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ABSTRACT 

  The use of advanced imaging techniques has greatly improved orthopedic 

research and education. Histology of bone is a method of evaluating bone morphology, 

bony cells, and bone remodeling in two-dimensions, while micro-computed tomography 

(microCT) is a three-dimensional analysis of bone morphology. Combined, these 

methods assist in providing a comprehensive analysis of bone. In this dissertation, 

these techniques were utilized to answer questions currently outstanding in veterinary 

medicine: the effect of bisphosphonates on equine bone, and variation in murine tarsal 

anatomy.  

 Bisphosphonates are drugs that reduce osteoclast-mediated bone resorption and 

have recently been approved for the use in horses. Despite prolific clinical use, there 

has been little evidence of their effect on bone in horses. Therefore, the goal of these 

studies was to determine the impact of bisphosphonates on bone in normal, young 

horses. This was accomplished by evaluating bone biopsies taken before and 60 days 

after a single bisphosphonate administration. Biopsies were analyzed using microCT 

and histomorphometry. We found that the bisphosphonates studied have minimal to no 

effect on bone morphology and remodeling, and therefore conclude that these drugs do 

not negatively impact bone, and have no effect after 60 days.  

 Mice are the most commonly utilized animal model for orthopedic research, and 

knowledge of normal anatomy is critical to identify pathologies secondary to disease. 

We found conflicting evidence regarding the tarsal anatomy in the mouse. While normal 

tarsal variation exists in other species, this has not been documented in the mouse.  
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Therefore, the purpose of this study was to characterize the tarsal anatomy of the 

mouse. MicroCT data from muroid tarsi were collected, and representative tarsi were 

evaluated by histology. Fusion of the central and tarsal bone III was present in all 

laboratory mice evaluated, but was not present in the laboratory rat or wild white-footed 

mouse. This fusion was confirmed via histology; however, hyaline cartilage was present, 

surrounded by mature trabecular bone indicating a joint remnant despite the fused state 

of the bones. We conclude that in certain laboratory mouse strains, the central and 

tarsal bone III are fused into a single bone. 
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CHAPTER 1. 
 INTRODUCTION 

 
1.1 Review of Bone Biology 

 1.1.1 General Bone Anatomy 

 The normal human skeleton consists of 213 bones, which can be characterized 

based on shape and development (Clarke, 2008). These bones articulate together to 

provide a variety of functions to the body: structure and support to permit movement, 

storage of calcium and phosphate to maintain mineral homeostasis, and protection of 

internal organs and tissues (Weiner et al., 1999). General bone categories based on 

shape include long bones (e.g., femora, radii, and metacarpals), short bones (e.g., 

carpal and tarsal bones), flat bones (e.g., calvaria and ribs), and irregular bones (e.g., 

vertebrae) (Clarke, 2008). Long bones are longer than they are wide, comprised of a 

long, hollow shaft called the diaphysis, a rounded end proximal and distal to the growth 

plates called the epiphyses, and the area comprised of the growth plate between the 

diaphysis and epiphysis called metaphyses (Clarke, 2008). Contained within the 

diaphysis is a cavity called the medullary canal (Gray, 1918). Bone marrow is located 

within the bone medullary canal, and stores important hematopoietic and mesenchymal 

stem cells (Gurkan and Akkus, 2008). Short bones are as long as they are wide, and 

are composed of an outer cortical bone layer, with an inner trabecular bone center 

(Clarke, 2008). Flat bones are broad and thin, while irregular bones do not fit into the 

other categories and usually have unproportioned dimensions. However, they both 

contain an inner trabecular layer between dense cortical bone layers on either side 

(Gray and Goss, 1878, Rho et al., 1998).  
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 Bone is an organ, comprised of a hierarchical network of mineralized collagen 

fibrils, carbonated apatite crystals, and water (Weiner and Wagner, 1998). There are 

two types of bone based on gross morphology of the tissue: cortical and trabecular. 

Cortical bone, or compact bone, is dense and solid, providing strength and structure to 

bones by surrounding the medullary cavities (Clarke, 2008). Cortical bone is arranged in 

osteons, which are comprised of cylindrical rings of collagen fibers called lamellae, and 

contain a central canal that houses a neurovascular bundle (McGavin and Zachary, 

2006). Trabecular bone, or cancellous bone, is made up of hemi-osteons and are 

arranged in inter-connecting rods and plates, called trabeculae. This arrangement is 

directly related to the direction of stress placed on the particular bone.  

  The 3 main bone cells are osteoblasts, osteocytes, and osteoclasts (Raggatt and 

Partridge, 2010). Osteoblasts are derived from pluripotent mesenchymal stem cells, and 

are the bone-forming cells that synthesize the organic matrix and promote 

mineralization. Osteocytes are osteoblasts that become encapsulated within lacunae in 

newly-formed bone. Osteocytes have long processes that extend through small tunnels 

throughout the bone extracellular matrix. These small tunnels, or canaliculi, permit 

communication between osteocytes, as well as the bone surface (Raggatt and 

Partridge, 2010). Osteoclasts are macrophage polykaryons, formed through the 

differentiation of monocyte precursor cells, that degrades bone matrix by secreting 

enzymes and acid (Boyle et al., 2003).  
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 1.1.2 Bone Development 

 There are two classifications of bone development: endochondral and 

intramembranous ossification. Endochondral ossification is the process where bone 

replaces pre-existing cartilaginous anlagen (Olsen et al., 2000). The cartilaginous 

templates are formed during embryogenesis when mesenchymal cells condense and 

differentiate into chondrocytes (Erlebacher et al., 1995). After formation, chondrocytes 

within the anlagen proliferate and expand, producing cartilage matrix. Centrally-located 

chondrocytes mature into hypertrophic chondrocytes, creating a sequence of events 

that triggers specific factors to induce angiogenesis. During angiogenesis, osteoblasts, 

osteoclasts, and hematopoietic cells are brought into the location, allowing for 

mineralization to occur and creating primary ossification centers (Olsen et al., 2000). 

Endochondral ossification accounts for the formation of most of the skeleton, including 

the appendicular and axial skeleton (Ortega et al., 2004).  

Intramembranous ossification is the process by which mesenchymal cells 

differentiate directly into osteoblast cells, which produce bone directly without a 

cartilaginous precursor. Briefly, ossification begins with a thin layer of mesenchymal 

cells. As these cells become highly vascularized, they differentiate into isolated 

osteoblasts, which begin to secrete osteoid. This osteoid matrix will become mineralized 

by the end of the embryonic period, forming the beginning of the osteon (Cooper et al., 

2006). Flat bones of the skull and addition of new bone along the surfaces of long 

bones form through this process (Erlebacher et al., 1995).  

  

  



	4	

 1.1.3 Bone Remodeling 

 Bones undergo normal remodeling in order to maintain structure and integrity, 

repair damage in response to external and internal forces, and maintain homeostasis of 

minerals within the body. Overall, there are five phases of bone remodeling: activation, 

resorption, reversal, formation, and termination (Raggatt and Partridge, 2010). 

However, the completion of these events may vary greatly due to pathology or 

pharmacological treatments (Eriksen, 2010). During the activation phase, signals to 

initiate the remodeling process are detected by osteocytes (Bonewald, 2007), which can 

be due to structural damage or hormonal changes (Raggatt and Partridge, 2010), such 

as changes in estrogen or PTH (Eriksen, 2010). Osteocytes play an important role in 

detecting structural stresses and translating them into bone remodeling activation 

signals (Aarden et al., 1994). Osteocytes secrete transforming growth factor β (TGF- β) 

under normal conditions, which inhibits osteoclastogenesis and slows down overall 

remodeling rates; however, when bone is under stress, osteocytes undergo apoptosis 

which increases osteoclastogenesis (Aguirre et al., 2006). The resorption phase follows 

activation, where osteoblasts respond to the signals produced by the osteocytes, and 

recruit osteoclast precursors to the area of remodeling activity. Additionally, osteoblasts 

produce a chemoattractant that recruits osteoclast precursors and receptor activators of 

NF-!B ligand (RANKL), which promotes osteoclastogenesis (Li et al., 2007). 

Osteoblasts also secrete matrix metalloproteinases (MMPs) that break down the lining 

of the bone surface and expose adhesion sites necessary for osteoclast attachment 

(Raggatt and Partridge, 2010). Osteoclasts attach themselves to the bone matrix, and 

rearrange their cytoskeleton so that a dense, actin structure forms a tight seal along the 
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edges of the osteoclast (Lakkakorpi et al., 1989). These edges enlarge and form a 

ruffled border (Stenbeck, 2002), completing the seal, and allowing the osteoclast to 

create a micro-environment within the sealed area under the osteoclast, which is critical 

in bone resorption (Baron, 1989). Once attached, osteoclasts create an acidic 

microenvironment by use of hydrogen pumps. Together with other enzymes, this 

degrades the bone matrix beneath the osteoclast, creating a Howship’s lacuna 

(Teitelbaum, 2000). Following resorption, the reversal phase begins, where 

mononuclear cells of undetermined lineage prepare the bone surface for bone formation 

by removing collagen remnants and producing bone formation signals (Raggatt and 

Partridge, 2010). Factors that initiate the formation phase from reversal phase have not 

been fully identified, but include a coupling factor that promotes bone formation while 

inhibiting bone resorption (Martin and Sims, 2005). Mesenchymal stem cells or 

osteoblast progenitor cells are directed to the lacunae to differentiate and produce 

osteoid. After deposition, hydroxyapatite is incorporated into the newly formed osteoid, 

finalizing the bone formation (Raggatt and Partridge, 2010). Finally, the termination 

phase begins when the resorbed bone has been replaced, which is thought to be 

induced by a lack of sclerostin expression that was present during bone formation 

phases (Sapir-Koren and Livshits, 2014). The resting bone surface is reestablished, and 

continues in this state until the remodeling process begins again (Raggatt and 

Partridge, 2010). 
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 1.2 Overview of Bone Diseases 

 1.2.1 Diseases of Bone Development 

 Due to the complex nature of bone formation, it should follow that any slight 

disturbance in these coordinated events can result in skeletal pathologies. During 

endochondral bone development, there are numerous factors that control specific 

processes necessary for normal bone development. During chondrogenesis, Sox 

proteins (e.g., Sox9) are critical for differentiation of mesenchymal stem cells into 

chondrocytes (Akiyama et al., 2002), proliferation of chondrocytes in growth plates of 

long bones (Akiyama et al., 2004), and upregulation of gene expression responsible for 

producing critical components of cartilaginous matrix (Bi et al., 2001). Additionally, 

fibroblast growth factor receptor (FGFR) 3 is expressed in proliferating chondrocytes 

(Provot and Schipani, 2005). FGFR3 affects long bone development and specific 

mutations within it cause skeletal dysplasias including achondroplasia, 

hypochondroplasia, and thanotophoric dysplasia, which are all forms of short-limb 

dwarfism (Vajo et al., 2000, Ornitz and Marie, 2002). Bone morphogenetic proteins 

(BMPs) are vital to inducing cartilage and bone formation. During development, BMP 

signaling is critical during the formation of joints by stimulating cartilage formation, 

localizing the expression of joint molecular markers to the appropriate location, and 

causing apoptosis at the joint location to create the cavitation (Baur et al., 2000, Yi et 

al., 2000). Inhibition of BMP signals can result in brachypodism (Storm et al., 1994), 

where the appendicular skeleton is affected and characterized by shorter phalanges 

with irregular ossification patterns (Grüneberg and Lee, 1973). These abnormalities 

occur before the formation of the cartilage anlagen and, being an abnormality of the 
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blastemata, result in abnormal fusions of the carpal and tarsal bones (e.g., fusion of the 

navicular and tarsal bone III in the tarsus) (Grüneberg and Lee, 1973).  

  

 1.2.2 Diseases of Bone Remodeling 

 In order for bone to remain structurally sound and functional, there must be a 

balance of bone formation and resorption, resulting in minimal to no net changes in the 

amount of bone in a healthy, mature skeleton. However, this delicate balance can be 

disrupted by certain pathologies which can affect both bone forming and bone resorbing 

pathways. Osteoporosis is one of the most common forms of bone remodeling 

disorders, where there is an overall loss in bone mass, causing bone fragility (Feng and 

McDonald, 2011). Due to the broad nature of this disease, it is divided into primary and 

secondary types (Panel, 2001, Marcus and Bouxsein, 2008). Primary osteoporosis is 

caused by age-related events, such as decreased gonadal activity (Riggs et al., 1969), 

while secondary osteoporosis is a consequence of chronic medical conditions that result 

in bone loss, such as cancer, hyperparathyroidism, use of corticosteroids, renal failure 

and vitamin D deficiency (Moyad, 2003, Painter et al., 2006). Age-related osteoporosis 

occurs most commonly due to the lack of gonadal function (Riggs et al., 1969), where 

there is a decrease in estrogen or testosterone. This leads to increased bone resorption 

that exceeds normal bone formation, resulting in a net loss of bone. However, 

osteoporosis does occur in both men and women, and can occur before age-related 

hormonal changes (Riggs et al., 1969, Painter et al., 2006). Hypogonadism can occur in 

young women and men, such as during androgen deprivation therapy for prostate 

carcinoma (Mittan et al., 2002) or anorexia (Grinspoon et al., 2000). Aside from sex 
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hormone changes, there are multiple factors that lead to an increase in parathyroid 

hormone (PTH) levels, such as primary hyperparathyroidism (Painter et al., 2006) or a 

decrease in calcium resorption in the gastrointestinal tract (Feng and McDonald, 2011), 

that result in increased bone resorption rate. 

 Bone remodeling disease in humans, such as with osteoporosis, affects the 

entire skeleton and is a systemic change in bone mass. In some animal species, 

however, bone disorders exist that affect only specific bones and do not result in a net 

change in the rest of the skeleton. In the horse, navicular disease is a degenerative 

disease of the navicular (distal sesamoid) bone within the hoof, along with its associated 

soft tissue structures (i.e., deep digital flexor tendon, impar ligament, and navicular 

bursa). Navicular disease is characterized by excessive remodeling of the navicular 

bone and a loss of bone mass (Widmer et al., 2000). The etiopathogenesis of navicular 

disease is complex and multifactorial, potentially including biomechanical (Wright and 

Douglas, 1993), vascular (Colles and Hickman, 1977, Doige and Hoffer, 1983) and 

hereditary components (Bos et al., 1986). Vascular changes include arteriosclerosis and 

thrombosis of the supplying arteries of the navicular bone (Colles and Hickman, 1977), 

while biomechanical changes in the load applied to the navicular bone can lead to 

damage and increased remodeling in response to the increased load (Trotter, 2001). 

 

1.3 Bisphosphonate Treatments for Diseases of Bone Remodeling  

 Management of bone disease, including osteoporosis, was advanced greatly by 

the use of bisphosphonate drugs in the late 1960s (Russell, 2011). Bisphosphonates 

(BPs) are a chemically stable form of inorganic pyrophosphate, which gives BPs a 
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strong specific affinity for calcium, and are composed of two phosphonate groups. BPs 

are separated into two classes based on their chemical structure: nitrogen-containing 

BPs (e.g., zoledronate, alendronate, and ibandronate) and non-nitrogen containing BPs 

(e.g., clodronate, tiludronate, and etidronate) (Russell et al., 1999). Differences in 

individual bisphosphonate drugs within each class depend on the compound attached to 

the functional, or R-, group (Reszka and Rodan, 2003). Both classes, however, inhibit 

osteoclast-mediated bone loss by decreasing osteoclast activity. Nitrogen-containing 

BPs are more potent in reducing osteoclast-mediated bone loss than non-nitrogen-

containing BPs, and changes in the functional group can also lead to different 

physiochemical and pharmacologic modifications. Non-nitrogen containing BPs have 

been shown to affect osteoclasts by disrupting intracellular metabolism through 

methylene-containing analogs of adenosine triphosphate (ATP) (Frith et al., 2001). This 

converts the BP into a toxic metabolite within the cell, and accumulation of this 

metabolite inhibits the mitochondrial adenine nucleotide translocase, resulting in the 

loss of the mitochondrial membrane potential (Lehenkari et al., 2002). These events 

lead to apoptosis of the osteoclast, ultimately inhibiting bone resorption (Reszka and 

Rodan, 2003). Nitrogen-containing BPs inhibit osteoclast activity by disrupting farnesyl 

diphosphate synthase (van Beek et al., 1999, Fisher et al., 2000), an enzyme in the 

mevalonate pathway, that stimulates isoprenylation, which is important in regulating 

osteoclast morphology, cytoskeletal arrangement, vesicular trafficking, and membrane 

ruffling (Zhang et al., 1995, Chellaiah et al., 2000). There appears to be a dose-

dependent response of nitrogen-containing BPs, where small concentrations inhibit 

osteoclast functions necessary for bone resorption, and high concentrations lead to 
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osteoclast apoptosis (Halasy-Nagy et al., 2001). Therefore, nitrogen-containing BPs are 

exceptional inhibitors of bone resorption (Kimmel, 2007).  

 The pharmacokinetics of BPs depends on their classification (Licata, 2005). In 

general, BPs are polar compounds, making them poorly, yet rapidly absorbed after 

being ingested (Lin, 1996). BPs generally have <2% bioavailability (Yakatan et al., 

1982), and have low plasma protein binding of approximately 30% (Pentikäinen et al., 

1989). The peak serum concentration is obtained quickly following a single oral dose, 

within approximately 30 minutes (Laitinen et al., 2000). Most BPs are not metabolized, 

and are therefore excreted unchanged (Pentikäinen et al., 1989). BPs have a half-life of 

approximately two hours, with bone uptake and renal clearance accounting for the rapid 

clearance from plasma (Cocquyt et al., 1999). BPs have a high affinity for exposed 

hydroxyapatite, which occurs when bone surfaces are preparing for or currently 

undergoing bone resorption (Sato et al., 1991, Lin, 1996), which allows BPs to be taken 

up and stored in bone mineral surfaces (Russell et al., 1999), accounting for 

approximately 50-60% of the absorbed dose (Licata, 2005). The amount of BP released 

from bone depends on the rate of the remodeling process (Gatti and Adami, 1999), as 

the BPs are released when the bone matrix is dissolved during the remodeling process.  

 In addition to inhibiting bone resorption, the non-nitrogen containing BPs 

clodronate and etidronate have been shown to produce analgesic effects by entering 

neurons through the SLC20/34, and inhibiting glutamate and/or ATP transporters 

(Shima et al., 2016). Taken together, bisphosphonates are used in the treatment of 

numerous bone diseases in humans, including osteoporosis, Paget’s disease, 

hypercalcemia of malignancies associate with myeloma and bone metastases, and 
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osteogenesis imperfecta (Russell, 2011), and recently for horses with navicular disease 

(Denoix et al., 2003, Whitfield et al., 2016) and other skeletal pathologies [e.g., 

osteoarticular disease (Coudry et al., 2007, Gough et al., 2010, Soto and Barbará, 

2014) in veterinary medicine.  

 

1.4 Assessments of Bone Health 

 1.4.1 Non-Invasive Assessments 

 In many bone diseases, diagnostic and assessment of disease progression are 

critical factors in minimizing negative outcomes for a patient. Historically, obtaining a 

bone biopsy was considered the most powerful and informative evaluation technique for 

bone assessment (Malluche et al., 1999). However, this method is invasive, and may 

not be desirable in a diseased patient. In a human clinical setting, obtaining 

informational data, while remaining as non-invasive as possible, is critical in patient care 

and disease management. Radiographic imaging has long been the gold standard for 

evaluating a variety of pathologies, including bone disease (van de Heijde, 2000). 

Radiographs are obtained by photons generated and emitted from a cathode tube that 

is collimated to a specific region of interest. As the photons pass through the body, the 

photons will be attenuated by tissue according to density, providing levels of exposure 

to film for imaging (Drake et al., 2014). Although radiographs are routinely used in 

numerous fields of medicine, they can only detect bone losses of greater than 40-50%, 

and are therefore not sensitive enough to monitor progression of disease or treatment 

(Moyad, 2003).  
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For diseases that lead to bone loss, the bone mineral density (BMD) 

measurement is the primary diagnostic test and is the gold standard and best predictor 

of fracture risk (Hui et al., 1989, Moyad, 2003). BMD produces a relative, overall T-

score that describes the number of standard deviations a patient’s density is from a 

group of similarly matched young, normal individuals. There are numerous ways to 

obtain BMD, including ultrasound, computerized tomography (Yakatan et al.), dual-

energy X-ray absorptiometry (DEXA) and radiographs (Moyad, 2003). Ultrasound is the 

use of high frequency acoustic waves produced by piezoelectric material that passes 

through tissues without the use of ionizing radiation. As the waves pass, they bounce 

back based on tissue properties, are received back through the piezoelectric material, 

and are interpreted by a computer, producing a real-time image (Drake et al., 2014). 

Because it does not use radiation, ultrasound is a popular imaging modality, specifically 

in young adults and children, for monitoring bone disease (Siffert and Kaufman, 2007). 

In addition to providing information about bone density, ultrasound can also provide 

information about bone quality, such as elasticity and microarchitecture (Prins et al., 

1997). However, there is little information about overall sensitivity and accuracy of serial 

measurements (Moyad, 2003). CT scans produce an image by passing a mobile X-ray 

tube around the body, creating a series of serially-sectioned two-dimensional images of 

the body (Drake et al., 2014). When these images are stacked together, a three-

dimensional (3D) view is produced. CT is capable of producing extremely high-

resolution images, but will emit increased radiation to do so. Therefore, although CT has 

the highest sensitivity in detecting changes in bone density and trabecular and cortical 

bone morphology, it is expensive, requires specialized software for analyses, and can 
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produce large amounts of radiation, making it challenging to obtain multiple scans over 

an extended period of time (Moyad, 2003). DEXA is a dual energy source of X-ray that 

has much higher sensitivity and accuracy, while also decreasing radiation exposure 

compared to other forms of radiation imaging. In addition, DEXA is inexpensive 

compared to other imaging modalities, making it an ideal technology for serial 

measurements, and is the current gold standard for obtaining BMD measurements in a 

clinical setting (Moyad, 2003).  

In the veterinary clinical setting, the basic radiograph is still one of the most 

common diagnostic techniques utilized, but can be combined with additional imaging 

modalities, such as nuclear scintigraphy. Nuclear scintigraphy is a radionuclide bone 

imaging technique, where the uptake of radiopharmaceuticals, typically technetium-

99m-labeled diphosphonates for bone, quickly deposits into the bone matrix (McKillop 

and Fogelman, 1984). Areas of increased uptake indicate areas of abnormal remodeling 

and mineralization. Nuclear scintigraphy is highly sensitive, making it possible to detect 

the earliest stages of bone disease; however, due to poor resolution, the specificity is 

generally moderate to low (Weller et al., 2001), and limits its use in bone imaging in 

both human and veterinary medicine. In systemic abnormal bone remodeling, specificity 

is not as important in diagnosis; however, in localized disease where small tissues are 

involved, such as navicular disease, specificity is crucial for accurate diagnosis and 

characterization. When combined with other imaging, such as radiography, nuclear 

scintigraphy is a more useful tool in diagnosing and monitoring abnormal bone 

remodeling (Weller et al., 2001), such as with navicular disease (Dyson, 2002) or 

osteochondral diseases (Kawcak et al., 2000). 
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 1.4.2 Invasive Assessments 

  1.4.2.1 Histology 

 In research settings, there is less emphasis on patient comfort and longevity, and 

more emphasis on obtaining the most sensitive and accurate data possible, allowing for 

more invasive data collection methods. In this case, animal models of human disease 

are typically used, or animal models of animal disease in veterinary research. The more 

invasive technique of obtaining bone biopsies remains the gold standard for 

quantification of bone remodeling (Allen, 2003). Though obtaining bone biopsies is more 

invasive than most clinical settings prefer, research settings benefit greatly from 

numerous parameters available for direct evaluation through the use of histology. 

Histology is the process of embedding bone (or any other tissue) samples into a 

transparent material and taking thin, serial sections for examination under a microscope 

(Recker et al., 2011). Histomorphometry is the measurement of form and structure of a 

histologic tissue sample, permitting quantitative analysis of the structure (Duque and 

Watanabe, 2011). Previously, bone had to be de-mineralized by strong mineral or 

organic acids or acidic buffers, which would rapidly decalcify bone, so thin sections of 

bone could be sectioned for viewing (Recker et al., 2011). However, these agents were 

known to cause collagen fiber distortions and change the affinity of the tissue structure, 

weakening the staining outcomes; therefore, chelating agents, such as ethylenediamine 

tetraacetic acid (EDTA), have since replaced previous agents, as they do not have 

these negative secondary outcomes (Kiviranta et al., 1980). In the 1950s, however, a 

new method of embedding un-decalcified bone into plastic greatly improved bone 

research by allowing visualization and assessment of bone with its mineral components 
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(Frost et al., 1960). By preserving calcium in bone samples, a new technique of 

detecting newly-formed bone and mineralization, called fluorochrome labeling, was 

possible. Fluorochrome labeling uses injectable, calcium-binding tetracycline agents to 

directly measure bone remodeling dynamics in vivo over time (Frost, 1969). 

Tetracycline agents are able to make a complex with calcium that is deposited in areas 

of bone mineralization, and becomes permanently fixed within the mineralized matrix 

unless disturbed by subsequent remodeling processes (Frost et al., 1961). This 

deposition of tetracycline creates a brightly-lit area along the bone surface when 

exposed to ultra-violet light, indicating areas of remodeling and mineralization (Perrin, 

1965). Fluorochrome bone labeling has since been greatly advanced, with new methods 

of labeling bone with up to 7 distinct labels analyzed by specialized spectral image 

acquisition software, allowing numerous time points for analyses with decreased tissue 

collection requirements (Pautke et al., 2005). In addition to bone remodeling, data on 

bone structure and bony cells are analyzed. Various staining solutions are utilized to 

highlight certain features, such as tartrate-resistant acidic phosphatase (TRAP) staining 

using an enzyme-histochemistry protocol for specific staining of osteoclasts and alkaline 

phosphatase (ALP) staining for osteoblasts. There are some limitations of 

histomorphometry, however. Overall, slicing sections of the sample is inherently 

destructive, and an analysis on a small portion of the skeleton is difficult to generalize to 

the rest of the skeleton. Additionally, histomorphometry is a 2D evaluation that 

determines 3D parameters through the mathematical discipline of stereology, which 

interpolates 3D measurements from 2D measurements using mathematical theorems. 

However, despite being an estimation of 3D parameters, there is minimal and 
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acceptable error when applied to trabecular bone from ilium samples (Parfitt et al., 

1987, Dempster et al., 2013). Finally, histomorphometry is not the best assessment for 

bone mass, due to the 2D nature of the slice, as well as the small relative size of the 

section (Duque and Watanabe, 2011).  

   

  1.4.2.2 Micro-Computed Tomography 

 To overcome some limitations associated with histomorphometric analyses, 

evaluations are combined with micro-computed tomography (microCT). MicroCT is a 

high-resolution form of CT, and is an imaging modality to assess trabecular and cortical 

bone morphology with resolutions between 0.5 – 50 μm. MicroCT provides direct 

measurements of 3D bone morphology of entire biopsy samples, while providing 

excellent specificity and sensitivity using standardized parameters (Bouxsein et al., 

2010). The high resolution increases radiation exposure to the sample; however, in 

research settings the specimens are usually taken from animals that are euthanized or 

biopsies are collected from live animals. Combined with histomorphometry, a 

comprehensive analysis is possible, obtaining information about bony cellular 

morphology, bone remodeling dynamics and bone structure (Duque and Watanabe, 

2011). 

  

 1.4.3 Use of Imaging in Education and Research 

 With the advancements in medical imaging, anatomical education in both human 

and veterinary medicine have both benefited and incorporated many data in the medical 

anatomy curriculum. An in-depth understanding of anatomical structures and 3D 
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relationships is critical in medical training. High resolution images are obtained and can 

be combined to provide visual and technical experience for surgeons in training (Wiet et 

al., 2005). For example, high-resolution magnetic resonance imaging (MRI) and 

microCT data can be combined to visualize both soft and hard tissues within a sample, 

providing a visual and haptic display for a simulation of temporal bone dissection (Wiet 

et al., 2005). In addition to computerized visualizations, 3D printing is utilized in 

classrooms to provide additional understanding of anatomical structures (McMenamin et 

al., 2014). This is especially useful for biological structures or systems that are difficult 

to observe or manipulate in cadavers (AbouHashem et al., 2015). In addition to 

education, research relies on accurate representation of normal anatomical features, 

and benefit from high-resolution, 3D images of biological structures (Duce et al., 2010). 

Variation in reported anatomy greatly limits the potential for comparative anatomy 

between studies (Duce et al., 2010), and can limit the understanding of normal and 

pathological anatomical characteristics (El-Menyar et al., 2017).  

 

1.5 Animal Models of Orthopedic Disease 

 1.5.1 Selection of Animal Models 

 Animal models play a crucial role in the understanding, prevention and treatment 

of orthopedic disease for both human and veterinary medicine. However, there are 

important distinctions between human and animal bone that have implications for 

research outcomes (Aerssens et al., 1998). For example, bone repair rates differ 

between large and small species, and are inversely related to the species’ position on 

the phylogenetic scale, meaning rats have a higher rate of bone regeneration than 
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humans (Martini et al., 2001). In terms of bone composition, human bone is best 

represented by canine bone (Aerssens et al., 1998), but canine bone can withstand 

significantly higher compression strain than human bone (Kuhn et al., 1989). The use of 

quadrupeds as an animal model for human health has been questioned, especially in 

relation to differential loading secondary to bipedalism in humans. However, certain 

animal models can be selected based on specific criteria pertinent to the study (e.g., 

use of sheep in spine research due to similarities to humans in long axis loading (Smit, 

2002)). 

The type of animal model selected for research also depends on the aim of the 

study. When determining the pathogenesis and pathophysiology of a particular disease, 

smaller animals offer quick and cost-effective models than do larger animals. Small 

animal models also offer quick screenings of therapeutic interventions and drug safety. 

Large animal models, however, offer similar body size to humans and therefore can 

make therapeutic or surgical interventions more translatable to humans (Kuyinu et al., 

2016). Thus, researchers must carefully evaluate the goals and anticipated outcomes of 

a study when determining the appropriate animal model. When evaluating animal 

diseases in veterinary medicine, researchers often have the benefit of using the specific 

animal of interest, eliminating the need for a translatable model. However, the 

disadvantages of the specific species have to be accounted for, including expense and 

the impact of ethical limitations imposed for use of companion animal species. 

Therefore, there is usually smaller sample sizes available for research utilizing large 

animal models. 
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 1.5.2 Small Animal Models 

 The most common small animal orthopedic models include the rat, mouse, 

guinea pig and rabbit (Aerssens et al., 1998, Kuyinu et al., 2016). Small animal models 

have numerous advantages, including ease of handling, economical housing costs, 

short breeding cycles and well known genetics (Histing et al., 2011). For mice, a known 

genome make them the perfect model for utilizing genetic manipulations to study 

molecular mechanisms. Due to an increase in use of rodents in research, specifically 

mice, much information is known about their physiology, and many experimental 

protocols and kits are designed for this species. This makes their use more standard 

and widely available for additional research, and make them more favorable than a 

large animal model that does not have the same available data (Histing et al., 2011).  

  

 1.5.3 Large Animal Models 

 Non-human primates offer valuable information to human medicine due to their 

very similar physiological and behavioral characteristics (Kuyinu et al., 2016). Although 

non-human primates are the most relevant in terms of mimicking human disease, they 

are extremely expensive and are associated with ethical concerns, in addition to the 

possible spread of infectious disease, making them a difficult option for many 

researchers (Reinwald and Burr, 2008). Therefore, cost-effective alternatives to non-

human primates, such as ungulate and canine species, are practical, large animal 

model substitutes. Although more expensive in terms of management, large animal 

models are a necessity in certain research, such as osteoporosis and osteoarthritis 

research, due to their longer lifespan, similarities in osteonal remodeling and naturally-
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occurring disease (Reinwald and Burr, 2008). Additionally, it is extremely important that 

the animal model develop the desired disease in a similar pathway, such as a loss of 

estrogen in an osteoporosis model, so that therapeutic interventions behave similarly in 

both the animal model and human. Dogs have long been considered the ideal 

alternative to the non-human primate, and have been one of the most studied large 

animal models for orthopedic research (Martini et al., 2001). However, the use of dogs 

poses a similar ethical concern as do non-human primates due to their companion 

status (Rollin, 2006), and the use of dogs has since decreased in research settings. 

Pigs have physiological similarities to humans, including sequential skeletal phases of 

development. Sheep are another alternative large animal model, and are being used 

more frequently in orthopedic research due to their ease of handling (Martini et al., 

2001). Horses are mostly utilized in osteoarthritis research, as they have a similar risk to 

humans for developing naturally-occurring osteoarthritis secondary to trauma or as a 

result of age, as well as exercise-related osteochondral defects (McIlwraith et al., 2012). 

Additionally, they are large enough to use standard imaging modalities. All of these 

species are large and expensive, making management and handling more difficult than 

small animal models, which are important considerations when initiating research 

studies using these models (Gregory et al., 2012).  

 

1.6 Summary and Specific Aims 

 Overall, bone is a highly complex, active structure that provides organisms with 

essential protection and support. Orthopedic research has been greatly advanced by 

imaging modalities, allowing researchers to visualize and evaluate bone health, bone 
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diseases and therapeutic interventions for both human and veterinary medicine. 

Combining evaluation techniques, such as histology and microCT, can overcome the 

disadvantages of each technique, and provide comprehensive detail of bone 

morphology and cellular structure. In addition, advanced imaging techniques can be 

used to provide anatomy depictions for both research and education. Based on this, the 

following research has been performed to address currently unknown information in 

veterinary medicine regarding bone health in horses and muroid species, and is 

summarized in the following aims: 

  

Aim 1: Determine the effect of the bisphosphonates tiludronate on normal bone 

turnover, bone morphology and bony cells in skeletally immature horses via microCT 

and histomorphometry. 

 Summary: To test the effect of tiludronate on bone, biopsies from the tuber 

coxarum were taken from ten horses aged two - five years old. A baseline biopsy was 

collected at Day 0, and horses were then administered either tiludronate or saline. 

Horses were administered oxytetracycline as a fluorescent bone label at Day 47 and 57 

for evaluation of bone remodeling. A second biopsy was collected at Day 60 from the 

contralateral tuber coxarum. Samples were fixed and scanned by microCT for 

evaluation of trabecular bone morphology. The biopsies were then prepared for 

decalcified and un-decalcified histology for evaluation of bony cells, bone morphology 

and bone remodeling following standard techniques and nomenclature. This aim will 

establish if tiludronate affects normal bone structure and remodeling in skeletally 

immature horses. The hypothesis is that tiludronate will reduce osteoclast numbers and 
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function, resulting in increased bone volume and decreased bone remodeling in young 

horses. 

 

Aim 2: Determine the effect of clodronate on normal bone turnover, morphology and 

repair in skeletally immature horses via microCT and histomorphometry. 

 Summary: Aim 2 utilized the study design and techniques as outlined in Aim 1. In 

brief, biopsies were taken from nine horses aged two – four years old; a baseline biopsy 

(Day 0), a contralateral biopsy (Day 60), and a re-biopsy of the initial site (Day 60R), 

providing a biopsy after a bone defect. Clodronate or saline was administered 

immediately following Day 0 biopsy collection. Preparation and assessments were 

identical to Aim 1. Additionally, the Day 60R biopsy was scanned via microCT and then 

prepared for decalcified histology. This aim will first establish our equine model as an 

adequate model of bone repair. Subsequently, this aim will determine if clodronate 

impacts bone structure and repair in skeletally immature horses. The hypothesis is that 

clodronate will result in increased bone formation in an equine model of bone healing, 

as well as reduce osteoclast numbers and function, resulting in increased bone volume 

and decreased bone remodeling in young horses. 

  

Aim 3: Characterize the anatomy of the mouse tarsus and clarify the presence and 

number of bones within this region in normal laboratory mice. 

 Summary: Bony anatomy of the tarsi from two strains of commonly used 

laboratory mice (i.e., C57/Bl6 and BalbC) were evaluated for bony anatomy 

characteristics via microCT. This anatomy was compared to selected outgroups, 
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including the closely-related laboratory rat (Sprague Dawley®) and the more distantly 

related wild white-footed mouse (Peromyscus leucopus). Representative mouse tarsi 

were selected for routine decalcified histology preparation, where serial, sagittal 

sections were taken through the mid-tarsus. The hypothesis is that normal laboratory 

mice have a fusion of the central and tarsal bone III, which is not present in other 

outgroup species evaluated.  
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CHAPTER 2. 
INFLUENCE OF TILUDRONATE ON BONE CELLS, MORPHOLOGY 

AND REMODELING IN YOUNG HORSES1 
 
2.1 Introduction 

Tiludronate disodium (Tildren, Ceva Animal Health LLC, Lenexa, KS, USA) is a 

bisphosphonate drug that is licensed for use in horses to reduce lameness associated 

with navicular disease (Denoix et al., 2003, Whitfield et al., 2016). Tiludronate has a 

high affinity for bone (Henneman et al., 2008) and reduces osteoclastic activity (David et 

al., 1996), resulting in inhibition of bone resorption and subsequent uncoupling of the 

balanced remodeling process (Murakami et al., 1995, David et al., 1996, Kamm et al., 

2008). Tiludronate has been shown to have potential effectiveness to treat 

musculoskeletal conditions other than navicular disease, such as distal tarsal joint 

osteoarthritis (Gough et al., 2010), thoracic and lumbar vertebral arthritis (Coudry et al., 

2007) and dorsal metacarpal disease (Carpenter, 2012). However, these studies all 

report data on clinical outcomes (e.g., improvement in lameness), and not the effect on 

bone. Similarly, clinical studies have shown a reduction in lameness associated with 

navicular disease following tiludronate treatment (Denoix et al., 2003, Whitfield et al., 

2016). One barrier to the field is currently a lack of data regarding the direct impact on 

bone remodeling kinetics in horses. Only a single study has attempted to evaluate 

tiludronate’s direct impact on bone; however, it was unsuccessful (Delguste et al., 

2007). In addition, tiludronate has been administered to young horses as a treatment for 

dorsal metacarpal disease (Carpenter, 2012), despite their still having to undergo a 

																																																								
1 Parts of this chapter previously appeared as Mitchell, C.F. et al., Assessment of Tuber 
Coxae Bone Biopsy in the Standing Horse. Vet Surg (2017) DOI: 10.1111/vsu.12603. 
Reprinted by permission of John Wiley and Sons via RightsLink.  
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tremendous amount of bone remodeling as a part of normal bone growth (Müller et al., 

1998). Despite the potential impact of tiludronate on normal bone remodeling kinetics, a 

detailed study has not been performed to determine if tiludronate negatively affects 

normal bone remodeling in young horses.  

The gold standard for bone analyses are histomorphometry (Müller et al., 1998) 

and microCT (MacNeil and Boyd, 2007), both of which require bone biopsies. The tuber 

coxarum has been reported to be the easiest site for bone biopsy acquisition in the 

horse and is a region that was found to have consistently higher levels of tiludronate in 

comparison to other bones (Delguste et al., 2011). A recently published study by the 

authors has shown the tuber coxarum as a site to obtain reliable bony samples in a non-

terminal equine model that are consistent in size and of adequate quality to evaluate 

trabecular bone using both histomorphometry and microCT (Mitchell et al., 2017).  

Therefore, the aim of this study was to evaluate the effect of tiludronate on bony 

cells, bone morphology and remodeling in skeletally-immature, clinically healthy horses. 

This was accomplished by evaluating bone biopsies, obtained from the tuber coxarum 

using a previously published surgical technique (Mitchell et al., 2017), via microCT and 

histomorphometry. We hypothesized that tiludronate administration would result in 

increased bone volume, decreased osteoclast numbers and activity, and increased 

bone apposition when compared to control samples.  
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2.2 Materials and Methods 

Study Design 

The experimental protocol was approved by the Louisiana State University 

Institutional Animal Care and Use Committee (IACUC) (Protocol #14-069). Ten clinically 

healthy Thoroughbred horses (two - five years of age and weighing between 409 kg and 

570 kg) were obtained via donation to the Louisiana State University Equine Health 

Studies Program. Medical history of the horses was unknown at the time of donation; 

however, prior to enrollment in the current study, all horses underwent at least a two-

week isolation and washout period following donation. Horses were randomly assigned 

using a coin flip to either a treatment (n=5) or control group (n=5). The surgeon, who 

was not involved in subsequent analyses, was not masked to treatment groups. All 

personnel who took part in the data collection and analysis were masked to treatment 

groups.  

Bone biopsies were taken from each horse at Day 0 (baseline before treatment) 

and Day 60 (60 days post-treatment) (Figure 2.1). This time frame was determined by 

previous studies that showed a positive effect of tiludronate administration in horses 60 

days post initiation of treatment (Denoix et al., 2003, Coudry et al., 2007, Gough et al., 

2010). The right or left tuber coxarum was randomly selected, via coin flip, for the first 

biopsy (outlined below in “Surgical Procedure”). Immediately following the initial biopsy 

surgery (Day 0), each horse was administered tiludronate (1 mg/kg, diluted in 1L of 

0.9% saline, IV) or equal volumes of saline. The tiludronate solution was administered 

over 90 minutes using an IV fluid pump. The horses stood in the stocks during this 

infusion and were monitored for signs of colic. Sixty days later, the contralateral tuber 
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coxarum was biopsied in the same manner. Prior to the second biopsy, oxytetracycline 

(Vetrimycin 100, VetOne, Boise, ID, USA) was administered at Day 47 and Day 57 as a 

fluorochrome label to identify bone remodeling parameters. Biopsies were evaluated 

with microCT and histomorphometry for changes in bone morphology and remodeling 

rates, as outlined below under “MicroCT” and “Histology.”   

 

 

Figure 2.1 Tiludronate study design schematic of time line, outlining biopsy collection 
and treatment administration. Abbreviations: Contra., Contralateral; Ipsi., Ipsilateral. 
 

Study Horses 

Thoroughbred horses, as outlined above under “Study Design”, were included if 

they were free from outward musculoskeletal disease and clinically healthy, as 

assessed by a boarded veterinary surgeon (CFM) during a physical exam, and included 

seven geldings and three fillies with a mean age of 3.5 years (control age: (mean ± SD) 

3.4 ± 1.14 years; weight: 500.6 ± 44.8 kg; treated age: 3.6 ± 1.34 years). Sample sizes 

were influenced based on donation availability, and all eligible horses were considered. 

Additionally, if eligible horses became available during the course of data collection, 

they were evaluated and included in order to maximize sample size. Throughout the 

study, they were housed in individual stalls following the biopsies and then turned out in 
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groups in pastures. They were fed free choice hay and water, with grain being provided 

twice daily.  

In addition to the aforementioned horses, biopsies were also obtained from three 

additional horses euthanized for non-musculoskeletal related reasons at the Louisiana 

Disease and Diagnostic Laboratory (LADDL). These were samples of convenience, 

obtained at necropsy from horses not included in this study. These horses were aged 9 

months, 1 year, and 25 years, and were used to compare histopathological changes 

within the biopsies with age. The samples were obtained using the same surgical 

technique, as described below, but were not enrolled in the pharmacologic evaluations. 

 

Surgical Procedure & Treatment 

Horses were sedated with intravenous (IV) xylazine (Xylamed, Bimeda, 

Cambridge, ON Canada) (0.35 to 0.5 mg/kg). The surgical method has been previously 

published in detail (Mitchell et al., 2017). In short, the biopsy site was centered on the 

proximal palpable protuberance of the tuber coxarum. A rectangular region 

(approximately 10 cm X 10 cm) was clipped around the tuber coxarum and then 

aseptically prepared. Lidocaine (Lidocaine 2%, VetOne, Boise, ID, USA) was injected 

subcutaneously, deep to the proposed incision site in a vertical line, centered on the 

palpable tuber coxarum, extending 4 cm proximal and distal to that palpable point and 

then deeply, adjacent to the periosteum of the tuber coxarum. The horse was further 

sedated with detomidine hydrochloride (Dormosedan, Zoetis, Kalamazoo, MI, USA) (3 

to 5 mg IV) and butorphanol tartrate (Torbugesic, Fort Dodge, New York, NY, USA) (3 

to 5 mg IV) prior to making the skin incision (Mitchell et al., 2017). 
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A 6-8 cm, vertically oriented incision was made over the tuber coxarum (Figure 

2.2A), and dissected to expose the cranial, caudal, proximal and deep margins. The 

periosteum was incised with a #15 blade in a cranial to caudal direction on the lateral 

edge of the tuber coxarum, at least 1 cm distal to the proximal portion of the 

protuberance. An oscillating saw was used to transect the protuberance of the tuber 

coxarum, with the saw blade angled either parallel to the ground or slightly dorsally, 

depending upon the position of the limb and the horse’s pelvic anatomy. In order to limit 

thermal damage, the saw blade was continuously lavaged with saline. Depending upon 

the direction of the saw cut, the bone biopsy (Figure 2.2B) was either removed, or 

detached from soft tissue prior to removal. The excised section of bone representing the 

biopsy was at least 1 cm tall, with the width and length of the biopsy dependent on each 

horse’s pelvic anatomy. The goal was to obtain the largest biopsy possible without 

cutting into the iliac crest on the deep border of the tuber coxarum. If necessary, the 

horizontal cut was moved distally and the saw blade angled in a more proximal direction 

to produce a biopsy of suitable size. The surgery site was lavaged, and the 

subcutaneous tissue was sutured with 2-0 polyglactin 910 in a simple continuous 

pattern. The skin was sutured using 0 polypropylene in either a Ford interlocking or 

cruciate pattern. An aluminium based bandage spray (Aluspray, Neogen Corporation, 

Lexington, KY, USA) was applied to the surgery site and a lidocaine patch (Lidocaine 

Patch 5%, Qualitest, Huntsville, AL, USA)  was then applied over the incision (Mitchell et 

al., 2017).  

Following the initial biopsy (Day 0 to 1), horses were stalled for at least 24 hours 

and monitored every 2 hours over the first 24-hour period using a visual pain score  
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Figure 2.2 Bone biopsy from the tuber coxarum in a horse. A) The incision is centered 
over the palpable dorsal protuberance of the tuber coxarum. The excised piece of tuber 
coxarum is directly above the saw blade, with a small amount of connective tissue on its 
superficial edge. Cranial to the left of image, proximal to the top of image. B) Bone 
biopsy harvested. Cut surface facing up, resting on a 10.1 X 10.1 cm gauze square. 
MicroCT 

 

(Doherty and Valverde, 2006). After 24 hours, horses were returned to their respective 

pastures and checked daily for signs of lameness or incisional complications until suture 

removal at 14 days post biopsy. At Day 47 and 57 post biopsy, the horses were treated 

with 25 mg/kg of oxytetracycline administered slowly IV. Sixty days after the initial 

biopsy, the contralateral tuber coxarum was biopsied using the same surgical methods 

as described above. However, after surgery, horses were administered flunixin 

meglumine (Prevail, Bimeda, Cambridge, ON, Canada) (1.1 mg/kg IV) as an additional 

analgesic. Surgical aftercare was identical to above from post-surgery to 14 days later 

when the sutures were removed.  
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MicroCT 

Following biopsy, tuber coxae samples were dissected free from tissue and fixed 

in 10% non-buffered formalin for seven days, then transferred to and stored in 70% 

ethanol at 20˚C. Samples were placed in holders with 70% ethanol for scanning by 

microCT (Scanco model 40, Scanco Medical AG, Basserdorf, Switzerland). Biopsies 

were scanned at 55kV, 0.3-second integration time, with a 30 µm voxel size in plane 

and a 30 µm slice thickness. The region of interest was determined for trabecular bone. 

The proper threshold for image segmentation was tested, with the same threshold being 

used throughout the experiment. Trabecular bone was evaluated for bone volume (BV), 

total volume (TV), BV/TV, tissue mineral density, trabecular number (Tb.N), trabecular 

thickness (Tb.Th), trabecular spacing (Tb.Sp), connectivity density (Conn.D) and 

structural model index (SMI) based on established procedures and nomenclature 

(Bouxsein et al., 2010).  

 

Histology 

Following microCT evaluation, biopsies were prepared for histology. Day 0 

biopsies were prepared for decalcified histology, and Day 60 biopsies were prepared for 

undecalcified histology so visualization of fluorochrome labels was possible. Due to 

differences in preparation techniques between decalcified and undecalcified histology, 

and size of slides used for each, histological preparation of both sets of biopsies differed 

slightly. However, care was taken to ensure sections from each biopsy were taken in 

the same location and plane of section, regardless of preparation method. Day 0 

biopsies were decalcified with 10% ethylenediaminetetraacetic acid (EDTA) and 
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prepared for routine paraffin embedding. In order to fit on glass histological slides, Day 

0 biopsies were split in half and embedded separately. This resulted in 6 – 8, 4 µm thick 

sections per biopsy that were stained with hematoxylin and eosin (H&E). Day 60 

biopsies were prepared intact for undecalcified histology and two, 45-60 µm thick 

sections were produced. The first was stained with Stevenel’s Blue and Van Gieson’s 

picro fusion for evaluation by static histomorphometry, and the second section was left 

unstained for evaluation by dynamic histomorphometry. Although histological slides for 

Day 0 and Day 60 biopsies were prepared differently for ease of handling, all bony 

features were easily discernable and comparable in both sets of slides, as outlined in 

Figure 2.3 (Dempster et al., 2013).  

All biopsy sections were evaluated for quality under light microscopy as 

previously described (Steiger et al., 1999). In short, cortical and trabecular bone in each 

section were evaluated using a semi-quantitative scale whereas tissue was determined 

to be useless (0), poor (1), or good (2) quality. Three individuals (including one boarded 

veterinary pathologist, one established orthopedic researcher and one graduate 

student), evaluated each slide. Some biopsies had multiple sections to evaluate and all 

sections generated a score that was then averaged for each biopsy. 

All bone histomorphometry evaluations were performed using histomorphometry 

software (Osteomeasure© Bone Histomorphometry System, Osteometrics, Inc., 

Decatur, GA, USA)  following standard procedures and nomenclature (Dempster et al., 

2013). Static histomorphometry parameters included direct measurements of: BV, 

marrow volume (Ma.V), bone surface (Crook et al.), eroded surface (ES), mineralized 

surface (Md.S), osteoblast surface (Ob.S), osteoblast number (Ob.N), osteoclast 



	41	

number (Oc.N), osteoclast surface (Oc.S) and remodeling surface (RS). Indirect 

measurements included: Tb.N, Tb.Th, Tb.Sp and the aforementioned direct 

measurements standardized to respective areas and volumes. Dynamic 

histomorphometry included mineralizing surface per bone surface (MS/BS), mineral 

apposition rate (MAR) and the bone formation rate per bone surface (BFR/BS).  

 

 

Figure 2.3 Labeled histological sections of bone biopsies. Representative A) decalcified 
and B) un-decalcified histological sections of biopsy 2 (Day 60), highlighting similar 
trabecular bone features. Abbreviations: B, bone; BM, bone marrow. Black arrows = 
osteoblasts; white arrows = osteocytes.  
 

Statistics 

 To evaluate slide quality, trabecular bone quality scores were averaged and the 

standard deviation was calculated. To evaluate the effect of tiludronate on bone, 

microCT and histomorphometry data were analyzed using independent analyses 

between treatment groups, as well as dependent analyses between biopsies. Data were 

tested for normality using the Shapiro-Wilk test and depending on normality, either 

parametric or non-parametric analyses were used (i.e., Student’s t-test or related 

samples Wilcoxon signed rank test, respectively). A related-sample test was used to 
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evaluate changes from biopsy 1 (Day 0) to biopsy 2 (Day 60) within the control or 

treated horses. An unrelated-sample test was performed to evaluate difference between 

treated and control horses within biopsy 2. Statistical analyses were performed using 

commercially-available software (SPSS, version 22, IBM Corporation, Armonk, NY, 

USA), and p-values of <0.05 were considered significant.  

 

2.3 Results 

Surgical Technique 

 Horses received between 408 – 500 mg (mean ± SD, 474.6 ± 38.6 mg) of 

tiludronate based on weight. Only one of the ten horses in the study experienced 

incisional dehiscence, but this complication resolved with minimal medical intervention. 

All of the other 19 biopsies healed uneventfully, with no horses displaying any rear limb 

lameness or ratable discomfort at any time over the duration of this study. All biopsies 

obtained were adequate for all analyses (mean volume of 3123.72 mm3 ± 1495.37 mm3 

(SD) as measured via microCT) (Mitchell et al., 2017).  

 

MicroCT 

The biopsies were consistent in size and shape between both biopsies and treatment 

groups (Figure 2.4). No significant differences in TV were identified between treatment 

groups or biopsy as evaluated by microCT (Figure 2.5). Overall, tiludronate did not 

significantly alter bone morphology parameters after 60 days when compared to saline. 

In addition, there were no significant differences in morphology parameters between 

biopsies within treated horses or control horses (Figure 2.5). 
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Figure 2.4 Representative Day 0 bone biopsies for control (A,C) and treated (B,D) 
horses, showing the entire biopsy, excluding cortical bone (A,B), and a visually-
sectioned view (C,D), highlighting the trabecular bone architecture. The ventral face is 
the surgically-cut surface. Bar = 2 mm. 
 

Histopathology and Slide Quality 

Microscopic examination showed all sections consisted of irregularly triangular, dome-

shaped, or rectangular sections of mature bone containing variable amounts of compact 

cortical bone and attached ligaments, tendon and associated skeletal muscle, lamellar 

trabecular bone and marrow spaces. The quality of the trabecular bone within all 

biopsies was good (Figure 2.6), with adequate bony tissue for evaluation trabecular 

bone.  



	44	

 
 

Figure 2.5 Summary data (mean ± SD) of bone structure and remodeling parameters from biopsy 1 (Day 0) and biopsy 2 
(Day 60) for microCT analyses, static histomorphometry analysis and dynamic histomorphometry analysis in control (n=5) 
and treated (n=5) horses. Abbreviations: BV/TV, bone volume fraction (bone volume/total volume); Tb.Th, trabecular 
thickness; Tb.N trabecular number; BS/BV, bone surface/bone volume; Ob.N/TA, number of osteoblasts per tissue area; 
Oc.N/TA, number of osteoclasts per tissue area; sL.S/BS, single label surface per bone surface; dL.S/BS, double label 
surface per bone surface; MAR, mineral apposition rate. aSignificant (P ≤ 0.05) difference between values with the same 
letter superscript. P-value results from related samples Wilcoxon Signed Rank Test. 
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Figure 2.6 Mean (±SD) histological bone biopsy scores from each horse enrolled in the 

study. The quality scores were categorized as follows: useless (0), poor quality (1), 

good quality (2).   

 

Sections contained variable amounts of artifact from collection, including 

presence of bone dust, mild hemorrhage, coagulative necrosis of skeletal muscle or 

bone and rare trabecular fractures. In most sections, these artifacts were present at the 

margins of the sections examined, only rarely extending into more central aspects of the 

sections, and therefore did not affect interpretations of the majority of the tissue sample.  
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Any area of compromised architecture or artifact did not extend any more than 2 mm 

away from the cut surface in any of the biopsies. 

Most horses (8/10) and most sections (12/18) showed variable sized foci of mature 

hyaline cartilage present scattered throughout the endocortical spaces. These were rare 

(one - three small islands) in some sections, but numerous in others. Foci ranged from 

irregularly round or oval, to polygonal to linear, and were frequently surrounded by 

variable amounts of mature, lamellar trabecular bone. Occasionally, within the round to 

oval foci, the hyaline cartilage surrounded an open central region containing blood 

vessels within adipose and loose fibrous connective tissues (Figure 2.7A). In some 

cartilage islands, there were variably sized regions of necrosis or areas of 

mineralization. Occasionally, the chondrocytes within the viable areas of cartilage 

formed distinct rows and demonstrated ordered chondrocyte maturation, similar to that 

seen in physeal growth plates (Figure 2.7B). These features were especially prominent 

in more linear foci of hyaline cartilage. In some sections, there were more subtle foci of 

mineralized cartilage completely surrounding by and embedded in mature, lamellar, 

trabecular bone (Figure 2.7C). There were variable amounts of mature hyaline or 

fibrocartilage blending with the adjacent ligament at the margins of most sections along 

the periosteal surface of the cortical bone, consistent with ligament attachment sites. 

Occasionally, irregularly linear tongues of cartilage extended from these regions into the 

adjacent marrow spaces (Figure 2.7D).  In addition to the apophyses, these sections 

contained individual foci of hyaline cartilage within the endocortical spaces. Some of 

these foci were closely associated with the growth plate and/or hyaline cartilage within 

areas of ligament attachments. 
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Figure 2.7 Histologic images of cartilage foci within endocortical spaces. A) Hyaline 

cartilage with central region composed of loose fibrous connective and adipose tissues 

(bounded by arrowheads) containing numerous blood vessels (red arrows). B) Cartilage 

with chondrocyte maturation (black arrows). C) Mineralized cartilage foci (bounded by 

green arrowheads) embedded within mature trabecular bone. D) Cartilage tongues 

(blue arrows) extending from a site of ligament attachment (yellow arrowheads) into 

endocortical space. 

 

 Additional samples from 3 horses of a range of ages (i.e., 9 months, 1 year, 25 

years) not included in the experiments were examined for comparison to the study 

horses. The sections from the 9-month and 1-year-old horses were histologically similar 

and contained linear, mature growth plate cartilage within the endocortical space, 

consistent with an apophyseal growth plate. These apophyses exhibited normal 
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chondrocyte maturation including distinguishable resting, proliferative, hypertrophic, and 

mineralization zones (Figure 2.8).  

In addition to the apophyses, these sections contained individual foci of hyaline 

cartilage within the endocortical spaces, similar to those present in the previously 

described study samples. Some of these foci were closely associated with the growth 

plate and/or hyaline cartilage within areas of ligament attachments. In one section of the 

1-year-old horse, there was an area within the peripheral cortical hyaline cartilage that 

demonstrated orderly chondrocyte maturation similar to that within the apophysis 

(Figure 2.8B). In contrast to the study animals, the marrow spaces in these two animals 

was often highly cellular. 

 In the 25-year-old horse, there was a single small focus of mineralized cartilage 

embedded within trabecular bone. There were no other regions of hyaline cartilage 

within the endocortical space. At the ligament attachment sites associated with the 

cortical bone, there was less cartilage present than in the previously described slides.  

 

Figure 2.8. Histologic images from juvenile horse demonstrating active bone formation. 

(A) Histologic image containing an apophyseal growth plate with distinct resting, 

proliferation, hypertrophic, and mineralization zones; (B) Histologic image 

demonstrating a region of bone formation associated with the hyaline cartilage at a 

ligament attachment site.  
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The cartilage present consisted of fibrocartilage, rather than hyaline cartilage. The 

marrow spaces contained adipose tissue and no cellular bone marrow. 

 

Histology 

 As evaluated using static histomorphometry, no significant differences were 

identified between treatment groups. When comparing biopsies within each treatment 

group, tiludronate significantly decreased trabecular thickness (p=0.02) and increased 

BS/BV ratio (p=0.048) when comparing Day 60 biopsies to Day 0 biopsies. Some 

measurements were significantly different when comparing the Day 60 biopsy to the 

Day 0 biopsy for the saline group: a decrease in RS/BS (p=0.04), decrease in BS/TV 

(p=0.04), decrease in Oc.N/TA (p=0.04) (Figure 2.5) and a decrease in Oc.S/BS 

(p=0.04).  

 As evaluated using dynamic histomorphometry, after 60 days, tiludronate did not 

significantly alter bone remodeling parameters when compared to saline. Overall, bone 

apposition rates and bone turnover was very similar between treated and control groups 

(Figure 2.5). 

 

2.4 Discussion 

 This report describes the effect of a single administration of tiludronate on bony 

cells, trabecular bone morphology and bone remodeling in ten clinically healthy, young 

horses. A previous study utilizing a bone biopsy model attempted to elucidate changes 

in bone morphology secondary to tiludronate treatment in horses, but, the samples 
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obtained were inadequate for evaluation of bone morphology and remodeling (Delguste 

et al., 2011). Thus, to our knowledge, this is the first reported study evaluating the 

cellular and structural effect on bone secondary to tiludronate administered in horses. 

There were no significant effects of tiludronate (1 mg/kg, IV) on bony cells or bone 

structure and remodeling parameters 60 days after a single administration in young 

horses. Although a few parameters were significantly different for the control group, we 

believe that these are changes that could occur during normal bone turnover in young 

horses, and these select changes do not make substantial biological sense when all 

variables are considered. It is possible, however, that these are select bony changes 

that occur during normal bone turnover in young horses, and tiludronate prevented 

similar changes from occurring. No differences were noted between treatment groups 

within the same biopsy. Although there was a significant increase in trabecular 

thickness between biopsies in horses treated with tiludronate, as determined by static 

histomorphometry, this change was not corroborated with microCT evaluations, which 

provides a more comprehensive evaluation of bone morphology within the biopsies.  

It is possible that the time frame (60 days) evaluated in this study was not long 

enough to evaluate overall changes in bone remodeling. However, this time frame was 

selected based on the only published data regarding the effect of tiludronate on horses, 

which found a positive effect of tiludronate after 60 days (Denoix et al., 2003, Coudry et 

al., 2007, Gough et al., 2010). In addition, a study evaluating bone remodeling in horses 

following treatment with phenylbutazone, which, unlike tiludronate, is not utilized as a 

treatment for diseases of bone remodeling, found significant changes in MAR using 

similar sample sizes after only 30 days (Rhode et al., 2000). Therefore, if tiludronate 
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was to have an impact on bone remodeling in young horses at the dose given, it would 

be expected that normal bone apposition rates in horses should be at least minimally 

affected by tiludronate within the timeframe of the present study. However, it is possible 

that diseased bone, characterized by abnormal bone remodeling, could be impacted by 

tiludronate administration more than the results shown in this study on normal bone. A 

study that identified significant improvements in lameness secondary to distal tarsal joint 

osteoarthritis 60 days post treatment with tiludronate also identified significant 

reductions in periarticular osteophyte formation at that time point, as evaluated by 

radiographs, indicating a potential influence on bone remodeling in horses (Gough et 

al., 2010). Therefore, these data also support the chosen time point at which to identify 

potential changes in bone microarchitecture. However, future studies including 

additional time points post treatment would be required to confirm whether tiludronate 

has a significant impact on bone morphology. As such, more recent data evaluating 

effectiveness of tiludronate administration on lameness associated with navicular 

disease as evaluated by more objective force platform analyses found significant 

improvements 120 and 200 days post treatment, but not after 60 days (Whitfield et al., 

2016).  

Due to the nature of a pilot study, there was a low sample size of 5 horses per 

group. Therefore, the effect of tiludronate on bone remodeling and structure may not 

have been apparent in the data presented here. Overall, it is possible that tiludronate 

has a small effect that was not identified in the present study. However, a difference to 

some degree was expected, despite the low numbers, given the power of tiludronate as 

a modifier of bone remodeling in numerous other species (Rhode et al., 2000). The fact 
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that there was no difference between treatment groups or biopsies within the same 

horse warrants further investigation into the efficacy of tiludronate as a treatment for 

diseases of bone remodeling in the horse at the current dosage recommended. 

Tiludronate therapy is widely used in the veterinary clinical setting to treat 

disorders involving abnormal bone remodeling, including distal tarsal joint osteoarthritis 

(Gough et al., 2010),
 
thoracic & lumbar vertebral arthritis (Coudry et al., 2007) and 

dorsal metacarpal disease (Carpenter, 2012). The efficacy of tiludronate has been 

shown in young animals in other species, including a reduction of trabecular bone 

resorption adjacent to growth plates and increased bone density in skeletally immature 

rats and baboons (Geusens et al., 1992). Tiludronate has been previously evaluated for 

pathological bone changes in horses aged 4 years and older (FOI, 2014); however, 

despite the manufacturer’s recommendation to avoid administration of tiludronate to 

horses less than four years of age, clinicians are administrating this drug to horses that 

are younger than four years of age as a treatment for dorsal metacarpal disease 

(Carpenter, 2012). It is well known that younger horses undergo more rapid bone 

remodeling than skeletally mature adults (Goyal et al., 1981), so this study aimed to 

also evaluate the effect of tiludronate administration in young horses, where negative 

impacts on normal bone remodeling could result in significant clinical outcomes in 

young equine athletes. While the current study population included horses four and five 

years of age, biopsies from all horses within the study included evidence of an open 

apophysis for the tuber coxarum (Mitchell et al., 2017), indicating some degree of 

skeletal immaturity. Additionally, the same biopsy taken from a 25-year-old mare, which 

can be reasonably assumed to be skeletally mature, showed no presence of an 
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apophysis or retained hyaline cartilage foci. Thus, it appears that there is likely complete 

closure of the apophyseal growth plate and transition of the superficial hyaline cartilage 

to mature fibrocartilage associated with skeletal maturity, which was not present in the 

evaluated horses. Additionally, although subjective and not quantitatively evaluated, one 

evaluator noticed an increase in the size and number of cartilage foci in samples in the 

younger horses. However, due to the large age gap between the horses included in the 

study and the 25-year-old evaluated, it is unclear when the apophyses in the tuber 

coxarum disappear. Horses in the current study were also not strictly age-matched; 

however, the means and standard deviations for each group were almost identical. In 

addition, dependent analyses comparing biopsies within each horse were performed, 

thereby serving as a more robust analysis of changes secondary to treatment. As 

outlined above, we did not see any influence on bone remodeling or morphology in this 

young population. However, due to the small sample sizes for each age included in the 

study and the known effect of age on bone remodeling parameters, there cannot be 

definitive conclusions based on age. In addition to a larger number of horses, a smaller 

range of ages in horses may result in a significant effect on bone morphology 

parameters.  

 The iliac biopsy location utilized in the study was chosen for multiple reasons, 

despite the dissimilarities in architecture and biomechanics to weight bearing bones 

found in the equine distal limb, such as the metacarpal bones. Most importantly, the 

tuber coxarum is an easily accessible location that allowed for a non-terminal biopsy 

model in the equine, and provides the opportunity for multiple biopsies from the same 

horse over set time points (Mitchell et al., 2017). Various sites for bone biopsy have 
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been described in standing sedated, anesthetized and euthanized horses (Delguste et 

al., 2011). These locations include the sternebrae, ribs,
 

tuber coxae, the third 

metacarpal bone,
 
and the fourth tarsal bone (Misheff et al., 1992, Steiger et al., 1999, 

Désévaux et al., 2000, Delguste et al., 2011). Biopsies obtained in these studies have 

ideally been as small as possible due to the relative size of the bone being sampled 

(ribs) or due to the load-bearing nature of the bone (metacarpus) (Firth, 2004). Biopsies 

obtained from weight bearing bones, such as the metacarpals and tarsal bones, 

deemed of adequate size for histologic examination would likely result in lameness or 

euthanasia of the horse. In addition, these samples would provide little, if any, 

trabecular bone for examination, as these bones are composed of predominantly 

cortical bone. Larger biopsies from non-weight-bearing bones provides more data for 

consistent histological and architectural examination, as shown in this study.  

 Despite the differences in biomechanics, bone remodeling of the tuber coxarum 

has been shown to accurately predict the effect of alendronate, another form of 

bisphosphonate, on non-homogenous skeletal locations in the body (i.e., vertebral 

column) (Mashiba et al., 2005). This location was chosen for the biopsy site for the 

additional reason that it has been shown that bisphosphonates accumulate at the 

highest density in tuber coxae when compared to other bones in the equine, including 

bones that experience more biomechanical stress, such as the 3
rd

 metacarpal, rib and 

cuboid bone (Delguste et al., 2011). An added benefit of this biopsy technique was the 

relatively large biopsy size, which allowed multiple study endpoints to be utilized. The 

second biopsy was prepared for undecalcified histology in order to preserve the 

fluorescent label, which required different preparation than the initial biopsy received. 
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Although preparation methods varied, methods of analyses and outcome measures 

were identical for both preparation methods of static histomorphometry sections 

(Dempster et al., 2013).  

It is important to recognize that this technique for biopsy has potential to include 

the apophyseal growth plate or remnants thereof, particularly in younger horses. The 

specific apophyses in the bones of the pelvis in the horse are not well described and the 

presence of an apophysis in the tuber coxarum has not been substantiated in the 

literature of domestic quadrupeds. The identification of an apophysis in the tuber 

coxarum is an important finding and the presence of cartilaginous foci should be noted 

for future studies using this biopsy method as it may bias assessment of trabecular 

bone that rely on counts of trabecular number and spacing. However, the presence of 

these foci do provide a potentially unique opportunity for investigators examining 

changes in bone growth and physeal activity in horses.  

 In conclusion, this study describes a simple tuber coxarum biopsy procedure for 

horses that is well tolerated and produces samples large enough to be sectioned 

multiple times, permitting several methods of analyses to evaluate bone morphology 

and remodeling in a non-terminal model. It appears that tiludronate does not have a 

substantial impact on normal bone remodeling kinetics and morphology in young horses 

60 days post treatment. Overall, tiludronate does not appear to impact bone remodeling 

parameters in young horses, and has minimal to no effect on bone morphology 

parameters after 60 days.  
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CHAPTER 3. 
INFLUENCE OF CLODRONATE ON BONE CELLS, MORPHOLOGY, REMODELING 

AND HEALING IN YOUNG HORSES 

 

3.1 Introduction 

 Recently, the FDA approved the use of Clodronate disodium (Osphos, Dechra, 

Ltd., Staffordshire, UK)
 
as a treatment for navicular disease in the horse (FOI, 2014). 

Clodronate is a non-nitrogen containing bisphosphonate that reduces osteoclastic bone 

resorption by causing osteoclast apoptosis (Lehenkari et al., 2002). Clodronate is 

similar to tiludronate, which has been used extensively to treat conditions associated 

with bone remodeling, such as navicular disease (Denoix et al., 2003, Whitfield et al., 

2016) and tarsal osteoarthritis (Gough et al., 2010). However, unlike tiludronate, 

clodronate has been shown to have an analgesic effect by acting on glutamate and/or 

ATP-related pain transmission pathways (Shima et al., 2016). The Freedom of 

Information (FOI) Summary (FOI, 2014) reports on the clinical outcome in a group of 

horses diagnosed with navicular disease, treated with either clodronate or saline. At 56 

days post-treatment, 68 of 86 clodronate-treated horses had improved by one score of 

the American Association of Equine Practitioner (AAEP) lameness scale, compared to 1 

of 28 saline-treated horses (FOI, 2014). However, it is unclear whether the reduction in 

lameness in the aforementioned study (FOI, 2014) is due to clodronate treatment’s 

effect on pathological bone remodeling, or its analgesic potential.  

 The FOI summary describes the effects of clodronate on bone mineral content, 

cortical bone strength and bone marrow evaluation evaluated by radiographic 

photometry, mechanical testing and histopathology, respectively, in normal horses. 

They reported no difference in these parameters between treated and saline controls at 
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6 months (FOI, 2014). However, the methods regarding how bone density data were 

obtained were not stated, and given the poor sensitivity of radiographs to determine 

bone density (Moyad, 2003), it is uncertain whether there was or was not an effect on 

bone in this cohort. Despite its known effect on bone remodeling rates in other species, 

the effect of clodronate on bone healing, especially in the horse, is unclear. In animal 

models, clodronate has been found to not alter endochondral bone formation within the 

callus or epiphyseal plate of rats (Nyman et al., 1996, Madsen et al., 1998), but reports 

show conflicting alterations to callus and bone properties, including no changes in bone 

mineral density (Koivukangas et al., 2003), 30% increase in bone mineral density 

(Madsen et al., 1998), increased calcium content within the callus (Nyman et al., 1993) 

and decreased healing callus strength (Tarvainen et al., 1994). Recently, it has been 

shown that osteoclasts are a necessary component of efficient endochondral 

ossification during fracture repair in mice (Lin and O'Connor, 2016); therefore, it is 

possible that clodronate may impair normal bone healing in horses, which calls for 

careful consideration when used in a clinical setting.  

 Therefore, the purpose of this study is to evaluate the effect of clodronate on 

bone morphology, bony cells, bone remodeling, and bone healing in young horses. 

These evaluations were performed by obtaining bone biopsies of the tuber coxarum 

using an established technique (Mitchell et al., 2017), and evaluated through 

histomorphometry and microCT. To evaluate bone healing, subsequent biopsies were 

taken from the initial biopsy site, which served as a novel bone defect model in the 

horse. We hypothesized that clodronate would reduce osteoclast number and function, 
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resulting in increased bone volume and increased bone apposition, as well as increased 

bone formation after injury.  

 

3.2 Materials and Methods 

Study Design 

The experimental protocol used for this study was approved by the Louisiana 

State University IACUC (Protocol #15-081). Nine clinically healthy Thoroughbred 

horses, aged two – four years of age, were used in the study. Horses were obtained 

through donation, and did not have a known medical history prior to inclusion within the 

herd at the institution’s facility. However, all horses underwent at least a two-week 

washout period prior to enrollment in the current study. Horses were randomly assigned 

using a coin flip to either a treatment (n=5) or control (n=5) group. Sample sizes were 

determined based on donation availability, and all eligible horses were considered. 

Additionally, if eligible horses became available during the course of data collection, 

they were evaluated and included in order to maximize sample size. A coin flip was 

used to randomly assigned horses to a treatment group (i.e., clodronate or saline), and 

only the surgeon knew group assignments until subsequent statistical analyses on data 

collected were ready to be performed. 

Bone biopsies were taken from each horse; a baseline biopsy at Day 0, and a 

contralateral (Day 60) and ipsilateral re-biopsy of the initial site (Day 60R) 60 days after 

treatment (Figure 3.1). The initial biopsy side was randomly selected via coin flip. 

Subsequent to the initial biopsy collection (Day 0), each horse was administered 

clodronate (1.8 mg/kg, via IM injection, with the total volume divided into three injection 
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locations), or equal volume of 0.9% saline. This dose and route of administration is 

standard in the field (FOI, 2014). Prior to the second biopsy collections, the 

fluorochrome label oxytetracycline (Vetrimycin 100, VetOne, Boise, ID, USA) was 

administered at Day 47 and Day 57 to detect bone remodeling parameters. At Day 60, 

two additional biopsies were collected using the same procedure. Analyses of all 

biopsies included microCT and histomorphometry evaluations for changes in bone 

morphology, remodeling rates, and bone healing.    

 

 

Figure 3.1 Clodronate study design schematic of time line, outlining biopsy collection 

and treatment administration. Abbreviations: Contra., Contralateral; Ipsi., Ipsilateral. 

 

Study Horses 

Thoroughbred horses were included for use in the study if they were clinically 

healthy and free from apparent musculoskeletal disease, determined through a physical 

examination, and were aged 3 to 4 years old (mean weight (± SD): 431.9 ± 52.4). 

Horses were housed individually in stalls following surgeries, and were returned to their 

respective group pastures after 24-48 hours post-operation, with free choice hay and 

water and grain twice daily.  
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Surgical Procedure & Treatment 

The surgical methods utilized in this study have been previously published in detail 

(Mitchell et al., 2017). Briefly, surgeries were performed while horses were restrained in 

stocked and sedated with intravenous (IV) xylazine (Xylamed, Bimeda, Cambridge, ON, 

Canada) (0.35 to 0.5 mg/kg). A 10 cm by 10 cm square was centered over the palpable 

area of the tuber coxarum and was aseptically prepared. Local anesthetic (i.e., 

Lidocaine 2%, VetOne, Boise, ID, USA) was injected subcutaneously superficially down 

to the tuber coxarum periosteum, and horses were further sedated with detomidine 

hydrochloride (Dormosedan, Zoetis, Kalamazoo, MI, USA) (3 to 5 mg IV) and 

butorphanol tartrate (Torbugesic, Fort Dodge, New York, NY, USA) (3 to 5 mg IV)). A 

vertical incision was made over the tuber coxarum and was dissected to expose the 

cranial, caudal, deep and proximal margins. An oscillating saw was used to cut the 

proximal portion of the tuber coxarum, with constant saline lavage to limit thermal 

damage. After biopsy removal, the site was lavaged, and sutured closed (Mitchell et al., 

2017). Flunixin meglumine (Prevail, Bimeda, Cambridge, ON, Canada) (1.1 mg/kg IV) 

was administered as an additional analgesic and the treatment (either clodronate or 

saline) was administered IM. 

Following the initial biopsy, horses were stalled for 24-48 hours and monitored for 

signs of pain (Doherty and Valverde, 2006). Horses were returned to their group 

pastures and monitored daily for complications or lameness until sutures were removed 

14 days later. At Day 47 and 57 post biopsy, the bone fluorescent label oxytetracycline 

(25 mg/kg) was administered slowly IV. Sixty days after the initial biopsy, two additional 

biopsies were collected; the contralateral side (Day 60 biopsy) and a re-biopsy of the 
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initial biopsy side (Day 60R biopsy) to evaluate bone healing. Biopsies were obtained 

using the same surgical methods as described above. However, careful consideration 

was made when placing the oscillating saw for the re-biopsy to ensure an adequately-

sized biopsy of the tuber coxarum was obtained without cutting into the pelvis. Surgical 

aftercare was identical.  

 

MicroCT 

Following biopsy collection, soft tissue was removed from tuber coxae samples, 

and biopsies were fixed in 10% non-buffered formalin for 7 days. After fixation, biopsies 

were stored in 70% ethanol at 20˚C. For microCT (Scanco model 40, Scanco Medical 

AG, Basserdorf, Switzerland) evaluation, biopsies were placed in scanning holders with 

70% ethanol, and scanned at 55kV, 0.3-second integration time, with a 30 µm voxel 

size in plane and a 30 µm slice thickness. Trabecular bone was selected as the region 

of interest, and the proper segmentation threshold was determined and used throughout 

for all samples. Trabecular bone was evaluated for bone volume (BV), total volume 

(TV), BV/TV, tissue mineral density, trabecular number (Tb.N), trabecular thickness 

(Tb.Th), trabecular spacing (Tb.Sp), connectivity density (Con.D), and structural model 

index (SMI) based on established procedures and nomenclature (Bouxsein et al., 2010). 

 

Histology 

After microCT evaluation, biopsies were prepared for histology as previously 

published (Mitchell et al., 2017). Day 0 and Day 60R biopsies were prepared for 

decalcified histology, and Day 60 biopsies were prepared for undecalcified histology so 
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visualization of fluorochrome labels was possible. Overall, histological preparation of 

biopsies differed slightly due to preparation technique required and the necessary size 

of the histologic slides. However, careful considerations were made to ensure sections 

of each biopsy were taken from the same location and plane of section. Day 0 and Day 

60R biopsies were decalcified with 10% ethylenediaminetetraacetic acid (EDTA) and 

prepared for routine paraffin embedding. Day 0 and Day 60R biopsies were split in half 

and embedded separately, resulting in 6 – 8, 4 µm thick sections per biopsy, and were 

stained with hematoxylin and eosin (H&E). Day 60 biopsies were prepared intact for 

routine undecalcified histology, producing two, 45-60 µm thick sections. One section 

was stained with Stevenel’s Blue and Van Gieson’s picro fusion to evaluate bony cells 

and bone morphology via static histomorphometry, and the other section was left 

unstained for evaluation of bone remodeling via dynamic histomorphometry.  

Histomorphometry evaluations were performed using standard software 

(Osteomeasure© Bone Histomorphometry System, Osteometrics, Inc., Decatur, GA, 

USA)
 
 following standard procedures and nomenclature (Dempster et al., 2013). Static 

histomorphometry parameters included direct measurements of: BV, marrow volume 

(Ma.V), bone surface (Crook et al.), eroded surface (ES), osteoblast surface (Ob.S), 

osteoblast number (Ob.N), osteoclast number (Oc.N), and osteoclast surface (Oc.S). 

Indirect static histomorphometry measurements included: Tb.N, Tb.Th, Tb.Sp, and the 

direct measurements list above standardized to respective areas and volumes. Dynamic 

histomorphometry parameters included mineralizing surface per BS (MS/BS), mineral 

apposition rate (MAR) and the bone formation rate per BS (BFR/BS). 
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Statistics 

To evaluate the effect of clodronate, microCT and histomorphometry data were 

analyzed using independent analyses between treatment groups, as well as dependent 

analyses between biopsies (Figure 3.2). Prior to statistical comparisons, data were 

tested for normality using the Shapiro-Wilk test. Depending on normality, either 

parametric or non-parametric analyses were used for each parameter (i.e., paired 

Student’s t-test, related samples Wilcoxon signed rank test, independent Student’s t-test 

or independent samples Mann-Whitney U test). A related-sample test was used to 

evaluate changes from Day 0 biopsy to Day 60 biopsy, or Day 0 biopsy to Day 60R, 

within the control or treated horses. An unrelated-sample test was performed to 

evaluate difference between treated and control horses within Day 60 biopsy or Day 

60R biopsy. Statistical analyses were performed using commercially-available software 

(SPSS, version 24, IBM Corporation, Armonk, New York, USA), and p-values of <0.05 

were considered significant. If a parameter was significant but not normalized to 

respective biopsy size measurements, it was not reported (e.g., BV versus BV/TV). Due 

to the aforementioned issues with obtaining microCT data from two Day 0 biopsies, all 

data from those horses were excluded from dependent analyses. 

 

3.3 Results 

Surgical Technique 

 One horse (control group) was lost during the study and was euthanized due to 

reasons unrelated to the study, and was therefore not included in subsequent analyses.   
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Figure 3.2 Schematic of statistical comparisons for microCT and histomorphometry 

data. 

 

Horses received between 660 – 800 mg (mean ± SD, 783.0 ± 81.8 mg) of clodronate 

based on weight. All surgeries were successful in obtaining adequately-sized bone 

biopsies during each attempt, with no horses showing post-surgical lameness or 

complications. Day 0, Day 60 and Day 60R biopsies had a mean (± SD) TV of 1731 ± 

78, 1467 ± 453 and 1080 ± 646 mm
3
, respectively. 

 

Bone Morphology 

 Due to technical difficulties, microCT analyses were only performed on three of 

the five Day 0 biopsies from the treated group. When comparing data from treated 

horses to control horses within the Day 60 biopsy, there was no significant effect of 

clodronate treatment on any of the 19 total bone morphology parameters as evaluated 
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by microCT (Figure 3.3). Similarly, there were no significant changes in bone 

morphology parameters between Day 0 and Day 60 biopsies within treated horses, or 

within control horses, as evaluated by MicroCT.  

  When comparing Day 0 biopsy to Day 60 biopsy within the control horses, 

several histomorphological parameters were significantly different: Day 0 biopsy was 

significantly greater than Day 60 biopsy in BV/TV (p=0.02) (Figure 3.3), and Oc.S/BS 

(p=0.04), and Day 60 biopsy was greater than Day 0 biopsy in Tb.Sp (p=0.01) and 

Ma.V/TV (p=0.02). When making the same comparison within treated horses, Day 0 

biopsy was greater than Day 60 biopsy in Void Surface/BS (p=0.049), and Ob.N/TA 

(p=0.03) (Table 1), and Day 60 biopsy was greater than Day 0 biopsy in 

Ob.N/Ob.Perimeter (p=0.02). Overall, changes from Day 0 to Day 60 within control 

horses affected three out of 20 bone morphology parameters, and one out of 10 bone 

resorption parameters. Changes from Day 0 to Day 60 within treated horses showed 

differences in one out of 20 bone morphology parameters, and two out of 20 bone 

formation parameters.  

 

Bone Remodeling 

 After 60 days, clodronate did not significantly alter any of the 14 bone remodeling 

parameters evaluated via dynamic histomorphometry (Figure 3.3).  

 

Bone Healing 

 When comparing treated horses to control horses within the Day 60R biopsy, 

there was no significant effect of clodronate on any of the 19 bone morphology 
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parameters, as evaluated by microCT. Comparing Day 0 biopsy to Day 60R biopsy 

within control horses and then again within treated horses, there were no significant 

differences in any of the 19 bone morphology parameters evaluated via microCT. 

 When comparing Day 0 to Day 60R within control horses, the Day 60R biopsy 

had significantly higher ES/BS (p=0.049). Comparing Day 0 biopsy to Day 60R biopsy 

within treated horses, the same effect in ES/BS (p=0.03) was observed. Comparing 

treated horses to control horses within the Day 60R biopsy, treated horses had 

significantly higher BS/TV (p=0.02) and Tb.N (p=0.02), and significantly less Ob.S/BS 

(p=0.04). Overall, two out of 20 bone morphology parameters and one out of 20 bone 

formation parameters were significantly affected. 

 

3.4 Discussion 

 This study details the effect of a single dose of clodronate on bone cells, 

morphology, remodeling, and healing in 5 healthy, young Thoroughbred horses. This is 

the first study that has evaluated bony changes due to clodronate in the horse, despite 

its prolific use in veterinary clinics. Additionally, clodronate’s effect in horses under 4 

years of age has not been determined. Overall, the data presented here demonstrates 

that overall there were no effects of clodronate after 60 days on bone morphology or 

remodeling when compared to the control group and when compared to baseline 

biopsies from the same horse, using the prescribed dose and route of administration.  
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Figure 3.3 Summary data (mean ± SD) of bone structure and remodeling parameters from Day 0, Day 60 and Day 60R 
biopsies for microCT, static histomorphometry and dynamic histomorphometry analyses in control (n=4) and treated (n=5) 
horses. Abbreviations: BV/TV, bone volume fraction (bone volume/total volume); Tb.Th, trabecular thickness; Tb.N 
trabecular number; Con.D, connectivity density; Ob.N/TA, number of osteoblasts per tissue area; Oc.N/TA, number of 
osteoclasts per tissue area; sL.S/BS, single label surface per bone surface; dL.S/BS, double label surface per bone 
surface; MAR, mineral apposition rate; BFR/BV, rate of bone formation (bone formation rate per unit of bone volume). 
a,bSignificant (P ≤ 0.05) difference between values with the same letter superscript. P-value results from paired Student’s 
t-test.  * Sample size for treated Day 0 biopsies contains 3 horses for microCT analysis.  
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 One limitation to the current study is a lack of evaluation in a model of 

pathological bone remodeling, and a lack of clinical evaluations on lameness. However, 

a barrier to the field is that there is currently no data regarding whether clodronate does 

or does not affect bone remodeling in the horse at the doses administered. It is well 

known that bisphosphonates are powerful modifiers of the bone remodeling process, 

including in normal bone (Mashiba et al., 2005). Therefore, it is hypothesized that if 

there were a systemic effect of clodronate administration in the horse at the routine 

clinical dose administered, it would have been detected in the current study. As outlined 

above, treatment success in the previous study (FOI, 2014) may have been based on 

clodronate’s pain-minimizing properties, and not due to changes in bone remodeling. 

This would explain the treatment success demonstrated in that clinical trial (FOI, 2014), 

but support the lack of bony changes shown in this study. However, a novel aspect of 

the current study is the evaluation of the effect of clodronate on bone healing secondary 

to a bone defect (i.e., the biopsy). Bone healing during clodronate use has been 

evaluated in rats (Madsen et al., 1998, Koivukangas et al., 2003), with no reports of 

adverse effects on bone remodeling (Koivukangas et al., 2003), but conflicting results 

on bone callus formation during fracture repair (Nyman et al., 1993, Nyman et al., 1996, 

Madsen et al., 1998). In this study, although not specifically evaluating fracture repair, 

we too found minimal effects on bone healing after injury. 

The biopsy location, the tuber coxarum, used in the current study may not be 

representative of normal bone remodeling throughout the equine skeleton. However, 

previous work has shown that tiludronate, a bisphosphonate similar in structure and 

pharmacokinetics to clodronate (Lin, 1996), has been shown to accumulate in the bone 



	

	72	

at highest concentrations within tuber coxae (Delguste et al., 2011). Thusly, while no 

such data exists for clodronate, given the similarities between tiludronate and 

clodronate, the tuber coxae are assumed to accumulate high concentrations. Similarly, 

the tuber coxae do not experience the same specific biomechanics experienced in the 

equine distal limb, specifically the navicular bone. It is possible that exercise may 

influence the effect of bisphosphonates on bone remodeling. Using the tuber coxae is a 

potential limitation in regards to conclusions about weight-bearing bones, given that 

clodronate is indicated for treatment of abnormal bone remodeling that primarily occurs 

in the distal limb in horses. However, bisphosphonates have been repeatedly shown to 

have systemic effects on bone (Drake and Cremers, 2010), especially trabecular bone 

(Pataki et al., 1997), so it can be reasonably argued that any changes that would occur 

secondary to treatment with clodronate would be identified in the selected biopsy 

location. Similarly, the pelvis has been identified as a location that can accurately 

represent changes found in weight bearing regions of the skeleton, such as the 

vertebrae (Mashiba et al., 2005).  

 While some significant differences in bone morphology were identified 

histologically, these changes were not confirmed via microCT, which represents a 

comprehensive evaluation of bone structure in three dimensions, as compared to two-

dimensional histological assessments. While histomorphometry is excellent tool for cell 

and remodeling analyses of a slice of the total biopsy, microCT accounts for the entire 

biopsy volume. Therefore, despite small differences reported, the authors conclude that 

overall effects of clodronate on bone morphology and remodeling were insignificant in 

young horses after 60 days. Overall, there were small differences noted between 
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clodronate and saline comparisons. However, these differences were minor, and do not 

make biological sense as a stand-alone parameter in the broad overview of bone 

formation and resorption. It is possible that the changes seen in the control group are 

normal bony changes for this time frame, and clodronate preventing these changes 

from occurring in the treated group. However, as the changes reported are not 

consistent with overall changes expected. The low sample size may have limited the 

overall power of our analyses, but given the known efficacy of clodronate in other 

species on altering bone resorption (Minaire et al., 1986), even a small difference, if 

present, was expected to be observed. The 60 day duration of this study is short; 

however this duration has been used in other studies examining bone remodeling 

(Rohde et al., 2000) and is associated with clinical improvement of lameness in the 

majority of horses treated with either clodronate or tiludronate (Denoix et al., 2003, 

Gough et al., 2010, FOI, 2014). Clinical improvement in lameness may not be related to 

changes in bone morphology or remodeling, but without investigating the effects in 

normal horses, pathologic changes or responses following therapy will be harder to 

identify. Additionally, our study utilized both internal controls and a separate control 

group, and found no additional differences in any parameter using these comparisons. 

However, future evaluations should utilize a larger sample size to increase power to 

determine if clodronate has minimal effect on bone remodeling.  

 In conclusion, we found that clodronate has no effect on bone morphology, as 

evaluated via microCT, and no effect on bone remodeling after 60 days in young 

horses. There were minimal effects found via static histomorphology; however, these 

results are insignificant in the absence of microCT data and other normalized 
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parameters. Additionally, we determined that clodronate does not negatively affect bone 

healing in the presence of a bone injury, in this skeletal location, after 60 days.  
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CHAPTER 4. 
ANATOMICAL VARIATION OF THE TARSUS IN COMMON INBRED  

MOUSE STRAINS2 

4.1 Introduction 

 Rodent models are widely used in orthopedic and biomechanical research, which 

rely upon accurate knowledge of the anatomy of the hind limb (Gillis and Biewener, 

2001, Settle et al., 2003, Glasson et al., 2007, Rose et al., 2013, Banzrai et al., 2016). 

Their small size, fully sequenced genome (Corsortium et al., 2002, Adams et al., 2015) 

and short lifespan make them a common candidate for translational studies related to 

human disease. Therefore, detailed and accurate anatomical descriptions are extremely 

important for any translational research that involves the musculoskeletal system of 

rodents. Prior to the advent of novel technologies that allow advanced imaging of 

various tissues and organ systems, scientists relied on artistic interpretations of 

anatomy (Cook, 1965, Rugh, 1968, Popesko et al., 1992) for references. These 

drawings are still used today as anatomical references for research and education. 

These references describe the tarsal anatomy of mice (Mus muscus) as having eight 

bones, including tarsal bones I (os tarsale I), II (os tarsale II), III (os tarsale III) and IV 

(os tarsale IV), medial tibial (tibiale mediale), central (os tarsi centrale), calcaneus and 

talus (Cook, 1965, Rugh, 1968). The anatomy of the murine tarsus, as described by 

Cook (Cook, 1965) and Rugh (Rugh, 1968), is identical to the anatomy found in the rat 

(Popesko et al., 1992). 

																																																								
2 This chapter previously appeared as Richbourg, H. A. et al. Anatomical Variation of 
the Tarsus in Common Inbred Mouse Strains. Anat Rec (2016) DOI: 10.1002/ar.23493. 
Reprinted by permission of John Wiley and Sons via RightsLink. 
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 While useful, these conventional references do not depict three-dimensional (3D) 

relationships between anatomical structures. Published anatomical descriptions have 

expanded to include high resolution, 3D images and models of anatomy derived from 

computed tomography (Yakatan et al., 1982) scans from several species. The skeletal 

anatomy of a C57Bl/6 (Black6) laboratory mouse has been characterized in extensive 

detail by utilizing microCT (Bab et al., 2007), and conflicting data describing murine 

tarsal anatomy has been observed between the established anatomical illustrations 

(Cook, 1965, Rugh, 1968) and the more recent text (Bab et al., 2007) that uses microCT 

to describe murine skeletal anatomy. When examining the tarsus in high-resolution 

microCT scans of a 10-week-old male Black6 laboratory mouse (Bab et al., 2007), the 

central tarsal bone and tarsal bone III are fused; however, this fused bone is labeled as 

the navicular bone (i.e. central tarsal bone) with no discussion on the absence of the 

tarsal bone III. Additionally, Duce et al. (Duce et al., 2010) reported difficulty in 

determining the interface between the central and tarsal bone III in Black6 mice during 

digital segmentation of micro-magnetic resonance imaging (MRI) data.  

 Normal variation in tarsal bone anatomy has been documented in several other 

species, both domestic and exotic (Shubin et al., 1995, Dyce et al., 2010). Although 

normal variation in ossification patterns within rodents has been documented (Wilson et 

al., 2010), normal variations in tarsal anatomy within mice remain undocumented. This 

lack of knowledge impacts studies that have identified abnormalities of the tarsus in 

mice afflicted with mutations affecting the expression of growth and differentiation 

factors (GDF) 5 and 6 (Grüneberg and Lee, 1973, Storm et al., 1994, Settle et al., 2003, 

Tassabehji et al., 2008). One of these mutations is characterized as brachypodism, a 
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disease that is caused by a recessive gene mutation that affects the appendicular 

skeleton, resulting in shortened long bones and fusion of bones within the tarsus and 

carpus (Grüneberg and Lee, 1973, Storm et al., 1994, Seemann et al., 2005). In these 

studies, the fusion of tarsal bone III and the central tarsal bone is represented as an 

abnormal consequence of gene mutations in commonly used inbred laboratory mouse 

strains. Due to conflicting information between these studies and anatomical references, 

documenting the detailed anatomy of the tarsal anatomy in mice is important for future 

work involving the skeletal structures in this region. Therefore, the purpose of the 

current study is to characterize the normal anatomy of the tarsus and to clarify the 

presence and number of bones within this region in normal laboratory mice, evaluating 

both young and mature individuals of multiple lineages. To determine the phylogenetic 

extent of the potentially derived tarsal anatomy observed in laboratory mice, they are 

compared with other closely related murines by evaluating the rat (Rattus norvegicus); 

and a member of Cricetidae as the outgroup, the more distantly related white-footed 

mouse (Peromyscus leucopus) (Blanga-Kanfi et al., 2009). 

 

4.2 Materials and Methods 

Study Design 

 Left hind limbs from 17 laboratory mice, 2 white-footed mice and 5 rats were 

collected. To accurately determine variation in hind limb bony anatomy, tarsi from these 

specimens were analyzed via high-resolution microCT. Three-dimensional 

reconstructions of the tarsal bone anatomy were then made for comparisons as outlined 

below. In addition, decalcified histology of the tarsus from the hind limb of one Black6 
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laboratory mouse and one BalbC laboratory mouse was analyzed to confirm tarsal bone 

fusion.  

 

Specimens 

 All specimens in this study were collected post-mortem as discarded tissues 

under approved IACUC protocols, and were not included in concurrent studies involving 

musculoskeletal disease before euthanasia. Details regarding the specimens utilized in 

the study are outlined in Figure 4.1. In short, two laboratory strains of mice (M. muscus; 

Black6, n=15; and BalbC, n=2), white-footed mice (P. leucopus, n=2) and laboratory 

rats (R. norvegicus, Sprague Dawley, n=5) were evaluated. Within the Black6 inbred 

laboratory mice, hind limbs from mice of various ages were included: 24 weeks (n=7), 

16 weeks (n=3), 11 weeks (n=3), 8 weeks (n=1) and 3.5 weeks (n=1). The left hind limb 

from each specimen was disarticulated at the coxofemoral joint and fixed in 10% 

neutral-buffered formalin prior to analysis.  

 

Micro-computed tomography and 3D reconstruction 

 Samples were scanned (Scanco Model 40, Scanco Medical AG, Basserdorf, 

Switzerland) in 70% ethanol at 55 kV, 145 μA with various isotropic voxel resolutions 

(outlined in Table 4.1) due to limb size. The region of interest (Bouxsein et al., 2010) for 

microCT scanning included the region between the distal tibia to the proximal 

metatarsal bones. Each scan was exported as a set of DICOM files and imported to the  
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Figure 4.1 Characteristics for study samples utilized, including common name, species 
name, specific strain (if applicable), age (if known), sex, the number of samples per 
category and the microCT scanning resolution. Exact ages are not known for animals 
obtained from the field, so maturation was deduced based on closure of physes within 
the hind limb. For age reference, sexual maturity of the mouse and rat is estimated to 
be as early as 4 to 5 weeks. 
 

imaging software Amira version 6.0.1 (FEI Software, Hillsboro, OR, USA). Anatomical 

features were segmented by hand, using a Wacom Intuos Pro large tablet (Wacom 

Technology Corp., Vancouver, WA, USA). Standard veterinary anatomical 

nomenclature was utilized throughout the study (Nomenclature, 2012). 
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Histology 

 Following microCT scanning, a representative hind limb from one Black6 and 

BalbC laboratory mouse were prepared for routine decalcified histology. The hind limbs 

were decalcified in 10% ethylenediaminetetraacetic acid (EDTA) for two weeks, 

processed, embedded intact into paraffin and serially sectioned in the sagittal plane. 

Four to five representative sections were selected through the central tarsal region, 

ensuring inclusion of the central tarsal bone and tarsal bone III, and stained with 

hematoxylin & eosin (H&E). Sections were evaluated for presence of joint space, 

hyaline cartilage and/or subchondral bone.  

 

4.3 Results 

MicroCT and Digital Models  

The laboratory mouse tarsus has seven individual tarsal bones: the calcaneus, 

talus, fused central and tarsal bone III, medial tibial bone and tarsal bones I, II, and IV 

(Figure 4.2). The tibia and fibula articulate distally with the talus, and the tarsocrural joint 

incorporates the distal tibia and fibula, talus and calcaneus. The proximal row of tarsal 

bones includes the medial tibial bone, talus and calcaneus. The talus articulates with 

the calcaneus caudally, medial tibial bone medially and the fused central and tarsal 

bone III distally. The middle row of tarsal bones is composed of the proximal portion of 

tarsal bone I, proximal portion of the fused central and tarsal bone III and tarsal bone IV 

(medial to lateral), and the distal row consists of the distal portion of tarsal bone I, tarsal 

bone II, distal portion of the fused central and tarsal bone III and the distal portion of 

tarsal bone IV (medial to lateral). The metatarsals are distal to the tarsal bones, 
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consisting of (medial to lateral) metatarsals I, II, III, IV, and V. Each metatarsal bone 

articulates with the corresponding tarsal bone (i.e., metatarsal I articulates with tarsal 

bone I), with the exception of metatarsal V, which articulates with the distal portion of 

tarsal IV. Metatarsal V protrudes the furthest proximally of the metatarsals.  

 In contrast, the rat and white-footed mouse have a separate central tarsal bone 

and tarsal bone III (Figure 4.2), consisting of 8 separate tarsal bones (full pes shown in 

Figure 4.3). Two-dimensional slices from microCT scans confirm fusion of the central 

and tarsal bone III in both strains of laboratory mice, and separation in the rat (Figure 

4.4). In this particular white-footed mouse specimen, metaphyseal physes were not 

ossified in the proximal and distal tibia, proximal and distal fibula, proximal metatarsal I 

and metatarsal V; in addition, the apophysis that gives rise to the tuber calcanei was not 

ossified, indicating that this specimen was skeletally immature. Similar to the white-

footed mouse, metaphyseal physes were not ossified in the tibia, fibula and metatarsal I 

in the 3-week- old Black6, and the fibula in the 8-week-old Black6. Similarly, the 

apophysis that gives rise to the tuber calcanei was not ossified in the 3- and 8-week-old 

specimens. Comparative tarsal anatomy of the laboratory mouse, rat and white-footed 

mouse are shown in Figure 4.5.  

 

Histology 

Sagittal sections of the tarsus in both the adult Black6 and BalbC mice show a 

single, fused central and tarsal bone III (Figure 4.6). In both samples, a horizontal band 

of healthy hyaline cartilage was present near the approximated fusion site, but is 

surrounded by healthy and intact trabecular bone.   
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Figure 4.2 Representative 3D reconstructions of the left tarsus (cranial view) of A) adult 
Black6 mouse, B) adult BalbC mouse, C) 8 week old Black6 mouse, D) 3.5 week old 
Black6 mouse, E) rat, and F) white-footed mouse. Abbreviations: Cal, calcaneus; Cen, 
central tarsal bone; Cen & T3, fused central and tarsal bone III; Fib, fibula; Med T, 
medial tibial bone; Met, metatarsals; Ses, sesamoid; Tal, talus; Tib, tibia; T1, tarsal 
bone I; T2, tarsal bone II; T3, tarsal bone III; T4, tarsal bone IV. Scale bar = 0.5 mm. 
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Figure 4.3 Three-dimensional reconstructions of the left pes of the white-footed mouse 
(P. leucopus) in medial, cranial and lateral view from left to right. Abbreviations: Cal, 
calcaneus; Cen, central tarsal bone; Fib, fibula; Med T, medial tibial bone; Met1, 
metatarsal I; Met5, metatarsal IV; Ses, sesamoid; Tal, talus; Tib, tibia; T1, tarsal bone I; 
T2, tarsal bone II; T3, tarsal bone III; T4, tarsal bone IV. Scale bar = 2.5 mm.  
 

4.4 Discussion 

In this study, we determined that the fusion of the central and tarsal bone III is present 

in both strains of laboratory mice examined. Considering that the fusion was present in 

all individuals of varying ages (n=17), we conclude this to be a ubiquitous tarsal 

characteristic in laboratory mice. In addition to microCT evaluations, histology further 

confirmed this fusion. Our findings contradict the majority of previously published data 

(Cook, 1965, Rugh, 1968, Popesko et al., 1992) but support the recent images  
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Figure 4.4 Representative sagittal (A, C, E) and transverse (B, D, F) slices from 
microCT scans showing the central (purple) and tarsal bone III (blue) in the adult Black6 
mouse (A, B), adult BalbC mouse (C, D) and rat (E, F). Abbreviations: Tal, talus; Cal, 
calcaneus; Cen & T3, fused central and tarsal bone III; Cen, central; T1, tarsal bone I; 
T2, tarsal bone II; T3, tarsal bone III; T4, tarsal bone IV; Met2, metatarsal II; Met5, 
metatarsal V. Scale bar = 0.5 mm.  



	

	87	

 

 

Figure 4.5 Three-dimensional reconstructions for comparative anatomy of the left pes of 
the A) adult BalbC mouse (M. musculus), B) rat (R. norvegicus), and C) white-footed 
mouse (P. leucopus) in medial, cranial and lateral view from left to right. Abbreviations: 
Tib, tibia and fibula; Tal, talus; Ses, sesamoid; Cal, calcaneus; Med T, medial tibial; Cen 
& T3, fused central and tarsal bone III; Cen, central; T1, tarsal bone I; T2, tarsal bone II; 
T3, tarsal bone III; T4, tarsal bone IV; Met, metatarsals. Scale bar = A) 0.5 mm, B) 2.5 
mm, C) 1 mm. 
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Figure 4.6 Decalcified H&E stained histologic sagittal sections from a representative 
adult BalbC mouse (A & B) and adult Black6 mouse (C & D). Arrowheads designate 
hyaline cartilage within the fused central and tarsal bone III. Scale bars = 500 μm (A & 
C) and 100 μm (B & D).  
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published by Bab et al. (Bab et al., 2007). This study further characterizes these 

differences in two strains of mice by comparing the laboratory mouse morphotype to the 

closely related rat and the more distant white-footed mouse. Due to the fact that the 

observed tarsal fusion was not present in the rat, we believe this fusion to be a recent 

development due to extensive selective breeding of laboratory mice, potentially 

expediting evolutionary changes. In addition, histological evaluations showed the 

presence of hyaline cartilage in both laboratory strains, demonstrating that the central 

bone and tarsal bone III were likely, at one point, two separate bones. The presence of 

cartilage could indicate that either the bone has completely fused and this is the 

remnant of the joint space, or the bone has only partially fused, and the presence of the 

cartilage surrounded within bone is simply an orientation limitation of a two-dimensional 

view. It is possible that this fusion could have occurred during normal postnatal growth 

and development, as studies evaluating bone development show these bones as being 

separate in young mice (Storm et al., 1994, Patton and Kaufman, 1995); however, our 

findings are somewhat contradictory, as we identified this fusion in mice as young as 

three weeks old. One limitation to our study was that only one laboratory mouse at three 

weeks of age was analyzed. A potential explanation for these anatomical differences 

could be the different laboratory mouse populations. The laboratory mice used in this 

study were either purchased from the Jackson Laboratory or bred on site.  

 Several studies have characterized the fusion of the central and tarsal bone III as 

an abnormal finding secondary to mutations associated with brachypodism (Storm et 

al., 1994). Storm et al. (Storm et al., 1994) found fusion of the central and tarsal bone III 
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in BalbC mice with null mutations in GDF5 during embryonic development. It is thought 

that disrupting various members of the bone morphogenic proteins (BMPs) may affect 

differentiation and separation of precursor bones within the carpus and tarsus (Storm et 

al., 1994). In contrast, our data demonstrate that fusion of the central and tarsal bone III 

is likely a normal maturation characteristic, and not a pathological finding as described 

(Grüneberg and Lee, 1973, Storm et al., 1994). Furthermore, if this fusion in the tarsal 

bones occurred as the result of a genetic mutation within the inbred laboratory mouse 

strains, it is possible that this change occurred during the 20-50 years since those 

studies were published, meaning that the normal mice included in those studies did 

indeed have separated tarsal bones. More recently, Duce et al. (Duce et al., 2010) 

reported difficulties distinguishing the boundaries of the central and tarsal bone III using 

micro-magnetic resonance imaging of Black6 mice. These difficulties could be explained 

by our results. Our findings directly impact these studies, as we have shown that this 

fusion is not a lesion secondary to disease, and is in fact a normal occurrence within 

two laboratory mouse strains. 

 The central and tarsal bone III in the white-footed mouse are unfused and remain 

two distinctly separate bones. It is possible that fusion could occur in a later phase of 

maturation of the white-footed mouse; however, this does not appear to be the case, as 

the laboratory mice with a similar epiphyseal plate status show fused tarsal bones. In 

addition, tarsal bones ossify with a single center of ossification during development 

(Patton and Kaufman, 1995), thus normal postnatal fusion of these two bones is 

unlikely. Differences in the white-footed mouse and a laboratory mouse may be due to 

differences in locomotion (i.e., semi-saltatorial versus scansorial) or due to their distant 
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phylogenetic relationship. In addition, only two white-footed mice were available for 

evaluation. Future studies would require further and more comprehensive analyses of 

the tarsal anatomy of wild typed mice of various ages for direct comparisons to the 

skeletal anatomy of their distant inbred relatives. 

The absence of fusion in the closely-related rat shows that this fusion is specific 

to the laboratory mouse and is not an ancestral state. The fusion of the central bone 

and tarsal bone III is most likely the result of a genetic mutation from human-directed 

breeding; however, evaluations of a wild type M. musculus is necessary to determine if 

this fusion is only present in laboratory mice or also found in other populations. Although 

the mice used in this study are bred as control, wild type mice, they have still been 

subjected to inbreeding, and therefore may not reflect the true wild type state of mice. 

Herein we were able to successfully show that fusion of the central and tarsal 

bone III is a normal characteristic in adults of two strains of inbred laboratory mice 

commonly used for orthopedic research, as well as characterize the tarsal anatomy for 

the white-footed mouse and rat. Although we guardedly apply this conclusion to all 

strains and populations of laboratory mice due to sample size, we believe these findings 

should be considered for studies requiring detailed knowledge of tarsal anatomy in 

these species. It is possible that there are biomechanical consequences of the fusion of 

the central and tarsal bone III; however, the fusion does not span the entire distal 

intertarsal joint, and therefore only limits range of motion in the center of the joint. Joint 

fusions are common in horses with distal intertarsal osteoarthritis, and after surgical 

fusion, horses return to athletic performance without hindrance on range-of-motion in 

the tarsus (Dechant et al., 2005). Therefore, although the fusion of the central and tarsal 
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bone III may limit the overall movement of the joint, it likely does not have major 

consequences on gait. Clarification of the timing of fusion should be evaluated through 

the investigation of additional stages, including embryogenesis, as studies evaluating 

the effects of GDF 5/6 mutations in tarsal anatomy evaluate developmental anatomy. In 

addition, older mice (i.e., >1 year of age) should also be evaluated to determine if the 

cartilage and joint space observed disappears, indicating that fusion is actively 

occurring later in life.  

 
4.5 References 
 
Adams, D. J., A. G. Doran, J. Lilue and T. M. Keane (2015). "The Mouse Genomes 

Project: a repository of inbred laboratory mouse strain genomes." Mamm 
Genome 26(9-10): 403-412. 

Bab, I. A., C. Hajbi-Yonissi, Y. Gabet and R. Müller (2007). Micro-tomographic atlas of 
the mouse skeleton, Springer Science & Business Media. 

Banzrai, C., H. Nodera, T. Kawarai, S. Higashi, R. Okada, A. Mori, Y. Shimatani, Y. 
Osaki and R. Kaji (2016). "Impaired Axonal Na(+) Current by Hindlimb 
Unloading: Implication for Disuse Neuromuscular Atrophy." Front Physiol 7: 36. 

Blanga-Kanfi, S., H. Miranda, O. Penn, T. Pupko, R. W. DeBry and D. Huchon (2009). 
"Rodent phylogeny revised: analysis of six nuclear genes from all major rodent 
clades." BMC Evol Biol 9(1): 71. 

Bouxsein, M. L., S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen and R. 
Müller (2010). "Guidelines for assessment of bone microstructure in rodents 
using micro-computed tomography." J Bone Min Res 25(7): 1468-1486. 

Cook, M. J. (1965). The anatomy of the laboratory mouse, London (& New York): 
Academic Press. 

Corsortium, M. G. S., R. H. Waterston, K. Lindblad-Toh, E. Birney, J. Rogers, J. F. Abril, 
P. Agarwal, R. Agarwala, R. Ainscough, M. Alexandersson, P. An, S. E. 
Antonarakis, J. Attwood, R. Baertsch, J. Bailey, K. Barlow, S. Beck, E. Berry, B. 
Birren, T. Bloom, P. Bork, M. Botcherby, N. Bray, M. R. Brent, D. G. Brown, S. D. 
Brown, C. Bult, J. Burton, J. Butler, R. D. Campbell, P. Carninci, S. Cawley, F. 
Chiaromonte, A. T. Chinwalla, D. M. Church, M. Clamp, C. Clee, F. S. Collins, L. 
L. Cook, R. R. Copley, A. Coulson, O. Couronne, J. Cuff, V. Curwen, T. Cutts, M. 
Daly, R. David, J. Davies, K. D. Delehaunty, J. Deri, E. T. Dermitzakis, C. Dewey, 



	

	93	

N. J. Dickens, M. Diekhans, S. Dodge, I. Dubchak, D. M. Dunn, S. R. Eddy, L. 
Elnitski, R. D. Emes, P. Eswara, E. Eyras, A. Felsenfeld, G. A. Fewell, P. Flicek, 
K. Foley, W. N. Frankel, L. A. Fulton, R. S. Fulton, T. S. Furey, D. Gage, R. A. 
Gibbs, G. Glusman, S. Gnerre, N. Goldman, L. Goodstadt, D. Grafham, T. A. 
Graves, E. D. Green, S. Gregory, R. Guigo, M. Guyer, R. C. Hardison, D. 
Haussler, Y. Hayashizaki, L. W. Hillier, A. Hinrichs, W. Hlavina, T. Holzer, F. Hsu, 
A. Hua, T. Hubbard, A. Hunt, I. Jackson, D. B. Jaffe, L. S. Johnson, M. Jones, T. 
A. Jones, A. Joy, M. Kamal, E. K. Karlsson, D. Karolchik, A. Kasprzyk, J. Kawai, 
E. Keibler, C. Kells, W. J. Kent, A. Kirby, D. L. Kolbe, I. Korf, R. S. Kucherlapati, 
E. J. Kulbokas, D. Kulp, T. Landers, J. P. Leger, S. Leonard, I. Letunic, R. 
Levine, J. Li, M. Li, C. Lloyd, S. Lucas, B. Ma, D. R. Maglott, E. R. Mardis, L. 
Matthews, E. Mauceli, J. H. Mayer, M. McCarthy, W. R. McCombie, S. McLaren, 
K. McLay, J. D. McPherson, J. Meldrim, B. Meredith, J. P. Mesirov, W. Miller, T. 
L. Miner, E. Mongin, K. T. Montgomery, M. Morgan, R. Mott, J. C. Mullikin, D. M. 
Muzny, W. E. Nash, J. O. Nelson, M. N. Nhan, R. Nicol, Z. Ning, C. Nusbaum, M. 
J. O'Connor, Y. Okazaki, K. Oliver, E. Overton-Larty, L. Pachter, G. Parra, K. H. 
Pepin, J. Peterson, P. Pevzner, R. Plumb, C. S. Pohl, A. Poliakov, T. C. Ponce, 
C. P. Ponting, S. Potter, M. Quail, A. Reymond, B. A. Roe, K. M. Roskin, E. M. 
Rubin, A. G. Rust, R. Santos, V. Sapojnikov, B. Schultz, J. Schultz, M. S. 
Schwartz, S. Schwartz, C. Scott, S. Seaman, S. Searle, T. Sharpe, A. Sheridan, 
R. Shownkeen, S. Sims, J. B. Singer, G. Slater, A. Smit, D. R. Smith, B. Spencer, 
A. Stabenau, N. Stange-Thomann, C. Sugnet, M. Suyama, G. Tesler, J. 
Thompson, D. Torrents, E. Trevaskis, J. Tromp, C. Ucla, A. Ureta-Vidal, J. P. 
Vinson, A. C. Von Niederhausern, C. M. Wade, M. Wall, R. J. Weber, R. B. 
Weiss, M. C. Wendl, A. P. West, K. Wetterstrand, R. Wheeler, S. Whelan, J. 
Wierzbowski, D. Willey, S. Williams, R. K. Wilson, E. Winter, K. C. Worley, D. 
Wyman, S. Yang, S. P. Yang, E. M. Zdobnov, M. C. Zody and E. S. Lander 
(2002). "Initial sequencing and comparative analysis of the mouse genome." 
Nature 420(6915): 520-562. 

Dechant, J. E., G. M. Baxter, D. D. Frisbie, G. W. Trotter and C. W. McIlwraith (2005). 
"Effects of glucosamine hydrochloride and chondroitin sulphate, alone and in 
combination, on normal and interleukin-1 conditioned equine articular cartilage 
explant metabolism." Equine Vet J 37(3): 227-231. 

Duce, S., L. Madrigal, K. Schmidt, C. Cunningham, G. Liu, S. Barker, G. Tennant, C. 
Tickle, S. Chudek and Z. Miedzybrodzka (2010). "Micro-magnetic resonance 
imaging and embryological analysis of wild-type and pma mutant mice with 
clubfoot." J Anat 216(1): 108-120. 

Dyce, K. M., W. O. Sack and C. J. G. Wensing (2010). Textbook of veterinary anatomy. 
St. Louis, MO, Saunders/Elsevier. 

Gillis, G. B. and A. A. Biewener (2001). "Hindlimb muscle function in relation to speed 
and gait: in vivo patterns of strain and activation in a hip and knee extensor of the 
rat (Rattus norvegicus)." J Exp Biol 204(15): 2717-2731. 



	

	94	

Glasson, S. S., R. Askew, B. Sheppard, B. Carito, T. Blanchet, M. Hak-Ling, C. R. 
Flannery, D. Peluso, K. Kanki and Z. Yang (2007). "Deletion of active ADAMTS5 
prevents cartilage degradation in a murine model of osteoarthritis." Nature 
446(7131): 102. 

Grüneberg, H. and A. J. Lee (1973). "The anatomy and development of brachypodism 
in the mouse." J Embryol Exp Morphol 30(1): 119-141. 

Nomenclature, V. G. A. (2012). Veterinary Gross Anatomical Nomenclature. General 
Assembly of the World Association of Veterinary Anatomists Editorial Committee, 
Hannover, Germany. 

Patton, J. and M. Kaufman (1995). "The timing of ossification of the limb bones, and 
growth rates of various long bones of the fore and hind limbs of the prenatal and 
early postnatal laboratory mouse." J Anat 186(Pt 1): 175. 

Popesko, P., V. Rajtová and J. Horák (1992). A colour atlas of the anatomy of small 
laboratory animals. London, Wolfe Pub. 

Rose, S., E. A. Waters, C. R. Haney, C. T. J. Meade and H. Perlman (2013). "High-
Resolution Magnetic Resonance Imaging of Ankle Joints in Murine Arthritis 
Discriminates Inflammation and Bone Destruction in a Quantifiable Manner." 
Arthritis Rheum 65(9): 2279-2289. 

Rugh, R. (1968). The mouse: its reproduction and development. New York, Oxford 
England. 

Seemann, P., R. Schwappacher, K. W. Kjaer, D. Krakow, K. Lehmann, K. Dawson, S. 
Stricker, J. Pohl, F. Plöger and E. Staub (2005). "Activating and deactivating 
mutations in the receptor interaction site of GDF5 cause symphalangism or 
brachydactyly type A2." J Clin Invest 115(9): 2373-2381. 

Settle, S. H., R. B. Rountree, A. Sinha, A. Thacker, K. Higgins and D. M. Kingsley 
(2003). "Multiple joint and skeletal patterning defects caused by single and 
double mutations in the mouse Gdf6 and Gdf5 genes." Dev Biol 254: 116-130. 

Shubin, N., D. B. Wake and A. J. Crawford (1995). "Morphological Variation in the 
Limbs of Taricha granulosa (Caudata: Salamandridae): Evolutionary and 
Phylogenetic Implications." Evolution 49(5): 874-884. 

Storm, E. E., T. V. Huynh, N. G. Copeland, N. A. Jenkins, D. M. Kingsley and S. J. Lee 
(1994). "Limb alterations in brachypodism mice due to mutations in a new 
member of the TGF beta-superfamily." Nature 368(6472): 639-643. 

Tassabehji, M., Z. M. Fang, E. N. Hilton, J. McGaughran, Z. Zhao, C. E. de Bock, E. 
Howard, M. Malass, D. Donnai and A. Diwan (2008). "Mutations in GDF6 are 
associated with vertebral segmentation defects in Klippel-Feil syndrome." Hum 
Mutat 29(8): 1017-1027. 



	

	95	

Wilson, L. A., C. Schradin, C. Mitgutsch, F. C. Galliari, A. Mess and M. R. Sánchez-
Villagra (2010). "Skeletogenesis and sequence heterochrony in rodent evolution, 
with particular emphasis on the African striped mouse, Rhabdomys pumilio 
(Mammalia)." Org Divers Evol 10(3): 243-258. 

Yakatan, G. J., W. J. Poynor, R. L. Talbert, B. F. Floyd, C. L. Slough, R. S. Ampulski 
and J. J. Benedict (1982). "Clodronate kinetics and bioavailability." Clin 
Pharmacol Ther 31(402-410). 

 



	

	96	

CHAPTER 5.  
CONCLUDING REMARKS 

 
5.1 Overall Summary of Findings 

 The use of imaging in veterinary medicine has greatly advanced orthopedic 

research for both research and education purposes. This dissertation utilized one of 

these advanced imaging techniques, microCT, to analyze bone morphology in two 

animal models, answering several relevant questions in veterinary orthopedics: the 

effect of two FDA-approved bisphosphonate therapies (i.e. tiludronate and clodronate) 

on bone morphology and remodeling in horses, and the presence of tarsal variation in 

laboratory mice. In addition, this dissertation describes a novel, non-terminal bone 

biopsy method in the horse, providing the largest bone sample when compared to other 

methods previously described.  

 In Chapters 2 and 3, the aforementioned bone biopsy model was utilized to 

collect bone samples from the tuber coxarum of young, clinically healthy horses. Bone 

samples were analyzed via microCT and histomorphometry to determine the effect of 

clodronate and tiludronate on bone structure and remodeling. In addition, the effect of 

clodronate on bone healing after a bone defect was analyzed. We determined that 

tiludronate and clodronate, administered at the recommended dose, do not have an 

effect on bone morphology or bone remodeling after 60 days in young horses. However, 

tiludronate and clodronate may have preventing minor bony changes, as seen in the 

control group, from occurring in the treated horses. Additionally, clodronate does not 

appear to impact bone healing 60 days following creation of a defect.  

 In Chapter 4, we characterized the bony tarsal anatomy in two common strains of 

laboratory mice (i.e., Black6 and BalbC), and compared this anatomy to selected 
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outgroups: the closely-related laboratory rat and the distantly related white-footed 

mouse. Utilizing microCT and histology, we confirmed that the central and tarsal bone III 

were fused in all laboratory mice evaluated. This fusion was not present in the rat or 

white-footed mouse. Histological sections showed the presence of hyaline cartilage 

surrounded by mature, trabecular bone. We conclude that although the bone is fused in 

these mice, a joint remnant remains.  

 

5.2 Significance of Research 

 Assessment of bone health through bone biopsies in many species, including 

horses, is typically accomplished through obtaining a core biopsy from the sternebrae, 

ribs, third metacarpal bone, fourth tarsal bone and tuber coxae (Misheff et al., 1992, 

Steiger et al., 1999, Désévaux et al., 2000, Delguste et al., 2011), which has been 

shown to have poor trabecular bone for histological evaluation (Steiger et al., 1999). 

The biopsy method described in this dissertation produced biopsies almost 9 times 

larger than previously described biopsy volumes from other locations (Savage et al., 

1991, Misheff et al., 1992, Steiger et al., 1999), with no associated morbidity or post-

surgical lameness. Additionally, we showed that the biopsy model proposed in the 

current studies allows one to obtain sequential biopsies, permitting evaluation of bone 

across several time points.   

 Currently, tiludronate and clodronate are used extensively in the veterinary 

clinical setting to treat abnormal bone remodeling diseases (Denoix et al., 2003), 

including to young horses (Carpenter, 2012), which are known to undergo more rapid 

bone remodeling than skeletally-mature adults (Goyal et al., 1981). Despite the wide 
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use of clodronate in the clinical setting, and it’s known systemic impact on the entire 

skeleton, there has been little to no research evaluating the effect of these drugs on 

normal bone remodeling in horses. Additionally, the effect of these drugs in young 

horses, who may be skeletally immature and undergoing increased bone remodeling 

and growth secondary to normal development, has not been evaluated. Our research 

shows that these drugs have minimal to no short-term effect on normal bone structure 

and remodeling in young horses. Additionally, we showed that in the presence of a bone 

defect, clodronate does not negatively affect normal bone remodeling after 60 days.  

 Rodent models are used for a variety of orthopedic research applications, 

including characterization of pathologic bony changes secondary to disease (Eulderink 

et al., 1998, Ford-Hutchinson et al., 2003, Goupil et al., 2016). Therefore, correct 

representations of normal bony anatomy are crucial in determining normal 

characteristics versus pathologic characteristics. Additionally, surgical procedures are 

guided by current knowledge of anatomy. Standard references for mouse anatomy 

show the mouse tarsus containing 8 individual bones (Cook, 1965), while a recent atlas 

of the mouse, utilizing microCT, demonstrated a fusion between two bones, and 

consisted of 7 individual bones (Bab et al., 2007). However, this atlas did not describe 

the fusion nor characterize it in relation to previous published anatomical descriptions of 

the tarsal region. Therefore, we were able to show that this fusion is present in two 

strains of wild-type laboratory mice. This fusion needs to be considered when studying 

diseases of the tarsus, or for surgical procedures involving the tarsus of mice.   
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5.3 Future Directions 

 The results presented in this dissertation show that tiludronate and clodronate do 

not affect bone structure and remodeling after 60 days. The next milestone of this 

project is to determine longer term effects of tiludronate and clodronate on bone, as well 

as increase sample size to determine if lesser effects exist. Additionally, due to their 

minimal effect shown in this study, the effect of tiludronate and clodronate on diseased 

bone in horses, specifically associated with navicular disease, needs to be evaluated as 

well, to determine the efficacy of these BPs.  

 We showed that fusion of the central and tarsal bone III is a normal characteristic 

in two strains of wild-type laboratory mice. Therefore, the next goal of this project is to 

evaluate additional individuals to increase sample size of the BalbC strain, as well as 

evaluate additional wild-type strains. Moreover, evaluating individuals from various 

mouse colony populations will help elucidate the extent of the fusion into all laboratory 

mice populations. Further evaluation of the anatomical extent of the fusion is also 

necessary, to determine if surrounding musculature and neurovasculature are affected. 

Finally, once affected mouse strains are known, determining genetic differences 

between mice with a fused bone versus mice without will facilitate researchers in 

determining the cause of the fusion, and possible interactions with future studies 

evaluating genetic manipulations or pathology. 
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APPENDICES 
 

Appendix A: First author, Colin F. Mitchell, provided permission for the second author to 

reuse material from article ‘Assessment of Tuber Coxae Bone Biopsy in the Standing 

Horse’.  
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Appendix B: Veterinary Surgery is a member of John Wiley and Sons, which provides 

reuse or repurposing of articles with permission.  
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Appendix C: Anatomical Record is a member of John Wiley and Sons, which provides 

reuse or repurposing of articles with permission.  
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