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ABSTRACT 

 West Nile virus (WNV) was first isolated in 1937 from a febrile Ugandan woman. WNV 

now has a worldwide distribution from Australia and India in the east to Europe and the United 

States in the west.  The first human cases of WNV in the United States were detected in New 

York in 1999.  The North American isolates were also found to be highly neuroinvasive and 

neurovirulent and in many cases leading to mortality or permanent CNS sequelae among 

humans.  WNV was first isolated in Louisiana in 2001.  The genome of this virus named LSU-

AR01was sequenced and a detailed genetic analysis revealed 26 amino acid changes in 

comparison to the prototypic New York-99 strain.  Phylogenetic analysis using Neighbor-joining 

and the Bayesian approach showed that LSU-AR01 was closely related to a strain isolated from a 

mosquito in 1999 in Connecticut.  This relationship was bolstered by a 58% bootstrap value and 

a 66% posterior probability by these algorithms respectively.  Comparative pathology revealed 

that the LSU-AR01 was more neurovirulent and neuroinvasive especially at low doses indicating 

a virus with a competitive edge.  Recombinant vesicular stomatitis virus (rVSV) based vaccines 

cleverly incorporate reverse genetics to recover a recombinant virus expressing a foreign antigen 

of interest.  rVSV vectored vaccines expressing the LSU-AR01 envelope (E) glycoprotein were 

engineered and administered to mice in a prime-boost approach.  The vaccines were able to 

confer high degree of protection in mice against lethal challenge with highly virulent WNV 

LSU-AR01.  Detailed immunological analyses of immunized mice revealed the production of 

neutralizing antibody responses. In addition, vaccinated mice generated WNV E glycoprotein 

specific CD8+CD62Llow IFNγ+ T cells response against WNV.  Recombinant VSV expressing 

the Simian Retrovirus-2 (SRV-2) gag and Env gene constructs and the Herpes B virus 

glycoprotein D gene were constructed and characterized in cell culture experiments.  The VSV-
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SRV-2 gag and env recombinants generated protective immune responses in non-human 

primates.  The VSV Herpes B recombinant vaccine will be tested in non-human primates in the 

near future.  Collectively, these experiments revealed that VSV-vectored vaccines are highly 

effective in generating humoral and cellular immune responses against viral infections. 
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CHAPTER 1 

INTRODUCTION 

STATEMENT OF PROBLEM AND HYPOTHESIS 

  West Nile virus (WNV) was first isolated in 1937 from a febrile Ugandan woman.  

The virus gradually spread westward towards the United States.  The first human cases of WNV 

in the United States were detected in Flushing, NY in 1999.  Until then, WNV was one of the 

least concerns for humans.  The new viral strains caused significant mortality among birds 

particularly corvids, a phenomenon not observed in the old world outbreaks.  Moreover, the viral 

isolates from North America were found to be highly neuroinvasive and neurovirulent and in 

many cases leading to mortality or permanent central nervous system (CNS) sequelae among 

humans. 

 Starting in 2001, a number of WNV isolates were isolated in Louisiana from infected 

people and animals.  Based on the initial outbreak and detection of WNV in NY in 1999, it was 

largely assumed that these viruses originated from the prototypic WNV NY99 strains, as it 

evolved and moved towards the south and west of the country.  The main goal of these 

investigations was to generate a new vaccine against WNV based on the vesicular stomatitis 

(VSV) viral-vectored vaccine approach originally pioneered by Dr. John Rose at Yale 

University.  This approach involves the construction of recombinant VSVs that express the 

desired immunogen.  Optimal boosting immunization is achieved in this vaccination protocol by 

using recombinant VSVs that express different G glycoproteins, which is required for viral 

infectivity and spread.  Most of the antiviral immune response is directed against the G 

glycoprotein.  Therefore the use of different G variants enables boosting immunization without 

compromising viral infectivity and replication due to pre-existing immunity against VSV.  
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Previous work has shown that the WNV E glycoprotein is highly immunogenic and can elicit 

robust humoral and cellular immune responses against the virus.  Therefore, we decided to 

construct recombinant VSVs expressing the WNV E glycoprotein. 

In the process of identifying the most virulent strain of WNV that could be used for 

challenge purposes in mouse experiments, I found that a Louisiana strain isolated by Dr. Alma 

Roy at the Louisiana Animal Disease Diagnostic Laboratory (LADDL), LSU School of 

Veterinary Medicine, exhibited higher neurovirulence than the prototypic NY-99 strain in mice.  

This observation led us to sequence the entire genome of the LSU-AR01 virus and study its 

phylogenetic relationship to other known WNV strains.  This work revealed that the LSU-AR01 

is closely related to a 1999 mosquito isolate from Connecticut.  

The main hypothesis of the proposed work was that recombinant VSV vaccines could 

effectively protect mice against lethal challenge with the highly virulent WNV virus strain LSU-

AR01, because they could elicit robust humoral and cellular immunity against WNV. 

A series of experiments detailed in this thesis established that the recombinant VSVs that 

I constructed were able to elicit strong humoral and cellular immune responses against the virus 

and protected mice against lethal challenge with the highly virulent WNV LSU-AR01 strain.  

The VSV-vectored vaccine is a versatile vaccine approach that can be used to combat a 

variety of important pathogens.  In addition to the work on WNV, I constructed recombinant 

VSVs that expressed the simian retrovirus-2 (SRV-2) gag and Env genes and against Herpes B 

virus using the B virus glycoprotein D (gD).  These SRV-2 vaccines were recently tested in non-

human primate vaccine studies in collaboration with Dr. Preston Marx at the Tulane National 

Primate Research Center (TNPRC) and were shown to protect animals against lethal challenge.  
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The rVSV-Herpes B gD vaccine will be tested in the near future.  The construction and 

characterization of these recombinant viruses is included as a separate chapter in the body of the 

thesis.  

The VSV-vectored vaccine approach could be made safer by constructing non-replicating 

VSVs that could be safely administered to humans.  Providing essential VSV genes in trans 

through their expression in complementing cell lines and the introduction of specific mutations 

within the viral genome that further attenuate the virus could be easily engineered to make VSV 

safe vehicles for vaccine purposes. 

STATEMENT OF RESEARCH OBJECTIVES 

 The overall objective of this thesis was to construct VSV-vectored vaccines that can 

protect mice against WNV infections.  In the process of these investigations, additional VSV-

vectored vaccines were constructed to combat SRV-2 and herpes B infections in collaboration 

with the Tulane National Primate Research Center (TNPRC). 

I. Characterization of the WNV-LSU-AR01 strain. 

a. Comparative evaluation of pathogenicity of the LSU-AR01 WNV and the NY99 

strain of WNV. 

b. Analysis of genetic differences between the LSU-AR01 and the New York 99 

(NY99) strain of WNV. 

c. Phylogenetic analysis of WNV LSU-AR01. 

II. Development of rVSV-based vaccine for West Nile virus. 

a. Construction and characterization of rVSV glycoprotein exchange vector vaccines 

expressing West Nile virus (WNV) Envelope (E) glycoprotein. 
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b. Development and standardization of flow cytometric assay for evaluation of cell-

mediated immune response. 

c. Evaluation of vaccine efficacy in mice by evaluation of humoral and cell-

mediated immune response elicited by the vaccines. 

d. Evaluation of the vaccine potency in mice by lethal challenge experiments in mice 

using the WNV LSU-AR01 strain. 

III. Development of rVSV vaccines for Simian Retrovirus-2 (SRV-2) and Herpes B virus. 

a. Construction and recovery of rVSV glycoprotein exchange vector vaccines 

expressing the SRV-2 gag protein. 

b. Construction and recovery of rVSV glycoprotein exchange vector vaccines 

expressing the SRV-2 chimeric C-terminus truncated SRV2 Envelope (Env) 

glycoprotein fused to VSV G glycoprotein C terminus for enhanced recovery of 

the recombinant virus.  

c. Construction and recovery of rVSV glycoprotein exchange vector vaccines 

expressing the SRV-2 C-terminus truncated SRV-2 Envelope (Env). 

d. Construction and recovery of rVSV glycoprotein exchange vector vaccines 

expressing the C-terminus truncated Herpes B virus glycoprotein D. 

This research work is presented in manuscript format.  Chapter 2 describes the isolation, 

sequencing, sequence and phylogenetic analysis of a WNV (WNV-LSU-AR01) isolated in 

Louisiana and comparison with the prototypic WNV New York 99 (NY99) strain.  In addition, 

the chapter includes a comparative pathogenesis study of LSU-AR01 and NY99 in mice. 

Chapter 3 describes the engineering of a recombinant VSV based vaccine for WNV.  The 

recombinant VSV expressing WNV E glycoprotein was tested in mice and was shown to elicit 
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strong humoral and cell mediated immune responses.  Additionally, it completely protected 

vaccinated mice against lethal challenge with the highly virulent WNV LSU-AR01 strain. 

Chapter 4 describes the construction of VSV vectored vaccines for Simian Retrovirus-2 

and Herpes B virus.  The SRV-2 vaccines have been recently been tested in non-human primates 

and preliminary data suggests that these vaccines are efficacious.  The herpes B VSV vaccines 

will be tested in the future.  The final chapter (Concluding Remarks and Future Challenges) 

provides a summary of the work described in this dissertation as well as information about 

potential future directions of this type of research.  Appendix A contains additional phylogenetic 

analysis of WNV whole genomes using a Bayesian approach for phylogeny.  

LITERATURE REVIEW 

West Nile Virus (WNV) Virology 

West Nile virus (WNV) was first isolated in 1937 from a febrile patient in the West Nile 

province of Uganda (Smithburn et al., 1940).  The virus belongs to the flavivirus genus in the 

family Flaviviridae.  It has an approximately 11kb single-stranded positive (+) sense RNA 

genome.  The icosahederal virion particles are about 500Å in diameter and have 180 molecules 

of pre-membrane/membrane (preM/M) and 180 molecules of envelope (E) glycoprotein on its 

surface (Lindenbach, Thiel, and Rice, 2007).  A cross sectional electron microscopic view 

showed highest density at the outermost layer.  This lipid bilayer is 34-40 Å thick and has the 

transmembrane domains of  preM/M and E glycoprotein weave through it (Mukhopadhyay et al., 

2003). 

The genome is translated as a single polyprotein (Figure 1.1), which is subsequently 

cleaved by host as well as virally encoded proteases to produce three structural and seven 
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nonstructural proteins (Brinton, 2002; Chambers et al., 1990).  The structural proteins include a 

capsid (C) protein, a premembrane (prM) protein, and an envelope (E) glycoprotein that 

mediates attachment, virus-induced membrane fusion and virion assembly (Mukhopadhyay et 

al., 2003; Mukhopadhyay, Kuhn, and Rossmann, 2005).  Host signal peptidase cleaves at the 

C/preM, preM/E, E/NS1, 2k/4B junctions while a virus encoded serine protease cleaves the 

junction between NS2A/NS2B, NS2B/NS3, NS3/NS4A, NS4A/2K and NS4B/NS5 junctions 

(Lindenbach, Thiel, and Rice, 2007; Roosendaal et al., 2006).  The enzyme responsible for 

cleaving the NS1/NS2A junction is not known (Lindenbach, Thiel, and Rice, 2007).  The viral 

nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) regulate viral 

transcription and replication, as well as attenuating host antiviral responses (Best et al., 2005; 

Guo, Hayashi, and Seeger, 2005; Khromykh, Sedlak, and Westaway, 2000; Lin et al., 2006; Liu 

et al., 2005; Munoz-Jordan et al., 2005).  

 

Figure 1.1: Organization of West Nile virus genome.  WNV has an approximately 11kb RNA 
genome which is transcribed as a single polyprotein.  The polyprotein is cleaved by various viral 
and host proteases.  The Capsid (C), pre-membrane (PreM) and envelope glycoprotein (E) 
constitute the structural genes.  WNV also encodes seven non-structural (NS) that are vital in 
transcription, translation and pathogenesis of the virus. 

 

In flaviviruses, the capsid protein is an approximately 11kD highly basic protein.  It plays 

a significant role in that it contains a C-terminus hydrophobic signal that allows for endoplasmic 
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reticulum (ER) translocation of the preM (Mukhopadhyay, Kuhn, and Rossmann, 2005).  It is 

believed to play an important role in RNA binding and membrane interactions.  The preM 

(26kD) is one of the two glycoproteins expressed on the viral surface.  Its role in E gylcoprotein 

folding and chaperoning is critical (Konishi and Mason, 1993; Lorenz et al., 2002).  It also 

functions in protecting the E glycoprotein from the acidic environment and consequent structural 

rearrangement to fusogenic form as the complex passes through the secretory pathway. 

(Guirakhoo, Bolin, and Roehrig, 1992; Heinz et al., 1994).  The flavivirus life cycle is illustrated 

in Figure 1.2.  The maturation of the virion particle occurs as a result of a Golgi resident furin 

mediated cleavage of preM to Pre peptide and the membrane glycoprotein (M) (Stadler et al., 

1997; Stiasny et al., 1996; Wengler, 1989).  Following this, the M and E glycoproteins associate 

with each other and heterodimerize.  

The envelope glycoprotein is probably the best studied protein in flaviruses, especially 

WNV primarily for its role in receptor binding, membrane fusion and major immunogenic 

determinant.  The WNV E glycoprotein is an approximately 53 kD type I membrane 

glycoprotein and has 12 conserved cysteine residues (Nowak and Wengler, 1987).  The E 

glycoprotein has three domains (DI-DIII).  DI is the central structural domain while DII is the 

dimerization domain.  The DII domain contains a 12 amino acid (aa) long fusion loop that is 

necessary for virus-cell membrane fusion and for receptor binding (Pokidysheva et al., 2006).  

The DIII domain spans amino acids 296-415 (Beasley and Barrett, 2002) and functions in 

receptor recognition and binding (Anderson, 2003; Chu et al., 2005; Lee, Chu, and Ng, 2006; 

Volk et al., 2004).  

More importantly, from a vaccinologists’ perspective, a majority of the neutralizing 

epitopes have been mapped to DIII (Beasley and Barrett, 2002; Chu, Chiang, and Ng, 2007; Li, 
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Barrett, and Beasley, 2005; Nybakken et al., 2005; Oliphant and Diamond, 2007; Oliphant et al., 

2005).  The residues most consistently identified as neutralization epitopes on DIII are positions 

302-309, 330-333, 333-365 and 389-391 (Oliphant et al., 2005).  Co-crystallization studies of 

DIII with monoclonal antibody mAbE16 revealed that these regions mapped to adjacent Ig-like 

loops forming a discontinuous epitope (Nybakken et al., 2005).  Pierson et al. showed that the 

most potent mAbs blocked infection at very low occupancy with as few as 30 of the 180 

envelope proteins bound (Pierson et al., 2007). 

West Nile Virus Natural Cycle 

West Nile Virus (WNV) has a worldwide distribution ranging from Australia, India and 

China in the east to the Middle East, Africa, Europe and the United States in the west.  

Phylogenetic data of WNV reveals at least two distinct lineages (Bondre et al., 2007; Briese et 

al., 2002; Lanciotti et al., 2002; Lanciotti et al., 1999).  Strains from North America, Europe, 

Middle East, Australia and India belong to lineage I.  The Indian, Australian (Kunjin), Czech 

(Rabensburg) and LEIV-Krnd88-190 virus (Russia) isolates form separate sub-lineages within 

lineage I (Bakonyi et al., 2005; Bondre et al., 2007; Coia et al., 1988; Lanciotti et al., 2002; 

Scherret et al., 2001).  Lineage II is mainly composed of isolates from sub-Saharan Africa and 

the island of Madagascar. 

Following its initial isolation in 1937 in Uganda (Smithburn et al., 1940), WNV 

outbreaks were reported in Egypt and Israel (1951 and 1957), France (1962-1965), South Africa  
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Figure 1.2: WNV infects cells by receptor mediated endocytosis.  The low endosomal pH 
triggers an irreversible trimerization of the E glycoprotein followed by the fusion of viral and 
cell membranes.  Following uncoating of the nucleocapsid, the viral genomic RNA is released 
into the cytoplasm and is translated into a single polyprotein which is cleaved by viral and host 
proteases.  Additionally, genome replication occurs on intracellular membranes.  Virion particles 
are assembled in the endoplasmic reticulum (ER) and the immature virion particles are 
transported via the trans-Golgi network (TGN).  Following a furin mediated cleavage of preM, 
mature virion particles bud out by exocytosis.   
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(1974), India (1980-1981), Ukraine (1985).  More recent history includes outbreaks in Algeria 

(1994), Romania (1996), Morocco (1996 and 2003), Tunisia (1997 and 2003), Italy 

(1998),Czech Republic (1997), Israel (1997, 2000 and 2003), Russia (1999-2001), and France 

(2000, 2003-2004) (Bernkopf, Levine, and Nerson, 1953; Chowers et al., 2001; Dauphin et al., 

2004; George et al., 1984; Gerhardt, 2006; Hayes, 2001; Hayes et al., 2005a; Hubalek and 

Halouzka, 1999; Joubert et al., 1970; Murgue et al., 2001; Murgue, Zeller, and Deubel, 2002; 

Platonov et al., 2001; Schuffenecker et al., 2005; Tsai et al., 1998; Zeller and Schuffenecker, 

2004).  WNV was not considered a major risk for humans until the 1996 outbreak in Romania.  

WNV subsequently became a major veterinary and public health concern in the Europe and the 

United States.  The first cases of the 1999 WN outbreak in the United States were reported in 

Flushing , NY (Asnis et al., 2000). 

WNV is primarily transmitted in nature by Culex mosquitoes.  However, the virus has 

been isolated from more than 60 species of mosquitoes (Dauphin and Zientara, 2007; Gubler, 

2007) as well as from ticks (Formosinho and Santos-Silva, 2006; Lawrie et al., 2004).  Mosquito 

saliva is known to greatly enhance the success of the virus by acting on the host immune system 

in multiple ways (Titus, Bishop, and Mejia, 2006).  A recent study comparing four species of 

mosquitoes showed that each mosquitoes was able to inject a mean dose of 103.6-5.9 PFUs of 

WNV per bite (Styer et al., 2007).  Approximately 102 PFU is additionally injected 

extravascularly.  Mosquitoes become infected with WNV as they imbibe a blood meal from a 

viremic host.  They can also infect each other as they co-feed on the same host (Higgs et al., 

2005).  The virus infects the gut epithelium cells of the mosquitoes and as viral titers increase, 

they escape into the hemocoel, spread to surrounding tissues, and finally invade the salivary 

glands and brain of the mosquito (Davis et al., 2006; Fields, Knipe, and Howley, 2007).  
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When the infected mosquito bites a vertebrate, WNV is transmitted intradermally.  It 

infects and replicates in the Langerhans cells which in turn migrate to the lymph nodes.  A 

second round of replication occurs in the lymph nodes before viremia occurs (Drebot and Artsob, 

2005).  

Birds are amplifiers of the disease.  The North American strain of WNV is characterized 

by its ability to cause fatal neurological disease among many different species of birds.  WNV 

was isolated from at least 300 species of birds and was shown to cause specific pathological 

changes in many tissues of at least 14 different species (Fields, Knipe, and Howley, 2007; Hayes 

et al., 2005a; Steele et al., 2000).  Thus, birds are the most important link in WNV maintenance 

and transmission.  American alligators (Alligator mississippiensis) can also become infected with 

WNV and transmit WNV to mosquitoes (Klenk et al., 2004; Miller et al., 2003).  In addition to 

this, WNV has been isolated from a number of non-avian vertebrate hosts including but not 

limited to equines, felines, canines and bats (Austgen et al., 2004; Fields, Knipe, and Howley, 

2007).  Like birds, equines play an import indicator role in WNV outbreaks but are dead-end 

hosts.  They become viremic but the viremia is not high enough for horses to serve as an 

amplifying host (Bunning et al., 2001).  In the 1999 outbreak, 36% of the infected horses either 

died or were euthanized (Ostlund et al., 2001).  Other studies reported a 22-28% mortality rate in 

horses (Salazar et al., 2004; Schuler et al., 2004).  The common clinical symptoms in horses 

include weakness, incoordination and ataxia (Trock et al., 2001). 

Human West Nile Disease 

Humans, like equines, are a dead-end host as WNV does not achieve sufficiently high 

enough titers to be transmitted to mosquitoes.  The virus has also been reported to be transmitted 
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in humans through modes that are not vector mediated.  Reports show that WNV could be 

transmitted from mother to child by the intrauterine route (CDC, 2002a).  Transmission through 

breast milk (CDC, 2002d; Hayes and O'Leary, 2004) and blood transfusion (CDC, 2002b; CDC, 

2003a; CDC, 2004b) have also been documented.  Additionally, the virus can also be transmitted  

via bone marrow transplant (Hiatt et al., 2003), organ transplantation (CDC, 2002e; Iwamoto et 

al., 2003) and through dialysis (Cairoli, 2005; CDC, 2004a).  Finally, laboratory acquired 

infection has also been reported (CDC, 2002c; CDC, 2003b). 

The human incubation period for WNV is 2-14 days (Gea-Banacloche et al., 2004).  

Approximately 80% of patients infected with WNV were found to be asymptomatic and 20% of 

the patients had West Nile Fever (WNF) (Gea-Banacloche et al., 2004; Hayes and Gubler, 2006; 

Mostashari et al., 2001).  These WNF patients generally have fever and headache.  Some patients 

may also exhibit a variety of signs and symptoms including fever, headache, muscle weakness, 

fatigue, nausea, vomiting, gastrointestinal manifestations, lymphadenopathy and non-pruritic 

maculopapular skin rash (Davis et al., 2006; Del Giudice et al., 2005; Ferguson et al., 2005).  

Additional non-neurological clinical manifestations include rhabdomyolysis (Jeha et al., 2003; 

Kulstad and Wichter, 2003), pancreatitis (Perelman and Stern, 1974), hepatitis (Sampson et al., 

2000), myosistis, orchitis (Smith et al., 2004), chorioretinitis (Khairallah et al., 2004) and cardiac 

dysrythmias (Hayes et al., 2005b).  

Less than 1% of the WNV patients suffer from a West Nile Neuroinvasive Disease 

(WND) including West Nile meningitis (WNM), encephalitis (WNE) and acute flaccid paralysis 

(poliomyelitis-like syndrome) (WNP) (Hayes et al., 2005b; Mostashari et al., 2001; Sejvar, 

2007).  The differences in symptoms of WNF and WND are often not black-and-white and 

consequently are difficult to distinguish.  



14 
 

West Nile Meningitis: WNM is believed to occur in ~40% of cases of WND.  Symptoms 

of meningeal irritation, including fever, headache, nuchal rigidity, photophobia, and 

phonophobia are observed in these patients.  Some of the patients also exhibit Kernig’s and 

Brudzinski’s signs (Klein et al., 2002).  Pleocytosis of <500/mm3 is often observed (Sejvar et al., 

2005).  As with WNF, the outcome of WNM is generally favorable although some patients 

complain about weakness and problems with memory and concentration on follow-up 

examination (Klee et al., 2004).  

West Nile Encephalitis: The risk of developing WNE increases with increasing age.  

WNE can range in severity form mild encephalitic disease to a more severe from characterized 

by coma and death (Sejvar and Marfin, 2006).  Patients with WNE exhibit depression, altered 

level of consciousness or confusion and personality change (Debiasi and Tyler, 2006; Sejvar, 

2007).  Additional symptoms include ataxia, lethargy, movement disorders, Parkinsonism, 

conjunctivitis, confusion, photophobia, slurred speech, seizures, tremors and involuntary body 

movements (Davis et al., 2006; Drebot and Artsob, 2005; Hayes et al., 2005b; Kramer, Li, and 

Shi, 2007; Sejvar, 2007; Sejvar et al., 2003a).  Outcomes of WNE are not as good as those for 

WNM.  Patients often complain of functional and cognitive problems (Klee et al., 2004).  

Interestingly, WNE was first reported in the United States in 1952 in New York when the 

Egyptian strain of WNV was used in treatment of cancer.  Encephalitis was observed in 9.47% (9 

out of 95) patients (Southam and Moore, 1954).  

West Nile Poliomyelitis: Acute flaccid paralysis (WNP) is the result of WNV infecting 

the motor neurons.  This results in asymmetric acute flaccid paralysis of one or more limbs (Jeha 

et al., 2003; Li et al., 2003; Sejvar et al., 2005; Sejvar et al., 2003b).  In some patients, there may 

be diaphragmatic and intercostal muscle paralysis (Hayes et al., 2005b) resulting in respiratory 
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failure.  These patients will therefore need to be provided with intubation and mechanical 

ventilation (Leis et al., 2003; Sejvar et al., 2003b).  Areflexia or hyporeflexia, loss of bowel and 

bladder control are also common (Hayes et al., 2005b).  A Guillain-Barré-like syndrome 

affecting peripheral nerves, radiculopathy and demylenating peripheral neuropthay have also 

been reported although true Guillain-Barré syndrome is rare (Ahmed et al., 2000; Leis et al., 

2003; Park, Hui, and Bartt, 2003; Sejvar et al., 2005).  Recovery is variable and in general, initial 

severity of the disease does not forebode poor prognosis (Cao et al., 2005; Sejvar et al., 2005). 

Among WND cases an estimated 55-60% suffer from WNE with an estimated 20% case 

fatality.  Additionally, WNP may contribute to 10-50% case mortality in humans (Sejvar, 2007).  

The most common victims of WNV are the very young, the elderly and those with suppressed or 

compromised immune systems.  The first human victims in Israel in 1999 were an elderly couple 

75 and 76 years old (Bin et al., 2001).  Both patients had developed WNE and slipped into a 

coma.  Of the first human cases in the 1999 New York WNV outbreak, four out of five cases 

developed flaccid paralysis.  Three of these patients died of WNE.  These patients were between 

57-87 years of age (Asnis et al., 2000; Asnis et al., 2001).  It is consequently evident that the risk 

of WN and more so WND increases with age. In the 2005 outbreak in California, 34.65% of the 

cases (305 out of 880 cases) were classified WND cases (Jean et al., 2007).  The authors argued 

that male sex, diabetes and older age were significant risks in acquiring WND.  Similar 

predispositions were seen in the 2003 outbreak in Colorado (Patnaik, Harmon, and Vogt, 2006). 

Immunity to WNV and Dynamics of Virus Entry into the Central Nervous System (CNS) 

Innate Immune Response: Type I interferons (IFN α and β) are among the first 

cytokines to be secreted during viral infections.  They have been shown to counteract WNV by 
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restricting its tropism, reducing viral burden and preventing the death of neurons (Lobigs et al., 

2003; Samuel and Diamond, 2005).  IFN binding of the type I IFN receptor triggers the Janus 

Kinase/ signal transducer and activation of transcription (JAK/STAT) pathway (reviewed in 

Murray, PJ (Murray, 2007) ).  The STAT1 and STAT2 heterodimerize and translocate to the 

nucleus where they bind to IFN regulatory factor 9 (IRF9) forming a heterotrimeric complex 

called IFN stimulated gene factor 3 (ISGF 3).  ISGF3 in turn binds to cis-acting IFN stimulated 

response element (ISRE) located upstream of type I IFN regulated genes transcribing ISG, 

dsRNA activated protein kinase (PKR), 2’, 5’-oligiadenylte synthetase (2’, 5’-OAS) and other 

genes (King et al., 2007).  The PKR-mediated signaling pathway controls translation in virus 

infected cells while the 2′, 5’-OAS and the latent endonuclease RNAse degrade viral RNA 

(Gilfoy and Mason, 2007; Mashimo et al., 2002; Wang and Fikrig, 2004).  WNV and Kunjin 

virus have evolved to stop this cascade by using NS2A which interacts with STAT1 and STAT2 

thereby preventing its translocation to the nucleus (Liu et al., 2006; Liu et al., 2005).  Other 

evasion mechanisms include the RNA helicase retinoic acid inducible gene-I (RIG-I) and 

melanoma differentiation antigen-5 (MDA5) (Fredericksen and Gale, 2006).  The virus 

consequently delays the activation of innate immune response buying it time to replicate 

unimpeded early in infection.  The accumulated viral protein acts on IFN α and β (Keller et al., 

2007).  

IFN γ, a Type II IFN plays an important role both in innate immune response and 

adaptive immune response.  It is produced primarily by γδ T cells, CD8+ T cells and NK cells 

and limits viral replication by inducing an anti-viral state.  IFN γ -/- mice showed increased viral 

burden and mortality when infected with WNV NY99 (Shrestha et al., 2006; Wang et al., 2003a).  

The authors argued that IFN γ played an early role against WNV.  However, Wang et al. (Wang 
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et al., 2006b) showed that CD8+ cells do not require IFN γ to mediate an immune response to the 

lineage II Sarafend strain of WNV.  

WNV replicates through a dsRNA intermediate.  This dsRNA can binds Toll-like 

receptor TLR-3. TLR-3 mediated secretion of TNF-α changes the permeability of the blood-

brain barrier (BBB) allowing WNV to invade the CNS (Diamond and Klein, 2004; Wang et al., 

2004a).  WNV is known to upregulate MHC I and II, adhesion molecules like ICAM-1, VCAM-

1 and E-selectin CD62E (Shen et al., 1997).  Furthermore, the study showed that IFN-γ, TNF-α 

and IL-1 acted in synergy with WNV to increase expression of MHC class I molecules.  A study 

of chemokine profiles in mice infected with the NY99 and the Eg101 WNV strain showed 

upregulation of RANTES (CCL-5), MIP1-α (CCL-3), MIP1-β (CCL-4) and IP-10 (CXCL-10) 

mRNAs in the NY99 infected mice.  The Eg101 WNV strain showed a higher expression of B 

cell and monocyte activating chemokine (BMAC) peripheral sites (Shirato et al., 2004).  In an 

interesting study, macrophage migration factor (MIF) was shown to be important in WNV 

neuroinvasion.  It was shown that mif-/- mice had lower viral loads in the CNS and this rendered 

mice resistant to WNV lethality (Arjona et al., 2007).  Therefore, MIF may also compromise the 

integrity of the BBB.  

All three complement pathways (classical, alternative and mannose binding lectin 

pathway) were found to play an important role in controlling WNV infection (Mehlhop and 

Diamond, 2006; Mehlhop et al., 2005).  Defects in Fas or perforin/granzyme exocytosis increase 

the susceptibility of mice to lethal WNV infection (Wang et al., 2004b). 

Adaptive Immune Response: Humoral immune response plays a crucial role in 

protection against WNV infection (Diamond et al., 2003b).  B cell deficient mice are highly 
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susceptible to infection and harbor increased viral load in the CNS.  Passively administered 

antibodies can prevent disease in animals (Diamond et al., 2003a; Engle and Diamond, 2003).  

Similarly mice deficient in secreted IgM also suffered from higher WNV titers in the CNS 

(Diamond et al., 2003c).  

A majority of the antibodies in flavivirus infections are directed against the E 

glycoprotein while a smaller population may be directed to preM/M (Colombage et al., 1998; 

Falconar, 1999; Pincus et al., 1992; Vazquez et al., 2002) and NS1 (Chung et al., 2006).  The 

DII, containing the fusion loop and DIII, that contains the putative receptor binding domain of 

WNV E are major targets for virus neutralization.  Antibodies against the DII domain were found 

to be protective against WNV in mice (Gould et al., 2005).  However, the most potent 

neutralizing antibodies are those that bind to the lateral surface of DIII domain and this forms the 

basis of many subunit vaccines (see below).  These antibodies could therefore prevent WNV 

from attaching to receptors or block the fusion step after the virus has attached.  On the other end 

of the spectrum is pathology associated with flaviviral antibodies.  This phenomenon is called 

antibody-dependant enhancement of pathogenicity (ADE) wherein antibody-antigen complexes 

are internalized by cells expressing FCγ receptors.  This phenomenon has been well documented 

in Dengue (Morens, 1994; Rothman and Ennis, 1999).  WNV antibodies have been shown to 

enhance infectivity in vitro (Diamond et al., 2003b).  Another related phenomenon called “early-

death” has also been documented in WN wherein animals with pre-existing antibodies many not 

respond well to WNV challenge and may succumb earlier than animals without pre-existing 

immunity (Morens, 1994; Rothman and Ennis, 1999).  An interesting study by Pierson et al. 

(Klasse and Burton, 2007; Pierson et al., 2007) demonstrated the number of antibodies required 
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to achieve WNV neutralization.  They also showed that WNV coated with sub-neurtralizing 

antibody conventrations could still infect cells expressing FCγRs. 

Both CD4+ (Burke, Wen, and King, 2004; Kulkarni, Mullbacher, and Blanden, 1991) and 

CD8 T+ (Liu, Blanden, and Mullbacher, 1989) cells have been shown to respond in WNV 

infection.  Wang et al. (Wang et al., 2003b) showed that mice infected with the Sarafend strain of 

WNV showed an influx of CD8+ but not CD4+ T cells in the brain.  Additionally, CD8+ T cells in 

the brain and spleen also expressed the early activation marker CD69 along with CD25.  In 

another set of experiments γδ-T cells were shown to limit WNV load and thereby control viral 

infection (Wang et al., 2003a).  A follow-up study showed that γδ-T cells were required for 

effective CD8+ memory T cell response against WNV in mice (Wang et al., 2006a).  Mice that 

had perforin deficient CD8+ T cells showed increased viral burden in the CNS and increased 

mortality when infected with WNV NY99.  Perforin had a more limited role in containing 

lineage II (Sarafend) WNV infection (Shrestha, Samuel, and Diamond, 2006; Wang et al., 

2004b).  

CD8+ T cell play a role in recovery from WNV as well as in the associated 

immunopathology.  In T cell deficient mice, CD8+ T cells mediate recovery from a low viral 

challenge dose but mediate immunopathology at a higher challenge dose of WNV (Wang et al., 

2003b).  This suggests a separation between mortality caused by viral overload and mortality due 

to peripheral and encephalitic disease.     

Innate Immune Response and Viral Entry into the CNS: It has been proposed that 

flaviviruses like WNV may enter the CNS by three possible routes.  They could a) enter via 
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infected leukocytes, b) directly travel across the BBB or c) enter by retrograde axonal transport 

through the peripheral nervous system (PNS) (King et al., 2007). 

The endothelial cells in the BBB form a tight junction and express very low levels of 

leukocyte adhesion molecules (Bart et al., 2000).  The IFN-γ produced during a peripheral WNV 

infection upregulate adhesion molecules like ICAM-1 on the luminal surface of endothelial cells.  

ICAM-1-/- mice were shown to have a lower viral load in the CNS and were more resistant than 

control mice to a lethal WNV challenge (Dai et al., 2008).  Secondly, the expression of MHC 

molecules is upregulated during flavivirus infections (Shen et al., 1997).  Thirdly, TLR3 

increases permeability of BBB through tumor necrosis factor (TNF) (Wang et al., 2004a).  TNF 

in turn triggers the secretion of neutrophil attracting chemokine N51/KC (CXCL-1) (Garcia-

Tapia et al., 2007; King et al., 2007) and increases expression of adhesion molecules on 

endothelial cells (Garcia-Tapia et al., 2007).  The neutrophils generate copious amounts of nitric 

oxide (NO) that causes bystander cell death.  These multiple events allow damage and breaching 

of the BBB.  WNV can now enter the CNS via infected infiltrating leukocytes in a “Trojan-

horse” fashion making use of the upregulated ICAMs and the breached BBB.  Gracia-Tapia et al. 

(Garcia-Tapia et al., 2007) reported increased expression of monocyte chemoattractant protein 

MCP-5 (CCL-12), IFN-γ inducible protein IP-10 (CXCL-10) and monokine induced gamma 

interferon MIG (CXCL-9) preceding the expression of IFN-γ and TNF-α in the brain.  The 

authors suggest that IP-10 and MCP-5 initiate recruitment of leukocytes into the perivascular 

spaces and activates circulating leukocytes that produce IFN-γ, IL-1α and TNF-α.  The resulting 

increase in permeability may on one hand eliminate viral entry into the CNS but may also serve 

as a conduit for WNV infected leukocytes to enter the CNS.  A recent study in mice and 
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hamsters, however, showed that increased BBB permeability did not correlate with WNV 

associated lethality (Morrey et al., 2008). 

Flaviviruses do not seem to replicate well in endothelial cells (Khaiboullina et al., 2005) 

but may cause direct or indirect damage to the vascular endothelial cells (German et al., 2006).  

However, it has been suggested that they may be transcytosed to the paranchymal side of the 

CNS and cause indirect damage to the BBB (Desai et al., 1995; King et al., 2007).  Flaviviruses 

may enter the CNS through olfactory neurons or a breached BBB (Monath, Cropp, and Harrison, 

1983).  WNV is capable of entering the CNS by anterior-grade axonal transport and spreads from 

caudal to rostral direction in peripherally inoculated mice (King et al., 2007).  WNV has been 

detected in distinct regions of the human brain including the medulla and the thalamus both of 

which are the first sites that come in contact with the peripheral nervous system (PNS) 

(Hunsperger and Roehrig, 2006).  The presence of viral antigen in the PNS dorsal root ganglion 

(DRG) suggests that the DRG are responsible for rapid spread of WNV from PNS to CNS.  The 

above study also pointed out that the CNS is infected early and the virus is cleared.  However, 

these tissues become reinfected at a later time point.  The difference between a mouse that died 

and one that lived depended on the efficiency with which the immune system was able to clear 

the initial infection (two days post infection) and the amount of virus introduced via the PNS.  

Persistent flaviviviral infections may be another reason for mice that survived.  The host immune 

response and neurological environment may allow for virus to be recovered in survivors (Garcia-

Tapia et al., 2007). 

Current Vaccines against West Nile 

West Nile was first isolated more than seventy years ago (Smithburn et al., 1940).  It was 
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considered to be one of the least worrisome flaviviruses until it invaded North America causing 

disease with neurological implications.  Consequently, despite the long time we have known of 

this virus, there had been no impetus to develop a human vaccine for this disease.  Although the 

New York epidemic in 1999 caused the government, scientific community and the industry to 

rethink their strategy, currently, there are no commercially available vaccines for human use.  

The main reason cited for this is the very low incidence of disease relative to the overall 

population.  Another reason for not developing a vaccine is commercial interests.  There is a very 

small to almost insignificant market for the vaccine.  The prohibitively high cost-to-benefit ratio 

for development and marketing the vaccine severely impact its commercialization (Monath, 

2001a).  The vaccine company Crucell had launched an initiative to develop a WN vaccine for 

human use.  It recently decided to abandon the pursuit and issued the following statement 

"Crucell has come to the conclusion that the commercial and market opportunities for its West 

Nile products are not as attractive as other products in Crucell's pipeline" 

(http://www.reuters.com/article/rbssHealthcareNews/idUSWEB473420080212).  Three vaccines 

have been licensed to be used as veterinary vaccines.  These include the inactivated vaccine by 

Fort Dodge licensed in 2003, a recombinant live canarypox vectored vaccine by Merial Ltd. 

licensed in 2004 and a DNA vaccine licensed in 2005 (Dauphin and Zientara, 2007). 

Despite the gloomy outlook, a number of experimental vaccines have been successfully 

developed and tested.  Every known technology has been used and vaccines have been tested in 

mice, hamsters, birds, equines and non-human primates and have been described in details 

below.  Some vaccines are currently undergoing phase III clinical trails in humans. 

Inactivated Vaccines:  A formalin-inactivated whole-virus veterinary vaccine developed 

by Fort Dodge Animal Health, IA is sold under the brand name Innovator®.  This vaccine was 
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shown to be safe and efficacious (Ng et al., 2003) in horses and was granted full license by the 

USDA.  This vaccine however failed to elicit neutralizing antibodies in flamingos and red-tailed 

hawks (Nusbaum et al., 2003).  Another experiment in golden hamsters vaccinated with the Fort 

Dodge vaccines showed that all vaccinated animals survived challenge with West Nile virus.  

Eight out of nine animals (88.8%) showed hemagglutination Inhibition (HI) and complement 

fixing (CF) antibodies while 55.5% animals showed low levels of WN neutralizing antibodies 

(Tesh et al., 2002a).  The Innovator® vaccine was tested in the baboon model for WN.  

Vaccinated animals showed increased IgG and IgM response and high PRNT titers (Wolf et al., 

2006).  The animals exhibited very low viremia on challenge with WNV-OK2 strain.  These 

results encouraged the development of the human WNV vaccine by the vaccine company Crucell 

as described earlier. 

In 2003, Ng et al. (Ng et al., 2003) tested an inactivated equine WNV isolate on horses.  

On challenge, 81.8% of the control horses had viremia as compared to 19% of the vaccinated 

horses.  Researchers tested yet another inactivated vaccine on young geese.  This vaccine was 

prepared by formalin inactivation of WNV passaged in sucking mouse brains.  The inactivated 

brain homogenates were blended with mineral oil and used to vaccinate geese.  Eighty-five 

percent of the birds were protected upon intra-cranial challenge with WNV.  Extensive field 

studies showed the vaccine to be safe and efficacious (Samina et al., 2005).  The same group also 

developed an inactivated vaccine using the PER.C6 cell platform.  They showed that 91.4% of 

the vaccinated geese were protected following severe intracranial challenge (Samina et al., 

2007). 

Recombinant/Subunit Vaccines: The WNV envelope glycoprotein from a Connecticut 

mosquito isolate was used to express the E gene.  The protein was purified and used to vaccinate 
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C3H/HeN mice.  The vaccine was shown to elicit protective immune response on challenge 

(Wang et al., 2001).  In another experiment, soluble WNV E protein expressed in S2 cells was 

used to vaccinate mice and horses.  All vaccinated mice survived challenge and both mice and 

horses developed high titer WN antibodies (Ledizet et al., 2005).  Watts et al. (Watts et al., 2007) 

immunized hamsters with a carboxy terminus-truncated WNV E protein either with or without 

non-structural protein 1 (NS1).  Some of these vaccines were administered with ISCOMATRIX 

adjuvant.  Animals in the NS1 only group showed an 87% survival whereas animals vaccinated 

with NS1 and E or just E alone showed a 100% survival on challenge.  In a follow-up study 

(Lieberman et al., 2007) by the same group, the authors characterized and reported a robust 

cellular immune response in vaccinated hamsters.  

 Domain III (D III) of flavivirus envelope gene is highly immunogenic.  Researchers have 

successfully made subunit vaccines for Dengue (Mota et al., 2005) and Japanese encephalitis 

(Wu et al., 2003) using the D III region. In 2007 Chu et al. (Chu, Chiang, and Ng, 2007) 

constructed a similar vaccine for WNV.  The vaccine was shown to elicit a strong Th1 response 

with production of IL-2 and IFN-γ.  McDonald et al. generated a WNV EIII domain-bacterial 

flagellin (STF2∆) fusion protein (McDonald et al., 2007).  This vaccine was able to stimulate 

both innate and adaptive immune responses and protect mice against challenge.  Martina et al. 

(Martina et al., 2008) constructed a subunit vaccine expressing the D III of WNV E gene.  All 

vaccinated mice survived challenge as compared to 80% survival observed in a β-propiolactone 

inactivated whole virus vaccine.   

Nucleic Acid/DNA Vaccines: A DNA vaccine expressing the WNV NY99 capsid gene 

was constructed and tested in mice (Yang et al., 2001).  This vaccine was shown to elicit a strong 

Th1 immune response with a robust peak in IL-2 and IFN-γ levels.  Davis et al. (Davis et al., 
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2001) engineered a DNA vaccine expressing WNV preM and E proteins.  The vaccine protected 

100% of the mice and generated robust neutralizing antibody response in horses on challenge.  In 

another study, a plasmid DNA encoding the infectious full length RNA genome of Kunjin virus 

was used to vaccinate mice.  A single mutation in the NS1 gene of the Kunjin virus attenuated it 

in sucking mice.  The vaccine was shown to protect against intracerebral and intraperitoneal 

challenge with both WNV NY99 and the Kunjin virus (Hall et al., 2003).  In 2007 Martin et al. 

(Martin et al., 2007) carried out phase I clinical trials for a DNA vaccine expressing WNV NY99 

preM and E genes.  The vaccine was found to be safe and well tolerated and elicited strong 

humoral and T cell response.  More recently, a capsid deleted Kunjin virus DNA vaccine was 

developed with the capsid being provided in trans.  These single cycle viruses replicate one time 

to generate VLP progeny as an additional antigen and was found to be highly immunogenic in 

mice and horses (Chang et al., 2008). 

Recombinant Virus Vaccines: The recombinant live canarypox vectored vaccine by 

Merial is one of the three licensed veterinary vaccines.  This vaccine is known as the 

RecombiTEK vaccines and has the canapox/ALVAC vector expressing WNV preM and E genes.  

Studies by Grosenbaugh et al. (Grosenbaugh et al., 2004) showed a strong anamnestic immune 

response in horses that had been previously vaccinated with the Fort Dodge Innovator ® vaccine.  

A single dose of the vaccine afforded early protection against viremia in horses challenged with 

WNV infected mosquitoes (Siger et al., 2004).  When vaccinated with two doses and subjected 

to a mosquito challenge, all vaccinated horses developed high titer neutralizing antibody 

response and did not show any clinical signs of illness (Minke et al., 2004).  The RecombiTEK 

vaccine was also tested in cats and proven to be effective (Karaca et al., 2005).  In a separate set 

of experiments ten control and ten RecombiTEK vaccinated horses were challenges by the 



26 
 

intrathecal route.  Eight controls developed encephalomyelitis and one vaccinated horse 

developed mild muscle fasciculation.  Overall the vaccine proved to be effective considering the 

challenge route (Siger et al., 2006).   

A lentivirus vector based vaccine (TRIP/sEWNV) was tested in mice.  A single dose of this 

vaccine protected against lethal challenge with WNV IS-98-ST1 strain.  This protection was seen 

as early as seven days post vaccination and also provided long lasting immunity (Iglesias et al., 

2006).  

A live measles virus vaccine expressing secreted envelope glycoprotein from IS-98-ST1 

strain of WNV was constructed using the attenuated Schwarz strain of measles virus.  This 

vaccine (MVSchw-sEWNV) protected mice against lethal challenge with WNV (Despres et al., 

2005).  

Virus-like Particles and Heterologous Vaccines: A number of other approaches have 

been used to produce effective WN vaccines.  Qiao et al. (Qiao et al., 2004) generated WN virus-

like particles (WNVLPs) using recombinant baculovirus expressing preM and E genes or capsid, 

preM and E genes.  WNVLPs expressing preM and E only generated a strong, protective and 

sterilizing immunity in mice on challenge.  WNVLPs with the capsid, preM and E genes 

generated a much weaker immune reponse. 

Heterologous vaccine approaches have been used based on immunity and cross 

protection afforded by closely related flaviviruses.  An excellent example of this is the use of 

Israel turkey meninoencephalitis virus (ITMV).  ITMV is an arbovirus belonging to Ntaya 

serogroup of flaviviruses and was first described in 1960 (Komarov and Kalmar, 1960).  Turkeys 

less than ten weeks seldom showed any incidence of WNV probably due to presence of cross 
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reacting antibodies.  Geese vaccinated with formalin inactivated ITMV vaccine showed 

anywhere between 39-72% survival on intracranial challenge with WNV (Malkinson et al., 

2001).  In 1971, Price and Thind (Price and Thind, 1971) demonstrated that hamsters vaccinated 

with any of four Dengue virus serotypes were protected against a WNV challenge.  Hamsters 

vaccinated with Japanese encephalitis virus vaccine (JEV SA14-2-8), wild-type St. Louis 

encephalitis virus (SLEV) and with Yellow fever virus vaccine (YFV 17D) showed some level 

of protection against WNV.  Animals vaccinated with the JEV SA14-2-8 and the SLEV vaccine 

were protected against WNV encephalitis and death (Tesh et al., 2002b).  American crows 

(Corvus brachyrhynchus) vaccinated with wild type Kunijin virus were completely protected 

against WNV challenge (Hall and Khromykh, 2004). 

Despite the encouraging results with cross-protection afforded by heterologous flavivirus 

vaccines, it was shown that humans vaccinated with either the JE vaccine (JE-VAX, BIKEN, 

Japan) or a Dengue vaccine (Aventis Pasteur, Lyon, France) did not show protective neutralizing 

antibodies against WNV (Kanesa-Thasan et al., 2002).  Similar observations were made by 

Takasaki et al. (Takasaki et al., 2003) who showed that mice vaccinated with mouse brain 

derived JE vaccine were not protected against intracranial challenge with WNV but were 

afforded partial protection at higher vaccine doses when challenged intraperitoneally.  

Interestingly, mice vaccinated against WNV also elicited partial protective response against JEV 

(Martina et al., 2008).  

Passive Antibody Prophylaxis: Hyperimmune sera have been used for passive antibody 

prophylaxis for many diseases and had been used in a number of experiments for WNV therapy.  

Pooled sera from mice that were actively immunized with WNV E protein was diluted 1:5 and 

administered to naïve mice.  These mice were challenged with 101-106 PFU WNV after 24 hours 
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of passive immunization.  Four out of five control mice and one out of five vaccinated mice died 

over a 15 day observation period (Wang et al., 2001).  In a different study, immunocompetent 

and immunocompromised mice were administered polyclonal WN antibodies prior to infection 

with the virus.  The antibody prevented morbidity in wild-type mice but the 

immunocompromised mice eventually succumbed at later time points (Engle and Diamond, 

2003).  Passively administered sera from immunized horses has been shown to protect naïve 

mice on challenge with WNV (Ledizet et al., 2005).  The same group used affinity purified horse 

antibodies against three WNV envelope peptides to naïve mice.  They found 48-59% survival 

rate in these mice when challenged with WNV (Ledizet et al., 2007). 

Passive antibody prophylaxis has been used with a good amount of success in humans.  

Shimoni et al. (Shimoni et al., 2001) described a case of a 70 year old Israeli woman who 

deteriorated from impaired consciousness to deep coma in 72 hours after admission.  She was 

intravenously administered Omr-IgG-am antibodies from Omrix Biopharmaceutical Ltd, Israel at 

0.4g/Kg.  The patients’ level of consciousness dramatically improved over the next week.  In a 

similar case in 2002, a 42 year old Israeli male lung transplant recipient with confirmed WNE 

exhibited deteriorating level of consciousness.  He showed dramatic improvement within 48 

hours of being intravenously administered Omr-IgG-am antibodies (Hamdan et al., 2002).  In a 

third case a 55 year old man with chronic lymphocytic leukemia and hypogammaglobulinemia 

was diagnosed with WN.  The patient was administered the Omr-IgG-am antibodies at 0.5g/kg. 

Unfortunately, probably because of the timing of administration and the underlying conditions, 

the patient succumbed thirty-two days into his illness (Haley et al., 2003). 

Live Attenuated Vaccines: Live attenuated vaccines can be divided into two 

subcategories viz. attenuation by selection, deletion or cloning and those based on ChimeriVaxTM 
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technology.  The ChimeriVaxTM based vaccines will be discussed in a separate section below.  A 

live attenuated vaccine was developed by Lustig et al. (Lustig et al., 2000) by passaging the 

Israeli strain of WNV in a mosquito cell line and selecting an escape mutant using monoclonal 

antibodies.  The resulting virus WN-25A was found to be genetically stable and had lost all 

neuroinvasiveness.  This vaccine protected 100% of vaccinated mice and geese upon lethal 

challenge.  Pletnev et al generated two chimeric viruses (Pletnev et al., 2003).  One of these had 

the WNV membrane precursor and envelope on a Dengue 4 (WN/DEN4) background and the 

other had a 30 nucleotide deletion in the 3’ non-coding region of DEN4 (WN/DEN4-3’∆30).  

Both these vaccines were attenuated in Rhesus macaques, elicited high neutralizing antibody 

titers and prevented viremia in the monkeys up on challenge.  A follow-up study with the 

WN/DEN4-3’∆30 virus showed that it was unable to infect geese.  The resulting virus also 

showed reduced neurovirulence in intracranially challenged suckling mice but had lost all 

neurovirulence in immunocompromised mice.  Furthermore, it was significantly attenuated in 

monkeys (Pletnev et al., 2006).  In a similar study, Huang et al constructed two chimeric Dengue 

2 viruses expressing WNV NY99 preM and E glycoprotein.  These vaccines were shown to be 

attenuated and protect mice on challenge with the NY99 strain of WNV (Huang et al., 2005).  In 

another study, a molecularly cloned descendant of the lineage II prototype B956 was generated.  

This virus, the WN1415, was shown to elicit a potent immune response and protect 100% of the 

mice on challenge.  At a lower vaccine dose (55 PFU), 67% of the mice were protected 

(Yamshchikov et al., 2004).  

ChimeriVaxTM Technology Based Vaccines: To obtain license for a commercial West 

Nile vaccine for human use, the vaccine must amply demonstrate safety and efficacy in clinical 

trials.  Additionally, the vaccine must be able to elicit a potent protective immune response.  The 
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ChimeriVaxTM vaccines in many ways exploits the clinical data that exists for its parent vaccine 

the Yellow fever 17D vaccine.  The vaccine virus, known as the Asibi strain, was isolated from a 

patient named Asibi in Ghana in 1927 (Stokes, Bauer, and Hudson, 1928; Theiler and Smith, 

1937).  In 1930, Max Theiler developed the first attenuated strain of this virus which he called 

the 17D virus (Theiler and Smith, 1937).  The vaccine has demonstrated a very good safety 

record of millions of doses over the years (Monath, 2001a; Monath, 2001b).  The ChimeriVaxTM 

vaccines rely of their comparative safety against this vaccine.  The ChimeriVaxTM vaccines 

therefore have a vector backbone consisting of the 17D non-structural genes.  The preM and E 

genes of the candidate flavivirus is incorporated into this backbone generating a recombinant 

virus expressing the antigens of interest in a 17D background. 

The first chimeras contained the Japanese encephalitis (JE) virus preM and E (Chambers 

et al., 1999) and were shown to be genetically stable and afford a solid protection against virulent 

JE virus challenge (Guirakhoo et al., 1999).  The ChimeriVaxTM-JE virus did not infect Aedes or 

Culex mosquitoes (Bhatt et al., 2000).  The vaccine has been extensively tested and characterized 

in mice (Guirakhoo et al., 1999) and Rhesus macaques (Monath et al., 2000; Monath et al., 

1999).  ChimeriVaxTM-JE has been studied in humans and a Phase II clinical trial showed its 

promise as an effective human vaccine (Monath et al., 2003; Monath et al., 2002).  Pugachev et 

al. (Pugachev et al., 2003) published a detailed review on these vaccines.  

Similar vaccines have also been generated and tested for all four Dengue virus serotypes 

(Caufour et al., 2001; Guirakhoo et al., 2001; Guirakhoo et al., 2002; Guirakhoo et al., 2004; 

Guirakhoo et al., 2000; van Der Most et al., 2000).  The ChimeriVaxTM-Dengue vaccine is 

currently undergoing Phase II clinical trials (Edelman, 2007). 
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Studies in the hamster model showed that the ChimeriVaxTM-WNV protected hamsters 

and induced a strong immune response as measured by HI, CF and the plaque reduction 

neutralization test (PRNT) (Tesh et al., 2002a).  Preclinical studies were also carried out in mice 

and Rhesus macaques.  ICR mice that were vaccinated and challenged intraperitoneally were 

protected in a vaccine dose-dependant manner.  Similarly, ChimeriVaxTM-WNV vaccinated 

macaques were uniformly protected against intracerebral challenge (Arroyo et al., 2004).  About 

50% of these animals suffered from subclinical disease post challenge and this is attributed to the 

aggressive route of challenge.  In a second set of pre-clinical studies, the ChimeriVax-WNV02 

vaccine which has multiple point mutations was tested in rhesus macaques.  The skin and 

lymphoid tissues were prominent sites for viral replication.  Additionally, studies on human 

subjects revealed that the vaccine produced high titer neutralizing antibody response and antigen 

specific CD8+ T cells producing IFN-γ (Monath et al., 2006).  Additionally, WNV specific CD4+ 

T cells were detected in >80% of the subjects.  A Phase II clinical trial with ChimeriVaxTM-

WNV is currently underway.  It is expected to be completed by January 2009 and enroll 208 

participants (Hall and Khromykh, 2007). 

Vesicular Stomatitis Virus  

Basic Virology: Vesicular stomatitis virus (VSV) belongs to vesiculovirus genus of 

Rhabdoviridae family, order mononegavirales (Lamb, 2007).  It’s a single stranded negative (-

ve) sense RNA virus with an approximately 11 kb genome.  The genomic RNA is completely 

covered by the viral nucleoprotein and codes for five genes (Figure 1.3).  These genes from 3’ to 

5’ direction are (leader sequence)-N (nucleocapsid protein)-P (phosphoprotein cofactor, also 

known as NS)-M (matrix protein)-G (glycoprotein)-L (large polymerase catalytic subunit)-

(trailer) (Lyles and Rupprecht, 2007).  As with all negative sense RNA viruses, the RNA genome 
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of VSV is never found as a naked RNA during replication.  The N protein tightly associates with 

the genomic RNA to form a ribonucleoprotein complex forming a helical functional structure 

that protects the genomic RNA from nucleases and to avoid antisense associated problems 

(Roberts and Rose, 1998).  This complex associates with the viral RNA dependant RNA 

polymerase (vRdRP) complex (Barr, Whelan, and Wertz, 2002; Whelan and Wertz, 1999).  The  

L and P proteins associate to form the vRdRP complex and performs replicase and transcriptase 

functions (Barr, Whelan, and Wertz, 2002; Emerson and Yu, 1975; Patton, Davis, and Wertz, 

1983) and makes up 60% of the genome (Schubert et al., 1985).  The minimal infectious unit is 

1250 subunits of the N protein along with smaller amounts of the polymerase (P and L) proteins 

(Thomas et al., 1985).  

The matrix protein is the smallest VSV gene product and is believed to have multiple 

roles in cytopathogenesis, viral transcription and its regulation, viral assembly and budding 

(Blondel, Harmison, and Schubert, 1990; Carroll and Wagner, 1979; Clinton et al., 1978; Harty 

et al., 2001; Jayakar, Murti, and Whitt, 2000).  The G glycoprotein is the only glycoprotein 

expressed on the surface of the virus.  It is a type I membrane glycoprotein forming trimeric 

spikes facilitating virus attachment to host cell surface receptors and subsequent endocytosis 

(Kreis and Lodish, 1986; Zagouras and Rose, 1993).  The G glycoprotein undergoes a 

conformational change at low pH (pH 6) resulting in fusion of viral envelope and endosome 

vesicle membrane thereby releasing the viral ribonucleocapisd complex into the cytoplasm 

(Roche et al., 2008; Roche et al., 2006; Roche et al., 2007).   

VSV infects cells by receptor-mediated endocytosis followed by a pH dependent fusing 

of the viral envelope with the endosomal membrane.  The resulting uncoating releases the 
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ribonucleoprotein-polymerase complex into the cell cytoplasm.  A schematic illustrating the life 

cycle of VSV is shown in Figure 1.4.  

Transcription of the viral genome is obligatorily sequential, polar and occurs by a 

stuttering/stop-start mechanism (Abraham and Banerjee, 1976; Ball and White, 1976; Barr, 

Whelan, and Wertz, 2002).  Transcription starts at the 3’ end with the generation of a small 

leader RNA followed by the five mRNAs.  Analysis of VSV genome revealed a conserved 23 

nucleotide intergenic region at each gene junction that was shown to contain a putative transcript 

polyadenylation motif: 3’-AUACUUUUUUU-5’.  This polyadenylation motif is followed by an 

untranscribed dinucleotide CA/GA and a transcription start signal 3’-UUGUCNNUAG-5’ 

(Abraham and Banerjee, 1976; Ball and White, 1976; Schnell et al., 1996b).  The polymerase 

consequently terminates and reinitiates at each intergenic junction producing five discrete 

mRNAs.  During this process of termination and reinitiation, the polymerase may occasionally 

detach at these junctions but will have to restart all over again at the 3’ end promoter of the 

genomic template.  As a result, there is a pronounced gradient of mRNA transcripts and 

consequently proteins with the N transcript/protein being most abundant and the L 

transcript/protein being the least abundant (Schnell et al., 1996b) (Figure 1.5).  At some point of 

time after mRNA synthesis begins, the virus switches from transcription mode to replication 

mode.  Encapsidation of the nascent RNA by a complex of N and P proteins (referred to as N0-P)  
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Figure 1.3: VSV genome organization and virus architecture.  VSV is a single stranded 
negative sense RNA virus.  VSV virions are bullet-shaped viruses belonging to rhabdoviridae 
family.  They are approximately 100-430 nm long and 45-100nm in diameter.  The genome is 
very simple and has five genes.  The nucleocapsid protein (N) is tightly associated with the viral 
genomic RNA.  The matrix protein (M) is a multifunctional protein.  The polymerase subunits 
viz. the phosphoprotein (P) and the large subunit (L) associate to form a functional RNA 
dependant RNA polymerase.  Glycoprotein G is the only glycoprotein expressed on the VSV 
virions and plays a vital role in virus attachment, entry and pathogenesis  
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Figure 1.4: Life cycle of VSV.  VSV enters the cell by receptor mediated endocytosis.  This is 
followed by uncoating and releasing of the helical ribonucleoprotein complex.  The N, P, L and 
M mRNAs are translated by free cytoplasmic ribosomes while the G glycoprotein is translated 
by endoplasmic reticulum (ER) bound ribosomes.  Once threshold levels of N, P and L proteins 
have been translated, they participate in viral RNA replication producing the positive sense 
antigenomic RNA template.  Negative sense genomic RNA is packaged into progeny 
nucleocapsids as G and M proteins are assembled into the progeny virions and they bud out.  
Adapted from Flint et al. (Flint, 2000). 
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signals the polymerase to read through the genome by ignoring the intergenic start/stop signals 

(Lyles and Rupprecht, 2007).  The encapsidated antigenomic RNA thus produced is used as a 

template for progeny genomes (Patton, Davis, and Wertz, 1984; Wertz, 1983). 

VSV Natural Cycle: VSV causes a vesicular disease clinically similar to foot-and-mouth 

disease and afflicts cattle, pigs, and horses.  The signs include vesicles and ulcers in mouth and 

oral mucosa, feet and teats of affected animals (OIE. Office international des épizooties (Paris), 

2004).  The disease is economically significant with losses resulting from drop in milk and meat 

production and trade barriers including livestock trading (McCluskey, Hurd, and Mumford, 

1999).  VSV infection is believed to be via the transmucosal and transcutaneous routes (OIE. 

Office international des épizooties (Paris), 2004).  The virus may also be transmitted through 

sandflies, blackflies,  

 

Figure 1.5: Polarity of transcription in VSV.  Transcription of the viral genome is polar and is 
characterized by a stuttering mechanism.  The transcription starts at the 3’ end resulting in the 
generation of a small leader RNA followed by the five mRNAs.  The polymerase consequently 
terminates and reinitiates at each intergenic junction producing five discreet mRNAs.  During 
this process of termination and reinitiation, the polymerase may occasionally detach at these 
junctions but has to restart all over again at the 3’ end promoter of the genomic template.  
Consequently, there is a pronounced gradient of mRNA transcripts and viral proteins with the N 
transcript/protein being most abundant and the L transcript/protein being the least abundant. 
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mosquitoes and certain other dipteral species (Clarke et al., 2006; Lichty et al., 2004; Lyles and 

Rupprecht, 2007).  VSV G glycoprotein is a potent immunogen and also serves important 

functions in virus-entry and virus-induced cell fusion (Roche et al., 2007).  Natural VSV 

infections of humans is rare, causing at most mild flu-like illness (Lichty et al., 2004).  

VSV System: The recovery of a non-segmented negative sense RNA virus was first 

described for rabies virus in 1994 (Schnell, Mebatsion, and Conzelmann, 1994).  The same 

principle was later used to recover rVSVs (Lawson et al., 1995; Whelan et al., 1995).  Briefly, 

the anigenomic sequences were encoded on DNA plasmids under a T7 promotor.  The 3’ viral 

termini were created using Hepatitis D virus ribozyme.  The nucleocapsid protein N, the the 

polymerase subunits P and L were provided on separate plasmids under a T7 promotor in trans.  

The four plasmids were transfected onto cell lines that either stably expressed T7 RNA 

polymerase or were previously infected with recombinant vaccinia virus expressing the T7 

polymerase.  Infectious virus was assembled after transcription and translation of the genomic 

RNPs.  This process is explained in details in the subsequent chapters of this dissertation. 

Advantages of VSV Vectored Vaccines: VSVs can be easily grown in a number of cell 

lines to very high titers (Roberts and Rose, 1999).  They have a small, well understood genome.  

As compared to vaccinia virus vectors that express around 200 different proteins, the VSV G 

glycoprotein is the only glycoprotein expressed on the virus surface (Roberts et al., 1999).  

Consequently, there are fewer proteins that compete for the immune response thereby directing 

more resources towards fighting the antigen of interest.  An additional advantage of the VSG G 

glycoprotein is a low degree of similarity between G glycoproteins among various serotypes of 

VSV and other vesiculoviruses.  The G glycoproteins of VSV Indiana (VSV IN) and VSV New 

Jersey (VSV NJ) serotypes are around 50% identical at the amino acid level (Martinez et al., 
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2003).  Whereas the Chandipura (CH) vesiculovirus G glycoprotein shares about 40% sequence 

identity with the VSV IN or VSVNJ (Masters et al., 1989).  This difference is cleverly exploited 

to circumvent the immune response against the vector itself as a result of primary vaccination. 

This abilty to generate recombinant VSVs (rVSVs) expressing the antigen of interest and 

serologically distinct G glycoproteins for subsequent booster vaccinations overcomes preexisting 

vector immunity and is known as glycoprotein exchange vectors (Figure 1.6).  rVSVs can 

accommodate multiple foreign inserts up to 4.5 kb and incorporate about 30% foreign 

glycoproteins on the virion when compared to the native G glycoprotein (Haglund et al., 2000; 

Schnell et al., 1996a).  As is evident from the VSV life cycle, VSV replicates solely in the 

cytoplasm through RNA intermediates therefore, it cannot go latent or insert itself into genomic 

DNA.  rVSV based have also been shown to confer immunity in presence of maternal antibodies 

(Schlereth et al., 2000).  rVSV vaccines can be administered non-invasively through the 

intranasal route and have been shown to elicit very strong humoral and cellular immune response 

against a variety of infectious viral and bacterial diseases. 

VSV infectious viruses can be efficiently recovered by a reverse genetic approach that 

utilizes multiple plasmids expressing VSV genes (Schnell et al., 1996a).  This method has 

enabled the rapid construction of recombinant VSV expressing a variety of viral and bacterial 

antigens. 

 rVSVs have been engineered to generate a large number of experimental vaccines 

against extremely infectious viral and bacterial diseases.  rVSV vaccines influenza virus 

hemagglutinin (HA) protected mice against challenge (Roberts et al., 1998).  VSV expressing 

various truncation of the HA gene was shown to be equally promising and were highly 

attenuated for pathogenesis (Roberts et al., 1999).  Single cycle VSV vaccines expressing H5 HA 
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of the avian influenza virus afforded long-term protection against challenge in mice (Schwartz et 

al., 2007). 

VSV expressing bovine viral diarrhea virus (BVDV) E2 glycoprotein was shown to 

induce strong neutralizing antibody responses in mice (Grigera et al., 2000).  Similarly, rVSV 

expressing Respiratory Syncytial virus (RSV) F and G glycoproteins were able to protect mice 

against challenge (Kahn et al., 2001).  The major capsid protein L1 of cotton-tail rabbit 

papilloma virus (CRPV) expressed on rVSVs offered complete protection of rabbits on challenge 

(Reuter et al., 2002; Roberts et al., 2004).  CRPV E1, E2, E6, E7 antigens expressed by VSV 

reduced pappiloma volumes in rabbits.  The greatest reduction (96.9%) in papilloma volume was 

observed in rVSV expressing the E7 protein (Brandsma et al., 2007a; Brandsma et al., 2007b). 

rVSV vaccines expressing Hepatitis C virus core, E1 and E2 antigens generated vigorous 

antibody response in mice (Ezelle, Markovic, and Barber, 2002).  

Schlereth et al. (Schlereth et al., 2003) showed that VSV expressing measles virus (MV) 

hemagglutinin was able to induce neutralizing antibodies and protect cotton rats against 

challenge.   

Single cycle rVSV vaccine expressing soluble glycoprotein (sGP) of Zaire Ebola virus 

(ZEBOV) protected mice from lethal challenge (Garbutt et al., 2004).  In a related study, single 

cycle VSV vaccines expressing ZEBOV GP and Marburg virus (Musoke strain) GP were shown 

to be safe, efficacious and protect cynomolgus macaques (Jones et al., 2005).  In a related study, 

the Marburg VSV vaccine (Musoke strain) was shown to protect macaque against the Angola 

and Ravn strains of Marburg virus (Daddario-DiCaprio et al., 2006a; Daddario-DiCaprio et al., 

2006b).  Single cycle VSV expressing Lassa fever GP afforded immuneprotection in  
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Figure 1.6: VSV glycoprotein exchange vectors.  VSV G glycoprotein is the only glycoprotein 
expressed on the virion surface.  This is cleverly exploited in constructing recombinant VSV 
expressing the vaccine antigen. G glycoproteins for the VSV Indiana G(In) and the Chandipura 
G glycoprotein G(Ch) have approximately 40% sequence identity and antibodies generated 
against one G(In) do not readily neutralize rVSV expressing the G(Ch).  Constructing two rVSV 
expressing the same WNV E glycoprotein and either G(In) or G(Ch) as priming and boosting 
vaccines therefore overcomes vector neutralization as the result of primary vaccination while still 
efficiently presenting the WNV E antigen to the immune system. 
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cynomolgus macaques against lethal challenge (Geisbert et al., 2005). 

Mice vaccinated with VSV expressing SARS coronavirus spike (S) protein elicited long-

term protective immune responses against challenge (Kapadia et al., 2005).  VSV vaccine against 

Herpes Simplex Virus type 2 expressing the glycoprotein D was shown to protect mice and 

guinea pigs against vaginal challenge (Natuk et al., 2006). 

Xing and Lichty have developed a rVSV expressing the interferon inducing antigen 

Ag85A for tuberculosis with the intent of using a heterologus prime-boost approach with 

recombinant adenovirus expressing the same antigen (Xing and Lichty, 2006).  A VSV vaccine 

against the plague bacteria Yersinia pestis expressing LcrV protein induced long-term protection 

against challenge in mice (Palin et al., 2007).  

VSV vectors have been most used for the development of vaccine against retroviruses, 

especially HIV.  HIV-1 gag precursor, gag and Env or a chimeric Env with a VSVG cytoplasmic 

tail have been generated (Haglund et al., 2000; Johnson, Rodgers, and Rose, 1998; Johnson et al., 

1997).  Furthermore, multiple strains of rVSVs have also been used in oncolytic viral therapy 

(Fernandez et al., 2002; Lichty et al., 2004; Stojdl et al., 2003). 

VSV-vectored vaccines have been administered via multiple routes including intranasal, 

intramuscular and subcutaneously and have been shown to elicit robust mucosal and systemic 

humoral and cellular immune responses (Brandsma et al., 2007a; Brandsma et al., 2007b; 

Daddario-DiCaprio et al., 2006a; Daddario-DiCaprio et al., 2006b; Ezelle, Markovic, and Barber, 

2002; Garbutt et al., 2004; Geisbert et al., 2005; Grigera et al., 2000; Haglund et al., 2000; 

Johnson, Rodgers, and Rose, 1998; Johnson et al., 1997; Jones et al., 2005; Kahn et al., 2001; 
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Kapadia et al., 2005; Natuk et al., 2006; Roberts et al., 1999; Roberts et al., 1998; Schlereth et 

al., 2003; Schwartz et al., 2007). 

Safety of rVSVs and Vector Attenuation: Any successful vaccine must also have a 

proven safety record before approval for human use.  VSV causes a vesicular disease clinically 

similar to foot-and-mouth disease and afflicts cattle, pigs, and horses.  The signs include vesicles 

and ulcers in mouth and oral mucosa, feet and teats of affected animals (OIE. Office 

international des épizooties (Paris), 2004).  Natural human infections with wildtype VSV is 

generally self limiting.  Serious illnesses are extremely rare with the exception of a single case of 

a three year old boy with viral encephalitis (Quiroz et al., 1988).  Seroprevalence of VSV 

antibodies in human population is rare with small pockets in Georgia and Central America 

(Cline, 1976; Roberts et al., 1999).  A rural population in Panama was reported to have 94% 

seroprevalence to VSV (Tesh, Peralta, and Johnson, 1969). 

rVSVs have been extensively tested for safety in rodent models and non-human primates.  

Wildtype VSV have been shown to be neuropathogenic in mice following intranasal (i.n.) or 

intracerebral (i.c.) inoculation (Miyoshi, Harter, and Hsu, 1971).  Schnell et al. showed that mice 

inoculated with rVSVs via the i.n. route resulted in significant weight loss among the animals but 

they quickly recovered by day 6 (Rose et al., 2000).  rVSVs expressing green fluorescent protein 

(GFP) was shown to infect neuronal and non neuronal tissues after i.n. or i.c. inoculation.  The 

fluorescence subsided by day eight in the intranasally infected mice (van den Pol, Dalton, and 

Rose, 2002).  Over the years, more than a hundred and fifty non-human primates have been 

inoculated with rVSV (IN) via intranasal and intramuscular routes without adverse effects (Egan 

et al., 2004; Rose et al., 2001).  More recently, studies on cynomolgus macaques inoculated with 
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high titer rVSVs via intranasal route established that the virus did not spread to the CNS 

(Johnson et al., 2007).  

The rVSV can be attenuated by a number of ways to significantly reduce vector 

associated pathogenicity while still retaining immunogenicity.  Rearrangement of genes is known 

to attenuate the virus.  Moving the N gene to position 4 (between G and L genes) resulted in a 

rVSV that was 100% efficacious but attenuated (Wertz, Perepelitsa, and Ball, 1998).  

Rerrangement of VSV genes was also shown to eliminate clinical disease in pigs (Flanagan et 

al., 2001).  A recent paper demonstrated that rVSV expressing HIV-1 gag that were attenuated 

by gene translocation or truncation of G gene exhibited enhanced immunogenicity and reduced 

neurovirulence in mice (Cooper et al., 2008).  Similarly deletion of the C terminus of VSV G 

protein from 29 amino acids to either one or nine amino acid residues resulted in highly 

attenuated rVSVs while still retaining vaccine efficacy (Roberts et al., 1998; Schnell et al., 

1998).  A VSV G deleted virus (∆G virus) was first described in 1997 (Schnell et al., 1997).  The 

∆G virus is recovered from cells that have the G glycoprotein provided in trans (Schnell et al., 

1997).  These ∆G viruses can only undergo a single round of replication and any progeny virus 

particle produced cannot infect fresh cells as they lack the G glycoprotein.  Single cycle rVSV 

vaccines were shown to be efficacious and protective against influenza in mice but elicited an 

immune response of a lesser magnitude than replication competent rVSV vaccines (Roberts et 

al., 1999).  A later study in non-human primates elegantly dissected the T and B cell immune 

responses to rVSV expressing HIV envelope glycoprotein.  This study compared the G deficient 

recombinant with the rVSV containing the G glycoprotein and demonstrated that the ∆G virus 

elicited a better immune response if not equivalent to the replication competent rVSVs 
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(Publicover, Ramsburg, and Rose, 2005).  Similar results have also been observed for single 

cycle rVSV vaccines against Hepatitis C virus (Majid et al., 2006). 

Other methods of attenuation that could be used include mutations in the M gene and its 

two internal inframe start codons that reduce the cytopathogenic effects of the rVSV (Jayakar 

and Whitt, 2002).  Another interesting method is the development of propagation defective G-

stem rVSVs.  These viruses have the most of the extracellular portion deleted but retain the 

transmembrane domain and ectodomain membrane proximal 42 amino acids (Robison and 

Whitt, 2000).  Despite of the promise these newer methods hold, the practicality of safety, 

efficacy and large scale production may still have to be determined. 
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CHAPTER 2 
 

COMPLETE GENOME ANALYSIS AND VIRULENCE CHARACTERISTICS OF THE 
LOUISIANA WEST NILE VIRUS STRAIN LSU-AR01 

 
INTRODUCTION 

 WNV is a member of the Flaviviridae family.  It is an enveloped virus with a single-

stranded, positive sense RNA genome of approximately 11 kb.  The genome is translated as a 

single polyprotein, which is subsequently cleaved by host as well as virally encoded proteases to 

produce three structural and seven nonstructural proteins (Brinton, 2002; Chambers et al., 1990).  

The structural proteins include a capsid (C) protein, a pre-membrane (prM) protein, and an 

envelope (E) glycoprotein that mediates attachment, virus-induced membrane fusion and virion 

assembly (Mukhopadhyay et al., 2003; Mukhopadhyay, Kuhn, and Rossmann, 2005).  The viral 

nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) regulate viral 

transcription and replication, as well as attenuating host antiviral responses (Best et al., 2005; 

Guo, Hayashi, and Seeger, 2005; Khromykh, Sedlak, and Westaway, 2000; Lin et al., 2006; Liu 

et al., 2005; Munoz-Jordan et al., 2005). 

 WNV was first isolated in 1937 from a febrile patient in the West Nile province of 

Uganda (Smithburn et al., 1940).  The significance of WNV infection as an emerging infectious 

disease rapidly increased since its initial detection in New York in 1999.  The rampant spread of 

the virus throughout North America resulted in a significant and unusual mortality among birds, 

specifically corvids.  Moreover, WNV was also responsible for cases with severe neurological 

disease in humans.  Approximately 80% of patients infected with WNV were found to be 

asymptomatic and 20% of the patients had West Nile fever.  Typically, less than 1% of the 

patients suffered from West Nile neuroinvasive disease (WND) including West Nile meningitis 

(WNM), encephalitis (WNE) and acute flaccid paralysis (poliomyelitis- like syndrome) (WNP) 
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(Sejvar, 2007).  Among WND cases, an estimated 55-60% of the patients had WNE resulting in 

an estimated 20% case fatality.  Additionally, 10-50% of mortalities in humans could be 

attributed to WNP (Sejvar, 2007). 

 WNV has worldwide distribution ranging from Australia, India and China in the east to 

the Middle East, Africa, Europe and the United States in the west.  Most phylogenetic analyses 

have utilized specific genomic regions, such as short regions of the E glycoprotein (Anderson et 

al., 2001; Lanciotti et al., 1999).  Alternatively, entire WNV genomes have been used for 

phylogenetic analysis to provide more accurate information about relationships among different 

WNV strains (Grinev et al., 2008; Lanciotti et al., 2002).  WNV strains from North America, 

Europe, Middle East, Africa, Australia and India belong to lineage I.  The Australian (Kunjin), 

Indian, Czech (Rabensburg) and LEIV-Krnd88-190 virus (Russia) isolates form separate sub-

lineages within lineage I (Bakonyi et al., 2006; Bondre et al., 2007; Coia et al., 1988; Lanciotti et 

al., 2002).  While some researchers have assigned these viruses to subclades of  lineage I (Briese 

et al., 2002; Lanciotti et al., 2002), others have proposed, based on the genetic distances, that the 

Rabensburg isolate, the Krnd88-190 Russian isolate and the Indian isolates, should be classified 

as lineages III, IV and V respectively (Bakonyi et al., 2005; Bakonyi et al., 2006; Bondre et al., 

2007).  In lineage I, the Israel 98/North American belongs to clade Ia and the Kunijn virus from 

Australia to clade Ib.  Most likely, due to microevolution within clade Ia, the North American 

isolates have been subdivided into subclades differentiating early viruses and dominant 

genotypes that were established as they spread (Davis et al., 2005; Grinev et al., 2008).  Lineage 

II WNV is mainly composed of isolates originating from the African continent and the island of 

Madagascar.  
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 WNV surveillance was first established in Louisiana in the spring of 2000 and included 

surveillance of mosquitoes, dead birds, horses and sentinel chickens (CDC, 2002b).  The first 

cases of WNV infection were reported in humans (CDC, 2001) and horses (CDC, 2002a) in 2001 

and the virus was first isolated in Louisiana in 2001.  The largest out-break in the state of 

Louisiana occurred in 2002 (CDC, 2002c) resulting in 329 human WN cases with 25 fatalities 

(Figure 2.1) (Ou and Ratard, 2005).  The predominant mosquito vector in Louisiana is Culex 

quinquefasciatus, which appears to be linked to a high risk of WND (Gleiser et al., 2007; Godsey 

et al., 2005; Lindsey et al., 2008). 

The LSU-AR01 strain representing a putative predecessor of the 2002 Louisiana outbreak 

was isolated from a kidney sample of a dead blue jay found in Jefferson Parish, Louisiana in 

2001.  The entire genome of this isolate was sequenced and phylogenetically analyzed using a 

database of 75 full-length WNV genomes deposited in GenBank.  This analysis showed that the 

LSU-AR01 strain was closely related to a 1999 mosquito isolate from Connecticut and did not 

group with the New York-99 strain and its close-related strains, or with strains established later 

in various regions of the USA.  Importantly, the LSU-AR01 strain exhibited increased 

neuroinvasiveness and neurovirulence in comparison to the New York-99 strain at low viral 

doses. 

MATERIALS AND METHODS 

Virus Isolation and Genome Sequencing 

LSU-AR01 was isolated in 2001 from a dead blue jay (Cyanocitta cristata) at the 

Louisiana Animal Disease Diagnostic Laboratory (LADDL), LSU School of Veterinary 

Medicine (LSU SVM).  The entire genome was sequenced and submitted to GenBank (accession 

number AY000000).  Specifically, viral RNA was extracted using TRI reagent (Molecular 
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Research Center, Cincinnati, OH, USA) according to the manufacturer’s protocol.  Ready -To-

Go-You-Prime First Strand Beads (Pharmacia Biotech, Uppsala, Sweden) were used for the 

cDNA construction.  

 
Table 2.1: WNV Primers 

Primer Name Primer Sequence 
WN-5' 5′-agtagttcgcctgtgtgagc-3′ 
WN-F1 5′-ccgtcattggttggatgc-3′ 
WN-F2 5′-agcattgacacatgcgcc-3′ 
WN-F3 5′-agcaacactgtcaagttg-3′ 
WN-F4 5′-cgctctaggagacacagc-3′ 
WN-F5 5′-cgatcagtttccagactg-3′ 
WN-F6 5′-tgaagtcaaatcatgtac-3′ 
WN-F7 5′-aagaggtggacagccaag-3′ 
WN-F8 5′-ataacattcacaacgacatc-3′ 
WN-F9 5′-ttgatgtgcggcttgatg-3′ 
WN-F10 5′-ttgcagcacaagtggaac-3′ 
WN-F11 5′-tgtggctgctgagatggc-3′ 
WN-F12 5′-ttgcctacaacgtgctgg-3′ 
WN-F13 5′-cgtgagaaggtatatacc-3′ 
WN-F14 5′-agcgcagtggcagccaac-3′ 
WN-F15 5′-cggacagcggccggaatc-3′ 
WN-F16 5′-atgtggaagaggcggttg-3′ 
WN-F17 5′-ggtgagtcgagcttcagg-3′ 
WN-F18 5′-accgccagaaggagtgaag-3′ 
WN-F19 5′-ctcaggaggaggtgtcgag-3′  
WN-F20 5′-ccgcatggctgtcagtgg-3′  
WN-F21 5′-cagaggacatgttggagg-3′ 
WN-3' 5′-agatcctgtgttctcgcacc-3′ 
WN-B5 5′-tacatcttcctcgtattg-3′ 
WN-B2 5′-ccgaccatcaacagcagtatc-3′ 

 

The entire virus genome (11029 bp) was divided into 3 segments and 3 different reverse 

primers: WN 3′ (bp 11029-11010), WNB5 (bp 8454-8437), and WNB2 (bp 4070-4049) were 

used to produce overlapping cDNAs spanning the entire virus genome. 
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Figure 2.1: West Nile incidence in Louisiana and United States.  (A) Comparison of West 
Nile neuroinvasive disease (WND) and associated mortality rates in Louisiana.  (B) Comparison 
of West Nile mortalities in the US and Louisiana.  Case counts were obtained from CDC 
statistics. 
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Primer pairs: WN 5′-WNB2, WN F7-WNB5, and WNF16-WN 3′ and Fail Safe DNA 

polymerase (Epicentre Biotechnologies, Madison, WI) were used to generate PCR overlapping 

DNA products.  PCR products were directly sequenced in an automated DNA sequencer 

(Applied Biosystems) after column purification (Zymo Research Corp., Orange, CA).  The list of 

all synthetic oligonucleotides used for PCR and sequencing is shown in Table 2.1. 

Viral Replication Kinetics 

All WNV experiments were conducted within a BSL-3 level biosafety laboratory 

according to CDC guidelines.  Vero cell monolayers in 6-well plates were washed two times 

with ice-cold PBS and infected with LSU-AR01 or NY-99 at a MOI of 1.  The cells were 

incubated at 4°C for an hour to allow for virus adsorption and then for one more hour at 37°C.  

The remaining virus inoculum was aspirated and cells were washed with phosphate buffered 

saline (PBS) followed by a wash with acidic PBS to eliminate unadsorbed virus particles.  

DMEM growth medium containing 2% FCS was added and cell cultures were incubated at 37°C.  

Individual plates were frozen at zero time point and every twelve hours after that for 72 hours.  

Virus titers for stocks prepared at each time point were determined using 10-fold dilutions.  

Comparative Virulence and Pathogenicity Studies 

Five-week-old female Balb/c mice were used.  All experiments were approved by the 

LSU SVM Institutional Animal Care and Use Committee (IACUC), Institutional Biological and 

Recombinant Safety Committee (IBRDS) and BSL-3 bio-safety committees.  Mice were divided 

into five groups of ten mice each.  A 31-guage tuberculin syringe was used for tail vein 

injections.  Animals were inoculated intravenously with either 100μl of the virus for the 

experiment group, or 100μl uninfected cell culture supernatant for the mock group.  Group I and 

II received 103 PFU/ml and 106 PFU/ml of the WNV NY-99 and were designated as NY-99 low 
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and high groups, respectively.  Groups III and IV received 103 PFU/ml and 106 PFU/ml of the 

WNV LSU-AR01 isolate and were designated as LSU-AR01 low and high groups, respectively. 

Group V animals served as the control group and received cell culture supernatant.  All animals 

were observed three times daily for 14 days for clinical signs of WNV infection including ruffled 

fur, hunching, ataxia, lethargy and hind limb paralysis.  At the end of the experiment all 

remaining animals were humanely euthanized and selected organs were collected from all 

animals for histopathological examination. 

Histopathology 

Tissues (brain, lung, liver, bilateral kidneys, heart, spleen, skull, and vertebra) were 

collected from the mice euthanized or after death and fixed by immersion in 10% neutral 

buffered formalin.  The skull and vertebra were decalcified in 10% formic acid for three days.  

All sampled tissues were routinely processed into paraffin, and 3 to 4 micrometer sections were 

cut for hematoxylin and eosin staining (H&E).  H&E sections of the nasal olfactory epithelium 

and bulb in the skull and four sections of the spinal cord including two consecutive anterior 

cervico-thoracic and two consecutive lumbar-sacral posterior sections in the vertebrae were 

examined under the light microscope. 

Phylogenetic Analysis 

Accession numbers for the complete genome sequences of 75 WNV isolates (Table 2.2) 

were obtained by BLAST search using the WNV LSU-AR01 sequence as well as various 

specific references.  The complete genome sequences were obtained from GenBank. A Japanese 

Encephalitis virus (JE) (M18370) sequence was used as the out-group.  Sequences were imported 

into and aligned using ClustalX 2.0 (Thompson et al., 1997).  The alignment was iterated at the 

final step using ClustalX so as to improve the overall quality of the alignment.  A distance matrix 
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was generated with the DNADIST program in the Phylogeny Inference Package (PHYLIP) 

version 3.6 (Felsenstein, 1989) and the Kimura 2-parameter (Kimura, 1980) evolutionary model 

was applied to the distances.  The Neighbor program in PHYLIP was used to construct a 

Neighbor-Joining (NJ) tree using the method of Saitou and Nei (Saitou and Nei, 1987).  The tree 

was rooted using the JE virus as out-group.  Bootstrap analysis was done using one thousand 

replicates and the values were added to the NJ tree.  The tree was edited using Dendroscope 

version 1.2.4 software (Huson et al., 2007).  The alignment was also imported into BioEdit 

software version7.0.9.0 (Hall, 1999) to generate a sequence identity matrix. 

Table 2.2:  WNV Strains Used for Phylogenetic Analysis 

Virus name Accession 
number 

Country State Year Source 

WNFCG M12294 Uganda   1937 Human 
Uganda B956 AY532665   Uganda   1937 Human 
Egypt101 AF260968 Egypt   1951 Human 
Kunjin 
strainMRM61C 

D00246 Australia   1960 Culex annulirostris 

PTRoxo AM404308  Portugal   1971 An. maculipennis 
Ethiopia 
strainEthAn4766 

AY603654.1 Ethiopia   1976 Bird 

Madagascar-
AnMg798 

DQ176636.2 Madagascar   1978 Parrot (Coracopsis 
vasa) 

India804994 DQ256376 India   1980 Human 
ArB3573/82 DQ318020.1 Central 

African 
Republic 

  1982 Tick 

SPU116-89  EU068667.1 South 
Africa 

  1989 Human 

ArD76104 DQ318019.1 Senegal   1990 Mosquito 
Romania RO97-50 AF260969 RO97-50   1996 Culex pipens 
Morocco 96-111  AY701412  Morocco   1996 Horse 
PaH001 AY268133 Tunisia   1997 Human 
Rabensburg isolate 
97-103 

AY765264 Czech 
Republic 

  1997 Culex pipiens 

Italy-98-equine AF404757 Italy   1998 Equine 
IS-98 STD AF481864 Israel    1998 Stork 
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KN3829 AY262283 Kenya   1998 Culex univittatus 
LEIV-Krnd88-190 AY277251.1 Russia   1998 Tick (Dermacentor 

marginatus) 
New York 99-
flamingo382-99 

AF196835 USA NY 1999 Chilean flamingo 

VLG-4 AF317203 Russia Volgagrad 1999 Human 
 NY99-eqhs AF260967 USA NY 1999 Horse 
LEIV-Vlg99-27889 AY277252.1 Russia Volgagrad 1999 Human 
HNY1999 AF202541 USA NY 1999 Human 
CT-mosquito2741 AF206518  USA CT 1999 Culex pipiens 
Ast99-901 AY278441 Russia Astrakhan 1999 Human 
PaAn001 AY268132 France   2000 Horse 
MD 2000-crow265 AF404753  USA MD 2000 Crow 
NJ 2000 MQ5488 AF404754.1 USA NJ 2000 Culex pipiens pool 
NY 2000-
grouse3282 

AF404755.1 USA NY 2000 Grouse 

LEIV-Vlg00-27924 AY278442.1 Russia Volgagrad 2000 Human 
3356K VP2 EF657887.1 USA NY 2000 American crow 
NY 2001 Suffolk DQ164194 USA NY 2001 American crow 
Chin-01 AY490240.2 China   2001   
FL232 DQ080072.1 USA FL 2001 Catbird 
LSU-AR01 AF000000 USA LA 2001 Blue Jay 
TX 2002 2 DQ164205.1 USA TX  2002 Human 
OH 2002 DQ164202.1 USA OH 2002 Human 
TX 2002 1 DQ164198.1 USA TX 2002 Human 
GA 2002 2 DQ164197.1 USA GA 2002 Human 
NY 2002 Nassau DQ164195.1 USA NY 2002 Culex 

pipiens/restuans 
 GA 2002 1 DQ164196.1 USA GA 2002 Human 
FL234  DQ080071.1 USA FL 2002 Horse 
TWN165 DQ080062 USA LA 2002 Mosquito 
ARC10 AY795965.1 USA MI 2002 Human 
Clinton02 DQ164193.1 USA NY 2002 American crow 
Broome02 DQ164187.1 USA NY 2002 American crow 
Queens02 DQ164186.1 USA NY 2002 American crow 
IN2002 DQ164200   USA IN 2002 Human 
2003 Rockland DQ164192.1 USA NY 2003 American crow 
Mex03 
strainTM171-03 

AY660002.1 Mexico Tabasco 2003 Raven 

NY 2003 Albany DQ164189  USA NY 2003 American crow 

TABLE 2.2 continued 
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Bird 1171 AY712946 USA TX 2003 Blue jay 
goose-Hungary/03 DQ118127.1 Hungary   2003 Goose 
Morocco 4.05 AY701413 Morocco   2003 Horse 
03-113FL  DQ431697 USA FL 2003 Human 
AZ-03-1799  DQ080053.1 USA AZ 2003 Culex tarsalis 
CA03GRLA-1260  DQ080054.1 USA CA 2003 Culex 

quinquefaciatus 
AZ-03-1681  DQ080052.1 USA AZ 2003 Culex tarsalis 
CA-03Arc  DQ080058.1 USA CA 2003 Crow 
CO03-2 DQ164203.1 USA CO 2003 Magpie 
CO03-1 DQ164204.1 USA CO 2003 Red-tailed hawk 
03-124FL  DQ431699.1 USA FL 2003 Human 
03-120FL  DQ431698.1 USA FL 2003 Human 
OK03 EU155484 USA OK 2003   
TVP9220 DQ080066 Mexico Baja 

California 
Norte 

2003 Cormorant 

TX 2004 Harris 4 DQ164206.1 USA TX  2004 Blue jay 
TWN496 DQ080061 USA LA 2004 Cardinal 
goshawk-
Hungary/04 

DQ116961 Hungary   2004 Goshawk 

France 407/04  DQ786573.1 France   2004 Common magpie  
France 405/04  DQ786572.1 France   2004 House Sparrow 
WNVCc DQ080060 Mexico Baja 

Calfornia 
Norte 

2004 Raven 

Sarafend AY688948 Unknown 
(lineage II) 

     

385-99 isolate 
hamster passage 
strain 9317A 

AY848695 USA     Hamster 

Japanese 
encephalitis virus 
(strain JaOArS982) 

M18370         

 
RESULTS 

Virus Isolation, Characterization and Genome Sequencing 

The WNV-LSU-AR01 was isolated by direct incubation of a dead blue jay kidney sample 

on African monkey kidney cells (Vero).  The virus was passed four times before larger stocks 

TABLE 2.2 continued 
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were made for subsequent analyses.  The entire LSU-AR01 genome was sequenced as described 

in Materials and Methods.  Alignment of the LSU-AR01 genomic sequence to that of the NY-99 

genome revealed that the two genomes differed by 26 nucleotides.  Twenty (approximately 77%) 

of these nucleotide changes of the LSU-AR01 genome did not code for amino acid changes, 

while the remaining six (approximately 23%) resulted in amino acid changes (Table 2.3).  

Overall, there were 20 nucleotide transitions and 3 (15%) of these transitions caused an amino 

acid change.  Six of the nucleotide changes were transversions with half of them resulting in 

amino acid changes.  As compared to the NY99 sequence, there was one amino acid change 

within each of the NS2B, NS3, NS4A and NS4B coding sequences and two amino acid changes 

within NS5. 

 The LSU-AR01 strain produced viral plaques on Vero cells, which appeared to be similar 

to those produced by the NY-99 strain occasionally producing a “comet” like streaking 

appearance (Figure  2.2: A).  Viral replication kinetics were determined in Vero cells.  Both 

viruses appeared to replicate with similar kinetics yielding highest titers at 36-48 hours post 

infection with an MOI of 1 (Figure 2.2: B). 

Comparative Pathogenicity of LSU-AR01 and NY-99 Strains in Mice 

Mice were infected intravenously via direct injection of virus into the tail vein of Balb/c 

mice.  Two different doses of viruses were used, a low dose consisting of 103 PFU, and a high 

dose of virus consisting of 106 PFU (see Materials and Methods).  Mice were observed for a 14 

days.  Mice infected with either viral strain showed similar clinical symptoms including ruffled 

fur, hunched posture, ataxia, and lethargy. 
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Table 2.3: Genome-wide Comparison of the WNV NY-99 and LSU-AR01 Strains 

Base#  NY99  LSU-
AR01* 

Amino acid Region  

969  C  T   E  
2001  A  G   E  
2289  T  C   E  
2400  T  C   E  
3240  A  G   NS1  
3804  G  A   NS2A  
3810  C  T   NS2A  
4561  A  G  Ile→Val  NS2B  
4743  T  C   NS3  
5142  C  T   NS3  
5709  C  T   NS3  
5758  G  A  Val→Ile  NS3  
5928  A  G   NS3  
6591  A  C  Arg→Ser  NS4A  
6678  C  T   NS4A  
7015  T  C   NS4B  
7551  T  G  Asn→Lys  NS4B  
8415  T  C   NS5  
8811  T  C   NS5  
9751  A  C  Lys→Gln  NS5  
10085  T  C  Ile→Thr  NS5  
10551  T  A   UTR  
10768  T  A   UTR  
10851  A  G   UTR  
10996  C  T   UTR  
10998  A  T   UTR  

                          *A total of 26 mutations were observed throughout the  
      genome. Six of these mutations resulted amino acid changes. 
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Figure 2.2:  Comparison of plaque morphologies and replication kinetics of LSU-AR01 and 
NY-99 strains.  (A) photomicrographs of LSU-AR01 and NY-99 viral plaques formed in Vero 
cells stained with crystal violet.  (B) Vero cells were infected at an MOI of 1 and viral titers at 
different time points post infection were obtained by viral plaque assay on Vero cells. 
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However, 30% of mice (3 mice) infected with the LSU-AR01 strain appeared to develop 

hind-limb paralysis, while only 10% of mice (one mouse) per group appeared to exhibit similar 

clinical symptoms in the NY-99 infected mice (not shown).  The median survival time for LSU-

AR01 and NY-99 were 9.5 and 8 days, with 80% and 90% mortality, respectively, at the low 

viral dose (Figure 2.3: A).  For the high virus dose, the median survival time for LSU-AR01 and 

NY-99 were 6 and 7 days, with 90% and 100% mortality, respectively (Figure 2.3: B).  The 

LSU-AR01 high dose caused the death of 70% of mice on day 6 as compared to 40% of the mice 

in the NY-99 high group.  Mice started to die earlier in the LSU-AR01 low group (10% on day 

6) but slower than the NY-99 low group. 

Histopathological Examination of Mice Infected with Either LSU-AR01 or NY-99 Strains  

 The most prominent histological changes were observed in the brain.  Lesions were seen 

in 60% of the mice in the LSU-AR01 low infectious dose versus none of the mice in the NY-99 

low dose group.  In the high infectious dose groups, 60% of the LSU-AR01-infected mice versus 

90% of the NY-99-infected mice exhibited brain lesions.  Encephalitic lesions typically consisted 

of lymphoplasmacytic perivascular cuffing (Figure 2. 4: A), neuronal necrosis (Figure 2.4: B), 

and gliosis.  Neutrophilic infiltration was occasionally present in perivascular areas and rarely 

extended into the neuropils.  Lesions were highly variable ranging from focal and very mild to 

severe and diffuse.  Meningitis was not noted in the mice of any groups.  Neuronal necrosis was 

also present in the spinal cords of the mice in high dose groups (70% for LSU-AR01 and 20% 

for the NY-99 infected mice).  Only the mice in high dose LSU-AR01 group (30%) had mild 

hemorrhage in the spinal cord.  No overt lesions were present in the mice of both low dose 

groups.  The control mice did not have any lesions in the brain and spinal cord. 
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Figure 2.3: Comparison of the West Nile Virus NY-99 and LSU-AR01 virulence in mice.  
(A) Mice were infected with a low viral dose (103 PFU) of either LSU-AR01 strain (black) or 
NY-99 strain (gray).  (B) Mice were infected with a high viral dose (106 PFU) of either LSU-
AR01 strain (black) or NY-99 strain (gray).  Kaplan-Meier survival curves and statistical 
analysis were generated using GraphPad Prism software version 5.01. 
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Figure 2.4: Central nervous system changes in mice experimentally infected with high dose 
WNV LSU-AR01.  (A) A perivascular cuff composed of lymphocytes and plasma cells in the 
cerebrum (H&E). Bar = 50 μm.  (B) Severe neuronal necrosis in dentate gyrus of the 
hippocampus, characterized by densely eosinophilic, angular and shrunken cytoplasm and 
pyknosis and fragmentation of the nucleus (H&E).  Bar = 50 μm. 
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Increased numbers of tangible body macrophages were noted in the splenic white pulp of many 

infected mice, more commonly high dose (90% in both strains) than low dose (40% in LSU-

AR01 and 30% in NY-99).  The heart from both infected and control mice occasionally had mild 

to severe epicardial mineralization along with mixed inflammatory cell infiltration composed of 

macrophages, lymphocytes, plasma cells, and neutrophils, which are most consistent with non-

viral induced background lesions seen in healthy mice.  Hepatocytes had mild to severe 

cytoplasmic microvacuoles, interpreted as glycogen in the liver from infected mice (60% low 

dose LSU-AR01; 70% low dose NY-99; 20% high dose LSU-AR01; 90% high dose NY-99).  

Rarely, mild inflammatory cell infiltration composed of neutrophils or mixed inflammatory cells 

were present in both infected and control mice (0% low dose LSU-AR01; 10% low dose NY-99; 

10% high dose LSU-AR01 ; 20% high dose NY-99; 10% control).  No overt lesions were 

observed in the olfactory tissues, lungs, or kidneys.  

Phylogenetic Analysis of the LSU-AR01 Strain Based on 75 WNV Genomes 

Seventy-five WNV genomes available in GenBank were aligned using the multiple 

sequence alignment program CLUSTALX 2.0. The PHYLIP software package was utilized to 

generate a distance matrix using the Kimura 2-parameter evolutionary model.  A neighbor-

joining (NJ) phylogenetic tree was generated using the Japanese Encephalitis virus (M18370) 

genomic sequence as the out-group.  Bootstrap values greater than 75% were added to the tree 

(see Materials and Methods) (Figures 2.5, 2.6).   

The North American branch of Lineage I was extracted to obtain a better perspective of 

the relationship between the isolates (Figure 2.6).  A nucleotide identity matrix was generated 

from the alignment using BioEdit software (Hall, 1999).  The LSU-AR01 strain was found to  
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Figure 2.5: Neighbor-Joining (NJ) tree for WNV isolates.  A NJ tree generated using 
complete genomes of 75 WNV isolates.  The tree was rooted using the Japanese Encephalitis 
virus as the outgroup.  Percent bootstrap values ≥ 75% are shown. 
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have 99.5% and 99.7% nucleotide identity with the Israel 98 (ISR-98) (AF481864) WNV and the 

NY-99 (AF196835) WNV respectively.  The NY-99 and ISR-98 had 99.7% nucleotide identity 

and was close to the value (99.8%) obtained by Lanciotti et al. (Lanciotti et al., 2002).  The % 

nucleotide identities are based solely on the alignment of sequences in ClustalX.  To produce the 

phylogenetic tree a distance matrix was generated using the Kimura-2 parameter evolutionary 

model.  The LSU-AR01 Isolate was closely related to a WNV strain isolated from Culex Spp.  

 

 

Figure 2.6: The Lineage Ia Sub-Tree.  The lineage Ia sub-tree was extracted from the 
neighbor-joining tree shown in figure 5.  This sub-tree contains the Israel-98 and the North 
American WNV isolates.  Percent bootstrap values ≥ 75% are shown.  
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mosquitoes in 1999 from Connecticut (AF206518).  This isolate shared 99.2% nucleotide 

identity with the LSU-AR01 strain.   

 
DISCUSSION 

 In this paper, we present the entire genomic sequence of the WNV strain WNV-LSU-

AR01 isolated from a blue jay during the early stages of the Louisiana-wide WNV surveillance 

program.  This virus appeared to cause increased neuroinvasiveness and neurovirulence in mice 

in comparison to the prototypic NY-99 strain, especially at low infection doses.  Phylogenetic 

analysis showed that the LSU-AR01 strain belonged to a distinct subclade among the North 

American isolates having a close relative strain previously identified in Connecticut in 1999.  

The results presented herein suggest that the Connecticut-related strains may contain highly 

neurovirulent strains such as the LSU-AR01 that have spread in North America.  

The Louisiana WNV Outbreaks 

The Louisiana WNV surveillance program was initiated in 2000.  WNV incidence 

peaked in 2002 for both bird and human cases (CDC, 2002c).  Blue jays are particularly 

susceptible to contact infection with WNV (Komar et al., 2003) rendering this bird species good 

sentinels for WNV.  Consequently, 75% of all dead birds in Louisiana in 2002 were blue jays 

(Palmisano et al., 2005), while 91.5% of dead blue jays in the Texas 2002 outbreak were WNV 

positive (Lillibridge et al., 2004).  The WNV-LSU-AR01 was isolated from a blue jay found 

dead in Jefferson Parish, Louisiana that borders with and is located immediately south of the St. 

Tammany Parish in which the epicenter of the 2002 WNV outbreak was recorded. In this well-

reported outbreak, 36% of non-human primates housed outside at the Tulane National Primate 

Research Center (TNPRC) developed  WNV antibodies (Ratterree et al., 2003).  Towards the 
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end of the outbreak, 25% of the birds developed anti-WNV antibodies and the blue jay 

population was almost reduced by half (Komar et al., 2005). 

 Plaque morphologies and replication kinetics produced by the LSU-AR01 strain were 

generally similar to those produced by the prototypic NY-99 strain revealing that these viruses 

replicated and spread in cell culture with similar efficiencies.  Genomic sequence comparison of 

the LSU-AR01 with the NY-99 strain revealed 26 nucleotide differences 6 of which coded for 

different amino acids.  All the coding changes were located in non-structural proteins involved in 

regulation of viral replication and transcription.  Three amino acid changes represented non-

conservative changes with respect to size and polarity, and thus may affect the in vivo replication 

and pathogenic properties of the virus, although none of these changes appeared to affect viral 

replication and virus spread in cell culture.  Two amino acid changes in LSU-AR01 in 

comparison to the NY-99 strain, asparagine-to-lysine and lysine-to-glutamine, were located 

immediately proximal or within known or predicted CD8+T cell epitopes located within the 

nonstructural proteins NS4B and NS5, respectively (Brien, Uhrlaub, and Nikolich-Zugich, 2007; 

Purtha et al., 2007).  Other CTL epitopes located within the E glycoprotein were not changed. 

The WNV E glycoprotein is known to elicit robust humoral and cellular immune responses that 

can protect mice from lethal WNV challenge (Dauphin and Zientara, 2007).  The vaccine 

potential of the WNV E glycoprotein has been recently confirmed in our laboratory revealing 

that intranasal administration of the E glycoprotein induces robust CD4+ and CD8+ E-specific 

immune responses (Iyer and Kousoulas, unpublished).  However, in these mice experiments, 

high levels of anti-E immune responses are generated to secure protection from WNV challenge.  

Low-dose infection in naïve animals may allow the virus to replicate in the brain before 

sufficient humoral and cellular immune responses are generated.  Thus, it is possible that the 
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potential loss or otherwise altered recognition of the two LSU-AR01 CTL epitopes within the 

NS4B and NS5 proteins could allow increased replication of the virus in the brain contributing to 

the observed increased neurovirulence of the LSU-AR01 in comparison to the NY-99 strain.  

Comparative Virulence in Mice 

Intravenous infection of Balb/c mice with either the LSU-AR01 or NY-99 strain revealed 

substantial differences in brain pathologies, especially at the lower infectious dose of 103 plaque 

forming units (PFU).  Specifically, 60% of the mice infected with the LSU-AR01 exhibited CNS 

pathology including neuronal necrosis, perivascular cuffing, and gliosis, while none of the mice 

infected with the NY-99 strain exhibited similar pathological profiles in the brain or spinal cord.  

Also, LSU-AR01 infected mice appeared to develop neurological signs such as hind limb 

paralysis more often than the NY-99 strain infected mice.  It is possible that the six amino acid 

differences between the LSU-AR01 and NY-99 strain are responsible for the in vivo virulence 

differences between these two viral strains.  Generally, mice are highly susceptible to most WNV 

strains.  Two different infectious patterns have been reported, which are highly dependent on the 

initial viral dose.  Infections with relatively low viral titers appeared to produce substantially 

increased neuronal inflammation due to immunopathogenesis.  In contrast, high infectious doses 

caused direct brain damage due to high viral replication in the brain (Wang et al., 2003).  

Pathological examination of internal organs of infected mice did not reveal overall apparent 

histopathological differences between the LSU-AR01 and NY-99 at both high and lose infection 

doses.  Therefore, it is unclear at this point, whether the LSU-AR01 strain was able to cross-the 

blood-brain barrier more efficiently than the NY-99 strain, or whether it was able to replicate 

more efficiently than the NY-99 strain either in the brain or at other tissues prior to spread to the 

central nervous system (CNS). 
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WNV-LSU-AR01 Phylogenetic Classification 

A phylogenetic tree was derived based on alignment of 75 complete genomes using the 

NJ method.  The overall topology of the NJ tree is in general agreement with previously 

published phylogenetic trees (Bakonyi et al., 2005; Bakonyi et al., 2006; Bondre et al., 2007; 

Charrel et al., 2003; Davis et al., 2005; Lanciotti et al., 2002; Parreira et al., 2007).  A large 

majority of the clades in the NJ tree were supported by 100% bootstrap values.  Values of 75% 

or more are generally considered to be significant.  The LSU-AR01 strain was classified as a 

lineage I virus belonging to the North American Clade Ia.  All other isolates in this subclade in 

this tree were isolated from American crows and appeared to belong to the eastern US isolates 

described by Davis et al.(Davis et al., 2005).  The derived tree showed a close but distinct 

relationship between the subclade of these corvid isolates and the subclade containing the NY99 

virus and closely-related strains.  Therefore, these results suggest that the NY99 and the corvid 

subclade of LSU-AR01 shared a common ancestor.  The tree appeared to branch out into four 

subclades: subclade Ia-1 consisting of NY-99 and its immediate relatives; Ia-2 containing mostly 

WNV strains from Florida and one strain from Mexico; Ia-3 containing multiple strains from 

different southern and western states; Ia-4 containing two strains from New York isolated in 

2002-2003, one strain from Maryland isolated in 2000, a Connecticut mosquito strain isolated in 

1999 and the LSU-AR01 isolated in 2001.  Although not highly significant, the association of 

LSU-AR01 and the CT 1999 isolate is supported by a 58.1% bootstrap value. 

 WNV strains belonging to lineage I are known to be neurovirulent in mice.  In agreement 

with these findings, the LSU-AR01 strain appears to be highly pathogenic in mice.  The 

phylogenetic tree clearly indicates that the WNV strains that spread from New York to southern 

and western states shared a common ancestor closely related to the NY-99 strain.  There are a 



103 
 

number of possible reasons why strains classified in subclade Ia-4 may not have spread as well 

as the NY-99 relatives.  It is likely that these strains were highly virulent in birds causing rapid 

mortality of the host substantially reducing the chance of further vector-mediated transmission to 

migratory birds.  This argument is supported by the fact that a large number of WNV strains in 

Connecticut originated from crows and blue jays suggesting that corvid mortality blocked further 

viral transmission (Anderson et al., 2001).  It is also possible that these strains were not 

efficiently transmitted by mosquitoes to other birds.  Alternatively, these strains may have spread 

to limited geographical areas, but remained undetected due to the overwhelming presence of the 

NY-99 derived strains.   

 The derived phylogenetic tree suggests that the LSU-AR01 strain could be derived from 

the Connecticut strain migrating to Louisiana in a similar pattern to the NY-99 strain.  There are 

two major migratory flyways that overlap the state of LA (Gubler, 2007) and the location of 

these flyways is believed to be responsible for the abrupt appearance of WNV in FL, LA and TX 

in 2001.  Alternatively, the newer Connecticut strains of this subclade could be derived from 

Louisiana strains during overwintering in Louisiana and subsequent reverse migration to the 

East.  The LSU-AR01 strain may be closely-related to WNV strains, which caused the 2002 

outbreak in Louisiana.  Although there are many partial sequences in GenBank for other viral 

strains, generation of phylogenetic trees based on these partial sequences may lead to false 

conclusions (Charrel et al., 2003).  Ideally, additional full genomes of Louisiana WNV strains 

are needed to provide more insight of how these viruses were spread and established in different 

geographic regions of the USA including Louisiana. 
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CHAPTER 3 

RECOMBINANT VESICULAR STOMATITIS VIRUS-BASED WEST NILE 
VACCINE ELICITS STRONG HUMORAL AND CELLULAR IMMUNE RESPONSES 
AND PROTECTS MICE AGAINST LETHAL CHALLENGE WITH THE VIRULENT 

WEST NILE VIRUS STRAIN LSU-AR01 

INTRODUCTION 

West Nile Virus (WNV) 

 West Nile virus (WNV) was first isolated more than seventy years ago from a febrile 

patient in the West Nile province of Uganda (Smithburn et al., 1940).  WNV is a positive-sense 

RNA virus belonging to genus Flavivirus in the Falviviridae family (Lindenbach, Thiel, and 

Rice, 2007).  The lipid-bilayer membrane of the nascent virus contains 180 molecules of the 

envelope (E) and premembrane (preM) proteins organized into 60 asymmetric trimeric spikes of 

preM-E heterodimers (Zhang et al., 2003; Zhang et al., 2004).  The E glycoprotein is the major 

antigenic determinant and is involved in virus binding and fusion (Ledizet et al., 2007).  WNV 

spread rapidly in North America after its initial introduction in New York (Lanciotti et al., 1999).  

WNV was transmitted via mosquito vectors and caused substantial morbidity and mortality in 

birds, horses and other animals including humans.  Humans constitute a dead-end host because 

the virus does not efficiently replicate in humans.  WNV can be transmitted by the intrauterine 

route (Monath et al., 2002), through breast milk (CDC, 2002b; Hayes and O'Leary, 2004), blood 

transfusion (CDC, 2002a; CDC, 2004b; Mukhopadhyay et al., 2003), bone-marrow transplant 

(Hiatt et al., 2003), organ transplantation (CDC, 2002c; Iwamoto et al., 2003) and through 

kidney dialysis (Cairoli, 2005; CDC, 2004a).  

 The human incubation period for West Nile is 2-14 days (Gea-Banacloche et al., 2004).  

WNV-infected persons may exhibit a variety of clinical symptoms including fever, headache, 
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muscle weakness, fatigue, nausea, vomiting, gastrointestinal manifestations, lymphadenopathy 

and non-pruritic maculopapular skin rash (Davis et al., 2006; Del Giudice et al., 2005; Ferguson 

et al., 2005).  Additional non-neurological clinical manifestations include rhabdomyolysis (Jeha 

et al., 2003; Kulstad and Wichter, 2003), pancreatitis (Perelman and Stern, 1974), hepatitis 

(Sampson et al., 2000), myosistis, orchitis (Smith et al., 2004),  chorioretinitis (Khairallah et al., 

2004) and cardiac dysrythmias (Hayes et al., 2005).  Typically, less than 1% of patients suffer 

from West Nile neuroinvasive disease (WND) including West Nile meningitis (WNM), 

encephalitis (WNE) and acute flaccid paralysis (poliomyelitis- like syndrome, WNP) (Sejvar, 

2007).  Among WND cases, an estimated 55-60% of the patients had WNE resulting in an 

estimated 20% case fatality.  Additionally, 10-50% of mortalities in humans could be attributed 

to WNP (Sejvar, 2007). 

WNV Vaccines 

 The absence of effective treatment against WNV infection has encouraged vaccine 

development.  A variety of different approaches have been employed to produce WNV vaccines 

including inactivated virus, subunit and DNA-based vaccines.  Most of these vaccines appeared 

to be highly immunogenic, and in some cases protected against WNV-infection in experimental 

animals (Dauphin and Zientara, 2007).  Recently, recombinant viruses expressing WNV antigens 

have been shown to induce strong immune responses and protection against WNV challenge in 

animals.  Specifically, a recombinant live canarypox-vectored vaccine expressing the preM 

protein and the E glycoprotein induced strong immune responses in horses and cats 

(Grosenbaugh et al., 2004; Karaca et al., 2005; Minke et al., 2004; Siger et al., 2004), that 

appeared to be partially protective (Siger et al., 2006).  Other viral-vectored vaccines that elicited 

protective immune responses in mice include a  lentivirus vector based vaccine (TRIP/sEWNV) 
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(Iglesias et al., 2006), and a measles virus-vectored vaccine (Despres et al., 2005).  Recombinant 

yellow fever virus (YFV) has also been used to express WNV preM and E proteins based on the 

extensive safety record of the YFV attenuated vaccine (Monath, 2001a; Monath, 2001b).  A 

YFV recombinant vaccine (ChimeriVaxTM ) has shown good immune responses in hamster, 

mice, non-human primates and humans (Arroyo et al., 2004; Monath et al., 2006; Tesh et al., 

2002).  A Phase II clinical trial with ChimeriVaxTM-WNV is currently underway (Hall and 

Khromykh, 2007).  

Vesicular Stomatitis-vectored Vaccines 

 VSV is an enveloped, negative strand RNA virus belonging to the Rhabdoviridae family.  

Natural VSV infections of humans is rare causing at most mild flu- like illness (Lichty et al., 

2004).  VSV infectious viruses can be efficiently recovered by a reverse genetic approach that 

utilizes multiple plasmids expressing VSV genes.  This methodology has enabled the rapid 

construction of recombinant VSV viruses expressing a variety of viral and  bacterial antigens for  

vaccine purposes including influenza virus, bovine diarrhea virus, cotton-tail papillomavirus, 

human immunodeficiency virus, simian immunodeficiency virus, respiratory syncytial virus, 

hepatitis C, measles virus, Ebola virus, Lassa fever virus, Marburg virus, severe acute respiratory 

syndrome virus (SARS), and herpes simplex type-2 virus (Brandsma et al., 2007a; Brandsma et 

al., 2007b; Daddario-DiCaprio et al., 2006a; Daddario-DiCaprio et al., 2006b; Ezelle, Markovic, 

and Barber, 2002; Garbutt et al., 2004; Geisbert et al., 2005; Grigera et al., 2000; Haglund et al., 

2000; Johnson, Rodgers, and Rose, 1998; Johnson et al., 1997; Jones et al., 2005; Kahn et al., 

2001; Kapadia et al., 2005; Natuk et al., 2006; Roberts et al., 1999; Roberts et al., 1998; 

Schlereth et al., 2003; Schwartz et al., 2007).  Recombinant VSVs have been also constructed 
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and tested as vaccines for bacterial pathogens including Mycobacterium tuberculosis and 

Yersinia pestis (Palin et al., 2007; Xing and Lichty, 2006).  VSV-vectored vaccines have been 

administered via intranasal, intramuscular and subcutaneous routes and have been shown to elicit 

robust mucosal and systemic humoral and cellular immune responses (Brandsma et al., 2007a; 

Brandsma et al., 2007b; Daddario-DiCaprio et al., 2006a; Daddario-DiCaprio et al., 2006b; Egan 

et al., 2004; Ezelle, Markovic, and Barber, 2002; Garbutt et al., 2004; Geisbert et al., 2005; 

Grigera et al., 2000; Haglund et al., 2000; Johnson, Rodgers, and Rose, 1998; Johnson et al., 

1997; Jones et al., 2005; Kahn et al., 2001; Kapadia et al., 2005; Natuk et al., 2006; Ramsburg et 

al., 2004; Roberts et al., 1999; Roberts et al., 1998; Rose et al., 2001; Schlereth et al., 2003; 

Schwartz et al., 2007). 

 We constructed recombinant VSVs expressing the WNV E glycoprotein.  A prime-boost 

approach was employed utilizing two different recombinant VSVs expressing either the Indiana 

or the Chandipura G glycoproteins for priming and boosting immunizations, respectively.  

Intranasal immunization of mice conferred high protection against lethal challenge with the 

virulent WNV strain WNV LSU-AR01 (Iyer et al., 2008).  Neuronal necrosis was observed in 

mock-vaccinated but not in vaccinated mice.  These results suggest that VSV recombinant 

vaccines expressing the WNV E glycoprotein may be efficacious intranasal vaccines for animal 

and human use. 

MATERIALS AND METHODS 

Cells and Plasmids 

 Baby hamster kidney cells (BHK-21) were obtained from the American Tissue Culture 

Collection (ATCC).  These cells were grown using Dulbecco’s modified minimal essential 
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media (DMEM) supplemented with 10% fetal bovine serum (FBS) and appropriate amounts of 

antibiotics.  The West Nile virus envelope (E) gene was obtained by first producing a cDNA of 

the E gene from the WNV LSU-AR01 strain, and subsequently cloning this gene into the  

pcDNA3.1 plasmid (Invitrogen, Inc.) after PCR amplification.  The E gene was further amplified 

by PCR from this plasmid using primers that introduced unique NotI and BamHI sites at the 5′ 

and 3′ (Table 3.1), and cloned into plasmid p3XFLAG-CMV-14 (Sigma) placing the FLAG 

epitope coding sequence downstream and in-frame with the E glycoprotein sequence (Figure 3.1: 

A).  All recombinant plasmids were confirmed by restriction endonuclease digestion and DNA 

sequencing. 

Transient Expression of the WNV E Gene 

 BHK-21 cells were transfected with the WNV E-p3XFLAG plasmid using Lipofectamine 

2000 (Invitrogen) as suggested by the manufacturer.  E glycoprotein was detected at 48 hours 

post transfection using anti-FLAG (Sigma) and anti-West Nile rabbit polyclonal antibody 

(Abcam). For IFA, cells were washed twice with phosphate buffered saline (PBS) and fixed with 

ice cold methanol.  Cells were then washed with PBS and wells were blocked with 2% BSA and 

5% goat serum in TBS (Tris-buffered saline) for one hour.  Mouse anti-FLAG antibodies 

(Sigma) in blocking buffer and rabbit anti-WNV antibodies were added to respective wells at a 

1:500 dilution and incubated for one hour at room temperature.  Cells were then washed six 

times with TBS and the secondary antibody; Alexa Fluor® 488 goat anti-mouse IgG and goat 

anti-rabbit IgG (Invitrogen) was added to the respective wells at the same dilution.  Cells were 

incubated in dark for one hour. Finally, cells were washed six times with TBS and observed 

under a fluorescence microscope. 
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Figure 3.1: Cloning and transient expression of the WNE-3XFLAG gene construct in 
BHK21 cells.  (A) Insertion of the 3XFLAG coding sequence in-frame and at the 3′ terminus of 
the WNV E gene.  (B) BHK 21 cells were transfected with the WNV E-3XFLAG expression 
plasmid (left panel) or mock-transfected (right panel).  Transient expression of the WNV E gene 
was assayed using anti-FLAG antibodies.  
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Construction of Recombinant VSVs Expressing the WNV E Gene 

 Plasmid clones that efficiently expressed the WNV E gene were used as the template for 

PCR amplification of the gene, while at the same time introducing unique XhoI and NheI sites at 

the 5′ and 3′ ends (Table 3.1) of the gene fragment.  This DNA fragment was cloned into the 

pVSV-XN2-IN and pVSV-XN2-CH transfer vectors.  Cells were infected with recombinant 

vaccinia virus expressing T7 polymerase (vTF7-3) at a multiplicity of infection (MOI) of 10 for 

one hour.  Subsequently, BHK 21 cells were co-transfected with pBS-N, pBS-P, pBS-L and 

pVSV-XN2 containing the WNV E gene and recombinant virus was recovered as described in 

detail previously (Schnell et al., 1996a; Schnell et al., 1996b).  Control viruses having no 

exogenous inserted genes were also produced using pBS-N, pBS-P, pBS-L and the pVSV-XN2 

(empty vector).  Anti-FLAG and anti-WNV-E antibodies were used to detect expression of the E 

glycoprotein by immunofluorescence assay (IFA) in VSV-infected BHK cells.  Viral isolates 

expressing high amounts of the WNV E glycoprotein were selected through multiple rounds of 

plaque purification.  Viral titers were determined and stocks were stored at -80 °C for 

vaccination studies.  

Table 3.1: List of Primers for rVSV Construction Expressing WNV E 

Primer Name Primer Sequencea 
5′ WNE-FLAG-Not-I 5′-GACGACGCGGCCGCATGTTTAACTGCCTTGGAATGAGC-

3′ 
3′ WNE-FLAG-BamHI 5′-GCAGCAGGATCCAGCGTGCACGTTCACGGAGAGG-3′  
5′-XN2-Xho-I 5′-CCGCGGCTCGAGATGTTTAACTGCCTTGGAATGAGC-3′ 
3′-XN2-Nhe-I 5′-GACGACGCTAGCGGATCACTACTTGTCATCGTC-3′  
a Enzyme restriction sites are italicized. 

Vaccination Study 

 All animal studies were carried out after the appropriate approvals were obtained from 
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the LSU Institutional Animal Care and Use Committee (IACUC) and BSL3 Biosafety 

Committee. Four groups of ten four week-old female Balb/c mice (Harlan, IN, USA) were used 

in this study.  Each individual mouse was identified with an ear tag (National Band and Tag 

Company, KY, USA).  Group I (vaccine group): These animals were mildly anesthetized by 

inhalation of 2-3% isoflurane and 10 μl dose of vaccine containing 105 PFU of the vaccine 

(rVSV-IN-WNV E) was administered intranasally using a 10 μl pipette (5 μl per nostril).  

Animals were boosted with the rVSV-CH-WNV E at 21 days post vaccination using the same 

technique.  One mouse from this group was not included in the fluorescence activated cell 

sorting (FACS) analysis due to sample preparation problems (n=9).  Group II (control for 

vaccine group): Control group animals were vaccinated in the same way as described above 

with the exception that they were inoculated with 10 μl of uninfected cell culture supernatant.  

These animals were boosted at 21 days post vaccination with uninfected cell culture supernatant.  

Animals belonging to groups I and II were humanely euthanized at 14 days post boost.  Spleens 

were collected in Eppendorf tubes containing RPMI and processed by flow cytometry for 

intracellular cytokines and cell surface markers associate with memory T cells, regulatory T cells 

and cytotoxic T cells among others.  For serology, animals were bled by the sub-mandibular 

route (cheek bleed) using Golden-Rod lancets (Medipoint, NY).  Animals were bled on 21 days 

post vaccination and 14 days post boost.  Blood was collected in Becton Dickinson microtainers 

with serum separators (Becton Dickinson). 

Challenge Studies: Group III (Challenge Group) and Group IV (Challenge Group Control) 

 These 20 animals were treated exactly in the same way as groups I and II until the boost 

stage.  At 10 days post-boost, these animals were transported to the animal biosafety level-3 

(ABSL-3) facility for acclimatization.  Blood was collected at 14 days post boost (before 
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challenge).  Animals were challenged intraperitonially with 105 PFU of WNV-LSU-AR01 and 

observed 2-3 times a day for 18 days.  Animals showing severe neurological symptoms (like 

ataxia and hunching posture) were humanely euthanized and dead animals were surgically 

processed immediately (thoracic and abdominal cavities opened up and placed in 10% formalin 

jars) for pathological studies.  

Plaque Reduction Neutralization Test (PRNT90) 

 Serum samples were inactivated by incubation at 65°C for 30 minutes.  Serial two-fold 

dilutions of the serum were incubated with equal volumes of 50 PFU WNV LSU-AR01 at 37°C 

for one hour.  Serum-virus mixtures were then added to Vero cell monolayers in 12-well plates 

in triplicates and the plates were incubated for another hour.  Plates were then overlaid with 

Dulbecco’s modified minimum essential media (DMEM) containing 1% methyl cellulose and 

2% fetal bovine serum.  Plates were incubated at 37°C for 72 hours and then fixed with 10% 

formalin in phosphate buffered saline (PBS).  Plates were washed three times with PBS and 

stained with 0.01% crystal violet.  Plaques were counted and the highest dilution of serum 

resulting in reduction of 90% of the plaques was noted. 

Polychromatic Flow Cytometric Staining and Analysis 

 Mouse splenocytes were adjusted to 107 cells/ml.  One-hundred µl aliquots of splenocyte 

suspension was incubated with appropriately diluted concentrations of antibodies for 30 minutes 

at room temperature.  Cells were washed once with PBS and fixed with 1X BD stabilizing 

fixative buffer (BD Biosciences) in distilled water.  Cells were kept protected from light at 4°C 

and flow cytometric acquisition was completed within 24 hours of staining.  Polychromatic (7 

parameters) flow cytometric acquisition was performed on a LSR II Becton Dickinson 

instrument having three lasers (488nm blue laser, 633nm red laser and 407 violet laser) by using 



119 

 

FITC, PE-Texas red, APC, APC-Cy7 and Pacific Blue as the available fluorochrome parameters.  

Single-stained controls for each fluorochrome were used for setting flow cytometry 

compensation.  Monoclonal antibodies including CD127 FITC (A7R34, ebiosciences), CD62L 

PE-Texas Red (MEL-14, Invitrogen), CD25 APC (3C7, BD Biosciences), CD4 APC-Cy7 

(GK1.5, BD Biosciences) and CD8a Pacific Blue (53-6.7, BD Biosciences) were used.  At-least 

50,000 events were collected by gating on CD4+ T cells and those data were analyzed using 

FlowJo software (TreeStar Inc.) version 8.7.1.   

 To test CD4+ or CD8+ T lymphocytes subsets for IFNγ production, intracellular cytokine 

flow cytometry (CFC) assay was employed in response to each WNV peptide pool stimulation as 

described previously (Pahar et al., 2007).  Briefly, processed splenocytes were resuspended at 

1x106 cells/ml in complete RPMI-10 with 10% FCS, and stimulated with 2 different WNV 

peptide pools at a final concentration of 1µg/ml of each peptide pool.  Peptide pools (15-19mers 

with 10-11 amino acids overlap) derived from the WNV E glycoprotein were based on the 

WNV-NY99 E amino acid sequence (NIH Biodefense and Emerging Infections Research 

Resources Repository, NIAID, NIH).  The 67 peptide array was divided to generate two peptide 

pools.  Peptide pool 1 (pp1) was made of peptides 1-34 and peptide pool 2 (pp2) was composed 

of peptides 35-67.  For positive controls, PMA (50ng/ml, Sigma) and ionomycin (1µg/ml, 

Sigma) were used. Negative controls had no antigen or mitogen stimulation. Brefeldin A 

(10µg/ml, Sigma) was added to cultures after the first hour, in a 6 hour incubation period.  

Following stimulation, cells were stained for cell surface markers with directly conjugated mAbs 

to CD69 FITC (H1.2F3, BD Biosciences), CD62L PE-TR, CD4 APC-Cy7 and CD8a pacific 

blue for 30 minutes at room temperature and washed with dPBS/BSA wash buffer.  Cells were 

then fixed and permeabilized by using Cytofix/Cytoperm (BD Biosciences), washed twice in 
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Perm Buffer (BD Biosciences), and stained with intracellular mAbs. IFNγ PE (XMG1.2, BD 

Biosciences) and/or CD154 APC (MR1, eBiosciences) were added to cells and incubated at 

room temperature for 30 minutes.  Single color and isotype-matched control antibodies were 

used to confirm staining specificity.  After washing, cells were resuspended in 1% 

paraformaldehyde in PBS and stored in the dark at 4°C.  Data were acquired within 24 hours of 

staining using a LSR II instrument (BD Immunocytometry System) and FACSDiva software 

(BD Immunocytometry System).  For each sample, 50,000 events were collected by gating on 

CD4+ T cells. Data analysis was performed using FlowJo software. Gated CD4+ and CD8+ T 

cells were further analyzed for its cytokine production.  Positive cytokine responses were 

determined based on the percentage of cytokine responses obtained above background responses 

(unstimulated medium control) in each experiment. 

Histopathology 

 Tissues (brain, lung, liver, bilateral kidneys, heart, spleen, skull, and vertebra) were 

collected from the mice euthanized or after death and fixed by immersion in 10% neutral 

buffered formalin.  The skull and vertebra were decalcified in 10% formic acid for three days.  

All sampled tissues were routinely processed into paraffin, and 3 to 4 micrometer sections were 

cut for hematoxylin and eosin staining (H&E).  H&E sections of the nasal olfactory epithelium 

and bulb in the skull and four sections of the spinal cord including two consecutive anterior 

cervico-thoracic and two consecutive lumbar-sacral posterior sections in the vertebrae were 

examined under the light microscope. 
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RESULTS 

Cloning and Transient Expression of the WNV E Glycoprotein 

 The WNV LSU-AR01 strain was isolated from a dead blue jay (Cyanocitta cristata) in 

Louisiana in 2001.  Recently, the entire genome of this strain was sequenced and 

phylogenetically compared to 75 full WNV genomes deposited in GeneBank (Iyer et al., 2008).  

The E gene was amplified from viral RNA using specific primers as described in Materials and 

Methods and cloned into plasmid p3XFLAG (Sigma) placing the entire open reading frame of 

WNV E in-frame with the 3XFLAG coding sequence resulting in the addition of the 3XFLAG 

amino acid sequence immediately after the last carboxyl terminal amino acid of the E 

glycoprotein (Figure 3.1: A).  The p3XFLAG-E plasmid was transfected into baby hamster 

kidney cells (BHK-21) and E glycoprotein expression was detected at 48 hours post transfection 

using anti-FLAG monoclonal antibody.  The anti-FLAG antibody detected E glycoprotein 

expression in 3XFLAG-E transfected BHK cells, while mock-transfected BHK cells failed to 

react with the anti-FLAG antibody (Figure 3.1: B). 

Construction of Recombinant Vesicular Stomatitis Virus (VSV) Expressing the WNV E 
Glycoprotein 
 
 To construct recombinant VSVs expressing the E glycoprotein, the E gene was amplified 

with primers engineered to have unique XhoI and NheI restriction sites at the E 5′ and 3′ termini, 

respectively.  The amplified E gene (with the 3XFLAG coding sequence) was cloned within the 

unique XhoI and NheI restriction sites of plasmids pVSV-XN2-IN and pVSV-XN2-CH 

containing the Indiana and Chandipura G glycoprotein gene, respectively (Figure 3.2: A).  

Recombinant VSV was recovered after co-transfection of pVSV-XN2-E with three other 

plasmids encoding the VSV polymerase subunits (P and L), and the nucleocapsid (N), purified 
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by filtration and extensively plaque-purified.  The appropriate insertion of the WNV gene within 

the VSV genomes was confirmed by direct DNA sequencing of viral RNA after RT-PCR 

amplification of specific cDNA regions.  WNV E expression was readily detected by indirect 

immunofluorescence assay (IFA) using anti-FLAG monoclonal antibody in recombinant VSV-

infected BHK cells, while WNV E was not detected in mock-infected BHK cells (Figure 3.2: B).  

Cell lysates from BHK-21 cells infected with recombinant VSVs expressing the WNV E 

glycoprotein were tested for E glycoprotein expression in western immunoblots.  Anti-FLAG 

antibody readily detected major protein species with apparent molecular masses of 

approximately 53-55 kDa, respectively in agreement with previous reports (Figure 3.2: C) (Davis 

et al., 2001; Minke et al., 2004). 

Mouse Immunization and Challenge Schedule 

 Four groups of 4-week-old Balb/c mice (Harlan, IN, USA) were used for the vaccine-

challenge experiments.  All four groups of mice were vaccinated by intranasal administration of 

105 PFU of pVSV-XN2-IN-E recombinant virus at day 0 and boosted with pVSV-XN2-CH-E 

(105 PFU) 21 days post vaccination (Figure 3.3: A).  Mice in groups I and II were processed for 

immunological analyses (see Materials and Methods), while groups III and IV were challenged 

with 105 PFU of WNV LSU-AR01 administered intraperitoneally.  Mice in the challenge groups 

were observed for 18 days for clinical signs including ruffled fur, ataxia, hunching posture, 

lethargy and mortality.  VSV-E vaccinated and boosted animals exhibited 90% survival, while 

only 10% of the mock-vaccinated animals survived WNV LSU-AR01 challenge (P=0.004) 

(Figure 3.3: B).  Vaccinated animals appeared to have mild clinical signs post challenge 

including mild fur ruffling, but recovered quickly to a full healthy status.  In contrast, mock-

vaccinated animals exhibited severe clinical signs post challenge including high degree of fur  
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Figure 3.2: Construction of rVSVs expressing the LSU-AR01 E glycoprotein.  (A) The 
WNV LSU-AR01 E-FLAG fusion gene was cloned into the unique XhoI and NheI sites in 
pVSV-XN2.  (B) IFA showing rVSV expression of WNV envelope glycoprotein after infection 
of BHK-21 cells.  Expression of the WNV E glycoprotein was assayed using anti-FLAG and 
anti-West Nile antibodies.  (C) Expression of the WNV E protein was with an apparent 
molecular mass of 53-55 kDa on a western immunoblot using anti-FLAG antibodies.  Lane 1 is 
cell control, lanes 2 and 3 are rVSV-IN-WNE and rVSV-CH-WNE respectively, lane 4 is the 
molecular mass ladder and lane 5 is cell lysate from VSV-infected BHK-21 cells (control). 
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ruffling, ataxia, lethargy and eventually death.  Post-mortem histopathological examination 

revealed that none of the vaccinated mice showed any central nervous system (CNS) pathology 

as compared to mock-vaccinated animals, which exhibited severe neuronal necrosis and 

lymphoplasmacytic perivascular cuffing (Figure 3.4: A, B).  The single mouse in the vaccinated 

group that died at 12 days post challenge had suppurative rhinitis which may be suggestive of 

bacterial infection.  Mild suppurative inflammation was also observed in the visceral pleura and 

subpleura of three mock-vaccinated mice that died before 11 days post challenge (not shown).  

There were no significant histopathological abnormalities within other tissues examined. 

Induction of Strong Neutralizing Antibody Correlates with Protection 

 The ability of mouse sera to neutralize WNV-LSU-AR01 strain was tested in a standard 

plaque reduction neutralization test (PRNT90).  Vaccinated animals developed strong neutralizing 

antibody responses against the LSU-AR01 at 21 days after primary vaccination.  Specifically, 9 

of 10 mice developed PRNT90 titers of 1:32 and one mouse had a titer of 1:64.  Neutralizing 

antibody titers increased at 14 days post boost vaccination.  Specifically, 9 of 10 mice had a 

PRNT90 titer of 1:64, while the remaining mouse had a titer of 1:128.  

 CD154 expression in CD4+ T cells is intimately involved in the polyclonal activation of 

immature B cells (Brines and Klaus, 1993).  Therefore, we compared the expression of CD154 in 

both vaccinated and mock-vaccinated mice after in vitro stimulation with PMA/ionomycin 

followed by FACS analysis (see Materials and Methods).  These experiments revealed the 

presence of a significantly higher population of CD4+CD154+IFNγ+ T cells in vaccinated mice 

compared to mock-vaccinated mice (mean value = 1.73% versus 1.0% in vaccinated and mock-

vaccinated mice respectively, P<0.0001, Figure 3.5: A, C), as also indicated by the observed 
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Figure 3.3: Vaccination and animal challenge (A) Schematic of the time line followed for 
vaccination, boost-vaccination and challenge with WNV-AR01.  Mice in groups I and II were 
not challenged and were used for immunological evaluations.  Mice in groups III and IV were 
challenged with WNV LSU-AR01 at 14 days post boost. (B) Kaplan-Meier Survival curves.  
Mice in challenge groups were challenged intraperitoneally with 105 PFU of WNV LSU-AR01 
14 days post boost vaccination and observed for 18 days.  Ninety percent of the WNV vaccinated 
animals survived, while 90% of the mock-vaccinated animals died.  A statistically significant 
difference was observed between the WNV and mock-vaccinated groups (P=0.0004) using the 
Gehan-Breslow-Wilcoxin test.  The Graphpad prism software version 5.01 was used to generate 
survival curves and statistical analysis.  The one animal that died in the vaccinated group 
exhibited suppurative rhinitis of non-viral origin as revealed by histopathological examination 
(not shown). 



127 

 

 



128 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Histopathology of cerebrum sections from mock-vaccinated and vaccinated 
mice after WNV challenge.  (A) Mock-vaccinated group: Cerebral cortex showing large 
numbers of necrotic neurons (arrows), characterized by angular and shrunken cell bodies 
containing pyknotic nucleus and densely eosinophilic cytoplasm.  (B) WNV vaccinated group:  
Cerebral cortex showing normal neurons. H&E stain, Bar = 50 μm. 
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 differences in their mean fluorescence intensities (Figure 3.5: B, D).  

Antigen-Specific Cellular Immune Responses   

 Antigen-specific cytokine responses were determined in all vaccinated and mock 

vaccinated mice.  Specifically, WNV-E specific T cell responses were measured using cytokine 

flow cytometry (CFC) to determine IFNγ responses.  Overall, 7 of 9 vaccinated mice had 

detectable IFNγ responses (ranged from 0.07-0.80%) in splenic CD8+ T cells (Figure 3.6: A).  

CD4+ T cell positive IFNγ responses were absent in any of the vaccinated mice.  Both peptide 

pools 1(E amino acids 291-554) and 2 (E amino acids 544-791) appeared to contain T cell 

epitopes, however, peptide pool 1 contained dominant T cell epitopes. (Figure 3.6: B).  One of 

the 9 mice developed antigen-specific IFNγ responses against both the WNV-E peptide pools.  

None of the mock-vaccinated mice had any detectable IFNγ responses above background levels.  

Profiles of CD62L and CD69 Expression 

 CD62L is a lymphocyte homing marker that is generally associated with extravasation of 

activated T cells to peripheral sites of inflammation.  Generally, increased percentages of CD8+ 

T cells were present in the vaccinated mice compared to the mock-vaccinated mice 

(mean=18.3% and 15.3% for vaccinated and mock-vaccinated mice respectively, P=0.01) 

(Figure 3.7A).  CD8+ T cell subsets in all vaccinated mice had lower CD62L expression 

compared to mock-vaccinated mice (P=0.0003) (Figure 3.7: B).  To further characterize the cells 

responsible for inducing cytokine responses, antigen-specific cytokine positive cells were 

determined.  A significant population (0.73%) of the IFNγ positive cells was memory cells 

(CD8+ CD62L-) (Figure 3.7: C).  

 CD69 is an early activation marker indicative of the presence of antigen-specific stimulation  
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Figure 3.5: Correlates of T cell-mediated induction of humoral immune responses: (A) 
Representative contour plot showing increased percentage of CD4+CD154+IFNγ+ T cells in 
vaccinated mice compared to mock-vaccinated mice after 6 hours of in vitro PMA/ION 
stimulation.  (B) Histogram showing increased mean fluorescence intensity (MFI) of 
CD4+CD154+IFNγ+ T cells in a vaccinated mouse compared to a mock-vaccinated mouse.  (C) 
Increased MFI in CD4+CD154+IFNγ+ T cells was observed in WNV mice compared to mock-
vaccinated animals (P=0.01).  (D) The increased MFI percentage of CD4+CD154+IFNγ+ T cells 
suggests that activated CD4+ T cells stimulated B cells with the help of co-stimulatory signals 
inducing humoral immune responses.  A statistically significant difference was observed in the 
percentage of CD4+CD154+IFNγ+ T cells between vaccinated and mock-vaccinated animals 
(P<0.001). 
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Figure 3.6: Cytokine responses to WNV E overlapping peptide pools in vaccinated animals.  
(A) Percentage of CD8+IFNγ+ T cells in WNV vaccinated animals with peptide pools 1 and 2, 
respectively, after 6 hours of in vitro stimulation.  (B) Percentage of vaccinated mice responding 
to peptide pool 1 and 2 stimulation.  Positive CD8+IFNγ+ T cell responses were detected in 7 out 
of 9 mice.  Criteria for positive cutoff values was established at > 0.06% as compared to the 
negative control.  The data shown on panels A and B were obtained after subtracting the negative 
control values obtained from antigen-specific responses. 
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 of mature T cells (Sancho, Gomez, and Sanchez-Madrid, 2005).  CD69 upregulation of activated 

CD8+ T cells was detected in all the vaccinated mice following antigen stimulation compared to 

mock-vaccinated mice (mean=1.8% versus 0.8% in vaccinated and mock-vaccinated mice, 

P=0.012) indicating E-specific stimulation of mature T cells in vaccinated animals (Figure 

3.7:D).  

Profile of T reg Activation in Vaccinated Versus Mock-vaccinated Mice 

 Initial determination of CD4+T cell percentages in splenocytes revealed no significant 

differences between vaccinated and mock-vaccinated mice (Figure 3.8: A).  CD127, the α-chain 

of the IL7 receptor, in combination with CD25, the α-chain of the IL2 receptor, were used to 

define the relative abundance of T reg cells within the population of conventional T cells 

(Seddiki et al., 2006).  Analysis of CD4+ CD25+CD127low cells revealed that vaccinated mice 

had a significantly lower population of these cells (mean 6.3%) in comparison to the mock-

vaccinated mice (mean 7.3%) (p<0.05) (Figure 3. 8: B, C).  

DISCUSSION 

 VSV-vectored vaccines have shown exceptional promise for protecting animals and humans 

against different viral and bacterial pathogens.  A VSV-vectored vaccine expressing the WNV-E 

glycoprotein was constructed and found to efficiently protect mice after intranasal administration 

against lethal WNV challenge.  The salient features of this vaccine study are: 1) A prime-boost 

intranasal vaccination approach with recombinant VSVs expressing the WNV E glycoprotein 

produced robust CD8+IFNγ+ T cell responses; 2) This vaccine approach produced strong 

neutralizing titers against the WNV; 3) Vaccinated mice were protected against lethal challenge 

and they were free of neuronal necrosis, while unvaccinated mice exhibited severe neuronal 

necrosis and inflammation in the brain.  These results suggest that a prime-boost VSV-vectored  
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Figure 3.7: Induction of WNV E-specific CD8+ T cells: (A) A higher percentage of CD8+ T 
cells was present in vaccinated animals compared to mock-vaccinated controls (P=0.01).  (B) 
Down regulation of CD62L expression in CD8+ T cells in vaccinated mice.  A statistically 
significant difference was observed in the CD8+CD62L+ T cell populations (P=0.0003) in the 
WNV vaccinated versus the mock-vaccinated animals.  (C) Representative contour plots 
showing WNV E-specific CD8+ T cells.  The majority of the IFNγ producing cells were 
CD8+CD62L- T cells (black circle) indicating the presence of activated effector T cells.  (D) The 
percentage of CD8+CD69+ T cell population was increased (P=0.012) in vaccinated mice versus 
mock-vaccinated mice indicating the presence of WNV E-specific stimulation of T cells. 
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Figure 3.8: Role of regulatory T cells in vaccinated animals:  (A) Percentage of CD4+ T cells 
in WNV vaccinated and mock-vaccinated animals.  There was no statistically significant 
difference observed between these two groups.  (B) Representative dot plots showing the gating 
strategy for T reg cells derived from spleenocytes.  CD4+ T cells were first gated and plotted for 
CD25 and CD127.  CD4+ CD25+CD127low T cells were defined as T regs.  (C) Percentage of 
CD4+CD25+CD127low T reg cells.  A statistically significant difference (P<0.05) was observed 
between WNV-vaccinated and mock-vaccinated mice.  
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 intranasal vaccine approach induces strong humoral and cellular immune responses that protect 

mice against WNV-induced neuronal necrosis.  

  Mucosal surfaces constitute the natural route of VSV infections.  VSV is primarily a 

veterinary viral pathogen that infects cattle, horses, sheep and other animals.  VSV infects 

animals via transmucosal and transcutaneous routes (OIE. Office international des épizooties 

(Paris), 2004).  VSV may also be transmitted through sandflies, blackflies and mosquitoes 

(Clarke et al., 2006; Lichty et al., 2004).  The VSV G glycoprotein is a potent immunogen and 

also serves important functions in virus-entry and virus-induced cell fusion (Roche et al., 2007).  

Recombinant VSVs expressing a variety of viral and bacterial antigens have been constructed.  

Vaccine studies with these recombinant VSVs have showed that intranasal and intramuscular 

administration of the rVSVs were safe and efficient in inducing protective humoral and cellular 

immune responses against a variety of pathogens (Clarke et al., 2006).  Of particular interest is 

the ability of the VSV-vector system to elicit strong humoral and cellular immune responses via 

the intranasal route (Grigera et al., 2000; Kahn et al., 2001; Kapadia et al., 2005; Natuk et al., 

2006; Palin et al., 2007; Reuter et al., 2002) that can be substantially easier to administer than 

intramuscularly injected vaccines.  In these vaccine studies, although the “empty” VSV vector 

elicited robust humoral and cellular immune responses against VSV, these responses did not 

contribute to protection against a variety of pathogens indicating that specific immune responses 

against the expressed transgene were primarily responsible for protection (Cooper et al., 2008; 

Geisbert et al., 2005; Kahn et al., 2001; Kapadia et al., 2005; Natuk et al., 2006; Publicover, 

Ramsburg, and Rose, 2005). 

 We constructed rVSVs that expressed the WNV-E glycoprotein and either the VSV 

Indiana G glycoprotein, or the Chandipura vesiculovirus G glycoprotein.  This pair of rVSVs 
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was used in a prime-boost vaccination approach to maximize humoral immune responses against 

the WNV-E glycoprotein expressed by both viruses, while minimizing the anamnestic immune 

response against the VSV vector targeted predominantly against the G glycoprotein.  This is 

largely accomplished because the Chandipura G and the VSV-Indiana G glycoproteins are 

approximately 60% different in their amino acid sequences (Rose et al., 2000).  Recombinant 

VSVs are known to non-specifically incorporate certain other viral and cellular glycoproteins 

into their virions without adversely affecting viral infectivity (Schnell et al., 1996a).  The 

insertion of the foreign E gene into the VSV genome did not adversely affect viral replication 

and infectivity, because rVSV containing the E gene replicated to similar titers with those of the 

VSV control virus that did not have a foreign gene inserted within their genomes (not shown).  

Moreover, rVSV-E isolates were stable, since multiple serial passages of virus stocks in BHK 

cells did not affect E glycoprotein expression and genomic stability (not shown).  Although it is 

unclear whether the WNV E glycoprotein is inserted into VSV envelopes, these results suggested 

that rVSV-E were stable retaining wild-type levels of viral replication and infectivity.  

Recombinant VSV-E expressed WNV-E glycoprotein to high levels in BHK cells and the 

expressed E glycoprotein appeared to be fully glycosylated as evidenced by the apparent 

molecular mass of approximately 53-55 kDa in SDS-PAGE in agreement with published reports 

(Davis et al., 2001; Minke et al., 2004).  

 Based on the known strong immune responses generated by VSV, especially when 

administered via the intranasal route, we devised an experimental vaccine protocol to vaccinate 

mice through the intranasal route using a prime-boost strategy.  This prime-boost vaccination 

approach resulted in 90% (9 of 10) of the mice surviving lethal challenge with the WNV LSU-

AR01 virulent strain.  The single mouse from the vaccinated group of mice that died late in the 



142 

 

experiment (12 days post challenge) appeared to die from WNV-unrelated causes, since 

histopathological examination showed severe suppurative rhinitis but no histological abnormality 

in the brain.  Therefore, the rVSV-E prime boost vaccination protocol was highly efficacious in 

protecting mice against WNV infection.  

 Primary WNV infection is thought to result in local replication of the virus in peripheral 

organs and viremia that ultimately results in virus invading the CNS.  WNV mortality is thought 

to be largely caused by replication of the virus in the CNS tissues of animals and the resultant 

immunopathological damage of CNS tissues.  Accordingly, unvaccinated mice showed obvious 

clinical signs of neurological disease such as ataxia, hunching posture, lethargy and hindlimb 

paralysis.  Histopathological examination of brain tissues showed neuronal necrosis, perivascular 

cuffing, and microgliosis.  In contrast, only a few vaccinated mice developed mild clinical signs 

such as mild ruffled fur, but recovered quickly.  Importantly, none of the vaccinated mice 

exhibited any neuronal necrosis. 

 The interaction of CD40 on B cells with CD154 (CD40L) on CD4+ T cells results in T 

cell mediated activation of B cells resulting in immunoglobulin class switching, somatic 

hypermutation and proliferation (Grewal et al., 1996; Kawabe et al., 1994; O'Keefe, Nguyen, and 

Benveniste, 2002).  Accordingly, CD4+ CD154+ IFNγ+ T cells were upregulated in vaccinated 

but not control mice indicating generation of T-cell mediated B cell activation.  The specificity 

of this response is not discernable, since it may be due to either or both VSV and WNV antigens.  

However, strong neutralizing antibody titers were also produced against WNV indicating the 

induction of E-specific humoral immune responses.  This result is in agreement with previous 

reports showing that other VSV-vectored vaccines induced strong humoral immune responses 
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against different VSV-expressed antigens.  Specifically, recombinant VSVs expressing either the 

respiratory syncytial virus F glycoprotein (Kahn et al., 2001), or rVSV expressing the severe 

acute respiratory syndrome (SARS) corona virus (SARS-CoV) produced high antibody titers 

against the F glycoprotein and SARC-CoV spike (S) glycoprotein, while strong immune 

responses against the VSV virus was noted (Kapadia et al., 2005).  

  The WNV E glycoprotein contains multiple predicted and experimentally verified cytotoxic 

T cell (CTL) epitopes (Brien, Uhrlaub, and Nikolich-Zugich, 2007; De Groot et al., 2001; 

McMurtrey et al., 2008; Purtha et al., 2007).  The availability of a library of overlapping peptides 

derived from the WNV E glycoprotein allowed the elucidation of antigen-specific cellular 

immune responses.  Peptide pool 1 composed of the first 34 peptides averaging 12-18 amino 

acids each generated stronger cellular CD8+IFNγ+ T cell responses in in vitro proliferation 

assays, in comparison to peptide pool 2, which represented the carboxyl terminus-half of the 

WNV E glycoprotein.  Peptide pool 1 contains the experimentally verified CTL epitope 

RSYCYLAT (E 347-354) while peptide pool 2 contains the CTL epitope IALTFLAV (E771-

778), both of which have been shown to confer protection against lethal WNV-challenge in mice 

(Brien, Uhrlaub, and Nikolich-Zugich, 2007; Purtha et al., 2007).  In vitro stimulation of 

lymphocytes from vaccinated mice revealed the presence of antigen-specific IFNγ responses 

specifically in CD8+CD62Llow T cells.  CD62L (L-selectin) mediates adhesion of resting 

lymphocytes to peripheral lymph nodes.  Typically, high expression of CD62L (CD62Lhi) 

reveals entrapment of lymphocytes within lymph nodes, while low CD62L (CD62Llow) cell-

surface expression (the result of T cell activation) is indicative of lymphocyte extravasation to 

sites of inflammation (Waters et al., 2003).  Splenocytes from vaccinated mice had significantly 

lower expression of the CD62L marker on E-specific IFNγ+ CD8+T cells revealing activation and 
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extravasation of these cells to peripheral sites, potentially involved in killing virus-infected cells 

prior to transmission to the CNS.  

 CD69 is an early activation marker that is absent in resting lymphocytes (Sancho, 

Gomez, and Sanchez-Madrid, 2005).  The upregulation of the CD8+CD69+ E-specific T cell 

responses in vaccinated versus mock-vaccinated mice provides additional evidence for the 

stimulation of T cells.  Accordingly, CD8+CD69+ E-specific population of T cells was 

upregulated in vaccinated versus mock-vaccinated mice indicating the generation of activated 

memory CD8+ T cells.  It is unclear whether the observed CD8+T cell memory responses confer 

long-term immunity against WNV infection.  T regs are known to play important roles in down-

regulation of anti-self immune responses (Zhang and Zhao, 2007), and to suppress proliferation 

and cytokine production of effector T cells (Banham, 2006).  Typically, during viral infections, 

upregulation of humoral and cellular immune responses causes down-regulation of T reg 

activation.  Typically, T-regs express the FoxP3 and CD25 markers.  The IL-7 receptor CD127 

marker expression is inversely correlated to FoxP3 expression and CD127low CD25+ cells have 

been shown to be positive for FoxP3 (Banham, 2006; Liu et al., 2006).  Consequently, the 

CD25+CD127low population was used to define T regs.  As expected, there was a negative 

correlation between the relative population of T reg cells (CD4+CD25+CD127low) and antigen-

specific CTL responses in the vaccinated mice.  However, the specificity of this immune 

response cannot be discerned, since it most likely is caused by both VSV and E glycoprotein 

antigens. 

 A variety of experimental vaccine approaches have been reported to generate protective 

humoral and cellular immune responses against flaviviruses and specifically WNV.  The relative 
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role of humoral versus cellular immune responses has been extensively debated in the literature.  

Certain studies have suggested that a strong humoral immune response evidenced by the 

production of high titer anti-WNV titers is necessary and sufficient to protect mice from CNS 

infection, while other reports have argued that a cellular immune response characterized by a 

robust anti-WNV CD8+ T cell responses is necessary for protecting and clearing brain tissues 

from WNV (Purtha et al., 2007; Shrestha and Diamond, 2004; Wang et al., 2003).  One report 

has argued that CTL-immune responses may result in exacerbated immunopathology in brain 

and CNS tissues at infections with low WNV titers (103 PFU) (Wang et al., 2003). In our 

experiments, 105 WNV PFU were inoculated intraperitoneally.  Vaccinated mice had no 

evidence of neuronal necrosis suggesting the CD8+T cell responses conferred protection and 

virus clearance.  It is probable that both humoral and cellular immune responses generated 

against the WNV E glycoprotein prevented the virus from entering CNS, potentially arresting the 

virus at peripheral sites.  Alternatively, if some virus escaped peripheral immune surveillance, it 

is possible that CTLs cleared the virus from brain tissues before it could cause significant 

damage and resultant immunopathological manifestations. 

 In summary, the VSV-E-vectored vaccine appeared to elicit robust humoral and cellular 

immune responses that efficiently protected mice from WNV lethal challenge.  Intranasal 

vaccination is second only to oral vaccination with regard to the relative ease of administration 

and patient compliance issues rendering this approach attractive for human use.  Recently, 

single-cycle VSV-vectored vaccines have been shown to generate robust immune responses 

against a number of viral pathogens including HIV, Ebola, Marburg, Lassa, influenza, avian 

influenza, hepatitis C and RSV viruses (Buonocore et al., 2002; Daddario-DiCaprio et al., 2006a; 
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Daddario-DiCaprio et al., 2006b; Garbutt et al., 2004; Geisbert et al., 2005; Jones et al., 2005; 

Kahn et al., 2001; Publicover, Ramsburg, and Rose, 2005; Roberts et al., 1999; Schwartz et al., 

2007).  Based on these results, it is expected that single cycle VSV-WNV vaccines would be also 

efficacious.  Additional improvements in attenuating VSV can be made by providing more than 

one viral protein in trans through complementing cells, as well as engineering additional 

mutations that are known to attenuate VSV. 
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CHAPTER 4 

CONSTRUCTION OF rVSVs EXPRESSING SIMIAN RETROVIRUS 2 GAG AND ENV 
GLYCOPROTEIN AND rVSVs EXPRESSING HERPES B VIRUS GLYCOPROTEIN D 

FOR USE AS VACCINES IN NON-HUMAN PRIMATES. 

INTRODUCTION 

 Type D simian retrovirus and Herpes B virus (Cercopithecine Herpes virus) are important 

pathogens of non-human primate (NHP) colonies in the United States.  These pathogens pose a 

significant threat to the NHPs and to humans that come in contact with them.  Simian retrovirus 

(SRV) causes an immunosuppressive disease in macaques and is the leading cause of fatalities in 

Asian macaques colonies in the United States (Gardner et al., 1988).  The use of asymptomatic 

SRV infected animals in biomedical research for AIDS or other vaccine research severely affects 

the outcomes (Hara et al., 2005).  Similarly, accidental transmission of herpes B virus to humans 

via bites, scratches, infected tissues or body fluids results in a disease that has a 70% fatality rate 

in humans (Bennett et al., 1999).  The urgent need to test NHPs for these diseases and eliminate 

them would greatly help in developing specific pathogen free (SPF) NHP colonies for 

biomedical research.  Additionally, it also improves safety for researchers and animal handlers.  

Simian Retroviruses (SRVs) 

 Simian acquired immunodeficiency (SAIDS) of macaques is known to be caused by 

several independent type D retroviruses (betaretroviruses).  These viruses predominantly infect 

Asian macaques.  The Mason-Pfizer monkey virus (MPMV) also known as Simian retrovirus 3 

(SRV-3) (Sonigo et al., 1986; Thayer et al., 1987) is the prototype of SRV group was shown to 

cause a non-oncogenic immunosuppressive disease (Bryant et al., 1986; Fine et al., 1972; Fine et 

al., 1975).  SRV-1 isolated from the California National Primate Research Center (CNPRC) and 
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SRV-2 isolated from the Oregon National Primate Research Center (ONPRC) have been directly 

linked to SAIDS (Marx et al., 1985; Marx et al., 1984).  SRV-4 (cynomolgus macaque isolate) 

and SRV-5 (rhesus macaque isolate) have been reported or partially sequenced (Hara et al., 

2005; Li, Axthelm, and Machida, 2000).  The partial sequence for SRV/D-6 isolated from the 

Hanuman langur has also been reported (Nandi et al., 2000; Nandi et al., 2003).  In 2005 a 

Japanese group at Tsukuba primate center isolated a new SRV (SRV/D-T) from their 

cynomolgus macaque colony (Hara et al., 2007; Hara et al., 2005).  Partial sequences of another 

isolate, SRV-7 from Indian rhesus macaques in Jaipur, India have also been deposited in 

GenBank (Nandi et al., 2006).   

 SRV-3 was found to be more closely related to SRV-1 than SRV-2 (Marx et al., 1985; 

Thayer et al., 1987).  Moreover, the SU domain of SRV-1 and SRV-3 envelope shares 83% 

identity as compared to 58% identity shared between SRV-2 with SRV-1 and SRV-3 (Brody et 

al., 1992).  

 Typically, SAIDS results in an immunosuppressive disease that may at times be fatal.  As 

the disease progresses, NHPs exhibit lymphadenopathy, splenomegaly, anemia, lymphoid 

depletion, bone-marrow hyperplasia, weight loss, persistent diarrhea, chronic opportunistic 

infections and malignant neoplasias (Hara et al., 2005; Tsai et al., 1986).  

 SRV-1 predominantly infects rhesus macaques, while SRV-2 infects cynomolgus and 

pig-tailed macaques (Lerche and Osborn, 2003).  Rare cases of cutaneous fibromatosis have been 

associated with SRV-1 infections (Marx and Lowenstine, 1987).  However, SRV-2 infections 

were frequently found to be associated with retroperitoneal fibromatosis (RF).  RFs are 

multicentric lesions characterized by vascular fibroproliferative nature in an immunosuppressed 
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environment.  This is reminiscent of AIDS related Kaposi’s sarcoma (Giddens et al., 1985).  The 

etiologic agent of RF is a gammaherpes virus which happens to be a macaque homolog of the 

human Kaposi’s sarcoma virus (HHV-8) (Rose et al., 1997). 

SRV Vaccines 

 Experimental infection of rhesus macaques with SRV-1 revealed that certain animals can 

overcome the disease with no clinical signs indicating the feasibility of developing successful 

vaccines (Kwang et al., 1987).  Indeed, the first vaccine for SRV-1 was a formalin inactivated 

vaccine that protected rhesus macaques against lethal challenge (Marx et al., 1986).  However, 

another experimental vaccine that used SRV-1 gp70 and gp20 expressed in yeast failed to elicit 

neutralizing antibodies (Kwang et al., 1988).  Recombinant vaccinia virus expressing SRV-2 

envelope glycoprotein protected pig-tailed macaques against lethal challenge (Benveniste et al., 

1993; Hu et al., 1989).  This protection was correlated to development of neutralizing antibodies.  

In another study, recombinant vaccinia virus expressing SRV-1 or SRV-3 gp70 and gp20 were 

shown to protect against homologous virus.  Although a degree of cross-neutralization was 

observed among SRV-1 and SRV-3 vaccinated animals, they failed to cross neutralize the more 

distantly related SRV-2 (Brody et al., 1992). 

Herpes B Virus/Cercopithecine Herpes 

 Herpes B virus is an alphaherpesvirus that is endemic to monkeys belonging to the genus 

Macaca that infects 90-100% of its host in primate breeding colonies (Cohen et al., 2002; 

Holmes et al., 1995; Weigler et al., 1993; Weigler et al., 1990).  In macaques, the virus is 

asymptomatic causing recurrent oral and genital lesions which clear spontaneously (Weigler, 

1992).  Accidental transmission to humans via bites, scratches, infected tissues or body fluids 
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results in a disease that has a 70% fatality rate (Bennett et al., 1999).  The first case of human B 

virus infection occurred in 1932 (Gay and Holden, 1933; Sabin and Wright, 1934).  The human 

Herpes B virus disease is characterized by fatal encephalomyelitis and severe neurological 

disease (Holmes et al., 1995; Palmer, 1987; Weigler, 1992).  The ease of transmission is 

exemplified by the fact that the virus has been shown to cause infection via mucosal exposure 

(CDC, 1998) and from person to person (Holmes et al., 1990). 

Herpes B Virus Vaccines 

 Herpes virologists have typically used HSV glycoproteins gB and gD as vaccine 

candidates.  HSV-1 gD has been shown to elicit protective immune reponses against HSV-1 and 

HSV-2 (Bennett, Harrington, and Kelly, 1992).  In addition, recombinant vaccinia virus 

expressing HSV-1 gD have shown to protect mice from lethal challenge and establishment of 

latent HSV infections (Blacklaws et al., 1990; Cremer et al., 1985; Rooney et al., 1988). 

 Several approaches to developing vaccines for B virus have been tested including a 

formalin-inactivated B virus vaccine (Hull, 1971).  This vaccine elicited very low antibody titers 

and required frequent boosters.  A recombinant vaccinia virus expressing B virus glycoprotein D 

was shown to protect 91% of the vaccinated rabbits upon challenge (Bennett et al., 1999).  One 

study immunized rabbits with B virus glycoproteins gB, gC, gD, gE and gG (Perelygina et al., 

2002).  This study showed that sera from animals immunized with gB, gC and gD DNA vaccines 

cross neutralized HSV antigens.  But only the gB vaccine elicited B virus neutralizing antibodies. 

Several researchers have tested DNA vaccines using various B virus glycoprotein gB, and gD 

(Hirano et al., 2002; Loomis-Huff et al., 2001).  B virus gD DNA vaccine elicited both humoral 

and cellular immune response.  
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 Considering the seriousness of these two diseases especially at the Tulane National 

Primate Research Center (TNPRC), a study was designed with the goal of developing 

recombinant vesicular stomatitis virus (rVSV) based vaccines for these SRV-2 and B virus.  

rVSV vectored vaccine have been successfully used against a plethora of infectious viral 

diseases (see Chapters 1 and 3).  Engineering rVSVs that express SRV-2 gag and Env 

glycoprotein and the herpes B virus gD glycoprotein could significantly reduce NHP and human 

fatalities. 

MATERIALS AND METHODS 

Cloning and Testing of Simian Retrovirus-2 gag Protein, Envelope Glycoprotein 
Constructs and Herpes B Virus gD in p3XFLAG Vector 
 
 SRV-2 (GenBank accession number M16605) gag gene was PCR amplified from the 

plasmid pSRV2 (provided by C. Apertei, TNPRC).  NotI and BamHI sites were introduced at the 

5′ and 3′ ends respectively using 5′-GAG-FLAG-NotI and 3′-GAG-FLAG-BamHI primers 

(Table 4.1).  For the full length Env gene 5′-ENV-FLAG-NotI and 3′-ENV-FLAG-BamHI 

primers were used (Table 4.1).  To construct the SRV-2 Env/VSV G fusion, portions of the 

individual genes were PCR amplified and the fragments were later fused by using PCR overlap 

extension.  Briefly, C-terminus truncated portion of SRV-2 envelope gene was based on the 38 

amino acid (aa) cytoplasmic domain of SRV-3 (Brody, Rhee, and Hunter, 1994) and also 

estimated using SOSUI software (Hirokawa, Boon-Chieng, and Mitaku, 1998; Mitaku and 

Hirokawa, 1999; Mitaku, Hirokawa, and Tsuji, 2002).  The SRV-2 Env region (bases 1-1632) 

was PCR amplified using 5′-ENV-FLAG-NotI and 3′-SOLENV-FLAG-BamHI while the region 

encoding the last 29 amino acids of VSV G cytoplasmic tail (bases 1449 to 1533) (Rose and 

Gallione, 1981; Rose et al., 1980) was PCR amplified using 5′-G-CYT-ENV-JN and 3′-G-CYT-
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BamHI.  In a final PCR these two fragments were fused by PCR overlap extension technique 

using 5′-ENV-FLAG-NotI and 3′-XN2-NheI primers.  A schematic describing the constructs is 

shown in Figure 4.1.  The constructs encoding the truncated portion of ENV in frame with the 

3X FLAG was termed ENVTrunc and the construct that had the VSV-G cytoplasmic tail fusion 

was termed Env-GCYT. 

 

Figure 4.1: SRV-2 Env constructs.  Schematic describing engineering the Env-GCYT construct 
which consist of the extracellular and transmembrane domains of SRV-2 Env glycoprotein fused 
inframe with the cytoplasmic tail (29 aa) of VSV G and the 3XFLAG epitope.  The second 
schematic deptics the truncated portion of SRV-2 Env fused in frame with the 3XFLAG epitope. 

 

 Herpes B virus (GenBank accession number AF533768) glycoprotein D was a C-

terminus truncated version encoded by 918 bases (306 aa).  This region was PCR amplified so as 

to introduce NotI and BamHI sites at the 5′ and 3′ end respectively using 5′-MB-gD-FLAG-Not I 

and 3′-MB-gD-FLAG-Bam HI primers (Table 4.1).  The DNA fragment was then transferred to a 

C-terminal 3X FLAG vector (p3XFLAG-CMV-14), a necessary step prior to the isolation of 

recombinant VSVs expressing either the Indiana or Chandipura G glycoprotein (Figure 4.2).  

Transient Expression of the SRV-2 Full Length ENV and Herpes B Virus gD FLAG Fusion 
Proteins 
 
 The recombinant plasmid clones were confirmed by restriction endonuclease digestion  
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and sequencing.  Transient expression of SRV-2 gag, SRV-2 Env and herpes B virus gD was 

confirmed after transfection of a BHK 21 cell monolayer.  Controls included the use of mock 

transfections as well as transfection with the vector alone onto BHK 21 cells.  Anti-FLAG 

antibody was also used to detect transient expression of SRV-2 gag, SRV-2 ENV and Herpes B 

gD.  Transient transfections were not done to check for expression of the ENVTrunc or the 

ENV-GCYT constructs although they were checked and confirmed by DNA sequencing. 

 
Table 4.1: Primer list: List of primers used for PCR amplification and cloning, engineering 
of gene fusions into p3XFLAG plasmid and pVSV-XN2 for SRV-2 env constructs, gag and 
herpes B glycoprotein D 
 

Primer Name Primer Sequence 
5′-GAG-FLAG-NotI 5′-ATA TAT GCG GCC GCA TGG GAC AAG AAT TAA GCC 

AAC-3′ 
3′-GAG-FLAG-
BamHI 

5′-ATA TAT GGA TCC ATA CTG TGT GGG TGG TGG AAC 
AG-3′ 

5′-ENV-FLAG-NotI 5′ ATA TAT GCG GCC GCA TGT TTT CTT TGC TCA TAG 
AGA TGA CTG-3′ 

3′-ENV-FLAG-
BAMHI 

5′-ATA TAT GGA TCC CGA TAC ACG TAA GTA TAC ACC-
3′ 

5′-G-CYT-ENV-JN 5′-ATT TTC AAT AAG ATC ATA CGA GTT GGT ATC CAT 
CTT TGC-3′ 

3′-SOLENV-FLAG-
BamHI 

5′-ATA TAT GGA TCC ATA GGG GAG GAG TCC ATG TAG 
ACC AGT-3′ 

3′-G-CYT-BamHI 5′-ATA TAT GGA TCC CTT TCC AAG TCG GTT CAT CTC-3′ 
3′-gD-FLAG-BamHI 5′-ATA TAA GGA TCC GTA GGG CGC GCC CCG CCG CGC-

3′ 
5′-gD-FLAG-HindIII 5′-ATA TAT AAG CTT ATG GGG CCCGGC ATC GCC GCG-

3′ 
5′-XN2-GAG-XhoI 5′-ATA TAT CTC GAG ATG GGA CAA GAA TTA AGC CAA 

CAT GAA C-3′ 
5′-XN2-ENV-SALI 5′-ATA TAT GTC GAC ATG TTT TCT TTG CTC ATA GAG 

ATG ACT G-3′ 
3′-gD-FLAG-BamHI-
42 

5′-ATA TAA GGA TCC GTA GGG CGC GCC CCG CCG CGC 
CGG CCC GTG-3′ 

3′-XN2-NheI 5′-GAC GAC GCT AGC GGA TCA CTA GTC ATC GTC ATC 
CTT-3′ 
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Figure 4.2: Cloning schematic.  The gene-of-interest (SRV-2 gag/ env constructs or Herpes B 
gD) was PCR amplified so as to insert unique restriction sites and then cloned into p3X-FLAG-
CMV-14 vector (Sigma).  The resultant construct was then tested for expression after transient 
transfection of BHK-21 cells.  Genes with the best expression are then cloned into pVSV-XN2 
plasmids expressing the G glycoprotein from VSV Indiana (IN) or Chandipura vesiculovirus, the 
glycoprotein exchange vectors, to recover rVSVs.  

 

Construction of Recombinant VSVs Expressing the SRV-2 gag, SRV-2 Env Constructs and 
Herpes B Virus gD Construct 
 
 For the SRV-2 gag, the plasmid clone that efficiently expressed the gag gene was used as 

the template for PCR amplification of the gene, while at the same time introducing unique XhoI 

and NheI sites at the 5′ and 3′ ends of the gene fragment.  5′-XN2-GAG-XhoI and 3′-XN2-NheI 

primers (Table 4.1) were used for this process.  This DNA fragment was cloned into the pVSV-

XN2 Indiana and pVSV-XN2 Chandipura transfer vectors.  Similarly, the full length Env, 

EnvTrunc and the Env-GCYT were PCR amplified using 5′-XN2-ENV-SalI and 3′-XN2-NheI 
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primers (Table 4.1) before cloning into pVSV-XN2 Indiana and pVSV-XN2 Chandipura transfer 

vectors. 

 The plasmid clone that efficiently expressed Herpes B virus gD gene was used as the 

template for PCR amplification of the gene, while at the same time introducing unique XhoI and 

NheI sites at the 5′ and 3′ ends of the gene fragment using 5′-MB-gD-XN2-XhoI and 3′-XN2-

NheI primers (Table 4.1).  This DNA fragment was cloned into the pVSV-XN2 Indiana and 

pVSV-XN2 Chandipura transfer vectors. 

 Subsequently, BHK 21 cells were co-transfected with pBS-N, pBS-P, pBS-L and pVSV-

XN2 with the insert using standard procedures (Figure 4.3, 4.4).  A control using pBS-N, pBS-P, 

pBS-L and the pVSV-XN2 (empty vector) was also maintained. 

Detection of SRV-2 gag, SRV-2 Env constructs and Herpes B virus gD Gene Expression by 
the Recombinant VSVs   

The VSV-SRV-2 gag, VSV-SRV-2-ENVTrunc, VSV-SRV-2 EnvGCYT and Herpes B 

gD recombinants were tested for expression by infecting BHK 21 cells.  Anti-FLAG antibodies 

were used to detect expression of gag, env constructs and gD by IFA.  The best expressing viral 

isolates for the SRV-2 gag and Env constructs and the Herpes B gD were plaque-purified 

through multiple rounds.  The titers were determined and stocks were stored at -80 °C.  

RESULTS 

Cloning and Testing of Simian Retrovirus-2 gag Protein, Envelope Glycoprotein 
Constructs and Herpes B Virus gD in p3XFLAG Vector 
 
 A schematic describing the cloning in the p3XFLAG-CMV14 vector is shown in Figure 
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Figure 4.3: Schematic representation of site of insertion of the gene-of-interest.  The gene of 
interest was inserted into unique Xho I and Nhe I sites in pVSV-XN2. 
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Figure 4.4: Generalized scheme for recovery of recombinant VSVs (rVSVs).  BHK 21 cells 
were infected with recombinant vaccina virus expressing T7 polymerase (vTF7-3) so as to 
facilitate expression of the individual viral genes under the T7 promoter.  rVSVs were generated 
by co-transfecting BHK 21 cells with pVSV-XN2 along with plasmids encoding the VSV 
nucleoprotein (pBS-N), the phosphoprotein (pBS-P), and the large polymerase subunit (pBS-L) 
one hour post infection with vTF7-3 using standard procedures.  Recombinant VSVs were then 
harvested by multiple rounds of filtration to eliminate the vaccine virus.  The rVSVs were the 
checked for expression using Western immunoblot and/or IFA and plaque purified. 
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4.2.  DNA Sequencing of the constructs confirmed that the 3X FLAG epitope was in frame with 

the genes. 

Transient Expression of the SRV-2 Full Length ENV and Herpes B Virus gD FLAG Fusion 
Proteins 
 
 Transient expression SRV-2 full length Env, SRV-2 gag and herpes B gD was confirmed 

by IFA.  Additionally, SRV-2 gag (Figure 4.5) and full length Env (Figure 4.5) were visualized 

by Western immunoblot.  SRV-2 gag appeared as an approximately 70Kda molecule and the full 

length Env showed gp70 and gp20 bands.  Similarly, transient expression of gD::FLAG was 

detected by IFA using anti-FLAG antibodies (Figure 4.6). 

Construction of Recombinant VSVs Expressing the SRV-2 gag, SRV-2 Env Constructs and 
Herpes B Virus gD Construct 
 
 All clones were checked by DNA sequencing revealing that the constructs were cloned in 

frame with the 3X FLAG epitope and between the G and L genes in pVSV-XN2 plasmid.  A 

schematic for recovery of rVSV is shown in Figure 4.4 and has been described in Chapter 3 of 

this dissertation. 

Detection of SRV-2 gag, SRV-2 Env Constructs and Herpes B Virus gD Gene Expression 
by the Recombinant VSVs 
 
 BHK-21 cells were infected with the recombinant viruses and the infected cells were 

used to check for protein expression using IFA and Western immunoblot.  The antibodies readily 

detected expression of the gag (Figure 4.7, 4.8), env (Figure 4.9) constructs and gD (Figure 4.10, 

4.11) in VSV-infected cells, while cell controls and VSV empty vector controls produced no 

reaction with the antibodies.  
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Figure 4.5: IFA and Western blots for transiently expressed SRV-2 gag and Envelope 
protein.  BHK 21 cells were transfected with SRV-2 gag-3X FLAG plasmid (Panel A-B) and 
SRV-2 Env-3XFLAG plasmid (Panel C-D).  Transient expression of gag and Env proteins were 
detected by using anti-FLAG antibodies.  Appropriate cell controls (panel E-F) were maintained.  



 

171 
 

 

Figure 4.6: IFA and Western blots for transiently expressed Herpes B gD.  BHK 21 cells 
were transfected with Herpes B virus gD::3X FLAG plasmid (Panel A-D).  Appropriate cell 
controls (panel E-F).  Transient expression was detected by using anti-FLAG antibodies.    
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Figure 4.7: Plaque purified rVSV expressing SRV-2 gag protein.  BHK 21 cells were 
infected with rVSV glycoprotein exchange vaccine vectors expressing SRV-2 gag protein.  
Protein expression was assayed using anti-FLAG antibodies.  Appropriate cell and empty virus 
vector controls were maintained.  Panels A-C are clones of the rVSV-gag-IN priming vector, 
panels CD-E are clones of the rVSV-gag-CH boosting vector, pane; D is the empty vector rVSV 
without any insert and panels H and I are cell controls under UV and visible light. 
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Figure 4.8: Plaque purified rVSV expressing SRV-2 gag protein.  rVSV glycoprotein 
exchange vaccine vectors expressing SRV-2 gag protein were assayed using Western 
immunoblot.  Anti-FLAG antibodies was used to detect the expression.  Appropriate cell (cc) 
and empty virus vector controls (EV) were maintained 
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Figure 4.9: Plaque purified rVSV expressing SRV-2 Env contruct proteins.  Panel A.  rVSV 
glycoprotein exchange vaccine vectors expressing SRV-2 EnvTrunc proteins (Trunc 10-IN-4 and 
Trunc 10-CH-7) and EnvGCYT proteins (EGC 2M and EGC 21M).  The expressed proteins 
were detected using pooled sera from five known SRV positive monkeys at the TNPRC. Goat 
anti-monkey HRP conjugate was used as the secondary antibody.  Panel B.  The same proteins 
were also probed using anti-FLAG antibodies to detect expression of the env constructs.  
Appropriate cell and empty virus vector controls were maintained. 
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Figure 4.10: Plaque purified rVSV expressing Herpes B virus glycoprotein D (gD).  BHK 21 
cells were infected with rVSV glycoprotein exchange vaccine vectors G Chandipura (A-B), G-
Indiana (C-D) expressing Herpes B virus glycoprotein D.  Protein expression was assayed using 
anti-FLAG antibodies.  Appropriate cell (E-F) and empty virus vector controls (G-H) were also 
maintained. 
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Figure 4.11: Plaque purified rVSV expressing Herpes B virus glycoprotein D (gD).  rVSV 
glycoprotein exchange vaccine vectors expressing Herpes B virus glycoprotein D were assayed 
using Western immunoblot.  Anti-FLAG antibodies was used to detect the expression.  
Appropriate cell (cc) and empty virus (EV) vector controls were also maintained. 

DISCUSSION 

 The goal of this work was to construct stable recombinant VSVs that could express the 

SRV-2 gag and Env genes and the extracellular portion of the Herpes B glycoprotein D.  These 

antigens are known to be targets of protective host immune responses by their respective viruses.  

Therefore, it was hypothesized that their mucosal delivery via a replicating rVSV-vectored 

vaccine could provide protection against these viruses. 

 rVSV-SRV-2 gag recombinant viruses were easily recovered and propagated indicating 

that the gag gene did not adversely affect rVSV replication and infectivity.  However, recovering 
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rVSVs expressing full length SRV-2 Env was a rather difficult task.  A similar issue was also 

encountered by other researchers, while trying to recover rVSV expressing HIV-1 envelope and 

may be attributed to toxicity associated with the cytoplasmic terminus of the Env glycoprotein.  

Previously, it was shown that the HIV-1 Env was not incorporated into VSV or rabies virus 

unless its cytoplasmic domain was substituted with that of VSV G (Johnson et al., 1997; 

Mebatsion and Conzelmann, 1996; Owens and Rose, 1993).  Studies with the 29aa cytoplasmic 

tail of VSV G indicated that it may be required for high-level incorporation of foreign 

glycoproteins or the VSV G itself into VSV virions (Kretzschmar et al., 1997; Schnell et al., 

1998; Schnell et al., 1996a; Schnell et al., 1996b; Schnell et al., 1997).  However, Schnell et al 

also showed that a short VSV G cytoplasmic tail was required for virion budding but there is no 

specific requirement in the tail sequence (Schnell et al., 1998).  HIV-1 Env is therefore the only 

protein that required the G cytoplasmic tail for efficient incorporation into VSV virions.  In a 

series of elegant experiments, Johnson et al showed that rather than providing a positive signal, 

the substitution of the HIV-1 cytoplasmic tail with the VSV G cytoplasmic tail eliminated the 

negative signal in the HIV-1 Env.  This negative signal was traced to the membrane proximal 3-

10 amino acids in the cytoplasmic tail of HIV-1 Env (Johnson, Rodgers, and Rose, 1998). 

 Since SRV-2 envelope sequences were not analyzed for the presence or absence of such a 

signal, this may or may not be true for SRV-2 Env.  Nevertheless, to increase the efficiency of 

recovering the recombinant VSVs, the SRV-2 Env gene was truncated to eliminate the last 38 

amino acids.  This was done on the basis of published sequences of SRV-3 indicating that these 

last three amino acids coded for the cytoplasmic tail of the Env glycoprotein (Brody, Rhee, and 

Hunter, 1994).  Two constructs were generated. One construct had the truncated Env 

glycoprotein moiety fused in frame with the 29 amino acid VSV G glycoprotein cytoplasmic tail 
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region (Rose and Gallione, 1981; Rose et al., 1980) and 3XFLAG epitope.  This construct was 

termed ENV-GCYT. The other construct only had the truncated SRV-2 Env and 3XFLAG 

epitope termed ENVTrunc.  Both recombinants were efficiently recovered, propagated and 

plaque purified.  The constructs did not affect the two T cell epitopes and the T and B cell 

epitopes encoded by the gp70 portion of the Env and retained the transmembrane region (gp20) 

of the Env intact (Philipp-Staheli et al., 2006).   

 Monkeys were vaccinated and boosted with rVSV-EnvTrunc, rVSV-EnvGCYT and 

rVSV-gag recombinant at TNPRC.  Preliminary results indicate that the vaccine efficiently 

protected vaccinated animals upon lethal challenge (Preston Marx, personal communication).  

Moreover, all vaccinated animals were clinically normal.  The disease onset was rapid in the 

control animals.  Two of the four unvaccinated control animals died of fatal anemia as a result of 

SRV-2 infection while a third animal was expected to go for necropsy (Preston Marx, personal 

communication).   

 For the Herpes B virus vaccines, the truncated version of gD was chosen based on its 

known high immunogenicity and the previous work with the HSV-1 gD showed partial 

protection against HSV-1 and HSV-2 (Bennett, Harrington, and Kelly, 1992; Blacklaws et al., 

1990; Cremer et al., 1985; Rooney et al., 1988).  Herpes B virus is a select agent causing fatal 

disease in humans.  Challenging NHPs for vaccine efficacy therefore requires a BSL-4 

containment facility.  Animals may be subjected to contact challenge and additional work is 

expected to be carried out at the TNPRC.  Currently we have an approved Institutional Animal 

Care and Use Committee (IACUC) for testing B virus vaccines in mice at LSU to evaluate its 

immunogenicity.  While the animals cannot be challenged, detailed serological work and 
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evaluation of T and B cell responses will be carried out at the LSU School of Veterinary 

Medicine. 
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CHAPTER 5 

CONCLUDING REMARKS AND FUTURE CHALLENGES 

 The overall goal of these investigations was to explore the use of recombinant VSV for 

the construction of VSV-vectored vaccines that could protect animals and humans against other 

potentially lethal viral infections.  This goal was largely accomplished by the construction of 

VSV-based vaccines for WNV, SRV-2 and Herpes B.  VSV-vaccines against the WNV virus 

were extensively studied in mouse experiments and showed high levels of protection against 

highly neurovirulent strains of WNV.  In this thesis, particular attention was devoted to 

dissecting the humoral and cellular immune responses that were responsible for protecting mice 

against lethal WNV challenge.  It was rewarding to find that the VSV-vectored vaccines 

expressing the WNV E glycoprotein generated robust humoral and cellular immune responses as 

evidenced by multiple immune parameters detailed in this thesis.  

 In the process of characterizing WNV strains isolated in Louisiana, and in an attempt to 

select a highly virulent WNV strains for the necessary vaccine-challenge experiments, it was 

found that one Louisiana WNV strain was more virulent than the prototypic strain WNV NY99 

(Chapter 2).  This virus strain, LSU-AR01 was isolated from a dead blue jay (Cyanocitta 

cristata) in Jefferson Parish in 2001 (Alma Roy, personal communication).  This finding 

prompted a detailed characterization of the phenotypic and virulence characteristics of this virus 

as well as extensive phylogenetic analysis to understand its relationship to other known WNV 

viruses.  The phylogenetic work generated some potentially highly important findings with 

regard to the epidemiology of WNV in North America.  The important finding was that the LSU-

AR01 strain was closely related to a 1999 mosquito isolate from Connecticut and belongs to a 
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subclade that was distinct from the prototypic NY99 virus clade.  This finding coupled with the 

fact that the WNV LSU-AR01 strain appeared to be more neurovirulent in mice than the NY99 

strain posed the question whether highly virulent strains not directly related to the NY99 strain 

could be circulating in birds or other animal hosts that could potentially evolve in the future to 

infect humans and cause disease.  Unfortunately, the phylogenetic data, although it utilized entire 

WNV genomes, was dependent on only one Louisiana-based WNV strain, the LSU AR01 strain.  

Additional strains need to be sequenced and incorporated into full genome phylogenetic analysis 

to further strengthen the findings presented in this thesis.  In this regard, I have obtained a 

number of isolates from 2001-2006 and 2008 from Dr. Alma Roy.  These strains were isolated 

from a variety of birds and from horses and alligators and will be sequenced and characterized.  

Phylogenetic trees generated from this data using a number of different algorithms is expected to 

yield clues about the introduction, spread and microevolution of WNV in Louisiana over the 

years. 

 The rVSV-vectored vaccines for WN produced robust humoral and cellular immune 

responses.  Furthermore, the vaccines protected mice against lethal WNV challenge.  Dissection 

of the immune responses was largely enabled by the use of polychromatic fluorescence 

cytometry to track the expression of multiple markers associated with the activation of specific 

lymphocyte populations.  It was found that the VSV-vectored WNV E vaccine elicited anti-

WNV E specific cells CD8+ IFN γ+ T cell responses and downregulated T reg cells, as a result of 

the strong enhancement of effector T cell functions.  This was the first rVSV-vectored vaccine 

study where elaborate immunological markers were utilized to dissect the immune response 

against the vaccine.  
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 WNV virulence is intimately coupled to immunological responses against the virus.  It is 

largely thought that strong neutralizing responses against the virus may protect subsequent 

dissemination to neuronal tissues.  However, cellular immune responses and specifically CD8+T 

cells against the virus may ultimately contain the virus in neuronal tissues and prevent virus 

dissemination in the brain.  Although, we did not generate direct evidence that cellular immune 

responses in the brain were elicited and prevented WNV lethality, it is highly suspected that 

these responses were elicited and were primarily responsible for the observed protection from 

WNV infection.  Additional immunopathological studies are needed to confirm this hypothesis. 

In this regard, the differences in the comparative virulence characteristics of the NY99 strain in 

comparison to the LSU AR01 strain may be due to amino acid differences within CTL epitopes 

contained in different genes (Chapter 2).  

 An important point to be made about these vaccination experiments is that the VSV-

based vaccines were administered via the intranasal route.  This route of immunization provides 

direct access to mucosal tissues and would be highly preferred for human use largely due to the 

relative ease of administration.  The current work did not specifically address mucosal immune 

parameters such as secretory IgA and IgM which could potentially be highly important in 

containing viral infections locally.  This may especially be important for infections that are 

primarily transmitted via aerosol and mucosal surfaces such as the influenza viruses. 

 A potential drawback with the rVSV-vectored vaccine approach detailed in this thesis is 

that the VSV viruses that were generated were replication competent.  rVSVs have been 

extensively tested for safety in rodent models and non-human primates.  Wildtype VSV have 

been shown to be neuropathogenic in mice following intranasal (i.n.) or intracerebral (i.c.) 

inoculation (Miyoshi, Harter, and Hsu, 1971).  Recent studies with VSV-vectored vaccines 
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expressing the HIV env gene revealed that live replicating virus inoculated via the intanasal or 

intramuscular route were not neuroinvasive.  However, rVSV-IN when incoulated 

intrathalamically into rhesus macaques caused moderate to sever neuropathology comparable to 

wild type VSV (Johnson et al., 2007).  Neuroinvasiveness of viral vectors is a substantial 

obstacle for the approved use of these viruses in humans.  However, addditional studies have 

shown that replication defective viruses can generate similar robust immune responses to 

replication competent viruses (Majid et al., 2006; Publicover, Ramsburg, and Rose, 2005; 

Roberts et al., 1999; Schnell et al., 1997).  Therefore, the logical next-step of this work is to 

generate replication defective viruses as vehicles for vaccine production.  In  this regard, genes 

essential for viral infectivity and replication could be provided in trans through the use of 

complementing cells that could provide the missing gene.  This has already been achieved by 

providing the VSV G gene in trans through cellular complementation (replication defective 

virus).  Additional safeguards could include the development of cell lines that could provide 

more than one gene such as a combination of the G and M proteins and the introduction of 

mutations within the M gene that are known to attenuate viral replication in the host (Jayakar and 

Whitt, 2002).  Furthermore, the development of propagation defective G-stem rVSVs, wherein 

most of the extracellular portion of the VSV G is deleted, retaining the transmembrane domain 

and ectodomain membrane proximal 42 amino acids, should also be considered (Robison and 

Whitt, 2000). 

 Vaccines remain the most important defense strategy to combat important 

infectious diseases of humans and animals.  In general, the use of recombinant viruses that 

naturally elicited robust immune responses provide important new avenues for the construct of 

robust vaccines.  These vaccines can be  made extremely safe for human use provided that 
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multiple safeguards are carefully engineered and that these vaccines are extensively studied in 

animal models prior to use in humans.  I remain convinced that viral vectored vaccines will 

provide new avenues to combat highly virulent bacterial and viral pathogens.  Currently, I am 

engineering rVSV expressing Mycobacterium tuberculosis antigens for Dr. Alistar Ramsay at the 

LSU Health Science Center, New Orleans.  These antigens are fusion combinations of highly 

immunogenic ESAT-6, Ag85A, Ag85B and heat shock protein HSP (Alderson et al., 2000; 

Brandt et al., 2000; Dietrich, Weldingh, and Andersen, 2006; Hoft, 2008; Kamath et al., 1999; 

Langermans et al., 2005; Li et al., 1999; McShane et al., 2004; Stewart et al., 2002). 
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APPENDIX A 

ADDITIONAL WORK 

INTRODUCTION 

 To complement the Neighbor Joining tree for the 75 WNV genomes in Chapter 2, I 

carried out additional phylogenetic analyis using Maximum Likelihood (ML) and Bayesian 

analysis.  The ML analysis is extremely memory intensive could not be completed even with the 

help of powerful computers at the LSU Center for Computation and Technology (CCT).  

However, the Bayesian analysis was carried out and the results are presented in this appendix. 

MATERIALS AND METHODS 

 Phylogenetic tree was also constructed using Mr. Bayes version 3.1.2 (Ronquist and 

Huelsenbeck, 2003) using Markov chain Monte Carlo algorithm (MCMC).  The general time 

reversible (GTR) evolutionary model was selected with gamma-distributed rate variation across 

sites and a proportion of invariable sites.  The analysis was run for 1100000 generations till the 

standard deviation of split frequencies was <0.01.  The potential scale reduction factor values 

(PSRF) were found to be very close to 1.0 indicating a good sample for posterior probability 

distribution.  The consensus tree was edited in Dendroscope software (Huson et al., 2007).  

RESULTS 

 The complete tree is presented in the form of a rectangular cladogram in Figure A.1.  

The clades representing the North American isolates was extracted and is shown as a phylogram 

in Figure A.2.  The values at the nodes indicate posterior probability of the clades. 

CONCLUSION 

 This tree further bolstered the relationship between LSU-AR01 and the 1999 

Connecticut isolate.  The relationship had a 66% posterior probability support as compared to a  
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Figure A.1.  Rectangular Cladogram using Bayesian Analyis: A Bayesian analysis of LSU-
AR01 (in bold) along with seventy-five WNV whole genomes was carried out using the Markov 
chain Monte Carlo alogrithm in Mr. Bayes.  The closest relative of LSU-AR01 was a 1999 
mosquito isolate from Connecticut.  This branching had a 66% posterior probability as per the 
analysis. 
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Figure A.2.  Extracted Phylogram using Bayesian Analyis: The lineage Ia sub-tree (Chapter 
2) was extracted from the Bayes tree shown in Figure A.1.  This sub-tree contains the Israel-98 
and the North American WNV isolates. 
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58% bootstrap value support for the  two isolates in the Neighbor joining tree (Chapter 2).   
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