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ABSTRACT 

Ticks are the only disease vectors for spotted fever group (SFG) Rickettsia which are 

obligate intracellular bacteria belonging to the genus Rickettsia.  In nature, ticks maintain the 

infection of SFG Rickettsia via vertical and horizontal transmission. However, the prevalence of 

rickettsial transmission is limited to certain species of ticks, and this limitation is known as a 

specific tick/Rickettsia relationship. Due to the continuous increase of tick-borne rickettsial 

disease cases in the United States, which contrasts with very low prevalence of Rickettsia in tick 

vectors, the study of vector competence of tick to Rickettsia is needed in order to understand the 

ecology and epidemiology of tick-borne rickettsioses.  Here we characterized the role of 

Dermacentor variabilis α-catenin during rickettsial infection in tick ovaries suggesting a role in 

rickettsial infection in tick ovaries.  We demonstrated that the typical nonpathogenic (R. 

montanensis) and typical pathogenic (R. rickettsii) Rickettsia persistently infect Dermacentor 

variabilis compared to atypical Rickettsia (R. amblyommii), and only R. montanensis is able to 

disseminate to tick ovaries.  D. variabilis glutathione S-transferase1 (DvGST1) has been 

identified as a tick immune-like molecule that specifically responds to atypical rickettsial 

challenge in tick midguts suggesting a role in controlling atypical rickettsial infection in tick 

midguts.  DvGST1 is highly upregulated in tick midguts during bloodmeal acquisition.  The 

function of GST is known to be involved with detoxification and oxidative stress reduction, and 

acaricide resistance in ticks.  Silencing of DvGST1 gene demonstrates significant reduction of 

mRNA and enzyme activity of DvGST1 in tick midguts; however, further characterization of 

DvGST1 is needed due to the off-target effect of negative control dsRNA.  Continued study on 

the tick/Rickettsia interaction influencing tick vector competence for Rickettsia will lead to a 

better understanding of ecology and epidemiology of tick-borne rickettsioses. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Ticks 

Ticks are ectoparasites of vertebrates belonging to the class Arachnida of the phylum 

Arthropoda. Arachnids include ticks, mites, spiders and scorpions.  Ticks and mites are in the 

subclass Acari which is divided into the superorder Parasitiformes and Acariformes (Beaty B.J. 

and Marquardt W.C. 1996).  The superorder Parasitiformes contains the order Ixodida, 

Holothyrida, and Mesostigmata.  The order Ixodida contains three families: the Nuttalliellidae, 

Argasidae, and Ixodidae (Mullen G and Durden L. 2002).  The family Nuttalliellidae contains 

only one species, Nuttalliella namaqua.  The family Argasidae is subdivided into five genera 

containing approximately 170 species.  The family Ixodidae is subdivided into five subfamilies 

consisting of 12 genera and 650 species.  Approximately, 80% of all the tick species belong to 

the family Ixodidae (Table 1.1) (Mullen G and Durden L. 2002). 

The body structure of the tick is divided into two major regions which are the capitulum 

and idiosoma. The capitulum is a mouthpart containing the basis capituli, segmented palps, the 

chelicerae, and the hypostome.  The idiosama consists of the podosoma (legs) and the 

opisthosoma (body) (Beaty B.J. and Marquardt W.C. 1996).  Ixodid ticks have an external 

morphology distinct from that of argasid ticks.  Ixodid ticks, or hard ticks, have hard cuticle 

plate, scutum, covering the dorsum surface. The scutum is only present on the anterior half of the 

dorsum of females.  During blood feeding, new cuticle is synthesized, and the posterior of female 

ticks expands tremendously.   For male ixodid ticks, scutum completely covers the dorsum which 

limits the physical expansion of male ticks during blood feeding.  The mouthparts of ixodid ticks 

are dorsally visible. Argasid ticks, or soft ticks, have a soft leathery cuticle and no scutum.  In 

nymphs and adults of the family argasid, the mouthparts are not visible from above because the  
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Table 1.1: Taxonomy of the Order Ixodida. The order Ixodida is divided into three families 

containing Ixodidae (hard tick), Argasidae (soft tick), and Nuttalliellidae.  The family Ixodidae is 

divided to two subgroups: Prostriata and Metastriata. 

Family Subfamily (subgroup) Genus 

Ixodidae Ixodinae (Prostriata) Ixodes 

 Amblyomminae (Metastriata) Amblyomma, Aponomma 

 Haemaphysalinae (Metastriata) Haemaphysalis 

 Hyalomminae (Metastriata) Hyalomma 

 

Rhipicephalinae (Metastriata) Dermacentor, Cosmiomma, 

Margaropus, Nosomma, 

Anomalohimilaya, 

Rhipicentor, Rhipicephalus 

Argasidae Argasinae Argas 

 Ornithodorinae Ornithodoros 

 Otobinae Otobius 

 Antricolinae Antricola 

 Nothoaspinae Nothoaspis 

Nuttalliellidae  Nuttalliella 

(Modified from Medical and veterinary entomology, 1
st
 edition. (Mullen G and Durden L. 

2002)  
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capitulum is protected by the anterior projection of the body (hood) (Mullen G and Durden L. 

2002; Sonenshine 1993).  

1.1.1 Life Cycle and Feeding Behavior 

The life cycle of ticks consists of four stages; the embryonated egg, six-legged larva, 

eight-legged nymph, and eight-legged adult (Figure 1.1). The larval, nymphal, and adult stages 

are parasitic.  In most species, a bloodmeal is needed for development to the next life stages 

(Sonenshine 1993).   

For ixodid ticks, eggs hatch into larvae which then seek hosts, attach, feed, detach, and 

molt to nymphs. Nymphs seek hosts, attach, feed, detach, and molt to adults.  For argasid ticks, 

which have two or three nymphal stages, the first stage nymphs molt to further nymphal stages 

before molting to adults.  Adults then seek hosts, attach, and feed.  After they are fully engorged, 

females drop off and deposit their eggs.  Compared to other hematophagous arthropods, ticks are 

long-lived and can live more than one year without feeding (Goodman J.L. et al. 2005; Mullen G 

and Durden L. 2002).  

In nature, ticks utilize one of two strategies for seeking hosts; ambush or hunter strategies 

(Goodman J.L. et al. 2005; Sonenshine 1993).  Ticks that use the ambush strategy climb onto 

grass, bushes, or leaves and wait for passing hosts.   In most species, larvae which feed on small 

mammals remain close to ground, and adults climb onto higher vegetation in order to encounter 

large animals, e.g. deer, dogs, and humans.  Ticks stay clinging to vegetation and remain on the 

leaves until stimulated by passing hosts.  The ticks then cling to the hair, fur, or cloths of the 

hosts.  This behavior is called questing.  Questing ticks respond to many factors, e.g. odors, 

tactile cues, sounds, vibration, radiant heat, and carbon dioxide. 

The second strategy is the hunter strategy.  Hunting ticks are buried in sand or soil to   
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Figure 1.1: Tick life cycle. The relative size of ixodid ticks in three life stages: larva, nymph, 

adult male and adult female including Blacklegged Tick (Ixodes scapularis), Lone Star Tick 

(Amblyomma americanum), and American dog tick (Dermacentor variabilis). (Courtesy of 

Centers of Disease Control and Prevention) 
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shelter from heat and desiccation, and when they are excited by a host, ticks emerge, move to 

and attack the host. 

On hosts, ticks then search for a suitable feeding site.  They puncture the skin down to the 

dermis using chelicerae and use teeth-like hypostome to anchor themselves at the bite site.  In 

most Ixodid species, after biting the tick rapidly secrete a cement substance surrounding the 

mouthparts which quickly hardens.  After cement secretion, ticks start sucking blood, and the 

salivary glands produce an array of chemical compounds immunomodulatory and homeostatic 

modulators which facilitates successful feeding (Goodman J.L. et al. 2005; Sonenshine 1993). 

1.1.1.a Ixodid Ticks 

Life cycles of ixodid ticks include three types; one-host, two-host, and three-host life 

cycles (Figure 1.2).  In the one-host tick life cycle, all life stages feed and molt on the same host. 

Examples of one-host ticks include Dermacentor albipictus (winter tick), and Rhipicephalus 

microplus (cattle tick).  For two-host ticks, larvae feed and molt to nymphs on the same host.  

Fed nymphs then drop off and molt to adults.  The adults attach and feed on a new host. An 

example of a two-host tick is Hyalomma dromedarii (camel tick). The three-host life cycle is 

characteristic of most ixodid ticks, as more than 90% of ixodid species are three-host ticks 

(Mullen G and Durden L. 2002).  In this life cycle, larvae feed, drop off, and find a sheltered 

microenvironment in which to molt into nymphs.  The emerging nymphs find new hosts, feed, 

and the engorged nymphs drop off and molt into adults.  Sexual dimorphism is present only in 

the adult stage.  Emerging adults seek hosts, feed, mate, and drop off.  Replete females find a 

sheltered microenvironment and deposit several thousand eggs and then die.  The time required 

to complete a life cycle is dependent on host availability and microenvironment: temperature and 

humidity.  With limited environmental resources (e.g. food availability) three-host ticks may 
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Figure 1.2: Three life cycles of ixodid ticks.  (1) One-host life cycle (inner circle): All three 

stages (larva, nymph, and adult) feed and develop on the same hosts, for example, Rhipicephalus 

annulatus.  (2) Two-host life cycle (middle cycle): Larvae and nymphs feed on the same hosts, 

and adults feed on the second hosts, for example, Hyalomma dromedarii.  (3) Three-host life 

cycle (outer circle): Larvae, nymphs, and adults feed on different hosts, for example, 

Dermacentor variabilis.  Figure from Medical and veterinary entomology, 1
st
 edition (Mullen G 

and Durden L. 2002).  
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take three years to complete their life cycle (Sonenshine 1993). 

Ixodid ticks and most argasid larvae are slow feeders, meaning they require several days 

to complete their feeding.  For D. variabilis, larvae take three to four days, nymphs take four to 

five days, and females take seven to eight days to finish their blood feeding (Goodman J.L. et al. 

2005).  During blood feeding, ixodid ticks synthesize new cuticle to accommodate for the 

enormous volume of blood meals.  The tick’s body gradually grows during the long feeding 

period, and engorged larvae or nymphs weigh about 10 to 20 times their unfed weight.  Female 

ixodid ticks feed only once and have only one gonotrophic cycle.  The females feed slowly 

before mating, and feed rapidly after mating.  The engorged females are found to weight 100 to 

120 times more than unfed females (Goodman J.L. et al. 2005).  Females die following the 

completion of oviposition, while males feed more than one time and remain on their hosts to 

mate with several females. 

1.1.1.b Argasid Ticks 

The Argasid tick life cycle is a multi-host life cycle and is distinct when compared to the 

ixodid tick life cycle.  Larvae feed, drop from their hosts and molt into the first nymphal stage.  

Emerging nymphs feed, drop off, and molt into the next nymphal stage.  There are often two or 

more nymphal stages in their life cycle; however, the number of nymphal stages varies, even 

within the same species (Sonenshine 1993).  Unlike ixodid ticks, argasid females have multiple 

gonotrophic cycles; female ticks take many small bloodmeals and lay small egg batches (< 500 

eggs/cycle) (Mullen G and Durden L. 2002; Sonenshine 1993). 

Argasid ticks are rapid feeders (15-30 minutes) except for larvae of certain Argas and 

Ornithodoros species (Sonenshine 1993).  In contrast to ixodid ticks, argasid adults do not 

synthesize new cuticle during feeding.  Instead, the existing cuticles stretch during feeding, 
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thus limiting bloodmeal size and producing small clutches of eggs.  The time between adult 

bloodmeals can be from one week to several months.  

1.1.1.c Laboratory Ticks 

 In order to study tick biology, tick/pathogen interaction, and tick/vertebrate host 

relationships, tick colonization in the laboratory is required to produce large numbers of specific 

pathogen-free ticks.  In nature, three-host ticks may take two or more years to complete their life 

cycle (Sonenshine 2005).  However, in the laboratory they may only take four or five months 

depending on the tick species (Troughton and Levin 2007). 

The Louisiana State University (LSU) D. variabilis colony was started from a laboratory 

tick colony maintained by Dr. Daniel E. Sonenshine at Old Dominion University (ODU).  The 

ODU D. variabilis colony is reared on a combination of host species.  Immature D. variabilis 

feed on rats, guineas pigs, or small rodents, while adult ticks feed on dogs, rabbits, or medium to 

large-sized hosts (Sonenshine 1993). 

As for the LSU D. variabilis colony, it requires about three months to complete the life 

cycle in the laboratory.  Larvae feed on BALB/c mice for three to five days.  Fed larvae molt 

within two weeks.  Nymphs feed on BALB/c mice or Sprague Dawley rats; they require four to 

seven days to feed until repletion.  Engorged nymphs molt into adults within three weeks.  

Adults feed on Hartley guinea pigs or New Zealand White rabbits (Figure 1.3).  Females 

complete their feeding within seven to ten days.  Replete females start ovipositing their eggs 

within one week and oviposition lasts six days.  Between feedings, all tick stages are kept in an 

environmental chamber at 27 ± 1°C and 87 ± 2% relative humidity with a photoperiod of 16:8 

(L:D) h. 

1.1.2 Distribution of Medically Important Ticks in the United States  

Tick distribution is defined by suitable habitats including forests, meadows and other 
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Figure 1.3: LSU Dermacentor variabilis colony maintenance.  D. variabilis larvae feed on 

BALB/c mice.  Nymphal stage feed on BALB/C mice or Sprague Dawley rats using 

encapsulation technique.  Adult ticks feed on Hartley guinea pigs or New Zealand white rabbits.  

 



10 

clearings, grasslands, savannahs, and semi-deserts.  Some ticks have developed the ability to 

survive in many habitats; however, some ticks have limited adaptation.  Besides habitat other 

factors including host availability, rainfall, and winter temperature also contribute to the 

geographic distribution of ticks.  Below is the list of human diseases transmitted ticks and tick 

distribution in the United States. 

1.1.2.a Amblyomma americanum (Lone Star Tick) 

 Amblyomma americanum (Lone star tick) is distributed in the southeastern and eastern 

United States (Figure 1.4).  It is a three-host species that feeds on a variety of hosts; however, the 

major host of lone star ticks is the white-tailed deer.  The lone star tick is a vector of Ehrlichia 

chaffeensis, E. ewingii, Coxiella burnetti, and Francisella tularensis (Goodman J.L. et al. 2005) 

(www.cdc.gov). 

1.1.2.b Amblyomma maculatum (Gulf Coast Tick) 

Amblyomma maculatum (Gulf Coast tick) is distributed in coastal areas of the United 

States along the Atlantic coast and the Gulf of Mexico (Figure 1.5).  It has a three-host life cycle. 

Immature stages feed on birds and small rodents.  Adults feed on deer and other animals.  Gulf 

Coast ticks can transmit Rickettsia parkeri to humans (Goodman J.L. et al. 2005) 

(www.cdc.gov).  

1.1.2.c Dermacentor andersoni (Rocky Mountain Wood Tick) 

Dermacentor andersoni (Rocky mountain wood tick) is distributed around the Rocky 

Mountain States, in the northwestern part of the United States (Figure 1.6).  It is a three-host tick.  

Larvae and nymphs feed on small mammals, such as ground squirrels, chipmunks, woodrats, and 

mice.  Adult ticks feed on larger mammals, including deer, livestock, and humans. The Rocky 

mountain wood tick is a vector of Rickettsia ricketsii, F. tularensis, Powassan viruses 
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Figure 1.4: Distribution of Amblyomma americanum (Lone star tick) in the United States. 

(Courtesy of Centers of Disease Control and Prevention) 

 

 

Figure 1.5: Distribution of Amblyomma maculatum (Gulf Coast tick) in the United States. 

(Courtesy of Centers of Disease Control and Prevention) 
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Figure 1.6: Distribution of Dermacentor andersoni (Rocky Mountain Wood tick) in the 

United States. (Courtesy of Centers of Disease Control and Prevention)   
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 (PWV), and Colorado tick fever virus (Goodman J.L. et al. 2005) (www.cdc.gov).  

1.1.2.d Dermacentor variabilis (American Dog Tick) 

Dermacentor variabilis (American dog tick) is distributed east of the Rocky Mountains 

and some areas on the Pacific Coast of the United States (Figure 1.7).  This three-host tick feeds 

on a variety of hosts.  Immature stages feed on small rodents, including deer mice, rice rats, 

voles, chipmunks, and tree squirrels, while adults feed on larger animals and humans.  American 

dog ticks can transmit R. rickettsii and E. chaffeensis, and F. tularensis to human (Goodman J.L. 

et al. 2005) (www.cdc.gov).    

1.1.2.e Ixodes pacificus (Western Blacklegged Tick) 

Ixodes pacificus (Western blacklegged tick) is distributed along the Pacific coast region 

of the United States (Figure 1.8).  It is a three-host tick, and immature ticks feed on small 

mammals, birds, and lizards.  Adults feed on larger mammals including Columbian black-tailed 

deer and humans.  It is a vector of Babesia, Anaplasma phagocytophilum and Borrelia species 

(Goodman J.L. et al. 2005) (www.cdc.gov).  

1.1.2.f Ixodes scapularis (Blacklegged Tick) 

Ixodes scapularis (blacklegged tick or deer tick) is distributed in the northeastern and 

upper midwestern United States (Figure 1.9).  It is a three-host tick.  Larvae and nymphs of 

blacklegged ticks feed on small mammals and birds while adults feed on larger mammals 

including deer, livestock, and humans.  It can transmit Babesia, A. phagocytophilum, Borrelia 

species, F. tularensis, and PWV to humans (Goodman J.L. et al. 2005) (www.cdc.gov). 

1.1.2.g Rhipicephalus sanguineus (Brown Dog Tick)  

Rhipicephalus sanguineus (Brown dog tick) is distributed throughout the United States 



14 

 

Figure 1.7: Distribution of Dermacentor variabilis (American dog tick) in the United States. 

(Courtesy of Centers of Disease Control and Prevention) 

 

Figure 1.8: Distribution of Ixodes pacificus (Western Blacklegged tick) in the United States. 

(Courtesy of Centers of Disease Control and Prevention) 

 



15 

 

Figure 1.9: Distribution of Ixodes scapularis (Blacklegged tick) in the United States. 

(Courtesy of Centers of Disease Control and Prevention) 
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and the world (Figure 1.10).  It is a three-host tick which all life stages primarily feed on dogs; 

however, they occasionally feed on other mammals.  The brown dog tick is a vector of F. 

tularensis and many Rickettsia species in Europe and Asia.  Recently, it has been reported as an 

important vector in the transmission of R. rickettsii in the United States (Demma et al. 2005; 

Wikswo et al. 2007) (www.cdc.gov). 

1.1.3. The Importance of Ticks in Veterinary and Human Health 

There are approximately 850 known species of ticks in every continent except Antarctica 

(Goodman J.L. et al. 2005).  The direct effect of tick feeding is problematic, especially in 

livestock, causing economic losses (Jongejan and Uilenberg 2004).  Large numbers of ticks 

infesting a host may cause severe blood loss leading to anemia, reducing growth rate and milk 

production.  Some species of ticks produce a toxin that causes paralysis also known as tick 

paralysis.  Also, host immune response to tick attachment can cause skin damage, for example, 

inflammation, itching, and pain as well as destruction of hide quality. 

Moreover, ticks are the second only to mosquitoes as disease vectors and have been 

reported to transmit a variety of infectious microorganisms, e.g. bacteria, viruses, protozoa, 

fungi, and helminthes (Sonenshine and Hynes 2008).  It was first acclaimed as a disease vector in 

1891 by Smith and Kilbourne who demonstrated that Rh. (previously Boophilus) annulatus 

(cattle tick) served as a vector of Babesia bigemina, the disease agent of Texas cattle fever 

(Smithcors 1981). The importance of ticks in association with public health is summarized in 

Table 1.2. 

1.2. Tick-borne Rickettsioses  

Rickettsioses are worldwide zoonoses that are biologically transmitted by arthropod 

vectors including fleas (e.g. murine typhus), lice (e.g. epidermic typhus), mites (e.g. scrub  
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Figure 1.10: Distribution of Rhipicephalus sanguineus (Brown dog tick) in the United 

States. (Courtesy of Centers of Disease Control and Prevention)  
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Table 1.2: Tick-borne diseases of humans. Tick-borne diseases, causative agents, primary tick 

vectors, and associated hosts. 

Disease Causative agent Primary tick vector species Associated host 

Human Babesiosis Babesia microti, B. 

divergens, B. major 

Ixodes scapularis, I. ricinus, 

other 

Rodent, cattle, humans 

Rocky Mountain 

spotted fever 

Rickettsia rickettsii Dermacentor variabilis, D. 

andersoni, Rhipicephalus 

sanguineus 

Small mammals, humans 

Human monocytic 

ehrlichiosis 

Ehrlichia chaffeensis A. americanum, D. variabils Deer, humans 

Human anaplasmosis Anaplasma 

phagocytophilum 

I. scapularis, I. pacificus, I. 

ricinus 

Rodents, dogs, humans 

Q fever Coxiella burnetii Many tick species Large domestic livestock, 

humans 

Lyme disease Borrelia burgdorferi, 

B. afzelii, B. garinii, B. 

bissettii 

I. scapularis, I. ricinus, I. 

pacificus, I. persulcatus, others 

Small mammals, some 

birds, humans 

Tick-borne relapsing 

fever 

Borrelia spp. Ornithodoros spp. Various mammals 

Tularemia Francisella tularensis D. variabilis, D. andersoni, D. 

reticulutus, A. americanum, I. 

apronophorus, I. ricinus 

complex, Haemaphysalis 

leporispalustris, others 

Lagomorphs, rodents, 

humans 

Powassan encephalitis Flavivirus; family 

Reoviridae 

Ixodes, Dermacentor, and 

Haemaphysalis spp. 

Rodents, hares 

Colorado tick fever Coltiivirus; family 

Reoviridae 

D. andersoni Rodents, domestic animals, 

humans 

Crimean-Congo 

hemorrhagic fever 

Nairovirus; family 

Bunyaviridae 

Hyalomma m. marginatum, H. 

m. rufipes, others 

Hares, hedgehogs, small 

mammals, humans 

(Goodman J.L. et al. 2005)  
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typhus), and ticks (e.g. RMSF).  Tick–borne rickettsioses is caused by members of the spotted 

fever group (SFG) Rickettsia in the genus Rickettsia (Rickettsiales: Rickettsiaceae) belonging to 

the class Alphaproteobacteria.  Rickettsia is a gram negative, obligate intracellular bacterium. 

The typical Rickettsia morphology is small, coccobacilli (rod-shaped) with size ranging from 0.3 

to 0.5 µm in width and 0.8 to 2.0 µm in length (Hackstadt 1996).  Polymorphic rickettsiae 

(irregular bacillary, filamentous or long-form) have been reported both in tick vectors 

(Burgdorfer et al. 1981; Philip et al. 1981) and in cultivated isolates (Gulevskaia et al. 1975; 

Sunyakumthorn et al. 2008; Kekcheeva et al. 1992; Wisseman, Jr. and Waddell 1975; Labruna et 

al. 2004; Labruna et al. 2007; Philip et al. 1983).  It is suggested to be the adaptive form of 

Rickettsia during nutrient exhaustion or unfavorable conditions (Labruna et al. 2007; 

Sunyakumthorn et al. 2008).  

In general, the clinical manifestations of all tick-borne rickettsioses are similar. 

Symptoms include fever, headache, rash, myalgia, nausea and, sometimes eschars, which are 

local dermal and epidermal necroses at the bite sites (Walker and Ismail 2008; Parola et al. 

2005).  The classic symptom for diagnosis is a skin rash which is why it is called spotted fever.  

In RMSF patients, the rash initially appears on the wrists and ankles and spreads to the trunk; 

however, a rash does not develop in some cases (Goodman J.L. et al. 2005).  In severe cases 

when vascular endothelial cells are infected, the infection causes hypovolaemia and hypotensive 

shock resulting in acute renal failure.  Doxycycline is the typical drug of choice for rickettsioses 

treatment (Holman et al. 2001).  The dosage for adults and children older than 8 years old is 100 

mg every 12 hours for five to ten days.  However, for pregnant women and children younger 

than 8 years doxycycline is not recommended, and chloramphenicol may be drug of choice 

(Goodman J.L. et al. 2005). 
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RMSF was the first rickettsiosis that was described.   It was identified more than 100 

years ago in Montana (Mullen G and Durden L. 2002).  It is caused by R. rickettsii and is 

primarily transmitted by D. andersoni, and D. variabilis, and recently Rh. sanguineus was 

demonstrated to be another competent vector of RMSF (Demma et al. 2005; Wikswo et al. 2007; 

Piranda et al. 2011).  Unlike other rickettsioses, tick-borne rickettsioses have a limited 

geographic distribution which depends on their tick vector’s distribution (Azad and Beard 1998). 

In 1910, Mediterranean spotted fever (MSF) or boutonneuse fever was described in Tunis.  It is 

the most common tick-borne rickettsioses in the Mediterranean area.  It is caused by R. conorii 

subsp. conorii, and Rh. sanguineus is its primary tick vector.  Many years after the discovery of 

MSF, many other spotted fever rickettsioses were described including Israeli spotted fever first 

reported in Israel, Siberian tick typhus or North Asian tick typhus first described in Primorye and 

Queensland tick typhus first recognized in eastern Australia.  Many more tick-borne rickettsioses 

have been characterized with a peak in description occurring from 1984 through 2005, for 

example, Japanese or Oriental spotted fever, Astrakhan fever, African tick bite fever, Flinders 

Island spotted fever, R. parkeri rickettsiosis, and many unnamed tick-borne rickettsial diseases.  

Today, more than 20 species of bacteria in SFG Rickettisia have been described and 

characterized around the world; however, not all of them are pathogenic for humans (Goodman 

J.L. et al. 2005; Parola et al. 2005). 

1.2.1. History 

 Rickettsia was first described in the 1890s when Howard Taylor Ricketts (1871-1910), an 

American microbiologist, discovered the causative organism (R. rickettsii) of RMSF in the blood 

of experimentally infected guinea pigs and monkeys (Ricketts H.T. 1906) and in the tissues and 

eggs of D. andersoni (Ricketts H.T. 1907a).  Ricketts’ first attempt is to identify a disease agent 
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in patient blood, and he was unable to identify the pathogen using microscopic examination and 

bacteriologic culture; however, inoculation of patient blood into uninfected animals caused 

disease in the animals with similar manifestations.  Ricketts demonstrated that infection can pass 

from infected animals to uninfected animals and be maintained by serial animal passage 

(Ricketts H.T. 1906).  The infectious agent was preliminarily thought to be a virus because it 

was noncultivatable.  He also demonstrated the mode of transmission of RMSF by D. andersoni.  

The female ticks that previously fed on infected guinea pigs were able to transmit the infection 

to uninfected guinea pigs (horizontal transmission) (Ricketts H.T. 1907b).  Ricketts also showed 

evidence of vertical transmission in D. andersoni (ticks to their eggs, eggs to larvae, and larvae 

to nymphs) (Philip 2000; Ricketts H.T. 1907b)  

In 1909, during an outbreak of epidemic typhus in Mexico City, Ricketts went to 

investigate the cause of infection.  While attempting to isolate the organism, Ricketts was 

infected with R. prowazekii and died in 1910.  The scientific community named a family 

Rickettsiaceae and the order Rickettsiales in honor of Ricketts (Gross and Schafer 2011). 

1.2.2. Rickettsia Taxonomy 

 The family Rickettsiaceae contains two genera; genus Rickettsia and genus Orientia. 

There is only one species, O. tsutsugamushi, in the genus Orientia.  It is the etiological agent of 

scrub typhus, a mite-borne disease of the Asia-Pacific region.  Scrub typhus is transmitted to 

humans by larval mites also called chiggers.  The genus Leptotrombidium is the primary vector, 

of which only the larval stage is parasitic.  Therefore, vertical transmission of O. tsutsugamushi 

is critical to maintain the infection in nature. 

The genus Rickettsia, was recently reorganized into four defined groups which are the 

ancestral group (AG), the typhus group (TG), the transitional group (TRG), and the spotted fever  
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group (SFG) (Figure 1.11).  The new classification was proposed using phylogeny analysis of 

chromosomal and plasmid genes based on genetic evolutionary analysis (Gillespie et al. 2007, 

2008).  The SFG contains the majority of rickettsial species.  Until recently, many emerging 

rickettsial species have been described and designated as a new species and subspecies; however, 

the rickettsial taxonomy is still controversial because there are no universal criteria for 

classification (Parola et al. 2005; Walker and Ismail 2008). 

1.2.3. Pathogenicity and Pathogenesis 

Since its discovery, many different species or strains of SFG Rickettsia have been 

recognized.  Nevertheless, many of them are considered nonpathogenic (e.g. R. montanensis, R. 

peacockii) for vertebrates based on human case reports and pathogenicity testing with laboratory 

animals such as guinea pigs and voles.  However, using animal model testing for human diseases 

is still questionable due to the route of infection and host specificity. 

Rickettsial pathogenicity involves two major components because Rickettsia is able to 

infect both invertebrate and vertebrate hosts.  Due to the small size of the genome, rickettsial 

species lack many genes responsible for amino acid synthesis, nucleotide synthesis and lipid and 

sugar metabolism; therefore, Rickettsia requires host cells in order to survive (Walker 2007).  

The first component to consider is inside the tick vector.  Rickettsia needs to be able to escape 

from the gut barrier and tick immunity and then disseminate to the salivary glands in order to be 

transmitted to the vertebrate host during feeding.  Some rickettsial species (e.g. R. peacockii) 

heavily infect tick ovaries but do not disseminate to salivary glands resulting in the absence of 

horizontal transmission (Niebylski et al. 1999).  The recent study of rickettsial actin-based 

motility of R. parkeri in Drosophila cells using RNAi demonstrated that Rickettsia employs host 

actin organization in order to be motile and invade arthropod cells (Serio et al. 2010). 
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Figure 1.11: Taxonomy and arthropod vectors of the genus Rickettsia. The family 

Rickettsiaceae contains two genera: Rickettsia and Orientia.  Within the genus Rickettsia, there 

are four groups which are ancestral group, typhus group, transitional group, and spotted fever 

groups.  In nature, bacteria in family Rickettsiaceae are maintained and transmitted by arthropod 

vectors (Gillespie et al. 2008; Parola et al. 2005). 
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The second component of rickettsial pathogenesis, is when Rickettsia internalizes into 

vertebrate host endothelial cell where they multiplies and disseminate to other target cells.  

Rickettsia is initially transmitted to the host with tick saliva during bloodmeal acquisition.  

Rickettsia binds to a host cell receptor and forms a ligand/receptor complex which induces 

phagocytosis.  In cell culture, R. conorii binds to host receptors (Ku70) on the surface of non-

phagocytic cells via rickettsial outer membrane protein B (OmpB) also known as surface cell 

antigen 5, and recruits actin to the attachment site leading to rickettsial internalization (Martinez 

et al. 2005).  Recently, surface cell antigen 2 and surface cell antigen 1 autotransporter proteins 

of R. conorii have been demonstrated as rickettsial adhesion proteins involved with invasion of 

host cells (Cardwell and Martinez 2009; Riley et al. 2010).  The role of rickettsial outer 

membrane protein in the adhesion and invasion of host cell has been demonstrated in many 

pathogenic SFG Rickettsia species, for example, R. rickettsii outer membrane protein A (OmpA) 

(Li and Walker 1998) and R. japonica OmpB (Chan et al. 2009; Uchiyama 2003).  In contrast to 

R. rickettsii, R. peacockii which is closely related to R. rickettsii and considered a nonpathogenic 

Rickettsia is not able to express OmpA and surface cell antigen 1 (Felsheim et al. 2009) 

suggesting that rickettsial outer membrane proteins likely contribute to the differential 

pathogenicity of Rickettsia. 

Inside the phagosome, Rickettsia produces membranolytic phospholipase D and 

haemolysin to lyse the phagosome membrane, and escapes from the vacuole, and then resides 

freely in the cytosol.   At this step, many candidate genes (e.g. Phospholipase D, Haemolysin A 

and D, and Actin-tail polymerization genes) are suspected to be rickettsial virulence genes 

playing a role in rickettsial survival in host cells (Parola et al. 2009; Walker and Ismail 2008).  

In the cytosol, SFG Rickettsia replicates by binary fission and invades the nearby cells by 
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inducing filopodia formation using an actin polymerization mechanism (Gouin et al. 2004; 

Walker 2007; Walker and Ismail 2008). 

 In the host cells, SFG Rickettsia utilizes host actin cytoskeleton proteins that control 

actin polymerization and depolymerization to facilitate rickettsial motility and cell invasion.  

RickA protein of R. conorii was identified as actin related protein 2/3 (Arp2/3) complex 

activators which induced actin nucleation and actin filament (Gouin et al. 2004).  Genome 

comparison of R. rickettsii and R. peacockii suggests that RickA protein may be a virulent factor 

(Felsheim et al. 2009); however functional characterization is lacking.  

1.2.4. Laboratory Tools to Study Tick-borne Rickettsioses 

 The PCR-based assay is the most efficient method to detect rickettsial infection during 

the acute phase when antibody titers are undetectable.  It has high sensitivity, and all types of 

clinical specimens (e.g. whole blood, serum, and skin biopsy specimens) and tick specimens can 

be used; however, the clinical specimens need to be collected before antibiotic treatment.  The 

PCR technique is based on the detection of gene portions in rickettsial genomes using a pair of 

gene specific primers (e.g. 17 kDa surface antigen, 16S rRNA, citrate synthase, OmpA, and 

OmpB genes) (Higgins et al. 1998).  Moreover, the PCR products can be further identifying 

using restriction fragment length polymorphism or DNA sequencing; therefore, it is also 

commonly used in research laboratories in order to molecularly characterize new emerging 

rickettsial species.  

Rickettsial isolation has been performed using several methods including embryonated 

chicken egg yolk, animal inoculation, and cell cultures.  Embryonated chicken egg yolk and 

animal inoculation are used with many rickettsial species such as R. rickettsii and R. felis; 

however, cell cultures are currently widely used for primary isolation.  Rickettsial inoculation 
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has been shown possible in both mammalian (e.g. L929 and Vero cells) and tick cells (e.g. ISE6 

cells) (La and Raoult 1997). 

 Being obligate intracellular bacteria, Rickettsia cannot typically be cultured in any cell-

free medium.  The culture of SFG Rickettsia isolates in cell culture is widely used to propagate 

Rickettsia for characterization and experimental studies.  The study of the interactions between 

Rickettsia and host cells has been performed using both mammalian and tick cell cultures.  For 

example, recent molecular studies have investigated cell invasion of R. conorii in Vero and HeLa 

cells (Cardwell and Martinez 2009; Chan et al. 2009; Martinez and Cossart 2004; Martinez et al. 

2005; Riley et al. 2010) and the immune response of ISE6 cells during SFG rickettsial infection 

(Mattila et al. 2007).   

1.2.5. Transmission Cycle 

All vector-borne diseases are involved in a classic triangle of pathogen-vector-host 

interaction which is divided to three components: (1) pathogens which cause diseases in humans 

or animals, (2) competent vectors which are able to acquire the pathogens from infected 

vertebrate hosts and transmit to the next susceptible hosts, (3) the susceptible vertebrate hosts 

which can be infected by arthropod vectors (Figure 1.12). 

For SFG rickettsioses, ixodid ticks are the main vectors transmitting Rickettsia.  They are 

not only vectors (horizontal transmission), but also reservoir hosts (vertical transmission); 

therefore, the interaction between SFG Rickettsia and the tick is important to study.  Ixodid ticks 

feed only once in each life stage; therefore, after acquisition of rickettsial infection they cannot 

transmit the infection until the next blood feeding of the next life stage.  In order for ticks to 

transmit diseases to vertebrate hosts, they must exhibit either transstadial transmission, or 

transovarial transmission.  Horizontal transmission to mammalian reservoirs helps maintain and  
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Figure 1.12 pathogen-vector-host interaction diagram of vector-borne diseases. 
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introduce infection into new populations of ticks. 

In 1907, transstadial and transovarial transmission of SFG Rickettsia in ticks were first 

documented by Ricketts who described a complete transmission mechanism of R. rickettsii in 

each D. andersoni life cycle stage.  He demonstrated the successful transstadial transmission of 

R. rickettsii from laboratory-infected larvae to nymphs and laboratory-infected nymphs to adults 

and transovarial transmission from infected females to their eggs.  His experiment also 

demonstrated multiplication of rickettsiae in ticks during bloodfeeding suggesting biological 

transmission (Philip 2000; Ricketts H.T. 1907a; Ricketts H.T. 1907b). 

Due to the low level of transovarial transmission in ticks, Ricketts suggested that 

reservoir hosts of rickettsial infection are required in order to maintain the infection in nature.  

He examined the susceptibility of several animal species including ground squirrel, woodchuck, 

rock squirrel, wood rat, pine squirrel, rock rabbit, and three other lagomorphs to rickettsial 

infection (Ricketts H.T. 1907b).  Rock squirrels, chipmunks, and woodchucks were susceptible 

to rickettsial infection and considered possible reservoir hosts of RMSF in western Montana 

(Philip 2000).  Therefore, Ricketts clearly demonstrated that D. andersoni is a vector of R. 

rickettsii which is maintained in nature by small mammals, and humans do not necessarily 

contribute to the transmission cycle (Figure 1.13). 

1.2.6. Vector Competence  

 Vector competence is the ability of arthropod vectors to acquire infection and transmit 

pathogens to new susceptible hosts (Mullen G and Durden L. 2002).  Several yet undetermined 

factors likely contribute to tick vector competence for rickettsial species. 

For SFG Rickettsia, ticks acquire novel rickettsial infection while feeding on infected 

animals.  Rickettsia is ingested with the bloodmeal into the midguts which is the first site of  
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Figure 1.13 Transmission cycle of spotted fever group rickettsiosis. In nature, spotted fever 

group Rickettsia is maintained in infected ticks via transstadial and transovarial transmissions 

and reservoir hosts (e.g. rodents) via horizontal transmission.  Humans are incidental hosts.  

(Figure from Walker and Ismali , 2008) 
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contact.  Rickettsia then escapes from gut barriers and infects midgut epithelial cells.  The 

Rickettsia replicates in the midgut and disseminate to hemolymph which causes systemic 

infection when all tick tissues including hemolymph, salivary gland, midgut, and ovary are 

potentially infected with Rickettsia (Munderloh and Kurtti 1995; Socolovschi et al. 2009).  The 

infected tick horizontally transmits Rickettsia to the next susceptible host while taking the next 

bloodmeal.  The infected tick can also vertically transmit Rickettsia via transstadial and 

transovarial transmission.  The list of SFG Rickettsia in the United States and their competent 

vectors are shown in Table 1.3. 

1.2.7. Tick-borne Rickettsiosis in the United States 

In the United States, many species of SFG Rickettsia are identified including pathogenic 

and nonpathogenic rickettsiae, and their geographic distribution is limited to their tick vectors 

(Azad and Beard 1998).  RMSF is considered to be the most common tick-borne rickettsiosis 

causing human disease in the United States; however, many emerging tick-borne rickettsioses 

have been reported and characterized.  Below is a brief description of the tick-borne SFG 

Rickettsia associated with human disease and other common SFG Rickettsia not currently 

associated with human diseases (Table 1.3).  

Rickettsia rickettsii is the causative agent of RMSF which has been reported throughout 

the United States.  Most cases occur in southeastern and eastern United States (e.g. Delaware, 

Maryland, Washington D.C., Virginia, West Virginia, North Carolina, South Carolina, Georgia, 

and Florida); the highest numbers of reported cases are in North Carolina and Oklahoma 

(www.cdc.gov).  The primary vectors of R. rickettsii are Dermacentor ticks (i.e. D. andersoni 

and D. variabilis), but recently Rh. sanguineus has also been reported as a competent vector 

(Demma et al. 2005). 
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Table 1.3: Spotted fever group Rickettsia, primary tick vector, and distribution in the United 

States. 

Rickettsia 

species 

Disease Recognized tick 

vector 

Distribution in the US 

Pathogenic Rickettsia 

R. rickettsii Rocky Mountain 

spotted fever 

D. andersoni,  

D. variabilis, 

Rh. sanguineus 

Widespread 

 

Arizona 

R. parkeri Rickettsia parkeri 

rickettsiosis 

A. maculatum Alabama, Texas, Georgia, 

Mississippi, Kentucky 

Rickettsia 364D  

(R. phillipi) 

364D rickettsiosis D. occidentalis California 

R. massiliae unnamed Rh. sanguineus Arizona 

Nonpathogenic Rickettsia 

R. montanensis None recognized D. andersoni,  

D. variabilis 

Widespread 

R. peacockii None recognized D. andersoni Montana, Colorado  

R. amblyommii None recognized A. americanum,  

A. maculatum 

Widespread 

R. rhipicephali None recognized Rh. sanguineus,  

D. andersoni,  

D. variabilis,  

D. occidentalis 

Mississippi, Texas, North 

Carolina, South Carolina, 

Montana, California  

(Demma et al. 2005; Goodman J.L. et al. 2005; Parola et al. 2005; Parola et al. 2009; Eremeeva 

et al. 2006)  
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Rickettsia parkeri, a Rickettsia parkeri rickettsiosis agent, was identified in 1939 by 

Parker from A. maculatum in the Texas Gulf Coast region.  It was considered as a nonpathogenic 

species until 2004; Paddock et al.  (2004) clearly demonstrated the first human case of R. parkeri 

rickettsiosis.  The patient presented with mild febrile illness, headache, fever, arthralgia, and 

multiple eschars on his legs.  The infection was identified by serological assay, 

immunohistochemical staining, and molecular assay.  The organism was isolated in cell culture 

from an eschar specimen, and a Rickettsia culture isolate was confirmed by PCR assays 

(Paddock et al. 2004).  Human infection has been reported in Florida, Mississippi, and South 

Carolina, while A. maculatum infection is found in many southeastern states (Sumner et al. 2007; 

Edwards et al. 2010). 

Rickettsia 364D was first isolated in 1981 from D. occidentalis in California (Philip et al. 

1981).  The 364D isolate had similar serologic characteristics to R. rickettsii.  D. occidentalis is 

likely a vector, and in eight California counties, 11% of D. occidentalis are infected with 364D.  

The first human case was reported in 2010 in northern California consisting of swelling and 

erythema and an eschar developing seven days later after tick bite.  The PCR assay result from 

the eschar biopsy was identical to those of 364D (Shapiro et al. 2010). 

Rickettsia massiliae was first isolated in 1992 from Rh. sanguineus in Marseilla, France 

and designated as a new rickettsial species (Parola et al. 2009).  In 2006, the first human 

infection of R. massiliae was identified from frozen blood specimen of a 45-year-old man who 

was hospitalized in Italy.  The patient presented with fever, an eschar, rash on palms and soles, 

and mild hepatomegaly.  He was first presumed to have R. conorii, and after 20 years, the isolate 

was molecularly identified as R. massiliae (Vitale et al. 2006).  Recently, R. massiliae was 

detected in Rh. sanguineus in California (Beeler et al. 2011) and isolated from Rh. sanguineus in 
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eastern Arizona (Eremeeva et al. 2006) United States; however, human cases have not been 

recognized in the United States. 

Rickettsia montanensis was first isolated in 1963 from D. variabilis and D. andersoni in 

Montana (Bell et al. 1963).  It is considered to be a nonpathogenic Rickettsia because it is not 

pathogenic for guinea pigs; however, it has been isolated from rodents (genera Microtus and 

Peromiscus) (Raoult and Roux 1997).  R. montanensis is widespread, but commonly found in 

the south central region of the United States.  Many researchers have used R. montanensis as a 

nonpathogenic model to examine tick response to rickettsial infection (Ceraul et al. 2007, 2008, 

2011; Macaluso et al. 2003; Mulenga et al. 2003). 

Rickettsia peacockii was first described in 1925 from D. andersoni collected from the east 

side of the Bitterroot Valley.  Burgdorfer et al (1981) demonstrated that ticks on the east side of 

the Bitterroot Valley were infected with this nonpathogenic Rickettsia, and approximately 70% 

of ticks vertically transmit Rickettsia in order to maintain the infection.  It was originally 

designated the east side agent, and it was suggested that the agent interfered with rickettsial 

maintenance of R. rickettsii in the east side of the Bitterroot Valley where the incidence of 

RMSF was low compared to the west side of the valley (Burgdorfer et al. 1981). 

Candidatus Rickettsia amblyommii was first isolated in 1981 from A. americanum 

collected in Tennessee (Burgdorfer et al. 1981).  The organism was originally designated the 

WB-8-2 agent and considered to be a nonpathogenic Rickettsia (Burgdorfer et al. 1981); 

however, it has not been formally classified.  Recently, R. amblyommii has been implicated as a 

causative agent of tick-borne rickettsiosis in North Carolina due to the abundance of A. 

americanum in the endemic areas and low population of D. variabilis (Apperson et al. 2008); 

however it has not yet been clearly implicated as a cause of disease in humans. 
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Rickettsia rhipicephali was first isolated in 1975 from Rh. sanguineus removed from dogs 

in Mississippi (Burgdorfer et al. 1975).  The organism was pathogenic for voles, but 

nonpathogenic for guinea pigs.  It has been detected in D. variabilis, D. occidentalis, and D. 

andersoni (Wikswo et al. 2008). 

1.2.8. Tick Distribution and Rickettsiosis Epidemiology 

According to CDC reports, the number of human cases of tick-borne rickettsial diseases 

has continuously increased since 1998.  In 2008, there were 4,727 confirmed and unconfirmed 

cases of tick-borne rickettsial diseases and up to 2,500 cases of RMSF (Figure 1.14) (Dumler 

2010).  In contrast, very low prevalence of R. rickettsii infection in Dermacentor ticks has been 

demonstrated in many areas including endemic areas despite an increase in RMSF cases 

(Ammerman et al. 2004; Stromdahl et al. 2010). 

The distribution of SFG rickettsiosis depends on the distribution of tick vectors.   Based 

on overlapping tick distribution and seasonality (section 1.1.3), there is the potential for ticks to 

share the same reservoir hosts such as small mammals.  However, in large part the prevalence of 

rickettsial infection is specific to tick genera.  For example, in North America Dermacentor ticks 

primarily carry R. rickettsii and R. montanensis, and Amblyomma ticks primarily carry R. parkeri 

and R. amblyommii.  Little is known about the factors that play a role in tick/Rickettsia 

specificity in nature. 

1.3. Tick/Rickettsia Relationship  

Ticks are the only competent vectors for all pathogenic SFG Rickettsia species, and they 

are known to have a specific relationship.  Ticks serve as long-term reservoir hosts which can 

maintain rickettsial infection up to a year depending on the tick life cycle stage and 

environmental conditions.  However, rickettsial infection in tick vectors is not always favorable.   
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Figure 1.14 Confirmed and unconfirmed cases of tick-borne rickettsial diseases (TBRD) in 

the United States form 1920 to 2009. RMSF, Rocky Mountain spotted fever; HME, human 

monocytic ehrlichiosis; HGA, human granulocytic anaplasmosis; nos, not otherwise specified. 

Figure from (Dumler 2010). 
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For example, experimental infection of R. rickettsii in D. andersoni significantly decreased tick 

viability during molting (Niebylski et al. 1999) and female fecundity (Mcdade and Newhouse 

1986).  Recently, the study of tick and Rickettsia relationship has focused on rickettsial 

adhesion/internalization (Macaluso et al. 2003) and tick immune/stress response against 

rickettsial infection (Ceraul et al. 2007, 2008, 2011; Mulenga et al. 2003) which may play a role 

in controlling rickettsial infection in ticks. 

1.3.1. Interspecific Relationship of Rickettsia in Ticks 

In 1981, Burgdorfer discovered R. peacockii which was found in D. andersoni 

predominantly on the east side of the Bitterroot Valley.  R. peacockii infected most tick tissues 

and was able to be transmitted to tick offspring.  It was described as a nonpathogenic or 

symbiotic Rickettsia because they were not able to establish infection in embryonated eggs, 

animals, and cell cultures (Burgdorfer et al. 1981;  Mcdade and Newhouse 1986).  Burgdorfer 

found that 80% of D. andersoni were infected with  R. peacockii on the east side, but only 8-

16% of D. andersoni were infected with  R. peacockii on the west side where there was a high 

number of RMSF cases (Burgdorfer et al. 1981).  His experimental infection bioassays 

demonstrated that infection of R. peacockii in D. andersoni interfered with transovarial 

transmission of R. rickettsii.  It was suggested that infection by nonpathogenic Rickettsia inhibits 

the transovarial transmission of pathogenic Rickettsia (Burgdorfer et al. 1981).  This was called 

the interference phenomenon. 

Recently, Macaluso et al. (2002) have shown that the interference of transovarial 

transmission by a second Rickettsia is not specifically associated with rickettsial pathogenicity.  

D. variabilis was capillary fed with two species of nonpathogenic Rickettsia; R. montanensis, 

(Dermacentor-associated Rickettsia) and R. rhipicephali, (Rhipicephalus-associated Rickettsia) 
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in two reciprocal challenges.  Eggs from individual females were collected and examined for 

rickettsial infection by PCR.  The infection prevalence of R. montanensis was higher compared 

to R. rhipicephali, and only R. montanensis-infected ticks were resistant to interspecific 

challenge.  Additionally, only R. montanensis was maintained transovarially to F1 and F2 

suggesting that the specificity of tick/Rickettsia pairing is important for successful transmission 

(Macaluso et al. 2002). 

In the context of pathogen transmission, the relationship between ticks and Rickettsia is 

critical; however, interspecific competition between rickettsial species also plays a role in the 

ecology and epidemiology of tick-borne rickettsioses in nature.  

1.4. Tick Immunity 

 Ticks are bloodsucking arthropods which are often infected with pathogens that are found 

in host’s blood.  Like other animals, ticks have a defense mechanism against pathogens which 

may enter into their bodies by injury or ingestion (Sonenshine and Hynes 2008).  Similar to 

insects, ticks have only an innate immune system containing two components: cellular and 

humoral responses (Taylor 2006).  Tick immunity, however, is not well-studied when compared 

to insect immunity.  The most well known innate immune system of ectoparasitic insects is in 

Anopheles mosquitoes, the malaria vector (Sonenshine and Hynes 2008).  They recognize non-

self molecules using pattern recognition receptors (PPRs).  For example, the peptidoglycan 

recognition proteins, (PGRPs) when exposed to bacteria, activate the Toll signal transduction 

pathways thereby inducing antimicrobial peptides (AMPs) secretion, phagocytosis, and other 

immune responses (Sonenshine and Hynes 2008).   

1.4.1. Tick Cellular Immune Response  

The coagulation of hemolymph is an important part of the tick immune system which 
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serves to prevent microbial infection and heal wounds (Muta and Iwanaga 1996).  Tick 

hemolymph contains two important immune components: protein-rich plasma and hemocytes.  

There are four major types of hemocytes, namely prohemocytes, non-granular plasmatocytes, 

granulocytes, and spherulocytes (Sonenshine 1993; Sonenshine and Hynes 2008).  Prohemocytes 

are small hemocytes (6 – 7 µm long) having little cytoplasm with no granules.  They are the stem 

cells of other hemocytes and represent a small part of the hemocyte population.  Plasmatocytes 

are larger elongated hemocytes that are 8 - 12 µm long.  Granulocytes are the largest hemocytes 

(15 – 20 µm long) and they consist of type I and type II granulocytes; both contain numerous 

intracellular granules.  The typical characteristics of granylocytes are numerous intracellular 

granules and filopodia.  Sperulocytes (8 – 14 µm long) are oval or suboval hemocytes containing 

large fibril-filled granules. 

  An increase of hemocytes in response to bacterial challenge with organisms not naturally 

associated with the tick species has been demonstrated.  In D. variabilis, when injected with the 

spores of Bacillus subtilis, the hemocyte population increased 6.4-fold in comparison to 

unchallenged ticks (Johns et al. 1998).  When injected with B. burgdorferi, the Lyme disease 

spirochete, the introduced bacteria are lysed by AMP and ingested by phagocytosis (Johns et al. 

2001).   

 1.4.1.a. Phagocytosis 

Phagocytosis is a complex process involving many signal transduction pathways.  In 

insects, focal adhesion kinase (FAK)/Src and mitogen activated protein kinase (MAPK) 

pathways play an important role in this process (Lamprou et al. 2007).  Phagocytosis begins with 

recognition of microbes or foreign objects by plasmatocyte or granulocyte cell receptors, 

followed by induction of endocytosis into a vesicle which then fuses with lysosomes to form a 
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phagolysosomes.  Cell receptors recognize gram positive bacteria, spirochetes, and also 

fluorescent-coated beads which are ingested by tick phagocytes (Inoue et al. 2001).  Inside the 

phagolysosomes, digestive enzymes such as acid phosphatases and lysozyme are activated by 

signaling molecules (e.g. calreticulin) (Asgari and Schmidt 2003) leading to digestion of trapped 

microbes and objects.  However, little is known about the surface receptors on tick hemocytes 

and the important signal factors that induce tick phagocytosis. 

 1.4.1.b. Nodulation 

Nodulation is the aggregation of hemocytes that occurs when the tick hemocytes 

recognize components on the bacterial surface, such as lipopolysaccharide (LPS), and form a 

massive aggregation to surround the bacteria which is then digested.  Tick nodulation is similar 

to melanotic encapsulation in insects except no melanin is involved in the process (Sonenshine 

and Hynes 2008).  Opsonizing molecules such as lectins have been found in both soft ticks and 

hard ticks.  Dorin-M was isolated from hemocytes of the soft ticks O. moubata (Kovar et al. 

2000), and Ixoderin A was isolated from the midgut and hemocytes of I. ricinus (Rego et al. 

2005).  

 1.4.1.c. Encapsulation 

Encapsulation occurs when pathogens (e.g. parasites and nematodes) are too large for 

phagocytosis and nodulation.  In insects, it is similar to nodulation but with melanin, in which 

melanization and toxic free radicals destroy the parasites.  A similar process was observed in D. 

variabilis injected with plastic beads (Eggenberger et al. 1990).  Degranulation of granulocytes 

results in deposits of matrix-like materials which aggregate around the bacteria or objects.  The 

plasmatocytes attack the matrix and undergo apoptosis becoming a thick layer encapsulating the 

invading object (Sonenshine and Hynes 2008).   
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1.4.2. Humoral Response 

In addition to the hemocyte response, insects and ticks also have a humoral response with 

functional secreted molecules (e.g. AMPs, lectins, lysozymes, coagulation factors, proteases and 

protease inhibitors) and play an important role in insect and tick innate immunity.    

 1.4.2.a. Antimicrobial Peptides 

Antimicrobial peptides are small molecules (4 – 20 kDa) (e.g. defensin, cercopins, 

lysozyme) mainly found in the midgut and hemocytes.  They are effective and fast acting 

molecules that bind to invading microbes and disrupt microbe membrane integrity.  Many AMPs 

have been identified and characterized in insects including defensins, cercropins, attacins, and 

sarcotoxins.  For ticks, there are five known AMPs including defensins, lysozymes, lectins, 

proteases and protease inhibitors. 

Defensins are small (3 – 6 kDa) cysteine-rich cationic peptides initially described in the 

hard tick, D. variabilis (Johns et al. 2001) and the soft tick, O. moubata (Nakajima et al. 2001).  

The immature peptide ranges from 67 – 92 amino acids in length, and the mature peptide ranges 

from 37 – 61 amino acids in length.  To date, more than 20 different tick defensins have been 

identified from 11 different tick species.  In D. variabilis, there are two isoforms of defensin: 

defensin1 (varisin) and defensin2.  Defensin1 is the major isoform and is primarily produced in 

the hemocytes, but is also found in the midgut and fat body.  It is found in all life cycle stages 

(embryonic egg, larva, nymph, and adult) and is upregulated during bloodfeeding (Ceraul et al. 

2007).  When challenged with B. burgdorferi and B. subtilus defensin is upregulated and lyses 

the invading bacteria (Johns et al. 2001).  Interestingly, 65% of B. burgdorferi are dead within 1 

hour when chicken lysozyme was added indicating synergism of defensin and lysozyme.  

Defensin2 was later identified from tick midgut (Ceraul et al. 2007).  I. scapularis defensin, 
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scapularisin, was identified, and only one isoform was found in hemolymph, midgut, and fat 

body (Hynes et al. 2005).  However, scapularisin protein was not detectable in ticks that were 

injected with B. burgdorferi (Hynes et al. 2005).  It is not clear whether scapularisin protein was 

not expressed or did not function.  B. burgdorferi remained viable for 24 hours after injection, 

and when B. burgdorferi was incubated with I. scapularis hemolymph it was still alive and 

active (Johns et al. 2001).  Most defensins from ticks (e.g. D. variabilis, I. scapularis, A. 

americanum, H. longicornis) are similar; they are small cationic peptides (Todd et al. 2007), 

except for A. hebraeum defensin, hebrasein, which has little amino acid similarity to other 

defensins (Sonenshine and Hynes 2008).  In the soft tick O. moubata, all four defensin isoforms 

have four exons and three introns similar to defensins identified in aquatic mussels.  Most of 

defensins from hard ticks have no introns (Hynes et al. 2005; Todd et al. 2007); however, the 

defensin from I. ricinus, a European tick, has two introns. 

Lysozymes are small digestive enzymes (14 kDa) which also have an antimicrobial 

function.  Lysozymes destroy bacterial cell walls by hydrolyzing the sugar bonds in the 

peptidoglycan backbone.  In D. variabilis, lysozyme is highly expressed in hemolymph, and 

expressed at low levels in other organs (Sonenshine et al. 2005).  In hemolymph, mRNA 

expression of D. variabilis lysozyme was upregulated when injected with E. coli (Simser et al. 

2004; Sonenshine et al. 2005), and it may also act synergistically with defensin increasing the 

antimicrobial effect in tick hemolymph (Johns et al. 2001).  The antimicrobial effect has been 

reported in many tick species for both ticks and tick (I. ricinus, D. andersoni, I. persulcatus, and 

I. scapuralis) cell lines (Kuhn KH and Haug T 1994; Mattila et al. 2007; Podboronov 1990).  In 

I. scapuralis and D. andersoni cell lines, when challenged with R. peacockii, lysozyme 

expression was not upregulated; however, defensin expression was upregulated when injected 
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with E. coli and Micrococcus luteus (Mattila et al. 2007).  It is suggested that R. peacockii, an 

endosymbiont Rickettsia, is able to avoid the recognition of the tick innate immune response.   

 1.4.2.b. Proteases 

Proteases (e.g. serine proteases) are reported to be important factors involved in the 

refractoriness of mosquitoes to malaria parasites (Xu et al. 2006).  In ticks, immune-responsive 

factor D-like serine protease was identified during E. coli challenge; however, its antimicrobial 

function and specificity or reactivity to Rickettsia has not been characterized (Simser et al. 

2004). 

 1.4.2.c. Protease Inhibitors 

Protease inhibitors are important innate immune molecules because most infectious 

pathogens secrete proteases during host tissue invasion (Sonenshine and Hynes 2008).  In ticks, 

many protease inhibitors have been described including a serine proteinase inhibitor (serpin), α–

macroglobulins, and Kunitz-type serine protease inhibitor.  In D. variabilis, serpin is 

predominant in hemocytes and contains a clip domain that is found in vertebrates (Simser et al. 

2004).  Serpin has been reported in other hard tick species, A. americanum (Chalaire et al. 2011), 

and the soft tick O. moubata (Kadota et al. 2002).  Alpha–2 macroglobulin was found in O. 

moubata and I. scapularis (Saravanan et al. 2003; Valenzuela et al. 2002).  It forms a molecular 

cage, traps proteases in the bait region and destroys the proteases.  Additionally, upregulation of 

α–2 macroglobulin was demonstrated in R. montanensis-infected D. variabilis (Mulenga et al. 

2003).  Kunitz protease inhibitor (KPI) was recently identified and characterized from D. 

variabilis as a novel anti-rickettsial peptide (Ceraul et al. 2008, 2011).  Ceraul et al. (2011) 

suggested that DvKPI associates with rickettsiae and limits the invasion of R. montanensis in D. 

variabilis midgut. 
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 1.4.2.d. Lectins  

Lectins are proteins or glycoproteins containing specific oligosaccharide binding sites for 

binding pathogen surfaces.  They also function in an opsonization process engulfing invading 

microbes.  Moreover, lectins can bind one another and form an immobilized complex with 

invading microbes causing aggregation (Sonenshine and Hynes 2008).  Many lectins have been 

identified from tick hemolymph and some from tick saliva, for example, Dorin M from O. 

munbata and Ixoderin A from I. ricinus.  Lectins are thought to be involved in many processes 

in tick innate immunity such as pathogen recognition, opsonization, phagocytosis, and 

encapsulation (Sonenshine and Hynes 2008).   

1.4.3. Tick Response to Spotted Fever Group Rickettsia 

 The molecular interaction of tick and Rickettsia has been studied in both ticks and tick 

cell lines.  Most studies compared tick gene expression of uninfected and Rickettsia-infected tick 

cells in order to identify tick factors during rickettsial infection.  The response of D. variabilis 

during R. montanensis infection has been studied using molecular techniques (Macaluso et al. 

2006) including subtractive hybridization (Mulenga et al. 2003b) and differential display PCR 

(Macaluso et al. 2003a).  The first attempt was to identify tick-derived molecules that inhibit 

transovarial transmission of a second Rickettsia (Macaluso et al. 2003a, 2003b).  Tick ovaries 

from uninfected and R. montanensis-infected ticks were used to identify the ovarian specific tick 

response.  Eleven cDNA fragments were differentially expressed by subtractive hybridization 

and nine cDNA fragments were identified from differential display PCR.  Identified tick 

molecules were classified to categories based on their predicted function as shown in Table 1.4.  

Most molecules are suspected to be related to rickettsial invasion (e.g. ATPase of clathrin-coated 

vesicles, α-catenin) and tick immunity (e.g. ferritin, glutathione S-transferase).  However,  
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Table 1.4 D. variabilis molecules in response to R. montanensis infection, their predicted 

functions and primary tick tissues. 

Predicted function Putative protein identification Primary tick tissue 

Receptor/adhesion ATPase of clathrin-coated vesicles Ovary 

 α-Catenin Ovary 

 Clathrin adaptor protein NC 

 Mucin-like protein NC 

 Protein inhibitor of signal NC 

 Tetraspanin NC 

 
Transducer and activator of 

transcription 1/3 

NC 

Tick immune and stress 

response 
Ferritin 

NC 

 α-Dehypdrgenase reductase NC 

 Glutathione S-transferase Gut 

 Nucleosome assembly protein NC 

 Cyclin A2 protein NC 

 Cu
2+

 –transporting ATPase NC 

 Tubulin α-chain Ovary 

 Serine protease NC 

 Prophenoloxidae-activating factor NC 

 Defensin1 Hemolymph 

 Lysozyme Hemolymph, midgut 

 Kunitz protease inhibitor Midgut 

Tick-host interaction α-2 macroglobulin NC 

 Salivary glue precursor Salivary gland 

 
IgE-dependent histamine release 

factor 

NC 

 ENA vasodilator NC 

 Calreticulin NC 

 Histamine release factor NC 

Unknown Probable elongation factor NC 

 Glycine-rich protein Ovary 

NC = none characterized 
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functional characterization of these tick molecules during rickettsial infection has not been done 

(Ceraul et al. 2007, 2008; Macaluso et al. 2003; Mulenga et al. 2003).  Unlike other 

hematophagous arthropods, ticks digest blood intracellularly.  During the beginning of 

bloodfeeding, a peritrophic membrane (PM) is formed (Munderloh and Kurtti 1995) and remains 

intact for many days after repletion (Sonenshine and Hynes 2008).  The PM acts as a barrier 

against many microbes; however, some parasites are still able to penetrate the PM (Rudzinska et 

al. 1983).  Anaplasma marginale binds to an unknown receptor on the midgut surface of D. 

variabilis and D. andersoni via an outer membrane protein: MSP1a (de la Fuente et al. 2004).  

For SFG Rickettsia, many outer membrane proteins were demonstrated to interact with 

vertebrate host cell receptors, for example, OmpB and Ku70 (Martinez et al. 2005).  Although 

rickettsial ligand/receptor binding has not been yet identified in tick vector, receptor/adhesion 

tick molecules have been identified from Rickettsia-infected ticks, for example, vATPase and α-

catenin (Macaluso et al. 2003a). 

 In the tick midguts, many immune genes (e.g. defensin) respond to bloodfeeding due to 

the presence of blood pathogens.  In D. variabilis, immune molecules including defensin1, 

defensin2 (Ceraul et al. 2007), Kunitz protease inhibitor (DvKPI) (Ceraul et al. 2008) and 

glutathione s-transferase (DvGST) (Dreher-Lesnick et al. 2006) are upregulated in the tick 

midguts following bloodfeeding.  Defensin1 expression was increased 35-fold, while defensin2 

expression was increased 5-fold after 4 days of feeding.  When challenged with R. montanensis, 

at 24 and 48 hours post-challenge (hpc) defensin1 expression was upregulated 2.6- and 1.7-fold, 

respectively, while defensin2 expression was increased 1.9-fold only at 24 hpc (Ceraul et al. 

2007).  DvKPI was highly expressed in the midgut compared to other tick tissues such as 

hemocytes, fat body, ovary and salivary gland.  Bloodfeeding and rickettsial infection  
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upregulated DvKPI gene expression (Ceraul et al. 2007).  Functional assays of DvKPI 

demonstrated that DvKPI limits the dissemination of R. montanensis.  DvGST was first 

identified from R. montanensis-infected D. variabilis containing two isoforms: DvGST1 and 

DvGST2.  DvGST1 is constitutively expressed in the midguts, while DvGST2 is highly 

expressed in tick ovaries (Dreher-Lesnick et al. 2006).  Gene expression of both GSTs was 

downregulated when challenged with E. coil; however, it is not known how GST functions 

during rickettsial infection (Dreher-Lesnick et al. 2006). 

1.5 Summary 

Ticks maintain infection of SFG Rickettsia in nature via horizontal and vertical 

transmission.  In the United States, despite the sympatric population of tick species, the 

prevalence of rickettsial transmission is limited to certain species of ticks.  Even if an individual 

tick can be infected with two rickettsial species in the laboratory, only certain rickettsial species 

(typical Rickettsia) can be maintained via vertical (transstadial and transovarial) transmission, 

and the successful transmission is dependent on tick/Rickettsia pairing in nature.  This is 

believed to be related to the specific relationship between tick and Rickettsia; however, the 

specific tick/Rickettsia interaction has not yet been identified.   

In vertebrate hosts, the pathogenesis of Rickettsia has been described and involves many 

mechanisms including signal transduction and cytoskeleton rearrangement.  Also, the immune 

mechanisms of mammalian hosts to Rickettsia have been examined.  For ticks, which serve as a 

disease vectors and reservoir hosts, many tick-derived molecules related to rickettsial invasion 

and tick immune response have been identified and characterized over the past few years.  

During rickettsial invasion, SFG Rickettsia utilizes host cytoskeleton proteins to induce actin-

based motility and spread to adjacent cells.  Alpha–catenin, a cytoskeleton protein which 
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regulates actin dynamic in the cells, was upregulated in R. montanensis-infected D. variabilis 

ovaries.  Little is known about the specific mechanism of α-catenin in response to rickettsial 

infection.  Many studies have focused on tick humoral immune response during rickettsial 

infection (i.e. AMPs).  Many tick AMPs demonstrated antimicrobial effect upon rickettsial 

challenge; however, most studies determined the immune response upon typical or endosymbiont 

rickettsial infection.  Specific tick responses that regulate atypical rickettsial invasion and 

rickettsial survival in ticks may contribute to vector competence of ticks for Rickettsia and the 

interspecific relationship of Rickettsia in ticks.  Studying Rickettsia/tick relationships will lead to 

a better understanding of ecology and epidemiology of tick-borne rickettsioses.  The hypothesis 

of this dissertation is that the tick response is specific to individual rickettsial species and 

specific tick-derived molecules control rickettsial infection and rickettsial survival in ticks.  The 

specific aims of this dissertation were to: (1) molecularly characterize and examine gene 

expression of D. variabilis α–catenin during R. montanensis (typical Rickettsia) and R. 

amblyommii (atypical Rickettsia) infection; (2) determine rickettsial dissemination and specific 

tick immune response during R. montanensis and R. amblyommii infection; (3) functionally 

characterize identified tick immune molecules and examine their effects on rickettsial infection. 
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CHAPTER 2 

MOLECULAR CHARACTERIZATION AND TISSUE-SPECIFIC GENE EXPRESSION 

OF DERMACENTOR VARIABILIS α-CATENIN IN RESPONSE TO RICKETTSIAL 

INFECTION 

 

2.1 Introduction 

Ticks are known as arthropod vectors for many pathogenic and nonpathogenic organisms 

of the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia (Sonenshine 1993).  In the 

United States, ticks are responsible for the transmission of more vector-borne diseases than any 

other group of arthropods (Dumler 2010; Spach et al. 1993), and recently human case reports of 

tick-borne rickettsioses, such as Rocky Mountain spotted fever (RMSF), human monocytic 

ehrlichiosis, and human granulocytic anaplasmosis (HGA) have increased extensively (Dumler 

2010).  Despite sympatric distribution of multiple tick and Rickettsia species, there appear to be 

established relationships between tick and Rickettsia that influence the paring of species.  The 

American dog tick, Dermacentor variabilis, is a common vector for spotted fever group (SFG) 

Rickettsia, including Rickettsia rickettsii, the causative agent of RMSF and Rickettsia 

montanensis, a Rickettsia considered nonpathogenic to humans (Mcdade and Newhouse 1986).  

Despite the assessment infection of these ticks with other species of Rickettsia (Williamson et al. 

2010), the most commonly encountered is R. montanensis.  This is likely due to tick-borne SFG 

Rickettsia and their tick hosts which often exist in a benign relationship, in which the tick serves 

as both the vector and the reservoir (Mcdade and Newhouse 1986).  The SFG Rickettsia are 

maintained vertically in ticks via transstadial and transovarial transmission; however, the 

molecular interactions between tick and SFG Rickettsia are not well-defined. 

A previous study utilizing differential-display PCR to determine SFG Rickettsia 

infection-induced regulation of tick molecules in tick ovaries identified nine tick-derived 

molecules which were differentially expressed when the ticks were infected with SFG Rickettsia 
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(Macaluso et al. 2003).  In addition to immune and stress-response molecules, a putative 

cytoskeleton associated molecule, α-catenin, was identified.  In humans, α-catenin is able to bind 

various cytoskeleton proteins and regulates actin dynamics in the cells (Gates and Peifer 2005; 

Drees et al. 2005).  Alpha-catenin has two forms: monomeric α-catenin which binds β-catenin 

thereby forming an E-cadherin-dependent cell-cell adhesion complex and links the complex to 

actin filaments, and homodimeric α-catenin which binds actin filaments and inhibits the 

formation of Arp2/3 and actin filament complex (Hartsock and Nelson 2008).  During bacterial 

infection, many species of bacteria utilize host α-catenin to mediate actin rearrangement in 

infected cells.  For example, enterohemorrhagic and enteropathogenic Escherichia coli secrete a 

bacterial effector protein (EspB) into host cells that binds to many host-derived proteins 

including α-catenin.  EspB promotes α-catenin dimerization by competing with Arp2/3 complex 

(Hamaguchi et al. 2008; Kodama et al. 2002).  Likewise, during internalization of Listeria 

monocytogenes into epithelial cells, Listeria Internalin A binds to E-cadherin-β-catenin complex 

on the host cell membrane, which is linked via α-catenin to actin filaments and recruits the 

cytoskeleton protein to the entry site (Sousa et al. 2005).  It has been demonstrated that in some 

species of SFG Rickettsia, actin polymerization is also required for bacterial invasion and 

motility during infection (Martinez and Cossart 2004; Serio et al. 2010). R. conorii binds to host 

Ku70 and mediates actin polymerization via the Arp2/3 complex during internalization 

(Martinez and Cossart 2004; Martinez et al. 2005).  Additionally, recent studies have identified a 

core set of actin cytoskeletal proteins associated with motility of R. parkeri in Drosophila cells 

(Serio et al. 2010).  In Ixodes scapularis cells (ISE6), R. felis, the flea-borne rickettsiosis agent, 

associates with tick cell surface via the binding of rickettsial outer-membrane protein B and tick 

histone H2B.  Depletion of histone H2B by RNAi and enzymatic treatment decreased rickettsial 
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infection in the tick cells, suggesting a role of histone H2B in R. felis internalization into tick 

cells (Thepparit et al. 2010).  Nevertheless, the invasion mechanism of SFG Rickettsia in ticks 

has not been identified. 

The objectives of this study were to identify and characterize the α-catenin (Dvα-catenin) 

gene from D. variabilis and examine its association with rickettsial infection.  We hypothesize 

that differential regulation of tick α-catenin during rickettsial infection is tissue-specific.  

Functional bioassays were used to test the hypothesis.  According to the specific Rickettsia/tick 

relationship, tick tissues (backless tick) were used for typical (Dermacentor-associated 

Rickettsia; R. montanensis) or atypical (Dermacentor non-associated Rickettsia; R. amblyommii) 

rickettsial infection in order to determine the specific regulation of Dvα-catenin in response to 

two different rickettsial species.  Understanding the molecular mechanism of rickettsial infection 

in tick ovaries will provide insight into the successful transovarial transmission of Rickettsia in 

tick vectors.    

2.2 Materials and Methods 

2.2.1. Tick Dissection 

D. variabilis colonies were routinely maintained on rats and rabbits at Old Dominion 

University, as described previously (Macaluso et al. 2001).  Unmated female ticks partially fed 

for 3-5 days were forcibly detached from host animals, washed twice in 70% ethanol, and rinsed 

with distilled water.  Selected tick tissues (salivary glands, midguts, and ovaries) were dissected 

out of the ticks, washed in sterile diethyl pyrocarbonate (DEPC) treated water or fresh phosphate 

buffer saline (PBS, pH 7.4) and placed in either RNAlater (Ambion) for RNA extraction or in 

protease inhibitor cocktail (PIC), (Roche) for protein preparation.  Tissues were immediately 

processed for nucleic acid or protein extraction or stored at -80 C until used for extraction. 
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2.2.2. Nucleic Acid Extraction from Tick Tissues and Cloning of Dvα-catenin cDNA 

As previously described (Mulenga et al. 2004), ovaries from at least five D. variabilis 

were pooled, total RNA and subsequently mRNA were extracted using the NucleoSpin RNAII 

and NucleoTrap mRNA Mini kit (Clontech) according to the manufacturer’s protocol.  All RNA 

was stored at -80 °C until used. 

Cloning of full-length cDNA for Dvα-catenin was carried out using rapid amplification 

of cDNA ends (RACE) as described by Mulenga et al. (2004).  Briefly, 1 µg of mRNA extracted 

from ovaries was used to generate templates for 3’ and 5’ RACE using the SMART RACE 

cDNA synthesis kit (Clontech) according to the manufacturer’s protocol.  Following DNA 

sequencing of the Dvα-catenin gene fragment obtained by differential display PCR (Macaluso et 

al., 2003), gene specific (GSP) sense and antisense primers were designed to amplify the 3’ and 

5’ ends, respectively.  PCR products were routinely cloned into TOPO TA cloning vectors 

(Invitrogen).  The clones were sequenced by the dye terminator method on a 373 automated 

fluorescence sequencing system (Applied Biosystems) in the biopolymer laboratory at the 

University of Maryland, Baltimore.  MacVector software program (Accelrys) was used for DNA 

sequence analysis.  Similarity, comparisons to known proteins in the database were made by 

scanning DNA sequences against the GenBank database using tblastx. 

2.2.3. Construction of Dvα-catenin Expression Plasmid. 

In order to produce Dvα-catenin using the Baculovirus Expression System (Invitrogen), 

cDNA encoding Dvα-catenin was cloned into the pENTR/D-TOPO entry vector (Invitrogen) and 

then transferred to the pDEST10 vector (N-terminal His fusion vector, Invitrogen).  The clone 

containing full-length Dvα-catenin was transformed into DH10Bac E.coli (Invitrogen), which 

contains the baculovirus shuttle vector (bacmid), to produce recombinant bacmid harboring  
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Dvα-catenin.  The positive colonies (white colony) that contain recombinant bacmid DNA were 

selected and cultured in selective (50 µg/ml kanamycin, 7 µg/ml Gentamycin, 10 µg/ml 

tetracycline, 100 µg/ml Bluo-gal, and 40 µg/ml isopropyl-beta-D-thiogalactopyranosid) medium.  

The Dvα-catenin bacmid DNA was isolated and used to infect the Spodoptera frugiperda (Sf9) 

cell line (Invitrogen). 

2.2.4. Expression and Purification of Recombinant Dvα-catenin (rDvα-catenin) 

Sf9 cells were cultured in SF900 II serum-free medium (Invitrogen) supplemented with 

penicillin/streptomycin (50 U/ml and 50µg/ml, respectively, Invitrogen).  One microgram of 

Dvα-catenin bacmid DNA was used to transfect 9 x 10
5
 Sf9 cells (Invitrogen) using Cellfectin 

reagent (Invitrogen) according to the manufacturer’s protocol.  The transfected Sf9 cells were 

incubated at 27°C for 7 days and the culture medium containing the recombinant baculoviruses 

was collected as a primary viral stock (Passage 1).  The viral titer was determined using end-

point dilution as described by O’Reilly et al. (1994); the amplified virus was diluted 10-fold from 

10
-3

 to 10
-8

.  Optimal multiplicity of infection (MOI) was determined by infecting at an MOI of 

0.1, 0.5, 1, 2, 5, and 10 for 4 days, and in order to optimize the harvest time point, Sf9 cells were 

infected at MOI of 1 for 2, 3, 4, 5, and 6 days.  The product was analyzed by SDS-PAGE and 

Western blotting with anti-His antibody to confirm expression of His-tagged protein.  

A large scale production of rDvα-catenin for purification utilized Sf9 cells infected with 

rDvα-catenin baculovirus at a MOI of 1 for 4 days.  The infected cells were then collected and 

washed with PBS buffer and resuspended in lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 20 

mM imidazole, pH 8) supplemented with 1% (v/v) Nonidet P40 (NP-40).  The mixture was 

sonicated on ice for 5 min twice and centrifuged at 10,000 × g at 4°C for 10 min.  The 

supernatant containing the soluble 6xHis-α-catenin was incubated with 50% (v/v) Ni-NTA 
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agarose, which was previously equilibrated in lysis buffer, at 4°C with gentle rocking for 2 h.  

The mixture was then loaded on a 10 ml column under gravity flow.  The column was washed 

twice with PBS buffer.  6xHis-α-catenin was eluted from the column 8 times with elution buffer 

(50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8, 1X PIC).  Eluted fractions were 

pooled and dialyzed against PBS overnight at 4°C. 

2.2.5. Protein Identification 

In order to confirm a peptide sequence, the purified rDvα-catenin protein (96 kDa) was 

identified as previously described by Sunyakumthorn et al. (2008).  The protein band on the 

Coomassie-stained protein gel was excised using the Proteome Works Spot Cutter (Bio-Rad) and 

digested using a MassPrep Station (Waters/Micromass).  The peptides were then extracted, and a 

Q-Tof (quadrupole time-of-flight) Micro (Waters/Micromass Corp) hybrid mass spectromer 

(MS) was used for analysis.  ProteinLynx Global Server, version 2.0 (Waters/Micromass) was 

used for data acquisition and analysis.  Database comparative analysis was performed using an 

online Mascot (Matrix Science) tandem MS (MS/MS) ion search against the 

NCBInr/Proteobacteria. 

2.2.6. Production of Polyclonal Antibody 

Polyclonal antibodies to rDvα-catenin were generated in BALB/c mice.  Three mice were 

subcutaneously injected with 30 µg of purified rDvα-catenin protein mixed with an equal volume 

of TITERMAX GOLD adjuvant (Sigma).  First (100 µg) and second booster injection (200 µg) 

of purified rDvα-catenin protein in TITERMAX GOLD adjuvant was given at two week 

intervals.  An equal volume of PBS buffer was mixed with TITERMAX GOLD adjuvant and 

used to inject another mouse as a negative control.  Sera were collected a week after the final 

booster. 
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2.2.7. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western 

Blot Analysis 

 

Salivary gland, midgut, and ovary were dissected from 40 unfed female D. variabilis.  

The tissues were homogenized using a sterile plastic pestle in 100 µl of PBS buffer containing 

1% NP-40 and 2X PIC.  The tissue extracts were sonicated for 10 min in a bath sonicator (Crest 

Ultrasonic) and centrifuged at 16,000 × g at 4°C for 10 min.  Protein concentration was 

measured using the Bradford assay (Bio-Rad) according to manufacturer’s protocol.  One 

hundred micrograms of each tick tissue extract (salivary gland, midgut, and ovary) were 

subjected to SDS-PAGE using 4-12% Bis-Tris gradient gels (Invitrogen).  Separated proteins 

then were transferred to a polyvinylidene fluoride (PVDF) membrane (Bio-Rad), and membranes 

were blocked with 5 % (w/v) skim milk in TBST buffer (20 mM Tris-HCl, 500 mM NaCl, 0.1 % 

(v/v) Tween 20, pH 7.5) for 1 h at room temperature.  The membranes were then incubated with 

the mouse anti-α-catenin polyclonal antibody in a dilution of 1:400 for 2 h, followed by a 

horseradish peroxidase-conjugated goat anti-mouse secondary antibody (KPL) at a dilution of 

1:20,000 for 1 h.  The protein was detected using a SuperSignal West Pico chemiluminescent 

substrate kit (Pierce). 

2.2.8. Tissue-specific Expression and Blood Feeding 

To determine the specific expression of α-catenin in tick tissues and response of α-

catenin gene expression during blood feeding, unfed (3 ticks) and 5 day fed female ticks (3 ticks) 

were dissected.  Tick tissues (salivary gland, midgut, and ovary) were collected and stored in 

RTL buffer (QIAGEN) for RNA extraction. 

2.2.9. Tick Cells and Rickettsial Culture. 

Dermacenter variabilis-derived (DVE1) and Amblyomma americanum-derived  
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(AAE12) cell line (Kurtti, 2005), provided by T. Kurtti (University of Minnesota), were 

maintained in L15B growth medium (Munderloh UG 1989) supplemented with 10% heat-

inactivated fetal bovine serum (FBS; HyClone) and 10% tryptose phosphate broth (Becton, 

Dickinson and Company) at pH 6.8 to 7.0 in a humidified 5% CO2 incubator at 34°C. 

Two rickettsial species, R. montanensis strain M5/6 and R. amblyommii strain Darkwater 

(provided by Dr. Christopher Paddock) were routinely maintained and propagated in an African 

green monkey kidney cell line (Vero E6) in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 5% FBS (Hyclone) in a humidified 5% CO2 incubator at 34°C.  For 

rickettsial infection, rickettsiae were semi-purified from Rickettsia-infected Vero E6 cells when 

more than 80% of cells are infected with rickettsiae.  Briefly, Rickettsia-infected Vero E6 cells 

were detached from the tissue culture flask, transferred to an Erlenmeyer flask containing sterile 

3-mm borosilicate glass beads (Sigma), and vortexed at high speed for 5 min.  The cell lysate 

was filtered through a 2 micron pore size syringe filter (Millipore).  The rickettsiae in the filtrate 

were collected by centrifugation at 16,000 × g at 4°C for 10 min.  Rickettsial viability and 

enumeration were assessed as previously described by Sunyakumthorn et al. (2008). 

2.2.10. RNA Isolation and Relative Quantitative RT-PCR (qRT-PCR) Assay. 

Total RNA was isolated from tick tissues using the RNasey Mini kit (QIAGEN) 

according to the manufacturer’s protocol.  RNA was then treated with Dnase (Ambion) and 

purified using an RNA cleanup kit (Zymo Research).  The synthesis of cDNA was carried out 

using 200 ng total RNA in 25 µl reaction volumes of an iScript reverse transcription kit (Bio-

Rad). 

The PCR reaction reagents were mixed in 96-well plates containing 5 µl of cDNA, 2X 

iTaq SYBR Green Supermix with ROX (Bio-Rad), 100 mM each forward and reverse primers in 
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a total volume of 35 µl per reaction.  The following qRT-PCR primers were used: DvCat2555F 

(5’-CACCGATTGTTGTGTGGAAG-3’), DvCat2661R (5’-CTTTTTCTGTGAGCCCTTGC-3’), 

DvAct1424F (5’-CTTTGTTTTCCCGAGCAGAG-3’), and DvAct1572R (5’-

CCAGGGCAGTAGAAGACGAG-3’).  No RT reaction (water was added instead of Reverse 

transcriptase) was performed to confirm an absence of genomic DNA.  Ten microlitres of each 

reaction mixture were transferred into 3 wells of a 384-well plate and reacted in an ABI 7900HT 

unit (Applied Biosystems) at Louisiana State University, School of Veterinary Medicine using 

condition system (SDS v2.3) software.  Data for each sample was initially calculated as the 

percent difference in threshold cycle (CT) value (∆CT = CT Actin - CT α-catenin) 

2.2.11. Rickettsial Infection Bioassay in Backless D. variabilis 

 In order to determine tissue-specific responses of ticks during rickettsial infection, 

backless ticks were generated according to a modified protocol of Bell (1980) and used for 

rickettsial infection. In a laminar flow hood, thirty-six unfed female D. variabilis ticks were 

cleaned with 70% ethanol for 2 min, 10% benzalkonium chloride solution for 5 min, and rinsed 

with sterile water 3 times.  The ticks were then air-dried on sterile filter paper.  Mouthparts and 

legs were excised to minimize contamination, cleaned ticks were transversely cut along the 

perimeter of alloscutum with a scalpel, and the dorsal cuticle was taken off as shown in Figure 

2.1.  The backless ticks were placed individually in wells on a 96-well plate containing 200 µl of 

complete L15B medium and incubated at 34ºC.  After 24 h, any contaminated ticks were 

removed from the experiment.  The backless ticks were divided to three groups (12 ticks per 

group); the first group, unexposed, was incubated in L15B medium, the second and third group 

were exposed to R. montanensis or Rickettsia amblyommii (2.4 x 10
8
 rickettsiae per tick per 

well), respectively.  After 1 and 12 hours-post inoculation (hpi), the tick tissues were dissected  
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Figure 2.1.  Tick tissue culture (Backless tick). Unfed female D. variabilis were cleaned, and 

the dorsal cuticle was removed.  The backless ticks were placed in 96-well plates containing 200 

µl complete L15B medium for 24 h prior to rickettsial exposure. 
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out and kept in 100 µl RNALater at -20ºC.  Total RNA was extracted using the RNasey Mini kit 

(QIAGEN) and digested with DNase (Ambion) according to the manufacturer’s protocol.  Total 

RNA (40 ng) was used for cDNA synthesis with an iScript reverse transcription kit (Bio-Rad).  

Two microlitres of cDNA template were subjected to qPCR assay as described above. 

2.2.12. Statistical Analysis. 

The Analysis of variance was analyzed using SAS statistical package GLM procedure 

ANOVA Version 9.1.3.  The relative gene expression of α–catenin of unfed and 5 day fed tick 

tissues was examined for potential difference.  For the backless tick bioassay, the relative gene 

expression was analyzed after rank transformation and performed two-way interaction 

(rickettsial infection and tick tissues) analysis.  When overall significance was found, Tukey’s 

honestly significant difference (HSD) post hoc test was performed to determine the pairwise 

difference of means of main effects.  Pairwise t-tests of least squares means were performed to 

determine any interaction effects of relative expression of α-catenin between unfed and 5 day fed 

ticks, and unexposed and Rickettsia-exposed backless ticks.  P-values of < 0.05 were considered 

significantly different.   

2.3 Results 

2.3.1. Full-length Dvα-catenin cDNA and Sequence Analysis 

Gene specific primers designed from a Dvα-catenin gene fragment obtained by 

differential display PCR (Macaluso et al. 2003) were used to clone the full-length α-catenin 

cDNA.  After sequence analysis (BlastX), the 3069 bp full-length cDNA was designated Dvα-

catenin (Genbank accession number HM755938).  A putative 2718 bp ORF, encodes an 

expected 905 amino acid protein with a calculated molecular weight of 96 kDa.  The deduced 

amino acid sequence is shown in Figure 2.2.  A multiple sequence alignment of Dvα-catenin  
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Figure 2.2. (Following page). Multiple sequence comparison of α-catenin amino acid 

sequences. The Dvα-catenin deduced amino acid sequence was aligned with Ixodes scapularis 

α-catenin (IsCatenin, accession No. XP002413819), Pediculus humanus corporis α-catenin 

(PcCatenin, accession No. XP002429770) Aedes aegypti α-catenin (AaCatenin, accession No. 

XP001657216), Drosophila melanogaster α-catenin (DmCatenin, accession No. NP524219), and 

Homo sapiens α-catenin (HsCatenin, accession No. NP004380).  Alignment was performed 

using MacVector software.  Shaded gray indicates conserved amino acid residues.  The identity 

scores to Dvα-catenin were derived from pairwise alignment using ClustalW 1.83 software. 
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amino acids showed the highest similarity to tick and insect α-catenin with 94.7% identity to 

Ixodes tick α-catenin (Genbank accession number XP002413819), 87.7% to body louse α-

catenin (Genbank accession number XP002429770) and Aedes mosquito α-catenin (Genbank 

accession number XP001657216), and 85.6% to fruit fly α-catenin (Genbank accession number 

NP524219), compared to human α-catenin (82.7% similarity, Genbank accession number 

NP004380) (Figure 2.2). 

Conserved domains were identified using NCBI Conserved Domain Search Service 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd).  The Dvα-catenin amino acid sequence 

is homologous to a vinculin conserved domain at amino acid positions 19-865, and contains a 

putative F-actin binding region (697-905) at the C-terminus as well as a β-catenin binding (57-

146) and α-catenin dimerization regions (82-264) at the N-terminus (Figure 2.3) (Pokutta et al. 

2008).  

2.3.2. Expression of rDvα-catenin in a Baculovirus System. 

The ORF of Dvα-catenin was subcloned into pET (Novagen) and transferred to Bacmid.  

The rDvα-catenin was expressed as a soluble form and purified using affinity chromatography 

(Ni-NTA column).  The analysis of purified rDvα-catenin using SDS-PAGE and Coomassie 

staining showed a protein band on the gel with a mass of approximately 96 kDa.  The band was 

excised and quadruple time-of-flight micro MS was performed.  

The data was matched to α-catenin protein of Ixodes ticks.  The yield of purified rDvα-

catenin after dialysis was 1.25 mg/L.  The purified rDvα-catenin was used for polyclonal 

antibody production in mice.   

2.3.3. mRNA Expression of Dvα-catenin in Tick Tissues and Response to Feeding. 

To determine the mRNA expression profile of Dvα-catenin in different tick tissues and its 
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Figure 2.3. Putative protein binding sites of Dvα-catenin.  Numbers correspond to amino 

acids of the protein sequence.  Shaded gray region is vinculin conserved domain.  Amino acid 

position 57-146 is β-catenin binding site.  Amino acid position 82-264 is α-catenin binding site. 

Amino acid position 697-905 is F-actin binding site.  
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 responses to blood feeding, total RNA samples from different tick tissues (salivary glands, 

midguts, and ovaries) of unfed and 5 day fed ticks were subjected to qRT-PCR assay.  Results 

showed that Dvα-catenin transcripts were significantly predominant in tick ovaries compared to 

salivary glands and midguts (Figure 2.4).  After 5 days of feeding, expression of Dvα-catenin 

was still highest in ovaries.  Although, overall Dvα-catenin expression was downregulated 

compared to unfed ticks, downregulation of Dvα-catenin expression in salivary glands and 

midguts individually was not significant.  Results suggested that Dvα-catenin may not be 

responsive to tick feeding.  The decrease of gene expression may be due to the fact that during 

tick feeding, ticks need to produce more enzymes and proteins related to blood digestion.  

2.3.4. Detection of Dvα-catenin in Tick Tissues and Tick Cell Lines Using Mouse Anti-α-catenin 

Polyclonal Antibody 

 

 In order to examine Dvα-catenin protein expression, polyclonal antibodies generated 

against rDvα-catenin were used to detect α-catenin protein in different tick tissues and tick cell 

lines.  Protein (100 µg) from salivary glands, midguts, and ovaries extracted from 5 day fed ticks 

were separated and transferred to PVDF membranes.  The western blotting results corresponded 

with the mRNA expression analysis; α-catenin was predominantly expressed in tick ovaries.  The 

Dvα-catenin polyclonal antibody reacted strongly with a ~96 kDa protein band from tick ovaries 

(Figure 2.5A).  There was no band from either salivary gland or midgut samples.  As shown in 

Figure 2.5B, α-catenin protein was detected in unfed and 5 day fed D. variabilis ovaries and 

DVE1 cell line but not in AAE12 cell line.  However, there is another band at 112 kDa.  It is 

possible that there are two isoforms of Dvα-catenin in embryonic cells.  

2.3.5. Tissue-specific Gene Expression of Dvα-catenin in Response to Rickettsial Infection. 

Previous examination suggested that Dvα-catenin expression is tissue-specific in 
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Figure 2.4.  Tissue-specific expression of Dvα-catenin mRNA expression in unfed and 5 

days fed D. variabilis.  Total RNA was extracted from tick tissues (salivary glands, midguts, and 

ovaries) and performed qRT-PCR assay.  Transcription level of Dvα-catenin was normalized to 

tick actin.  Data shown are mean relative expression.  Error bar represents standard error of 

means (SEM).  The bars with same letter are not significantly different (P ≤ 0.05).  
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Figure 2.5.   Dvα-catenin protein in tick tissues and tick cell lines.  One hundred microgram 

protein of tick tissues (salivary glands, midguts, and ovaries), DVE1 (D. variabilis cell line), 

AAE12 (A. americanum cell line), and 0.2 µg protein of rDvα-catenin was performed western 

blot analysis using mouse anti-α-catenin polyclonal antibody.  (A) Dvα-catenin protein 

expression in 5 day fed tick tissues.  Dvα-catenin protein was highly expressed in tick ovaries 

compared to salivary glands and midguts.  (B) Dvα-catenin protein was detected in unfed and 5 

day fed tick ovaries, DVE1 and AAE12 cells, and rDvα-catenin. 
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Rickettsia-infected ticks (Macaluso et al. 2003).  In order to determine whether the different gene 

expression of Dvα-catenin in response to rickettsial infection is specific to tick tissues and 

rickettsial species, an ex vivo study of tick tissues (backless tick) was performed.  In order to 

expose tick tissues to rickettsiae the tick dorsal integument was cut and removed, and backless 

ticks were exposed to either R. montanensis or R. amblyommii.  After 1 and 12 hpi, total RNA of 

salivary glands, midguts, and ovaries from unexposed and Rickettsia-exposed ticks were 

subjected to qRT-PCR assay.  Results showed a significant decrease of Dvα-catenin gene 

expression in R. montanensis-exposed tick ovaries after 12 h and no significant differences in R. 

amblyommii-exposed tick ovaries in comparison to uninfected ticks (Figure 2.6).  Although we 

were able to detect the Dvα-catenin mRNA in salivary glands and midguts, a significant 

difference post infection and between species was not observed.   

2.4 Discussion 

Previous studies utilized differential-display PCR to identify a partial cDNA with 

similarity to α-catenin in partially fed Rickettsia-infected ticks.  The present study describes α-

catenin from the American dog tick, D. variabilis.  Multiple alignments demonstrate that α-

catenin is conserved among species of ticks and other arthropods, as well as in humans; however, 

its full characterization in hematophagous arthropods had not been examined prior to this study.  

Consistent with other organisms, the characteristics of the deduced amino acid sequence shows 

homology with vinculin protein, containing putative α-catenin dimerization, β-catenin, and actin-

binding domains. 

Female ixodid adult ticks are known to feed for extended periods of time (1-2 weeks), 

and dynamic changes in tick gene activity is associated with tick feeding (Aljamali et al. 2009; 

Chalaire et al. 2011; Mulenga and Khumthong 2010a, 2010b).  Most tick genes that are 
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Figure 2.6.  Dvα-catenin mRNA expression in backless ticks during R. montanensis and R. 

amblyommii infection.  Unfed D. variabilis female ticks were transversely cut along the 

perimeter of alloscutum, and the dorsal cuticle was taken off.  Then, backless ticks were exposed 

to R. montanensis and R. amblyommii and incubated at 34°C.  After 1 and 12 hpi, tick tissues 

were dissected and preformed RNA extraction.  Total RNA were subjected to qRT-PCR assay. 

Transcription level of Dvα-catenin was normalized to tick actin.  Data shown are mean relative 

expression from two experiments.  Error bar represents standard error of means (SEM).  The bars 

with same letter are not significantly different (P ≤ 0.05).   
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responsive to blood feeding are related to manipulation of blood flow and host immune 

responses, and are upregulated in salivary glands during tick feeding (Aljamali et al. 2009).  

Dvα-catenin is constitutively expressed in tick ovaries, and its expression is downregulated 

during the slow phase of feeding before mating (5 dpf) suggesting that Dvα-catenin is not 

responsive to tick feeding.  The expression of unnecessary genes is decreased in order to 

conserve resources for other responsive genes during tick feeding.  Dvα-catenin is one of nine 

tick-derived molecules which were differentially expressed in R. montanensis-infected tick 

ovaries.  Its expression was higher in R. montanensis-infected tick ovaries compared to 

uninfected ticks.  The function of Dvα-catenin in Rickettsia-infected ovaries is unknown.  It was 

suggested that SFG Rickettsia uses α-catenin to modulate actin rearrangement in order to invade 

neighboring host cells, and the upregulation of invasion genes in Rickettisia-infected tick tissues 

during feeding may be responsive to the reactivation of rickettsiae (Hayes and Burgdorfer 1982) 

in ovaries (Macaluso et al. 2003).  During tick feeding after attachment and ingestion of host 

blood, oocytes begin to further develop (Sonenshine 1993) in tick ovaries.  It is possible that 

Rickettsia invades oocytes or other cells during this period which results in an increase in Dvα-

catenin gene expression. 

The use of host molecules by SFG Rickettsia is not unprecedented.  In vertebrate host 

cells, many species of bacteria are able to modulate rearrangement of actin cytoskeleton in order 

to invade host cells e.g. Listeria, Shigella, Rickettsia, and recently Burkholderia and 

Mycobacterium (Dramsi and Cossart 1998; Gouin et al. 2004; Hamaguchi et al. 2008; Sousa et 

al. 2005).  However, different bacteria use different strategies.  For Rickettsia, multiple species 

utilize actin-based motility in order to invade neighboring cells (Gouin et al. 2004; Heinzen et al. 

1999; Heinzen 2003).   Spotted fever group rickettsiae including R. conorii and R. rickettsii have 
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demonstrated the formation of actin structures, also called actin tails, in host cell cytosol.  These 

actin tails facilitate bacterial movement inside the cell and invasion of other nearby cells.  This 

study demonstrated that infection of R. montanensis which is a typical Rickettsia for D. variabilis 

downregulated Dvα-catenin gene expression in ovaries at 12 hpi but not 1 hpi suggesting a role 

of Dvα-catenin in typical Rickettsia infection in tick ovaries.  Interestingly, the decrease of Dvα-

catenin gene expression only occurred when ticks were exposed to R. montanensis.  Presumably, 

ticks control the level of rickettsial infection in ovaries by downregulation of the Dvα-catenin 

gene preventing cell invasion.  Moreover, controlling rickettsial infection in tick ovaries may be 

responsible for the infection blocking mechanism or an interference phenomenon of R. 

montanensis in ovaries.  Macaluso et al. (2003) has demonstrated that R. montanensis-infected 

D. variabilis were resistant to transovarial transmission of R. rhipicephali infection, and only R. 

montanensis demonstrated successful transovarial transmission to offspring.  However, the 

mechanism of Dvα-catenin during rickettsial infection in tick ovaries was not identified in that 

study. 

Transmission of SFG Rickettsia among ticks is complex as the tick serves as the vector 

and reservoir.  However, not all rickettsial species are horizontally transmitted by ticks and 

vertical transmission occurs with specificity as demonstrated transovarial transmission is limited 

to few parings.  Combined, field and laboratory studies suggest that the biological association 

between ticks and rickettsial species is specific.  To further examine these relationships, unfed 

ticks were used for backless tick experiments.  Rickettsia-uninfected ticks were exposed to R. 

montanensis and R. amblyommii.  R. amblyommii is predominantly found in Amblyomma ticks.  

It was used as a non Dermacentor-associated Rickettsia (atypical Rickettsia) in order to examine 

the specific response to different rickettsial species.  The alteration of Dvα-catenin gene 
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expression only during R. montanensis infection suggested that the tick response was specific to 

certain rickettsial species. 

Due to different tissues being involved in vertical and horizontal transmission, it was 

known that the close relationship between tick and Rickettsia is tissue-specific.  In order to study 

the tick tissue-specific response during rickettsial infection, we used a modified tick tissue 

culture of backless ticks (Bell 1980) and a primary tick tissue culture (Mosqueda et al. 2008) for 

rickettsial infection.  Both techniques supported the idea of tissue-specific analysis during 

rickettsial infection; however, during preliminary experiments the backless tick technique 

provided better results.  Therefore, the backless tick technique was modified and used for 

rickettsial infection.  The technique was developed by Bell (1980) to study the development of 

Theileria parva in Rhipicepphalus appendiculatus salivary glands.  Our backless tick experiment 

demonstrated that it can be used as a model for tick tissue culture.  

Arthropods and microbes are known to have intimate relationships.  Mutual relationships 

are found between arthropods and their endosymbionts, for example, insects and Wolbachia 

(Werren et al. 2008).  Recently, Neelakanta et al. (2010) demonstrated the beneficial effect of the 

agent of HGA, Anaplasma phagocytophilum, in Ixodes scapularis.  Infection with A. 

phagocytophilum upregulated I. scapularis antifreeze glycoprotein (IAFGP) gene expression 

which is important for tick survival in the cold environment.  In the Northeast and Upper 

Midwest of United States, I. scapularis overwinters as adults; therefore, more A. 

phagocytophilum-infected I. scapularis survive overwintering compared to uninfected I. 

scapularis.  This may enhance coexistence of both A. phagocytophilum and I. scapularis in 

nature which directly affects the epidemiology of HGA and other I. scapularis-borne diseases. 

Studying specific interaction between tick vectors and their microbes will lead to a 
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 better understanding of ecology and epidemiology of tick-borne diseases in nature. 
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CHAPTER 3 

RICKETTSIAL DISSEMINATION AND SPECIFIC TICK IMMUNE RESPONSE 

DURING TYPICAL AND ATYPICAL RICKETTSIAL INFECTION 

 

3.1 Introduction 

Tick-borne rickettsioses are caused by members of spotted fever group (SFG) Rickettsia, 

which are obligate intracellular bacteria belonging to the genus Rickettsia (Rickettsiales: 

Rickettsiaceae).  SFG Rickettsia can infect both vertebrate and invertebrate hosts, and ticks serve 

as both the disease vector and a reservoir host.  Ticks are able to transmit and maintain the 

bacteria by horizontal and vertical transmission.  In the United States, despite the sympatric 

population of tick species, the prevalence of Rickettsia is limited to certain species of ticks. 

Rickettsia rickettsii is the etiologic agent of Rocky Mountain spotted fever (RMSF) 

which is the most common tick-borne rickettsiosis in the United States.  R. rickettsii is 

predominantly found in Dermacentor variabilis (the American dog tick) in the midwestern and 

eastern United States and D. andersoni (the Rocky Mountain wood tick) in the western United 

States (Mcdade and Newhouse 1986).  However, Rhipicephalus sanguineous has recently been 

described as a competent vector of R. rickettsii in Arizona (Demma et al. 2005).  Recently, 

Center for the Disease Control and Prevention reported a continuous increase in human cases of 

tick-borne rickettsial diseases since 1998, and in 2008 there were 2,500 cases of RMSF (Dumler 

2010).  However, there is no evidence of an increase in R. rickettsii prevalence in the tick vector 

even in endemic areas (Ammerman et al. 2004; Stromdahl et al. 2010).  Therefore, further study 

of the ecology and epidemiology of tick-borne rickettsioses is needed. 

Burgdorfer et al. (1981) demonstrated that D. andersoni population on the east side of the 

Bitterroot valley harbored of Rickettsia peacockii, a nonpathogenic spotted fever group 

Rickettsia, and it presence affected the prevalence of vertically maintained R. rickettsii.  This 
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suggested that transovarial interference by nonpathogenic Rickettsia (Burgdorfer et al. 1981) 

may play a crucial role in RMSF epidemiology in Montana.  However, a study by Macaluso et 

al. (2002) demonstrated that the inhibition of transovarial transmission by a second rickettsial 

species is not specifically associated with rickettsial pathogenicity and suggested that 

tick/Rickettsia pairing is important for successful transmission.  The presence of R. montanensis, 

a nonpathogenic typical Rickettsia in D. variabilis, also affects the infectivity of other 

nonpathogenic Rickettsia within individual ticks.  Likewise, an atypical Rickettsia (R. 

rhipicephali) was not able to be maintained in D. variabilis through multiple generations 

(Macaluso et al. 2002).  This is believed to be related to the close association between tick and 

rickettsial species. 

Recently, the molecular interaction between ticks and SFG Rickettsia has focused on the 

rickettsial adhesion/internalization (Macaluso et al. 2003) and the tick immune/stress response 

(Ceraul et al. 2007, 2008; Mulenga et al. 2003) during rickettsial infection.  Many tick immune-

like molecules which are related to rickettsial survival have been identified (Ceraul et al. 2007, 

2008, 2011).  In D. variabilis, it has been shown that the expression of multiple tick 

antimicrobial genes was upregulated during rickettsial challenge, for example, defensin1 

(varisin) (Ceraul et al. 2007), lysozyme (Ceraul et al. 2007), glutathione S-transferase1 (GST1) 

(Dreher-Lesnick et al. 2006; Mulenga et al. 2003), and Kunitz protease inhibitor (KPI) genes 

(Ceraul et al. 2008).  Likewise, in response to rickettsial infection, tick-derived molecules were 

differentially expressed in a tissue-specific manner (Ceraul et al. 2007, 2008; Macaluso et al. 

2003; Mulenga et al. 2003).  Most studies have focused on the tick response to infection with 

typical Rickettsia; (Ceraul et al. 2007, 2008, 2011; Macaluso et al. 2003; Mulenga et al. 2003) 

therefore, little is known about how ticks respond to rickettsial infection with an atypical 
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Rickettsia.  The nature of tick-specific reaction to infecting rickettsial species may have broad 

implication relating to the ecology of tick-borne rickettsial diseases. 

To better understand the mechanistic nature of tick/Rickettsia relationships, the objectives 

of this study were to 1) monitor the dissemination and survival of R. amblyommii, an atypical 

Rickettsia, R. montanensis, a nonpathogenic typical Rickettsia, and R. rickettsii, a pathogenic 

typical Rickettsia in D. variabilis; and 2) assess specific tick immune response during typical and 

atypical rickettsial infection.  The hypothesis being tested is that R. amblyommii, which is a 

nonpathogenic Amblyomma-related Rickettsia, is not able to survive and disseminate from the 

midgut to infect other tissues, and specific tick immune molecules control rickettsial 

dissemination and survival of the atypical Rickettsia.  Studying the specific tick/Rickettsia 

relationship of typical and atypical Rickettsia will lead to better understanding of the ecology and 

epidemiology of tick-borne diseases in the United States. 

3.2 Materials and Methods 

3.2.1. LSU Dermacentor variabilis Colony 

Uninfected D. variabilis (Say) were provided by Dr. Daniel Sonenshine, Old Dominion 

University.  Ticks were maintained in an environmental chamber at 27±1C, 87±2% relative 

humidity (RH), and a 16: 8 (light: dark) cycle.  The tick life cycle is routinely maintained using 

mice for larval feeding, rats for nymphal feeding, and guinea pigs for adult feeding at the School 

of Veterinary Medicine, Louisiana State University (SVM-LSU).  All animals were handled 

according to Louisiana State University’s Institutional Animal Care and Use Committee 

regulations.   

For bioassays, female ticks were allowed to feed on Hartley guinea pigs (Cavia 

porcellus), (Charles River) for 5 days.  Partially fed female ticks were forcibly detached from 
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guinea pigs, washed with 1% bleach for 5 min and 70% ethanol for 5 min and rinsed with 

distilled H2O and phosphate-buffer saline (PBS). 

3.2.2. Rickettsial Culture and Purification 

R. montanensis (M5/6; Microtus isolate), R. amblyommii (Darkwater), R. rickettsii 

(VR149), and R. parkeri (portsmouth) were maintained and propagated in Vero E6 cells.  R. 

amblyommii and R. parkeri were kindly provided by Dr. Christopher Paddock.  The Rickettsia-

infected Vero E6 cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 

5% heat-inactivated fetal bovine serum (FBS; Hyclone) and maintained in a humidified 5% CO2 

incubator at 34C.  R. rickettsii was maintained and manipulated in the BSL-3 laboratory in the 

Department of Pathobiological Sciences, SVM-LSU.  R. felis (LSU) was maintained and 

propagated in Ixodes scapularis-derived ISE6 cells.  R. felis-infected cells were cultured in L15B 

growth medium supplemented with 10% heat-inactivated FBS (Hyclone) and maintained in a 

humidified 5% CO2 incubator at 32C as described by Pornwiroon et al (2006).   

Rickettsiae were semi-purified from infected Vero E6 cells when more than 80% of cells 

were infected.  The infected Vero E6 cells were detached and transferred to an Erlenmeyer flask 

containing sterile 3-mm borosilicate glass beads (Sigma), and vortexed at high speed for 3 min. 

The cell lysate was filtered through a 2 micron pore size syringe filter (Millipore).  Viability and 

enumeration of R. montanensis and R. amblyommii
 
were assessed by staining with a BacLight 

viability stain kit
 
(Invitrogen), and rickettsiae were counted in a Petroff-Hausser

 
bacteria 

counting chamber (Sunyakumthorn et al. 2008) using a Leica microscope.  For R. rickettsii 

quantification, a milliliter of rickettsial solution was aliquoted for DNA extraction and qPCR 

assay using R. rickettsii-specific probe and primers (Smith et al. 2010).  Rickettsiae were 

collected by centrifugation at 16,000 × g at 4 °C for 10 min.  The rickettsial pellets were  
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resuspended in 1:125 diluted bovine blood which was heat-inactivated at 56 °C for 30 min. 

3.2.3. Tick Immune Gene Expression in Response to Blood Feeding 

 To determine the response of D. variabilis immune genes during blood feeding, groups of 

3 unfed and partially fed (5 day) female Rickettsia-free ticks were dissected.  Tick tissues 

(hemolymph, salivary gland, midgut, and ovary) were collected and stored in RLT buffer 

(QIAGEN) for RNA extraction.  Total RNA was isolated using the RNeasy kit (QIAGEN) 

according to the manufacturer’s protocol.  Then, qRT-PCR assay (see below) was performed on 

the extracted RNA. 

3.2.4. Tick Feeding Using Capillary Feeding Techniques (CFT) 

  In order to assess the uptake of solution after capillary feeding, Rhodamine B was used as 

a feeding biomarker.  Ten female ticks were restrained ventrally on double-sided adhesive foam 

in a large glass Petri dish.  Ticks were capillary fed with 0.1% (W/V) Rhodamine B in 0.85% 

NaCl using 50-µl glass microcapillary tubes (KIMBLE).  The feeding tubes were fit over the 

mouthparts and immobilized ticks restrained on modeling clay as previously described 

(Macaluso et al. 2001, 2002).  Capillary feeding plates were incubated in an environmental 

chamber at 27±1C with 87±2% RH.  After 16 h, the capillary fed ticks were gently removed 

from the adhesive foam and rinsed with water three times and 70% ethanol three times to remove 

Rhodamine B on the tick surface.  The cleaned ticks were visualized under a fluorescent 

microscope (MVX10 Research macro zoom system microscopy, OLYMPUS) in order to 

evaluate the uptake of feeding media. 

3.2.5. Rickettsial Challenge-feeding 

Five groups of partially fed female ticks (n = 3/time point) were allowed to imbibe 1:125 

diluted bovine blood (Group 1), R. amblyommii (Group 2; 10
9
 rickettsiae/ml), R. montanensis 
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(Group 3; 10
9
 rickettsiae/ml), R. rickettsii (Group 4; 10

9
 rickettsiae/ml) and combined R. 

amblyommii and R. montanensis (Group 5; 10
9
 rickettsiae/ml) through a 50-µl microcapillary 

tube (KIMBLE) as described above.  After 16 h of capillary feeding, three ticks from each group 

were sterilized by 1% bleach and 70% ethanol and rinsed with distilled H2O and PBS.  Tick legs 

were cut to collect the hemolymph, and ticks were then dissected to remove the salivary glands, 

midguts, and ovaries using standard microdissection techniques (Macaluso et al. 2003).  Tick 

salivary glands, midguts, and ovaries were rinsed three times in PBS to remove hemocytes.  

Tissues from three ticks were pooled into the same tube and homogenized in 600 µl of RTL plus 

buffer (QIAGEN) by passage through a 27½ gauge needle ten times.  The lysate was stored at -

80C until used for nucleic acid isolation.  The remaining ticks were incubated at 27±1C with 

87±2% RH and their tissues were collected at 40, 88 and 184 hours post-challenge (hpc).  Two 

independent experiments were performed. 

3.2.6. Nucleic Acid Isolation 

Total RNA and gDNA were isolated from tick tissues lysate using ALLPrep DNA/RNA 

Mini kit (QIAGEN) according to the manufacturer’s protocol.  Briefly, the homogenized lysate 

was passed through a DNA spin column, and the columns were stored at room temperature for 

later DNA purification.  The flow-through which contained total RNA was mixed with 70% 

ethanol and transferred to RNA spin columns.  After wash steps total RNA was eluted in 50 µl 

Nuclease-free water and stored at -80C.  The DNA spin columns were then washed with Buffer 

AW1 and AW2 and eluted with 50 µl Nuclease-free water. 

3.2.7. Specificity Determination of Rickettsial Species-specific qPCR Assay 

 To evaluate the specificity of the R. amblyommii, R. montanensis, and R. rickettsii qPCR 

assays, gDNA from five rickettsial species including R. amblyommii, R. montanensis, R. 
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rickettsii, R. parkeri and R. felis were used as templates.  gDNA was isolated from R. 

amblyommii, R. montanensis, R. rickettsii, R. parkeri and R. felis-infected cells using DNeasy kit 

(QIAGEN) according to the manufacturer’s protocol.  gDNA from the five rickettsial species 

were subjected to a qPCR assay using rickettsial species-specific molecular beacon probes and 

primers designed from rickettsial outer membrane protein (ompB): R. montanensis-HEX labeled 

probe (Smith et al. 2010) and R. amblyommii-FAM labeled probe (Jiang et al. 2009) and R. 

rickettsii-TYE665 labeled probe (Smith et al. 2010).  The conventional PCR amplification of 17-

kDa genus-specific antigen using Rr17.62p and Rr17.492n primers (Williams et al. 1992) was 

performed to confirm the presence of rickettsial gDNA.  The 434 bp PCR products were 

analyzed on a 2% TAE agarose gel containing 1X SYBR safe DNA gel stain (Invitrogen).  The 

primers and probes are shown in Table 3.1.   

3.2.8. Construction of Standard Plasmids for Quantitative PCR (qPCR) Assay 

To quantify the number of R. amblyommii and R. montanensis in infected D. variabilis 

samples, a standard plasmid was constructed and used in the qPCR assay to generate standard 

curves.  OmpBRa477F – OmpBRa618R and OmpBRm2832F – OmpBRm2937R primers were 

used to amplify fragments of R. amblyommii (142 bp) and R. montanensis (106 bp) ompB genes 

(OmpBRa and OmpBRm), respectively, prior to cloning into the pCR4-TOPO vector 

(Invitrogen).  The identity of each gene was confirmed by BLAST search 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  Likewise, a 132 bp fragment of the D. variabilis 

calreticulin gene (CRTDv) was amplified using CRTDv321F – CRTDv452R primers, cloned and 

sequenced.  A gene-specific primer and either T3 or T7 were then used to amplify OmpBRa and 

OmpBRm genes from the recombinant plasmids.  The amplicons were then digested with EcoRI 

(New England BioLabs) for 1 h at 37°C and ligated together.  The OmpBRa ligated OmpBRm 
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Table 3.1. Primers for standard plasmid construction and qPCR assays. 

Primer Sequence (5’-3’) Experiment 

OmpBRm2937RxbaI AAAAAATCTAGACCTAAGTTGTTATAGTCTGTA GTG Standard 

plasmid 

CRTDv321FxbaI AAAAAATCTAGAAGGAGAAAAGCAAGGGACTG construction 

OmpBRa477F GGTGCTGCGGCTTCTACATTAG qPCR  

OmpBRa618R CTGAAACTTGAATAAATCCATTAGTAACAT  

RaOmpB_FAM FAM/CGCGATCTCCTCTTACACTTGGACAGAATGCTT 

ATCGCG/BHQ_1 

 

OmpBRm2832F GCGGTGGTGTTCCTAATAC qPCR 

OmpBRm2937R CCTAAGTTGTTATAGTCTGTAGTG  

RmOmpB_HEX HEX/CGGGGCAAAGATGCTAGCGCTTCACAGTTACCC 

CG/IABkFQ 

 

OmpBRr1370F ATAACCCAAGACTCAAACTTTGGTA qPCR 

OmpBRr1494R GCAGTGTTACCGGGATTGCT  

RrOmpB_TYE665 TYE665/CGCGATCTTAAAGTTCCTAATGCTATAACCCTT 

ACCGATCGCG/3BHQ_1 

 

CRTDv321F AGGAGAAAAGCAAGGGACTG qPCR 

CRTDv 452R CAATGTTCTGCTCGTGCTTG  

DvCRT_TYE665 TYE665/TGGAGAAGGGCTCGAACTTGGC/IAbRQSp  

Rr17.61p GCTCTTGCAACTTCTATGTT Conventional 

Rr17.492n CATTGTTCGTCAGGTTGGCG PCR 
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 fragment (OmpBRaRm) was amplified using OmpBRa477F – OmpBRm2937R primers, cloned 

and sequenced.  OmpBRm2937R and CRTDv321F primers were added with XbaI restriction site 

and were designated as OmpBRm2937RxbaI and CRTDv321FxbaI, respectively.  OmpBRaRm was 

then amplified using OmpBRa477F and OmpBRm2937RxbaI primers.  Additionally, the primer 

pair CRTDv321FxbaI and CRTDv452R were used to amplify the CRTDv gene.  The amplicons of 

OmBRaRm and CRTDv were then digested with XbaI (New England BioLabs) and ligated 

together.  The ligation product was amplified using OmpBRa477F and CRTDv452R followed by 

cloning and sequencing (Figure 3.1).  The resulting standard plasmid was linearized with XbaI 

(New England BioLabs) before being used as a standard template in the qPCR assay. 

For the R. rickettsii ompB gene standard plasmid, the primers OmpBRr1370F – 

OmpBRr1494R were used to amplify a 124 bp fragment of the R. rickettsii ompB gene which 

was then subcloned into a pCR4-TOPO vector.  The OmpBRr standard plasmid was linerized 

with PstI (New England BioLabs) restriction enzyme prior to the qPCR assay.  All primers are 

shown in Table 3.1. 

3.2.9. qPCR Amplification of the Rickettsial Outer Membrane Protein Gene 

gDNA from tick tissues was subjected to qPCR assay using rickettsial species-specific 

molecular beacon probes and primers as described above.  Tick calreticulin (CRT) gene primers 

and probe were designed by Primer3 software (http://frodo.wi.mit.edu/primer3/).  All probes and 

primers were synthesized by Integrated DNA Technologies, Inc (Table 3.1).  Serial 10-fold 

dilutions (1×10
8
 to 10 copies) of standard plasmids were used as DNA templates to generate 

standard curves.  Multi-plex qPCR assay of rickettsial (R. amblyommii or R. montanensis) and 

tick genes and single-plex qPCR assay of R. rickettsii gene were performed using a LightCycler 

480® system II (Roche).  The PCR reaction reagents were mixed in a 96-well plates with each  
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Figure 3.1. Schematic map of standard plasmid (pCR4-OmpBRa-OmpBRm-CRTDv) for 

quantitative PCR amplification of rickettsial outer membrane protein (OmpB) and tick 

calreticulin (CRT) genes.  A portion of R. amblyommii (142 bp) and R. montanensis (106 bp) 

OmpB genes and D. variabilis CRT (132 bp) gene were amplified and cloned into pCR4-TOPO 

vector and sequencing.  The fragments of OmpBRa and OmpBRm genes were digested with 

EcoRI and ligated together.  OmpBRa ligated OmpBRm fragment (OmpBRaRm) was amplified 

using OmpBRa477F-OmpRm2937R primers and cloned into pCR4-TOPO vector.  OmpBRaRm 

and CRTDv were amplified using OmpBRa477F-OmpBRm2937RxbaI and CRTDv321FxbaI-

CRTDv452R primers, respectively.  The OmpBRaRm and CRTDv amplicons were digested with 

XbaI, ligated, and amplified using OmpBRa477F and CRTDv452R followed by cloning.  The 

pCR4-OmpBRa-OmpBRm-CRTDv vector was linearized with XbaI prior to being used as a 

standard template in the qPCR assay. 
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well containing 2X LightCycler® 480 Probe Master (Roche), 0.2 µM each forward and reverse  

primers, 0.3 µM probes, and 5 µl of cDNA template in a total reaction volume of 35 µl.  Ten 

microlitres of each reaction mixture were transferred into 3 wells of a 384-well plate.  All 

reactions were subjected to the following conditions: a pre-incubation step of 95 °C for 10 min, 

45 amplification cycles of 95 °C for 10 sec, 60 °C for 30 sec, and 72 °C for 1 sec.   

3.2.10. Quantitative Reverse Transcription-PCR (qRT-PCR) of Tick Immune Genes 

 Total RNA from tick tissues was treated with 4 units of Dnase Turbo (Ambion) for 1 h 

and purified using a RNA cleanup kit (Zymo Research).  Synthesis of cDNA was carried out 

using 40 ng total RNA from hemolymph and 200 ng total RNA from salivary glands, midguts, 

and ovaries in 25 µl reaction volumes of iScript reverse transcription kit (Bio-Rad).  No-RT 

reaction (distilled dH2O was added instead of Reverse transcriptase) was performed to confirm 

the absence of gDNA.  PCR reaction reagents were mixed in 96-well plates containing 2 µl of 

cDNA template, 2X LightCycler® 480 SYBR Green I master (Roche) and 0.1 µM each forward 

and reverse primers in a total volume of 35 µl.  Ten microlitres of each reaction mixture were 

transferred into 3 wells of a 384-well plate.  PCR assay conditions consisted of a 95 °C pre-

incubation for 10 min, 45 amplification cycles of 95 °C for 15 sec, 60 °C for 30 sec, and 72 °C 

for 5 sec followed by a melting curve step of 95 °C for 5 sec and 65 °C for 1 min.  Primers used 

for amplification are listed in Table 3.2.  Analysis of the crossing point (Cp) ratio of target 

(defensin1, lysozyme, KPI, and GST1) genes and reference (actin and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH)) genes values was conducted with LightCycler® 480 

(1.5.0) software (Roche) using advanced relative quantification analysis (Efficiency method, a 

modified ∆∆CT method, Roche).  The relative gene expression of control unchallenged ticks was 

used to normalize those of Rickettsia-challenged ticks to generate the fold difference. 
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Table 3.2. Primers used in qRT-PCR assays. 

Primer Sequence (5’-3’) Reference 

DvDefensin1For (Varisin) CTTTGCATCTGCCTTGTCTTTCTC Ceraul et al., 2007 

DvDefensin1Rev (Varisin) AATTCCTGTAGCAGGTGCAGG  

DvLyzFor GATTGGATCTGCTTGGCAACAGC Ceraul et al., 2007 

DvLyzRev TCAATATCGGCACCCCTTGACG  

DvKPIFor CGAAGAATCAGAGTGCTGGAGAAC Ceraul et al., 2007 

DvKPIRev CCGAGGTGGTTTTTAGGTCCTG  

DvGST1-416For TATTTCCGGCCAAAGTGGTT This study 

DvGST1-590Rev CCCAATCGCTACTCCCAGAG  

DvGAPDH-926For ACTCCCACAGCAGCATCTTT This study 

DvGAPDH-1024Rev TGCTGTAGCCGTACTCGTTG  

DvActin-1424For CTTTGTTTTCCCGAGCAGAG This study 

DvActin-1572Rev CCAGGGCAGTAGAAGACGAG  
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3.2.11. Experimental Design 

 Dermacentor variabilis, a vector of RMSF, was used as a tick model for this study.  In 

order to determine the specific tick immune response to rickettsial dissemination during atypical 

and typical rickettsial infection, three groups of partially fed female D. variabilis were capillary 

fed with R. amblyommii (nonpathogenic atypical Rickettsia), R. montanensis (nonpathogenic 

typical Rickettsia), or R. rickettsii (pathogenic typical Rickettsia).  Dual challenge with R. 

amblyommii and R. montanensis was designed to minimize the variable volume of rickettsial 

feeding medium taken up by ticks.  Equal amounts of R. amblyommii and R. montanensis 

organisms were mixed and capillary fed to partially fed female ticks.  Genomic DNA and total 

RNA were extracted from the same tick tissues in order to determine the simultaneousness of 

tick immune response and presence of rickettsiae.  Rickettsial infection was quantified using 

qPCR assay, and the gene expression of four tick immune genes was examined using qRT-PCR 

assay.  The diagram of experimental design is shown in Figure 3.2.  Two separate experiments 

were performed. 

3.2.12. Statistical Analysis 

The SAS statistical package (version 9.1.3) general linear model procedure in an analysis 

of variance was used to examine potential differences in populations of unchallenged and 

Rickettsia-challenged ticks.  Data presented are from two separate bioassays.  When overall 

significance was identified, Tukey’s honestly significant difference (HSD) post-hoc test was 

used to examine pairwise differences of means of the main effects.  Pairwise t-tests of least 

square means were performed for interaction effects to identify significant differences of tick 

immune gene expression between unfed and 5 day fed ticks and among Rickettsia-challenged 

and unchallenged tick tissues.  For all comparisons, a P value of ≤ 0.05 was considered 
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Figure 3.2. Diagram of experimental design of rickettsial challenge. Monitoring rickettsial 

dissemination and tick immune gene expression during typical (R. montanensis and R. rickettsii) 

and atypical (R. amblyommii) rickettsial challenge. 
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significantly different. 

3.3. Results 

3.3.1. Tick Immune Gene Expression in Response to Blood Feeding 

During blood feeding a tick is confronted with microbes in the host blood.  In order to 

determine the gene expression of D. variabilis immune genes (defensin1, lysozyme, GST1, and  

KPI) in response to blood feeding, total RNA samples from tick hemolymph, salivary glands, 

midguts, and ovaries of unfed and 5 day fed ticks was subjected to qRT-PCR assay.  The gene 

expression of defensin1 was significantly upregulated in the tick hemolymph while KPI and 

GST1 was significantly upregulated in the tick midgut after 5 days of blood feeding (Figure 

3.3A, 3.3C, 3.3D) suggesting that these tick genes may play an important role in controlling 

bacterial insult during tick feeding.  In contrast, lysozyme gene expression was significantly 

downregulated in the midgut during blood feeding (Figure 3.3B).  

3.3.2. Tick Capillary Feeding Technique 

Rhodamine B is a chemical fluorescent dye that has been used as a biomarker for the 

fluorescent tracer technique to evaluate bloodfeeding of sandflies (Mascari and Foil 2009, 2010, 

; Mascari et al. 2011).  In order to evaluate the efficacy of tick feeding using CFT, ten female 

ticks were capillary fed with 0.1% Rhodamine B in 0.85% NaCl.  After 16 h, all ticks were 

observed under fluorescent microscopy.  Seven out of ten capillary fed ticks were fluorescent 

throughout the entire body (Figure 3.4), and three ticks were fluorescent only at the mouthparts 

suggesting that 70% of capillary fed ticks ingested the feeding media. 

 3.3.3 Specificity of Rickettsial Species-specific qPCR Assays 

Specificity of the rickettsial species-specific qPCR assay was evaluated using five 

rickettsial species (R. amblyommii, R. montanensis, R. rickettsii, R. parkeri, and R. felis) gDNA 
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Figure 3.3. Tick immune gene expression in response to bloodfeeding (A; defensin1, B; 

lysozyme, C; Glutathione S-transferase, D; Kunitz protease inhibitor) in unfed and 5 day fed 

D. variabilis.  Total RNA was extracted from tick tissues (hemolymph, salivary glands, midguts, 

and ovaries) and performed qRT-PCR assay.  Transcription level of tick immune genes was 

normalized to actin and glyceraldehyde 3-phosphate dehydrogenase transcripts.  Data shown are 

mean relative expression.  Error bar represents standard error of means (SEM).  The bars with 

same letter are not significantly different (P ≤ 0.05).  HL: hemolymph, SG: salivary gland, MG: 

midgut, OV: ovary. 
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A B

unfed Rho-fed unfed Rho-fed
 

 Figure 3.4. Rhodamine B feeding using capillary feeding technique (A:Bright-field, B:Red 

fluorescence).  Ten unfed female D. variabilis were capillary fed with 0.1% (W/V) Rhodamine B 

in 0.85% NaCl for 16 h.  Unfed: unfed ticks, Rho-fed: Rhodamine B fed ticks. 
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as a template.  The results demonstrated that rickettsial species-specific qPCR assays of R. 

amblyommii, R. montanensis, and R. rickettsii were species-specific, and PCR fragments of the 

ompB gene were confirmed by DNA sequencing (Table 3.3).  The PCR amplification of the 17-

kDa genus-specific antigen using Rr17.62p and Rr17.492n primers confirmed the presence of 

five rickettsial gDNA (Figure 3.5).  The copy number of rickettsial ompB and tick calreticulin 

genes in tick tissues was determined using a standard curve of standard plasmids (pCR4-TOPO-

OmpBRa-OmpBRm-CRTDv and pCR4-TOPO-OmpBRr). 

3.3.4. Rickettsial Dissemination of Individual Rickettsial Challenge 

To determine rickettsial dissemination of R. amblyommii, R. montanensis, and R. 

rickettsii in the tissues of Rickettsia-challenged ticks, gDNA from pooled three-tick tissues was 

subjected to a rickettsial species-specific qPCR assay.  To determine the rickettsial infection 

level relative to tick tissue cells, serial dilutions of standard plasmids were used to generate 

standard curves of R. amblyommii, R. montanensis, and R. rickettsii ompB genes and the tick 

calreticulin gene.  The minimum detection of all qPCR assays using standard plasmids was 10 

copies.  Only samples detected from three replicate wells were considered true signal and 

calculated.  The results in Table 3.4 and 3.5 represent the copy number of rickettsial ompB genes 

in 10
8 

copies of tick calreticulin gene from pooled three tick tissues. 

For individual species challenges, after 16 h of capillary feeding all three rickettsial 

species were detected in tick hemolymph except for R. amblyommii-challenged ticks in 

experiment one, and only R. montanensis was detected in the tick midguts (Table 3.4).  In 

experiment two, R. montanensis was also detected in tick ovaries.  While the experiments had 

similar findings, there was variability in rickettsial dissemination with predominance of R. 

montanensis versus R. amblyommii in tick tissues over time.  Similar to R. montanensis, 
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Table 3.3. The specificity of rickettsial species-specific qPCR assay. 

Rickettsial 

gDNA 

17-kDa 

conventional 

PCR 

R. amblyommii 

ompB qPCR 

R. montanensis 

ompB qPCR 

R. rickettsii 

ompB qPCR 

DNA 

sequencing 

results 

R. amblyommii + + - - R. amblyommii 

R. montanensis + - + - R. montanensis 

R. rickettsii + - - + R. rickettsii 

R. parkeri + - - - R. parkeri 

R. felis + - - - R. felis 
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Figure 3.5. Confirmation of rickettsial gDNA using Rickettsia 17-kDa genus-specific antigen 

primers. gDNA was extracted from five Rickettsia-infected cells and used to performed PCR 

using Rr17.61p and Rr17.492n primers.  The 434 bp PCR products were resolved on a 2% 

agarose gels containing 1X SYBR safe DNA gel stain (Invitrogen).  M: GeneRuler 100 bp Plus 

DNA ladder (Fermentas), Ra: R. amblyommii, Rf: R. felis, Rm: R. montanensis, Rp: R. parkeri, 

Rr: R. rickettsii, H2O: no template control. 
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Table 3.4. Copy number of rickettsial outer membrane protein B gene relative to 10
8 

copies of tick calreticulin gene in individual 

rickettsial species-challenged ticks.  Partially fed ticks were challenged with R. amblyommii, R. montanensis, or R. rickettsii for 16 h. 

Tick tissues were collected at 16, 40, 88, 184 hours post-challenge and performed qRT-PCR assays.  
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Table  3.5. Copy number of rickettsial outer membrane protein B gene relative to 10
8 

copies of tick calreticulin gene in dual rickettsial 

species-challenged ticks.  Partially fed ticks were challenged with combined R. amblyommii and R. montanensis for 16 h.  Tick tissues 

were collected at 16, 40, 88, 184 hours post-challenge and performed qRT-PCR assay. 
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the D. variabilis-associated R. rickettsii was found to consistently disseminate after introduction.  

Combined results from two separate experiments demonstrated that D. variabilis was persistently 

infected with R. montanensis and R. rickettsii compared to R. amblyommii. 

3.3.5. Rickettsial Dissemination of Dual Rickettsial Challenge 

To assess the specific ability of Rickettsia to disseminate, a dual rickettsial challenge 

bioassay was employed in which the same amount of R. amblyommii and R. montanensis was 

combined and fed to ticks (Table 3.5).  Similar to the individual species challenges bioassay, 

only R. montanensis was able to disseminate to tick ovaries, and compared to R. amblyommii, R. 

montanensis was consistently detected in ticks at all time points.  The combined results of dual 

challenge also suggested that compared to R. amblyommii, R. montanensis, which is a typical 

Rickettsia, persistently infected tick tissues with a higher infection level.  

3.3.6. Tick Immune Response During Rickettsial Infection 

In order to compare the specific tick immune in response to rickettsial infection, ticks 

were challenged with R. amblyommii, R. montanensis, R. rickettsii, and combined R. 

amblyommii and R. montanensis.  In tick salivary glands and ovaries, no difference in defensin1, 

lysozyme, GST1, and KPI gene expression was observed between Rickettsia-challenged and 

unchallenged ticks (data not shown).  Likewise, although rickettsial infection was observed in 

tick hemolymph, there was no significant difference in tick immune gene expression among 

Rickettsia-challenged and unchallenged ticks (Figure 3.6A, 3.6B).  In tick midgut, which is the 

first site of contact, gene expression of lysozyme in Rickettsia-challenged ticks was not 

significantly different from unchallenged ticks (Figure 3.7A); however, GST1 gene expression 

was significantly upregulated at 184 hpc when challenged with R. amblyommii (Figure 3.7B).  

The slight increase of KPI gene expression during R. amblyommii challenge was also observed; 
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Figure 3.6. Gene expression of tick immune genes in tick hemolymph in response to 

rickettsial challenge (A: defensin1, B: lysozyme).  Total RNA was extracted from tick 

hemolymph and performed qRT-PCR assay.  Transcription level of tick immune genes was 

normalized to actin and glyceraldehyde 3-phosphate dehydrogenase transcripts.  Data shown are 

fold difference relative to unchallenged ticks.  Error bar represents standard error of means 

(SEM).  The bars with same letter are not significantly different (P ≤ 0.05).  Control: 

unchallenged tick, Ra: R. amblyommii-challenged ticks, Rm: R. montanensis-challenged ticks, 

Rr: R. rickettsii-challenged ticks, RaRm: combined R. amblyommii and R. montanensis-

challenged ticks. 
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Figure 3.7. Gene expression of tick immune genes in tick midguts in response to rickettsial 

challenge (A: lysozyme, B: glutathione S-transferase1, C: Kunitz protease inhibitor).  Total 

RNA was extracted from tick hemolymph and performed qRT-PCR assay.  Transcription level of 

tick immune genes was normalized to actin and glyceraldehyde 3-phosphate dehydrogenase 

transcripts.  Data shown are fold difference relative to unchallenged ticks.  Error bar represents 

standard error of means (SEM).  The bars with same letter are not significantly different (P ≤ 

0.05).  Control: unchallenged tick, Ra: R. amblyommii-challenged ticks, Rm: R. montanensis-

challenged ticks, Rr: R. rickettsii-challenged ticks, RaRm: combined R. amblyommii and R. 

montanensis-challenged ticks. 
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 however, there was no significant difference in gene expression (Figure 3.7C).  

3.4. Discussion 

During long-term bloodfeeding, ticks may encounter a number of pathogens present in 

host blood.  In addition to blood digestion related molecules, many defense molecules are needed 

to prevent ticks from succumbing to pathogen challenge.  The majority of tick molecules 

identified is from tick salivary glands and are responsive for the regulation of blood flow and 

host immune response factors (Aljamali et al. 2009).  However, during blood feeding, the tick 

midgut is the first site of contact with numerous microbes and ingested blood.  Recently, a cDNA 

library of D. variabilis midgut has been generated from fed ticks (Anderson et al. 2008). 

Compared to proteins identified from salivary glands, most midgut proteins are involved in 

bloodmeal digestion, including oxidative stress reduction enzymatic regulation, antimicrobial 

activity, detoxification enzymes, peptidase inhibitor, protein digestion, mucins, and iron/heme 

metabolism and transport factors (Anderson et al. 2008).  In the current study, defensin1, KPI, 

and GST1 are significantly upregulated in response to bloodfeeding.  In contrast, lysozyme gene 

expression is significantly downregulated in the tick midgut during bloodfeeding.  

This study is the first that measured the prevalence of tick consumption of ticks via CFT 

using fluorescent marker.  Rhodamine B was used as a biomarker to evaluate tick feeding.  Using 

Rhodamine B-feeding medium has shown that seventy percent of ticks ingested the feeding 

medium.  The current study is also the first examination of the dissemination of typical and 

atypical Rickettsia in the tick vector.  Ticks were challenged with atypical nonpathogenic (R. 

amblyommii, Amblyomma-associated Rickettsia), typical nonpathogenic (R. montanensis, 

Dermacentor-associated Rickettsia), and typical pathogenic (R. rickettsii, Dermacentor-

associated Rickettsia) Rickettsia using CFT.  Both typical rickettsial species, R. montanensis and 
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R. rickettsii, are able to persistently infect D. variabilis, and only R. montanensis is able to 

disseminate to tick ovaries supporting field and laboratory evidence of transovarial transmission 

of R. montanensis in D. variabilis.  This may suggest that D. variabilis favors typical 

nonpathogenic Rickettsia, R. montanensis, more than typical pathogenic Rickettsia.  It has been 

demonstrated previously that D. andersoni experimentally infected with R. rickettsii has reduced 

survival and fecundity of female ticks (Niebylski et al. 1999).  Variation of volume of ingested 

media, ranging between 0.06 and 6.77 µl using CFT has been previously described where dual 

rickettsial challenge was designed to control the rickettsial organisms of two rickettsial species 

taken up by individual ticks (Macaluso et al. 2001).  The results demonstrated that only R. 

montanensis, the typical Rickettsia, persistently infected D. variabilis and the infection level of 

R. montanensis is higher compared to R. amblyommii.  Although, rickettsial replication in ticks 

was not observed in this study, the data suggested that there is a specific association between 

ticks and SFG Rickettsia, favoring particular species.   

Additionally, the present study compared the specific response of tick immune genes 

during typical and atypical rickettsial infection.  The gene expression of four tick immune genes, 

which were identified and characterized from R. montanensis-infected D. variabilis (Ceraul et al. 

2007, 2008; Macaluso et al. 2003; Mulenga et al. 2003), was determined using qRT-PCR assay.  

Most of the findings were variable; however, similar results demonstrated that defensin1, 

lysozyme, GST1, and KPI are upregulated in R. montanensis-infected D. variabilis.  In D. 

variabilis, there are two forms of defensin; defensin1 (Varisin) and defensin2.  Defensin1 is 

mainly found in tick hemolymph, and defensin2 is highly expressed in tick ovaries (Ceraul et al. 

2007).  Defensin2 gene expression was also determined in this study (data not shown); however, 

tick ovaries were not persistently infected with rickettsiae; therefore, there was no difference in 
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gene expression.  Lysozyme is highly expressed in the midgut and hemolymph (Ceraul et al. 

2007; Simser et al. 2004), and a previous study by Ceraul et al (2007) demonstrated that 

lysozyme gene expression was upregulated in response to R. montanensis challenge at 24 and 72 

hours post-experimental feeding.  In this study, significant difference in lysozyme gene 

expression was not observed in Rickettsia-challenged ticks; however, the tick gene expression 

was only assessed at 184 hpc, which may be after expression peaks.  A novel tick antimicrobial 

molecule, KPI, has been characterized from R. montanensis-challenged D. variabilis (Ceraul et 

al. 2008).  It was demonstrated that in ticks, R. montanensis challenge induced DvKPI gene 

expression, and recombinant exogenously expressed DvKPI controled rickettsial infection in 

DvKPI-expressed L929 cells (Ceraul et al. 2008).  Additionally, recent studies have shown that 

DvKPI potentially associates with rickettsiae and limits rickettsial invasion (Ceraul et al. 2011).  

However, in the current study, at 16 and 184 hpc there was no significant difference in KPI gene 

expression when challenged with Rickettsia.  Another molecule potentially associated with tick 

response to rickettsial infection is GST, which is a major enzyme important in detoxification of 

xenobiotic compounds in both mammals and invertebrates (Torres-Rivera and Landa 2008).  In 

ticks, GSTs are known to associate with acaricide resistance (Rosario-Cruz et al. 2009), blood 

feeding (Anderson et al. 2008), and stress response (Mulenga et al. 2003).  Additionally, in D. 

variabilis infection with Anaplasma marginale (de la Fuente et al. 2007) and R. montanensis 

(Mulenga et al. 2003) resulted in upregulated GST gene expression.  Similar to defensin, D. 

variabilis GSTs have two isoforms; GST1 which is highly expressed in tick midguts, and GST2 

which is mainly expressed in tick ovaries (Dreher-Lesnick et al. 2006).  In this study, only 

challenge with R. amblyommii significantly upregulated GST1 in the tick midguts, suggesting a 

specific tick response to atypical Rickettsia.  Little is known about the role of GST during 
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rickettsial infection, and more studies on the direct interactions between GST and Rickettsia are 

needed to verify the specificity of the expression. 

The limited dissemination and increased immune response associated with atypical 

Rickettsia suggest a molecular basis for vector competence.  Typical Rickettsia, R. montanensis 

and R. rickettsii persistently infected D. variabilis compared to R. amblyommii, atypical 

Rickettsia, and GST1 may play a role in control of the infection of atypical Rickettsia which may 

contribute to the vector competence of ticks for Rickettsia.  However, the molecular function of 

GST1 during rickettsial infection requires further characterization.  Studying vector competence 

of ticks for individual Rickettsia will enhance our understanding of ecology and epidemiology of 

tick-borne rickettsioses in nature. 
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CHAPTER 4 

FUNCTIONAL CHARACTERIZATION OF DERMACENTOR VARIABILIS 

GLUTATHIONE S-TRANSFERASE IN RESPONSE TO RICKETTSIAL INFECTION 

 

4.1. Introduction 

 Ticks are the only vectors of spotted fever group (SFG) Rickettsia which are obligate 

gram negative intracellular bacteria belonging to the genus Rickettsia.  In nature, ticks are not 

only disease agent vectors, but also reservoir hosts which can maintain rickettsial infection via 

horizontal and vertical transmission.  However, the capability of an individual tick species to 

sustain a particular rickettsial species is known to be limited.  In order to understand such a 

specific interaction, many studies have identified tick molecules which were differentially 

expressed during rickettsial infection (Macaluso et al. 2003a, 2003b, 2006).  Tick immune-like 

molecules have primarily been examined due to their direct effect and immediate response 

during microbe challenge (Ceraul et al. 2003, 2008, 2011; Johns et al. 2001a, 2001b; Simser et 

al. 2004); however, the specificity of tick immune-like molecules in response to rickettsial 

infection has not been studied. 

Data presented in Chapter 3, described a specific tick immune-like molecule, glutathione 

S-transferase1 (DvGST1) that only responds to infection with atypical Rickettsia, Rickettsia 

amblyommii, in Dermacentor variabilis midgut.  The significant upregulation of DvGST1 gene 

expression is observed at 184 hours post-challenge in R. amblyommii-challenged ticks compared 

to unchallenged and R. montanensis-challenged ticks; nevertheless, the function of DvGST1 

during rickettsial challenge has not been characterized.  Additionally, in the same experiment, 

the results of rickettsial dissemination demonstrated that only typical Rickettsia (i.e. R. 

montanensis and R. rickettsii) persistently infects D. variabilis. 

Glutathione S-transferases (GST; EC 2.5.1.18) are known as a multifunctional enzyme 
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family (He et al. 1999) that is involved mainly with detoxification of both endogenous and 

xenobiotic compounds (Enayati et al. 2005a, 2005b; Wilce et al. 1995).  In arthropods, GST is 

one of the enzymes associated with pesticide resistance (Sharp et al. 1991) and oxidative stress 

(Kim et al. 2011), and a number of studies have focused on the role of GST in particular 

insecticide resistance (Low et al. 2010; Wang et al. 2008).  Increasing of GST activity in 

arthropods has been shown to be related to acaricide and insecticide resistance (Enayati et al. 

2005).  In D. variabilis, GST was first identified during comparative transcriptional analysis of 

R. montanensis-infected and uninfected tick ovaries using subtractive hybridization (Mulenga et 

al. 2003).  Subsequent examination identified the second isoform of DvGST, and demonstrated 

that DvGST isoform-1 is present in the tick midgut, while DvGST isoform-2 (DvGST2) is found 

in both tick midguts and ovaries (Dreher-Lesnick et al. 2006).  The gene expression of both 

DvGST isoforms is upregulated during bloodfeeding and downregulated when challenged with 

Escherichia coli (Dreher-Lesnick et al. 2006).  Amino acid sequence analysis demonstrated that 

DvGST1 and DvGST2 are similar to mammalian class theta and insect class delta GSTs.  

DvGST1 falls into the same clade as Ixodes pacificus GST, while DvGST2 falls in a separate 

clade (Dreher-Lesnick et al. 2006); however, little is known about the role of DvGST2 during 

rickettsial infection. 

The objectives of this study are to 1) examine effect of DvGST1 on infection of R. 

amblyommii, atypical Rickettsia, in the tick midgut; and, 2) examine DvGST2 gene expression in 

response to atypical and typical rickettsial challenge.  The hypothesis being test is that silencing 

of DvGST1 gene results in increased R. amblyommii infection in D. variabilis, and DvGST2 

differently responses to atypical or typical Rickettsia in tick ovaries.  Studying of the specific 

immune mechanism by ticks to rickettsial infection will provide insight into vector competence 
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of ticks for Rickettsia.  Ultimately, deciphering the basis of vector competence will lead to a 

better understanding of the ecology and epidemiology of tick-borne rickettsioses. 

4.2. Materials and Methods 

4.2.1. Tick and Rickettsia 

Rickettsia-free D. variabilis (Say) were initially provided by Dr. Daniel Sonenshine, Old 

Dominion University.  The tick life cycle is routinely maintained using mice for larval feeding, 

rats for nymphal feeding, and guinea pigs for adult feeding at the School of Veterinary Medicine, 

Louisiana State University.  All tick life cycle stages were maintained in an environmental 

chamber at 27±1C, 87±2% relative humidity (RH), and a 16: 8 (light: dark) cycle.  Prior to 

rickettsial challenge, female ticks were allowed to feed on Hartley guinea pigs (Cavia porcellus) 

for 5 days.  Fed female ticks were forcibly removed and cleaned with 1% bleach, 70% ethanol, 

and distilled H2O.  For RNA-interference mediated gene silencing (RNAi) experiments, ticks 

were first subjected to double-stranded RNA (dsRNA) injection and then allowed to feed on 

Hartley guinea pigs for 5 days.  All animals were handled according to Louisiana State 

University’s Institutional Animal Care and Use Committee regulations.   

Rickettsia amblyommii (Darkwater) provided by Dr. Christopher Paddock and R. 

montanensis (M5/6; Microtus isolate) were maintained and propagated in Vero E6 cells in 

Dulbecco’s modified Eagle’s medium supplemented with 5% heat-inactivated fetal bovine serum 

(FBS; Hyclone) at 34C and 5% CO2.  For rickettsial challenge, infected Vero E6 cells were 

detached and transferred to Erlenmeyer flasks containing sterile 3-mm borosilicate glass beads 

(Sigma), and vortexed at high speed for 3 min.  The cell lysate was filtered through a 2 micron 

(pore size) syringe filter (Millipore).  Viability and enumeration of Rickettsia were assessed by 

staining with a BacLight viability stain kit
 
(Invitrogen), and rickettsiae were counted in a Petroff-
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Hausser
 
bacteria counting chamber (Sunyakumthorn et al. 2008) using a Leica microscope.  The 

rickettsial pellets were resuspended in 1:125 diluted heat-inactivated bovine blood and diluted to 

10
9
 rickettsiae/ml. 

4.2.2. Experimental Design 

Objective 1: examine effect of DvGST1 on the infection of R. amblyommii, atypical 

Rickettsia, in tick midgut.  D. variabilis was used as a tick model for this study.  In order to 

silence the DvGST1 gene in ticks, ticks were injected with DvGST1 dsRNA or negative control 

dsRNA (targeting GFPuv gene).  Gene silencing was confirmed using qRT-PCR and GST 

enzymatic assays.  GST1 silencing ticks were challenged with R. amblyommii.  The diagram of 

experimental design is shown in Figure 4.1.  Two separate experiments were performed. 

Objective 2: examine DvGST2 gene expression in response to atypical and typical 

rickettsial challenge.  In order to determine the response of DvGST2 gene expression to 

rickettsial dissemination during atypical and typical rickettsial infection, three groups of partially 

fed female D. variabilis were capillary fed with R. amblyommii (atypical Rickettsia), R. 

montanensis (typical Rickettsia) and GST2 gene expression in tick tissues was quantified by 

quantitative reverse transcription-PCR (qRT-PCR) assay.  The diagram of experimental design is 

shown in Figure 4.2.  Two separate experiments were performed. 

 4.2.3. Synthesis of dsRNA for RNA Interference  

Total RNA was extracted from tick midguts dissected from three partially fed female D. 

variabilis using RNeasy kit (QIAGEN).  Total RNA was treated with 2 units of DNase (Ambion) 

for 1 h and subjected to cDNA synthesis using an iScript reverse transcription kit (Bio-Rad) 

according to the manufacturer’s protocol.  The cDNA was used for amplification of the target 

gene to generate a template for dsRNA synthesis.  Briefly, in 250 µl reaction volume, 
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Figure 4.1. Diagram of experimental design of objective 1: examine effect of DvGST1 on 

the infection of R. amblyommii, atypical Rickettsia in tick midguts. 
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Figure 4.2. Diagram of experimental design of objective 2: examine DvGST2 gene 

expression in response to atypical (R. amblyommii) and typical (R. montanensis) rickettsial 

challenge. 
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10 µl of a cDNA template was used as a template with DvGSTT7For and DvGST1T7Rev 

primers containing T7 promoter sequence at 5’ end.  The plasmid containing the green 

fluorescent protein (GFPuv) sequence was used as a template for negative control dsRNA using 

GFPuvT7For and GFPuvT7Rev primers.  The dsRNA constructs and primers were designed 

using E-RNAi web application (Arziman 2005; Horn 2010).  All primers are shown in Table 4.1.  

The reaction mixtures were subjected to 1 cycle at 95°C for 3 min; 35 cycles of 95°C for 30 s, 

55°C for 30 s, and 72°C for 45 s; and a final cycle at 72°C for 5 min.  The 537 bp and 540 bp 

PCR products of GST1 and GFPuv, respectively were electrophoresed on 2% agarose gel and 

purified using a Wizard® SV Gel and PCR Clean-Up kit (Promega).  For dsRNA synthesis, two 

micrograms of PCR product were used for each 40-µl reaction using the MegaScript RNAi kit 

(Ambion) according to the manufacturer’s protocol.  After 16 h of incubation at 37°C, the 

dsRNA reaction mixture was treated with 2 units of Turbo DNase (Ambion) at 37°C for 15 min.  

The dsRNA was then purified using an RNeasy kit (QIAGEN).  Briefly, 60 µl of H2O was added 

to 40 µl of dsRNA reaction mixture, and 350 µl of RLT buffer and 250 µl of 100% ethanol were 

added, respectively.  The solution was then applied to a spin column and subjected to 

centrifugation at 12,000 ×g for 15 s.  The column was washed twice with 500 µl of RPE buffer, 

and dsRNA was eluted with 80 µl TE buffer.  The dsRNA concentration was measured using the  

NanoDrop 100 Spectrometer (Thermo Scientific) and adjusted to 2 µg RNA in 1 µl using TE 

buffer prior to the injection. 

4.2.4. RNA Interference-mediated Gene Silencing in Ticks 

 Unfed female D. variabilis were cleaned with 70% ethanol and rinsed twice with water, 

prior to the injection with dsRNA.  Three groups (20 ticks/group) of female ticks were restrained 

ventrally on sticky tape and injected with approximately 1 µl of TE buffer (group 1), negative 
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Table 4.1. Primers used in RNA interference, qRT-PCR, and qPCR assays 

Primer Sequence (5’-3’) Experiment 

DvGST1-416For TATTTCCGGCCAAAGTGGTT qRT-PCR 

DvGST1-590Rev CCCAATCGCTACTCCCAGAG  

DvGST2-484For AAGGCTGGAGCTCCTCATTG qRT-PCR 

DvGST2-600Rev ACAGGGTCCGCTGCAGTATT  

DvGAPDH-926For ACTCCCACAGCAGCATCTTT qRT-PCR 

DvGAPDH-1024Rev TGCTGTAGCCGTACTCGTTG  

DvActin-1424For CTTTGTTTTCCCGAGCAGAG qRT-PCR 

DvActin-1572Rev CCAGGGCAGTAGAAGACGAG  

DvGST1T7For taatacgactcactatagggTCACGTTGCACGACCTTAAC RNAi (dsRNA)  

DvGST1T7Rev taatacgactcactatagggGCCTTCTTGAAACGCTGGTA  

GFPuvT7For taatacgactcactatagggCATGCCATGTGTAATCCCAG RNAi (dsRNA) 

GFPuvT7Rev taatacgactcactatagggGTGTTCAATGCTTTTCCCGT  

OmpBRa477F GGTGCTGCGGCTTCTACATTAG qPCR 

OmpBRa618R CTGAAACTTGAATAAATCCATTAGTAACAT  

RaOmpB_FAM 
FAM/CGCGATCTCCTCTTACACTTGGACAGAAT

GCTTATCGCG/BHQ_1 
 

CRTDv321F AGGAGAAAAGCAAGGGACTG qPCR 

CRTDv 452R CAATGTTCTGCTCGTGCTTG  

DvCRT_TYE665 
TYE665/TGGAGAAGGGCTCGAACTTGGC/IAbRQ

Sp 
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control dsRNA (2 µg/µl) (group 2), or GST1 dsRNA (2 µg/µl) (group 3) at the area between 

Coxa I and basis capituli using a 5 µl glass syringe attached an 1-inch 33-gauge needle 

(Hamilton).  The injected ticks were kept in the environmental chamber overnight, and surviving 

ticks were allowed to feed on guinea pigs the next day. 

4.2.5. Gene Expression of DvGST1-silenced Ticks 

In order to evaluate whether the dsRNA injection decreased the mRNA expression of 

GST1 gene, at 2 days post-feeding (dpf), 5 ticks form each group were forcibly removed from 

guinea pigs.  The tick midguts were dissected and kept in RLT buffer (QIAGEN) at -80°C until 

used for RNA isolation.  At 5 dpf, all ticks were forcibly detached from guinea pigs, and five 

ticks from each group were dissected.  The remaining ticks were kept in the environmental 

chamber, and at 9, and 13 dpf, 5 ticks were dissected and midguts collected.  Total RNA was 

extracted from tick midguts using the RNeasy kit (QIAGEN) and subjected to qRT-PCR assay 

using GST1 primers as shown in Table 4.1. 

4.2.6. Glutathione S-transferase Enzymatic Assay 

 In order to validate whether DvGST1 protein was impacted in the midgut of DvGST1 

dsRNA-injected ticks, 30 unfed ticks were injected with negative control dsRNA (15 ticks) or 

GST1 dsRNA (15 ticks) and fed on guinea pigs as described above.  At 5 dpf, midguts were 

dissected from each tick and homogenized in 40 µl of GST sample buffer (BioVision) using 

plastic pestles.  The tick midgut lysate was sonicated in an ice-bath sonicator (Crest Ultrasonic) 

for 30 min and centrifuged at 16,000 ×g at 4 °C for 30 min.  The supernatant was transferred to a 

new tube, and protein concentration was determined using the Bradford protein assay (Bio-Rad). 

The tick midgut supernatant was diluted 1:10, and protein concentration was calculated using a 

BSA protein standard curve.  
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Protein (100 µg) from each sample was subjected to an enzymatic assay using a GST 

colorimatric activity assay kit (BioVision) according to the manufacturer’s protocol.  Reaction 

components including 1-Chloro-2, 4-dinirobenzone (CDNB), L-glutathione reduced (G-SH), and 

GST samples were prepared in 96-well plates, mixed, and gently shaken for 10 sec (Habig et al. 

1974).  The increased rate of a reaction product, glutathione-2, 4-Dinitorbenzene (G-SDNB), was 

determined by measuring absorbance at 340 nm every minute for 6 time points using a 

SpectraMax M2 microplate reader (Molecular Devices).  The calculation of DvGST1 Vmax was 

calculated from the slope of the steepest line segment using SoftMax Pro software (Molecular 

Devices). 

4.2.7. Rickettsial Challenge of DvGST1-silenced Ticks 

 To determine the effect of DvGST1 during rickettsial infection, DvGST1-silenced ticks 

were challenged with R. amblyommii.  Two groups (16 ticks/group) of unfed female ticks were 

injected with negative control dsRNA (group 1, 8 ticks) or DvGST1 dsRNA (group 2, 8 ticks) 

and allowed to feed on guinea pigs for five days.     

 At 5 dpf, 3 ticks from each group were dissected and midguts were collected for qRT-

PCR assay in order to confirm gene silencing of the DvGST1 gene in the tick population.  Ticks 

(n = 5) were then capillary fed with R. amblyommii (10
9
rickettsiae/ml) through a 50-µl 

microcapillary tube (KIMBLE) and stored in an environmental chamber at 27±1C with 87±2% 

RH.  After 16 h, ticks were washed with 1% bleach for 5 min and 70% ethanol for 5 min and 

rinsed with distilled H2O and PBS.  Tick tissues were recovered for DNA extraction and assessed 

with rickettsial dissemination.  Two individual experiments were preformed. 

4.2.8. Rickettsial Burden in Tick Tissues Using a qPCR Assay 

 In order to determine the rickettsial dissemination and burden in DvGST1-silenced ticks  
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after rickettsial challenge, ticks were dissected and specific tissues (hemolymph, salivary glands, 

midguts, ovaries) were recovered.  Tick tissues were kept in ATL buffer (QIAGEN) for DNA 

extraction.  gDNA from tick tissues was extracted using the DNeasy kit (QIAGEN) and utilized 

in R. amblyommii species-specific (Jiang et al. 2009) and D. variabilis calreticulin qPCR assays 

using a LightCycler® 480 II (Roche).  The PCR reaction reagents were mixed in 96-well plates 

containing 2X LightCycler® 480 Probe Master (Roche), 0.2 µM OmpBRa477F and 

OmpBRa618R primers, 0.3 µM RaOmpB_FAM probes, and 10 µl of cDNA template in a total 

reaction volume of 35 µl.  Ten microlitres of each reaction mixture were transferred into 3 wells 

of a 384-well plate.  All reactions were run with the following program: a pre-incubation step of 

95 °C for 10 min, 45 amplification cycles of 95 °C for 10 sec, 60 °C for 30 sec, and 72 °C for 1 

sec.  All primers and probes are shown in Table 4.1. 

4.2.9. DvGST2 Gene Expression in Response to Rickettsial Challenge  

 To examine the gene expression of DvGST2 during rickettsial challenge, partially fed 

female ticks were divided to four feeding groups (Group1: 1:125 diluted bovine blood, Group 2: 

R. amblyommii, Group 3: R. montanensis and Group 4: combined R. amblyommii and R. 

montanensis).  Ticks were restrained on double-sided adhesive foam in a glass Petri dish and 

allowed to imbibe the feeding medium through a 50-µl microcapillary tube (KIMBLE) for 16 h.  

All ticks were detached from the adhesive form, sterilized by 1% bleach and 70% ethanol, and 

rinsed with distilled H2O and PBS.  Three ticks from each group were dissected to collect 

hemolymph and remove salivary gland, midgut, and ovary tissues (Macaluso et al. 2001).  Tick 

salivary glands, midguts, and ovaries were rinsed in PBS three times to remove hemocytes.  

Dissected tissues from three ticks were pooled into the same tube containing 600 µl of RLT plus 

buffer (QIAGEN) and stored at -80°C until used for nucleic acid isolation. 
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4.2.10. Quantitative Reverse Transcription-PCR (qRT-PCR) of Tick Gene Expression 

Total RNA and gDNA were extracted from dissected tick tissues (hemolymph, salivary 

gland, midgut, ovary) using the ALLPrep DNA/RNA Mini kit (QIAGEN) according to the 

manufacturer’s protocol, treated with 2 units of DNase (Ambion) for 1 h, and purified using the 

RNA cleanup kit (Zymo Research).  Two hundred microgram of DNase-treated RNA was used 

for cDNA synthesis using the iScript reverse transcription kit (Bio-Rad) according to the 

manufacturer’s protocol. 

The PCR component including 2 µl of cDNA template, 2X LightCycler® 480 SYBR 

Green I master (Roche) and 0.1 µM forward and reverse primers in 35-µl final volume was 

mixed in 96-well plates and transferred in triplicate 10 µl reactions on 384-well plates.  The 

qPCR was subjected to 1 cycle at 95°C for 10 min; 45 cycles of 95°C for 15 s, 60°C for 30 s, and 

72°C for 5 s; and a final cycle at 95°C for 5 sec and 65°C for 1 min and performed with a 

LightCycler® 480 II (Roche).  Gene expression for actin and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) genes were used as reference genes in order to normalize the cDNA 

template.  Gene expression analysis was done using LightCycler® 480 (1.5.0) software (Roche) 

using advanced relative quantification analysis (Efficiency method, a modified ∆∆CT method, 

Roche).  The relative gene expression of control unchallenged ticks was used to normalize those 

of Rickettsia-challenged ticks to generate the fold difference.  Tick gene specific primers are 

listed in Table 4.1.   

4.2.11. Statistical Analysis 

 Prism GraphPad software (version 5) was used to examine the differences in gene 

expression and GST enzymatic activity.  Analysis of variance was used to examine potential 

differences between the four groups of ticks (unchallenged, R. amblyommii-challenged, R. 
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montanensis-challenged, and R. amblyommii and R. montanensis-challenged) and three groups of 

ticks used in RNAi (TE buffer-, negative control dsRNA-, and DvGST1 dsRNA-injected ticks).  

When overall significance was found, Tukey’s multiple comparison post-hoc test was used to 

determine pair-wise differences.  The unpaired t-test was used to analyze significant differences 

between negative control dsRNA- and DvGST1-injected ticks.  All bioassays were done two 

times and all results are presented as the mean ± SEM, and a P value of ≤ 0.05 was considered 

significantly difference. 

4.3. Results 

4.3.1. DvGST1 Silencing in Dermacentor variabilis 

 To knockdown DvGST1 gene expression, DvGST1 dsRNA was injected into female D. 

variabilis, and injected ticks were allowed to feed on guinea pigs.  At 2 dpf, 5 ticks were forcibly 

detached from the guinea pigs and midguts were recovered and pooled for transcriptional 

analysis.  The remaining ticks were allowed to feed until day 5.  Five ticks from each group were 

dissected at 5, 9, and 13 dpi, and qRT-PCR assay was used to determine the DvGST1 mRNA 

expression.  The results demonstrated that mRNA expression of DvGST1 in DvGST1 dsRNA-

injected tick began to significantly decrease at 5 dpf compared to TE and negative dsRNA–

injected ticks, and stayed to that level until day 13 (Figure 4.3).  At 9 dpf decreasing of DvGST1 

mRNA level in DvGST1 dsRNA-injected ticks was significantly different from negative 

dsRNA- injected ticks but not TE-injected ticks.  There was no significant difference of DvGST1 

mRNA expression among injected ticks at 13 dpf. 

4.3.2. GST Activity in GST1-silenced Dermacentor variabilis 

In order to verify if the GST1 protein expression was modified in GST1-silenced ticks, 

tick midgut protein from GST1-silenced ticks were extracted and a GST enzymatic assay was 
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Figure 4.3. Silencing of Dermacentor variabilis GST1 gene in tick midguts.  Unfed female D. 

variabilis was injected with negative control (GFPuv) and DvGST1 dsRNAs and allowed to feed 

on guinea pigs for 2-5 days.  At 2, 5, 9, and 13 days post-feeding (dpf), tick midguts were 

recovered and performed qRT-PCR assay to determine the DvGST1gene expression.  Data 

represent mean ± SEM.  Each symbol represents one tick (n = 5).  The asterisk indicates 

significant difference (P ≤ 0.05). 
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performed.  A significant decrease of Vmax values indicating G-SDNB, a GST-conjugated 

product, was observed in DvGST1 dsRNA-injected ticks, compared to negative control dsRNA-

injected ticks, confirmed that the silencing of GST1 gene using dsRNA injection resulted in 

decreased GST1 function in tick midgut (Figure 4.4).  

4.3.3. Effect of Tick GST1 Silencing in Response to Rickettsial Infection in Dermacentor 

variabilis 

 

 In order to determine the effect of DvGST1 during atypical rickettsial infection, unfed 

female D. variabilis was injected with negative control dsRNA or DvGST1 dsRNA and 

challenged with R. amblyommii.  Prior to rickettsial challenge, injected ticks were allowed to 

feed on guinea pigs for five days.  The ticks were detached from guinea pigs and the silencing of 

DvGST1 gene expression in tick midguts was determined using a qRT-PCR assay.  A significant 

decrease in DvGST1 mRNA level of DvGST1 dsRNA-injected ticks was identified, and 

compared to negative control dsRNA-injected ticks (Figure 4.5). 

Negative control and DvGST1 dsRNA-silenced ticks were challenged with R. 

amblyommii for 16 h in environmental chamber.  Challenged ticks were dissected, and rickettsial 

burden in tick tissues was determined using a qPCR assay.  In experiment one, 80% (4/5) of the 

ticks from the negative control dsRNA-injected group were infected with R. amblyommii and 

60% (3/5) of the DvGST1 dsRNA-injected ticks were infected with R. amblyommii.  In 

experiment two, 40% (2/5) of the negative control dsRNA-injected ticks and 80% (4/5) of the 

DvGST1 dsRNA-injected ticks were infected with R. amblyommii (Table 4.2).  The infection of 

specific tick tissues was independent of the treatment as tick ovaries from negative control 

dsRNA-injected ticks but not DvGST1 dsRNA-injected ticks in both experiment 1 and 

experiment 2 were infected with R. amblyommii.  Conversely, R. amblyommii infection was  
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Figure 4.4. GST enzymatic assay of GST1-silenced Dermacentor variabilis. Unfed female D. 

variabilis was injected with negative control (GFPuv), n = 10 and DvGST1 dsRNAs, n = 13 and 

allowed to feed on guinea pigs for 5 days.  Tick midguts were dissected and performed protein 

extraction.  One hundred microgram of tick midgut protein extract was subjected to GST 

enzymatic assay to determine DvGST1 activity.  Data represent mean ± SEM.  Each symbol 

represents one tick.  The asterisk indicates significant difference (P ≤ 0.05). 
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Figure 4.5. Confirmation of DvGST1 silencing in dsRNA-injected ticks. Silencing of 

DvGST1 genes was confirmed in DvGST1dsRNA-injected ticks using a qRT-PCR assay prior to 

rickettsial challenge.  Data represent mean ± SEM.  Each symbol represents one tick (n = 3).  

The asterisk indicates significant difference (P ≤ 0.05). 
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Table 4.2. Copy number of rickettsial outer membrane protein B gene relative to 10
8 

copies 

of tick calreticulin gene in DvGST1-silienced ticks.  DvGST1-silenced ticks or the negative 

control dsRNA-injected ticks were challenged with R. amblyommii for 16 h.  Tick tissues were 

recovered and subjected to a qRT-PCR assay (shade boxed represent infected ticks) 

 

Gene silencing ticks 
Group 1 

Negative control dsRNA-injected ticks 

Group 2 

GST1 dsRNA-injected ticks 

Experiment 

one 

Tick tissue 1 2 3 4 5 6 7 8 9 10 

HL  
1.0E+07 2.4E+06 4.0E+06 3.2E+06 

 
1.0E+06 3.1E+06 1.5E+06 

 

SG           

MG    
1.3E+05 

      

OV    
3.7E+05 

      

Experiment 

two 

Tissue 1 2 3 4 5 6 7 8 9 10 

HL    
2.0E+07 1.8E+06 1.6E+06 

   
4.5E+06 

SG        
7.9E+04 

  

MG    
2.0E+05 

    
1.2E+06 

 

OV    
1.6E+07 

      
HL = hemolymph 

SG = salivary gland 

MG = midgut 

OV = ovary 
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detected in salivary glands of DvGST1 dsRNA-injected ticks, but not negative control dsRNA-

injected ticks. 

4.3.4. DvGST2 Gene Expression in Response to Rickettsial Challenge  

 In order to determine whether DvGST2 is a specifically response to R. amblyommii 

challenge, similar to DvGST1, partially fed female ticks were challenged with R. amblyommi, R. 

montanensis, or combined R. amblyommii and R. montanensis.  Total RNA was extracted from 

tick tissues and subjected to qRT-PCR assay using DvGST2 primers.  The results demonstrated 

that DvGST2 is constitutively expressed in tick ovaries, and the DvGST2 gene expression was 

low in tick salivary glands and undetectable in tick hemolymph and midgut.  Consequently, data 

shown is only from tick ovaries, and there is no difference of DvGST2 expression during 

rickettsial challenge (Figure 4.6). 

 4.4. Discussion 

 A number of tick-derived immune-like molecules have been identified from Rickettsia-

infected ticks using differential expression analysis.  In Chapter 3, a specific association of tick 

molecules and atypical rickettsial infection was identified.  DvGST1 was shown to be responsive 

to infection with R. amblyommii, an atypical Rickettsia for that tick host species.  In order to gain 

insight into specific mechanism of GSTs in D. variabilis during rickettsial infection, the present 

study examines the functional activity of DvGSTs.  The gene expression of DvGST2, the second 

isoform in tick ovaries, in D. variabilis was not altered during rickettsial challenge.  RNAi-

mediated gene silencing of DvGST1 resulted in a significant decrease in DvGST1 transcript in 

D. variabilis midguts.  Additionally, GST activity in tick midguts was also decreased 

significantly, compared to negative control ticks when the gene was silenced.  However, using 

RNAi-mediated DvGST1 silencing demonstrated no difference in rickettsial infection between  



132 
 

 

Figure 4.6. Dermacentor variabilis GST2 gene expression in response to rickettsial 

challenge. Total RNA was extracted from tick ovaries and assayed by qRT-PCR assay.  

Transcription level of tick immune genes was normalized to actin and glyceraldehyde 3-

phosphate dehydrogenase transcripts.  Data shown are fold difference relative to unchallenged 

ticks.  Error bar represents standard error of means (SEM).  The bars with same letter are not 

significantly different (P ≤ 0.05).  Control: unchallenged tick, Ra: R. amblyommii-challenged 

ticks, Rm: R. montanensis-challenged ticks, RaRm: combined R. amblyommii and R. 

montanensis-challenged ticks. 
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negative control and DvGST1 dsRNA-injected ticks.  Surprisingly, R. amblyommii was detected 

in tick ovaries when ticks are injected with negative control dsRNA (GFPuv). 

GSTs are multifunctional enzymes, and their isoforms have distinct function (Rosa de 

Lima et al. 2002) including intracellular transportation, digestive processes, and prostaglandin 

synthesis.  Most ticks have more than one isoform of GST; however, their function has not been 

well-defined.  One isoform of GST was identified from Haemaphysalis longicornis and 

Rhipicephalus appendiculatus (da Silva, Jr. et al. 2004), and there are two GSTs (He et al. 1999; 

Rosa de Lima et al. 2002) in Boophilus microplus.  Additionally, tissue-specific isoforms have 

been described as a single isoform and were identified in B. microplus larvae and a second 

isoform was identified from adult salivary glands; however, their function has not been 

characterized (da Silva, Jr. et al. 2004).  In D. variabilis, two isoforms were identified from 

midguts and ovaries (Dreher-Lesnick et al. 2006), and the current study demonstrated that both 

isoforms may have a different function.  In Chapter 3, DvGST1 in tick midgut specifically 

responded to atypical Rickettsia and may play a role in controlling rickettsial infection, while 

DvGST2 in tick ovaries was not responsive to rickettsial infection and may be involved in tick 

oogenesis (Dreher-Lesnick et al. 2006). 

 In ticks, RNAi-mediated gene silencing has been used widely to functionally characterize 

the influence of genes of interest in many circumstances such as bloodfeeding (Mulenga and 

Khumthong 2010a, 2010b), pathogen invasion (Ceraul et al. 2011), and pathogen transmission 

(Dai et al. 2010).  In this study, RNAi was used to silence DvGST1 gene expression in D. 

variabilis.  The gene expression of DvGST1 began to decrease at 5 dpf and stayed to that level 

until day 13; however, only at 5 and 9 dpf was DvGST1 gene expression was significantly 

decreased compared to TE- and negative control dsRNA-injected ticks.   Decrease of gene 
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transcription in those control ticks may be due to the fact that after 5 dpf all ticks were removed 

from guinea pigs and kept in an environmental chamber; therefore, there may have been a 

decrease in metabolism such as lipid and protein synthesis in order to maintain energy when 

food/nutrients are limited. 

When the target and control dsRNA-injected ticks were challenged with R. amblyommii 

there was no difference in rickettsial infection between the two groups.  In contrast, 20% of the 

tick ovaries from GFPuv dsRNAs-injected ticks were infected with R. amblyommii.  This 

suggested that the injection of GFPuv, but not DvGST1, dsRNAs facilitated rickettsial infection 

in tick ovaries.  This may be the off-target effect of dsRNA of GFPuv which generates many of 

small interfering RNAs (siRNA), and those siRNAs may non-specifically interfere with the gene 

expression of tick molecules that are related to rickettsial control; however, this requires further 

examination.  The unexpected effect of pathogen infection in D. variabilis using RNAi has been 

shown previously in defensin1-silenced ticks (Kocan et al. 2008) in which it was expected that 

silencing of defensin1 gene expression would result in an increase of Anaplasma marginale 

infection in ticks.  However, it was reported that D. variabilis males injected with defensin1 

dsRNA and challenged with A. marginale had a significant reduction of A. marginale organisms 

in those defensin1 silenced ticks suggesting a role of defensin in A. marginale infection and 

replication (Kocan et al. 2008).  The alternative explanation is that the off-target effect of dsRNA 

results in unexpected changes of the gene expression of off-target genes (Kocan et al. 2008).  

RNAi using long dsRNAs (300-800 bp) was commonly used previously in Drosophila 

melanogaster and Caenorhabditis elegans (Seinen et al. 2010), and is considered a very 

powerful method; however, using long dsRNAs increases the risk of off-target effects (Seinen et 

al. 2010).  A number of RNAi studies report a drawback of RNAi by off-target effect 
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 which cannot be ignored (Seinen et al. 2010); thus, this needs consideration in interpretation of 

data.   

 Characterization of D. variabilis GSTs in response to atypical rickettsial infection  

suggested a different role for the two GST isoforms.  DvGST1, midgut isoform, specifically 

responded to atypical rickettsial infection while DvGST2, ovary isoform, did not.  Functional 

study of DvGST1 using RNAi demonstrated that silencing of DvGST1 had no effect on atypical 

rickettsial infection compared to negative control ticks which appeared to have an off-target 

dsRNA effect.  In order to verify and further characterize the function of DvGST1 in D. 

variabilis, alternative methods to fully understand this interaction are needed.  Studying the 

molecular mechanisms of tick immune molecules and Rickettsia will lead to a better 

understanding of vector competence of ticks for Rickettsia. 
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CHAPTER 5 

DISCUSSION OF RESULTS AND FUTURE DIRECTIONS 

 

5.1 Discussion of Results and Future Directions 

 

 Ticks are second only to mosquitoes as disease vectors, which can transmit a variety of 

pathogens to humans and animals, for example, viruses, bacteria, and fungi (Sonenshine 1993).  

In the United States, Lyme disease is the most common vector-borne disease; however, an 

increase of tick-borne rickettsial diseases has also been reported in North America, South 

America, and Europe (Dumler 2010).  A recent report by the Center for Disease Control and 

Prevention documents a continuous increase in tick-borne rickettsioses since 1998, and up to 

2,500 cases of Rocky Mountain spotted fever (RMSF) (Dumler 2010).  However, field surveys 

for the disease agent, Rickettsia rickettsii, in arthropod vectors including Dermacentor ticks 

demonstrate very low prevalence of infection even in endemic areas (Ammerman et al. 2004; 

Stromdahl et al. 2010).  Additionally, a recent outbreak of RMSF resulted in the identification of 

a previously unrecognized vector of R. rickettsii, Rhipicephalus sanguineus, suggesting a more 

complex transmission cycle of RMSF in the United States.  The confounding factors of limited 

prevalence of R. rickettsii in foci of RMSF and recognition of new arthropod vectors demand a 

fresh look at the interaction between ticks and Rickettsia.  Thus, in order to better understand the 

ecology and epidemiology of tick-borne rickettsioses the overall goal of this study was to 

delineate mechanisms of vector competence of ticks for Rickettsia.  Towards this objective, 

experiments were designed to assess tick response to rickettsial infection (atypical and typical 

Rickettsia) and identify/characterize the key tick-derived molecules that mediate the specificity 

of the tick/Rickettsia interaction.  

For spotted fever group (SFG) Rickettsia, ticks are not only horizontal transmission 

vectors but also reservoir hosts which can maintain Rickettsia via vertical transmission.  In the 
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United States, the distribution of most SFG Rickettsia is limited to the distribution of the 

principle tick host; thus the vertical maintenance of SFG Rickettsia is thought to be specific.  To 

elucidate the molecular mechanisms of the tick/Rickettsia relationship, many studies have 

identified tick-derived molecules that are differentially expressed during rickettsial infection.  

Identified tick molecules have been classified by their predicted functions, for example, 

receptor/adhesion, tick immune and stress response, and tick-host interaction proteins (Macaluso 

et al. 2003, 2006; Mulenga et al. 2003).  Prior to the current study, functional characterization of 

these putative tick proteins, as they relate to vector competence, has not been identified.   

Dermacentor variabilis α-catenin (Dvα-catenin) was previously demonstrated to be 

upregulated in ovaries of ticks chronically infected with Rickettsia montanensis, compared to 

uninfected ticks (Macaluso et al. 2003, 2006).  Alpha-catenin is a known cytoskeleton protein 

that forms E-cadherin-dependent cell-cell adhesion complex via β-catenin and also binds actin 

filament (Hartsock and Nelson 2008).  Therefore, it is speculated that Dvα-catenin may play a 

role in actin rearrangement during rickettsial infection.  In the current study, to begin the 

characterization of the role of Dvα-catenin in rickettsial infection, full-length Dvα-catenin cDNA 

was cloned and expressed in a Baculovirus expression system.  Comparative sequence analysis 

demonstrated that this novel sequence was most similar to Ixodes scapularis α-catenin and is 

conserved among many species.  A portion of Dvα-catenin is homologous to the vinculin 

conserved domain containing a putative actin binding region at the C-terminus and a β-catenin 

binding and dimerization regions at the N-terminus.  Quantitative RT-PCR and western blot 

analysis demonstrated that Dvα-catenin was predominantly expressed in tick ovaries compared 

to other tick tissues.  In order to determine the specific response of Dvα-catenin gene expression 

to atypical (R. amblyommii) and typical (R. montanensis) Rickettsia in a tissue-specific manner, 
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an ex vivo study of tick tissues (backless tick culture) was developed due to a lack of specific tick 

tissue cell lines.  Dvα-catenin gene expression was significantly downregulated at 12 hours post-

inoculation in R. montanensis- but not in R. amblyommii-infected ovaries compared to control 

unexposed ticks, suggesting a specific response of the tick to specific rickettsial species.  This 

study demonstrated that utilizing backless tick culture was viable for tissue-specific analysis in 

ticks; however, the incubation times are limited due to the nature of cell viability and 

contamination issues.  Therefore, it is difficult to examine rickettsial multiplication and 

dissemination in tick tissues using backless tick culture; however, the acute response to 

rickettsial infection is measurable. 

Ticks acquire rickettsial infection while taking bloodmeal, which can take several days 

for female ticks and other immature life cycle stages (Sonenshine 1993).  During bloodmeal 

acquisition, tick midgut which is the first site of contact, encounters both the ingested bloodmeal 

and also any microbes in the host blood.  Global gene expression analysis of D. variabilis midgut 

during bloodfeeding has demonstrated that the expression profile in tick midgut dramatically 

changes beginning at day 2 and extends through day 6 (Anderson et al. 2008).  Most transcripts 

were identified as proteins likely related to bloodmeal digestion including oxidative stress 

reduction/detoxification enzymes, peptidase inhibitors, protein digestion enzyme, 

cell/lipid/protein binding proteins, and antimicrobial molecules (Anderson et al. 2008).  

Similarly, the current study also demonstrated that at 5 day post-feeding (5 dpf) selected tick 

immune gene expression was upregulated, with the exception of lysozyme.  However, in this 

study there was only one time point collection (5 dpf); therefore, the dynamics of gene 

expression of tick midgut during bloodfeeding were not fully defined.   

The current study is the first to examine the dissemination of atypical and typical  
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Rickettsia using the capillary feeding technique (CFT), an artificial infection system that is 

similar to the natural route of rickettsial infection acquired from vertebrate hosts.  Using 

Rhodamine B as a biomarker to evaluate the efficacy of CFT, demonstrated that 70% of ticks 

ingested the feeding medium.  Although the volume uptake by ticks was variable, ranging 

between 0.06 and 6.77 µl (Macaluso et al. 2001); CFT has provided an effective artificial feeding 

system for a number of studies examining tick and Rickettsia interactions (Ceraul et al. 2007, 

2008, 2011; Macaluso et al. 2003).  Rickettsia-free female D. variabilis were challenged with R. 

amblyommii, R. montanensis, R. rickettsii, or a combination of R. amblyommii and R. 

montanensis using CFT for 16 h.  Persistent infection of typical Rickettsia (i.e. R. montanensis 

and R. rickettsii) but not atypical Rickettsia (i.e. R. amblyommii), was observed and only R. 

montanensis disseminated to tick ovaries, a prerequisite for vertical transmission.  Interestingly, 

the data suggested that at16 hours post-challenge (hpc), the tick ovaries were infected with R. 

montanensis; however, the rickettsial infection of tick ovaries was not persistent as no rickettsial 

infection was detected in tick ovaries at later time points through 184 hours.  The biological 

significance of these findings is not clear and the mixed results may be due to the limitation of 

tick artificial feeding.  In nature, female ixodid ticks take several days to complete their 

bloodmeal, but in this study ticks were allowed to feed through capillary glass tube for only 16 h.  

The differences in feeding duration between natural feeding and CFT, including physiological 

differences associated with ovarian development, make the comparison between rickettsial 

dissemination ex vivo and rickettsial infection of ticks in nature difficult.  Nevertheless, the aim 

of this study was to compare rickettsial dissemination between atypical and typical Rickettsia, 

and there are no laboratory animal models for nonpathogenic Rickettsia (i.e. R. amblyommii, and 

R. montanensis) available.  Therefore, CFT serves as an appropriate tool to capture short 



142 

windows of rickettsial infection.  Inactivation and reactivation of Rickettsia have been previously 

demonstrated in R. rickettsii-infected D. andersoni (Hayes and Burgdorfer 1982) and rickettsial 

activity is likely correlated to tick metabolism (Munderloh and Kurtti 1995); therefore, another 

explanation for non-persistent rickettsial infection in tick ovaries may be due to decreased tick 

metabolism as a means to reserve nutrients during off-host periods (Needham and Teel 1991).  

Thus, the decrease in metabolism in the tick may directly result in decreased rickettsial 

replication and successful dissemination.  Subsequent studies allowing ticks to feed on hosts 

after rickettsial challenging are needed in order to assess rickettsial dissemination and 

amplification during the active feeding period. 

The results of the current study suggest that R. montanensis, a typical nonpathogenic 

Rickettsia, and R. rickettsii, a typical pathogenic Rickettsia, are able to persistently infect D. 

variabilis, compared to atypical Rickettsia.  However, the comparison of rickettsial 

dissemination between typical nonpathogenic and typical pathogenic Rickettsia was not 

determined in the current study.  It has been demonstrated that the infection of nonpathogenic 

SFG Rickettsia, R. peacockii, in D. andersoni blocks transovarial transmission of pathogenic 

Rickettsia, R. rickettsii (Burgdorfer et al. 1981).  However, it is not known whether 

nonpathogenic Rickettsia disseminates better in ticks compared to pathogenic Rickettsia; 

therefore, dual rickettsial challenge with combined R. montanensis and R. rickettsii needs to be 

examined. 

 In addition to rickettsial dissemination, the current study is also the first demonstration of 

specific tick response to atypical and typical rickettsial infection.  Tick transcription of immune-

related molecules was assessed simultaneously with rickettsial dissemination analysis.  

Comparative analysis of four target tick immune factors including defensin1, lysozyme, 
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glutathione S-transferase1 (DvGST1), and Kunitz protease inhibitor (KPI) were examined in R. 

amblyommii-, R. montanensis-, R. rickettsii-, and combined R. amblyommii and R. montanensis- 

challenged ticks compared to unchallenged ticks.  The results demonstrated that only DvGST1 

gene expression was specifically upregulated in response to atypical rickettsial challenge in the 

tick midgut at 184 hpc.  It would be interesting to examine the DvGST1 expression in response 

to other atypical rickettsial species, for example, R. parkeri.  Ticks may or may not respond in 

the same way, and it is not known how a tick recognizes atypical Rickettsia.  In order to fully 

understand the specific interaction between ticks and Rickettsia, rickettsial factors facilitating 

tick infection should be identified and it should be determined if these factors are SFG species-

specific.  Likewise, it is realized that the current study examined a limited set of target 

molecules.  While there is a logical progression towards the selection of target genes in the 

current study, global gene expression via transcriptional analysis using a mRNA microarray is 

required to better characterize the specificity of the tick response.  However, due to the ongoing 

D. variabilis genome project (Pagel Van et al. 2007) it is not possible to do mRNA microarray 

for D. variabilis at this time.   

Glutathione S-transferases are multifunctional enzymes that play a role in endogenous 

and xenobiotic detoxification (Enayati et al. 2005; Wilce et al. 1995).  In arthropods, their 

association with pesticide resistance is well-studied (Mounsey et al. 2010; Sharp et al. 1991).  In 

D. variabilis, GST (DvGST1) activation in response to atypical rickettsial infection was 

observed in the current study.  However, a second isoform, DvGST2, which is highly expressed 

in tick ovaries was not responsive to rickettsial challenge.  In the current study, the functional 

characterization of DvGST1 was examined using RNA inference (RNAi).  In treated ticks, 

mRNA expression analysis and enzymatic assays demonstrated significant reduction of DvGST1 
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transcription and enzymatic activity, compared to negative control ticks.  However, when 

dsRNA-injected ticks were challenged with R. amblyommii, 60% and 70% of negative control 

and DvGST1-silenced ticks are infected with, respectively, making it difficult to unequivocally 

implicate this molecule in rickettsial infection.  Interestingly, in the negative control group, R. 

amblyommii was able to disseminate to tick ovaries which might be due to the off-target effect of 

GFPuv dsRNA which was used as a negative dsRNA.  Therefore, a new negative control 

dsRNA, not displaying an off-target effect, is needed and the bioassays repeated.  Alternatively, 

in order to further examine the effect of DvGST1 during atypical rickettsial infection, a 

DvGST1-expressing cell line can be utilized to assess the influence of DvGST1 on survival and 

growth of atypical Rickettsia. 

The increasing reports of RMSF cases (Dumler 2010) is in contrast to the very low 

prevalence of R. rickettsii-infected Dermacentor ticks in nature (Ammerman et al. 2004; 

Stromdahl et al. 2010), thus, the confounding principles of tick-borne rickettsial diseases should 

be better defined.  Likewise, the study of tick/Rickettsia relationships is needed in order to better 

understand ecology and epidemiology of tick-borne rickettsioses.  The research in this 

dissertation sought to identify and delineate some specific mechanisms of the tick during 

rickettsial infection that may contribute to vector competence for Rickettsia.  Using novel or 

modified bioassays, several aspects of the relationship were examined.  Results of the current 

study suggest that Dvα-catenin may play a role in controlling rickettsial infection in tick ovaries.  

Also, rickettsial dissemination in ticks favors typical Rickettsia (i.e. R. montanensis and R. 

rickettsii) resulting in persistent infection of D. variabilis.  During rickettsial challenge, DvGST1 

was specifically upregulated in response to atypical Rickettsia suggesting a role of DvGST1 in 

controlling atypical rickettsial infection; however, the function of DvGST1 has to be further 
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characterized.  This current study has identified and characterized tick molecular candidates that 

may play an important role in rickettsial infection and contribute to vector competence of the tick 

for SFG Rickettsia. 
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APPENDIX A 

COMMONLY USED ABBREVIATIONS 

 

AG – Ancestral group  

AMP – Antimicrobial peptide 

Arp2/3 – Actin related protein 2/3 

cDNA – Complementary DNA 

CDNB – 1-Chloro-2, 4-dinitrobenzene 

CFT – Capillary feeding technique 

CRT – Calreticulin 

CT – Threshold cycle 

Da - Dalton 

DEPC – Diethylpyrocarbonate 

DNA – Deoxyribonucleic acid 

dpf – Days post-feeding 

dsRNA – Double-stranded RNA 

EspB – E. coli secreted protein B 

F-actin – Filamentous actin 

FAK – Focal adhesion kinase 

FAM – Fluorescein amidite 

FBS – Fetal bovine serum 

GAPDH – Glyceraldehyde 3-phosphate dehydrogenase  

gDNA – Genomic DNA 

GFP – Green fluorescent protein 

G-SDNB – Glutathione-2, 4-Dinitrobenzene 

G-SH – L-glutathione reduced 

GSP – Gene specific primer 

GST – Glutathione s-transferase 
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HEX – Hexachloro-fluorescein 

HGA – Human granulocytic anaplasmosis 

HME – Human monocytic ehrlichiosis 

hpc – Hours post-challenge 

hpi – Hours post-inoculation 

HSD – Honestly significant difference 

IAFGP – Ixodes scapularis antifreeze glycoprotein 

ISE6 – Ixodes scapularis cell line 

KPI – Kunitz protease inhibitor 

Ku70 - subunit of DNA-dependent protein kinase 

LPS - lipopolysaccharide 

LSU – Louisiana State University 

MAPK – Mitogen activated protein kinase 

MOI – Multiplicity of infection 

mRNA – Messenger RNA 

MSF – Mediterranean spotted fever 

NP-40 – Nonidet P40 

N-terminus – Amino-terminus 

ODU – Old Dominion University 

OmpA – Outer membrane protein A 

OmpB – Outer membrane protein B 

PBS – Phosphate buffered saline 

PCR – Polymerase chain reaction 

PGRP – Peptidoglycan recognition protein 

PIC – Protease inhibitor cocktail 

PM – Peritrophic membrane 

PPR – Pattern recognition receptor 
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PVDF – Polyvinylidene fluoride 

PWV – Powassan virus 

qRT-PCR – Quantitative reverse transcriptase PCR 

RACE – Rapid amplification of cDNA ends 

RH – Relative humidity 

RMSF – Rocky Mountain spotted fever 

RNA – Ribonucleic acid 

RNAi – RNA interference 

SDS-PAGE – Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM – Standard error of means 

SFG – Spotted fever group 

TBRD – Tick-borne rickettsial diseases 

TBST – Tris-buffered saline containing Tween-20 

TE – Tris-EDTA 

TG – Typhus group 

TRG – Transitional group 

W/V – Weight/volume 
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APPENDIX B 

REAGENTS AND PROTOCOLS 

 

1. Cell culture media and reagents 

1.1 Mineral stock A ( 100 ml) 

Dissolve the following component in 90 ml Milli-Q water, bring final volume to 100 ml, 

aliquot and store at -20°C. 

Mineral Stock A component Amount 

CoCl2.6H2O 0.020  g 

CuSO4.5H2O 0.020  g 

MnSO4.H2O 0.160  g 

ZnSO4.7H2O 0.200   g 

 

1.2 Mineral stock B (100 ml) 

Dissolve 0.02 gram of NaMoO4.2H2O in 100 ml Milli-Q water, aliquot and store at -

20°C. 

1.3 Mineral stock C (100 ml) 

Dissolve 0.02 gram of Na2SeO3 in 100 ml Milli-Q water, aliquot and store at -20°C. 

1.4 Mineral stock D (50 ml) 

Dissolve the following in 30 ml Milli-Q water, adjust to50 ml and sterile using filter unit. 

Mineral Stock D component Amount 

L-Ascorbic acid 0.501   g 

L-Glutathione acid 0.512   g 

FeSO4.7H2O 0.028   g 

Mineral stock A 0.5     ml 

Mineral stock B 0.5      ml 

Mineral stock C 0.5      ml 
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1.5 Vitamin stock (50 ml) 

Dissolve the following in 30 ml Milli-Q water, adjust to50 ml and sterile using filter unit. 

Mineral Stock D component Amount 

p-aminobenzoic acid 0.100 g 

Cyanocobalamin (B12) 0.050 g 

d-Biotin (SUPELCO) 0.10 g 

1.6 L15B medium (2 liters) 

 The following ingredients are added to a 2 liters volumetric flask containing 

approximately 1600 ml of Milli-Q water. 

L15 medium component Amount 

L15 powder (2 L) 27.84     g 

L-aspartic acid 0.596     g 

L-glutamine 0.584   g 

L-Proline 0.6     g 

L-Glutamic acid 1.0     g 

α-ketoglutaric acid 0.598     g 

D-(+)-glucose 28.821     g 

Mineral solution D 2   ml 

Vitamin solution 2   ml 

* All chemicals are cell culture grade (Sigma)  

 Bring final volume to 2 liters, stir gently for 1.5 h protected from light at room 

temperature. 

 Filter sterile using 0.22 m filter unit (Millipore) and store at 4°C until used. 
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1.7 Complete L15B medium for ISE6 cells 

 Dissolve 1.475 g of Tryptone phosphate broth (BD) in 50 ml of Milli-Q water and 

sterile by autoclaving. 

 Add 10 ml of heat-inactivated FBS (HyClone) and 10 ml of Tryptone phosphate 

broth (BD) in 80 ml of L15B medium described above. 

 Adjust the pH to 7 with 0.6 ml 1 N NaOH 

 Store medium at 4°C. Do not store for more than one month. 
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2. Rickettsia purification using glass beads 

2.1 Rickettsia-infected cells are harvested using a cell scraper. 

2.2 Cell suspension is transferred to an Erlenmeyer flask containing sterile 3-mm borosilicate 

glass beads (Sigma) for 3 min. 

2.3 Cell lystaes are transferred to 50 ml centrifuge tube and centrifuge at 4°C and 300 × g for 5 

min to pellet cellular debris. 

2.4 The supernatants are filtered through a 2-μm-pore-size (Whatman) 
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3. Rickettsia counting 

3.1 lyse cells using a 5CC syringe attached 27 g needle (at least 5 times) 

3.2 Centrifuge at 275 x g at 4
o
C for 10 min. 

3.3 Filter with sterile 2 micron filter (Whatman PURADISC 25 G). 

3.4 Take 100 µl, and transfer to 1.5 ml tube and spin at 16,000 ×g at 4
o
C for 10 min. 

3.5 Resuspend Rickettsia pellet with 500 µl 0.85% NaCl, and spin at 16,000 ×g at 4
o
C for 10 

min. 

3.6 Resuspend in 100 µl 0.85% NaCl and dilute 1:50 and mix 100 µl of cell suspension with 0.3 

µl of dye mixture (LIVE/DEAD BacLight Bacterial Viability Kit, Invitrogen) 

3.7 Incubate in dark for 15 min. 

3.8 Pipet 10 µl to count using Bacteria counting chamber (try to fill whole 10 ul in the chamber). 

Calculation 

Rickettsia/ml     =     (Rickettsial organisms in 5 squares) x 5 x 0.05 x 10
6
 x dilution factor (50) 
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4. Chemiluminescent immunodetection 

4.1 Wash membrane with dH2O at RT on orbital shaker for 10 min. 

4.2 Transfer membrane to 3% BSA in TTBS (0.1 % TWEEN in TBST) at room temperature for 

1 h. 

4.3 Briefly rinse in TBST. Wash membrane 2 times with excess TBST for 10 min/wash. 

4.4 Incubate membrane with 10 ml of a 1:5000 dilution of primary antibody (Mouse polyclonal 

antibody against Dvα-catenin) in TBST for 1 h at room temperature. 

4.5 Briefly rinse in TTBS. Wash membrane 2 times with excess TBST for 10 min/wash. 

4.6 Rinse in dH2O for 2 min, twice. 

4.7 Incubate membrane with 10 ml of goat anti-mouse HRP-conjugated antibody. 

4.8 Briefly rinse in TBST. Wash membrane 3 times with excess TBST for 10 min/wash. 

4.9 Rinse the membrane with dH2O for 2 min twice. 

4.10 Drained excess reagent. Covered blot with clear plastic wrap for 5 min. (SuperSignal
®
 

West Pico Mouse IgG Detection Kit, PIERCE 

4.11 Exposed blot to X-ray Film. 
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