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ABSTRACT 

 

Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of 

removing a variety of helix-distorting lesions, such as UV-induced cyclobutane pyrimidine 

dimers (CPDs). NER can be grouped into two pathways: global genomic NER (GGR), which 

refers to repair throughout the genome, and transcription coupled NER (TCR), which refers to a 

repair mechanism that is dedicated to the transcribed strand (TS) of actively transcribed genes. In 

yeast S. cerevisiae, Rad7, Rad16, and Elc1 are specifically required for GGR. TCR is believed to 

be initiated by RNA polymerase II (Pol II) stalled at a lesion in the TS of a gene. Rad26, the 

yeast homolog of the human CSB protein, and RPB9, a nonessential subunit of Pol II, play 

important roles in TCR. However, the exact mechanisms of NER in eukaryotic cells are still 

elusive.  

By using yeast S. cerevisiae as a model organism, this dissertation focused on the 

functional mechanisms of transcription factor Tfb5, transcription elongation factors Spt4 and 

Spt5, and the putative yeast transcription repair coupling factor (TRCF) Rad26 in NER, 

especially in TCR pathway. Tfb5, the tenth subunit of the transcription/repair factor TFIIH, is 

implicated in one group of the human syndrome trichothiodystrophy (TTD). We found that Tfb5 

plays different roles in different NER pathways in yeast. Tfb5 is essential for GGR and Rpb9 

mediated TCR. However, Tfb5 is partially dispensable for Rad26 mediated TCR, especially in 

GGR deficient cells. Spt4 and its interacting partner Spt5 cooperatively suppress TCR only in the 

absence of Rad26, regardless of the presence of Rpb9. The phosphorylation of C-terminal repeat 

(CTR) domain of Spt5 by the Bur kinase plays an important role in the suppression. 



 xii

Immunoprecipitation results indicate that Rad26 dynamically associates with Pol II and restrains 

the binding of Spt4/Spt5 to Pol II. ATPase activity of Rad26 is required for facilitating TCR and 

for restraining the binding of Spt4/Spt5 to Pol II. Finally, we proposed that Rad26 enhances TCR 

by restraining the binding of suppressors Spt4/Spt5 to Pol II. These findings provide new 

insights into the functional mechanisms of Tfb5, Spt4/Spt5 and Rad26 in NER, especially in 

TCR.  
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CHAPTER 1 

LITERATURE REVIEW 
 NUCLEOTIDE EXCISION REPAIR: A CONSERVED, VERSATILE AND 

COMPLICATED DNA REPAIR MECHANISM FROM PROKARYOTIC CELLS TO 
EUKARYOTIC CELLS 

 

1.1 Introduction 

The genomic DNA is constantly under threat from both exogenous (environmental 

factors such as X-ray and ultraviolet light) (Tessman and Kennedy, 1991) and endogenous 

(metabolic byproducts such as reactive oxygen species (ROS) and spontaneous hydrolysis) 

agents (Bjelland and Seeberg, 2003; Henle and Linn, 1997; Lindahl, 1993). The maintenance of 

DNA integrity in response to DNA damage is critical for cell viability, longevity and general 

health (Hoeijmakers, 2001; Lombard et al., 2005). Fortunately, various DNA repair mechanisms 

have evolved to remove different kinds of DNA damage, such as Nucleotide excision repair 

(NER), base excision repair (BER), mismatch repair (MMR), homologous recombination repair 

(HR) and so on (Friedberg et al., 2006). NER is one of DNA repair mechanisms capable of 

removing a wide variety of bulky DNA lesions, such as UV-induced cyclobutane pyrimidine 

dimers (CPDs) and 6-4 photoproducts [(6-4)PP] (Hanawalt et al., 1979), and adducts induced by 

chemotherapeutic agents (e.g. cisplatin) and alkylating agents (e.g. methylmethane sulfonate) 

(Damia et al., 1996; Moggs et al., 1997; Neher et al.,2010). The distinct characteristic of NER is 

that the damaged bases are enzymatically excised from the genome as an oligonucleotide 

fragment, 24-32 nucleotides in mammalian cells (Wood, 1997) and 12-13 nucleotides in E. coli 

(Savery, 2007), rather than as free bases as is the case with BER (Hollis et al., 2001). NER is the 

most versatile in terms of lesion recognition (Nouspikel, 2009). This repair system deals with the 

wide class of helix-distorting lesions that interfere with base pairing and generally obstruct 

transcription and normal replication (Hoeijmakers, 2001). The biological importance of NER for 
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human health can be clearly manifested by the existence of rare autosomal recessive human 

disorders, such as xeroderma pigmentosum (XP), Cockayne syndrome (CS), and 

trichothiodystrophy (TTD), all associated with sensitivity to sunlight (Lehmann, 2003). 

NER was found in bacteria in the mid-1960s by Philip Hanawalt and his graduate student 

David Pettijohn with the observation of non-semiconservative DNA synthesis during the 

excision of CPDs (Pettijohn and Hanawalt, 1964). Almost at the same time, the phenomena of 

excision repair of UV radiation-induced DNA damage was also found in mammalian cells 

(Rasmussen and Painter, 1964). The genomic heterogeneity of NER was observed about twenty 

years later. NER repairs transcribed strands of transcriptionally active genes faster than it repairs 

transcriptionally silent DNA. This specialized mode of NER is called transcription-coupled 

nucleotide excision repair (TC-NER or TCR). This process was first discovered in mammalian 

cells (Mellon et al., 1987), and then in Escherichia coli (Mellon and Hanawalt, 1989) and 

budding yeast S. cerevisiae (Smerdon and Thoma, 1990). The mode of NER which operates on 

the genome-wide DNA independent of transcription is referred to global genomic nucleotide 

excision repair (GG-NER or GGR). The difference between TCR and GGR is only in the step 

involving recognition of the lesion (Hanawalt, 2002). Following the recognition of the damage, 

these two subpathways share the same mechanisms in the following steps (Fousteri and 

Mullenders, 2008). 

The NER process can be divided into several common steps: damage recognition and 

verification, dual incision, excision of the oligonucleotide fragment, repair synthesis and ligation 

(Friedberg et al., 2006). Although NER has been extensively studied for about fifty years, the 

exact molecular mechanisms remain elusive. This review will focus on the insights into the 

molecular mechanisms of NER in prokaryotes and eukaryotes and human NER deficiency 

disorders. 
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1.2 Nucleotide Excision Repair in Prokaryotic Cells 

In the bacterium E. coli, both specific recognition of base damage and incision of the 

affected DNA strand on either side of damaged base are fulfilled by three proteins designated 

UvrA, UvrB, and UvrC (for “UV radiation”) (van de Putte et al., 1965). These three proteins are 

indispensable for the excision of CPDs in E. coli. They interact in a sequential manner, named 

Uvr(A)BC endonuclease or Uvr(A)BC excinuclease (refer to both incision and excision 

function), although they are not associated as a stable complex during NER (Friedberg et al., 

2006). Subsequently, two other genes, uvrD+ (Kumura et al., 1985) and polA+ (Caron et al., 1985) 

were found implicated in this process. The product of mfd+ gene (for “mutation frequency 

decline”) has been identified as a transcription repair coupling factor (TRCF) in E. coli (Selby et 

al., 1991). Protein Mfd is proposed to enhance the rate of repair by displacing stalled RNA 

Polymerase and the truncated transcript from DNA and recruiting the repair factors to the sites of 

damage (Selby and Sancar, 1993). The major functions of NER factors in E.coli are summarized 

in Table 1-1. 

1.2.1 NER Factors in Prokaryotic Cells 

UvrA Protein -- UvrA protein encoded by the uvrA+ gene, which one of a series of coordinately 

regulated genes is collectively referred to as SOS genes that can be induced by DNA damage 

agents (Sancar et al., 1982a). UvrA protein consists of 940 amino acids with the molecular mass 

of 103 kDa. It is a DNA-binding protein with DNA-independent ATPase activity (Selby and 

Sancar, 1990a).  These functional attributes are critical to its function in NER in the base 

damage recognition step. The amino acid sequence of UvrA protein contains two ATP binding 

domains, two zinc finger domains and a consensus helix-turn-helix (HtH) motif (Myles and 

Sancar, 1991).  
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Table 1-1 NER factors in E.coli 
 

Factors               Functions in NER                             References            
UvrA 
 
 
UvrB 
 
 
UvrC  
 
UvrD 
 
 
Mfd 
 
 
Pol I     
 
DNA  
Ligase   

Functions as a molecular matchmaker to load UvrB onto 
damaged DNA in the form of (UvrA)2UvrB complex.       
 
Specifically recognize UV-induced damage site to form 
UvrB-DNA pre-incision complex.  
 
Dual incision: cut both 3’ and 5’ sides of recognized lesion. 
 
Excision: displaces both UvrC and the 12-13 nucleotides  
fragment containing the lesion. 
 
Transcription repair coupling factor (TRCF): removes 
stalled RNA polymerase and recruits other NER factors. 
 
Repair synthesis and displaces UvrB protein.             
 
Gap filling/ligation                                  

(Selby and Sancar, 1990a) 
 
 
(Selby and Sancar, 1990a; Van 
Houten, 1990) 
 
(Singh et al., 2002) 
 
(Sancar and Sancar, 1988) 
 
 
(Selby and Sancar, 1993, 1994)
 
 
(Caron et al., 1985) 
 
(Burnouf et al., 2000; Lehman, 
1974)  

 

Two functional ATP binding domains of UvrA protein are located near the N-terminal and 

C-terminal regions of the polypeptide (Thiagalingam and Grossman, 1991). These ATP binding 

domains consist of a consensus amino acid sequence found in many proteins that bind and 

hydrolyze ATP and/or GTP, suggesting UvrA protein is a member of a superfamily of prokaryotic 

ATPases (Van Houten, 1990). The binding of ATP to UvrA protein is associated with a 

conformational change in the protein and UvrA protein becomes a dimer in the form of 

1ATP/(UvrA)2 complex (Mazur and Grossman, 1991). HtH motif of UvrA protein consists of 

two α-helices and a short extended amino acid chain between them. This motif is found in 

hundreds of DNA-binding proteins (Aravind et al., 2005). The more C-terminal helix can fit into 

the major groove of DNA, thereby facilitating contact between bases and specific amino acid 

residues throughout the protein (Wang and Grossman, 1993). The zinc finger motifs of UvrA 

protein are also thought to be involved in DNA binding. The C-terminal 40 amino acids are rich 

in glycine residues, and this region of UvrA protein may be important for DNA damage 

recognition (Claassen and Grossman, 1991). The binding of UvrA protein to DNA has been 
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demonstrated. In the absence of ATP, the protein binds specifically to damaged DNA. However, 

specificity is increased in the presence of ATP hydrolysis and is only marginally inhibited by 

ADP (Reardon et al., 1993). Thus, ATP hydrolysis apparently increases the specificity of binding 

to damaged DNA but lowers the equilibrium binding constant by stimulating dissociation. The 

dimeric form (possibly ATP-bound) of UvrA protein can bind DNA containing various type of 

base damage. However, (UvrA)2-DNA complexes are short-lived and dissociate rapidly 

(Snowden et al., 1990). Further selectivity for the binding of UvrA protein to damaged DNA is 

achieved by its interaction with another factor, UvrB protein (Friedberg et al., 2006). Recently, 

the structure of UvrA from Bacillus stearothermophilus indicates that the nucleotide-binding 

sites are formed in an intramolecular fashion and are not at the dimer interface as is typically 

found in other ABC ATPases (Pakotiprapha et al., 2008), a unique type of ATPase fueling 

transmembrane movement of a variety of molecules via many different membrane-spanning 

proteins (Holland and Blight, 1999). UvrA also harbors two unique domains, one of which is 

required for interaction with UvrB, which is regarded as the UvrB-interaction surface on UvrA 

(Pakotiprapha et al., 2008).   

UvrB Protein -- Like the uvrA+ gene, the uvrB+ gene is also a member of the SOS regulated 

genes and is inducible by DNA damage (Selby and Sancar, 1990a). The uvrB+ gene encodes a 

polypeptide of 673 amino acids with a molecular mass of 76 kDa. UvrB protein functions as a 

monomer and does not bind ATP or double-stranded DNA in isolation (Hsu et al., 1995). 

However, the purified protein does bind single-stranded DNA (Sancar et al., 1982b). UvrB 

protein interacts specifically with UvrA protein to form protein-protein and protein-DNA 

complexes that are important intermediates in the biochemistry of the damage-specific incision 

of DNA (Friedberg et al., 2006). Crystal structure of full-length UvrB protein from the 

thermophilic organism Thermus thermophilus has been reported. Domains responsible for 
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interaction between UvrB protein and UvrA and UvrC were identified (Sohi et al., 2000). The six 

helicase domains identified in UvrB protein are adjacent to the ATP-binding site, suggesting that 

UvrB protein undergoes motions driven by ATP hydrolysis in the presence of DNA and UvrA 

protein. Hence, the helicase structure and ATPase activity suggest that UvrB protein could be 

capable of moving along the DNA searching for damage (Theis et al., 1999). The structure of the 

complex between the interaction domains of G. stearothermophilus UvrA and UvrB has been 

determined. These domains are necessary and sufficient for full-length UvrA and UvrB to 

associate and thereby form the DNA damage-sensing complex of bacterial nucleotide excision 

repair (Pakotiprapha et al., 2009).  

(UvrA)2UvrB complexes have a higher binding affinity for damaged DNA than does 

UvrA protein alone, indicating that UvrB protein plays crucial roles in the specific recognition of 

base damage by interacting with UvrA protein and, as a subunit of the (UvrA)2UvrB complex, 

with damaged DNA. Subsequently, an UvrB-DNA complex interacts with UvrC protein to 

generate an endonuclease activity that incises the damaged strand both 5’ and 3’ to sites of base 

damage (Friedberg et al., 2006). 

UvrC Protein -- UvrC protein is the product of the uvrC+ gene. Like the uvrA+ and uvrB+ genes, 

uvrC+ is weakly expressed constitutively. Different from the other two uvr genes, uvrC+ is not 

inducible by DNA damage (Forster and Strike, 1985). The uvrC+ gene encodes a polypeptide of 

610 amino acids with a calculated size of 66 kDa (Lin and Sancar, 1990). 

UvrC protein has a strong affinity for the UvrB-DNA complex. The binding of UvrC 

protein to specific UvrB-damaged-DNA tertiary complexes is the final step in the assembly of 

the catalytically active damage-specific UvrABC endonuclease in E.coli (Friedberg et al., 2006). 

When UvrA, UvrB, and UvrC proteins are incubated with damaged DNA in the presence of ATP, 

specific incision of the DNA occurs. It has been suggested that E.coli UvrC protein consists of 
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two functional entities. The N-terminal half is required for the 3’ incision, and the C-terminal 

half is required for the 5’incision (Van Houten and Snowden, 1993). ATP is absolutely required 

for 3’ incision of the damaged DNA when UvrC protein added to the UvrB-DNA complex, but 

this triphosphate is not hydrolyzed, suggesting that nucleotide binding is required for a 

conformational change necessary for damage-specific incision (Singh et al., 2002). The crystal 

structures of both N-terminal (Truglio et al., 2005) and C-terminal (Karakas et al., 2007) 

domains of Thermotoga maritima UvrC have been determined. The N-terminal catalyzes the 3' 

incision reaction and shares homology with the catalytic domain of the GIY-YIG family of 

intron-encoded homing endonucleases. The structure reveals that the N-terminal endonuclease 

domain of UvrC utilizes a novel one-metal mechanism to cleave the phosphodiester bond 

(Truglio et al., 2005). The C-terminal contains the catalytic domain responsible for 5' incision 

and a helix-hairpin-helix (HhH) domain that is implicated in DNA binding (Karakas et al., 2007).   

UvrD Protein (DNA Helicase II) -- UvrD protein is encoded by uvrD+ gene, which also belongs 

to the SOS-regulated gene family and is inducible by DNA damage. Mutants defective in the 

uvrD+ gene are more sensitive to UV radiation than wide-type cells, but not as sensitive as 

mutants defective in the uvrA+ gene (Washburn and Kushner, 1991). UvrD protein is a single 

peptide of 75 kDa, with a DNA-dependent ATPase activity. UvrD protein has been identified as 

the same protein of a known DNA-dependent ATPase in E.coli was previously designated DNA 

helicase II (Easton and Kushner, 1983). 

UvrD protein (DNA helicase II) unwinds duplex DNA with an average “step size” of 4 to 

5 bp within duplex regions ranging from 10 to 40 bp. The dimeric form of UvrD protein is 

functional during DNA unwinding, while UvrD monomer does not support DNA helicase 

activity (Ali and Lohman, 1997). Following the incision, DNA helicase II displaces the 

damage-containing oligonucleotide fragments and UvrC protein from the post-incision complex, 
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leaving a UvrB-gapped-DNA complex in which the UvrB protein presumably protects the single- 

stranded DNA from nonspecific degradation (Orren et al., 1992). Interestingly, UvrD helicase 

activity can be stimulated by proteins UvrA and UvrB to unwind a range of DNA substrates. This 

stimulation likely plays a role in DNA strand and protein displacement by UvrD in nucleotide 

excision repair (Atkinson et al., 2009).  

DNA Polymerase I (Pol I Protein) -- In E.coli, the Pol A+ gene encodes DNA polymerase I (Pol 

I), which has 5’→3’ exonuclease activity and is also involved in the repair synthesis during BER 

(Dianov and Lindahl, 1994). Following the displacement of UvrC protein and damage-bearing 

oligonucleotide fragments from the postincision complex, Pol I binds to the 3’ OH terminus 

generated at the 5’ incision and synthesizes a repair patch of 12 nucleotides (Sibghat et al., 1990). 

UvrB protein is not displaced during the excision reaction but apparently remains bound to the 

gapped DNA and released only when Pol I and substrates deoxynucleoside triphosphates (dNTPs) 

for repair synthesis are present. It has been suggested that DNA helicase II may translocate with 

Pol I in the direction of repair synthesis and facilitate the displacement of Pol I once the gap is 

filled (Orren et al., 1992). 

DNA Ligase and Ligation Reaction -- The joining of the last newly incorporated nucleotide to 

the polynucleotide chain is the final post-incision biochemical event in all forms of NER. This 

event is catalyzed by DNA ligase. E. coli cells have one single DNA ligase encoded by the ligA+ 

gene (Lehman, 1974), while mammalian cells have three DNA ligase-encoding genes designated 

LIG1, LIG2, and LIG3 (Timson et al., 2000). The structure of T7 DNA ligase revealed two 

structurally conserved protein domains (Subramanya et al., 1996). The N-terminal adenylation 

domain of DNA ligase contains the binding site for the nucleotide cofactor and many of the 

conserved active site residues of the nucleotidyl transferase superfamily (Shuman and Schwer, 

1995). The C-terminal domain resembles the oligonucleotide binding fold of the 
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single-stranded-DNA- binding proteins (Murzin, 1993). DNA ligase cannot link two molecules 

of single-stranded DNA or circularized single-stranded DNA. Rather, ligase seals gaps (or breaks) 

in double-stranded DNA molecules (Tomkinson et al., 2006).  

An energy source is required to drive this reaction, in which a phosphodiester bond is 

created between the 3’ hydroxyl group at the end of one DNA chain and the 5’-phosphate group 

at the end of the other. In most organisms, ATP is the energy source. In bacteria, NAD+ plays this 

role (Shuman and Schwer, 1995). The chemical reaction and intermediates are well documented 

and are apparently conserved for both ATP- and NAD-dependent ligases. The ligation reaction 

comprises three energetically favorable steps (Lehman, 1974; Pascal, 2008): 

1. An adenylate (AMP) group is transferred from an ATP or NAD cofactor to the side chain of a 

conserved active-site lysine, forming a covalent phosphoamide linkage. 

2. The adenylate is transferred to the 5’ end of the DNA substrate, forming a 5’-5’ 

pyrophosphate linkage that actives the phosphate for the final step of ligation. 

3. The 3’ OH of a nicked DNA substrate attacks the adenylated 5’ PO4, sealing the nick and 

displacing the adenylate group. 

Mfd (Transcription Repair Coupling Factor, TRCF) -- It is believed that transcriptional arrest 

caused by the presence of bulky adducts in DNA may serve as a signal for the binding of Uvr 

proteins, leading to preferential repair of the template strand in genes that are presumably 

important for cell survival (Mellon and Hanawalt, 1989). However, an in vitro study found that a 

stalled E.coli RNA polymerase protects the lesion from the action of the Uvr proteins and 

inhibits repair rather than promoting it (Selby and Sancar, 1990b). These paradoxical 

observations led to the discovery of the E. coli Mfd protein, a transcription repair coupling factor 

(TRCF) that overcomes the inhibitory effect of the stalled RNA polymerase and enhances the 

rate of strand-specific repair (Selby and Sancar, 1993).  
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E. coli TRCF is a 130 kDa monomeric protein encoded by the mfd+ gene (for “mutation 

frequency decline”) (Selby et al., 1991). The structure of Mfd protein consists of a compact 

arrangement of eight domains, including a translocation module similar to DNA-translocating 

enzyme RecG, and a region of structural similarity to E. coli UvrB (Selby and Sancar, 1993). 

Another domain that has structural similarity to the transcription elongation factor NusG plays a 

critical role in TRCF/RNA polymerase interactions. Comparison with the translocation module 

of RecG and other structural features indicates that TRCF function involves large scale 

conformational changes. These conformational changes, triggered through the ATP-hydrolysis 

cycle, are key to the translocation activity of TRCF (Deaconescu et al., 2006). Mfd protein has 

been shown to interact with RNA polymerase and NER component UvrA protein, has ATPase 

activity, bind DNA with little or no sequence specificity in an ATP-dependent manner (Savery, 

2007; Selby and Sancar, 1993). Mfd protein recognizes and interacts with a stalled RNA 

polymerase-damaged-DNA-mRNA ternary complex, and subsequently, displaces stalled RNA 

polymerase and the truncated transcript and binds to DNA near the site of base damage (Selby 

and Sancar, 1994). Mfd protein has a binding affinity to UvrA protein, suggesting that when 

bound to damaged DNA, it might be especially efficient in recruiting (UvrA)2UvrB protein 

complexes to DNA and in facilitating the formation of a productive UvrB-DNA complex (Selby 

and Sancar, 1993). In addition, Mfd has been shown to reverse a “backtracked” RNA polymerase 

complex, which may be also relevant to the mechanism of TCR (Park et al., 2002).  

1.2.2 NER Models in E.coli 

The properties and biological functions of these proteins or protein complexes involved in 

NER suggest mechanism models in E.coli (Fig. 1-1).  

GGR Model in E.coli -- During GGR, steps of damage recognition and verification are 

performed by a complex of the repair proteins (UvrA)2UvrB (Fig.1-1) (Truglio et al., 2006). This 
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Figure 1-1 Overview of the GGR and TCR in E. coli. During GGR, a DNA lesion (1) is 
recognized by a complex of UvrA and UvrB. (2) UvrA loads UvrB onto DNA and then 
dissociates, leaving a stable UvrB-DNA pre-incision complex. (3) UvrC is recruited and cleaves 
the damaged strand on both sides of the lesion. (4) UvrD (helicase II) then displaces both UvrC 
and the damage-containing nucleotide. (5) A repair patch is synthesized and UvrB is displaced 
by Pol I. (6) DNA ligase completes the repair by sealing the nick. TCR occurs when lesions in 
the transcribed strand of DNA block RNAP (1a). The green box summarizes the roles of Mfd 
(2a): it removes RNAP from DNA and increases the rate of DNA repair by an undefined 
mechanism that might involve recruitment of UvrA or destabilization of the (UvrA)2UvrB 
complex. Once a stable UvrB-DNA pre-incision complex has formed, repair is thought to 
proceed by the same mechanism as GGR. Abbreviations: t, transcribed strand; nt, 
non-transcribed strand; A, UvrA protein; B, UvrB protein; C, UvrC protein; D, UvrD protein; Pol, 
DNA polymerase I; Lig, ligase; RNAP, RNA Polymerase. Adapted from (Savery, 2007). 
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complex has a higher binding affinity for damaged DNA than does UvrA protein alone, 

indicating that UvrB protein plays crucial roles in the specific recognition of base damage. 

Conversely, UvrA protein during this recognition step serves as a “molecular matchmaker” that 

delivers UvrB to the damaged site by formation of a transient (UvrA)2UvrB-DNA complex 

(Sancar and Hearst, 1993). Besides UvrA protein, ATP hydrolysis is also required for the delivery 

of UvrB protein to sites of damage in UV-irradiated DNA (Moolenaar et al., 2000). After UvrB 

protein is loaded to the damaged site, UvrA dissociates rapidly from the complex, leaving a 

stable UvrB-DNA pre-incision complex (Savery, 2007). 

Next, the UvrB-DNA pre-incision complex changes conformation by binding a 

nucleotide cofactor and recruits UvrC protein (Moolenaar et al., 2000). The intimate association 

between UvrC and UvrB generates an endonuclease activity that incises the damaged strand at 

both 5’ and 3’ sites of base damage. For the 3’ incision, UvrC protein is thought to be bound to 

the preincision complex via an interaction between the C-terminal domain of UvrB and a 

homologous internal region of UvrC protein. Incisions on the 3’ side of lesions precede the 5’ 

cuts. The N-terminal half of UvrC protein is required for the 3’ incision, and the C-terminal half 

is required for the 5’ incision (Moolenaar et al., 1998).  

Post-incisional events during NER include excision of the damaged nucleotide fragment, 

repair synthesis, and DNA ligation. UvrD (helicase II) is required for the excision of a 12–13 

nucleotides section containing the damaged base or bases as well as the release of UvrC protein 

from post-incision complex (Orren et al., 1992). A repair patch of 12 nucleosides is synthesized 

by DNA polymerase I (Pol I). Although the other two DNA polymerases (Pol II and Pol III) in E. 

coli are potentially able to synthesize the repair patch, Pol I plays a primary role in this function 

under normal conditions (Gross and Gross, 1969; Hanawalt et al., 1979). UvrB protein is not 

displaced during the excision reaction but apparently remains bound to the gapped DNA and 
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released only when Pol I and substrates deoxynucleoside triphosphates (dNTPs) for repair 

synthesis are present (Orren et al., 1992). Lastly, DNA ligase completes the repair by sealing the 

nick at the 3′ end of the repair patch (Selby and Sancar, 1993). 

TCR Model in E.coli -- Like GGR, UvrA, B, C, and D are also required in TCR. In addition, 

TCR also requires Mfd and active transcription (Selby and Sancar, 1994). For TCR, damage 

recognition is initiated by the stalling of an elongating RNA polymerase (RNAP) at lesions in the 

transcribed strands of expressed genes (Fig. 1-1). The lesion-stalled RNAP recruits the E. coli 

transcription repair coupling factor (TRCF), Mfd protein, which was shown to be necessary and 

sufficient for TCR by its two activities (Deaconescu et al., 2006). Mfd removes RNAP from the 

DNA so that it no longer acts as an obstacle to DNA repair. The interaction of Mfd with UvrA 

could enhance the rate of repair either by recruiting the repair proteins directly to the site of 

damage or by enhancing the rate of another step in the damage recognition and excision process 

(Deaconescu et al., 2006; Roberts and Park, 2004). The following steps of repair (incision, 

excision and repair synthesis) in TCR are expected to be the same as in GGR (Savery, 2007). 

1.3 Nucleotide Excision Repair in Eukaryotic Cells 

NER was found in eukaryotic cells shortly following the discovery of NER in E. coli 

(Rasmussen and Painter, 1964). The DNA synthesis associated with NER in mammalian cells 

has been demonstrated by the observation of the unscheduled DNA synthesis, which occurs 

outside of the S phase of the cell cycle (Djordjevic and Tolmach, 1967). Although the processes 

of NER in eukaryotes and prokaryotes are very similar, such as damage recognition and 

verification, dual incision, excision, repair synthesis, and gap filling, the molecular mechanisms 

in eukaryotic cells seem much more complicated and largely remain elusive (Fouseri and 

Mullenders, 2008). 
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The core NER factors, sets of proteins which are necessary and sufficient to carry out the 

NER reaction, have been identified in prokaryotic and eukaryotic cells. As mentioned above, 

only six polypeptides (UvrA, UvrB, UvrC, UvrD, DNA polymerase I, and DNA ligase) are 

required for NER process in E. coli. In contrast, the eukaryotic NER displays a considerably 

higher degree of genetic complexity. More than 30 proteins or protein complexes have been 

shown to be involved in NER based on the in vitro reconstituted study (Aboussekhra et al., 1995; 

Guzder et al., 1995). Some NER factors in yeast and human are listed in Table 1-2. These factors 

can be divided into two groups: (i) the factors necessary for damage recognition and dual DNA 

incision, and (ii) others required for DNA repair synthesis (Siede et al., 2006). For example, in 

human cells, factors which belong to the first group include XPC-hRAD23B (a dimer composed 

of XPC and a human homolog of Rad23), transcription factor IIH (TFIIH, consists of ten 

subunits), XPA (a possible homodimer), replication protein A (RPA, consists of three subunits), 

XPG (interacts with TFIIH), and XPF-ERCC1 (a dimer composed of XPF and excision repair 

cross-complementing 1 protein). The coordinated action of these six core factors is sufficient to 

carry out oligonucleotide excision on naked substrates in vitro (Riedl et al., 2003; Siede et al., 

2006).  

The second group of NER factors involves series of DNA replication enzymes and 

accessory factors. RPA may adopt a crucial function in coupling DNA incision to the subsequent 

DNA synthesis step by coordinating the dissociation of early incision factors with the assembly 

of the DNA polymerase complex. The synthesis of repair patches is also dependent on replication 

factor C (RFC), a pentameric matchmaker that binds to the excision gap and mediates the entry 

of proliferating cell nuclear antigen (PCNA), which in turn acts as a sliding clamp for DNA 

polymerase δ and ε (Riedl et al., 2003). Finally, the newly synthesized repair patches are ligated 

to the pre-existing DNA through the action of DNA ligase I (Shuck et al., 2008).  
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Table 1-2 Some NER factors in human and yeast S.cerevisiae 
 

Human           S.cerevisiae             Functions 
XPC 

RAD23B 

XPA 

RPA1,2,3 

XPG (ERCC5) 

ERCC1 

XPF (ERCC4) 

LIG1 

CSA (CKN1) 

CSB (ERCC6) 

DDB1, DDB2 (XPE) 

MMS19L 

Unknown 

Unknown 

TFIIH subunits 

XPB (ERCC3) 

XPD (ERCC2) 

GTF2H1 (p62) 

GTF2H2 (p44) 

GTF2H3 (p34) 

GTF2H4 (p52) 

GTF2H5 (TTDA) 

Cdk7 

CCNH (CycH) 

MNAT1 (Mat1) 

Rad4 

Rad23 

Rad14 

Rfa1,2,3 

Rad2 

Rad10 

Rad1 

Cdc9 

Rad28 

Rad26 

Unknown 

Mms19 

Rad7 

Rad16 

 

Ssl2 

Rad3 

Tfb1 

Ssl1 

Tfb4 

Tfb2 

Tfb5 

Kin28 

Ccl1 

Tfb3 

GGR (and TCR in yeast); damage recognition (Sugasawa et al., 1998) 

GGR; interacts with proteasome and XPC (Hey et al., 2002) 

Stabilizes open complex; checks for damage (Ikegami et al., 1998) 

Stabilizes open complex (with Rad14/XPA) (Bochkarev et al., 1999) 

3' incision; stabilizes full open complex (Habraken et al., 1994) 

5' incision (Davies et al., 1995; Gaillard and Wood, 2001) 

5' incision (Newman et al., 2005) 

Ligation (Barnes et al., 1990) 

TCR, WD40 repeats (Bhatia et al., 1996) 

TCR, DNA dependent ATPase (Licht et al., 2003; Troelstra et al., 1992) 

Damage recognition (Rapic-Otrin et al., 2002; Rapic-Otrin et al., 2003) 

Interacts with the XPB and XPD subunits of TFIIH (Lauder et al., 1996) 

GGR; form Rad7-Rad16 complex (Verhage et al., 1994) 

GGR; ATPase (Guzder et al., 1998; Verhage et al., 1994) 

 

3' to 5' helicase (Guzder et al., 1994; Schaeffer et al., 1993) 

5' to 3' helicase (Sung et al., 1993; Sung et al., 1987) 

Phosphorylated by a kinase (Wang et al., 1995) 

Regulates XPD (Yoon et al., 1992) 

Ring finger; DNA binding (Feaver et al., 1999) 

Anchors XPB and regulates its helicase activity (Feaver et al., 2000) 

Stabilization of TFIIH (Giglia-Mari et al., 2006; Ranish et al., 2004) 

CDK; CAK (Fisher et al., 1995) 

Cyclin (Adamczewski et al., 1996) 

CDK assembly factor (Feaver et al., 1997; Feaver et al., 2000) 
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Most NER factors are conserved proteins and the gene orthologs have been identified in 

yeast, human and other eukaryotes (Table 1-2). Although the order of arrival/departure of each 

factor and the location of interactions and functions of these factors are still intensively debated, 

some favored models of sequential assembly and protein-protein interactions are proposed based 

on recent advanced studies. In this part, we will mainly talk about the NER in human and yeast 

cells. 

1.3.1 NER Factors in Eukaryotic Cells 

Yeast Rad4-Rad23 and Human XPC-RAD23B -- Yeast Rad4 is an 87 kDa protein. Rad4 

protein tightly associates with Rad23 and binds to Pol II transcription factor TFIIH. Yeast Rad23 

is a 42 kDa protein (Watkins et al., 1993). Several conserved domains have been identified, 

including an N-terminal ubiquitin-like (UbL) domain, and two copies of conserved 

ubiquitin-associated (UbA) domain, one in the middle and one in the C-terminal part of the 

protein. The UbL domain of Rad23 is necessary for maximal NER efficiency through mediating 

the interaction between Rad23 and the 26S proteasome. A specific interaction occurs between the 

Rad23 UbL domain and Rpn1 protein, a subunit of the 19S regulatory particle of the proteasome 

(Elsasser et al., 2002; Wang et al., 2000). The UbA domains form a large hydrophobic structure 

surface patch on the protein, which can bind to multiubiquitin chains (Watkins et al., 1993). In 

addition to Rad4 protein, Rad23 interacts with many other proteins. Rad23 protein appears to be 

part of the regulatory circuitry for Rad4 protein levels and may help to stabilize Rad4 by 

inhibiting its proteosomal degradation (Friedberg et al., 2006). 

The human ortholog of Rad4 is XPC, a polypeptide of 106 kDa (Masutani et al., 1994). 

However, there are two human orthologs of Rad23, named RAD23A, RAD23B, respectively. 

Like yeast Rad23, the human RAD23A and RAD23B proteins contain UbL and UbA domains. 

One or more conserved regions in RAD23A and RAD23B are required for interaction with a 
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region in the C-terminal part of the XPC protein (Sugasawa et al., 1997). XPC is most frequently 

associated with RAD23B in the cell. A short peptide corresponding to the XPC-binding domain 

of RAD23B protein is sufficient for stimulation of NER in vitro (Masutani et al., 1997). 

XPC-RAD23B binds to UV-irradiated DNA with a considerable preference and forms a stable 

DNA-XPC-RAD23B complex. XPC-RAD23B binds directly to DNA on both strands around the 

lesion with considerable specificity to discriminate between damaged and undamaged sites (Hey 

et al., 2002). 

Yeast and Mammalian Transcription Factor TFIIH -- TFIIH was first identified as a 

transcription initiation factor for Pol II, together with the factors TFIIA, TFIIB, TFIID, TFIIE, 

and TFIIF (Sikorski and Buratowski, 2009; Thomas and Chiang, 2006). TFIIH possesses 

ATP-dependent strand-separating activities that are necessary to produce open DNA complexes 

during Pol II transcription initiation and NER (Oksenych et al., 2009). TFIIH consists of 10 

subunits in both yeast and mammalian cells (Fig. 1-2). Five of these subunits: XPB (yeast 

Rad25), p62 (Tfb1), p52 (Tfb2), p44 (Ssl1), and p34 (Tfb4) are tightly associated in a 

subcomplex called core TFIIH. XPD (Rad3) is less tightly associated with the core and mediates 

the binding of the CDK-activating kinase (CAK) subcomplex, which consists of three subunits, 

MAT1 (yeast Tfb3), CDK7 (Kin28) and cyclin H (yeast Ccl1) (Zurita and Merino, 2003). The 

tenth subunit (p8 or TTDA, yeast Tfb5) is an 8 kDa protein which was identified in both human 

and yeast cells at the same time (Giglia-Mari et al., 2004; Ranish et al., 2004).  

XPB (yeast Rad25) and XPD (Rad3) are ATP-dependent DNA helicases with opposite 

polarity. The hydrolysis of ATP (or dATP) drives DNA helicase activity, unwinding duplex DNA 

to the single strand, either around the promoter, to allow transcription initiation, or around a 

damage site, to permit damage-specific nucleases to cleave the DNA on either side of the damage 

(Balajee, 2006). The 3’→ 5’ helicase activity of XPB (Rad25) is essential for both transcription 
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and repair, whereas the XPD (Rad3) 5’→ 3’ helicase activity is necessary for repair but 

dispensable in vitro for basal transcription (Chen and Suter, 2003). The kinase activity from 

CDK7 is able to phosphorylate numerous substrates, including both Ser5 and Ser7 C-terminal 

domain (CTD) of Rpb1, the largest subunit of Pol II, converting it from the initiating IIa form to 

the elongating IIo form (Akhtar et al., 2009). The kinase activity is also involved in the 

regulation of transcription and the cell cycle (Araujo et al., 2000). Interestingly, the 

CDK-activating kinase (CAK) subcomplex was shown to be dissociated from core TFIIH during 

NER, suggesting the composition of TFIIH is dynamically changing to adapt its engagement in 

distinct cellular processes (Coin et al., 2008).  

 

 

 
 
 
 
Figure 1-2 Human and yeast TFIIH composition and enzymatic functions of its subunits. 
The five subunits composing the core TFIIH subcomplex are in red, the three subunits of the 
cdk-activating kinase (CAK) subcomplex are in blue, the XPD/Rad3 subunit that bridges the two 
TFIIH subcomplexes is in green and p8(TTDA)/Tfb5 subunit is in yellow. Functions of each 
subunit were labeled on both sides. The name of each subunit is labeled in the form of 
human/yeast. Adapted from (Balajee, 2006). 
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The enzymatic activities of TFIIH are tightly controlled by interactions within the TFIIH 

complex or through interactions with many general and regulatory transcription factors. For 

example, p44 (yeast Ssl1) interacts with XPD to stimulate its helicase activity, p52 (yeast Tfb2) 

regulates the function of XPB through pair-wise interactions, MAT1 (Tfb3) and cyclin H (Ccl1) 

regulate CDK7 kinase activity, and phosphorylation of cyclin H by CDK8/cyclin C suppresses 

both the activation of transcription by TFIIH and the ability of TFIIH to phosphorylate RNA 

polymerase II (Balajee, 2006). In addition to XPB and XPD, TTDA/p8 is the third gene 

responsible for the photosensitive disorder of Trichothiodystrophy (TTD) (Giglia-Mari et al., 

2004). It has been suggested that TTDA is involved in stabilization of TFIIH or in its protection 

from degradation (Vitorino et al., 2007). In yeast, Tfb5 has been shown to stabilize TFIIH 

through protecting the hydrophobic surface between Tfb5 and Tfb2 (Kainov et al., 2008). 

Moreover, Tfb5 has been shown to be required for GGR but is partially dispensable for Rad26 

mediated TCR, especially in GGR deficient cells (Ding et al., 2007).  

MMS19 -- MMS means methyl methanesulfonate-sensitive. The MMS19 gene was originally 

found in yeast as being involved in NER. The mutant mms19 was shown to enhance UV-induced 

mutagenesis (Prakash and Prakash, 1979). Genetic and biochemical evidence indicates that 

besides its function in NER, MMS19 also affects Pol II transcription. Thus, Mms19 protein 

resembles TFIIH in that it is required for both transcription and DNA repair (Lauder et al., 1996). 

It appears that the Mms19 protein is not directly involved in NER and Pol II transcription. 

Co-immunoprecipitation experiments revealed that hMMS19 directly interacts with the XPB and 

XPD subunits of NER-transcription factor TFIIH, suggesting that hMMS19 exerts its function in 

repair and transcription by interacting with the XPB and XPD helicases (Seroz et al., 2000). 

Alignment of the translated sequences of Mms19 from multiple eukaryotes, including mouse and 

human, revealed the presence of several conserved regions, including a HEAT repeat domain 
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near the C-terminus. The presence of HEAT repeats from higher eukaryotes can functionally 

complement a yeast mms19 deletion mutant, indicating a role of Mms19 protein in the assembly 

of a multiprotein complex required for NER and Pol II transcription (Queimado et al., 2001). 

Human XPA and Yeast Ortholog Rad14 -- Human XPA is a 31 kDa protein encoded by the 

XPA gene and was identified by phenotypic complementation of the UV radiation sensitivity of 

XP-A cells after transfection with total mouse genomic DNA (Friedberg et al., 2006). One 

feature of the XPA protein is its ability to bind DNA, with a weak preference for binding to 

damaged DNA (Asahina et al., 1994). XPA binds with considerably higher efficiency to partially 

duplex DNA than to single-stranded substrates (Asahina et al., 1994; Missura et al., 2001). The 

minimal DNA-binding domain of XPA protein contains a compact zinc-binding core and a more 

C-terminal region rich in loops (Buchko et al., 1998; Tanaka et al., 1990). Although XPA protein 

dose not appear to participate in the very first step of recognizing DNA damage, it is an essential 

component of the preincision complex that forms at a damaged site in preparation for the 

dual-incision reaction of eukaryotic NER (Friedberg et al., 2006). 

Yeast Rad14 protein is a 29 kDa polypeptide, with 26% residual identity and 54% 

similarity to human XPA (Bankmann et al., 1992). Similar to human XPA, Rad14 contains a 

single zinc atom in the zinc finger domain and binds preferentially to UV-irradiated DNA, 

especially to the more helix-distorting damage site of (6-4)PP (Guzder et al., 1993). 

Human and Yeast Replication Protein A (RPA) -- RPA is a eukaryotic ssDNA-binding protein 

composed of three subunits. In human cells, these subunits are proteins RPA1, RPA2, RPA3, 

with molecular masses of 70, 32, and 14 kDa, respectively (Bochkarev et al., 1997). In yeast, 

RPA consists of three subunits Rfa1 (70 kDa), Rfa2 (30 kDa) and Rfa3 (14 kDa) (Friedberg et al., 

2006). The basic structure unit of this heterotrimeric protein is ssDNA-binding domains, which 

are conserved OB (for oligonucleotide/oligosaccharide-binding) fold. There are six OB-folds 
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between the subunits of RPA: three are in RPA1, one is in RPA2, and two are in RPA3. Four of 

these OB-folds bind ss-DNA and two mediate subunit interactions (Bochkarev and Bochkareva, 

2004).  

RPA was originally identified as a protein for DNA replication and later was found 

indispensable for NER machinery in both human and yeast cells (Umezu et al., 1998; Wold, 

1997). RPA has been shown to be involved in the incision of damaged DNA. In a reconstituted 

system with purified proteins, RPA is essential for events leading to the incision reaction in both 

mammalian cells and yeast (Araujo et al., 2000; Prakash and Prakash, 2000). RPA interacts with 

several NER factors, such as XPA (or Rad14 in yeast) and is also an essential component of the 

preincision complex (de Laat et al., 1998b).  

Yeast Rad1 and Rad10 and Human Orthologs XPF and ERCC1 -- Rad1 and Rad10 form a 

stable heterodimeric complex in vitro in the absence of damaged DNA. The deletion of either 

RAD1 or RAD10 gene will cause a defect in NER (Bardwell et al., 1994). Both the 

Rad10-binding domain of Rad1 and the Rad1-binding domain of Rad10 are hydrophobic, and the 

Rad1-Rad10 complex formation in vitro is stimulated at increased ionic strength (Bardwell et al., 

1992). The Rad1-Rad10 complex possesses DNA endonuclease activity. Neither protein alone is 

endowed with this endonuclease activity. The endonuclease generates 5’ phosphate and 3’ OH 

termini and has an absolute requirement for divalent cations such as Mg2+. The DNA 

endonuclease activity of the Rad1-Rad10 complex is specific for junctions between duplex and 

ssDNA which enables it to participate in DNA damage-specific incision during NER (Bardwell 

et al., 1994; Friedberg et al., 2006). 

The human orthologs of yeast Rad1 and Rad10 are XPF (ERCC4) (104kDa) and ERCC1 

(32.5kDa), respectively (de Laat et al., 1998a). Similarly, ERCC1 and XPF form a complex with 

structure-specific nuclease activity. It can cut DNA at junctions between a duplex and a single 
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strand, where the single strand moves from 5’ to 3’ away from the junction. This property allows 

the enzyme to cut the damaged strand during NER specifically on the 5’ side of a lesion once the 

DNA double helix has been locally unwound at the site of damage (Sijbers et al., 1996). Thus, 

the yeast Rad1-Rad10 complex and human ERCC1-XPF complex possess one of the DNA 

endonucleases which are essential for the dual-incision step in NER. 

Yeast Rad2 and Human XPG -- Yeast Rad2 protein is a junction-specific endonuclease. It has a 

polarity opposite to that of the Rad1-Rad10 endonuclease with respect to ssDNA, cleaving at 

junctions of duplex DNA with single strands at 3’ site (Habraken et al., 1995). The C-terminal 

tail of Rad2 polypeptide is rich in basic amino acids, which is required for its endonuclease 

activity (Higgins et al., 1984). The human ortholog of Rad2 is XPG protein (133kDa) (Clarkson, 

2003). XPG cleaves several types of DNA structures containing junctions between unpaired and 

duplex DNA, cutting the strand in which the unpaired region has a polarity moving from 3’ to 5’ 

away from the junction. Like yeast Rad2 endonuclease, XPG cleaves on the 3’ side of a DNA 

bubble structure in an Mg2+-dependent manner (O'Donovan et al., 1994). 

XPG and Rad2 are members of an enzyme family that includes the FEN1 (DNase IV) 

group of structure-specific nucleases (Harrington and Lieber, 1994). Ethylation interference foot 

printing experiments indicate that XPG binds to its substrates through interaction with the 

phosphate backbone on one face of the helix, mainly to the dsDNA. The 3’ but not the 5’ 

single-stranded arm is necessary for DNA binding and incision activity (Friedberg et al., 2006; 

Hohl et al., 2003). 

Yeast Rad7 and Rad16 -- Yeast Rad7 and Rad16 form a stable complex, which is specifically 

required for GGR, but dispensable for TCR. The deletion of either Rad7 or Rad16 will 

completely abolish the GGR activity (Verhage et al., 1994). The Rad7/Rad16 complex binds 

specifically to UV damaged DNA in an ATP-dependent manner (Guzder et al., 1998). Rad16 is a 
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DNA-dependent ATPase, belonging to a large family of proteins called the SNF2/SWI2 family 

(Guzder et al., 1998). The observation that Rad16 has DNA-dependent ATPase activity suggested 

that it may be involved in some type of chromatin remodeling of the genome during NER 

(Friedberg et al., 2006). It has been shown recently that Rad16 mediates the ultraviolet-induced 

acetylation of histone H3, necessary for efficient GGR (Teng et al., 2008).  

Rad7 is a 64 kDa protein. Rad7 interacts with Rad4 and has one function related to 

Rad23, suggesting that Rad23, Rad7, Rad16 and Rad4 proteins participate together in a 

biochemical pathway (Wang et al., 1997). Besides Rad7 and Rad16, the complex may also 

contain several other factors, such as replicating sequence binding factor 1 (Abf1) and Elc1 

(elongin C) (Lejeune et al., 2009; Yu et al., 2004). Rad7 and Rad16 are also found to be in an E3 

ubiquitin ligase complex (Ramsey et al., 2004; Ribar et al., 2006). The human orthologs of yeast 

Rad7 and Rad16 remain inconclusive. 

Human DNA Damage-Binding Protein (DDB or XPE) -- DDB (also referred to as UV-DDB) 

is a heterodimer composing a 127 kDa subunit called DDB1 and a 48 kDa subunit called DDB2 

(Keeney et al., 1993). DDB2 and XPE are identical (Rapic-Otrin et al., 2002). DDB protein can 

be regulated by UV radiation. In contrast with unirradiated cells, after UV irradiation, DDB 

becomes more tightly bound to DNA and the level of DDB2 (XPE) increases (Wakasugi et al., 

2002). DDB may not be essential for NER but plays an accessory role through aiding in the 

recognition of DNA damage in chromatin (Tang and Chu, 2002). DDB has been shown to be a 

component of the cullin 4A (CUL4A) / CUL4B (CUL4B)-based ubiquitin ligases, 

DDB1-CUL4A (DDB2) and DDB1-CUL4B (DDB2). These enzymes ubiquitinate histone H2A 

in a DDB2-dependent manner and modify the chromatin structure at the sites of UV lesions to 

promote efficient NER (Guerrero-Santoro et al., 2008; Li et al., 2006). The yeast ortholog of 

human DDB has not yet been identified. 
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Yeast Rad26/Rad28 and Human Ortholog CSB/CSA Proteins -- In mammalian cells, 

Cockayne syndrome group A (CSA) and B (CSB) proteins are specifically required for TCR 

(Licht et al., 2003). CSA protein is a component of a cullin-containing ubiquitin E3 ligase, 

together with DDB1 (Groisman et al., 2003). The structural homolog of CSA in yeast is called 

Rad28. Both CSA and Rad28 proteins possess multiple divergent WD40 repeats, which act as 

sites for protein-protein interactions (Henning et al., 1995). Unlike CSA in mammalian cells, 

TCR or recovery of RNA synthesis after UV radiation does not depend on Rad28 function in 

yeast (Bhatia et al., 1996). The yeast ortholog of human CSB is Rad26. Although Rad26 plays a 

critical role in TCR in yeast, the UV sensitivity of rad26 mutants cannot be seen unless in 

combination with the deletion of RAD7 or RAD16, because the GGR and Rad26-independent 

TCR subpathways still occur in rad26 mutant cells (Li and Smerdon, 2002b). CSB and Rad26 

are members of Swi/Snf (Switch/Sucrose nonfermentable) protein family, in which proteins 

possess DNA-dependent ATPase activity and participate in chromatin remodeling and disturb 

DNA-protein interactions (Pazin and Kadonaga, 1997).  

It has been suggested that CSA and CSB play different roles in recruitment of NER 

factors and assembly of NER machinery (Fousteri et al., 2006). CSB fulfills a key role as a 

coupling factor to attract histone acetytransferase, NER factors, and CSA-DDB1 E3-ubiquitin 

ligase complex, while CSA is dispensable for recruitment of NER proteins (Fousteri et al., 2006). 

Moreover, CSB dynamically associates with Pol IIo, and UV irradiation stabilizes this interaction 

(van den Boom et al., 2004). In yeast, Rad26 also plays a significant role in repairing certain 

regions of the repressed GAL1-10, PHO5 and ADH2 genes, especially in the core DNA of 

well-positioned nucleosomes (Li et al., 2007). In addition to NER, CSB-mediated chromatin 

remodeling is probably involved in the modulation of transcription initiation through facilitating 

the recruitment of TATA binding protein (TBP) and other factors to promoters after UV 
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irradiation (Proietti-De-Santis et al., 2006). The exact molecular mechanisms of CSB or yeast 

Rad26 in TCR remain elusive.  

1.3.2 NER Models in Eukaryotic Cells 

Recently, the order of events leading to dual incision by NER factors has been 

extensively investigated and some mechanism models were proposed. Similar to the assembly of 

NER machinery in E. coli, the assembly of eukaryotic NER machinery is also a multiple step 

process including damage recognition and verification, incision, excision, repair synthesis, and 

DNA ligation. 

GGR Model in Eukaryotic Cells -- In GGR, the protein complexes XPC-hRAD23B (in yeast, 

Rad4-Rad23) and UV-DDB can recognize and bind to the damage-induced distortion and initiate 

GGR (Fig. 1-3). After damage recognition, the transcription factor IIH (TFIIH) is recruited to the 

damage site (Araujo et al., 2001). TFIIH plays an essential role in NER as two of its subunits 

XPB (Rad25) and XPD (Rad3) are required. These two proteins are DNA-dependent helicases 

and able to unwind the DNA double helix at around the lesion (Coin et al., 2007). XPB (Rad25) 

unwinds DNA duplex in a direction of 3’ to 5’, while XPD (Rad3) unwinds in a 5’ to 3’ direction. 

The combined action of XPC- hRAD23B and TFIIH creates short stretches of single stranded 

DNA (ssDNA) around the lesion that facilitates the recruitment of XPA and ssDNA binding 

protein RPA to form a pre-incision complex (Fousteri and Mullenders, 2008). The dual incision 

process is performed by structure-specific endonucleases XPG (Rad2) and ERCC1-XPF 

(Rad1-Rad10) at the 3’ and 5’ side of the lesion, respectively (O'Donovan et al., 1994; Sijbers et 

al., 1996). After the oligonucleotide (24-30 nt in length) containing the lesion has been removed, 

proliferating cell nuclear antigen (PCNA) is loaded by replication factor C (RFC, yeast Rfc) as is 

the case in DNA replication (Shuck et al., 2008). DNA polymerases δ and ε (in yeast, Pol III and 

Pol II, repectively) are capable of DNA repair synthesis across the gap using the undamaged  
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Figure 1-3 Two NER subpathways in eukaryotic cells. (1-2) Damage/distortion recognition in 
GGR and TCR. XPC-hRAD23B and UV-DDB complexes recognize and bind to DNA 
damage-mediated helix distortion and initiate GGR (2a). TCR is triggered by DNA 
damage-mediated blockage of RNA Polymerase IIo (2b). (3-4) Lesion demarcation. In the 
following steps, the two sub-pathways are converged. The lesion is verified and demarcated as a 
bona fide NER lesion by the concerted actions of helix opening and damage verification 
provided by TFIIH, XPA and RPA. (5-6) Dual incision. Within the pre-incision complex, 
ERCC1-XPF and XPG structure-specific endonucleases incise the damaged strand. (7) Gap 
filling and ligation. After dual incision around the lesion, the single strand gap is filled by DNA 
polymerase, PCNA and RFC, and sealed by DNA ligase III-XRCC1 in both dividing and 
non-dividing cells, whereas DNA polymerase and DNA ligase I are involved in dividing cells in 
addition to DNA polymerase and DNA ligase III-XRCC1.  
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strand as a template (Soria et al., 2009) ; the remaining nick can be filled by DNA ligase I (yeast 

Cdc9) (Fousteri and Mullenders, 2008). 

TCR Model in Eukaryotic Cells -- In TCR, it is believed that the transcription elongating form 

of Pol IIo stalled at the damaged site is the signal for the recruitment of TCR proteins (Laine and 

Egly, 2006; Lindsey-Boltz and Sancar, 2007). In mammalian cells, the association between CSB 

and Pol IIo become more stable after encountering transcription-blocking lesions. Subsequently, 

CSA, TFIIH, RPA and XPA arrive at the site of damage (Fousteri et al., 2006; Maddukuri et al., 

2007). In yeast, protein Rad26 was also shown to have weak binding affinity to Pol II (Jansen et 

al., 2002). CSB (Rad26) may work at very early step in response to the blockage of Pol II 

(Fousteri et al., 2006). After the damage recognition, GGR and TCR are converged in the 

following steps (Fig. 1-3).  

How CSB/Rad26 facilitate TCR remains to be elucidated. Several models were proposed 

based on their Swi/Snf-like activity (DNA-dependent ATPase activity) (Svejstrup, 2002). One 

possibility is that the stalled Pol II (RNAPII) will be displaced by CSB/Rad26 via Swi/Snf-like 

activity (Fig.1-4a), like the functional mechanisms of TRCF (Mfd) in E.coli (Fig.1-1). However, 

there is little sequence homology between TRCF and CBS/Rad26 except ATPase domains. It was 

further demonstrated that CSB cannot dissociate a damage-stalled Pol II complex in vitro (Selby 

and Sancar, 1997b). The second model is that the damage-stalled Pol II could be retrograded by 

TFIIS, the transcription factor which stimulates transcript cleavage allows resumed forward 

translocation (Fig.1-4b) (Davie and Kane, 2000; Kettenberger et al., 2004; Saeki and Svejstrup, 

2009). Another possibility is that CSB/Rad26 could alter the molecular architecture of the 

damage-stalled Pol II-DNA complex (Fig.1-4c). CSB indeed can enable Pol II to add an extra 

nucleotide when stalled at a lesion (Selby and Sancar, 1997a), suggesting that the remodeling of 

the Pol II-DNA interface occurs. This remodeling may involve other protein-protein interactions,  
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Figure 1-4 Different models for transcription-coupled repair. The models involve different 
modes of RNAPII displacement from the damaged DNA by CSB/Rad26 and other 
transcription-coupled repair (TCR) factors. (a) RNAPII dissociation from the site of damage. 
Such dissociation could be achieved by employing a transcription release factor or the 
Swi/Snf-like activities of CSB/Rad26. (b) RNAPII is moved away from the damage site. Such 
displacement could conceivably be achieved by Swi/Snf-like activities of CSB/Rad26, and/or the 
use of other activities, such as that of TFIIS. (c) Remodelling of the damaged DNA–RNAPII 
interface by CSB. (d) At certain lesions, bypass might be promoted by accessory factors, such as 
the Swi/Snf-like activity of CSB/Rad26. (e) Damage-binding factors arriving prior to RNAPII 
might ease repair by keeping the polymerase at a distance. (f) Degradation of RNAPII stalled at a 
lesion could occur. One or more of these fates of RNAPII appears to facilitate recruitment of the 
NER machinery to the lesion. Green circles indicate the active site of RNAPII. Red triangles 
denote a DNA lesion. Adapted from (Svejstrup, 2002). 
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such as the remodeling of interface between Pol II and TCR suppressors Spt4/Spt5 or even the 

displacement of Spt4/Spt5 from Pol II (Ding et al., 2009; Jansen et al., 2000). Alternative models 

of the fates of  damage-stalled Pol II, such as accessory-factor-mediated lesion bypass 

(Fig.1-4d), and keeping Pol II at a distance through damage-binding factors (Fig.4-4e), might 

also be relevant in certain situations (Svejstrup, 2002). The finding of UV-induced Pol II 

ubiquitination and degradation made researchers propose the Pol II degradation model (Bregman 

et al., 1996; Ratner et al., 1998) (Fig. 4-4f). However, evidence accumulated that Pol II 

degradation does not seem to be required for TCR in yeast. Rsp5, the sole yeast ubiquitin-protein 

ligase that ubiquitylates Pol II, is not required for TCR (Lommel et al., 2000). Def1, a yeast 

protein which forms a complex with Rad26 in chromatin, is required for Pol II degradation in 

response to DNA damage, but is not required for TCR (Woudstra et al., 2002). Thus, the exact 

molecular mechanisms of TCR in eukaryotic cells are extremely complicated and remained 

unknown. It is possible that not all the proteins involved in TCR have been identified yet, and the 

molecular functions of CSB/Rad26 are not fully understood. 

The orthologs of NER factors between yeast and humans may not be exactly equivalent 

during NER. For example: 1) XPC is dispensable for the TCR in mammalian cells (Venema et al., 

1990), while its yeast homolog Rad4 is indispensable for both GGR and TCR (Prakash and 

Prakash, 2000), 2) CSA plays an important role in TCR in mammalian cells (Fousteri et al., 

2006), while very little function can be seen for the yeast homolog Rad28 in TCR (Bhatia et al., 

1996), 3) CSB is indispensable for TCR in mammalian cells (Fousteri et al., 2006), whereas TCR 

in yeast is not solely dependent on Rad26 (Gregory and Sweder, 2001). Substantial TCR activity 

can be noticed in a Rad26-independent manner, especially in the region immediately downstream 

of the transcription start site (Li and Smerdon, 2002a). Thus, the mechanisms of NER revealed in 

yeast cells need further verification before application to humans.  
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1.4 Nucleotide Excision Repair and Human Diseases  

The importance of NER for human health can be revealed by three disorders which result 

from the defects of genes involved in NER, namely Xeroderma pigmentosum (XP), Cockayne 

syndrome (CS), and trichothiodystrophy (TTD) (Lehmann, 2003). They are all rare autosomal 

recessive inheritance disorders and are characterized by extreme sensitivity to sunlight (Balajee, 

2006). Given the versatility of NER to repair a large number of DNA lesions and the numbers of 

genes involved, the clinical symptoms of NER deficiency vary considerably (Table 1-3). 

 

Table 1-3 Diseases associated with NER deficiencies 
 

                   Xeroderma pigmentosum    Cockayne syndrome          Trichothiodystrophy (TTD)   
                   (XP) (Cleaver, 2005)       (CS) (Cleaver et al., 2009)      (Hashimoto and Egly, 2009)  

Genes 

Defective pathways    

Symptoms: 

 Photosensitivity 

 Cancer prone        

 Growth failure       

 Neurodegeneracy 

XPA-XPG, XPV 

NER, Translesion   

 

Yes 

Yes 

No 

Sometimes  

CSA, CSB, XPB, XPD, XPG  

TCR, Transcription    

 

Yes 

No 

Yes 

Yes 

XPB, XPD, TTDA 

NER, Transcription 

 

Yes 

No 

Yes 

Yes 

 

1.4.1 Xeroderma Pigmentosum (XP) 

XP is characterized by cutaneous symptoms in the sunlight exposed area of the skin, 

resulting from the defect in removal of UV-induced lesions: skin atrophy, pigmentation 

anomalies, and most strikingly a very high incidence of skin cancer (Cleaver, 2005). Squamous 

cell carcinomas, basal cell carcinomas, and melanomas may occur at the ocular surface (Kraemer 

et al., 1987). In addition, XP patients display a higher propensity to internal cancers, mostly of 

the lung or gastro-intestinal tract, suggesting the role of NER in dealing with air pollution and 

food carcinogens (Nouspikel, 2009). Approximately 20% of XP patients suffer from neurological 
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symptoms typical of progressive neurodegeneracy (Kraemer et al., 1984). Given that UV light 

cannot reach into the human brain, XP neurological symptoms may result from some form of 

endogenous DNA damage that is normally repaired by the NER pathway. It has been shown that 

a particular class of oxidative DNA lesions, the 8,5'-cyclopurine-2'-deoxynucleosides, are 

repaired by the NER pathway but not by any other known process (Brooks, 2007). The 

accumulation of cyclopurine in transcribed genes could be responsible for neurological diseases 

in XP patients (Rapin et al., 2000).   

There are 8 complementation groups in XP: XP-A through XP-G, plus a variant group 

XP-V (Nouspikel, 2009). Factors of XP-A through XP-G play critical roles in damage 

recognition, double-helix unwinding, or dual incision during GGR process (Table 1-2, Figure 

1-3). Mutations in these genes disable NER at the global genomic level, although TCR is still 

operative (Fousteri and Mullenders, 2008). XP-V encodes human DNA polymerase eta (Pol η), 

which shares significant amino acid sequence homology with S. cerevisiae Rad30 (Johnson et al., 

1999; Nouspikel, 2009). Unlike other XP cells (belonging to groups XP-A to XP-G), XP-V cells 

carry out normal NER processes but are defective in their replication of UV-damaged DNA 

(Lehmann et al., 1975). Thus, it is believed that bypass polymerases which take over in XP-V 

cells may cause the accumulation of mutations during DNA replication (Masutani et al., 1999). 

The higher cancer propensity can be explained by the accumulation of mutations in the genome 

of actively replicating cells in XP patients. 

1.4.2 Cockayne Syndrome (CS)  

CS is a developmental disease, characterized by severe neurological abnormalities with 

white matter degeneracy, short stature, lack of subcutaneous fat, bird-like faces, tooth decay, 

cataracts, and a shortened life span averaging 12.5 years (Nouspikel, 2009). The majority (80%) 

of CS cases are caused by a defect in the CSB gene, while most of the remaining cases are caused 
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by mutations in the CSA gene (Stefanini et al., 1996). Besides TCR, CSB has been show to be 

involved in several different processes, including general transcription (Scharer, 2008), BER of 

some types of oxidative damage (Selby and Sancar, 1997a) and possibly chromatin remodeling 

(Tuo et al., 2001) (Fig. 1-5) (Newman et al., 2006). In addition, CS cells display a stronger 

apoptotic response to DNA damaging agents than normal cells, which in part could explain why 

no cancer is seen in CS patients (Stevnsner et al., 2008). Given the involvement of CSB in 

several different processes, it can be speculated that the participation of CSB in each pathway is 

somehow regulated in response to DNA damage, aging, development, and cellular differentiation 

(Balajee et al., 2000; Stevnsner et al., 2008). 

 

 

 
 
Figure 1-5 Processes in which CSB might participate. Based on proteins that have been 
demonstrated to interact with CSB, CSB could be involved in different processes. Adopted from 
(Stevnsner et al., 2008). 

  

Besides mutations in CSA and CSB genes, three other mutations in XP genes: XPB, XPD, 

and XPG also cause severe CS with some concomitant XP symptoms (Stevnsner et al., 2008).  

Cells from XP/CS patients are completely deficient in NER, whether matter coupled to 
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transcription or not (Rapin et al., 2000). Thus, the deficiency of TCR does not account for the 

complex CS phenotype, since most XP patients (except XP-C and XP-E groups) are also TCR 

deficient, but do not suffer from typical CS symptoms (Rapin et al., 2000). It is interesting that 

different mutations in the same gene can cause such different clinical presentations. The panel of 

symptoms seems to closely correlate with the nature of the mutation. For example, point 

mutations in XPG gene that inactivate the endonuclease active site cause XP, whereas promoter 

mutations or mutations that yield a severely truncated and unstable XPG protein give rise to CS 

(Scharer, 2008). This implies that genes of XPB, XPD, and XPG probably function in several 

pathways, and that different mutations may impair their function in one or the other pathway 

(Nouspikel et al., 1997).  

1.4.3 Trichothiodystrophy (TTD)  

The defining feature of TTD is sulfur-deficient brittle hair caused by a reduced level of 

cysteine-rich matrix proteins. Associated features include mental retardation, short stature, 

ichthyosis, and in many cases, cutaneous photosensitivity but no increased cancer incidence 

(Nouspikel, 2009). TTD patients appear to be defective in NER as a consequence of alterations 

in one of three genes: XPB (Lehmann, 2003; Nouspikel, 2009), XPD (Weeda et al., 1997), and 

TTD-A (Stefanini et al., 1986), which all belong to subunits of TFIIH (Fig. 1-2).  

The level of TFIIH was found to be substantially reduced in all TTD cells from 

XP-B,XP-D, and TTD-A groups (Giglia-Mari et al., 2004), suggesting TTD phenotype results 

from a reduced content of TFIIH, which is in turn caused by mutations that destabilize the 

structure of TFIIH. Given the fact that TFIIH is required for both transcription and NER, the 

symptoms of TTD may result from a subtle defect in transcription, besides the defect in NER 

(Botta et al., 2002). The reduced levels of TFIIH might be insufficient to provide adequate 

transcription activity. This might account for the deficiency in cysteine-rich matrix proteins in 
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brittle hair of TTD patients (Bootsma and Hoeijmakers, 1993). It has been shown recently that 

TFIIH changes subunit composition in response to UV irradiation. The detachment of 

CDK-activating kinase (CAK) complex from the core of TFIIH by XPA converts TFIIH from an 

elongation-proficient form into a repair-proficient form, suggesting TFIIH may dynamically 

change forms to adapt its engagement in both transcription and TCR processes (Coin et al., 

2008). All the clinical features in TTD cannot be fully understood until the exact roles of TFIIH 

in different processes are completely deciphered.   

XP, CS, and TTD are all categorized as segmental progeroid syndromes (PSs), which 

constitute a group of disorders characterized by clinical features mimicking physiological aging 

at an early age (Lehmann, 2003). Most human progeroid disorders are linked to defects in 

genome maintenance (Navarro et al., 2006). The study of these age-related disorders not only 

helps explain their severity, but also helps understand the mechanisms underlying aging.  

To fully understand the mechnisms of NER, we need put the regulation of NER into the 

genome context and take other cellular processes such as transcription, DNA remodeling and cell 

cycle control into account. Some transcription factors are involved in both transcription and NER. 

The functional mechanisms of these factors are critical for NER regulation, especially for the 

coordination between TCR and transcription. This dissertation focused on the roles of yeast 

transcription factors Tfb5, Spt4, Spt5 and Rad26 in NER, especially in TCR.  
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CHAPTER 2  
 

TFB5 IS PARTIALLY DISPENSABLE FOR RAD26 MEDIATED TRANSCRIPTION 
COUPLED NUCLEOTIDE EXCISION REPAIR IN YEAST∗ 

 

2.1 Introduction 

Nucleotide excision repair (NER) is a ubiquitous DNA repair mechanism capable of 

removing a variety of helix-distorting lesions, including UV-induced cyclobutane pyrimidine 

dimers (CPDs) and photoproducts (Friedberg et al., 2006). NER is a multistep reaction and 

requires the coordinated action of about 30 proteins implicated in damage recognition, helix 

opening, lesion verification, dual incision of the damaged strand bracketing the lesion, removal 

of an oligonucleotide containing the lesion, gap-filling DNA synthesis and ligation.  

A specialized NER pathway, called transcription coupled NER (TC-NER, or TCR), refers 

to preferential repair in the transcribed strand (TS) of an actively transcribed gene. A transcribing 

RNA polymerase complex stalled at a DNA lesion on the TS may serve as a signal for rapidly 

recruiting NER machinery (Friedberg et al., 2006). Factors that are specifically required for TCR, 

such as Mfd, Rad26 and Cockayne syndrome complementation group A (CSA) and B (CSB) 

proteins, have been identified in Escherichia coli, yeast and human, respectively (Mellon and 

Hanawalt, 1989; Mellon et al., 1987; Selby and Sancar, 1993; Smerdon and Thoma, 1990; van 

Gool et al., 1994; van Hoffen et al., 1995). Rpb9, a non-essential subunit of RNA polymerase II 

(Pol II), has been shown to mediate a TCR mechanism that is independent of Rad26 in yeast (Li 

and Smerdon, 2002).  

The genome-wide NER process is sometimes termed as global genomic NER (GG-NER, 

or GGR), to be distinguished from the process of TCR. In mammalian cells, xeroderma 

                                                        
∗Rreprinted by permission of DNA Repair, from Ding, B., Ruggiero, C., Chen, X., and Li, S. (2007). DNA Repair 
(Amst) 6 (11), 1661-1669. 
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pigmentosum complementation group C (XPC) protein has been shown to be specifically 

required for GGR, but dispensable for TCR (Venema et al., 1991; Venema et al., 1990). In 

Saccharomyces cerevisiae, Rad7 and Rad16, which do not have significant sequence or 

structural similarity to XPC, are specifically required for GGR, but dispensable for TCR 

(Verhage et al., 1994). Rad7 and Rad16 are components of a complex that binds specifically to 

UV damaged DNA in an ATP-dependent manner, and the complex has DNA-dependent ATPase 

activity (Guzder et al., 1998). Besides Rad7 and Rad16, the complex may also contain several 

other factors, such as replicating sequence binding factor 1 (Abf1) (Reed et al., 1999; Yu et al., 

2004). Recently, it was found that Rad7 and Rad16 are also components of an E3 ubiquitin ligase 

complex (Ramsey et al., 2004; Ribar et al., 2006).  

In eukaryotic cells, most DNA sequences that were previously thought to be 

transcriptionally inert are actually transcribed (Struhl, 2007). Recent high resolution mapping of 

transcription in S. cerevisiae showed that a total of 85% of the genome is transcribed (David et 

al., 2006). Therefore, some genes or genomic sequences, which were previously supposed to be 

transcriptionally “silent” and were assumed to be repaired by GGR, may actually be repaired by 

both GGR and TCR mechanisms.  

Transcription factor IIH (TFIIH) is a multi-protein complex required for both Pol II 

transcription and NER (Feaver et al., 1993; Schaeffer et al., 1994; Schaeffer et al., 1993; Wang et 

al., 1994). The role of TFIIH in transcription is mainly at the initiation stage, as it dissociates 

from the Pol II complex early in the transcription elongation process (Hahn, 2004). The role of 

TFIIH in NER can be independent of transcription, as the complex is required in reconstituted 

cell free reactions in the complete absence of transcription (Araujo et al., 2000; Guzder et al., 

1995). It has been shown that the formation of an open DNA structure around a lesion during 

NER requires the ATP-dependent helicase activities of TFIIH (Evans et al., 1997a; Evans et al., 
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1997b; Mu et al., 1997). TFIIH may play a unique role in TCR. In a short region around the 

transcription start site, the TS is preferentially repaired in the absence of Rad26 in yeast 

(Tijsterman et al., 1997), or CSA and CSB in human cells (Tu et al., 1997, 1998). Preferential 

repair in the more down stream regions of the TS, however, requires the TCR factors Rad26 in 

yeast (Tijsterman et al., 1997), and CSA and CSB in human cells (Tu et al., 1997, 1998). It is 

therefore proposed that TFIIH engaged in transcription initiation may play a direct role in TCR. 

Furthermore, recent studies suggest that a TCR complex may be formed without the 

displacement of Pol II from the DNA (Brueckner et al., 2007; Fousteri et al., 2006; Sarker et al., 

2005; Tremeau-Bravard et al., 2004). TFIIH can be recruited to the TCR complex and remodel 

Pol II to let NER machinery gain access to the lesion on the TS (Fousteri et al., 2006; Laine and 

Egly, 2006; Sarker et al., 2005). Therefore, TFIIH may also play a special role in TCR when Pol 

II is in transcription elongation mode.  

Trichothiodystrophy (TTD) is a premature aging syndrome, characterized by sulfur- 

deficient brittle hair and nails resulting from a reduced level of cysteine-rich matrix proteins. 

Associated features include progressive mental and physical retardation, ichthyosis, 

β-thalassaemia trait, unusual facial features, and in many cases photosensitivity (Friedberg et al., 

2006). TTD can be caused by mutations in XPB and XPD, two TFIIH subunits that have 

ATP-dependent DNA helicase activities. The third group of TTD (TTD-A) has recently been 

found to be caused by mutations in Tfb5, the tenth subunit of TFIIH (Giglia-Mari et al., 2004; 

Ranish et al., 2004). Tfb5 is highly conserved, with a sequence identity of 28% and a sequence 

similarity of 56% between human and yeast (Giglia-Mari et al., 2004). In humans, the absence of 

Tfb5 seems to affect TFIIH stability because the steady-state level of TFIIH in TTD-A cells is 

about 25–30% of its wild type counterpart (Botta et al., 2002; Giglia-Mari et al., 2004; 

Vermeulen et al., 2000). TTD-A cells are mildly UV sensitive. A UV-induced DNA synthesis 
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assay, which measures overall NER synthesis, suggested that NER capacity in TTD-A cells is 

10% of that in wild type cells (Botta et al., 2002; Giglia-Mari et al., 2004; Vermeulen et al., 

2000). In yeast, Tfb5 does not seem to affect TFIIH stability (Ranish et al., 2004). However, 

deletion of Tfb5 also causes mild UV sensitivity (Ranish et al., 2004; Vermeulen et al., 2000). 

Furthermore, it was recently shown that whole cell extracts from yeast tfb5 cells is deficient in 

overall NER (Vermeulen et al., 2000). However, how Tfb5 affects NER in intact yeast cells is 

still not well known.  

In view of the observations that Tfb5 is not absolutely required for NER (Botta et al., 

2002; Giglia-Mari et al., 2004; Vermeulen et al., 2000; Zhu et al., 2007) and that TFIIH may 

work on different architectural complexes during different NER processes in the cells (Friedberg 

et al., 2006), it is possible that Tfb5 plays a different role in different NER pathways. We 

attempted to address this issue by analyzing the roles of Tfb5 in NER in different well-defined 

yeast NER mutants. We found that Tfb5 is partially dispensable for Rad26 mediated TCR, 

especially in GGR deficient cells. However, this TFIIH subunit is required for other NER 

pathways.  

2.2 Materials and Methods 

2.2.1 Yeast Strains  

Wild type yeast strain BJ5465 (MATa ura3-52 trp1 leu2∆1 his3∆200 pep4::HIS3 

prb1∆1.6R can1 GAL) was obtained from the American Type Culture Collection. All deletion 

mutants were made in BJ5465 background. The cells were transformed with linearized plasmids 

bearing the respective genes to be deleted, with a portion of their genes replaced by the yeast 

URA3 or LEU2 gene as described previously (Li and Smerdon, 2002). The transformed cells 

were selected on SD plates containing no uracil or leucine at 30 °C. In order to introduce a 
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second deletion using a plasmid bearing the gene of interest replaced by the URA3 gene, the 

previously introduced URA3 gene that had replaced the first gene was knocked out. The URA3 

knockout was done by transforming the cells with a linearized plasmid bearing a truncated (with 

the sequence between the sites of StuI and EcoRV removed) URA3 gene, and selecting the cells 

on SD plates containing 5-fluoro-orotic acid (Boeke et al., 1984). All the deletions were 

confirmed by PCR analysis. Nucleotides (with respect to the starting codon ATG) +214 to +1454, 

+58 to +2297, +11 to +366 and +15 to +202 were deleted for the RAD7, RAD26, RPB9 and 

TFB5 genes, respectively.  

2.2.2 UV Irradiation, Repair Incubation and DNA Isolation 

Yeast cells were grown at 30 °C in minimal medium containing 2% galactose to late log 

phase (A600  1.0), harvested, and washed twice with ice-cold water. The washed cells were 

resuspended in 2% galactose and irradiated with 100 J/m2 of 254 nm UV light. One-tenth volume 

of a stock solution containing 10% yeast extract and 20% peptone was immediately added to the 

irradiated cell suspension, and the cells were incubated for various times in the dark at 30 °C 

before being pelleted. The pelleted cells were broken with glass beads and the genomic DNA 

was isolated using a hot SDS procedure as described previously (Li and Smerdon, 2002).  

2.2.3 NER Analysis of UV-Induced CPDs  

The gene fragments of interest were 3′-end labeled with [α-32P]dATP using a procedure 

described previously (Li and Waters, 1996; Li et al., 2000). Briefly, 1 µg of total genomic 

DNA was digested with restriction enzyme(s) to release the fragments of interest and incised at 

CPD sites with an excess amount of purified T4 endonuclease V (Epicentre). Excess copies of 

biotinylated oligonucleotides, which are complementary to the 3′-end of the fragments to be 

labeled, were mixed with the sample. The mixture was heated at 95 °C for 5 min to denature the 
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DNA and then cooled to an annealing temperature of around 50 °C. The annealed fragments 

were attached to streptavidin magnetic beads (Invitrogen) and the other fragments were removed 

by washing the beads at the annealing temperature. The attached fragments were labeled with 

[(-32P]dATP (Perkin-Elmer), and resolved on sequencing gels. The gels were dried and exposed 

to a Phosphorimager screen (Bio-Rad).  

The signal intensities at gel bands corresponding to CPD sites were quantified using 

Quantity One software (Bio-Rad). The total signal intensity in a lane of a gel was obtained after 

the gel background signal was subtracted. The total signal intensity in a lane was used to 

normalize the loading of different lanes in a gel. The percent CPDs remaining at individual sites 

following different times of repair incubation were then calculated.  

2.3 Results 

2.3.1 Tfb5 Is Required for GGR 

       We examined the roles of Tfb5 in NER in yeast cells using a high resolution (nucleotide 

level) technique. One of the most obvious advantages for using this technique is that repair rates in 

different regions of a fragment can be resolved on the same gel, and therefore a small difference of 

repair among different regions can usually be unambiguously identified. Wild type and different 

NER deficient cells were cultured to late log phase, UV irradiated and incubated for different 

periods of time. Genomic DNA was isolated, digested with restriction enzymes to release the gene 

fragment of interest and incised at CPD sites with an excess amount of T4 endonuclease V (Lloyd, 

2005). The incised fragments were strand specifically end labeled, resolved on DNA sequencing 

gels and exposed to phosphorimager screens, as previously described (Li and Waters, 1996; Li et 

al., 2000).  

To investigate the role of Tfb5 in GGR, we first analyzed repair in the NTS of the 

constitutively expressed RPB2 gene and the galactose-induced GAL1 genes. The reason for 
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Figure 2-1 NER in the NTS of the induced GAL1 gene and the constitutively expressed 
RPB2 gene in wild type (WT) and tfb5 cells. (A)–(D) Gels showing NER in the NTS of the two 
genes. (E) Plot showing percent CPDs repaired (mean ± standard deviation) in the NTS (+1 to 
+340) of the GAL1 gene. The data were obtained by quantification of the gels shown in panels 
(A) and (B). (F) Plot showing percent CPDs repaired (mean ± S.D.) in the NTS (+1 to +800) of 
the RPB2 gene. The data were obtained by quantification of the gels shown in panels (C) and 
(D).  
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Figure 2-2 NER in the RPB2 gene of TCR deficient rad26 rpb9 cells. (A)–(D) Gels showing 
NER in the RPB2 gene in rad26 rpb9 and rad26 rpb9 tfb5 cells. (E) Plot showing percent CPDs 
repaired (mean ± S.D.) in the NTS (+1 to +800) of the RPB2 gene. The data were obtained by 
quantification of the gels shown in panels (A) and (B). (F) Plot showing percent CPDs repaired 
(mean ± S.D.) in the TS (+1 to +940) of the RPB2 gene. The data were obtained by 
quantification of the gels shown in panels (C) and (D).  
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choosing these two genes for analysis is that transcriptions of these genes are well characterized. 

Furthermore, many studies (Li and Smerdon, 2002, 2004; Verhage et al., 1994; Verhage et al., 

1996) have shown that NER in the NTS of the two actively transcribed genes is absolutely 

dependent on Rad7/Rad16, indicating that repair in the NTS of these genes is entirely 

accomplished by GGR. As expected, apparent repair occurred in wild type cells (Fig. 2-1A, C, E 

and F). However, no repair can be seen in the NTS of the genes in tfb5 cells (Fig. 2-1B, D–F), 

indicating Tfb5 is required for GGR. To confirm this result, we analyzed the role of Tfb5 in 

rad26 rpb9 cells, where TCR is completely abolished, so that GGR can be unambiguously 

examined (Li and Smerdon, 2002, 2004). Apparent repair occurred in both strands of the RPB2 

gene in rad26 rpb9 cells (Fig. 2-2A, C, E and F). In fact, GGR in some sites of the gene was very 

efficient in the TCR deficient cells (Fig. 2-2A and C). However, no repair can be seen in any sites 

of the gene in rad26 rpb9 tfb5 cells (Fig. 2-2B, D–F). Taken together, our results indicate that 

Tfb5 is required for GGR. 

2.3.2 Tfb5 Is Required for Rpb9 Mediated TCR, but Partially Dispensable for Rad26 
Mediated TCR in the Repair of Constitutively Expressed RPB2 Gene  

 
It has been shown that deletion of TFB5 in yeast does not significantly affect 

transcription of most genes (Ranish et al., 2004). In agreement with the previous report, we 

found that the levels of RPB2 transcription are similar between wild type and tfb5 cells (not 

shown). Rapid repair can be seen in the TS of the RPB2 gene in wild-type cells (Figs. 2-3A and 

4A). However, only residual ( 15%) repair can be seen in the coding region of the TS in tfb5 

cells during the repair incubation of 4 h (Figs. 2-3B and 2-4A). As mentioned above, no repair 

can be detected in the NTS of the RPB2 gene in tfb5 cells. These results indicate that Tfb5 is 

important, but not absolutely required for TCR. It has been shown that Rad7 and Rad16 are 

required for repairing the NTS of transcriptionally active genes (Verhage et al., 1994). Therefore, 
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rad7/rad16 cells have been repeatedly used to unambiguously examine TCR (e.g., see refs. (Li 

and Smerdon, 2002, 2004; Teng et al., 1997; Tijsterman et al., 1997). In agreement with previous 

reports (Verhage et al., 1994; Verhage et al., 1996), no repair can be seen in the NTS (not shown), 

or in the region of the TS that is over 40 nucleotides upstream of the transcription start site (Fig. 

2-3C). Interestingly, substantial ( 60%) repair occurred in the coding region of the TS in rad7 

tfb5 cells during the repair incubation of 4 h (Figs. 2-3D and 2-4B). This result indicates that 

Tfb5 can be largely dispensable for TCR in GGR deficient rad7 cells.  

In agreement with our previous studies (Li et al., 2006; Li and Smerdon, 2002, 2004), 

simultaneous elimination of Rad7 (or Rad16), Rad26 and Rpb9 completely abolishes NER in 

yeast (Fig. 2-3I). In rad7 rad26 cells, where only Rpb9 mediated TCR is operative (Fig. 2-3, 

compare panels E and I), obvious repair can be seen in the coding region of the TS, especially in 

the short region immediately downstream the transcription start site (Fig. 2-3E, marked by the 

bracket; Fig. 2-4C). It has been suggested that the rapid repair in the short region immediately 

downstream of the transcription start site is accomplished by TFIIH, which is associated with Pol 

II during transcription initiation (Tijsterman et al., 1997; Tu et al., 1997, 1998). However, no 

repair can be seen in the RPB2 gene of rad7 rad26 tfb5 cells, including the short region 

immediately downstream of the transcription start site (Figs. 2-3F and 2-4C). These results 

indicate that Tfb5 is required for Rpb9 mediated TCR throughout the RPB2 gene. 

In rad7 rpb9 cells, where only Rad26 mediated TCR operates (Fig. 2-3, compare panels 

G and I), very fast repair can be seen in the coding region of the TS (Figs. 2-3G and 2-4D). 

Substantial repair can also be seen in the coding region of the TS in rad7 rpb9 tfb5 cells (Figs. 

2-3H and 2-4D), indicating that Tfb5 is partially dispensable for Rad26 mediated TCR in GGR 

deficient cells.   

 



 

 62

 
 
 
 

 
 
 
 
Figure 2-3 TCR in the constitutively transcribed RPB2 gene The lanes are DNA samples 
from unirradiated (U) and UV irradiated cells following 0, 1, 2 and 4 h repair incubation. The 
arrow on the left of the gels indicates the transcription start site. The bracket on the right of panel 
(E) marks the region where robust Rad26-independent TCR occurs.  
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Figure 2-4 Plots showing repair of CPDs in the TS (+1 to +940) of the RPB2 gene. The data 
were obtained by quantification of the gels shown in panels (A)–(H) of Figure 3. The values are 
shown as average (mean ± S.D.) of the percent CPDs repaired at different times of repair 
incubation.  
 

2.3.3 Tfb5 Plays a Similar Role in TCR in the Induced GAL1 Gene  

To see how general the TCR trends we observed in the RPB2 gene is, we also analyzed 

TCR in the GAL1 gene, which is highly induced by galactose (Bash and Lohr, 2001; Lohr et al., 

1995). In contrast to the RPB2 gene, whose transcription level is not significantly affected by 

Tfb5 (see above) (Ranish et al., 2004), the GAL1 gene showed 5–10-fold reduction of 

transcription in tfb5 cells (not shown). This level of transcriptional reduction in the GAL1 gene 

agrees well with a previous report (Ranish et al., 2004). As the transcription level of the induced 

GAL1 gene in wild type cells is extremely high (Lohr et al., 1995), we reasoned that a relatively 

high level of transcription still occurred in the induced GAL1 gene in tfb5 cells.  

The trends of Rad26 and Rpb9 mediated TCR are similar between the RPB2 and GAL1 

genes, except that TCR in rad7 rad26 (or rad16 rad26) cells is slower in the RPB2 gene 

(compare Figs. 2-3E, 2-5E, 2-4C and 2-6C) (Li and Smerdon, 2002). Also, the TCR initiation 

site in the GAL1 gene is at about nucleotide -180 (relative to the transcription start site) (Fig. 2-5), 

which is more upstream than that of the RPB2 gene (at about nucleotide −40) (Fig. 2-3). Similar 
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to the TS of the RPB2 gene, the TS of the GAL1 gene showed substantial repair in rad7 tfb5 

(Figs. 2-5D and 2-6B) and rad7 rpb9 tfb5 cells (Figs. 2-5H and 2-6D), but no apparent repair in 

rad7 rad26 tfb5 cells (Figs. 2-5F and 2-6C). These results indicate that, in the induced GAL1 

gene, Tfb5 is required for Rpb9 mediated TCR, but partially dispensable for Rad26 mediated 

TCR, especially in GGR deficient cells. 

2.4 Discussion 

In human cells, the role of Tfb5 in NER may be achieved at least partially by stabilizing 

TFIIH (Vermeulen et al., 2000). In addition, the human Tfb5 may play a direct role in NER. A 

recent in vitro study showed that human Tfb5 (p8/TTD-A) triggers DNA opening by stimulating 

XPB ATPase activity together with the damage recognition factor XPC-hHR23B (Coin et al., 

2006). In yeast, the role of Tfb5 in NER may be accomplished primarily by a direct action. It has 

been shown that the steady-state levels of other TFIIH subunits are not changed in tfb5 cells 

(Ranish et al., 2004). We also observed that the steady-state levels of TFIIH subunits are similar 

between wild type and tfb5 strains we used (not shown). Yeast Tfb5 interacts with Tfb2, another 

subunit of TFIIH (Zhu et al., 2007). It was proposed that the yeast Tfb5 acts as an architectural 

stabilizer conferring structural rigidity to the core TFIIH such that the complex is maintained in 

its functional architecture (Zhu et al., 2007).  

Although it plays a stimulatory role (Coin et al., 2006), Tfb5 is not absolutely required 

for NER in vitro, as the core TFIIH complex (without Tfb5 and the CTD kinase subunits) is able 

to open DNA around a lesion (Araujo et al., 2000; Svejstrup et al., 1995). Our data presented 

here indicates that Tfb5 is essential for GGR in vivo (Fig. 2-1 and Fig. 2-2). One possibility is 

that the XPB ATPase activity of TFIIH needs to be stimulated by Tfb5 (Coin et al., 2006) to 

efficiently open the DNA structure around a lesion in the chromatin environment in vivo.  
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Figure 2-5 TCR in the galactose-induced GAL1 gene The lanes are DNA samples from 
unirradiated (U) and UV irradiated cells following 0, 1, 2 and 4 h repair incubation. The arrow 
on the left of the gels indicates the transcription start site.  
 
 

 

Figure 2-6 Plots showing repair of CPDs in the TS (+1 to +600) of the GAL1 gene. The data 
were obtained by quantification of the gels shown in panels (A)–(H) of Figure 2-5. The values 
are shown as average (mean ± S.D.) of the percent CPDs repaired at different times of repair 
incubation.  
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Alternatively, the Tfb5-lacking TFIIH may not be efficiently recruited to a GGR complex in the 

cells. The role of Tfb5 in GGR may be similar to that of the Rad7/Rad16 complex, which is also 

not absolutely required for NER in vitro, although it dramatically stimulates the process (Boeke 

et al., 1984). However, the Rad7/Rad16 complex is essential for GGR in vivo (Verhage et al., 

1994; Verhage et al., 1996).  

We observed that Tfb5 is partially dispensable for Rad26 mediated TCR. During TCR, 

TFIIH is recruited to damaged DNA only in the presence of Rad26 (You et al., 1998). One 

possibility is that Tfb5-lacking TFIIH can still be efficiently recruited to a TCR complex by 

Rad26. The recruited Tfb5-lacking TFIIH may, to some extent, be able to open the DNA around 

a lesion. However, this scenario cannot explain the Rad26-independent TCR close to the 

transcription start site. TFIIH is essential for transcription initiation, and is obligatorily loaded to 

the transcription initiation complex (Hahn, 2004). TCR in the yeast URA3 gene becomes Rad26 

dependent 30–40 nucleotides downstream from the transcription start site (Tijsterman et al., 

1997). In the human JUN gene, TCR becomes CSA and CSB dependent at about +20 nucleotides 

into the coding region (Tu et al., 1997, 1998). It has been proposed that this TCR 

factor-independent TCR close to the transcription start site may be due to the association of 

TFIIH with Pol II, as TFIIH is believed to be released from Pol II 30–60 nucleotides downstream 

from the start site (Svejstrup, 2002). In this study, we also observed efficient TCR close to the 

transcription start site in the RPB2 gene of rad7 rad26 cells (Fig. 2-3E, marked with a bracket). 

However, simultaneous deletion of TFB5 and RAD26 genes completely abolished TCR in this 

region of the gene (Fig. 2-3F), indicating that the Rad26-independent TCR in this region is Tfb5 

dependent. Therefore, an alternative scenario would be that Rad26 may be able to facilitate the 

opening of lesion-containing DNA at the transcription bubble without the participation of a fully 

functional (Tfb5-containing) TFIIH. Rad26 is a DNA-dependent ATPase (Guzder et al., 1996). It 
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also contains a DNA helicase motif, although no helicase activity can be detected (Gray et al., 

1997). Recent studies in human cells or purified NER factors suggested that a TCR complex may 

be formed without the displacement or degradation of Pol II (Brueckner et al., 2007; Fousteri et 

al., 2006; Sarker et al., 2005; Tremeau-Bravard et al., 2004). Our recent results in yeast also 

suggest that ubiquitylation and subsequent degradation of Rpb1, the largest subunit of Pol II, is 

unrelated to TCR (Li et al., 2007).  

We constantly observed that TCR is faster in GGR deficient rad7/rad16 cells than in wild 

type cells (compare Fig. 2-3A and C, and Fig. 2-5A and C; see also Fig. 2-1 in ref. (Li and 

Smerdon, 2002)). Interestingly, we also observed that TCR is more efficient in rad7 tfb5 cells 

than in tfb5 cells (Fig. 2-3, Fig. 2-4, Fig. 2-5 and Fig. 2-6). The reason(s) for the observations 

remain(s) to be understood. One explanation is that the Rad7/Rad16 complex and Rad26 may 

compete for NER factors that are shared by different NER pathways, and elimination of 

Rad7/Rad16 may make more NER factors available to be recruited by Rad26. An alternative 

explanation is that Rad7/Rad16 may play a role in inhibiting TCR.  

In contrast to Rad26 mediated TCR, Rpb9 mediated TCR appears to be dependent on 

Tfb5. Our recent data suggests that the transcription elongation function of Rpb9 is involved in 

TCR, and impairment of transcription elongation abolishes Rpb9 mediated TCR (Li et al., 2006). 

However, the requirement of Tfb5 for Rpb9 mediated TCR does not seem to be due to a role for 

Tfb5 in transcription elongation. Cells with a deficiency in transcription elongation are generally 

sensitive to nucleotide-depleting drugs, such as 6-azauracil and mycophenolic acid (Hyle et al., 

2003). However, tfb5 cells are not sensitive to these drugs (not shown). Therefore, without the 

involvement of Rad26, the Tfb5-lacking TFIIH may not be able to remodel the Pol II complex 

stalled at a lesion or to open the DNA round the lesion at the transcription bubble in vivo, 

resulting in deficiency in Rad26-independent TCR.  
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In view of the fact that Tfb5 (Giglia-Mari et al., 2004) and the NER process (Friedberg et 

al., 2006) are highly conserved between yeast and humans, it is reasonable to speculate that Tfb5 

plays similar roles in different NER pathways in human cells. It would be very interesting to test 

this idea.  
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CHAPTER 3 
 

THE C-TERMINAL REPEAT DOMAIN OF SPT5 PLAYS AN IMPORTANT ROLE IN 
SUPPRESSION OF RAD26-INDEPENDENT TRANSCRIPTION COUPLED REPAIR∗ 

 

3.1 Introduction 

Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of 

removing a variety of helix-distorting lesions, such as UV-induced cyclobutane pyrimidine 

dimers (CPDs) (Friedberg et al., 2006). NER can be grouped into two pathways: global genomic 

repair (GGR), which refers to repair throughout the genome, and transcription coupled repair 

(TCR), which refers to a repair mechanism that is dedicated to the transcribed strand of actively 

transcribed genes (Hanawalt, 2002). In the yeast Saccharomyces cerevisiae, Rad7, Rad16 

(Verhage et al., 1994) and Elc1 (Lejeune et al., 2009) are specifically required for GGR, but 

dispensable for TCR. Rad7 and Rad16 form a complex that binds specifically to UV damaged 

DNA in an ATP-dependent manner and has DNA-dependent ATPase activity (Guzder et al., 

1998). Elc1 has been shown to be a component of a ubiquitin ligase that contains Rad7 and 

Rad16, and is responsible for regulating the levels of Rad4 protein in response to UV damage 

(Gillette et al., 2006; Ramsey et al., 2004). It has also been suggested that Elc1 is a component of 

another ubiquitin ligase complex, which contains Ela1, Cul3, and Roc1 but not Rad7 and Rad16 

(Ribar et al., 2006, 2007). The role of Elc1 in GGR may not be subsidiary to that of Rad7 and 

Rad16 (Lejeune et al., 2009).  

The mechanistic details of TCR are relatively well understood in Escherichia coli. The 

transcription-repair coupling factor Mfd targets the transcribed strand for repair by recognizing a 

stalled RNA polymerase and actively recruiting the NER machinery to the transcription blocking 

                                                        
∗ Reprinted by permission of J Biol Chem, from Ding, B., Lejeune, D., and Li, S. (2010) J Biol Chem. 285 
(8):5317-5326. 



 

 74

lesion as it dissociates the stalled RNA polymerase (Selby and Sancar, 1993). Conversely, the 

TCR mechanisms in eukaryotes appear to be extremely complicated [for reviews see (Fousteri 

and Mullenders, 2008; Hanawalt and Spivak, 2008)]. In mammalian cells, Cockayne syndrome 

group A (CSA) and B (CSB) proteins are specifically required for TCR, but dispensable for GGR 

(Lommel and Hanawalt, 1991; Troelstra et al., 1992; van Hoffen et al., 1993; Venema et al., 

1990). Like its human homolog CSB, the yeast Rad26 plays an important role in TCR but is 

dispensable for GGR (van Gool et al., 1994). Both human CSB (Selby and Sancar, 1997b) and 

yeast Rad26 (Guzder et al., 1996) are DNA-stimulated ATPases and play roles in transcription 

elongation (Lee et al., 2001; Selby and Sancar, 1997a). However, TCR in yeast is not solely 

dependent on Rad26, as a substantial extent of TCR still occurs in cells lacking Rad26 (Li and 

Smerdon, 2002, 2004; Verhage et al., 1996). Rpb9, a nonessential subunit of RNA polymerase II 

(Pol II), has also been shown to play a role in TCR (Li et al., 2006; Li and Smerdon, 2002, 2004; 

Saunders et al., 2006). 

Mutations in the SPT4 and SPT5 genes in yeast were originally isolated as suppressors of 

the Ty insertion mutations that interfere with adjacent gene transcription (Winston et al., 1984). 

When the Ty sequence is inserted in the upstream region of a gene, the transcription signal 

directs transcription from the Ty promoter and interferes with normal transcription of the 

adjacent gene. A mutation in SPT4 or SPT5 attenuates the aberrant transcription, restoring 

transcription from the normal site. The SPT4 gene is dispensable (Malone et al., 1993) whereas 

the SPT5 gene is essential (Swanson et al., 1991b) for cell viability. Immunoprecipitation studies 

showed that Spt4 and Spt5 form a complex, which physically interacts with Pol II (Hartzog et al., 

1998). Yeast cells lacking Spt4 show reduced efficiency of Pol II elongation through GC-rich 

DNA sequences and a general decrease in Pol II processivity (Mason and Struhl, 2005; Rondon 

et al., 2003). These proteins are conserved eukaryotic transcription-elongation factors and are 
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generally required for normal development and for viral gene expression in multicellular 

eukaryotes (Winston, 2001). In mammalian cells, the Spt4/Spt5 complex, which is also called 

DRB sensitivity inducing factor (DSIF), represses transcription elongation at the 

elongation-recessive elongation transition (Wada et al., 1998; Yamaguchi et al., 1999). 

Phosphorylation of the C-terminal repeat region of Spt5 plays a key role in converting the 

complex from a repressor to a positive regulator of transcription (Yamada et al., 2006; Zhu et al., 

2007).  

Interestingly, it was shown that deletion of spt4 alleviates the requirement of Rad26 for 

TCR in yeast, indicating that Spt4 suppresses Rad26-independent TCR (Jansen et al., 2000). Up 

to date, whether and/or how Spt5 is involved in the suppression is unclear. Like the spt4 deletion, 

an Spt5 point mutation, spt5-194, results in Spt⎯ phenotype (i.e., unable to suppress Ty insertion 

mutations) and is sensitive the nucleotide depletion drug 6-azauracil, indicating that the spt4 

deletion and the spt5-194 mutation may cause similar deficiencies in transcription elongation 

(Hartzog et al., 1998; Swanson and Winston, 1992). In addition, spt5-194 combined with an spt4 

mutation leads to synthetic lethality (Swanson and Winston, 1992). However, unlike spt4∆, the 

spt5-194 mutation does not suppress the UV sensitivity of rad16∆ rad26∆ cells (Jansen et al., 

2000). This observation led to the proposition that, unlike Spt4, Spt5 may not play a role in 

suppressing Rad26-independent TCR or that, despite the shared phenotypes with spt4∆, the 

specific spt5-194 mutation may not lead to a defect in the suppression. In this paper, we present 

evidence that Spt4 indirectly suppresses Rad26-independent TCR by protecting Spt5 from 

degradation and by stabilizing the interaction of Spt5 with Pol II. We further found that the 

C-terminal repeat (CTR) domain of Spt5, which contains 15 copies of a six-amino acid sequence 

that can be phosphorylated by the Bur kinase, plays an important role in suppressing 

Rad26-independent TCR.  
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3.2 Materials and Methods 

3.2.1 Yeast Strains and Plasmids  

Yeast strains used in this study are listed in Table 1. Wild type yeast strain BJ5465 (MATa 

ura3-52 trp1 leu2∆1 his3∆200 pep4::HIS3 prb1∆1.6R can1) was obtained from the American 

Type Culture Collection. All deletion mutants were made in BJ5465 background and confirmed 

by PCR analysis, using procedures described previously (Li and Smerdon, 2002). URA3, LEU2 

and KanMX were used to replace the gene to be deleted. In some cases, the URA3 gene that had 

replaced a gene was further knocked-out as described previously (Li and Smerdon, 2002). 

Nucleotides (with respect to the starting codon ATG) + 14 to + 288, + 51 to + 2400 , + 214 to + 

1454, + 58 to + 2297, and + 204 to + 730 were deleted for SPT4, SPT5, RAD7, RAD26, and 

BUR2 genes, respectively. Strains with their genomic genes tagged with three consecutive FLAG 

(3xFLAG) sequences were created using PCR products amplified from plasmid 

p3FLAG-KanMX, as described previously (Gelbart et al., 2001). 

A plasmid overexpressing 3xFLAG tagged Spt5 under the control of the GAL10 promoter 

were created using vector pESC-URA (Fig. 2A). Two consecutive FLAG sequences were 

inserted in-frame downstream of the FLAG sequence (downstream of the GAL10 promoter) 

present in the original pESC-URA vector to create a vector encoding 3xFLAG. The SPT5 gene 

coding sequence was amplified by PCR and inserted in-frame downstream of the 3xFLAG 

sequence to create plasmid pGAL-SPT5 (Fig. 2A). 

A single-copy centromeric plasmid with the URA3 gene as a selection marker and 

encoding the wild type Spt5 protein was created by using the plasmid pRS416 (Sikorski and 

Hieter, 1989) . The full length of the SPT5 gene encompassing the 5’ promoter, the coding 

region and the 3’ terminator was amplified by PCR and inserted between the BamHI and EagI  
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Table 3-1 Yeast strains used in this study 
 

Strains Genotypea Reference/Source

BJ5465 MATa ura3-52 trp1 leu2D1 his3D200 pep4::HIS3 prb1D1.6R can1 (Jones, 1991) 

CR18 as BJ5465, but rad7∆ rad26∆ (Ding et al, 2007) 
CR78 as BJ5465, but rad7∆ rad26∆ spt4::LEU2 This study 
BD4 as BJ5465, but rad7∆ rad26∆ (SPT4-3´FLAG) This study 
BD7 as BJ5465, but rad7::URA3 (SPT5-3´FLAG) This study 
BD9 as BJ5465, but (SPT5-3´FLAG) This study 
BD10 as BJ5465, but rad7∆ rad26∆ (SPT5-3´FLAG) This study 
BD13 as BJ5465, but spt4::LEU2 (SPT5-3´FLAG) This study 
BD14 as BJ5465, but rad7∆ spt4::LEU2 (SPT5-3´FLAG) This study 
BD15 as BJ5465, but rad7∆ rad26∆ spt4::LEU2 (SPT5-3´FLAG) This study 
BD16 as CR18, but [pGAL-SPT5] This study 
BD17 as CR78, but [pGAL-SPT5] This study 
BD21 as BJ5465, but [pGAL-SPT5] This study 
BD56 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5] This study 
BD57 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/CTRD] This study 
BD58 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/641-1063D] This study 
BD59 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/422-1063D] This study 
BD60 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/1-244D] This study 
BD61 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/1-421D] This study 
BD62 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/1-640D] This study 
BD63 as BD56, but [pRS416-SPT5] removed This study 
BD64 as BD57, but [pRS416-SPT5] removed This study 
BD94 as CR18, but bur2::URA3 This study 
BD95 as BD64, but bur2::URA3 This study 
BD96 as BD63, but bur2::URA3 This study 

a Genomic genes tagged with 3×FLAG are indicated in parentheses; plasmids contained in strains are indicated in 
brackets. 
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sites of pRS416 to create the plasmid pRS416-SPT5. A single-copy centromeric plasmid with the 

LEU2 gene as a selection marker and encoding the full-length or truncated Spt5 proteins were 

created by using the plasmid pRS415 (Fig. 4A and B) (Sikorski and Hieter, 1989). The promoter, 

full-length or truncated coding sequences, and the terminator of the SPT5 gene, and the 3 

consecutive Myc sequences (3xMyc) were amplified by PCR and ligated into pRS415 to create 

plasmids expressing the full-length or CTR-deleted Spt5 (Fig. 4B).   

3.2.2. Shuffling of Plasmids Encoding Different Spt5 Truncates  

Yeast cells were transformed with plasmid pRS416-SPT5 and the genomic SPT5 gene is 

then deleted using standard procedure as described above. The specific deletion of the genomic 

SPT5 gene is confirmed by PCR using primer pairs that are specific for the genomic SPT5 gene 

and the plasmid-borne SPT5 gene. pRS415-based plasmids encoding the full-length or truncated 

Spt5 were transformed into the yeast cells whose genomic SPT5 gene had been deleted and 

complemented with pRS416-SPT5. The transformed cells were cultured in a medium containing 

uracil but not leucine to select for the LEU2 plasmids and to allow the loss of the URA3 plasmid. 

A centromeric plasmid generally has a loss rate of 1% per generation and shows virtually no 

segregation bias (Lundblad, 2004). The cultures were then spotted onto plates containing 

5-fluoroorotic acid (5-FOA), which is toxic to cells with a functional URA3 gene (Boeke et al., 

1984), to select for cells that had lost plasmid pRS416-SPT5.  

3.2.3 Repair Analysis of UV Induced CPDs 

 Yeast cells were grown at 30°C in minimal medium containing 2% glucose (SD) or 2% 

galactose (SG, for Spt5 overespression) to late log phase (A600 ≈ 1.0), irradiated with 80 J/m2 of 

254 nm UV and incubated in YPD medium (2% peptone, 1% yeast extract and 2% glucose) or 

YPG medium (2% peptone, 1% yeast extract and 2% galactose) in the dark at 30°C. At different 
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times of the repair incubation, aliquots were removed and the genomic DNA was isolated using 

a hot SDS procedure as described previously (Li and Smerdon, 2002).  

The gene fragments of interest were 3’ end labeled with [α-32P]dATP using a procedure 

described previously (Li and Waters, 1996; Li et al., 2000). Briefly, ~ 1 µg of total genomic DNA 

was digested with restriction enzyme(s) to release the fragments of interest and incised at CPD 

sites with an excess amount of T4 endonuclease V (Epicentre). Excess copies of biotinylated 

oligonucleotides, which are complementary to the 3’ end of the fragments to be labeled, were 

mixed with the sample. The mixture was heated at 95°C for 5 minutes to denature the DNA and 

then cooled to an annealing temperature of around 50°C. The annealed fragments were attached 

to streptavidin magnetic beads (Invitrogen), labeled with [α-32P]dATP (Perkin Elmer), and 

resolved on sequencing gels. The gels were exposed to a Phosphorimager screen (Bio-Rad). The 

signal intensities at gel bands corresponding to CPD sites were quantified using Quantity One 

software (Bio-Rad).    

3.2.4 Whole-Cell Extract Preparation and Immunoprecipitation 

 Yeast cells were cultured at 30°C in minimal medium containing 2% glucose or 

galactose (to induce a gene under the control of the GAL10 promoter) to late log phase and 

harvested. For measuring cellular levels of proteins of interest, whole-cell extracts were prepared 

using a trichloroacetic acid (TCA) method (Chen et al., 2007). The harvested cells from a 5 ml 

culture were resuspended in 300 µl of 20% TCA and broken by vertexing them with acid-washed 

glass beads. The proteins in the lysates were pelleted by centrifugation, washed with ice-cold 

80% acetone and dissolved in 100 µl of 2× SDS-PAGE gel loading buffer (Sambrook and 

Russell, 2001).   
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To examine the effect of Spt4 on Spt5 degradation, spt4∆ and SPT4+ cells expressing 

3xFLAG tagged Spt5 were cultured to late log phase. Cycloheximide (CHX), a potent protein 

synthesis inhibitor (Schindler and Davies, 1975), was added to the cultures to a final 

concentration of 500 µg/ml to completely stop protein synthesis (Chen et al., 2007). At different 

times following the addition of CHX, cells were harvested and whole cell extracts were prepared 

using the TCA method as described above.  

For immunoprecipitation, the harvested cells from a 25 ml culture were washed with and 

resupended in 0.5 ml of IP buffer (50 mM Tris-Cl, pH 7.4, 150 mM NaCl, 1mM EDTA, 1mM 

EGTA, 0.5% NP-40, 1% Triton X-100, 0.1% SDS, 0.2 mM PMSF and protease inhibitors) (Chen 

et al., 2007). The cells were broken with acid-washed glass beads, and cell debris was removed 

by centrifugation at 20,000 × g for 10 minutes at 4°C. Fifty µl of the lysate was saved as an 

‘input’. The remaining lysate was added with 15 µg of anti-FLAG (M2) (Sigma), anti-Myc 

(Sigma), 8WG16 (Neoclone) or H14 (Covance) antibodies, which recognize FLAG tag peptide, 

Myc tag peptide, the hypo- phosphorylated and hyper-phosphotylated C-terminal heptapeptide 

repeats of Rpb1, respectively (Palancade and Bensaude, 2003). The mixture was incubated at 

4°C overnight with gentle rotation. Protein A- or G-coated agarose beads (Sigma) were added to 

the mixture and incubated at 4°C for 3 hours with gentle rotation. The beads were washed twice 

with IP buffer containing 0.5 M of NaCl and twice with IP buffer containing 150 mM of NaCl. 

Bound proteins were eluted by boiling the beads in 50 µl of 2× SDS-PAGE gel loading buffer. 

3.2.5 Treatment of Immunoprecipitated Pol II Complexes with λ Phosphatase  

Pol II complex was immunoprecipitated from yeast cells by using antibody H14 as 

described above. Protein A- or G-coated agarose beads attached with the immunoprecipitates 

were resuspended in 100 µl of dephosphorylation reaction buffer (50 mM HEPES, 100 mM NaCl, 
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2 mM DTT, 0.01 % Brij-35, 1mM MnCl2). Four hundred units of λ protein phosphatase (New 

England Biolabs) were added to the sample. Following 30 minutes of incubation at 30°C, 100 µl 

of 2× SDS-PAGE gel loading buffer was added to the sample. Proteins were eluted from the 

beads by boiling for 5 minutes. 

3.2.6 Western Blot  

Proteins in whole-cell extracts, immunoprecipitation inputs, immunoprecipitated samples, 

or phosphatase treated samples were resolved on an SDS-PAGE gel and transferred onto a 

polyvinylidene difluoride membrane (Immobilon-P; Millipore). Rpb1 was probed with 8WG16 

or H14 antibodies. 3xFLAG and 3xMyc tagged proteins were probed with anti-FLAG M2 

antibody (Sigma) and anti-Myc antibody (Sigma), respectively. Blots were incubated with 

SuperSignal® West Femto Maximum Sensitivity Substrate (Pierce), and the protein bands were 

detected using a chemiluminescence scanner (Fluorchem 8800, Alpha Innotech). Band intensities 

were quantified using AlphaEaseFC 4.0 software.  

3.2.7 Northern Blot 

Yeast cells were cultured to late log phase under the same conditions as those used for 

NER analysis. Total RNA was isolated using a hot acidic phenol method, as described (Collart 

and Oliviero, 2004). The RNA was fractionated on formaldehyde–agarose gels (Sambrook and 

Russell, 2001), transferred onto Hybond-N+ membranes (GE Healthcare), and hybridized with 

radioactive probes generated using the Prime-It® II Random Primer Labeling Kit (Stratagene).  

3.2.8 UV sensitivity Assay  

Yeast cells were grown at 30°C in minimal medium to saturation, and sequential 10-fold 

dilutions were made. The diluted samples were spotted onto YPD plates. When the spots had 
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dried, the plates were irradiated with different doses of 254 nm UV light. The plates were 

incubated at 30°C for 3 – 7 days in the dark prior to being photographed. 

3.3 Results 

3.3.1 Spt4 Protects Spt5 from Degradation and Stabilizes the Interaction of Spt5 with Pol II  

It has been shown that Spt4 partially suppresses Rad26-independent TCR, as deletion of 

SPT4 reinstates TCR in rad26∆ cells (Jansen et al., 2000). Spt4 forms a complex with Spt5 in 

yeast (Hartzog et al., 1998; Swanson and Winston, 1992) and human cells (Wada et al., 1998). In 

yeast, the SPT4 gene is dispensable (Malone et al., 1993), whereas the SPT5 gene is essential for 

cell viability (Swanson et al., 1991a). We wondered if Spt4 suppresses Rad26-independent TCR 

directly or through or together with Spt5. To this end, we first examined if Spt4 affects the 

cellular level of Spt5. Three consecutive FLAG sequences (3xFLAG) were tagged to the coding 

sequence of the genomic SPT5 gene in different yeast mutants. The 3xFLAG tag did not cause 

any noticeable deficiency to the cells (not shown). As shown in, the cellular level of Spt5 in 

spt4∆ cells was about 1/3 of that in SPT4+ cells, regardless of the presence of the GGR factor 

Rad7 or the TCR factor Rad26. However, the SPT5 mRNA levels were similar between spt4∆ 

and SPT4+ cells (Fig. 3-1B), indicating that the lower cellular level of Spt5 in spt4∆ cells was not 

caused by a decreased transcription of the SPT5 gene. For an unknown reason, SPT5 mRNA 

levels were somewhat higher in rad7∆ cells than in RAD7+ cells (Fig. 3-1B). We then tested if 

Spt5 was degraded faster in spt4∆ cells. The level of Spt5 barely changed in SPT4+ cells during 

an 8-hour incubation after protein synthesis was completely suppressed by the addition of the 

protein synthesis inhibitor cycloheximide (CHX) (Fig. 3-1C and D). In contrast, the Spt5 level 

decreased dramatically in spt4∆ cells under the same incubation conditions (Fig. 3-1C and D). 

These results indicate that Spt4 protects Spt5 from degradation.  
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Figure 3-1 Spt4 protects Spt5 from degradation. (A) Western blot showing cellular levels of 
Spt5 expressed from the genomic SPT5 gene tagged with 3xFLAG in different strains. The 
control lane contains a sample prepared from the wild type strain whose SPT5 gene was not 
tagged. The tubulin bands serve as internal loading controls. The numbers at the bottom indicate 
relative cellular levels of the tagged Spt5 in the different strains (the level in wild type cells is set 
as 1). (B) Northern blot showing Spt5 mRNA levels in the different strains. The lower panel 
shows an ethidium bromide stained agarose gel containing the resolved total RNA before being 
blotted onto a membrane. The numbers at the bottom indicate relative cellular levels of Spt5 
mRNA in the different strains (the level in wild type cells is set as 1). The 25 S and 18 S rRNA 
bands serve as internal loading controls. (C) Western blot showing levels of the tagged Spt5 at 
different times following the addition of cycloheximide (CHX) in rad7∆ rad26∆ and rad7∆ 
rad26∆ spt4∆ strains. As the steady state level of the tagged Spt5 in spt4∆ cells was lower than 
that in SPT4+ cells, the amounts of cell extracts from rad7∆ rad26∆ spt4∆ cells were loaded 
more than those from rad7∆ rad26∆ cells. Tubulin bands serve as internal loading controls. (D) 
Plot showing relative levels of the tagged Spt5 at different times following the addition of CHX.  
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Figure 3-2 Spt4 stabilizes the interaction of Spt5 with Pol II. (A) Schematic of plasmid 
pGAL-SPT5 overexpressing 3xFLAG tagged Spt5. (B) Western blot showing cellular levels of 
3xFLAG tagged Spt5 in different strains cultured in a galactose medium (to induce 
overexpression of Spt5 encoded by plasmid pGAL-SPT5). Strains containing plasmid 
pGAL-SPT5 are indicated in brackets.  The tubulin bands serve as internal loading controls. 
The numbers at the bottom indicate relative cellular levels of the tagged Spt5 in the different 
strains (the level in wild type cells is set as 1). (C) Binding of Spt5 to hyper-phosphorylated 
(recognized by H14) and hypo-phosphorylated (recognized by 8WG16) Pol II.  3xFLAG tagged 
Spt5-associated protein complexes were immunoprecipitated from wild type cells by using an 
anti-FLAG (M2) antibody, and probed with antibodies H14 and 8WG16 on Western blots. 
Numbers on the right of the blots indicate relative levels of hyper-phosphorylated and 
hypo-phosphorylated Rpb1 co-immunoprecipitated with the tagged Spt5 (normalized to the 
respective immunoprecipitation inputs). (D) Binding of Spt5 to Pol II in different mutants. Pol II 
complexes were immunoprecipitated from different mutant cells cultured in a galactose medium 
by using the H14 antibody. Lane 5 was a mock immunoprecipitated sample by using nonspecific 
mouse IgM. Rpb1 and co-immunoprecipitated 3xFLAG tagged Spt5 were probed with H14 and 
anti-FLAG (M2) antibodies, respectively, on Western blots. Strains containing plasmid 
pGAL-SPT5 are indicated in brackets. Numbers underneath the blots indicate relative levels of 
3xFLAG tagged Spt5 co-immunoprecipitated (normalized the immunoprecipitated Rpb1) (the 
level in rad7∆ rad26∆ cells is set as 1). 
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To test if overexpression of Spt5 in spt4∆ cells could compensate for the absence of Spt4, 

we created a multi-copy plasmid (pGAL-SPT5) expressing the 3xFLAG tagged Spt5 under the 

control of the galactose inducible GAL10 promoter (Fig. 3-2A). The plasmid was transformed 

into different yeast mutant strains. Upon galactose induction, the plasmid-encoded 3xFLAG 

tagged Spt5 was expressed at cellular levels that were 3 – 6 times of those of the genomically 

encoded 3xFLAG tagged Spt5 (Fig. 3-2B, compare lanes 1 and 4, 2 and 5, and 3 and 6).    

It has been shown that the Spt4/Spt5 complex is associated with Pol II (Hartzog et al., 

1998). The elongation form of Pol II is hyper-phosphorylated at serines 2 and 5 of the C-terminal 

heptapeptide repeats (Y1S2P3T4S5P6S7) of Rpb1, whereas the non-elongation form of Pol II is 

hypo-phosphorylated at the repeats (Phatnani and Greenleaf, 2006). Antibody 8WG16 recognizes 

the serine 2 unphosphorylated repeats, whereas H14 recognizes the serine 5 phosphorylated 

repeats (Palancade and Bensaude, 2003). We immunoprecipitated 3xFLAG tagged Spt5 with an 

anti-FLAG antibody. The presence of the hypo- and hyper-phosphorylated forms of Pol II in the 

immunoprecipitates were examined by using antibodies 8WG16 and H14, respectively. As can 

be seen in Fig. 3.2C, slightly more hyper-phosphorylated Pol II was co-immunoprecipated than 

hypo-phosphorylated Pol II, suggesting that Spt5 may have a slight preference for binding to the 

elongation form of Pol II.  

To examine if Spt4 affects the binding of Spt5 to Pol II, the hypo- and 

hyper-phosphorylated Pol II were immunoprecipitated from different yeast mutants by using 

antibodies 8WG16 and H14, respectively. The level of Spt5 associated with the 

hyper-phosphorylated Pol II was much lower in spt4∆ cells than in SPT4+ cells (Fig. 3-2D, 

compare lanes 1 and 2). Overexpression of Spt5 increased its binding to the hyper- 

phosphorylated Pol II, especially in spt4∆ cells (Fig. 3-2D, compare lanes 2 and 4). However, the 

level of Spt5 associated with the hyper-phosphorylated Pol II in spt4∆ cells overexpressing the 
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tagged Spt5 was still somewhat lower than that in SPT4+ cells normally expressing the 

genomically-tagged Spt5 (Fig. 3-2D, compare lanes 1 and 4), although the cellular level of the 

overexpressed Spt5 in the spt4∆ cells is ~ 1.5 times of that in SPT4+ cells normally expressing 

the genomically-tagged Spt5 (Fig. 3.2B, compare lanes 2 and 6). We observed similar trends of 

Spt5 binding to the hypo-phosphorylated Pol II (recognized by 8WG16) in the different yeast 

mutants (not shown).  These results indicate that the decreased binding of Spt5 to Pol II (both 

hypo- and hyper-phosphorylated forms) in spt4∆ cells is due to both a lower cellular level of 

Spt5 and a decreased interaction between Spt5 and Pol II.  

3.3.2 Overexpression of Spt5 Suppresses Rad26-Independent TCR in spt4∆ Cells  

Next, we determined if overexpression of Spt5 can suppress Rad26-independent TCR in 

spt4∆ cells. In yeast, Rad7, Rad16 and Elc1 have been shown to be required for repairing the 

NTS of transcriptionlly active gene (Lejeune et al., 2009; Verhage et al., 1994; Verhage et al., 

1996). Therefore, TCR can be exclusively analyzed in rad7∆ (or rad16∆ and elc1∆) cells, as 

these cells are defective in GGR. In agreement with previous studies [e.g., (Li et al., 2006; Li and 

Smerdon, 2002, 2004; Ding et al., 2007)], TCR initiates ~ 40 nucleotides upstream of the 

transcription start site in the RPB2 gene (Fig. 3-3A). In rad7∆ rad26∆ cells, little TCR can be 

seen in the coding region of the RPB2 gene except for a short region immediately downstream of 

the transcription start site (Fig. 3-3A). In agreement with the previous report (Jansen et al., 2000), 

TCR rate is significantly faster in rad7∆ rad26∆ spt4∆ cells than in rad7∆ rad26∆ cells (Fig. 

3-3B, C and E), indicating that Spt4 can indeed suppress Rad26-independent TCR. The TCR rate 

in rad7∆ rad26∆ spt4∆ cells overexpressing Spt5 is similar to that in rad7∆ rad26∆ cells (Fig. 

3-3B, D and E), indicating that the overexpression can suppress Rad26-independent TCR in the 

absence of Spt4.   
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Figure 3-3 Overexpression of Spt5 suppresses TCR in spt4∆ rad26∆ cells.  (A) – (D) DNA 
sequencing gels showing TCR in the RPB2 gene in galactose cultures [to induce overexpression 
of Spt5 encoded by plasmid pGAL-SPT5 (Fig. 3-2A)]. Brackets at the top of panel D indicate 
plasmid pGAL-SPT5 contained in the strain. The lanes are DNA samples from unirradiated (U) 
and UV irradiated cells following different times (hrs) of repair incubation as indicated at the top 
of the gels. The arrow on the left of the gels marks the transcription start site. (D) Plot showing 
the mean (± standard deviation) of percent CPDs repaired in the transcribed region of the RPB2 
gene in rad7∆ (open diamond), rad7∆ rad26∆ (open square), rad7∆ rad26∆ spt4∆ (solid triangle) 
and rad7∆ rad26∆ spt4∆ [pGAL-SPT5] (asterisk) cells.  
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3.3.3 The C-terminal Repeat (CTR) Domain of Spt5 Is Dispensable for Cell Viability  

Our results described above indicate that Spt5 may play a direct role in suppressing 

Rad26-independent TCR, whereas Spt4 may be indirectly involved in the suppression by 

protecting Spt5 from degradation and by stabilizing the binding of Spt5 to Pol II. We next asked 

which domain(s) of Spt5 is/are involved in the suppression. Based on the results of human Spt5 

domain mapping (Ivanov et al., 2000; Yamaguchi et al., 1999) and the prediction with Pfam and 

STRING software (Finn et al., 2008; Jensen et al., 2009), yeast Spt5 consists of several distinct 

domains: an N-terminal acidic region, an N-terminal NusG (NGN), four KOW and the 

C-terminal region that contains 15 six-amino acid repeats (CTR) (Fig. 3-4A). We used a plasmid 

shuffling technique to map the functions of the different domains of Spt5. A series of single-copy 

centromeric LEU2 [pRS415 (Sikorski and Hieter, 1989)] plasmids encoding full-length or 

different truncated Spt5 proteins that are tagged with 3 consecutive Myc sequences (3xMyc) and 

are under the control of the native Spt5 promoter were created (Fig. 3-4B). These plasmids were 

transformed into yeast cells whose genomic SPT5 gene was deleted and complemented with a 

single-copy centromeric URA3 [pRS416 (Sikorski and Hieter, 1989)] plasmid encoding the 

full-length Spt5 (pRS416-SPT5). The transformed cells were cultured in a medium containing 

uracil but not leucine to select for the LEU2 plasmids and to allow the loss of pRS416-SPT5. The 

cultures were then spotted onto plates containing 5-fluoroorotic acid (5-FOA), which is toxic to 

cells with a functional URA3 gene (Boeke et al., 1984). Therefore, only those cells that had lost 

the plasmid pRS416-SPT5 were able to grow on 5-FOA plates. As shown in Fig. 3.4C, cells 

transformed with LEU2 plasmids encoding the full-length or the CTR-deleted Spt5 were able to 

grow on the 5-FOA plates, whereas those transformed with the LEU2 plasmids encoding the 

other Spt5 truncates were not (Fig. 3-4C). This indicates that the CTR domain is dispensable, 

whereas all other domains of Spt5 examined here are essential for cell viability.   
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Figure 3-4 The Spt5 CTR is not essential for cell viability and does not affect the 
interactions of Spt5 with Spt4 and Pol II (A) Schematic of the Spt5 protein.  Bars 1 – 7 
underneath the schematic indicate full-length or truncated Spt5 encoded by plasmids. (B) 
Structure of plasmids expressing the full-length or truncated Spt5. (C) Growth of cells whose 
genomic SPT5 gene was deleted and transformed with a URA3 plasmid encoding the full-length 
Spt5 (pRS416-SPT5) and a LEU2 plasmid encoding the full-length or truncated Spt5 (1 – 7, as 
shown in panels A and B) on 5-FOA plates. (D) Co-immunoprecipitation of the full-length or 
CTR-deleted Spt5 with Pol II and Spt4. Cells whose genomic SPT5 gene was deleted and SPT4 
gene was tagged with 3xFLAG, and bearing the LEU2 plasmid encoding the full-length or 
CTR-deleted Spt5 with a 3xMyc tag were cultured to log phase. Pol II, 3xFLAG tagged Spt4 and 
3xMyc tagged Spt5 was immunoprecipitated from the cells with H14, anti-FLAG and anti-Myc 
antibodies, respectively. The levels of Pol II, 3xFLAG tagged Spt4 and 3xMyc tagged full-length 
or CTR-deleted Spt5 in the immunoprecipitates were probed with the respective antibodies on 
Western blots.   
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3.3.4 Deletion of the Spt5 CTR Domain Does Not Affect Its Binding to Spt4 or to Pol II  

To determine the role of the Spt5 CTR domain in its bindings to Spt4 and Pol II, we 

conducted a series of immunoprecipitation assays. A 3xFLAG was tagged to the genomic SPT4 

gene in cells whose genomic SPT5 gene was deleted and complemented with the single-copy 

centromeric LEU2 (pRS415) plasmid encoding 3xMyc tagged full-length (WT) or CTR-deleted 

(CTR∆) Spt5 (Fig. 3-4A and B).  The Pol II complex, Spt4 and Spt5 were immunoprecipited by 

using H14, anti-FLAG and anti-Myc antibodies, respectively. Rpb1, the 3xFLAG tagged Spt4 

and the 3xMyc tagged Spt5 in the immunopreciptation inputs and immunoprecipitates were 

detected on Western blot. Deletion of the Spt5 CTR domain did not appear to affect the cellular 

levels of Rpb1, Spt4 and Spt5 (Fig. 3-4D, INPUT). Furthermore, the deletion did not affect the 

levels of Rpb1, Spt4and Spt5 in the immunoprecipitates (Fig. 3-4D, IP), indicating that the 

deletion does not affect the binding of Spt5 to Spt4 or Pol II.  

3.3.5 The CTR Domain of Spt5 Is Involved in Suppression of Rad26-Independent TCR  

Due to the reinstatement of TCR, rad7∆ rad26∆ spt4∆ cells are about 10 times more UV- 

resistant than rad7∆ rad26∆ cells (Fig. 3-5). Interestingly, rad7∆ rad26∆ spt5∆ cells expressing 

the CTR-deleted Spt5 (Fig. 3-4A and B) are as UV-resistant as rad7∆ rad26∆ spt4∆ cells (Fig. 

3-5). On the other hand, rad7∆ rad26∆ spt5∆ cells expressing the full-length Spt5 (Fig. 3-4A and 

B) are as UV-sensitive as rad7∆ rad26∆ cells (Fig. 3-5). This indicates that, like Spt4, the Spt5 

CTR may suppress Rad26-independent TCR. We then directly analyzed TCR in rad7∆ rad26∆ 

spt5∆ cells expressing the full-length and CTR-deleted Spt5. The TCR rate in cells expressing 

the CTR-deleted Spt5 was significantly faster than that in cells expressing the full-length Spt5 

(Fig. 3-6), indicating that the Spt5 CTR domain is indeed involved in suppression of 

Rad26-independent TCR.  



 

 91

 

 

 

 

 

 
 
 
Figure 3-5 Deletion of the Spt5 CTR increases the UV resistance of rad7∆ rad26∆ cells to 
the same extent as spt4∆.  Saturated cultures of yeast strains were sequentially 10-fold diluted 
and spotted onto YPD plates. When the spots had dried, the plates were irradiated with the 
indicated doses of 254 nm UV light. The plates were incubated at 30°C for 3 – 5 days in the dark 
prior to being photographed. Strains containing a single-copy plasmid encoding the full-length 
(pSPT5) or the CTR-deleted (pSPT5/CTR∆) Spt5 are indicated in brackets. 
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Figure 3-6 Deletion of the Spt5 CTR increases Rad26-independent TCR. (A) and (B) DNA 
sequencing gels showing TCR in the RPB2 gene. Brackets at the top indicate single-copy 
plasmid encoding the full-length (pSPT5) or CTR-deleted (pSPT5/CTR∆) Spt5. The lanes are 
DNA samples from unirradiated (U) and UV irradiated cells following different times (hrs) of 
repair incubation as indicated at the top of the gels. The arrow on the left of the gels marks the 
transcription start site. (C) Plot showing the mean (± standard deviation) of percent CPDs 
repaired in the transcribed region of the RPB2 gene in rad7∆ rad26∆ spt5∆ [pSPT5] (open 
triangle) and rad7∆ rad26∆ spt5∆ [pSPT5/CTR∆] (solid square) cells.  
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3.3.6 Phosphorylation of the Spt5 CTR Domain by Bur Kinase Plays a Role in Suppression 
of Rad26-Independent TCR  

 
The Spt5 CTR domain contains 15 six-amino acid repeats with the consensus sequence of 

S-A/T-W-G-G-A/Q (Swanson et al., 1991a). The S and T residues in these repeats are potential 

phosphorylation sites. We noticed that the yeast Spt5 protein can show duplet bands on a Western 

blot, especially if the SDS-PAGE gel was run long enough (Fig. 3-7A). The slower migrating 

band of Spt5 tends to be much stronger in immunoprecipitated Pol II complex, suggesting that 

this band may be a form of Spt5 that preferably associates with Pol II. Treatment of the 

immunoprecipitated Pol II complex with a phosphotase eliminates the slower migrating band 

(Fig. 3-7A), indicating that the band is the phosphorylated Spt5.  Deletion of the Spt5 CTR 

domain eliminates the slower migrating band (Fig. 3-7B), indicating that the phosphorylation 

occurs in the CTR.  

In human cells, it has been shown that Spt5 can be phosphorylated by positive 

transcription elongation factor b (P-TEFb), a cyclin dependent kinase, composed of Cdk9 and 

one of three cyclin subunits, T1, T2 or K (Wada et al., 1998; Yamada et al., 2006). In yeast, two 

cyclin-dependent kinases are homologous to human Ctk9 (Buratowski, 2005; Wood and 

Shilatifard, 2006). The yeast Ctk1 has been shown to phosphorylate serine 2 of the heptapeptide 

repeats of the Rpb1 C-terminal domain (Keogh et al., 2003; Patturajan et al., 1999). The activity 

of Bur1 kinase is dependent on its cyclin partner Bur2. bur1 and bur2 mutations cause nearly 

identical spectra of phenotypes (Yao et al., 2000). However, Bur1 is essential for cell viability, 

whereas Bur2 is not. As can be seen in Fig. 3-7C, the slower migrating band reflecting the 

phosphorylated Spt5 cannot be detected in bur2∆ cells. This indicates that the Bur kinase is 

responsible for phosphorylation of Spt5 at the CTR, in agreement with two recent reports (Liu et 

al., 2009; Zhou et al., 2009).  
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Figure 3-7 The Spt5 CTR is phosphorylated by the Bur kinase. (A) Western blot showing 
phosphorylation of Spt5. 3xMyc tagged Spt5 was co-immunoprecipitated with Pol II by using 
antibody H14, treated or mock-treated with λ phosphatase and probed with an anti-Myc antibody 
on a Western blot. (B) Deletion of the Spt5 CTR abolishes phosphorylation. 3xMyc tagged 
full-length and CTR-deleted Spt5 was co-immunoprecipitated with Pol II by using H14 antibody 
and probed with an anti-Myc antibody a Western blot. Numbers on the right of the blot indicate 
approximate positions of molecular weight standards (in kD). (C) Deletion of bur2 abolishes 
Spt5 phosphorylation. 3xMyc tagged Spt5 was co-immunoprecipitated with Pol II from BUR2+ 
and bur2∆ cells by using antibody H14, and probed with an anti-Myc antibody a Western blot. 
‘p’ and ‘u’ on the left of each of the blots mark phosphorylated and unphosphorylated Spt5, 
respectivley.  

 

We then attempted to determine if phosphorylation of the Spt5 CTR domain by the Bur 

kinase plays a role in suppression of Rad26-independent TCR. Although the bur2∆ cells grew 

extremely slowly (with a doubling time of ~ 8 hour as opposed to ~ 2.5 hours for BUR2+ cells) 

(data not show), they showed significantly faster TCR than did the isogenic BUR+ cells (compare 

Figs. 3-6A and 3-8A; Fig. 3-8C), especially during the initial hour of the repair incubation. 

This indicates that the Bur kinase plays a role in suppression of Rad26-independent TCR, 

especially during the initial period of the repair incubation. However, the TCR rate in the bur∆ 

cells expressing the full-length Spt5 (rad7∆ rad26∆ spt5∆ bur2∆ + pSPT5) was somewhat 

slower than that in the isogenic bur∆ cells expressing the CTR-deleted Spt5 (rad7∆ rad26∆ 

spt5∆ bur2∆ + pSPT5-CTR∆), especially during the later time period of the repair incubation  
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Figure 3-8 Effects of deletions of bur2 and the Spt5 CTR on Rad26-independent TCR. (A) 
and (B) DNA sequencing gels showing TCR in the RPB2 gene. Brackets at the top indicate 
single-copy plasmid encoding the full-length (pSPT5) or CTR-deleted (pSPT5/CTR∆) Spt5. The 
lanes are DNA samples from unirradiated (U) and UV irradiated cells following different times 
(hrs) of repair incubation as indicated at the top of the gels. The arrow on the left of the gels 
marks the transcription start site. (C) Plot showing the mean (± standard deviation) of percent 
CPDs repaired in the transcribed region of the RPB2 gene in rad7∆ rad26∆ spt5∆ bur2∆ [pSPT5] 
(solid diamond) and rad7∆ rad26∆ spt5∆ bur2∆ [pSPT5/CTR∆] (open square) cells. As 
comparison, the repair data in rad7∆ rad26∆ spt5∆ [pSPT5] cells (from Fig. 3.6C) are also 
plotted (open triangle). 
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(Fig. 3-8). This indicates that phosphorylation of the Spt5 CTR domain by the Bur kinase may be 

partially responsible for suppression of Rad26-independent TCR. In other words, besides 

phosphorylation, other components of the Spt5 CTR may also play a significant role in 

suppression of Rad26-independent TCR.   

3.4 Discussion 

In this paper, we show that the nonessential CTR domain of Spt5 plays an important role 

in suppression of Rad26-independent TCR. We also present evidence that the interacting partner 

of Spt5, Spt4, indirectly suppresses Rad26-independent TCR by protecting Spt5 from 

degradation and by stabilizing the interaction between Spt5 and Pol II.  

TCR is generally believed to be initiated by stalling of an RNA polymerase at a lesion on 

the transcribed strand of a gene (Hanawalt and Spivak, 2008). In principle, a high level of 

transcription may facilitate TCR. Indeed, the transcription elongation function of Rpb9 is 

involved in TCR in yeast cells (Saunders et al., 2006). The human CSB and yeast Rad26 enhance 

transcription elongation by Pol II (Lee et al., 2001; Selby and Sancar, 1997a). However, TCR is 

not always positively correlated with transcription. For example, in E. coli the transcription 

factor Fis stimulates transcription of the tRNA gene tyrT to a very high level and at the same 

time suppresses TCR in this gene (Li and Waters, 1997). It was proposed that, during very high 

level transcription, an RNA polymerase may arrive at the site of a downstream RNA polymerase 

stalled at a lesion before the downstream RNA polymerase can initiate or finish the TCR process, 

resulting in suppression of TCR (Selby and Sancar, 1994).  

Cells carrying mutations in SPT4 and SPT5 genes display phenotypes associated with 

defects in transcription elongation (Swanson and Winston, 1992), and the gene products are 

thought to be involved directly in transcription elongation (Hartzog et al., 1998; Rondon et al., 

2003). However, the suppression of Rad26-independent TCR by Spt4/Spt5 does not seem to be 
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achieved simply by stimulating transcription. First, the Spt4/Spt5 complex does not seem to 

stimulate Pol II transcription to a level that is high enough to suppress Rad26-independent TCR. 

The galactose-induced GAL1-10 genes are among the most robustly transcribed genes by Pol II 

in yeast (Lohr et al., 1995). However, TCR occurs very rapidly (i.e., not suppressed) in these 

genes in rad16∆ rad26∆ (SPT4+ SPT5+) cells (Li and Smerdon, 2002, 2004).  In contrast, TCR 

is much slower (i.e., largely suppressed) in the much more slowly transcribed RPB2 gene in the 

same cells (Li and Smerdon, 2002, 2004). Second, spt4 and spt5 mutations that cause similar 

deficiency in transcription elongation have different effects on suppression of 

Rad26-independent NER. For example, the spt5-194 mutation, which is due to S324F 

substitution of the Spt5 protein (Guo et al., 2008), shares similar deficiency in transcription to 

spt4∆ (Hartzog et al., 1998) or deletion of the Spt5 CTR domain (Swanson et al., 1991a). 

However, unlike spt4∆ or deletion of the Spt5 CTR, the spt5-194 mutation does not seem to 

alleviate TCR in rad16∆ rad26∆ cells (Jansen et al., 2000).   

Although the exact binding site of Spt4/Spt5 on Pol II is currently unclear, it is predicted 

that this site is on the Rpb4/Rpb7 subcomplex that is dissociable from the 10-subunit core Pol II 

(Aloy et al., 2004). In the absence of Rpb4/Rpb7, Pol II has an open confirmation, whereas in the 

presence of this subcomplex, Pol II assumes a closed conformation (Armache et al., 2005; 

Bushnell and Kornberg, 2003).  Interestingly, deletion of rpb4 also reinstates TCR in rad26∆ 

cells (Li and Smerdon, 2002). Therefore, it is likely that Spt4/Spt5 and Rpb4/Rpb7 function 

together to suppress Rad26-independent TCR.   

In human cells, the NGN and Kow domains of Spt5 have been shown to interact with 

Spt4 and Pol II, respectively (Ivanov et al., 2000; Yamaguchi et al., 1999). Similar to that of the 

human Spt5, the NGN domain of the yeast Spt5 is involved in interaction with Spt4 (Guo et al., 

2008). The CTR domain of Spt5 does not seem to be involved in these interactions. Consistent 
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with these studies, we found that deletion of the Spt5 CTR does not affect the interaction with 

either Spt4 or Pol II (Fig. 3.4D).   

How does the CTR of Spt5 suppress Rad26-independent TCR? It was found recently that 

the Spt5 CTR is a platform for the association of proteins that promote both transcription 

elongation and histone modification in transcribed regions (Zhou et al., 2009). One protein 

complex recruited by the Spt5 CTR is PAF (Zhou et al., 2009).  Interestingly, deletion of PAF 

also reinstates TCR in rad16∆ rad26∆ cells (LeJeune et al., unpublished results). PAF plays an 

important role for recruitment of many factors involved in transcription elongation, such as 

COMPASS, FACT and Rad6/Bre1 (Krogan et al., 2003; Krogan et al., 2002). Therefore, the role 

of the Spt5 CTR in suppressing Rad26-independent TCR-NER may be achieved by serving as a 

platform for assembly of a mega suppressor complex that is associated with Pol II.  This mega 

suppressor complex may suppress Rad26-independent TCR by preventing Pol II from either 

efficiently ‘sensing’ a lesion or recruiting the NER machinery. 

bur2∆ cells grow much slower than Spt5 CTR deleted cells, indicating more pleiotropic 

roles for the Bur kinase in transcription.  In addition to phosphorylation of the Spt5 CTR, Bur2 

also plays a minor role in phosphorylating serine 2 of the heptapeptide repeats of the Rpb1 CTD 

(Qiu et al., 2009). Phosphorylation of the Spt5 CTR by the Bur kinase may not be solely 

responsible for suppression of Rad26-independent TCR by the Spt5 domain, as TCR rate in 

rad7∆ rad26∆ bur2∆ cells expressing the full-length Spt5 is somewhat slower than that in the 

same cells expressing the CTR-deleted Spt5 (Fig. 3.8).  It is possible that phosphorylation of the 

Spt5 CTR may enhance but not be solely responsible for the CTR to recruit other TCR 

suppressors, such as PAF.     

In RAD26+ cells, TCR does not appear to be affected by deletion of either spt4 (Jansen et 

al., 2000) or the Spt5 CTR (not shown). It seems that the suppression of TCR by Spt4/Spt5 is 
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specifically antagonized by Rad26. Rpb9, a nonessential subunit of Pol II that also plays an 

important role in TCR (Li and Smerdon, 2002, 2004), does not antagonize the suppression of 

TCR by Spt4/Spt5 (Ding et al., unpublished results). One important question that remains to be 

answered is how Rad26 antagonizes the suppression of TCR by Spt4/Spt5.  Rad26 (Guzder et 

al., 1996) and its human counterpart CSB (Selby and Sancar, 1997b) are members of the 

SWI2/SNF2 family of ATPases, and both are involved in transcription elongation by Pol II (Lee 

et al., 2001; Selby and Sancar, 1997a). Rad26 (Jansen et al., 2002) and CSB (Fousteri et al., 2006) 

appear to dynamically associate with Pol II, especially upon DNA damage. One explanation is 

that Rad26 may somehow displace Spt4/Spt5 (and possibly other suppressors) from Pol II 

through either competitive binding to Pol II or remodeling the Pol II complex stalled at a lesion, 

making Spt4/Spt5 unable to suppress TCR. We are testing this hypothesis.  
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CHAPTER 4 
 

RAD26 ENHANCES TRANSCRIPTION COUPLED REPAIR BY RESTRAINING THE 
BINDING OF SPT4/SPT5 TO RNA POLYMERASE II 

 

4.1 Introduction 

To warrant genomic stability under conditions of consistent challenges exerted by 

endogenous and exogenous sources, a number of DNA repair pathways have evolved (Rouse and 

Jackson, 2002). Nucleotide excision repair (NER) is one such repair mechanism capable of 

removing a wide variety of helix-distorting lesions, such as UV-induced cyclobutane pyrimidine 

dimers (CPDs) (Friedberg et al., 2006). NER can be divided into two pathways, global genomic 

NER (GGR), which refers to repair throughout the genome, and transcription coupled NER 

(TCR), which refers to a repair mechanism that is dedicated to the transcribed strand (TS) of 

actively transcribed genes (Hanawalt, 2002). In the yeast Saccharomyces cerevisiae, Rad7, 

Rad16, (Verhage et al., 1994), and Elc1 (Lejeune et al., 2009) are specifically required for GGR, 

but dispensable for TCR. The Rad7 and Rad16 form a complex that binds specifically to UV 

damaged DNA in an ATP-dependent manner and has DNA-dependent ATPase activity (Guzder 

et al., 1998).  Elc1 has been shown to be a component of a ubiquitin ligase that contains Rad7 

and Rad16, and is responsible for regulating the levels of Rad4 protein in response to UV 

damage (Gillette et al., 2006; Ramsey et al., 2004). It has also been suggested that Elc1 is a 

component of another ubiquitin ligase complex, which contains Ela1, Cul3, and Roc1 but not 

Rad7 and Rad16 (Ribar et al., 2006, 2007). The role of Elc1 in GGR may not be subsidiary to 

that of Rad7 and Rad16 (Lejeune et al., 2009). 

The mechanistic details of TCR are relatively well understood in Escherichia coli. The 

transcription-repair coupling factor (TRCF) Mfd targets the transcribed strand for repair by 

recognizing a stalled RNA polymerase and actively recruiting the NER machinery to the 
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transcription blocking lesion as it dissociates the stalled RNA polymerase (Selby and Sancar, 1993). 

However, the TCR mechanisms in eukaryotes appear to be extremely complicated [for recent 

reviews see (Fousteri and Mullenders, 2008; Laine and Egly, 2006b; Sarasin and Stary, 2007)]. In 

mammalian cells, Cockayne syndrome group A (CSA) and B (CSB) proteins are specifically 

required for TCR, but dispensable for GGR (Troelstra et al., 1992; van Hoffen et al., 1993; Venema 

et al., 1990). Like its human homologue CSB, the yeast Rad26 plays an important role in TCR but is 

dispensable for GGR (van Gool et al., 1994). Both human CSB (Selby and Sancar, 1997b) and yeast 

Rad26 (Guzder et al., 1996) are SNF2-like family members, each of which contains seven ATPase 

motifs and possesses DNA-stimulated ATPase activity (Licht et al., 2003). It has been also shown 

that both human CSB and yeast Rad26 play roles in transcription elongation (Lee et al., 2001; Selby 

and Sancar, 1997a). Interestingly, TCR in yeast is not solely dependent on Rad26, as a substantial 

extent of TCR still occurs in cells lacking Rad26 (Li and Smerdon, 2002, 2004; Verhage et al., 1996). 

Rpb9, a nonessential subunit of RNA polymerase II (Pol II), has been shown to play a role in TCR 

through facilitating transcription elongation (Li et al., 2006a; Li and Smerdon, 2002, 2004; Saunders 

et al., 2006). However, the mechanisms of human CSB and yeast Rad26 facilitate TCR are still 

elusive.  

Mutations in the SPT4 and SPT5 genes in yeast were originally isolated as suppressors of the 

Ty insertion mutations that interfere with adjacent gene transcription (Winston et al., 1984). 

Immunopreciptation study showed that Spt4 and Spt5 form a complex, which physically interacts 

with Pol II (Hartzog et al., 1998). These proteins are conserved eukaryotic transcription-elongation 

factors and are generally required for normal development and for viral gene expression in 

multicellular eukaryotes (Winston, 2001). In mammalian cells, the Spt4/Spt5 complex, which is also 

called DRB sensitivity inducing factor (DISF), represses transcription elongation at the early 

elongation-recessive elongation transit (Wada et al., 1998; Yamaguchi et al., 1999). One function of 
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yeast Spt4/Spt5 in transcription was recently shown to overcome the repressive effect of histone 

modification and the function of chromatin regulators in yeast (Quan and Hartzog, 2009).  

Interestingly, the deletion of spt4 has been shown to alleviate the requirement of Rad26 for 

TCR in yeast, indicating that Spt4 suppresses Rad26-independent TCR (Jansen et al., 2000). Our 

recent results indicated that Spt4 indirectly suppresses Rad26-independent TCR by protecting Spt5 

from degradation and by stabilizing the interaction of Spt5 with Pol II (Ding et al., 2010). Spt5 

C-terminal repeat (CTR) domain, which is dispensable for cell viability and is not involved in 

interactions with Spt4 and Pol II, plays an important role in the suppression. The Spt5 CTR is 

phosphorylated by the Bur2 kinase (Ding et al., 2010; Liu et al., 2009). Inactivation of the Bur 

kinase partially alleviates TCR in rad26∆ cells (Ding et al., 2010). Thus, Spt5 is the more direct 

suppressor of Rad26-independent TCR. In yeast, Rpb9 plays an important role in 

Rad26-independent TCR (Li and Smerdon, 2002). We wondered if Spt4/Spt5 also functionally 

interacts with Rpb9. If not, why does this suppression occur only in the absence of Rad26? In this 

study, we present evidence that Spt4/Spt5 only functionally interact with Rad26, regardless of the 

presence of Rpb9. In the absence of Rad26, more Spt4/Spt5, especially the phosphorylated form of 

Spt5 (Spt5P), can be co-immunoprecipated with Pol II, suggesting that Rad26 restrains the binding 

of Spt4/Spt5 to Pol II. Moreover, we found that the ATPase activity of Rad26 is required for its 

functions in TCR and in the displacement of Spt5P from Pol II. These results indicate that Rad26 

enhances TCR by restraining the binding of suppressors (Spt4, Spt5, possibly other factors) to Pol II.  

4.2 Materials and Methods  

4.2.1 Yeast Strains and Plasmids 

Wild type yeast strain BJ5465 (MATa ura3-52 trp1 leu2∆1 his3∆200 pep4::HIS3 prb1∆1.6R 

can1) was obtained from the American Type Culture Collection. All deletion mutants were made in 
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BJ5465 background and confirmed by PCR analysis, using procedures described previously (Li and 

Smerdon, 2002). URA3, LEU2 and KanMX were used to replace the gene to be deleted. Nucleotides 

(with respect to the starting codon ATG) +14 to +288, +214 to +1454, +58 to +2297 and +11 to +366 

were deleted for SPT4, RAD7, RAD26 and RPB9 genes, respectively. Strains with their genomic 

genes tagged with three consecutive FLAG (3xFLAG) sequences were created by using PCR 

products amplified from plasmid p3FLAG-KanMX as described previously (Gelbart et al., 2001).  

A single-copy centromeric plasmid with the URA3 gene as a selection marker and encoding 

the wild type Rad26 protein was created by using the plasmid pRS416 (Sikorski and Hieter, 1989). 

The full length of the RAD26 gene encompassing the 5’ promoter, the coding region and the 3’ 

terminator was amplified by PCR and inserted between the SacI and ClaI sites of pRS416 to create 

the plasmid pRS416-RAD26. Three consecutive FLAG sequences were amplified by PCR and 

inserted into N-terminal of Rad26 in pRS416-RAD26 between SpeI and BanHI to create plasmids 

p3FRAD26. Plasmids encoding Rad26 with point mutations (K328A, T329C, Q759A, or R763A) at 

ATPase motifs were created using plasmids p3FRAD26 by PCR with primers containing desired 

mutations (see Fig. 4-5A).  

4.2.2 Repair Analysis of UV Induced CPDs  

Yeast cells were grown at 30°C in minimal medium containing 2% galactose (SG) to late log 

phase (A600 ≈ 1.0), irradiated with 100 J/m2 of 254 nm UV and incubated in YPG medium (2% 

peptone, 1% yeast extract and 2% galactose) in the dark at 30°C. At different times of the repair 

incubation, aliquots were removed and the genomic DNA was isolated using a hot SDS procedure as 

described previously (Li and Smerdon, 2002).  

The gene fragments of interest were 3’ end labeled with [α-32P]dATP using a procedure 

described previously (Li and Waters, 1996; Li et al., 2000). Briefly, ~ 1 µg of total genomic DNA 
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was digested with restriction enzyme(s) to release the fragments of interest and incised at CPD 

sites with an excess amount of T4 endonuclease V (Epicentre). Excess copies of biotinylated 

oligonucleotides, which are complementary to the 3’ end of the fragments to be labeled, were 

mixed with the sample. The mixture was heated at 95°C for 5 minutes to denature the DNA and 

then cooled to an annealing temperature of around 50°C. The annealed fragments were attached 

to streptavidin magnetic beads (Invitrogen), labeled with [α-32P]dATP (Perkin Elmer), and 

resolved on sequencing gels. The gels were exposed to a Phosphorimager screen (Bio-Rad). The 

signal intensities at gel bands corresponding to CPD sites were quantified using Quantity One 

software (Bio-Rad).    

4.2.3 Whole-Cell Extract Preparation and Immunoprecipitation 

Yeast cells were cultured at 30°C in minimal medium containing 2% glucose to late log 

phase (A600 ≈ 1.0) and harvested immediately, or irradiated with 240 J/m2 of 254 nm UV. The 

UV irradiated samples were incubated in YPD (2% peptone, 1% yeast extract and 2% glucose) at 

30°C and harvested at different times during the incubation. For measuring cellular levels of 

proteins of interest, whole-cell extracts were prepared using a trichloroacetic acid (TCA) method 

(Chen et al., 2007). The harvested cells from a 5 ml culture were resuspended in 300 µl of 20% 

TCA and broken by vortexing them with acid-washed glass beads. The proteins in the lysates 

were pelleted by centrifugation, washed with ice-cold 80% acetone and dissolved in 100 µl of 2× 

SDS-PAGE gel loading buffer (Sambrook and Russell, 2001).   

For immunoprecipitation, the harvested cells from a 50 ml culture were washed and 

resupended in 0.5 ml of IP buffer ( 50 mM Tris-Cl, pH 7.4, 150 mM NaCl, 1mM EDTA, 1mM 

EGTA, 0.4 mM Na4VO3, 10 mM Na4P2O7, 10 mM NaF, 0.5% NP-40, 1% Triton X-100, 0.1% 

SDS, 0.2 mM PMSF and protease inhibitors) (Chen et al., 2007). The cells were broken with 
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acid-washed glass beads, and cell debris was removed by centrifugation at 20,000 × g for 10 

minutes at 4°C. Fifty µl of the lysate was saved as an ‘input’. The remaining lysate was added 

with 15 µg of anti-FLAG M2 (Sigma), or H14 (Covance) antibodies, which recognize FLAG 

tagged peptide and the serine 5 hyper-phosphorylated C-terminal heptapeptide repeats of Rpb1 

(Palancade and Bensaude, 2003), respectively. The mixture was incubated at 4°C overnight with 

gentle rotation. Protein A or G-coated agarose beads (Sigma) were added to the mixture and 

incubated at 4°C for 3 hours with gentle rotation. The beads were washed twice with IP buffer 

containing 0.5 M of NaCl and twice with IP buffer. Bound proteins were eluted by boiling the 

beads in 50 µl of 2× SDS-PAGE gel loading buffer (Sambrook and Russell, 2001). 

To measure the binding of Spt5 to elongating Pol II, yeast cells were cross-linked by 

0.1% formaldehyde for 30 min at room temperature and then stopped by addition of 125mM 

glycine. The harvested cells were washed twice with ice-cold TBS buffer (20 mM Tris-Cl, pH 

7.4, 140 mM NaCl, 2.5mM KCl) and resuspended in 0.5 ml of lysis buffer (50 mM Hepes, pH 

7.8, 150 mM NaCl, 0.5% NP-40, 1% Triton X-100, 10% glycerol). The cells were broken with 

acid washed beads, and the supernatant was removed by centrifugation at 20,000 × g for 10 

minutes at 4°C. The pellet was resuspended in 0.2 ml ChIP lysis buffer (50 mM Hepes, pH 7.5, 

140 mM NaCl, 1% Triton X-100, 0.1% Sodium Deoxycholate, 1mM EDTA, 0.4 mM Na4VO3, 

10 mM Na4P2O7, 10 mM NaF, 0.2 mM PMSF and protease inhibitors) and sonicated. The debris 

was removed by centrifugation at 4°C and the supernatant was added ChIP lysis buffer to ~0.7ml. 

Fifty µl of the supernatant was saved as an ‘input’. The remaining supernatant was used to do 

immunoprecipitation as described above. For DNAase treatment in co-immunoprecipitation 

assay, the whole cell extract or supernatant was treated with 50U of Benzonase (Sigma) for 30 

min at 37˚C in the presence of protease inhibitors prior to the addition of antibody. Finally, each 
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sample was resuspended into 50 µl of 2×SDS-PAGE gel loading buffer and incubated at 95˚C for 

1hour after addition of 20µl of TE buffer to elute proteins and to reverse crosslinking.  

4.2.4 Western Blot  

Proteins in whole-cell extracts, immunoprecipitation inputs, or immunoprecipitated 

samples were resolved on an SDS-PAGE gel and transferred onto a polyvinylidene difluoride 

membrane (Immobilon-P; Millipore). Rpb1 and 3xFLAG tagged proteins on the same blot were 

probed with antibodies H14 and M2, respectively. Blots were incubated with SuperSignal® West 

Femto Maximum Sensitivity Substrate (Pierce), and the protein bands were detected using a 

chemiluminescence scanner (Fluorchem 8800, Alpha Innotech). Band intensities were quantified 

using AlphaEaseFC 4.0 software.  

4.2.5 ATPase Assays  

3xFLAG-tagged wild-type and mutant Rad26 proteins were immunoprecipitated from 50 

ml of log-phase yeast cultures by using an anti-FLAG antibody (M2) and protein A-coated 

agarose beads (see above). After extensive washing, the agarose beads bearing the 

immunoprecipitated wild type or mutant Rad26 proteins were incubated with 0.5 µCi of 

[α-32P]ATP in 20 µl of a reaction buffer (50mM Tris-HCl, pH8.0, 5mM MgCl2, 1 mM DTT, 0.1 

mg/ml bovine serum albumin, 5% glycerol, 1 mg/ml of sonicated heat-denatured salmon sperm 

DNA) (Guzder et al., 1996; Li and Altman, 2001) at 37°C for 30 min. The reaction was stopped 

by addition of 20mM of EDTA and placed on ice. An aliquot of the reaction mixture (1µl) was 

spotted on a polyethyleneimine (PEI) cellulose thin-layer chromatography (TLC) plate (Sorbent 

Technology) and air dried. The TLC plate was developed in 750 mM potassium phosphate (pH 

3.5) and exposed to a phosphorimager screen. 
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4.2.6 UV Sensitivity Assay 

Yeast cells were grown at 30°C in minimal medium to saturation, and sequential 10-fold 

dilutions were made. The diluted samples were spotted onto YPD plates. When the spot had 

dried, the plates were irradiated with different doses of 254 nm UV light. The plates were 

incubated at 30°C for 2–3 days in the dark prior to being photographed. 

4.3 Results 

4.3.1 Spt4 Suppresses TCR Only in the Absence of Rad26, but Does Not Functionally 
Interact with Rpb9  

It has been shown that Spt4 does not play a significant role in GGR (Jansen et al., 2000). 

Indeed, we observed that NER rate in the NTS of an actively transcribed gene in spt4∆ cells was 

similar to that in SPT4+ cells (not shown), confirming the previous notion that Spt4 does not 

modulate GGR (Jansen et al., 2000). However, spt4∆ deletion restores TCR in rad26∆ (Ding et 

al., 2010; Jansen et al., 2000) and rad26∆ rpb9∆ (Li et al., 2006b) cells. In order to further 

characterize the role of Spt4 in modulating TCR, we analyzed NER in the TS of the GAL1 gene 

in different mutants. These mutants were created in rad7∆ cells, which are deficient in GGR 

(Verhage et al., 1994; Verhage et al., 1996), so that the modulation of TCR by Spt4 can be 

specifically analyzed. As can be seen, deletion of SPT4 did not significantly affect TCR in rad7∆ 

and rad7∆ rpb9∆ cells (Fig. 4-1, compare panels A and B, and C and D). However, in rad7∆ 

rad26∆ cells, deletion of SPT4 enhanced repair dramatically (Fig. 4-1, compare panels E and F). 

No repair can be seen in rad7∆ rad26∆ rpb9∆ cells, indicating that TCR is dependent on Rad26 

and Rpb9, in agreement with our previous observations (Li and Smerdon, 2002, 2004). However, 

additional deletion of SPT4 in rad7∆ rad26∆ rpb9∆ cells restored TCR activity to a certain 

extent (Fig. 4-1, compare panels G and H). We also analyzed TCR in the constitutively expresses 

RPB2 gene, and found spt4 deletion does not significantly affect TCR in RAD26+ cells,  
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Figure 4-1 Gels showing TCR in the TS of the galactose induced GAL1 gene. The lanes are 
DNA samples from unirradiated (U) and UV irradiated cells following different times (minutes) 
of repair incubation as indicated at the top of the gels. The arrow on the left of the gels marks the 
transcription start site. Plots at the bottom showing the mean (± standard deviation) of percent 
CPDs repaired in the transcribed region of GAL1 gene in the indicated strains. 
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Figure 4-2 Gels showing TCR in the TS of RPB2 gene. (A)-(D) DNA sequencing gels showing 
TCR in the RPB2 gene in 60 minutes repair. The lanes are DNA samples from unirradiated (U) 
and UV irradiated cells following different times (minutes) of repair incubation as indicated at 
the top of the gels. The arrow on the left of the gels marks the transcription start site. (E) and (F) 
plots showing the mean (± standard deviation) of percent CPDs repaired in the transcribed region 
of RPB2 gene in the indicated strains.  
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regardless the presence of Rpb9 (Fig.4-2, compare panels A and B, and C and D). It has also been 

shown that spt4 deletion does not significantly affect TCR in the URA3 and RPB2 genes in rad16∆ 

cells but significantly enhances TCR in rad16∆ rad26∆ cells (Jansen et al., 2000). Our results, 

together with the previous report, support the notion that Spt4 does not significantly modulate TCR 

in the presence of Rad26. However, when Rad26 is absent, Spt4 suppresses TCR regardless of the 

presence of Rpb9.  

4.3.2 Rad26 Dynamically Associates with Pol II and Restrains the Binding of Spt4 and Spt5 
to Pol II  

Removal of Spt4 or the Spt5 CTR reinstates TCR in rad26∆ cells (Ding et al., 2010; 

Jansen et al., 2000). Interestingly, the removal does not appear to affect TCR in any RAD26+ 

strains analyzed. It seems that Spt4/Spt5 suppresses TCR and Rad26 specifically antagonizes the 

suppression. To gain insights into the underlying mechanisms, we tested the mutual effects of 

Rad26 and Spt4/Spt5 in their binding to Pol II.  

Compare to the cellular level of Rad26 (Fig. 4-3A, INPUT samples), only a small amount 

of Rad26 can be co-immunoprecipitated with Pol II (Fig. 4-3A, IP samples). Interestingly, after 

UV irradiation, more Rad26 can be co-immunoprecipitated with Pol II (Fig. 4-3A, IP samples). 

The cellular levels of Rad26 and the fractions of Rad26 associated with Pol II in spt4∆ cells were 

similar to those in wild type cells (Fig. 4-3A). Samples treated with DNAase did not affect this 

trend. These results indicate that protein Rad26 dynamically associates with Pol II and UV 

treatment facilitates this association, regardless of the presence of Spt4.  

The cellular levels of Spt4 in rad26∆ cells were similar to that in wild type cells (Fig. 

4-3B, INPUT). However, about 1/3 of the cellular Spt4 was bound to Pol II in wild type cells 

(Fig. 4-3B, compare INPUT and IP samples). In contrast, almost all the cellular Spt4 was 

associated with Pol II in rad26∆ cells (Fig. 4-3B, compare the INPUT and IP samples). UV  
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Figure 4-3 Rad26 dynamically associates with Pol II and restrains the binding of Spt4 and 
Spt5 to Pol II. (A) Pol II complexes were immunoprecipitated by using antibody H14 from 
wild-type and spt4∆ cells containing genomic 3xFLAG tagged Rad26 without UV irradiation or 
with 30 min recovery incubation after UV treatment. The level of Rad26 was probed by 
anti-FLAG (M2) antibody. Rpb1 was probed by H14 antibody and was set as loading control. 
Western blotting showing the level of 3xFLAG tagged Spt4 (Spt4-3F) (B) and 3xFLAG tagged 
Spt5 (Spt5-3F) (C) in wild-type and rad26∆ cells. Samples were treated as described in A. The 
plots on the right showing the relative level of  Rad26, Spt4, and Spt5 can be 
co-immunoprecipitated with Pol II in IP samples of A, B, and C, respectively. The values shows 
as mean (± standard deviation) from three independent experiments and normalized with loading 
control.  
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irradiation did not affect the association of Spt4 with Pol II in either the wild type or rad26∆ 

cells (Fig. 4-3B, IP). Similarly, the level of total Spt5 associated with Pol II in rad26∆ was ~ 3 

times that in wild type cells (Fig. 4-3C). These results indicate that Rad26 restrains the binding 

of Spt4 and Spt5 to Pol II, regardless of the presence of UV DNA damage. 

4.3.3 Rad26 Is Not Involved in UV-Induced Dephosphorylation of Spt5  

Previous studies by us (Ding et al., 2010) and others (Liu et al., 2009; Zhou et al., 2009) 

have shown that Spt5 can be phosphorylated at the CTR domain by the Bur kinase. We wondered 

if UV irradiation will affect the phosphorylation of Spt5 and the binding of Spt5 to Pol II. To this 

end, elongating Pol II complex was immunoprecipitated by H14 antibody in wild-type cells and 

rad26∆ cells that contain 3xFLAG tagged Spt5. UV irradiated and unirradiated cells were 

crosslinked by formaldehyde. Phosphorylated and unphosphophorylated Spt5 in 

immunoprecipitated samples were separated on SDS-PAGE gel by a longer electrophoresis.  

In unirradiated rad26∆ cells, the ratio of phosphorylated to unphosphorylated Spt5 

associated with Pol II was ~ 2. In contrast, in unirradiated wild type cells, the ratio was ~ 0.5 (Fig. 

4-4A and B). Consistent with above results (Fig. 4-3C), the level of total (phosphorylated and 

unphosphorylated) Spt5 associated with Pol II in unirradiated rad26∆ cells was ~3 times that in 

wild type cells (Fig. 4-4A and C). Even the level of unphosphorylated Spt5 in unirradiated 

rad26∆ cells was also significantly higher than that in unirradiated wild type cells (Fig. 4-4A). 

These results suggest that Rad26 restrains the binding of both phosphorylated and 

unphosphophorylated Spt5 from Pol II. In rad26∆ cells, the high level of overall binding of Spt5 

to Pol II may be easily phosphorylated, or Rad26 may interfere with the phosphorylation of Spt5 

in wild type cells. Interestingly, UV irradiation caused rapid decrease in the ratios of 

phopsphorylated to unphosphophorylated Spt5 in both rad26∆ and wild type cells (Fig. 4-4A and  
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Figure 4-4 Rad26 is not involved in UV-induced dephosphorylation of Spt5. (A). Western 
blot showing levels of phosphorylated Spt5 and unphosphorylated Spt5 in different times after 
UV treatment in immunoprecipitated samples. 3xFLAG tagged Spt5 was co-immunoprecipitated 
with Pol II by using antibody H14 and probed by anti-FLAG antibody. Rpb1 was probed by H14 
antibody and set as internal loading control. (B) Plots showing relative levels of total Spt5 in (A) 
(normalized by Rpb1). (C) Plots showing the ratios of phosphorylated Spt5 (p) to 
unphosphorylated Spt5 (u) in (A). 
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B). However, the irradiation did not appear to affect the total levels of Spt5 associated with Pol II 

(Fig. 4-4A and B). Samples treated with DNAase did not change the results (data not show). 

These results indicate that induction of DNA damage caused rapid dephosphorylation of Spt5 

and Rad26 is not involved in the dephosphorylation.   

4.3.4 The ATPase Activity of Rad26 Is Required for Facilitating TCR and for Restraining 
the Binding of Spt4/Spt5 to Pol II 

How Rad26 restrains the binding of Spt4/Spt5 to Pol II? Given the fact that both Rad26 

and Spt4/Spt5 associate with Pol II, one possibility is that Rad26 and Spt4/Spt5 competitively 

bind to the same site of Pol II. However, our results so far do not support this possibility. The 

binding of Rad26 to Pol II was obviously enhanced by UV treatment (Fig. 4-3A). On the 

contrary, the binding of Spt4/Spt5 did not change after UV irradiation (Fig. 4-3B and C). 

Although UV treatment facilitates Spt5 dephosphorylation, the level of total Spt5 in Pol II did 

not significantly change (Fig. 4-4D and F). On the other hand, the level of Spt5 bound to Pol II 

was much lower in spt4∆ cells than that in wild-type cells (Ding et al., 2010). However, the 

binding of Rad26 to Pol II did not significantly change after the deletion of SPT4 (Fig. 4-3A). 

Thus, Rad26 antagonizes the binding of Spt4/Spt5 may through other approaches, such as the 

conformation change by allosteric effect, in stead of competitive binding.  

Rad26 contains seven ATPase motifs (Fig. 4-5A) and possesses DNA-stimulated ATPase 

activity (Licht et al., 2003). We tested if the ATPase activity of Rad26 is required for TCR and 

for restraining the binding of Spt5 to Pol II. Point mutations at the Rad26 ATPase motif I (K328A 

T329C) or VI (Q759A R763A) (Fig. 4-5A), which did not affect the expression of Rad26 (Fig. 

4-5B), appeared to completely abolish its ATPase activity, as immunoprecipitated Rad26 bearing 

these mutations showed ATPase activities that were similar to mock-immunoprecipitated samples 

(Fig. 4-5C).  
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Figure 4-5 Point mutations in ATPase motifs inactivate Rad26 ATPase activity. (A) 
Schematic of protein Rad26. I to VI underneath indicate seven ATPase motifs. Bars underneath 
indicate the functional domains as labeled on the left. Positions of point mutations were labeled 
on the top. (B) Western blotting showing the cellular level of Rad26 in different mutants. 1. 
rad7∆ rad26∆ [3FRAD26], 2. rad7∆ rad26∆ [3FRAD26 K328A T329C], 3. rad7∆ rad26∆ 
[3FRAD26 Q759A R763A], 4. rad7∆ rad26∆ [3FRAD26 K328A T329C Q759A R763A], 5. 
Negative control, no 3xFLAG tagged Rad26. Tubulin was set as internal loading control. (C) 
Thin-layer chromatography (TLC) plate showing ATPase activity. Line 1. buffer only, 2. positive 
control contain known ATPase, 3. IP mock control, 4. IP sample from rad7∆ rad26∆ [3FRAD26], 
5. IP sample from rad7∆ rad26∆ [3FRAD26 K328A T329C], 6. IP sample from rad7∆ rad26∆ 
[3FRAD26 Q759A R763A], 7. IP sample from rad7∆ rad26∆ [3FRAD26 K328A T329C Q759A 
R763A]. Relative ATPase activities were labeled underneath. Negative control containing buffer 
only was set as 0 (Line 1), and positive control containing known ATPase was set as 100 (Line 
2). 
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GGR-deficient rad7∆ cells expressing the ATPase-deficient Rad26 are sensitive to UV 

(Fig. 4-6), and show similar rates of TCR to rad7∆ rad26∆ cells (Fig. 4-7, compare B to C and D, 

E), indicating that the ATPase activity of Rad26 is required for facilitating TCR. The levels of 

total (phosphorylated and unphosphorylated) Spt5 and the ratios of the phosphorylated to 

unphosphorylated Spt5 associated with Pol II in cells expressing the ATPase-deficient Rad26 

were similar to those in rad26∆ cells (Fig. 4-8), indicating that the ATPase activity of Rad26 is 

required for restraining the binding of Spt5 to Pol II. 

 

 

Figure 4-6 Mutations in Rad26 ATPase motifs increase the UV sensitivity. Saturated cultures 
of yeast strains were sequentially 10-fold diluted and spotted onto YPD plates. When the spots 
had dried, the plates were irradiated with the indicated doses of 254 nm UV light. The plates 
were incubated at 30°C for 3 – 5 days in the dark prior to being photographed. Strains containing 
a single-copy plasmid encoding the wild-type Rad26 or the point mutations Rad26 are indicated 
in brackets.   

 

4.4 Discussion 

In this study, we present evidence that Spt4/Spt5 suppresses TCR only in the absence of 

Rad26, regardless the presence of Rpb9. Rad26 restrains the binding of Spt4/Spt5 to Pol II. In 

response to UV irradiation, Spt5 is rapidly dephosphorylated, regardless of the presence of 

Rad26. Moreover, inactivation of Rad26 ATPase activity abolishes its functions in TCR and in 

restraining the binding of Spt4/Spt5 to Pol II. We propose that Rad26 facilitates TCR, at least in  
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Figure 4-7 ATPase activity of Rad26 is required for facilitating TCR. (A)–(D) DNA 
sequencing gels showing TCR in the RPB2 gene in different mutants. Brackets at the top indicate 
plasmids contained in the strain. The lanes are DNA samples from unirradiated (U) and UV 
irradiated cells following different times (hrs) of repair incubation as indicated at the top of the 
gels. The arrow on the left of the gels marks the transcription start site. (E) Plots showing the 
mean (± standard deviation) of percent CPDs repaired in the transcribed region of the RPB2 gene 
in rad7∆ rad26∆ (open diamond), rad7∆ rad26∆ + [p3FRAD26] (solid square), rad7∆ rad26∆ + 
[p3FRAD26 K328A T329C] (solid triangle) and rad7∆ rad26∆ + [p3FRAD26 Q759A R763A] 
(asterisk) cells. 
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Figure 4-8 ATPase activity of Rad26 is required for restraining the binding of Spt5 to Pol II. 
3xFLAG tagged Spt5 was co-immunoprecipitateted with Pol II by using H14 antibody from 
different strains as indicated. Spt5 was probed by anti-FLAG M2 antibody. Rpb1 was probed by 
H14 antibody and set as internal loading control. ‘p’ and ‘u’ on the left of the blot mark 
phosphorylated Spt5 and unphosphorylated Spt5, respectively. The ratio of phosphorylated Spt5 
to unphosphorylated Spt5 (p/u) and the relative total levels of Spt5 were labeled underneath. The 
relative total levels of Spt5 were normalized by Rpb1, the level of Spt5 in wild type cells was set 
as 1.0.  
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part, through restraining the binding of the suppressors (Spt4, Spt5, possibly other factors) to Pol 

II by using its ATPase activity. 

Although phosphorylation of the Spt5 C-terminal domain (CTR) has been shown to play 

an important role in the suppression of Rad26-independent TCR (Ding et al., 2010), how Spt5 

suppresses TCR remains to be elucidated. One possibility is that, by binding to Pol II, Spt5 may 

directly suppress TCR through interfering with the access of NER factors, or changing the 

conformation of the Pol II complex, resulting in a deficiency in ‘sensing’ a lesion or a defect in 

recruiting NER machinery. Another possibility is that, Spt5 is indirectly involved in the 

suppression through mediating the recruitment of other suppressors to Pol II. It has been shown 

that Spt4/Spt5 complex acts as a platform in promoting the interaction between the Paf1 complex 

and the elongating Pol II (Qiu et al., 2006). Interestingly, the deletion of any core subunit (Paf1, 

Cdc73, Rtf1, Loe1, or Ctr9) of the Paf1 complex also reinstates TCR in rad26∆ cells 

(unpublished data). Thus, the possibility that Spt5 bridges TCR suppressors cannot be excluded. 

Given the fact that Spt4/Spt5 and Faf1 complex play very important roles in promoting 

transcription elongation (Mueller et al., 2004; Wada et al., 1998; Yamada et al., 2006; Zhu et al., 

2007), some transcription elongation factors may be involved in both transcription and TCR 

processes. It will be very interesting to investigate how the functions of these factors are 

coordinated in different cellular processes.  

It is believed that the blockage of the transcription elongation form of Pol II at damage 

sites serves as the initiation signal for TCR (Laine and Egly, 2006a; Lindsey-Boltz and Sancar, 

2007). The human CSB protein was proposed to serve as a transcription-repair coupling factor 

(TRCF) and operate at early steps in the initiation of TCR (Fousteri et al., 2006). Similar to CSB, 

Rad26 may also act as TRCF in yeast (Svejstrup, 2002). Indeed, our results indicate that ATPase 

activity is required for Rad26 to mediate TCR (Figs. 4-7). However, unlike the E. coli TRCF 
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(Mfd), which displaces stopped RNA polymerase from damage sites (Savery, 2007), Rad26 

displaces TCR suppressors Spt4 and Spt5 (possibly other factors) from Pol II through its ATPase 

activity (Figs. 4-4 and 8). Interestingly, transcription/DNA repair factor TFIIH has been shown to 

change subunit composition in response to UV irradiation (Coin et al., 2008). The detachment of 

CDK-activating kinase (CAK) complex from the core of TFIIH by XPA converts TFIIH from an 

elongation-proficient form into a repair-proficient form (Coin et al., 2008). Spt5 may also 

dynamically change forms through its C-terminal phosphorylation and dephosphorylation (Zhou 

et al., 2009) to adapt its engagement in transcription and TCR processes. Rad26 could regulate 

Spt5 functions in both transcription and TCR. Under physiological conditions, the 

phosohorylated Spt5 together with other transcription elongation factors promote transcription 

elongation through binding to Pol II (Buratowski, 2009; Liu et al., 2009). However, this 

transcription elongation-proficient form inhibits TCR, and needs to be switched to 

unphosphorylated form to release the inhibition. By using the energy from ATP hydrolysis, 

Rad26 might target the interface between Spt4/Spt5 and Pol II to displace Spt4/Spt5 from Pol II. 

The removal of Spt4/Spt5 (and other possible factors) will provide enough space or/and the 

signal for recruitment of NER machinery to the damage sites. After lesions are removed, the 

transcription machinery will be reassembled and switched back into the transcription 

elongation-proficient form. Consistent with this idea, a recent report (Malik et al., 2009) showed 

that Rad26 is recruited to the site of DNA lesion in an elongating Pol II-dependent manner, 

suggesting that the function of Rad26 in TCR is tightly related to transcription elongation. The 

function of Rad26 in TCR may be fulfilled by coordinating transcription elongation and TCR.   

In human, the defect of CSB gene is the major cause of Cockayne syndrome (CS), a 

developmental disease characterized by photosensitivity, severe neurological abnormalities, short 

stature, and short life span (Nouspikel, 2009). These multiple clinical manifestations indicate that 
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CSB protein must be involved in other processes besides TCR, such as BER, transcription, and 

possibly chromatin remodeling (Stevnsner et al., 2008). Given that human CSB is the ortholog of 

the yeast Rad26, the new finding that Rad26 facilitates TCR partially through restraining the 

binding of Spt4/Spt5 to Pol II, provides a new avenue to understand the pathogenesis of CS. It 

will be very interesting to test if CSB protein has the similar function in regulation TCR and 

transcription.   
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CHAPTER 5  
 

CONCLUDING REMARKS  
 

5.1 Research Summary  

By using yeast Saccharomyces cerevisiae as a model organism, this dissertation was 

focused on the different roles of transcription factor Tfb5 in different NER pathways (Ding et al., 

2007), the molecular mechanism of transcription elongation factors Spt4/Spt5 in the suppression 

of Rad26-independent TCR (Ding et al., 2010), and the functional mechanisms of the putative 

yeast transcription coupled repair factor (TCRF) candidate Rad26 in facilitating TCR. The major 

findings in this study are: 

1. Transcription factor Tfb5, the tenth subunit of transcription/repair factor TFIIH, plays 

different roles in different NER pathways in yeast. Tfb5 is essential for GGR, but is 

not absolutely required for TCR. Tfb5 is partially dispensable for Rad26 mediated 

TCR, but is required for Rpb9 mediated TCR. 

2. The deletion of SPT4 alleviates TCR only in the absence of Rad26, regardless of the 

presence of Rpb9, suggesting Spt4 specifically suppresses Rad26-independent TCR. 

In another word, Rad26 specifically antagonizes this suppression. 

3. Spt4 indirectly suppresses Rad26-independent TCR by protecting Spt5 from 

degradation and by stabilizing the interaction of Spt5 with RNA Polymerase II (Pol 

II).  Spt5 C-terminal repeat which is dispensable for cell viability and is not involved 

in interactions with Spt4 and Pol II, plays an important role in the suppression. 

4. Spt5 CTR is phosphorylated by Bur kinase. Inactivation of the Bur kinase partially 

alleviates TCR in rad26∆ cells, suggesting Spt5 CTR phosphorylation plays an 

important role in the suppression.  
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5. Rad26 dynamically associates with Pol II and restrains the binding of Spt4/Spt5 to 

Pol II. UV irradiation facilitates the association of Rad26 with Pol II and induces 

phosphorylated Spt5 (Spt5P) dephosphorylation.  

6. ATPase activity of Rad26 is required for facilitating TCR and for restraining the 

binding of Spt5 to Pol II, suggesting Rad26 enhances TCR by antagonizing the 

binding of Spt4/Spt5 to Pol II via its ATPase activity. 

5.2 Working Models 

Based on these findings, we proposed the following working models to explain the 

functional mechanisms of Spt4, Spt5, and Rad26 in TCR. We found that Spt4 and Spt5 

cooperatively suppress Rad26-independent TCR, but they play different roles in the suppression. 

Spt5 plays a more direct role in the suppression, whereas Spt4 is indirectly involved by 

stabilizing Spt5 and by enhancing the binding of Spt5 to Pol II. In the presence of Spt4, Spt4 and 

Spt5 form a stable complex which tightly associates with Pol II (Fig. 5-1A). The C-terminal 

repeat (CTR) domain of Spt5 can be phosphorylated by Bur kinase. Through binding to Pol II, 

Spt4 and Spt5 fulfill the suppressive function on Rad26-independent TCR (Fig. 5-1A). In the 

absence of Spt4, Spt5 is not stable and will be degraded. The level of Spt5 associated with Pol II 

is not high enough to suppress TCR any more, and then TCR is released (Fig.5-1B). 

Models of functional mechanisms of Rad26 in TCR are shown in Figure 5-2. In the 

absence of Rad26, the Spt4/Spt5 complex tightly associates with the elongating form Pol II, in 

which both Ser2 and Ser5 of C-terminal heptapeptide repeats (Y1S2P3T4S5P6S7) of Rpb1 are 

hyper-phosphorylated (Phatnani and Greenleaf, 2006). After Spt5 phosphorylation by Bur kinase, 

Spt4 and Spt5 play a positive role in transcription elongation (Chen et al., 2009; Liu et al., 2009; 

Zhou et al., 2009), but suppress TCR (Fig.5-2A). However, in the presence of Rad26, more than 
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half of Spt4/Spt5 can be displaced from Pol II by Rad26 through its ATPase activity (Figs. 4-3B 

and C, 4-4A and B, 5-2B). The lower level of Spt4/Spt5 in Pol II results in faster TCR. After UV 

irradiation, elongating Pol II will be stopped at the damage sites, which is believed to initiate 

TCR (Friedberg et al., 2006; Lindsey-Boltz and Sancar, 2007). In response to UV, Spt5P will be 

immediately dephosphorylated by unknown phosphatase(s) (Fig. 5-2B, question mark in blue), 

and more Rad26 will bind to Pol II (Figs. 4-3A, 5-2B).  These events would be followed by 

NER machinery recruitment and then TCR occurs. After the removal of damage, transcription 

machinery could be reassembled, including Spt5 phosphorylation and the recruitment of other 

transcription elongation factors.  

 
 

 
 
 
Figure 5-1 Spt4 and Spt5 cooperatively suppress TCR. (A) In the presence of Spt4, Spt4 and 
Spt5 form a stable complex which tightly associates with Pol II. The phosphorylation of the CTR 
domain of Spt5 by Bur kinase plays an important role in the suppression. (B) In the absence of 
Spt4, Spt5 is not stable and is degraded. The release of TCR results from less Spt5 binding to Pol 
II. The lighter color in red indicates lower levels of Spt5. Small circles indicate Spt5 degradation. 
Abbreviations: Pol II, RNA Polymerase II; P, phosphorylation.  
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Figure 5-2 Rad26 enhances TCR by restraining the binding of Spt4/Spt5 to Pol II. (A) In the 
absence of Rad26, higher levels of Spt4/Spt5 bind to Pol II. The phosphorylation of Spt5 CTR 
facilitates transcription elongation, but suppresses TCR. (B) In wild-type cells, Rad26 
dynamically associates with Pol II and restrains the binding of Spt4/Spt5 to Pol II via its ATPase 
activity. Less Spt4/Spt5 in Pol II forms a TCR proficient form. After UV irradiation, elongating 
Pol II would be stopped at the damage sites. Spt5 will be dephosphorylated and more Rad26 will 
bind to Pol II in response to UV. These events would be followed by NER machinery recruitment 
and TCR occurring. The darker colors in red and in green indicate higher protein levels of 
Spt4/Spt5 and Rad26, respectively. The red triangle indicates UV-induced damage site. The blue 
question mark indicates unidentified phosphatase(s). The red question mark indicates unknown 
mechanisms for NER machinery recruitment. Abbreviations: S2, Serine 2 of CTD; S5, Serine 5 
of CTD; Pol II, RNA Polymerase II; P, phosphorylation. 
 

5.3 Future Research 

Although TCR has been extensively studied in eukaryotic cells for almost three decades, 

the exact molecular mechanisms are still unknown. The mechanisms of TCR will continue to be 

investigated by many researchers in the DNA repair field. Besides mechanistic studies, another 

aspect which needs to be focused on in this field is the pathogenesis of NER or TCR-defect 
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diseases, such as Xeroderma pigmentosum (XP), Trichothiodystrophy (TTD), Cockayne 

syndrome (CS), certain kinds of cancers, aging, and other progeroid syndromes. Based on this 

study and other recent reports, some research can be further carried on in the future.  

5.3.1 Functional Mechanisms of Tfb5 in TFIIH and TFIIH in NER  

Yeast Tfb5 plays different roles in different NER pathways (Ding et al., 2007). It would 

give some implication about the pathogenesis of the third group of TTD (TTD-A) if this idea was 

tested in humans. TFIIH has been shown to be required for both transcription initiation and NER 

(Hashimoto and Egly, 2009). How can TFIIH be involved in different cellular processes? In 

human cells, Tfb5 (p8) stimulates the ATPase but not helicase activity of XPB (Coin et al., 2006). 

Moreover, the CDK-activating kinase (CAK) subcomplex was shown to be dissociated from core 

TFIIH during NER, suggesting the composition of TFIIH is dynamically changing to adapt to 

functions in different processes (Coin et al., 2008). A recent report (Kainov et al.) indicated that 

Tfb2 bridges the Ssl2 (Rad25) helicase and Tfb5 subunit, and the Tfb5-interacting domain of 

Tfb2 also binds nucleic acids. Interestingly, Tfb5 triggers dissociation of nucleic acids from Tfb2, 

suggesting Tfb5 may facilitate a transition in TFIIH function from transcription to NER by 

targeting Tfb2. It will be interesting to test if Tfb5 serves as a molecular switch for the regulation 

of TFIIH activity and how it fulfills this regulation.  

5.3.2 The Coordination Mechanisms of Spt5 in Transcription Elongation and TCR  

The phosphorylation of yeast Spt5 C-terminal repeat (CTR) by Bur kinase plays 

important roles in both transcription elongation and the suppression of Rad26-independent TCR 

(Ding et al., 2010; Zhou et al., 2009). Interestingly, Spt5P is dephosphorylated in response to UV 

(Fig. 4-4). It seems that the events of phosphorylation and dephosphorylation play important 

roles in coordinating the functions of Spt5 in different cellular processes. Thus, the phosphatase(s) 
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of Spt5P is (are) an interesting factor(s) to be identified (Fig. 5-2B, blue question marker). Like 

Bur kinase (Ding et al., 2010; Keogh et al., 2003), this (these) phosphatase(s) could be involved 

in both transcription elongation and TCR. The Bur kinase and unidentified phosphtase(s) could 

act as a molecular switch to regulate Spt5 functions in these cellular processes through 

phosphorylation and dephosphorylation. Given that Bur kinase phosphorylates both CTR of Spt5 

and C-terminal domain (CTD) Ser2 of Pol II (Liu et al., 2009; Qiu et al., 2009; Zhou et al., 2009), 

it is possible that Spt5 and CTD of Rpb1 are substrates of the same phosphatase(s). In yeast S. 

cerevisiae, there are several candidate phosphatases for Spt5P dephosphorylation in response to 

UV. One candidate is an evolutionarily conserved Pol II-binding protein called Rtr1. It was 

recently identified as CTD Ser5P phosphatase (Mosley et al., 2009).  Rtr1 is not essential for 

yeast viability and the effect on Spt5P dephosphorylation cold be directly measured in RTR1 

gene deleted cells. Another CTD Ser5P phosphatase Ssu72 may be the second candidate 

(Krishnamurthy et al., 2004).  The third candidate is Fcp1, which has CTD Ser2P phosphatase 

activity (Kops et al., 2002). However, unlike Rtr1, Ssu72 (Sun and Hampsey, 1996) and 

Fcp1(Kobor et al., 1999) are required for yeast cell viability. It would be better to measure the 

phosphatase activity by using techniques both in vivo and in vitro. For those essential gene 

products, protein purification and phosphatase activity measurement in vitro is required. It is 

possible that none of these three phosphatases is responsible for Spt5P dephosphorylation. A new 

phosphatase may need to be identified. These studies will provide new insights into the 

functional mechanisms of Spt5 in TCR and even in the transcription cycle (Buratowski, 2009).  

5.3.3 Possible Cross Talk of Spt5 with Other Factors  

How does Spt5 CTR suppress Rad26-independent TCR? Phosphorylation of the Spt5 

CTR domain stimulates recruitment of Paf 1 complex (Liu et al., 2009), suggesting Spt5 may not 

be a direct suppressor on TCR. Paf1 complex also plays an important role for recruitment of 
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many factors involved in transcription elongation, such as COMPASS, FACT and Rad6/Bre1 

(Krogan et al., 2003; Krogan et al., 2002). It will be interesting to test if these factors are 

involved in TCR. This study will give the indication whether the Spt5 CTR domain directly 

suppresses Rad26-independent TCR or just acts as a platform to recruit ‘real’ suppressors, which 

may form a mega-complex to prevent Pol II from either efficiently ‘sensing’ a lesion or 

recruiting the NER machinery. 

5.3.4 Functional Mechanisms of Rad26 in TCR  

Due to its ATPase activity, protein Rad26 is the most promising yeast transcription-repair 

coupling factor (TRCF) (Svejstrup, 2002). Indeed, ATPase activity is required for Rad26 

mediated-TCR (Fig.4-7). However, unlike E.coli TRCF (Mfd), which displaces stopped Pol II 

from damage sites (Savery, 2007), Rad26 restrains the binding of suppressors Spt4/Spt5 to Pol II 

via its ATPase activity (Fig.4-8). Although Spt5 and Rad26 have been shown to associate with 

Pol II, the exact binding sites are not clear so far. It will also be interesting to identify the binding 

sites of Spt5 and Rad26 on Pol II. This study will clarify if competitive binding contributes to the 

displacement of Spt5 from Pol II besides ATPase activity. It will be also interesting and 

significant to test if CSB protein has a similar function in TCR in human cells. In response to UV, 

both yeast Rad26 and human CSB increase their binding affinity to Pol II (Fousteri et al., 2006). 

If the damage-stalled Pol II serves as the initial signal for TCR, the event that a higher level of 

Rad26 or CSB bound to Pol II could act as the TCR signal transducer for NER machinery 

recruitment (Fig.5-2B, red question marker). These studies are significant to understand the 

functional mechanisms of Rad26/CSB in TCR and the pathogenesis of TCR defects diseases 

such as Cockayne syndrome (CS).   
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5.3.5 The Effect of Human Spt4/Spt5 (DSIF) Complex on TCR  

Spt4 and Spt5 are conserved transcription elongation factors. Similarly, the 

phosphorylation of human Spt5 CTR by positive elongation factor b (P-TEFb) is critical for 

processive transcription elongation (Yamada et al., 2006). It will be very interesting to test the 

effect of human Spt4/Spt5 on TCR. If hSpt4/Spt5 complex indeed suppresses TCR, protein Spt5 

or the CTR domain peptide has the potential clinical application to treat some cancers when 

combined with chemical drugs (Ljungman, 2009). This could be a long-term goal for the Spt5 

project. 
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APPENDIX A: LETTERS OF PERMISSION 
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APPENDIX B: OLIGONUCLOETIDES USED IN THIS DISSERTATION 

 

Name Sequence According gene

For NER analysis  

RPB2-B [BioTEG]ACATCATTTTGTTTTGTTTTGTTTTAAAAGCAT 
AATCCCAAATAATTCTGA RPB2 (TS) 

RPB2-B2 [BioTEG]CTGACATTTTTGTTTTTGTTTTTAAACACTTGA 
ACAATATTACCTGCAG RPB2 (NTS) 

UAS7 [BioTEG]CTGACATTTTGTTTGTTTTGTTTAGCCCCATTA 
TCTTAGCCTAAAAA GAL1-10 (TS)

GAL5 [BioTEG]CTGACATTTTGTTTGTTTTGTTTAAAGTAATTA 
GACCAGTCCGACACAG GAL1 (NTS) 

For creation 3xFLAG or 3xMyc tagged protein  

SPT4-3F1 TTGTGGAGCTGTTGCCTCACTACAAACCGAGGGATGGC 
AGTCAAGTTGAGAGGGAACAAAAGCTGGAGCTC SPT4 

SPT4-3F2 AAAAAAAATTCATTCATATTATACATGTGATATCAGAA 
CGGAAGGTTTTAAGGGCGAATTGGGTACCG SPT4 

SPT5-3F1 ACCAAGGAAATAAGTCAAACTATGGTGGTAACAGTACA 
TGGGGAGGTCATAGGGAACAAAAGCTGGAGCTC  SPT5 

SPT5-3F2 TTTTTTATTGATTTCTTCTTGGGTGATATTGGTTCTCCTTT 
TGGTGATTAAGGGCGAATTGGGTACCG SPT5 

RPB3-3F1 ATGCATCTCAAATGGGTAATACTGGATCAGGAGGGTATG 
ATAATGCTTGGAGGGAACAAAAGCTGGAGCT RPB3 

RPB3-3F2 TCGGTTCGTTCACTTGTTTTTTTTCCTCTATTACGCCCACT 
TGAGAACTATAGGGCGAATTGGGTACCG RPB3 

RPB7-F1 GTTCTATTCACGCAATCGGTAGTATCAAAGAAGATTAT 
TTGGGTGCTATTAGGGAACAAAAGCTGGAGCTC RPB7 

RPB7-F2 AAAGGCGAAGGCGGGCGTTCAGAAAAGCGTTGCGGAG 
TAACAAGTGATTAAGGGCGAATTGGGTACCG RPB7 

FW3MF AGCTGGAGCTCGAACAGAAGTTGATTTCCGAAGAAGACC 
TCGAA 3MYC 

RE3MF AATTCCTGCAGTTAAAGGTCTTCTTCGGAAATCAACTTCT 
GTTCGTT 3MYC 

FWRAD26MF AGCTGACTAGTATGGAACAGAAGTTGATTTCCGAAGAAG 
ACCTCGAA 3MYC 

RERAD26MF ACTGTGGATCCAAGGTCTTCTTCGGAAATCAACTTCTGTT 
CGTT 3MYC 

For gene deletion, truncation, point mutation and confirmation 

TFB5a GTCAATGGATCCCGTAGCAAAATATTTTCC TFB5 
TFB5b GCACCCAAGCTTGCTCTAGCCATTTTTTCGTT TFB5 
TFB5c TGGATGCTCGAGAAAATCAGTAATTATTGCTCATTCAG TFB5 
TFB5d TTTTGCGGTACCGGCTTGACCTTAAATGGT TFB5 
TFB5e GTACTCCCAATAGAGACAAAGCCA TFB5 
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TFB5e GTACTCCCAATAGAGACAAAGCCA TFB5 
TFB5f GACCTGGTTATGCAGGTCATGCTC TFB5 
SPT4 CACGGTACCTCAAATAAATATATTCATGTATATAATTT SPT4 
SPT4' TGGGGTACCGTGGAGTCACCACGTTT SPT4 

SPT4-a GGCAAAAGCGAACGAGGTACAGTGTAAGAGATGTCTA 
GTGAAAGAGCCTGCCAGCTGAAGCTTCGTACGC SPT4 

SPT4-b TTTACTCAACTTGACTGCCATCCCTCGGTTTGTAGTGAG 
GCAACAGCTCCAGGGCGCGAATTGGGTACCG SPT4 

SPT5-a TGCGGATCCTTGAAGAACC TTGGTAGTTCA SPT5 
SPT5-b CGACGGCCGGCATGTAAGCCCATCG SPT5 

SPT5-Kan1 ATTTGCTGATCCCGTAGTGGTTCCGCAGTCAACTGACAC 
TAAAGATGAAACCAGCTGAAGCTTCGTACGC SPT5 

SPT5-Kan2 CCTAATTGACCCTTGTAACCAGCAGAACGAATTCTTACT 
GTTTTGCCGAGAGGGCGAATTGGGTACCG SPT5 

SPT5-1 TCTTGCGTACAGCCAAGTGAAG SPT5 
SPT5-2 GGGACCTCCATCATCTAAGACATT SPT5 
SPT5Forward GTCCTCGAGATGAGTGACAACTCGGACACAA SPT5 
SPT5Revers CTATTAATTAATTAATGACCTCCCCATGTACTGTTAC SPT5 
SPT5-F1 GTCGACGTCATGAGTGACAACTCGGACACAA SPT5 
SPT5-R1 CTAAAGCTTTTAATGACCTCCCCATGTACTGT SPT5 
SPT5-R870 CTAAAGCTTTTACTGTGGAACTCTACCACGTCTATT SPT5 
SPT5-R640 CTAAAGCTTTTATGATGTAGCTGTAGTGTCGATGG SPT5 
SPT5-R421 CTAAAGCTTTTAATCCAGACGAGGAACAATTTTC SPT5 
SPT5-F245 GTCGACGTCGCTCAAAGGTTAGCGAAAGAAT SPT5 
SPT5-F422 GTCGACGTCTATGGTAAATTCGACGAAATTGA SPT5 
SPT5-F641 GTCGACGTCAGTGAATATGCGCTACATGACATA SPT5 
SPT5-I244 CTATCCGGAGTCTTCTTCTGAAGTCTTGTTCAAAT SPT5 
SPT5-I422 GTCTCCGGATATGGTAAATTCGACGAAATTGA SPT5 
SPT5-I421 CTATCCGGATTAATCCAGACGAGGAACAATTTTC SPT5 
SPT5-I244 GTCTCCGGAAGTGAATATGCGCTACATGACATA SPT5 
BUR2-3 AAGCTGTACCAAAACCAACG BUR2 
BUR2-4 TCGTCAATCACCGAATCAATCA BUR2 
BUR2-5 GTCAGGTACCAATCCACATTTGCCGTTGGT BUR2 
BUR2-6 CATGAAGCTTCACTGCTATCGGTCCATTAGTG BUR2 
BUR2-7 GTCACTCGAGTTGTGCGACGGTTATACGTTC BUR2 
BUR2-8 CATGTCTAGATGACCCTCAGATTATATGCTGCT BUR2 
DWRad26R763A AAGCTCGAGAAGCGGCATGGAGGATTGGGCA RAD26 
UPRad26Q759A TTTCTCGAGCTGCCATGTCAGTAGATGGGTTCCAGT RAD26 
DWRad26KT329AC GGAGCATGCATTCAAGTTATCGCATTTATCGCA RAD26 
UPRad26KT329AC AATGCATGCTCCCAGACCCATTTCGTCA RAD26 
KanRE GGGATGTATGGGCTAAATGTACG KanMX 
KanFW CCTCGACATCATCTGCCCA KanMX 
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RPB3 FW TATTGGTACCCCAAGACATCCCAG RPB3 
RPB3 RE AGGTGGATCCTTAACGAGCAAAAAGGAGGA  RPB3 
RPB7-A GTTGGAGCCTGCTAATCAAAGCAC RPB7 
RBP7-B CGAACCTTCAACCTCTTCCAATAG RPB7 
RPB7-C CGTTAGAAGACCTTGATGAACCC RPB7 
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APPENDIX C: STRAINS USED IN THIS DISSERTATION 

Strains                      Genotypea                                Reference/Source   

WT-BJ5465 MATa ura3-52 trp1 leu2D1 his3D200 pep4::HIS3 prb1D1.6R can1    (1) 

CR5 as BJ5465, but tfb5::URA3 This study 
CR18 as BJ5465, but rad7::URA3∆ rad26::URA3∆   This study 
CR23 as BJ5465, but rad7∆ rad26∆ rpb9::URA3∆ This study 
CR31 as BJ5465, but rad26∆ rpb9∆ This study 
CR33 as BJ5465, but rad7∆ This study 
CR34 as BJ5465, but rad7∆ rad26∆ tfb5::URA3 This study 
CR37 as BJ5465, but rad26∆ rpb9 ∆ tfb5::URA3 This study 
CR42 as BJ5465, but rad7∆ tfb5::URA3 This study 
CR54 as BJ5465, but rad26∆ rpb93∆ tfb5::URA3 This study 
CR55 as BJ5465, but rad26∆ rpb9∆ spt4::LEU2 This study 
CR76 as BJ5465, but rad7∆ spt4::LEU2 This study 
CR78 as BJ5465, but rad26∆ rad7∆ spt4::LEU2  This study 
CR80 as BJ5465, but rad7∆ rad26∆ rpb9∆ spt4::LEU This study 
CR82 as BJ5465, but rad7∆ rpb9::URA3 This study 
CR89 as BJ5465, but rad7∆ rpb9∆ tfb5::URA3 This study 
CR108 as BJ5465, but rad7∆ spt4∆ rpb9::KanMX This study 
BD4 as BJ5465, but rad7∆ rad26∆ (SPT4-3FLAG) This study 
BD7 as BJ5465, but (SPT5-3´FLAG)     This study 
BD9 as BJ5465, but rad7::URA3 (SPT5-3FLAG)            This study 
BD10       as BJ5465, but rad7∆ rad26∆ (SPT5-3FLAG)  This study 
BD13 as BJ5465, but spt4::LEU2 (SPT5-3FLAG)  This study 
BD14 as BJ5465, but rad7∆ spt4::LEU2 (SPT5-3FLAG)           This study 
BD15 as BJ5465, but rad7∆ rad26∆ spt4::LEU2 (SPT5-3FLAG)  This study 
BD16      as CR18, but [pGAL-SPT5]  This study 
BD17    as CR78, but [pGAL-SPT5]         This study 
BD21   as BJ5465, but [pGAL-SPT5]  This study 
BD56   as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5]       This study 
BD57 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/CTRD]  This study 
BD58 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/641-1063D]  This study 
BD59 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/422-1063D]  This study 
BD60    as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/1-244D] This study 
BD61  as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/1-421D]   This study 
BD62 as CR18, but SPT5::KanMX [pRS416-SPT5, pSPT5/1-640D]   This study 
BD63 as BD56, but [pRS416-SPT5] removed    This study 
BD64 as BD57, but [pRS416-SPT5] removed        This study 
BD94 as CR18, but bur2::URA3  This study 
BD95 as BD64, but bur2::URA3  This study 
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BD96 as BD63, but bur2::URA3   This study 
DB97 as BD63, but [p3FRAD26] This study 
BD98 as BD63, but [p3FRAD26 K328A T329C] This study 
BD99 as BD63, but [p3FRAD26 Q759A R763A] This study 
BD100 as BD63, but [p3FARD26 K328A T329C Q759A R763A] This study 
BD112 as BD10, but [p3MRAD26] This study 
BD113 as BD10, but [p3MRAD26 K328A T329C] This study 
BD114 as BD10, but [p3MRAD26 Q759A R763A] This study 

a Genomic genes tagged with 3×FLAG are indicated in parentheses; plasmids contained in strains are indicated in 
brackets. 

 
1. Jones, E. W. 1991. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol 
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