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ABSTRACT 
 

Activation of astrocytes and microglia and the production of proinflammatory cytokines 

and chemokines are often associated with virus infection in the central nervous system (CNS) as 

well as a number of neurological diseases of unknown etiology. These inflammatory responses 

may be initiated by recognition of pathogen-associated molecular patterns that stimulate toll-like 

receptors (TLRs). Recent studies demonstrated that TLR9 family receptors play a role in 

neuropathogenesis and the agonists of these receptors may be used in therapeutics treatment of 

brain tumors and viral infections. However, we lack the basic understanding of how these 

receptors function in the CNS. In the present study, we examined the potential of TLR7 and 

TLR9 agonists to induce glial activation and neuroinflammation using an in vivo model of 

intracerebroventricular inoculation of these agonists in newborn mice and by in vitro stimulation 

of glial cells. TLR9 agonist induced a stronger neuroinflammatory response than TLR7 agonist 

administration in the CNS, with higher levels of proinflammatory cytokines, and the break down 

of the blood-brain barrier which resulted in influx of peripheral immune cells. Despite the 

differences in inflammation, analysis of cell types indicated involvement of similar cell types to 

respond to TLR7 and TLR9 agonists including ependymal cells, endothelial cells, microglia and 

astrocytes. This disparity in TLR7 and TLR9 activation in vivo was not observed at the in vitro 

level, where similar responses were observed to either agonist. The present study also 

determined the cross-regulatory capabilities of these receptors. Interactions between agonists 

were observed both in vitro and in vivo with the TLR7 agonist, imiquimod, inhibiting TLR9 

agonist, CpG-ODN, or TLR9 itself, to inhibit CpG-ODN induced cytokine production. In 

addition to agonist interactions, an antagonistic relationship was also observed between the two 

receptors in microglia, with TLR7 deficiency resulting in enhanced cytokine responses to CpG-

ODN stimulation. Overall, these studies demonstrate a complex interaction between TLR7 and 



 xiv

TLR9 in regulating the initiation of innate immune responses in the brain, with TLR9 stimulation 

inducing more damage in the CNS than TLR7 stimulation. However, TLR7 and its agonist 

appear to regulate TLR9 stimulation and can diminish TLR9 agonist induced neuroinflammation.  
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1.1. INNATE IMMUNITY AND THE CENTRAL NERVOUS SYSTEM 

1.1.1. Neuroinflammation 

The inflammatory response that occurs in the central nervous system (CNS) following 

infection or injury is termed neuroinflammation. This often includes activation of astrocytes and 

microglia (innate immune cells of the brain), production of proinflammatory cytokines and 

chemokines, as well as the recruitment of peripheral immune cells including dendritic cells into 

the CNS. 

Neuroinflammation in the CNS is commonly observed in a number of viral infections 

including cytomegalovirus, herpes simplex virus, flaviviruses, paramyxoviruses, rhabdoviruses, 

and retroviruses, as well as in bacterial infections, parasitic infections (Aravalli et al., 2007; 

Kirton et al., 2005; Kristensson, 2006; Mishra et al., 2006; Tardieu et al., 2000). 

Neuroinflammatory responses are also observed in autism, Alzheimer’s disease, multiple 

sclerosis, and other neurological diseases of unknown etiology (Eikelenboom et al., 2002; 

Vargas et al., 2005). The cytokines and chemokines produced during neuroinflammation can 

regulate the blood-brain barrier (BBB) permeability, cause infiltration and accumulation of 

immune cells from the periphery into the brain depending on the type of infection or injury 

(Eikelenboom et al., 2002; Garden, 2002). Only subtle responses in the CNS innate immune 

system are observed in the absence of BBB breakdown. These are composed largely of 

activation of glia cells without infiltration of leukocytes from the periphery (Eikelenboom et al., 

2002; Garden, 2002). A lack of leukocyte infiltration is often observed in neuroinflammation of 

the developing brain. However, the neuroinflammatory response in neonates may have 

detrimental effects in terms of neural progenitor cell migration and neuronal apoptosis which 

may lead to long term neurological disorders (Bagri et al., 2002; Hornig and Lipkin, 2001; 

Hornig et al., 2002; Rezaie et al., 2002; Tran et al., 2004).  
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1.1.2. Cell Types in the CNS  

 The CNS consists of two broad categories of cells; (A) glial cells, which include 

microglia, astrocytes, and oligodendrocytes, and (B) non-glial cells, which include neurons, 

macrophages, brain capillary endothelial cells, ependymal cells, and meningeal cells.   

 Glial Cells: 

The term glia originated from Greek for glue, as glial cells were originally known to be 

support cells for the neurons in the CNS. There are three types of glial cells in the CNS: 

microglia, astrocytes and oligodendrocytes. Glial cells constitute up to 90% of the total cells in 

the CNS.   

1.1.2.1. Microglia  

Microglia are the smallest of the glial cells in the CNS with a small cell soma, little 

perinuclear cytoplasm and a number of fine branched processes. Microglia constitute 

approximately 15% of total cells in the CNS. These are the resident macrophages of the CNS and 

are myeloid in origin, which are derived from monocytes that entered into the brain from 

circulation during embryonal development (Ransohoff and Perry, 2009). Microglia are 

embryologically and physiologically unrelated to other glial cells. Following entry into the brain, 

microglia undergo morphological changes including extension of processes and develop into 

resting ramified microglia. The resident microglia in the adult do not require significant turnover 

rate from circulating monocytes from peripheral circulation, as microglia are actually populated 

in the CNS during embryonic development well before birth and can be replenished intrinsically 

(Chan et al., 2007).  

Resting/ramified microglia have low phagocytic and endocytic activity and contribute a 

supportive role for neurons along with astrocytes. Microglia also have developmental functions 

during embryonic development. Ramified microglia have a scavenger function in the developing 
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brain by removing the cells in the neocortex that die in the remodeling of the fetal brain 

(Voyvodic, 1996). Microglia also participate in a process called synaptic pruning, an activity by 

which excessively formed neuronal synapses in the brain are removed and thus help in brain 

maturation after birth (Ransohoff and Perry, 2009).  

Microglia are usually the first line of defense in the CNS, and may be stimulated either 

by non-self pathogens (stranger signal) or by injured self components (danger signal). In 

response to pathogen or CNS insult, resting microglia become activated, retract their processes 

and shift into amoeboid or macrophage-like morphology (Milner and Campbell, 2003). In 

addition to change in morphology, microglia rapidly upregulate a large number of receptors and 

secrete multiple cytokines and chemokines (Albright and Gonzalez-Scarano, 2004; Baker and 

Manuelidis, 2003). Some of the important receptors expressed by microglia include scavenger 

receptors, receptors involved in recognition of apoptotic blebs, receptors important for pathogen 

recognition, complement receptors, and major histocompatibility protein class I and II. Microglia 

cells also express a receptor for the cytokine granulocyte-macrophage colony-stimulating factor 

(GM-CSF) which can induce microglial proliferation in vitro (Rock et al., 2004). Cytokine 

and/or chemokine production by microglia following activation may play important roles both in 

protection against pathogens, as well as in contributing to neuronal damage (Giese et al., 1998).  

Multiple cell surface markers, including F4/80, Iba-1 and CD45 are expressed on the microglial 

cell surface and are useful in molecular phenotyping of these cells (Table 1.1). F4/80 is used to 

determine activation state of the microglia, as F4/80 is upregulated following activation (Ford et 

al., 1995). Additionally, ionized calcium binding adaptor molecule-1 (Iba-1) has been used as a 

general marker for immunohistochemical identification (Babcock et al., 2003). Microglia also 

express CD45, albeit at lower level compared to macrophages, allowing them to differentiate 

between CD45hi macrophages and CD45lo microglia by flow cytometry (Stevens et al., 2002). 
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Table 1.1. Markers to Identify Glial Cells in the CNS. 

Microglia:  

IBA1 / Aif1  (ionized calcium binding adaptor molecule 1 / allograft inflammatory factor 1). 
Induced in microglia following activation and is a marker for 
immunohistochemical analysis. 

F4/80/ Emr1  (EGF-like module containing, mucin-like, hormone receptor-like sequence 1).  
Upregulated following activation of microglia, thus helps in identification of 
activation state of microglia. 

CD45lo  Microglia express CD45 at low levels compared to macrophages. This helps in 
differentiating between microglia and macrophages by flow cytometry. 

GM-CSFR (Granulocyte-macrophage colony stimulating factor receptor low-affinity 
subunit). Receptor for the cytokine, colony stimulating factor 2 (GM-CSF), a 
cytokine which controls the production, differentiation, and function of 
granulocytes, macrophages and microglia.  

Astrocytes:  

GFAP  (Glial fibrillary acidic protein). Major intermediate filament protein of mature 
astrocytes, upregulated during astrocyte activation. 

S100B (S100 calcium binding protein B). Expressed and secreted by astrocytes, function 
in neurite extension, proliferation of astrocytes and axons. 

SLC1A2/GLT1 (Solute carrier family 1, member 2/glial high affinity glutamate transporter1). 
Membrane-bound transporter protein that clears the excitatory neurotransmitter 
glutamate from the extracellular space at synapses in the central nervous system.  

SLC1A3 / GLAST (Solute carrier family 1, member 3 / glutamate/aspartate transporter). High-
affinity sodium-dependent transporter that regulate neurotransmitters glutamate 
and aspartate concentrations at the excitatory glutamatergic synapses of the 
central nervous system.   

Oligodendrocytes:  

OLIG2  (Oligodendrocyte lineage transcription factor 2) Expressed in oligodendroglia in 
the brain. This is an essential regulator of ventral neuroectodermal progenitor cell 
fate.  
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1.1.2.2. Astrocytes    

Astrocytes, along with other major cell types in the brain including neurons, and 

oligodendrocytes, are neuroectodermal in origin. These cells are derived from a single layer of 

proliferating neuroepithelial cells, called neuroprogenitor cells (NPC), during development. 

These NPCs line the ventricles in the brain and form the ventricular zone (VZ). NPCs in the VZ 

elongate and give rise to radial glia. Radial glia divide asymmetrically to generate some early 

neurons directly or intermediate progenitor cells (IPC). These IPCs can be subdivided into 

neurogenic IPCs, astrocytic IPCs and oligodendrocytic IPCs that generate neurons, astrocytes 

and oligodendrocytes respectively (Kriegstein and varez-Buylla, 2009).  

Astrocytes are the most abundant glial cells that constitute nearly 35% of the total CNS 

cell population. Astrocytes play an important role in CNS support and homeostasis. They interact 

extensively with neurons and provide a supportive role both structurally and metabolically. 

Astrocytes have irregular star shaped cell bodies with broad end feet on their processes. The foot 

processes (end feet) of astrocytes are in close opposition to the micro vascular endothelium and 

cover >90% of the endothelium, preventing entry of toxic substances and cells from the 

peripheral circulation into the CNS and thus contribute to both structural and functional integrity 

of the blood-brain barrier (Wolburg and Lippoldt, 2002).   

Astrocytes can be visualized by immunolabeling with antisera specific for glial fibrillary 

acidic protein (GFAP), S100b or the astrocyte specific glutamate transporters GLT1 and GLAST 

(Table 1.1) (Walz, 2000). GFAP is expressed mainly on the intermediate filament proteins of 

mature astrocytes and is used as a marker to distinguish astrocytes from other glial cells. During 

development, intermediate filaments of astrocyte precursors express vimentin, which is replaced 

by GFAP during maturation of astrocytes. S100B is a calcium-binding protein that is 
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predominantly expressed and secreted by astrocytes, which function in neurite outgrowth, 

astrocytes and axonal proliferation.  

Astrocytes modulate the levels of excitatory neurotransmitters such as glutamate and 

aspartate in the extracellular space. Astrocytes express high affinity glutamate transporters, 

SLC1A2 (solute carrier family 1, member 2/ also called GLT-1 glutamate transporter-1/EAAT2) 

and SLC1A3 (solute carrier family 1, member 3, also called GLAST-glial high affinity glutamate 

transporter/EAAT-1), which rapidly remove the glutamine released into the neuronal synapse 

from the presynaptic neuro-terminal. Thus, astrocytes contribute to functional neuronal synapse 

and prevent glutamate induced neurotoxicity, which can induce neuronal damage and death if 

accumulated at high concentrations (Parpura et al., 2004). Astrocytes are also associated with 

synaptogenesis, as co-cultures of purified neurons with astrocytes can greatly increase the 

number of structurally mature and functional synapses (Allen and Barres, 2005; He and Sun, 

2007). In the event of neuronal damage, astrocytes produce nerve growth factors and 

neurotrophins, including nerve growth factor (NGF) and brain derived neurotrophic factor 

(BDNF) which can promote axon growth and survival of neurons (Dong and Benveniste, 2001).   

In addition to the neuronal support functions, astrocytes also respond to CNS insult or 

infection. Activation of astrocytes can result in proliferation, morphological changes, process 

extension and interdigitation, enhanced expression of GFAP and vimentin in the intermediate 

filaments. This process is called astrogliosis (Hatten et al., 1991). Activated astrocytes release 

multiple proinflammatory cytokines and chemokines that act on and engender responses in target 

cells analogous to the responses of activated immune cells in the periphery. The process by 

which astrocytes and microglia undergo activation during infection or injury is not known and 

the subsequent downstream effects are still under investigation.   
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1.1.2.3. Oligodendrocytes 

Oligodendrocytes are the specialized cells in the brain that form the myelin sheath, 

wrapped in layers surrounding the neurons in the CNS and insulate them for impulse conduction. 

These cells have a relatively small amount of cytoplasm around the nucleus and have several 

long processes that wrap around the neurons to form the myelin sheath. These cells are 

associated with pathologic conditions such as multiple sclerosis, which is characterized by 

formation of multiple lesions in the brain, demyelination and death of oligodendrocytes.  

 Non-Glial Cells : 

1.1.2.4. Neurons 

 Neurons are highly specialized cells in the brain, consisting of a cell body or soma with 

small dendrites that receive signals and a long axon that conducts the nerve signal through 

neurotransmitters. The gap between the axon terminals of one neuron and the receiving neurons 

is called neuronal synapse. The neuronal synapses are also covered by astrocytic foot processes, 

which modulate the levels of excitatory neurotransmitters in the neuronal synapse and prevent 

neurotoxicity.  Neurons can be identified in vivo or in vitro by expression of -III-tubulin, MAP2 

or NeuN (Table. 1.2.). 

 Recent studies indicate that the neurons are capable of responding to infections or injury 

and induce immune responses. Several studies reported that neurons express NF-kB in response 

to mechanical injury, synthesize tumor necrosis factor (TNF), and induce expression of inducible 

nitric oxide synthase (INOS) and superoxide dismutase (SOD) (Carson et al., 2006). 

Neurons also have the potential to directly regulate the effector functions of the immune 

system. Systemic exposure of the host to proinflammatory stimuli can induce multiple neuronal 

pathways resulting in release of neurotransmitters from the sympathetic nerve endings in the 

immune organs. This inhibits proliferation and secretion of proinflammatory cytokines from 
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macrophages and natural killer (NK) cells resulting in restoration of homeostasis (Sternberg, 

2006). Neurons also synthesize and secrete a protein called neuropeptide Y (NPY) which is 

associated with a number of physiologic processes in the brain including regulation of energy 

balance and epilepsy. NPY is the most abundant neuropeptide secreted in the brain. The NPY 

knockout mice are more susceptible to develop seizures (Bannon et al., 2000).  

Neurons can get infected following viral (flavi, paramyxo, rhabdo, polio, herpes), 

bacterial (Streptococcus pneumoniae, Neisseria meningitidis, Listeria monocytogenes) and 

parasitic infections (toxoplasmosis, cerebral cysticercosis, trichinellosis), which can induce 

neuronal death and lead to severe neurological disease. Neuronal death can also be induced by 

non-neurotropic viruses (Retroviruses) and bacteria through infection of other brain cells, and the 

release of TNF and other neurotoxins. A better understanding of how neurons and glial cells 

communicate with each other and induce immune responses in the brain is necessary in 

combating the neurologic diseases and in developing new treatments.    

1.1.2.5. Macrophages 

In addition to microglia, the CNS also contains macrophage populations located in the 

perivascular space (perivascular macrophages), circumventricular organs, the choroid plexus and 

the meninges. These are considered to be the primary resident immune cells along with 

microglia. Perivascular macrophages can be easily distinguished from microglia as they are 

elongated and are located in close proximity to capillary endothelial cells. Macrophages are more 

phagocytic than microglia and express slightly different cell surface markers including higher 

levels of CD45 (Table. 1.2.).  Macrophages have a higher turnover rate than microglia (Hickey 

and Kimura, 1988; Lassmann and Hickey, 1993). Both macrophages and microglia produce 

proinflammatory cytokines and chemokines in response to infections in the CNS (Dickson et al., 

1993; Minagar et al., 2002).  
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Table 1.2. Markers to Identify Non-Glial Cells in the CNS 

Neurons  

B-III- tubulin (Tubulin, beta 3). Microtubule protein expressed exclusively in neurons.  

MAP2 (Microtubule-associated protein 2). Neuron-specific cytoskeletal protein enriched 
in dendrites. 

NeuN  (Neural specific nuclear protein). Expressed in most neuronal cell types in the 
CNS of adult mice. 

Ependymal Cells  

CD24  Expressed by ependymal cells. 

S100b   Expressed by ependymal progenitor cells. 

Meningeal Cells 

Fibronectin A glycoprotein involved in cell adhesion and migration processes.  

Laminin Extracellular matrix glycoprotein, implicated in a wide variety of biological 
processes including cell adhesion, differentiation, migration, signaling, and 
neurite outgrowth. 

Versican Chondroitin sulfate proteoglycan 2 expressed and secreted by meninges.   

Perivascular Macrophages  

IBA1 / Aif1  (ionized calcium binding adaptor molecule 1 / allograft inflammatory factor 1). 
Induced in microglia following activation and a marker for immunohistochemical 
analysis. 

F4/80/ Emr1  (EGF-like module containing, mucin-like, hormone receptor-like sequence 1).  
Upregulated following activation of microglia, thus helps in identification of 
activation state of microglia. 

CD45hi Express CD45 at higher levels compared to microglia. 
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1.1.2.6. Brain Capillary Endothelial Cells 

 Endothelial cells line the blood vessels in the brain and serve important barrier functions 

in the brain. Endothelial cells form tight junctions between each other and thus form the blood-

brain barrier (BBB) preventing the entry of harmful pathogens into the CNS microenvironment. 

Endothelial cells also associate with astrocytic end feet, which cover the basement membrane of 

the blood vessels and further potentiates the BBB formed by tight junctions of the capillary 

endothelial cells (Saunders et al., 2000).  

1.1.2.7. Ependymal Cells 

Ependymal cells are a single layer of uninterrupted cells, consisting of ciliated squamous 

to columnar epithelial cells lining the ventricles of the brain and spinal cord. These cells secrete 

cerebrospinal fluid (CSF) and the apical cilia on the ependymal cells help in circulating the CSF 

in the ventricles of the brain. Ependymal cells also regulate the transport of water, ions and small 

molecules between CSF and neuropil, a region between neuronal cell bodies in the grey matter 

and thus serve an important barrier function. Ependymal cells express multiple pattern 

recognition receptors that might be critical in recognizing bacterial and viral infections (Hauwel 

et al., 2005). 

1.1.2.8. Meningeal Cells 

Meninges are comprised of mesodermal cells which envelop the brain parenchyma and 

spinal cord. Meninges play a physical role at the cerebrospinal fluid-blood barrier (Tanno et al., 

1993) and also synthesize and secrete many proteins that constitute cerebrospinal fluid (Ohe et 

al., 1996). Meninges modulate survival of neurons and glial cells by secretion of growth factors, 

including insulin-like growth factor (IGF)-II and IGF binding protein-2 (Ishikawa et al., 1995a; 

Ishikawa et al., 1995b; Ohe et al., 1996). Meninges of the cerebral cortex were shown to secrete 
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proinflammatory cytokines including TNF, interleukin(IL)-1 and IL6 during systemic 

inflammation and activate astrocytes and microglia (Wu et al., 2005).   

1.1.3. Immune Privilege in the CNS   

The CNS is considered immune privileged because of the presence of the blood-brain 

barrier mechanisms that control the exchange and transportation of molecules between peripheral 

circulation and central nervous system. There is no lymphatic system within the brain, limiting 

the entry of lymphocytes. There are also multiple barrier mechanisms involved in the brain. 

These include the tight junctions between blood capillary endothelial cells (Blood-brain barrier), 

tight junctions at apices of epithelial cells of choroid plexus (Blood-CSF barrier), intercellular 

junctions between radial glia end-feet and basement membrane (Outer CSF-brain barrier), and 

the junctions between neuroepithelial cells of the neuroependyma (Inner CSF-brain barrier) 

(Saunders et al., 2000).  

The barriers in the developing brain are considered immature compared to the adult brain. 

In rodents, the first blood vessels in the developing brain appear at 10-11 day gestation. 

However, glial cell development starts from 17 days of gestation and continues to develop even 

after birth. Thus, the initial blood vessels in the fetal brain and immediately after birth are not 

covered by astrocytic end feet and are not completely protected from entry of cells or pathogens 

from the peripheral circulation (Saunders et al., 2000).  

The presence of these blood-brain barriers and the absence of a lymphatic system restrict 

entry of immune cells into the brain from peripheral circulation. Because of these barrier 

mechanisms, the majority of the professional immune cells including dendritic cells, 

granulocytes and lymphocytes are absent in the CNS. Thus, the innate immune system of the 

brain mainly involves the resident cells of the brain called glia cells, primarily astrocytes and 

microglia, which are key cellular mediators of neuroinflammatory processes.    
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1.2. RECOGNITION OF PATHOGENS 

1.2.1. History of Pattern Recognition Receptors (PRRs) 

The discovery of pattern recognition receptors and their key role in sensing and 

recognition of microbes has established innate immunity as the missing link between detection 

and recognition of microbial pathogens and activation of the adaptive immune system (Fleer and 

Krediet, 2007). The role of PRRs in innate immunity was first described in drosophila. 

Drosophila ‘toll’ was originally identified, through a mutagenesis screen, for its requirement in 

the establishment of dorso-ventral patterning of the developing embryo (1985) (Anderson et al., 

1985; Anderson et al., 1992). Later, this gene was cloned and characterized as a transmembrane 

receptor with an intracytoplasmic domain having striking similarities to that of interleukin-1 

receptor (IL-1R) and thus referred as TIR (Toll/IL-1R) domain (Hashimoto et al., 1988). 

However, the ectodomain of toll is composed of leucine rich repeats (LRRs) flanked by cysteine 

rich motifs that differ from the IL-1R ectodomain which is composed of immunoglobulin like 

motifs.  

In 1996, the toll receptor was shown to control antifungal responses in adult drosophila 

showing for the first time the involvement of drosophila toll in adult immunity (Lemaitre et al., 

1996). A role for toll receptor in resistance to gram-positive bacterial infections was also 

established (Rutschmann et al., 2002). In 1997, a mammalian homologue of drosophila toll was 

identified that recognizes a bacterial cell wall component, lipopolysaccharide (LPS) (Medzhitov 

et al., 1997). This was later designated toll-like receptor 4 (Rock et al., 1998a). Subsequently, a 

family of proteins structurally related to drosophila toll were identified and collectively referred 

to as toll-like receptors (TLRs) (Rock et al., 1998a). Further studies lead to identification of 

several classes of microbe-sensing receptors, collectively referred to as PRRs.  
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1.2.2. Pattern Recognition Receptors 

The initiation of inflammation is often associated with the recognition of pathogen-

associated molecular patterns (PAMPs), the repeated structural motifs that are unique to 

microorganisms (Akira et al., 2001; Janeway, Jr., 1992; Medzhitov and Janeway, Jr., 1997). This 

recognition of microorganisms is mediated by several families of germline-encoded receptors, 

called pattern recognition receptors (PRRs). These receptors collectively survey the extracellular 

space, intracellular compartments and cytoplasm for signs of infection or tissue damage.  

1.2.2.1. Extracellular PRRs 

Extracellular PRRs are a group of pattern recognition receptors that are secreted into the 

body fluids and opsonize the pathogens and PAMPs in the body fluids. For example, bacterial  

 

Table 1.3. Types of Pattern Recognition Receptors. Taken from Jayalakshmi Krishnan et al, 
Experimental and molecular medicine, 2007, 39 (4): 421-438. 
  

Exracellular  
Receptors 

Membrane- 
Associated Receptors 

Intracellular  
Receptors 

Endogenous  
Receptors 

LPS binding 
protein (LBP) 
MBL, C1q, C3, 
SAP, CRP, PTX3 

Plasma membrane 
TLR1 
TLR2 
TLR4 
TLR5 
TLR6 
Endosomal 
membranes 
TLR3 
TLR7 
TLR8 
TLR9 

Antibacterial  
NOD-like receptors 
Antiviral 
RIG1 
MDA5 
PKR 
OAS 

Scavenger receptor 
CD36 
NALP3 

 
Abbreviations: LBP-LPS binding protein, MBL-Mannose binding lectin, C1q and C3-
complement components, SAP-serum amyloid P-component, CRP-C reactive protein, PTX3-
pentraxin-related gene, rapidly induced by IL-1 beta, TLR-Toll like receptor, NOD (Nucleotide 
binding oligomerisation domain)-like receptors (NLRs), RIG1-Retinoic acid inducible gene 1, 
MDA5-Melanoma differentiation associated gene 5, PKR-Protein Kinase R, OAS-2,5 oligo 
adenylate synthetase 1A, CD36-Cluster of differentiation 36, NALP3- NLR family, pyrin 
domain containing 3.  
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lipopolysaccharides (LPS) can be captured by LPS binding protein (LBP) in the blood and these 

LPS-LBP complexes are recognized by toll-like receptor 4 (Jack et al., 1997; Wurfel et al., 

1997). Complement pathways are activated by pentraxin family members which include serum 

amyloid protein, C reactive protein (CRP), pentraxin 3 (PTX3), mannose binding lectins 

(MBLs), and complement components C3 and C1q (Garlanda et al., 2005; Gasque, 2004).   

1.2.2.2. Intracellular/Cytoplasmic PRRs 

Intracellular PRRs are a group of pattern recognition receptors that are located in the 

cytoplasm and survey the cytoplasm for signs of infection. These include NOD-like receptors 

(NLRs) and RIG-like receptors (RLRs). 

 NOD-Like Receptors 

NOD (Nucleotide binding oligomerisation domain)-like receptors (NLRs) are a family of 

intracellular PRRs, located in the cytoplasm, that recognize the bacterial peptidoglycans 

(Chamaillard et al., 2003a; Chamaillard et al., 2003b; Inohara and Nunez, 2003; Ulevitch, 2004). 

NODs consist of more than 20 members including NOD1 and NOD2 (Chamaillard et al., 2003b; 

Inohara and Nunez, 2003; Ulevitch, 2004). NOD proteins have three functional domains: a 

ligand recognition domain (LRD) containing leucine rich repeats for ligand recognition, a 

centrally located NOD and an effector binding domain (EBD) that contain caspase recruitment 

domains (CARD) or pyrin domains. The signaling from EBD leads to activation of caspases and 

nuclear factor-B (NF-B) (Chamaillard et al., 2003b; Inohara and Nunez, 2003; Ulevitch, 

2004).  

 RIG-Like Receptors 

Viral components in the cytoplasm can be recognized by multiple sensors including 

retinoic acid inducible gene 1 (RIG-1), melanoma differentiation associated gene 5 (MDA 5, also 

called Helicard) and LGP2, collectively called RIG-like receptors (RLRs). RLRs recognize RNA 
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structures including double stranded RNA and 5’-triphospho RNA, which is normally not 

present in the cytoplasm due to the 5’-CAP of cellular RNA. RIG-1 is a RNA helicase containing 

two caspase recruiting domain (CARD)-like domains. Helicase domain interacts with double 

stranded (ds) RNA, while CARD-like domains are important for downstream signaling to IRF3, 

NF-B and MAP kinases (Kato et al., 2005; Yoneyama et al., 2004). MDA5 is structurally 

similar to RIG-1 which also contains two CARD-like domains and a single helicase domain. 

RIG-1 is suggested to mediate antiviral response through recognition of dsRNA (Andrejeva et 

al., 2004; Kang et al., 2002; Kovacsovics et al., 2002; Yoneyama et al., 2005).  Other 

cytoplasmic viral sensors include protein kinase R (PKR) and 2,5 oligo adenylate synthetase 1A 

(OAS). PKR and OAS will be activated in the presence of dsRNA in the cytoplasm leading to 

RNA degradation and cellular apoptosis (Stark et al., 1998). 

1.2.2.3. Membrane Associated PRRs 

Membrane associated receptors mainly include toll-like receptors (TLRs).  

1.2.3. Toll-Like Receptors  

There are at least 11 identified TLRs in humans and 12 TLRs in mice (Kaisho and Akira, 

2006). TLRs are either located on the plasma membranes or intracellular membranes. TLR4, 

TLR5 and the heterodimers TLR1-TLR2 and TLR2-TLR6 are localized to the plasma membrane 

and recognize bacterial and fungal cell wall components. In contrast, TLR3, TLR7, TLR8 and 

TLR9 are primarily or completely located in intracellular membranes (endoplasmic reticulum, 

endolysosomes) and recognize nucleic acids.    

 A series of genetic studies revealed that TLRs recognize a wide range of PAMPs. TLR2 

in concert with TLR1 or TLR6 recognizes various gram-positive cell wall components (Takeuchi 

et al., 1999; Takeuchi et al., 2001; Takeuchi et al., 2002). TLR4 recognizes LPS of gram-

negative bacteria (Hoshino et al., 1999; Takeda and Akira, 2005). TLR3 recognizes dsRNA 
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produced during replication of many viruses (Alexopoulou et al., 2001). TLR5 recognizes 

bacterial flagellin (Hayashi et al., 2001).  TLR7 and TLR8 recognize guanidine-uridine rich 

single stranded (ss) RNA from multiple viruses (Barchet et al., 2005; Diebold et al., 2004; Heil et 

al., 2004; Hornung et al., 2004), whereas TLR9 recognizes bacterial and viral CpG DNA motifs 

(unmethylated DNA motifs containing CpG nucleotides flanked by 5’ purines and two 3’ 

pyrimidines) (Hemmi et al., 2000). 

1.2.3.1. Structure of Toll-Like Receptors  

All of the TLRs are structurally similar and are type-I transmembrane proteins (Rock et 

al., 1998a; Rock et al., 1998b). TLRs belong to a super family called the Toll/IL-1 receptor 

family and all TLRs contain three domains: an extracellular domain, a transmembrane domain 

and an intracellular domain (Rock et al., 1998a). The extracellular domain of TLRs has leucine 

rich repeats. The extracellular leucine rich repeat structure has 24-29 amino acid repeats and has 

an important role in recognizing PAMPs. The cytoplasmic portion of TLRs shows high similarity 

to that of interleukin 1 (IL-1) receptor family and is called Toll/IL-1 receptor domain (TIR).  The 

TIR domain has approximately 200 amino acids and is important for downstream cellular 

signaling and contains three regions of importance, termed Box1, Box2 and Box3.  Box1 is the 

signature sequence of TIR domain, Box2 forms a loop in the structure which probably engages 

with other TLRs or down stream adaptor molecules. The function of Box3 is not well known 

although it contains signaling residues (Slack et al., 2000). 

1.2.3.2. Toll-Like Receptor Signaling  

The initiation of signaling pathways originates from cytoplasmic TIR domains upon 

binding of specific ligands or PAMPs to the extracellular leucine rich repeat (LRR) domain. 

Ligand binding initiates recruitment of one or more adaptor proteins that include MyD88 

(Myeloid differentiation primary response protein 88), TIRAP (TIR domain containing adaptor 
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protein), TRIF (TIR domain containing adaptor protein inducing IFNβ, or TICAM1) or TRAM 

(TRIF related adaptor molecule or TICAM2). All TLRs use MyD88 as an adaptor protein 

(MyD88 dependent pathway), except TLR3 which utilizes the adaptor protein TRIF (MyD88 

independent pathway). TLR1/2 and TLR2/6 utilize both MyD88 and TIRAP, whereas TLR4 

utilizes all four adaptors forming TLR4-TIRAP-MyD88 complex or TLR4-TRAM-TRIF 

complex. Signaling events downstream of MyD88 or TRIF differ, although the outcome of these 

signaling pathways is conceptually similar with activation of transcriptional factors including 

NF-B, Interferon-regulatory factors (IRFs) and other general transcriptional factors.    

1.2.4. TLR9 Family Members 

TLR7, TLR8 and TLR9 form a separate group of TLRs with high protein homology (Heil 

et al., 2003; Hornung et al., 2002; Kadowaki et al., 2001; Lund et al., 2004). All three receptors 

are located in the endolysosomal compartments, require endosomal acidification for activation 

and signal through the same adaptor molecule, MyD88. Additionally, all three receptors 

recognize nucleic acids, which require either intracellular infection of a pathogen or 

phagocytosis of these components from cellular debris, free virus or bacteria. The genes for 

TLR7 and TLR8 are located close to each other on the X chromosome and show 42.2% sequence 

identity and 72.7% protein homology.  

1.2.4.1. Trafficking and Processing of Toll-Like Receptors 7 and 9 

The intracellular localization of the endosomal TLRs vary with localization in early 

endosomes, late endosomes, lysosomes, multivascular bodies, endoplasmic reticulum, golgi 

complex or plasma membrane (Chockalingam et al., 2009; Hacker et al., 1998; Latz et al., 2004; 

Leifer et al., 2004). TLR7 and TLR9 are synthesized in the endoplasmic reticulum (ER), pass 

through the golgi and are sorted to the endolysosomal compartments (Fig. 1.1.). The TLR7/9 

trafficking is controlled by a multi transmembrane protein called Unc93B1, which resides in the 
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endoplasmic reticulum. A missense mutation in the Unc93B1 gene (H412R) inhibits its binding 

to the transmembrane domains of TLR 3/7/9 (Brinkmann et al., 2007; Tabeta et al., 2006). 

Unc93B1 was reported to deliver TLR7/9 from the ER to endolysosomes where TLR7/9 

recognizes their ligands (Brinkmann et al., 2007; Tabeta et al., 2006) (Fig. 1.1.). Following their 

arrival in the endolysosomes, TLR7 and TLR9 are proteolytically cleaved which generates 

functionally competent receptors (Ewald et al., 2008; Park et al., 2008). As a result, delivery of 

ligands to these compartments appears to be a prerequisite for receptor activation. However,  

 

 
Fig. 1.1. Trafficking and Processing of Toll-Like Receptors 7 and 9.  Adapted from Barton 
and Kagan, Nature Reviews Immunology, 2009, 9:535-542.  
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these receptors cannot be detected in the endolysosomal compartments prior to ligand 

stimulation. It is not known what signal leads to the translocation of these receptors into the 

endolysosomes and proteolytic cleavage of the receptor to generate a functional receptor. TLR8 

is also expected to be delivered from the endoplasmic reticulum to endolysosomes through 

Unc93B1, and proteolytically cleaved to generate a functional receptor in a similar fashion to 

TLR7 and TLR9 because of their common features. 

Interestingly, recent studies indicate that Unc93B1 inversely links TLR7 and TLR9 

responses, although both receptors require Unc93B1 for their transportation to endolysosomes. A 

mutation in the N-terminal region of Unc93B1 enhanced TLR7 trafficking and responsiveness, 

but suppressed TLR9 trafficking and responsiveness in bone marrow derived dendritic cells, 

indicating that Unc93B1 represses TLR7 responses and enhances TLR9 responses (Fukui et al., 

2009). However, it is not known how Unc93B1 is regulated in altering the TLR7 or TLR9 

responses.   

1.2.4.2. TLR7, TLR8 and TLR9 Signaling 

All three receptors of the TLR9 family are dependent on recruitment of the adaptor 

protein MyD88 with the exception of TLR8 stimulation of neurons (Hemmi et al., 2002; Lund et 

al., 2004; Ma et al., 2006; O'Neill and Bowie, 2007).  Binding of ligands to TLR9 was shown to 

facilitate formation of homodimers (Latz et al., 2007), and the interactions of the TLR9 family 

receptors with MyD88 may be dependent upon the conformational changes in the homodimers 

during ligand binding (Latz et al., 2007). MyD88 harbors a TIR domain and a death domain.  

The TIR domain of MyD88 interacts with the carboxy terminal of the TIR domain of the TLR. 

The amino terminal death domain of MyD88 interacts with the corresponding domain of IRAK4 

(interleukin 1 receptor associated kinase 4), which then recruits IRAK1. Upon stimulation, 

IRAK4 and IRAK1 undergo sequential phosphorylation and dissociate from MyD88, resulting in  
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Fig. 1.2. TLR7, 8, and 9 Signaling. All TLR9 family members share a common pathway called 
the MyD88-dependent pathway, which activates either NF-κB to upregulate proinflammatory 
cytokine and chemokines, or IRF7 to induce interferons.   
  

activation of the ubiquitin ligase, TRAF6 (tumor necrosis factor receptor associated factor 6) 

(Fig. 1.2.). TRAF6 activation leads to activation of p38 MAPK, interaction with the IKK 

complex, NF-κB activation and the upregulation of proinflammatory cytokine and chemokine 
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mRNA. MyD88 signaling of IRAK4 can also lead to type 1 interferons (IFNα and IFNβ) through 

IRF7 phosphorylation and translocation into the nucleus (Kawai and Akira, 2006).    

1.2.4.3. TLR7, TLR8 and TLR9 Agonists 

 TLR7/8 Agonists 

TLR7 was originally identified as eliciting antiviral effects when stimulated by the family 

of guanosine based imidazoquinoline compounds (Hemmi et al., 2002; Lee et al., 2003) which 

includes imiquimod (R837), resiquimod (R848) and loxoribine. The antiviral activity of 

imiquimod was first shown in guinea pigs infected with herpes simplex virus (Miller et al., 

1999). Imiquimod was FDA approved (1977) for treatment of external genital warts caused by 

human papilloma virus infection. 

Human TLR8 also recognizes R848 but surprisingly not R837. Neither of these 

compounds were recognized by mouse TLR8 suggesting that TLR8 may be nonfunctional in 

mice (Jurk et al., 2002). Recent studies indicate that murine TLR8 might be functional as poly-

thymidine oligonucleotides (pT-ODN) in combination with imidazoquinoline compounds, such 

as R848 and CL075, induced NF-κB activation in human embryonic kidney cells (HEK293) 

transfected with murine TLR8- and primary TLR8-expressing mouse cells (Gorden et al., 2006a; 

Gorden et al., 2006b).   

 More synthetic agonists were recently identified that signal through either TLR7 or 

TLR8. CL087 (TLR7 agonist) is an adenine derivative that activates NF-B and induces 

secretion of IFNα in human TLR7-expressing cells, but does not stimulate human TLR8 even at 

high concentrations (Kornbluth and Stone, 2006). CL097 (TLR7/8 agonist) is a highly water 

soluble derivative of imidazoquinoline compound R848 and stimulates both human TLR7 and 

human TLR8, similar to R848 (Salio et al., 2007). CL075 (TLR8/7 agonist) (also called 3M002) 

is a thiazoloquinoline derivative that stimulates TLR8 in human PBMC and induces TLR7 to a 
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lesser extent (Gorden et al., 2005).  However, none of these compounds are tested in mouse cells 

and it is not known what receptors these molecules signal through.    

Recent studies identified guanidine-uridine rich single stranded RNA (ssRNA) from 

viruses as the natural agonists of TLR7 and TLR8. ssRNA from influenza virus, Newcastle 

disease virus (NDV) and vesicular stomatitis virus (VSV) activate TLR7 in vitro (Diebold et al., 

2004; Heil et al., 2004; Kato et al., 2005; Lund et al., 2004). IFNα production by VSV and 

influenza viruses was suppressed in TLR7 deficient mice (Diebold et al., 2004; Lund et al., 

2004). Human TLR8 was shown to be involved in recognition of Coxsackie B virus and human 

parechovirus 1 (Triantafilou et al., 2005a; Triantafilou et al., 2005b). These studies suggest that 

TLR7 and TLR8 may play an important role in neuropathogenesis as several viral families with 

ssRNA; including flaviviruses, paramyxoviruses, rhabdoviruses and retroviruses, can infect the 

CNS and induce neurological disease (Beignon et al., 2005; Chambers and Rice, 1987; de la 

Torre, 2002; Mandl, 2005).  

TLR7 was also shown to sense synthetic RNA oligonucleotides from HIV (ssRNA40), 

containing phosphothioate-protected RNA oligonucleotides with a GU-rich sequence from the 

U5 region of HIV-1 RNA. Upon stimulation with ssRNA40, murine TLR7 and human TLR8 

induced the activation of NF-κB, whereas human TLR7 and murine TLR8 failed, implying a 

species specificity difference in ssRNA recognition. RNA41 and RNA42, two derivatives of 

RNA40 in which all U or G nucleotides were replaced with adenosine, are not recognized by 

either human TLR7 or murine TLR8 indicating TLR7 or TLR8 recognizes GU-rich ssRNA’s 

(Heil et al., 2004). 

 TLR9 Agonists  

TLR9 was initially shown to recognize unmethylated DNA from viruses or bacteria that 

contains CpG dinucleotides flanked by two 5’ purines and two 3’ pyrimidines (CpG-DNA) 
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(Bauer et al., 2001; Hemmi et al., 2000). Later, synthetic oligodeoxynucleotides (ODN) 

containing these CpG motifs were shown to mimic the immunostimulatory effects of bacterial 

DNA in macrophages and dendritic cells (DCs) (Krieg, 2002). In vivo production of 

proinflammatory cytokines and type-I IFNs in response to murine cytomegalovirus (MCMV), 

HSV1 and HSV2 were dependent on recognition by TLR9 (Barton, 2007). The TLR9 mediated 

IFNα secretion was shown to be limited to plasmacytoid dendritic cells that secrete high amounts 

of IFNα in response to viral infections (Hornung et al., 2002; Kadowaki et al., 2001; Krug et al., 

2001).  

CpG-ODNs are classified into three different classes, Class A, B and C, based on primary 

sequence motifs, secondary and tertiary structures and different responses in B-cells and 

plasmacytoid DCs (pDCs). The first described CpG-ODN belongs to class B, which contains 

CpG dinucleotide motifs with a phosphorothioate backbone. CpG-B ODNs strongly activate B-

cells to develop into plasma cells, and induce TNF secretion from pDCs, but are weak inducers 

of IFNα. CpG-A ODNs contain a phosphodiester linked central palindromic motif and 

phosphorothioate poly-G tails that enable the formation of complexes and higher order 

structures. CpG-A ODNs induce high levels of IFNα by pDCs, but are poor activators of B-cells. 

CpG-C ODNs combine the properties of CpG-A and CpG-B ODNs, with a CpG containing 

palindromic motif and a phosphorothioate backbone respectively. CpG-C ODNs induce 

intermediate levels of IFNα in pDCs and directly activate B-cells (Jurk and Vollmer, 2007).  

1.2.4.4. TLR Agonists and Receptor Interactions 

The co-operative interactions among TLR9 family receptors may modulate the 

inflammatory response to their PAMPs (Berghofer et al., 2007; Marshall et al., 2007; Wang et 

al., 2006). Synergistic co-activation among multiple TLRs has been observed in vitro, including 

synergistic activation of TLR3 and 7 (Gautier et al., 2005; Napolitani et al., 2005; Roelofs et al., 
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2005; Warger et al., 2006), TLR4 and 7 (Gautier et al., 2005; Napolitani et al., 2005; Roelofs et 

al., 2005), TLR3 and 9 (Whitmore et al., 2004) and TLR2/4 and 9 (Agren et al., 2006). 

Simultaneous triggering of TLR7 and 9 in pathogen infection has been suggested. For example, 

the herpesviruses have been recently shown to activate both TLR7 and TLR9 signaling (Zucchini 

et al., 2008a). DNA and RNA derived from bacterial pathogens and dead cells are reported to 

stimulate TLR3, 7, and 9, as well as cell surface TLR2 and TLR4/MD-2 (Kariko et al., 2005).   

Interaction between the TLR9 family has also been suggested in vitro. Co-expression of 

either TLR8 or TLR9 with TLR7 in HEK cells inhibited the response of these cells to TLR7 

agonist stimulation, but not TLR8 or TLR9 agonist stimulation. Co-transfection of TLR8, but not 

TLR7, along with TLR9 inhibited TLR9 agonist-induced responses, while neither TLR7 nor 

TLR9 altered TLR8 agonist-induced responses in HEK cells (Wang et al., 2006). This suggests a 

hierarchy among TLR9 family receptors in suppressing responses, with TLR8 suppressing both 

TLR7 and TLR9 responses, TLR9 suppressing TLR7 responses and TLR7 having no suppressive 

effect on either TLR8 or TLR9 responses (TLR8>TLR9>TLR7).   

TLR agonist-induced signaling may also impact other members of the TLR9 family. For 

example, TLR7/TLR9 co-stimulation demonstrated that synthetic and natural TLR7 agonists can 

suppress TLR9 (CpG-A and CpG-C ODN) induced IFNα production by pDCs and B cells 

(Berghofer et al., 2007; Marshall et al., 2007). This study also reported the down-regulation of 

TLR9 expression by TLR7 signaling in pDCs (Marshall et al., 2007). The predicted mechanism 

for these interactions is the generation of heterodimers between TLR7, TLR8, and TLR9, that 

could inhibit MyD88 binding and the subsequent signal transduction cascade (O'Neill and 

Bowie, 2007). Thus, the relative ratio of TLR7, TLR8 and TLR9 in the endosomes may 

influence receptor signaling and cytokine production.  
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1.3. TOLL-LIKE RECEPTORS AND THE CNS  

1.3.1. Expression of TLRs in the CNS 

 Microglia and astrocytes are endogenous cells in the CNS that respond to the infections 

caused by pathogens, and are responsible for production of proinflammatory cytokines and 

chemokines. So, it is expected that brain cells constitutively express TLRs. However, the 

expression of multiple TLRs in the cultured brain cells was mostly studied at mRNA level 

because of the unavailability of antibodies until recently.  

Microglia express mRNA for all known TLRs including TLR9 family receptors. (Dalpke 

et al., 2002; Iliev et al., 2004; Olson and Miller, 2004; Zhang et al., 2005; Zuiderwijk-Sick et al., 

2007). Expression of TLRs on astrocytes is not as clear because of inconsistent reports. Murine 

astrocytes were shown to express mRNA for TLRs from 1-10, with the exception of TLR8 

(McKimmie and Fazakerley, 2005). However, others reported that astrocytes express TLR3 

mRNA at robust levels, TLR 1, 4, 5, and 9 at low-level, and TLR 2, 6, 7, 8, and 10 mRNA at 

rare-to-undetectable by quantitative real-time PCR (Jack et al., 2005). Human astrocytes were 

shown to express only TLR2 and TLR4 mRNA (Carpentier et al., 2005). Adult neurons express 

only TLR3 mRNA (Prehaud et al., 2005).  

In vivo immunofluorescence studies revealed the absence of TLR1, TLR3, TLR4 and 

TLR9 expression in normal mouse brain at protein level (Mishra et al., 2006). However, TLR2 

expression was detected on microglia, astrocytes and neurons using respective cell specific 

markers (Mishra et al., 2006). TLR7 was primarily localized to brain capillary endothelial cells 

and ependymal cells of the choroid plexus (Lewis et al., 2008). TLR8 positive cells in the adult 

brain were mostly confined to cells in the white matter of periventricular, subcortical and 

cerebellar regions of the brain. Immunohistochemistry studies did not identify expression of 

TLR7, TLR8, or TLR9 on either astrocytes or microglia or neurons. However, embryonic 
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neurons expressed TLR8, both in vitro and in vivo (Ma et al., 2006). Thus, further investigation 

for the protein expression of TLRs using more sensitive techniques including flow cytometry or 

western blot techniques is needed.  

1.3.2. Intrinsic Functions of TLRs in the CNS 

TLRs serve important functions in the brain development and homeostasis. TLR2 and 

TLR4 were recently shown to regulate adult hippocampal neurogenesis in rodents (Rolls et al., 

2007). Adult neuroprogenitor cells (NPCs) express both TLR2 and TLR4, with these two 

receptors serving opposing functions in proliferation and differentiation of NPCs (Rolls et al., 

2007). TLR2 activation promotes neuronal differentiation, while TLR2 inhibition suppresses 

neuronal differentiation and astroglial differentiation. In contrast, TLR4 activation inhibits both 

neuronal differentiation and self renewal of NSCs. In vivo activation of TLR4 in neonates was 

shown to alter memory functions in adult rats (Bilbo et al., 2006). TLR3 was also reported as a 

negative regulator of embryonic NPCs (Lathia et al., 2008). 

TLRs also appear to play a role in brain development. TLR8 expression was recently 

detected on neurons at both embryonic and neonatal stages, and stimulation of TLR8 in neuronal 

cultures inhibit dendrite growth and induce caspase 3 activation, suggesting a role for TLR8 in 

regulating neuron growth during brain development (Ma et al., 2006). Certain TLRs may also 

have an active role in non-pathogen mediated diseases in the CNS. For example, the adaptor 

protein Myeloid Differentiation factor 88 (MyD88) which binds to several TLRs is an important 

mediator of brain injury (Koedel et al., 2007). These studies indicate the role of multiple TLRs in 

the intrinsic functions of the brain including brain development and homeostasis.  

1.3.3. Role of TLRs in Neurologic Disease  

TLRs have been shown to have a role in disease pathogenesis in the brain. TLR2 and 

TLR4 play an important role in antibacterial responses elicited by microglia and astrocytes both 
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in vitro and in vivo including Staphylococcus aureus, or group B streptococci infections as well 

as meningitis induced by E. coli LPS (Lehnardt et al., 2006; Qin et al., 2005; Takeuchi et al., 

2000; Zhou et al., 2006). TLR2 also plays a role in viral infections, including herpes simplex 

virus 1 (HSV1), and is necessary for the proinflammatory cytokines and chemokines production 

by microglia following HSV1 infection (Aravalli et al., 2005). TLR3 plays an important role in 

the neuropathogenesis of West Nile virus (WNV) infection and herpes simplex virus infections 

(Wang et al., 2004). Furthermore, TLR3 signaling in astrocyte and microglia cells is activated by 

multiple demyelinating diseases including Coxsackie virus, Theiler’s murine encephalitis virus 

(TMEV) and HIV infections (Aravalli et al., 2007). TLR3 also has a significant role in breaking 

the BBB during virus infections as demonstrated in WNV infection (Wang et al., 2004). 

Less is known about the role of TLR9 family members, TLR7, TLR8, and TLR9, in 

response to pathogens. TLR7 may play an important role in neuropathogenesis as several viral 

families with ssRNA, including flaviviruses, paramyxoviruses, rhabdoviruses and retroviruses, 

can infect the CNS and induce neurological disease (Beignon et al., 2005; Chambers and Rice, 

1987; de la Torre, 2002; Mandl, 2005). TLR7 was shown to mitigate lethal WNV encephalitis 

(Town et al., 2009). It is postulated that microglia cells sense brain invading WNV through 

TLR7 dependent recognition of ssRNA and secrete IL-23 promoting viral clearance (Town et al., 

2009). Recent studies on retroviral infections utilizing murine polytropic retroviral infection 

demonstrated a role of TLR7 in inducing significant proinflammatory cytokines and chemokines 

and astrocyte activation early in the infection (Lewis et al., 2008). These studies show that TLR7 

may play a role in the pathogenesis of other neurovirulent ssRNA viruses, both in eliciting innate 

immune responses and in recruitment of inflammatory cells.  

TLR9 recognizes the DNA genomes from neurovirulent viruses like HSV-1 and mouse 

CMV that are rich in CpG motifs. TLR9 was shown to act in synergy with TLR2 in recognizing 
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HSV-1 to induce early cytokine and cellular response and thus restrict viral load in the brain and 

prevent lethal HSV encephalitis (Sorensen et al., 2008).    

1.3.4. Therapeutics 

Agonists of both TLR7 and TLR9 are also being investigated for the potential use in 

treating CNS-related diseases and in inducing innate immune responses in the CNS (Butchi et 

al., 2008; El Andaloussi A. et al., 2006; Pedras-Vasconcelos et al., 2006a; Pedras-Vasconcelos et 

al., 2008; Prins et al., 2006). Treatment of CNS-tumor bearing mice with 5% imiquimod (along 

with melanoma-associated Ag-pulsed DC vaccination) resulted in synergistic reduction in CNS 

tumor growth (Prins et al., 2006) and intraperitoneal inoculation of CpG-ODN protects newborn 

mice from a lethal challenge with neurotropic tacaribe arena virus (Pedras-Vasconcelos et al., 

2006a). However, the mechanisms behind these responses are not known.   

 Systemic injection of TLR7 agonist can induce microglia activation (Zhang et al., 2005) and 

repeated intraperitoneal administration of CpG-ODN have a sustainable effect of immune 

effectors in the brain including TNF production (Wagner et al., 2007). This suggests that TLR7 

and TLR9 agonists may be able to cross the BBB in cases of insult or injury. However TLR 

agonists may have pathogenic properties in the CNS. Intracerebral inoculation of CpG DNA in 

neonatal mice induces death in a few hours after inoculation (Pedras-Vasconcelos et al., 2006b). 

Intracisternally administered bacterial DNA containing CpG motifs induces meningitis in mice 

(Deng et al., 2001). Understanding the cell types in the brain that can be activated by TLR7 and 

TLR9 and the downstream affects of this activation is important for understanding both viral 

pathogenesis as well as potential use of TLR agonists in the treatment of neurological diseases.     

   Several studies have demonstrated the ability of microglia to respond to TLR7/TLR9 

ligands (Gurley et al., 2008). Microglia stimulated with ssRNA and CpG-ODNs can produce IL-

12 (p40), CXCL2, CCL2 and/or TNF (Gurley et al., 2008). TLR9 stimulated microglia can also 
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produce  nitric oxide (NO), and have enhanced phagocytic activity and induce neuronal damage 

(Dalpke et al., 2002; Iliev et al., 2004). Less is known on astrocytes, but they were shown to 

produce IL-12, CXCL2 and CCL2 in response to either ssRNA or CpG-ODN stimulation. These 

studies demonstrated that both astrocytes and microglia can respond to TLR7 or TLR9 agonist 

stimulation. However, an in depth comparison of the innate immune responses elicited by these 

cell types in response to TLR7 or TLR9 stimulation has not been completed. A better 

understanding of the role of these TLRs and the innate immune system itself in the CNS is 

important in developing new avenues in the treatment of neuroinflammatory conditions.  

1.4. SUMMARY 
 

TLR7 and TLR9 are evolutionarily closely related, highly homologous, confined to the 

endosomal membranes, recognize nucleic acids that they encounter in these compartments, and 

signal via the adaptor molecule MyD88. Despite the high levels of similarities between these 

receptors, direct stimulation of TLR9 in the brain causes death of the mice, while TLR7 agonist 

inoculation does not (Pedras-Vasconcelos et al., 2006b). Cells in the brain including astrocytes, 

microglia, meninges, and neurons may vary in their expression of these TLRs and respond 

differently to TLR7 or TLR9 stimulation by selective signal transduction pathways. However, 

there is a lack of basic understanding of which cell types in the brain respond to stimulation of 

TLR7 and TLR9 ligands, and which cellular pathways are activated following TLR7 and TLR9 

stimulation. Thus, defining the responses of these cell types to TLR7 and TLR9 stimulation will 

provide a more clear understanding of the neuroinflammatory responses to pathogenic insult in 

the brain.  

The interactions between TLR7 and TLR9, and their agonists may also modulate the 

inflammatory signaling in response to their PAMPs. An antagonistic relationship between TLR7 

and TLR9 receptor responses was observed in human embryonic kidney (HEK) cells (Wang et 
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al., 2006). In addition TLR7/TLR9 co-stimulation studies suggested that TLR7 agonists can 

suppress TLR9-induced IFNα production by plasmacytoid dendritic cells (pDCs) and B cells 

(Berghofer et al., 2007; Marshall et al., 2007). TLR7 and TLR9 interactions are also important in 

relevance to infection as some viruses like cytomegalovirus, herpes simplex virus-1 and HIV can 

induce both TLR7 and TLR9 activation during infection (Beignon et al., 2005; Mandl et al., 

2008; Zucchini et al., 2008b). Thus, interactions between these receptors and agonists may play 

an important role in regulating innate immune responses to infection and in the use of these 

agonists in the therapeutic treatment of diseases.   

The objective of the present study is to understand the functional effects and interactions 

of TLR7 and TLR9, and their agonists in the central nervous system. We hypothesize that, 

despite the high similarity between TLR7 and TLR9, the activation of these receptors result in 

substantially different neuroinflammatory responses in the CNS. Furthermore, we hypothesize 

that different cell types in the CNS have distinct responses to TLR7 and TLR9 agonist 

stimulation and that there is cross-regulation between these receptors in controlling the innate 

immune responses by brain cells. A combination of in vivo studies, by inoculating TLR7 and 

TLR9 agonists intracerebroventricularly, and in vitro studies, by culturing and stimulating 

different cells in the brain, was utilized to analyze the neuroinflammatory pathways following 

stimulation of TLR7 and TLR9. Furthermore, we analyzed the functional interactions between 

TLR7 and TLR9 agonists and their receptors in regulating neuroinflammation in the brain by co-

stimulation studies and by utilizing mice deficient in TLR7.    
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2.1. SOLUTIONS 

Common Buffers 

 Phosphate Buffered Saline (4.3 mM Na2HPO4, 137 mM NaCl, 2.7 mM KCl, 1.4 mM 

KH2PO4). 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, and 0.24 g KH2PO4 were dissolved in 800 ml 

distilled water and adjusted pH to 7.4. Volume adjusted to 1L with additional distilled water and 

sterilized by autoclaving.  

 Tris Buffered Saline (TBS) (50 mM Tris-HCl pH 7.5, 150 mM NaCl). 30 ml of 5 M NaCl and 

50ml of 1M Tris-HCL, pH7.5 were added in 920ml of RNAse-free water and adjusted pH to 7.5. 

Solutions for TLR agonist Inoculations in vivo 

 4% Trypan Blue (20X): 4 g trypan blue (Sigma-Aldrich T6146) powder was dissolved in 100 

ml of distilled water, sterile filtered through 0.22 m filter and stored at RT.   

Solutions for Immunohistochemistry / Immunocytochemistry/ Flow Cytometry 

 10% Neutral Buffered Formalin: (Sigma-Aldrich # 533998). 

 2% Paraformaldehyde: 1 ml 16% paraformaldehyde (Electron Microscopy Sciences # 15710) 

added to 7 ml PBS. 

 1% Saponin/10X PBS Stock: 0.5 g saponin (Sigma-Aldrich # 47036) was dissolved in 10X 

PBS with gentle stirring (will foam) and volume is adjusted to 50 ml with deionized water.  

 0.1% Saponin/PBS: 1% saponin/10X PBS stock solution was diluted 1 in 10 in distilled water.  

 2% BSA:(Bovine serum albumin) (Sigma-Aldrich # A9647). 2g BSA dissolved in 100 ml PBS. 

 2% Donkey Serum: (Sigma-Aldrich # D9663). 2 ml donkey serum added to 100 ml PBS. 

 Normal Donkey Serum Blocking Solution: 2% donkey serum, 1% bovine serum albumin, 0.1% 

cold fish skin gelatin (Sigma-Aldrich # G7765), 0.1% triton X-100 (Sigma-Aldrich # T8532), 

and 0.05% tween 20 (Sigma-Aldrich # P9416) in 1X PBS, pH 7.2. Stored at 4oC.   
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 Citrate Target Retrieval Solution: 9 ml 0.1M citric acid (1.92 g citric acid, 100 ml distilled 

water), 41 ml 0.1M sodium citrate dihydrate (14.7 g sodium citrate, 500 ml distilled water) and 

450 ml ultrapure water, pH 6.0.  

 DAPI Stock Solution (5 mg/ml): 10 mg DAPI was dissolved in 2 ml dimethyl-formamide and 

stored at -20oC. 

 DAPI Working Solution (100 ng/ml): 2 l DAPI stock solution added to 100 ml PBS.    

Solutions for in situ Hybridization Analysis  

 Xylene: (Sigma-Aldrich # 534056). 

 4% Paraformaldehyde: 10 ml 16% paraformaldehyde added to 30 ml RNAse-free water. 

 200 mM HCl: 826 l conc. HCl (Sigma-Aldrich H1758) added to 50 ml RNAse-free water.  

 Proteinase K Buffer: (2 mM CaCl2 in TBS): 0.1 ml of 1 M CaCl2 (Sigma-Aldrich # 21115) 

added to 50 ml of TBS. Proteinase K: (Roche # 3115887001) 

 2X SSC: (Standard Saline Citrate). 55 ml 20X SSC (Sigma-Aldrich Cat #: 15557-044), added 

to 500 ml RNAse-free water (Invitrogen # 10977-023).  

 Hybridization Buffer: 2X SSC, 10% dextran sulfate (Sigma-Aldrich # D8906), 0.01% sheared 

salmon sperm DNA (Invitrogen # 15632-011), 0.02% SDS (Invitrogen # 15553-027), 50% 

formamide (Ambion # AM9342).  

 RNAse Buffer: (500 mM NaCl, 100 mM Tris, pH 8.0). 5 ml 5 M NaCl (Sigma-Aldrich # 

S5150), 0.5 ml 1 M Tris pH 8.0 (Invitrogen # 15568-025), 45 ml RNAse-free water.  

 RNase A:  (Roche Cat # 10109142001). 

 1X SSC/ 50% Formamide: 25 ml 2X SSC added to 25 ml Formamide (Ambion # AM9342). 

 1X SSC: 25ml 20XSSC (Sigma-Aldrich Cat #: 15557-044) added to 475ml RNAse-free water. 

 Maleic Acid (1 X): 55 ml 10X maleic acid stock (Roche Blocking Reagent Kit, Cat # 
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11585762001) added to 495 ml RNAse-free water. 

 Blocking Buffer: 45 ml 1X maleic acid added to 5 ml blocking reagent (Roche, Cat # 

11585762001). 

 Anti-Dig Antibody- Alkaline Phosphatase: (Roche, Cat # 1 093 274). 

 Detection Buffer: 0.1 M Tris-HCl, pH 8.0. 

 Fast Red Detection Solution: Fast red tablet (from Roche, Cat # 1 496 549) was crushed, added 

to 2 ml of detection buffer, and filtered through 0.22 or 0.45 m filter to remove particulate. 

 DAB (3,3'-diaminobenzidine): (Pierce, Fisher scientific # 34002).  

 Mayer’s Hematoxylin: (Electron Microscopy Sciences # 26043-05). 

 Tacha’s Bluing Solution: (BioCare Medical # HTBLU-MX). 

 Shur/Mount Water Based Mounting Medium(Electron Microscopy Sciences # 17992-01).  

Solutions for Astrocytes and Microglia Cultures 

 70% Percoll: (prepare 1 ml/ mouse): 7 ml Percoll (Sigma-Aldrich # P4937), 1 ml sterile 10X 

PBS were added to 2 ml sterile water. 30 l of 0.4% cresol red (Sigma-Aldrich # 114472) 

solution was added per 20 ml of 70% percoll. Filter sterilized and stored at 4oC for a maximum 

of 1 week.    

 30% Percoll: (prepare 1 ml/ mouse): 3 ml Percoll and 1 ml sterile 10X PBS were added to 6 ml 

sterile water. Filter sterilized and stored at 4oC for a maximum of 1 week.   

 0% Percoll: (prepare 1 ml/ mouse): 1 ml sterile 10X PBS was added to 9 ml sterile water. 30 l 

of 0.4% trypan blue (Sigma-Aldrich # T8154) solution was added per 20 ml of 0% percoll. Filter 

sterilized and stored at 4oC for a maximum of 1 week.     

 2% Glucose in PBS: 10 g D-glucose (Sigma-Aldrich # G5146) was dissolved in 500 ml PBS. 

Filter sterilized and stored at 4oC. 
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 Astrocyte Culture Media: Dulbecco’s modified Eagle’s medium (Sigma-Aldrich # D6429) 

containing 4,500mg glucose/L, 110mg sodium pyruvate/L, 0.584g L-glutamine/L, was 

supplemented with 10% inactivated fetal bovine serum (Hyclone, Fisher Scientific # 

SH3007003IH) and 1% penicillin-streptomycin (Invitrogen # 15140-122).   

 Microglia Culture Media: Astrocyte media with 20 % LADMAC culture supernatant (mouse 

bone marrow cells producing macrophage colony stimulating factor/M-CSF).  

 Meningeal Culture Media: Same as astrocyte media. 

Solutions for Primary Cortical Neuron Cultures 

 Dissection Media for Neuron Cultures (CMF-HBSS: Calcium magnesium free-Hanks 

Balanced Salt Solution buffered with 10 mM HEPES, pH 7.3): 20 ml of 10X CMF-HBSS 

(Invitrogen # 14185-052) and 2 ml of 1M HEPES (Invitrogen # 15630-080) (100X) were added 

to 178 ml water. One set was kept ice cold and other set at room temperature.  

 Digestion Media for Neuron Cultures: 0.5 ml of warm 2.5% trypsin (Invitrogen # 15090-046) 

was added to 4.5 ml of CMF-HBSS with HEPES just before use.   

 Neuronal Plating Media: 5 ml 12% D-glucose (20x) and 5 ml 5% inactivated fetal bovine 

serum (IFBS) were added to 90 ml Opti-MEM with L-glutamine (Gibco # 31985).  

 Neuronal Maintenance Media: 4 ml B-27 supplement (2%) (Invitrogen # 17504-044) and 0.5 

ml glutamax-I 200 mM (0.5 mM final concentration) (Invitrogen # 35050-061) were added to 

195.5 ml neurobasal medium (Invitrogen # 21103-049). 

 NMDA (N-methyl-D-aspartic acid):  (Sigma-Aldrich # M3262). 

Solutions for MTT Cell Viability Assay 

 MTT: 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan) (Invitrogen # M6494). Stock 

concentration: 5 mg/ml in PBS. 50 mg MTT powder was dissolved in 10 ml PBS, and allowed 5-
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10 min on magnetic stirrer to get yellow colored solution. Filter sterilized through 0.22 m filter 

and stored at 4oC in dark up to several months.  

Solutions and Reagents for RNA Extraction and Real-Time RT-PCR 

Trizol reagent (Invitrogen # 15596-018), 2-propanol (Sigma-Aldrich # 19516), Chloroform 

(Sigma-Aldrich # 496189), Mini RNA isolation kit (Zymo Research # R1031), RNA cleanup 

columns (Zymo research # R1018), iScript Reverse Transcription kit (Bio-Rad # 1708891), 

SYBR Green Supermix with ROX (Bio-Rad # 1715852), 384-well clear plates (Applied 

Biosystems # 4343370). 

 Master Mix for DNAse Treatment:  Reaction volume: 100 l. RNA sample: (1-2g) 5 l for 

brain tissue, (1g) 10 l for the cells. RNA was added to 10 l DNAse buffer (Ambion # 

AM2224), 15 l DNAse I and quantities sufficient to 100 l with RNAse-free water.     

 Master Mix for Reverse Transcription (RT):  Reaction Volume: 20 l.  

10 l RNAse-free water, 4 l 5X iScript reaction mix (Bio-Rad # 1708891), and 1 l iScript 

Reverse Transcriptase were added per sample. 15 l reaction mix was dispensed to appropriate 

wells and added 100 ng (5 l) DNAse treated RNA to each reaction.      

 Master Mix for Real-Time PCR:  Reaction Volume: 35 l.  

9 l RNAse-free water, 17.5 l 2X iTaq SYBR Green Supermix with Rox (Bio-Rad # 1725852), 

0.5 M forward primer, and 0.5 μM reverse primer were added per sample. 30 l reaction mix 

was dispensed to appropriate wells and added 10 ng (5.0 l) cDNA to each reaction.    

PCR Array  

First strand cDNA kit (SA Biosciences # C-03), RT2-SYBR Green/ROX PCR master mix (SA 

Biosciences # PA-012-24), 384-well clear plates (Applied Biosystems # 4343370) 

Multiplex Bead Assays 
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 Cell Lysis Buffer: 40 l factor 1 (-20oC, useable upto 5 freeze/thaws), 20 l factor 2 (-20oC, 

useable upto 5 freeze/thaws), 40 l 500 mM PMSF (Sigma-Aldrich # P7626) diluted in dimethyl 

sulfoxide, and protease inhibitor cocktail tablet (Bio-Rad # 171-304012) or Complete Mini 

(Roche # 11836153001) were added to 10 ml lysis buffer (Bio-Rad #171-304012). 

2.2. AGONISTS OF TLR4, TLR7, TLR8 AND TLR9 

The TLR7 and/or TLR8 agonists, imiquimod (R837), loxoribine, 3M002 (CL075), 

CL087 and CL097; TLR9 agonist type B CpG-ODN 1826 [5’- tcc atg acg ttc ctg acg tt -3’ 20 

mer] and FITC labeled CpG-ODN 1826, as well as the TLR4 agonist LPS were purchased from 

Invivogen (San Diego, California) (Gorden et al., 2005; Heil et al., 2003; Hemmi et al., 2002; 

Lee et al., 2003; Lee et al., 2006; Wille-Reece et al., 2006). All the agonists were suspended in 

endotoxin-free water, aliquoted, and stored at -20oC until use (Table 2.1).   

For the intracerebroventricular (i.c.v.) inoculations, agonists were diluted in endotoxin-

free 1X PBS/0.2% trypan blue, just before use (Table 2.1). The vehicle control, 0.2% trypan blue 

in PBS was used for mock i.c.v. inoculations. For the in vitro cell stimulations, agonists were 

diluted in media specific for astrocytes, microglia, or neurons just before use (Table 2.1). Media 

without any agonists were used as controls.     

 2.3. IN VIVO EXPERIMENTS 

2.3.1. Mice 

Inbred Rocky Mountain White (IRW) mice at 48 h post-birth were used for the present 

study. TLR7-deficient C57BL/6 mice (Hemmi et al., 2002) were kindly provided by Shizuo 

Akira and  were backcrossed with IRW mice for ten generations (Lewis et al., 2008).  

C57BL/6 mice were purchased from Charles River. C57BL/6/TLR9KO mice (Hemmi et 

al., 2000) were kindly provided by Shizuo Akira. All the animal procedures were conducted in 

accordance with the Louisiana State University Institutional Animal Care and Use Committee  
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Table. 2.1. Different TLR Agonists Used in the Study.   
 
ligand Agonist chemical  Stock Preparation IN VIVO use  IN VITRO use 
  group      
1. LPS TLR 4 Lipopoly- 1 g/l  dissolved 5 mg in 5 ml  2g/pup 10 g/ml 
  saccharide  water 2 l LPS (1g/ul) 10 l LPS stock 
     6.5 l water 1 ml media 
     1l 10X PBS  
     0.5l 20X Trypan blue  
2. Loxoribine 
 

TLR7 
 

Guanosine 
analog   

20 mM 
 

Added 0.74 ml ethanol  
and 6.66 ml water to   

100 nmoles 
As per imiquimod 

100 M 
5 l loxoribine 

    
50mg, heat at 55oC,5 min 
 

 
 

1 ml media 
 

3. Imiquimod 
 (R837) 

TLR7 
 

Imidazo-
quinoline  

5 mg/ ml 
(20mM)  

dissolved 5 mg in 1ml 
water 

100 nmoles 
5 l imiquimod (20 

5 M 
0.25 l imiquimod 

  compound   mM) (20 mM) 
     3.5 l water  1 ml media  
     1l 10X PBS   
     0.5l 20X Trypan blue   
4. CL 075 TLR8/7 Thiazolo- 20mM dissolved 0.5 mg in 103  100 nmoles 20 M 
  quinoline   µl water  As per imiquimod 1 l CL075 (20 mM) 
      in 1 ml media  
5. CL 087 TLR7 Adenine  20mM dissolved 0.5 mg in 79.5  100 nmoles   
  derivative  µl DMSO  As per imiquimod not tested 
6. CL 097 TLR8/7 Imidazo- 20mM dissolved 0.5 mg in 103  100 nmoles  
  quinoline   µl water As per imiquimod not tested 

  
compound 
     

7. CpG-ODN 
 

TLR9 
 

ODN 1826 
 

1 µg / µl 
 

dissolved 200g in 200 
  

0.5 g/pup (80 
pmoles) 

0.5 g/ml (80nM) 
 

 Type B    (155 µM) µl water 0.5 l ODN 1826 0.5l ODN 1826 
     8 l water   1 ml media  
     1l 10X PBS   
     0.5l 20X Trypan blue   
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guidelines or in accordance with the regulations of the Rocky Mountain Laboratories 

Animal Care and Use Committee and the guidelines of the National Institutes of Health. 

2.3.2. Intracerebroventricular (i.c.v.) Inoculations of Newborn Mice  

Mice, at approximately 48 h post-birth, were anesthetized by hypothermia, and 10 

µl (5 µl per hemisphere) of the appropriate TLR agonist or vehicle control was inoculated 

into the lateral ventricles using a 33 gauge needle and a Hamilton syringe following a 

previously established protocol (Peterson et al., 2004; Poulsen et al., 1999).  Correct 

ventricular inoculation was confirmed by observing trypan blue staining in the ventricles 

(Peterson et al., 2004; Poulsen et al., 1999). Mice were inoculated i.c.v. with either 2 µg 

of LPS, 50 µg (200 nmoles) of imiquimod, 0.5 g (80 pmoles) of CpG-ODN 1826 or 10 

µl of vehicle control (0.2% trypan blue in PBS). For the dose curve analysis, imiquimod 

was used at 20, 100, 200 or 500 nmoles per mouse. The neuroinflammatory responses to 

imiquimod at the 100 nmole dosage were compared with the responses induced by other 

TLR7/8 agonists: loxoribine, 3M002 (CL075), CL087 and CL097 at 100 nmole dosage. 

The survival curve analysis of CpG-ODN 1826 was tested at 77.5 pmoles (0.5 g), 155 

pmoles (1g), 755 pmoles (5 g), 1550 pmoles (10 g), 2325 pmoles (15 g), and 3100 

pmoles (20 g) per mouse.   

2.3.3. Preparation of Brain Tissue for Histological and Molecular Analysis 

Animals inoculated i.c.v. with TLR4, TLR7, or TLR9 agonists, or vehicle control 

were anesthetized by deep inhalation anesthesia followed by axillary incision and 

cervical dislocation at the specified time points or at the end of the experimental protocol. 

Brains were removed and immediately cut into two halves by mid-sagittal dissection, 

snap frozen in liquid nitrogen, and stored at -80oC for molecular analysis. One half was 
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used for RNA extraction and the other half was used for multiplex analysis of cytokine 

and chemokine production. Brains removed from the mice inoculated for in situ 

hybridization and/or immunohistochemistry were divided into four coronal sections using 

a brain matrix and fixed in 10% neutral buffered formalin for 48 hours prior to processing 

for histological analysis. Tissues were embedded in paraffin, cut in 4-μm sections,  

adhered to coated microscope slides, and stained with hematoxylin and eosin (H&E) 

using an automated histological stainer.  Stained sections were blindly graded for 

inflammatory changes and neural/glial degeneration and necrosis by a board certified 

veterinary pathologist.  

2.3.4. In situ Hybridization Analysis 

Due to the secreted nature of cytokines and chemokines, it can be difficult to 

detect the expression of these proteins or determine their cellular source. In situ 

hybridization detects mRNA expression inside individual cells, thereby allowing for the 

detection of the cellular source of gene expression (Perlman and Argyle, 1992). In brief, 

the slides were dewaxed by incubating in xylene overnight on a rocker, followed by 

rehydration of sections in 100%, 95% and 70% ethanol respectively. The sections were 

fixed in 4% paraformaldehyde for 20 min at room temperature and then incubated with 

200 mM HCl for 10 min at RT to denature the proteins. The sections were then incubated 

with 10 µg/ml proteinase K in Tris-buffered saline with 2 mM calcium chloride for 20 

min. The proteinase K activity was stopped by incubating in cold TBS for 10 min 

followed by dehydration of the sections in 70%, 95% and 100% ethanol respectively. The 

sections were then incubated in chloroform for 20 min at RT, followed by rehydration as 

described above. The sections were then incubated in 2X SSC buffer for 10 min, 
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followed by incubation with hybridization buffer at 56oC for 1-4 h. At the end of the 

incubation, the appropriately diluted digoxigenin (DIG)-labeled RNA anti-sense or sense 

probes were added to the sections, covered with hybridization coverslips and incubated 

overnight at 56oC. The slides were incubated in 2X SSC to remove the cover slips, 

followed by incubation in 50% formamide in 1X SSC for 60 min. Sections were 

incubated in blocking buffer for 30 min at room temperature and then incubated in a 

1:100 dilution of Alkaline-Phosphatase anti-DIG antibody for 60 min at RT. The slides 

were then washed in blocking buffer, 1X TBS, and incubated in detection buffer for 10 

min at RT. The slides were then incubated in Fast Red solution using gasket cover slips 

(Grace Bio-Labs, Hatfield, PA) until color developed in the slides from treated animals. 

No staining was observed in mock controls or with non-specific probes.  

2.3.5. Immunohistochemistry Analysis of in situ Sections  

When the sufficient color was developed by in-situ hybridization, gasket cover 

slips were removed and the slides were washed in 1X PBS. The sections were blocked in 

normal donkey serum blocking solution at 37oC for 60 min, and incubated overnight at 4o 

C with polyclonal rabbit anti-GFAP antibody (Dako) or rabbit anti-Iba1antibody (Wako) 

in normal donkey serum blocking solution. Following two washes of 10 min in PBS, goat 

anti-rabbit IgG antibody labeled with HRP conjugate (Zymed) were applied and 

incubated at RT for at least 30 min. Slides were washed twice in PBS and incubated in 

metal enhanced Diamino benzidine (DAB) (Pierce, Rockford, IL). After sufficient color 

development, slides were washed twice in PBS, counterstained with hematoxylin, and 

covered with a glass cover slip using aqueous mounting medium (Lerner laboratories, 

Pittsburgh, PA). 
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2.3.6. Antigen Retrieval and Immunohistochemistry 

Tissue sections were dewaxed in Xylene twice for 15 min each at RT followed by 

rehydration in 100%, 95%, and 70% Ethanol respectively for 5 min each. Tissue sections 

were washed in PBS twice for 5 min each and antigen retrieval was carried out with 

citrate target retrieval solution in a Decloaker at 120ºC for 20 min, following 

manufacturer’s instructions. When Decloaker cooled to 90ºC, bring tissue sections to 

room temperature gradually by replacing half of the citrate buffer with ultra pure water 

for at least 4 times. Tissue sections were washed in 0.5% Fish Skin Gelatin (FSG)/ PBS 

twice for 10 minutes each on a rocker and then slides were incubated with donkey serum 

blocking solution for 30 minutes at RT (175 µl per slide). Tissue sections were incubated 

with rabbit anti-florescein antibody (Invitrogen) or Rat anti-mouse CD54 (ICAM-1) 

antibody (eBioscience) in normal donkey serum blocking solution for 30 min at RT. 

Following two washes of 10 min in PBS-FSG, AlexaFluor 488-conjugated goat anti-

rabbit or goat anti-rat secondary antibodies (Invitrogen) were applied and incubated for at 

least 30 min. Slides were washed twice in PBS-FSG and stained with DAPI (100 ng/ml) 

solution for 20 min. Slides were washed twice in PBS-FSG and covered with a glass 

cover slip using ProLong Gold anti-fading mounting medium. 

2.3.7. Blood-Brain Barrier Permeability 

Blood-brain barrier permeability changes following TLR7 or TLR9 stimulation in 

the brain were determined by measuring Evans blue diffusion into the brain. Mice were 

inoculated with imiquimod, CpG-ODN or vehicle control, intracerebroventricularly as 

described, but without trypan blue. 10 l of 1% (wt/vol) Evans blue solution was injected 

intra peritoneally, 4 h or 1h before testing BBB permeability. Mice were anesthetized and 
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perfused via intracardiac puncture with 1 ml of neutral buffered formalin. Brains were 

subsequently removed and analyzed for the blue color under a stereo-microscope.      

2.4. IN VITRO EXPERIMENTS 

2.4.1. Isolation and Culturing of Cortical Astrocytes and Microglia  

 Astrocyte and microglia cultures were prepared from the brain cortex of 1-2 day 

old IRW, IRW/TLR7-/-, C57BL/6, C57BL/6/TLR9-/- mice in accordance with the 

regulations of the Louisiana State University Institutional Animal Care and Use 

Committee guidelines or in accordance with the regulations of the Rocky Mountain 

Laboratories Animal Care and Use Committee and the guidelines of the National 

Institutes of Health. Mice were anesthetized, brain tissue removed, and placed in ice cold 

phosphate buffered saline (PBS). Hind brains, mid brains and meninges were dissected 

out. Cerebral cortices were transferred to a 15 ml conical tube containing 2% glucose in 

PBS and made into a single cell suspension. Cells were pelleted by centrifugation at 500g 

for 5 min at 4oC. Cells from two brain cortices were suspended in 2 ml of 70% percoll 

and transferred to the bottom of 30% and 0% percoll gradient. The gradients were 

centrifuged at 500g for 20 min with no brakes at 4oC. Cells between 0% and 30% percoll 

layers were rich in astrocytes and were seeded at 2x105 cells in BD-Primaria T-25 flasks 

(VWR international # 29184-801) containing astrocyte specific media. The microglia cell 

populations collected between 30% and 70% percoll layers were seeded at 5x105 in 

Primaria T-25 flasks containing microglia specific media. When cells reached 

confluency, in 7-10 days, flasks containing astrocyte rich cells (0/30 fraction) were 

orbitally shaken overnight at 250 RPM to remove contaminating microglia and 

oligodendrocytes.  Astrocytes were then treated with 0.25% Trypsin-EDTA (Gibco) and 
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reseeded in Corning 12-well/24-well Cell Bind plates (ISC Bio-express # T-3406-12) 

until 80-90% confluency. Microglia were removed from confluent T-25 flasks using a 

cell scraper and reseeded in 12-well/24-well Cell Bind plates.     

2.4.2. Stimulation of Astrocytes and Microglia Cultures with Imiquimod or CpG-
ODN 

To determine the optimal concentration for activation of astrocytes and microglia, 

imiquimod was used at 5 nM, 50 nM, 500 nM, 5 µM and 50 µM, and CpG-ODN 1826 

was used at 0.5 nM, 5 nM, 50 nM, 80 nM, 500 nM. For all further studies, multiplex 

analysis of cytokines and chemokines (12 hours), and Super Array analysis (6 hours), 

imiquimod and CpG-ODN 1826 were used at 5 µM (1.25 µg/ml) and 80 nM (0.5 µg/ml) 

respectively. All the experiments were conducted in triplicate wells for each time point or 

concentration, and with astrocyte specific or microglia specific media as mock control.  

2.4.3. Flow Cytometry Analysis   

Semi confluent cultures of primary astrocytes and microglia were analyzed for 

purity by intracellular staining for GFAP (glial fibrillary acidic protein), an astrocyte 

marker, and F4/80, a microglia/macrophage marker. These cells were also analyzed for 

expression of TLR7 and TLR9 proteins by intracellular flow cytometry. Briefly, cells 

were trypsinized or gently scraped off the plate, washed in PBS and fixed for 20 min in 

2% paraformaldehyde (Electron Microscopy Sciences). Cells were permeabilized with 

0.1% saponin in PBS (pH 7.0) and were then incubated with polyclonal rabbit anti-

bovine GFAP (Dako), monoclonal anti-mouse F4/80 (eBioscience), polyclonal rabbit 

anti-TLR7 (Zymed) or monoclonal mouse anti-TLR9 (Imgenex) for 30 min.  Cells were 

washed twice with 0.1% saponin in PBS and incubated with Alexa Fluor 488 conjugated 

goat anti-rabbit IgG or FITC-conjugated goat anti-mouse IgG (BD Biosciences) for 30 
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min.  Cells were washed twice with 0.1% saponin in PBS, resuspended in PBS and 

analyzed on a FACSAria flow cytometer (BD Bioscience) using FACSDiva software 

(BD Bioscience). Data analysis was performed using FCS Express V3 software (De 

Novo). Specificity of the TLR7 antibody was verified by immunocytochemical staining 

of TLR7-transfected HEK cells and non-transfected HEK cells. A rabbit anti-green 

flourescent protein (GFP) polyclonal antibody was utilized as an additional negative 

control and demonstrated no increase in staining compared to the no-primary antibody 

control (data not shown).    

2.4.4. Mouse Primary Cortical Neuron Cultures 

For culturing neurons, 14-well Cell Bind plates were coated with 20 g/ml Poly 

L- Ornithine hydro bromide (Sigma-Aldrich # P3655) in sterile distilled water overnight 

at 37oC and 5% CO2, followed by extensive washing with sterile distilled water. Plates 

were then coated with 2.5 g/ml of Laminin (Sigma-Aldrich # L2020) in sterile HBSS 

for 3-4 hours at 37oC and 5% CO2. Following incubation, all the wells were extensively 

washed with sterile HBSS and used immediately.         

Cortical neurons were isolated from mouse embryos at 16-18 days gestation (E16-

E18). Brains from the E16-E18 mice were dissected out, meninges were peeled off and 

cortices were collected in cold neuron dissection media. Neurons were dissociated in 

neuron digestion media for 15 min at 37oC and made into a single cell suspension by 

gentle trituration using flame polished glass Pasteur pipettes. Cells were seeded at 4x105 

cells per well of 24 well plates or 8 chamber slides in neuronal plating media. Following 

initial attachment of the cells to the plates (4h), neuron plating media was replaced with 
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neuronal maintenance media along with TLR7 or TLR9 ligands or stimulated cell culture 

supernatants and incubated at 37oC and 5% CO2.  

At 4 h post culture, apoptosis was induced in some wells by adding 300 µM 

NMDA + 5µM glycine for 15 min in HBSS (Ca, Mg free), rinsed with HBSS at the end 

of incubation and replaced with neuronal maintenance media. Supernatants from TLR7 or 

TLR9 stimulated astrocytes and microglia were added to all the wells at a 1:1 ratio of 

neurobasal media and stimulated supernatants, and incubated for 72 h at 37oC and 5% 

CO2. To determine the effect of direct TLR agonist stimulations on neurons, cells were 

stimulated with either 5 µM imiquimod and/or 80 nM CpG-ODN 1826. Cells were also 

exposed to NMDA as described above for comparison. Neuronal survival or death was 

measured by MTT assay or staining neurons for beta tubulin.  

2.4.5. MTT Assay 

MTT [1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan)] was added into all 

the wells directly into the medium at a final concentration of 0.5 mg/ml and incubated at 

37oC for 3-4 h. All the wells were rinsed twice with PBS and the insoluble purple colored 

formazen produced from MTT by mitochondrial reductases was solubilized in DMSO to 

get a homogenous color. The absorbance was measured at 540 nm on a Spectramax 190 

plate reader with Softmax Pro 5 software, with DMSO as a reagent blank. The percent 

viability of the cells was calculated from the mean absorbance of mock controls (OD of 

the test sample/average OD of mock samples X 100). 

2.4.6. Immunofluorescence Assay 

Neuronal cultures in poly-D-lysine coated 8 chamber slides (BD Biosciences # 

354632) were fixed in 4% paraformaldehyde and permeabilized with 0.1% Triton X-100 
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and 0.1% sodium citrate in 1X PBS for 30 min. Cells were then treated with 0.1 M 

glycine for 30 min and incubated with donkey serum blocking solution in PBS for 30 

min. Cells were incubated with primary antibodies, monoclonal anti-tubulin beta III 

isoform or polyclonal rabbit anti-bovine GFAP (Dako) for 30 min at room temperature. 

Cells were rinsed with PBS twice and incubated with goat anti-mouse Alexa Fluor 488 

(Invitrogen) or goat anti rabbit Alexa Fluor 555 (Invitrogen) for 30 min at room 

temperature in the dark. Finally, cells were washed twice in PBS and slides were 

mounted in Fluorogel II with DAPI (Electron Microscopy Sciences) and kept in the dark 

at 4oC. All images were taken using a Nikon Eclipse 55i fluorescent microscope. GFAP 

detection was minimal in neuronal cultures with less than one GFAP positive cell 

detected per every 2 fields using a 10X objective. 

2.4.7. Meningeal Cultures 

  The meninges dissected out during preparation of astrocyte and microglia cultures 

were collected into DMEM containing 10% inactivated fetal bovine serum and were 

chopped into small pieces using cell scrapers and were plated in Primaria T-25 flasks. At 

confluency, meningeal cells were trypsinized and replated into 12-well Cell Bind plates 

and allowed to grow to 80-90% confluency before stimulating with TLR agonists. 

2.4.8. Cell Entry Assay for CpG-ODN 1826 

Glial cells were grown in 96-well plates to near confluency and were stimulated 

with mock or imiquimod 5M or 50M ± 80 nM FITC labeled CpG-ODN 1826. Cells 

were incubated for 30 min at 37oC and 5% CO2, washed 3 times in PBS and then 

analyzed for FITC uptake. All images were taken using an Olympus IX71 inverted 

fluorescent microscope. Further, cells were lysed in cell lysis buffer (0.5% Triton X-100, 
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0.5% sodium deoxycholate, 150 mM NaCl, 50 mM Tris HCl, pH 7.4 and 8 mM EDTA) 

to release FITC into solution, and the fluorescence intensity was quantitated using a 

microplate reader (Polar Star Omega, BMG Labtech).  

2.4.9. TLR7 Protein Expression in Astrocytes (C8D1A) and Macrophages (RAW 
264.7) by Flow Cytometry Analysis 
 

RAW264.7 (ATCC # TIB-71) and C8D1A (ATCC # CRL-2541) were obtained 

from ATCC and maintained according to ATCC guidelines. Semi-confluent cultures of 

C8D1A and RAW264.7 cells were analyzed for TLR7 protein expression by intracellular 

staining. In short, cells were gently scraped off the plate, washed in PBS and fixed for 20 

min in 2% paraformaldehyde. Cells were permeabilized with 0.1% saponin in PBS (pH 

7.0) and incubated with primary antibodies, either polyclonal rabbit anti-bovine GFAP 

(Dako) or polyclonal rabbit anti-mouse TLR7 (Zymed) for 30 min at room temperature. 

Cells were washed twice with 0.1% saponin in PBS and incubated with AlexaFluor 488 

conjugated goat anti-rabbit IgG (Molecular Probes) for 30 min at room temperature in the 

dark. Cells were washed twice with 0.1% saponin in PBS, resuspended in PBS and 

analyzed on a FACSAria flow cytometer (BD Bioscience) using FACSDiva software 

(BD Bioscience). Data analysis was performed using Flowjo software (Treestar). 

2.4.10. Stimulation of Astrocytes and Macrophages in vitro with TLR7 Agonists, 
Imiquimod and Loxoribine 
 

Semi-confluent cultures of C8D1A astrocyte cells or RAW 264.7 cells were 

seeded into six-well plates and stimulated with imiquimod or loxoribine at 100 µM in 1 

ml.  Astrocyte cells were stimulated with imiquimod, loxoribine or media alone for 6, 12, 

24 or 48 h, in triplicate wells for each time point. The supernatant was collected from 

each well at specified time points, and triplicate aliquots were stored at -80oC until use 
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for multiplex analysis of cytokine and chemokine production. At each time point, 

astrocyte cells were lysed within the well, and total RNA was extracted from the cells 

using a mini RNA isolation kit (Zymo Research) following the manufacturer’s 

instructions. 

2.5. MOLECULAR METHODS  

2.5.1. RNA Extraction and Reverse Transcription (RT) 

Astrocyte, microglia, meningeal, or neuron cultures were lysed and processed for 

RNA extraction using a mini RNA isolation kit (Zymo Research) following 

manufacturer’s instructions. Total RNA from the brain tissue was isolated using Trizol 

reagent (Invitrogen, Carlsbad, CA). Total RNA from cells or brain was treated with 

DNAse (Ambion, Austin, TX) for 30 min at 37oC and purified over RNA cleanup 

columns (Zymo Research) before use. RNA samples were converted to cDNA using 

iScript Reverse Transcription kit (Bio-Rad) following manufacturer’s instructions. (B-RT 

Program: 5min at 25oC, 30 min at 42oC, 5 min at 85oC, cool to 20oC). Prior to analysis by 

real-time PCR, following the reverse transcriptase reaction, samples were diluted five-

fold in RNAse-free water for use in real-time PCR reactions.    

2.5.2. Analysis of mRNA Expression by Real-Time PCR  

The primers to detect App, Bdnf, Cd3ε,Cd14, Ccl2, Cxcl10, F4/80, Gapdh, Gfap, 

Icam-1, Ifnb1,Prnp, S100b, Slc1a2, Slc1a3 and Tnf cDNA were designed using Primer3 

software (Rozen and Skaletsky, 2000) with a Tm of 60oC for all primers (Table 2.2). All  

primer pairs were confirmed to be specific for the gene of interest, and no homology to 

other genes was detected when the primers were blasted against the National Center for 

Biotechnology Information (NCBI) database. A cDNA pool produced from mRNA from



  65

Table. 2.2. Primers Used for Real-Time RT-PCR Analysis. (a NCBI, National Center for Biotechnology Information.)

Common name NCBIa Gene 
Symbol &  ID# 

Forward primer Reverse primer 

Amyloid beta (A4) precursor App: 11820 ACCGTTGCCTAGTTGGTGAG CATGCCATAGTCGTGCAAGT 

Brain derived neurotrophic factor Bdnf: 12064 ATTAGCGAGTGGGTCACAGC ACTGCTTCAGTTGGCCTTTG 

CD3 antigen, epsilon polypeptide Cd3: 12501 GAGCACCCTGCTACTCCTTG TGAGCAGCCTGATTCTTTCA 

Cd14 antigen Cd14:12475 AACCTGGAAGCCAGAGAACA CCAGAAGCAACAGCAACAAG 

Chemokine ligand 2, MCP-1 Ccl2: 20296 TCCCAATGAGTAGGCTGGAG CCTCTCTCTTGAGCTTGGTGA 

Chemokine ligand 10, IP-10 Cxcl10: 15945 CAGTGAGAATGAGGGCCATAGG CTCAACACGTGGGCAGGAT 

F4/80 Emr1: 13733 TTACGATGGAATTCTCCTTGTATATCA CACAGCAGGAAGGTGGCTATG 

Glyceraldehyde-3-phosphate 
dehydrogenase 

Gapdh: 14433 TGCACCACCAACTGCTTAGC TGGATGCAGGGATGATGTTC 

Glial fibrillary acidic protein Gfap: 14580 CGTTTCTCCTTGTCTCGAATGAC TCGCCCGTGTCTCCTTGA 

Intercellular adhesion molecule-1, Icam1: 15894 AGGGCTGGCATTGTTCTCTA CTTCAGAGGCAGGAAACAGG 

Interferon beta Ifnb1: 15977 AGCACTGGGTGGAATGAGAC TCCCACGTCAATCTTTCCTC 

Prion protein Prnp: 19122 GGACCGCTACTACCGTGAAA TCATCTTCACATCGGTCTCG 

S100 protein, beta polypeptide, S100b: 20203 GGTGACAAGCACAAGCTGAA ACGAAGGCCATGAACTCCT 

Solute carrier family 1 member 2, 
GLT1, Eaat2 

Slc1a2: 20511 TCTGAGGAGGCCAATACCAC TTCATCCCGTCCTTGAACTC 

Solute carrier family 1 member 3, 
GLAST, Eaat1 

Slc1a3: 20512 GCCTATCCAGTCCAACGAAA CGAAGCACATGGAGAAGACA 

Tumor necrosis factor Tnf: 21926 CCACCACGCTCTTCTGTCTAC GAGGGTCTGGGCCATAGAA 
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a macrophage cell line, an astroglia cell line, brain and spleen tissue was used to analyze 

the specificity of primers. SYBR Green Supermix with ROX was used for measurement 

of real-time PCR amplification (2min at 50oC, 3min at 95oC, 15sec at 95oC, 40 cycles of 

(1min at 60oC and 15sec at 95oC), 15sec at 60oC, 15 sec at 95oC). All samples were run 

in triplicate on a 384-well plate using a 7900 Applied Biosystems PRISM machine with 

an automatic set baseline and a manual set CT of 0.19, which intersects the mid-log phase 

of curves for all of the PCR pairs. The dissociation curves were used to confirm 

amplification of a single product for each primer pair per sample. A known positive 

control sample was run for the corresponding gene on all assays. RNA that did not 

undergo reverse transcription (DNA contamination control) and water were used as 

negative controls. Data for each sample was initially calculated as the percent difference 

in CT value with the house keeping gene Gapdh (ΔCT = CT Gapdh - CT gene of interest). 

The mean percent Gapdh values of mock samples for each time point were calculated and 

used to generate fold changes relative to mock expression for each group at each time 

point.    

2.5.3. Multiplex Analysis of Cytokine and Chemokine Proteins 

Supernatants from stimulated and unstimulated astrocyte, microglia, and 

meningeal cultures were collected at 12 hps and were stored in triplicate aliquots at -80oC 

until use. Just before use, supernatants were thawed and centrifuged at 4500g for 15 min 

at 4oC to remove any cellular debris. Culture supernatants were analyzed for cytokine and 

chemokine protein production using Linco’s 22 plex kit (Millipore) or BioSource 20-plex 

assay (Invitrogen) on a Luminex 100 instrument (Bio-Rad) following manufacturer’s 

instructions. All the samples were run in duplicate. Samples were calculated as pg/ml of 
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supernatant using a standard curve generated from in-plate standards. For the majority of 

the positive samples, values were within the linear range of the standard curve.      

To generate tissue homogenates for analysis by multiplex bead array, brain 

samples were weighed and then homogenized in 200 μl Bio-plex cell lysis solution 

containing Complete Mini Protease inhibitors (Roche) and 2 mM phenylmethylsulfonyl 

fluoride. Samples were homogenized using Kontes disposable pellet pestles (Fisher 

Scientific, Hampton, NH) and volumes were adjusted to 300 mg/ml of tissue with lysis 

buffer. Cellular debris was removed by centrifugation at 4,500g for 15 min at 4oC. 

Samples were analyzed for cytokine and chemokine protein expression using a 

BioSource 20-plex assay (Invitrogen) on a Luminex 100 instrument (Bio-Rad) following 

manufacturer’s instructions. Samples were calculated as pg/ml using a standard curve 

from in-plate standards and subsequently converted to fg/mg of brain tissue.   For the 

majority of the positive samples (e.g. cytokine and chemokines at 12 hours post 

imiquimod stimulation), the pg/ml concentration value was in the linear range of the 

standard curve.   

2.5.4. Mouse Toll-Like Receptor Signaling Pathway PCR Array 

 Astrocytes and microglia were treated with either 5 µM imiquimod or 80 nM of 

CpG-ODN 1826 or both. At 6 hours post stimulation, RNA was isolated and treated with 

DNAse I as described earlier (2.5.1). First strand cDNA was synthesized using 100 ng of 

cleaned up RNA and analyzed for a mouse-TLR pathway-specific gene expression 

profile as per the manufacturer’s instructions (SABiosciences) on a 7900 Applied 

Biosystems PRISM instrument. A total of 84 genes related to mouse TLR-mediated 

signal transduction were analyzed in a 384-well format. The CT (cycle threshold) values 
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from both control and treatment groups were obtained from real-time 384-well PCR 

Array results and analyzed using RT2 Profiler PCR Array data analysis template (SA 

Biosciences). The samples were analyzed only if the test passed all the quality controls 

including RT efficiency and lack of DNA contamination. Data were calculated as fold 

difference for the treatment groups compared to mock groups.  
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CHAPTER 3 

ANALYSIS OF THE NEUROINFLAMMATORY RESPONSE TO TLR7 
STIMULATION IN THE BRAIN: COMPARISON OF MULTIPLE TLR7 AND/OR TLR8 

AGONISTS* 
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3.1. INTRODUCTION 

Neuroinflammation, including astrogliosis and production of proinflammatory cytokines 

and chemokines, is a common finding following viral, bacterial and parasitic infections of the 

CNS in both children and adults (Asensio and Campbell, 1997; Dickson et al., 1993b; Griffin, 

2003; Hunt et al., 2006; Kelder et al., 1998; McCoig et al., 2004; Nau and Bruck, 2002; 

Szklarczyk et al., 2007; Wilson and Hunter, 2004).  Neuroinflammatory responses are also 

observed in autism, Alzheimer’s disease and other neurological diseases of unknown etiology 

(Ahlsen et al., 1993; Cohly and Panja, 2005; Konsman et al., 2007; Sun et al., 2003; Vargas et 

al., 2005). The neuroinflammatory response may be a common mechanism of pathogenesis 

leading to neuronal damage and long-term neurological disorders (Dickson et al., 1993a; Hornig 

and Lipkin, 2001; Hornig et al., 2002; Minagar et al., 2002). 

The initiation of inflammation is often associated with the recognition of pathogen-

associated molecular patterns (PAMPs), the repeated structural motifs that are unique to 

microorganisms (Akira et al., 2001; Janeway, Jr., 1992; Medzhitov and Janeway, Jr., 1997). 

These PAMPs are recognized by transmembrane-bound TLRs as well as cytoplasmic or 

mitochondrial associated pattern recognition receptors (PRRs) (Akira et al., 2001; Janeway, Jr., 

1992; Medzhitov and Janeway, Jr., 1997). There are at least 11 identified TLRs in humans and 

12 TLRs in mice (Kaisho and Akira, 2006). Multiple TLRs are upregulated in the CNS in 

response to pathogen infection (Aravalli et al., 2007; McKimmie and Fazakerley, 2005; 

McKimmie et al., 2005; Mishra et al., 2006). Of these receptors, several have been shown to 

contribute to neuroinflammatory responses and pathogenesis including TLR2, TLR3, TLR4 and 

TLR9 (Aravalli et al., 2005; Dalpke et al., 2002; Iliev et al., 2004; Kurt-Jones et al., 2004; 

Pedras-Vasconcelos et al., 2006; Wang et al., 2004; Zhang et al., 2007). Intracerebroventricular 
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(i.c.v.) administration of agonists for either TLR4 or TLR9 induced strong neuroinflammatory 

responses and damage in the CNS (Dalpke et al., 2002; Xia et al., 2006). 

Two other TLRs that may play an important role in initiating innate immune responses in 

the CNS are TLR7 and TLR8.  These receptors were originally identified as eliciting antiviral 

effects when stimulated by the family of guanosine based imidazoquinoline compounds (Hemmi 

et al., 2002; Lee et al., 2003) which includes imiquimod, loxoribine and R-848. More recent 

studies identified the natural PAMP of TLR7 and TLR8 to be guanidine-uridine rich single 

stranded RNA from viruses, suggesting that these receptors may be important modulators of the 

immune response to certain neurotropic viruses such as flaviviruses, paramyxoviruses, 

rhabdoviruses and retroviruses. However, there remains a lack of basic understanding of the 

neuroinflammatory properties of TLR7 and TLR8.  

Functional differences between mouse TLR7 and TLR8 have not been described; 

however, TLR7 deficient mice do not respond to imiquimod, R-848 or viral ssRNA.  

Furthermore, VSV and influenza A- induced IFNα responses are suppressed in TLR7 -/- mice 

(Diebold et al., 2004; Lund et al., 2004). This suggested that murine TLR8 may be biologically 

inactive in mice (Heil et al., 2004; Hemmi et al., 2002). However, recent studies have 

demonstrated that murine TLR8, but not TLR7, is expressed on neurons in utero and in the first 

two weeks post-birth in the neonatal brain (Ma et al., 2006).  Stimulation of neurons with 

TLR7/8 agonists induced caspase 3 activation and inhibited dendrite growth suggesting that 

TLR8 may be functional in neonates and serve an important role in brain development (Ma et al., 

2006).     

   In the present study, we analyzed the downstream responses to TLR7 and/or TLR8 

stimulation in the developing brain.  For this, we administered different TLR7/8 agonists by i.c.v 

inoculation in newborn mice and analyzed the neuroinflammatory responses within the CNS.  
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These results revealed that TLR7/8 agonists differed in their ability to induce 

neuroinflammation. The agonists that did induce neuroinflammatory responses induced 

pronounced activation of astrocytes and the production of chemokines by several cell types in the 

CNS.  

3.2. RESULTS 

3.2.1. ICV Inoculation of TLR7 Agonist Induces Pronounced Neuroinflammatory Response 
in the CNS  
 

The first week post-birth of the neonatal mouse brain corresponds to the late second and 

early third trimester development of a human brain in terms of limbic and cortex development 

(Clancy et al., 2001). The first few days post-birth in the mouse are ideal for i.c.v. inoculations 

due to ease of inoculation and the ability to readily confirm inoculation in lateral ventricles. We 

examined the ability of TLR7 stimulation at this time point to induce neuroinflammatory 

responses using the TLR7 agonist, imiquimod.  We compared these responses to stimulation 

with the TLR4 agonist, LPS which is known to induce severe neuroinflammation and damage to 

the neonatal brain (Cunningham et al., 2005). In addition, the comparison between TLR7 and 

TLR4 allows us to analyze the predicted differences in response between an intracellular PRR 

that recognizes viral products and extracellular PRR that primarily recognizes bacterial surface 

components. 

Administration of the TLR7 agonist, imiquimod, induced a pronounced 

neuroinflammatory response in the brain at 12 hours (h) post inoculation with the upregulation of 

mRNA for Ifnb1 (Interferon beta), Tnf (Tumor necrosis factor), Ccl2 (Monocyte chemotactic 

protein-1/MCP-1) and , Cxcl10 ( Interferon inducible protein-10/IP-10) (Fig. 3.1), cytokines and 

chemokines commonly associated with virus-induced neuroinflammation (Kerr et al., 2002; 

McManus et al., 2000; Peterson et al., 2001). In most cases, imiquimod-induced mRNA 
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expression returned to basal levels by 48 h post stimulation, suggesting a short term response. In 

contrast, LPS stimulation generally induced a longer term response with Ccl2 and Tnf mRNA 

expression still significantly upregulated at 96 h post inoculation (Fig. 3.1).  The increase in 

cytokine and chemokine expression did not correlate with any obvious clinical symptoms in the 

mice following i.c.v. inoculation with either LPS or imiquimod.   
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Fig. 3.1. Induction of Neuroinflammatory Responses Following Imiquimod or LPS 
Inoculation in the Brain. Mice at 48 h of age were inoculated by intracerebroventricular 
injection with 2 µg of LPS, 50 µg of imiquimod, or 10 µl of vehicle control (0.2% trypan blue in 
PBS). Brain tissues were removed at 12, 48, 96 or 312 h post inoculation and snap frozen for 
RNA or protein analysis as described.  RNA samples were processed for real-time quantitavie 
RT-PCR analysis and values calculated relative to expression of Gapdh controls. Data are 
presented as the fold induction of each gene of interest relative to mock-inoculated controls. 
Mock expression levels were calculated as the mean of 6 animals per time point.  Data represent 
the mean +/- standard deviation of 3-7 mice per group per time point and represent the combined 
data from 2 independent experiments. Statistical analysis was completed by two-way ANOVA 
using Bonferonni post-test. **P<0.01. ***P<0.001. 
 
3.2.2. Optimal Dose for TLR7-Mediated Inflammation 

The ability of TLR7 to stimulate innate immune responses in the neonatal brain may be 

dose dependent. Imiquimod was administered at 20, 100, 200 and 500 nmoles per mouse. No 

dose above 500 nmoles was administered due to insolubility of the agonist. 100 to 200 nmoles of 

imiquimod were optimal for eliciting neuroinflammatory responses in the CNS at 12 h post 

inoculation as demonstrated by upregulation of mRNA for multiple cytokines such as Tnf, Ccl2 

and Cxcl10 (Fig. 3.2). Imiquimod at the 20 nmoles dose did not stimulate any 
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neuroinflammatory response, whereas 500 nmoles of imiquimod induced higher responses for 

some cytokines and chemokines, but not others (Fig. 3.2).  
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Fig. 3.2. Cytokine Response to Imiquimod Is Dose Dependent. Mice were treated as described 
in Fig. 3.1, but using varying concentrations of imiquimod in 10 µl of PBS/0.2% trypan blue. At 
12 hpi brain tissue was removed and processed for RNA. Samples were analyzed as described in 
Fig. 3.1. Data represent the mean +/- standard deviation of 3 to 7 mice per group and represent 
the combined data from 2 independent experiments.  
 
3.2.3. Analysis of Cytokines and Chemokines Induced by Imiquimod 

Multiplex bead assays were performed to determine which cytokines and chemokines were 

upregulated by stimulation of TLR7.  Proinflammatory cytokines TNF, IL1α (Interleukin-1α), 

IL1β, IL6, IL12 and chemokines CCL2, CCL3 (Macrophage inflammatory protein-1α/MIP-1α), 

CXCL1 (Neutrophil activating protein-3/NAP-3/KC), CXCL9 (Monokine induced by gamma 

interferon/MIG), and CXCL10 were upregulated in the CNS following stimulation with 

imiquimod at 12 hpi (Fig. 3.3, A and B).  By 48hpi, only IL12, CCL2, CCL3 and CXCL9 

remained elevated compared to mock controls (Fig. 3.3, A and B).  Imiquimod administration 

did not induce the upregulation of GM-CSF (granulocyte macrophage – colony stimulation 
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factor), IFN, IL5, IL10, IL13 or IL17 at either time point (data not shown). LPS administration 

induced similar cytokines and chemokines to imiquimod, but with the additional upregulation of 

IL2 and IL13 (data not shown). The fold increase of cytokine and chemokine production was 

substantially higher in the LPS inoculated mice for almost all cytokines and chemokines, the 

exception being CXCL1 (data not shown).  
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Fig. 3.3. Increased Protein Expression of (A) Proinflammatory Cytokines and (B) 
Chemokines in the CNS Following Stimulation with Imiquimod. Mice were inoculated as 
described in Fig. 1 and tissues were removed at 12 or 48 hpi. One half of sagitally divided brain 
was homogenized in lysis buffer containing protease inhibitors and analyzed for protein 
expression using a Biosource 20-plex bead array on a Bioplex Luminex system. Samples were 
calculated as pg/ml using a standard curve from in-plate standards and subsequently converted to 
fg/mg brain tissue. Data represent the mean SD of three mice per group. Statistical analysis was 
completed by one way ANOVA with Newman-Keuls post-test. *P<0.05, **P<0.01. ***P<0.001.  
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3.2.4. Cellular Responses in the CNS Following TLR7 Agonist Administration   

As 12 hpi was the peak time for cytokine mRNA and protein production, we examined 

tissue samples from this time point for histologic changes. All mice including mock controls had 

minimal to mild meningitis, characterized by infiltration of the meninges by variable numbers of 

neutrophils and lymphocytes. The cause of the minimal to mild meningitis in all mice is 

uncertain, but may be in response to the i.c.v. needle inoculations or the volume of liquid (10 µl) 

injected.  The mice inoculated with imiquimod developed, in addition to suppurative meningitis, 

moderate to severe suppurative ventriculitis, characterized by mild hemorrhage and infiltration of 

the lateral ventricles by neutrophils and lymphocytes (Fig. 3.4A). The suppurative ventriculitis 

was the only consistent pathologic change associated with imiquimod inoculation and was not 

observed in mock or LPS-treated animals (Fig. 3.4 B, data not shown).    

To examine cellular changes at the molecular level, we analyzed the mRNA expression 

of Glial Fibrillary Acidic Protein (Gfap), which is upregulated by astrocyte activation.  

Additionally, we analyzed mRNA expression of F4/80, a macrophage and microglia marker;  

Cd3 epsilon polypeptide (Cd3), a marker for T cell infiltration; and Intercellular adhesion 

molecule-1 (Icam-1), which is upregulated on peripheral endothelial cells following stimulation 

with TLR7 agonists (Gunzer et al., 2005). Administration of imiquimod induced Gfap and Icam1 

mRNA expression at 12 hpi, but did not significantly alter the expression of either F4/80 or Cd3 

mRNA at any of the time points analyzed (Fig. 3.5).  In contrast, LPS administration induced 

prolonged upregulation of F4/80 mRNA and increased expression of Cd3 mRNA at 13 days 

post inoculation (dpi) (Fig. 3.5). Thus, stimulation of either TLR7 or TLR4 resulted in astrocyte 

activation and upregulation of adhesion molecules, but only TLR4 stimulation induced mRNA 

upregulation of the microglia/macrophage marker F4/80.   
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Fig.3.4. Comparison Between Imiquimod and LPS-Treated Mice.  (A-B) H&E stained mid-
coronal sections of brain tissue from (A) imiquimod and (B) LPS-treated mice at 12 hpi.  Both 
images are of lateral ventricles and are representative of the three mice in each group. The 
imiquimod treated mice have increased numbers of neutrophils, lymphocytes, and erythrocytes 
within the lateral ventricles (suppurative ventriculitis) (A) as compared to the LPS-treated mice, 
which have no appreciable inflammatory infiltrates (B). (C-F) Analysis of brain tissue sections 
from (C,E) imiquimod and (D,F) LPS-treated mice at 12 hpi for Ccl2-mRNA expressing cells 
(bright red stain). Ccl2 mRNA was detected using digoxigenin (DIG)-labeled RNA anti-sense 
probes and stained with Fast Red substrate. Cells were then stained with anti-goat GFAP 
antibody, followed by secondary antibodies labeled with Alexa Fluor 488 and metal enhanced 
DAB (brown stain).  (C-D)  Location of Ccl2-positive cells varies dramatically between (C) 
imiquimod and (D) LPS-treated mice.  Images are of same region and from same mice as in A 
and B.  (E,F)  Ccl2-positive cells were also detected in the choroid plexus of (E) imiquimod, but 
not (F) LPS-treated mice.  All images were taken with a digital camera attached to an Olympus 
scope.  Scale bar is shown for all images (100 m for A,C-F, 200 m for B). Data are 
representative of two separate experiments.  Non-specific RNA probes and no-primary antibody 
controls were used as controls for C-F. 
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Fig. 3.5.  Kinetics of Cellular Responses (A-D) in the CNS Following Imiquimod or LPS 
Inoculation in the Neonatal Brain. Brain tissues at 12, 48, 96 or 312 h post inoculation were 
processed for real-time RT-PCR analysis using primers specific for (A) Gfap (B) F4/80 (C) Cd3e 
and (D) Icam-1 mRNA. Values were calculated were relative to the expression of Gapdh 
controls. Data are analyzed as described in Fig. 3.1. Data represent the mean +/- standard 
deviation of 3-7 mice per group per time point and represent the combined data from 2 
independent experiments. Statistical analysis was completed by two-way ANOVA using 
Bonferonni post-test., **P<0.01. ***P<0.001.   
 

To better understand which cells in the CNS were responding to agonist administration, 

we analyzed tissue samples from mice at 12 hpi by in situ hybridization.  We analyzed cells for 

Ccl2 mRNA expression as this chemokine is often associated with viral infection in the CNS 

(McManus et al., 2000; Peterson et al., 2004).  Ccl2-positive cells in imiquimod treated mice 

were located at the edges of the ventricles and spread out into the tissue (Fig. 3.4C).  Dual 

staining with GFAP demonstrated that the Ccl2 positive cells lining the ventricles (Fig. 3.6A) as 

well as in the tissue (Fig. 3.6B) were primarily astrocytes.  Ccl2-positive cells were also detected 

in the choroid plexus (Fig. 3.4E), with Ccl2-expressing ependymal cells and endothelia (Fig. 

3.6E, data not shown) observed.  Brain capillary endothelia located in the thalamus, were also 

positive for Ccl2 (Fig. 3.6F).  Thus, multiple cell types respond to imiquimod stimulation 

including astrocytes, ependymal and endothelial cells. In contrast, Ccl2-positive cells in LPS-

treated mice appeared to be primarily infiltrating cells within the ventricles (Fig. 3.4, D and F, 

3.6C).  Astrocytes were not positive for Ccl2 mRNA in LPS-treated mice (Fig. 3.6D).   Thus,  
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Fig. 3.6. In situ Hybridization-Immunohistochemistry Analysis of Mid-Coronal Sections of 
(A, B, E, F) Imiquimod, and (C,D) LPS Inoculated Neonatal Brain. Tissue sections were 
stained as described for Fig. 3.4C-F.  (A,B) GFAP-positive astrocytes (brown stain) express 
Ccl2-mRNA (red stain) in imiquimod treated mice.  Images are from same region shown in Fig. 
3.4A and C.  (C,D) Infiltrating cells, not GFAP-positive astrocytes, express Ccl2 mRNA in LPS-
treated mice.  Images are from same region shown in Fig. 3.4B and D.  (E) Ccl2-positive cells 
from choroid plexus include ependymal and epithelial cells. (F) Capillary endothelial cells in 
thalamus are also positive for Ccl2 mRNA expression in imiquimod treated mice. All images 
were taken with a digital camera attached to an Olympus scope.  Scale bars are shown for all 
images 50 m).  Images are representative of cells in the surrounding area. Data are 
representative of two replicate experiments. Non-specific RNA probes and no-primary antibody 
controls were used as controls for all experiments.  
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despite the common upregulation of Ccl2 mRNA and protein by imiquimod and LPS, the 

cellular source of Ccl2 at 12 hours post infection was different between these two agonists.      

3.2.5. Comparison Between TLR7/8 Agonists  

Recent studies have indicated that murine TLR8 is functional and that murine TLR8 can 

be stimulated on neurons (Gorden et al., 2006a; Gorden et al., 2006b).  Differences in the 

chemical structure were shown to influence binding of agonists to human TLR7 and human 

TLR8 (Table 3.1) (Hemmi et al., 2002; Lee et al., 2003). To investigate possible differences 

between these agonists in inducing neuroinflammation, we compared three TLR7 agonists  
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Fig. 3.7. In vivo Response to Stimulation by Various TLR7/8 Agonists in the Developing 
Brain. 100 nmoles of the appropriate agonist was inoculated i.c.v. into 2 day old mice as 
described in Fig. 3.1.  At 12 hpi, brain tissue was removed and snap frozen in liquid nitrogen.  
Samples were analyzed as described in Fig. 3.1. Fold increase in (A) Ifnb1 (B) Tnf (C) Ccl2 and 
(D) Cxcl10 mRNA as compared to mock-infected controls.  Each symbol represents an 
individual animal for the group.  Data represent the mean +/- standard deviation for 3 to 6 mice 
per group and are representative of two replicate experiments. Statistical analysis was completed 
by one way ANOVA with Newman-Keuls post-test. *P<0.05, **P<0.01. ***P<0.001.    
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(imiquimod, loxoribine and CL087), a TLR8 agonist (3M002) and a TLR7/8 agonist (CL097) 

(Table 3.1). Interestingly, the ability of these agonists to induce cytokine/chemokine responses 

was not divided between TLR7 or TLR8 stimulation capabilities.  Two TLR7 agonists 

(imiquimod and CL087) and the TLR8 agonist (3M002) induced similar levels of 

proinflammatory cytokines and chemokines (Fig. 3.7). The TLR7/8 agonist, CL097, induced 

Ifnb1 and Cxcl10 mRNA expression, but did not induce the expression of Tnf or Ccl2 mRNA.  

Loxoribine, a TLR7 agonist similar to imiquimod induced only minimal expression of 

proinflammatory cytokines and chemokines compared to the other agonists.  Thus, TLR7/TLR8 

agonists differed in their ability to induce proinflammatory responses in the CNS in mice.     

Table. 3.1. Properties of TLR7 and TLR8 Agonists Used.                    

 

 

 

 

 

 

 

 

 

 

 

3.2.6. TLR7 Contributes to Both Imiquimod and 3M002-Induced Response 

3M002 stimulated human TLR8 or mouse TLR8 transfected-HEK cells, but not human 

TLR7 transfected-HEK cells (Gorden et al., 2005). To investigate whether 3M002-induced 

Stimulation of 
Ligand Description 

hTLR7 hTLR8
  Structure 

 
Imiquimod 
(R837) 

imidazoquinoline     +     - 

 
Loxoribine 
(7-Allyl-8-
oxoguanosine) 

guanosine analog     +     - 
 

CL087 adenine analog     +     - 

 

3M002 (CL075) thiazoloquinoline     -     + 

 

CL097 imidazoquinoline     +     + 
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neuroinflammation was mediated by TLR7 or TLR8, we utilized TLR7 deficient mice.  As a 

control, we also analyzed imiquimod-induced neuroinflammatory responses in TLR7 sufficient 

and deficient mice.  Both imiquimod and 3M002 induced significant upregulation of Ifnb1, Tnf, 

Ccl2 (MCP1) and Cxcl10 (IP-10) mRNA levels in the brain of TLR7 sufficient (+ or +/-) mice at 

12 hpi (Fig. 3.8). In contrast, imiquimod did not upregulate any of the cytokines or chemokines 

in TLR7 deficient (-/- or –) mice.  This confirms that imiquimod upregulated the 

proinflammatory cytokines and chemokines in the brain through the TLR7 pathway, not by 

TLR8.  3M002-induced cytokine and chemokine expression was greatly reduced in TLR7 

deficient compared to TLR7 sufficient mice (Fig. 3.8B).  However, 3M002 did induce a low 

level of Ccl2 and Ifnb1 mRNA expression indicating that 3M002 may also be stimulating 

through TLR8, albeit at a much reduced level than TLR7 (Fig. 3.8B). 
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Fig. 3.8. Influence of TLR7 Deficiency on Cytokine and Chemokine mRNA Expression 
Following (A,B) Imiquimod or (C,D) 3M002 Inoculation. TLR7 wild type/homozygous 
positive (+/+, +) or heterozygous positive (+/-) or TLR7 deficient mice were inoculated as 
described Fig. 3.1.  Brain tissues were removed at 12 h post inoculation, processed and analyzed 
as described in Fig. 3.1.  Data represent the mean +/- standard deviation for 3 to 4 mice per group 
and are representative of two replicate experiments. Statistical analysis was completed by one 
way ANOVA with Newman-Keuls post-test. *P<0.05, **P<0.01. ***P<0.001. 
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3.2.7. Astrocyte Response Differs Between Imiquimod and Loxoribine.  

The difference between the ability of imiquimod and loxoribine to induce cytokine and 

chemokine responses in vivo (Fig. 3.7) was surprising since both agonists stimulate TLR7 in 

dendritic cells and macrophages (Heil et al., 2003; Hemmi et al., 2002; Lee et al., 2003). 

Therefore, we compared the ability of these agonists to stimulate cells in vitro. As astrocytes 

were one of the primary cell populations to respond to imiquimod stimulation, we examined the 

ability of imiquimod and loxoribine to stimulate the astrocyte cell line, C8D1A.  As a positive 

control, we used the macrophage cell line, RAW 264.7.   
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Fig. 3.9. Expression of TLR7 on (A) Astrocytes (C8D1A), and (B) Macrophage Cells 
(RAW) by Intracellular Flow Cytometry Analysis. Data was collected on a FACSAria and 
analyzed with FlowJo software. Tnf mRNA expression in astrocyte cultures (C) and macrophage 
cultures (RAW) (D) following stimulation with the TLR7 agonists, imiquimod, and loxoribine.  
Semi-confluent cultures of astrocytes or macrophages were stimulated with 100 µMoles/ml of 
imiquimod or loxoribine or mock stimulated. Cells were lysed at 48hrs post stimulation and the 
RNA was isolated. Real-time quantitative RT-PCR analysis was performed using primers 
specific for Tnf, and Gapdh mRNA, and analyzed as described in Fig. 3.1. Data represent the 
mean +/- standard deviation for 3 samples per group and represent one of three replicate 
experiments.  Statistical analysis was completed by one way ANOVA with Newman-Keuls post-
test. ***P<0.001.  
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Both cell types express TLR7 as detected by intracellular flow cytometry staining (Fig. 

3.9, A and B). Imiquimod, but not loxoribine, stimulation of C8D1A cells induced Tnf mRNA 

(Fig. 3.9C). As expected, both loxoribine and imiquimod induced upregulation of Tnf mRNA 

expression in a macrophage cell line (Fig. 3.9D). Thus, the difference between the responses to 

imiquimod and loxoribine in vivo may be due to their abilities to activate certain cell types of the 

CNS, such as astrocytes.    

3.3. DISCUSSION 

Although TLR7 is a known mediator of immune responses to ssRNA viruses, very little 

is known about the role of this receptor in neuroinflammation. In the present study, we 

demonstrated that a single inoculum of a TLR7 agonist was sufficient to induce a pronounced 

neuroinflammatory response including the production of multiple proinflammatory cytokines 

and chemokines, as well as the activation of astrocytes. The duration of the response was limited 

as both cytokine and chemokine induction and astrocyte activation waned by 48 h post 

stimulation. Thus TLR7 stimulation induced a short, but pronounced, neuroinflammatory 

response in the CNS.  This contrasts with other TLR agonists such as LPS or CpG DNA which 

can induce neuronal apoptosis and/or animal death with a single i.c.v. administration (Macagno 

et al., 2006; Pedras-Vasconcelos et al., 2006).  

The neuroinflammatory responses induced by imiquimod stimulation in the brain were of 

short duration compared to LPS stimulation (Fig. 3.1). One possible reason for this is the 

anatomical location of these toll-like receptors on the cells. TLR4 is located on the cell surface 

whereas TLR7 is present within the cell on endosomal membranes. The polysaccharide side 

chains of LPS located on the bacterial surfaces can stimulate TLR4 located on the cell 

membranes directly. In order to stimulate TLR7 during viral infections, ssRNA must directly 

interact with the endosomal membranes either by direct uncoating in the endosomal membranes 
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or by autophagy from the cytoplasm (Lee et al., 2007). This would limit the activation of cells to 

either infected cells or phagocytic cells surrounding the site of infection. 

Another possible reason for the differences in neuroinflammatory responses induced by 

TLR7 and TLR4 agonists is that the structural complexity of the TLR7 agonists is quite different 

from that of the TLR4 agonists. The TLR4 agonist LPS is a large complex molecule, consisting 

of lipids and polysaccharides. The TLR7 agonists used in the present study are small synthetic 

compounds which may be degraded rapidly. This may also be pertinent to the responses to 

bacterial versus viral infections, with bacterial LPS remaining stable and viral ssRNA being 

degraded by RNAses. Thus, a robust viral infection with generation of substantial RNA particles 

may be needed to elicit an equivalent viral mediated neuroinflammatory response.   This is 

supported by observations of the inflammatory response to retrovirus infection in the CNS where 

peak chemokine mRNA expression correlated with peak viral RNA expression  (Peterson et al., 

2004; Peterson et al., 2006; Peterson et al., 2001).  Interestingly, the chemokine mRNA response 

started to decline at the approximate time when virus levels plateaued in the brain (Peterson et 

al., 2004; Peterson et al., 2006; Peterson et al., 2001).   

One of the primary differences in the response between imiquimod and LPS stimulation 

was the source of Ccl2 mRNA (Fig 3.4, 3.6).  In imiquimod-treated animals, the predominant 

cell type producing Ccl2 mRNA was astrocytes, although not astrocytes expressed Ccl2 mRNA. 

CCL2 expression by astrocytes has been observed with virus infection, multiple sclerosis and 

Alzheimer’s disease (Johnstone et al., 1999; McManus et al., 1998; Peterson et al., 2004).  In 

contrast, astrocytes from LPS-stimulated animals were not positive for Ccl2 mRNA (Fig. 3.4 and 

3.6), although it is possible that these cells do express Ccl2 mRNA at later time points following 

infection.  However, the majority of the Ccl2-producing cells in the LPS-inoculated mice were 
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infiltrating cells, suggesting that most of the inflammatory response was also from infiltrating 

cells rather than the resident glial cells. 

Dose curve analysis of imiquimod administration indicated that 100-200 nmoles induced 

neuroinflammation, while 5-fold higher or lower concentrations did not.  Possibly high 

concentrations of agonist overwhelm cells resulting in the limitation of the production of 

proinflammatory cytokines and chemokines. Alternatively, at higher concentrations individual 

agonists may aggregate resulting in a diminished uptake by cells in the CNS.   

In the current study, not all of the TLR7/8 agonists used induced neuroinflammatory 

responses. The ability to induce neuroinflammation in the brain was not discernable by 

preference for TLR7 or TLR8. For example, the TLR7 agonist, imiquimod, induced astrocyte 

responses both in vivo and in vitro, whereas the TLR7 agonist, loxoribine, did not. In contrast, 

both imiquimod and loxoribine induced responses in macrophages, as have been reported for 

plasmacytoid dendritic cells and B cells (Hemmi et al., 2002; Lee et al., 2003). These variations 

in neuroinflammatory responses among TLR7/8 agonists used in the present study could be due 

to differential uptake of individual agonists by certain cell types. Possibly, loxoribine is not 

endocytosed by astrocytes as readily as imiquimod.  Thus, a comparison between complementary 

agonists may be necessary to differentiate the functional responses to TLR7 or TLR8 in different 

cell types.  

TLR7 and TLR8 are highly homologous and their distinct roles in innate immune 

responses are still being analyzed (Heil et al., 2004; Lee et al., 2003).  In our current study, the 

human TLR8 agonist, 3M002, induced similar neuroinflammatory responses to the TLR7 

agonists. However, this response appeared to be mediated primarily by TLR7, not TLR8.  This 

agrees with in vitro studies in which 3M002 stimulation of human TLR8 but not mouse TLR8 
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induced NF-B activation (Gorden et al., 2005). Thus, in the mouse, 3M002 appears to stimulate 

primarily through TLR7, rather than TLR8.   

TLR agonists are currently being studied as immune activators or immune response 

modifiers (IRMs) to enhance vaccines, improve the immune response to different cancers and 

treat viral infections (Murad et al., 2007; Wang et al., 2005; Wille-Reece et al., 2005; Zaks et al., 

2006). In the present study, certain TLR7/8 agonists induced substantial pro-inflammatory 

responses in the CNS in terms of cellular activation and production of proinflammatory 

cytokines and chemokines, without inducing overt damage. This suggests that the TLR7/8 

agonists may be used as immune response modifiers for diseases and conditions affecting the 

central nervous system. These studies also demonstrate that TLR7/8 agonists can differ widely in 

their ability to induce neuroinflammation, as some of the agonists induced only minimal 

responses in the brain.  Thus, agonists such as loxoribine may be effective in enhancing 

peripheral immune responses yet limit activation of glial cells and production of 

proinflammatory cytokines in the CNS. The differences between these IRMs in inducing 

inflammatory responses may be beneficial when targeting a specific organ or cell type. 
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CHAPTER 4 

COMPARISON OF THE NEUROINFLAMMATORY RESPONSES FOLLOWING TLR7 
AND TLR9 ACTIVATION IN THE CNS 
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4.1. INTRODUCTION 

 Neuroinflammation is a common response to infection or injury of the central nervous 

system (CNS) and includes the induction of proinflammatory cytokines, the activation of glial 

cells and the recruitment of inflammatory cells to the CNS (Asensio and Campbell, 1997; 

Dickson et al., 1993; Griffin, 2003; Kelder et al., 1998; McCoig et al., 2004).  This response can 

be detrimental to neurons in the CNS and lead to neurological disorders.  Neuroinflammatory 

responses may be dependent on the initiation of innate immune responses triggered by the 

stimulation of intrinsic brain cells by pathogen-associated molecular patterns (PAMPs), the 

repeated structural motifs generated by microbes that are not normally found in the host or by 

debri from apoptotic or necrotic cells following injury. Determining the initiation of these 

responses and the downstream consequences of activation of the innate immune responses will 

lead to a better understanding of the underlying mechanisms of neuronal damage following 

infection in the brain.   

  Recent studies demonstrated that toll-like receptor (TLR) 7, which recognizes viral 

single-stranded RNA, and TLR9, which recognizes unmethylated DNA with CpG motifs 

generated by certain viruses and bacteria, can play an important role in both the activation of 

innate immune responses and in the viral pathogenesis in the central nervous system (Lewis et 

al., 2008; Sorensen et al., 2008; Town et al., 2009).  Agonists of both TLR7 and TLR9 are also 

being investigated for the potential use in treating CNS-related diseases (Butchi et al., 2008; El 

Andaloussi A. et al., 2006; Pedras-Vasconcelos et al., 2006; Pedras-Vasconcelos et al., 2008; 

Prins et al., 2006).  However, there appears to be some differences in the CNS response to 

activation of these receptors.  For example, peripheral administration of TLR9 agonists, but not 

TLR7 agonists, were protective against arenavirus induced neurological disease (Pedras-

Vasconcelos et al., 2006).  Different responses were observed with the intracerebroventricular 
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(i.c.v.) inoculation of agonists, as TLR9 agonist inoculation was lethal in newborn mice, while 

TLR7 agonist was not (Chapter 3, Fig 3.2) (Butchi et al., 2008; Pedras-Vasconcelos et al., 2006).  

Understanding the similarities and differences of TLR7 and TLR9-induced cell activation in the 

brain is important for understanding viral pathogenesis as well as for the potential use of TLR 

agonists in the treatment of neurological diseases.    

  In the present study, we compared the responses of TLR7 and TLR9 agonist stimulation 

in the CNS using intracerebroventricular (i.c.v.) inoculation of imiquimod and CpG-ODN 

respectively.  We examined why TLR9 agonist have a substantially stronger inflammatory 

response in the CNS compared to TLR7 agonists and compared the responses to agonist 

stimulation both at cellular and molecular level. 

4.2. RESULTS 

4.2.1. Comparison of Dose Response between TLR7 and TLR9 Agonists in the CNS 

  Studies with the use of TLR9 agonists for the treatment of arenavirus infection 

demonstrated that TLR9 agonist administered i.c.v. was fatal in neonatal mice (Pedras-

Vasconcelos et al., 2006; Pedras-Vasconcelos et al., 2008).  This response was not observed in 

neonatal mice inoculated with TLR7 agonists.  To understand the differences in the CNS 

response to these two agonists, which bind highly similar receptors, we inoculated neonatal mice 

within 48 hours of birth with different concentration of either the TLR7 agonist, imiquimod, or 

the TLR9 agonist, CpG-ODN 1826.  Interestingly, TLR9 agonist induced death within 3-4 hours 

in all the mice at 3100 pmoles (20 g). Mice inoculated with CpG-ODN between 155 pmoles-

2325 pmoles (1g-15g) induced clinical signs of severe respiratory distress and 

unresponsiveness within 12 hours (Fig. 4.1). In contrast, 500 nmoles of imiquimod, injected 

i.c.v. did not induce any detectable sign of discomfort in neonatal mice.   Thus, CpG-ODN 

induces death in neonatal mice, while imiquimod does not.    
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Fig. 4.1. Intracerebroventricular Inoculation of TLR9 Agonist, But Not TLR7 Agonist 
Induces Death in Neonatal Mice.  Mice were inoculated with the indicated concentration of the 
TLR7 agonist, imiquimod, or the TLR9 agonist CpG-ODN 1826 and followed for clinical signs 
of substantial distress or death within the first 12 hours following inoculation.  Each symbol 
represents the % mice with clinical signs or death for each dose with an n of 5-7 mice per dose. 
 
4.2.2. Inflammatory Response to TLR7 and TLR9 Agonist Administration in the CNS 

 To compare the inflammatory responses induced by imiquimod and CpG-ODN 

stimulation in the CNS, we utilized the highest concentration of CpG-ODN that was not lethal to 

mice (80 picomoles) and the concentration of imiquimod that induced the strongest inflammatory 

response (100 nanomoles) (Chapter 3, Fig. 3.2) (Butchi et al., 2008).  Histological analysis of 

tissue sections from CpG-ODN, imiquimod and mock-inoculated brain tissues was completed in 

a blinded study for meningitis and perivascular cuffing. Meningitis was observed in CpG-ODN 

and imiquimod-inoculated animals as well as some mild infiltrate in some of the mock (vehicle 

control)-treated animals (Fig. 4.2).  neutrophils (N), plasma cells (P) and lymphocytes (L) were 

all observed in the meninges of imiquimod and CpG-ODN inoculated animals (Table 4.1), 

however, a higher level of cellular inflammation was associated with the CpG-ODN inoculated 

mice than imiquimod or mock-inoculated samples (Fig. 4.2).  Despite the substantial meningeal 
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inflammatory response, only minor perivascular cuffing was observed in any of the inoculated 

mice (Table. 4.1).       

 

 
 
 
Fig. 4.2. Meningeal Inflammation in the Brain Tissue Following I.C.V. Inoculation of 
Imiquimod or CpG-ODN. Brain tissue was isolated from inoculated mice at 12 hps, cut in four 
coronal sections and processed for histology. Hematoxylin and Eosin sections were analyzed in 
blinded fashion for inflammation. Tissues sections from mice inoculated with (C) CpG-ODN 
showed pronounced meningeal inflammation compared to mice inoculated with (A) mock-
inoculum (PBS) or with (B) imiquimod. (D) Higher power image of inflammatory cells in the 
meninges of CpG-ODN inoculated mice. (A-C) 100X, (D) 400X.  
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Table. 4.1. Inflammation Following I.C.V. Inoculation of Imiquimod or CpG-ODN. 

Inoculuma Meningitisb Meningeal infiltratec Perivascular cuffingd 

no inoculum 1  N  0 

no inoculum 1  N  0 

mock (PBS)  2  N  0 

mock (PBS) 2  N  0 

mock (PBS) 1  L/P  0 

imiquimod  3  N, L/P  0 

imiquimod 2  N, L/P  0 

imiquimod 4  N, L/P  0 

CpG-ODN 4  N, L/P  0 

CpG-ODN 4  N, L/P  0 

CpG-ODN 4  N, L/P  0 

CpG-ODN 4  N, L/P  0 

CpG-ODN 4  N, L/P 0 

a: mice inoculated with 10 l of mock inoculum (PBS with 0.2% trypan blue), 100 nmoles (25 ug) of imiquimod or 
80 pmoles (0.5 g) of CpG-ODN in a 10 l volume of PBS with 0.2% trypan blue.  Tissue sections were removed as 
12 hps. 
b: Meningitis was scored on a scale of 0-4 with the following scale: 0, no infiltrate; 1, minimal cellular infiltrate; 2, 
mild cellular infiltrated; 3, moderate infiltrate; 4, severe infiltrate.  Slides were randomly numbered to generate a 
scrambled ordered before being blindly analyzed. 
c:  N: neutrophils; L: lymphocytes, P: Plasma cells 
d: perivascular cuffing was scored on a  0-4 with 0 being no signs of inflammatory cells in the perivascular space; 1, 
a few areas of perivascular cuffing with a low cellular infiltrate; 2, multiple regions of low level perivascular cuffing 
or a few areas of moderate infiltrate;  3, multiple areas of  moderate infiltrate; 4, multiple areas of prominent 
perivascular cuffing. Slides were randomly numbered to generate a scrambled ordered before being blindly 
analyzed. 
   

To examine if the BBB was compromised by either imiquimod or CpG-ODN inoculation, 

we inoculated mice intraperitoneally with Evans blue dye at 1h or 4h prior to analysis, whether 

the dye crossed the blood-brain barrier at 12 and 24 hpi.  No crossing of Evans blue dye was 

detectable by gross examination of brain tissue at 12 hpi, however, Evans blue dye was observed 

in brain tissue from CpG-ODN inoculated mice at 24 hpi (Fig. 4.3).  Slight to undetectable levels 
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of Evans blue dye was observed in imiquimod inoculated mice suggesting that imiquimod 

inoculation did not alter the BBB to the same degree as CpG-ODN inoculation. 

     

Fig. 4.3. Evans Blue Analysis of BBB Breakdown in Inoculated Mice. Mice were inoculated 
with agonists or controls. At 20 hpi, mice were given Evans blue dye intraperitoneally. At 24 hpi, 
mice were perfused with PBS and brain tissue removed. Brain tissue was analyzed under a 
stereo-microscope. 
 
4.2.3. Localization of CpG-ODN in the CNS Following I.C.V. Inoculation 

  Imiquimod is a small molecule, which induced activation in multiple regions of the brain, 

most likely due to the ability of imiquimod to spread within the CNS (Chapter 3, Fig 3.4, 3.6).  

In contrast, CpG-ODN is a larger molecule (20 mer) and therefore may not migrate out of the 

ventricles as well as imiquimod or other TLR7 agonists.  To examine CpG-ODN localization 

after i.c.v. inoculation we examined the localization of FITC-labeled CpG-ODN at one, four and 

twelve hours post-inoculation using an anti-FITC antibody.  A non-labeled CpG-ODN inoculated 

mouse was utilized as a control for non-specific staining. CpG-ODN was primarily localized in 

the ventricles and meninges at 1 hps (Fig. 4.4A, B), with spread to brain capillary endothelia and 

cells around blood vessels by 4 hps (Fig. 4.4C,D).  Interestingly, no CpG-ODN was detected in 
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any regions of the brain at 12hps, indicating that the majority of CpG-ODN was taken up by cells 

and processed by this time point.  

   

 
Fig. 4.4. CpG-ODN (green) in the Brain Tissue at One, Four, and 12 Hours Post 
Inoculation.    Mice were inoculated with 80 pmoles of (A-F) FITC-labeled CpG-ODN or 
unlabeled CpG-ODN (not shown) and brain tissue removed at (A,B) one, (C,D) four or (E,F) 
twelve hours post-inoculation. Brain tissue was isolated from inoculated mice, cut in four 
coronal sections and processed for histology. Tissue sections were stained for FITC using rabbit 
anti-fluorescein primary antibody and goat anti-rabbit AlexaFluor 488 secondary antibody.  
Images are 100X magnification. 
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  Although the majority of CpG-ODN was detected in the ventricles and meningies, low 

amounts of CpG-ODN was detected in numerous cells throughout the brain at one hpi (Fig. 

4.5A). At four hours, only a few cells outside the ventricles and meningies were positive for 

CpG-ODN and these were generally around blood vessels (Fig. 4.5C,D).  At twelve hpi, only a 

few random dots of CpG-ODN were detected (Fig. 4.5E,F). Control non-labeled CpG-ODN 

sections were negative for fluorescence (data not shown). 

 
Fig. 4.5. CpG-ODN (green) in the Brain Tissue at (A,B) One, (C,D) Four, and (E,F) 12 
Hours Post Inoculation. Images are from the same sections as described in Fig. 4.4. Yellow 
arrows point to labeled CpG-ODN, which is primarily cell associated but was also found non-
cell associated. Magnification 1,000X. 
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4.2.4. Cell Marker Expression Following TLR Agonist Inoculation. 

  We previously found that i.c.v. inoculation of imiquimod induced only low level glial cell 

activation and did not induce T cell recruitment to the CNS, as detected by gene expression of 

glial activation markers and T cell markers (Chapter 3, Fig. 3.5). Increased astrocyte activation, 

as detected by Gfap mRNA expression, was only detected in CpG-ODN inoculated mice at 24 

hpi and returned to basal levels by 48 hpi (Fig. 4.6A).  However, F4/80 and Cd3 mRNA 

expression peaked at 48 hpi and remained elevated at 4 days post inoculation (Fig. 4.6B, C). 

Thus, CpG-ODN inoculation induced a pronounced inflammatory response in the CNS that is 

maintained for several days, despite the clearance of CpG-ODN by 12 hpi.   

Fig. 4.6. Kinetics of Cellular Responses (A-D) in the CNS Following Imiquimod or CpG-
ODN Inoculation in the Neonatal Brain. Mice at 48 h of age were inoculated as described in 
Table 4.1. Brain tissues were removed at 6, 12, 24, 48, 96 or 312 hpi and snap frozen for RN 
analysis.  RNA samples were processed for real-time quantitative RT-PCR analysis using 
primers specific for (A) Gfap (B) F4/80 (C) Cd3e and (D) Icam1 mRNA.  Values were 
calculated relative to expression of Gapdh controls. Data represent the mean +/- standard error of 
3-7 mice per group per time point and represent the combined data from 2 independent 
experiments.  
 
4.2.5. Alteration of Adhesion Molecule Expression. 

  Adhesion molecules ICAM1 (CD54, Cellular adhesion molecule 1), PECAM (CS31, 

Platelet endothelial cell adhesion molecule), VCAM (CD106, Vascular cell adhesion molecule) 

and ALCAM (CD166, Activated leukocyte cell adhesion molecule) play a role in the migration 
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of lymphocytes and other inflammatory cells across the blood-brain barrier. Examination of the 

mRNA expression of Icam1 demonstrated that both agonists induced upregulation of Icam1 

mRNA, but at substantially higher levels in CpG-ODN inoculated mice compared to imiquimod 

inoculated mice (Fig. 4.6D). Expression of Icam1 mRNA was elevated early following agonist 

stimulation and then rapidly fell to basal levels by 48 hps. Analysis of other adhesion molecules 

at the 12 h time point demonstrated that Pecam (CD31) and Vcam (CD106) mRNA expression 

was elevated only by CpG-ODN inoculation and not imiquimod inoculation (Fig. 4.7). In 

contrast, mRNA expression of Alcam was not upregulated (Fig. 4.7).   

 
Fig. 4.7. Upregulation of Adhesion Molecules Following CpG-ODN or Imiquimod 
Inoculation in the CNS.  RNA samples from the 12 hour time point in Fig. 4.4 were analyzed 
for expression of other adhesion molecules by real-time quantitative RT-PCR analysis using 
primers specific for (A) Alcam (B) PeCam and (C) Vcam1 mRNA.  Values were calculated 
relative to expression of Gapdh controls.   Data represent the mean +/- standard error of 3-7 mice 
per group per time point and represent the combined data from 2 independent experiments. 
Statistical analysis was completed by one-way ANOVA using Bonferonni post-test., *P<0.05, 
**P<0.01. ***P<0.001. 
 
  Since Icam1 mRNA expression was upregulated to a greater extent than the other 

adhesion molecules and since ICAM1 has been implicated as an important mediator of 

neuroinflammation, we examined the cellular source of ICAM1 expression by 

immunohistochemistry.  ICAM1 was readily detected in all tissue sections and was expressed at 
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similar levels in the meninges (Fig. 4.8 D-F), however, there was a substantial difference in the 

intensity level between mock (PBS) and agonist inoculated mice in the ventricles and blood 

vessels (yellow arrows) surrounding the ventricles (Fig. 4.8 A-C).  No substantial difference was 

observed in ICAM1 localization between imiquimod and CpG-ODN inoculated mice. 

   

Fig. 4.8. ICAM1 Expression Following Agonist Inoculation in the Brain. Mice were 
inoculated with (A,D) PBS control, (B,E) 100 nmoles of imiquimod or (C,F) 80 pmoles of  CpG-
ODN.  Brain tissues were removed at twelve hpi, cut in four coronal sections and processed for 
histology.  Tissue sections were stained for ICAM1 using a rat anti-mouse ICAM1 antibody 
followed by an AlexaFluor 488-conjugated anti-rat secondary antibody.  Image magnifications 
are (A-C) 200X (D-F) 400X. Yellow arrows indicate ICAM1 positive blood vessels. 
 
4.2.6. Comparison of Cytokine Responses. 

  One explanation for the differences in adhesion molecule expression and cell recruitment 

would be the cytokine and chemokine response to the TLR agonist stimulation in the CNS.  

Comparison of mRNA expression of cytokines and chemokines normally associated with 
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inflammation in the CNS demonstrated that CpG-ODN inoculation induced substantially higher 

levels of cytokines and chemokines than imiquimod inoculation, with the exception of Tnf 

mRNA (Fig. 4.9). Similar to the expression of adhesion molecules, the expression levels of most 

cytokine and chemokine mRNA returned to near basal levels by 48 hps.  
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Fig. 4.9. Cytokine Responses Following Imiquimod or CpG-ODN Inoculation In the Brain. 
Mice at 48 h of age were inoculated as described in Table 4.1. Brain tissues at 6, 12, 48, 96 or 
312 h post inoculation were processed for real-time RT-PCR analysis using primers specific for 
(A) Ifnb1 (B) Tnf (C) Ccl2 and (D) Cxcl10 mRNA. Data were analyzed as described in Fig. 4.6. 
Values were calculated relative to the expression of Gapdh controls. Data represent the mean +/- 
standard error of 3-7 mice per group per time point and represent the combined data from 2 
independent experiments. Statistical analysis was completed by two-way ANOVA using 
Bonferonni post-test., *P <0.05, **P<0.01. ***P<0.001. 
   

  To confirm that the induction of these responses to CpG-ODN was mediated by TLR9, 

we analyzed the response of CpG-ODN stimulation in TLR9 deficient mice. A similar analysis 

with imiquimod had been previously completed demonstrating that imiquimod induced 

responses in the CNS were dependent on TLR7 (Butchi et al., 2008). For this experiment, we 

utilized C57BL/6 wild-type mice to aid as a direct comparison to C57BL/6 TLR9-/- mice. i.c.v. 

inoculation of CpG-ODN  in TLR9 deficient mice did not induce cytokine or chemokine 

expression, while inoculation of C57BL/6 wild-type mice did induce strong upregulation of 

cytokines and chemokines (Fig. 4.10). Thus, CpG-ODN induced inflammatory responses are 

mediated via TLR9.  



 
 

107

  Ifn1 Tnf Ccl2
0

3

6
7

13

Fo
ld

 in
cr

ea
se

(r
el

at
iv

e 
to

 m
oc

k)

0

20

40

60

80

TLR9 +/+ CpG

TLR9 -/- CpG

Cxcl10
 

Fig. 4.10. CpG-ODN-Induced Responses are Dependent on TLR9. Wild-type C57BL/6 and 
TLR9 deficient C57BL/6 mice were inoculated as described in Table 4.1.  Brain tissues were 
removed at 12 h post inoculation, processed and analyzed for mRNA expression.  Data represent 
the mean +/- standard error for 4 to 5 mice per group and are representative of two replicate 
experiments. 
   
  To determine if there was a difference in the cytokine or chemokine profile induced by 

imiquimod or CpG-ODN inoculation, we analyzed protein levels of 20 different cytokines in 

brain tissue from inoculated mice.  A time point of 12 hours was chosen since this is the peak of 

cytokine and chemokine mRNA expression (Fig. 4.9) and is also the peak of cytokine and 

chemokine protein expression for TLR7 inoculated mice (chapter 3, Fig. 3.3) (Butchi et al., 

2008). Imiquimod and CpG-ODN inoculation induced expression of similar proinflammatory 

cytokines and chemokines including IL-1, IL-1, IL-5, IL-12, CCL2, CCL3, CXCL1, CXCL9 

and CXCL10 (Fig. 4.11). Despite the relative similar level of Tnf mRNA expression between 

imiquimod and CpG-ODN inoculated mice, protein levels of TNF were substantially higher in 

CpG-ODN inoculated mice compared to imiquimod inoculated mice (Fig. 4.11 F).  Similarly, 

most of the cytokines and chemokines analyzed were substantially higher in the CpG-ODN 

inoculated mice compared to imiquimod inoculated mice. The enhanced cytokine response by 

CpG-ODN stimulation versus imiquimod stimulation may be responsible for both the increased  
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Fig. 4.11. Comparison of Proinflammatory Cytokine Response Following Imiquimod or CpG-ODN Inoculation in the Brain. 
Mice were inoculated as described in Table 4.1 and tissues were removed at 12 hpi. One half of the sagitally divided brain was 
homogenized in lysis buffer containing protease inhibitors and analyzed for protein expression using a multiplex bead array on a 
Bioplex Luminex system. Samples were calculated as pg/ml using a standard curve from in-plate standards and subsequently 
converted to fg/mg of brain tissue. Data represent the mean +/- standard error of 4-8 mice per group.  Statistical analysis was 
completed by one way ANOVA with Newman-Keuls post-test. *P<0.05, **P<0.01. ***P<0.001. Asterisks above bars indicated a 
significant upregulation compared to mock-treated controls.  Lines with asterisks above the lines indicate the difference between the 
indicated groups.
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cellular infiltration associated with CpG-ODN inoculation as well as the high level of fatality 

following CpG-ODN inoculation of newborn mice.     

4.2.7. Similar Responses to TLR7 and TLR9 Agonists by Meningeal Cells. 

  One possible explanation for the differences in cytokine responses and meningeal 

inflammation following imiquimod and CpG-ODN stimulation would be a difference in the 

response of the cells in the meninges to TLR7 and/or TLR9 agonist stimulation.  We therefore 

generated cultures of mixed meningeal cells using the meninges of two day old mice.  

Interestingly, no differences were observed in the level of the response of meningeal cells to 

CpG-ODN versus imiquimod stimulation (Fig. 4.12). Thus, in vitro, meningeal cells respond 

similarly to both TLR7 and TLR9 agonists. This is analogous to the similarity in cytokine 

responses by microglia and astrocytes stimulated with TLR7 or TLR9 agonists and suggest that 

these cells are not responsible for the heightened response to CpG-ODN stimulation in the CNS. 

4.2.8. Source of Cytokine Expression Following in vivo Inoculation of TLR Agonists. 

  The difference in cytokine production may be due to the type of cell being activated by 

the agonist or the level of the response of a particular cell type to the agonist. To examine which 

cells were responsible for cytokine production, we utilized in situ hybridization analysis of tissue 

sections. Since TNF was one of the cytokines that was upregulated by both imiquimod and CpG-

ODN at mRNA level, but differentially induced at protein level, we analyzed if Tnf mRNA is 

expressed by different cell types. Interestingly, the primary cell types expressing Tnf mRNA 

following TLR7 or TLR9 agonist stimulation were ependymal cells in the lateral ventricles, as 

well as in the 3rd ventricle in CpG-ODN inoculated mice (Fig. 4.13). 

  As a comparison for the Tnf expression, we also analyzed expression of Ccl12 mRNA, a 

chemokine that is produced by infiltrating macrophages during retrovirus infection   
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Fig. 4.12. Response of Meningeal Cells to Imiquimod or CpG-ODN Stimulation. Meningeal cells were generated from the 
meningeal tissue of mice at 24-48 hours of age.  Cells were cultured as described in the methods and stimulated with 80 nM of CpG-
ODN or 5 M of imiquimod. After 12 h, RNA was isolated from the cells and supernatant collected for cytokine analysis. (A,B) Real-
time quantitative RT-PCR analysis for (A) Alcam and (B) Icam1. Values were calculated relative to expression of Gapdh controls. 
Data are presented as gene expression as a percentage of Gapdh expression. (C-K) Supernatants were analyzed for cytokine 
production by multiplex bead array. (A-K) Data represent the mean +/- standard error of 4 separate samples per group and are 
representative of two independent experiments. Statistical analysis was completed by one-way ANOVA using Bonferroni post-test., 
*P<0.05, **P<0.01. ***P<0.001. Asterisks above bars indicated a significant upregulation compared to mock-treated controls.  Lines 
with asterisks above the lines indicate the difference between the indicated groups.  
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(Peterson et al., 2004).  Ccl12 mRNA-expressing cells were primarily detected in areas around 

the meninges and ventricles and were positive for IBA1, suggesting that these cells were 

infiltrating macrophages or activated microglia (Fig. 4.14). These cells were detected at high 

numbers in imiquimod and CpG-ODN inoculated mice, but were also detected in low numbers in 

the mock-inoculated group. Thus, the influx of Ccl12 expressing IBA1 positive cells may be a 

generalized response to injury in the CNS and not be dependent recruitment for cytokines or 

chemokines induced by TLR stimulation.  

4.2.9 Comparison of Apoptosis Following TLR7 and TLR9 Agonist Stimulation. 

  Since TNF expression is often associated with apoptosis, we examined brain tissue from 

mock, imiquimod and CpG-ODN inoculated mice for active-caspase 3 expression, which is a 

marker of cells undergoing apoptosis.  Random apoptotic cells were found in all three 

inoculation groups, which correlate with the active death process in the developing brain. 

However, in the thalamus region directly below the 3rd ventricle, there was an increase in the 

number of apoptotic cells compared to either mock or imiquimod inoculated mice (Fig. 4.15).  A 

slight increase in apoptotic cells in CpG-ODN inoculated mice was observed around the 

ventricles and in the choroid plexus (data not shown).   

  Dual staining with beta tubulin or NeuN was inconclusive as to the identity of these cells 

due to the intensity of caspase 3 staining and the decrease in marker expression on apoptotic 

cells.  However, some of the apoptotic cells had long dendrites suggesting that some of the active 

caspase 3 positive cells were neurons (Fig. 4.15E).  Interestingly, some active caspase 3 positive 

cells were detected in lateral and 3rd ventricle, where TNF expressing cells were detected.  This 

difference in active caspase 3 positive cells was only detected at 12 hours post inoculation and 

was not observed at 48 hours (data not shown).  
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Fig. 4.13. In situ Hybridization-Immunohistochemistry Analysis of Coronal Sections of the 
Brain Tissues from Mock, Imiquimod, and CpG-ODN Inoculated Mice at 12 hps. Tissue 
sections were analyzed for Tnf mRNA expression using a DIG-labeled RNA probe and detected 
with Fast Red substrate (red color). Sections were also analyzed for GFAP expression by 
immunohistochemistry using a peroxidase antibody and DAB (brown black color). Shown are 
the lateral ventricle and 3rd ventricles regions, which were the primary regions showing Tnf-
producing cells. All images are 400X and were taken with a digital camera attached to a Nikon 
scope. Images are representative of the tissue. Non-specific RNA probes and no-primary 
antibody controls were used as controls for all experiments. 
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Fig. 4.14. Detection of CCL12 Expressing Microglia and/or Macrophages in the Brain 
Tissues from Mock, Imiquimod, and CpG-ODN Inoculated Mice at 12 hps. Tissue sections 
were analyzed for Ccl12 mRNA expression using a DIG-labeled RNA probe and detected with 
Fast Red substrate (red color). Sections were also analyzed for GFAP or IBA1 expression by 
immunohistochemistry using a peroxidase antibody and DAB (brown-black color). Inserts are 
shown to demonstrate dual staining for Ccl12 mRNA and either GFAP or IBA1. White arrows 
indicate cells that are dual positive for Ccl12 mRNA and IBA1. All sections are from the cortex 
region. All images are 200 X and were taken with a digital camera attached to a Nikon scope. 
Images are representative of the tissue. Non-specific RNA probes and no-primary antibody 
controls were used as controls for all experiments. 
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Fig. 4.15. Detection of Apoptotic Cells Following Agonist Inoculation in the Brain. Mice 
were inoculated with (A) PBS control, (B) 100 nmoles of imiquimod or (C-F) 80 pmoles of 
CpG-ODN. Brain tissues were removed at twelve hpi, cut in four coronal sections and processed 
for histology. Tissue sections were analyzed for active caspase 3 expressing apoptotic cells by 
staining with rabbit anti-active caspase 3, and either mouse monoclonal  tubulin or Neu N 
antibody for staining neurons. Following primary antibody, these sections were stained with 
either goat anti-rabbit AlexaFluor 555 or goat anti-mouse AlexaFluor 488 secondary antibodies. 
Image magnifications are (A-D) 200X, (E-F) 400X. Yellow arrows indicate active caspase 3 
positive cells and white arrow indicate an active caspase 3 positive neuron.   
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4.3. DISCUSSION 

  The current study demonstrated that the TLR9 agonist, CpG-ODN, induced a more 

pronounced inflammatory response in the central nervous system compared to the TLR7 agonist, 

imiquimod.  CpG-ODN inoculation induced  more severe meningeal inflammation in the CNS  

(Fig. 4.2, Table. 4.1) as well as increased cellular infiltration (Fig. 4.6) and heightened 

production of proinflammatory cytokines and chemokines (Fig 4.9 and 4.11). This more 

pronounced inflammatory response induced by CpG-ODN inoculation may explain why CpG- 

ODN inoculation by the intracerebroventricular route is toxic to mice at nanomolar 

concentrations, while imiquimod is not lethal even at micromolar concentrations (Fig. 4.1). 

Understanding the differences in their neuroinflammatory capabilities will be important when 

utilizing the agonists for treatment of neurological diseases including neurovirulent virus 

infections.    

  The severe symptoms and/or death induced by i.c.v. inoculation of 1-20 g (155-3100 

pmoles) of CpG-ODN (Fig. 4.1) may be due in part to the high levels of TNF, IL-6 and IL-1 

that are induced following CpG-ODN inoculation (Fig. 4.11). High expression levels of all three 

proteins are associated with meningococcal meningitis as well as septic shock and TNF has been 

suggested to play a role in endothelial damage, vasodilatation and capillary leakage. Similar 

events may occur following the upregulation of these cytokines following CpG-ODN inoculation 

and lead to the death of the neonates observed in this study and in others (Pedras-Vasconcelos et 

al., 2006).  

  The difference in meningeal inflammation associated with CpG-ODN and imiquimod 

inoculation (Fig. 4.2, Table 4.1) suggested that these cells may be the cell type responsible for 

the difference in response between CpG-ODN and imiquimod.  Analysis of meningeal cell 
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cultures stimulated with these agonists did not demonstrate any substantial differences in 

cytokine responses between CpG-ODN and imiquimod stimulated cells (Fig. 4.8).  This suggests 

that the primary differences in cytokine responses are most likely mediated by other cell types.  

One difference that was significant between imiquimod and CpG-ODN stimulation of meningeal 

cells was Icam1 mRNA expression (Fig. 4.12). Icam1 mRNA was upregulated to a higher level 

by CpG-ODN stimulation compared to imiquimod stimulation, both in the meningeal cell 

cultures (Fig. 4.12) and in the whole brain tissue (Fig. 4.6). Icam1 is an adhesion molecule, 

expressed by meningeal and endothelial cells in the brain, that is often upregulated in the brain 

following infection and is involved in the recruitment of inflammatory cells to the CNS 

(Drescher et al., 2002; Lopez et al., 1999; Wells et al., 2001).  The more pronounced meningeal 

inflammation in CpG-ODN inoculated mice may be due, in part, to increased expression of 

Icam1 by CpG-ODN stimulated meningeal cells and the subsequent recruitment of inflammatory 

cells to the brain.   

  mRNA levels for Tnf were comparable between imiquimod and CpG-ODN-treated 

animals (Fig. 4.9), but protein levels were not (Fig. 4.11).   TNF is regulated at the translation 

level by AU-binding proteins, which bind Tnf mRNA and prevent translation until they are 

phosphorylated by the mitogen activated protein kinase (MAPK) pathway (Kumar et al., 2003). 

Tnf mRNA was primarily produced by ependymal cells in the brain tissue from both imiquimod 

and CpG-ODN inoculated mice, indicating that  source of mRNA was the same in both groups 

(Fig. 4.13).  However, since TNF protein was expressed at substantially higher levels in the 

CpG-ODN-inoculated mice, it is possible that CpG-ODN induced a substantially higher level of 

MAPK activation in the ependymal cells that allowed translation of the TNF protein.  It is also 

possible that the ependymal cells in the third ventricle, which were positive for Tnf mRNA in 
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CpG-ODN inoculated mice, are responsible for the high levels of TNF protein found in the brain 

tissue of CpG-ODN inoculated mice. 

  Some of the differences in the cytokine production between imiquimod and CpG-ODN 

inoculated mice may also be explained by the higher level of infiltrating cells and meningitis in 

CpG-ODN inoculated mice. Analysis of Ccl12 expressing cells demonstrated cytokine-

producing infiltrating macrophages in both imiquimod and CpG-ODN inoculated mice, without a 

clear substantial difference between the two groups (Fig. 4.14). However, some of the other 

cytokines including CCL3, IL-6 and IL-12 p40 may be produced by inflammatory cells in the 

meningeal regions of the brain.  Further in situ hybridization and immunohistochemistry analysis 

should provide a more substantial analysis of which cells are responsible for the individual 

cytokines or chemokines.  However, the sensitivity of the in situ hybridization assay will limit 

the detection of many of these factors. 
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CHAPTER 5 

EXAMINING THE RESPONSES OF GLIAL CELLS FOLLOWING TLR7 AND TLR9 
STIMULATION*  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*A part of this chapter is reprinted with permission from the journal “Glia” 
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5.1. INTRODUCTION   

  Astrocytes and microglia are two important cell types in the central nervous system (CNS) 

that have vital functions in regulating brain development and/or homeostasis. Astrocytes 

modulate the glutamate levels in the extracellular space contributing to functional neuronal 

synapses and preventing glutamate induced neurotoxicity (Parpura et al., 2004). Astrocytic end 

feet are located in close apposition to the capillary endothelium and maintain the structural and 

functional integrity of the blood-brain barrier (Wolburg and Lippoldt, 2002). Microglia play an 

important role in remodeling of the fetal brain by scavenging the dead cells in the neocortex 

during development (Voyvodic, 1996).   

  In addition to the roles in brain development and homeostasis, both astrocytes and microglia 

have important roles in innate immunity in the brain. The presence of blood-brain barrier and 

absence of lymphatic system in the brain restricts entry of immune cells from peripheral 

circulation (Barker and Billingham, 1977; Carson et al., 2006). In addition, resident dendritic 

cells are absent in the brain. Thus, astrocytes and microglia are the primary cell types in the CNS 

that can respond to pathogens invading the CNS. Activated astrocytes and microglia are 

associated with multiple neurological diseases including viral infections, bacterial infections and 

diseases of unknown etiologies (Kelder et al., 1998; Nau and Bruck, 2002; Rock et al., 2004; 

Vargas et al., 2005; Wilson and Hunter, 2004). Following activation, these cells undergo 

proliferation, morphological changes and release a wide array of proinflammatory cytokines and 

chemokines that act on and engender responses in target cells. Since microglia are bone-marrow 

derived, while astrocytes differentiate from neuroprogenitor cells, the response of these two cell 

types to similar stimulation may vary significantly. The types of cytokines and/or chemokines 

produced by these cell types in the CNS can affect the response of other cell types in the CNS, as 

well as influence neuronal damage or the recruitment of inflammatory cells in the CNS.  
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  Recent studies demonstrated that toll-like receptor (TLR) 7, which recognizes viral single-

stranded RNA, and TLR9, which recognizes unmethylated DNA with CpG motifs generated by 

certain viruses and bacteria, can play an important role in both the activation of innate immune 

responses and in viral pathogenesis (Lewis et al., 2008; Sorensen et al., 2008; Town et al., 2009). 

In addition, agonists of both TLR7 and TLR9 are also being investigated for the potential use in 

treating CNS-related diseases (Butchi et al., 2008; El Andaloussi A. et al., 2006; Pedras-

Vasconcelos et al., 2006; Pedras-Vasconcelos et al., 2008; Prins et al., 2006). Both murine 

astrocytes and microglia express Tlr7 and Tlr9 mRNA (Carpentier et al., 2005; McKimmie and 

Fazakerley, 2005). Furthermore, both astrocytes and microglia can respond to TLR7 or TLR9 

agonist stimulation in vitro (Bowman et al., 2003; Dalpke et al., 2002; Gurley et al., 2008; Hosoi 

et al., 2004; Iliev et al., 2004; Zhang et al., 2005). However, an in depth comparison of the innate 

immune responses elicited by these cell types in response to TLR7 or TLR9 stimulation has not 

been completed. 

    In the present study, we analyzed the response of astrocytes and microglia following 

TLR7 and/or TLR9 agonist stimulation. Primary astrocytes and microglia from neonatal mice 

were cultured in vitro and stimulated with TLR7 agonist, imiquimod and/or TLR9 agonist, CpG-

ODN 1826. The expression of genes involved in TLR7/TLR9 signaling and production of 

proinflammatory cytokines and chemokines by astrocytes and microglia were compared. The 

effect of TLR7/TLR9 agonists and supernatants from TLR7/TLR9 stimulated astrocytes and 

microglia on neuronal survival was also analyzed.  

5.2. RESULTS  

5.2.1. TLR7 and TLR9 Expression in Primary Astrocytes and Microglia  

Primary astrocyte and microglia cultures were generated from brain tissue of 1-2 day old 

mice. Microglia were separated from astrocytes by percoll gradient centrifugation as described in  
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A. Astrocytes, 100X B. Astrocytes, 200X

C. Microglia, 100X D. Microglia, 200X

 

Fig. 5.1. Primary Astrocytes and Microglia in Culture.  Astrocytes and microglia from brain 
cortex of 1-2 day old mice were cultured as described in materials and methods. (A,B) 
representative of astrocyte cultures, and (C,D) representative of microglia cultures.   
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Fig. 5.2. Purity of Astrocytes and Microglia Cultures. (A-C) Astrocyte and (D-F) microglia 
cultures were analyzed for expression of the (B, E) microglia/macrophage marker F4/80 or (C, F) 
astrocyte marker GFAP by intracellular flow cytometry analysis. The percentages of cells stained 
with the cell specific markers were shown at the top of each panel. Data were collected on a 
FACSAria and analyzed with FCS Express V3 software (De Novo).   



  124

methods. Following initial plating and 7-10 days in culture, astrocytes were further purified by 

orbital shaking overnight at 250 RPM to remove contaminating oligodendrocytes and remaining 

microglia. Astrocytes and microglia displayed morphological characteristics associated with both 

cell types in culture (Fig 5.1).  

 

  

Fig. 5.3. Expression of TLR7 and TLR9 on Primary Astrocytes and Microglia. (A) astrocyte 
and (B) microglia cultures were analyzed for expression of TLR7 and TLR9 by flow cytometry. 
Data are shown as a histogram with fluorescence intensity on X-axis and counts/cell numbers on 
Y-axis. For detection of TLR7, cells were incubated with Alexa Flour 488 conjugated goat anti-
rabbit, either with rabbit anti-TLR7 (TLR7) or with no primary antibody (control).  The mean 
fluoresce intensity (MFI) was substantially higher for TLR7-stained astrocytes (470, 349) than 
for the no primary antibody controls (269, 211) demonstrating that astrocytes expressed TLR7 
protein, albeit at low levels.  For detection of TLR9, cells were stained with a FITC- conjugated 
mouse-IgG (control) or with mouse anti-TLR9 and FITC-conjugated anti-mouse IgG (TLR9).  
Data were collected on a FACSAria and analyzed with FCS Express V3 software (De Novo).  
Data are representative of two replicate experiments.  
 

Purity of astrocyte and microglia cultures were analyzed by intracellular flow cytometry, 

which consistently revealed the presence of >93% GFAP positive cells and >95% F4/80 positive 

cells respectively (Fig. 5.2). Expression of TLR7 and TLR9 was analyzed on these cells, as some 

studies reported expression of Tlr7 and Tlr9 mRNA in astrocytes, while other studies did not 
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detect these receptors (Carpentier et al., 2005; Jack et al., 2005; McKimmie and Fazakerley, 

2005). In the present study, TLR7 and TLR9 protein expression was observed in both cell types 

with higher expression levels of both proteins on microglia compared to astrocytes (Fig. 5.3).   

5.2.2. TLR7 and TLR9 Stimulation in Astrocytes and Microglia Induces Most Cytokines 
and Chemokines in 6-12 Hours Post Stimulation 
 

To examine if TLR7 and TLR9 agonists stimulate astrocytes and/or microglia cells, we 

stimulated primary cultures of each cell type with either 50 µM of the TLR7 agonist, imiquimod 

or 80 nM of the TLR9 agonist, CpG-ODN 1826. Concentrations used were based on optimal 

concentrations for the stimulation of the astrocyte cell line, C8D1A. Gene expression of  
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Fig. 5.4. Kinetic Analysis of Cytokine and Chemokine Gene Expression by Cultured 
Astrocytes and Microglia Following Stimulation with Imiquimod or CpG-ODN. Astrocytes 
and microglia were cultured in 12 well plates as described in materials and methods, and 
stimulated with mock or 50 µM imiquimod or 80 nM CpG-ODN. At 6, 12, 24 and 48 hps, RNA 
was isolated from the cells and supernatants were frozen in aliquots at -80oC for future use. RNA 
samples were processed for real-time quantitative RT-PCR analysis and values were calculated 
relative to expression of Gapdh controls. Data are presented as the fold induction of each gene of 
interest relative to mock controls. Mock expression levels were calculated as the mean of 3 well 
per time point. Data represent the standard mean error per group per time point and represent one 
of the two independent experiments. Statistical analysis was completed by two-way ANOVA 
using Bonferroni post-test. *, P<0.05,  **, p<0.01 and ***, p< 0.001. 
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cytokines and chemokines were analyzed by real-time RT PCR at 6, 12, 24 and 48 hps (hours 

post stimulation). Stimulation of TLR7 or TLR9 in astrocytes induced mRNA for Tnf, Ccl2 and 

Cxcl10 that peaked at 6 hps, whereas mRNA expression of Ifnb1 peaked at 12 hps (Fig. 5.4.A-

D). Stimulation of microglia with TLR7 or TLR9 agonists also induced cytokine and chemokines 

mRNA expression that generally peaked at 6 hps although peak expression of Cxcl10 and Ifnb1 

was observed at later time points (Fig. 5.4.E-H). Thus, kinetic analysis of gene expression 

indicated peak expression of proinflammatory cytokines and chemokines at 6-12 hours post 

stimulation (hps), with most cytokine mRNA expression diminishing by 48 hps. 

5.2.3. Dose Response of Astrocytes and Microglia to TLR7 and TLR9 Agonists 

The concentration of imiquimod or CpG-ODN 1826 used for stimulation could influence 

the response of each cell type.  We first identified the optimal stimulatory concentration of TLR7 

and TLR9 agonists for both microglia and astrocytes using a range of 5 nM to 50 µM of    
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Fig. 5.5. Cytokine Response to Imiquimod or CpG-ODN Stimulation in Astrocytes and 
Microglia Is Concentration Dependent. Cultured Astrocytes and microglia at 80-90% 
confluency were stimulated using varying concentrations of imiquimod or CpG-ODN. At 6 hps, 
cells were lysed, RNA was isolated and analyzed by Reverse transcription followed by real-time 
PCR.   Samples were analyzed as described in Fig. 5.4. Data represent the mean +/- standard 
error of three samples per group. Data are representative of one of two replicate experiments.  
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imiquimod or 0.5 nM to 500 nM of CpG-ODN 1826. Optimal cytokine production in both cell 

types was induced with 5 µM (1.25 µg/ml) of imiquimod and 80 nM (0.5 µg/ml) of CpG-ODN 

1826, with induction of high levels of interferon beta 1 (Ifnb1), tumor necrosis factor (Tnf), 

monocyte chemo attractant protein 1 (Ccl2/MCP1) and interferon-γ-inducible protein 10 

(Cxcl10/IP-10) mRNA expression (Fig. 5.5). Concentrations greater than 500 nM of CpG-ODN 

1826 were toxic to both astrocytes and microglia cultures. For all further studies, 5 µM 

imiquimod and/or 80 nM CpG-ODN 1826 were used (except where noted) and the gene 

expression was analyzed at 6 hps, and cytokine production was analyzed at 12 hps.    

5.2.4. mRNA Expression of Signal Transduction Genes Following TLR7/9 Stimulation.   

The signaling cascade induced by CpG-ODN stimulation differs between macrophages 

and dendritic cells and results in different cytokine production by each cell type (Schroder et al., 

2007). This may also be true for astrocytes and microglia, as these cells have distinct origins and 

functions in the CNS.  We analyzed the influence of TLR7 and TLR9 stimulation on mRNA 

expression of 84 genes associated with toll-like receptor pathway, using a TLR pathway focused 

cDNA real-time PCR array. Although the level of gene upregulation did vary between 

imiquimod and CpG-ODN stimulated samples, the same genes were upregulated by both stimuli 

(Table 5.1).  There was some variation in mRNA upregulation between astrocytes and microglia 

following TLR activation, with astrocytes increasing mRNA expression of more signal 

transduction related genes than microglia (Table 5.1, Fig. 5.6).  

Both cell types upregulated expression of a number of proinflammatory cytokine and 

chemokine genes as well as a few TLRs. Surprisingly, Tlr9 mRNA expression was not 

upregulated by either imiquimod or CpG stimulation, while Tlr7 mRNA expression was only 

upregulated in microglia. Instead, mRNAs for other TLRs, including Tlr1 and Tlr2 were 

upregulated by stimulation, while Tlr4 and Tlr5 mRNAs were downregulated (Fig. 5.6,    
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a:  imiquimod at 5 M,  
b: CpG0ODN at 80 pM,  

c: imiquimod at 5 M and CpG-ODN at 80 pM,  
d: fold change: 2- ∆Ct of 3 treatment samples / 2- ∆Ct of 3 mock samples, ∆Ct = Ct Gene of interest –  
   Average Ct House keeping genes,  
e: standard deviation of 3 samples per group   

Table 5.1.   TLR7 and TLR9 Stimulation in Astrocytes and Microglia Induces the Expression of Multiple mRNAs –  
Toll-like Receptors, Adaptors, Effectors and TLR Interacting Proteins 

Astrocytes Microglia 

Imiquimod a CpG b Imiquimod+CpG  c Imiquimod  CpG Imiquimod+CpG
  Mean d SD e Mean SD Mean SD Mean SD Mean SD Mean SD
 Toll Like Receptors     
Tlr1  12.6 3.7 12.4 2.3 10.4 5.8 6.6 0.7 4.8 1.1 7.2 1.7
Tlr2  15.2 0.3 15.3 2.3 14.3 1.3 9.5 0.4 10.8 0.4 8.0 0.7
Tlr3  3.2 1.3 2.2 0.6 2.3 1.1 -1.4 0.1 1.7 0.4 -0.9 1.6
Tlr4  0.6 1.5 0.5 1.5 -0.5 1.6 -5.0 1.5 -2.7 1.2 -5.1 2.5
Tlr5  -3.1 1.9 -2.7 1.6 -1.8 0.5 -226.3 157.8 -12.1 8.3 -31.4 14.0
Tlr7 -0.3 1.3 1.4 0.4 0.1 2.2 9.0 1.1 14.1 6.6 10.8 3.1
 Adaptors, Effectors and TLR Interacting Proteins    
Cd14  202.3 9.0 181.8 6.3 166.7 19.7 5.1 0.3 2.8 0.1 4.4 0.4
Hspa1a  -1.2 0.1 -1.2 0.0 -1.4 0.1 2.9 0.4 4.4 0.6 2.6 0.3
Myd88  5.0 0.7 4.5 0.1 4.6 0.1 1.9 0.2 2.2 0.1 2.2 0.3
Ripk2  10.4 1.6 10.2 2.5 8.8 2.5 2.7 0.4 3.1 0.5 2.3 0.5
Ticam2  3.8 0.1 2.9 1.0 3.3 0.4 1.3 0.2 0.5 1.3 1.5 0.3
Irak2  3.2 0.4 3.5 0.1 2.7 0.1 1.3 0.2 1.9 0.1 1.1 0.1
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a:  imiquimod at 5 M,  
b: CpG0ODN at 80 pM,  

c: imiquimod at 5 M and CpG-ODN at 80 pM,  
d: fold change: 2- ∆Ct of 3 treatment samples / 2- ∆Ct of 3 mock samples, ∆Ct = Ct Gene of interest –  
   Average Ct House keeping genes,  
e: standard deviation of 3 samples per group   
 

Table 5.2.   TLR7 and TLR9 Stimulation in Astrocytes and Microglia Induces the Expression of Multiple mRNAs –  
Downstream Signaling Molecules 

Astrocytes Microglia 

Imiquimod a CpG b Imiquimod+CpG  c Imiquimod  CpG Imiquimod+CpG 
  Mean d SD e Mean SD Mean SD Mean SD Mean SD Mean SD
 Downstream Signaling Molecules  
Chuk  2.7 0.4 3.0 0.3 2.6 0.8 -0.4 1.3 1.2 0.3 -0.1 1.8
Cebpb  2.9 0.2 2.7 0.4 2.6 0.4 3.9 0.2 2.7 0.2 3.8 0.2
Clec4e  52.8 8.1 36.9 24.1 33.0 11.1 31.7 6.8 23.4 4.8 34.4 8.6
Hrb  12.9 1.4 11.8 2.3 11.4 1.2 -1.2 0.1 -0.4 1.3 -1.1 0.0
Irf1  12.3 1.0 11.5 2.3 12.9 1.1 4.9 0.4 11.9 1.2 4.8 0.4
Map2k3  18.5 0.8 15.8 4.4 16.7 0.6 0.3 1.4 -0.5 1.3 -0.4 1.4
Nfkb1  5.6 0.3 5.8 0.7 5.7 0.3 5.2 0.5 4.2 0.5 4.4 0.8
Nfkb2  6.8 0.8 7.5 1.0 7.6 0.9 16.3 3.4 5.6 0.6 12.8 1.2
Nfkbia  12.5 1.0 13.5 4.0 12.2 4.1 10.1 0.6 7.4 1.1 11.0 2.1
Nfkbib  2.7 0.4 3.1 0.6 2.7 0.6 2.0 0.3 -1.1 0.0 1.5 0.1
Ptgs2  11.3 2.3 10.4 3.6 8.7 2.6 40.5 2.3 15.6 2.0 28.3 3.6
Rel  4.0 0.7 3.7 0.5 3.2 0.9 2.1 0.2 2.2 0.2 1.9 0.2
Rela  2.3 0.3 2.7 0.1 2.3 0.3 1.4 0.1 1.2 0.1 1.3 0.0
Tnfaip3  19.4 1.7 18.1 8.7 14.9 5.2 7.0 1.3 5.9 0.4 7.5 1.3
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a:  imiquimod at 5 M,  
b: CpG0ODN at 80 pM,  

c: imiquimod at 5 M and CpG-ODN at 80 pM,  
d: fold change: 2- ∆Ct of 3 treatment samples / 2- ∆Ct of 3 mock samples, ∆Ct = Ct Gene of interest –  
   Average Ct House keeping genes,  
e: standard deviation of 3 samples per group 

Table 5.3. TLR7 and TLR9 stimulation in astrocytes and microglia induces the expression of multiple mRNAs –  
Cytokines, chemokines and co-stimulatory molecules 

Astrocytes Microglia 

Imiquimod a CpG b Imiquimod+CpG  c Imiquimod  CpG Imiquimod+CpG
  Mean d SD e Mean SD Mean SD Mean SD Mean SD Mean SD
Cytokines and Chemokines  
Ccl2  82.5 2.8 81.9 25.2 76.6 28.3 0.7 1.6 2.8 1.2 0.7 1.7
Csf2  178.0 11.0 221.9 48.8 131.7 17.5 8.1 3.1 25.2 8.8 7.7 2.6
Csf3  33.3 3.7 20.9 2.5 24.4 3.5 252.7 52.2 70.9 13.7 175.7 49.1
Cxcl10  159.2 44.3 124.9 17.5 130.8 42.7 69.8 45.6 343.2 216.6 49.3 33.9
Ifnb1  29.8 9.2 13.4 2.1 17.5 4.3 53.2 9.7 35.5 7.0 30.2 12.4
Il1a  580.0 88.9 464.8 168.9 354.9 155.8 267.5 22.0 47.7 8.7 187.8 26.1
Il1b  2,005.8 196.3 1,904.8 602.9 1,503.7 711.1 3,629.1 322.6 712.3 147.2 2,644.7 218.7
Il6  54.2 5.6 66.2 30.0 43.1 17.5 47.9 5.5 84.4 30.0 42.2 3.6
Il10  54.5 4.0 83.2 42.6 119.4 61.2 115.4 34.9 19.5 3.0 59.6 15.3
Il12a  6.1 1.5 3.7 1.7 5.5 0.8 2.8 4.1 3.9 1.8 5.2 2.7
Lta (Tnfb) 2.5 3.9 3.7 0.9 4.5 3.5 10.1 4.2 7.2 1.1 8.4 3.1
Tnf  323.1 8.0 485.0 39.7 390.4 65.6 19.8 4.5 34.0 13.0 21.8 8.3
Co-stimulatory Molecules  
Cd80  2.4 0.2 2.4 0.2 2.3 0.1 -2.2 0.2 0.4 1.3 -1.7 0.0
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Fig. 5.6. Change in mRNA Expression Following TLR7 and/or TLR9 Agonist 
Stimulation in Astrocytes and Microglia.  Diagram of gene expression based on Table 
5.1-3. Cultured astrocytes and microglia were stimulated with 5 µM imiquimod or 80 nM 
CpG-ODN 1826 or both. RNA was isolated at 6 hps, reverse transcribed and cDNA 
analyzed for mRNA expression by quantitative real-time PCR analysis using a TLR-gene 
related super array. Genes were presented as a schematic of their involvement in the TLR 
signaling cascade or as genes induced by the signaling cascade. Increased mRNA 
expression of these genes in both microglia and astrocytes is indicated by bold purple 
lettering, in astrocytes only by bold blue lettering and in microglia by bold red lettering.  
Tlr4 mRNA was downregulated in microglia, while Tlr5 mRNA was downregulated in 
both microglia and astrocytes.  Genes indicated in black lettering were not altered in 
either cell type and in grey lettering were not analyzed for mRNA expression.  
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Table 5.1). Thus, TLR stimulation does not appear to automatically induce self 

upregulation of mRNA expression, suggesting a more complex regulation of TLR gene 

expression.   

Cd14 mRNA expression was substantially upregulated on astrocytes, but not 

microglia, following TLR agonist stimulation.  Since microglia respond more strongly to 

CD14 stimulation than astrocytes, we verified Cd14 mRNA expression using quantitative 

real-time RT-PCR with different sets of primers. Cd14 mRNA was substantially 

upregulated by TLR stimulation in astrocytes by real-time RT-PCR; however, this 

increase in Cd14 mRNA expression by astrocytes was still lower than the basal level of 

Cd14 mRNA expression by microglia cells (data not shown). 

5.2.5. mRNA Expression of Inflammatory Genes Following TLR7/9 Stimulation.    

 Since astrocytes function as support cells for neurons, we examined whether TLR7 

agonist or TLR9 agonist stimulation altered the mRNA expression of non-immune genes 

that can affect neuropathogenesis.  A minor difference was noted in the expression of 

S100b and/or brain derived neurotrophic factor (Bdnf) mRNA following TLR7 or TLR9 

agonist stimulation of astrocytes (Fig. 5.7). However, the expression of other genes 

including the glutamate scavenging receptors, Slc1a2 and Slc1a3, were not altered by 

TLR agonist stimulation. Expression of genes whose products are involved in protein-

aggregation-related diseases such as the amyloid beta precursor protein (App) or prion 

protein (Prnp) were also not altered by TLR agonist stimulation (Fig. 5.7 E, F).  Thus 

TLR7 and TLR9 agonist stimulation did not appear to substantially alter the mRNA 

expression of neuronal support-related genes in astrocytes.  In contrast, mRNA for 

Icam1, an adhesion molecule, was upregulated by both TLR agonists (Fig. 5.7 H).   
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Fig. 5.7. Influence of Imiquimod, CpG-ODN, or Co-Stimulation in Astrocytes and 
Microglia on the mRNA Expression of Inflammatory Genes. (A) S100b, (B) Brain-
derived neurotrophic factor (Bdnf), glutamate transporters (C) Slc1a2, (D) Slc1a3, (E) 
Amyloid precursor protein (App), (F) Prion protein (Prnp), (G) Nestin (Nes) and (H) 
Adhesion molecule (Icam1). Cultured astrocytes and microglia were stimulated with 5 
µM imiquimod, 80 nM CpG-ODN 1826, or both. At 6 hps, RNA was isolated, processed 
and analyzed by realtime RT-PCR. Values were calculated as gene expression as a 
percentage of Gapdh mRNA expression per sample.  Data represent the mean +/- SEM of 
three samples per group.  Statistical analysis was completed by one-way ANOVA with 
Bonferroni post-test. * P<0.05, ** p<0.01 and *** p< 0.001. Asterisks above bars 
indicated a significant upregulation compared to mock-treated controls. Lines with 
asterisks above the lines indicate the difference between the indicated groups.    
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5.2.6. Cytokine and Chemokine Production by Astrocytes and Microglia Following 
TLR7/9 Stimulation.   
 

Astrocytes and microglia often produce different cytokines during virus 

infections.  However, it is unclear whether this difference is due to the infection/stimuli 

or different responses of the cells to the same stimuli. Analysis of supernatants from 

astrocytes and microglia stimulated with either imiquimod or CpG-ODN demonstrated 

that TLR7 or TLR9 activation of glial cells induced a pronounced upregulation of 

proinflammatory cytokines including cytokines normally associated with virus infections 

in the CNS such as IL-6 and TNF (Fig. 5.8). Interestingly, microglia also produced high 

levels of granulocyte colony stimulating factor (G-CSF) and IL-9, two cytokines that 

have anti-apoptotic, neuroprotective properties  (Fontaine et al., 2008; Pitzer et al., 2008), 

as well as IL-15, which induces glial activation (Gomez-Nicola et al., 2008), and IL-10, 

an anti-inflammatory cytokine. This demonstrates a difference in the cytokine response of 

microglia and astrocytes to the same stimuli, with microglia producing high levels of both 

proinflammatory and antiinflammatory / neuroprotective cytokines, while astrocytes 

produced primarily proinflammatory cytokines.      

Chemokine production by astrocytes and microglia plays an important role in regulating 

the recruitment of inflammatory cells to the CNS following infection or injury.  Both 

astrocytes and microglia produced a number of chemokines following stimulation with 

either imiquimod or CpG-ODN (Fig. 5.9). Microglia, which had higher basal level 

production of most chemokines, were induced to produce higher levels of chemokine 

production than astrocytes.  For cytokine and chemokine production, stimulation of either 

cell type with the TLR7 agonist appeared to induce a slightly higher level of protein 

production than stimulation with the TLR9 agonist (Fig. 5.8, 5.9).   
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Fig. 5.8. Comparison of Cytokine Protein Production by (A) Astrocytes and (B) Microglia Stimulated with Imiquimod or 
CpG-ODN. Cultured astrocytes and microglia were stimulated with mock or 5 µM imiquimod or 80 nM CpG-ODN 1826 for 12 
hours. Supernatants were analyzed for cytokine protein production by multiplex bead array or by ELISA assay. Samples were 
calculated as pg/ml using a standard curve from in-plate standards. Data represent the mean +/- SEM of 3 samples per group. 
Statistical analysis was completed by one-way ANOVA with Bonferroni post-test. * P<0.05, ** p<0.01 and *** p< 0.001.  Asterisks 
above bars indicated a significant upregulation compared to mock-treated controls. Lines with asterisks above the lines indicate the 
difference between the indicated groups.
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Fig. 5.9. Comparison of Chemokine Protein Production by (A) Astrocytes and (B) 
Microglia Stimulated with Imiquimod or CpG-ODN. Cultured astrocytes and 
microglia were stimulated with 5 µM imiquimod or 80 nM CpG-ODN 1826 for 12 hours 
and supernatants were analyzed as described in Fig 5.8. Data represent the mean +/- SEM 
of 3 samples per group. Statistical analysis was completed by one-way ANOVA with 
Bonferroni post-test. * P<0.05, ** p<0.01 and *** p< 0.001.  Asterisks above bars 
indicated a significant upregulation compared to mock-treated controls.  Lines with 
asterisks above the lines indicate the difference between the indicated groups.  
 
 5.2.7. TLR7/9 Stimulated Astrocyte and Microglia Supernatants Have No Effect on 
Neuronal Survival  
 

Neuronal cultures were generated from cortices of embryonic mice (Fig. 5.10-

A,B) and contained only a small percent of astrocytes as detected by GFAP (Fig. 5.10C). 

To examine whether the secreted proteins produced by microglia or astrocytes had any 

effect on neuronal survival, supernatants from TLR7 and TLR9 stimulated astrocytes and 

microglia were overlaid on primary cortical neurons either in the presence or absence of 

NMDA. Neuronal survival was measured by MTT assay at 72 hours post stimulation.  
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Fig. 5.10. Primary Cortical Neurons in Culture. Cortical neurons from E16-E18 
pregnant mice were cultured as described in materials and methods. (A,B) Representative 
of neuron cultures, (C) Immunofluorescence staining for -tubulin (green) and GFAP 
(red).  

 
Fig. 5.11. Effect of TLR7 and TLR9 Stimulated Supernatants from Astrocyte and 
Microglia Cultures on Primary Cortical Neuron Cultures. Cortical neurons were 
cultured for 4 hours following isolation and then cultured with media containing a 1:1 
ratio of neurobasal media, containing all neuron growth factors, and supernatants from 
either (A) astrocyte or (B) microglia cultures in the presence or absence of NMDA. 
Neuron cultures were incubated at 37oC at 5% CO2 for 72 h and the cell survival was 
measured by MTT assay. Data represent the mean +/- SEM of three to four samples per 
group. Statistical analysis was completed by one-way ANOVA with Dunnett’s multiple 
comparison test with mock controls. * P<0.05. Asterisks above bars indicated a 
significant upregulation compared to mock-treated controls. 
 

Neurons cultured with the media used for either microglia or astrocyte cultures were used 

as controls.  Supernatants from TLR7 or TLR9 stimulated astrocytes and microglia had 

no substantial effect compared to supernatants from unstimulated cells (Fig. 5.11), 
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although there was a slight decrease in neuronal survival with neurons cultured with 

NMDA (N-methyl-D-aspartic acid) and supernatant from TLR9 stimulated neurons (Fig. 

5.11B).  Supernatants from cells stimulated with both TLR7 and TLR9 agonists also had 

no substantial effect on neuronal survival. 

5.2.8. Direct Stimulation of Neurons with TLR7/9 Agonists  

 To rule out any possible affect of the agonists present in the cultured supernatant 

from stimulated microglia and astrocytes, we also stimulated neuronal cultures directly 

with 5 µM of Imiquimod and/or 80 nM of CpG-ODN (Fig. 5.12A).  Interestingly, direct 

co-stimulation of neurons with imiquimod and CpG-ODN induced neuronal cell death 

similar to NMDA-induced death. This suggests a synergistic affect of TLR7 and TLR9 

agonist stimulation on neurons (Fig. 5.12A, E).  This was surprising as co-stimulation 

with TLR7 and TLR9 agonists did not induce cell death in either astrocytes or microglia 

cultures.   

5.3. DISCUSSION  

Multiple immune cell types, including plasmacytoid dendritic cells (pDC’s), 

macrophages and B cells, express both TLR7 and TLR9 (Hornung et al., 2002; Kadowaki 

et al., 2001; Krug et al., 2001). In the current study, astrocytes and microglia expressed 

both TLR7 and TLR9, and produced a functional response to TLR7 and TLR9 agonist 

stimulation. Interestingly, the cytokine profile produced by agonist stimulation was very 

similar between the type of TLR stimulation, but varied between cell types. Microglia, 

but not astrocytes produced anti-inflammatory and anti-apoptotic cytokines in addition to 

pro-inflammatory cytokines (Fig. 5.8). In contrast, astrocytes upregulated mRNA 

expression of a greater number of innate immune response genes than microglia  
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Fig. 5.12. Effect of TLR7 and TLR9 Agonists on Primary Cortical Neuron Cultures. 
Cortical neurons were cultured for 4 hours following isolation and then stimulated with 5 
µM imiquimod or 80 nM CpG-ODN 1826 and/or NMDA as described in methods. 
Neuron cultures were incubated at 37oC at 5% CO2 for 72 h and the cell survival was 
measured by (C) MTT assay or (D-G) immunofluorescence staining for -tubulin. Data 
represent the mean +/- SEM of three to four samples per group. Statistical analysis was 
completed by one-way ANOVA with Dunnett’s multiple comparison test with mock 
controls. *** p< 0.001.  Asterisks above bars indicated a significant upregulation 
compared to mock-treated controls. 
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including mRNA expression for genes whose proteins are involved in signal transduction 

responses (Fig. 5.6). Since astrocytes are not derived from an immune cell lineage, these 

cells may upregulate the expression of signal transduction proteins when they become 

activated in order to allow them to respond more strongly to innate immune stimuli. The 

strong differences in the response between astrocytes and microglia also indicate that the 

astrocytic response is not due to a contamination of microglia cells. The kinetics of gene 

expression may also vary between microglia and astrocytes. Although similar kinetics 

were observed in gene expression between microglia and astrocytes for Ccl2, Cxcl10 and 

Tnf (Fig. 5.4), the expression of other genes in the innate immune response may differ.  

The current study only analyzed a single time point and it is possible that there are 

fluctuations in other gene expression at earlier or later time points. 

TNF, at concentrations higher than 200 pg/ml can be neurotoxic (Gelbard et al., 

1993; Westmoreland et al., 1996). Surprisingly, neither supernatants from activated 

microglia nor activated astrocytes altered neuronal survival, despite high levels of TNF 

(Fig. 5.11).  Previous studies have demonstrated that CpG-ODN activation of co-cultured 

microglia and neurons can induce neuronal toxicity, mediated in part by TNF (Iliev et al., 

2004).  The inability of supernatants from CpG-ODN activated microglia to induce 

neurotoxicity suggests that cell to cell interactions may also be a necessary component of 

microglia-induced neuronal cell death and that other cytokines induced by TLR 

activation may counteract the neurotoxic effects of TNF.  

A few discrepancies were observed between mRNA expression and protein 

production in astrocytes and microglia in this study.  For example, Il10 mRNA was 

upregulated by TLR7/9 agonist stimulation in both astrocytes and microglia; however, 
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IL-10 protein was only detected in culture supernatants from microglia.  Tnf mRNA 

levels were substantially higher in astrocytes, but protein levels were either similar or 

higher in microglia. Both IL-10 and TNF undergo post-transcriptional or post-

translational modification that may influence the secretion of the protein in one cell type 

versus another (Pauli, 1994; Powell et al., 2000). Possibly, microglia may be able to 

translate cytokine and chemokine mRNA into functional proteins at a higher rate than 

astrocytes, resulting in higher protein production despite lower mRNA expression.       

The combination of TLR7 and TLR9 agonists had a synergistic effect on neuronal 

death (Fig. 5.12).  Neither TLR7 nor TLR9 agonists alone affected neuronal survival, 

which is similar to previous reports (Iliev et al., 2004; Ma et al., 2006). However, the 

combination of TLR7 and TLR9 agonists together was neurotoxic as determined by MTT 

assay as well as -tubulin staining (Fig. 5.12). Primary mouse neurons do not express 

TLR7 (Ma et al., 2006). One possible explanation is that the combination of TLR7 and 

TLR9 agonists altered the binding of CpG-ODN to the TLR9 receptor and induced an 

altered response that lead to cell death.  Alternatively, the combination of CpG-ODN and 

imiquimod may have activated TLR8, as TLR8 activation can induce caspase 3-induced 

death in neurons (Ma et al., 2006).  Oligonucleotides have been shown to enhance 

binding of TLR7/8 agonists to the TLR8 receptor, while inhibiting signaling to TLR7 in 

HEK cells (Gorden et al., 2006a; Gorden et al., 2006b).  

TLR7 and TLR9 agonists are being explored for their potential use as immune 

activators or immune response modifiers to enhance the vaccine efficacy and to treat 

infectious diseases, allergic diseases, and in cancer therapy (Pedras-Vasconcelos et al., 

2006; Pedras-Vasconcelos et al., 2008,El et al., 2006; Prins et al., 2006). It is important to 
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understand how these agonists affect glial cells, both to understand the mechanisms by 

which these agonists can be used as therapeutics and to examine how TLR7/TLR9 

activation of glial cells could alter the CNS microenvironment. In the present study, 

TLR7/TLR9 agonists induced multiple proinflammatory cytokines and chemokines at 

varying levels by astrocytes and microglia (Figs 5.6, 5.8, 5.9), but did not alter the 

mRNA expression of several non-inflammatory genes that are important to astrocytic 

functions (Fig. 5.7). This suggests that TLR7/TLR9 agonists may not alter the primary 

function of astrocytes, but still induce a strong proinflammatory response that may be 

limiting to virus infection and/or tumor growth.  However, it will be important to assess if 

repeated stimulation of glial cells with the same agonist alters the functional responses of 

astrocytes and microglia, or reduces their ability to respond to TLR stimulation. 

5.4. REFERENCES 

Barker, CF, Billingham, RE (1977). Immunologically privileged sites. Adv. Immunol., 
25, 1-54. 

Bowman, CC, Rasley, A, Tranguch, SL, Marriott, I (2003). Cultured astrocytes express 
toll-like receptors for bacterial products. Glia, 43, 281-291. 

Butchi, NB, Pourciau, S, Du, M, Morgan, TW, Peterson, KE (2008). Analysis of the 
neuroinflammatory response to TLR7 stimulation in the brain: comparison of 
multiple TLR7 and/or TLR8 agonists. J. Immunol., 180, 7604-7612. 

Carpentier, PA, Begolka, WS, Olson, JK, Elhofy, A, Karpus, WJ, Miller, SD (2005). 
Differential activation of astrocytes by innate and adaptive immune stimuli. Glia, 
49, 360-374. 

Carson, MJ, Doose, JM, Melchior, B, Schmid, CD, Ploix, CC (2006). CNS immune 
privilege: hiding in plain sight. Immunol. Rev., 213, 48-65. 

Dalpke, AH, Schafer, MK, Frey, M, Zimmermann, S, Tebbe, J, Weihe, E, Heeg, K 
(2002). Immunostimulatory CpG-DNA activates murine microglia. J. Immunol., 
168, 4854-4863. 



  143

El Andaloussi A., Sonabend, AM, Han, Y, Lesniak, MS (2006). Stimulation of TLR9 
with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice 
with experimental brain tumors. Glia, 54, 526-535. 

El, AA, Sonabend, AM, Han, Y, Lesniak, MS (2006). Stimulation of TLR9 with CpG 
ODN enhances apoptosis of glioma and prolongs the survival of mice with 
experimental brain tumors. Glia, 54, 526-535. 

Fontaine, RH, Cases, O, Lelievre, V, Mesples, B, Renauld, JC, Loron, G, Degos, V, 
Dournaud, P, Baud, O, Gressens, P (2008). IL-9/IL-9 receptor signaling 
selectively protects cortical neurons against developmental apoptosis. Cell Death. 
Differ., 15, 1542-1552. 

Gelbard, HA, Dzenko, KA, DiLoreto, D, del Cerro, C, del Cerro, M, Epstein, LG (1993). 
Neurotoxic effects of tumor necrosis factor alpha in primary human neuronal 
cultures are mediated by activation of the glutamate AMPA receptor subtype: 
implications for AIDS neuropathogenesis. Dev. Neurosci., 15, 417-422. 

Gomez-Nicola, D, Valle-Argos, B, Pita-Thomas, DW, Nieto-Sampedro, M (2008). 
Interleukin 15 expression in the CNS: blockade of its activity prevents glial 
activation after an inflammatory injury. Glia, 56, 494-505. 

Gorden, KK, Qiu, X, Battiste, JJ, Wightman, PP, Vasilakos, JP, Alkan, SS (2006a). 
Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by 
imidazoquinolines. J. Immunol., 177, 8164-8170. 

Gorden, KK, Qiu, XX, Binsfeld, CC, Vasilakos, JP, Alkan, SS (2006b). Cutting edge: 
activation of murine TLR8 by a combination of imidazoquinoline immune 
response modifiers and polyT oligodeoxynucleotides. J. Immunol., 177, 6584-
6587. 

Gurley, C, Nichols, J, Liu, S, Phulwani, NK, Esen, N, Kielian, T (2008). Microglia and 
Astrocyte Activation by Toll-Like Receptor Ligands: Modulation by PPAR-
gamma Agonists. PPAR. Res., 2008, 453120. 

Hornung, V, Rothenfusser, S, Britsch, S, Krug, A, Jahrsdorfer, B, Giese, T, Endres, S, 
Hartmann, G (2002). Quantitative expression of toll-like receptor 1-10 mRNA in 
cellular subsets of human peripheral blood mononuclear cells and sensitivity to 
CpG oligodeoxynucleotides. J. Immunol., 168, 4531-4537. 

Hosoi, T, Suzuki, S, Nomura, J, Ono, A, Okuma, Y, Akira, S, Nomura, Y (2004). 
Bacterial DNA induced iNOS expression through MyD88-p38 MAP kinase in 
mouse primary cultured glial cells. Brain Res. Mol. Brain Res., 124, 159-164. 

Iliev, AI, Stringaris, AK, Nau, R, Neumann, H (2004). Neuronal injury mediated via 
stimulation of microglial toll-like receptor-9 (TLR9). FASEB J., 18, 412-414. 



  144

Jack, CS, Arbour, N, Manusow, J, Montgrain, V, Blain, M, McCrea, E, Shapiro, A, 
Antel, JP (2005). TLR signaling tailors innate immune responses in human 
microglia and astrocytes. J. Immunol., 175, 4320-4330. 

Kadowaki, N, Ho, S, Antonenko, S, Malefyt, RW, Kastelein, RA, Bazan, F, Liu, YJ 
(2001). Subsets of human dendritic cell precursors express different toll-like 
receptors and respond to different microbial antigens. J. Exp. Med., 194, 863-869. 

Kelder, W, McArthur, JC, Nance-Sproson, T, McClernon, D, Griffin, DE (1998). Beta-
chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid 
of patients with human immunodeficiency virus-associated dementia. Ann. 
Neurol., 44, 831-835. 

Krug, A, Towarowski, A, Britsch, S, Rothenfusser, S, Hornung, V, Bals, R, Giese, T, 
Engelmann, H, Endres, S, Krieg, AM, Hartmann, G (2001). Toll-like receptor 
expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid 
dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-
12. Eur. J. Immunol., 31, 3026-3037. 

Lewis, SD, Butchi, NB, Khaleduzzaman, M, Morgan, TW, Du, M, Pourciau, S, Baker, 
DG, Akira, S, Peterson, KE (2008). Toll-like receptor 7 is not necessary for 
retroviral neuropathogenesis but does contribute to virus-induced 
neuroinflammation. J. Neurovirol., 14, 492-502. 

Ma, Y, Li, J, Chiu, I, Wang, Y, Sloane, JA, Lu, J, Kosaras, B, Sidman, RL, Volpe, JJ, 
Vartanian, T (2006). Toll-like receptor 8 functions as a negative regulator of 
neurite outgrowth and inducer of neuronal apoptosis. J. Cell Biol., 175, 209-215. 

McKimmie, CS, Fazakerley, JK (2005). In response to pathogens, glial cells dynamically 
and differentially regulate Toll-like receptor gene expression. J. Neuroimmunol., 
169, 116-125. 

Nau, R, Bruck, W (2002). Neuronal injury in bacterial meningitis: mechanisms and 
implications for therapy. Trends Neurosci., 25, 38-45. 

Parpura, V, Scemes, E, Spray, DC (2004). Mechanisms of glutamate release from 
astrocytes: gap junction "hemichannels", purinergic receptors and exocytotic 
release. Neurochem. Int., 45, 259-264. 

Pauli, U (1994). Control of tumor necrosis factor gene expression. Crit Rev. Eukaryot. 
Gene Expr., 4, 323-344. 

Pedras-Vasconcelos, JA, Goucher, D, Puig, M, Tonelli, LH, Wang, V, Ito, S, Verthelyi, 
D (2006). CpG oligodeoxynucleotides protect newborn mice from a lethal 
challenge with the neurotropic Tacaribe arenavirus. J. Immunol., 176, 4940-4949. 

Pedras-Vasconcelos, JA, Puig, M, Sauder, C, Wolbert, C, Ovanesov, M, Goucher, D, 
Verthelyi, D (2008). Immunotherapy with CpG oligonucleotides and antibodies to 



  145

TNF-alpha rescues neonatal mice from lethal arenavirus-induced 
meningoencephalitis. J. Immunol., 180, 8231-8240. 

Pitzer, C, Kruger, C, Plaas, C, Kirsch, F, Dittgen, T, Muller, R, Laage, R, Kastner, S, 
Suess, S, Spoelgen, R, Henriques, A, Ehrenreich, H, Schabitz, WR, Bach, A, 
Schneider, A (2008). Granulocyte-colony stimulating factor improves outcome in 
a mouse model of amyotrophic lateral sclerosis. Brain, 131, 3335-3347. 

Powell, MJ, Thompson, SA, Tone, Y, Waldmann, H, Tone, M (2000). Posttranscriptional 
regulation of IL-10 gene expression through sequences in the 3'-untranslated 
region. J. Immunol., 165, 292-296. 

Prins, RM, Craft, N, Bruhn, KW, Khan-Farooqi, H, Koya, RC, Stripecke, R, Miller, JF, 
Liau, LM (2006). The TLR-7 agonist, imiquimod, enhances dendritic cell survival 
and promotes tumor antigen-specific T cell priming: relation to central nervous 
system antitumor immunity. J. Immunol., 176, 157-164. 

Rock, RB, Gekker, G, Hu, S, Sheng, WS, Cheeran, M, Lokensgard, JR, Peterson, PK 
(2004). Role of microglia in central nervous system infections. Clin. Microbiol. 
Rev., 17, 942-64, table. 

Schroder, K, Spille, M, Pilz, A, Lattin, J, Bode, KA, Irvine, KM, Burrows, AD, Ravasi, 
T, Weighardt, H, Stacey, KJ, Decker, T, Hume, DA, Dalpke, AH, Sweet, MJ 
(2007). Differential Effects of CpG DNA on IFN-beta Induction and STAT1 
Activation in Murine Macrophages versus Dendritic Cells: Alternatively 
Activated STAT1 Negatively Regulates TLR Signaling in Macrophages. J. 
Immunol., 179, 3495-3503. 

Sorensen, LN, Reinert, LS, Malmgaard, L, Bartholdy, C, Thomsen, AR, Paludan, SR 
(2008). TLR2 and TLR9 synergistically control herpes simplex virus infection in 
the brain. J. Immunol., 181, 8604-8612. 

Town, T, Bai, F, Wang, T, Kaplan, AT, Qian, F, Montgomery, RR, Anderson, JF, 
Flavell, RA, Fikrig, E (2009). Toll-like receptor 7 mitigates lethal West Nile 
encephalitis via interleukin 23-dependent immune cell infiltration and homing. 
Immunity., 30, 242-253. 

Vargas, DL, Nascimbene, C, Krishnan, C, Zimmerman, AW, Pardo, CA (2005). 
Neuroglial activation and neuroinflammation in the brain of patients with autism. 
Ann. Neurol., 57, 67-81. 

Voyvodic, JT (1996). Cell death in cortical development: How much? Why? So what? 
Neuron, 16, 693-696. 

Westmoreland, SV, Kolson, D, Gonzalez-Scarano, F (1996). Toxicity of TNF alpha and 
platelet activating factor for human NT2N neurons: a tissue culture model for 
human immunodeficiency virus dementia. J. Neurovirol., 2, 118-126. 



  146

Wilson, EH, Hunter, CA (2004). The role of astrocytes in the immunopathogenesis of 
toxoplasmic encephalitis. Int. J. Parasitol., 34, 543-548. 

Wolburg, H, Lippoldt, A (2002). Tight junctions of the blood-brain barrier: development, 
composition and regulation. Vascul. Pharmacol., 38, 323-337. 

Zhang, Z, Trautmann, K, Schluesener, HJ (2005). Microglia activation in rat spinal cord 
by systemic injection of TLR3 and TLR7/8 agonists. J. Neuroimmunol., 164, 154-
160. 

 
 
 
 



  147

CHAPTER 6 

INTERACTIONS BETWEEN TLR7 AND TLR9 AGONISTS AND RECEPTORS IN 
INDUCING INNATE IMMUNE RESPONSES IN THE GLIAL CELLS AND THE 

CENTRAL NERVOUS SYSTEM* 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*A part of this chapter is reprinted with permission from the journal “Glia” 
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6.1. INTRODUCTION 

Synergistic co-activation among multiple TLRs has been reported. For example, 

synergistic response have been observed between TLR3 and TLR7 (Gautier et al., 2005; 

Napolitani et al., 2005; Roelofs et al., 2005; Warger et al., 2006), TLR4 and TLR7 (Gautier et 

al., 2005; Napolitani et al., 2005; Roelofs et al., 2005), TLR3 and TLR9 (Whitmore et al., 2004) 

and TLR2/4 and TLR9 (Agren et al., 2006). In contrast to induce synergistic co-activation, the 

TLR9 family receptors may inhibit each other signaling. Natural and synthetic TLR7 agonists 

were reported to inhibit CpG-ODN induced IFN production from plasmacytoid dendritic cells 

and B cells following TLR7/TLR9 co-stimulation (Berghofer et al., 2007a; Marshall et al., 

2007b). This may have important implications during pathogen infections in vivo since during 

virus infections, such as cytomegalovirus, HSV-1, HIV, both TLR7 and TLR9 pathways can be 

activated (Beignon et al., 2005; Mandl et al., 2008; Zucchini et al., 2008). Additionally, DNA 

and RNA derived from bacterial pathogens as well as necrotic or apoptotic cells can 

simultaneously stimulate TLR7 and TLR9 (Kariko et al., 2005). Understanding the interaction of 

TLR7/TLR9 agonists in the CNS is important for understanding pathogenesis.  

In addition to the agonist interactions, the level of receptor expression may also impact 

TLR7/TLR9 signaling. Co-expression of either TLR8 or TLR9 in TLR7 transfected HEK cells 

inhibited the response of these cells to TLR7 agonist stimulation, but not TLR8 or TLR9 agonist 

stimulation. Co-transfection of TLR8, but not TLR7, in TLR9 transfected human embryonic 

kidney (HEK) cells inhibited TLR9 agonist-induced responses, while neither TLR7 nor TLR9 

expression altered TLR8 agonist-induced responses in HEK cells (Wang et al., 2006). The 

inhibitory effects between the receptors may be due to the mechanisms by which these TLRs are 

transported to endosomes.  
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TLR7 and TLR9 trafficking from ER to endolysosomes is controlled by a multi 

transmembrane protein called Unc93B1, which reside in the endoplasmic reticulum. Once in the 

endosome, TLR7 and TLR9 are proteolytically cleaved to generate functionally competent 

receptors (Ewald et al., 2008; Park et al., 2008). Recent studies indicated that Unc93B1 inversely 

links TLR7 and TLR9 responses, with bias towards TLR9 and against TLR7. Thus, the presence 

or absence of one receptor may alter the responses of other receptor.  

In the present study, we analyzed the interaction between TLR7 and TLR9 agonists, as 

well as their receptors, in regulating innate immune responses both in vitro and in vivo. We 

utilized wild-type mice and mice deficient in TLR7, and glial cells cultured from TLR7 deficient 

mice.  

6.2. RESULTS  

6.2.1. TLR7 Agonist Can Inhibit TLR9 Agonist Stimulation in A Concentration Dependent 
Manner in Astrocytes and Microglia.   
 
 Natural and synthetic TLR7 ligands were reported to inhibit CpG-ODN induced IFNα 

production from plasmacytoid dendritic cells and B cells following TLR7/TLR9 co-stimulation 

(Berghofer et al., 2007a; Marshall et al., 2007b). Comparison of the fold increase in mRNA 

expression of innate immune response genes in astrocytes and microglia demonstrated only 

minimal suppression by imiquimod on CpG-ODN-induced responses when both agonists were 

added together (Table 5.1, Fig.6.1 A,C). To examine if a higher concentration of imiquimod was 

inhibitory to CpG-ODN induced responses, 50 M imiquimod was used in a co-stimulation 

experiment.  The high dose of 50 M was inhibitory to CpG-ODN induced cytokine and 

chemokine production (Fig. 6.1 B,D).  This inhibition was not due to cell death as all cultures 

had comparable numbers of live cells as determined by an MTT cell viability assay (Fig. 6.2 

B,C).  
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Fig. 6.1. Co-stimulation with TLR7/TLR9 Agonists Inhibits TLR9-Induced Cytokine and Chemokine mRNA Expression in 
Astrocytes and Microglia. Cultured (A,B) astrocytes and (C,D) microglia were stimulated with either (A,C) 5 µM imiquimod or 
(B,D) 50 µM imiquimod and/or (A-D) 80 nM CpG-ODN 1826. At 6 hps, RNA was isolated from all samples and processed for real-
time quantitative RT-PCR analysis and values were calculated relative to expression of Gapdh controls. Data are presented as the fold 
induction of each gene of interest relative to mock controls. Mock expression levels were calculated as the mean of 3 wells per group. 
Data represent the mean +/- SEM of 6-9 samples per group and present the combined data from two independent experiments. 
Statistical analysis was completed by one-way ANOVA with Bonferroni post-test. * P<0.05, ** p<0.01 and *** p< 0.001.  Asterisks 
above bars indicated a significant upregulation compared to mock-treated controls.  Lines with asterisks above the lines indicate the 
difference between the indicated groups.   
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Fig. 6.2. Specificity of Both Concentrations of Imiquimod for TLR7. Cultured (A,B) 
astrocytes or (C) microglia were stimulated with either (A) 5 µM imiquimod or (A,B,C) 
50 µM imiquimod and/or (B,C) 80 nM CpG-ODN 1826. (A) Stimulation of astrocytes 
generated from wild-type (TLR7+/+) and TLR7 deficient (TLR7-/-) mice to verify 
specificity of both concentrations of imiquimod. At 6 hps, RNA was isolated from all 
samples and processed for quantitative realtime RT-PCR. Samples were analyzed as 
described in Fig. 6.1. (B,C) Cell survival was measured by MTT assay at 6 h post 
stimulation. Data represent the mean +/- SEM of 3-6 samples per group and present the 
combined data from two independent experiments. Statistical analysis was completed by 
one-way ANOVA with Bonferroni post-test. * P<0.05, ** p<0.01 and *** p< 0.001.  
Asterisks above bars indicated a significant upregulation compared to mock-treated 
controls. Lines with asterisks above the lines indicate the difference between the 
indicated groups.  
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The stimulatory capability of certain TLR agonists can decline when used at high 

concentrations (Gorden et al., 2005; Marshall et al., 2007a). Since the 50 M 

concentration of imiquimod induced lower cytokine and chemokine responses than the 

5M concentration of imiquimod (Fig.6.1), we verified that both concentrations induced 

cytokine production through a TLR7 dependent mechanism. TLR7 was necessary for 

cytokine and chemokine responses at both 5 M and 50 M concentrations in astrocyte 

cultures (Fig. 6.2 A). Specificity of the response in microglia was not analyzed since the 

50M concentration of imiquimod did not induce a significant response in these cells.  

6.2.2. TLR7 Agonist Inhibition of TLR9 Agonist-Induced Responses is Not TLR7 
Dependent. 
 

To examine the mechanism by which high concentrations of imiquimod 

suppressed CpG-ODN responses, we first analyzed whether TLR7 signaling was required 

for this inhibition.  Interestingly, imiquimod suppressed CpG-ODN induced cytokine and 

chemokine production in glial cells from TLR7 deficient mice (Fig. 6.3). Thus, 

imiquimod suppression of CpG-ODN responses was not mediated by signaling of TLR7. 

We next examined whether imiquimod could be inhibiting the uptake of CpG-ODN by 

astrocytes or microglia.   

Cell entry analysis using FITC-labeled CpG-ODN demonstrated that CpG-ODN 

was taken up by both astrocytes and microglia at similar levels in the presence or absence 

of imiquimod (Fig. 6.4 A-F). Thus, imiquimod inhibits CpG-ODN by a mechanism 

independent of either TLR7 signaling or cell entry.  Instead, this suppression could be 

mediated by other mechanisms, including the possibility that high concentrations of 

imiquimod may interfere with CpG-ODN binding to TLR9. 
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Fig. 6.3. TLR7 Is Not Necessary for TLR7 Agonist Inhibition of TLR9-Induced Cytokine Responses in (A-D) Astrocytes or (E-
H) Microglia Cultures. Astrocyte and microglia cultures from TLR7 deficient mice were stimulated with TLR7 and/or TLR9 
agonists for 12h as shown in the figure and the supernatants were analyzed for cytokine protein production by multiplex bead array. 
Samples were calculated as pg/ml using a standard curve from in-plate standards. Data represent the mean +/- SEM of 3 samples per 
group. Statistical analysis was completed by one-way ANOVA with Bonferroni post-test. * P<0.05, ** p<0.01 and *** p< 0.001.  
Asterisks above bars indicated a significant upregulation compared to mock-treated controls.  Lines with asterisks above the lines 
indicate the difference between the indicated groups.  
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Fig. 6.4. TLR7 Agonists Do Not Inhibit the Endocytosis of FITC Labeled CpG-ODN 
Into Astrocytes or Microglia.  Astrocyte and microglia cultures at near confluency were 
incubated with 80 nM of FITC-labeled CpG-ODN and/or 5 to 50 M of imiquimod for 
30 min, and then washed extensively with PBS to remove unbound or non-internalized 
FITC-CpG.  FITC was detected in the cells of both (A) astrocytes and (B) microglia.  
Cells were then lysed and the level of fluorescence measured using a microplate reader 
(Polar star Omega, BMG labtech).   Fluorescence levels in unstimulated astrocytes and 
microglia were used as a baseline for each culture.  Data represent the average of 3 wells 
per group for (C-D) astrocytes or (E-F) microglia cultures generated from (A-C,E) wild-
type or (D,F) TLR7 deficient mice. Data is representative of one of the two replicate 
experiments. 
 
6.2.3. TLR7 Agonist Can Inhibit TLR9 Agonist Stimulation in vivo, Which Is 
Independent of TLR7.   
 
 To determine if the suppressive effect of imiquimod on CpG-ODN-induced 

cytokine production in vitro was also observed in vivo, we completed co-stimulation 

studies in the neonatal brain using optimal dose of agonists. Co-administration of 
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imiquimod and CpG-ODN in vivo suppressed CpG-ODN-induced expression of Icam1 

and Nos2 mRNA expression, and production of cytokines IL12, TNF, CCL2 and 

CXCL10 to varying degrees (Fig 6.5). 
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Fig. 6.5. Co-stimulation with TLR7/TLR9 Agonists Inhibits TLR9-Induced 
Cytokine and Chemokine mRNA and Protein Expression in the Neonatal Brain.  
Mice at 48 h of age were inoculated by intracerebroventricular injection with 100 nmoles 
of imiquimod, 80 pmoles of CpG-ODN, or both, or vehicle control (0.2% trypan blue in 
PBS). Brain tissues were removed at 12 hps and snap frozen for (A-C) RNA or (D-I) 
protein analysis as described. (A-C) RNA samples were processed for real-time 
quantitavie RT-PCR analysis and values were calculated relative to expression of Gapdh 
controls. Mock expression levels were calculated as the mean of 3 animals. Data 
represent the mean +/- standard deviation of 3-4 mice per group. (D-I) One half of 
sagitally divided brain was homogenized in lysis buffer containing protease inhibitors 
and analyzed for protein expression using a Biosource 20-plex bead array on a Bioplex 
Luminex system. Samples were calculated as pg/ml using a standard curve from in-plate 
standards and subsequently converted to fg/mg brain tissue. Data represent the mean +/- 
SEM of 4-9 mice per group. Statistical analysis was completed by one way ANOVA with 
Newman-keuls post-test. *P<0.05, **P<0.01. ***P<0.001.  
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  As the inhibitory effect of imiquimod on CpG-ODN-induced cytokine responses 

in astrocytes and microglia was independent of TLR7 signaling (Fig 6.3), we analyzed if 

TLR7 signaling was necessary for inhibition in the brain. Similar to the in vitro data, 

imiquimod suppressed cytokine production by CpG-ODN inoculation in the brain, in the 

absence of TLR7 (Fig 6.6). Thus, imiquimod inhibits CpG-ODN by a mechanism 

independent of TLR7 signaling both in vitro and in vivo.   
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Fig. 6.6. TLR7 Is Not Necessary for TLR7 Agonist Inhibition of TLR9-Induced 
Cytokine Response in the Neonatal Brain. TLR7 deficient mice were inoculated with 
vehicle control or 80 pmoles of CpG-ODN ± 100 nmoles of imiquimod by i.c.v. 
inoculation and tissues were removed at 12 hpi. One half of sagitally divided brain was 
homogenized in lysis buffer containing protease inhibitors and analyzed for protein 
expression using a Biosource 20-plex bead array on a Bioplex Luminex system. Samples 
were calculated as pg/ml using a standard curve from in-plate standards and subsequently 
converted to fg/mg brain tissue. Data represent the mean +/- SEM of 4-7 mice per group. 
Statistical analysis was completed by one way ANOVA with Bonferonni post-test. 
*P<0.05, **P<0.01. ***P<0.001.    
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6.2.4. Negative Influence of TLR7 on CpG-ODN-Induced Responses in Microglia. 

 To examine whether TLR7 itself had any impact on CpG-ODN stimulation, we 

examined the influence of TLR7 deficiency on CpG-ODN stimulation of glial cells.  

TLR7 deficiency had no effect on CpG-ODN induced cytokine stimulation by astrocytes 

(Fig. 6.7 A-D).  However, an increase in cytokine production was observed in TLR7-

deficient microglia stimulated with CpG-ODN compared to wild-type microglia (Fig. 6.7 

E-H).  Thus, both TLR7 agonists and TLR7 itself, have a suppressive effect on CpG-

ODN induced cytokine production by microglia.     
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Fig. 6.7. Effect of TLR7 Deficiency on TLR9-Induced Cytokine and Chemokine 
Production in Astrocytes and Microglia. (A-D) Astrocyte and (E-F) microglia cultures 
from wild type and TLR7 deficient mice were stimulated with mock control or 80 nM of 
CpG-ODN 1826 for 12h and the supernatants were analyzed as described in Fig 6.2. Data 
represent the mean +/- SEM of 3 samples per group. Statistical analysis was completed 
by one-way ANOVA with Bonferroni post-test. * P<0.05, *** p< 0.001. Asterisks above 
the lines indicate the difference between the indicated groups.   
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6.2.5. Influence of TLR7 on CpG-ODN-Induced Responses in vivo 

To see if a similar phenomenon was observed in vivo, both wild-type and TLR7 

deficient mice were inoculated i.c.v. with CpG-ODN and examined the induction of 

cytokine and chemokine induction. TLR7 deficiency had no effect on most of the 

cytokines and chemokine production by CpG-ODN inoculation, with the exception of 

IL6 and CXCL1 (Fig 6.8).   
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Fig. 6.8. Effect of TLR7 Deficiency on TLR9-Induced Cytokine and Chemokine 
Production in the CNS. Wild-type TLR7 deficient mice were inoculated with vehicle 
control or 80 pmoles of CpG-ODN by i.c.v. inoculation and brain tissues were removed 
at 12 hpi, processed analyzed as described in Fig. 6.5. Data represent the mean +/- SEM 
of 4-7 mice per group. Statistical analysis was completed by one way ANOVA with 
Bonferonni post-test. *P<0.05, **P<0.01. ***P<0.001.   
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6.2.6. Analysis of Effect of TLR7 Deficiency on CpG-ODN-Induced Clinical Signs. 

As the TLR7 agonists and TLR7 itself have a suppressive effect on CpG-ODN-

induced proinflammatory cytokine production in microglia, we analyzed if this 

suppressive ability of TLR7 would protect the mice from TLR9-induced clinical signs 

and/or death. We utilized the TLR7 deficient mice and stimulated with CpG-ODN with a 

dose that induced severe clinical signs of respiratory distress and unresponsiveness. 

Interestingly, TLR7 deficiency induced severe clinical signs/death at lower dose of CpG-

ODN (Fig. 6.9) compared to wild type mice. Thus, the presence of TLR7 appears to 

regulate TLR9 response and protect mice from TLR9-agonist induced clinical signs 

and/or death.   

 

Fig. 6.9. Comparison of CpG-ODN-Induced Clinical Signs between Wild Type and 
TLR7 Deficient Mice. Wild type and mice deficient in TLR7 were inoculated with 2.5 
g, 5 g or 7.5 g per mg bodyweight and analyzed for clinical signs of respiratory 
distress and unresponsiveness.   Statistical analysis was completed by two-way ANOVA 
with Bonferonni post-test. **P<0.01. ***P<0.001. 5-12 mice were used per dose and per 
strain.  
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6.3. DISCUSSION  

In the present study, TLR7 agonist, imiquimod, could inhibit TLR9 agonist-

induced innate immune responses, in both astrocytes and microglia in a concentration 

dependent manner. This was also observed in vivo, with TLR7 agonist inhibiting the 

TLR9 agonist induced responses. Surprisingly, this inhibition was not mediated by TLR7, 

as deficiency in TLR7 did not alter suppression of the TLR9 agonist-induced responses, 

either in vitro or in vivo. The suppression of innate immune responses was also not due to 

an inhibition of TLR9 agonist uptake, as demonstrated in both astrocytes and microglia. 

An antagonistic relationship was also observed between the two receptors in microglia, 

but not in astrocytes, with TLR7 deficiency resulting in enhanced cytokine responses to 

CpG-ODN stimulation. Furthermore, deficiency of TLR7 induced more severe clinical 

signs or death in mice inoculated with CpG-ODN compared to wild type mice. Thus, 

both TLR7 and its agonist can have inhibitory effects on TLR9 agonist -induced cytokine 

responses in the CNS.  

High concentrations of imiquimod inhibited CpG-ODN induced responses in both 

microglia and astrocyte cultures (Fig. 6.1). Suppression of TLR9 agonist-induced 

interferon responses by both natural and synthetic agonists have previously been shown 

for both plasmacytoid dendritic cells and B cells (Berghofer et al., 2007b; Marshall et al., 

2007a). However, the mechanism behind this suppression was not known. Our current 

results indicate that the mechanism behind this suppression is not due to a feedback 

mechanism by TLR7 signaling (Fig. 6.3).  It is possible that the mechanism of 

suppression is due to an interaction between TLR7 and TLR9 agonists, with imiquimod 

interacting with CpG-ODN and preventing binding of CpG-ODN to TLR9. Alternatively, 



  161

high concentrations of imiquimod may allow imiquimod to interact directly with TLR9, 

thus inhibiting the binding of CpG-ODN to TLR9. In both scenarios, the inhibition would 

be concentration dependent and would explain why 50 M concentrations of imiquimod 

suppress CpG-ODN stimulation to a greater extent than 5 M (Figs. 6.1 & 6.3).   

Inhibition of TLR9 agonist-induced responses by TLR7 agonists was also 

observed in the neonatal brain, similar to glial cells. This inhibition was observed at the 

optimal concentration, in contrast to the glial cells where only higher concentrations of 

TLR7 agonist inhibited TLR9 agonist-induced responses. This could be because both 

TLR7 and TLR9 agonists induced same level of cytokine and chemokine production in 

vitro (Fig. 5.8), and imiquimod does not appear to inhibit CpG-ODN responses at optimal 

concentration (Fig 6.1). However, TLR9 agonist induced substantially higher cytokine 

production in the neonatal brain compared to TLR7 agonist (Fig. 4.7), and the inhibition 

of TLR9 agonist-induced responses were easily observed following co-stimulation.   

 Although the TLR7 receptor did not have a direct role in imiquimod-mediated 

inhibition of CpG-ODN-induced responses in glial cells, TLR7 does appear to have a 

direct suppressive effect on TLR9 responses. Microglia, but not astrocytes, from TLR7 

deficient mice had higher levels of cytokine production following CpG-ODN stimulation 

compared to microglia from wild type mice (Fig. 6.7). This suppressive effect was not 

observed with all cell types as astrocytes responded similarly to CpG-ODN in presence or 

absence of TLR7 (Fig. 6.7). Furthermore, the presence of TLR7 reduces the TLR9 

agonist-induced clinical signs in mice probably by limiting TLR9 activation and 

suppressing the proinflammatory cytokines and chemokine production from microglia, 

ependymal cells and other cells responsible for the high levels of TNF, IL1, IL1, and 
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IL6. Possibly, there is a distinct interaction between TLR7 and TLR9 regulation in 

different cell types. TLR7 and TLR9 compete for binding of the Ubiquitin protein, 

Unc93b1, which regulates the migration of these receptors from the endoplasmic 

reticulum to the endolysosomes (Fukui et al., 2009). The relative ratio of TLR7, TLR9, 

Unc93b, or MyD88, the signal transduction molecule associated with both TLR7 and 

TLR9, in the endosomes of different cell types may influence receptor signaling and 

cytokine production, and regulate the interactions between these two receptors.   
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7.1. SUMMARY AND FUTURE DIRECTIONS 

Toll-like receptors 7 (TLR7) and 9 (TLR9) are important mediators of innate immune 

responses (Barchet et al., 2005; Diebold et al., 2004; Heil et al., 2004; Hemmi et al., 2000; 

Hornung et al., 2004). Numerous studies have demonstrated a clear role for these receptors in the 

activation of dendritic cells and B cells, as well as their role in a number of disease related 

conditions from autoimmunity to viral and bacterial infections (Aravalli et al., 2007; Kirton et 

al., 2005; Kristensson, 2006; Mishra et al., 2006; Tardieu et al., 2000). However, there is a lack 

of basic understanding of how these receptors function in specific responses, including systems 

that lack dendritic cells such as the CNS. The present study compared the neuroinflammatory 

responses to both TLR7 and TLR9 agonists, examined the differences in the responses and the 

interaction between receptors and agonists in regulating innate immune responses. 

Intracerebroventricular inoculation of TLR9 agonists induced a more pronounced inflammatory 

response than TLR7 agonists and at higher concentrations induced death in mice. TLR9 agonist-

induced inflammatory response was associated with high levels of Icam1 expression and 

heightened levels of TNF, IL-1 and IL-6. The difference between TLR7 and TLR9 agonists 

does not appear to be due to specific activation of astrocytes or microglia as these cell types 

responded similarly in vitro. Instead, other cell types such as ependymal cells and endothelial 

cells may be responsible for the heightened immune response. In addition, this study identified 

an interaction between TLR7 and TLR9 agonists and receptors in regulating neuroinflammatory 

responses.  

Intracerebroventricular inoculation of TLR9 agonist induced severe clinical signs and/or 

death in newborn mice depending on concentration (Fig. 4.1) (Pedras-Vasconcelos et al., 2006; 

Pedras-Vasconcelos et al., 2008). Potentially, the severity of symptoms following TLR9 agonist 

inoculation could be attributed to the high production of TNF or other cytokines following TLR9 
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stimulation, not seen with TLR7 stimulation (Fig. 4.1). High levels of TNF expression are 

associated with meningococcal meningitis as well as septic shock (Pedras-Vasconcelos et al., 

2006). TNF has been suggested to play a role in endothelial damage, vasodilatation and capillary 

leakage (Pedras-Vasconcelos et al., 2006). Similar events may occur following the upregulation 

of TNF following CpG-ODN inoculation which lead to the death of the neonatal mice.  

The proinflammatory cytokines IL6, IL1, and IL1 were also produced at higher levels 

following CpG-ODN inoculation in the brain. High expression levels of IL6, IL1 are also 

associated with meningococcal meningitis as well as septic shock (Pedras-Vasconcelos et al., 

2006). High expression of IL6 is also associated with streptococcal meningitis (Marby et al., 

2001). IL1 expression is increased in neonatal sepsis and meningitis (Fida et al., 2006). The 

role of these cytokines as well as TNF in CpG-ODN induced meningitis and death can be studied 

by inoculating CpG-ODN, at a concentration that induced clinical signs/death in the wild-type 

mice, intracerebroventricularly in mice deficient in TNF or other cytokines, and analyze whether 

the absence of these cytokines protects these mice from TLR9 agonist inoculation.   

 One possible reason for the differences between imiquimod and CpG-ODN-induced 

neuroinflammation could be the expression of adhesion molecules that could lead to infiltration 

of peripheral immune cells into the brain. Icam1 mRNA was upregulated to a higher level by 

CpG-ODN stimulation compared to imiquimod stimulation in the whole brain tissue (Fig. 4.6D) 

and also in the meningeal (Fig. 4.12) and microglial cell cultures (Fig. 5.7). Icam1 is often 

upregulated in the brain following infection and is involved in the recruitment of inflammatory 

cells to the CNS (Drescher et al., 2002; Lopez et al., 1999; Wells et al., 2001). The 

proinflammatory cytokines, such as TNF and IL-1 were shown to markedly upregulate Icam1 

expression on the luminal surface of endothelial cells and increases the blood-brain barrier 
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permeability (Brabers and Nottet, 2006). The higher levels of proinflammatory cytokines 

secreted by CpG-ODN stimulation in the brain might have increased Icam1 expression in the 

meninges and endothelial cells leading to cellular infiltration into the brain, causing more 

pronounced meningeal inflammation.  

Although there were major differences between imiquimod and CpG-ODN stimulation in 

the neonatal brain, pronounced differences were not observed between imiquimod and CpG-

ODN stimulation in astrocyte, microglia or meningeal cultures (Fig 5.8, 5.9, 4.12). Similar 

results were also observed in B cells, with no differences between TLR7 and TLR9 stimulation 

(Hanten et al., 2008). The cells in culture might be in an activated state and respond to these 

agonists similarly. One other possible reason is that the agonists may not be in direct contact 

with all different cell types in the brain and the spread of agonists is area specific, whereas all the 

cells in culture will be activated simultaneously. Additionally, the direct interactions between 

different cell types in the brain might alter responses between the agonist stimulations, or the 

cytokines secreted by one cell type might alter the responses of other cell types. The effect of one 

cell type on the other cell types, by direct contact or by secretion of cytokines, need to be 

investigated in co-culture studies. Although there were no major differences between two agonist 

stimulations, notable differences were observed between different cell types with astrocytes 

producing only proinflammatory cytokines, whereas the microglia producing both 

proinflammatory and anti inflammatory cytokines. The difference in cytokine production by 

astrocytes and microglia might have practical implications for disease. The anti-inflammatory 

cytokines produced by microglia might keep the balance in proinflammatory responses induced 

by both astrocytes and microglia, and prevent damage in the brain during pathogen infections.  

Imiquimod inhibited CpG-ODN-induced innate immune responses both in vitro and in 

vivo. This supports previous studies demonstrating inhibition of CpG-ODN- induced IFNα 
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production from plasmacytoid dendritic cells and B cells, following co-stimulation with natural 

and synthetic TLR7 ligands (Berghofer et al., 2007; Marshall et al., 2007). However, the 

mechanism behind this suppression was not known. In the current study, this inhibition was 

surprisingly not mediated by TLR7, as deficiency in TLR7 did not alter suppression of the TLR9 

agonist-induced responses both in the glial cells and also in the neonatal brain. Our current 

results also indicate that the mechanism behind this suppression is not due to the inhibition of 

TLR9 agonist uptake. Possibly, imiquimod may directly interact with CpG-ODN and prevent its 

binding to TLR9, or imiquimod may directly interact with TLR9 and block the receptor 

signaling, thus inhibiting the binding of CpG-ODN to TLR9. This possible mechanism might be 

studied by over-expressing TLR9 in the cells and analyzing the inhibitory effects of imiquimod 

on CpG-ODN induced cytokine production. If the imiquimod directly binds to CpG-ODN and 

inhibit CpG-ODN induced responses, then the over-expression of TLR9 should not enhance the 

CpG-ODN induced responses. However, if imiquimod blocks TLR9 receptor, over-expression of 

TLR9 should reverse the inhibitory effects of imiquimod, bringing the CpG-ODN induced 

responses to the level in wild-type cells.  

Co-stimulation of neurons with TLR7 and TLR9 agonists killed the neurons but not by 

individual agonists. Neither TLR7 nor TLR9 agonist alone affected neuronal survival, which is 

similar to previous reports (Iliev et al., 2004; Ma et al., 2006). Neuronal death following co-

stimulation was surprising as co-stimulation with TLR7 and TLR9 agonists did not induce cell 

death in either astrocytes or microglia. These results are very interesting and need further 

investigation. The combination of TLR7 and TLR9 agonists might have altered the binding of CpG-

ODN to the TLR9 receptor and induced an altered response that lead to cell death. Alternatively, the 

combination of CpG-ODN and imiquimod may have activated TLR8, as TLR8 activation can induce 

caspase 3-induced death in neurons. Oligonucleotides have been shown to enhance binding of 
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TLR7/8 agonists to the TLR8 receptor, while inhibiting signaling to TLR7 in HEK cells. These 

potential alterations in receptor binding can be studied utilizing neurons from TLR7, TLR9 and 

Unc93b1 knockout mice to examine which receptors mediate this response.  

The present study also determined the cross-regulatory capabilities of the receptors in 

vitro and in vivo. An increase in cytokine production was observed in TLR7-deficient microglia 

stimulated with CpG-ODN compared to wild-type microglia. An antagonistic relationship 

between TLR7 and TLR9 was observed with only few cytokines in the neonatal brain, including 

IL6 and CXCL1. Possibly, there is a distinct interaction between TLR7 and TLR9 regulation in 

different cell types. One of the predicted mechanism for these interactions is the generation of 

heterodimers between TLR7 and TLR9 that could inhibit or enhance MyD88 binding and the 

signal transduction cascade (O'Neill and Bowie, 2007). However, it is difficult to demonstrate 

whether TLR7 and TLR9 can directly interact each other and form heterodimers at molecular 

level in astrocytes and microglia in their native state as these receptors are expressed at very low 

level. Direct interaction between these receptors might be studied by either co-

immunoprecipitation and western blot studies, or mass spectrometry analysis of co-

immunoprecipitates. However, the lack of good antibodies that do not cross-react with other 

proteins makes it difficult to analyze if these two receptors directly interact with each other. This 

can potentially be overcome by expressing HA tagged or FLAG tagged TLR7 and TLR9 in 

astrocytes and microglia and study the interactions by co-immunoprecipitation or mass 

spectrometry analysis utilizing anti-HA antibodies.  

It is possible that these receptors might compete for some of the downstream signaling 

molecules or other proteins, rather than direct receptor interactions. Recent studies demonstrated 

that both TLR7 and TLR9 require the Ubiquitin protein, Unc93b1, for their transportation from 

endoplasmic reticulum to endolysosomes and compete for binding to Unc93b1 (Fukui et al., 
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2009). Possibly, in the absence of TLR7, more TLR9 might bind to Unc93b1 and be transported 

to the endolysosomes. MyD88, the signal transduction molecule associated with both TLR7 and 

TLR9, is another possible protein for which these two receptors may compete. In the absence of 

either TLR7 or TLR9, Unc93b1 or MyD88 might be more accessible by single receptor and thus 

enhance downstream signaling. It would be interesting to study if the expression level of Unc93b1 or 

MyD88 differ between cell types. This would potentially explain why there is a difference between 

astrocytes and microglia in TLR7 regulation of TLR9-induced responses.  

The present study has clinical relevance due to the current focus of TLR7 and TLR9 

agonists as immunomodulatory compounds for treatment of a wide variety of illnesses from 

cancer to viral infections (Murad et al., 2007; Wang et al., 2005; Wille-Reece et al., 2005; Zaks 

et al., 2006). TLR7 agonists induced substantial pro-inflammatory responses in the CNS in terms 

of cellular activation and production of proinflammatory cytokines and chemokines, without 

inducing overt damage. TLR9 agonists induced substantially higher pro-inflammatory responses 

in the CNS compared to TLR7 agonists in a dose dependent manner. Co-stimulation of TLR9 

with TLR7 agonists reduced the responses in the CNS. Utilizing TLR agonists as immune 

response modifiers in the CNS is a double edged sword, as the higher induction of 

neuroinflammation can cause neuronal damage and death. Utilizing a combination of TLR7 and 

TLR9 agonists as immune response modifiers might help in keeping the pro-inflammatory 

responses in the CNS in balance. These studies further need investigation in terms of infection or 

immunity against specific pathogens or conditions affecting brain.  
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APPENDIX-A 
COMMONLY USED ABBREVIATION 

 

ANOVA Analysis of Variance 

BBB Blood-brain barrier 
 
CCL2 Chemokine (C-C motif) ligand 2 / MCP-1 (monocyte chemo attractant 

protein1) 
 
CCL3 Chemokine (C-C motif) ligand 3 / MIP-1a (Macrophage Inflammatory 

Protein 1 alpha) 
 
CCL4 Chemokine (C-C motif) ligand 4 / MIP-1b (Macrophage Inflammatory 

Protein 1 beta) 
 
CCL5  Chemokine (C-C motif) ligand 5 / RANTES  
 
CCL12 Chemokine (C-C motif) ligand 12 / MCP-5 (Monocyte chemo attractant 

protein5) 
 
cDNA  Complementary DNA  
 
Ct   Cycle threshold 
 
CXC L1 Chemokine (C-X-C motif) ligand 1 / KC  
 
CXCL9 Chemokine (C-X-C motif) ligand 1 / MIG (Monokine induced by gamma 

interferon) 
 
CXCL10 Chemokine (C-X-C motif) ligand 1 / IP10 (Interferon gamma inducible 

protein -10) 
 
DNA  Deoxyribonucleic acid 

dpi  Days post inoculation 

ELISA  Enzyme-linked immunosorbent assay 

g  grams or radial centrifugal force 

GFAP  Glial fibrillary acidic protein 

GM-CSF Granulocyte monocyte colony stimulating factor 
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h  Hours(s) 

HEK  Human embryonic kidney 

hpi  Hours post-inoculation 

hps  Hours post-stimulation 

IBA-1  Ionized binding calcium adaptor molecule-1 

ICAM1 Intercellular adhesion molecule 1 

i.c.v.  Intracerebroventricular 

IFN  Interferon beta 

IL  Interleukin 

IP  Intraperitoneal 

IRW  Inbred Rocky mountain White 

KO  Knock out 

LPS  Lipopolysaccharide 

mg  milligrams 

NK  Natural killer cells 

ODN  Oligo deoxynucleotides 

PAMPs Pathogen associated molecular patterns 

PCR  Polymerase chain reaction 

PRRs  Pattern recognition receptors 

RNA  Ribonucleic acid 

RPM  Revolutions per minute 

RT  Reverse transcription 

SEM  Standard error of mean 
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SD  Standard deviation 

ssRNA  Single stranded ribonucleic acid 

dsRNA Double stranded ribonucleic acid 

TLRs  Toll-like receptors 

TNF  Tumor necrosis factor 
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