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ABSTRACT 

Herpes simplex virus type I (HSV-1) is a neurotropic virus that infects primarily 

mucocutaneous epithelial cells and nervous tissue.  Membrane fusion is an important aspect of 

the HSV-1 lifecycle, that occurs during viral entry (virus-cell fusion), viral spread (cell-to-cell 

fusion), as well as, during virion morphogenesis (assembly and egress).  These membrane fusion 

steps involve complex interactions between multiple viral glycoproteins and cellular receptors. 

HSV-1 glycoprotein B (gB) is necessary but not sufficient for membrane fusion events. Despite 

the fact, that the majority of known hypermorphic mutations which cause extensive virus-

induced cell fusion occur within glycoprotein K (gK); yet the role of gK in gB-mediated cell 

fusion is not well understood.  We found that a mutation within the carboxyl terminal of gB that 

resulted in extensive cell fusion is lost in presence of a mutation in gK amino terminus (deletion 

of amino acids 31-68).  These results suggest that gK may regulate gB mediated virus-induced 

cell fusion. Co-immunoprecipitation experiments revealed, that a peptide specifying the amino 

terminus of gK physically interacted with others members of the fusion complex i.e. gB, gH but 

not gD.  Moreover, UL20p, known to interact with gK, interacted with gB as revealed by 

immunoprecipitation reaction.  Virus entry was also modulated by gK, since gK mutants lacking 

the entire gK gene or a deletion in the amino terminus (amino acids 31-68) failed to enter 

Chinese hamster ovary cells (CHO) expressing the gB receptor paired immunoglobulin-like type 

2 receptor alpha (PILR  While these gK mutants efficiently entered into CHO cells expressing 

the gD specific receptors, nectin-1 and HVEM.  Co-immunoprecipitation experiments revealed 

that PILR formed a multi-protein complex with gB and gK.  Thus gK functions in entry in 

presence of gB specific receptors but not gD specific receptors.  Overall, results obtained in this 

study, show that gK and UL20 are part of the fusion complex (gB, gD, gH/gL) that functions 



x 
 

during virus entry and cell spread, and regulates interactions of gB with gB-specific cellular 

receptors.   
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CHAPTER I 

      INTRODUCTION 

STATEMENT OF PROBLEM AND HYPOTHESIS  

Herpes Simplex Virus Type-1 (HSV-1) is a neurotropic virus that infects cells of the 

muco-epethelium and of neuronal origin. A hallmark of herpes infection is that it becomes latent 

in neurons and persists in the host throughout life.  Disease symptoms often  interfere with 

everyday life and occasionally HSV infections are cause of life threatening (e.g. herpes 

encephalitis) or life impairing diseases (e.g. herpes keratitis). Moreover, recent studies have 

shown that HSV-1 may be linked to Alzheimer’s. 

In order, to produce a productive infection the virus has to overcome the physical barrier 

of the cellular membrane during virus entry, as well as utilize different mechanisms to spread 

within the host.  Glycoproteins expressed on the virion surface of HSV-1 play a major role in 

virus entry and cell-to-cell spread.  Virus entry and cell-to-cell spread involve fusion of the viral 

envelope with cellular membranes and fusion among cellular membranes, respectively.  These 

membrane fusion steps occur as a result of interaction between viral glycoproteins and cellular 

receptors and may be important in determining host range of the virus in vivo.  In this regard, the 

existence of highly virulent HSV-1 strains may be due to specific amino acids in glycoproteins 

that promote efficient virus entry and spread in vivo. Therefore, to better define the role of 

glycoproteins in membrane fusion in different HSV-1 strains; comparison of predicted amino 

acid sequence differences between the membrane proteins is necessary. 
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Although, specific cellular receptors have been identified that bind to viral glycoproteins 

gC, gB and gD; the mechanism by which these receptors are involved in virus-associated 

membrane fusion phenomena is not clearly understood.  The X-ray structures of viral 

glycoproteins gB, gH and gD have been solved for HSV-1 and EBV providing unique insight 

into how these glycoproteins interact with each other, as well as, with cellular receptors.  This 

knowledge has led to better understanding of the so called “fusion complex” consisting of gD, 

gB, gH and gL.  It is now believed that this core fusion machinery plays an important role during 

both viral entry as well as cell-to-cell fusion.  

Overall, the membrane fusion machinery of HSV-1 is highly complex.  Recent studies 

have designated gB as the sole viral fusogen, while the rest of the glycoproteins involved in 

fusion are now considered as activators or regulators of gB.  HSV-1 induced cell–cell fusion 

leads to the formation of multinucleated cells that are termed as syncytia.  Single amino acid 

changes within the proteins encoded by the UL53 (gK), UL20 (UL20p), UL24 (UL24p) and 

UL27 (gB) are known to cause extensive syncytia formation.  Specifically, a number of single 

amino acid changes within the amino termini of gK and UL20p and the carboxyl terminus of gB 

cause extensive virus-induced cell fusion.  The amino terminus of gK is localized extracellulary, 

while the amino terminus of UL20p is localized intracellularly.  Therefore, I hypothesize that gK 

and UL20p physically interact through cytoplasmic and extracellular domains with glycoproteins 

gB to modulate gB mediated membrane fusion. 

Glycoprotein K and UL20p are expressed on virions and function in virion entry, 

inasmuch as, HSV-1 strains F and KOS  virions devoid of gK enter substantially slower into 

Vero cells than the parental viruses. Therefore, gK/UL20p function in a similar way in both virus 

entry and virus-induced cell fusion by modulation of  the fusogenic properties of gB. In this 
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study we have investigated the contribution of individual viral receptors on virion entry regulated 

by gK/UL20p to gain a better understanding of the mechanism by which gK modulates gB’s 

fusogenicity during virus entry.  

STATEMENT OF RESEARCH OBJECTIVES 

The main goal of this research was to investigate the role of individual viral receptors in 

gB-mediated membrane fusion regulated by viral proteins gK and UL20p.  The specific aims of 

this research were: 

I          To analyze the role of amino terminus of gK in gB mediated virus-induced cell-to-cell 

fusion: 

i. To evaluate the ability of the amino terminus of gK to complement (in 

trans) gB-mediated cell-to-cell fusion. 

ii. To characterize the interaction between the amino terminus of gK and 

amino terminus of gB.  

iii. To characterize the interaction between the amino terminus of gK and 

amino terminus of gH.  

iv. To determine the interaction between the UL20p and gB. 

II   To analyze the role of amino terminus of gK in gB mediated virus-cell fusion (entry): 

i. To clone the HSV-1 McKrae strain genome into a bacterial artificial 

chromosome (BAC) and generate a HSV-1 McKrae BAC virus 

(McKbac). 
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ii. To construct gK mutant viruses gKΔ31-68 (encoding gK carrying an in-

frame deletion of aa 31 to 68), and gKΔ31-117 (encoding gK carrying an 

in-frame deletion of aa 31 to 117) by utilizing the McKbac virus. 

iii. To characterize  recombinant viruses in cell culture. 

iv. To characterize the entry phenotype of McKbac and gK mutants into 

Vero cells and Chinese hamster ovary cells (CHO) expressing single 

receptors –Nectin-1, HVEM, and PILR 

v. characterize the mode of entry (pH dependent or independent fusion) 

of McKbac and gK mutants into CHO-nectin-1cells and PILRcells. 

vi. To characterize the interaction between PILRα and gK /UL20p complex 

in infected cells. 

III To compare the entry phenotype of HSV-1 strains, McKrae and F: 

i. To sequence the viral proteins involved in entry and cell-to-cell fusion of 

HSV-1 strain Mckrae.  

ii. To compare the predicted amino acid sequence of glycoproteins gB, gD, 

gH, gL. gC, gK and UL20p of HSV-1 strain McKrae with strain F, H129 

and KOS. 

iii. To compare the entry phenotype of McKrae and F strains into CHO-

nectin-1, CHO-HVEM, CHO-PILR cells and Vero cells. 

Overall, the results obtained from this research indicate that: 

1. gK and UL20p heterodimer play an important role in virus-induced cell-cell fusion and 

viral-cell fusion. 
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2. The amino terminus of gK modulates the conformation of gB by interacting directly with 

gB and other members of the fusion complex .   

3. gK plays an important role during viral entry not only in Vero cells but specifically in 

cells expressing a gB receptor (PILR). 

4. HSV-1 Mckrae strain enters CHO-nectin -1 cells in a pH independent manner. 

5. HSV-1 McKrae strain enters more efficiently than F strain into cells expressing gB 

specific receptor PILRα. 

Thus, it seems that gK is intimately associated with gB and plays a role in gB mediated 

membrane fusion. 

The work is presented in individual chapters in a manuscript format having a specific title for the 

central theme of each chapter. 

 

CHAPTER II:  The amino terminal portions of HSV-1 gK and UL20p interact with gB and gH 

and regulate gB-mediated membrane fusion. 

CHAPTER III:  The amino terminus of HSV-1 glycoprotein K (GK) modulates virion entry into 

cells via the Paired-Immunoglobulin Type-2 Receptor alpha (PILR). 

CHAPTER IV: Amino acid differences in glycoproteins B (gB), C (gC), H (gH) and L (gL) are 

associated with Enhanced Herpes Simplex Virus type-1 (McKrae) Entry via the 

Paired Immunoglobulin-like Type-2 Receptor  
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LITERATURE REVIEW 

Historical Perspective of Herpesviruses 

O'er ladies ' lips, who straight on kisses dream, 

Which oft the angry Mab with blisters plagues, 

Because their breaths with sweetmeats tainted are. 

                -- Act 1. Scene IV. William Shakespeare, "Romeo and Juliet”. 

The blisters that Shakespeare refers to are in fact cold sores produced by the Herpes 

Simplex Virus (HSV), a common infectious agent. HSV is an ancient virus that can be traced to 

the Greek era (Kaplan 1973). In fact, herpesviruses derive their name from the Greek word 

herpes (erpein) meaning “to creep” or “crawl” to describe the lesions found on the skin.  Even 

earlier than the Greeks, descriptions of lesions resembling HSV were found on a Sumerian 

Tablet, in  the 3rd Millenium BC and also in the Ebers Papyrus, circa 1500 BC (Whitley 2001). 

During the second century A.D. the Greek physician Galen stated that lesions caused by 

recurrent HSV always erupted at the same anatomical location (Whitley, 2001).  

Originally, the term herpes was used in medicine to describe a variety of skin conditions 

and diseases but its meaning changed overtime.  In 1814, Bateman described both herpes liabilis 

and herpes perputialis disease as a “restricted group of localized vesicles with a short, self-

limiting course”  (Bateman and Willan 1814).  During King Louis XIV reign, his physician John 

Astruc, recorded in his De Morbis Venereis the link between HSV and the genital organs, after 

observing the symptoms of the disease in French prostitutes  (Astruc 1736). Vidal proved beyond 

doubt that HSV was infectious and passed from one human to another  (Vidal 1873) by noticing 

transmission of the disease among human volunteers in the early 20
th

 century. Gruter who is 

widely acknowledged for isolation of HSV, used animal studies proving that HSV infections 

could be transmitted from rabbit to rabbit (Gruter, 1924). Burnett and Williams provided a 
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description of HSV latency wherein they stated stated that HSV persists for life and can be 

reactivated under stressful conditions (Burnet 1939). 

Recent advancement in tissue culture technology has helped in isolation of other human 

herpes virus such as varicella zoster virus (VZV) and cytomegalovirus (CMV) (Weller and 

Stoddard 1952; Smith 1956).  Isolation of the gammaherpesvirus Epstein-Barr virus (EBV) was 

possible due to in vitro cultivation of lymphoblastoid tumor cells and B lymphocytes (Epstein, 

Achong et al. 1964). During 1990’s, T lymphocytes cultivation led to the isolation of human 

herpes viruses 6A, 6B and 7 (Salahuddin, Ablashi et al. 1986; Frenkel, Schirmer et al. 1990). In 

1994, Chang et al. used Representational Differential Analysis (RDA) to isolate human 

herpesvirus 8  (Chang, Cesarman et al. 1994). 

Thus, HSV can be described as an ancient virus that not only infects man but also other 

vertebrates and few invertebrates.  In the 21st century, the definition and treatment of this 

disease/virus has evolved rapidly due to better molecular characterization.  Genetic engineering, 

advancements in tissue culture, proteomics as well as microscopy has revealed a better 

understanding of the herpes virus.  These developments have brought about new antiviral drugs, 

new candidate vaccines and further the use of herpes for genetic therapy.  

Taxonomy of Herpesviridae 

Herpes virus taxonomy has been addressed since 1971 by the International Committee on 

Taxonomy of Viruses (ICTV) (Wildy, 1971).  An initial step was taken to bestow herpes virus 

with formal names (Roizman 1973).  Subsequently, they were grouped into subfamilies on the 

basis of their biological criteria (Roizman, Carmichael et al. 1981). Apart from a few erroneous 

classifications, this was a successful attempt at classifying herpes virus (Roizmann, Desrosiers et 
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al. 1992).  Molecular data was used to delineate genome characteristics such as size and 

structure, which helped in further classifying subfamilies into genera (Roizmann, Desrosiers et 

al. 1992). The latest report of the ICTV Herpesvirus Study Group (Davison 2007), subdivides the 

family Herpesviridae into three subfamilies:  Alphaherpesvirinae (containing the Simplexvirus, 

Varicellovirus, Mardivirus and Iltovirus genera); Betaherpesvirinae (containing the 

Cytomegalovirus, Muromegalovirus and Roseolovirus genera) and Gammaherpesvirinae 

(containing the Lymphocryptovirus and Rhadinovirus genera).  Only the genus (Ictalurivirus) is 

unattached to any subfamily and several species have not been assigned any genera. Most of the 

herpesviruses infect mammals or birds but there are a number of unassigned herpesviruses that 

infect lower vertebrate (reptilian, amphibian, and fish) or invertebraete (bivalve) host. Table 1.1 

shows the classification of the family Herpesviridae as proposed by Davidson et al. 2005. The 

human Herpesviruses are in bold type  (Davison 2007). 

Alphaherpesvirinae are classified based on their variable host range, short reproductive 

cycle, rapid spread in tissue culture, efficient destruction of infected cells, and the ability to 

establish latent infections primarily in sensory ganglia. Betaherpesvirinae were characterized by 

a limited host range, long reproductive cycle, and slow infection progression in tissue culture. 

Cells that are infected often become enlarged (cytomegalia), and the viruses can maintain latency 

in secretory glands, lymphoreticular cells, kidneys, and other tissues. Gammaherpesvirinae were 

characterized by a limited host range and ability to replicate in lymphoblastoid cells, with some 

viruses also causing lytic infection in few types of epithelial and fibroblastic cells. Viruses are 

usually specific for either B or T lymphocytes, and latent virus is frequently demonstrated in 

lymphoid tissue. 
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Table 1.1: Members of the family herpesviridae 

 

Subfamily 

 
Genus 

 

Formal Name Common  Name Abbrev. 

Alphaherpesvirinae Simplexvirus    

  Ateline herpesvirus 1 Spider monkey herpesvirus  

  Bovine herpesvirus 2 Bovine mamillitis virus  

  Cercopithecine herpesvirus 

1 

B-virus HVB 

  Cercopithecine herpesvirus 

2 

SA8 virus  

  Cercopithecine herpesvirus 

16 

Herpesvirus papio 2  

  Human herpesvirus 1 Herpes simplex virus [type] 

1 

HSV-1 

  Human herpesvirus 2 Herpes simplex virus [type] 

2 

HSV-2 

  Macropodid herpesvirus 1 Parma wallaby herpesvirus  

  Macropodid herpesvirus 2 Dorcopsis wallaby herpesvirus  

  Saimiriine herpesvirus 1 Herpesvirus tamarinus  

 Varicellovirus    

  Bovine herpesvirus 1 Infectious bovine 

rhinotracheitis virus 

BHV-1 

  Bovine herpesvirus 5 Bovine encephalitis virus BHV-5 

  Bubaline herpesvirus 1 Water buffalo herpesvirus  

  Canid herpesvirus 1 Canine herpesvirus  

  Caprine herpesvirus 1 Goat herpesvirus  

  Cercopithecine herpesvirus 

9 

Simian varicella virus SVV 

  Cervid herpesvirus 1 Red deer herpesvirus  

  Cervid herpesvirus 2 Reindeer herpesvirus  

  Equid herpesvirus 1 Equine abortion virus  

  Equid herpesvirus 3 Equine coital exanthema virus  

  Equid herpesvirus 4 Equine rhinopneumonitis 

virus 

 

  Equid herpesvirus 8 Asinine herpesvirus 3  

  Equid herpesvirus 9 Gazelle herpesvirus  

  Felid herpesvirus 1 Feline rhinotracheitis virus  

  Human herpesvirus 3 Varicella-zoster virus VZV 

  Phocid herpesvirus 1 Harbour seal herpesvirus  

  Suid herpesvirus 1 Pseudorabies virus PRV 
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Table 1.1 continued  

 

Subfamily 

 

Genus 

 

Formal Name Common  Name Abbrev. 

Alphaherpes-

virinae 

    

 Tentative species in genus Varicellovirus 

  Equid herpesvirus 6 Asinine herpesvirus 1  

 Genus  Mardivirus    

  Gallid herpesvirus 2 Marek’s disease virus type 1 MDV-1 

  Gallid herpesvirus 3 Marek’s disease virus type 2 MDV-2 

  Meleagrid herpesvirus 1 Turkey herpesvirus HVT 

 Genus Iltovirus    

  Gallid herpesvirus 1 Infectious laryngotracheitis 

virus 

ILTV 

 

 

Unassigned subfamily in subfamily Alphavirinae 

  Psittacid herpesvirus 1 Parrot herpesvirus  

     

Betaherpesvirinae Cytomegalovirus Cercopithecine 

herpesvirus 5 

African green monkey 

cytomegalovirus 

SCMV 

  Cercopithecine 

herpesvirus 8 

Rhesus monkey 

cytomegalovirus 

RhCMV 

  Human herpesvirus 5 Human cytomegalovirus HCMV 

  Pongine herpesvirus 4 Chimpanzee 

cytomegalovirus 

CCMV 

 Tentative species in genus Cytomegalovirus 

  Aotine herpesvirus 1 Herpesvirus aotus 1  

  Aotine herpesvirus 3 Herpesvirus aotus 3  

 Muromegalovirus    

  Murid herpesvirus 1 Mouse cytomegalovirus MCMV 

  Murid herpesvirus 2 Rat cytomegalovirus RCMV 

 Roseolovirus    

  Human herpesvirus 6 Roseolovirus  

  Human herpesvirus 7 Roseolovirus  

 Unassigned species in subfamily Betaherpesvirinae 

  Caviid herpesvirus 2 Guinea pig cytomegalovirus GPCMV 

  Tupaiid herpesvirus 1 Tree shrew herpesvirus THV 
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Table 1.1 continued 

 

Subfamily 

 

Genus 

 

Formal Name Common  Name Abbrev. 

Gammaherpes-

virinae 

 

Lymphocrypto-

virus 

 

  Callitrichine herpesvirus 3 Marmoset 

lymphocryptovirus 

Marmoset 

LCV 

  Cercopithecine herpesvirus 12 Herpesvirus papio  

  Cercopithecine herpesvirus 14 African green monkey 

EBV-like virus 

 

  Cercopithecine herpesvirus 15 Rhesus 

lymphocryptovirus 

Rhesus 

LCV 

  Human herpesvirus 4 Epstein-Barr virus EBV 

  Pongine herpesvirus 1 Herpesvirus pan  

  Pongine herpesvirus 2 Orangutan herpesvirus  

  Pongine herpesvirus 3 Gorilla herpesvirus  

 Rhadinovirus 

 

 

  Alcelaphine herpesvirus 1 Malignant catarrhal 

fever virus 

AHV-1 

  Alcelaphine herpesvirus 2 Hartebeest malignant 

catarrhal fever virus 

 

  Ateline herpesvirus 2 Herpesvirus ateles HVA 

  Bovine herpesvirus 4 Movar virus BHV-4 

  Cercopithecine herpesvirus 17 Rhesus rhadinovirus RRV 

  Equid herpesvirus 2   

  Equid herpesvirus 5   

  Equid herpesvirus 7 Asinine herpesvirus 2  

  Hippotragine herpesvirus 1 Roan antelope 

herpesvirus 

 

  Human herpesvirus 8 Kaposi’s sarcoma-

associated herpesvirus 

KSHV 

  Murid herpesvirus 4 Murine 

gammaherpesvirus 68 

MHV-68 

  Mustelid herpesvirus 1 Badger herpesvirus  

  Ovine herpesvirus 2 Sheep-associated 

malignant catarrhal 

fever virus 

 

  Saimiriine herpesvirus 2 Herpesvirus saimiri HVS 

 Tentative species in genus Rhadinovirus 

  Leporid herpesvirus 1 Cottontail rabbit 

herpesvirus 

 

  Leporid herpesvirus 2 Herpesvirus cuniculi  
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Table 1:1 contimued 

 

Subfamily 

 
Genus 

 

Formal Name Common  Name Abbrev. 

Gammaherpesvirinae 

 

    

  Leporid herpesvirus 3 Herpesvirus sylvilagus  

  Marmodid 

herpesvirus 1 

Woodchuck herpesvirus  

     

 Unassigned species in subfamily Gammaherpesvirinae  

  Callitrichine 

herpesvirus 1 

Herpesvirus saguinus  

 Unassigned genus Ictalurivirus in family Herpesviridae  

  Ictalurid herpesvirus 

1 

Channel catfish virus CCV 

     

 

 

Clinical Significance of Herpes Simplex Viruses 

Epidemiology  

There is worldwide prevalence of HSV-1 and HSV-2 (HSV-2) infections in both 

developed and undeveloped countries (Black 1975).  However, poor nutritional status, lack of 

medical facilities, poor hygiene and abject poverty among the third world nations, increases the 

risk of herpes infection in developing countries.  Pre-existing HSV infection has been known to 

increase susceptibility of individuals to HIV/AIDS.  

In the USA approximately 58% of individuals become infected with herpes simplex virus 

type 1 (HSV-1) and 17% with herpes simplex virus type 2 (HSV-2) (Anzivino, Fioriti et al. 

2009).   HSV-1 infection can cause oral lesions, keratitis and encephalitis.  HSV-1 keratitis is the 
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leading infectious cause of blindness in the USA and approximately 500,000 people have a 

history of recurrent ocular herpes (Dasgupta, Chentoufi et al. 2009). 

 Neonatal herpes simplex virus (HSV) infection has high mortality and significant 

morbidity.  In case of immunocompromised individuals HSV infection may lead to severe 

complications.  Herpes genitalis which is a sexually transmitted infection is mainly caused by 

HSV-2.  However, in the USA there has been a rise in genital lesions caused by HSV-1 rather 

than HSV-2.  This is attributed to practice of oral sex among partners.  Patients suffering from 

herpes genitalis infection are at a 2-4 fold higher risk of acquiring HIV during sexual intercourse.   

Disease symptoms often interfere with everyday life and are a cause of significant social 

and psychological stigma to the affected individual. The mouth area is the most common 

location of infection (Whitley and Roizman 2001).  Primary infection leads to the shedding of 

virus from the mouth and stool for an average of 7 to 10 days (Amir, Harel et al. 1997);  and 

neutralizing antibodies appear between 4 and 7 days after the onset of HSV infection; and peak 

at approximately 3 weeks post infection (Buddingh, Schrum et al. 1953). HSV infection can 

occur in children less than 5 years old and is most often asymptomatic. The primary factors 

affecting the rate of HSV infection are location, socioeconomic status, and age. In some studies, 

by the age of 15, over 95% of children were found to possess antibodies to HSV (Black, 

Hierholzer et al. 1974; Bader, Crumpacker et al. 1978).  HSV-1 seroprevalence is much more 

common than its counterpart HSV-2 (Fleming, McQuillan et al. 1997) (Nahmias, Lee et al. 

1990).  Because HSV-2 is usually acquired through sexual contact, antibodies to HSV-2 are 

rarely found before the onset of sexual activity. 
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There are no known animal carriers for HSV; therefore, humans remain solely 

responsible for transmitting virus to other humans.  Virus transmission from an infected to a 

susceptible individual occurs during close personal contact. The frequency of person to person 

contact appears to be the major mediator of infections (Whitley and Roizman 2001).  Since HSV 

infection rarely cause fatal disease and virus becomes latent, more than half the world’s 

population probably have recurrent HSV infections, enabling the transmission of the virus. 

Currently, there is no cure available for HSV-1 and HSV-2. Existing antiviral drugs, such 

as acyclovir and valacyclovir are effective only in limiting HSV infection and not in preventing 

recurrence of the disease. Given the worldwide prevalence of this disease it is important to 

develop effective strategies to combat this virus.  The need to develop a vaccine against herpes is 

of paramount importance especially for developing countries where antiviral drugs, such as 

acyclovir and/or valacyclovir are not readily available or accessible to the masses.  

  Pathogenesis 

The spectrum of disease caused by Herpes simplex viruses includes primary and 

recurrent infections of mucous membrane (e.g., gingivostomatis, herpes labialis, and genital 

herpes infections), keratoconjuctivitis, herpes whitlow and herpetic esophagitis. HSV, also 

causes systemic disease as is evident in disseminated herpes virus infection of neonates and 

immunocompromised host, and sporadic encephalitis.  

Mucocutaneous Infections 

Primary infection occurs when the virus comes in contact with abraded skin (Whitley and 

Roizman 2001). The virus replicates at the site of entrance (the oropharanyx and the genitals), 

where it produces infectious virions resulting in the formation of vesicles and pustules. After 
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primary infection, HSV-1 ascends in a retrograde manner through the perioxonal sheath of 

sensory nerve to the trigeminal ganglion which harbors the latent HSV-1 virus; whereas in 

HSV-2 infection the virus resides in the sacral ganglia. A biological feature unique to the herpes 

virus is latency and reactivation. During the latent infection, the virus does not replicate hence it 

is able to evade immune recognition. Certain stimuli such as stress, cold, UV exposure can 

cause reactivation of the virus. On being reactivated the virus travels along the sensory neuron 

to the mucocutaneous site, and undergoes replication forming clusters of vesciles or ulcers in 

the vicinity of the initial site of exposure. 

 Primary, as well as, recurrent HSV infection leads to a number of cellular changes such 

as enlargement of infected cells and the appearance of condensed chromatin within the nuclei, 

which ultimately degenerates. Generally, the infected cells lose plasma membrane integrity and 

form multi nucleated giant cells, with intranuclear inclusion bodies that consist of virus particles. 

At the dermal infected site, intense inflammatory response takes place initially but decreases 

with recurrent infections (Whitley, 2001). 

After latency, certain stimuli can reactivate the disease causing acute pain, burning, 

tingling or itching at the mucocutaneous site. These symptoms last about six hours and are 

followed by vesicles formation and the typical cold sore appears by second day (Spruance, 

Overall et al. 1977; Spruance and Crumpacker 1982; Spruance, Crumpacker et al. 1984).  Initial 

pain subsides in 4 to 5 days and lesions disappear in about a week (Segal, Katcher et al. 1974; 

Ship, Miller et al. 1977).  In HSV 2, the primary infection occurs in the genital epithileal or 

mucosal tissues. Systematic signs such as headache, fever and malaise are often present.  Within 

few days of sexual contact characteristic symptoms are revealed as macules and papules, 

followed by vesicles, pustules and ulcers. Lesions and viral secretions last for three weeks.    
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Men and women experience similar and dissimilar symptoms (Kaufman, Gardner et al. 1973; 

Corey 1982). Pre-existing immunity to HSV-1, reduces the severity of HSV-2 primary 

infections. Recurrent HSV-2 is milder than initial infection and is characterized by the 

appearance of 3 to 5 vesicles lasting for a week which gradually rupture. 

Fetal and Neonatal Infections 

HSV infections are highly contagious and could lead to fatal consequences when 

transmitted to newborns.  The highest risk of transmission occurs when the mother has primary 

HSV infection (rather than recurrence of chronic infection) late in pregnancy.  Infection in the 

skin, eye and mouth of neonates is curable, while infection that is disseminated like in the central 

nervous system (CNS) is highly fatal.  If not treated accurately, it has a mortality rate of 80% and 

the infants that survive are left with neurological sequelae (Whitley and Roizman 2001). 

Acyclovir therapy can be effective in treating neonatal herpes, but is hampered by the 

early non-specific symptoms of the disease.  Even in cases of early therapy, some infants 

develop disseminated infection or CNS complications and the virus is usually vertically 

transmitted to the neonate from an infected mother during delivery.  Therefore, to combat the 

fatality associated with neonatal herpes, the neonate has to be prevented from acquiring HSV 

infection during delivery.  The highest risk of neonatal infection occurs when the mother sheds 

HSV during labour, which is more common with women who acquire genital herpes in the third 

trimester.  Therefore, one approach for reducing maternal-fetal transmissions is to prevent HSV 

acquisition in late pregnancy (Brown 2004; Jaiyeoba, Amaya et al. 2012). 

 

 



17 
 

Keratoconjunctivitis 

Herpetic keratoconjunctivitis is associated with unilateral or bilateral conjunctivitis and 

the healing can take over a month (Whitley and Roizman 2001). Studies show that in developed 

countries herpes ocular disease ranges from 4.1 to 20.1 cases per 100,000 (Liesegang 2001).  The 

primary infection besides affecting the ocular region may spread and reach the trigeminal 

ganglion. 

Recent, studies have suggested that super infection or infection with second strain, after 

being exposed to the virus previously, may account for some cases of ocular disease. Several 

recurrent attacks of herpes keratitis cause the cornea to turn opaque, which eventually leads to 

blindness. New cornea transplant also fails, since the latency infected trigeminal ganglia attached 

to the new cornea develops infection (Easty, Shimeld et al 1987; Kaye, Lynas et al, 1991).  

Infection in an Immunocompromised Host 

Patients with immunodeficiency or treatment-related immunosuppression are at a higher 

risk of developing severe herpes simplex virus (HSV) infection. These patients can develop 

progressive disease involving respiratory tract, esophagus, or the gastrointestinal tract 

(Montgomerie, Becroft et al. 1969; Korsager, Spencer et al. 1975).  Repeated treatment with 

anti-virals to control recurrent infection can lead to viral mutants resistant to antiviral therapy.  

Central Nervous System (CNS) Infections 

HSV-1 infects limbic system structures in the central nervous system (CNS).  It is the 

most common cause of sporadic, fatal encephalitis in USA (Olson, Buescher et al. 1967).  Some 

studies estimate the rate of incidence as high as 1250 cases per year in the United States 



18 
 

(Whitley, 2001).  Encephalitis is caused when the virus spreads past the dorsal root ganglia, in 

which the virus establishes latency.  The mechanisms responsible for this aberrant event in the 

virus life cycle are unclear.  The manifestations of HSV encephalitis include primarily focal 

encephalitis along with fever, altered behavior, and localized neurological symptoms.  There is 

usually evidence of a localized temporal lobe disease (Whitley, Soong et al. 1977; Whitley, 

Soong et al. 1981).  In untreated patients, mortality exceeds 70% and only 2.5% of the patients 

return to normal neurological function (Whitley, 2001). 

The possibility that HSV-1 reactivation in neurons of the CNS cause chronic progressive 

damage at cellular level, and alters neuronal function has not been thoroughly investigated. 

Currently, it is not known whether recurrent reactivation of HSV-1 in asymptomatic patients 

involves some risk of progressive deterioration of CNS functions.  This deterioration could be 

due to neuroinflammatory response against the virus or by direct toxicity of the virus on the 

neurons.  New reports are indicating a link between HSV-1 and neurological diseases such as 

schizophrenia and Alzheimers.  Recent studies have indicated a link between HSV-1 exposure 

and some of the cerebral morphological changes often reported in schizophrenia (Prasad, Shirts 

et al. 2007).  Moreover, Herpes simplex virus type 1 has been indicated as a risk factor 

associated to Alzheimer disease (Mori 2010; Martin, Solis et al. 2011). 

Prevention and Treatment of HSV Infection 

There are basically two methods for controlling HSV infections i.e. antiviral therapy and 

prevention.  One of the challenges is to develop antiviral drug which will target the viruses 

during latency.  The present drugs act only on replicating viruses.  Antivirals such as acyclovir 

and valaciclovir are effective in limiting the extent of HSV infection and therefore helpful in 
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limiting spread to uninfected individuals.  However, post-exposure antiviral treatment does not 

prevent lifelong infection in an individual.  Acyclovir is available in generic forms as well as 

sold by GlaxoSmithKline under the brand name Zovirax.  Acyclovir (ACV) is an antiviral 

guanine nucleoside analog.  During viral DNA replication acyclovir triphosphate (ACV-TP) is 

readily incorporated into the viral DNA by HSV-1 DNA polymerase opposite to a cytosine 

residue.  Further, chain elongation of the DNA molecule is prevented since ACV structure lacks 

a 3’OH group for addition of a new deoxynucleoside triphosphate (Weller 2011).  This leads to 

inhibition of viral DNA replication.  Valacyclovir is sold by GlaxoSmithKline under the brand 

name, Valtrex.  It is a prodrug of Acyclovir.  It consists of an ACV structure with a valine moiety 

covalently attached to it.  This drug is absorbed three to five times more than ACV.  Other anti-

viral drugs present in the market are famciclovir-sold by Novartis under the brand name, Famvir 

and Foscarnet, sold by Clinigen Healthcare under the brand name, Foscavir.  Foscavir is 

administered intravenously and not orally.  

There are two new classes of drugs that have been discovered but no clinical trials have 

been carried out to prove the efficacy of these drugs; they being amino-thiazolyl phenyl -

containing drugs and thiazole urea derivatives (TZP/Us).  These drugs target the helicase –

primase complex which unwinds the double –stranded viral DNA.  The mode of action of these 

drugs is to increase the binding of helicase-primase complex for DNA resulting in inhibition of 

helicase activity, primase activity and viral DNA synthesis.  The two drugs seem promising since 

there is evidence that resistance to helicase-primase inhibitors occurs less frequently than 

resistance to acyclovir.  A Japanese research group has recently published a report which 

evaluates and describes the anti- herpes virus effect of ASP2151 (amenamevir), a novel non-
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nucleoside helicase–primase complex inhibitor, which possesses anti-viral activity against HSV-

1, HSV-2 and VZV (Chono, Katsumata et al. 2010). 

Many non-traditional anti-HSV therapeutic or preventive substances have been advocated 

for use for prevention of herpes, although they have not been clinically tested.  Diet that is rich in 

broccoli, cabbage and Brussel sprouts is said to reduce the severity and occurrence of herpes 

infection.  These vegetables contain the active ingredient DIM (di-indolemethane)/I3C (indole-3-

carbinol) which is said to inhibit virus replication in infected cells.  Indian Ayurvedic medicines 

such as Neem and Tulsi have been recommended for control of herpes disease since they possess 

anti-viral properties.  

Structure of the Herpes Virion 

The herpes virion size can vary from 120 nm to 300 nm (Roizman and Furlong 1974) and 

consists of four components; an electron-dense core harboring the double stranded DNA, an 

icosadeltahedral capsid around the core, an amorphous proteinaceous tegument surrounding the 

capsid, ultimately enclosed within an outer envelope containing glycoprotein spikes (Roizman 

and Furlong, 1974).  A model of the virion architecture is presented below in Figure 1.1. 

The Core 

The core of a mature herpes virion contains the viral DNA in the form of a torus that may 

appear to be suspended by a proteinaceous spindle to the capsid (Falke, Siegert et al. 1959; 

Roizman, Spring et al. 1967; Furlong, Swift et al. 1972; Nazerian 1974).  The toroidal structure 

is 50 nm high, with an inside diameter of 18 nm and an outside diameter of 70 nm. The 

arrangement of the viral DNA in the torus is not known.  
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HSV-1 Virion Structure 

 

Figure 1.1: Herpesvirus virion structure: Herpes virion consists of four morphologically 

different components; an electron dense core containing viral genome, an icosahedral capsid 

shell, a proteinaceous tegument and a lipid envelope decorated with glycoprotein spikes. [Figure 

from  (Lee 2008)]. 

 

The Capsid  

Most subfamilies of herpes virus possess an icosahedral capsid that contains densely 

coiled double stranded DNA. The 125 nm diameter capsid consists of 162 capsomeres, 7 

different viral proteins (VPs), VP5 (UL19), VP19C (UL38), VP21 (UL26), VP22a (UL26.5), 

VP23 (UL18), VP24 (UL26), and VP26 (UL35), and the products of the UL6 and UL25 genes 

(Roizman and Sears, 1996).  VP5 is the major protein and, together with VP19C, VP23, and 

VP26, is present on the surface. In the capsid, the pentons are located on the icosahedral 5-fold 
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vertices, and the hexons make up the faces and edges. The pentons and hexons contain five and 

six copies, respectively of protein, VP5 (Newcomb, Trus et al. 1993; Zhou, Prasad et al. 1994). 

They are surrounded and connected by 320 triplexes, which are heterotrimers formed from two 

copies of VP23 and a single copy of VP19C (Newcomb, Trus et al. 1993) (Saad, Zhou et al. 

1999).  Six copies of a 12-kDa protein (VP26) occupy the top of each hexon (Trus, Homa et al. 

1995; Chen, Jakana et al. 2001). 

The Tegument  

The tegument is an amorphous layer present between the envelope and nucleocapsid and 

appears fibrous on negative staining (Morgan, Rose et al. 1959; Wildy and Watson 1962; 

Morgan, Rose et al. 1968).  The tegument can be distributed asymmetrically and its thickness can 

vary depending on the location of the virion particle within the infected cell. There are fewer 

teguments that are more symmetrically arranged in perinuclear virions than in virions in 

cytoplasmic vesicles that contain more tegument distributed more asymmetrically (Falke, Siegert 

et al. 1959).  There is ordered tegument density around the pentons, suggesting symmetry 

wherein the capsid and tegument interact (Zhou, Chen et al. 1999).  These tegument proteins 

function during virion assembly and egress of herpes viral articles.  Herpes simplex virion 

tegument contain about 20 proteins, including VP1/2 (UL36), VP11/12 (UL46), VP13/14 

(UL47), VP16 (UL48), VP22 (UL49), ICP0, ICP4, and the virion host shutoff protein (UL41) 

plus the products of genes US2, US3, US10, US11, UL13, UL14, UL16, UL17, UL21, UL37, 

UL51, and UL56. 
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The Envelope 

The outermost covering of the HSV virion is the lipid envelope which is derived from 

altered host cellular membrane (Falke, Siegert et al. 1959; Morgan, Rose et al. 1968).  The 

surface of the viral envelope contains 600-750 glycoprotein spikes that vary in length, spacing 

and the angle of emergence from the envelope (Campadelli-Fiume and Menotti 2007).  These 

glycoproteins are designated as glycoprotein B (gB), glycoprotein C (gC), glycoprotein D (gD), 

glycoprotein E (gE), glycoprotein H (gH), glycoprotein I (gI), glycoprotein J (gJ), glycoprotein 

K (gK), glycoprotein L (gL), glycoprotein M (gM) and glycoprotein G (gG). In addition to these 

11 glycoproteins there are membrane associated proteins such as UL20, UL34, UL45 and 

possibly US9.  Some of these viral proteins have not been detected on the virion envelope.  

These membrane proteins play important role at different stages of the HSV-1 life cycle i.e. virus 

entry, virus spread as well as virus envelopment and egress.   

Organization of the Herpes Viral Genome 

Herpesviruses possess a linear double stranded viral DNA that circularizes upon entering 

nucleoplasm of infected cells.  The size of the viral genome varies between 120 to 250 kbp, 

between the various herpesviruses.   

There is polymorphism among the genomic length of individual viruses which arises due 

to presence of terminal and internal repeated sequences which can vary in copy number, leading 

to variations in genomic length of more than 10 kbp.  Herpesviruses have a high GC content and 

the total G+C content of the herpesviruses varies from 31% to 75%, and this variation is seen 

across the genome.  
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The HSV-1 DNA genome is approximately 152,261 base pairs  (McGeoch, Dalrymple et 

al. 1988) and consists of two covalently linked components designated L and S.  Each 

component consists of largely unique sequences (UL and US) flanked by inverted repeats 

(Figure1.2).  The inverted repeat sequences of the L component has been designated as ab and 

b'a', whereas those of the S component has been designated as c'a' and ca (Hayward, Jacob et al. 

1975).  A unique property of the HSV-1 genome is the ability of the L and S components to 

invert relative to each other.  As a consequence, viral DNA extracted from wild-type virions or 

infected cells, consists of four equimolar populations differing in the relative orientation of the 

two components (Hayward, Jacob et al. 1975). 

The majority of herpesvirus genes contain a single open reading frame (ORF).  Most viral 

genes contain a promoter region 50 to 20 bases upstream of the TATA box and a 5’untranslated 

leader sequence 20 to25 bp downstream of the TATA box.  Usually, herpesviruses possess single 

translational initiation codon and a 10 to 30 bp of 3’ untranslated sequence, and a 

polyadenylation signal with standard flanking sequences (Roizman and Knipe 2001).  However, 

some genes contain a second in-frame initiation codon while there are genes that lack a TATA 

box (Chou and Roizman 1986; Markovitz, Filatov et al. 1999).  Most transcriptional gene 

products are not spliced, although every herpesvirus expresses a few spliced genes. Interstingly, 

herpesviruses also produce noncoding RNAs, such as the HSV-1 latency associated transcript 

(LAT) (Roizman and Pellett 2001).  LATs are thought to be introns being derived from the 

processing of a large 8.3 kb precursor.  These are the only viral gene products that accumulate to 

a high concentration in the trigeminal ganglia (TG) of latently infected animals.  The different 

members of the herpesvirus family encode between 70 and 200 genes, estimated using various 
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methods (Roizman and Knipe 2001).  HSV-1 encodes about 90 gene products, with at least 84 of 

the transcriptional units encoding proteins (Roizman and Knipe 2001). 

 

 

Figure 1.2: A schematic map of the herpes simplex virus type 1 (HSV-1) genome. The HSV 

DNA consists of two covalently linked components, L (long) and S (short), with unique 

sequences - unique long (UL) and unique short (Us). The two components are separated by 

inverted repeats (IR) while the ends are flanked by terminal repeats (TR). 

 

The Herpes Simplex Virus Lifecycle 

The herpes virus lifecycle consists of a lytic phase and a latent phase.  The virus first 

infects the epithelial cell and can progress to infect the peripheral nervous system, where it can 

establish lifelong latency in neurons. Entry as well as establishment of infection requires 

interaction between viral components and cellular factors. 

Once, the virus enters the epithelial cell, it then uses the cellular machinery to create new 

virion particles.  These new virion particles then spread to uninfected neighboring cells either 

through release of virions into extracellular spaces that infect neighboring cells or through direct 

cell-cell fusion (infected and uninfected cells) avoiding the immune system.  Details of the lytic 

cycle of replication consisting of entry, viral DNA replication, capsid assembly and virion egress 

are discussed in the following sections (Figure 1.3). A brief overview of latency is also included.  
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Figure 1.3 Herpes Simplex Virus Life Cycle. Virion particles enter the cell by either 

endocytosis or fusion. The virion particles lose their envelope at the cell membrane followed by 

transport of the capsid to the nucleopore. The viral DNA is then released into the nucleoplasm 

followed by viral DNA replication that involves coordinate expression of alpha, beta and gamma 

proteins. (black arrows). This is followed by virion morphogenesis that comprises of primary 

envelopment of the nucleocapsids at the inner nuclear membrane, de-envelopment at the outer 

nuclear membrane and final envelopment at TGN derived vesicles.  The enveloped virions are 

then released into extracellular spaces by exocytosis. (Melancon, 2003). 
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Herpes Simplex Virus Entry  

HSV uses a myriad of cellular receptors and attachment factors that are ubiquitous, as 

well as, cell–specific in order to gain entry into cells, to establish a productive infection. Unlike 

other envelope viruses HSV has distinct glycoproteins that have specific function in each step of 

viral entry: glycoproteins for attachment, specific glycoprotein for binding to specific cellular 

receptors, glycoproteins that bring about fusion and regulate fusion.  HSV-1 utilizes two 

mechanisms of entry into cells i.e. direct fusion at the plasma membrane at neutral pH or 

receptor mediated endocytosis which is either pH dependent or independent.  

The virus initially binds to binds to non-specific cellular attachment factors such as 

carbohydrates, a phenomenon called tethering.  This binding is followed by migration of the 

virus to specific receptors that range from adhesion molecules, immunoglobulin like signaling 

receptors as well as cytoskeleton receptors to enter host cells (Figure 1.4).  Specific cellular 

receptors exist for each of the glycoproteins involved in entry; gC, gB, gD, gH/gL.  The above 

interactions activate signaling pathways, initiate the movement of the virus to endocytic routes or 

trigger conformation changes in virus envelope proteins leading to activation of the fusion 

process.  The different cellular receptors involved in binding as well as membrane fusion have 

been discussed in detail in the following sections.  The mechanism of membrane fusion between 

the viral membrane and host cell membrane involving viral proteins and cellular receptors are 

further elaborated in the latter part of the chapter. 

Cellular Receptors –Attachment Receptors 

Heparan sulfate- Heparan sulfate is a cell surface glycosaminoglycan (GAG) that 

belongs to the proteoglycan family consisting of chondroitin sulfate, and dermatan sulfate.   
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Figure 1.4: Cellular receptors involved in virus entry. There are three classes of cell surface 

receptors that are involved in HSV entry: the tumor necrosis factor (TNF) receptor family 

consisting of HVEM, the immunoglobulin superfamily consisting of different types of nectins,   

and 3-O-sulfated heparan sulfate. [Figure modified (Melancon 2004)] 

 

These arrays of proteoglycans are ubiquitously present on most vertebrate adherent cells. 

Heparan sulfate is one of the principal binding receptors for HSV.  It has been observed that in 

cell lines defective in HS biosynthesis, but not chondroitin sulfate, there is about 85% reduction 

in viral attachment (Gruenheid, Gatzke et al. 1993).  Further evidence of heparan sulfate as a 

binding receptor has been demonstrated by inhibition studies in which heparin a closely related 

molecule to heparan prevents binding of HSV to most cells (Nahmias and Kibrick 1964).  It has 

also been shown that removal of heparan sulfate from human cells , by enzymatic treatment , 
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reduces the ability of the cells to bind virus and this renders the cells partially resistant to HSV 

infection (WuDunn and Spear 1989). Furthermore, the amount of N-sulfation of heparan sulfate 

determines the amount of virus that binds to the cell (Shieh, WuDunn et al. 1992). 

The first step of viral entry is the attachment or the tethering of the virus to heparan 

sulfate moieties present on cellular membrane.  gB and gC are known to interact with heparan 

sulfate, moieties.  This binding step is not an absolute requirement for viral entry, although, in 

absence of gC or heparan sulfate, the rate of entry is reduced.  This tethering helps to concentrate 

the virus on the cell surface.  It has been reported that the highly sulfated negative charge on 

heparan sulfate particles interact with the positively charged glycoproteins, thereby increasing 

binding affinity (Cardin and Weintraub 1989).  The two different strains of HSV, HSV-1 and 

HSV-2 differ in their binding affinity to heparan sulfate.  HSV-1 gC binds preferentially to 

heparan sulfate while in case of HSV-2, gB plays an important role (Gerber, Belval et al. 1995; 

Cheshenko and Herold 2002).  The differential binding affinity of the two strains to heparan 

sulfate influences several biological activities including sensitivity to polyanionic and 

polycationic substances (Langeland, Holmsen et al. 1987).  Moreover, basic amino acid residues 

on heparan sulfate are known to be critical for HS-binding activity (Trybala, Roth et al. 2002).  

Previous studies have delineated the HS-binding domain, that interacts with HSV-1 gC amino 

terminal residues to be located between aa 33 and 123 (Tal-Singer, Peng et al. 1995) and 

between 129 and 247 (Trybala, Bergstrom et al. 1994).  The main function of gC binding to 

GAGs allows for more stable interaction of gD with an entry receptor. 
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gD-Binding Entry Receptors 

The second step of entry is the penetration of the virus into the cell which requires the 

interaction of gD with one of the several potential entry receptors. These cellular receptors are 

designated as binding or attachment receptors or fusion triggers.  The cellular entry receptors are 

of three classes i.e. herpes virus entry mediator (HVEM), which belongs to the tumor necrosis 

factor receptor family; nectin-1 –nectin-4, members of the immunoglobulin superfamily; and last 

being 3-O-sulfated Heparan Sulfate (3-OS HS). 

HVEM-HVEM was the first gD receptor that was identified by Montgomery et al 

(Montgomery, Warner et al. 1996).  They discovered, this receptor while searching for genes in 

the human cDNA expression library that could mediate entry of HSV into CHO-K1 cells that are 

non-permissive to HSV entry.  This attachment receptor is also referred to as TNFRSF14, Tumor 

necrosis factor receptor-like 2 (TR2); CD antigen CD270.  It is a type I integral membrane 

protein that regulates immune responses by interacting with signal transduction pathway proteins 

through its cytoplasmic region.  The cytoplasmic domain binds to several members of the TNFR-

associated factor family (TRAF1, TRAF2, TRAF3, and TRAF5 but not TRAF6), leading to the 

activation of targets like NF-κB, Jun N-terminal kinase, and AP-1; and consequently induces T 

cell activation, proliferation, cytokine release and expression of cell surface activation markers 

(Marsters, Ayres et al. 1997; Harrop, Reddy et al. 1998).  HVEM is expressed on different cell 

types such as T and B lymphocytes and other leukocytes, epithelial cells, fibroblasts and tissues 

of the lung, liver, kidney and to a lesser extent the brain tissue (Montgomery, Warner et al. 

1996).  The cellular natural ligands of HVEM are LIGHT, secreted lymphotoxin-alpha, the 

immunoglobulindomain-containing cell-surface receptors B and T lymphocyte attenuator 

(BTLA), CD160 and lymphotroxin - α (LTα) (Mauri, Ebner et al. 1998) (Figure 1.5).       
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LIGHT-HVEM interactions lead to co-stimulation of several cell types, including T cells and 

antigen-presenting cells, whereas HVEM ligation to T-cell-expressed BTLA or CD160 results in 

inhibition of T-cell proliferation and effector function (Sedy, Spear et al. 2008).  Although, HSV-

1 gD binds to different domain of HVEM in comparison to its natural cellular ligands yet it 

competes with LIGHT and BTLA for binding to HVEM (Sedy, Spear et al. 2008).  Certain 

studies have shown that HSV-1 entry into activated T cells is principally mediated by HVEM, 

although in a variety of other cell types HVEM was shown not be the primary mediator of virus 

entry  (Montgomery, Warner et al. 1996). 

 

 

Figure 1.5: HVEM binds to cellular natural ligands i.e. LIGHT, the immunoglobulindomain-

containing cell-surface receptors B and T lymphocyte attenuator (BTLA), CD160 and 

lymphotroxin-α (LTα) (Mauri, Ebner et al. 1998).  LIGHT-HVEM interactions leads to co-

stimulation of several cell types, including T cells and antigen-presenting cells, whereas ligation 

of T-cell-expressed BTLA or CD160 by HVEM results in inhibition of T-cell proliferation and 

effector function.  HSV-1 glycoprotein D also binds to HVEM  this interaction initiates the 

process of virus entry (Sedy, Spear et al. 2008). 
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There are several evidences to demonstrate HVEM as a receptor for glycoprotein D of 

HSV-1 and HSV-2.  It is known that anti-gD Abs completely block the interaction between the 

virus and HVEM.  Moreover, specific antigenic sites on gD (Ib and VII) contain residues 

important for HVEM binding.  Neutralizing MAbs to these specific antigenic sites abolish HSV 

entry into HVEM-expressing CHO cells since they prevent interaction between gD and HVEM 

(Nicola, Ponce de Leon et al. 1998).  Certain mutations within gD sequence of HSV-1 strains 

rid1and ANG reduce infectivity on HVEM –expressing cells (Montgomery, Warner et al. 1996) 

(Dean, Terhune et al. 1994).  Mutagenic analysis of HSV-1 gD revealed that the first 32 amino 

acids of the N-terminal extension have a critical role in functional interactions of gD with all the 

HSV entry fusion receptors, except for nectin-1 (Yoon, Zago et al. 2003). 

The X-ray structure of the soluble portion of gD as well as gD interacting with HVEM 

has been solved.  The structure of gD consists of an ectodomain composed of an N terminus and 

C terminus region and C terminus extensions that anchors it to the viral envelope.  gD assumes 

two conformations; a closed conformation in absence of the receptor and an open and active 

conformation upon interacting with receptor (either HVEM or possibly nectin 1) (Campadelli-

Fiume, Amasio et al. 2007).  The structure of unliganded gD revealed that the N terminus is 

flexible in the absence of receptor, and the C terminus is anchored near the N terminus, masking 

the receptor binding site. The interacting region of gD with HVEM have been localized to amino 

acids 7 to 15 and 24 to 32 within the N-terminal hairpin loop (Spear and Longnecker, 2003).  

The C-terminal region of gD (encompassing residues 260-310) has been termed the pro-fusion 

domain as it is required to trigger fusion.  gD triggers or transmits a signal through its pro-fusion 

domain  to gB and/or gH/gL thereby activating these glycoproteins (Reske, Pollara et al. 2007).  
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It has been reported that the soluble portion of gD is both necessary and sufficient to rescue the 

non-infectious gD null mutant (Cocchi, Fusco et al. 2004).  

Nectins-Nectins are Ca 
2+

-independent immunoglobulin (Ig)-like cell-cell adhesion 

molecules (CAMs).  Nectins play an important role in the formation of adheren junctions (AJ) 

and tight junctions.  They comprise of a family of four members, nectin-1, -2, -3 and -4 each of 

which has multiple splice isoforms.  Nectin- 1α, –1β, -1γ, -2α,-2δ, -3α, -3β, and -3γ variants have 

been identified and nectin-4 too has two splice variants.  Nectins interact in trans with each other 

both homophilically and heterophilically to form cell-cell adhesions.  In addition, they 

heterophilically interact in trans with other immunoglobulin-like CAMs.  The carboxyl-terminal 

domains of nectins bind to L-afadin, a PDZ binding protein that anchors the receptors to the 

cytoskeleton and adherens junctions.  Nectins and afadin play roles in the formation of a variety 

of cell-cell junctions such as adheren junction (AJ) as well as tight junctions (TJ), cooperatively 

with, or independently of, cadherins.  In addition, they are involved in the formation of synapses 

in neurons (Takai, Irie et al. 2003).  Many cellular activities such as movement, proliferation, 

survival, differentiation, polarization, and the entry of viruses are regulated by nectins in 

conjunction with other CAMs and cell surface membrane receptors (Takai, Ikeda et al. 2008).  

Nectins are used in cell-to cell spread by viruses in polarized epithelium cells, since progeny 

virus have been shown to exit the cell in the vicinity of adherens junctions on the lateral surfaces 

of the cell (Haarr, Shukla et al. 2001).  

Nectin-1 is a broad spectrum receptor for both human and animal herpesviruses.  This 

receptor was first designated as Poliovirus receptor-related protein 1 (Prr1) and is also referred to 

as Herpes Virus Entry mediator C (HveC).  Three isoforms of Nectin-1 are produced by mRNA 

splicing of human Prr1 gene; two of which, α and β are membrane-bound 
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 (Krummenacher, Rux et al. 1999; Campadelli-Fiume, Cocchi et al. 2000) while nectin-1γ is 

secreted as it lacks a transmembrane domain.   

HSV-1 strains, HSV-2, pseudorabies virus (PrV) and bovine herpes virus 1 (BHV-1) can 

use both nectin-1α and nectin-1β (Geraghty, Krummenacher et al. 1998) to enter cells.  In 

mammals nectins are highly conserved in terms of structure, function and the ability to permit 

HSV-1 entry.  Nectin1 is broadly expressed in human tissues, including tissues and organs 

targeted by HSV, like CNS, ganglia and muco-epithelia (Cocchi, Menotti et al. 1998)  They are 

expressed in virtually all human cell lines, including epithelial cells, neurons and fibroblasts 

(Campadelli-Fiume, Cocchi et al. 2000; Spear, Eisenberg et al. 2000).   

Nectin1 interacts with gD, this interaction involves the first 250 residues of gD and the V 

domain of Nectin-1.  Specifically the amino acid residues 77 and 85 of Nectin 1are thought to be 

part of the interface that interacts with gD (Martinez and Spear 2002).  Many HSV-1 mutants 

(ANG, Rid1, Rid2) that have mutations in gD are unable to use HveA as an entry receptor but 

they can use Nectin-1 for entry (Geraghty, Krummenacher et al. 1998). 

The binding affinity between Nectin-1-gD ranges from 10
−6

 to 10
−8

 molar.  It has been 

observed, that in some gD mutants the binding affinity is so low that it may be undetectable.  

However, these mutants are still able to enter the cells.  Therefore, it has been concluded that gD 

functions in both entry and cell-cell fusion as long as it binds to a functional Nectin-1 receptor,  

its functions are independent of its receptor binding kinetics with Nectin-1(Milne, Hanna et al. 

2003).   

Nectin- 2 was first designated as Poliovirus receptor-related protein 2 (Prr2) as is also 

referred to as Herpes Virus entry mediators B (HveB).  Nectin-2α and Nectin-2δ mediate entry of 
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HSV-2, PrV, and certain viable mutant forms of HSV-1 but not wild type HSV-1(Warner, 

Geraghty et al. 1998).  These viable mutant forms of HSV-1 that can utilize Nectin-2 as an entry 

receptor, have amino acid substitutions at position 25(L25P) or 27(Q27P) of gD (unrestricted, or 

rid mutations).  The nectin- 2 residues critical for HSV entry are amino acids 75–81 and 89, 

which lie adjacent to the predicted C′C′′ β-strands; the region corresponding to the nectin-1 

region involved in interaction with wild-type gD.  

Nectin -2 is expressed on a number of human tissues (e.g. placenta, kidney, lung, 

prostrate, pancreas and thyroid) and various human cell lines.(e.g. epithelial, endothelial, and 

neuronal).  

Nectin-3 is expressed on J cells, which lack HVEM, nectin-1 and nectin-2. Work by 

Cocchi et al has shown that wild type HSV-1 is unable to infect J cells while a HSV-1 mutant 

designated as HSV-1 (JMP) is able to infect. The HSV-1 mutant contains mutations in 

glycoprotein K and glycoprotein D (Cocchi, Fusco et al. 2004). 

Nectin-4 or HveD, a fourth receptor is designated as Poliovirus receptor-related protein 4 

(Prr4).  In contrast to other nectin molecules, detection of nectin4 transcripts is mainly restricted 

to placenta in human tissues.  It serves as receptors for a limited range of alphaherpesviruses. 

3-O-sulfated Heparan Sulfate (3-OS HS)- Heparan sulfate is a cell surface 

glycosaminoglycan (GAG) that contains alternating disaccharide units of uronic acid and N-

acetylglucosamine, and serves as an initial attachment site for the viral envelope glycoproteins 

gB and gC.  When heparan sulfate is modified by enzymes such as D-glucosaminyl 3-O-

sulfotransferase isoforms-3 and/or -5 during biosynthesis, it results in 3-O-sulfated Heparan 

Sulfate (3-OS HS).  This heparan sulfate (3-OS HS) serves as an entry receptor of HSV-1, and 

specifically binds to glycoprotein D. This receptor is broadly distributed on human cells  
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and tissues such as liver, placenta, kidney pancreas and mediates specifically the entry of HSV-1 

but not HSV-2.  Study by Tiwari et al. has shown that 3-OS HS plays an important role in HSV-

1 entry into primary cultures of corneal fibroblasts.  This receptor plays an important role in both 

virus entry and virus induced cell-cell fusion (Tiwari, Clement et al. 2006).  

gB-Binding Entry Receptors 

Recently a number of co-receptors have been identified in addition to gD cellular 

receptors that interact with gB  i.e. Paired Immunoglobulin-like type 2 receptor alpha (PILR α ), 

Myelin-associated glycoprotein (MAG), Non muscle myosin heavy chain IIA (NMHC-IIA).  

Details regarding these receptors have been discussed in the following sections. 

PILRα –Paired Immunoglobulin-like type 2 receptor (PILR) is a transmembrane-

anchored protein that belongs to a paired immunoglobulin-like type 2 receptor family and is 

encoded by PILR gene present on chromosome 7.  The PILR gene encodes an inhibitory and 

activating receptor, PILR alpha (PILR α) and PILR beta (PILR β).  PILR is part of a cell 

signaling pathway that regulates both innate and adaptive immune systems by PILR α mediated 

inhibition and PILR β –mediated activation.  PILRα consists of a 303 amino acid protein, which 

is composed of a immunoglobulin (Ig)-like V (variable)-type domain and a small cytoplasmictail 

consisting of a immunoreceptor tyrosine-based inhibitory motif (ITIM).  Similarly PILRβ also 

has an Ig-like V-type domain; but the cytoplasmic domain consists of a immunoreceptor 

tyrosine-based activation motif (ITAM), that associates with DAP12 delivering activating signals 

(Satoh, Arii et al. 2008). PILRα and PILRβ are expressed on cells of the immune system, such as 

monocytes, dendritic cells, NK cells, B cells, macrophages, neutrophils, eosinophils, mast cells, 

and megakaryocyte/platelets, and neurons (Fan and Longnecker 2010).  
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The natural cellular ligand for PILRα and PILRβ, is the leukocyte-expressed protein 

CD99, and NKcells that express PILRβ are activated to kill target cells that express CD99.  

Recognition of CD99 by PILR depends upon the presence of sialyated O linked glycans on 

CD99.  It is postulated that interaction between CD99 and T cells expressing PILRβ and/or 

PILRα might regulate T-cell activation (Sedy, Spear et al. 2008).  Recently, a new ligand for 

PILRα was discovered called PILR-associating neural protein (PANP); which is well conserved 

in mammals (mouse, rat, humans), and is specifically found in neural tissues.  In humans, it is 

mostly found in the of cerebellum adult brain.  PILRalpha-PANP interaction dependents on O-

glycosylation sites present on PANP (Kogure, Shiratori et al. 2011).  Two more novel ligands  

 

 

Figure 1.6: Paired Immunoglobulin-like type 2 receptor (PILR) are paired immunoglobulin-like 

receptors consisting of an of an inhibitory (PILR-α) and activating  (PILR-β) receptor.  The 

natural ligand for both these cellular receptor are leukocyte-expressed protein CD99.  HSV-1 gB 

(trimer) interacts with PILRα (Sedy, Spear et al. 2008). 

 

 



38 
 

have been discovered which interact with PILRα i.e. neuronal differentiation and proliferation 

factor-1 (NPDC1) and collection -12 (COLEC 12).  COLEC12 is a cell surface transmembrane 

protein that is expressed in vascular endothelial cells and monocytes (Sun, Senger et al. 2012).  

NPDC-1 is a protein expressed primarily in brain and lung and whose expression can be 

correlated with the regulation of cellular proliferation and differentiation.  The functional role of 

PILR interaction with these novel ligands have still to be elucidated. 

Recently, it was reported that paired immunoglobulin –like type 2 receptor alpha is an 

entry co-receptor for HSV that binds to gB.  HSV resistant CHO cells become susceptible to 

HSV entry when they are transduced with PILR.  The virus entry into CHO-PILR cells is via  

fusion at the plasma membrane and not in endosomal vesicles.  Specifically, PILRα binds to gB 

at two O glycosylation sites i.e. threonine position T53 and T480 (Wang, Fan et al. 2009); this 

binding is also dependent upon the conformation of gB.  This PILR mediated entry depends 

upon interaction between PILR and gB and also requires gD to interact with one of its cognate 

receptors.  This phenomenon has been experimentally verified wherein; anti-PILRα or anti-

HVEM antibodies block HSV-1 entry into susceptible cells expressing both HVEM and PILR.  

PILR also plays an important role in cell-cell fusion. 

The in vivo significance of gB –PILR  interaction is not yet known; but this gB receptor 

mediates the entry of HSV into different cell types in vitro.  It also facilitates entry of HSV-2 

into human retinal pigment epithelial cells.  Since, PILR is well conserved among mammals, it 

has been implicated that PILR mediated entry is quite prevalent mode of entry.  However, 

within alphaherpesvirus subfamilies differences in PILR mediated entry exist.  Interaction 

between PILRα and gB may have immunomodulatory effect i.e. gB binding to inhibitory 
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receptor PILR may potentially deactivate natural killer cells and prevent infected cells from 

being lysed (Sedy, Spear et al. 2008).  PILR  plays a role in entry in HSV-1, PRV but not in 

HSV-2 and HVEB.  Although, the natural ligands of PILRare divergent the specificity of 

interaction remains the same i.e. recognition of O-glycan structures as well as protein 

conformation. 

MAG- Myelin-associated glycoprotein (MAG) is a cell surface molecule that is a 

member of the Sialic-acid-binding Ig-like lectin (SIGLEC) family of proteins.  It is preferentially 

expressed in neural tissues and specifically in glial cells and is a functional ligand of Nogo-66 

receptor.  MAG plays an important role in regulation of axonal growth, including myelination, 

initiation, and myelin integrity maintenance.  MAG is considered to be a gB receptor that 

mediates membrane fusion and entry of HSV-1 and VZV into neuronal tissues (Suenaga, Satoh 

et al. 2010).  Epithelial cells and neurons do not express MAG therefore there may be other 

molecules on these cells that interact with gB.  Hence, MAG is not thought to serve as a major 

receptor for these viruses.  It may play a role during acute phase of infection when glial cells are 

infected with HSV-1 and VZV, suggesting that MAG might be involved in the neurological 

disorders caused by these neurotropic viruses. 

NMHC-IIA–The initial steps of viral infection involve attachment of the virions to the 

host cell surface, subsequently followed by penetration of the cell membrane to reach the 

cytoplasm.  However, in order to do so, they have to overcome the physical barrier imposed by 

the cortical actin meshwork, which is ubiquitous in cells.  Virion attachment to the cell surface 

activates signaling events that lead to actin cytoskeleton remodeling.  This brings about a change 

in the plasma membrane, that facilitates or activates virion surfing, virion endocytosis, receptor 

clustering and fusion of the virion membrane to the plasma membrane  



40 
 

(Connolly, Jackson et al. 2011).  Thus, during viral infection the viral proteins interact with the 

actin cytoskeleton to facilitate reshaping of the cell for virus entry and spread.  

Myosin molecules are cytoskeleton motor proteins that propel the sliding or produce 

tension on actin filaments.  Non-muscle myosin II (NM II) is an actin motor protein, which is 

part of the myosin family of motor proteins.  Most myosins belong to class II and, together with 

actin, they make up the contractile proteins of cardiac, skeletal and smooth muscle.  Myosin II 

molecules present in non-muscle eukaryotic cells are called non-muscle myosin II molecules.  

NM II plays an important role in cell adhesion, cell migration and tissue architecture.  There are 

three isoforms NM II that share some unique properties.  NM II is composed of a globular head 

domain, two heavy chains and a light chain.  There are three different genes which encode for 

the heavy chain in mammals i.e. myosin heavy chain 9 (MYH9), myosin heavy chain 10 

(MYH10) and myosin heavy chain 14 (MYH14).  The whole myosin molecule consisting of the 

heavy and light chain and is referred to as NMII, while the heavy chains alone are referred to as 

non-muscle myosin heavy chain NMHC.  The three different isoforms are referred to as NMHC 

IIA, NMHC IIB and NMHC IIC (Vicente-Manzanares, Ma et al. 2009).  Recently, the 

NMHCIIA has been identified as a functional entry receptor for HSV-1.  It has been shown to 

physically interact with HSV-1 gB (Arii, Goto et al. 2010), and mediate HSV-1 infectivity both 

in vitro and in vivo.  HL60 cells, that are relatively resistant to HSV-1 infection, become 

susceptible when transduced with NMHCIIA.  NMHCIIA is ubiquitously expressed in various 

human tissues and cell types and mostly function in the cytoplasm.  It has been reported, that 

HSV-1 adsorption leads to induction and expression of NMHC-IIA from the cytoplasm to the 

cell surface.  
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“Viral surfing” is a strategy HSV-1 uses to enter and spread into cells.  It has been 

observed, that HSV exposure leads to the formation of filopodia-like cell membrane protrusions.  

The virus uses these protrusions to bind and move towards the cell body, a phenomenon termed 

as surfing.  It is known, that NMHC-IIA binds to actin, and is also involved in many events 

controlling cell movement and reshaping of the cell.  Therefore it is likely that virus surfing on 

filopodia that requires the involvement of the cytoskeleton is mediated by gB binding to NMHC-

IIA.  Therefore, Shukla et al. have proposed the involvement of gB in this process of viral 

surfing (Karasneh and Shukla 2011).  

  

Table 1.2:  Function of HSV-1 entry glycoproteins and receptor interactions 

Glycoprotein Function Cellular receptors 

gC 

 

Binds cells 

Dispensable for fusion 

 

Heparan sulphate 

 

gD 

 

Binds cells 

Triggers fusion 

HVEM 

Nectin 1 and nectin 2 

 3-O-sulphated heparan-           

sulphate 

 

gH–gL 

 

 

 

Triggers or regulates fusion 

  

Integrins 

 

gB 

 

  

Catalyses membrane fusion 

Heparan sulphate 

 DC-SIGN 

 PILRα 

 MAG 

 NMMHCIIA 

 

gH/gL-Binding Entry Receptors 

The role of gH/gL in entry at present is not clearly defined.  It was earlier thought that 

gH/gL are fusion proteins that bring about hemi-fusion. However, gH/gL are now considered as 
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fusion regulators.  There is still debate as to whether gH/gL of HSV-1 interacts with receptors 

during viral entry.  Study by Parry et al. have shown that αVβ3 integrins bind to HSV-1 gH, 

specifically the RGD motif of gH (Parry, Bell et al. 2005).  This interaction facilitates entry but 

is not absolutely essential.  A summary of HSV-1 entry glycoproteins and cellular receptors has 

been tabulated in table 1.2. 

Other Herpesvirus Receptors 

 In alphaherpesviruses, betaherpesviruses and gammaherpesviruses the core fusion 

machinery consisting of gB, gH and gL is well conserved.  Interestingly, only alphaherpesviruses 

(except VZV) encode members of the gD family.  In case of betaherpesvirus and 

gammaherpesvirus, other viral proteins serve as ligands for cellular receptors.  EBV uses gp42, 

which forms a trimer with gH-gL-gp42 complex, to serve as a ligand for human leukocyte 

antigen (HLA) class II molecules on B lymphocytes.  Human CMV encodes glycoprotein O 

(gO), which is unrelated to gp42 but forms a complex with gH/gL (Huber and Compton, 1998).  

In addition, HHV-6A encodes glycoprotein Q (gQ), which forms a complex with gH-gL (Mori et 

al., 2003).  However, there is still controversy regarding whether gO or gQ are required for entry 

in CMV or HHV-6A, respectively. 

Virus-Cell Fusion 

Sequential Events in Entry  

HSV-1 viral entry is complex as it involves a number of different glycoproteins and 

cellular receptors. The mode of entry of the virus varies from cell to cell and depends on various 

viral and cellular factors (Fig1.7). 
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Figure 1.7: Herpes Simplex Virus Entry. The virus enters either by fusion at the plasma 

membrane or by endocytosis.  Interaction of gC with heparan-sulfate moieties on host cell –

surface proteoglycans initiates the process of entry. This is followed by interaction between gD 

with one of its cognate receptors i.e. HVEM, nectin-1, nectin-2 or 3-O-sulfated heparan sulfate.  

The interaction of gD with its cognate receptors leads to the triggering of the fusion process. gB 

also interacts with the co-receptor PILRα. Membrane fusion is then brought about by gB with the 

help of gH/gL heterodimer.  Membrane fusion between the viral membrane and cellular 

membrane ultimately leads to the release of the capsid into the cytoplasm (Connolly, Jackson et 

al. 2011) 

 

At present, there are two models of HSV-1 fusion that have been proposed.  In the first 

model i.e. the sequential model gD interacts with its cognate receptor and triggers the fusion 

machinery in which gH/gL function in hemifusion, and ultimately gB brings about fusion 

between the two membranes (viral and plasmammembrane or viral and endosmal membrane) 

(Connolly, Jackson et al. 2011).  According to the second model of fusion which is referred to as 

regulatory, structural or complex formation model,  gD receptor binding triggers fusion that in 

turn activates gB which is also activated by gH/gL; ultimately leading to gB mediated fusion 
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between the membranes.  However, neither of these models unable to explain the receptor 

binding properties of gB and gH/gL.  Moreover, it has been suggested that besides the four 

quartet glycoproteins other viral proteins may be involved in entry.  Hence, more extensive study 

is needed to be carried out in order to propose a model that encompasses all these factors which 

can adequately explain HSV-1 membrane fusion during entry.  A brief summary of the steps that 

occur during fusion have been described below.   

The first step of entry is binding of gC to GAGs on cell surfaces that enables more stable 

interaction of gD with an entry receptor.  This interaction of gC with cell surface GAGs is not 

essential since entry can occur in absence of gC. 

The second step of viral entry is binding of gD to its cognate receptors such as Nectin-1 

and HVEM.  gD is a dimeric protein, and its domains near the carboxyl termini occlude its 

receptor-binding site.  After binding HVEM or Nectin 1, the amino terminus of gD forms a loop 

and displaces the gD C terminus exposing the pro-fusion domain.  It has been proposed that  

subsequently, gB trimer also binds with the recently identified co-receptors such as PILR α, 

MAG and NMHC-IIA (Connolly, Jackson et al. 2011).  Further, it has been suggested that 

gH/gL may also bind to its cognate cellular receptor.  The binding of gD to receptor triggers the 

fusion machinery involving gH/gL and gB.  Different sites within the gD pro-fusion domain 

interact with gH/gL (residues 260 and 310) and gB (resisues 240-260 and resisues 304-305).  

Moreover, gH/gL and gB may interact with each other in response to the binding of gD to its 

receptor.  These interactions have been revealed by different research groups by bimolecular 

complementation assays such as split EGFP or split YFP (Atanasiu, Whitbeck et al. 2007; 

Atanasiu, Saw et al. 2010).  Although the correct sequence of events during membrane fusion 

have not been completely deciphered. 
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The solved X-ray crystal structure of gH/gL complex reveals that it does not possess 

characteristics of any known fusion protein (Chowdary, Cairns et al. 2010).  It has an unusual 

‘boot shaped structure’ which is composed of three domains; N-terminal domain that binds to gL 

(domain H1), the central helical domain (domain H2) and the C-terminal β-sandwich domain.  

The gH/gL complex was earlier thought to act as a fusion protein which brought about 

hemifusion.  However, it has now been proposed that gH/gL complex activates the fusogenic 

potential of gB by binding to it directly.  There are experimental evidences to show that 

neutralizing antibodies can disrupt the formation of the complex between gH/gL and gB.  It has 

been reported that the antibody LP11 competes with gB to bind to gH/gL.  Moreover, it has been 

proposed that the site on HSV gH/gL complex, that interacts with gB also overlaps with the 

epitope of the neutralizing antibody (LP11) and thus can inhibit (gH/gL)-gB association 

(Chowdary, Cairns et al. 2010).  Henc, gH/gL can be considered as fusion regulators that are 

required to change the conformation of gB from a post-fusion to a pre-fusion form.  Some 

resarchers have suggested, that gH/gL –gB interaction occurs before fusion rather than after, 

since certain antibodies can block fusion without necessarily disrupting the interaction between 

gH/gL and gB. (Connolly, Jackson et al. 2011).  HSV-1 may have evolved such a intricate 

mechanism in order to control the fusogenic nature of gB, wherein gH/gL act as fusion regulators 

so as to prevent uncontrolled membrane fusion.   

By X-ray crystallography the extracellular structure of gB has been solved facilitating in 

understanding the role of gB in fusion process. gB crystal structure reveals a trimeric form that 

consists of three identical protomers designated as A, B and C (Heldwein, Lou et al. 2006).  Each 

protomer further consists of five distinct domains (Domain I to Domain V).  Insertion mutations 

in all five of the gB domains can abrogate fusion, consistent with the concept that gB undergoes 
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a complex, ordered refolding process to drive fusion.  Four functional regions (FR) have also 

been defined.  The Functional Region I (FR1) consists of Domain 1 and V which are predicted to 

be proximal to the plasma membrane (Atanasiu, Whitbeck et al. 2010).  Thus FR1 contains 

fusion loops that associate with the host cell membrane. Recently, it has been suggested that the 

binding of gD to its receptor activates gH/gL, which subsequently triggers gB to insert its fusion 

loops into the target membrane, and ultimately bringing about fusion of the viral envelope and 

the cellular membrane.  

Moreover it has been suggested that a significant amount of energy is released during 

conversion of gB from its initial pre-fusion form to the very stable, energetically favorable post-

fusion form.  This energy is required to overcome the high activation energy needed to merge the 

two lipid bilayers ie. the viral and the cellular membrane (Silverman, Sharma et al. 2010).  

Some researchers have suggested otherwise, that gB-gH/gL interaction occurs after 

activated gB has inserted its fusion loops into the target membrane.  This interaction leads to 

conformation changes in gB that helps to pull the two membranes together. 

Once the two lipid bilayers are in close proximity, fusion is thought to proceed through a 

“hemifusion” intermediate, in which the proximal leaflets of the two bilayers have merged but 

the viral contents have not yet mixed with the cell cytoplasm.  Hemifusion is followed by fusion 

pore formation, pore enlargement, and complete content mixing.  These steps are still being 

elucidated and it is  now believed  that all the entry glycoproteins are necessary for both 

hemifusion and fusion (Jackson and Longnecker 2010). 
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These complex interactions between the viral glycoproteins as well as cellular receptors 

ultimately lead to fusion between the viral membrane and host cell membrane and deposition of 

the naked capsid into the cytosol.  

Endocytosis  

HSV-1 can enter the host cell by fusion occurring between the viral membrane and the 

plasma membrane or it can gain access into the cells by utilizing the cellular endocytic 

machinery.  The latter pathway helps the virus to overcome the physical barriers of the plasma 

membrane and cytoskeleton.  This mode of entry is rapid and leads to uptake or internalization of 

the intact virion particle from the cell surface into intracellular compartments.  The virus bound 

endocytic vescicles are trafficked through the cytoplasm in a highly regulated manner that 

requires cytoskeletal elements and regulatory molecules, such as kinases and GTPases (Nicola 

and Straus 2004).  Ultimately, fusion occurs between the plasma membrane and endosomal 

membrane and then the capsid is deposited into the cytoplasm.  It has been suggested that fusion 

occurs in low pH environment in late endosomes.  The low pH is believed to trigger 

conformational changes in fusion peptides of glycoproteins to convert them to fusion-active 

states.  Evidence for this phenomenon has been shown by Dollery et al. wherein low-pH induced 

conformational changes in HSV-1 glycoprotein B (Dollery, Delboy et al. 2010)  

Viruses that enter by endocytosis utilize different endocytic routes such as clathrin-coated 

pits or caveolae; however it seems that HSV does not enter by either pathway (Gianni, 

Campadelli-Fiume et al. 2004).  Some researchers have suggested that the virus enters by 

phagocytosis which requires activation of RhoA (Clement, Tiwari et al. 2006).  Rahn et al. have 

observed that HSV-1 enters human keratinocytes via an entry route that requires dynamin  
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and host cholesterol (Rahn, Petermann et al. 2011).  The current theory is that HSV-1 enters the 

cells through macropinocytosis, although this phenomenon has not been well established (Mercer 

and Helenius 2009). 

Macropinocytosis is a cellular process that leads to formation of macropinosomes that 

internalize large amounts of fluid and membrane.  HSV-1 utilizes these large vesicular structures 

to enter cells the formation and intracellular trafficking of these macropinosome need 

phosphatidylinositol 3-kinase (PI3- kinase) activity.  Nicola et al. have reported that PI3- kinase 

inhibitors like wortmannin and LY294002 decrease entry of virus into HeLa ,CHO-nectin-1 and 

keratinocytes cells that are known to endocytose the virus (Nicola and Straus 2004). 

It is well established that Chinese hamster ovary cells (CHO) are not permissive to HSV-

1 entry and the endocytosed virus is ultimately degraded in the lysosome.  However, when these 

cells are engineered to express a gD receptor the virus is able to overcome lysosomal degradation 

and penetrate into the cytoplasm.  Thus binding of gD to its cognate receptor has two effects: 

firstly it directs the internalization of the virus and pushes it towards endosomal pathway, 

secondly it triggers the fusion machinery leading to conformational changes in gB.  These two 

responses occur simultaneously, however in case of endocytosis the fusion step is delayed.   

As discussed earlier, a second trigger such as low pH, may be needed to bring about 

fusion between viral membrane and endosomal membrane in case of endocytosis.  CHO cells 

have been engineered to constitutively express a single gD receptor such as Nectin-1 or HVEM.  

Entry into these cells (CHO-HVEM and CHO-nectin1) as well as HeLa and human primary 

epidermal keratinocytes involves pH-dependent endocytosis.  It has been reported that 
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endocytosis in CHO-nectin-1 cells is rapid and nearly 50% of the virus intake is within the first 

10 minutes (Milne, Nicola et al. 2005).  

Researchers have utilized various endocytic inhibitors, such as monensin, ammonium 

chloride and bafilomycin and other endocytic inhibitors to distinguish between pH dependent 

and independent endocytosis of HSV-1 into different cell types.  These inhibitors of endosomal 

acidification raise the pH of the endosomal vesicle and hence prevent fusion between the two 

membranes (viral and endosomal) and prevent release of the capsid into the cytosol (Nicola, 

McEvoy et al. 2003).  

A third mode of endocytic entry has also been described i.e. pH-independent endocytosis 

as seen in mouse melanoma cells (B78H1) expressing nectin1 (C10).  This mode of entry has not 

been well characterized (Milne, Nicola et al. 2005). 

Glycoproteins required during endocytosis  

Whether it be fusion at the plasma membrane or in endocytic vesicles the same set of 

glycoproteins (gD, gB, gH and gL) are required.  Mutant viruses lacking individual glycoproteins 

gC, gD, gB and gH/gL when tested on CHO-nectin1 and HeLa cells were shown to be non-

infectious.  However, mutant viruses lacking gC infected both HeLa and CHO-nectin1 cells.  

From these observations it was concluded that gC is dispensable for HSV entry via endocytosis 

while gB, gD, gH and gL are required.  

Examples of endocytic mode of entry have been described in other herpes subfamilies.  

The Epstein-Barr virus (gammaherpesvirus) enters epithelial cells via fusion at the plasma 

membrane but enters B cells via endocytosis.  While human cytomegalovirus, a betaherpesvirus, 

fuses at the plasma membrane of fibroblasts but enters epithelial cells by endocytosis.  
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HSV-1 entry route is dependent on both viral factors as well as cellular factors 

(receptors).  Delboy et al. demonstrated that the HSV ANG strain differentially uses Nectin-1 

and Nectin -2 to enter CHO cells.  It enters CHO-Nectin1 cells by pH-dependent endocytosis 

while in CHO-Nectin- 2, it enters by fusion (Delboy, Patterson et al. 2006).  The determining 

factor is the presence of glycoprotein D.  However, in case of PILR mediated entry, the 

cellular receptor determines the entry route of the virus i.e.by fusion at the plasma membrane.  

Thus, HSV-1 virus utilizes different strategies and myriad of receptors to enter different 

types of host cells and hence it has a wide host range and cell tropism. 

Host Protein Shutoff 

HSV-1 and 2 HSV-2 are capable of suppressing the host cell protein synthesis even 

without viral gene expression (Matis and Kudelova 2001).  This phenomenon is known as the 

early shutoff or as the virion-associated host shut off (vhs) and is mediated by a structural 

component of the infecting virion which does not require de novo protein synthesis after 

infection (Nishioka and Silverstein 1977; Fenwick and Walker 1978; Nishioka and Silverstein 

1978; Nishioka and Silverstein 1978).  The isolation of vhs- mutants which were unable to 

shutoff host cell protein synthesis in HSV-1 infected cells, led to detailed study of this 

phenomena (Read and Frenkel 1983).  The UL41 ORF was identified as being responsible for 

the phenotype in the vhs- mutants. The major product of this gene is a 58 kDa phosphoprotein 

which is present in light (L) particles but is not essential for virus replication.  There are atleast 

two forms of UL41 protein differing in the extent of phosphorylation present in HSV-1-infected 

cells.  VHS is an RNase that degrades viral and cellular mRNAs, thereby limiting host and viral 

antigen production (Walker, Sehgal et al. 2011).  In vitro studies have shown that VHS functions 
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at least in part by inducing endoribonucleolytic cleavage of mRNA (Elgadi and Smiley 1999), 

and the 5’ end of mRNA is degraded before the 3’ end (Karr and Read 1999).  It appears to form 

a complex with the translation factor eIF-4H, and this interaction is required for RNase activity, 

possibly through targeting to polyribosomes.  The VHS and eIF-4H complex appears to decap 

cellular mRNA from the 5’ end (Roizman and Knipe 2001). 

UL41 protein is capable of interacting with a transactivator of an alpha-gene i.e. the 

alpha-transinducing factor (alpha-TIF) (Schmelter, Knez et al. 1996).  This interaction between 

UL41 protein and alpha-TIF down regulates the UL41 (vhs) gene activity during lytic infection.  

In the context of a vhs- mutant, host protein synthesis is not shut off early in infection and α and 

β gene expression is extended in more in comparison to a wild-type virus.  These effects are due 

to the fact that vhs accelerates the degradation of both cellular and viral mRNAs.  As a result, 

during HSV-1 infection, cellular mRNA levels diminish while the turnover of viral mRNAs is 

accelerated.  In this way, vhs may facilitate the transition from α to β to γ gene expression 

through shortening the life of the viral mRNAs (Kwong and Frenkel 1987).  As a γ1 gene 

product, vhs accumulates late in infection, but does not degrade viral mRNA as would be 

expected.  An interaction between VP16 and vhs at a later stage of infection, blocks the 

degradation of RNA by vhs (Lam, Smibert et al. 1996).  As a result, the accumulation of VHS in 

tegument complexes accomplishes two crucial functions: it brings vhs into the infected cell to 

shutoff host protein synthesis, and it regulates the activity of vhs late in infection when mostly 

viral mRNA is present. 
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Virion Transport to the Nucleus  

After the virion attaches to the cell plasma membrane the virion envelope fuses with the 

cell membrane releasing the capsid and the associated glycoproteins into the cytoplasm.  This is 

followed by the release of most of the outer tegument proteins while others, such as VP16 (αTIF) 

are transported to the nucleus to affect their functions.  The nucleocapsid coated with the inner 

tegument proteins (pUL36, pUL37 and pUS3) is then transported along the cell’s microtubule 

network to a nuclear pore.  Studies have shown that dynein, the microtubule dependent motor, is 

bound to capsids after entry (Sodeik, Ebersold et al. 1997).  These results have initiated the 

theory that incoming capsids bind to microtubules and utilize the cell’s dynein motor to transport 

them to nuclear pores.  Since most of the tegument proteins are lost during entry, the candidate 

viral protein(s) that directly interact with dynein/dynactin complex are thought to be inner 

tegument proteins and capsid proteins.  Although, no direct interaction between inner tegument 

protein and dynein has been identified, the inner tegument proteins pUL36 and pUL37 are the 

likely dynein –binding viral proteins (Antinone, Shubeita et al. 2006) . 

After intracytoplasmic transport to the nucleus, capsids accumulate at the nuclear 

envelope and become associated with nuclear pore complexes.  Experiments have shown that 

UL36 is required for DNA release at the nuclear pore, specifically; N-terminus of pUL36 binds 

to the NPC followed by proteolytic cleavage leading to release of viral genomic DNA into the 

nucleus (Jovasevic, Liang et al. 2008),  (Copeland, Newcomb et al. 2009).  The N-terminus of 

HSV-1 pUL36 has also been shown to contain a nuclear localisation signal which may play a 

role in both these early and late events of viral replication (Abaitua and O'Hare 2008) 
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Coordinate Gene Expression   

HSV-1 produces 80 gene products; the transcription of these genes occurs in a highly 

coordinated manner and is tightly regulated.  This process of transcriptional involves expression 

of specific proteins at different times post infection and can be divided into three phases of gene 

expression, “immediate-early” or α phase, “early” or (β) phase and “late” or (γ) phase.  The host 

RNA polymerase II is responsible for mRNA synthesis of the viral DNA.  Transcription of the α 

genes occurs in the absence of de novo viral protein synthesis and is initiated by binding of, α 

gene transactivating factor (α-TIF) which is part of the virion (Batterson and Roizman 1983).    

α-TIF encodes for the protein VP16 which binds to a motif TAATGArATT in the promoter 

region of alpha genes.  In absence of VP16 basal transcription continues, however it plays an 

important role in viral transcription in resting cells such as neuronal cells where the availability 

of transcription factors is low.  After release from the tegument complex, VP16 binds to a 

cellular protein called the host cell factor (HCF) or C1 (Katan, Haigh et al. 1990; Kristie and 

Sharp 1990), and HCF carries VP16 into the nucleus, during which the VP16-HCF complex 

binds to Oct-1 that is bound to viral DNA.  This event forms the activator complex which is 

responsible for transactivation of α genes (La Boissiere, Hughes et al. 1999).  In addition to the 

Oct-1 binding sites, the promoters for α genes also contain binding sites for other cellular 

transcriptional activators upstream of a TATA box that may contribute to a basal level of α gene 

expression in rapidly dividing cells in the absence of VP16 (Roizman and Knipe 2001). 

The viral DNA after entry localizes to PML bodies or ND10 structures where the 

transcription of α genes is initiated (Maul, Ishov et al. 1996).  Two to four hours post infection 

the six alpha genes are expressed at high levels.  These genes are designated as ICP0, ICP4, 

ICP22, ICP27, ICP47 and US1.5.  Five of the six α genes stimulate viral β gene expression in  
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at least some cell types.  Recent findings have suggested that both ICP0 and ICP4 are present on 

intranuclear capsids, suggesting that they may at least partially be recruited on the viral particles 

during early stages of virion morphogenesis (Loret and Lippe 2012).  

 

 

Figure 1.8: Coordinate gene expression in Herpes Simplex Virus. 1) Transcription of the 

genes occurs in the absence of de novo viral protein synthesis and is highly stimulated by α 

trans-inducing activity of virion of tegument protein α-TIF.  2) Autoregulation of gene 

expression.  3) The early (β) gene products are synthesized next and are principally involved in 

viral DNA synthesis.  4) The last set of genes expressed is the late (γ) genes, which encode 

proteins involved in virion structure and assembly.  These genes are activated by α and β genes. 

5) Repression of α and β gene expression by γ genes late in infection. (Roizman and Knipe 2001) 

 

One of the most important alpha gene is ICP4 which is required for all post-α gene 

expression (Clements, Watson et al. 1977; Dixon and Schaffer 1980) and is a major 

transcriptional regulator.  It has been suggested that ICP4 must interact with components of the 
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pol II machinery (TATA box-binding protein (TBP), TFIIB, TFIID and Mediator complex) to 

regulate viral gene expression (Lester and DeLuca 2011). 

 The mechanism by which ICP4 exerts its transcriptional control over β gene expression 

is unclear.  ICP4 is also responsible for down regulation of α gene products including itself and 

ICP0, and the “pre α” gene products ORF P and ORF O.  In this case, specific consensus binding 

sites appear to be responsible for ICP4 mediated transcriptional regulation (Faber and Wilcox 

1986; Kristie and Roizman 1986; Muller 1987).  In addition, ICP4 has different isoforms 

depending on different post translational modifications, and possibly the different functions may 

be somewhat dependent on the specific isoform present at different times during the course of 

the infection.  ICP0 promotes viral infection and gene expression, especially at a low multiplicity 

of infection (MOI) where its absence leads to a virus yield that is 100 fold less than a wild type 

virus (Sinclair, McLauchlan et al. 1994). 

ICP0 is a nonspecific transactivator that induces the expression of the HSV α, β, and γ 

genes. Because ICP0 does not bind DNA directly, it appears to act indirectly in modulation of 

transcription (Everett, Orr et al. 1991). 

In the second phase or the early phase, expression of viral β genes is highest between 4 to 

8 hours post infection.  The β gene expression is dependent on the presence of ICP4 but not on 

viral DNA synthesis.  The β genes code for proteins that are involved in viral DNA replication 

and nucleotide metabolism.  As a result of viral DNA replication, a third class of proteins called 

γ genes is produced.  The β class of genes can be divided into two groups: β1 and β2 that are 

expressed at different time points.  β1 class of genes are expressed either immediately or 

simultaneously after synthesis of α proteins and are characterized by the single-stranded DNA 
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binding protein, ICP8 and the large subunit of ribonucleotide reductase.  The β2 gene product 

such as thymidine kinase is produced after gamma gene expression (Roizman and Knipe 2001).  

The third set of genes the γ (late) genes are expressed at high levels after initiation of 

viral DNA synthesis.  Transcription of these gamma genes is dependent on expression of ICP4, 

ICP27 and ICP8.  These set of genes are subdivided into two groups γ1 and γ2, which encode for 

structural proteins, glycoproteins and tegument proteins (Weir 2001).  Viral DNA synthesis 

controls/ determines the relative rate of expression of γ1 and γ2 genes. The γ1 (leaky –late) genes 

are expressed relatively early in infection and include the major capsid protein ICP5, gB, gD,and 

ICP34.5, while the γ2 genes are expressed only after DNA replication has occurred and 

accumulate to appreciable amounts whereas inhibitors of viral DNA synthesis prevent their 

expression The γ2 genes include gC, UL41 (VHS), UL36, UL38, UL20, and gK. 

Viral DNA Replication  

Infection by HSV leads to remodeling of the host cell nucleus.  Viral DNA are localized 

to sites near ND-10 structures which are disrupted eventually by ICPO (Infected cell protein O).  

Viral DNA replication proteins and viral DNA assemble near ND10 structures to form 

prereplicative sites.  The order of these steps mentioned above is still not well defined.  Viral 

DNA replication leads to the conversion of prereplicative sites to small replicationn 

compartments.  Initially, viral DNA replication initiates on the circular viral DNA, creating a 

“theta” structure, which as replication progresses transits to a rolling circle mechanism of 

replication producing head-to-tail concatemers of viral DNA (Jacob, Morse et al. 1979). 

HSV DNA replication requires seven essential viral proteins, as well as a variety of 

enzymes involved in DNA precursor metabolism.  These proteins comprise components of a 
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helicase-primase complex ( composed of three proteins: UL5, UL8, and UL52) (Challberg 1986; 

Wu, Nelson et al. 1988),  the major single stranded DNA-binding protein (ICP8), DNA 

polymerase (UL30) (Purifoy, Lewis et al. 1977), and its accessory protein (UL42) (Conley, 

Knipe et al. 1981).  Viral DNA synthesis also requires host cell factors and host enzymes that 

include the DNA polymerase α-primase, DNA ligase, and topoisomerase II.  The HSV-1 genome 

also contains three origins of replication, one within the unique long region (oriL) and two within 

the c repeats bounding the unique short region (oriS).  oriS, a palindromic sequence of 45 bp that 

is located in c sequence bounding the S component and present in two copies; and oriL, a 

palindromic sequence of 144bp that is located between the transcriptional units of ICP8 and 

DNA polymerase (UL29 and UL30, respectively) (Mocarski and Roizman 1982; Weller, 

Spadaro et al. 1985; Deb and Doelberg 1988; Lockshon and Galloway 1988).   OriS and oriL 

share extensive nucleotide sequence homology within the 45-bp oriS palindrome and within 

sequences extending to the left of the palindrome, whereas sequences extending to the right of 

the palindrome show essentially no homology (Lockshon and Galloway 1986).The reason for the 

presence of three origins of replication is not clear, although it may reflect the evolutionary 

history of the virus.  However, only one origin of replication is needed for replication to occur 

(Igarashi, Fawl et al. 1993). 

The basic steps of HSV viral DNA replication is as follows.  The parental viral DNA 

circularizes on entering the nucleus of the infected cell.  The alpha and the β genes are 

transcribed and slowly the viral DNA is unwound.  This unwinding is brought about by UL9 that 

binds to specific motifs on either oriL or oriS.  ICP8 (ss DNA binding protein) is recruited by 

UL9 to unwound portion of the DNA.  These two proteins then recruit the remaining five 

proteins involved in replication to replication forks.  The helicase–primase and viral DNA 
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polymerase complexes assemble at each replication fork and initiates theta form replication.  

Replication switches between theta form and rolling circular replication.  As a result of rolling 

circular replication long head to tail concatamers of viral DNA are formed which are then 

cleaved into individual units during packaging of viral DNA into capsids (Roizman and Knipe 

2001). 

Capsid Assembly  

HSV-1 capsid is an icosahedral shell that consists of 162 capsomers.  VP5 is the 

structural subunit of all 162 capsomers while VP19C and VP23 (triplex protein) are located in 

the space between the capsomers (Homa and Brown 1997).  Capsid proteins are transcribed by γ 

genes just after DNA replication has started.  Initial stages of capsid assembly occur in the 

cytoplasm of infected cells (Nicholson et al 1994 Rixon et al 1996) followed by final maturation 

of the capsid occurring in the nucleus of infected cells.  The major capsid protein (VP5), the 

outer tip of hexons (VP26), and a triplex protein (VP23) are not capable of nuclear localization 

on their own; however, VP5 can be carried into the nucleus by VP19C, another capsid triplex 

protein, or by pre-VP22a, a scaffolding protein. VP23 localizes to the nucleus only in the 

presence of VP19C, while VP26 localizes to the nucleus only when it is expressed with both 

VP5 and VP19C or pre-VP22a (Nicholson et al., 1994; Rixon et al., 1996).  Considerable 

advances have been made in understanding the structure an assembly of the capsid shell, largely 

as the result of applying cryoelectron microscopy techniques as well as recombinant 

baculoviruses. The in vitro system has identified a fragile roundish procapsid which matures into 

the polyhedral capsid in a transition similar to that undergone by bacteriophage proheads (Homa 

and Brown 1997). 
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Three types of capsids, called A, B, and C capsids have been identified by sucrose density 

gradient ultracentrifugation (Gibson and Roizman, 1972) in the nucleus of infected cells.  These 

procapsids, and anglularized types A, B and C capsids accumulate to form structures called 

assemblons at the periphery of the replication compartment.  All three types of capsids are about 

120 nm in diameter with an outer shell composed of hexons and pentons made up of VP5.  The 

individual capsomeres are linked by triplex structures consisting of VP19C and VP23, the two 

minor capsid proteins.  Each triplex consists of one molecule of VP19C and two molecules of 

VP23 (Newcomb et al., 1993).  The C-capsids are the mature capsids that contain packaged viral 

DNA and can proceed to become infectious virions by budding through the nuclear membrane 

into the perinuclear space (Perdue et al., 1976).  In contrast, A and B capsids lack viral DNA, but 

B capsids are filled with VP22a and VP21, the cleaved scaffolding proteins, and a viral protease 

VP24 (Gibson and Roizman, 1972; Newcomb et al., 1993). The internal proteins VP22a, VP21, 

and VP24 are removed upon packaging of viral DNA to form C capsids (Davison, Rixon, and 

Davison, 1992; Gibson and Roizman, 1972).  The A capsids do not contain viral DNA or 

scaffolding proteins and are believed to be an abortive result of failed attempts at DNA 

packaging.  

In terms of the order of assembly, once in the nucleus, VP5-pre-VP22a complexes come 

together as a result of self-assembly of pre-VP22a. The triplex proteins VP19C and VP23 are 

then added to form a partial capsid. As hexons and pentons are added, the structure assembles 

into a round procapsid (Newcomb et al., 1996), ultimately transforming into polyhedral 

structures (Thomsen, Newcomb et al. 1995; Trus, Booy et al. 1996; Church and Wilson 1997).  
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Encapsidation of Viral DNA 

DNA packaging is initiated with a procapsid that contains outer capsid shell and inner 

scaffold and requires participation of viral DNA and atleast seven additional HSV-1 encoded 

proteins.  The transformation of empty procapsids into DNA-filled C capsids is the result of an 

elegant molecular machine that cleaves individual genomes from concatemeric substrate and 

translocates them into the capsid precursor. Proper functioning of this machine requires specific 

cleavage sequences on the DNA substrate, a DNA packaging enzyme called terminase, and 

capsid structural elements such as the portal protein. To initiate cleavage and packaging, the 

terminase complex composed of pUL28, pUL15 and pUL38 cleave the concatemeric DNA 

substrate in the DR1 sequence that joins the sequence between the US and UL segments. The 

mechanism of viral DNA packaging is complex and is not yet well defined. 

Virion Egress 

Virion morphogenesis begins with the packaging of the replicated DNA into pre-formed 

capsids which then bud out through the inner nuclear membrane into the perinuclear space.  

These capsids then exit from the perinuclear space into the cytoplasm.  There are different 

theories regarding egress of the virus from the perinuclear space into the cytoplasm and the site 

of final envelopment.   

Primary Envelopment  

Studies by various reseach groups have shown that multiple deletions of glycoprotein 

genes may it be essential or non-essential do not affect virus transport to the perinuclear space 

(Sandri-Goldin 2006).  It has been documented that tegument proteins UL31 and UL34 are 

involved in primary envelopment.  UL34 protein is likely a type II membrane protein that 
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localizes within the inner and outer nuclear membrane (Klupp, Granzow et al. 2000), while 

UL31 is a nuclear matrix-associated phosphoprotein also present in the nuclear membrane of 

infected cells (Reynolds, Ryckman et al. 2001; Fuchs, Klupp et al. 2002).  Localization of UL31 

protein at the nuclear rim requires the presence of UL34 protein, whereas the UL34 protein 

appears to possess an intrinsic nuclear targeting signal (Klupp, Granzow, and Mettenleiter, 

2000).  However, the nuclear targeting of UL34 is increased by the presence of UL31.  Several 

groups have shown that deletion of either UL31 or UL34 results in drastic impairment in primary 

envelopment with capsids trapped within the nucleus(Chang, Van Sant et al. 1997; Klupp, 

Granzow et al. 2000; Roller, Zhou et al. 2000).  Therefore, UL31 and UL34 proteins form a 

complex that accumulates at the nuclear membrane and play an important role in nucleocapsid 

envelopment at the inner nuclear membrane.  Additionally, it has been reported that HSV 

infection disrupts the nuclear lamina which may facilitate capsids to reach the inner nuclear 

membrane (Scott and O'Hare 2001).  UL31 and UL34 complex may play a role in disruption of 

nuclear lamina since overexpression of the UL31 protein in uninfected cells was sufficient to 

relocalize lamin A/C from the nuclear rim into nucleoplasmic aggregates, while overexpression 

of UL34 was sufficient to relocalize some lamin A/C into the cytoplasm (Reynolds, Liang et al. 

2004).  It has been reported that both UL31 and UL34 physically interact with lamin A/C and 

this complex is responsible for altering the conformation of the nuclear lamin to promote 

nucleocapsid egress from the nucleus.  The UL11 protein has also been proposed to function in 

primary envelopment and increases the efficiency of envelopment at this step (Baines and 

Roizman 1992). 
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De-envelopment  

At the outer nuclear membrane de-envelopment occurs by fusion of the viral envelope 

with the outer nuclear membrane resulting in capsid release into the cytoplasm.  There is 

controversy regarding the mechanism of egress of the virus from the perinuclear space into the 

cytoplasm.  Two models have been suggested –a) luminal” model or single envelopment model 

and b) the de-envelopment re-envelopment” model of egress.  According the first model the 

perinuclear virions retain their primary envelope and integrity as they leave the cell through the 

secretory pathway (Johnson and Spear 1982; Campadelli-Fiume, Farabegoli et al. 1991).  

According to this model, virion glycoproteins are modified in transit to the plasma membrane 

and perinuclear virions contain the entire complement of tegument and envelope proteins present 

on mature extracellular virions.  The second model envisions that the primary envelope of 

perinuclear virions fuses with the outer nuclear lamellae, resulting in loss of the primary 

envelope and some tegument components and translocation of the naked capsid into the 

cytoplasm of the infected cells (Mettenleiter 2002; Mettenleiter, Klupp et al. 2006b).  Therefore 

according to the de-envelopmet and re-envelopment model, final tegumentation and re-

envelopement occurs in cytoplasmic vesicles resulting in intracytoplasmic/extracellular virions 

that differ in composition from perinuclear virions. 

Genetic and biochemical studies support de-envelopmet and re-envelopment model of 

virion morphogenesis however, other models are a possibility (Johnson and Baines 2011). Few 

of the evidences have been cited.  pUL31 and pUL34 are present in perinuclear particles , but 

pUL34 is not detected in cytoplasmic particles by immunoelectron microscopy, suggesting that 

the protein remains in the ONM after de-envelopment (Reynolds, Wills et al. 2002).   
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UL46 and UL49 are present on intracytoplasmic/extracellular virions but they are absent from 

perinuclear virions (Mettenleiter 2002).  Moreover it has been experimentally shown that the 

phospholipid composition of the final virion envelope differs substantially from the composition 

of the nuclear membrane. This difference in composition can only be explained by the two-step 

envelopment model of HSV virion egress (van Genderen, Brandimarti et al. 1994).  Thus the 

above observations from various experiments favor the de-envelopment and subsequent re-

envelopment model of herpesvirus virion morphogenesis (Mettenleiter 2002).  

It has been reported that the glycoproteins involved in membrane fusion do not play a 

significant role in the de-envelopmemt process as deletion of these glycoproteins do not affect 

the process.  Works by Melancon et.al have shown that membrane proteins gK and UL20p are 

also not involved in this process (Melancon, Luna et al. 2005).  Thus it has been postulated that 

de-envelopment involves interaction between tegument proteins and other membrane proteins.  

However, recent studies reveal the involvement of gB and gH during de-envelopment at the 

outer nuclear membrane (Farnsworth, Wisner et al. 2007).  However gB deleted alone resulted in 

minor defects in nuclear egress.  In other herpes viruses such as EBV and KSHV, gB plays a 

major role in virion egress as mutants lacking gB alone exhibit severe defects in virion egress 

(Krishnan, Sharma-Walia et al. 2005) . 

 

Tegumentation  

On reaching the cytoplasm the naked capsids undergo a two-step tegumentation process 

that involves interaction between tegument and capsid proteins.  The tegument layer of herpesvirus 

particles is complex and is made up of at least 23 different proteins that are present in abundance (200 

copies - 2,000 copies).  The tegument of other herpesviruses such as CMV and VZV are even more 
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complex as they contain even greater number of tegument proteins (Gibson 1996).  The tegument 

proteins interact with the capsid on one side and the viral envelope proteins on the other side in 

order to link the structural components to the final envelope of the HSV-1 virion and also to 

secure the integrity of the virus particle.  Recent data indicate that tegumentation follows an 

intrincate pattern of protein-protein interactions that contains significant levels of redundancy 

built in, at least as observed in cell culture (Mettenleiter 2002).  The innermost portion of the 

tegument located adjacent to the capsid exhibits icosahedral symmetry, resulting from the 

interaction of a large tegument protein, presumably UL36, with the pentons of the capsid (Zhou 

et al., 1999).  The UL36 gene product has been shown to interact with the major capsid protein 

VP5, which forms both the pentons and hexons (Newcomb, Trus et al. 1993).  Hence, it appears 

that the first layer of tegument around the capsid is structured and composed of UL36.  UL37 has 

been shown to interact with UL36 in co-immunoprecipitation and yeast two-hybrid experiments, 

and capsids that accumulate in the absence of UL37 contain UL36 (Klupp et al., 2002).  UL36 

and UL37 appear to be the only tegument proteins conserved in all herpesvirus subfamilies, and 

the absence of the HSV-1 UL36 and UL37 proteins abolishes virus maturation (Desai, Sexton et 

al. 2001).  Unfortunately, the subsequent steps in capsid tegumentation are still largely 

undefined. Virion morphogenesis can still proceeds in the absence of several other tegument 

proteins, including UL13, US3 (Purves et al., 1987), UL41, UL46, UL47 (Rafield and Knipe, 

1984; Roizman and Knipe, 2001), and UL49.  So far the most dramatic effect has been seen upon 

deletion of UL48 (α-TIF), which is responsible for transducing α gene promoters and makes up a 

major part of the virus tegument (Batterson and Roizman, 1983; Heine et al., 1974). The absence 

of UL48 may interfere with a later step in virion assembly, presumably affecting tegumentation 

and reenvelopment in the cytoplasm (Mossman, Sherburne et al. 2000). Interestingly, UL48 has 
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been shown to interact with other tegument components, UL49 and UL41 (VHS) (Smibert et al., 

1994). Mutant forms of UL41 unable to bind to UL48 are not part of the mature virion (Read, 

Karr, and Knight, 1993). Cross-linking studies have indicated that UL48 may interact with gB, 

gD, and gH  (Zhu and Courtney 1994), although these interactions have not been confirmed 

through more stringent methods. 

 Tegumentation of the nucleocapsid begins in the nucleus but most of the tegument 

proteins are incorporated onto the nucleocapsid in the cytoplasm. Tegument proteins VP1-2, 

pUL37, vhs, VP22 and VP16 are added in the nucleus as well as additional quantities of these 

tegument proteins are also added in the cytoplasm. Other tegument protein that are found 

exclusively in the cytoplasm are incorporated either during the transport of the nucleocapsid 

from the nuclear membrane to the TGN or during secondary envelopment at the TGN 

membranes. 

Secondary Envelopment 

These tegumented capsids then bud into trans-Golgi network (TGN) derived vesicles that 

are embedded with viral glycoproteins on their luminal side.  The TGN is considered the site for 

secondary envelopment, a process by which the virus acquires the full complement of envelope 

glycoproteins.  Cytoplasmic envelopment or secondary envelopment is a process which is not yet 

well understood.  In literature, there are different opinions regarding the function of membrane 

proteins and glycoproteins involved in this process.  

          Viral proteins involved in secondary virion envelopment-Viral glycoproteins play a role 

during cytoplasmic virion envelopment.  gB does not play a role in virion envelopment and 

egress since gB-null viruses undergo cytoplasmic virion envelopment and can infect cells if 
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treated with polyethylene glycol.  However work by Calistri et al, have revealed deletions in the 

carboxyl terminus of gB results in substantial reduction in cytoplasmic envelopment and egress 

(Calistri, Sette et al. 2007).  Membrane proteins gD, gM, gE/gI, and gK/UL20p and membrane 

associated protein UL11 are thought to play a role in the final envelopment stage.  The process of 

cytoplasmic envelopment involves various interactions between the cytoplasmic domains of the 

viral glycoproteins with tegument and membrane proteins.  The most profound effect on 

cytoplasmic envelopment has been documented when either gK or UL20 have been deleted.  The 

cytoplasm of cells infected with these mutant viruses (gK null or UL20 null) show accumulation 

of aberrant enveloped capsids and unenveloped capsids.  UL20p carboxyl terminus is involved in 

cytoplasmic virion envelopment as it may function to prevent de-envelopment of virions 

contained within cytoplasmic vesicles (Melancon, Fulmer et al. 2007).  However, work by 

Johnson et. al has shown that glycoproteins gD and gE/gI are important for cytoplasmic virion 

envelopment although they function in a redundant manner since deletion of single glycoproteins 

alone did not cause any deleterious effect (Farnsworth, Goldsmith et al. 2003).  According to 

their findings, deletion of gD and gE, or gD, gE and gI lead to accumulation of unenveloped 

capsids.  These finding are contrary to data published by our laboratory (Lee, Chouljenko et al. 

2009).  Work by our group reveals that mutant viruses lacking carboxyl terminal of gD (gD∆ct) 

or entire gE (∆gE), or double mutant gD∆ct+∆gE are able to grow on Vero cells and have no 

dramatic defect in virion envelopment.  Works by other groups have indicated that gM/gN may 

work in a redundant manner in cytoplasmic virion envelopment (Crump, Bruun et al. 2004).  

Deletion of UL11 gene produces mild defects in cytoplasmic virion egress while simultaneous 

deletion of UL 11and gM caused drastic inhibition of cytoplasmic virion envelopment.  Recent 

data from our laboratory has further revealed that a triple null mutant (gD∆ct, ∆gE and ∆gM), 
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replicated 1 log unit less efficiently than HSV-1 wild type virus and produced viral plaques one-

third the size of HSV-1 (F).  The recombinant virus ΔUL11-ΔgM, replicated more than 1 log unit 

less efficiently and produced significantly smaller plaques than UL11-null or gM-null viruses 

alone; this is in agreement with the results of Leege et. al.  Comparison of the triple null mutant 

(gDctg, gM and gE ) with UL20  virus reveals that deletion of the UL20 gene is substantially 

more deleterious to infectious virus production and causes most severe inhibition of cytoplasmic 

virion envelopment.  Work from our laboratory has shown that gK and UL20 interact with both 

gB and gH.  Recently, it was reported that gB may function in a redundant manner with gD to 

facilitate cytoplasmic virion envelopment.  Therefore, lack of gK or UL20 may affect the binding 

ability of gB, gD and gH to tegument proteins.  Moreover, gK and UL20 may interact directly 

with gM, UL11 and tegument proteins to facilitate cytoplasmic virion envelopment.  These 

observations unequivocally show that UL20p (or gK ) are the main players in cytoplasmic virion 

envelopment because deletion of these two membrane proteins practically abolishes virion 

envelopment at cytoplasmic sites.   

Virion Egress to Extracellular Spaces 

The last step of virion morphogenesis is the egress of the enveloped capsids into 

extracellular spaces.  Cytoplasmic secondary envelopment leads to enveloped virions within 

secretory vesicles.  These secretory vesicles or transporter vesicles travel to the plasma 

membrane where they fuse with the plasma membrane and release the mature virions into 

extracellular spaces.  Not much is known regarding the role of viral proteins involved in 

transport or egress.  It is thought, that this process of exocytosis of virions is brought about by 

the cellular fusion machinery rather than the viral glycoproteins.  However, it has been shown 

that mutant viruses. However, it has been shown that mutant viruses that lack gK and UL20p 
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Figure 1.9: Depiction of different steps in HSV-1 virion morphogenesis (assembly and 

egress).  After viral DNA replication the genome is packaged into newly formed capsids in the 

nucleus.  (I) The DNA filled capsids bud into the perinuclear space and attain a primary envelope 

from the inner nuclear membrane.  (II) De-envelopments of the virions occur at the outer nuclear 

membrane and virions are release into the cytosol.  Naked capsids are tegumented in the cytosol. 

(not shown).  (III) Tegumented capsids bud into TGN derived vesicles that are decorated with 

glycoproteins.  The mature cytoplasmic capsids finally attain an envelope (re-envelopment).  

(IV) Egress of the mature virions into extracellular spaces by process of reverse exocytosis. 

 

have a defect in virion egress with most of the virion particles stuck in the cytoplasm 

(Jayachandra, Baghian et al. 1997; Foster and Kousoulas 1999). 

Latent Phase  

The most outstanding feature of herpes virus is its ability to become latent in the host and 

later to reactivate from latency and start producing infectious virions at the site of initial 

infection.  The site of latency depends upon the type of virus, HSV1 remains latent in the 
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trigeminal ganglion while HSV-2 in the sacral ganglion.  When the virus enters the latent state 

no infectious virions are produced but the viral genome is retained intact within specific cells.  A 

recurrent infection occurs when the virus reactivates from latent state because of an external 

stimulus such as heat, stress and sunlight (UV rays).  

HSV-1 Glycoproteins and Their Putative Functions 

The surface of the HSV viral envelope contains 600-750 glycoprotein spikes that vary in 

length, spacing and the angle of emergence from the envelope.  These glycoproteins are 

designated as glycoprotein B (gB), glycoprotein C (gC), glycoprotein D (gD), glycoprotein E 

(gE), glycoprotein I (gI), glycoprotein J (gJ), glycoprotein H (gH), glycoprotein K (gK), 

glycoprotein L (gL), glycoprotein M (gM) and glycoprotein G (gG).  In addition to these 11 

glycoproteins, there are membrane associated proteins such as UL20, UL34, UL45 and possibly 

US9.  Some of these viral proteins have not been detected on the virion envelope.  These 

membrane proteins play important role at different stages of the HSV-1 life cycle i.e. virus entry, 

virus spread, virus envelopment and egress.  

Common structural features of HSV-1 glycoproteins: 

a) These integral membrane proteins (glycoproteins) are mostly structural proteins 

that are encoded by gamma late genes.  Mostly, these glycoproteins are type I membrane 

proteins that have certain common features such as a signal sequence, hydrophobic 

membrane spanning domain and potential sites for N-glycosylation.   

b) Another unique feature of HSV-1 membrane protein is that they form multimers 

which are either homomeric or heteromeric in nature.  For example, gC has been found to 
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form multimers, while gB forms homotrimers and gH/gL, gK/Ul20p, gE/gI, gM/gN form 

heterodimers. 

c) HSV-1 infected cells (in vitro) normally do not fuse with uninfected neighbouring 

cells.  Although certain spontaneous mutations in the viral genome cause the formation of 

large multinucleated cells called syncytia.  These HSV-1 mutants (syn mutants) have either 

point mutations or deletions that map to atleast four genes of the viral genome; UL27 (gB), 

UL53 (gK), UL20 (UL20p) and UL24.  Glycoproteins with syncytial mutations play an 

important role in virus induced cell-cell fusion. 

Glycoprotein B 

gB is one of the most conserved glycoproteins found in all herpes virus subfamilies.  It is 

a type I integral membrane protein encoded by UL27 gene, consists of 904 amino acids.  The 

ectodomain of gB (696 amino acids) consists of a secretory signal and a number of N-

glycosylation sites, whereas the intracellular carboxyl terminus consists of 109 amino acids. 

Surprisingly, most of the syncytial mutations are located exclusively in this intracellular region.  

gB is a class III viral fusion protein.  The X-ray crystal structure of ectodomain of gB reveals 

striking similarity to glycoprotein G of vesicular stomatitis virus and baculovirus gp64.  

However, unlike other members of its class, it cannot function alone and needs gH/gL to bring 

about fusion .  From the X-ray structure it has been determined that gB assumes two 

conformations, a pre-fusion and post-fusion form, one of which is essential for membrane fusion.  

It appears that gD, gH/gL may be responsible for bringing about this conformational change in 

gB, facilitating its fusogenic ability.  The extracellular portion of gB as determined by X-ray 

crystallography, reveals a trimeric form that consists of three identical protomers designated as 
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A, B and C.  Each protomer further consists of five distinct domains (Domain I to Domain V).  

Four functional regions (FR) have also been defined, based on mapping of anti-gB neutralizing 

mAbs to the crystal structure.  The Functional Region I (FR1) consists of Domain 1 and V which 

are predicted to be proximal to the plasma membrane.  Neutralizing mAbs to FR1, blocks the 

association of gB with lipid membranes.  Thus FR1 contains fusion loops that associate with the 

cell membrane. 

The carboxyl terminal of gB is located in the cytosol and most of the syncytial mutations 

(point mutations, truncations as well as deletions) have been mapped to this region.  Deletion of 

28 aa from the carboxy terminal of gB leads to hyperfusion while ceratain muations withinin this 

region lead to a fusion null phenotype.  Thus the carboxy terminal of gB seems to act as a fusion 

regulator either to reduce or to enhacing fusion (Chowdary and Heldwein 2010). 

Glycoprotein C 

gC is encoded by UL44 gene and is a mucin-type glycoprotein because of its high content 

in N-linked and O-linked oligosaccharides.  This membrane protein consist of 511 amino acids, a 

25 aa signal sequence at the N terminus, a long 453 aa extracellular domain, a 23 aa 

transmembrane anchoring domain, and a short 10 aa C-terminal cytoplasmic tail (Homa et al., 

1986).  The initial contact between the virus and the cell is through interactions between heparan 

sulfate moieties on GAGS and gC. 

Previous studies have delineated the HS-binding domain that interacts with gC amino 

terminal residues to be located between aa 33 and 123, as well, as between 129 and 247 (Trybala, 

Bergstrom et al. 1994).  The basic aa residues present in gC amino acid sequence are known to 



72 
 

be critical for HS-binding activity.  Although, gC is dispensable for the infection of cultured cells 

but  its presence can increase the efficiency of virus binding almost 10-fold. 

The role of glycoprotein C in virus –induced cell fusion is debatable.  It was found that 

HSV strain MP lacking gC (gC-) produces large syncytial (Syn) plaques on many cell types , 

whereas a sibling strain mP with a full copy of gC (gC+) produces wild-type, small, nonsyncytial 

(Syn+) plaques (Pogue-Geile, Lee et al. 1984).  Several other spontaneously arising syncytial 

virus strains have been found to be gC-deficient.  Sequencing of the MP strain variant MP10311 

revealed that it lacks gC but contained a syncytial mutation in gK (Bartoletti, Tognon et al. 

1985).   Hence it may be in the absence of gC the syncytial phenotype is enhanced, although this 

phenotype is not well defined. 

gC is also involved in modulating complement activation by blocking C5 and C3.  i 

(Eisenberg, Ponce de Leon et al. 1987).  The presence of gC protects the virus and infected cell 

from antibody (Ab)-independent complement neutralization and cell lysis (Friedman, Wang et al. 

2000).  gC is also considered an important virulence factor in vivo (Sahu et al., 1998).  Thus, 

presence of gC provides the virus with various mechanisms to escape the host immune system 

and establish a productive infection. 

Glycoprotein D  

US6 gene is located in the unique short region of the herpes simplex genome and 

consisting of 1182 bases.  It encodes gD, a membrane protein that consists of a 25 aa signal 

peptide, 15 aa ectodomain containing three glycosylation sites (McGeoch, Dolan et al. 1985) , a 

22 aa transmembrane domain, and a 32 aa C-terminal cytoplasmic domain  (Minson, Hodgman 

et al. 1986).  The ectodomain of gD has 6 cysteine residues at positions 66, 106, 118, 127, 189 
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and 202 forming disulfide bonds (Long, Wilcox et al. 1992).  gD is considered as the principal 

determinant of cell recognition during viral entry and is known to interact with all known HSV-1 

entry receptors  (Spear, Eisenberg et al. 2000).  gD is absolutely necessary for virus entry and 

virus-induced cell-to-cell fusion.  HSV-1 gD has the ability to bind HVEM, nectin-1, nectin-2, 

and other cell surface receptors to mediate virus entry. In addition, cells that express gD are 

resistant to HSV infection in a dose-dependent manner due to a saturation of the corresponding 

entry receptors (Campadelli-Fiume et al. 1988; Johnson, Burke, and Gregory, 1990).  The X-ray 

structure of the soluble portion of gD as well as gD interacting with HVEM has been solved.  

The crystal structure of HSV-1 gD reveals an Ig-like fold with unconventional disulfide bonding 

patterns (Carfi, Willis et al. 2001).  There is an N-terminal extension from the Ig-like fold that 

forms a hairpin loop in the complex with HVEM, but is disordered in the crystals of gD alone.  It 

has been reported that the soluble ectodomain of gD is both necessary and sufficient to rescue the 

non-infectious gD null mutant .  The contacts in gD for HVEM have been localized to amino 

acids 7 to 15 and 24 to 32 within the N-terminal hairpin (Spear and Longnecker, 2003). 

Mutagenic analysis of HSV-1 gD revealed that the first 32 amino acids of gD in the N-terminal 

extension plays a critical role in functional interactions with all the HSV entry fusion receptors, 

except for nectin-1 (Yoon, Zago et al. 2003). 

 gD assumes two conformations; a closed conformation in absence of the receptor and an 

open and active conformation upon interacting with receptor (either HVEM – and possibly 

nectin 1).  In absence of the receptor, the N terminus is flexible and regions near the C terminal 

region occlude the receptor binding site.  On binding to a receptor the N terminus forms a loop 

and displaces the C terminus that contains the pro-fusion domain. The pro-fusion domain 
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consists of amino acids 260-310 that transmits a signal through this domain to gB and/or gH/gL 

thereby activating these glycoproteins.   

Glycoprotein E and I 

The gI protein is a type I membrane protein 390 aa  in length with a single 

transmembrane domain and a cytosolic tail at the C terminus (Norberg, Olofsson et al. 2007). It 

is encoded by US7 gene which is 117 bp long.  The function of gI is not yet known, but it forms 

a non-convalently linked heterodimeric complex with glycoprotein E (gE).  550 aa glycoprotein 

E is encoded by US8 gene which is 1652 bp long.  This heterodimeric complex (gE/gI) is found 

in HSV, PrV and VZV and plays a role in cell-to-cell spread of virus in epithelial and neuronal 

tissues.  However, in transformed cell lines as well as in unpolarized cells the gE/gI complex do  

not function in cell-cell spread as these cells lack cellular junctions.  Experiments done by 

Wisner et. al. have shown that there is a distinctive difference in spread of the virus in 

keratinocytes and HeLa cells infected with gE negative virus.  In absence of gE there is eight 

fold decrease in plaque formation in keratinocytes in comparison to HeLa cells (transformed cell 

line) (Wisner, Brunetti et al. 2000).  The importance of the gE-gI heterooligomer in neuron-to-

neuron transmission of HSV-1 was shown by Dingwell et.al (Dingwell, Doering et al. 1995).  In 

PRV too it has been reported that gE/gI complex is important for spread at synaptically linked 

regions in the peripheral and central nervous system. 

It has also been reported that gE/gI binds to Fc portion of IgG and thus reduces antibody-

dependent cellular cytotoxicity (ADCC) in infected host. 

 

 



75 
 

Glycoprotein H and L 

 The heterodimeric complex of gH/gL is well conserved within the herpes virus 

subfamilies and is a major target for neutralizing antibodies.  gH, a type I membrane 

glycoprotein encoded by UL22 gene is essential for viral infectivity as deletion of gH results in 

non-infectious progeny and abolishment of cell-cell fusion (Westra, Verjans et al. 2000).  gL 

encoded by UL1 gene is not an integral membrane protein as it lacks a transmembrane domain.  

gH/gL are always found together and forms a stable (1:1) complex that is present on virus 

particles as well as surface of infected cells.  gH consists of 18 amino acid signal peptide and a 

785 amino acid long ectodomain while gL consists of a 25 amino acid signal peptide and 224 

amino acid residue.  The H1 domain of gH interacts extensively with the N-terminal region of 

gL.  This interaction is important for their proper folding since absence of either partner leads to 

misfolding of proteins and lack of surface expression.  A major role of gH, a glycoprotein which 

was earlier thought to have inherent fusogenic properties and also functioned in bringing about  

fusion between membranes during both viral and cell-cell fusion.  However, recent X-ray 

structure of gH ectodomain revealed a crystal structure that did not resemble any of the known 

viral fusogen but rather had an unusual boot shape structure (Chowdary, Cairns et al. 2010).  

Therefore, it has been suggested that instead of acting as a fusogen, gH/gL activates the 

fusogenic potential of gB by binding it directly.  The carboxyl terminus of gH has been shown to 

be important for virus-induced cell fusion (Jackson, Lin et al. 2010). 

Glycoprotein J 

The 279 bp US5 gene encodes the 92 aa glycoprotein J (gJ) (Ghiasi, Nesburn et al. 1998). 

gJ contains a predicted signal peptide and a hydrophobic transmembrane domain.  Deletion 
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viruses that lack the US5 ORF show no phenotypic deficiencies either in vitro or in vivo (Balan 

et al., 1994).  It has been reported by Jerome et al. that HSV-1 inhibits apoptosis of infected 

cells, presumably to ensure that the infected cell survives long enough to allow completion of 

viral replication.  Therefore, it has been suggested that presence of gJ helps the virus to evade the 

host immune system by preventing apoptosis induced by cytotoxic lymphocytes (Jerome, Chen 

et al. 2001).  

Glycoprotein M and UL49.5 (gN) 

Glycoprotein M, encoded by UL10 is considered by certain research groups as a non-essential 

glycoprotein.  It is an extremely hydrophobic glycoprotein with eight transmembrane segments 

and forms a complex with UL49A (gN).  gM is a component of the virion envelope and is 

present in the cytoplasmic membranes of infected cells  (MacLean, Robertson et al. 1993).  

Viruses deficient in the expression of gM exhibit a 10 to 20 fold reduction in virus titers in Vero 

or BHK cells and form slightly smaller plaques (MacLean, Efstathiou et al. 1991).  The 276 bp 

long UL49.5 (UL49A) gene, encodes a 91 aa integral membrane protein, gN (Baines and 

Roizman 1993).  The UL49.5 polypeptide contains a 23 aa cleaved signal peptide and a C-

terminal hydrophobic transmembrane domain (Barnett et al., 1992).  There are also potential 

sites for O-glycosylation, leading to the naming of UL49.5 as glycoprotein N (gN) in some cases. 

However studies have revealed that the UL49.5 gene product shows no evidence of glycosylation 

in HSV-1 infected cells, and appears to be abundantly present in virions, linked to the tegument 

by disulfide bonds (Adams et al., 1998). While initial attempts at deletion of UL49.5 have been 

unsuccessful (Barker and Roizman, 1992); a more recent attempt utilizing a more precise 

deletion resulted in a UL49.5-deficient virus that showed no phenotypic differences in plaque 

yield or morphology but only a marginal two-fold difference in virus yield (Adams et al., 1998). 
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Interestingly, in all herpesvirus subfamilies gM/gN heterodimer is well conserved.  The 

PrV gM has been shown to act as an inhibitor of cell fusion as reported by Klupp et al. (Klupp, 

Nixdorf, and Mettenleiter, 2000).  Although, no definite interaction is seen between HSV-1 gM 

and UL49.5, an enhancement of function has been demonstrated, when both are present; 

inasmuch as cotransfection of the HSV-1 gM and UL49.5 significantly inhibited cell fusion 

caused by the HSV-1 gB, gD and gH/gL or the Molony murine leukemia virus envelope protein; 

while transfection of the HSV-1 gM alone did not inhibit membrane fusion (Koyano et al., 

2003).  At present, the mechanism by which gM and UL49.5 mediate inhibition of cell-to cell 

fusion is unknown. 

Glycoprotein K 

HSV-1 gK is one of the 11 glycoproteins encoded by the virus.  However, the role of 

HSV-1 gK has been debated extensively in the last two decades. Over the past ten years, 

considerable advancements have been made regarding the structure and function of this 

glycoprotein. 

Glycoprotein K is encoded by UL53 gene and is a viral structural protein expressed 

during the “late phase” of transcription.  gK consists of 338 amino acids and consist of several 

hydrophobic domains (Fig. 1.10).  It consists of a signal sequence of 30 aa as well as two 

asparagine residues at positions 48 and 58 that are glycosylated by N-linked mannose 

(Hutchinson, Goldsmith et al. 1992).  The hydrophobicity of gK has hampered the detection of 

this glycoprotein since it is difficult to generate anti-sera against this protein in animals. 
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Figure 1.10: HSV-1 gK membrane topology. (A) The experimentally validated topology of gK 

is shown in conjunction with the secondary predicted structure of gK. Features of the gK 

topology include four membrane-spanning hydrophobic domains (hpd1 to -4), a signal sequence 

of 30 aa, and two N-linked glycosylation sites (CHO). The locations of different syncytial 

mutations published previously are indicated by stars. Chouljenko, V. N., A. V. Iyer, et al. 

(2009). 

 

 

Predicted secondary structure of glycoprotein K  

A number of studies have been done to predict the secondary structure of gK.  Work by 

Debroy et. al predicted gK topology consisting of four transmembrane domains, with both the N-

terminus and C-terminus placed in the extracellular side of cellular membranes  (Debroy, 

Pederson et al. 1985).  To further understand the transmembrane topology of gK, experiments 
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with in vitro translated gK were done in the presence of microsomal membranes.  Data generated 

from these studies demonstrate that gK contains three transmembrane domains (amino acids 125-

139, 226-239, and 311-325)   (Debroy, Pederson et al. 1985; Mo and Holland 1997).  However, 

work in our laboratory confirmed the topology of gK by utilizing epitope tags inserted into 

specific regions of gK that  revealed, gK domain I and domain IV were located extracellulartly; 

whereas domain II and III were located intracellularly and moreover, it consisted of four 

transmembrane domains (Foster, Alvarez et al. 2003). 

gK part of the virion 

There is controversy as to whether HSV-1 gK is a structural component of the virion.  

Previous studies have indicated that gK is not specified on the virion surface.  Lorret et al. were 

unable to detect gK on the virion surface by mass spectrometry.  However, the authors concluded 

that since gk is extremely hydrophobic it could be difficult to detect this glycoprotein since it 

may aggregate upon boiling and not reach the mass spectrometer (Loret, Guay et al. 2008).  Our 

laboratory has successfully reported that gK is a structural component of virions as a Golgi 

complex-dependent glycosylated species present on HSV-1 (KOS) virion.  In 2010 we further 

reported that gk and UL20p can be readily detected on double-gradient purified HSV-1 (F) virion 

preparations.  For these studies a recombinant virus with in-frame epitope tags fused to gK and 

UL20p were used.  Moreover, immunoelectron microscopy of this virus showed the presence of 

gK and UL20p on the surface of virions (Jambunathan, Chowdhury et al. 2011). 

gK is expressed on surface of infected cells 

It was earlier thought that gK was mainly present in perinuclear membranes as well as 

endoplasmic reticulum of infected cells and not expressed on the surface of infected cells.   
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These findings were inconsistent with the role of gK  in syncytia formation that requires the 

surface expression of gK.  Experiments done by Foster et al. were able to solve this paradigm by 

showing that gK is expressed on infected cell surfaces.  Moreover, in absence of UL20p, gK is 

unable to reach infected cell surfaces.  They observed that when Vero cells were infected with 

either gK null or UL20 –null viruses, UL20 or gK respectively were entrapped in endoplasmic 

reticulum (ER).  By confocal co-localization studies it has been shown that gK and UL20p are 

interdependent for post-ER-to –TGN intracellular transport and localization (Foster, Melancon et 

al. 2004). 

Role of gK in virus-induced cell-cell fusion 

It has been well established that gK plays a role in virus –induced cell-to-cell fusion.  Several syn 

mutants have been isolated in which point mutations within the extracellular domain of gK 

(Domain I) leads to extensive cell-cell fusion (Foster, Alvarez et al. 2003).  Several of these syn 

mutants have mutations in codon 40 and this loci is designated as gKsyn 1.  gKsyn1 is known to 

cause extensive virus induced cell fusion in all cell types; while gB syncytial  mutations have a 

restricted cell type range.  Work carrid out in our laboratory showed that in absence of gB a 

recombinant virus carrying a gKsyn1 mutation cannot cause fusion.  Moreocer, gB syncytial 

mutation gBsyn3 or gB amb1511; lacking gK and UL20 gene, fail to cause virus induced cell 

fusion.  These observations further confirm the role of gK and UL20 in gB mediated virus-

induced cell fusion (Foster, Melancon et al. 2004).   

gK is important for virion envelopment and egress 

Glycoproteins gD,gE, gK, gM, the membrane protein UL20 and membrane associated protein 

UL11 are important players in the process of cytoplasmic virion envelopment and egress from 
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infected cells.  Recombinant viruses possessing single, double, triple deletion of these above 

mentioned viral proteins in various combinations show differential defect in virion envelopment.  

However, the most profound effect on cytoplasmic virion envelopment has been documented 

when either gK or UL20 have been deleted.  The cytoplasm of cells infected with these mutant 

viruses (gK null or UL20 null) show accumulation of aberrant enveloped capsids and 

unenveloped capsids.  Therefore gk and UL20p play a critical role during cytoplasmic virion 

envelopment and egress (Jayachandra, Baghian et al. 1997; Foster and Kousoulas 1999; Lee, 

Chouljenko et al. 2009).  

gK interacts with UL20p 

Series of recent studies have shown that HSV-1 gK and UL20 functionally and physically 

interact and that these interactions are necessary for their coordinate intracellular transport and 

cell surface expression. Specifically, direct protein-protein interactions between the amino 

terminus of HSV-1 UL20 and gK domain III, both of which are localized intracellularly, were 

recently demonstrated by two-way coimmunoprecipitation experiments (Foster, Chouljenko et 

al. 2008).  

 Role of gK in entry  

In 2001 experiments done by Foster et al. showed, gK null (HSV-1 (KOS)) virus entry 

was slower in Vero cells in comparison to the wild type virus.  Recently our laboratory reported 

that in absence of the amino terminus (31-68 aa) of gK HSV-1(F) there is a 30% reduction in 

viral entry in Vero cells.  However, it should be noted that virus particles lacking gK also show 

drastic defects in cytoplasmic virion envelopment.  In order to overcome this issue we utilized a 

strategy wherein the amino terminus of gK was cleaved off after formation of fully enveloped 
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mature virion particle.  This was achieved by generating a recombinant virus that encoded a TEV 

protease site immediately after gK aa 68.  Treatment of this recombinant virus with enterokinase 

resulted in cleavage of amino terminus of gK that was subsequently used for entry assay.  Vero 

cells infected with gK cleaved virion particles showed 30-34% decrease in virus entry. 

gK is involved in viral virulence (Jambunathan, Chowdhury et al. 2011). 

Recently, our laboratory has reported that gK plays an important role in virus spread in 

the cornea of mice, neuroinvasiveness and establishment of latency in ganglionic neurons 

(David, Baghian et al. 2008). HSV-1 glycoprotein K may be particularly important for the 

causation of eye disease in humans because it has been reported to exacerbate eye disease 

mediated by anti-glycoprotein K humoral and cellular immune response.  Vaccination with gK 

also appears to block viral clearance from trigeminal ganglia, which results in a chronic, 

productive infection.   

 

Homologs of gK  

Glycoprotein K is conserved among the alphaherpesviruses and homologous proteins 

have been reported for HSV-2 , bovine herpesvirus 1, equine herpesvirus 1, varicella-zoster virus 

(VZV), infectious laryngotracheitis virus (ILTV), and Marek's disease virus. Comparison of 

HSV-1 gK sequence with that of gK from other alphaherpesviruses have shown that there is 46% 

sequence homology with HSV-2, 44% with EHV-1, 53% with Marek disease virus and 43% with 

VZV.  Further it has been reported that gK is a structural virion component of PRV,VZV and 

EHV-1 (Klupp, Baumeister et al. 1998) .  It has been reported that Equine herpes virus type I 

(EHV-1) glycoprotein K is important for virus growth in vitro and it is required for efficient cell-

to-cell spread as well as envelopment and virus egress.  Similar, to its HSV-1 counterpart VZV 
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gK plays an important role in membrane fusion and cytoplasmic virion morphogenesis (Mo, 

Suen et al. 1999). 

Characterization of the Membrane Protein UL20 (UL20p) 

UL20p is encoded by the UL20 gene which lies in the unique long region of the HSV-1 

genome.  It is 222 aa in length and is a gamma late protein conserved in alphaherpes viruses.  It 

is an integral unglycosylated membrane protein that consists of multi-membrane spanning 

domains. The topological orientation of UL20p has been worked upon by several groups.  It was 

first thought that UL20p consists of two-three hydrophobic transmembrane domains but later it 

was shown by computer algorithm to contain four transmembrane domains lacking a signal 

sequence . The predicted secondary structure of UL20p was later confirmed in our laboratory by 

epitope tagging different predicted domains of UL20p (Foster, Melancon et al. 2004).  According 

to the present model of UL20p it consists of four transmembrane domains with the amino 

terminus and carboxyl terminus situated within the cytoplasm.  

UL20p plays a crucial role in cytoplasmic virion morphogenesis. Vero cells infected with 

UL20-null virus exhibit defect in virion egress; and there is accumulation of un-enveloped 

capsids in the cytoplasm (Foster et al. 2004).  It has been suggested that UL20p may function in 

the reenvelopment step or to prevent de-envelopment of virions contained within cytoplasmic 

vesicles. 

As discussed earlier UL20p is needed for proper trafficking of gK beyond the 

endoplasmic reticulum (Foster, Melancon et al. 2004).  Recent studies have shown, that these 

two proteins physically interact and this interaction is necessary for intracellular protein 

trafficking,virus egress and virus-mediated cell-to-cell fusion (Foster, Chouljenko et al. 2008).  
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Recently our laboratory has confirmed the presence of UL20p on virions that interact with both 

gK and gB (Jambunathan, Chowdhury et al. 2011).  

UL20p plays an important role in virus-induced cell fusion.  Most of the syncytial 

mutations in UL20 lie in the amino terminus that lies intracellularly.  It has been revealed that in 

absence of the UL20p syncytial mutations in gK and gB are unable to cause virus-induced cell 

fusion.  Experiments done by Melancon et al. have shown that UL20p domains involved in 

cytoplasmic virion envelopment are distinct from domains involved in virus-induced cell fusion. 

Specifically, UL20 mutations within the amino and carboxyl termini of UL20p allowed 

cotransport of gK and UL20p to cell surfaces, virus-induced cell fusion, and TGN localization, 

while effectively inhibiting cytoplasmic virion envelopment (Melancon, Foster et al. 2004). 

VIRUS-INDUCED CELL-CELL FUSION 

Wild type HSV-1 causes limited fusion in culture, mostly infection leads to rounding of 

cells. The virus can spread from one cell to another either by release of infectious virion particles 

or by virus-induces cell-cell fusion. Cell–cell fusion is a mechanism which facilitates spread of 

the virus without being recognized by the immune system. There are a number of HSV-1 

mutants that cause virus induced cell-to-cell fusion also referred to as syncytia formation (i.e. 

fusion between neighboring uninfected and infected cells). Genetic studies have revealed that 

these mutations are present in at least four loci of the viral genome: the UL20 gene (encoding 

UL20p), the UL24 gene, the UL27 gene (encoding gB), and the UL53 gene (coding for 

gK)(Bzik, Fox et al. 1984; Debroy, Pederson et al. 1985; Baines, Ward et al. 1991; Jacobson, 

Chen et al. 1998). Viruses possessing these mutations are called syncytial mutants or syn 

mutants. Syncytia formation occurs by the interaction between surface expressed viral proteins 
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on infected cells with cellular receptors or other factors on uninfected neighboring cells. Thus 

fusion ensues between altered membranes of infected cells with that of unaltered membranes of 

uninfected cells, ultimately resulting in multinucleated cells.  

The concept that gB is responsible or is part of the fusion process was derived from the 

observation of syncytial phenotype of virus strains with point mutation in the cytoplasmic tail of 

gB. An interesting observation is that syncytial mutations (point mutations, truncations as well as 

deletions) that enhance virus-induced cell fusion are located primarily in the carboxy terminus of 

gB, which lies in the cytoplasm (Chowdary and Heldwein 2010). A single point mutation from 

Arg-His at aa position 857 in HSV-1 (KOS) leads to extensive syncytia formation and is 

designated as gBsyn3 (Baghian, Huang et al. 1993).  

One of the most striking phenotypes is observed when 28 aa from the carboxy terminal of 

gB is deleted.  It results in extensive virus-induced cell fusion and also extensive fusion in a 

virus-free transient cell –cell fusion system consisting of gD, gH/gL and gB plasmids. 

Cell-cell fusion has been well studied in a virus free transient in vitro system. In this 

system four glycoproteins gB, gD, gH and gL when expressed transiently are sufficient to bring 

about fusion (Turner, Bruun et al. 1998). However, in the context of virus induced cell-cell 

fusion surface expression of gK and UL20p are essential.  It has been demonstrated that 

recombinant viruses containing gB syncytial mutation gBsyn3 or gB amb1511 but lacking gK 

and UL20 gene fail to cause virus induced cell fusion (Foster, Melancon et al. 2004).  

Furthermore, a recombinant virus carrying a mutation gKsyn1, cannot bring about fusion 

in absence of UL20. These observations further suggest the role of  gK and UL20 in gB mediated 

virus-induced cell fusion.   
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CHAPTER II 

 

THE AMINO TERMINAL PORTIONS OF HSV-1 gK AND UL20p 

INTERACT WITH gB AND gH AND REGULATE                        

gB-MEDIATED MEMBRANE FUSION 

 

INTRODUCTION 

HSV-1 induced membrane fusion is a complex phenomenon which is regulated by 

multiple control mechanisms involving a number of viral proteins.  Wild type virus infection 

leads to rounding and aggregation of cells but limited amount of virus induced cell-to-cell fusion. 

However, certain point mutations in at least four viral genes lead to extensive virus-induced cell–

to-cell fusion (in vitro); resulting in the formation of large multinucleated cells or syncytia.  

These syncytial mutations have been mapped to UL20 gene (Baines, Ward et al. 1991; Foster, 

Melancon et al. 2004), UL24 gene (Jacobson, Chen et al. 1998), UL27 gene encoding for 

glycoprotein B (gB) (Bzik, Fox et al. 1984) and UL53 gene encoding for glycoprotein K (gK) 

(Bond and Person 1984; Pogue-Geile, Lee et al. 1984; Debroy, Pederson et al. 1985; Pogue-

Geile and Spear 1987).  Syncytial mutations in gK have been shown to cause fusion of a variety 

of cell types, unlike mutations in gB and UL24 that cause extensive fusion only a limited number 

of cell types in cell culture. There is accumulating evidence that membrane fusion is mediated by 

the concerted actions and interactions among glycoproteins gD, gB and the gH/gL heterodimer 

(Atanasiu, Whitbeck et al. 2007). According to the most recent fusion model for virus-cell and 

cell-to-cell fusion mechanism; gD, gH/gL and gB act in an orchestrated fashion to bring about 

fusion. gD is first activated by binding to its cellular receptor and then undergoes conformational 

changes that in turn activates gH/gL.  Activated gH/gL then interacts with gB; up-regulating its 
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fusogenic capability (Atanasiu, Whitbeck et al. 2010).  Most likely, the gH/gL heterodimer 

triggers conversion of the pre-fusion form of gB into a post–fusion conformation which then 

leads to fusion of the viral envelope with cellular membranes during virus entry or fusion of 

cellular membranes during cell-to-cell fusion (Chowdary, Cairns et al. 2010). 

 It is known that surface expression of two additional viral proteins, glycoprotein K (gK) 

and the membrane protein UL20 (UL20p) are needed to bring about virus–induced cell fusion 

(Foster, Melancon et al. 2004; Melancon, Luna et al. 2005).  UL20p and gK are multipass 

transmembrane proteins that form a heterodimeric complex and are coordinately transported to 

the trans-Golgi Network (TGN) and cell surfaces.  These two viral proteins physically interact 

and play important roles in cell-to-cell fusion, cytoplasmic virion envelopment and egress.   

The role of UL20 and gK in virus-induced cell fusion is not well documented. Although 

gB is known to be a fusogenic glycoprotein, the mechanism by which gK is involved in virus-

induced cell fusion remains elusive.  We have recently published that the amino terminus of gK 

is involved in gB mediated cell fusion (Chouljenko, Iyer et al. 2009).  A mutant virus gB28, 

lacking the carboxyl-terminal 28 amino acids of gB loses it extensive syncytial phenotype in 

presence of a truncation in the amino terminus of gK.  My contribution to this paper was to 

understand the functional role of the amino terminus of gK in cell–to-cell fusion and to further 

decipher interactions between the amino terminus of gK and other viral proteins that are part of 

the fusion complex i.e. gB, gH/gL, gD and UL20p.  Thus, the main hypothesis of this work is 

that gK and UL20p physically interact through cytoplasmic and extracellular domains with 

glycoproteins gB, gH or gL to modulate gB mediated membrane fusion. 
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MATERIAL AND METHODS 

Cells  

African green monkey kidney (Vero) cells and human embryonic kidney (HEK293T) 

cells were obtained from the American Type Culture Collection (Rockville, MD). Cells were 

maintained in Dulbecco's modified Eagle's medium (Gibco-BRL, Grand Island, NY) 

supplemented with 10% fetal calf serum and antibiotics.  Spodoptera frugiperda (Sf9; 

Invitrogen, Carlsbad, CA) insect cells were maintained in monolayer and/or suspension cultures 

at 27°C using serum-free Sf-900 II culture medium (SFM) with antibiotics (Pen Strep at a 1:200 

dilution; Gibco).  

Plasmids  

A gene cassette encoding the gKa peptide was constructed to include a 3× FLAG epitope 

inserted in frame after gK aa 82 and cloned into transient expression vector p3XFLAG-CMV14 

(Invitrogen, Inc.).  DNA sequences encoding the ORF of gB and gD were cloned into pcDNA 

3.1/V5/His (Invitrogen) expression vector in frame with theV5 epitope at the carboxyl end. 

Recombinant Virus Construction  

The mutant viruses gKΔ31-68, gBΔ28syn (deletion of 28 aa from the carboxyl terminus 

of gB), and gKΔ31-68/gBΔ28syn were created as described earlier (Chouljenko, Iyer et al. 

2009), using a markerless two-step red recombination mutagenesis system implemented on the 

bacterial artificial chromosome plasmid pYEbac102 carrying the HSV-1(F) genome (a kind gift 

from Y. Kawaguchi, Japan) (Tischer, von Einem et al. 2006).  All ΔgK recombinant viruses 

specified gK carrying in-frame deletions spanning the amino terminus of gK immediately after 

the gK signal sequence (aa 1 to 30). The recombinant virus gBΔ28syn was constructed by 

deleting the carboxyl-terminal 28 aa of gB and inserting one stop codon at the site of the 
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deletion. This viral genome was utilized for construction of the double mutant virus gKΔ31-

68/gBΔ28syn.  

Plaque Morphology  

Confluent monolayers of Vero were infected with an MOI of 0.01 with the indicated 

viruses. 48 hpi the cells were fixed and immunohistochemistry was performed with primary 

rabbit anti-HSV antibodies (1:1000) (Dako, Carpinteria, CA) and the reactions were developed 

with NovaRed substrate (VectorLabs; Burlingame, CA).  Images were taken with an inverted 

light microscope (Olympus) using relief contrast. 

Complementation Assay and Immunohistochemistry 

Nearly confluent Vero cell monolayers were transfected with plasmids expressing gKa.  

Twenty-four hours posttransfection, cells were infected at an MOI of 0.2 with gKΔ31-

68/gBΔ28syn.  Thirty hpi, monolayers were washed with Tris-buffered saline (TBS)-Ca-Mg and 

were fixed with 100% methanol for 10 min or left unfixed (live).  Immunohistochemistry was 

performed by utilizing Vector Laboratories Vectastain Elite ABC kit as described in the 

manufacturer's manual.  Cell fusion was visualized by immunostaining using either anti-FLAG 

or anti-HSV-1 antibody. 

Transfection, Western Immunoblot and Immunoprecipitation  

Subconfluent Vero cells were transfected with gKa plasmid using Lipofectamine 2000 

reagent (Invitrogen) according to the manufacturer's directions.  Thirty hours posttransfection, 

cells were processed for Western blot analysis. Samples were further processed for sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis and were subsequently probed with anti-

FLAG antibody. 
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Immunopreipitation: 293 cell monolayers were co-transfected with plasmid expressing 

the extracellular portion of either gB or gD, along with gKa or transfected with gKa alone.  

Cellular extracts were prepared at 36 hours posttransfection for immunoprecipitation.  In these 

set of reactions Anti-FLAG M2 Affinity Gel beads were used for immunoprecipitation, as per 

manufacturer’s directions.  The anti-FLAG immunoprecipitates were eluted and loaded on 

sodium dodecyl sulfate-polyacrylamide
 
gel followed by immunoblot analysis. The membranes 

were probed with.  either primary monoclonal anti-V5 antibody (1:2000, Invitrogen) or 

monoclonal anti-FLAG antibody (1:4000, Sigma).  Goat anti-mouse secondary antibody 

conjugated with HRP and ECL (GE) substrate were used for detection purposes. 

Construction of Recombinant Baculoviruses and Immunoprecipitation 

Recombinant baculoviruses were generated using the Bac-to-Bac baculovirus
 
expression 

system (Invitrogen, Carlsbad, CA).  To create all the viral constructs pFastbac Dual vector was 

used  that contains two multiple cloning sites to allow expression of two heterologous genes; one 

controlled by the polyhedrin (PH) promoter and the other by the p10 promoter.  Fail Safe DNA 

polymerase (Epicentre) was used for all DNA amplifications.  The first 82 amino acids of gK 

was cloned in frame with the 3×FLAG epitope using forward primer gK-Flag-EcoRI-F and 

reverse primer gK-Flag-9His-HindIII-R.  This PCR product was then cloned into the pFast Dual 

vector (Invitrogen, Inc.) at restriction sites, EcoRI and HindIII under the control of the PPH 

promoter.  This gKa gene cassette resulted in the transfer vector pBD-gKa. DNA sequences 

encoding truncated ectodomains of gH (amino acids 1-792), gH (amino acids 1-603), and gH 

(amino acids 1-343) were first cloned into pcDNA 3.1/V5/His (Invitrogen) expression vector in 

frame with theV5 epitope.  Expression of each protein was confirmed by Western 

immunoblotting of transiently transfected 293 cells.  Plasmid pBD-gKa was used as a backbone 



115 
 

for constructing these additional transfer vectors pgKa/gH792, pgKa/gH603, pgKa/gH343 under 

the baculovirus Pp10 promoter.  Nsi I and Sph I restriction sites were used to clone the PCR 

amplified gH gene cassette into pBD-gKa.  The recombinant pFastBac constructs were 

individually transformed
 
into Escherichia coli DH10Bac cells (Invitrogen) to generate

 
the 

corresponding recombinant bacmids.  Sf9 insect cells were transfected with
 
the recombinant 

bacmid DNA with Cellfectin II (Invitrogen),
 
and the recombinant baculovirus vectors were 

amplified by repeated
 
passages. The recombinant viruses produced are as follows pgKa, 

gH792(pgKa/gH792), gH603(pgKa/gH603), gH363pgKa/gH363. 

           Immunoprecipitation:Sf9 cell lysates were prepared by harvesting the cells 72 hrs post 

infection. The cells collected from one T75 flask were washed with PBS and lysed for 30 min on 

ice with NP-40 lysis buffer (Invitrogen) supplemented with PMSF (Sigma) and cocktail of 

protease inhibitors (Roche).  Immunoprecipitation reactions were
 
performed using Dynabeads 

Protein G (Invitrogen) according to
 
the manufacturer's instructions.  Briefly, 50 µl of Dynabeads

 

was incubated 10 min at room temperature with 2ul of anti- V5 (Invitrogen) antibody for each 

reaction.  The clarified supernatant of mock or infected cell lysates were incubated for 15 min 

with the protein G antibody complex.  After immunoprecipitation and several washes,
 
the eluted 

samples were prepared for sodium dodecyl sulfate-polyacrylamide
 
gel electrophoresis and 

Western blot analysis.  Membranes were probed with either primary monoclonal anti -V5 

antibody (1:2000, Invitrogen) or monoclonal anti-FLAG antibody (1:4000, Sigma). Goat anti-

mouse secondary antibody conjugated with HRP and ECL (GE) substrate were used for 

detection purposes.   
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Live Cell Microscopy and FRET Imaging   

To study the interaction between UL20 and gB, Fluorescence resonance energy transfer 

(FRET) technique was employed.  CFP and YFP flourophore pairs were used in this study.  To 

generate YFP/CFP fusion proteins, gB and UL20 DNA sequence were amplified by PCR and 

ligated to CFP and YFP epitope tags.  The fusion proteins generated were as follows gB-CFP, 

gB-YFP, UL20-CFP and UL20-YFP.  293 cells grown on chamber slides were transfected with 

plasmids expressing various YFP/CFP-tagged proteins.  To visualize CFP and YFP protein 

expression, consecutive images were acquired through corresponding filter channels.  The 

method of sensitized FRET measurement was followed as described previously (Galperin and 

Sorkin 2003).  Briefly, images were acquired sequentially through YFP, CFP, and FRET filter 

channels.  The background images were subtracted from the raw images prior to carrying out 

FRET calculations.  Corrected FRET (FRETC) was calculated on a pixel-by-pixel basis for the 

entire image using Equation 1: FRETc = FRETraw – Df/Dd[CFP] – Df/Da[YFP] where FRETraw,, 

[CFP], and [YFP] are the signals visualized through the FRET, CFP, and YFP filter sets, 

respectively.  The constants Df/Dd and Df/Da are the transmissivity, or bleed-through, constants 

describing donor emission visible in FRET channel and direct excitation of acceptor.  

Normalized sensitized FRET (FRETN) values were obtained according to the following 

equation Equation 2: FRETN=FRETc/ √(YFP XCFP), where FRETC, CFP, and YFP are the 

mean intensities of FRETC, CFP, and YFP fluorescence in the selected sub-region. FRETC 

images are presented in pseudocolor mode.  NFRET values were compared by One-way 

analysis of Variance (ANOVA) followed by Tukey’s post-hoc test.  

Expression and Purification of Glutathione S-transferase (GST) Fusion Protein 

The cytoplasmic domain of UL20p consisting of the first 66 amino acids was cloned into 



117 
 

pGEX-4T-3 vector (Amersham).  Escherichia coli cells, BL21 DE3 star (Invitrogen, CA) were 

transformed with either the GST vector alone or the GST-UL20p amino fusion (GST-UL20am) 

vector.  A single colony of E. coli was grown in 2 ml of LB (Luria-Bertani) medium with 

ampicillin (50 μg/ml).  Next day, 2 ml of the overnight culture was added to 98 ml of fresh LB 

medium and grown at 30

C until the optical density (OD600) reached 0.5-0.6.  When the optical 

density (OD600) approached 0.5, IPTG (isopropyl-β-d-thiogalactopyranoside) was added (final 

concentration of 1 mM) to induce expression; the culture was incubated for an additional 3 hours 

at 30°C.  The harvested cells were lysed by sonication in B-PER (Pierce Chemical) with 20 

mg/liter lysozyme and protease inhibitor cocktail.  The induced protein was then passed over 

glutathione-Sepharose 4B columns for purification purposes as described by the manufacturer 

(Pierce Chemical).  The protein concentrations was determined by the Bradford method relative 

to bovine serum albumin (BSA) protein standards. 

Expression and Purification of Histidine (His) Tagged Fusion Protein 

To express the carboxyl terminal of gB, C-terminal 109 aa of gB was amplified by PCR 

using following primers gB-C F (5-‘GAC GAA TTC CAC CAT CAC CAT CAC CAT CAC 

CAT CGC TAC GTC ATG CGG CTG CAG-3’) and gB-C R (5’-AGA CTC GAG AAA CAG 

GTC CTC GTC GGC GTC ACC GTC TTT-3’) containing EcoRI and XhoI sites  respectively 

(restriction sites are indicated by underline).  The PCR products was digested with the above 

enzymes and cloned into the same restriction sites of pET-21a expression vector (EMD 

Biosciences).  In this construct, the C-terminal had a 6X His sequence in frame with the gene to 

facilitate the purification.  Escherichia coli BL21 DE3 star (Invitrogen, CA) cells were 

transformed with the above gene construct.  A single colony of E. coli was grown in 2 ml of LB 

medium overnight at 37

C.  Next day, 2 ml of overnight culture were added to 98 ml of fresh LB 
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medium and grown at 37

C until the optical density (OD600) reached 0.5-0.6.  Expression of the 

fusion proteins was induced with 0.5 mM IPTG (isopropyl-β-d-thiogalactopyranoside) and the 

culture was further incubated at 37

C for 3 hours.  The induced bacterial culture was harvested 

by centrifugation and the pellet was frozen at -20

C.  Pellets were lysed in lysis buffer (10 mM 

Tris-HCL, PH 8.0, 300 mM NaCl and 10 mM imidazole) containing 0.5 % N- Lauroylsarcosine 

(sarkosyl).  Triton-X 100 was added to the clarified lysate at a final concentration of 1-2%.  The 

target protein was purified by affinity purification by the Profinia system (Bio-Rad) loaded with 

Immobilized metal affinity chromatography (IMAC) column, as recommended by the supplier. 

GST Pull Down Assay 

 To test whether the GST-UL20am protein physically interacted with the carboxyl 

terminal of gB equimolar amounts of both protein were mixed and allowed to interact for 2 hours 

in binding buffer (100mM KCl+10mM Tris-HCL+0.2% Triton X-100 +1mM DDT) at 4C.  The 

protein mixture was then mixed with glutathione-linked agarose beads and rocked for another 8 

hours at 4C.  The GST-beads were then recovered by centrifugation, washed thrice, and 

suspended in sample buffer for SDS-PAGE analysis. Proteins were transferred to nitrocellulose 

membranes,and detected by immunoblotting with the anti-His and anti-GST antibody. 

 

RESULTS 

Plaque Phenotype of the different Mutant Viruses on Vero Cells 

Vero cells were infected with wild type and mutant viruses.  The wild type virus 

produced the characteristic plaque with limited fusion (2.1 A).  Deletion of the carboxyl-terminal 

28 aa of gB caused extensive virus-induced cell-to –cell fusion, producing a distinctive syncytial 
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virus plaque (Fig.2.1B).  In contrast, the gK31-68/gB28syn mutant virus produced non- 

syncytial, substantially smaller plaque (Fig.2.1D), while mutant virus gK31-68 produced a 

plaque that was smaller than the wild type but larger than mutant virus gK31-68/gB28syn 

(Fig.2.1C).  

Expression of the gKa Peptide Consisting of Amino Acid (aa) 1-82 of gK 

A gene cassette encoding the gKa peptide was constructed to include a 3x FLAG epitope 

inserted in frame after gK aa 82 and cloned into transient expression vector p3xFLAGCMV14 

(Invitrogen, Inc.).  Transient expression of gKa in Vero cells produced protein species migrating 

with an apparent molecular mass of approximately 12 to 22 kDa, readily detected by anti-FLAG 

antibody (Fig.2.2). 

 

 

 

Figure 2.1: Plaque phenotype of the different mutant viruses on Vero cells. The plaque 

morphology of recombinant viruses; HSV-1 (F), gB∆28syn, gK∆31-68, gK∆31-68/gB∆28syn 

are produced on Vero cells.  HSV-1gK∆31-68/gB∆28syn is a double mutant virus which has a 

mutation in amino terminus of gK (deletion of 31-68 aa) and carboxyl terminus of gB (28 aa 

truncated) (Chouljenko, Iyer et al. 2009). 
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Figure 2.2: Expression of the gKa peptide consisting of aa 1-82 of gK. Vero cells were 

transfected with the gKa peptide that encodes the first 82 amino acids of gKa and a 3xFLAG 

epitope.  Cell lysate were collected and processed for SDS page and immunoblot assay.  gKa 

species were detected by anti-FLAG antibody. 

 

 

Figure 2.3: Ability of gKa peptide to complement HSV-1gK∆ (31-68)/ gB∆28Syn induced 

cell fusion. Vero cells were transfected with gKa, 24 hrs after transfection cells were 

superinfected with gK∆31-68/gB∆28syn virus.  24 hpi the cells were fixed and stained with 

anti-FLAG (C, D) or anti-HSV antibody (A, B).  Cells transfected with gKa peptide restored 

syncytia formation that was positive for both anti-HSV and anti-FLAG antibody (B,D). 
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The gKa Peptide Complements in trans gK31-68/gB28syn-Induced Cell Fusion 

Vero cells were transfected with gKa peptide (Fig. 2.3: B, D, and C). Twenty-four hours 

posttransfection cells were infected with mutant virus gK31-68/gB28syn (Fig. 2.3: A, B, D) 

under live conditions cells were probed with anti-HSV (Fig. 2.3: A, B) and anti-FLAG antibody 

(Fig. 2.3: C, D).  Only in presence of the gKa plasmid syncytia formation was observed in Vero 

cells infected with gK31-68/gB28syn virus (Fig. 2.3: B, D).  The plaques were positive for 

both anti-HSV and anti-FLAG antibody. 

The gKa Peptide Interacts with Extracellular Portion of gB 

293 cells were co-transfected with gKa plasmid and plasmids expressing full length gB 

and gD glycoproteins according to the following combinations gKa + gB and gKa + gD.  Viral 

glycoproteins gB and gD were clearly detected by anti-V5 antibody in transfected 293 cellular 

extracts (Fig.2.4: B, lane 1 and 2), while gKa protein species were detected by anti-FLAG 

antibody (Fig.2.4: B, lane 1 and 2). Cellular extracts were immunoprecipitated with anti-FLAG 

beads.  Anti-FLAG immunoprecipitates probed with anti-V5 antibody detected gB but not gD 

(Fig. 2.4: C lane 2).  These results indicate that the amino terminus of gKa may interact with the 

amino terminus of gB. 

The gKa Peptide Interacts with Extracellular Portion of gH. 

 Recombinant baculoviruses gH792, gH603, gH343 were constructed to simultaneously 

express the gKa peptide in combination with truncated  portion of gH (Fig.2.5).  Western 

immunoblots of infected Sf9 cellular extracts probed with anti-V5 monoclonal antibody detected 

gH in all three baculovirus constructs (Fig. 2.4.: A).  The truncated viral glycoproteins gH; 
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Figure 2.4: gKa interacts with extracellular portion of gB. 293 cellular extracts obtained 

after transfection with following plasmid combinations (gB+gKa) and (gD +gKa) were 

immunoprecipitated with anti-V5 antibody.  Immunoprecipitates were separated by SDS page 

gel electrophoresis followed by immunoblotting with anti-V5 (B) or anti-FLAG antibody (A). 

Molecular mass standards are shown with dashes on each panel (250, 150, 100, 75, 50, 37,25, 

20, 15, and 10 kDa).  

 

gH792, gH603, gH343 exhibited apparent molecular masses of approximately 95 to 110 kDa, 

75kDa and 45 to 55 kDa, respectively.  The anti-FLAG (anti-gKa) antibody was used to detect 

the expression of the gKa peptide in all four recombinant constructs (Fig. 2.4.: B).  The gKa 

peptide was efficiently expressed, in all recombinant baculoviruses migrating in SDS gels with 

an apparent molecular mass of approximately 15 to 22 kDa.  Cellular extracts were 

immunoprecipitated with anti-V5 antibody.  These immunoprecpitates, when probed with anti-

V5 antibody revealed the presence of truncated gH proteins with apparent molecular masses of   
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Figure 2.5: Construction of recombinant gH baculoviruses. The portion of gH, expressed by 

the baculoviruses.  Schematic of the gene cassettes expressing the truncated gH792, gH603, 

gH363, and gKa inserted in recombinant baculovirus genomes.  Pp10 and PpH are baculovirus 

promoters for the p10 and polyhedrin genes, respectively.  V5 epitope was inserted at the 3’ end 

of truncated gH gene cassettes and 3xFLAG epitope at 3’ of gKa. 

 

approximately 95 to 100 kDa, 60 to 65 kDa, 45 to 50 kDa, and 18 to 20 kDa, respectively (Fig. 

2.6:C).  The gH (363) protein species co-migrated with the IgG heavy chain, but it was readily 

detected due to the substantial increase in band  intensity over the IgG heavy-chain background.  

The gKa protein species (detected by anti-FLAG) was present only in anti-V5 

immunoprecipitates containing truncated versions of gH but not in the sample that expressed 

gKa alone (Fig. 2.6:D).  This suggests that the amino terminus of gK interacts with the truncated 

versions of the amino terminus of gH. 

Interactions between UL20p and gB. 

 293 cells were transfected with gB and UL20 fusion proteins according to the the following 

combination, (gB-YFP / gB-CFP), (gB-YFP / UL20-CFP),(gB-CFP /UL20-YF) and  (YFP 

/CFP).  36hrs post-transfection FRET microscopic analysis was performed on all                        
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Figure 2.6: gKa interacts w/h extracellular portion of gH. SF9 cellular extracts obtained after 

infection with recombinant baculoviruses expressing gKa alone or in combination with truncated 

versions of gH (gH 792,gH 603 and gH363) were immunoprecipitated with anti-V5 antibody.  

Immunoprecipitates were separated by SDS page gel electrophoresis followed by 

immunoblotting with anti-V5 (C) or anti-FLAG antibody (D.) Molecular mass standards are 

shown with dots on each panel (250, 150, 100, 75, 50, 37,25, 20, 15, and 10 kDa 

 

sample combinations under live conditions.  Briefly, images were acquired sequentially through 

YFP, CFP, and FRET filter channels.  Sensitized FRET calculations were performed as 

described under material and method section.  As a control for FRET analysis, FRET signals 

were measured for cells co-expressing CFP-YFP protein combination.  The normalized  FRET 

(NFRET) values were compared between the sample groups (Fig. 2.7).  High FRET signals were 

obtained in cells that co-expressed gB-YFP and gB-CFP fusion proteins suggesting that gB 

forms a protein complex.  FRET signal obtained from CFP-YFP were minimal and were 
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Figure 2.7: Plausible interaction between gB and UL20p. Normalized FRET (NFRET) values 

were compared between sample groups and control groups. gB-YFP/gB-CFP produced high 

FRET signal. gB-YFP/UL20-CFP protein combination produced FRET signal more than the 

negative control group (YFP/CFP). 

 

considered insignificant.  FRET signals were detected for cells co-expressing (gB-YFP / UL20-

CFP) or (gB-CFP / UL20-YF) fusion proteins.  The measured FRET signal for this protein 

combination (gB/UL20p) was higher than (CFP-YFP).  These results suggest that UL20p and gB 

are in close proximity and interact with each other and to form a protein complex (Fig.2.7). 

Interaction between the Amino Terminus of UL20p and Carboxyl Terminal of gB  

Bacterial extracts revealed the presence of UL20 protein species as overexpressed 

protein species in induced bacterial samples after Coomassie blue staining of  
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Figure 2.8: Live cell microscopy and FRET imaging. 293 cells were co-transfected with 

following combination of plasmid gB-YFP/gB-CFP, gB-YFP / UL20-CFP and YFP/CFP. 

Representative images of samples showing FRET signal. 

 

SDS-polyacrylamide gels (Fig.2.9:A).  The GST protein alone migrated with a molecular weight 

of 25kDa while the GST-UL20am fusion proteins migrated with a molecular mass of 34kDa.  

Both proteins were purified on glutathione columns, and the purified proteins were detected by 

Western immunoblot assay probed with anti-GST antibody (Fig. 2.9: B).  Bacterial extracts 

revealed the presence of the carboxyl terminal of gB (cloned in frame with a Histidine-tag 

epitope at the C terminal) as a overexpressed protein species in induced bacterial samples, after 

staining of SDS-polyacrylamide gel. Purified gBc protein species migrated with a molecular 

weight of 20kDa (Fig. 2.10).  To test, whether the GST-UL20am protein physically interacted 

with the carboxyl terminal of gB, equimolar amounts of both protein were mixed and 

subsequently precipitated with glutathione-linked agarose beads.  These immunoprecipitates 

when probed with anti-GST anti-His antibodies  revealed the presence of GST and GST-

UL20am with apparent molecular masses of 25KDa and 34KDa; and His-gBc fusion protein 

with apparent molecular mass of 20KDa.  The GST-UL20am precipitation specifically co-

precipitated the carboxyl terminal of gB while GST precipitation failed to precipitate gB,  
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Figure 2.9: SDS-PAGE and Coomassie blue staining of crude cell lysates from bacterially 

expressed GST and GST fused with the amino terminus of UL20p (A). Immunoblot specific 

detection of purified GST or GST fused with the amino terminus of UL20p using anti-GST 

antibody (B). 

 

 

Figure 2.10: SDS-PAGE and Coomassie blue staining of bacterial cell lysates from bacterially 

expressed Histidine  fused with the carboxy terminal of gB (His-gBc). Purified gB-His fusion 

protein migrated with a molecular mass of 20KDa .  
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Figure 2.11: Amino terminus of UL20p interacts with the carboxyl terminus of gB.  Purified 

GST-UL20am (amino terminus of UL20p) and HisgBc (carboxyl terminal of gB) proteins were 

mixed and subsequently precipitated with glutathione-linked agarose beads. Immunoprecipitates 

were separated by SDS page gel electrophoresis followed by immunoblotting with anti-GST or 

anti-His antibody. Molecular mass standards are shown with dashes on each panel (250, 150, 

100, 75, 50, 37,25, 20, 15, and 10 kDa).  

 

indicating that the amino terminus of UL20p specifically interacts with the carboxyl terminal of 

gB (Fig 2.11:D, lane 2). 

 

DISCUSSION 

HSV-1 enters cells by catalyzing a membrane fusion reaction between the viral 

membrane and cellular membrane; a mechanism which needs a concerted action of viral 

glycoproteins and cellular receptors.  This fusion process occurs during both viral entry, as well 

as, cell-to-cell fusion and needs the quartet of glycoproteins gD, gB and gH/gL.   
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These glycoproteins are sufficient to bring about cell-cell fusion when expressed from plasmid 

vectors in absence of any other viral glycoprotein.  However extensive cell-cell fusion 

(multinucleated cells) has also been observed in the context of viral infection in an in vitro 

system.  These multinucleated cells have been designated as syncytia and are a result of point 

mutations within four viral genes; UL20 gene, UL24 gene, UL27 gene encoding for glycoprotein 

B (gB) and UL53 gene encoding for glycoprotein K (gK).  It is also known that certain mutations 

in the carboxyl terminus of gB and the amino terminus of gK cause extensive virus-induced cell 

fusion (Chowdary, Cairns et al. 2010) (Foster, Alvarez et al. 2003).  Previous work from our 

laboratory has shown that gK syn1 mutations do not cause virus-induced cell-to-cell fusion in the 

absence of gB, and that gB syn3 mutations do not cause fusion in the absence of UL20p (Foster, 

Melancon et al. 2004).  Moreover, certain mutations within the amino terminus of the UL20p 

protein (located intracellularly) cause extensive virus-induced cell fusion, while others inhibit 

gB-mediated cell fusion (Foster, Melancon et al. 2004; Melancon, Fulmer et al. 2007) .  

Therefore, it is obvious that surface expression of gK and UL20p are needed for virus-induced 

cell-to-cell fusion.  The recently solved X-ray crystal structure of gB has implicated it, as the sole 

viral fusogen in HSV-1 that orchestrates the final step of fusion in which the viral membrane and 

cell membrane are pulled close together and ultimately fuse.  The role of gK and UL20p in this 

process of virus-induced cell-to-cell fusion is not well documented.  We have shown that the 

amino terminus of gK is involved in virus-induced cell fusion, since its absence drastically 

inhibits the syncytial phenotype of mutant virus gBsyn28.  When this amino terminus was 

provided in trans, the syncytial phenotype of mutant virus gBsyn28 was restored.  This 

observation suggested that the amino terminus of gK may directly or indirectly interact with gB 

and /or other viral proteins.  Immunoprecipitation results revealed that the gKa peptide 

physically interacted with gB and gH but not gD.  Recombinant baculoviruses were created to 
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specifically delineate the extracellular portion of gH that interacts with gKa.                             

Co-immunoprecipitation results revealed that the gKa peptide directly interacted with all three 

truncated versions of the amino terminus of gH [(1-792aa), (1-603aa), and (1-363aa)].   

  Moreover, FRET analysis revealed that UL20p, the binding partner of gK interacts with 

gB.  Similar results showing the interaction between gB and UL20p was obtained in infected 

cells.Specifically the amino terminus of UL20 (GST-tag) interacted with the carboxyl terminal of 

gB (His-tag).   

These results indicate that the amino terminus of gK plays a role in gB mediated cell 

fusion and is absolutely essential for virus-induced cell fusion.  The role of gK can be envisioned 

as a fusion regulator that controls virus-induced cell fusion as seen in cells infected in the wild 

type virus.  This regulation of fusion may be important for the virus in order to prevent 

uncontrolled cell fusion by gB.  In fact, the exaggerated syncytial phenotype observed when 

Vero cells were infected with mutant virus gBdeltasyn28 is lost in presence of a deletion in the 

amino terminus of gK.  Furthermore, the amino terminus of gK interacts directly with the 

extracellular portion of gB and gH that are needed for gB mediated cell fusion.  It was also 

revealed that the amino terminus of gB interacts with the carboxyl terminal of UL20 situated in 

the cytosolic phase of the membrane.  Based on these observations a new fusion complex can be 

proposed.  This complex consists of glycoproteins gB.gD, gH,gK and gL as well as the 

membrane protein UL20p.  gD the receptor binding glycoprotein interacts with its cognate 

receptors and triggers the fusion machinery consisting of gH/gL and gB.  The gH/gL complex 

then interacts with gB resulting in conformational changes in gB.  In this model, the gB 

conformation is also controlled or regulated by the heterodimer gK/UL20p, ie. gK and UL20p 

are like “tongs” that control the conformation of gB by interactions occurring at both 
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cytoplasmic and extracellular portions of gB.  In this regard, syncytial mutations in either gK or 

UL20 enhance virus-induced cell fusion by physically altering conformational restrictions on gB 

imposed by gK and UL20.   
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CHAPTER III 

 

THE AMINO TERMINUS OF HSV-1 GLYCOPROTEIN K (gK) 

MODULATES VIRION ENTRY INTO CELLS VIA THE PAIRED 

IMMUNOGLOBULIN-LIKE TYPE-2 RECEPTOR ALPHA 

(PILR) 

 

INTRODUCTION 

The HSV-1 entry mechanism is unique among enveloped viruses, as well as complex, 

since it involves specific glycoproteins for each step of virus entry i.e. attachment, binding and 

fusion. Specific glycoproteins embedded in the viral envelope interact with various cellular 

receptors to facilitate virus entry into different types of cells. Initial attachment of the virus to 

cellular membranes is mediated by interaction of glycoproteins gB and gC with 

glycosaminoglycan (GAG) moieties of cell surface proteoglycans (Herold, WuDunn et al. 1991; 

Shukla and Spear 2001).  This initial attachment of virions to cellular membranes is thought to 

facilitate subsequent binding  of gD with one or more of its specific receptors, including the 

herpesvirus entry mediator (HVEM or HveA), nectin-1 (HveC), or 3-O-sulfated heparan sulfate 

(Montgomery, Warner et al. 1996; Geraghty, Krummenacher et al. 1998; Shukla, Liu et al. 

1999). Recent reports have shown that gB can also bind to additional receptors (co-receptors), 

including paired immunoglobulin-like type 2 receptor alpha (PILR ), nonmuscle myosin heavy 

chain IIA (NMHC-IIA), and myelin-associated glycoprotein (MAG), that play a pivotal role in 

virion attachment and virus entry (Satoh, Arii et al. 2008; Arii, Goto et al. 2010; Suenaga, Satoh 

et al. 2010). The sequence of events that ultimately lead to fusion of the viral envelope with 

cellular membranes is triggered by the interaction of gD to its cognate receptors                
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(nectin-1, HVEM, and other receptors) and also, gB binding to its cognate receptors. These 

events are thought to cause conformational changes, first in gD ,then in gH/gL, and eventually in 

gB leading to gB mediated membrane fusion (Heldwein, Lou et al. 2006; Connolly, Jackson et 

al. 2011). 

Depending on the cell type, the virus can enter by three possible entry pathways: (I) entry 

mediated by fusion of the viral envelope with the host cell membrane in a pH-independent 

manner as seen in Vero and HEp-2 cells (Nicola, McEvoy et al. 2003); (II) receptor-mediated 

endocytosis followed by pH dependent fusion between the viral envelope with endocytic 

membranes, as evident in HeLa and Chinese hamster ovary (CHO) cells expressing the nectin-1 

gD receptor (Nicola, McEvoy et al. 2003); (III) entry mediated via low-pH-independent 

endocytosis as shown for C10 murine melanoma cells (Milne, Nicola et al. 2005).  Recently, it 

has become apparent that gB-specific receptors play important roles in viral entry (Arii, Uema et 

al. 2009).  Moreover, gB-specific receptors such as PILRα or other cellular factors may 

determine whether the virion enters predominantly via fusion at the plasma membrane, or via 

receptor-mediated endocytosis, (pH-dependent or pH-independent) followed by fusion of the 

viral envelope with endosomal membranes (Arii, Uema et al. 2009).  

We have shown, gK is a structural component of virions and it interacts with UL20 

protein on virion particles.  Furthermore gK plays a role in entry inasmuch as virions lacking 

entire gK or the amino terminal of gK (aa 31-68) enter susceptible cells substantially slower than 

the wild-type virus (Foster, Rybachuk et al. 2001; Jambunathan, Chowdhury et al. 2011).  

Furthermore, HSV-1 gK and UL20 functionally and physically interact, which is most essential 

for their coordinate intracellular transport, cell surface expression, and also other related 

functions in the HSV-1 life cycle (Foster, Melancon et al. 2004; Foster, Chouljenko et al. 2008).  
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Recently, we showed that the amino terminus of gK interacts with gB and can complement gB-

mediated cell fusion (Chouljenko, Iyer et al. 2009; Chouljenko, Iyer et al. 2010). These results 

have strongly suggested that the gK/UL20 protein complex can bind gB and gH and modulate 

membrane fusion phenomena occurring during both virus entry and virus-induced cell fusion.  

In this chapter, we show that the gK amino terminus is necessary for efficient virus entry 

via the PILR gB-specific receptor, but not for entry via the gD-specific receptors, nectin-1 and 

HVEM.  Moreover, PILR is shown to form a multi-protein complex with gB and gK, but not 

gD.  HSV-1 (McKrae) receptor-specific entry into CHO-nectin-1 occurs via pH-independent 

mechanisms in contrast to previous reports (Nicola, McEvoy et al. 2003).  These results strongly 

implicate gK/UL20 as contributing factors in the utilization of the PILR receptor for entry.  

 

MATERIALS AND METHODS 

Cells and Plasmids 

African green monkey kidney (Vero) cells were obtained from the American Type 

Culture Collection (Rockville, MD, USA) and grown and propagated in Dulbecco’s modified 

Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and antibiotics.  

VK302 cells permanently expressing gK were originally obtained from David Johnson (Oregon 

Health Sciences University, Portland, OR). Cells were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) (Gibco-BRL, Grand Island, NY) supplemented with 10% fetal calf 

serum and antibiotics. CHO-nectin 1 cells was a gift from Dr. Richard Longnecker, 

(Northwestern, University) and were propagated in Ham’s F12 medium supplemented with 10% 

fetal calf serum (FCS) and 200 µg/ml G418.  The CHO-hPLIRα cells were also obtained from 

Dr. Longnecker and were grown in Ham’s F12 medium supplemented with 10% fetal calf serum 
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(FCS) and 700 µg/ml G418.  The human CHO-HVEM was created by using PiggyBac 

Transposon system (System Biosciences) as described earlier (Chowdhury, Naderi et al. 2012).  

All cells were cultured in non-selective medium prior to use in infectivity assay.  293 PEAK TM 

Rapid (gift from Dr. Longnecker) was grown in DMEM supplemented with 10%FBS.  Plasmid 

expressing the soluble human PILR-IgG Fc hybrid protein (pME 18S PILRα-Ig) and CD200-Ig 

Fc fusion protein were kind gifts from Dr. Hishashi Arase, (Osaka University, Osaka Japan) and 

Dr. Kawaguchi respectively.  Plasmids expressing the Ig fusions proteins were constructed as 

described in by Satoh et.al (Satoh, Arii et al. 2008). 

Viruses 

The clinical ocular isolate and neuroinvasive strain of HSV-1 (the parental wild-type), 

McKrae strain, was obtained from Dr. J. M. Hill (Louisiana State University Health Sciences 

Center, New Orleans, LA, USA).  This McKrae genome has been cloned into the bacterial 

artificial chromosome vector that also contains an excisable EGFP expression cassette creating 

McKrae-EGFP-BAC virus.  The recombinant mutant YE102-VC1 (HSV-1, F strain) has double 

tags, gK and UL20 containing the V5 and 3xFLAG antigenic epitopes, respectively.  GFP-tagged 

Vesicular stomatitis virus (VSV-GFP) was a kind gift from Dr. John Rose (Yale University, New 

Haven, Conn.).  The mutant viruses gKΔ31-68, gBΔ28syn (deletion of 28 aa from the carboxyl 

terminus of gB), and gKΔ31-68/gBΔ28syn have been described earlier (Chouljenko, Iyer et al. 

2009). 

Construction of Recombinant HSV-1 Mutant Viruses 

The HSV-1 (the parental wild-type), McKrae strain was cloned into the bacterial artificial 

chromosome (BAC) plasmid pBeloBAC11(NEB) as described : A gene construct was created 

wherein the LoxP recombination site was fused together with DNA fragments of approximately 
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1kb of McKrae DNA sequence, encompassing portions of the UL3-UL4-targeted genomic region 

by PCR-based overlap-extension.  This gene construct was subsequently cloned into the pCR 

2.1-TOPO plasmid vector (Invitrogen).  Similarly, another gene expression cassette containing 

the EGFP gene flanked by FRT recombination sites (for future potential removal of the EGFP 

gene cassette), was constructed and cloned into pEF6/V5-His TOPO plasmid vector (Invitrogen) 

under control of the EF1 promoter.  This gene cassette was excised from the vector by using 

EcoRI endonuclease and blunt-ended by T4 polymerase.  It was cloned into the blunt-ended 

BamHI site of pBeloBAC11.  Cre recombinase enzyme (NEB) was used for in vitro reaction to 

fuse together the L-LoxP-R Amp resistant pCR 2.1- based plasmid and LoxP-EGFP Cm resistant 

pBeloBAC-based plasmid.  The plasmid DNA created after fusion with Cre recombinase was 

used to transfect Vero cells using Lipofectamine 2000 (Invitrogen).  The transfected cells were 

infected with HSV-1(McKrae) at six hours post transfection.  Fluorescent microscopy was used 

to select fluorescent viral plaques that contained the inserted McKrae genome in the bac plasmid 

(McKbac).  The presence of the bac plasmid was verified by PCR-assisted DNA sequencing.  

The recovered McKbac virus was utilized for the construction of gK mutant viruses.  The mutant 

viruses gKΔ31-68 (encoding gK carrying an in-frame deletion of aa 31 to 68), and gKΔ31-117 

(encoding gK carrying an in-frame deletion of aa 31 to 117), were created as described earlier for 

the HSV-1(F) genome cloned into a bacterial artificial chromosome using a markerless two-step 

red recombination mutagenesis system (Tischer, von Einem et al. 2006).   

 

Replication Kinetics, Plaque Morphologies of McKbac and gK Mutant Viruses and 

Electron Microscopy  
 

Viral plaques were visualized by immunohistochemistry, as we have previously 

described (Melancon, Foster et al. 2004; Melancon, Luna et al. 2005; Fulmer, Melancon et al. 



138 
 

2007; Lee, Chouljenko et al. 2009).  Analysis of one-step growth kinetics was performed as 

described earlier (Foster, Rybachuk et al. 2001; Foster, Alvarez et al. 2003).  Confluent Vero cell 

monolayers were infected with each virus at 4°C for 1 hour at an MOI of 0.2 and 2. Thereafter, 

plates were incubated at 37°C and 5% CO2 and virus was allowed to penetrate for 1 h at 37°C. 

Any remaining extracellular virus was inactivated by low-pH treatment (pH 3.0), and cells were 

subsequently incubated at 37°C and 5% CO2. Supernatants and cell pellets were separated at 

different times post infection and stored at -80°C. Viral titers were obtained on the VK302 cell 

line that expresses the HSV-1(KOS) gK gene. The ultrastructural morphology of virions within 

infected cells was examined by transmission electron microscopy as described previously 

(Jayachandra, Baghian et al. 1997; Foster and Kousoulas 1999; Foster, Melancon et al. 2004; 

Melancon, Luna et al. 2005; Lee, Chouljenko et al. 2009). All infected cells processed for 

electron microscopy were prepared at 18 hpi and visualized by transmission electron 

microscopy. 

Virus Entry Assay  

Confluent monolayers of CHO-neo, CHO-HVEM, CHO-PILR, CHO-human nectin-1 

and Vero cells were infected with McK(bac), McKrae (gKΔ31-68), McKrae (gKΔ31-117) at a 

multiplicity of infection (MOI) of 1 for 1 hr, at 34°C. The virus inoculum was subsequently 

removed, and the cultures were shifted to 37°C.  Eight to twelve hpi, the cells were fixed and 

stained with anti-ICP4 antibody (Virusys, Inc., Taneytown, MD), and Alexa Fluor 647 goat anti-

mouse IgG1(Life Technologies, Grand Island, NY ), for flow cytometry analysis (FACS).  The 

relative efficiency of virus entry was calculated as the percentage of cells expressing ICP4. Mean 

values and standard deviations of three independent experiments were calculated and normalized 

to CHO-neo entry values.  
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Treatments with Lysosomotropic Agents 

 Stock solutions of ammonium chloride (1.5 M) was prepared in distill water immediately 

prior to use.  Monensin (75 mM; Sigma) and bafilomycin A1 (100 mM; Sigma) were dissolved 

in ethanol and dimethyl sulfoxide, respectively, and stored at −20°C.  The pH of all solutions 

was adjusted to 7.4, prior to use.  Growth medium was removed from cells and replaced by 

medium containing inhibitors and the plate was incubated for 1 hour at 37°C.  After incubation, 

virus was added in presence of the inhibitor for 1 hour at 34°C and subsequently removed; cells 

were incubated again in presence of inhibitor until they were collected for FACS analysis. 

Immunohistochemistry  

Nearly confluent CHO-neo, CHO-nectin-1, CHO-hPILR cell monolayers were infected 

with an MOI of 1 with mutant viruses gKΔ31-68, gBΔ28syn, and gKΔ31-68/gBΔ28syn and 

HSV-1 (F). 14 hpi, monolayers were washed with Tris-buffered saline (TBS)-Ca-Mg and fixed 

with 100% methanol for 10 min. Cell fusion was visualized by immunostaining using anti-HSV-

1 antibody. 

Preparation of Purified Ig Fusion Proteins and Immunoprecipitation Assay  

293 PEAK Rapid cells were transfected with the plasmid pME18S-PILRα-Ig and a 

control plasmid expressing human CD200-Ig Fc fusion protein with 293 Fectin (Invitrogen).  

Supernatants from transfected cells were collected at 48 and 72 h after transfection and pooled.  

Ig fusion proteins were purified by protein A affinity chromatography and were subsequently 

used for immunoprecipitation.  Vero infected cells were ruptured with  NP40 lysis buffer 

(Invitrogen) and subsequently used for immunoprecipitation.  Lysates were immunoprecipitated 

with PILRα-Ig or CD200-Ig (control) and the immunoprecipitates were eluted with elution 

buffer.  Immunoprecipitates were separated on 5–20% polyacrylamide gels and were transferred 
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onto PVDF membranes (Millipore) which were blotted with anti-gB or anti-gD or anti-FLAG or 

anti-V5 antibody (Ab).  Ig fusion proteins used for immunoprecipitation were detected by anti-

human IgG Ab. 

 

RESULTS 

Construction and Characterization of Recombinant HSV-1 (McKrae) Viruses 

 To facilitate the construction of recombinant viruses carrying specific mutations in gK 

and other genes, the HSV-1(McKrae) genome was cloned as an artificial bacterial chromosome 

essentially as described previously.  Specifically, the bac plasmid was inserted within the 

intergenic region between the UL3 and UL4 genes. The bac plasmid contained a gene cassette 

encoding the green fluorescence protein (GFP) under the human cytomegalovirus immediate 

early promoter (HCMV-IE) (Fig.3.1: I).  The cloned McKrae genome (McKbac) was 

subsequently utilized for the construction of recombinant viruses carrying deletions of 37 

(gK31-68) and 86 (gK31-117) using the two-step markerless red recombination mutagenesis 

system (Tischer, von Einem et al. 2006), as previously described for the construction of similar 

mutant viruses in the HSV-1(F)  genomic background (Chouljenko, Iyer et al. 2009) 

The McKbac virus produced viral plaques on Vero cells that were similar to the HSV-

1(McKrae) wild-type virus (not shown).  The McK(gK31-117) recombinant virus produced 

very small viral plaques containing on an average 2-7 cells per plaque.  In contrast, the 

McK(gK31-68) virus produced viral plaques that were approximately half-the-size of the 

McKbac plaques.  Infection of VK302 cells, that express the HSV-1(KOS) gene under the gD 

promoter control resulted in efficient complementation for plaque morphology and virus spread 

for the McK (gK31-68) virus, but not for the McK(gK31-117) virus (Fig. 3.2:I).              
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These plaque phenotypes were consistent with similar plaque morphologies and cellular spread 

defects, exhibited by the gK31-117 and gK31-68 mutations, constructed on the HSV-1(F) 

genetic background with the following exceptions: 1) the McK(gK31-68) virus produced 

partially syncytial plaques in VK302 cells, unlike the HSV-1(F) (gK31-68) virus characterized  

 

 

 

Figure 3.1:  Cloning of the HSV-1 (McKrae) genome into a BAC and schematic 

representation of mutant recombinant viruses. Linear representation of the HSV-1 genome 

structure, with two unique regions (long and short), each flanked by a pair of terminal repeats.  

An expanded region of the HSV-1 genome between intergenic region UL3 and UL4 is shown.  

The BAC containing an EGFP sequence was inserted between the intergenic region UL3 and UL4 

to create a recombinant virus McKrae BAC (McKbac).  The McKbac virus was utilized for the 

construction of gK mutant viruses. The mutant viruses gKΔ31-68 (encoding gK carrying an     

in-frame deletion of aa 31 to 68), and gKΔ31-117 (encoding gK carrying an in-frame deletion of 

aa 31 to 117). 
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Figure 3.2: (I) Plaque morphologies of gK mutant and wild-type HSV-1(McKrae) viruses. 
Vero cells were infected with an MOI of 0.001, and viral plaques were fixed with methanol and 

stained with anti-HSV antibodies as described in Materials and Methods. Representative viral 

plaques of all gK mutant viruses and the HSV-1(McKrae) wild-type virus are shown on both 

Vero (A to C) and VK302 (D to F) cells.  (II) One-step replication kinetics of HSV-1(Mckrae) 

wild-type (wt) and gK mutant viruses.  Vero cells were infected at either a low MOI (MOI of 

0.1) or a high MOI (MOI of 2), and the numbers of infectious viruses produced were determined 

on VK302 cells at different times post infection. Viral titers after high -MOI infection are shown 

in panel A. Low-MOI titers are shown in panel B.  
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previously (Chouljenko, Iyer et al. 2009), 2) the McK(gK31-117) virus was not efficiently 

complemented in VK302 cells, unlike the HSV-1(F)(gK31-117) virus (Chouljenko, Iyer et al. 

2009). 

The replication kinetics of both McKbac and McKrae gK mutant viruses revealed that the 

gK31-68 mutant virus replicated quite efficiently in Vero cells achieving viral titers of 

approximately one log less than the parental McKbac virus.  While the gK31-117 virus 

replicated inefficiently producing viral titers that were more than 3 logs less than the McKbac 

virus at both low MOI (0.2) and relatively high MOI (2) (Fig.3.2:II). 

Ultrastructural Characterization of Wild-type and Mutant Viruses  

The ultrastructural phenotypes of all mutant viruses relative to the wild-type parental 

virus were investigated, utilizing transmission electron microscopy at 18 hpi by visually 

examining fifty individual virus-infected Vero cells.  The wild-type virus did not exhibit any 

apparent defects in cytoplasmic virion envelopment and egress.  Fully enveloped virion particles 

were observed both in intracellular compartments as well as in extracellular spaces. (Fig.3.3).  

Similarly, mutant virus Mck(gKΔ31-68) did not show any apparent defect in envelopment and 

fully enveloped virion particles were excreted out of infected cells.  Ultrastructural visualization 

of Vero cells infected with mutant virus Mck(gKΔ31-117) showed severe defects in virion 

envelopment and egress, characterized by the presence of numerous unenveloped capsids in the 

cytoplasm.  These results are in agreement with the ultrastructural morphologies of mutant 

viruses carrying the same gK mutations in the HSV-1(F) genetic background (Chouljenko, Iyer 

et al. 2009) .  
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Figure 3.3: Ultrastructural morphology of wild-type and mutant viruses. Electron micrographs 

of Vero cells infected at an MOI of 2 with A) McKbac B) McK(gKD31-68) C) McK(gKD31-68) 

and processed for electron microscopy at 18 hpi are shown.  Nucleus (n), cytoplasm (c), and 

extracellular space (e) are marked. 

 

Characterization of McKbac and gK Mutant Viruses Entry into Vero and Chinese 

Hamster Ovary (CHO) Cells Expressing Different HSV-1 Cellular Receptors   

 

We have shown previously that recombinant viruses gK31-68 and gK31-117 show 

substantial defect in virus entry into Vero cells (Chouljenko, Iyer et al. 2009).  To ascertain the 

relative efficiencies of virus entry into cells, viruses were allowed to enter into their target cells 

for an hour at 34

C and virus entry was detected by monitoring the level of ICP4 protein 

expression at 8-12 hpi, as described previously (Jambunathan, Chowdhury et al. 2011) (see also 

Materials and Methods).  Both gK mutant viruses entered into Vero cells, albeit with decreased 

efficiencies as compared to the McKbac virus (Fig.3.4: A).  The entry defect associated with 

these gK mutations was particularly pronounced in PILR expressing CHO cells in which both 

gK mutant viruses entered up to 9-fold less efficiently than the McKbac virus (Fig.3.4: B). In 

contrast, all viruses entered efficiently into both CHO-nectin-1 and CHO-HVEM cells, while K-

mutant viruses appeared to enter slightly more efficiently than the McKbac virus (Fig.3.4: C, D). 
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Figure 3.4:  Comparison of entry efficiencies of McKbac wild type and gK-mutant viruses. 

(A) Entry into Vero cells. (B) Entry into CHO-PILRα. (C) Entry CHO-nectin-1. (D) Entry into 

CHO-HVEM (D).  All cells were infected with Mckbac and gK mutant viruses gKΔ31-68 and 

gK Δ31-117   with an MOI of 1.  At 8 h post-infection, the cells were stained with anti-ICP4 

antibody and analyzed by flow cytometry to determine the percentage of infected cells.   

(Statistical difference, p≤0.05; * represents statistically different, ** represents significant 

statistical differences) 
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The Effect of Lysosomotropic Agents on Entry of McKbac and gK Mutant Viruses, into 

Dfferent Cell Types   

 

It has been reported that HSV-1 enters into HeLa and CHO-nectin-1 cells via pH-

dependent endocytosis (Nicola, McEvoy et al. 2003).  To investigate the pH dependence of 

McKbac and gK mutant viruses into different cells, lysosomotropic inhibitors, NH4Cl, monensin 

and bafilomycin (inhibit the acidification of endosomes) were utilized and compared to virus 

entry of vesicular stomatitis virus (VSV), which is known to enter via pH-sensitive endocytosis 

(Le Blanc, Luyet et al. 2005).  Monensin and NH4Cl inhibited VSV entry into CHO-nectin-1 

cells in a dose-dependent manner.  However, both inhibitors did not inhibit McKbac nor gK 

mutant virus entry (Fig.3.5: A, B, C, D).  Similarly, monensin, NH4Cl, as well as bafilomycin 

did not inhibit McKbac or gK mutant virus entry into CHO-PILR cells (Fig.3.5: E, F, G). 

The Effect of gK Mutations on the Ability of gB to Cause Virus-Induced Cell Fusion in 

CHO Cells Expressing gB or gD-Specific Receptors.   

 

To investigate the relationship between gB-induced cell fusion and specific viral 

receptors, a previously characterized set of viruses that contain deletions in the carboxyl terminus 

of gB and amino terminus of gK was utilized (gKΔ31-68, gBΔ28syn, gK31-68/gB28syn). 

CHO nectin-1, CHO-HVEM and CHO-PILR cells were infected with these mutant viruses and 

the wild type virus (HSV-1 F).  The gB28syn virus caused extensive fusion in all cells, as it has 

been previously shown for Vero cells (Chouljenko, Iyer et al. 2009).  In contrast, the gK31-

68/gB28syn that does not cause fusion in Vero cells caused extensive cell fusion only in CHO-

nectin-1 cells, but limited fusion in CHO-PILR cells (Fig. 3.6). 
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Figure 3.5: The effect of lysosomotropic agents on McKbac and gK mutant virus entry. 
Cells (CHO-nectin-1) were pretreated with different concentrations of ammonium chloride 

(Panel B,D) and monensin (Panel A,C) and infected with Mckbac and Mckbac gK mutants 

(Panel A and B) or VSV (Panel C and D) for 1 h at 34°C in the presence of the inhibitor.  One 

hour after infection the inoculum was removed and the cells were incubated in continued 

presence of the inhibitor at 37°C until the cells were processed for flow cytometry.  The cells 

were stained with anti-ICP4 antibody and analyzed by flow cytometry to determine the 

percentage of infected cells.  Cells (CHO-PILR were pretreated with different concentrations of 

ammonium chloride (G), monensin(E) and bafilomycin(F) and infect with HSV-1(Mckrae) as 

described above.  6 hours post infection the percentage of GFP positive cells were calculated by 

FACS analysis. 
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Figure 3.6: Visualization of relative extent of virus-induced cell fusion in CHO  cells 

expressing different cellular receptors. CHO- nectin1, CHO-hPILRα and CHO neo were 

infected with HSV-1 (F), HSV-1 gK∆31-68, HSV-1∆28 gBsyn and HSV-1gK∆31-68/gB∆28syn. 

14 hpi the cells were fixed and stained with anti-HSV antibody. 

 

 

PILRα Interacts with gB, gK and UL20p in Virus-Infected Cells.   

Glycoprotein B (gB) is known to interact with the amino terminus of PILR (Satoh, Arii et 

al. 2008).  Moreover, we have shown that the amino terminus of gK, as a free peptide, interacted 

with the amino terminus of gB and could complement gB-mediated cell fusion (Chouljenko, Iyer 

et al. 2009).  To investigate whether PILR interacted simultaneously with both gB and gK, the 

purified PILR-Ig protein was mixed with cellular extracts obtained from infected cells and 
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immunoprecipitated using magnetic beads coated with protein A (see Materials and Methods). 

Immunoprecipitates were subsequently tested for the presence of gB, gD, gK and UL20 using 

specific antibodies for each protein in western immunoblots. Detection of gK and UL20 was 

accomplished through the use of the YE102-VC1 virus, which expresses gK tagged with the V5 

epitope and UL20 tagged with the 3xFLAG epitope (Jambunathan, Chowdhury et al. 2011). 

Viral infected lysates were immunoprecipitated with soluble PILRα (Fig. 3.7: A, C, E, G, I) and 

control IgG fusion protein CD200 IgG (Fig.3.7: B, D, F, H J).  PILRα-Ig fusion protein 

immunoprecipitated gB (C, lane 2), UL20p (E, lane 2) and glycoprotein K (G, lane 2) but not gD 

(A, lane 2).  The control CD200 IgG fusion protein did not react with any of the viral proteins 

(Fig.3.7). 

 

DISCUSSION 

Glycoprotein K and UL20p are highly conserved among alpha herpesviruses, suggesting 

that they serve similar functions in the lifecycle of these viruses.  Both these proteins of HSV-1 

have been intimately associated with membrane fusion phenomena since mutations in either gK 

or UL20 cause extensive virus-induced cell fusion. Moreover, both gK and UL20 are structural 

components of the virion particle and function during virus entry in which the viral membrane 

fuses with either the plasma or endosomal membranes.  Recent evidence suggests that gK and 

UL20 modulate these membrane fusion phenomena by direct interactions with viral glycoprotein 

B (gB), which is considered the main fusogenic viral glycoprotein (Heldwein, Lou et al. 2006). 

In this researchwork, we have utilized CHO cells expressing individual receptors to show that 

gK is functionally associated with gB-specific receptors for both virus entry and virus-induced 

cell fusion. 
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Figure 3.7: Soluble PILRα interacts with gB, gK and UL20p in virus infected cells. Western 

blot analysis of immunoprecipitates of PILRα ligand from HSV-1-infected cells. Vero cells were 

infected with a double tagged HSV-1 virus (YE102-VC1).  Infected lysate were 

immunoprecipitated with PILRα-Ig or  CD200-Ig (control) and the immunoprecipitates were 

separated by SDS-PAGE, followed by blotting with anti-gB ,anti-gD,anti-V5 and anti-FLAG Ab. 

The Ig fusion proteins used for immunoprecipitation were detected by anti-human IgG Ab (Pane 

I and J). Molecular mass standards are shown with dots on each panel (250, 150, 100, 75, 50, 

37,25, 20, 15, and 10 kDa; Precision Plus protein standards; Bio-Rad).  Lane1 –lysate from 

infected cells and Lane 2-lysates immunoprecipitated with PILRα-Ig or  CD200-Ig. 
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The McKrae viral strain was isolated from an ocular clinical sample of a patient suffering 

from acute infection (Kaufman, Ellison et al. 1969).  This viral strain is particularly virulent in 

mice and rabbits in comparison to other laboratory and clinical strains (Halford, Balliet et al. 

2004).  Initial investigations suggested that the McKrae viral strain is able to utilize the PILRα 

receptor more efficiently than other viral strains. Therefore, the McKrae genome was cloned into 

a bacterial artificial chromosome to facilitate the construction of additional recombinant viruses 

with defined mutations in gK and UL20.  The McKbac appeared to have similar characteristics 

with regard to viral growth and plaque formation. Moreover, initial results suggest that insertion 

of the bac plasmid did not substantially affect the neurovirulence characteristics of the parental 

McKrae virus in mice (not shown).   

Recombinant McKbac viruses containing the gK31-68 and gK31-117 mutations appeared 

to replicate in a similar manner to the previously reported identical mutations in the HSV-1(F)  

pYE102 bac genetic background.  Plaque phenotypes, replication kinetics and ultrastructure 

morphologies were similar irrespective of the viral genetic background (Chouljenko, Iyer et al. 

2009).  However, the gK31-68 mutation appeared to cause cell fusion in the gK complementing 

cell line VK302, while the HSV-1(F) gK31-68 virus did not (Chouljenko, Iyer et al. 2009).  

Moreover, growth in VK302 cells did not efficiently complement the McK gK31-117 defect 

although the HSV-1(F) gK31-68 was efficiently complemented (Chouljenko, Iyer et al. 2009).  

Recently, we sequenced all major McKrae viral glycoprotein (gB, gC, gD, gH, gL, gK, UL20p) 

genes involved in membrane fusion and compared their primary structures to other viral strains.  

These results showed that the McKrae and F viral strains have identical gK and UL20 amino acid 

sequences; however there are specific amino acid differences between their respective gB 

glycoproteins including specific amino acid changes located at the amino terminus of gB.  
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Moreover, there are substantial amino acid differences between the KOS gK expressed in VK302 

cells and the McKrae and F strain gK sequences (Chowdhury, Naderi et al. 2012).  There are 

number of amino acid changes in the McKrae gB amino acid sequence when compared to that of 

the F gB sequence.  Therefore, the KOS gK specified by the VK302 complementing cell line 

may be able to complement the gK mutants in the F genomic background more effectively than 

the same mutations in the McKrae genetic background. 

Virus entry and virus-induced cell fusion are considered to be mediated by similar 

membrane fusion mechanisms involving viral glycoproteins gB, gD, gH and gL (Atanasiu, Saw 

et al. 2010).  gK and UL20 are intimately associated with virus-induced cell fusion, since 

mutations in either gK or UL20 cause extensive cell fusion of a variety of cell types, unlike 

mutations in gB and UL24 that cause extensive fusion only a limited number of cell types in cell 

culture.  A largely unexplained phenomenon is that either gK and UL20 are absolutely required 

for virus-induced cell fusion even in the presence of highly fusogenic mutations in gB 

(Chouljenko, Iyer et al. 2009).  However, deletions of the amino terminus of gK or the entire gK 

gene caused delayed entry into Vero cells suggesting that gK and UL20 are required for entry 

into cells in cell culture.  Here we show for the first time, that gK functions in both virus entry 

and virus-induced cell fusion which are intimately associated with the gB-specific receptor 

PILR; since gK mutant viruses entered efficiently into CHO-nectin-1 and CHO-HVEM cells, 

but not CHO-PILR cells.  Furthermore, this functional association between gK and gB-specific 

receptor PILR was also demonstrated by the gB28syn mutant virus that caused extensive cell 

fusion of CHO-nectin-1 cells, but not PILR cells in the presence of the gK mutation 31-68.  

Therefore, a potential explanation of the previously reported inability of the gK31-

68/gB28Syn virus to cause fusion in Vero cells (Chouljenko, Iyer et al. 2009), suggests that 
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Vero cells express one or more gB-specific receptors that function in conjunction with gK in 

modulation of the fusogenic properties of gB. Vero cells do not appear to express PILR 

(Chowdhury and Kousoulas, unpublished), however, they are known to express a recently 

discovered gB-specific receptor, the non-muscle myosin heavy chain IIA (NMHC-IIA) receptor 

that may function in a similar manner as PILR.  

HSV-1 virions can enter by fusion at the plasma membrane or by fusion with endosomal 

membranes in acidic or neutral endosomes after endocytosis (Nicola, McEvoy et al. 2003).  

Previous work by others researchers have indicated that HSV-1 enters via pH-dependent 

endocytic pathway into CHO-nectin-1 cells (Nicola, McEvoy et al. 2003).  However, testing a 

variety of lysosomotropic inhibitors to prevent acidification of endosomes revealed that the 

McKbac entered into all cells in presence of increasing concentration of inhibitors i.e. through a 

pH-independent entry mechanism.  It is possible that pH-dependence is dependent on the viral 

strain and specific cell line utilized in different studies.  Alternatively, death of inhibitor-treated 

cells at higher inhibitor concentrations may appear to cause decrease in virus entry.  In this 

regard, the relative viability of cells treated with the various inhibitors should be carefully 

monitored to ensure the validity of the relevant results.  Clearly, HSV-1 McKbac and gK mutant 

viruses enter into all cells via a pH-independent mechanism which is significantly different from 

the entry of VSV.  Additional studies are required to discern whether the different receptors 

influence whether the virus enter via fusion at the plasma membrane versus fusion with 

endosomal membranes intracellularly. 

The amino terminus of gK was shown to physically and functionally interact with the amino 

terminus of gB (Chouljenko, Iyer et al. 2010).  Here we show that soluble PILR was able to 

precipitate gB, gK and UL20 suggesting that PILR, gB, gK and UL20 form a functional protein 
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complex in infected cells. Based on the fact that PILR binds to the amino terminus of gB, it is 

possible that gB binds both PILR and the gK/UL20 protein complex independently of each 

other utilizing distinct gB domains.  Alternatively, PILR may bind gK/UL20 in the presence or 

absence of gB.  These possibilities will be discerned in future experiments.  The observed 

functional association between gK/UL20 and the gB-specific receptor PILR and potentially 

other gB-specific receptors suggest that gK/UL20 may to some extent determine host range in 

various cell types that express variable amounts of gD and gB-specific receptors  (Arii, Goto et 

al. 2010). 
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CHAPTER IV 

AMINO ACID DIFFERENCES IN GLYCOPROTEINS B (gB),     

C (gC), H (gH) AND L(gL) ARE ASSOCIATED WITH 

ENHANCED HERPES SIMPLEX VIRUS TYPE-1 (MCKRAE) 

ENTRY VIA THE PAIRED IMMUNOGLOBULIN-LIKE TYPE 2    

RECEPTOR α* 

 

INTRODUCTION 

Herpes simplex type 1 (HSV-1), Herpes simplex type 2 (HSV-2) and Varicella-zoster 

virus (VZV) are human neurotropic viruses that belong to the Alphaherpesvirinae subfamily and 

are a major cause of worldwide morbidity (Fisman, Lipsitch et al. 2002; Stahl, Mailles et al. 

2011; Steiner 2011; Zamora 2011).  Neurovirulence, establishment of latency in sensory neurons 

and intermittent reactivation are some of the unique properties of these viruses (Whitley, 

Kimberlin et al. 1998).  Reactivation of latent virus from trigeminal ganglia can lead to recurrent 

ocular infections and is a leading cause of blindness in developed countries (Liesegang, Melton 

et al. 1989; Liesegang 2001).  In very rare cases HSV-1 can spread spontaneously to the brain, 

causing life threatening herpes encephalitis (Steiner 2011). 

Herpes virus initiates infection by binding to heparan sulfate (HS) moieties on cell 

surfaces using viral glycoproteins gC and gB  (Herold, WuDunn et al. 1991).  Moreover, viral 

 

_______________________________________ 

*Reprinted from the Virology Journal, 2012 June; 9(1):112. [Epub ahead of print], Amino Acid Differences in 

Glycoproteins B (gB), C (gC), H (gH) and L(gL) are Associated with Enhanced Herpes Simplex Virus type-1 

(McKrae) Entry via the Paired Immunoglobulin-like Type-2 Receptor α, Open access publication, BioMed Central 

publisher of Virology Journal . 
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glycoprotein D (gD) binds to different cellular receptors including the herpesvirus entry mediator 

(HVEM, or HveA), nectin-1 (HveC), or 3-O-sulfated HS (Geraghty, Krummenacher et al. 1998; 

Shukla, Liu et al. 1999).  Apparently, gB can also bind to additional receptors including the 

paired immunoglobulin-like type 2 receptor alpha (PILRα), non-muscle myosin heavy chain IIA 

(NMHC-IIA), and myelin-associated glycoprotein (MAG) that function in virion attachment and 

virus entry  (Satoh, Arii et al. 2008; Suenaga, Satoh et al. 2010).  HSV-1 enters into epithelial 

and neuronal cells via a pH-independent fusion of the viral envelope with plasma membranes, 

while it can enter into a wide range of non-neuronal cells via either pH-independent or pH-

dependent endocytosis. Binding of gD and gB to their cognate receptors is thought to trigger 

sequential conformational changes in gH/gL and gB causing gB-mediated fusion of the viral 

envelope with cellular membranes during virus entry, as well as fusion among cellular 

membranes  (Heldwein, Lou et al. 2006; Hannah, Heldwein et al. 2007; Connolly, Jackson et al. 

2011). 

HSV-1 clinical isolates, such as the McKrae and H129 strains, are known to be highly 

virulent in rodents and rabbits in comparison to other laboratory strains such as KOS  (Hill, 

Rayfield et al. 1987; Hill 1987; Perng, Mott et al. 2002).  Several viral proteins and glycoproteins 

contribute to neurovirulence and latency in vivo, however their mode of action is not well 

elucidated (Cameron, McDougall et al. 1988; Kosovsky, Vojvodova et al. 2000) (Gordon, Simon 

et al. 1984; Kurachi, Daikoku et al. 1993; Nishiyama, Kurachi et al. 1993; Yuhasz and Stevens 

1993; Perng, Thompson et al. 1995; Rajcani and Kudelova 1999; Imai, Arii et al. 2011).  HSV-1 

gK is known to be involved in neurovirulence (Rajcani and Kudelova 1999; Mott, Perng et al. 

2007; Osorio, Mott et al. 2007; David, Baghian et al. 2008; Mott, Chentoufi et al. 2009), and is a 

structural component of the virion particle functioning in virus entry into epithelial cells (Foster, 
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Rybachuk et al. 2001; Jambunathan, Chowdhury et al. 2011), cytoplasmic virion envelopment, 

virion egress and virus-induced cell fusion (Hutchinson, Roop-Beauchamp et al. 1995; 

Jayachandra, Baghian et al. 1997; Foster and Kousoulas 1999).  Recently, we showed that HSV-

1 gK and UL20 physically bind to gB and gH and modulate gB-mediated membrane fusion 

(Chouljenko, Iyer et al. 2009; Chouljenko, Iyer et al. 2010). Also, we reported that gK is 

essential for virus spread in the cornea of mice, neuroinvasiveness and establishment of latency 

in ganglionic neurons (David, Baghian et al. 2008). 

In this manuscript, we compared the relative efficiency of virus entry between HSV-1 

McKrae and F strains and found that McKrae entered substantially more efficiently into Chinese 

hamster ovary (CHO) cells expressing the hPILRα receptor. We sequenced all viral genes 

encoding viral glycoproteins involved in entry and cell-to-cell fusion and identified aa 

differences between McKrae and F strains that may cause the observed enhanced entry of 

McKrae over other viral strains. 

MATERIAL AND METHODS 

Cells and Viruses 

The clinical ocular isolate and neuroinvasive strain of HSV-1 (the parental wild-type), 

McKrae strain, was obtained from Dr. J. M. Hill (Louisiana State University Health Sciences 

Center, New Orleans, LA, USA). African green monkey kidney (Vero) cells were obtained from 

the American Type Culture Collection (Rockville, MD, USA) and grown and propagated in 

Dulbecco’s modified Eagle Medium (DMEM) supplemented with 7% fetal bovine serum (FBS) 

and antibiotics. The HSV-1 McKrae strain was maintained as a low passage stock on Vero cells. 

CHO-neo cells and CHO hnectin-1 were a kind gift from Dr. Yasushi Kawaguchi,                      
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(The University of Tokyo, Tokyo, Japan) and were propagated in Ham’s F12 medium 

supplemented with 10% fetal calf serum (FCS) and 250 μg/ml G418. The CHO-hPLIRα cells 

were obtained from Dr. Hishashi Arase, (Osaka University, Osaka Japan), and were grown in 

Ham’s F12 medium supplemented with 10% fetal calf serum (FCS) and puromycin, 1ug/mL. 

The human CHO-HVEM was created in our laboratory using PiggyBac Transposon system 

(System Biosciences). HVEM gene was cloned into PB514BL-1 PiggyBac Dual Promoter 

Vector and CHO cells expressing HVEM were selected using puromycin, 12 ug/mL. All cells 

were cultured in non-selective medium prior to use in infectivity assays. 

Viral DNA Extraction and DNA Sequencing 

Viral DNA was isolated from infected Vero cells as described previously for tissue 

samples (David, Baghian et al. 2008).  Briefly, confluent monolayers of Vero cells were infected 

at a multiplicity of infection of 2 and harvested by scraping at 24 hour post-infection. Cell pellets 

were rinsed with PBS and viral DNA was extracted using the DNAeasy Blood and Tissue Kit 

according to manufacturer’s instruction (Qiagen, Valencia, CA, USA). 

Purified McKrae DNA and Fail Safe DNA polymerase (Epicentre Biotechnologies, 

Madison, WI) were used for PCR. Due to the high GC content of the genomic DNA, PCR was 

performed using a series of primers which generated overlapping products encompassing the 

entire gene to be sequenced. PCR products were column-purified (Zymo Research Corp., 

Orange, CA) and sequencing reactions were prepared using the Big Dye Terminator v3.1 Cycle 

sequencing Kit (Life Technologies). DNA sequencing was performed in both directions by a 

primer walking strategy for each gene using an automated DNA sequencer (3130 Genetic 
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Analyzer, Applied Biosystems). The list of all synthetic oligo-nucleotides used for amplification 

of the McKrae genes and sequencing is shown in the supplementary Table 1. 

Sequence Assembly and Nucleotide and Amino Acid Alignments 

The Sequencher (4.10.1) software package was used to assemble the overlapping 

fragments using default parameters. Sequence assembly was performed using the HSV-1 (F) 

strain as the reference sequence (Gene Bank: GU734771.1). Nucleotide sequences of the 

following McKrae genes: gB, gC, gD, gH, gL, gK and UL20 were submitted to GenBank 

(accession numbers: JQ320080.1, JQ359758.1, JQ320083.1, JQ320081.1, JQ359759.1, 

JQ320082.1, JQ320079.1). 

The CLC sequence Viewer version 6 software was used to align the aa sequences of 

H129 (GenBank: GU734772.1), F (GenBank: GU734771.1) and KOS strain (gB: AAG34116.1; 

gC: AAA45779.1; gL: AAA99790.1) against the derived McKrae sequences. Alignment was 

performed using the default parameters of the Clustal W alignment program (CLC sequence 

viewer software). To determine nucleotide and aa sequence variation between the McKrae and F 

strains, the sequences were aligned by the MegAlign program in the DNASTAR software 

package (Lasergene). The differences in nucleotides and aa in the coding region of each 

sequenced gene were tabulated in Tables 1, Table 2, Table 3 and Table 4. 

Virus Entry Assays 

Confluent monolayers of CHO-neo, CHO-hHVEM, CHO-hPILRα, CHO-human nectin-1 

and Vero cells were infected with HSV-1 strains (McKrae and F) at a multiplicity of infection of 

1 for 1 hr at 34 °C. The virus inoculum was subsequently removed, and the cultures were shifted 
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to 37 °C. Twelve hours post-infection (hpi), the cells were fixed and stained with anti-ICP4 

antibody (Virusys, Inc., Taneytown, MD) and Alexa Fluor 647 goat anti-mouse IgG1             

(Life Technologies, Grand Island, NY). The relative efficiency of virus entry was calculated by 

flow cytometry as the percentage of cells expressing ICP4 normalized to the CHO-neo entry 

values. Mean values and standard deviations of three independent experiments were calculated. 

RESULTS 

Both McKrae and F viruses appeared to enter with similar efficiency into Vero and CHO 

cells expressing either nectin-1 or HVEM (Fig. 4.1: A, C, D, respectively). In contrast, F entered 

into CHO cells expressing hPILRα substantially less efficiently than McKrae (Fig.  4.1: B). 

Comparison of McKrae, F, KOS and H129 gB aa sequences (Fig. 4.2) revealed that most of the 

aa differences between the four strains were located within the N-terminal 80 aa of gB. Amino 

acid comparison of four strains revealed that KOS had a number of aa that differed from the 

other HSV-1 strains. McKrae gB had a unique aa (A28V) within its predicted signal sequence 

(Figure 4.2). Comparison of F and McKrae gB sequences showed the following aa changes: 

C10R, A28V, P61A, A62P, T67P, N77P, and P79K (Table 1). 

Comparison of the aa sequence of gC of HSV-1 McKrae, F, KOS and H129 revealed that 

aa variations between the four strains were distributed throughout the protein (Fig. 4.3). 

Although McKrae and KOS were more similar to each other, McKrae differed from all three 

strains at aa positions 289 (A289D) and 299 (F299L).  Specifically, there were 20 nucleotide 

differences between gC of F and McKrae strains. 
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Figure 4.1: Comparison of HSV-1(F) and McKrae entry efficiencies. (A) Entry into Vero 

cells. (B) Entry into CHO-hPILRα. (C) Entry into human CHO-hNectin-1. (D) Entry into CHO-

hHVEM (D). All cells were infected with HSV-1(F) or McKrae at an MOI of 1. At 12 h post-

infection, the cells were stained with anti-ICP4 antibody and analyzed by flow cytometry to 

determine the percentage of infected cells. 
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Table 4.1 HSV-1 (F) and McKrae gB Nucleotide and Amino acid Differences 

 

Base# F McKrae Amino acid # Amino acid 

change 

28 T C 10 Cys → Arg 

83 C T 28 Ala → Val 

150 A C   

181 C G 61 Pro → Ala 

184 G C 62 Ala → Pro 

199 A C 67 Thr → pro 

229 A C 77 Asn → Pro 

230 A C 77 Asn → Pro 

235 C A 79 Pro → Lys 

236 C A 79 Pro → Lys 

966 T C   

1,513 C A   

1,899 C T   

1,932 C T   

 

 

Out of 20 nucleotide differences only 8 resulted in the aa changes V16L, Q75K, D116G, L132P, 

A289D, F299L, H306R, R421H (Table 2). Nucleotide comparison between gD of HSV-1 F and 

McKrae strain revealed no aa differences between the McKrae and F strains (data not shown). 

Comparison of the McKrae, F and H129 gH aa sequences revealed that these proteins were 

highly conserved (Fig.4.4).  

There were only three aa differences in the H1 domain of gH and two aa differences 

within the C terminal H3 domain of gH.  There were two unique aa substitutions (S670N and 

C720R) in McKrae gH that were not present in either strain F or H129.  Moreover, HSV-1(F) 

and McKrae strains differed by four aa in gH (Y147H, V150A, N670S, and R720C) (Table 3). 
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Figure 4.2: Alignment of the predicted glycoprotein B (gB) amino acid sequences specified 

by HSV-1 strains McKrae, H129, F and KOS. Amino acids that match the McKrae sequence 

are represented by dots. Amino acid changes that are different with respect to the HSV-1 

McKrae strain are shown. The region of gB (aa 1–640), which contains aa substitutions is shown 
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Figure 4.3: Alignment of the predicted glycoprotein C (gC) amino acid sequences specified 

by HSV-1 strains McKrae, H129, F and KOS. Amino acids that match the McKrae sequence 

are represented by dots. Amino acid changes that are different with respect to the HSV-1 

McKrae strain are shown 

 

Amino acid alignment of gL encoded by McKrae, F, H129 and KOS revealed a number of aa 

differences that were spread across the entire protein (Fig. 4.5).  The aa sequence of strain 

McKrae was similar to strain H129 except at aa residues 171,181 and 212.  Comparison between 

nucleotide sequence of gL of HSV-1 F and McKrae strain revealed 19 nucleotide differences, ten 

of which coded for different aa (S22P, K90R, V100G, N115D, P168L, G171R, P181S, P196S, 

L202S, A212T) (Table 4).  

Seven of these aa changes were conserved in the H129 strain (P22, R90, G100, D115, L168, 

S196, S202) (Table 4). F and McKrae gK sequences were absolutely conserved despite four 

nucleotide changes within their genes. Similarly, there were four nucleotide changes between the 

UL20 gene of HSV-1 F and McKrae strains without causing any aa changes 
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Table 4.2 HSV-1 (F) and McKrae gC Nucleotide and Amino acid Differences 

 

Base# F McKrae Amino acid # Amino acid change 

46 G T 16 Val → Leu 

177 G A   

223 C A 75 Gln → Lys 

279 A G   

347 A G 116 Asp → Gly 

393 T C   

394 T C 132 Leu → Pro 

395 T C   

594 A G   

619 G A   

636 C T   

866 C A 289 Ala → Asp 

897 T G 299 Phe → Leu 

917 A G 306 His → Arg 

981 A C   

1,071 G A   

1,254 G A   

1,262 G A 421 Arg → His 

1,365 G A   

1,485 A G   

 

 

DISCUSSION 

HSV-1 utilizes multiple receptors to attach and enter into a variety of cells including 

neurons. Recently, it was shown that gB binds to cellular receptors that are required for gB-

mediated membrane fusion during virus entry and virus-induced cell fusion. We show here that 

the HSV-1 McKrae strain utilizes the gB receptor hPILRα more efficiently than HSV-1(F). DNA 

sequencing of all viral glycoprotein genes involved in membrane fusion indicates that there are a 

number of aa differences between HSV-1(F) and McKrae in gB, gC, gH and gL that may affect 

PILR α mediated virus entry. 
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Figure 4.4:  Alignment of the predicted glycoprotein H (gH) amino acid sequences specified 

by HSV-1 strains McKrae, H129 and F. Amino acids that match the McKrae sequence are 

represented by dots. Amino acid changes that are different with respect to the HSV-1 McKrae 

strain are shown 

 

Table 4.3 HSV-1 (F) and McKrae gH Nucleotide and Amino acid Differences 

 

Base# F McKrae Amino acid # Amino acid change 

439 T C 147 Tyr → His 

449 T C 150 Val → Ala 

558 A G   

1,596 G T   

1,650 A C   

1,899 C T   

2,009 A G 670 Asn → Ser 

2,067 C G   

2,158 C T 720 Arg → Cys 

2,217 A G   

2,301 G A   
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Figure 4.5: Alignment of the predicted glycoprotein L (gL) amino acid sequences specified 

by HSV-1 strains McKrae, H129, F and KOS. Amino acids that match the McKrae sequence 

are represented by dots. Amino acid changes that are different with respect to the HSV-1 

McKrae strain are shown 

 

Table 4.4 HSV-1 (F) and McKrae gL Nucleotide and Amino acid Differences 

 

Base# F McKrae Amino acid # Amino acid change 

21 C T   

64 T C 22 Ser → Pro 

165 T C   

261 T C   

269 A G 90 Lys → Arg 

273 A G   

294 A G   

299 T G 100 Val → Gly 

327 C T   

333 A G   

343 A G 115 Asn → Asp 

489 A C   

503 C T 168 Pro → Leu 

511 G A 171 Gly → Arg 

541 C T 181 Pro → Ser 

586 C T 196 Pro → Ser 

605 T C 202 Leu → Ser 

634 G A 212 Ala → Thr 

660 C T   
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Recently, we cloned the HSV-1(McKrae) strain as a bacterial artificial chromosome (bac) 

that has enabled us to rapidly produce mutant viruses, as we have previously done with HSV-

1(F) bac (Melancon, Luna et al. 2005; Melancon, Fulmer et al. 2007).  We have found that this 

viral strain efficiently enters into a variety of cells including CHO cells constitutively expressing 

hPILRα.  hPILR α binds gB and membrane fusion can be affected by interactions of gB with 

viral glycoproteins gD, gH/gL and gK/UL20 (Chouljenko, Iyer et al. 2009; Chouljenko, Iyer et 

al. 2010; Connolly, Jackson et al. 2011).  Therefore, we compared the predicted aa sequences 

between F and McKrae strains and found a number of aa that could contribute to the observed 

increased efficiency of entry of McKrae over F and other strains. Of particular importance were 

aa changes between F and McKrae located within the amino terminus of gB, known to bind to 

PILRα and gK (Wang, Fan et al. 2009; Chouljenko, Iyer et al. 2010).  Specifically, gB binds to 

PILR α via O-linked glycans located at aa positions 53 and 480 (Wang, Fan et al. 2009). 

However, gB binding to PILRα is also dependent on the conformation of the amino terminus of 

gB, since aa insertions in gB could reduce this binding (Fan, Lin et al. 2009).  Insertional 

mutagenesis has revealed that the structure and function of gB is not particularly flexible in 

tolerating aa insertions (Lin and Spear 2007).  The McKrae gB contains additional proline 

residues at aa positions 67 and 77, while other proline residues have been re-arranged. 

Specifically, the F gB has a proline at aa 61, which is an alanine for the McKrae strain, but the 

McKrae gB contains a proline at aa 62 instead of alanine. The structure of the amino terminus of 

gB is not known, although the x-ray structure of gB (aa 111–726) was obtained (Heldwein, Lou 

et al. 2006).  The additional proline residues suggest that the amino terminus of gB assumes a 

conformation that may affect binding to hPILR α (Williamson 1994; Tabata, Kuroki et al. 2008; 

Wang, Shiratori et al. 2008; Wang, Fan et al. 2009).  In addition, this altered conformation of gB 
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may affect interactions with gK, which binds to the amino terminus of gB and regulates gB-

mediated membrane fusion (Chouljenko, Iyer et al. 2010).  Interestingly, six aa changes seen in 

McKrae versus F gB were conserved in the gB specified by the neurovirulent strain ANG 

(Kosovsky, Vojvodova et al. 2000) suggesting that these aa may contribute to neurovirulence. 

Viral glycoproteins gD and gH have been shown to bind gB and modulate its ability to 

cause membrane fusion (Connolly, Jackson et al. 2011).  Therefore, mutations within the 

extracellular portions of gD and gH, as well as gL may affect the ability of gB to utilize the 

hPILRα receptor. In addition, since gH forms a functional heterodimer with gL (Fan, Lin et al. 

2009), it is possible that the observed aa differences between McKrae and F within gH domain 

H1 may affect interaction with gL, known to bind exclusively to this domain (Chowdary, Cairns 

et al. 2010). The carboxyl terminus of gH has been shown to be important for virus-induced cell 

fusion (Jackson, Lin et al. 2010).  Therefore, the observed aa changes N670S and R720C may 

alter virus entry kinetics. Multiple aa changes in gL between McKrae and F (S22P, K90R, 

V100G, N115D) are within the gL domain known to interact with gH and may affect gH/gL cell-

surface expression, cell fusion and virus entry. 

Positively charged aa residues are known to be critical for interactions with negatively 

charged sulfate/carboxylate groups of the HS chain (Cardin and Weintraub 1989).  Moreover, 

basic aa residues are known to be critical for HS-binding activity (Trybala, Roth et al. 2002).  

Therefore, the gC Q75K and H306R aa changes in McKrae compared to F may cause increased 

HS binding. Previous studies have delineated the HS-binding domain that interacts with gC 

amino terminal residues to be located between aa 33 and 123 (Tal-Singer, Peng et al. 1995), and 

between 129 and 247 (Trybala, Bergstrom et al. 1994).  Therefore amino acid changes in 
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McKrae gC (aa 75, 116 and 132) may result in increased initial binding of McKrae gC to HS 

moieties on cell surfaces. 

The hPILR α gene is expressed on cells of the immune system (monocytes, dendritic 

cells, NK cells, B cells, macrophages, neutrophils, eosinophils, mast cells), as well as neurons 

(Satoh, Arii et al. 2008; Fan and Longnecker 2010).  Moreover, HSV-1 enters into human 

corneal epithelial cells (HCE) via the nectin-1, HVEM and PILRα receptors (Shah, Farooq et al. 

2010).  Additional experiments are needed to determine the biological and pathogenic 

implications of increased utilization of the PILRα receptor by the HSV-1(McKrae). The 

availability of the McKrae strain as a bacterial artificial chromosome will enable the rapid 

construction of mutant viruses that could be used to elucidate the role of each viral glycoprotein 

in PILR α mediated virion entry. 
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CHAPTER V 

CONCLUDING REMARKS 

SUMMARY  

Membrane fusion plays an important role in several aspects of the lifecycle of HSV-1; 

viral entry, cell-to-cell fusion, viron morphogenesis.  The crystal structure of glycoprotein B that 

was recently solved reveals that it is the sole viral fusogen of HSV-1.  The function of gB is to 

bring about fusion between the viral membrane and cell membrane (virus entry) or between cell 

membranes (cell-cell fusion) by inserting its fusion loops into the target membrane and “pulling” 

the two membranes together.  Apposition of these two membranes is followed by the formation 

of hemifusion intermediates, and ultimately formation of a fusion pore.  This fusion pore leads to 

mixing of viral and cellular contents.  However, unlike other members of its class, gB is unable 

to bring about fusion alone and is regulated by coordinated action of other viral proteins such as 

gD, heterodimer gH/gL and other membrane proteins.  gD binding to its cognate receptor leads 

to conformational changes in gD that are thought to  trigger the fusion machinery.  According to 

the sequential model of fusion, gD in turn activates gH/gL and ultimately leads to 

conformational changes in gB from an initial pre-fusion form to its corresponding post fusion 

form.  It is now believed that the gH/gL complex, rather than functioning as a fusogenic 

glycoprotein itself, interacts with gB and enables it to attain its proper conformation to mediate 

fusion.  

Previous record from our laboratory has shown that glycoprotein K and its partner UL20p 

form a complex which is expressed on the surface of infected cells and plays an important role in 
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virus-induced cell-to-cell fusion.  Recently, we reported that mutant virus gB28syn known to 

cause extensive cell fusion, is unable to cause fusion in Vero cells in presence of a mutation in 

the amino terminus of gK (gK∆31-68/gB∆28syn).  This finding supported for the role of 

glycoprotein K in virus induced cell fusion (Chouljenko, Iyer et al. 2009).  When the missing 

amino terminus of gK (amino termini of gK, gKa) was provided as a peptide, the syncytial 

phenotype of mutant virus gK∆31-68/gB∆28syn is restored (Chapter II).  Restoration of the 

syncytial phenotype of mutant virus gK∆31-68/gB∆28syn by the gKa peptide provided strong 

evidence for a functional linkage between the two glycoproteins gK and gB.  This data suggested 

that the amino terminus of gK interacts with gB and/or other viral proteins.  In this thesis, I have 

provided evidence, using immunoprecipitation, for direct interaction between the amino terminus 

of gK (gKa) and the amino terminus of gB, for the first time in a transient system (Chapter II).  

Subsequent experiments have revealed similar results wherein the gKa peptide interacts with gB 

in HSV-1 infected cells (Chouljenko, Iyer et al. 2010).  Furthermore, the amino terminus of gK 

(gKa) can interact with other members of the fusion complex that bring about virus induced cell 

fusion.  Three additional recombinant baculoviruses were constructed expressing gKa and 

truncated gHs encompassing aa; 1 to 792, 1 to 603 and 1 to 363.  Co-immunoprecipitation 

experiments showed that gKa physically interacted with all the three truncated versions of gH 

(Chapter II).  It is well established that UL20 and gK functionally and physically interact to form 

a heterodimeric complex.  Therefore, to determine whether direct interactions exist between gB 

and UL20p, the functional partner of gK, Förster (Fluorescence) resonance energy transfer 

(FRET) was utilized to study plausible interaction between gB and UL20p.  FRET analysis 

revealed that gB  interacted directly with UL20p.  To further map the domains of UL20p and gB 

that interact I focused on the amino terminus of UL20 and the carboxyl terminus of gB both of 
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which are predicted to be situated on the cytosolic side of the plasma membrane. By GST pull 

down assay I demonstrated that the aminoterminus of UL20p interacted with the carboxyl 

terminus of gB(Chapter II).  These results show that multiple interactions exist between the viral 

surface proteins forming a protein complex which we have designated as the fusion complex.  

The function of gK/UL20p in this fusion complex is likely to be regulatory, i.e. gK/UL20p 

modulate, the conformation of gB such that gB assumes fusion conformation at the proper time 

and place.  Therefore, HSV-1 has evolved this highly regulated membrane fusion mechanism in 

order to prevent aberrant fusion between membranes expressing fusogenic glycoproteins with 

adjacent cellular membranes during membrane fusion events.  This control is exemplified during 

virus egress wherein, the virion encasing vesicles are prevented from fusing with the virion 

envelope.  Such a regulatory mechanism may be advantageous to the virus during entry and 

spread and may dictate HSV-1 host range; ie, the virus fuses with only certain kind of cells that 

specify particular cellular receptors.   

Fusion that occurs between cells can be considered analogous to fusion that occurs during 

viral entry whether it is at the site of the plasma membrane or in endosomal membranes.  While 

the same sets of glycoproteins are involved in both, however, subtle differences exist between 

the two membrane fusion events.  

We have shown that glycoprotein K plays an important role in gB mediated cell fusion by 

genetically deleting the amino terminus of gK and observing its effect on gB mediated cell 

fusion.  The next logical step was to decipher whether gK plays a role in viral entry which is 

another membrane fusion event.  Previous work by Foster et. al shows, that gK is expressed on 

virion surfaces (Foster, Rybachuk et al. 2001).  Similairly, in recent studies have shown that, gK 

and UL20 are structural components of the mature virion and play a role in entry (Jambunathan, 
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Chowdhury et al. 2011), further supporting earlier findings.  To better understand the role of gK 

in gB mediated entry, various cellular receptors were used to examine receptor dependent entry, 

Experiments performed as detailed in Chapter III of this dissertation reveal that in the presence 

of gB cellular receptors such as PILRα, the absence of gK’s amino terminal leads to a substantial 

decrease in virus entry.  However, in presence of gD receptors such as Nectin-1 such a 

differential entry is not noticed.  Moreover, co-immunoprecipitation experiments revealed that 

PILRalpha formed a multi-protein complex with gB and gK, but not gD.  Thus sit eems, that in 

presence of the amino termini of gK, efficiency of gB binding to PILR increases and this leads 

to increased entry of the virus.  My next goal was to decipher the mode of entry of gK mutant 

viruses into different receptor bearing cells.  Contrary to published data the finding of this 

dissertation establishes, that HSV-1 enters CHO-nectin 1 cells in a pH independent manner.  The 

results provide strong evidence for McKbac virus and gK mutant virus entry into CHO-nectin-1 

cells through a route that does not require low pH to trigger fusion as it is not affected by 

endocytic inhibitors.   

For viral entry studies into different receptor bearing cells, the HSV-1 McKrae strain was 

used, which was earlier isolated from a human ocular herpes infection, and represents a highly 

neurovirulent strain.  Using a clinical isolate rather than a laboratory strain for entry studies is 

advantageous as it is more relevant to natural HSV infection.  All major McKrae viral proteins 

that are part of the fusion complex (gB,gC,gD, gH,gL, gK and UL20p) were sequenced and their 

predicted secondary aa structure was compared with other clinical and laboratory strains.  

Comparisons revealed the McKrae and F viral strains have identical gK and UL20 amino acid 

sequences; however, there are specific amino acid differences between their respective gB, 

including specific amino acid changes located at the amino terminus of gB (Chapter IV).  
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Comparison of gC, gH and gL aa sequences between McKrae and F strain revealed multiple aa 

differences.  Additionally, comparison of the entry phenotype of HSV-1 strains F and McKrae, 

showed that the McKrae strain entered substantially more efficiently than viral strain F in 

Chinese hamster ovary (CHO) cells expressing hPIRLα but not CHO-human nectin-1,          

CHO-human HVEM or Vero cells.  This differential entry phenotype between McKrae and F on 

CHO-PILR α cells can be attributed to predicted amino acid sequences differences between 

HSV-1, F and McKrae membrane proteins (Chapter IV).  These amino acid differences between 

McKrae and F strain may contribute to the increased virulence of McKrae versus F strain as 

observed in vivo (Unpublished data). 

The results presented in this thesis further extend our knowledge and understanding of 

the role of gK and UL20p in virus-induced cell-cell fusion and viral-cell fusion.  This research 

also reveals the important role of the gk amino terminus in modulating the conformation of gB 

by directly interacting with gB as well as other members of the fusion complex.  We have found 

that gK plays an important role during viral entry not only in Vero cells but specifically in cells 

expressing a gB receptor.  These results taken together indicate that gK is intimately associated 

with gB and plays an important role in regulating gB mediated membrane fusion. 

CURRENT AND FUTURE RESEARCH CHALLENGES 

The findings of this research have raised several new queries which would need to be 

addressed in future experiments.  Specifically, viral entry and cell fusion experiments strongly 

implied that specific amino acid changes within the amino terminus of gB may influence 

binding to and utilization of the PIRL receptor.  This possibility can be directly examined by 

engineering McKrae gB specific mutations within other viral strains that do not efficiently 
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utilize this receptor. Alternatively, gB genes encoded by these viruses could be replaced by the 

McKrae gB gene to ascertain whether this phenomenon is gB-specific. Similar gene “swapping” 

experiments can be performed to ascertain whether gK and UL20p encoded by different virus 

strains show differential utilization of gB-specific receptors and are responsible for these 

differences. 

The emerging interpretation of the role of both gD and gB-specific receptors in virus 

entry and virus-induced cell fusion is that both types of receptors are required.  The theoretical 

explanation for entry into CHO cells engineered to express only one type of  receptor is that 

other unknown receptors fulfill this requirement for the presence of both gD and gB viral 

receptors. Thus, CHO-nectin-1 cells are considered to have low levels of unknown gB-specific 

receptors, while CHO-PILR cells are considered to have low levels of unknown gD-specific 

receptors. Presumably, the inefficient entry of viruses into CHO-PILR cells is largely due to 

the critical function of gD-specific receptors, which are found in low-abundance in these cells. 

These receptors may function upstream of gB receptors and may be required for efficient 

utilization of gB-specific receptors. This hypothesis can be directly tested by engineering CHO 

cells that express different amounts of gD and gB specific receptors. Alternatively, transient 

expression of different combinations of receptors may shed additional light in the requirements 

for both receptors during virus entry. 

The ultimate goal of understanding the functions of gK and UL20 in virus entry and 

spread must be addressed in the context of neuronal infections.  These two proteins are uniquely 

expressed in all alpha herpesviruses suggesting that they serve important roles in neuronal entry 

and spread. In this regard, recent results from our laboratory indicate that gK-null virions are 

unable to enter into axonal termini of neurons in cell culture despite the apparent presence of 
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high levels of nectin-1; suggests the existence of gB-specific receptors on axonal membranes 

that are unable to function in virion entry in the absence of gK. Future experiments are needed 

to investigate whether PILR or other gB-specific receptors are expressed in axonal membranes 

and function during virus entry in conjunction with gK and UL20p.   

FINAL COMMENTS 

A historic review of publications regarding gK and UL20 reveal that despite their 

discovery and association with extensive virus-induced cell fusion more than 30 years ago, we 

are still investigating the precise role of these membrane proteins in HSV-1 associated 

membrane fusion phenomena.  It is understandable that seemingly disparate results have been 

obtained over the years by different laboratories largely due to the high hydrophobic character of 

both proteins that renders them very difficult to detect and to analyze their structure and function. 

The present, research work has further defined the role of glycoprotein K and membrane 

protein UL20p in virus induced cell-cell fusion and entry. One of the many possibilities is that 

the virus may have evolved this intricate and complicated mechanism of fusion, in order to infect 

different cell types.  gK’s  role in entry may be more emphatic at  the neuronal ending where the 

virus is hypothesized to enter strictly by fusion at axonal synaptic membranes. 

The ultimate aim of these entry and cell–cell fusion studies is to create fusion inhibitors 

that will prevent or block interaction between cellular receptors and glycoproteins as well as 

prevent conformational changes in gB.  Prevention of fusion between the viral membrane and 

cell membrane will prevent viral entry and spread and thus control HSV infection.  Such fusion 

inhibitors have been successful in controlling HIV.  Enfuvirtide and T-1249 are two HIV fusion 

inhibitor peptides that bind to gp41 and prevent its fusogenic conformation, inhibiting viral entry 
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into host cells.  Moreover, it may help in the discovery of new antiviral approaches and improved 

viral vaccines. 

In conclusion, this research work clearly shows that gK and UL20 function by physically 

interacting with gB and gH and it has specifically for the first time provided a mechanism to 

show how these proteins function in modulating gB-mediated membrane fusion.  The 

requirement for multiple viral receptors during membrane fusion has added an additional 

complexity in the overall membrane fusion phenomenon.  New technologies that are currently 

undergoing development for the visualization of protein complexes will help in determining 

interactions between viral proteins and receptors that facilitate membrane fusion in the HSV-1 

life cycle. 
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