND ZEBRAFISH 

STRAINS OF EDWARDSIELLA ICTALURI 

Introduction 

Virulence factors. Bacterial virulence factors refer to the encoded proteins that facilitate 

bacteria to gain entry into, survive, and proliferate in the host resulting in disease. 

Important virulence factors usually include the surface structures, e.g. outer membrane 

proteins, bacterial secretion systems, flagella and fimbriae. Thus, it is interesting to 

compare the important virulence factors of the catfish strain of E. ictaluri with that of the 

zebrafish strain. 

Type III secretion system (T3SS). Type III secretion systems are commonly found in 

gram-negative bacteria and help inject bacterial proteins, also known as effectors, into the 

host cells. The T3SS has been reported in Salmonella spp., Vibrio spp., Pseudomonas 

spp., Aeromonas spp., Shigella spp. and enteroinvasive E. coli [1-6], In some bacteria, 

more than one T3SS was found. Examples are Salmonella typhimurium, Yersinia 

enterocolitica, Vibrio parahaemolyticus and Escherichia coli [7-10]. The T3SS is an 

important virulence factor in many pathogenic bacteria because it can inject the effectors 

into the host cells to facilitate its adhesion, invasion and colonization [11, 12]. Effectors 

that are secreted by these T3SSs can damage the host cell, make the host environment 

more favorable for the bacteria and lead to disease progression in the host [12, 13]. The 

effectors in the catfish strain of E. ictaluri have been identified by Thune et, al. [14]. 

Type IV secretion system (T4SS). Type IV secretion systems (T4SS) are found in both 

gram positive and gram negative bacteria. Their functions are versatile: some can transfer 

DNA from one cell to another in a contact-dependent way; some function to uptake and 
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release DNA to the extracellular milieu; or others can inject effector proteins into the host 

cells [15, 16]. So far, the most heavily studied T4SS is the vir system in Agrobacterium 

tumefaciens Ti plasmid. Thus far there are no descriptions of T4SS in E. ictaluri, and 

only three of the putative genes can be found on the National Center for Biotechnology 

Center (NCBI) website. 

Other virulence factors, including Type VI secretion system (T6SS) and urease. 

Another protein transport system in gram negative bacteria is the Type VI secretion 

system (T6SS). The T6SS mediates contact-dependent competitor killing by introducing 

effectors to the sister cells [17]. The urease system, encoded in catfish strain of E. ictaluri, 

is an important virulence factor as it is required for bacterial intracellular replication [18].  

The newly identified zebrafish strain is different from the typical catfish strain by 

exhibiting the following characters: weaker motility, different biochemical profiles and 

the lacking of monoclonal antibody Ed9 recognition of LPS [19].  Our study has also 

shown that the zebrafish strain cannot cause mortality in channel catfish by immersion. 

Based on all this information, it is interesting to investigate the differences in the 

important virulence factors and find the potential reasons for the differences between 

these two strains on the DNA level. 

Materials and Methods 

Tools used for preparing the data. The following programs were useful in analysis of 

genome sequences, BioEdit, NextGENe, virulence factor database (VFDB) [20-22], blast 

tool on NCBI website, SWISS-MODEL [23, 24],and Protein Homology/analogY 

Recognition Engine (Phyre) V 2.0 [25].  
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Virulence factor identification.  First, the genomes of the zebrafish strains LADL11-

100 and LADL11-194 and the genome of the catfish strain of E. ictaluri LADL93-146 

were uploaded in VFDB to blast against all known virulence factors. The hits from each 

strain were compared to the other two strains of E. ictaluri manually and the resulting 

virulence factors were clustered into four groups based on the alignment results. 

Second, the well-studied virulence factors in the catfish strain of E. ictaluri were 

blasted in the genome of the zebrafish strain of E. ictaluri LADL11-100 one by one. 

These include the genes involved in T3SS, T6SS and the urease system. Another system 

that was studied is T4SS. All of the reference sequences and their accession numbers are 

listed in Table 4.1. The amino acids encoded by the unique genes in zebrafish strain 

LADL11-100 were blasted against the NCBI database to search for homologous proteins. 

The phylogenetic trees were created based on the sequences of the genes in the T4SS that 

differ between the catfish and zebrafish strains of E. ictaluri. The related genes in the 

zebrafish strain of E. ictaluri LADL11-194 were also analyzed to confirm the differences 

between the zebrafish and catfish strain of E. ictaluri.   

Table 4.1 The reference genes used in this Chapter IV. 

Name Source Accession number 

T3SS genes E. ictaluri 93-146 DQ233733.1 

T4SS genes E. ictaluri 93-146 Personal communication 

with Dr.  Ronald Thune 

T6SS genes E. ictaluri 93-146 CP001600.2 

Urease genes E. ictaluri 93-146 AY607844.2 

Fimbrial gene cluster E. ictaluri 93-146 AY626368.2 

 

Third, four of the potential important virulence factors with SNPs from the 

zebrafish strain of LADL11-100 were sent to Swiss-model software together with their 

homologous genes from catfish strain of E. ictaluri for prediction of their protein 

structure.  
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Table 4.2 The virulence factors identified in catfish strain (LADL 93-146) and two 

zebrafish strains of E. ictaluri (LADL11-100 and LADL11-

194).
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Results 

The type III secretion system in the zebrafish strain is highly homologous to that of 

the catfish strain of E. ictaluri. The identities of the genes in the T3SS system between 

catfish and zebrafish strains of E. ictaluri range from 86.8% to 99.9%. All of the genes 

that encode T3SS proteins contain less than 10 SNPs with the exception of eseD, eseC 

and esrA.  Each of these three genes in the zebrafish strain includes more than 20 SNPs. 

Another two genes that encodes EseB and EseG have 7 and 8 SNPs, respectively. The 

T3SS in the zebrafish strain of E. ictaluri is mapped with the SNPs marked in Figure 4.1.  

Table 4.3 The identities between the catfish and zebrafish strain of E. ictaluri T3SS.  

T3SS 

Product 

Function % Identity at DNA level to 

catfish strain E. ictaluri 

No. of non-

synonymous SNPs 

EsaC TTSS oligomeric outer 

membrane secretin 

99.9 2 

EseG TTSS effector protein 95.9 8 

EscB TTSS chaperone 98.8 2 

EseD TTSS translocon protein 91.1 24 

EseC TTSS translocon protein 94.2 24 

EscA TTSS chaperone 97.6 3 

EseB TTSS translocon filament 

protein 

86.8 7 

EscC TTSS translocon filament 

protein 

95.5 2 

EsaU TTSS integral apparatus 

membrane protein 

99.1 6 

Slt soluble lytic murein 

transglycosylase 

94.9 4 

EsrA TTSS regulatory sensor 

kinase 

96.2 25 
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Figure 4.1 The schematic map of the T3SS in zebrafish strain of E. ictaluri. The SNPs are 

labeled with the number indicating the location and in front of the symbol ‘>’ is the DNA 

sequence in catfish strain and the one after that sign is the DNA in zebrafish strain of E. 

ictaluri. 

The putative type IV secretion system varies significantly between catfish and 

zebrafish strains of E. ictaluri in terms of the protein identities. Nineteen putative 

T4SS genes were checked and 17 of them are found in the putative T4SS gene cluster in 

the zebrafish strains LADL11-100 and LADL11-194. The putative gene cluster of T4SS 

in zebrafish strain LADL11-100 is shown in Table 4.4. These genes locate on two contigs 

of both zebrafish strain draft genomes. See Figure 4.2 for the gene arrangement of the 

putative T4SS genes in the zebrafish strain LADL11-100 in comparison with the catfish 

strain putative T4SS gene cluster. Two genes NT01EI_0335 and NT01EI_0338 in the 

catfish strain are not found in zebrafish strains and two putative genes, labeled as peg 939 

and peg 2915, in zebrafish strain are also not found in the catfish strain. The phylogenetic 

studies of the putative T4SS clusters in the catfish and zebrafish strains indicate the 
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evolutionary distance between these two strains.  Except for NE01EI_0337, all the other 

genes in the catfish strain putative T4SS cluster are not closely related to the homologous 

genes in the zebrafish strain of E. ictaluri (Figure 4.3 and 4.4). Actually, BLAST results 

indicates that the corresponding proteins of NT01EI_ 0331 and NT01EI_0332 in the 

catfish strain, and their homologous proteins in the zebrafish strains are probably proteins 

that have different functions since they contain different conserved domains (Figure 4.5 

and 4.6). The gene NT01EI_0348 and its related gene in the zebrafish strain are unique in 

E. ictaluri with no matching conserved domains from the NCBI website database (Figure 

4.7). Zebrafish strains LADL11-100 and LADL11-194 provide identical results in terms 

of the putative T4SS cluster gene arrangement and similarities to the respective genes in 

the catfish strain on the DNA level. 

 

Figure 4.2 The schematic map of the putative T4SS in catfish strain (LADL 93-146) and 

zebrafish strain (LADL11-100). The genes in grey indicate the genes shared by catfish 

and zebrafish strains of E. ictaluri while the empty arrows indicate the one that is not 

found in the other strain.  
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Table 4.4 The putative gene cluster of T4SS in LADL 11-100.  

T4SS 

NT01EI- 

Total AA Putative function Blast AA 

in LADL11-100 

Location 

in LADL11-100 

0330 198 integrating 

conjugative 

element protein 

PilL 

112/175 

(64%) 

fig|6666666.91609

.peg.945 

0331 240 hypothetical 

protein 

36/76 (47%) fig|6666666.91609

.peg.944 

0332 234 conjugal transfer 

protein 

113/209 (54%) fig|6666666.91609

.peg.943 

0333 151  lytic 

transglycosylase 

85/120 (70%) fig|6666666.91609

.peg.942 

0334 170 conjugal transfer 

protein 

72/167 (43%) fig|6666666.91609

.peg.941 

0335 306 hypothetical 

protein 

___ No found 

0336 617 hypothetical 

protein 

423/605 (69%) fig|6666666.91609

.peg.940 

0337 251 hypothetical 

protein 

140/229 (61%) fig|6666666.91609

.peg.938 

0338 154 hypothetical 

protein 

___ Not found 

0339 113 hypothetical 

protein 

55/94 (58%) fig|6666666.91609

.peg.2916 

0340 80 hypothetical 

protein 

36/78 (46%) fig|6666666.91609

.peg.2917 

0341 128 hypothetical 

protein 

48/93 (51%) fig|6666666.91609

.peg.2918 

0342 118 hypothetical 

protein 

55/107 (51%) fig|6666666.91609

.peg.2919 

0343 229 hypothetical 

protein 

136/219 (62%) fig|6666666.91609

.peg.2920 

0344 309 hypothetical 

protein 

163/294 (55%) fig|6666666.91609

.peg.2921 
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Table 4.4 –continued. 

T4SS 

NT01EI- 

Total AA Putative function Blast AA 

in LADL 11-100 

Location 

in LADL 11-100 

0345 504 hypothetical protein 206/339 (60%); 

55/123 (44%) 

fig|6666666.91609.

peg.2923; 

fig|6666666.91609.

peg.2922 

0346 80 hypothetical protein 46/81 (56%) fig|6666666.91609.

peg.2924 

0347 954 hypothetical protein 593/950 (62%) fig|6666666.91609.

peg.2925 

0348 130 hypothetical protein 55/130 (42%) fig|6666666.91609.

peg.2926 

 

 
(A) NT01EI_0330 and peg. 945 

 
(B) NT01EI_0333 and peg. 942 

Figure 4.3 The results of phylogenetic analysis on NT01EI_0330, NT01EI_0333, 

NT01EI_0334, NT01EI_0336 of catfish strain LADL93-146 and their homologous genes 

in zebrafish strain LADL11-100, cataloged as peg 940, peg 941, peg 942 and peg 945.  
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Figure 4.3-continued. The results of phylogenetic analysis on NT01EI_0330, 

NT01EI_0333, NT01EI_0334, NT01EI_0336 of catfish strain LADL93-146 and their 

homologous genes in zebrafish strain LADL11-100, cataloged as peg 940, peg 941, peg 

942 and peg 945. 
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 (C) NT01EI_0334 and peg. 941 
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Figure 4.4 The results of phylogenetic analysis on NT01EI_0339 to NT01EI_0347 of 

catfish strain LADL93-146 and their homologous genes in zebrafish strain LADL11-100, 

cataloged as peg 2916 to peg 2925. 

 

 

 

 

 

 

 

 

 

 

(A) NT01EI_0339 and peg.2916 

(B) NT01EI_0340 and peg.2917 

(C) NT01EI_0341 and peg.2918 
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Figure 4.4- continued. The results of phylogenetic analysis on NT01EI_0339 to 

NT01EI_0347 of catfish strain LADL93-146 and their homologous genes in zebrafish 

strain LADL11-100, cataloged as peg 2916 to peg 2925. 

 

(F) NT01EI_0344 and peg.2921 

 

 

 

 

 
 

(D) NT01EI_0342 and peg.2919 

(E) NT01EI_0343 and peg.2920 
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Figure 4.4-continued. The results of phylogenetic analysis on NT01EI_0339 to 

NT01EI_0347 of catfish strain LADL93-146 and their homologous genes in zebrafish 

strain LADL11-100, cataloged as peg 2916 to peg 2925. 

 

(H) NT01EI_0346 and peg.2924 

(I) NT01EI_0347 and peg.2925 

 

 

 

 

(G) NT01EI_0345 and peg.2922-23 
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Figure 4.5 The phylogenetic analysis as well as conserved domain detection on protein 

encoded by NT01EI_0331 of catfish strain LADL 93-146 (A) and its corresponding 

protein in zebrafish strain LADL11-100 (B). 

 

 
Figure 4.6 The phylogenetic analysis as well as conserved domain detection on protein 

encoded by NT01EI_0332 of catfish strain LADL 93-146 (A) and its corresponding 

protein in zebrafish strain LADL11-100 (B). 
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Figure 4.7 The phylogenetic analysis as well as conserved domain detection on protein 

encoded by NT01EI_0348 of catfish strain LADL 93-146 (A) and its corresponding 

protein in zebrafish strain LADL11-100 (B). 

 

The T6SS and urease, in zebrafish and catfish strains of E. ictaluri, are highly 

homologous and contain few SNPs. Five genes of the putative T6SS from the catfish 

strain of E. ictaluri are used as templates to find the homologous genes in the zebrafish 

strain. As shown in Table 4.5, all of the homologous genes in the zebrafish strain contain 

few SNPs ranging only from one to five. The urease system between catfish and 

zebrafish strain is more homologous with the overall identity close to 100%. Only one 

SNP was found in all analyzed nine genes of the urease system between catfish and 

zebrafish strain of E. ictaluri (Table 4.6). 

 

 

 

 

A 
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Table 4.5 The putative T6SS in catfish and zebrafish of E. ictaluri. 

T6SS 

Product 

Putative Function Locus tag in 

reference 

genome 

No. of non-

synonymous 

SNPs 

Mutation at 

DNA level 

Amino 

Acid 

Change 

EvpD hypothetical 

protein 

NT01EI_2740 2 882G>C; 

892C>A 

294M>I; 

298L>I 

EvpH type VI secretion 

ATPase, ClpV1 

family 

NT01EI_2744 1 566A>G 189H>R 

EvpI type VI secretion 

system Vgr 

family protein 

NT01EI_2745 2 236A>G; 

748C>G 

79Q>R; 

250Q>E 

EvpO hypothetical 

protein 

NT01EI_2751 5 861_862 

insG;  

863delG; 

1583A>C; 

1710A>G; 

3291T>G 

FS;            

FS; 

528E>A; 

570I>M; 

1097H>Q; 

Hcp1 

family 

T6SS 

effector 

type VI secretion 

system effector, 

Hcp1 family 

NT01EI_3420 2 11T>C; 

128A>G 

4L>P; 

43E>G 

The SNPs are labeled with the number indicating the location and in front of the symbol 

‘>’ is the DNA sequence in catfish strain and the one after that sign is the DNA in 

zebrafish strain of E. ictaluri. 

Table 4.6 The putative urease system in catfish and zebrafish of E. ictaluri. 

Urease 

PAI 

Product 

Putative function Locus tag in 

reference 

genome 

No. of non-

synonymous 

SNPs 

Mutation 

at DNA 

level 

Amino 

Acid 

Change 

UreA urea 

amidohydrolase 

gamma subunit 

NT01EI_2063 0 — — 

UreB urea 

amidohydrolase 

beta subunit 

NT01EI_2062 0 — — 
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Table 4.6 - continued. 

Urease 

PAI 

Product 

Putative function Locus tag in 

reference 

genome 

No. of non-

synonymous 

SNPs 

Mutation 

at DNA 

level 

Amino 

Acid 

Change 

UreC urea 

amidohydrolase 

alpha subunit 

NT01EI_2061 1 967A>G 323I>V 

UreE urease accessory 

protein E 

NT01EI_2060 0 — — 

UreF urease accessory 

protein F 

NT01EI_2059 0 — — 

UreG urease accessory 

protein G 

NT01EI_2058 0 — — 

UreD urease accessory 

protein D 

NT01EI_2057 0 — — 

UreI urea transporter NT01EI_2056 0 — — 

AmtB ammonium 

transporter 

NT01EI_2055 0 — — 

The SNPs are labeled with the number indicating the location and in front of the symbol 

‘>’ is the DNA sequence in catfish strain and the one after that sign is the DNA in 

zebrafish strain of E. ictaluri. 

Potential structural changes in putative virulence factors due to SNPs. Some of the 

potentially important virulence factors in the zebrafish strain of E. ictaluri contains many 

SNPs when compare to their homologous genes in the catfish strain. The existence of 

SNPs can potentially change the structure of these proteins. Examples for that are the 

regulator in type III secretion system EsrA encoded by the esrA gene, the flagellar hook 

protein FlgE encoded by the flgE gene, a fimbrial usher family protein and a permease 

protein in an ABC transport system (Table 4.7). The amino acid level alignment of the 

homologous proteins from catfish and zebrafish strain of E. ictaluri as well as the 

predicted structures are shown in Figure 4.8-4.11. 
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Table 4.7 Examples of potential virulence factors that may have different structures in 

catfish strain and zebrafish strain of E. ictaluri. 

  Gene product Chromosome location 

in LADL 93-146 

The size of 

the gene 

No. of non-

synonymous SNPs 

T3SS regulator 

EsrA 

952369-955104 2736 25 

Flagellar hook 

protein FlgE 

1334869-1336143 1275 36 

Fimbrial usher 

protein 

1506869- 1509385 2517 8 

Permease protein 2059701-2060729 1029 32 

 

Figure 4.8 The alignment of the amino acids (A) and the structural differences in EsrA 

between catfish and zebrafish strains of E. ictaluri. B: EsrA from catfish strain LADL93-

146; C: EsrA from zebrafish strain LADL11-100. 
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Figure 4.9 The alignment of the amino acids (A) and the structural differences in the 

fimbrial usher protein between catfish and zebrafish strains of E. ictaluri. B: the fimbrial 

usher protein from catfish strain LADL 93-146; C: the fimbrial usher protein from catfish 

strain LADL 11-100. 

Figure 4.10 The alignment of the amino acids and the structural differences in the FlgE 

between catfish and zebrafish strains of E. ictaluri. A. FlgE from catfish strain LADL 93-

146; B. FlgE from zebrafish strain LADL11-100. 
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Figure 4.11 The alignment of the amino acids and the structural differences in the 

permease protein in amino acid or sugar ABC transport system between catfish(A) and 

zebrafish strains(B) of E. ictaluri. 

 

Discussion 

Bacteria are equipped with many virulence factors to enhance their pathogenicity. 

The loss or change of these virulence factors can possibly alter the basic characteristics of 

these cells, and attenuate them, making them avirulent in certain hosts. Here we present 

the major differences in the secretion systems, T3SS and T4SS, and the minor variations 

in the T6SS and the urease system between the catfish and zebrafish strain of E. ictaluri. 

Since the secretion systems are well-known virulence factors in E. ictaluri, 

especially the type III secretion system, here we compare all the known genes in the 

T3SS of the catfish and zebrafish strain of E. ictaluri [26]. The major structure of the 

gene cluster in the zebrafish strain is identical to that of catfish strain. The differences 

between the T3SSs are primarily in the sequences of EsrA and EseCD. EsrA is a 

regulator of T3SS in the catfish strain of E. ictaluri and this protein is also known to 
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control the expression of a type VI secretion system (T6SS) indicating its cross linked 

essential functions in terms of pathogenesis [27]. The SNPs in the esrA gene can possibly 

change the structure of this regulator and cause it to lose its function as a regulator or 

work in a different way. If either of these happens, it will probably cause the alteration of 

the virulence in the channel catfish and zebrafish.  

EseCD, on the other hand, forms the translocon of T3SS together with EseB. This 

EseBCD complex is later dispersed and secreted. Lacking these proteins can cause the 

cells to be unable to replicate [28]. In E. ictaluri, the secretion of EseCD is increased if 

the pH is low [26]. When comparing the sequences of EseC and EseD in the catfish and 

zebrafish strains of E. ictaluri, more than twenty SNPs are found in each one of them. 

These SNPs can potentially make EseCD in the zebrafish strain function differently than 

their homologous proteins in the catfish strain. Since effectors can have various functions, 

it is very interesting to further investigate the way EseC and EseD work in the zebrafish 

strain of E. ictaluri. Accordingly, studies in E. tarda have shown that EseCD can be 

related to the autoagglutination property [29]. Thus, it would be very interesting to 

further investigate whether the SNPs in the eseCD genes are the reasons for the character 

of autoagglutination in the zebrafish strain of E. ictaluri. 

In addition to the differences in T3SS proteins, we also found more variations 

between the catfish and zebrafish strain of E. ictaluri in the T4SS. The ordering of these 

proteins in the zebrafish strain is the same as that of the catfish strain except for those 

unique proteins in each strain. However, most of the proteins in the putative T4SS from 

catfish strain are found with low identities with their homologous protein in the zebrafish 

strain. The exact role of T4SS in E. ictaluri is not yet clear. Which category this T4SS 
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belongs to, the conjugation system, the DNA uptake and release system or the effector 

injection system, remains in question. With the identification of the low overall gene 

identities and the unique putative T4SS genes in the zebrafish strain, a new world is open 

to be investigated. If the T4SS works as a conjugation system or the communication 

system with the surrounding cells, then the differences in these genes can be associated 

with the variations in the genes that are laterally transferred to the catfish and zebrafish 

strains of E. ictaluri. However, if this is the system that injects effectors into the host, 

then the differences we found may indicate the variations in the effectors, which can also 

affect the virulence of the strain due to the functional change of effectors. Further 

research is needed to confirm the exact function of this T4SS but the differences we 

found between the strains indicate a potential for significantly different effects of this 

system with  zebrafish and catfish strains of E. ictaluri.  

Few SNPs are located in the T6SS and the urease system. This possibly 

emphasizes the essentiality and accuracy of these systems. Studies have shown that  

T6SS genes are activated when the cell occupies a phagosome-like environment and it is 

required for virulence. The urease system in the catfish strain of E. ictaluri is required for 

intracellular replication and virulence by altering the pH in the phagolysosome [18,  

27, 30].  

In this study, many SNPs are observed in the genes that encode potential important 

virulence factors, including the fimbrial usher protein, the flagellar hook protein and 

ABC transporter proteins. Fimbriae are essential for bacterial adhesion and invasion to 

host cells and they have been studied in many bacteria species [31-33]. The structural 

changes in the fimbriae usher family protein can potential affect the biosynthesis of 
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fimbriae and thus lead to impaired ability to adhere to and invade host cells. The 

predicted changes in the structure of FlgE, which is the flagellar hook protein, indicated 

the potential influence in the motility. This is in accordance with the weaker motility in 

glucose motility deeps (GMD) [19]. 

The ABC transporter can be involved in the transportation of surface 

glycoconjugates [34]. Thus, the differences in the ABC transporter genes can possibly 

affect the export of certain glycans and may affect the surface structure of the cell. Since 

the surface structures are very important for host cell recognition, the SNPs in the ABC 

transporter proteins can be part of the reason for host specificity as well. 

To summarize, here we identified the putative T3SS, T4SS, T6SS and the urease 

system in zebrafish strain of E. ictaluri. The ordering of the genes in these systems are 

basically the same as those in catfish strain. However, relatively low levels of similarity 

due to a number of SNPs are found in esrA, eseCD and the T4SS genes. All of these may 

contribute to the host specificity and virulence of E. ictaluri. 

 

Literature Cited  

1. Galle M, Carpentier I, Beyaert R: Structure and function of the type III secretion 

system of Pseudomonas aeruginosa. Current Protein & Peptide Science 2012, 

13(8):831-842. 

 

2. Miyazaki J, Ba-Thein W, Kumao T, Akaza H, Hayashi H: Identification of a type 

III secretion system in uropathogenic Escherichia coli. FEMS Microbiol Lett 

2002, 212(2):221-228. 

 

3. Morita M, Yamamoto S, Hiyoshi H, Kodama T, Okura M, Arakawa E, Alam M, 

Ohnishi M, Izumiya H, Watanabe H: Horizontal gene transfer of a genetic island 

encoding a type III secretion system distributed in Vibrio cholerae. Microbiology 

and Immunology 2013, 57(5):334-339. 

 

 

107



 

4. Burr SE, Stuber K, Wahli T, Frey J: Evidence for a type III secretion system  

            in Aeromonas salmonicida subsp. salmonicida. J Bacteriol 2002, 184(21): 

            5966-5970. 

 

5. Hale TL, Oaks EV, Formal SB: Identification and antigenic characterization of 

virulence-associated, plasmid-coded proteins of Shigella spp. and enteroinvasive 

Escherichia coli. Infect Immun 1985, 50(3):620-629. 

 

6. Jarvis KG, Giron JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB: 

Enteropathogenic Escherichia coli contains a putative type III secretion system 

necessary for the export of proteins involved in attaching and effacing lesion 

formation. Proceedings of the National Academy of Sciences of the United States 

of America 1995, 92(17):7996-8000. 

 

7. Shea JE, Hensel M, Gleeson C, Holden DW: Identification of a virulence locus 

encoding a second type III secretion system in Salmonella typhimurium. 

Proceedings of the National Academy of Sciences 1996, 93(6):2593-2597. 

 

8. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, 

Najima M, Nakano M, Yamashita A et al: Genome sequence of Vibrio 

parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. 

Lancet 2003, 361(9359):743-749. 

 

9. Foultier B, Troisfontaines P, Müller S, Opperdoes FR, Cornelis GR: 

Characterization of the ysa pathogenicity locus in the chromosome of Yersinia 

enterocolitica and phylogeny analysis of type III secretion systems. J Mol Evol 

2002, 55(1):37-51. 

 

10. Zhou M, Guo Z, Duan Q, Hardwidge P, Zhu G: Escherichia coli type III secretion 

system 2: a new kind of T3SS? Veterinary Research 2014, 45(1):32. 

 

11. Mecsas JJ, Strauss EJ: Molecular mechanisms of bacterial virulence: type III 

secretion and pathogenicity islands. Emerging Infectious Diseases 1996, 2(4):270-

288. 

 

12. Coburn  B, Sekirov I, Finlay BB: Type III Secretion Systems and Disease. 

Clinical Microbiology Reviews 2007, 20(4):535-549. 

 

13. Waterman SR, Holden DW: Functions and effectors of the Salmonella 

pathogenicity island 2 type III secretion system. Cellular microbiology 2003, 

5(8):501-511. 

 

14. Thune RL, Fernandez DH, Benoit JL, Kelly-Smith M, Rogge ML, Booth NJ, 

Landry CA, Bologna RA: Signature-tagged mutagenesis of Edwardsiella ictaluri 

identifies virulence- related genes, including a Salmonella pathogenicity island 2 

class of type III secretion systems. Appl Environ Microb 2007, 73(24):7934-7946. 

108



 

 

15. Wallden K, Rivera-Calzada A, Waksman G: Type IV secretion systems: 

versatility and diversity in function. Cellular microbiology 2010, 12(9): 

            1203-1212. 

 

16. Zechner EL, Lang S, Schildbach JF: Assembly and mechanisms of bacterial type 

IV secretion machines, vol. 367; 2012. 

 

17. Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ: Identification of T6SS-

dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. 

Proceedings of the National Academy of Sciences of the United States of America 

2013, 110(7):2623-2628. 

 

18. Booth NJ, Beekman JB, Thune RL: Edwardsiella ictaluri encodes an acid-

activated urease that is required for intracellular replication in channel catfish 

(Ictalurus punctatus) macrophages. Appl Environ Microbiol 2009, 75(21):6712-

6720. 

 

19. Hawke JP, Kent M, Rogge M, Baumgartner W, Wiles J, Shelley J, Savolainen LC, 

Wagner R, Murray K, Peterson TS: Edwardsiellosis caused by Edwardsiella 

ictaluri in laboratory populations of Zebrafish Danio rerio. J Aquat Anim Health 

2013, 25(3):171-183. 

 

20. Chen L, Xiong Z, Sun L, Yang J, Jin Q: VFDB 2012 update: toward the genetic 

diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 

2012, 40(Database issue):D641-645. 

 

21. Yang J, Chen L, Sun L, Yu J, Jin Q: VFDB 2008 release: an enhanced web-based 

resource for comparative pathogenomics. Nucleic Acids Res 2008, 36(Database 

issue):D539-542. 

 

22. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q: VFDB: a reference database 

for bacterial virulence factors. Nucleic Acids Res 2005, 33(Database issue):D325-

328. 

 

23. Guex N, Peitsch MC, Schwede T: Automated comparative protein structure 

modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. 

Electrophoresis 2009, 30 Suppl 1:S162-173. 

 

24. Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a 

web-based environment for protein structure homology modelling. Bioinformatics 

2006, 22(2):195-201. 

 

25. Kelley LA, Sternberg MJ: Protein structure prediction on the Web: a case study 

using the Phyre server. Nature protocols 2009, 4(3):363-371. 

 

109



 

26. Rogge M: Expression of the Edwardsiella ictaluri type III secretion system and 

its relationship to the native plasmids. PhD dissertation. Louisiana State 

University. 2011. 

 

27. Rogge ML, Thune RL: Regulation of the Edwardsiella ictaluri type III secretion 

system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl 

Environ Microbiol 2011, 77(13):4293-4302. 

 

28. Okuda J, Kiriyama M, Suzaki E, Kataoka K, Nishibuchi M, Nakai T: 

Characterization of proteins secreted from a type III secretion system of 

Edwardsiella tarda and their roles in macrophage infection. Dis Aquat Organ 

2009, 84(2):115-121. 

 

29. Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY: Role of type III secretion in 

Edwardsiella tarda virulence. Microbiology (Reading, England) 2005, 

151(7):2301-2313. 

 

30. Miyata ST, Bachmann V, Pukatzki S: Type VI secretion system regulation as a 

consequence of evolutionary pressure. Journal of medical microbiology 2013, 

62(Pt 5):663-676. 

 

31. Li B, Zhao Y, Liu C, Chen Z, Zhou D: Molecular pathogenesis of Klebsiella 

pneumoniae. Future Microbiology 2014, 9(9):1071-1081. 

 

32. Segers ME, Lebeer S: Towards a better understanding of Lactobacillus 

rhamnosus GG--host interactions. Microbial cell factories 2014, 13 Suppl 1:S7. 

 

33. Kharseeva GG, Alieva AA: Adhesion of corynebacterium diphtheriae: the role of 

surface structures and formation mechanism. Zhurnal mikrobiologii, 

epidemiologii, i immunobiologii 2014(4):109-117. 

 

34. Cuthbertson  L, Kos V, Whitfield C: ABC transporters involved in export of cell 

surface glycoconjugates. Microbiology and Molecular Biology Reviews 2010, 

74(3):341-362. 

 

 

 

 

 

 

 

 

 

 

110



 

CHAPTER V. ATTENUATION OF THE ZEBRAFISH STRAIN OF 

EDWARDSIELLA ICTALURI BY MUTATING THE UREG AND 

ESRC GENES 
 

Introduction 

The zebrafish Danio rerio is a small tropical freshwater fish in the minnow family 

(Cyprinidae) that has become an important vertebrate used in biomedical research, 

including studies in genetics, developmental biology, human diseases and pharmacology 

[1-8]. The characteristics of zebrafish that make them a pre-eminent model for these 

studies are their small size, regenerative abilities, optical transparency at early stages and 

high genetic similarity to human beings [6, 8, 9]. Given their key roles in biomedical 

research as well as broad acceptance in the tropical aquarium pet fish trade, diseases in 

zebrafish can lead to significant economic losses. Thus, disease control in zebrafish 

becomes quite important in both highly inbred genetic strains or wild-type pond raised 

fish for the aquarium trade.  

Prior to 2011, acute bacterial disease was not known to cause mortality in 

laboratory colonies or pond populations of zebrafish. Edwardsiella ictaluri, the causative 

agent of enteric septicemia of catfish (ESC) [10], was believed to be very host specific 

for catfish species until 2011 when the bacterium was diagnosed as the cause of 

significant mortality in laboratory populations of zebrafish from four states in the U.S., 

Louisiana, Massachusetts, Pennsylvania and Florida [11].  

Stress is an important factor that can predispose fish to health problems resulting 

from loss of homeostatic balance with their environment. Under prolonged or repeated 

stress fish can succumb to opportunistic infections.  [12, 13]. Thus, maintaining a stable 

and favorable environment for fish is essential for preventing disease in fish. What’s 
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more important is avoidance of potential pathogens by the practice of good biosecurity in 

the aquaculture facility. One of the common sources of pathogenic bacteria is newly 

introduced fish into a facility. Thus, quarantine should be practiced as a routine measure 

at facilities to prevent bacteria being introduced into the main facility by new 

introductions. Another way to prevent disease outbreak is the “eggs only” methods where 

only the disinfected eggs are brought to the facility. For biosecurity, any zebrafish that is 

infected with E. ictaluri should be euthanized to prevent further outbreaks in the 

zebrafish populations. In cases where highly valuable populations of zebrafish in research 

laboratories were affected, antibiotic medicated feeds were used to try to control the 

disease leading to variable results. In many cases the fish were euthanized and the 

systems depopulated and disinfected. It has been shown that the zebrafish strain of E. 

ictaluri is susceptible to Romet®, oxytetracycline, florfenicol and enrofloxacin [10].  

Further research is needed to find the best way to prevent E. ictaluri infection in zebrafish 

populations. We propose vaccination will be an important method of disease prevention 

in zebrafish populations in the future.  

The zebrafish strain shares many characteristics with the typical catfish strain, 

including most of the genome sequences (see chapter II), and biochemical phenotype 

with the exception of being positive in the citrate utilization test. Differences include: a 

different plasmid profile, lack of LPS recognition by Mab Ed9, weak or lack of motility 

and autoagglutination in broth [11]. Our thought, however, is that zebrafish strains have 

surface antigens that are different from the catfish strain and therefore a zebrafish strain 

must be used as the parent strain in the design of a live attenuated vaccine.  Therefore, in 

order to control edwardsiellosis in zebrafish populations, we explored the development of 
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live attenuated vaccines that can be applied by immersion. The vaccines were created by 

mutating genes that are homologous to known virulence factors of the catfish strain in the 

zebrafish strain of E. ictaluri. 

The catfish strain of E. ictaluri, like most gram-negative bacteria in the family 

Enterobacteriaceae, encodes a type III secretion system (T3SS) which transfers virulence 

factors to the host, thus is very important in terms of pathogenesis. Different subsets of 

proteins work corporately to contribute to the pathogenesis. Some are the secreted 

proteins, known as effectors and some function as structural proteins to form the 

translocation apparatus or the pore forming structure to facilitate effectors being injected 

into the host cells [14, 15]. All of these proteins are controlled by by the regulators which 

are usually encoded in the same gene cluster. In E. ictaluri, specific regulators, named 

EsrA, EsrB and EsrC, regulate this T3SS. Mutagenesis studies have shown that an esrC 

mutant is able to replicate inside the host cell, but is avirulent, whereas esrA and esrB 

mutants cannot replicate inside the macrophage and are also avirulent [16]. In addition, 

esrC also functions to co-regulate another protein EvpC, which is part of the type VI 

secretion system [16]. Previous studies in channel catfish with the catfish strain combined 

with the high homology at the genome level with the zebrafish strain provide us with a 

clue that a mutation in the zebrafish strain esrC might be a good vaccine candidate. To 

test that, we mutated esrC gene in zebrafish strain and examined the virulence of the 

mutant in zebrafish.  

Another important system in facultative intracellular bacteria to facilitate bacterial 

survival in the host is the urease system. Urease is the first enzyme in the world that was 

crystallized and was characterized as a metalloenzyme that contains nickel [17, 18]. This 
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enzyme is a known virulence factor in many pathogenic bacteria [19-23] and among 

those, the urease system in Helicobacter pylori has been the most studied. In order to 

survive in the acidic environment of the phagolysosome in the macrophage, bacteria can 

import urea into the cell and by the action of the urease enzyme, urea is hydrolyzed to 

ammonia and carbamic acid. The carbamic acid can spontaneously decompose into 

carbonic acid and another ammonia molecule [24]. Since ammonia is a basic molecule, 

this causes an increase the pH of the environment and a gain in bioenergetics for growth. 

Bacteria like H. pylori can activate their urease system to increase the pH in the 

cytoplasm and buffer the pH in the periplasm, thus survive in the acidic environment [25, 

26]. In the catfish strain of E. ictaluri, it has been proven that bacteria can alter the pH of 

the phagolysosome in head kidney derived macrophages by the urease system along with 

arginine decarboxylase. This modulation of pH is required for intracellular replication of 

the bacterial cells [27, 28]. Moreover, generating more ammonia can lead to severe 

cytotoxic effects in the surrounding epithelium cells [29, 30]. Studies have shown that 

urease in the catfish strain of E. ictaluri is required for intracellular replication as well as 

virulence.  

Accessory proteins are required for in vivo activation of the urease system [26]. 

The catfish strain of E. ictaluri has a gene cluster that encodes a urease system which 

includes UreA, UreB, UreC, UreE, UreF, UreG, UreD, and UreI, followed by an 

ammonium transporter. Of those, UreA, UreB and UreC are primary enzymatic subunits 

that form the apoenzyme while UreD, UreE, UreF and UreG are the accessary proteins. 

Mutation in the ureG gene of the catfish strain can reduce its virulence significantly in 

the channel catfish and make it avirulent by immersion challenge [31].  
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Based on the knowledge of the functions of the virulence factors in the catfish 

strain of E. ictaluri, and the close relationship between the catfish and zebrafish strains, 

we decided to focus on the esrC and ureG genes to attenuate the zebrafish strain of E. 

ictaluri for developing potential vaccines to prevent edwardsiellosis in zebrafish. 

Materials and Methods 

Bacterial strains, plasmids, media and reagents. Bacterial strains and plasmids used in 

this study are listed in Table 5.1. All E. coli strains were grown in Luria-Bertani (LB) 

broth or on LB plates at 37°C. If necessary, antibiotics were added at the following 

concentrations: ampicillin (Amp) 200 μg ml-1, colistin (Col) at 10 μg ml-1. 5% sucrose 

was used when needed. The two E. coli strains used in this study were CC118 λpir for 

maintaining plasmids and SM10 λpir for conjugation. For proper growth, E. ictaluri  

was cultured in Bacto brain-heart infusion (BHI) broth at 28°C. Plasmids were isolated 

from the bacterial cultures using QIA Spin Miniprep Kit (Qiagen Inc., Valencia, CA.) 

and were further purified by QIAGEN MinElute Gel Extraction Kit (Qiagen Inc., 

Valencia, CA.).  

Table 5.1 Bacterial strains and plasmids used in Chapter V. 

Strains or plasmids Description Source 

Bacterial strains   

E.coli CC118 λ pir ∆(ara-leu) araD ∆lacX74 galE galK phoA20 

thi-1 rpsE rpoB argE (Am) recA1 λpir 

lysogen 

[31] 

E. coli SM10 λ pir thi1 thr1 leuB supE44 tonA21 lacY1 recA-

::RP4-2- Tc::Mu Kmr λ::pir 

[32] 

Edwardsiella ictaluri 

LADL 11-100 

Zebrafish strain of E. ictaluri isolated from a 

diseased zebrafish from a natural outbreak at 

LSU in 2011 

LSU Louisiana 

Aquatic Diagnostic 

Laboratory 

Edwardsiella ictaluri 

LADL 12-140 

Zebrafish strain of E. ictaluri isolated from a 

diseased zebrafish from University of 

Massachusetts Amherst 

LSU Louisiana 

Aquatic Diagnostic 

Laboratory 
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Table 5.1-continued. 

Strains or plasmids Description Source 

∆esrC 11-100 with 70-402 bp of esrC deleted This study 

∆ureG 11-100 with 153-495 bp of ureG deleted This study 

Plasmids   

pRE107 Plasmid suicide vector for allelic exchange, 

pGP704 derivative 

[33] 

pRE::∆esrC pRE107 with ∆esrC inserted at Kpn I and Xba I This study 

   

pRE::∆ureG pRE107 with ∆ureG inserted at Sal I and Sac I This study 

   

pRE::ureG pRE107 with ureG inserted at Sal I and Sac I This study 

pBBR1-MCS4 Broad-host-range cloning vector  [34] 

pBBR::esrC pBBR1-MCS4 with esrC inserted at Xba I and 

Xho I 

This study 

Specific pathogen free (SPF) Zebrafish Danio rerio. Zebrafish were obtained from 

sources with no history of E. ictaluri outbreaks. After introduction of the fish to the 

laboratory, a complete necropsy was performed on a sample of fish insure they were E. 

ictaluri negative. For verification purposes, a sample (10 fish) of the SPF fish were 

challenged with wild type E. ictaluri to confirm that they were susceptible to E. ictaluri 

infection. The live fish were separated into groups of 10, then placed in 20 L tanks with 

free flowing water, while maintained at a constant temperature of 26 ± 2 °C. All fish were 

fed at 2% of their body weight daily and acclimated for 2 weeks before starting the 

experiment. 

SPF channel catfish. Channel catfish egg masses were obtained from a facility with no 

ESC outbreak history. The egg masses were hatched in a closed recirculating aquaculture 

system at the specific-pathogen-free (SPF) aquatic laboratory at the LSU School of 

Veterinary Medicine after disinfected with 100 ppm free iodine. Fish were fed at a rate of 

2-3% of their body weight twice a week before the challenge and 1% of their body 
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weight once a day after the challenge. All catfish were between 15-20 g when exposed to 

E. ictaluri LADL11-100. 

Generation and verification of E. ictaluri 11-100 mutants. Genomic DNA was isolated 

from the zebrafish strain of E. ictaluri using High Pure PCR Template Preparation Kit 

(Roche Applied Science, Indianapolis, IN). Primers P1 and P2 were used to amplify the 

whole ureG or esrC gene together with upstream and downstream sequences of the 

respective gene for recombination. The PCR products were sequenced for confirmation 

before manipulations. Subsequently, P3 and P6 primers were used to amplify upstream 

sequences for homologous recombination and P4 and P5 primers for downstream 

sequences. Both PCR products were purified, digested with    Xba I or EcoR I and then 

ligated together resulting in one DNA piece with the gene of interest deleted. These 

ligation products were used as templates for PCR to obtain more replicates for further 

digestion and ligation. The PCR products were digested with restriction enzymes Sal I 

and Sac I accordingly, for constructing the ureG mutant and Kpn I and Xba I for 

constructing the esrC mutant. Plasmid pRE107 was extracted from E. coli cells and 

digested with either set of enzymes concurrently. All digested products were purified and 

the insertional pieces were ligated to previously digested pRE107 to create pRE::∆ureG 

and pRE::∆esrC. These plasmids were electroporated into E.coli CC118 λ pir for 

maintaining the plasmids and the insertional sequences were confirmed by sequencing 

before transforming these plasmids to E. coli SM10 λ pir cells for conjugation. 

Mid-log phase of E. coli SM10 λ pir cells carrying pRE::∆ureG or pRE::∆esrC and 

the zebrafish strain of E. ictaluri LADL11-100 were mixed and filtered through a 

metrical membrane disc filter (Pall corporation, Ann Arbor, MI). After overnight 

117



 

incubation at 28 °C, cells were harvested from the filter and were then plated on LB 

plates with Man, Col and Amp added to stimulate the plasmids entering E. ictaluri cells 

and promotion of a single crossover event. Selected cells were then passed on LB with 

Col plates and LB with Col and sucrose plates to facilitate the second crossover. Finally, 

the colonies were selected and tested by PCR and sequencing to confirm the constructs of 

the mutants. 

Table 5.2 Oligonucleotide sequences used for mutagenesis of ureG and esrC genes in the 

zebrafish strain of E. ictaluri.  

Primer Primer 

type 

Sequences Source 

ureG sF P1 5’-CGACAGCATCTTATCTTGCCTGAC-3’ This 

study ureG sR P2 5’-CATACCTCTCGGGCTAACTTCCA-3’ 

ureG fF P3 5’-

ATATATGTCGACCGAGAGTGCCGATGCGGAAT-3’ 

ureG fR P4 5’-

ATATATGAGCTCCCTTAAAGCAGGCGGCGAGT-3’ 

ureG mF P5 5’-

ATATATTCTAGATGGAGAGTGACACCAAGGTAG-

3’ 

ureG 

mR 

P6 5’-

ATATATTCTAGACCTGCTTAGCATCTTCAGTGGT-

3’ 

esrC sF P1 5’-GCATCAGCCTCACTACGCC-3’ 

esrC sR P2 5’-CCAAAGGCAGCGGGTAT-3’ 

esrC fF P3 5’-TATATAGGTACCCGTCTGCAACGATACGCT-3’ [16] 

esrC fR P4 5’-TATATATCTAGACCATTGTTGATGAGGGCC-3’ 

esrC mF P5 5’-TATATAGAATTCCACTTCAGTCAGTCGCCA-3’ 

esrC mR P6 5’-TATATAGAATTCCAGCCTGAGCATGGTTTC-3’ 

Primer type P1 and P2 are designed for verification of constructs. Sequences ‘GTCGAC’, 

‘GAGCTC’, ‘TCTAGA’, ‘GGTACC’ and ‘GAATTC’ indicate Sal I, Sac I, Xba I, Kpn I 

and EcoR I site respectively. Underlined sequences are linkers incorporated into the 

primers used for cloning. 
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Figure 5.1 Schematic descriptions of the construction of ∆esrC and ∆ureG. 

Complementation of ∆esrC and ∆ureG. To complement ∆esrC, wild type esrC gene 

from the zebrafish strain and 214 bp upstream were amplified to insure the inclusion of 

the promoter of esrC.  Primers used for amplification were synthesized based on earlier 

studies of the catfish strain. Forward primer sequences is 5’-

TTTAATTTCTAGAATCGACTGCCTCAATGACGC-3’ and reverse primer is 5’-

TTTAATTCTCGAGACCGTGACCATGTTTAGGCG-3' [16]. This PCR product, as 

well as the cloning vector pBBR1-MCS4, were then digested with Xba I and Xho I before 

ligation to create pBBR::esrC. This plasmid was further transformed into ∆esrC by 

conjugation and the existence of the plasmid confirmed by observing the third plasmid in 

a gel. 
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Primers ureG fF and ureG fR were used to amplify the ureG gene. The PCR 

product was digested with Sal I and Sac I and inserted into plasmid pRE107 that had been 

previously digested with the same enzymes. The resulting plasmid, pRE::ureG, was used 

for conjugation and through homologous recombination, ∆ureG is reverted back to the 

wildtype. The final construct was confirmed by PCR and sequencing afterwards. Detailed 

steps are the same as we described earlier in “Generation and verification of E. ictaluri 

mutants” section. 

LD50 assays for two zebrafish strains in zebrafish and channel catfish. Zebrafish 

strain LADL 11-100 and LADL 12-140 were grown in BHI broth for 18 hours at 28 °C 

and cells were enumerated by making serial dilutions of the original cultures and 

counting colonies on blood agar (BA) plates using the drop plate method.  For 

experimental challenge in catfish, 8ml of original culture was diluted in 72 ml  

1*PBS for 8 times to make 9 different dilutions of 80 ml each. The water level in the  

tank was lowered to 4L and 80ml of broth dilutions were poured into each tank. Catfish 

were immersed for 2 hours with aeration maintained. Mortalities were recorded daily for 

21 days. 

For challenge in zebrafish, the same 18-hour E. ictaluri culture was serially diluted 

1:10 with 900ml tank water in 1.9 L buckets to achieve 9 different dilutions of this 

culture including the original culture from approximately 1 x 109 CFU/ml to 1 x 101 

CFU/ml. Ten zebrafish from each tank were immersed in each bucket. After 2 hours, the 

water level in the tank was lowered to 4 L and the broth dilutions and zebrafish were 

poured back to each tank. Mortalities were recorded for 21 days. 
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LD50 assays of ∆esrC and ∆ureG in zebrafish. Broth cultures were inoculated, 

incubated for 18 hours at 28 °C and a series of 1:10 dilutions of the broth were prepared 

in 1.9 L buckets. Nine different concentrations of each strain including the undiluted 

broth, were included in the experimental design.  Cells were enumerated by counting 

colonies on BA by the drop plate method with three replicated drops taken from each 

dilution. Ten fish were then transferred to each bucket for immersion for 2 hours with 

aeration maintained throughout the exposure. Following the challenge, fish were 

transferred to 20 liter tanks with flow through water conditions. Mortalities were 

recorded daily for 21 days and brain samples were collected from all dead fish to confirm 

E. ictaluri infection. 

Experimental challenge with ureG or esrC mutant, their complemented strain and 

wild type E. ictaluri in zebrafish Denio rerio. To assess the attenuated virulence of both 

ureG and esrC mutants and to confirm attenuation was the result of the targeted 

mutations and not accidental mutations in the cell, five strains, including the wild type 

strain, both mutants, and their complemented strains were used to challenge zebrafish. 

Cells were grown in BHI broth for 18 hours at 28°C. Based on the LD50 of the wild type 

strain, 2 ml of each culture was added to 998 ml tank water for each group of 10 fish. 

There were 4 replicate tanks for each challenge with each bacterial strain. Mortalities 

were recorded for 21 days. 

Results 

Construction of esrC and ureG mutants. Both mutants, ∆esrC and ∆ureG, were 

achieved by allelic exchange. In ∆esrC, 333 bp internal sequences out of 693 bp were 

removed from wildtype esrC gene. This deleted region was the same region that was 
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removed previously in the catfish strain resulting in loss of virulence [16]. Previous 

studies indicate that the deletion of these DNA sequences can remove amino acid 101-

211 of EsrC which covers at least one of the helix-turn-helix domain and most of the 

other helix-turn-helix domain, so this mutation can significantly reduce the virulence of 

the catfish E. ictaluri strain [16, 36]. In ∆ureG, 339 bp out of 630 bp were removed from 

wild type ureG gene. Removal of amino acids 152-264 eliminate part of the potential 

DNA-binding domain. 

The zebrafish strains LADL12-140 and LADL 11-100 are virulent in zebrafish but 

not in channel catfish by immersion exposure. The number of bacterial cells was 

enumerated by making a series of dilutions of the BHI broth culture, plating on blood 

agar plates by the drop plate method, and counting colonies following overnight culture 

at 28°C. The original concentrations of LADL 12-140 and LADL 11-100 in the broth 

culture were 4.3 x 109 CFU/ml and 1.4 x 109 CFU/ml, respectively. Death was first 

observed on the sixth day post challenge. Sixteen days after challenge, 100% mortality 

was observed from three groups that were treated with highest dose of bacteria. The 

cumulative mortalities for all groups are shown in figure 5.2. In contrast, there was no 

death for a 21-day period post challenge in the catfish group even including the group 

that was challenged with the undiluted overnight bacterial culture (see Figure 5.3). 

Zebrafish strain esrC and ureG mutants are attenuated by immersion exposure in 

zebrafish. The original concentrations of bacteria in overnight BHI broth cultures were 

determined to be 1.7 x 109 CFU/ml for ∆esrC and 3.8 x 109 CFU/ml for ∆ureG. All tanks 

were checked daily post challenge for mortalities but no zebrafish from these groups died 

during the 21-day challenge period. Data are shown in figure 5.4 and 5.5. 
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Figure 5.2 Cumulative mortality of zebrafish challenged with wild type zebrafish strain 

of E. ictaluri.   
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Figure 5.3 Cumulative mortality of channel catfish challenged with wild type zebrafish 

strain of E. ictaluri. 
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Figure 5.4 Cumulative mortality of zebrafish challenged with ∆esrC by immersion. 
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 Figure 5.5 Cumulative mortality of zebrafish challenged with ∆ureG by immersion. 

Attenuation of wild type E. ictaluri is due to the mutation in ureG or esrC gene. 

Zebrafish were challenged with the complemented strain of ureG and esrC mutants. Data 

are shown in figures 5.6 and 5.7.  
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Figure 5.6 Cumulative mortality of zebrafish challenged with ∆ureG or wild type            

E. ictaluri by immersion. 
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Figure 5.7 Cumulative mortality of zebrafish challenged with ∆esrC or wild type              

E. ictaluri by immersion. 

Discussion 

In 2011, strains of E. ictaluri were isolated from laboratory populations of 

zebrafish and characterized as having unique characteristics allowing them to be 
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differentiated from catfish strains of the pathogen.  Multiple cases were reported, but this 

specific E. ictaluri strain was only isolated from zebrafish [11] and little is known about 

whether this strain infects zebrafish specifically. Therefore, to test the host specificity of 

E. ictaluri strains, the first step was to challenge channel catfish with the zebrafish strain 

of E. ictaluri to assess relative susceptibility. Research had previously shown that the 

zebrafish is, susceptible to infection by injection with catfish strain LADL 93-146 but 

somewhat resistant to immersion challenge with the same strain [37]. In this study, LD50 

tests are performed to measure the virulence levels and the results indicate that channel 

catfish juveniles are resistant to this zebrafish strain by immersion. Since immersion 

more closely mimics the natural infection, we feel this is the proper method to assess host 

specificity. Catfish can survive even when treated by the highest dose of zebrafish strain 

of E. ictaluri. The specific reason for the host specificity is still unknown but could be 

related to the variations in the secretion systems or the changes in LPS biosynthesis 

proteins. It could also be related to minor differences in the genome that encode virulence 

factors for host adaptation. Thus, genome sequencing was applied and the possible 

mechanisms were described in earlier chapters.  

Previous study of the urease system in Klebsiella aerogenes indicated that UreG is 

essential for the assembly of urease [38]. Studies have shown that the ureG gene is 

required for intracellular replication by neutralizing the pH in the macrophage 

phagosome and the macrophage arginase is the source of urea [31]. In our study, the 

zebrafish strain of E. ictaluri is successfully mutated in ureG gene with amino acid 151 to 

264 deleted. The resulting ureG mutant is avirulent in zebrafish by immersion. This result 

is in accordance with previously reported result on catfish strain that ureG gene is an 
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important virulence factor in catfish strain of E. ictaluri and mutation in ureG gene can 

attenuate the wildtype strain. This result indicates ∆ureG can be a potential good vaccine 

candidate for preventing E. ictaluri infection in zebrafish. In addition, knowing that ureG 

mutant of catfish strain does not replicate intracellularly provides us a hint that ∆ureG 

from the zebrafish strain of E. ictaluri can be a safe vaccine candidate for zebrafish [31]. 

Another important factor in catfish strain is EsrC and a blast search for EsrC 

sequences returns many AraC family transcriptional regulators which are a common type 

of regulator in bacteria. Studies have shown that EsrC can regulate type III secretion 

system (T3SS) and the expression of EvpC, a type VI secretion system protein, in both E. 

ictaluri and E. tarda [36, 39]. With the knowledge that T3SS and EvpC are important 

virulence factors, and EsrC can regulate both T3SS and EvpC to affect virulence, we 

hypothesized that that mutation in esrC can reduce the virulence of our zebrafish strain of 

E. ictaluri. Our study on the LD50 of the ∆esrC proved this hypothesis since this strain is 

avirulent by immersion. In the catfish strain, ∆esrC is also avirulent and it can actually 

replicate inside of the host cells [16]. Since our strain has high overall DNA homology to 

the catfish strain,  it is possible that our ∆esrC also can replicate in the host. If that is the 

case, this mutant can be considered as a vaccine candidate that may have a prolonged 

effect of protection to the host. This would make it superior to the urease mutant.  

To develop a vaccine, a balance between safety and efficacy is always important. 

Further study is needed to test ∆esrC and ∆ureG for both safety and efficacy as vaccine 

candidates.   
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CHAPTER VI.  CONCLUSION 

In this study, we have shown that the channel catfish is not susceptible to the 

zebrafish strain of E. ictaluri by immersion challenge. Comparative genomic studies 

indicate that the identities between the zebrafish and catfish strain genomes, for the most 

part, are above 95%. Most of the genes in the type III secretion system, type VI secretion 

system and the urease system in catfish strain are virtually identical to their homologous 

genes in the zebrafish strain. However, the zebrafish strain contains an O-antigen 

biosynthesis cluster that differs significantly from that of the catfish strain with unique 

genes identified. Our observations of different banding patterns for the LPS samples 

purified from the catfish and zebrafish strains of E. ictaluri further support this genomic 

finding that there are major differences between the catfish and zebrafish strains in the 

LPS. In addition, the putative type IV secretion system in the catfish and zebrafish strains 

of E. ictaluri share very low similarities.  

Vaccination is considered as a potential method for controlling of E. ictaluri 

infection in zebrafish. Based on work with ESC in catfish we believe a live attenuated 

strain administered by immersion will be an appropriate and effective vaccine. The 

wildtype zebrafish strain is attenuated by mutating either the ureG or esrC gene. 

Challenge results indicate that both of the mutants are fully attenuated and can be 

potential vaccine candidates. 

E. ictaluri is a gram negative bacterium that causes enteric septicemia of catfish 

(ESC). For years, all of the E. ictaluri strains have been considered a homogeneous group 

[1]. However, in 2011, Hawke et al. [2] isolated E. ictaluri from moribund zebrafish 

Danio rerio and found that this strain is different from the typical catfish strain in many 
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respects, including weaker motility, different plasmid profiles, different API codes and 

the absence of monoclonal antibody recognition of lipopolysaccharides [2]. Thus it is 

interesting to investigate the differences between the typical catfish and newly identified 

zebrafish strain to elucidate the variation in terms of pathogenesis. 

In this study, we proved that in addition to the previously described differences 

between the catfish and the zebrafish strain mentioned above, the E. ictaluri strain is also 

host specific by immersion since the zebrafish strain fails to cause mortalities in channel 

catfish even when a high dose of bacteria are given to the fish by immersion. This finding 

led to two research directions. One is the study on the genome level to look for the 

potential reason(s) for host specificity of E. ictaluri and the other direction is to create a 

potential vaccine to protect zebrafish against this unique zebrafish strain of E. ictaluri. 

For the genomic level analysis, we mainly focused on the LPS, type III secretion 

system (T3SS), type IV secretion system (T4SS), type VI secretion system (T6SS) and 

the urease system.  For each of these systems, the overall structure of the gene cluster was 

checked first to find out whether there are differences in gene arrangement and if there 

were any unique genes in the catfish and zebrafish strain of E. ictaluri. Second, each of 

these putative clusters in the zebrafish strain was checked further for any differences at 

the DNA and protein levels. The non-synonymous, single-nucleotide polymorphisms 

(SNPs) of the genes in these systems were collected from the full SNP list which 

included the synonymous SNPs as well as the SNPs that are not in the coding regions. 

These non-synonymous SNPs can change the amino acid sequences of the proteins and 

potentially affect the structure and the function of the protein. There are many examples 

that the SNPs in human genome can lead to diseases in humans [3-5]. 
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Lipopolysaccharides are a major ligand for host cell recognition and can bind to 

host cell Toll-like receptor 4 (TLR4)–MD-2 complex, initiating inflammatory responses 

in the host [6-8].  Thus the variations in the LPS can possibly cause the bacterial cells to 

become highly attenuated [9-11]. In this study, we found that the core and the lipid A 

related genes in the catfish strain LADL93-146 and zebrafish strain, LADL11-100 and 

LADL11-194, are in the same order and are virtually identical with none or few SNPs. In 

contrast, the O-antigen biosynthesis cluster varies significantly. The gene arrangements in 

the catfish and zebrafish strains are different and the identities of the genes in this cluster 

are low in comparison with the rest of the genome. Interestingly, the O-antigen cluster in 

the zebrafish strain is virtually identical to that of E. piscicida C07-087, with overall 

similarity >95%. There are three genes, wzx, wzy and weiD, which encode a flippase, a 

polymerase and a glycosyltransferase, which are found in both the catfish and zebrafish 

strain O-antigen cluster with low similarities. The identities of these three proteins 

between the catfish and zebrafish strain of E. ictaluri range from 26% to 48%. The 

catfish strain and the zebrafish strains both have unique genes in their O-antigen clusters 

and these genes are primarily glycosyltransferase-encoding genes. All these differences 

in the LPS biosynthesis related genes can possibly alter the structure of the LPS. Our 

findings that LPS samples from the catfish and zebrafish strains of E. ictaluri exhibit 

different banding patterns on SDS-PAGE further support this theory. 

The secretion systems are the systems used by the bacterial cell to communicate 

with the host cells, the sister cells or the extracellular milieu. The type III secretion 

system (T3SS) in the catfish strain of E. ictaluri has been shown to be an important 

virulence factor [12-14]. Here we find that the most of the genes in the T3SS between 
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catfish and zebrafish strains of E. ictaluri are highly similar and only the esrA, eseC and 

eseD genes contain more than 20 SNPs. The putative type IV secretion system, on the 

other hand, varies significantly between the catfish strain and the zebrafish strain of E. 

ictaluri. Phylogenetic trees of the putative T4SS proteins show that most of the proteins 

in T4SS of the zebrafish and catfish strain of E. ictaluri are not close evolutionally. 

Whether the T4SS in the catfish strain and zebrafish strain actually have similar or 

different functions remains in question [15]. There are no significant variations in the 

type VI secretion system and the urease system between the two strains, only few SNPs 

were found. 

To prevent edwardsiellosis in zebrafish populations, I propose to design a vaccine 

that can be administered by immersion. Two genes that were chosen to mutate in two 

different strains of the wild type bacterium LADL11-100 are esrA and ureG.  EsrA is a 

regulator in the type III secretion system of the catfish strain and it regulates the 

expression of the T3SS as well as T6SS [13]. Since mutation of esrA gene can fully 

attenuate the catfish strain and esrA gene in zebrafish strain is identical to that of the 

catfish strain, we feel this is a good candidate.  The esrA gene in the zebrafish strain 

LADL11-10 is in-frame deleted and our data suggest that the esrA mutant of the zebrafish 

strain is avirulent in zebrafish by immersion. The other mutant constructed in this study is 

the ureG mutant. This gene is part of the urease system that works to increase the pH of 

the phagosome and facilitates bacterial replication intracellularly [16, 17]. Our study has 

shown that ureG mutant can also attenuate the zebrafish strain in a similar fashion as the 

ureG mutant of the catfish strain did in catfish [17]. Further research is needed to test the  

 

135



 

ureG and esrC mutants in zebrafish to check for the relative protection when applied as 

immersion vaccines.  

To summarize, the zebrafish strain of E. ictaluri is characterized at the genome 

level. The most differences are found in the lipopolysaccharide O-antigen biosynthesis 

cluster and these differences on the DNA level is supported by the observation of the 

different banding pattern of these LPS samples. Second, the important secretion systems 

are examined and the type IV secretion system differs significantly from the catfish strain 

to the zebrafish strain. This secretion system can have various functions and the exact 

function in the catfish and zebrafish strains may vary due to the very low level of 

similarities. Other systems between the catfish and the zebrafish strain of E. ictaluri have 

very high identities. Certain type III secretion system protein encoding genes are missing 

on the plasmids as well as in the genome of the zebrafish strain. Meanwhile, three of the 

T3SS proteins actually contain many SNPs. In addition, we also constructed the ureG and 

esrC mutant and both of them are fully attenuated by immersion in zebrafish, indicating 

their potential function as vaccine candidates against edwardsiellosis in zebrafish 

populations.  

Our study provides clues for illuminating the mechanism of the host specificity of 

E. ictaluri. Future studies can focus on the variations we found in the LPS related genes 

and genes in type III and type IV secretion systems. Lipopolysaccharide as the outer 

structure of the bacterial cell can play a vital role in terms of pathogenesis, thus it is very 

interesting to further examine two LPS samples from the catfish and zebrafish strain of E. 

ictaluri. Structural analysis (chemical analysis) can be done to observe the structures of 

both LPS samples. Meanwhile, more work is needed to identify the function of the genes 

136



 

in the O antigen biosynthesis gene cluster that vary between catfish and zebrafish strain 

of E. ictaluri. Combining the results from the chemical and molecular biological analyses 

will help us clarify the mechanism of the host specificity of E. ictaluri.  

In addition, we constructed two mutants, the esrC and ureG mutants, and both 

mutants proved to be fully attenuated in zebrafish. For the development of the vaccine, 

the complemented strain of the esrC and ureG mutants needs to be tested in zebrafish to 

make sure they regain virulence. Also, a vaccine trial is required to calculate the relative 

percentage of survival and confirm the protectiveness of these vaccine candidates. Many 

farms and facilities in U.S. need a vaccine against edwardsiellosis of zebrafish. Once 

these mutants are proved to be protective for zebrafish, they can be widely used in 

practice immediately. 

 

Literature Cited 

1. Plumb JA, Klesius P: An assessment of the antigenic homogeneity of 

Edwardsiella ictaluri using monoclonal antibody. Journal of Fish Diseases 1988, 

11(6):499-509. 

 

2. Hawke JP, Kent M, Rogge M, Baumgartner W, Wiles J, Shelley J, Savolainen LC, 

Wagner R, Murray K, Peterson TS: Edwardsiellosis caused by Edwardsiella 

ictaluri in laboratory populations of Zebrafish Danio rerio. J Aquat Anim Health 

2013, 25(3):171-183. 

 

3. Dryja TP, McGee TL, Hahn LB, Cowley GS, Olsson JE, Reichel E, Sandberg 

MA, Berson EL: Mutations within the rhodopsin gene in patients with autosomal 

dominant retinitis pigmentosa. New England Journal of Medicine 1990, 

323(19):1302-1307. 

 

4. Barroso I, Gurnell M, Crowley VEF, Agostini M, Schwabe JW, Soos MA, 

Maslen GL, Williams TDM, Lewis H, Schafer AJ et al: Dominant negative 

mutations in human PPARγ associated with severe insulin resistance, diabetes 

mellitus and hypertension. Nature 1999, 402(6764):880-883. 

 

137



 

5. Bonnardeaux A, Davies E, Jeunemaitre X, Féry I, Charru A, Clauser E, Tiret L, 

Cambien F, Corvol P, Soubrier F: Angiotensin II type 1 receptor gene 

polymorphisms in human essential hypertension. Hypertension 1994, 24(1):63-69. 

 

6. Park BS, Lee J-O: Recognition of lipopolysaccharide pattern by TLR4 complexes. 

Exp Mol Med 2013, 45:e66. 

 

7. Alexander C, Rietschel ET: Bacterial lipopolysaccharides and innate immunity. 

Journal of endotoxin research 2001, 7(3):167-202. 

 

8. Wright S, Ramos R, Tobias P, Ulevitch R, Mathison J: CD14, a receptor for 

complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990, 

249(4975):1431-1433. 

 

9. Murray GL, Srikram A, Henry R, Hartskeerl RA, Sermswan RW, Adler B: 

Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence. 

Mol Microbiol 2010, 78(3):701-709. 

 

10. Bender JK, Wille T, Blank K, Lange A, Gerlach RG: LPS structure and PhoQ 

activity are important for Salmonella Typhimurium virulence in the Galleria 

mellonella infection model [corrected]. PLoS One 2013, 8(8):e73287. 

 

11. Kintz E, Scarff JM, DiGiandomenico A, Goldberg JB: Lipopolysaccharide O-

antigen chain length regulation in Pseudomonas aeruginosa serogroup O11 strain 

PA103. J Bacteriol 2008, 190(8):2709-2716. 

 

12. Rogge M: Expression of the Edwardsiella ictaluri type III secretion system and 

its relationship to the native plasmids. Louisiana state university 2011. 

 

13. Rogge ML, Thune RL: Regulation of the Edwardsiella ictaluri type III secretion 

system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl 

Environ Microbiol 2011, 77(13):4293-4302. 

 

14. Zhao LJ, Lu JF, Nie P, Li AH, Xiong BX, Xie HX: Roles of plasmid-encoded 

proteins, EseH, EseI and EscD in invasion, replication and virulence of 

Edwardsiella ictaluri. Vet Microbiol 2013, 166(1–2):233-241. 

 

15. Wallden K, Rivera-Calzada A, Waksman G: Type IV secretion systems: 

versatility and diversity in function. Cellular microbiology 2010, 12(9):1203-1212. 

 

16. Booth N: The role of urease in the pathogenesis of Edwardsiella ictaluri. Thesis 

2005. 

 

 

 

138



 

17. Booth NJ, Beekman JB, Thune RL: Edwardsiella ictaluri encodes an acid-

activated urease that is required for intracellular replication in channel catfish 

(Ictalurus punctatus) macrophages. Appl Environ Microbiol 2009, 75(21):6712-

6720. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

139



 

APPENDIX   I. 

ABBREVIATIONS COMMONLY USED IN THIS DISSERTATION 

BLAST – Basic Local Alignment Search Tool  

CFU – Colony forming unit  

Col – Colistin 

Esa – Edwardsiella secretion apparatus (T3SS-related) 

Esc – Edwardsiella secretion chaperone (T3SS-related)  

ESC – Enteric septicemia of catfish   

Ese – Edwardsiella secreted effector (T3SS-related) 

Esr – Edwardsiella secretion regulator (T3SS-related) 

Evp – Edwardsiella virulence protein (T6SS-related) 

LB – Luria Bertani broth   

LPS - Lipopolysaccharide   

ORF – Open reading frame 

PCR – Polymerase chain reaction   

pEI1 – E. ictaluri plasmid 1   

pEI2 – E. ictaluri plasmid 2   

pEIZ1– zebrafish strain of E. ictaluri plasmid 1 

pEIZ2– zebrafish strain of E. ictaluri plasmid 2 

RAST– Rapid Annotation using Subsystems Technology   

SDS-PAGE – Sodium dodecyl sulfate polyacrylamide gel electrophoresis   

SNP–Single nucleotide polymorphism  

SPF – Specific pathogen-free 

T3SS – Type III secretion system   

T4SS– Type IV secretion system 
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T6SS – Type VI secretion system 

WT – Wild type  
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APPENDIX   II. 
THE DRAFT GENOME SEQUENCES OF THE ZEBRAFISH 

STRAINS OF EDWARDSIELLA ICTALURI LADL11-100 AND 

LADL11-194 

See the attached file (“EdwardsiellaictaluriLADL11_100andLADL11_194draft 

genomesequences”). 
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