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ABSTRACT 

Environmental contamination with airborne particles has been a human health concern 

for many years.  Epidemiologic studies in urban communities have linked ambient particle 

exposure to various health effects, including chronic obstructive pulmonary disease, lung cancer, 

and several cardiovascular disease conditions.  The pathogenesis of these conditions with respect 

to ambient particle exposure is complex because ambient particles are complex in composition.  

The particles vary greatly in origin, size, surface area, and elemental composition; and a given 

particle type, such as those generated by petrochemical (gasoline, diesel, industrial substrate) 

combustion, may be coated with many other compounds, including polynuclear aromatic 

hydrocarbons (PAHs). 

Our laboratory group had previously characterized the generation of PAHs from 

incomplete combustion of the high volume petrochemical 1,3-butadiene (BD) and briefly 

described the biological effects of BD’s incomplete combustion product, butadiene soot (BDS), 

in vitro.   The studies presented here represent a continuation of these initial studies, where we 

first characterize BDS with respect to particle size distribution and assembly, PAH composition, and 

elemental content of BDS ultrafine particles. We also describe in vitro assays demonstrating that BDS 

ultrafine particles can transport and transfer adsorbed organic constituents directly to target respiratory 

cells, without uptake of the particles by the cells.  Next, we demonstrate that combustion-derived PAHs 

adsorbed onto BDS particles are concentrated in lipid droplets of respiratory system cells and that, in 

vitro, these PAHs activate xenobiotic metabolism pathways.  We also present an in vivo analysis of 

bronchoalveolar lavage fluid (BALF) with inflammatory cell infiltrates, histopathological evidence of 

inflammation and particle retention, and gene expression analysis revealing upregulation of several 

cytokines and AhR-responsive biotransformation enzymes.  Finally, we present ultrastructural evidence 

that BDS particles can be internalized by bronchoepithelial cells in vitro and phagocytosed by alveolar 

macrophages in vivo.  These studies were designed to characterize and promote BDS as both a 
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model mixture and a real-life example of a petrochemical product of incomplete combustion 

with the potential both for environmental contamination and for contributing to health problems. 
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INTRODUCTORY REMARKS 

Environmental contamination with airborne particles has been a human health concern 

for many years (Seaton et al. 1995).  Epidemiologic studies in urban communities have linked 

ambient particle exposure to various health effects, including chronic obstructive pulmonary 

disease, lung cancer, and even heart failure (Dominici et al. 2006; Pope, III et al. 2002).  The 

pathogenesis of these conditions is complex because ambient particles are complex in 

composition.  For example, the particles vary greatly in origin, size, surface area, and elemental 

composition; plus a given particle type, such as those generated by petrochemical (gasoline, 

diesel, industrial substrate) combustion, may be coated with many other compounds, including 

polynuclear aromatic hydrocarbons [PAHs] (Lighty et al. 2000).   

Two examples of petrochemical combustion-derived particulate mixtures that have been 

the subject of many research projects are diesel exhaust particles (DEPs) and residual oil fly ash 

(ROFA).  DEPs contain various oxygen-containing organics, such as quinones, in addition to 

PAHs and metal ions, all of which have toxic effects in the lung (Kumagai et al. 2002; Li et al. 

2000; Murphy et al. 1999).  The toxic effects of ROFA, generated from fossil fuel combustion, 

have been attributed to transition metals associated with the particles (Antonini et al. 2002; 

Dreher et al. 1997).   

1,3-butadiene (BD) is a high-volume, aliphatic hydrocarbon byproduct of petroleum 

refining and is used in the manufacture of synthetic rubber and other elastomers.  The United 

States’ capacity for BD production has been estimated to be ~6 x 109 lbs/year, with many of the 

producers being located in Texas and Louisiana (The Innovation Group 2002).  Even though 

most industrial processes are very efficient, fugitive volatiles, i.e. those which escape the 

processing stream or remain unused, are combusted, as strict governmental regulations are in 
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place limiting the amounts of highly reactive volatile organic compounds, such as BD, that can 

be released to the atmosphere (United States Environmental Protection Agency 1994).  The 

combustion process, known as flaring, is also a highly-efficient process, where > 98% of the 

original substrate is completely combusted to carbon dioxide and water.  The remaining fractions 

are referred to as products of incomplete combustion (PICs) or ‘soots’.  Similar to DEPs and 

ROFA, these PICs often consist of a mixture of carbonaceous particles to which various other 

organic species, including PAHs, are adsorbed.   

In previous work with our collaborators, we began to characterize the generation of PAHs 

from combustion of BD (Catallo 1998) and to describe the biological effects of butadiene soot 

(BDS) in vitro (Catallo et al. 2001).   The work described herein is a continuation of these initial 

studies.  Our hypotheses were: 

1) BDS is composed of particles of a respirable size, thus capable of contributing to 

ambient air pollution and producing health effects via respiratory system exposure; 

2) BDS particles are coated with PAHs that have toxic effects in the respiratory system, 

including effects promoted by aryl hydrocarbon receptor activation; 

3) BDS particles and/or their adsorbed PAH constituents induce an inflammatory 

response, demonstrable by molecular analysis of cytokine expression or inflammatory 

cell infiltrates in vivo; 

4) BDS particles directly interact with cells of the respiratory system, including 

epithelial cells and alveolar macrophages, causing them to alter gene expression in 

vitro and/or in vivo, with or without particle uptake. 

In Chapter 1, we characterize BDS with respect to particle size distribution and assembly, PAH 

composition, and elemental content of BDS ultrafine particles. We also describe in vitro assays that 
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demonstrate that BDS ultrafine particles can transport and transfer adsorbed organic constituents directly 

to target respiratory cells, without uptake of the particles by the cells.  

The experiments described in Chapter 2 demonstrate that combustion-derived PAHs adsorbed 

onto BDS particles are concentrated in lipid droplets of respiratory system cells and that, in vitro, these 

PAHs concomitantly activate xenobiotic metabolism pathways known to potentiate the toxicity of certain 

PAHs, including several found in BDS.   

In Chapter 3, we present an in vivo analysis of bronchoalveolar lavage fluid (BALF) with 

inflammatory cell infiltrates, histopathological evidence of suppurative inflammation and particle 

retention, and gene expression analysis revealing upregulation of several cytokines and AhR-responsive 

biotransformation enzymes.  The results demonstrate that brief exposure to BDS causes acute airway 

inflammation and augments expression of AhR-responsive genes in vivo.   

In Chapter 4, we present ultrastructural evidence that BDS particles can be internalized by 

bronchoepithelial cells in vitro and phagocytosed by alveolar macrophages in vivo.   

The studies described above were designed to investigate the aforementioned hypotheses 

and demonstrate that BDS is both a model mixture and a real-life example of a petrochemical 

PIC with the potential both for environmental contamination and for contributing to health 

problems.   
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CHAPTER 1 
 

COMBUSTION-DERIVED ULTRAFINE PARTICLES TRANSPORT ORGANIC 
TOXICANTS TO TARGET RESPIRATORY CELLS* 

 
INTRODUCTION 

Increased morbidity and mortality have been associated with exposure to inhaled airborne 

particulate matter [PM] (Dockery et al. 1993; Samet et al. 2000; Schwartz et al. 1996). In 1997, 

the U. S. Environmental Protection Agency (EPA) issued revised National Ambient Air Quality 

Standards (United States Environmental Protection Agency 1997) for airborne PM, which 

supplemented the 1991 standards by focusing on PM with aerodynamic diameters ≤ 2.5 µm 

(PM2.5). Small increases in levels of ambient PM2.5 result in increases (> 1%) in cardiovascular 

and respiratory mortality (Pope, III et al. 2002). Recently, the focus has begun to shift to health 

effects arising from inhalation of ultrafine particles (diameter < 0.1 µm) that comprise a small 

fraction of the total mass, but most of the total number, of airborne PM (Peters et al. 1997). For 

equivalent masses of inhaled particles, ultrafine particles provide a greater surface area for 

adsorption of potentially toxic agents than do the larger sized particles. 

Inhaled ultrafine particles can be deposited in the lung and can migrate from there into 

the systemic circulation and thus to the heart, as well as to more distal organs. Within 5 min of 

intratracheal instillation, 25-30% of 99mtechnetium-labeled albumin ultrafine particles (nominal 

diameter ≤ 80 nm) were detected in the blood (Nemmar et al. 2001).  

Ambient fine and ultrafine particles arise from multiple sources, both combustion-related 

(e.g., diesel, petrochemical), and non-combustion-related (e.g., crustal, agricultural). The fine 

soot particles arising from incomplete combustion of coal and petroleum have been associated 

                                                            
* This chapter was printed in the August issue of Environmental Health Perspectives (Penn et al. 
2005). 
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with increased mortality (Laden et al. 2000). In urban settings, diesel exhaust is a prominent 

source of fine particles. Organic solvent extracts of diesel exhaust particles (DEPs) induce 

oxidative stress in respiratory epithelial cells and macrophages (Li et al. 2002). Particle-rich 

diesel exhaust contains relatively high levels of polynuclear aromatic hydrocarbons (PAHs), 

including the well-characterized carcinogen, benzo(a)pyrene (BaP). Other contributors to the 

burden of airborne particulates include PM arising from flaring of volatile hydrocarbons at 

refineries and/or incomplete combustion of unused or fugitive hydrocarbons at petrochemical 

plants. These additional sources of inhalable, PAH-rich particles are of special concern where 

refineries and/or petrochemical processing plants are concentrated.  

1,3-butadiene (BD) is a volatile, “top 40” U.S. production chemical [> 3 x 109 lbs 

produced annually; Occupational Safety and Health Administration (OSHA) 2004]. Industrial 

petrochemicals, including BD, that escape the production stream or that remain unreacted are 

burned. The butadiene soot (BDS) produced during incomplete combustion of BD is a complex, 

PAH-rich mixture of particulates. A broad size range of PAHs [up to ~1000 atomic mass units 

(amu)], including BaP and other carcinogens, is present in BDS. After incubation with BDS 

extracts in dimethylsulfoxide (DMSO), normal human bronchial epithelial cells, which are 

putative target cells for inhaled irritants, exhibited plasma membrane blebbing, small but 

statistically significant increases in the number of binucleate cells, and a diffuse cytoplasmic 

fluorescence, when viewed under the light microscope (Catallo et al. 2001).  

There is a growing literature on the pathologic responses of cells of the respiratory and 

cardiovascular systems after exposure to ultrafine particles (Bermudez et al. 2004; Chalupa et al. 

2004; Dick et al. 2003; Nemmar et al. 2004). Less attention however, has been paid to how the 

detailed physical and chemical characteristics of combustion-derived ultrafine particles influence 
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interactions of these particles and their constituents with target cells. Here, we characterize BDS 

with respect to particle size distribution and assembly, PAH composition, and elemental content 

of BDS ultrafine particles. We also describe in vitro assays that demonstrate that BDS ultrafine 

particles can transport and transfer adsorbed organic constituents directly to target respiratory 

cells, without uptake of the particles by the cells.  

METHODS 

Generation of BDS. We brought a tank of BD (Aldrich, St. Louis, MO) that had been stored at -

20oC to room temperature. The BD (≥ 99% purity) contained approximately 175 ppm t-

butylcatechol as an inhibitor. The BD gas was passed through a back-flash-protected stainless 

steel two-stage regulator to a stainless steel Bunsen burner (aperture, 0.85 mm inner diameter; 

feed pipe, 10 cm). The flame was adjusted until a plume of black smoke rose from the top of the 

burner. Combustion was carried out in a fume hood with active ventilation. The BD feed rates 

were 5-7 mL/s under normal atmosphere, with flame heights of approximately 1 cm.  We 

captured the particles passing through the feed pipe on cellulose filters held within a Buchner 

funnel positioned approximately 15 cm above the pipe outlet and attached to a vacuum pump. 

The BDS was scraped gently off the filters and stored in aluminum-foil-wrapped glass vials 

capped with foil-lined lids.  

We qualitatively determined the success of each BDS-generating reaction by assessing 

PAH-associated fluorescence of the product. We extracted 1 mg BDS with 2 mL 

dichloromethane (DCM; Optima; Fisher, Fairlawn, NJ) for 1 min. Fluorescence of the extract 

was detected under ultraviolet (UV) light (320 nm excitation). 

Particle Size Analysis. The sampling train was set up for size fractionation of BDS particles as 

follows: burner, RespiCon virtual sampler (TSI; St. Paul, MN), in-line HEPA filter, digital flow 
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meter, Magnahelic (Dwyer, Michigan City, IN), and house vacuum. Size fractionation was 

carried out with a RespiCon virtual sampler that was set approximately 15 cm above the top of 

the burner. The first stage of the RespiCon collected particles < 2.5 μm; the second and third 

stages collected particles 2.5–10 μm and > 10 μm, respectively. Preweighed filters from each 

impactor stage were weighed, photographed, and submitted for extraction and gas 

chromatography/mass spectrometry (GC/MS) analyses for PAHs. 

Elemental Analyses. All elemental analyses were carried out by Quantitative Technologies Inc. 

(Whitehouse, NJ). Carbon, hydrogen, and nitrogen content were determined with a Perkin-Elmer 

CHN elemental analyzer (model 2400; PerkinElmer, Wellesley, MA). Samples in the analyzer 

were combusted in a pure oxygen environment. Product gases were separated under steady-state 

conditions and measured as a function of thermal conductivity. Sulfur was converted to sulfate 

and then titrated versus standards, with an indicator. Oxygen in BDS was determined with the 

elemental analyzer fitted with an oxygen accessory kit. The oxygen in the organic starting 

material was converted by pyrolysis to carbon monoxide, which was separated from other 

pyrolysates under steady-state conditions and measured as a function of thermal conductivity. 

Freshly prepared BDS samples were analyzed by inductively coupled plasma (ICP) 

spectrometry for the presence of 64 additional elements. Samples were digested with nitric acid 

in a CEM 2100 microwave oven (CEM, Matthews, NC) and then diluted to volume with 18 

Mohm-cm water. Reagent blanks were prepared similarly. Samples were analyzed with a Perkin-

Elmer Optima 3000XL ICP spectrometer (PerkinElmer) that had been calibrated with traceable 

standards from the National Institute of Standards and Technology (NIST) (Gaithersburg, MD). 

The resulting calibration was confirmed by analysis of an independently prepared calibration 

check standard. A method blank was analyzed, and its value was subtracted from all sample 
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analyses. Iron concentrations were determined in pristine reaction vessels in which the level of 

iron, if any, was below the limit of detection. Of the 64 elements screened, 52, including 

chromium, nickel, and vanadium, were present at levels < 1 ppm. 

Percentage of Adsorbed Organic Components. Three 50-mg samples of BDS, in mini-

Buchner funnels fitted with preweighed Whatman #1 filters, were each extracted via vacuum 

filtration with five successive 10-mL aliquots of DCM. The filters were reweighed after drying 

in air. 

GC/MS Analysis of PAH Components of BDS Particles. The BDS generated by controlled 

combustion of BD was collected on glass-fiber filters and analyzed for PAHs by GC/MS. An 

unused filter (negative control) and a solvent-only method blank also were analyzed. The BDS (1 

mg) was placed into a 10-mL Pyrex conical tube fitted with a Teflon-lined screw cap. The DCM 

(2.0 mL, ultra-high-purity grade; Aldrich), was added to each tube after being “spiked” with 

deuterated NIST reference standards for several PAHs previously identified in BDS (Catallo et 

al. 2001): naphthalene-d8 (5 μg/mL), anthracene-d10 (1 μg/mL), chrysene-d12 (1 μg/mL), BaP-d12 

(5 μg/mL), and perylene-d12 (2 μg/mL). The tubes were capped and heated (40°C for 4 hr) in a 

sand bath. A 200-μL aliquot of each sample extract was filtered through a 0.45-μm nylon filter 

(Nalgene, Rochester, NY) that had been fitted onto a 1-mL syringe barrel. The filtered samples 

were placed in conical glass sample vial inserts and submitted for GC/MS analysis. Three sets of 

BDS PM2.5 were analyzed by GC/MS after extraction with DCM. There was insufficient material 

for analysis in the PM10 and larger fractions. 

The GC/MS analyses were conducted with an Agilent 5973 mass selective detector/6890 

GC/data system (Agilent, Palo Alto, CA) in full scan (40–600 amu), positive ion, electron impact 

mode. Splitless injections of 1 mL were made onto a 28 m × 0.25 mm, 0.25-μm film thickness, 
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DB5 fused silica glass capillary column (Agilent), with the purge function initiated at 0.75 min 

postinjection. The injector temperature was 250°C. The initial column temperature (50°C) was 

held for 5 min, ramped at 10°C/min to 300°C, and held there for 10 min. The transfer zone of the 

instrument was held at 320°C, and the source temperature was 200°C. Full-scan spectra were 

compared with reference library spectra and retention indices (relative to deuterated internal 

standards) to determine peak identity. The most abundant PAH peak areas were integrated and 

compared by ratio with the corresponding peak area for the anthracene-d10 internal standard. 

Four compounds (anthracene, chrysene, benzopyrenes, and perylene) were identified directly by 

comparison with each of their respective deuterated standards. 

Scanning Electron Microscopy of Freshly Prepared BDS. The BDS was collected from a 

plume by passing ethanol-cleaned, 12-mm, circular glass coverslips through the plume. The 

coverslips were affixed to aluminum stubs with conductive adhesive, sputter-coated with 

approximately 20 nm gold/palladium and examined by scanning electron microscopy (SEM; FEI 

Quanta 200 ESEM; FEI, Hillsboro, OR) at 20 kV. Digital images of 1,024 × 884 pixels were 

recorded. 

Transmission Electron Microscopy of Freshly Prepared BDS. Samples of BDS were 

collected directly from the plume onto 300-mesh, parlodion-coated copper grids that were 

examined by transmission electron microscopy (TEM; Zeiss EM-10C; Zeiss, Thornwood, NY). 

To simulate the processing of BEAS-2B cells, freshly prepared BDS was collected on filters, 

transferred to clean tubes, passed through an ethanol series (50–100%), and infiltrated with 

epoxy resin. The polymerized resin was sectioned and then examined as described above. 

Cell Culture. BEAS-2B cells are a non-tumorigenic line derived from normal human bronchial 

epithelial cells (Ke et al. 1988). BEAS-2B cells (1–1.5 × 106) were seeded into T-25 flasks 
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(Corning, Corning, NY) containing bronchial-epithelial growth medium (BEGM), before 

expansion in T-150 flasks. BEGM is a basal medium (BioWhittaker, Rockland, ME) 

supplemented (per 500 mL) with 2 mL of 13 mg/mL bovine pituitary extract and 0.5 mL each 

0.5 mg/mL hydrocortisone, 0.5 μg/mL human recombinant epidermal growth factor, 0.5 mg/mL 

epinephrine, 10 mg/mL transferrin, 5 mg/mL insulin, 0.1 μg/mL retinoic acid, 6.5 μg/mL 

triiodothyronine, 50 mg/mL gentamicin, and 50 μg/mL amphotericin-B. Cells were grown to 80–

90% confluence (37°C, 5% CO2/95% air), split into 60-mm dishes (~ 2.5 × 105 cells/dish), and 

expanded until approximately 70% confluent. Medium was changed immediately before BDS 

addition. 

Unextracted Soot Particles. For approximation of routine in vivo exposure conditions to 

airborne particles, the BDS was not subjected to charge neutralization before addition to cell 

cultures. The BDS (3 mg) was sprinkled onto the surface of the BEGM overlying the BEAS-2B 

cells. Cells were incubated from 5 min to 72 hr. Unless otherwise noted, the BDS was not 

removed nor was the medium changed during the course of the exposures. Unexposed cells 

served as negative controls. Cells sprinkled with 0.5 mg crystalline BaP served as solid PAH 

controls. Cells to which 40 μL of a 5-mM BaP solution (in DMSO) was added to 5 mL BEGM, 

served as fully solubilized PAH controls. Cells with 3 mg graphite (> 98% pure; Sigma, St. 

Louis, MO) sprinkled directly onto the surface of the BEGM served as controls for cell responses 

to carbon particles lacking adsorbed organic compounds. In all cases, cell responses were 

determined with a fluorescence microscope (Zeiss Axiovert 405 M) equipped with a 100 W 

mercury lamp and a Zeiss 02 filter combination (365/420 nm) for excitation and emission. 

Sonicated Soot. For determination of whether disrupting the aggregated BDS ultrafine particles 

enhanced the responses of BEAS-2B cells, BDS was sonicated (Branson model 450 Sonifier; 
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Branson Ultrasonics, Danbury, CT) in BEGM (3 mg/5 mL) before application to the cells. The 

output of the sonifier was at setting 5, with a constant-duty cycle and five consecutive 15-sec 

pulses, with swirling of the vessel between pulses. Diluted (1:10, 1:20, 1:50, 1:100) particle-

BEGM suspensions were added to cells. The time course (15 min to 48 hr) of fluorescent 

responses of cells to sonicated BDS preparations was compared with that of cells exposed to 

non-sonicated BDS sprinkled on the surface of the medium. 

Post-extraction Soot. For determination of whether organic extraction of soot altered the cell 

responses, the soot remaining on the Whatman filters (see “Percentage of adsorbed organic 

components,” above) after extraction with DCM was collected and added to BEAS-2B cells (3 

mg extracted soot/5 mL BEGM). 

Soot Extracts. For determination of whether soot extracts and intact BDS elicit similar cell 

responses over time, the DCM filtrate was dried under N2 at room temperature and reconstituted 

in 1 mL DMSO. Aliquots (60 μL) were mixed with 5 mL BEGM and added to BEAS-2B cells. 

Cells were examined for fluorescence responses (30 min to 48 hr). 

Transwell Incubations. The BEAS-2B cells were plated into wells of a 24-well plate (~ 2 × 105 

cells/well). Transwell (Corning) inserts (0.4-μm pores) were placed in each well. Medium (0.5-

1.0 mL) and either BDS (0.3-0.6 mg) or soot extracts (50 μL) were added to each Transwell, and 

cells were viewed under a fluorescence microscope, as described above. Controls included a) 

wells with medium and cells but no BDS, b) wells with medium only, and c) wells with cells 

omitted and replaced with Octadecyl silane (ODS)-derivitized polymeric disks. At 48 hr, after 

aspiration of BEGM and rinsing of the wells with phosphate buffered saline (PBS), the 

Transwells and media were removed from the 24-well plates. ODS disks were washed with 

water, filter-extracted with DCM, and analyzed by GC/MS. Cells were rinsed with 0.2% trypsin 
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in PBS and then removed from the wells by incubation with 0.2% trypsin in PBS at 37°C for 3 

min. Cells were washed with PBS, pelleted, and extracted with DCM, as described above.  

TEM of BEAS-2B Cells Exposed to BDS. The BEAS-2B cells, grown on Thermanox plastic 

coverslips (VWR International, West Chester, PA), were exposed for 42 hr to 0.6 mg BDS that 

had been sprinkled onto 1 mL BEGM in Transwells. Coverslips were washed with PBS and 

fixed with 1.25% glutaraldehyde/2% formaldehyde in 0.1 M sodium cacodylate. The coverslips 

were processed and examined as described above. 

RESULTS 

Generation of BDS. With BD flow rates of 5-7 mL/min, 500-600 mg BDS were collected per 15 

min of burn. The DCM extracts of freshly prepared BDS exhibited an intense blue fluorescence 

under UV light. This is consistent with solubilization by DCM of PAHs formed during the 

combustion process and adsorbed to the surface of the BDS particles. For undetermined reasons, 

occasional burns yielded particles that did not fluoresce in DCM, contained no detectable PAHs, 

and produced no cell fluorescence. These were not used. 

Particle Size Distribution. Most particles in freshly generated BDS are of respirable size; > 

90% of the collected particles are PM2.5 (Table 1.1). 

Elemental Analyses. Nearly 94% of BDS by weight is elemental carbon and approximately 2% 

is hydrogen, consistent with a polyaromatic composition of intact BDS. Together, nitrogen and 

sulfur account only for approximately 1% of the BDS components. Oxygen represents < 0.1% 

(Table 1.2). After extraction with DCM, the BDS takes on a more graphitic character compared 

with the nonextracted BDS, as indicated by the fact that the relative carbon content increases 

slightly and the relative hydrogen content drops below 1%.  
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The ICP analysis (Table 1.3) revealed that freshly generated BDS is not enriched in 

metals. For 52 of 64 elements, the levels were < 1 ppm.  Of the remaining 12, calcium and iron, 

Table 1.1. Particle size distribution of BDS. 

     Particle Size Fraction      % in Fraction (mean ± SD)a 

 
   < 2.5   µm    91.6 (4.1)    

2.5-10 µm      5.6 (5.6) 
   > 10    µm      3.2 (1.9) 
 

More than 90% of freshly generated BDS is of respirable size. 
aMean ± SD of percent total mass found in each fraction. 
n = 5 replicates. 

 
 
Table 1.2. Strong polyaromatic character of BDS revealed by elemental analysis. 
 

Substrate   C   H   N   S   O 
 

BDS    93.88 (0.37)  1.82 (0.07)  0.60 (0.31)  0.39 (0.02)  < 0.10 
BDS (washed)  95.95 (0.10)  0.78 (0.11)  0.11 (0.02)  0.35 (0.05)  0.55 
Graphite   98.01   < 0.10   < 0.10   0.45   < 0.15 

 
The results represent mean percentages ± SEM for triplicate analyses. 

 

25 and 26 ppm, respectively, were the most prominent. Vanadium, chromium, and nickel, if 

present, were below the limits of detection with the analytical procedures used. 

Percentage of Adsorbed Organic Components. Extraction of BDS with DCM resulted in loss 

of 16.6 ± 3.3% (mean ± SD; n = 3) of the initial weight of BDS. This loss is consistent with 

removal of aromatic compounds that had been adsorbed to the surface of the particles before 

extraction. However, small losses of ultrafine particles during filtration cannot be discounted. 

GC/MS Analysis of PAH Components of BDS. Three batches of independently generated BDS 

PM2.5 were analyzed by GC/MS after extraction with DCM. Thirteen of the most abundant PAH 

components, ranging from acenaphthylene (152 amu) to benzoperylene/indenopyrene (276 amu), 
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are listed in Table 1.4. Four of these (anthracene, chrysene, benzopyrenes, and perylene; Table 

1.4) were identified directly by comparison with results from their respective deuterated analogs. 

 
Table 1.3. ICP spectrometry analysis of elemental composition of BDS. 

Element            Concentration (ppm) 
 

Calcium    25 
Iron     26 
Potassium      4 
Sodium      6 
Phosphorus    19 
Zinc     4 
 
All analyses were in triplicate except for iron (n = 2). 
 

The values presented in Table 1.4 for all 13 PAHs are relative amounts, with each expressed as 

an intensity relative to anthracene-d10. The PAHs were identified on the basis of their relative 

retention times (retention index) and by comparison with previously published results (Catallo 

1998). The relative abundances of all 13 of these PAHs were consistent between batches. 

Similarly, there was very little difference in PAH composition between these three batches of 

BDS and the PM2.5 sample from Table 1.1 (data not shown). There was insufficient material for 

GC/MS analysis in the two other fractions in Table 1.1. Many other PAHs also were detected but 

at lower levels than those of the 13 major components listed here. These results demonstrate that 

there is a characteristic chemical composition of BDS, regardless of size, that can be obtained 

reproducibly if consistent generation and collection schemes for BDS are followed. 

Electron Microscopy of BDS and of BDS-treated BEAS-2B Cells. Under SEM, macroscopic 

BDS is composed of spherical, uniformly sized solid particles approximately 50–70 nm in 

diameter, which aggregate to form open, lacy clusters (Figure 1.1A). These results were 

confirmed with TEM analysis of soot collected directly on copper grids (Figure 1.1B), as well as 
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by analysis of epoxy-embedded BDS samples (data not shown). Under TEM, the diameter of 

particles was 30–50 nm. The slightly larger apparent diameter of the spherical particle by SEM 

 
Table 1.4. The 13 most prominent PAHs (152–276 amu) present in freshly generated BDS. 

PAH          m/z          Ratio to IS (Anth-d10)             Ratio to specific IS  
    (mg/g soot) 

      #1 #2 #3   #1 #2 #3 
Acenapthylene       152  4.6 5.6 1.6 
Fluorene        166  1.4 2.5 0.8 
Anthracene            178  7.2     10.2 6.0  14.4 20.4 12.0 
Cyclopentaphenanthrene 190  1.7 2.2 1.7 
Fluoranthene        202  6.2 6.4 6.7 
Acephenanthrylene      202  4.0 4.4 4.3 
Pyrene         202  8.0 9.6 8.7 
Benzofluorenes      216  1.0 2.0 1.0 
Acepyrene        226  7.6 7.2 9.8 
Chrysene        228  1.3 1.4 1.2    1.4   1.5   1.2 
Benzopyrenes        252  2.0 2.2 2.5    1.7   2.0   1.7 
Perylene        252  1.5 1.7 1.6    0.2   0.5   0.4 
Benzoperylene/Indenopyrene 276  1.2 0.4 1.5 

 
IS, internal standards. The most abundant PAH peak areas were integrated and compared by ratio 
with the corresponding peak area for the anthracene-d10 internal standard. Anthracene, chrysene, 
benzopyrenes, and perylene were identified directly by comparison with each of their respective 
deuterated standards. 
 

versus TEM results from the 10–20-nm gold/palladium coating that had been applied to the 

particles during preparation for SEM. Neither light microscope nor TEM analysis of BDS-treated 

cells yielded any evidence that the ultrafine particles were taken up by the cells during the same 

time period in which other cells from the same population displayed punctate fluorescence. 

There is, however, clear evidence from TEM that BDS ultrafine particles reach the cell surface. 

In Figure 1.1C, individual BDS particles that settled at the bottom of the culture dish are shown 

in immediate proximity to a BEAS-2B cell. 
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In Vitro Bioassay of BDS Activity. Three milligrams of BDS, without carrier or solubilizing 

agent, sprinkled on the surface of BEGM overlying semiconfluent BEAS-2B cells, elicited a 

time-dependent set of fluorescence responses. Within 60-120 min, a uniform, diffuse blue 

fluorescence not localized in any organelles was detected in most cells. By 4 hr, the diffuse 

fluorescence was replaced by punctate fluorescence, that is, fluorescence localized in discrete, 

circular (1-2 μm) cytoplasmic vesicles (Figure 1.2). No nuclear fluorescence was detected. 

Fluorescence intensity in the cytoplasmic vesicles increased during the first 24 hr, then plateaued 

and remained constant for as long as 72 hr. Cells exposed to graphite did not fluoresce, nor did 

cells exposed to BDS from which adsorbed PAHs has been extracted with DCM. Extracts 

(DCM) of BDS -- filtered through 0.45-μm filters, dried, resuspended in DMSO, and diluted in 

BEGM -- produced rapid fluorescence responses, including the appearance of punctate 

fluorescent in cytoplasmic vesicles within 30 min (data not shown). The time course of 

fluorescence responses of the cells combined with the evidence that the BDS particles are not 

taken up by the cells is consistent with PAHs being transferred to the plasma membrane from the 

surfaces of the ultrafine particles. 

Intact BDS particles cannot be easily suspended in aqueous medium. Sonication was 

required to disperse the soot floating on the surface of the clear BEGM into the liquid to form an 

opaque black suspension. Less vigorous dispersion techniques were ineffective. Fluorescent 

cytoplasmic vesicles appeared more rapidly in cells exposed to sonicated BDS diluted with 

BEGM than in cells exposed to nonsonicated BDS (Table 1.5). The time required for 50% of the 

cells to display punctate fluorescence was 60, 90, and 150 minutes, respectively, for the 1:10 and 

1:20 dilutions of sonicated samples and for the nonsonicated BDS samples. For the 1:50 and 

1:100 dilution samples, the percentage of cells with punctate fluorescence never reached 50%, 
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even after 24 hr. These results are consistent with increased numbers of ultrafine particles 

containing adsorbed PAHs being made available to the cells as a result of sonication.  

 

 

Figure 1.1. (A) An SEM image illustrating the lacy openwork character typical of the BDS 
aggregates; individual, solid, spherical particles, 50-70 nm in diameter, are the fundamental 
structural units of the aggregates. (B) A TEM image of BDS showing individual spheres, 30-50 
nm in diameter, arranged in branching clusters. The difference in diameter of the spheres in the 
SEM versus TEM images results from the 10-20 nm gold/palladium conductive coating that was 
applied to the SEM samples. (C) A TEM image of a portion of the surface of a BEAS-2B cell 
with individual spherical particles, 30-50 nm in diameter, and small aggregates (arrows) 
immediately adjacent to the cell membrane. Cells were photographed after 42 hr exposure. 
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Figure 1.2. Fluorescence localized in punctate cytoplasmic vesicles of BEAS-2B cells. Cells 
were photographed 4 hr after BDS, without carrier, was sprinkled onto the surface of the BEGM 
overlying the cells. Excitation/emission wavelengths = 360/420 nm. Magnification, 400X. 
 
 
Table 1.5. Time lag between the addition of diluted, sonicated BDS suspended in BEGM, 
and development of punctate fluorescence in BEAS-2B cells. 
 

Dilution of Sonicated BDS   Time to PF50 

 
1:10      60 minutes 
1:20      90 minutes 
1:50     > 48 hours 
1:100     > 48 hours 

 
PF50, punctate fluorescence in 50% of exposed BEAS-2B cells. The corresponding time lag 
for unsonicated BDS sprinkled onto the surface of BEGM was 150 min. 
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Additional evidence that the fluorescence responses result from direct interaction of 

PAH-containing ultrafine particles with cells was obtained by plating BEAS-2B cells in 24-well 

dishes. Transwell inserts (0.4-μm pore) containing 0.3 mg nonsonicated BDS sprinkled onto 1 

mL BEGM were placed in each well. Wells were examined at 4, 8, 24, and 48 hr. Fluorescent 

vesicles were visible at 4 hr in cells to which BDS had been added directly (no inserts) and at 18-

48 hr in cells from the BDS/Transwell group. These results indicate that the fluorescence 

responses of cells in this case are dependent on accessibility of cells to particles of BDS that are 

< 0.4 μm in size. Crystals of BaP, which are more dense than the lacy, open aggregates of BDS, 

elicited punctate blue-violet fluorescence from cells within 4 hr, but only in cells immediately 

adjacent to BaP crystals that had dropped to the bottom of the dish. When the nonspherical BaP 

crystals, all larger than 0.4 μm, were floated on BEGM in Transwells, the cells did not fluoresce 

even after 48 hr (data not shown). In contrast, when crystalline BaP was dissolved first in DMSO 

and then mixed with BEGM (final BaP concentration = 40 μM) before addition to cells, all cells 

displayed punctate blue fluorescence within 2 hr.  

Confirmation that the material adsorbed to the surface of the BDS ultrafine particles is 

inherently responsible for the cell fluorescence was obtained by solubilizing dried DCM extracts 

of BDS in DMSO, diluting them with BEGM, and adding them to Transwells. These extracts 

elicited diffuse fluorescence within 30–45 min and punctate fluorescence within 2 hr. When the 

same extracts were mixed with BEGM and added directly to wells lacking Transwells, punctate 

fluorescence was visible in cells by 30 min and in most cells by 3 hr. These results confirm that 

the fluorescence is due to uptake by the cells of PAHs desorbed from the surfaces of the ultrafine 

particles. 
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At 48 hr, the ODS disks and the cells from both the BDS/Transwell exposure and 

BDS/no Transwell exposure wells were rinsed, extracted with DCM, and analyzed with GC/MS. 

The major PAH peaks at 202 m/z, previously identified in extracts of BDS (Table 1.4), also are 

present in the extracts from the wells with BEAS-2B cells and the wells with the ODS disks 

(Figure 1.3). These peaks, however, are absent from wells to which BDS alone (without cells or 

the ODS disks) was added. These results, combined with a) the absence of evidence for direct 

uptake of BDS ultrafine particles by the cells, b) the time lines for the development of 

fluorescence, and c) the very low levels of metals or other polar constituents in BDS, strongly 

suggest that nonpolar organic constituents adsorbed to the surface of combustion-derived 

ultrafine particles are transferred to the plasma membrane and subsequently to the cell interior.  

DISCUSSION  

An extensive literature details a range of toxic responses, both in vivo and in vitro, after 

exposures to PAHs. In this article, we characterize physical and chemical properties of BDS, a 

complex airborne mixture of particles featuring adsorbed PAHs, produced as a result of 

incomplete combustion of BD, a major industrial petrochemical. Consideration of these 

properties is vital to understanding the processes whereby BDS and other ultrafine particulate 

combustion mixtures deliver and transfer potentially toxic components to target cells. We also 

describe a simple bioassay to test the effects of BDS and other combustion-derived, PAH-rich 

particle mixtures on putative target cells. Our results demonstrate that the overwhelming 

majority of freshly generated BDS particles are of respirable size, have a predictable chemical 

composition, and act to transport adsorbed, bioactive chemicals (primarily PAHs) to target cells. 

These results indicate that uptake of airborne ultrafine particles by target cells is not necessary 
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Figure 1.3. GC/MS ion chromatograms of (A) BDS extract (total ion), (B) cells exposed to BDS 
sprinkled on medium surface [selected ion monitoring (SIM)], (C) BDS added to a Transwell 
placed over cells (SIM), and (D) BDS added to a Transwell placed over an ODS disk (SIM). The 
same 202 m/z cluster was observed in all cases. Interference with monitoring of other PAH 
masses was due to cell or method contaminants, as noted. The GC/MS analyses were conducted 
as described in “Materials and Methods,” except that monitoring was in the selective ion mode. 
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for the particles to exert their toxic effects on the cells. These findings are especially timely in 

light of the current focus on toxicologic responses to inhaled airborne particulates. 

The approach we used to generate BDS is similar to that described previously for soot 

generation during combustion of various hydrocarbons, including BD (Cole et al. 1984a; 1984b). 

Those authors focused on some of the less complex hydrocarbon combustion products (benzene, 

phenylacetylene) and also demonstrated that the key step in the process was most likely a free 

radical addition reaction of 1,3-butadienyl radical and acetylene. This type of reaction, which 

occurs in the high-temperature environment of a flame, is favored over a Diels-Alder reaction, 

which predominates at much lower temperatures. Our results and those of Catallo (1998) provide 

a more detailed and extensive description of the wide range of unsubstituted PAHs (Table 1.4) 

that are generated during combustion of C4 hydrocarbons than was previously presented.  

The elemental analyses emphasize the strong polyaromatic nature of BDS and the relative 

absence of ring substitution (Table 1.2). The very low levels of nitrogen, sulfur, and oxygen 

(Table 1.2) indicate that amines, nitro compounds, oxides of sulfur, quinones, hydroquinones, or 

semiquinones are not likely to be the BDS constituents that are primarily responsible for its 

biologic activity. None of these constituents was noted in multiple GC/MS analyses of BDS 

(data not shown). We have not yet investigated metabolism of BDS components by respiratory 

epithelial cells and so cannot address the question of whether oxidative products of that 

metabolism are involved in the cells’ responses to BDS exposure. 

Figure 1.1A and 1.1B show that the dimensions of the solid spheres comprising the BDS 

particles are 30–50 nm in diameter. These dimensions agree with those for elementary soot 

particles from a variety of sources, including DEPs (Berube et al. 1999; Ishiguro et al. 1997; 

Murphy et al. 1999); aircraft fuel (Popovitcheva et al. 2000), cigarette smoke (Kendall et al. 
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2002), and carbon black (Lahaye and Ehrburgerdolle 1994). The small size of the solid spheres 

corresponds to very high surface area per gram, maximizing the amount of PAH adsorbed per 

gram of soot. The small size also means that these particles have greater potential bioavailability.  

As a source of potentially toxic particles of respirable size, BDS (and likely other 

petrochemical soots, as well) rivals or exceeds a number of well-characterized mixtures of 

airborne particles, including tobacco smoke, diesel exhaust, urban reference dusts, and residual 

oil fly ash (ROFA). The comparisons to DEPs and ROFA are particularly informative in light of 

reported toxicologic responses to those particle mixtures. In some urban areas, DEPs, widely 

regarded as major agents of oxidative damage to cells of the respiratory system (Boland et al. 

1999; Bonvallot et al. 2001; Kawasaki et al. 2001; Li et al. 2002), comprise 10–30% of the 

PM2.5 and up to 50% of total ambient PM (United States Environmental Protection Agency 

2002). In a recent report that focused on mitochondrial dysfunction elicited by DEPs and 

ultrafine particles, Xia et al. (2004) concluded that the effects were “mediated by adsorbed 

chemicals” including polar (quinones) and (aromatic hydrocarbon) constituents, “rather than by 

the particles themselves.” For the PAHs that we have quantified in BDS (Table 1.4), the 

concentrations (milligrams per gram of BDS) are greater than or equal to values reported for the 

same components in DEP extracts (Tong et al. 1984). The respirable toxic particles in ROFA, a 

fuel oil combustion by-product from nonmobile sources, are relatively poor in organic 

components but rich in metals (Costa and Dreher 1997). Injury to airway cells and alterations in 

cytokine gene expression in response to ROFA exposure have been reported (Dreher et al. 1997; 

Dye et al. 1999; Samet et al. 2002). The elemental composition of BDS contrasts strikingly with 

that of ROFA. The iron level in BDS (Table 1.3) is three orders of magnitude lower than for 

ROFA (Costa and Dreher 1997). Further, vanadium and nickel levels in BDS are below the 
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limits of detection (Table 1.3), whereas many of the effects of ROFA on respiratory cells have 

been attributed to its high vanadium content (Dye et al. 1999).   

Appearance of fluorescent intracytoplasmic bodies (Figure 1.2) is a well-known response 

of cells and tissues to exposure to individual PAHs. Tissue fluorescence after injection of 

colloidal suspensions of BaP and intracellular fluorescence localization of hydrocarbons, 

including BaP (Richter and Saini 1960), have long been recognized. In a later study, BaP 

solubilized in serum was taken up by HeLa and monkey kidney cells in culture (Allison and 

Mallucci 1964).  At 24 hr, the cells exhibited a cytoplasmic granule fluorescence that the authors 

attributed to sequestration of BaP in lysosomes. Subsequently, internalization of high 

concentrations of BaP and its appearance as crystals in lysosomes of human foreskin fibroblasts 

6-18 hr postexposure was described (Kocan et al. 1983). Other investigators, although 

confirming BaP uptake by cells, concluded that low to moderate levels of BaP were localized 

within lipid vesicles, not lysosomes (Plant et al. 1985). Intracellular lipid vesicles are likely 

repositories for hydrophobic PAHs. Preliminary results from our laboratory indicate that the 

punctate blue fluorescence is localized within vesicles that are stained with lipid dyes (Murphy 

G, Henk W, Barker S, Penn A, unpublished data).  

The temporal development of the cells’ fluorescence responses to ultrafine BDS particles 

and to crystalline BaP that has sunk to the bottom of the culture dish is consistent with direct 

transfer of adsorbed PAHs from the particle surface to the cells rather than by diffusion of 

dissolved PAHs to the cells. The solubility limit of PAHs in aqueous media is exceedingly small; 

a representative value is 2.3-3.0 ng/mL for BaP (Lakowicz et al. 1980). This solubility limit is 

met in all of our preparations. The amount of soot used in our study ranged from 0.006 to 0.6 

mg/mL BEGM. This corresponds to a range of 1 × 103 to 1 × 105 ng PAH/mL BEGM, an 
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amount that exceeds the solubility of PAHs by several orders of magnitude. Thus, it can be 

assumed that the BEGM would be saturated with PAHs in all cases and that the fluorescence 

responses would not vary with the amount of soot added to the system. However, in our studies, 

the observed responses clearly correlate with the amount of soot added; the time required for 

punctate fluorescence to develop in the cells was shortened as the amount of soot particles per 

milliliter of suspension was increased (Table 1.5). Similarly, this time for development of 

punctate fluorescence was shortened in the case of BaP crystals that had been solubilized in 

DMSO before being mixed with the BEGM that was applied to the cells. 

In the routine situation where BDS was sprinkled onto the surface of the medium, and not 

sonicated to form a suspension, most of the cells display punctate fluorescence after 

approximately 4 hr. This is consistent with transport of PAHs by the ultrafine particles directly to 

the surface of the cells (Figure 1.1C). As noted above, a soot sample collected by impaction is 

composed of solid, spherical particles (30–50 nm) arranged into lacy, open-work aggregates 

[Figure 1.1A,B] (Berube et al. 1999). Although the density of these individual solid spheres is 

high, and the entire weight of the aggregates above the liquid line is supported by the spherical 

particles in direct contact with the liquid surface, the high surface tension of the liquid (and the 

hydrophobic particle surface) prevents individual spheres from piercing the liquid surface 

immediately (Cherry 1981). With time, the wettability of the spherical particles directly 

contacting the liquid surface is increased by the normal adsorption of moisture from the adjacent 

liquid surface, and the balance is changed so that individual spherical particles on the bottom of 

the aggregates can pierce the liquid surface, detach, and sink because of their greater density. 

The absence of light or electron microscopy evidence for direct cellular uptake of the 

BDS ultrafine particles or for involvement of endosomes in the process (Murphy G, Henk W, 
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Barker S, Penn A, unpublished data) raises the question of how the BDS-associated PAHs 

traverse the plasma membrane and gain entry to the cells (Figure 1.3). Data from lipoprotein 

studies suggest that the PAH uptake can be accomplished by direct transfer of the PAHs from the 

BDS ultrafine particles to the plasma membrane, without the ultrafine particles themselves 

entering the membrane. Uptake of BaP from hydrophobic carriers by human fibroblasts and 

mouse macrophages occurred in the absence of endocytosis (Plant et al. 1985). In all cases, 

cellular uptake of BaP could be accounted for by a partitioning mechanism. Subsequently, Plant 

et al. (1987) described a three-compartment system to explain rapid membrane uptake of BaP 

from lipoproteins and phospholipid vesicles and for the much slower release of BaP from the cell 

membrane to intracellular sites. These proposed events are consistent with our findings of a lag 

between the appearance of a relatively rapid, diffuse fluorescence of BEAS-2B cells and the 

appearance of subsequent punctate cytoplasmic fluorescence. 

Further support for cellular uptake of hydrophobic molecules but not of their carriers 

comes from studies on internalization of cholesterol esters by steroid-producing cells. The 

pathway for this uptake is termed “selective” and is distinct from receptor-mediated endocytosis. 

In the selective pathway, cholesterol esters, but not the lipoproteins that transport them, are 

internalized (Glass et al. 1983). The cholesterol esters become localized to intracellular 

perinuclear lipid droplets (Reaven et al. 1995). The transfer of cholesterol esters from the 

lipoproteins to the plasma membrane is temperature independent. The transfer from there to the 

perinuclear lipid vesicles does not require an intact Golgi apparatus or even an intact 

cytoskeleton but seems to require at least one sulfhydryl-containing protein at or very near the 

plasma membrane. Depletion of ATP from the cell seems not to interfere with the process, 

although depletion of glucose from the medium decreases efficiency of transfer to the cell 
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interior (Reaven et al. 1996).  In our experiments, the cells are grown in a serum-free medium 

lacking lipoproteins. We propose that the BDS ultrafine particles serve as carriers for the PAHs, 

in a process analogous to that by which the lipoproteins in the “selective” transport process serve 

as carriers for the cholesterol esters. The energetics of the BDS-associated PAH uptake as well as 

the intracellular fate and toxicity of these PAHs currently are under investigation in our 

laboratory. 
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CHAPTER 2 
 

COMBUSTION-DERIVED HYDROCARBONS CONCENTRATE IN CYTOPLASMIC 
LIPID DROPLETS OF RESPIRATORY CELLS AND STIMULATE ARYL 

HYDROCARBON RECEPTOR-ASSOCIATED GENE EXPRESSION 
 
INTRODUCTION 
 

Airborne particulates are of increasing concern, not only for their contribution to ambient 

pollution, but also for the toxic health effects they elicit.  The health effects have been attributed 

both to the particles themselves, especially in the readily inhalable fine (<2.5 µm) and ultrafine 

(<0.1 µm) size ranges (Oberdorster et al. 1994; Li et al. 2003), and to inorganic and organic 

chemicals associated with the particles.  Included among the organic chemicals are polynuclear 

aromatic hydrocarbons (PAHs) that are adsorbed to the surface of the particles (Ma and Ma 

2002; Xia et al. 2004).  Incomplete combustion of organic substrates leads to the generation of 

complex airborne particulates e.g. those found in cigarette smoke, automobile (gasoline or 

diesel) exhaust, and petrochemical flares.   

Diesel exhaust and cigarette smoke are among the most frequently studied ‘real-world’ 

examples of complex combustion-derived particulate mixtures.  In both cases, there is a growing 

body of literature that emphasizes the distinction between the toxicity of the particles versus the 

toxicity of chemicals adsorbed to the particles (Bonvallot et al. 2001; Ma and Ma 2002; Li et al. 

2002; Sayes et al. 2007). Another source of complex particulate environmental contamination is 

flaring of fugitive volatile compounds by industry.  In these settings, volatiles that escape the 

processing stream or that remain unused are combusted, as strict regulations are in place limiting 

the amounts of highly reactive volatile organic compounds, such as 1,3-butadiene (BD), that can 

be released to the atmosphere (United States Environmental Protection Agency 1994).  BD is a 

high-volume, aliphatic hydrocarbon byproduct of petroleum refining and is used in the 
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manufacture of synthetic rubber and other elastomers.  The United States’ capacity for BD 

production has been estimated to be ~6 x 109 lbs/year, with many of the producers being located 

in Texas and Louisiana (The Innovation Group 2002).  Butadiene soot (BDS), generated from 

the incomplete combustion of BD, is both a model mixture and a real-life example of a 

petrochemical product of incomplete combustion with the potential both for environmental 

contamination and for contributing to health problems (Penn et al. 2005).  Free BDS particles 

have been found apposed to the luminal surface of lung epithelium in mice exposed to BDS by 

inhalation, while alveolar macrophages filled with BDS particles have been identified in the lung 

parenchyma even four weeks after BDS exposures end (Murphy G, Paulsen DB, Penn A, 

unpublished observations).   

We have previously characterized BDS as a metals-poor, organic-rich mixture of 

ultrafine (30-50 nm) carbonaceous particles to which hundreds of PAH species are adsorbed 

(Catallo et al. 2001; Penn et al. 2005).  Sixteen percent of the total weight of fresh BDS is 

comprised of PAHs, including benzo(a)pyrene [B(a)P] and other carcinogens, many of which 

display a characteristic blue or blue-green fluorescence in organic solutions.  Human 

bronchoepithelial cells exposed to BDS develop blue fluorescence, which over time becomes 

localized in discrete cytoplasmic vesicles.  Following BDS exposure, these cells display the same 

profile of extractable PAHs as the parent BDS.  The fluorescence does not develop if the cells 

are exposed to carbon black instead of BDS, or if the BDS is extracted with organic solvents 

before the soot particles are presented to the cells (Penn et al. 2005).  The cellular sites of BDS 

fluorescence localization have not been identified. 

Lipid droplets are spherical organelles ranging in diameter from 50 nm at formation up to 

200 µm in mature adipocytes, with the majority being ~1 µm in mammalian cells (Murphy 
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2001).  Initially, lipid droplets were regarded as repositories of intracellular lipids used for 

energy production and membrane maintenance (Dvorak et al. 1983).  Recent studies on the 

dynamic behavior of lipid droplets has led to the elucidation of their role in other processes 

including fatty acid oxidation and inflammatory eicosanoid production in leukocytes, in which 

lipoxygenases and cyclooxygenases have been found to interact directly with arachidonic acid 

within lipid droplets (Bozza et al. 1996; Weller et al. 1999; Pacheco et al. 2002; Vieira-de-Abreu 

et al. 2005).  During their formation in the membrane of the endoplasmic reticulum (Robenek et 

al. 2004; Andersson et al. 2006) and through association with the plasma membrane (Robenek et 

al. 2005a), lipid droplets obtain an array of proteins that are responsible for the organelle’s 

structure, function, and signaling activities (Murphy 2001; Wolins et al. 2006).  Three of the 

most extensively characterized of these lipid droplet surface proteins are perilipin, adipose 

differentiation-related protein (ADFP or adipophilin), and TIP47, collectively referred to as the 

PAT family of proteins (Brown 2001; Robenek et al. 2005b).  As the database of the molecular 

characteristics of lipid droplets has expanded, links to various disease processes have been 

identified.  Skeletal muscle ADFP expression is increased in obese patients during weight loss or 

during insulin sensitizing protocols for diabetics (Phillips et al. 2005). Expression of ADFP is 

increased significantly in atherosclerotic plaques, and increased ADFP expression in 

macrophages alters lipid transport by promoting storage of triglycerides and cholesterol while 

reducing cholesterol efflux (Larigauderie et al. 2004).   

The compounds that concentrate in lipid droplets are not restricted to lipids.  Indeed, a 

number of proteins including caveolin-1, caveolin-2 (Robenek et al. 2004; Fujimoto et al. 2001; 

Ostermeyer et al. 2001; Cohen et al. 2004) and even the core protein of the hepatitis C virus 

(Barba et al. 1997; Hope et al. 2002) have been localized to lipid droplets.  Proteomic 
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characterization has revealed that proteins responsible for lipid transport, lipid metabolism, and 

droplet structure are physically associated with lipid droplets (Brasaemle et al. 2004).  

Hydrophobic environmental chemicals, including PAHs, are another group of compounds that 

might concentrate within lipid droplets.  Verdin et al. (2006a; 2006b) have demonstrated that 

fluorescent PAHs, including B(a)P, as well as anthracene and fluoranthene, concentrate in the 

lipid droplets of fungi, which sequester these noxious compounds (pollutant dissipation) and 

perhaps metabolize them to less toxic derivatives.   

The experiments described here demonstrate that combustion-derived PAHs adsorbed 

onto inhalable ambient particles are concentrated in lipid droplets of respiratory system cells and 

that these PAHs concomitantly activate xenobiotic metabolism pathways known to potentiate the 

toxicity of certain PAHs, including several found in BDS. 

METHODS 

Cell Culture. BEAS-2B cells (1.5 x 106), a human bronchoepithelial cell line (Reddel et al. 

1988), were seeded into T-25 flasks (Corning, Corning, NY) containing bronchial-epithelial 

growth medium (BEGM), before expansion in T-150 flasks.  BEGM is a basal medium (BEBM; 

Cambrex, Walkersville, MD) supplemented (per 500 mL) with 2 mL of 13 mg/mL bovine 

pituitary extract and 0.5 mL each of 0.5 mg/mL hydrocortisone, 0.5 µg/mL human recombinant 

epidermal growth factor, 0.5 mg/mL epinephrine, 10 mg/mL transferrin, 5 mg/mL insulin, 0.1 

µg/mL retinoic acid, 6.5 µg/mL triiodothyronine, and 50 mg/mL gentamicin.  

MH-S cells (1 x 106), a murine alveolar macrophage cell line(Mbawuike and Herscowitz 

1989), were propagated in T-150 flasks containing RPMI 1640 medium supplemented with 2 

mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 4.5 g/L glucose, 1.5 g/L bicarbonate, 

0.05 mM 2-mercaptoethanol, and 10% fetal bovine serum (FBS).  BEAS-2B and MH-S cells 
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were grown to 80–90% confluence (37°C, 5% CO2/95% air), split into 60-mm dishes (2.5 x 105 

cells/dish; grown on 25 x 25 mm glass coverslips) or 6-well plates (1 x 105 cells/well), and 

expanded until approximately 90% confluent.  

Murine 3T3-L1 preadipocytes (Green and Kehinde 1975; 1976) were plated in 6-well 

plates and grown to 2 days postconfluence in DMEM containing 4.5 g/L glucose with 10% calf 

serum, 100 U/mL penicillin, and 100 µg/mL streptomycin.  Cells were induced to differentiate 

by changing the medium to DMEM containing 4.5 g/L glucose, 10% FBS, 100 U/mL penicillin, 

100 µg/mL streptomycin, 0.5 mM 3-isobutyl-methylxanthine, 1 µM dexamethasone, and 1.7 µM 

insulin.  After 48 hrs, this medium was replaced with DMEM containing 4.5 g/L glucose 

supplemented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin; and the cells 

were maintained in this medium until used (Floyd and Stephens 2002; 2003). 

BDS Generation and Collection. The process of BDS generation and collection has been 

described in detail (Penn et al. 2005). Briefly, room temperature BD gas (≥ 99% purity; Sigma; 

St. Louis, MO) was passed through a back-flash-protected stainless steel two-stage regulator to a 

stainless steel Bunsen burner at flow rates of 5–7 mL/sec under normal atmosphere and ignited.  

Soot particles passing through the feed pipe were collected on acetone-washed Whatman 

cellulose filters placed in a porcelain Buchner funnel connected to a vacuum pump.  The BDS 

was scraped gently off the filters and stored in aluminum-foil-wrapped glass vials capped with 

foil-lined lids.   

BDS Exposures.  In each exposure, the culture medium was changed immediately before 

addition of BDS or staining solutions.  For the co-localization experiments, 3 mg of BDS were 

sprinkled onto the surface of the BEGM in each 60 mm dish containing BEAS-2B cells (70% 

confluent) 24 hours prior to imaging.  For sonicated BDS (S-BDS) exposures, a stock solution 
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was prepared by suspending 10 mg BDS in 50 mL of culture medium and sonicating the 

suspension with three 15 second pulses of a Branson Sonifier (Model 450, Constant Duty Cycle; 

Danbury, CT).  BEAS-2B cells, MH-S cells, and adipocytes were exposed to 20 µg/mL S-BDS 

for 24 hours prior to fluorescence imaging.  For quantitative RT-PCR experiments, BEAS-2B 

and MH-S cells were exposed to S-BDS for 0, 1, 12, or 24 hours prior to RNA extraction. 

Fluorescent Dye Co-Localization.  Organelle-specific fluorescent probes were used to 

investigate the subcellular localization of BDS-associated fluorescence.  The probes were 

prepared in BEGM, and BEAS-2B cells were exposed as described in Table 2.1. 

Monodansylcadaverine (MDC; Sigma) was used to label autophagosomes.  LysoTracker Red 

DND-99, to label lysosomes; Dextran-Tetramethylrhodamine (D-TMR), to label endosomes; and 

Cholesteryl BODIPY 542/563 C11, to label lipid droplets, were obtained from Molecular Probes 

(Invitrogen; Carlsbad, CA).  To investigate peroxisomes as candidate organelles for 

sequestration of the PAH fluorescence, we transfected BEAS-2B cells with a plasmid whose 

protein product is a fusion of the red fluorescent protein DsRed2 with the peroxisomal targeting 

sequence 1 [PTS1] (Gould et al. 1989; 1990).  Construction of a plasmid, in which the sequence 

for a DsRed monomeric protein was appended to the lipid droplet localizing sequence for ADFP, 

is described below.  We identified lipid rafts with the Vybrant Lipid Raft Labeling Kit 

(Invitrogen), which labels the rafts with a fluorescent conjugate of the B subunit of cholera toxin 

(CT-B).  Due to the extremely small size of individual rafts, they are condensed into larger 

discrete bodies with a CT-B specific antibody for fluorescence observation (Janes et al. 1999).  

The characteristics of the optical filter set for each test agent are listed in Table 2.1.   

Fluorescence Microscopy.  With a Microfire Megapixel Digital CCD camera, operated by 

PictureFrame software (Optronics; Goleta, CA), we collected images (Figures 2.1A, 2.1C, 2.2C, 
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2.3A-C) from a Zeiss Axiovert 405M inverted fluorescence microscope, through a 40X objective 

(LD Achroplan, 0.60 NA).  With a SensiCam QE 12-bit, cooled CCD camera (Cooke; Romulus, 

MI), operated by SlideBook software (Intelligent Imaging Innovations; Denver, CO), we 

collected images (Figures 2.1B, 2.2A-B, 2.3D) from a Leica DM RXA2 upright microscope, 

through 40X (HCX PL APO CS, 1.25 NA), 63X (HCX PL APO CS, 1.32 NA), or 100X (HCX 

APO U-V-I, 1.30 NA) objectives equipped with differential interference contrast (DIC) optics.  

Z-plane images captured though the 100X objective were processed by SlideBook, with 

constrained iterative deconvolution, to confirm co-localization of the BDS-associated 

fluorescence with pDsRed-Monomer-ADFP.  These planes were combined to create a three-

dimensional rotating video image of a single BDS-exposed BEAS-2B cell.  We used SlideBook 

to measure lipid droplet dimensions and Adobe Photoshop CS to process all images using only 

crop, screen, and levels commands.   

 
Table 2.1.  Fluorescent probe specifications, exposure parameters, and filter wavelength 
boundaries for BDS-associated fluorescence co-localization. 

 
The concentrations of test agents are the final concentration in BEGM culture medium.  For all 
co-localization experiments, cells were exposed to BDS for 24 hours prior to imaging.  In the 
transfection studies, the exposure duration is the time after transfection that the images were 
collected.  Filters were obtained from Omega® Optical (Brattleboro, VT). 
 
 

Test Agent or Probe Organelle 
Labelled 

Concentration of 
Test Agent 

Exposure 
Duration 

Ex/Em 
(nm) 

Butadiene Soot (BDS)  20 µg/mL 24 hr 360/470 
Monodansylcadaverine Autophagosomes 0.14 mM 10 min 475/535 
Dextran-TMR Endosomes 2.5 mg/mL 24 hr 560/620 
LysoTracker Red Lysosomes 1.0 µM 10 sec 560/620 
pDsRed2-Peroxi Peroxisomes N/A 96 hr 560/620 
Cholera Toxin Subunit B Lipid Rafts 1 µg/mL 10 min 475/535 
Cholesteryl BODIPY Lipid Droplets 1.0 µM 10 min 546/600 
pDsRed-Mono-C-ADFP Lipid Droplets N/A 48 hr 546/600 
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RNA Isolation. BEAS-2B cells and MH-S cells at or near confluence were collected from three 

wells of a 6-well plate by scraping into 1 mL of Invitrogen TRIzol Reagent and passing them 

three times through a 23G needle attached to a 1 mL syringe. RNA was purified from this 

solution with the Qiagen RNeasy Mini Kit.  RNA concentrations were measured with a 

NanoDrop ND-1000 Spectrophotometer (Wilmington, DE).  RNA quality and integrity was 

assessed using the Agilent RNA 6000 Nano Assay Kit and the Agilent 2100 BioAnalyzer (Santa 

Clara, CA).  Total RNA was converted to cDNA using TaqMan Reverse Transcriptase Reagents 

(Applied Biosystems; Foster City, CA) according to the manufacturer’s protocol.   

pDsRed-Monomer-C-ADFP Plasmid Preparation and Transformation.  Human ADFP PCR 

primers were as designed by Targett-Adams et al. (2003) from the ADFP mRNA sequence in 

GenBank: a) 5’-GGGGCAGGTTTAATGAGTTTTATG-3’; and b) 5’-CCAGGAAGAAAAAT 

GGCATCCGTT-3’ (Integrated DNA Technologies; Coralville, IA).  PCR was performed on 50 

ng of BEAS-2B cDNA in Eppendorf MasterMix (Hamburg, Germany) for 30 cycles in an MJ 

Research (Waltham, MA) PTC-100 thermal cycler.  To impart red fluorescence to ADFP 

expressed within cells, the ADFP PCR product was ligated into the pDsRed-Monomer-C In-

Fusion Ready Vector with the In-Fusion Dry-Down PCR Cloning Kit and expanded in Fusion-

Blue Competent E. coli cells (Clontech; Mountain View, CA) according to the manufacturer’s 

protocols.   Plasmid DNA was isolated from the bacteria with the Wizard Plus SV Miniprep 

system (Promega; Madison, WI).  Plasmid insert size was confirmed by double restriction 

enzyme digestion with EcoRI and SalI (New England Biolabs; Beverly, MA); the insert sequence 

was confirmed by GeneLab (Louisiana State University, School of Veterinary Medicine, Baton 

Rouge, LA) with the Applied BioSystems BigDye Terminator v3.1 Cycle Sequencing Kit.  

BEAS-2B cells grown on glass coverslips in 60 mm dishes were transformed with 500 ng of the 



40 
 

plasmid, in the presence of Lipofectamine LTX and PLUS reagents (Invitrogen).  After 48 hours, 

cells were observed for lipid droplet fluorescence, then exposed to S-BDS (20 µg/mL) for 24 

hours prior to imaging for co-localization. 

Quantitative Real Time RT-PCR.  Quantitative RT-PCR (qRT-PCR) was performed on cDNA 

samples from BEAS-2B and MH-S cells with inventoried TaqMan Gene Expression Assays 

primer-probe sets (Applied Biosystems) for the genes listed in Table 2.2.  Reaction volumes 

were 25 µL and 40 reaction cycles were performed for each gene in an Applied Biosystems 7300 

Real Time PCR System.  Relative gene expression was determined by the comparative cycle 

threshold (ΔΔCT) method, with each gene normalized to β-actin (ACTB) for human cells (Fields 

et al. 2001) or hypoxanthine guanine phosphoribosyl transferase (Hprt1) for mouse cells (Mamo 

et al. 2007), and then compared to the 0 hour control.  Results are reported as fold change over 

control ± standard error of the mean [(2-ΔΔCT) ± SEM]. 

Statistical Analysis.  We used the GLM (general linear model) procedure of the SAS statistical 

package (version 9.1.3; SAS Institute, Inc., Cary, NC) to compare RT-PCR data and used the 

Dunnett’s t test to determine statistical differences. 

RESULTS 

BDS-associated Fluorescence in Bronchial Epithelial Cells is Time-dependent.  We followed 

the time-dependent development of BDS-associated fluorescence in human bronchial epithelial 

cells by fluorescence microscopy.  Figure 2.1 shows the fluorescent responses of BEAS-2B cells 

exposed to 3 mg of BDS sprinkled on the surface of the medium.  The responses progressed from 

diffuse fluorescence visible at ten minutes post-exposure (Figure 2.1A) to the appearance of 

bright punctate perinuclear blue-green fluorescence first visible after two hours.  During the 

transition from diffuse to punctate fluorescence, a reticular network was visible throughout the 
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Table 2.2.  Quantitative RT-PCR fold change values in AhR-responsive genes of MH-S and 
BEAS-2B cells exposed to BDS. 
 
Gene Applied Biosystems 

Primer-Probe Set 
ID Number 

1 Hour 12 Hours 24 Hours 

MH-S     
Ahr Mm00478932_m1 1.05 ± 0.17 1.08 ± 0.16 1.15 ± 0.28 
Ahrr Mm00477443_m1 3.56 ± 0.52 * 3.04 ± 0.54 * 3.32 ± 0.62 * 
Aldh3a1 Mm00839312_m1 1.42 ± 0.26 1.02 ± 0.50 1.38 ± 0.57 
Cyp1a1 Mm00487218_m1 10.45 ± 2.97 * 4.78 ± 0.94 * 6.37 ± 1.94 * 
Cyp1b1 Mm00487229_m1 69.21 ± 15.81 * 16.77 ± 3.45 * 17.56 ± 3.49 * 
Tiparp Mm00724822_m1 7.84 ± 1.16 * 2.09 ± 0.33 * 1.97 ± 0.46 * 
 
BEAS-2B 

    

ALDH3A1 Hs00167469_m1 1.54 ± 0.8 7.27 ± 1.2 * 4.63 ± 2.6 * 
CYP1A1 Hs00153120_m1 21.52 ± 15.4 191.01 ± 29.4 * 108.38 ± 44.3 *
CYP1B1 Hs00164383_m1 6.07 ± 2.9 * 4.91 ± 0.7 3.50 ± 1.5 
TIPARP Hs00604497_m1 13.11 ± 6.8 * 4.35 ± 0.6 3.46 ± 1.5 
 
Results are reported as fold change over control ± standard error of the mean [(2-ΔΔCT) ± SEM]. 
N=4 for each gene analyzed. 
*Significant difference (α=0.05) from control sample. 
 
 
cytoplasm.  Ultraviolet excitation wavelengths (~360 nm) typically provided the brightest 

emission spectra for visualization of the BDS-associated fluorescence as shown in Figures 2.1A 

and 2.1C; however, the reticular network shown in Figure 2.1B was best demonstrated with a 

longer excitation wavelength (~480 nm).  The intensity of the fluorescence within the punctate 

bodies increased through 4 hours of exposure (Figure 2.1C) and persisted at least through 72 

hours.  The differential interference contrast (DIC) image in Figure 2.2A demonstrates that in 

BEAS-2B cells the fluorescent bodies appear as sub-micron (0.78 ± 0.05 µm) refractile entities, 

and that some exposed cells develop prominent peripheral membrane blebs.  

BDS-associated Fluorescence Localizes to Lipid Droplets in Bronchial Epithelial Cells.  

Based on the light microscope observations of size, shape and perinuclear distribution of the 
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Figure 2.1.  Time-dependent fluorescent 
responses of BEAS-2B cells exposed to 
petrochemical combustion-derived ultrafine 
particles (BDS) sprinkled on the surface of the 
culture medium.  Diffuse fluorescence is visible 
within 10 min (A). A reticular network is visible 
during the transition from diffuse to punctate 
fluorescence at 2 hours post-exposure (B). 
Punctate fluorescence increases through the first 
4 hours of exposure to BDS (C). Ultraviolet 
excitation wavelengths (~360 nm) typically 
provided the brightest emission spectra for 
visualization of the BDS-associated fluorescence 
as shown in A and C; however, the reticular 
network shown in B was best demonstrated with 
a longer excitation wavelength (~480 nm).  Bars 
= 10 µm. 
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Figure 2.2.  Bronchial epithelial cells, alveolar macrophages, and adipocytes display 
characteristic BDS-associated fluorescence. DIC (A,B) and brightfield photomicrographs (C) 
paired with UV-fluorescence images of BEAS-2B human bronchoepithelial cells (A), MH-S 
murine alveolar macrophages (B) and 3T3-L1 murine adipocytes (C) following a 24-hour 
exposure to sonicated BDS.  The fluorescent bodies appear as variably-sized refractile bodies; 
peripheral membrane blebs are visible on some cells (A). In contrast to BEAS-2B cells, mouse 
alveolar macrophages displayed larger droplets, all of which were fluorescent (B). Large droplets 
in mouse adipocytes displayed BDS-associated fluorescence, as well (C).  Black BDS particles 
are visible in the brightfield panel of C, and the fluorescent panel demonstrates the lack of 
fluorescence associated with the particles.  Bars = 10 µm (A), 7.5 µm (B), and 10 µm (C). 
 



44 
 

fluorescent compartments, candidate organelles were selected and tested by fluorescence co-

localization to identify the subcellular compartment(s) in which the BDS-associated blue 

fluorescence became concentrated.  Due to the wide excitation and emission spectra of the BDS-

associated fluorescence, special consideration was necessary in the selection of fluorophores to 

avoid overlaps in excitation or emission.  We determined that fluorophore excitation 

wavelengths >500 nm were required to avoid eliciting fluorescence in cells exposed to BDS 

alone, and that ultraviolet excitation wavelengths (350-400nm) were ideal for providing maximal 

and consistent fluorescent blue (~450-500 nm) BDS-associated emissions (data not presented).  

Thus, we were limited essentially to red fluorophores for co-localization and were not able to 

take advantage of the older, more common, and often brighter, blue and green fluorophores. 

LysoTracker Red is a membrane permeant fluorescent probe that selectively labels 

intracellular compartments with low pH, e.g. lysosomes (Wubbolts et al. 1996).  Lysosomes also 

sequester lipid-containing molecules, e.g. low density lipoproteins, acquired through endocytic 

mechanisms (Brown et al. 2000; Dhaliwal and Steinbrecher 2000; Moumtzi et al. 2007).  Rare 

co-localization of LysoTracker Red and BDS-associated fluorescence is visible in the merge of 

Figure 2.3A. 

Autophagic vacuoles form when cellular organelles, damaged membranes, or large 

protein structures are packaged for degradation (Reggiori and Klionsky 2002; 2005).  MDC was 

identified originally as a fluorescent probe that selectively labels autophagic vacuoles 

(Biederbick et al. 1995); however, its specificity has been challenged in that it also labels 

lysosomes and autolysosomes (Bampton et al. 2005; Rodriguez-Enriquez et al. 2006).  Our 

results confirmed this.  MDC and LysoTracker Red fluorescence often co-localized with one 

another, while each rarely co-localized with BDS-associated fluorescence (images not shown). 
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 D-TMR is a 10 kDa dextran moiety fused to the tetramethylrhodamine fluorophore.  D-

TMR preferentially enters cells via endocytosis (Ohkuma and Poole 1978), thus serving to label 

primary endosomes and later, secondary lysosomes. Figure 2.3B shows the images of D-TMR 

and BDS fluorescence.  No co-localization of the fluorophore with BDS-associated fluorescence 

was detected.   

 In BEAS-2B cells transfected with the fluorescent peroxisome marker, DsRed expression 

was visualized as evenly distributed fluorescent red cytoplasmic inclusions ≤0.5 µm in diameter.  

Peroxisome fluorescence did not co-localize with BDS-associated fluorescence (data not 

presented).   

 For BEAS-2B cells with fluorescence-labeled lipid raft aggregates, there was no co-

localization of blue BDS-associated fluorescence and green raft fluorescence (data not 

presented). 

 Cholesteryl-BODIPY C11 concentrates in hydrophobic compartments within cells via the 

‘selective’ transport pathway, in which cholesteryl esters from high density lipoproteins are 

routed directly to lipid droplets without prior processing in lysosomes or the Golgi apparatus 

(Sparrow and Pittman 1990; Reaven et al. 1995; 1996).  Figure 2.3C shows the co-localization of 

the red cholesteryl-BODIPY C11 and the blue BDS fluorescence as evidenced by the 

predominance of purple vesicles in the merged image.   

 To confirm the localization of BDS-associated fluorescence specifically to lipid droplets, 

we transfected BEAS-2B cells with a plasmid whose protein product is a fusion of DsRed-

Monomer-C with ADFP.  The resultant cells displayed fluorescent red perinuclear inclusions ~1 

µm in size.  The merged image of Figure 2.3D shows that the blue fluorescence associated with 

BDS co-localizes completely with the red fluorescence of the lipid droplets in BEAS-2B cells.   
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Figure 2.3.  Co-localization assays of organelle-specific probes with BDS fluorescence in 
BEAS-2B cells.  The left column shows responses to red fluorescent probes for lysosomes 
(LysoTracker Red, A), endosomes (Dextran-TMR, B), and lipid droplets (cholesterol-BODIPY, 
C; DsRed-ADFP, D).  The central column shows the concurrent BDS-associated fluorescence 
following UV excitation. The right column shows the merged images.  Complete co-localization 
is evident for lipid droplets. Video 2.1 is a deconvolved, three-dimensional representation of the 
cell shown in the merge of D.  Bars = 10 µm (A-C) and 5 µm (D). 
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The video is a three-dimensional rotating representation of the same cell shown in the Figure 

2.3D merge (Video 2.1).  This video demonstrates the heterogeneity in size of the fluorescent 

lipid droplets (0.3-1.4 µm), their perinuclear distribution, and their uniform dispersion 

throughout the cytoplasm of a BEAS-2B cell. 

 

 

 

 

 

 

 

Video 2.1. This video demonstrates the heterogeneity in size of the fluorescent lipid droplets 
(0.3-1.4 µm), their perinuclear distribution, and their uniform dispersion throughout the 
cytoplasm of a BEAS-2B cell. 
 

Alveolar Macrophages and Adipocytes Display BDS-associated Fluorescence.  Murine 

alveolar macrophages exposed to BDS generally displayed the same overall characteristic 

distribution of punctate blue fluorescence as did the BEAS-2B cells.  However, as shown in 

Figure 2.2B, there were cytoplasmic differences between macrophages and BEAS-2B cells, with 

the former displaying large (1.8 ± 0.2 µm) fluorescent lipid droplets concentrated in the 

perinuclear region. 

Cultured adipocytes exposed to BDS are shown in Figure 2.2C.  The large (2.6 ± 0.3 µm) 

fat droplets of these cells display the same BDS-associated fluorescence seen in BEAS-2B cells, 

corroborating the observations above that the fluorescent vesicles are consistent with lipid 

droplets.  Furthermore, the development of fluorescence in these cells also was time-dependent 
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with the fluorescence intensity increasing proportionally with time of exposure to BDS.  

Adipocytes also were chosen in this context to represent another pulmonary cell type, the 

lipofibroblast or lipid-laden pulmonary interstitial fibroblast.  This cell type is found most 

commonly in lungs of neonatal mammals where it functions in supplementary surfactant 

production and retinoid storage (McGowan and Torday 1997; Chen et al. 1998). 

BDS Induces Aryl-Hydrocarbon Receptor (AhR) Responsive Gene Transcription in MH-S 

and BEAS-2B cells.  We used RT-PCR to measure the expression of the AhR and selected AhR-

responsive genes, including the aryl hydrocarbon receptor repressor (Ahrr), aldehyde 

dehydrogenase 3A1 (Aldh3a1), cytochrome P450 IA1 (Cyp1a1) and IB1 (Cyp1b1), and TCDD-

inducible poly(ADP-ribose) polymerase (Tiparp), in MH-S cells exposed to S-BDS for 1, 12, and 

24 hours (Table 2.2).  Although there was no change in Ahr expression in the macrophages (MH-

S), there was greater than a three-fold increase in Ahrr expression across all time points 

examined.  This is consistent with a recent report that expression of Ahrr and the AhR nuclear 

transporter increases following exposure of cells to the PAH carcinogen 3-methylcholanthrene, 

even though there is no increase in AhR transcript expression (Yamamoto et al. 2004).  We also 

measured significant increases for Cyp1a1, Cyp1b1, and Tiparp, with the highest expression of 

each gene being recorded one hour post-exposure.  Expression of Aldh3a1 was increased, but it 

was not significantly different from expression in the control cells.  A similar trend was noted for 

selected genes in bronchoepithelial (BEAS-2B) cells, except that ALDH3A1 expression was 

significantly increased, and the highest values for each gene were at one hour for CYP1B1 and 

TIPARP, and at 12 hours for ALDH3A1 and CYP1A1 (Table 2.2). 

 Macrophage inflammatory protein-2 (MIP-2; human interleukin-8 analogue) expression 

was significantly elevated at 1 and 12 hours post exposure (1.50 ± 0.24 and 1.25 ± 0.16, 
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respectively) in MH-S cells.  In contrast, there were either no significant changes in expression 

or the expression level was below the level of detection for the following cytokines in MH-S 

cells: interferon-γ (Ifng), interleukin-1β (Il-1b), interleukin-4 (Il-4), interleukin-6 (Il-6), 

transforming growth factor β1 (Tgfb1), and tumor necrosis factor (Tnf).  Expression of IL-1α 

and IL-1β was elevated in BEAS-2B cells at each time point, but the increases were not 

significantly different from control cells (data not presented). 

DISCUSSION 

The objectives of this study were a) to identify the cytoplasmic compartment where 

PAHs reside following delivery by inhalable combustion-derived ultrafine particles and b) to 

determine whether this compartmentalization is associated with altered expression of Phase I 

biotransformation enzyme and/or cytokine genes.  We used organelle-specific probes and 

fluorescence imaging techniques to identify lipid droplets as the subcellular sites of localization 

of PAH-associated fluorescence in respiratory epithelial cells.  This investigation represents the 

first time that this organelle has been identified as a site of accumulation and potential repository 

for organic toxicants associated with combustion-derived ultrafine particles.  We also used qRT-

PCR to determine that Phase I biotransformation genes were upregulated in a time-dependent 

manner, while expression of cytokine genes was slight or unchanged. 

A role for carbonaceous particles as a PAH delivery system to cells has been previously 

considered.  Bevan et al. (1981) and Lakowicz et al. (1980) demonstrated that cellular uptake of 

PAHs is enhanced when the PAHs are adsorbed to high surface area solids such as carbon black 

particles or asbestos fibers.  In an earlier study, we reported that aggregates of non-sonicated 

BDS particles occasionally were found apposed to cells, but that endocytosis of the particles was 

not detected.  We also demonstrated that organic solvent-extracted BDS particles did not produce 
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the characteristic fluorescent responses and that the soot-derived PAHs, which produce those 

responses, can be extracted from the cells (Penn et al. 2005).  Based on these observations, we 

propose that BDS particles physically deliver the hydrophobic PAHs to the cells, and that the 

PAHs are distributed diffusely to lipid bilayers in the plasma membrane and endoplasmic 

reticulum.  A ‘reticular’ distribution of fluorescence is visible in cells when maximal punctate 

fluorescence has not yet developed (Figure 2.2B).  Partitioning forces then trap the PAHs in the 

lipophilic environment of lipid droplets once they reach this compartment. 

Investigators have used B(a)P-associated fluorescence as a marker for intracellular PAH 

accumulation, and have described the uptake and partitioning kinetics of B(a)P delivered to cells.  

Lakowicz et al. (1980) showed that the rate-limiting step of PAH transfer from a particulate is 

desorption of the PAH from the particle into the aqueous environment and that its subsequent 

incorporation into a lipid phase is very rapid.  Subsequently, Plant et al. (1987) reported that the 

rate-limiting step in PAH movement intracellularly is desorption from the inner leaflet of the 

plasma membrane into the aqueous cytosol.  B(a)P would then partition to lipophilic 

compartments including the membranes of the Golgi apparatus and endoplasmic reticulum, and 

ultimately lipid droplets.  B(a)P was used in these earlier descriptions of PAH movement within 

cells because of its inherent fluorescence and well-known carcinogenicity.  Our results suggest 

that consideration of hydrophobic compound movement and compartmentalization within cells 

should be applied to a broader range of compounds, including lipophilic toxins, other xenobiotics 

and pharmacologic agents.  Lipid droplets might act as repositories for such compounds 

preventing them from exerting their toxic or therapeutic effects, in effect ‘protecting’ the cell.  

Alternatively, the sequestration of compounds in lipid droplets may perpetuate their availability 
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to the cell.  The degree of availability may depend upon the characteristics of the lipid droplet 

surface and its associated proteins charged with regulation of access to the droplets’ cargo. 

The results presented here and from our unpublished in vivo studies indicate that inhaled 

combustion-derived ultrafine particles can traffic to target organs and deliver the PAHs adsorbed 

to their surface to intracellular depots, i.e. lipid droplets, which then serve as reservoirs for 

accumulation and possible delayed release of these compounds.  By gas chromatography/mass 

spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS), we 

have identified BDS-associated PAHs spanning the size range from 100 amu to more than 400 

amu.  Among those identified specifically were anthracene, chrysene, benzopyrenes [including 

B(a)P], and perylene (Catallo et al. 2001; Penn et al. 2005).  The sequestered PAHs, as well as 

PAHs en route to lipid droplets, likely are available to biotransformation enzymes, especially 

those enzymes induced by PAH interaction with the AhR.  In support of this, we report here that 

cytochrome P450 IA1 and IB1 transcripts are upregulated in BEAS-2B cells in a time-dependent 

manner after exposure to BDS.  We have observed a similar response in lungs of mice exposed 

to BDS by inhalation (Murphy G, Paulsen DB, Penn A, unpublished observations).  Microsomal 

cytochrome P450 enzyme activity is responsible for the Phase I metabolism of many PAHs, 

whereby oxidation of a toxic substrate prepares the substrate for Phase II metabolism and 

eventual excretion.  However, for some compounds, including B(a)P, Phase I metabolism can 

transform substrates into highly reactive compounds (bioactivation).  The most bioactive 

metabolite of B(a)P is benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE), which forms guanine 

adducts in DNA (e.g. at specific mutational loci of the p53 gene).  These loci often are altered in 

human lung cancer (Denissenko et al. 1996).  Buening et al. (1978) reported that intraperitoneal 

injection of BPDE significantly increases pulmonary tumor occurrence in rats.  Using normal 
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mammary epithelial cells exposed to B(a)P in vitro, Keshava et al. (2005) demonstrated that 

cytochrome P450 IA1 and IB1 expression is highly variable between individuals, but that 

expression of these genes is generally induced by exposure to B(a)P, regardless of baseline 

expression.  Although the data seemed to strongly support bioactivation of B(a)P, there was only 

a weak correlation between CYP1A1 and CYP1B1 induction and B(a)P-DNA adduction.  We 

propose that sequestration of PAHs in lipid droplets may perpetuate their interaction with the 

AhR, and thus prolong activation of the xenobiotic metabolism pathways. 

Experiments in dogs have shown that organic solvent-denuded diesel exhaust particles 

coated with B(a)P are stripped of the majority of their PAH load within 30 minutes of initial 

exposure.  The released PAHs are detected rapidly in the systemic circulation followed by 

metabolism that likely occurs in the liver.  The pulmonary epithelium does not retain the stripped 

PAHs long enough to metabolize a significant portion.  However, about one-third of the original 

B(a)P load can be recovered as the parent compound and about one-half as lipophilic metabolites 

from particles that persist in the airways (free or macrophage associated) more than five months 

post-exposure, at which time about three-fourths of the particles still are retained in the lungs 

(Gerde et al. 2001).  Thus, long-term retention of PAH-laden particles in the lung could allow for 

long-term concentration of PAHs into the lipid droplets of alveolar macrophages and pulmonary 

epithelial cells.  The availability of these PAHs to the AhR once they are sequestered in lipid 

droplets remains unknown.  Persistent irritation from particle retention in the lung interstitium 

plus long-term activation of the AhR pathway, constant stimulation of xenobiotic metabolism 

enzymes, and perpetual inflammation could provide a pro-cancerous environment in the lung 

parenchyma (Wogan et al. 2004). 
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In conclusion, our results demonstrate that fluorescent PAH compounds adsorbed to 

inhalable combustion-derived ultrafine particles traffic to lipid droplets of respiratory cells, 

including bronchial epithelial cells, alveolar macrophages, and adipocytes (as a surrogate for 

pulmonary lipofibroblasts).  Furthermore, in vitro exposure of epithelial cells and alveolar 

macrophages to BDS stimulates AhR-responsive xenobiotic metabolism pathways known to 

potentiate the toxicity of certain PAHs, including several found in BDS.  
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CHAPTER 3 
 

COMBUSTION-DERIVED ULTRAFINE PARTICULATES CAUSE INFLAMMATION 
IN MURINE AIRWAYS AND UPREGULATE BIOTRANSFORMATION ENZYME 

GENE EXPRESSION 
 

INTRODUCTION 

 Fine particles (PM2.5; aerodynamic diameter <2.5 µm) contribute to ambient pollution 

and cardiopulmonary morbidity (Schwartz et al. 1996).  Since the implementation of a revised 

edition of the National Ambient Air Quality Standards for Particulate Matter (United States 

Environmental Protection Agency 1997), studies have correlated PM2.5 exposure to increased 

cardiopulmonary and lung cancer mortality (Pope, III et al. 2002; 2004), as well as increased risk 

of respiratory and cardiovascular disease (Dominici et al. 2006; Kunzli et al. 2000).    

Van Eeden et al. (2001) demonstrated that coarse particulate air pollutant (PM10; 

aerodynamic diameter <10 µm) exposure generates a systemic inflammatory response, i.e. an 

increase in circulating inflammatory cytokines (IL-1β, IL-6, IL-8, and GM-CSF).  The cytokines 

found in the circulation were the same as those produced in vitro by alveolar macrophages and 

bronchial epithelial cells exposed to comparable particulate matter (Fujii et al. 2001; Van Eeden 

et al. 2001); thus lung cells produce cytokines that not only can act in situ, but also enter the 

systemic circulation and act upon other organ systems.   

In urban areas, combustion of gasoline and diesel fuels as well as industrial organics 

(simple aliphatics and/or fossil fuels) contributes significantly to the ambient PM2.5 fraction 

(Lighty et al. 2000), as well as to the ultrafine particulate (PM0.1; aerodynamic diameter <0.1 

µm) fraction (Oberdorster and Utell 2002).  Ultrafine particles have received little attention from 

regulatory agencies, but in numerous experimental settings have been found to elicit a range of 
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toxicological effects, often more severe than those found with comparable exposures to fine 

particles (Bermudez et al. 2004; Lundborg et al. 2006). 

Ambient urban particles are composed of a complex array of organic and inorganic 

components, often adsorbed to a carbonaceous core, and each member of the complex may play 

a role in disease promotion.  The surface characteristics and crystal structure of particles may be 

major determinants of pulmonary inflammation and injury (Sayes et al. 2007; Warheit et al. 

2007).  The aqueous inorganic fraction of residual oil fly ash (ROFA), containing the soluble 

transition metals iron, vanadium, and nickel, induced pulmonary edema, hemorrhage, and a 

profound inflammatory infiltrate (Dreher et al. 1997).  Diesel exhaust particles (DEPs) contain a 

variety of oxygen radical-generating quinones in addition to polyaromatic hydrocarbons (PAHs) 

and several metal species (Kumagai et al. 2002; Li et al. 2000; Murphy et al. 1999).  An 

extensive body of literature exists characterizing the effects of the parent particles and their 

isolated constituents in vitro and in vivo, including studies in humans (Diaz-Sanchez et al. 1997; 

Salvi et al. 1999)  The endpoints of many of these studies describe inflammatory cell infiltration 

as well as inflammatory cytokine production by bronchial epithelial cells and alveolar 

macrophages, with most of the effects attributed to the PAH and quinone fractions (Campen et 

al. 2005; Ma and Ma 2002; Rao et al. 2005).  

Combustion of low molecular weight hydrocarbons, as in the case of industrial flaring of 

fugitive volatiles, is another source of complex particulate environmental contamination.  1,3-

butadiene (BD) is a high-volume, aliphatic hydrocarbon byproduct of petroleum refining and is 

used in the manufacture of synthetic rubber and other elastomers.  Butadiene soot (BDS), 

generated from the incomplete combustion of BD, is both a model mixture and a real-life 

example of a petrochemical product of incomplete combustion with the potential both for 
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environmental contamination and for contributing to health problems (Penn et al. 2005).  BDS is 

an organic-rich mixture of ultrafine (30-50 nm) carbonaceous particles to which hundreds of 

PAH species, including benzo(a)pyrene [B(a)P] and other carcinogens, are adsorbed.  In contrast 

to ROFA and DEPs, BDS is oxygen- and metals-poor (Catallo et al. 2001; Penn et al. 2005).  

Both human bronchoepithelial cells and mouse alveolar macrophages display a distinct punctate 

blue, PAH-associated cytoplasmic fluorescence following exposure to BDS in vitro. The 

fluorescence is localized to cytoplasmic lipid droplets (Murphy et al, manuscript submitted). The 

fluorescence does not develop if the PAHs have been extracted from the particles and the same 

spectrum of PAHs present in the parent BDS can be extracted from the fluorescent cells (Penn et 

al. 2005). In vivo responses to BDS exposure have not been reported.  We hypothesized that 

inhalation of the PAH-rich BDS should result in a) activation of aryl hydrocarbon receptor 

(AhR)-associated genes, as is the case with other PAH-rich mixtures, e.g. cigarette smoke, and b) 

up-regulation of inflammatory cytokines, as is the case with DEP. 

The questions addressed in this study were: 

• Can freshly-generated BDS, known to consist of particles in the ultrafine size range, 

inhaled by mice reach the alveoli of their lungs? 

• Do inhaled BDS particles induce a pulmonary inflammatory response in vivo? 

• Does exposure to BDS alter gene expression in the lungs?  For example, do PAHs 

associated with BDS particles upregulate expression of xenobiotic biotransformation 

enzyme genes in lung tissue?  Is cytokine gene expression altered? 

Here, we present an analysis of bronchoalveolar lavage fluid (BALF) with inflammatory 

cell infiltrates, histopathological evidence of suppurative inflammation and particle retention, 

and gene expression analysis which reveals upregulation of several cytokines and AhR 
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responsive biotransformation enzymes.  These results demonstrate that brief exposure to BDS 

causes acute airway inflammation and augments expression of AhR-responsive genes. 

METHODS 

Animals.  Eighteen 6 week old female Balb/cJ mice were obtained from Jackson Laboratories 

(Stock 000651, Bar Harbor, ME).  After a one week acclimation period, animals were housed 

individually in suspended steel wire cages at the AAALAC-accredited Inhalation Research 

Facility at Louisiana State University.  The mice were handled in accordance with the NIH 

Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources 

1996); and all procedures were approved by the Louisiana State University Institutional Animal 

Care and Use Committee.  Food and water were provided ad libitum between exposures, but 

food and water were removed during the exposures to prevent their contamination with particles 

and/or chemical residues. 

BDS Exposures.  Room temperature BD gas (Aldrich, St. Louis, MO) was passed through a 

two-stage regulator (Model LB 150 C; Aldrich), then through a rotameter (Model FM-1050; 

Matheson, Montgomeryville, PA) to regulate BD flow at 300 mL/min.  After passing through a 

flash arrester, the BD was delivered to a stainless steel Bunsen burner housed in a 0.25 m3 

generation chamber constructed of stainless steel and plexiglass.  The burner was lit remotely by 

a piezoelectric igniter.  Each BD flare was allowed to burn for 35-45 sec to maintain an average 

BDS particle concentration of 6.5 mg/m3 in the connected adjacent stainless steel and glass 1.0 

m3 inhalation chamber in which the animals were exposed.  BDS was drawn from the generation 

chamber to the exposure chamber by a static pressure differential.  Particle concentration in the 

exposure chamber was monitored in real-time with a DustTrak (Model 8520; TSI Inc., St. Paul, 

MN); and this concentration was calibrated daily by gravimetric filter comparison.  BD gas 
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concentrations in the exposure chamber were measured by a MIRAN sapphIRe infrared 

spectrometer (The Foxboro Co., Foxboro, MA) and maintained at an average of 21 ppm 

throughout the exposures.  HEPA-filtered air flow rates in control and exposure chambers were 

maintained at approximately 140 L/min.  Ten animals were exposed to BDS four hours per day 

for four days, and eight were exposed only to HEPA-filtered air for the same time.  Six BDS-

exposed mice and four control mice were euthanized [intraperitoneal injection of 0.2 ml 

Beuthanasia-D Special (Schering-Plough, Union, NJ)] immediately following exposure on the 

fourth day.  We assessed airway hyperreactivity in the remaining four animals from each group 

by whole body unrestrained plethysmography (Buxco, Troy, NY) beginning one hour post-

exposure (Hamelmann et al. 1997).  These animals were euthanized the following day for sample 

collection.  In another study, four mice were exposed to 50 mg/m3 BDS for two days, and they 

were allowed to rest for seven days prior to sample collection.  Four mice exposed to HEPA-

filtered air were used as controls. 

Sample Collection.  Following euthanasia, we lavaged the lungs twice with 0.5 mL phosphate-

buffered saline passed through a 19 gauge cannula anchored in the trachea.  We immediately 

placed the pooled bronchoalveolar lavage fluid (BALF) on ice.  We isolated and excised the left 

lung for storage in RNAlater (Applied Biosystems, Foster City, CA).  We perfused the right lung 

with 0.4 mL of freshly prepared 0.02 M periodate-0.1 M lysine-0.25% paraformaldehyde (PLP) 

fixative in phosphate buffer (pH 7.4), then excised and stored the lungs in PLP for 24–48 hr 

before standard histological sectioning and processing for hematoxylin and eosin staining and 

histopathological evaluation by a board-certified veterinary pathologist.  Characteristics of the 

macrophages and neutrophilic infiltration on the histological sections were scored as described in 

Table 3.1. 
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BALF Analysis.  We performed three hundred cell leukocyte differential counts on modified 

Wright’s-stained cytocentrifuge slide preparations of 400 µL aliquots of raw BALF.  The 

leukocytes were categorized by type (macrophage, neutrophil, eosinophil) and particle burden 

(Figure 3.1).  Particle burden was based upon the amount of cytoplasm occupied by gold or black 

particles.  Macrophages in category 1 (MΦ1) had minimal or undetectable particulate burden.  

Macrophages were categorized as 2 (MΦ2) if greater than five obvious particles were present but 

< 50% of the cytoplasm was occupied by them.  Macrophages with > 50% of their cytoplasm 

occupied by particles and/or with particles obscuring > 25% of the nucleus were categorized in 

group 3 (MΦ3).  Of the other leukocytes considered (neutrophils, eosinophils, lymphocytes), 

only neutrophils were found.  

RNA Isolation. Each lung stored in RNAlater was removed from the solution within 24-48 

hours of sample collection, gently blotted of excess solution, and placed into a clean 2 mL 

microcentrifuge tube with 1 mL TRIzol Reagent (Invitrogen, Carlsbad, CA) and a 4.5 mm 

copper-coated bead.  We homogenized the lung tissue with two 2-min 25 Hz passages on a 

Mixer Mill MM300 (Qiagen, Valencia, CA).  RNA was purified from the aqueous phase of the 

lung homogenate with the Qiagen RNeasy Mini Kit, including RNase-free DNase treatment, 

according to the manufacturer’s protocol.  RNA concentrations were measured with a NanoDrop 

ND-1000 Spectrophotometer (Wilmington, DE).  RNA quality and integrity was assessed using 

the Agilent RNA 6000 Nano Assay Kit and the Agilent 2100 BioAnalyzer (Santa Clara, CA).  

Total RNA was converted to cDNA using a High Capacity cDNA Archive Kit (Applied 

Biosystems; Foster City, CA) according to the manufacturer’s protocol. 

Quantitative Real Time RT-PCR.  Quantitative RT-PCR (qRT-PCR) was performed on cDNA 

samples from lung homogenates with inventoried TaqMan Gene Expression Assays primer-
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probe sets (Applied Biosystems) for the genes listed in Table 3.2.  Reaction volumes were 25 µL, 

and 40 reaction cycles were performed for each gene in an Applied Biosystems 7300 Real Time 

PCR System.  Relative gene expression was determined by the comparative cycle threshold 

(ΔΔCT) method, with each gene normalized to hypoxanthine guanine phosphoribosyl transferase 

(Hprt1) expression (Mamo et al. 2007), and then compared to the air controls.  Results are 

reported as fold change over control ± standard error of the mean [(2-ΔΔCT) ± SEM]. 

Statistical Analysis.  We used the UNIVARIATE and TTEST procedures of the SAS statistical 

package (version 9.1.3; SAS Institute, Inc., Cary, NC) to compare qRT-PCR data.  A folded F 

test was used for each dataset to determine if the variance across the set was statistically ‘equal’, 

in which case the variances could be pooled for determining statistical differences.  For the 

occasional cases of unequal variance across a dataset, Satterthwaite’s approximation of degrees 

of freedom was used to determine statistical significance. 

RESULTS 

BALF Differentials.  The differential distribution of BALF neutrophils and macrophages from 

air- and BDS-exposed mice as well as the respective particle burden of the macrophages are 

presented in Figure 3.1. In the air control samples, essentially all the BALF cells were 

macrophages with fewer than five particles per cell.  Those particles likely represent incidental 

room air particles that escaped the HEPA filter, or food or cage litter particles.  In the BDS 

samples, alveolar macrophages obviously had collected particles from the bronchoalveolar space 

(> 50% of the macrophages present are MΦ2 or MΦ3); and many neutrophils were recruited to 

the same space.  The neutrophil concentration was profoundly increased (>10X) as a result of 

BDS exposure, and they rarely (< 1%) contained particles.  With 16 hours of rest after BDS 



66 
 

exposure, there was a further significant increase (>2X; p=0.002) in the number of neutrophils 

collected in the BALF of BDS-exposed mice. 

 

Figure 3.1. Differential Leukocyte Counts of BALF from Mice Exposed to Filtered Air or 
BDS. Exposure to BDS for four consecutive days leads to profound neutrophilic infiltration into 
the bronchoalveolar space.  Alveolar macrophages (MΦ), the predominant cell found in BALF of 
normal mice, ingest the BDS particles.  One day post-exposure, the neutrophilia is augmented 
and macrophages loaded with particulate material continue to be the predominant cell type (> 
50% MΦ2 or MΦ3).  Representative macrophages are demonstrated in the lower portion of the 
figure.  
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Lung Histopathology.  Figure 3.2 shows examples of histopathological changes in the lung 

parenchyma of control (2A) and BDS-exposed (2B) animals.  As shown in Table 3.1, the 

changes were quantified according to particles found within alveolar macrophages or 

macrophages that had migrated to the interstitium, particles apposed to or within cells of the 

bronchial epithelium, and neutrophil location (peribronchial or transmigratory).  The values 

listed for macrophages and bronchiolar epithelial damage are based on the presence or absence 

of the characteristic in each lung sample.  The neutrophil values are averages ± standard error of 

the mean of the score described below the table.  These results demonstrate that inhaled freshly-

generated BDS particles are able to reach the alveoli.  Here, alveolar macrophages collect the 

particles and even carry them to the interstitium.  This appears to be a time-dependent process, as 

only half of the mice displayed particle-laden interstitial macrophages immediately following  

 
TABLE 3.1.  Histopathological changes in lung parenchyma following inhalation exposure 
to butadiene soot reveal particle-laden macrophages and neutrophilic inflammation. 
 
Treatment Particles in 

Alveolar 
MΦs 

Particles 
Associated With 
Epithelial Cells 

Particles in 
Interstitial
MΦs 

Peribronchial 
Neutrophilia 

Neutrophil 
Transmigration 

Bronchiolar 
Epithelial 
Damage 

4d+0d AIR  0/4  0/4  0/4 0.25±0.25 0.50±0.29 0/4 
4d+1d AIR  0/4  0/4  0/4 0.50±0.29 0.25±0.25 0/4 
4d+0d BDS  6/6  6/6  3/6 1.67±0.21 1.00±0.00 1/6 
4d+1d BDS  4/4  4/4  4/4 3.00±0.00 1.50±0.29 3/4 
 
 Results are reported as either a) a ratio of samples displaying the labeled characterstic vs. 
total number of animals in the group, or b) an average score (as described below) ± standard 
error of the mean. 
 Peribronchial neutrophilia: 0=normal (rare, scattered neutrophils); 1=minimal (increased 
scattered individual or rare clusters of 3 or more); 2=mild (diffuse mild or scattered clusters of 3 
or more), 3=moderate (diffuse moderate or multiple foci of 10 or more). 
 Neutrophil transmigration: 0=none, 1=minimal (rare individual cells), 2=mild (obviously 
increased). 
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Figure 3.2. Lung Histopathology.  
(A) Photomicrograph of lungs 
from a mouse exposed to filtered 
air.   Notice the scattered resident 
population of mononuclear 
inflammatory cells, mostly 
lymphocytes with few plasma cells 
and macrophages, in the 
interstitium and alveolar spaces 
(black arrowheads). 
(B) Photomicrograph of lungs from 
a mouse exposed to 6.5 mg/m3 of 
BDS for four consecutive days 
then allowed to rest for one day.  
Soot particles are within alveolar 
(red arrowheads) and interstitial 
macrophages.  There is a focus of 
moderate neutrophil infiltration 
and transmucosal exocytosis (black 
arrowheads) with mild disruption 
of the continuity of the bronchiolar 
epithelium (black arrows).  Small 
soot particles lie along the 
bronchiolar luminal surface and 
within epithelial cells. An 
interstitial lymphatic vessel is 
filled with neutrophils (green 
arrowhead), most of which contain 
1-3 individual soot particles (not 
apparent at this magnification).  
(C) Photomicrograph of lungs from 
a mouse exposed to 50 mg/m3 of 
BDS for two consecutive days then 
rested for one week.  Abundant 
soot is in the interstitium of the 
small bronchiole (red arrows) and 
in numerous alveolar macrophages 
(red arrowheads).  Few neutrophils 
infiltrate the bronchiolar mucosa 
(black arrowheads). 
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exposure, whereas all of the mice did the following day.  The particles also elicit a substantial 

inflammatory response, as evidenced by the peribronchial neutrophilia and migration of 

neutrophils into the bronchoalveolar space in the BDS-exposed mice.  Both of these neutrophilic 

infiltrates were more pronounced following one day of recovery.  In some BDS-exposed animals 

(4/10), especially after the recovery period (3/4), there was evidence of bronchiolar epithelial 

damage.  This damage was described as foci of epithelial cell necrosis, epithelial denuding, or 

basement membrane disruption.  Figure 3.2C is a representative photomicrograph from the study 

where mice were exposed to 50 mg/m3 of BDS for two days, then allowed to rest for seven days.  

Alveolar macrophages were present that still contained soot particles, groups of particles were 

lodged in the interstitium, and some neutrophils persisted in the peribronchiolar area.  Thus, the 

BALF and histopathology results reveal that inhalation of these combustion-derived ultrafine 

particles elicits a time-dependent increase in particle accumulation by alveolar macrophages and 

associated deep lung neutrophilia, including the persistence of particles in the pulmonary 

interstitium. 

Quantitative RT-PCR.  In light of the PAH load of BDS particles and the ultrafine size of the 

freshly-generated particles (Penn et al. 2005), we performed quantitative RT-PCR on lung tissue 

to determine whether 1) biotransformation enzyme expression was upregulated in response to 

AhR activation; 2) the particles elicited upregulation of an inflammatory cascade of cytokine 

gene expression; and 3) PAHs altered selected lipid metabolism or cell cycle pathways.  The 

results of this expression analysis are presented in Table 3.2.  In the lungs of BDS-exposed 

animals collected immediately after exposure, significant increases were observed in expression 

of selected AhR-responsive biotransformation enzymes: aldehyde dehydrogenase 3A1 

(Aldh3a1), cytochrome P450 IA1 (Cyp1a1) and IB1 (Cyp1b1), as well as the AhR repressor 
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(Ahrr) and TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), while expression of AhR 

itself was unchanged.  In the lungs of mice after one day of recovery, the expression of these 

AhR-responsive genes was reduced; but, with the exception of Aldh3a1 and Tiparp, each was 

still significantly elevated over the controls.   

 Chemokine (C-X-C motif) ligand 2 (Cxcl2; MIP-2; human IL-8 analog) and IL-6 

expression were elevated immediately following exposure.  Their expression was reduced, yet 

still significantly elevated above controls, after one day of recovery.  Although not significantly 

different from controls, the other cytokines that we examined [interferon-γ (Ifng), IL-1β, IL-4, 

transforming growth factor β1 (Tgfb1), and tumor necrosis factor (Tnf)] showed an increasing 

trend (as did the cellular inflammatory infiltrates) from immediately after exposure to the 

following day.  These results show that uptake of the ultrafine particles by alveolar macrophages 

and airway epithelial cells is accompanied by upregulation of biotransformation enzymes and 

inflammatory cytokines. 

Expression of serine (or cysteine) peptidase inhibitor, clade B, member 2 (Serpinb2; 

plasminogen activator inhibitor 2, PAI-2), which has been linked to progression of pulmonary 

fibrosis (Lardot et al. 1998), was increased following exposure to BDS; however, this increase 

was significantly different from controls only immediately after exposure.   

Arachidonate 5-lipoxygenase activating protein (Alox5ap) and leukotriene A4 hydrolase 

(Lta4h) are responsible for producing leukotriene B4 (LTB4), a potent neutrophil chemotactic 

factor secreted by alveolar macrophages during inflammatory episodes (Martin et al. 1984).  We 

observed a decrease in Alox5ap and Lta4h expression in lung tissue following BDS exposure. 
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TABLE 3.2.  Quantitative RT-PCR of lung tissue reveals upregulation of aryl hydrocarbon 
receptor-responsive biotransformation genes and inflammatory cytokines following 
inhalation exposure to butadiene soot 
 

Gene Abbreviation 

Applied Biosystems
Primer-Probe Set 

ID Number 4d+0d 4d+1d 

 

AhR-Responsive 
Genes 

    

Ahr Mm00478932_m1 -1.03 ± 0.16 1.00 ± 0.20  
Ahrr Mm00477443_m1 59.93 ± 8.95** 5.97 ± 1.22**  
Aldh3a1 Mm00839312_m1 7.37 ± 1.05** 1.31 ± 0.28  
Cyp1a1 Mm00487218_m1 35.87 ± 4.27**† 11.61 ± 2.44**  
Cyp1b1 Mm00487229_m1 67.99 ± 9.83** 9.74 ± 2.11**  
Tiparp Mm00724822_m1 1.90 ± 0.28** -1.19 ± 0.16  
         
Cytokines     
Cxcl2 (MIP-2; IL-8) Mm00436450_m1 7.82 ± 1.08** 4.94 ± 0.91**  
Ifng Mm00801778_m1 -1.37 ± 0.13 1.14 ± 0.30  
Il-1b Mm00434228_m1 1.22 ± 0.25 1.91 ± 0.44*  
Il-4  Mm00445259_m1 -1.20 ± 0.14 1.07 ± 0.19†  
Il-6 Mm00446190_m1 5.51 ± 1.30** 3.17 ± 0.72*  
Tgfb1 Mm00441724_m1 1.01 ± 0.11 1.02 ± 0.15  
Tnf Mm00443258_m1 1.50 ± 0.24 1.63 ± 0.45  
         
Lipid Metabolism 
And Other 

    

Alox5ap Mm00802100_m1 -1.18 ± 0.12* -1.20 ± 0.14*  
Lta4h Mm00521826_m1 -1.12 ± 0.09* -1.20 ± 0.13*  
Serpinb2 (PAI-2) Mm00440905_m1 2.00 ± 0.51* 1.31 ± 0.21†  
 
Results are reported as fold change from control ± standard error of the mean [(2-ΔΔCT) ± SEM]. 
*significance: p<0.05 
**significance: p<0.0001 
†Unequal variance among samples; therefore, Satterthwaite’s approximation was used for 
degrees of freedom in determining significance. 
 

DISCUSSION 

 We have demonstrated that inhalation exposure to a moderate dose of combustion-

derived ultrafine particles causes acute pulmonary inflammation in the bronchoalveolar space of 

mice.  As BDS is an oxygen- and metals-poor mixture of PAHs and ultrafine particles, it serves 
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as a unique model of particulate exposure when compared to metals-rich ROFA and oxygen 

(quinone)-rich DEPs, both of which cause inflammatory lung infiltrates.   

PAHs found in ROFA and DEPs are metabolized for detoxification and excretion by 

mechanisms analogous to those described for B(a)P (Bonvallot et al. 2001; Kim et al. 2005).  

The paradox of how these mechanisms, designed to detoxify and eliminate noxious compounds 

from cells, are capable of producing even more toxic or carcinogenic compounds (bioactivation) 

is reviewed by Nebert et al. (2004).  The first step in this process is Phase I biotransformation, 

most often carried out by microsomal oxidases such as CYP1A1, CYP1B1, and/or ALDH3A1.  

In contrast to the finding of Takano et al. (2002) that following exposure to DEPs AhR 

expression in the mouse lung is reduced in a concentration-dependent manner, we found no 

change in expression of the AhR subsequent to BDS exposure.  Our results are more consistent 

with Yamamoto et al. (2004) who described the constitutive and PAH-induced expression of 

AhR, ARNT, AHRR, and CYP1A1 in various adult and fetal tissues.  Expression of all four 

genes was constitutively high in adult lung tissue; however, after PAH exposure, AhR expression 

did not change in isolated mononuclear cells (monocytes and lymphocytes), while expression of 

ARNT, AHRR, and CYP1A1 increased.  The decrease in Cyp1a1, Cyp1b1, Aldh3a1, and Tiparp 

that we observed in mice allowed one day to recover from BDS exposure may be explained by 

the activity of Ahrr.  Once the majority of PAHs have been effectively metabolized, downstream 

effectors of AhR activation would decrease once the receptor becomes quiescent, especially if 

there is a repressor acting upon available receptors.   

The oxidized products of cytochrome P450 activity on PAHs are capable of forming 

carcinogenic DNA adducts or eliciting oxidative stress responses in cells.  These effects may be 

exacerbated by the presence of particles, as in the case of DEPs, where cellular oxidative stress 
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has been linked directly to inflammatory endpoints (Ma and Ma 2002).  We have demonstrated 

that there is a significant influx of neutrophils to the bronchoalveolar space subsequent to BDS 

exposure.  This infiltrate appeared to intensify after one day of rest.  We have performed studies 

where mice exposed to 1, 5 or 50 mg/m3 BDS for one to four days were allowed to rest for seven 

days.  In each case, the neutrophilia persisted in the BALF of these animals along with the 

presence of MΦ2s and MΦ3s in the BALF and the pulmonary interstitium (Figure 3.2C).  

Furthermore, in mice exposed to 1 mg/m3 BDS for four weeks then allowed to rest for 30 days, 

we still were able to collect several MΦ2s and MΦ3s even though the neutrophilia had subsided 

(data not presented).  Thus, the retention of particles in alveolar macrophages, causing either 

physical irritation or persistent inflammation, may allow for long-term health effects following 

an acute exposure (Oberdorster et al. 1994). 

Not only may inhalation exposure to particles elicit local effects in the respiratory tract, 

they also may contribute to disease processes in other organ systems.  For example, increased 

circulating levels of inflammatory cytokines subsequent to PM10 exposure has been associated 

with progression of atherosclerosis (Suwa et al. 2002).  Another study describes the direct 

translocation of particles from the respiratory tree to the systemic circulation as being 

responsible for subsequent cardiovascular disease conditions (Nemmar et al. 2004); however, 

this mechanism has been actively challenged by human exposure studies (Mills et al. 2006; 

Wiebert et al. 2006).  Still others have found that ultrafine particles deposited in the 

nasopharyngeal area may gain access to the central nervous system via olfactory neuronal 

transport (Elder et al. 2006).  Although our study deals only with effects of BDS in the lung 

parenchyma, we recognize the potential for ultrafine BDS particles to reach other organ systems.  

Studies in rats and dogs have demonstrated that pulmonary epithelial cells have a saturation point 
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with respect to PAHs (Ewing et al. 2006).  Combustion-derived ultrafine particles may be able to 

translocate to extrapulmonary sites with their PAH payload if the PAH saturation point is 

exceeded.  This is unlikely in the event of daily environmental exposure to ambient particles 

which have a low overall PAH burden (Allen et al. 1996), but the concentration might be 

exceeded during an acute exposure to high levels of such particles, e.g. firefighters, rescue 

workers reporting to petrochemical industrial accidents, or soldiers exposed to petroleum fires. 

 We have demonstrated that BDS-associated fluorescent PAHs localize to lipid droplets of 

lung cells in vitro (Murphy et al., manuscript submitted).  Considering the neutrophilic infiltrate 

seen in the lungs of mice exposed to BDS, we selected two lipid metabolism genes involved in 

production of the eicosanoid LTB4.  Inhaled BDS, however, does not alter the expression of 

Lta4h or Alox5ap in the MH-S murine alveolar macrophage cell line (Murphy, unpublished 

observations).  Consistent with paradoxical results seen in cigarette smoke experiments where 

LTB4 secretion is reduced in cigarette smoke-exposed macrophages in vitro and in vivo 

(Laviolette et al. 1986; Tardif et al. 1990), we found reduced expression of Lta4h and Alox5ap 

in lungs of mice exposed to BDS.  This situation would appear to impair the necessary 

immunologic response to particulate (or perhaps infectious agent) presence in the lungs.  

However, in light of the apparent reduction in LTB4 synthesis in the lungs as a whole, a 

profound neutrophilic response was still observed.  Although LTB4 is considered to be one of 

the most potent chemoattractants for neutrophils, other molecules (including IL-8) are capable of 

recruiting neutrophils and macrophages to the lungs; these inflammatory effectors may be 

produced by pulmonary epithelial cells (Masubuchi et al. 1998) or even fibroblasts (Sato et al. 

1999).  Culture of alveolar macrophages collected from BDS-exposed mice followed by 

supernatant analysis (broad cytokine array) could provide further information on the 
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macrophage’s role in orchestration of the inflammatory response to PAH-laden ultrafine 

particles. 

 Increased expression of plasminogen activator inhibitors has been linked to progression 

of pulmonary fibrosis (Lardot et al. 1998).  In addition, increased PAI-2 expression has been 

found to be a favorable prognostic indicator for lung cancer metastasis, i.e. lung tumors with 

high PAI-2 expression were less likely to metastasize to local lymph tissue (Robert et al. 1999).  

Because we have presented an acute exposure scenario, we did not expect to find evidence of 

pulmonary fibrosis or neoplasia; nevertheless, we did observe increased PAI-2 expression.  To 

investigate whether the PAI-2 expression persists and contributes to a fibrotic condition, gene 

expression and immunohistochemical analyses should be performed after a longer rest period. 

 In summary, we have described that brief inhalation exposure to a moderate dose of 

PAH-rich combustion-derived ultrafine particles causes 1) acute pulmonary inflammation, 

evidenced by inflammatory cell infiltrates and upregulated cytokine expression; and 2) increased 

expression of AhR-responsive genes that are capable of transforming PAHs into more toxic 

metabolites.  Furthermore, our histopathological analyses have shown that freshly-generated 

ultrafine BDS particles reach the deepest bronchoalveolar spaces in mouse lungs. 
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CHAPTER 4 
 

BRONCHOEPITHELIAL CELLS INTERNALIZE COMBUSTION-DERIVED 
ULTRAFINE PARTICLES IN VITRO: AN ULTRASTRUCTURAL INVESTIGATION 

 
INTRODUCTION 

 Exposure to airborne particles has been a human health concern for many years (Seaton 

et al. 1995).  Epidemiologic studies in urban communities have linked ambient particle exposure 

to such health effects as chronic obstructive pulmonary disease, lung cancer, and even heart 

failure (Dominici et al. 2006; Pope, III et al. 2002).  Investigators have recognized that the 

pathogenesis of these conditions is complex because ambient particles are quite complex in 

composition.  The particles vary greatly in origin, size, surface area, and elemental composition; 

plus a given particle type, such as those generated by petrochemical (gasoline, diesel, industrial 

substrate) combustion, may be coated with many other compounds, including polynuclear 

aromatic hydrocarbons (PAHs) (Lighty et al. 2000).  Each of these characteristics may produce 

its own set of biological effects.  For example, titanium dioxide particles in the ultrafine size 

range (particulate matter with an aerodynamic diameter of <0.1 µm; PM0.1) can cause severe 

respiratory system inflammation (Bermudez et al. 2004; Oberdorster et al. 1994).  Differences in 

crystal or surface structure of particles can also elicit variable inflammatory responses in the 

lung, including inflammatory cytokine expression (Renwick et al. 2004; Warheit et al. 2007). 

 In addition to recruiting inflammatory cells to the respiratory epithelial surface, particles 

can affect the activity of these cells.  Renwick et al. (2001) found that macrophages exposed to 

particles, especially ultrafine particles, displayed a reduced phagocytic capacity.  Others have 

shown that clearance of particle-laden macrophages from the respiratory tract is impaired, 

leading to the persistence of particles in the lung parenchyma (Bermudez et al. 2004; 

Oberdorster et al. 1994; Warheit et al. 1997).  Macrophages incapacitated from particle overload 
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allow other particles to persist in contact with the epithelium, and these particles may include 

bacteria that normally would be cleared by active macrophages and neutrophils.  Thus, particle 

exposure increases susceptibility to infection (Antonini et al. 2002; Lundborg et al. 2006). 

 Combustion-derived particles are often coated with a variety of chemical species.  Diesel 

exhaust particles (DEPs) contain various oxygen-containing organics, such as quinones, in 

addition to PAHs and metal ions, all of which have toxic effects in the lung (Kumagai et al. 

2002; Li et al. 2000; Murphy et al. 1999).  The toxic effects of residual oil fly ash (ROFA), 

another complex particulate generated from fossil fuel combustion, have been attributed to the 

metals associated with the particles (Antonini et al. 2002; Dreher et al. 1997).  1,3-butadiene 

(BD) is a high-volume, aliphatic hydrocarbon byproduct of petroleum refining and is used in the 

manufacture of synthetic rubber and other elastomers.  Butadiene soot (BDS), generated from the 

incomplete combustion of BD, is both a model mixture and a real-life example of a 

petrochemical product of incomplete combustion with the potential both for environmental 

contamination and for contributing to health problems.  BDS is an organic-rich mixture of 

ultrafine (30-50 nm) carbonaceous particles (Penn et al. 2005) to which hundreds of PAH 

species, including benzo(a)pyrene [B(a)P] and other carcinogens, are adsorbed (Catallo et al. 

2001; Penn et al. 2005).  In contrast to DEPs and ROFA, BDS is oxygen- and metals-poor (Penn 

et al. 2005).  Both human bronchoepithelial cells and mouse alveolar macrophages display a 

distinct punctate blue cytoplasmic fluorescence following exposure to BDS in vitro. The 

fluorescence is localized to cytoplasmic lipid droplets and is due to fluorescent PAHs delivered 

to the cells by the BDS particles, as particle-free organic extracts of BDS elicit the same 

fluorescent response as the native particles, but PAH-denuded particles do not (Penn et al. 2005; 

Murphy et al. manuscript submitted).   
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 We have observed that BDS particles seem to associate strongly with human 

bronchoepithelial cells (BEAS-2B) in vitro, i.e. when collecting cells from the culture dish, there 

are black particles attached to large sheets of cells.  After lysing the cells and centrifuging the 

resultant solution, a black pellet of particles is obtained; but whether these particles were simply 

adhered to the cell surface or actually endocytosed by the cells was unclear.  Other investigators 

have shown that ultrafine DEPs and fluorescent polystyrene beads (40 nm in diameter) can be 

internalized by airway epithelial cells, as demonstrated by transmission electron microscopy and 

flow cytometry, respectively.  They also reported that particle uptake by the epithelial cells was 

associated with increased secretion of inflammatory cytokines, including IL-6, IL-8, and GM-

CSF (Auger et al. 2006; Boland et al. 1999).   

 The investigation presented here demonstrates that BDS particles are internalized by 

bronchoepithelial cells in vitro and phagocytosed by alveolar macrophages in vivo.  In both 

cases, particle aggregates are contained within membrane-limited vesicles.   

METHODS 

Cell Culture. BEAS-2B cells (1.5 x 106), a human bronchoepithelial cell line (Reddel et al. 

1988), were seeded into 25 cm2 flasks (Corning, Corning, NY) containing bronchial-epithelial 

growth medium (BEGM), then expanded to confluence in 150 cm2 flasks.  BDS exposures were 

performed on cells at 90% confluence in 100 mm diameter petri dishes.  BEGM is a basal 

medium (BEBM; Cambrex, Walkersville, MD) supplemented (per 500 mL) with 2 mL of 13 

mg/mL bovine pituitary extract and 0.5 mL each of 0.5 mg/mL hydrocortisone, 0.5 µg/mL 

human recombinant epidermal growth factor, 0.5 mg/mL epinephrine, 10 mg/mL transferrin, 5 

mg/mL insulin, 0.1 µg/mL retinoic acid, 6.5 µg/mL triiodothyronine, and 50 mg/mL gentamicin.  
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BDS Generation and Collection. The process of BDS generation and collection has been 

described in detail (Penn et al. 2005). Briefly, room temperature BD gas (≥ 99% purity; Sigma; 

St. Louis, MO) was passed through a back-flash-protected stainless steel two-stage regulator to a 

stainless steel Bunsen burner at flow rates of 5-7 mL/sec under normal atmosphere and ignited.  

Soot particles passing through the feed pipe were collected on acetone-washed Whatman 

cellulose filters placed in a porcelain Buchner funnel connected to a vacuum pump.  The BDS 

was scraped gently off the filters and stored in aluminum-foil-wrapped glass vials capped with 

foil-lined lids.   

BDS Exposures.  A sonicated BDS (S-BDS) stock solution was prepared by suspending 10 mg 

BDS in 50 mL of BEGM and sonicating the suspension with three 15 second pulses of a Branson 

Sonifier (Model 450, Constant Duty Cycle; Danbury, CT).  BEAS-2B cells were exposed to 20 

µg/mL S-BDS for 24 hours prior to collection for transmission electron microscopy (TEM) 

processing.   

BEAS-2B Cell Preparation. Cells were collected by scraping into 1 ml phosphate buffered 

saline (PBS).  The cells were pelleted by gentle centrifugation (500 x g; 10 min).  PBS was 

replaced with 1.25% glutaraldehyde, 2% formaldyhyde fixative in 0.1M sodium cacodylate 

buffer (NaCac).  After washing with a solution of 0.1M NaCac and 5% sucrose, cell pellets were 

post-fixed in a 1% solution of osmium tetroxide in NaCac.  After further washing, samples 

prepared for traditional TEM were stained en bloc with a 2% solution of uranyl acetate.  These 

samples were washed again and dehydrated with a graded series of increasing ethanol 

concentrations (50%-100%).  The samples were infiltrated with epoxy resin, which was 

polymerized prior to ultrathin sectioning.  These sections were placed on colloidin-coated copper 

specimen grids.  Finally, the sections were stained for increased contrast by inverting the grids 
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over a drop of uranyl acetate solution, then over a drop of Reynolds’ lead citrate.  These final 

steps were performed in a covered glass petri dish in which several sodium hydroxide crystals 

were placed to reduce atmospheric carbon dioxide within the dish.  This is especially important 

during lead citrate staining where lead carbonate precipitates could form and introduce artifactual 

particulates to the sections.  A subset of control and BDS-exposed cells were stained with 

ruthenium red to specifically distinguish the plasma membrane from other vesicular membranes 

within the cells.  To stain with ruthenium red, the same procedure was followed as for traditional 

TEM, except that the fixation and post-fixation solutions each contained 0.1% ruthenium red and 

en bloc staining was not performed (Hayat 1989).  Digital images were captured with a JEOL 

JEM-1011 (Tokyo, Japan) transmission electron microscope. 

Mouse Macrophage Preparation. Bronchoalveolar lavage fluid (BALF) was collected from 18 

mice, either exposed to HEPA-filtered air or 6.5 mg/m3 BDS (as described by Murphy et al., 

manuscript submitted), by flushing their lungs twice with 0.5 mL phosphate-buffered saline 

passed through a 19 gauge cannula anchored in the trachea.  BALF was immediately placed on 

ice.  After removing 400 µl of the raw BALF for cytospin preparation, the remaining fluid was 

centrifuged (500 x g; 10 min) and the supernatants were collected for archival at -80°C.  The cell 

pellets were pooled according to exposure into 2.5% glutaraldehyde fixative in NaCac and 

processed for traditional EM. 

RESULTS 

Figure 4.1 displays electron micrographs of a negative control BEAS-2B cell (1A) and a 

cell that was exposed to S-BDS for 24 hours (4.1B/C).  In 1B, there are membrane-limited areas 

within the cytoplasm containing soot particles and a group of particles in contact with the lower 
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membrane border of the cell.  Figure 4.1C shows a magnified area of the same cell as in 1B 

where it appears that BDS particles are being internalized at the plasma membrane of the cell.   

The micrographs in Figure 4.2 demonstrate ruthenium red staining of the plasma 

membrane of a negative control BEAS-2B cell (4.2A/B) and a cell exposed to S-BDS (4.2C/D).  

Ruthenium red clearly labeled the plasma membranes, and they appear as heavy black borders 

encompassing the cells.  Subcellular structures are not as distinct as in Figure 4.1 or Figure 4.3 

because en bloc uranyl acetate staining was not performed, but this helped to increase the 

contrast between the ruthenium red labeling of the plasma membrane and other membranes 

within the cytoplasm.  Figure 4.2B is the same cell as in 4.2A, but it is presented at a higher 

magnification to highlight the character of the ruthenium red stain.  Figure 4.2D demonstrates 

that the membrane surrounding the soot particles within the cell, as shown in the lower center 

portion of the less magnified Figure 4.2C, is discontinuous with the plasma membrane, i.e. the 

lack of ruthenium red staining of the membrane surrounding the soot particles indicates that the 

particles were completely internalized by the epithelial cell, rather than simply being apposed to 

a plasma membrane invagination (as shown in Figure 4.1B/C). 

Figure 4.3 shows representative alveolar macrophages collected in BALF from mice 

exposed to HEPA-filtered air (4.3A) or 6.5 mg/m3 BDS for four consecutive days (4.3B/C).  

Macrophages from the control group occasionally contained variable-sized particulates and 

several cytoplasmic vesicles.  In contrast, virtually every macrophage from the BDS-exposed 

mice contained phagocytosed BDS particles.  Many of these cells also had vesicles filled with 

electron-lucent whorls.  Membranes of the vesicles surrounding soot particles and the 

membranous whorls are more clearly demonstrated at a higher magnification (4.3C). 

 



86 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1. TEM micrographs of BEAS-
2B cells.  Panel A (40,000X) represents a 
typical negative control cell with no 
internalized particles and few vesicular 
structures. A cell exposed to S-BDS for 24 
hours is displayed in panels B (30,000X) 
and C (100,000X).  In panel B, there are 
membrane-limited areas within the 
cytoplasm containing soot particles and a 
group of particles in contact with the 
plasma membrane of the cell.  Panel C is a 
more detailed display of the soot particles 
interacting with the plasma membrane of 
the same cell as shown in panel B. 
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Figure 4.2.  Ruthenium red staining of the plasma membrane of BEAS-2B cells.  Panels A 
(12,000X) and B (30,000X) represent negative control cells, while panels C (30,000X) and D 
(80,000X) display a representative cell exposed to S-BDS.  Ruthenium red clearly labeled the 
plasma membranes, and they appear as heavy black borders surrounding the cells.  In panel D, 
the lack of ruthenium red staining of the membrane surrounding the soot particles demonstrates 
that this vesicle’s membrane is discontinuous with the plasma membrane, indicating that the 
particles were completely internalized by the epithelial cell. 
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Figure 4.3.  Alveolar macrophages collected 
from BALF in vivo.  Panel A (15,000X) is a 
representative alveolar macrophage from a 
negative control mouse exposed to HEPA-
filtered air.  Panels B (15,000X) and C 
(40,000X) demonstrate the characteristics of 
most alveolar macrophages from mice exposed 
to 6.5 mg/m3 BDS for four consecutive days.  
Although not shown in panel A, macrophages 
from the control group occasionally contained 
amorphous particulates and, as shown, several 
cytoplasmic vesicles.  In contrast, virtually 
every macrophage from the BDS-exposed mice 
contained BDS particle-laden vesicles.  Many 
of these cells also had vesicles filled with 
electron-lucent whorls.  Membranes of the 
vesicles surrounding soot particles and the 
membranous whorls were more clearly 
demonstrated with higher magnifications, as in 
panel C. 
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DISCUSSION 

 Since retention of particles within respiratory tissues has been associated with adverse 

health effects, including persistent irritation and inflammation with the potential for 

carcinogenesis (Oberdorster et al. 1994; Warheit et al. 1997), it is important to determine which 

cells in the lung are capable of harboring particles and the ultimate fate of these particles.   

Investigators have used magnetometry to track clearance of particles delivered by 

inhalation or intravenous injection.  The particles were phagocytosed by alveolar macrophages 

and hepatic Kuppfer cells, respectively, which then attempted to eliminate the particles from the 

body.  Alveolar macrophages appeared to phagocytose the particles more slowly than the 

Kuppfer cells, but the alveolar macrophages were able to clear the particle burden from the body 

more quickly than the Kuppfer cells (Brain 1992; Molina and Brain 2007; Weinstock and Brain 

1988).  The disparity in timing could be due to a time lag in the initial recruitment of a sufficient 

number of alveolar macrophages to the lung versus the more permanent population of Kuppfer 

cells in the liver, not to mention that the macrophages located in the spleen were not considered.  

Furthermore, once macrophages have ingested particles, alveolar macrophages have at least one 

direct outlet for clearance, the mucociliary elevator.  Kuppfer cells must rely on the circulatory 

and/or digestive systems for clearance; but the authors speculated that Kuppfer cells, through a 

slower process than the escalator, solubilized the particles, causing them to lose their magnetic 

character and be lost to further investigation (Weinstock and Brain 1988).  Movement of 

particle-laden macrophages to more permanent locations, such as the pulmonary interstitium, 

was not considered in these magnetometry studies; but this fate of alveolar macrophages loaded 

with silica particles or asbestos fibers can contribute to debilitating disease conditions, such as 

pulmonary fibrosis (Adamson et al. 1989; Adamson et al. 1991).  Fibrotic conditions also appear 



90 
 

to be promoted when secretion of IL-6 and IL-8 (Takizawa et al. 1997), as well as plasminogen 

activator inhibitors (PAIs), is increased in pulmonary tissue (Lardot et al. 1998).  We have 

observed retention of particles within pulmonary interstitial macrophages of mice exposed to 

BDS along with upregulation of IL-6, IL-8, and PAI-2 in lung tissue (Murphy et al. manuscript 

submitted) suggesting that BDS, as a model for petrochemical combustion-derived ultrafine 

particles, could promote pulmonary fibrosis. 

 There has been an intense debate over the mechanism of cardiotoxicity following 

inhalation exposure to ambient particles.  One hypothesis is that inflammatory mediators, 

including cytokines, produced by lung cells enter the systemic circulation in sufficient quantity 

to affect other organ systems (Van Eeden et al. 2001).  In support of this, Suwa et al. (2002) 

correlated increased circulating levels of inflammatory cytokines subsequent to PM10 exposure 

with progression of atherosclerosis.  Another study described the direct translocation of particles 

from the respiratory tree to the systemic circulation as being responsible for subsequent 

cardiovascular disease conditions (Nemmar et al. 2004); however, this mechanism has been 

challenged by human exposure studies (Mills et al. 2006; Wiebert et al. 2006).  Still others have 

found that ultrafine particles deposited in the nasopharyngeal area may gain access to the central 

nervous system via olfactory neuronal transport (Elder et al. 2006).  Also, Geiser et al. (2005) 

reported that ultrafine particles enter respiratory and circulatory system cells by non-phagocytic 

or non-endocytic mechanisms.  They found non-membrane-bound particles within the cytoplasm 

of cells in vivo and in vitro, and no evidence of endocytosis.  Further, they proposed that ultrafine 

particles may enter the systemic circulation through such a diffusive-type process across alveolar 

or capillary epithelia.  Nemmar et al. (2006) applauded these findings, only faulting the lack of 
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attention to surface charge of the particles in reaching their conclusions about the mechanisms of 

particle distribution in the body.   

Our results demonstrate that the ‘diffusion’ of ultrafine particles across biological 

membranes is not a defining characteristic of all ultrafine particles.  We have no evidence that 

ultrafine BDS particles reach non-membrane-bound areas within the cytoplasm of cells in vitro 

or in vivo.  Furthermore, we have confirmed that epithelial cells in vitro are capable of 

internalizing petrochemical combustion-derived ultrafine particles into membrane-bound 

vesicles, similar to the compartmentalization seen in alveolar macrophages in vivo. 
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CONCLUDING REMARKS 

RESEARCH SUMMARY 

 At this point, we have presented experiments that were designed to continue the 

characterization of butadiene soot (BDS), including its physicochemical properties (Chapter 1), 

its effects on bronchoepithelial cells and macrophages in vitro (Chapter 2 and Chapter 4), and its 

effects on the respiratory system of mice in vivo (Chapter 3).   

In Chapter 1, we demonstrated that the overwhelming majority of freshly generated BDS 

particles are of respirable size, have a predictable chemical composition, and act to transport 

adsorbed, bioactive chemicals (primarily PAHs) to target cells. These results also indicated that 

uptake of airborne ultrafine particles by target cells is not necessary for the particles to exert their 

toxic effects on the cells. 

The results presented in Chapter 2 demonstrated that fluorescent PAH compounds 

adsorbed to inhalable combustion-derived ultrafine particles traffic to lipid droplets of 

respiratory cells, including bronchial epithelial cells, alveolar macrophages, and adipocytes.  

Furthermore, in vitro exposure of epithelial cells and alveolar macrophages to BDS stimulated 

AhR-responsive xenobiotic metabolism pathways known to potentiate the toxicity of certain 

PAHs, including several found in BDS. 

In Chapter 3, we described that brief inhalation exposure to a moderate dose of PAH-rich 

combustion-derived ultrafine particles causes 1) acute pulmonary inflammation, evidenced by 

inflammatory cell infiltrates and upregulated cytokine expression; and 2) increased expression of 

AhR-responsive genes that are capable of transforming PAHs into more toxic metabolites.  The 

histopathological analyses showed that freshly-generated ultrafine BDS particles reached the 

deepest bronchoalveolar spaces in mouse lungs.   
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In Chapter 4, we challenged the results from other research groups by demonstrating that 

the ‘diffusion’ of ultrafine particles across biological membranes is not a defining characteristic 

of all ultrafine particles.  We found no evidence that ultrafine BDS particles reach non-

membrane-bound areas within the cytoplasm of cells in vitro or in vivo.  We confirmed that 

epithelial cells in vitro are capable of internalizing petrochemical combustion-derived ultrafine 

particles into membrane-bound vesicles, similar to the compartmentalization seen in alveolar 

macrophages in vivo. 

In contrast to diesel exhaust particles (DEPs) and residual oil fly ash (ROFA), we 

propose that oxygen- and metals-poor, PAH-rich BDS is a unique ‘real-world’ model for 

inhalation exposure to ambient petrochemical combustion-derived ultrafine particles.  BDS 

elicits similar effects as DEPs and ROFA in vitro and in vivo, including the observed alterations 

in gene expression and inflammation; however, the localization of PAHs from BDS within lipid 

droplets of target cells in the lung has not been described for DEPs or ROFA.   

FUTURE RESEARCH 

Future research may focus on the fate of the PAHs within cells.  Because of the 

fluorescent nature of BDS-associated PAHs in lipid droplets, advanced fluorometry could be 

used to measure the accumulation of fluorescence in the droplets, and any subsequent reduction 

in fluorescence also may be quantified if the cells metabolize or otherwise eliminate the PAHs.  

Isolation of lipid droplets from BDS-exposed cells and analysis of this fraction by mass 

spectrometry could allow for identification of the specific PAHs responsible for the observed 

fluorescent responses, and this identification may allow for predictive investigation of the fate of 

the individual compounds within cells.   



97 
 

Recent advances in molecular biology have made possible gene expression analysis of 

the entire genome of several species.  We have already begun to use this technology to 

investigate genome-wide changes in gene expression due to BDS exposure in vitro and in vivo; 

however, careful interpretation of the complex results obtained from this type of investigation is 

essential to reach meaningful conclusions.  For example, a simple list of genes that are 

upregulated or downregulated is useless, unless the results are arranged according to gene 

families or along effector pathways.  Thus, future analyses of our genomic data shall rely on 

bioinformatics and computational biology to organize and catalogue the biological and 

toxicological effects of BDS.   
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