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ABSTRACT 
 

The Transient Receptor Potential Melastatin 4 protein (TRPM4) is a member of the TRP 

family of ion channels that is expressed in both electrically excitable and non-excitable 

cells. Functional studies revealed that TRPM4 significantly impacts Ca2+ signals in both 

immune and pancreatic β-cells, which is important for cellular processes such as hormone 

secretion. However, its role in glucagon secreting α-cells has not been reported. Type 2 

Diabetes Mellitus is often associated with increased glucagon levels; yet, the exact 

mechanism controlling its secretion is not known. In pancreatic α-cells, an increase in 

intracellular Ca2+ concentration causes glucagon secretion. We hypothesize that TRPM4 

is important for glucagon secretion in α-cells by controlling intracellular Ca2+ signals. In 

this study, we investigated TRPM4 expression in the α-cell lines INR1G9 (hamster) and 

αTC1-6 (mouse) and characterized the channel using the patch-clamp technique. By RT-

PCR we identified TRPM4-transcripts in both cell lines examined. Furthermore, patch-

clamp recordings with increasing intracellular Ca2+ concentrations resulted in a dose-

dependent activation of TRPM4-like currents. The greatest depolarizing currents were 

obtained with 3µM Ca2+ concentration. The current-voltage relationship (I/V) resembled 

those previously described for TRPM4. In addition, we demonstrated the voltage 

dependency of the channel, where negative potentials inhibited and positive potentials 

increased channel activity. Finally, replacement of Na+ ions in the extracellular solution 

with N-methyl-D-glucamine significantly reduced the inward currents and caused a 

hyperpolarizing shift in the I/V, which affirms that the channel is Na+ permeable. These 

data demonstrate that TRPM4 is present and functional in pancreatic α-cells and suggest 

a potential role for the channel in glucagon secretion and glucose homeostasis. The role 
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of TRPM4 in glucagon secretion was assessed using a stable TRPM4 knockdown αTC1-

6 cell line. Calcium-imaging and glucagon secretion experiments revealed a relationship 

between the decreased intracellular Ca2+ concentration and glucagon secretion in TRPM4 

knockdown cells compared to controls. These results indicate that depolarization by 

TRPM4 plays an important role in glucagon secretion and perhaps glucose homeostasis. 

Elucidation of the glucagon secretion pathway could lead to a treatment for 

hyperglucagonemia associated with Type 2 Diabetes. 
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CHAPTER 1 
GENERAL INTRODUCTION 

 
 

1.1 THESIS ORGANIZATION 

This thesis is written in the journal style format. It contains an acknowledgements 

section, a general introduction, one research paper, a general conclusion, and a list of 

references cited in the general introduction and conclusion. The general introduction 

includes a hypothesis, objectives, background information, and a literature review. 

Chapter 2 is a research paper entitled “Regulation of Calcium-entry in Pancreatic α-cells 

by Transient Receptor Potential Melastatin 4 Plays Vital Role in Glucagon Release” that 

has been submitted to Molecular and Cellular Endocrinology and is currently under 

review. The general discussion will address the overall findings of this work. This thesis 

contains experimental results obtained by the author during her graduate study under the 

supervision of her co-major professors, Drs. Henrique Cheng and Ji-Ming Feng. 

 

1.2 RESEARCH OBJECTIVES 

 Based on previous work, we know that TRPM4 is able to control the Ca2+ signals 

of pancreatic β-cells to regulate insulin release (Cheng et al., 2007; Marigo et al., 2009). 

Depolarization by TRPM4 controls the opening of voltage-dependent Ca2+ channels 

allowing for Ca2+-dependent exocytosis of insulin granules. In an effort to elucidate the 

mechanism of glucagon secretion, we consider the role of TRPM4 in controlling Ca2+ 

signals that result in the exocytosis of glucagon granules. We hypothesize that TRPM4 is 

important for glucagon secretion in α-cells by controlling intracellular Ca2+ signals. 
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Because TRPM4 has not previously been studied in pancreatic α-cells, we will 1) identify 

and characterize TRPM4 in pancreatic α-cells then, 2) evaluate the role of TRPM4 in 

glucagon secretion. 

 

1.3 BACKGROUND AND LITERATURE REVIEW 

The family of Transient Receptor Potential (TRP) ion channels was originally 

identified in the Drosophila visual system. From there, eight subfamilies were identified 

in organisms ranging from C. elegans to humans (Fig. 1.1). Most TRP channels share a 

similar basic structure containing 6 transmembrane domains, a hydrophobic pore region 

between domains 5 and 6, and the C and N terminal regions on the intracellular side of 

the membrane. The TRP channels form homomeric or heteromeric tetramers in the cell 

membrane. However, the ionic permeability and activation vary greatly among the 

members of each subfamily. Functional studies of the TRP channels have implied 

physiological as well as pathophysiological roles for many of these channels (for review, 

see Nelson et al., 2010). 

 The first subfamily identified is the TRPC (canonical). This subfamily is most 

closely related to the Drosophila TRP channel subfamily and is the most well studied. 

Acting mainly as Ca2+ regulators, the TRPC channels play a major role in the 

maintenance of cellular Ca2+ homeostasis. This is important for processes such as 

keratinocyte differentiation (Beck et al., 2008), immune response (Sel et al., 2008; White 

et al., 2006), and muscle contraction (Tsvilovskyy et al., 2009). The vanilloid subfamily 

(TRPV) is named after their activation by vanilloid and vanilloid-like compounds such as 

capsaicin. These channels function as cellular heat and pH sensors (Geppetti et al., 2006) 
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as well as nociceptors (Caterina et al., 1997; Tominaga et al., 1998). The TRPN (no 

mechanopotential C or NOMPC) has no mammalian members. The ankyrin (TRPA) 

subfamily has only one mammalian member, which acts as a nociceptor as well as a 

mechanosensor aiding in the cochlear amplification of sound (Corey et al., 2004; Nagata 

et al., 2005). The TRPML (mucolipin) channels serve a lysosomal role in mammals, and 

mutations of the TRPML genes are normally associated with lysosomal storage diseases 

(Bargal et al., 2000; Bassi et al., 2000; Sun et al., 2000) and hearing loss (van Aken et al., 

2008). The TRP channels associated with polycystic kidney disease make up the TRPP 

(polycystin) subfamily. These channels are located in the plasma membrane and sense 

mechanical stimulation such as fluid movement (Harris et al., 2006).   

             

Figure 1.1: Transient Receptor Potential channel subfamilies. Modified from 
Christensen and Corey, 2007 and Hoenderop et al., 2005. 
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 The melastatin (TRPM) subfamily is composed of 8 members that can be divided 

into subgroups based on their structural similarity. The founding member, TRPM1, is 

named after a pigment found in melanoma cells. Calcium signaling through TRPM1 is 

thought to be involved in melanocyte differentiation, migration, and survival (Bellone et 

al., 2008). Structurally similar to TRPM1, TRPM3 responds to hypotonic conditions 

resulting in cell swelling and is important for Ca2+ homeostasis in the kidneys (Grimm et 

al., 2003). Both TRPM6 and TRPM7 are activated by low intracellular Mg2+. TRPM7 is 

involved in cellular Mg2+ homeostasis (Schmitz et al., 2003); and TRPM6 plays a role in 

Mg2+ homeostasis specifically in the epithelium of the kidneys and intestines (Rondon et 

al., 2008; Voets et al., 2004). Deletion of the TRPM7 gene also disturbs normal growth 

and development in mice and zebrafish (Elizondo et al., 2005; Jin et al., 2008). The 

activation of TRPM2 by intracellular adenosine-diphosphoribose (ADP-ribose) and 

reactive oxygen species (Perraud et al., 2001; Sano et al., 2001) suggests a role for this 

channel in oxidative stress and cell death (Hara et al., 2002). TRPM8 functions as a 

cellular cold-sensor activated by cold temperatures and menthol (McKemy et al., 2002; 

Peier et al., 2002). Activation of a truncated form of TRPM8 in the lungs leads to 

cytokine production (Sabnis et al., 2008). 

Of all the TRPM channels, only TRPM4/5 are impermeable to Ca2+. TRPM4/5 

share a sequence homology of 45% (Hofmann et al., 2003). They are only permeable to 

monovalent cations (e.g. Na+ and K+); however, they are activated by intracellular Ca2+ 

(Launay et al., 2002; Prawitt et al., 2003). They belong to a group referred to as Ca2+-

activated nonselective (CAN) cation channels. Because they are not permeable to Ca2+, 

TRPM4/5 play an indirect role in regulating intracellular Ca2+. Intracellular Ca2+ activates 

TRPM4/5 resulting in Na+ influx followed by membrane depolarization (Launay et al., 
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2002; Prawitt et al., 2003). This depolarization controls Ca2+ entry through store-operated 

Ca2+ channels (SOCs) in non-excitable cells and voltage-dependent Ca2+ channels 

(VDCCs) in excitable cells (Launay et al., 2004; Marigo et al., 2009). The depolarization 

effect by TRPM4/5 depends on the cell type. In excitable cells, such as cardiac and 

skeletal muscle cells, endocrine cells, and neural cells, depolarization causes an increase 

in Ca2+ entry through VDCCs. Calcium influx through VDCCs depends on 2 factors: 

driving force of Ca2+ through the channel and activation state of the channel. During 

depolarization the membrane potential approaches 0mV. At 0mV, conditions are optimal 

for Ca2+ entry through VDCCs, because there is driving force and channel activation. 

However, in non-excitable cells such as endothelial cells or immune cells, depolarization 

inhibits Ca2+ entry through their major Ca2+ channels, SOCs due to a decrease in driving 

force for Ca2+.  

Because Ca2+ is an important second messenger in a number of physiological 

processes and intracellular Ca2+ activates TRPM4/5, it is likely that these channels are 

critical for cell physiology. TRPM5 is not as widely expressed as TRPM4; it was first 

identified in the taste receptors where it is involved in taste perception for sweet, bitter, 

and umami flavors (Perez et al., 2002; Zhang et al., 2003). TRPM5 has also been found 

in the olfactory system where it is involved in the processing of olfactory sensory 

information (Lin et al., 2007). Following its identification in the pancreatic β-cells 

(Prawitt et al., 2003), Colsoul and colleagues assessed the role of TRPM5 in these cells 

(Colsoul et al., 2010). They found that inhibition of TRPM5 decreased Ca2+ signals and 

insulin secretion; however, since TRPM4 is also present in β-cells, it is not known the 

contribution each one has on insulin secretion.  
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Widely expressed throughout the body, TRPM4 is implicated in a variety of 

functions throughout the mammalian system in both excitable and non-excitable cells. 

The role of TRPM4 was first described in immune cells where channel inhibition 

increases Ca2+ entry resulting in an increase in cytokine production by T-cells (Launay et 

al., 2004). The deletion of TRPM4 in mast cells had a similar effect on Ca2+ signaling 

leading to cellular degranulation and increased immune response (Vennekens et al., 

2007). Other studies found TRPM4 to be responsible for controlling mast cell and 

dendritic cell migration (Barbet et al., 2008; Shimizu et al., 2009). TRPM4 plays an 

indirect role in non-excitable vascular smooth muscle cells where inhibition reduces 

myogenic constriction affecting blood flow to the brain (Earley et al., 2004). The studies 

of TRPM4’s role in excitable cells are less numerous. The role of TRPM4 in excitable 

sino-atrial node cells was assessed and is suspected to aid in the pacemaker function 

(Demion et al., 2007). Another type of excitable cells, the pancreatic β-cells, was also 

studied. In these cells, inhibition of TRPM4 decreases Ca2+ signals and insulin secretion 

(Cheng et al., 2007; Marigo et al., 2009). In this system TRPM4 provides the 

depolarization necessary to open VDCCs thus, it controls Ca2+-activated exocytosis of 

insulin granules.  

 The pancreatic α-cells produce the hormone, glucagon, to counteract the effects of 

insulin. Glucagon is secreted from the α-cells in response to hypoglycemia. It acts on the 

liver to induce glycogenolysis and gluconeogenesis. Glucagon receptors are located in the 

liver, heart, kidney, spleen, stomach, thymus, adipose tissue, and pancreas (Dunphy et al., 

1998; Hansen et al., 1995). The precise mechanism for stimulation of glucagon secretion 

is not known. The pancreatic islets are innervated with sympathetic and parasympathetic 
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neurons, and the presence of receptors for their respective neurotransmitters in α-cells is 

suspected (for review, see Ahren, 2000).  

There is a disagreement among studies as to whether or not α-cells sense 

hypoglycemic conditions directly or through paracrine or autonomic signals. The school 

of thought that believes α-cells directly sense blood glucose levels are left with the task of 

explaining how high glucose can stimulate insulin secretion in β-cells while inhibiting 

glucagon secretion from α-cells. Many studies suggest that a voltage-dependent Na+ 

channel that inactivates at voltages beyond -50mV is present in α-cells but not in β-cells. 

It allows the α-cell to secrete glucagon up to a point when glucose metabolism 

depolarizes the membrane beyond -50mV (Barg et al., 2000; Gopel et al., 2000; 

MacDonald et al., 2007; Vieira et al., 2007). The group who believes that α-cells only 

respond to paracrine and autonomic signals of hypoglycemia argue that intravenous 

administration of glucose to diabetic humans (Greenbaum et al., 2002) and dogs (Braaten 

et al., 1974) with failing β-cells increases glucagon secretion. However, Salehi and 

colleagues noted a paradoxical response where glucose stimulates glucagon secretion in 

an alpha-cell line and isolated islets (Salehi et al., 2006), and others found that there is 

decreased glucagon response in hyperinsulinemic hypoglycemic infants (Hussain et al., 

2005). These studies suggest that autonomic input or paracrine input from functional β-

cells is required for proper glucagon response to hyperglycemic conditions. 

 Exocytosis, like many other physiological processes, is highly dependent on 

intracellular Ca2+ levels. The exocytosis of insulin granules is regulated by Ca2+ entry 

through VDCCs under the control of TRPM4 (Cheng et al., 2007; Marigo et al., 2009). 

TRPM5 has also been suggested to contribute to the Ca2+ oscillations associated with 

insulin secretion, however the mechanism of TRPM5 action is not clear (Colsoul et al., 
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2010). The exocytosis of glucagon granules from pancreatic α-cells is also dependent on 

intracellular Ca2+ concentration ([Ca2+]i). Still, the mechanism for glucagon secretion is 

unknown. Exocytosis of glucagon granules depends on electrical activity (Barg et al., 

2000) and Ca2+ entry through VDCCs (Gromada et al., 1997). But, the source initiating 

the Ca2+ current is under question. In the α-cell there are several types of VDCCs, the 

most abundant is the L-type. The identification of the non-L-type VDCCs is still unclear 

but may be T-, N-, R-, or P-types depending on the species and the particular study 

(Gopel et al., 2000; Gromada et al., 1997; Vignali et al., 2006). Although most Ca2+ 

enters through L-type VDCCs, one study suggests that this type of VDCC is not 

responsible for Ca2+ entry that results in exocytosis, but that N-type VDCCs serve the 

function of inducing glucagon release except in conditions that increase cAMP (Gromada 

et al., 1997). Regardless of the type of VDCC, this process relies on depolarization (Barg 

et al., 2000). The positively charged amino acid, L-arginine, can directly depolarize the 

membrane increasing the electrical activity and glucagon secretion (Barg et al., 2000; 

Gromada et al., 1997). Neurotransmitters such as adrenaline also stimulate glucagon 

secretion by mobilizing Ca2+ from the ER stores via the Gs-protein coupled receptor 

pathway that increases cAMP (Gromada et al., 1997). Interestingly, the pancreases of 

Type 2 diabetic patients have been found to contain higher levels of adrenaline (Ostenson 

et al., 1993), and its α-cells display an enhanced response to adrenaline (Ahren et al., 

1995). This may explain the source of stimulation for the hyperglucagonemia seen in 

diabetics (Dinneen et al., 1995; Unger, 1978). 

 Considering the regulatory role that TRPM4 plays on Ca2+ entry in β-cells, we 

suspect that TRPM4 could also control the Ca2+ entry in α-cells (Fig. 1.2). Both cell types 

are excitable, contain VDCCs opened by depolarization as their major Ca2+ channel, and 
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rely on Ca2+ entry to stimulate exocytosis of their hormone granules. The mechanism of 

glucagon secretion remains to be determined but, if revealed, could have a significant 

impact on the clinical control of hyperglucagonemia in those suffering with Type 2 

Diabetes Mellitus. 

 

 

Figure 1.2: TRPM4 expression in the human pancreatic islet. (Our own unpublished 
data.) 
 

 

 

 

TRPM4  GLUCAGON  OVERLAY 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CHAPTER 2 
REGULATION OF CALCIUM-ENTRY IN PANCREATIC 

ALPHA-CELLS BY TRANSIENT RECEPTOR POTENTIAL 
MELASTATIN 4 PLAYS VITAL ROLE IN GLUCAGON 

RELEASE 
 
 
2.1 INTRODUCTION 

Glucagon is a hormone produced and secreted from pancreatic α-cells in response 

to hypoglycemia. Glucagon acts on the liver to stimulate glycogenolysis and 

gluconeogenesis. The regulation of glucagon secretion is very important in maintaining 

glucose homeostasis. Uncontrolled glucagon secretion can lead to hyperglycemia, a 

problem that would only amplify the hyperglycemic condition often associated with Type 

2 Diabetes Mellitus (Baron et al., 1987; Basu et al., 2004; Shah et al., 2000). There are 

many opposing views on what may be controlling glucagon secretion and what cellular 

components are involved, but despite the decades of research into the mechanism, the 

exact pathway remains elusive. For example, Gopel and colleagues recognize that L-type 

Ca2+ current is not sufficient to sustain electrical activity and secretion itself, so glucagon 

release requires large depolarizations achieved through voltage-gated Na+ channels 

(Gopel et al., 2000). They believe that this mechanism allows for KATP channels to serve 

the same function in α-cells that they do in β-cells while still having paradoxical 

responses to glucose metabolism. However, others disagree with this proposal based on 

studies with KATP channel knockout mice that suggest no role of KATP channels in 

glucagon secretion. Liu and colleagues found adrenaline to directly stimulate glucagon 

secretion bypassing KATP channels (Liu et al., 2004). There is little agreement in the 

literature as to what ion channels are present in α-cells. Even the glucose-sensing 
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capability of the α-cell is controversial (Gromada et al., 2007; Miki et al., 2001; Rorsman 

et al., 2008). There is, however, a general agreement that glucagon secretion results from 

an increase in the intracellular Ca2+ concentration ([Ca2+]i)  (Gromada et al., 2007). 

The Transient Receptor Potential (TRP) family of ion channels in mammals is 

comprised of 6 subfamilies: TRPV (vanilloid), TRPC (canonical), TRPM (melastatin), 

TRPP (polycystin), TRPA (ankyrin), and TRPML (mucolipin). The subfamilies vary in 

their permeability and activation. The melastatin subfamily has 8 members (TRPM1-8). 

TRPM4 is a 6-transmembrane protein with C- and N-terminals on the intracellular side 

and a single channel conductance of 25 pS (Launay et al., 2002). It is a Ca2+-activated 

non-selective (CAN) cation channel permeable to monovalent cations, namely Na+ and 

K+. Activation of TRPM4 allows Na+ to enter, leading to cell depolarization. In non-

excitable cells, TRPM4 inhibits Ca2+ entry through store-operated channels (Launay et 

al., 2004), a necessary step for cell migration, appropriate immune response, and many 

other physiological actions (Barbet et al., 2008). In excitable cells, for example pancreatic 

β-cells, TRPM4 promotes Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) 

(Marigo et al., 2009), which allows for processes such as hormone secretion (Cheng et 

al., 2007). In β-cells, oscillations in the membrane potential result in oscillations in Ca2+ 

signals because each depolarization opens L-type Ca2+ channels and Ca2+ influx occurs. 

As a result, insulin is secreted in a pulsatile fashion (Gilon et al., 2002). Recent studies 

found that TRPM4 impacts Ca2+ signals in pancreatic β-cells and subsequently insulin 

secretion (Marigo et al., 2009). Because both pancreatic α- and β-cells are excitable, their 

mechanism for secretion may be similar. It is known that Ca2+ entry through VDCCs and 

the resulting increase in intracellular Ca2+ concentration of the α-cell is imperative for 

glucagon secretion (Barg et al., 2000; Gromada et al., 1997).  In the present study, we 
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hypothesized that TRPM4 is important for glucagon secretion in α-cells by controlling 

intracellular Ca2+ signals. Therefore, we characterized TRPM4 in the alpha-cell line, 

αTC1-6, and examined its function in glucagon secretion.  

 

2.2 RESEARCH DESIGN AND METHODS 

Cell Culture: The mouse pancreatic α-cell line, αTC1-6, was maintained in RPMI 1640 

with 10% FBS and aerated with 5% CO2 and 95% air at 37°C. All experiments were 

performed with cells from passages 37-45.  

RT-PCR:  RNA was extracted from INS-1, MIN-6, INR1G9 and αTC1-6 cells using the 

RNAqueous-4PCR® kit according to manufacturer’s instructions (Ambion, Austin, TX, 

USA).  The RNA was purified with DNase 1 treatment. Reverse transcription was 

performed using MMLV-Reverse Transcriptase and Oligo(dT) primers. PCR was 

performed using Ambion’s RETROscript® kit and TRPM4 primers with the sequences 

listed (forward/reverse [5’ to 3’]): GACCTGCTTATTTGGGCTCTG / 

AGATGGGAGTTGTGCTGTCC mouse; CACCAGCCAGTTGGCATACT / 

CGTGAGCAAGATGATGAAGG hamster; TTGGCATACTGGGAGACGCA / 

GGCCCAAGATCGTCATCGT rat. Mouse GAPDH primers with sequence 

(forward/reverse [5’ to 3’]) TGCTGAGTATGTCGTGGAGTCTA / 

AGTGGGAGTTGCTGTTGAAGTCG was used as a positive control for PCR, and 

ultrapure water was used as a negative sample for RNA. 

Immunocytochemistry: αTC1-6 cell suspension was fixed in 4% paraformaldehyde for 

10 min at RT then seeded on to poly-D-lysine coated coverslips. Next, cells were 

permeabilized with 0.1% Triton X-100 for 2 min. Cells were then immunostained with a 
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primary-antibody cocktail [anti-TRPM4 rabbit polyclonal antibody (1:600) + anti-

glucagon mouse monoclonal antibody (1:1000) (Sigma-Aldrich, Saint Louis, MO, 

USA)]. After sufficient washing with PBS, binding was detected with a secondary-

antibody cocktail [anti-rabbit-FITC (1:400) (eBioscience, San Diego, CA, USA) + anti-

mouse-Rhodamine Red-X (1:400) (Jackson ImmunoResearch Laboratories, West Grove, 

PA, USA)]. Immunofluorescence images were obtained by confocal microscope with the 

focus plane cutting through the nucleus. Using the sequential acquisition technique, first 

the FITC chromophore was excited with a laser at 488 nm, and emission was collected at 

wavelengths from 500-530 nm.  Then, Rhodamine Red-X was excited with a laser at 543 

nm, and emission was collected at wavelengths from 570-650 nm. 

Electrophysiology: Cells were maintained in standard modified Ringer’s solution of the 

following composition (in mM): NaCl 140, KCl 2.8, CaCl2 1, MgCl2 2, glucose 4, 

HEPES-NaOH 10, pH 7.2 adjusted with NaOH. The standard internal solution contained 

(in mM): Cs-glutamate 120, NaCl 8, MgCl2 1, Cs-BAPTA 10, HEPES-CsOH 10, pH 7.2 

adjusted with CsOH. The internal solution’s buffered Ca2+ concentration was adjusted as 

necessary with CaCl2 (calculated with WebMaxC http://www.stanford.edu/~cpatton/ 

webmaxcS.htm). The Na+-free modified Ringer’s solution contained (in mM): N-methyl-

D-glucamine (NMDG) 140, KCl 2.8, CaCl2 1, MgCl2 2, glucose 4, HEPES-CsOH 10, pH 

7.2 adjusted with CsOH.  The osmolarity of the solutions were ~300 mOsm/L. TRPM4 

currents were recorded in the tight-seal whole-cell configuration mode at 21-25 °C. High-

resolution current recordings were acquired by a computer-based patch-clamp amplifier 

system (EPC-10, HEKA, Lambrecht, Germany). Patch pipettes had resistances between 

4-7 MΩ. Immediately following establishment of the whole-cell configuration, voltage 

ramps of 50 ms duration spanning the voltage range of −100 to +100 mV were delivered 
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from a holding potential of 0 mV at a rate of 0.5 Hz over a period of 300-600 s. All 

voltages were corrected for a liquid junction potential of 10 mV between external and 

internal solutions, calculated using Igor PPT Liquid Junction Potential software 

(Wavemetrics, Portland, OR, USA). The half-maximal excitatory concentration (EC50) 

and Hill coefficient were also calculated using the Igor software with the formula: f(x)= 

(Ymin + (Ymax – Ymin) * (1 / (1 + (Kd / x) ^ n))) where Kd=EC50 and n=Hill coefficient. 

Generation of TRPM4 knockdown population: Using calcium chloride (0.6M CaCl2), 

293T cells were transfected with 3 plasmids containing sequences coding for the 

lentiviral vector genome (pccL backbone), viral packaging proteins (pdelta8.2R), or viral 

VSVG (pVSVG) envelope from the vesicular stomatits virus. The VSVG pseudotype 

envelope enhances infectivity of lentiviruses produced towards human cells, although 

mouse and rat cells can similarly be infected by this modified envelope lentivirus. The 

transient transfection procedure for viral production is performed to maintain safe 

handling of the virus and avoid generation of self-replicating particles. Lentivirus 

plasmids were obtained from Sigma-Aldrich (Saint Louis, MO, USA) in a pLKO.1 

backbone and contained either nonspecific control (SHC002) or shRNA specific for 

mouse TRPM4 (SHDNA-NM_175130, TRCN0000068684) under the control of the U6 

promoter, plus the puromycin resistance gene. We reconstructed the lentiviral vector in a 

pCCL backbone plasmid in order to generate a bicistronic construct expressing both 

puromycin resistance gene and a green fluorescence protein (GFP) reporter separated by 

an internal ribosome entry sequence, CMV.Puro(r).IRES.GFP. Lastly, using BstBI 

restriction enzyme cloning, we ligated into the previous vector the PCR-amplified U6p-

shRNA constructs (shc002, or shRNA specific for mouse TRPM4). The lentiviral vector 

therefore contains two expression cassettes, one driven by U6p, and another driven by 
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CMVp. The first is under the control of the RNA polymerase III promoter, U6, and 

includes the shRNA specific for mouse TRPM4 or a nonspecific control. Following the 

shRNA gene is an RNA polymerase II promoter, CMV, which controls transcription of 

the subsequent puromycin resistance gene and the GFP gene. These 2 genes are separated 

by an internal ribosome entry sequence to increase ribosome binding so the GFP gene 

gets translated. The second cassette ends with a woodchuck hepatitis post-transcriptional 

regulatory element (WPRE), shown to stabilize the RNA and improve viral titers (Klein 

et al., 2006). The final lentiviral vector, thus, has the configuration: 5’ pCCL--- U6p-

shc002--- CMV-Puro(r).IRES.GFP--WPRE-3’. Lentiviruses are produced in 293T cells 

and released into the media supernatant, which was collected at 48, 72, and 96 hours 

post-transfection, filtered using a 0.22 µm membrane, and stored at –80°C in aliquots. 

For determining viral concentration (titer), 200µl of either pure supernatant (1x), or 

dilutions of 1:10 or 1:100 were used to infect 293T cells (5x104) seeded in 24-well plates. 

Infection was performed in the presence of the transduction-enhancing agent Polybrene at 

8µg/ml for cells assayed for percentage of cells expressing GFP by flow cytometry 48h 

after infection. For infecting experimental cells a multiplicity of infection (MOI) of 5 

lentiviruses was used to transduce αTC1-6 cells. Cells were selected in 1µg/mL 

puromycin for one week, and percent of puromycin-resistant cells expressing GFP was 

determined by flow cytometry using FACScan (BD Biosciences, Franklin Lakes, NJ, 

USA). Puromycin-selected transduced cells were used for electrophysiology, Ca2+-

imaging, and glucagon secretion experiments.  

Calcium Imaging: Control and TRPM4 shRNA αTC1-6 cells were loaded with 5µM 

Fura-2AM for 30 minutes at 37°C. A Ca2+-imaging buffer containing (in mM) NaCl 136, 

KCl 4.8, CaCl2 1.2, MgSO4 1.2, HEPES 10, glucose 4, and 0.1% BSA, pH 7.3 was used 
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for Fura-2AM loading and perfusion throughout imaging experiments. Calcium 

measurements were obtained using a dual excitation fluorometric imaging system  

(TILL-Photonics, Gräfelfingen, Germany) controlled by TILLvisION software.  Fura-

2AM loaded cells were excited by wavelengths of 340 nm and 380 nm. Fluorescence 

emissions were collected at a wavelength of 540 nm at a frequency of 1 Hz and computed 

into relative ratio units of the fluorescence intensity derived from the different excitation 

wavelengths (F340/F380). 

Measurement of Glucagon Secretion: Control and TRPM4 shRNA αTC1-6 cells were 

plated into 24-well plates at ~4 x 105 cells/well and grown for 2-3 days. Measurement of 

glucagon secretion was accomplished by replacing the culture medium with modified 

KRB containing (in mM) NaCl 136, KCl 4.8, CaCl2 2.5, KH2PO4 1.2, MgSO4 1.2, 

NaHCO3 5, HEPES 10, glucose 1.67, and 0.1% BSA, pH 7.3. After a 15-min 

equilibration period at 37°C, the KRB was removed from the well and replaced with 

KRB containing either 1mM L-Arginine, 1µM AVP, 20mM KCl, or 1µM BayK 8644 

and allowed to incubate for 30 min. The KRB was then collected and stored at -80°C for 

glucagon radioimmunoassay. Experiments were performed in quadruplicates and 

repeated three times. Data was normalized by cell number per well. 

Data analysis: Patch-clamp recordings are shown as means + S.E.M., and were plotted 

using Igor Pro 5 software program (Wavemetrics, Portland, OR, USA). Peak Ca2+ data 

and glucagon secretion values were both analyzed using a two-tailed, unpaired Student’s 

t-test. Statistical significance was established at P<0.05. 
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2.3 RESULTS 

We first examined if the TRPM4 gene was expressed in a mouse pancreatic α-cell 

line and whether the channel was functional. By RT-PCR, we detected TRPM4 

transcripts in the mouse alpha-cell line, αTC1-6 (Fig. 2.1A).  The pancreatic α-cell line, 

INR1G-9, and β-cell lines MIN-6 and INS-1 were used as positive controls (Marigo et 

al., 2009). Although TRPM4 is expressed in both the hamster and mouse alpha-cell lines, 

we selected the mouse cell line, αTC1-6, for our studies because of the availability of 

molecular tools for knockdown experiments. The expression of the TRPM4 protein in 

αTC1-6 cells was then confirmed by immunocytochemistry. Figure 2.1B shows TRPM4 

(left panel) co-localization with glucagon (center panel) in αTC1-6 cells. 

 Next, we investigated if TRPM4 was functional using the patch-clamp technique. 

Increases in [Ca2+]i is known to activate TRPM4, a CAN channel (Launay et al., 2002). 

Therefore, we performed patch-clamp recordings with increasing buffered [Ca2+]i to 

determine if currents with the characteristics of those previously reported (Launay et al., 

2002) for the channel could be detected.  An increase in [Ca2+]i resulted in a 

concentration-dependent activation of TRPM4-like currents with maximal current 

amplitude obtained with 3µM buffered Ca2+ (Fig. 2.2A). The current-voltage (I/V) 

relationship taken at 600s after establishment of whole-cell configuration resembles those 

of TRPM4 (Fig. 2.2B) (Launay et al., 2002). The EC50 was 0.62µM with a Hill 

coefficient of 2.72 (Fig. 2.2C). TRPM4 is also a voltage-dependent channel in which 

hyperpolarization decreases and depolarization increases its open probability (Launay et 

al., 2002). Hence, we examined, in the α-cell line, its voltage dependency. Patch-clamp 

recordings with intracellular Ca2+ buffered at 1µM and holding potentials (HP) of -60, 0,  
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+60 mV resulted in a voltage-dependent activation of TRPM4 currents with the smallest 

current amplitude recorded at -60mV and the greatest at +60mV (Figs. 2.3A and 2.3C). 

The I/V relationships taken at 300s into the experiments resembled that of TRPM4 (Fig. 

2.3B) (Launay et al., 2002). Since TRPM4 conducts Na+ into cells, we replaced NaCl in 

the extracellular buffer with NMDG and recorded currents under 1µM intracellular 

buffered Ca2+ and +60mV HP conditions. The absence of extracellular Na+ resulted in a 

significant reduction in the amplitude of TRPM4-like currents (Fig. 2.4A). The I/V 
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Figure 2.1: TRPM4 is expressed in mouse pancreatic α-cell line. (A) RNA was 
extracted from mouse αTC1-6 cells and transcribed into cDNA. RT-PCR was 
performed with specific primers for TRPM4. The β-cell lines rat INS-1 and mouse 
MIN-6, and the α-cell line hamster INR1G-9 were used as positive controls for 
TRPM4, and GAPDH was used as a positive control for the PCR. (B) Immunostaining 
of αTC1-6 cells for TRPM4 (green, left panel) and glucagon (red, center panel) with 
overlay (yellow, right panel) indicating TRPM4 expression in glucagon-producing 
cells.  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relationship showed a shift in the reversal potential to the left due to hyperpolarization 

caused by the absence of Na+ entry (Fig. 2.4B). Based on these observations, we 

concluded that the observed current is mediated by TPRM4 and from now on we will 

refer to this as TRPM4 current.  
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Figure 2.2: Calcium activates TRPM4 in pancreatic α-cell line in a dose-
dependent manner. (A) Average inward and outward currents of TRPM4 after 
intracellular perfusion with increasing buffered Ca2+ concentrations. Traces represent 
the mean + S.E.M. (n=3-6 cells/concentration) extracted at a holding potential of 
+60mV. (B) Current-voltage relationship (I/V) under experimental conditions 
described in (A) taken from representative cells at the peak current amplitude at 600s 
for each Ca2+ concentration. (C) A dose-response analysis resulted in a half maximal 
excitatory Ca2+ concentration (EC50) of 0.62µM and a Hill coefficient of 2.72. 
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Having characterized TRPM4 in αTC1-6 cells, we examined its role in Ca2+ 

signaling and glucagon secretion using a stable TRPM4 knockdown population generated 

with a lentiviral vector carrying shRNA, GFP reporter, and puromycin-resistance genes. 

Fluorescent-activated cell sorting (FACS) analysis revealed >96.5% GFP expression in 

the control and TRPM4 knockdown population (Fig. 2.5A-C). Furthermore, we 

confirmed TRPM4 inhibition by patch-clamp under elevated buffered Ca2+ conditions. A 

significant reduction in TRPM4 currents in response to 1µM Ca2+ and +60mV HP 

 -500

-400

-300

-200

-100


0

-60mV
 0mV
 +60mV


In
wa

rd
 C

ur
re

nt
 (p

A)



(A) 

(C) 

(B) 

 

800

400

-400

pA

-100 100

mV

+60 mV

0 mV

-60 mV

Figure 2.3: Voltage-dependent activation of TRPM4 in pancreatic α-cell line. (A) 
Average inward and outward currents in αTC1-6 cells in response to 1uM Ca2+ at 
+60mV, 0mV, and -60mV holding potential. Traces are mean + S.E.M. (n=6-9 cells) 
(B) Current-voltage relationship (I/V) under experimental conditions described above 
obtained at 300s from representative cells at the peak amplitude. (C) Average peak 
inward currents of the cells described in (A).  
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occurred in knockdown cells compared to control cells (Fig. 2.6A). These experiments 

showed that channel knockdown was successful. The I/V relationship of the control cells 

still resembled that of TRPM4 indicating that transduction with the viral vector did not 

affect the normal function of the channel (Fig. 2.6B) (Launay et al., 2002). 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Glucagon secretion from pancreatic α-cells requires increases in [Ca2+]i (Gromada 

et al., 1997). Therefore, we determined the impact of TRPM4 knockdown on Ca2+ signals 

in response to different stimuli. Perfusion of control cells with 1µM arginine vasopressin 

(AVP), a Gq-protein coupled receptor agonist in α-cells (Yibchok-Anun et al., 2000) 

caused a sharp increase in intracellular Ca2+ followed by a secondary phase (Fig. 2.7A). 
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Figure 2.4: Replacement of NaCl by N-methyl-D-glucamine (NMDG) in the 
extracellular buffer solution inhibits TRPM4 currents. Whole cell recordings in 
pancreatic α-cells in response to 1µM Ca2+ at +60mV holding potential. (A) Average 
inward and outward currents of control cells in NaCl solution compared to cells kept 
in extracellular buffer with NMDG replacing NaCl. Traces are mean + S.E.M. (n=3-6 
cells). (B) Current-voltage relationship (I/V) taken at 400s from a representative cell. 
Inset shows the hyperpolarizing effect resulting from removal of Na+ from the 
extracellular solution.   
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Figure 2.5: Transduction of αTC1-6 cells with shRNA specific for TRPM4 using 
lentiviral vector. Fluorescent activated cell sorting was used to measure the 
percentage of GFP-positive cells of (A) non-transduced αTC1-6 cells, (B) αTC1-6 
cells transduced with non-specific shRNA, and (C) shRNA TRPM4 cells. 
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 However, inhibition of TRPM4 by shRNA significantly decreased the responses to AVP 

(P<0.0001). The effect of direct cell depolarization on Ca2+ signals was examined by 

perfusing cells with 1mM L-arginine (L-Arg) or 20mM KCl. TRPM4 inhibition 

decreased Ca2+ entry in response to both L-Arg (P<0.0001, Fig. 2.7B) and KCl 

(P<0.0001, Fig. 2.8A). In another experiment, direct activation of L-type Ca2+ channels 

with 1µM BayK 8644 also elicited a significantly smaller response in TRPM4 

knockdown cells (P<0.0001, Fig. 2.8B). Histograms show a comparison between basal 

and peak Ca2+ increase within the same group (Figs. 2.7,2.8). To assess parasympathetic 

control of Ca2+ signals, we perfused cells with 100µM acetylcholine, but neither control 

nor the TRPM4 knockdown cells responded to treatment (data not shown). 

After confirming the reduced responses in Ca2+ signals with TRPM4 knockdown, 

we investigated its impact on stimulus-induced glucagon secretion using static incubation 
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Figure 2.6: Inhibition of TRPM4 function with shRNA inhibits channel activity 
in pancreatic α-cell line. Patch-clamp recordings in the whole-cell configuration were 
collected at +60mV holding potential under 1µM buffered Ca2+ concentration. (A) 
Average inward and outward currents in non-specific shRNA controls and in shRNA 
TRPM4 knockdown cells. Traces represent mean + S.E.M. (n=6-8 cells/group) (B) 
Current-voltage relationship (I/V) obtained from representative cells at 300s. 
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(Fig. 2.9). TRPM4 knockdown cells secreted significantly less glucagon compared to 

control cells when stimulated with 1 µM AVP (P<0.0001), 20mM KCl (P<0.0001), 1mM 

L-Arg (P<0.0001), and 1µM BayK 8644 (P=0.0079). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

control 
shRNA 

TRPM4 
shRNA 

F3
40
/F
38
0 

(B) 

 
Basal 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

control 
shRNA 

TRPM4 
shRNA 

F3
40
/F
38
0    * 

* 

AVP Peak Calcium

mm 

Basal 
Basal 

L‐Arginine Peak Calcium 

Basal  Basal  * 

(B) 

Figure 2.7: Inhibition of TRPM4 decreases the magnitude of stimulus-induced 
Ca2+ signals in pancreatic α-cell line. Average increase in [Ca2+]i during stimulation 
with 1µM AVP (A) or 1mM L-Arg (B) in control and TRPM4 shRNA cells. Right 
panel: basal Ca2+ (filled bar) and peak Ca2+ increase (open bar) for control shRNA and 
TRPM4 shRNA cells of each treatment group. Values are mean + S.E.M.; n=69-95 
cells per treatment from 3 independent experiments; * P<0.05 compared to basal Ca2+; 
# P<0.05 comparing peak of control cells to TRPM4 knockdown cells.  
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2.4 DISCUSSION 

We have investigated for the first time the role of TRPM4 in glucagon secretion 

from pancreatic α-cells. Using RT-PCR and immunocytochemistry, we demonstrated 

TRPM4 gene expression and protein in the mouse pancreatic α-cell line, αTC1-6. 

Electrophysiological recordings revealed currents with the characteristics of TRPM4  
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Figure 2.8: TRPM4 inhibition decreases stimulus-induced Ca2+ signals. Average 
increase in [Ca2+]i during stimulation with 20mM KCl (A) or 1µM BayK 8644 (B) in 
control and TRPM4 shRNA cells. Right panel: basal Ca2+ (black bar) and peak Ca2+ 
increase (white bar) for control shRNA and TRPM4 shRNA cells of each treatment 
group. Values are mean + S.E.M.; n=69-95 cells per treatment from 3 independent 
experiments; * P<0.05 compared to basal Ca2+; # P<0.05 comparing peak of control 
cells to TRPM4 knockdown cells.  
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suggesting that the channel is functionally active in αTC1-6 cells. By inhibiting TRPM4, 

using lentiviral transduction of TRPM4-specific shRNA, we were able to investigate its 

role in glucagon secretion. We found that TRPM4 inhibition decreased the magnitude of 

intracellular Ca2+ signals and glucagon secretion in response to several stimuli compared 

to controls. Similarly, TRPM4 knockdown decreases the responses to stimulation during 

Ca2+ imaging and insulin secretion experiments from β-cells (Cheng et al., 2007; Marigo 

et al., 2009). Despite being different cell types, both utilize VDCCs as the main pathway 

for Ca2+ influx and hormone secretion. The fact that suppression of TRPM4 in α-cells 

Figure 2.9: TRPM4 knockdown inhibits glucagon secretion in response to 
stimulation. Static incubation of control shRNA and TRPM4 shRNA αTC1-6 cells. 
Treatment of TRPM4 shRNA cells with AVP, KCl, L-Arg, and BayK 8644 decreased 
glucagon secretion compared to controls. Actual values for control shRNA and 
TRPM4 shRNA cells at basal conditions are 10.5 and 17.6 pg/10,000 cells 
respectively. (Data expressed as a percentage of the basal mean + S.E.M.; n=12 wells; 
* P<0.05 compared to basal of the same group; # P<0.05 compared to control cells 
with the same treatment).  
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with shRNA and a dominant-negative construct in β-cells resulted in similar observations 

strongly suggests a role for the channel in Ca2+ signaling and hormone secretion from 

islet cells. In addition to TRPM4, studies with TRPM5 in knockout mice, a closely 

related channel with similar function have shown loss of high frequency Ca2+ oscillations 

from islets and hyperglycemia in response to glucose overload (Brixel et al., 2010; 

Colsoul et al., 2010). TRPM5 activation at least in β-cells has been linked to rapid 

changes in intracellular Ca2+ concentration (Prawitt et al., 2003). However, its role in α-

cells remains to be determined. It is tempting to speculate that both channels might be 

working in a coordinated fashion to control Ca2+ signals and hormone secretion in 

response to different agonists. Two other members of the TRP family of ion channels 

(TRPM2 and TRPM3) were reported to control insulin secretion from β-cells (Togashi et 

al., 2006; Wagner et al., 2008), but their function in α-cells is unknown. 

The biophysical characterization of TRPM4 in our study of αTC1-6 cells revealed 

Ca2+-activated currents that are voltage-dependent and promote Na+ influx. These 

properties are similar to those described in other cells types (Earley et al., 2004; Launay 

et al., 2004; Marigo et al., 2009; Nilius et al., 2003) and confirm the presence of TRPM4 

in αTC1-6 cells. The EC50 for Ca2+-induced TRPM4 activation in αTC1-6 was 0.62µM 

with a Hill coefficient of 2.72. This is in line with our previous finding in the β-cell lines 

HIT-T15, RINm5F, MIN-6 and β-TC3 (Marigo et al., 2009). In the same report, patch-

clamp recordings in a hamster α-cell line revealed transient currents characterized by 

brief activation followed by channel closure. Our findings in mouse αTC1-6 cells differ 

from this observation, but are in agreement with the biphasic current pattern reported in 

most cell types. The difference in TRPM4 activity suggests that in hamster it may be 

involved in the control of transient Ca2+ increases rather than continuous oscillations. 
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Inhibition of TRPM4 by shRNA reduced the magnitude of Ca2+ signals in 

response to all stimuli tested.  L-Arginine as well as KCl depolarizes cells directly to 

open VDCCs. It is reasonable to speculate that TRPM4 activation may occur during Ca2+ 

influx in addition to release from intracellular stores, which would further contribute to 

cell depolarization and the elevation in intracellular Ca2+ signals. Stimulation of αTC1-6 

cells with AVP, a Gq-protein coupled receptor agonist in α-cells resulted in decreased 

Ca2+ signals in TRPM4 knockdown cells. Binding of AVP to its receptor leads to Ca2+ 

release from the endoplasmic reticulum (ER) followed by a secondary phase due to Ca2+ 

influx from the extracellular space. In this scenario, TRPM4 activation during Ca2+ 

release from the ER would lead to depolarization and Ca2+ influx via VDCCs. A similar 

observation was made during TRPM4 inhibition in β-cells stimulated with AVP (Marigo 

et al., 2009). When we tested the effect of BayK 8644 on Ca2+ signals there was also a 

decrease in the magnitude after TRPM4 knockdown. BayK 8644 is known to directly 

activate L-type VDCCs, however, it can inhibit T-type VDCCs (Wu et al., 1992). 

Because Ca2+ signals were reduced in TRPM4 knockdown cells, we have to consider the 

possibility of TRPM4 regulation of other VDCC types in α-cells. In fact, Gromada and 

colleagues (Gromada et al., 1997) reported that N-type VDCCs are the most important 

for Ca2+ influx and glucagon secretion. The regulation of N-type VDCCs by TRPM4 

remains to be determined. Increases in the intracellular Ca2+ results in glucagon secretion 

and is an essential step in the pathway leading to exocytosis (Barg et al., 2000; Gromada 

et al., 1997). The amount of glucagon secreted from αTC1-6 cells was directly related to 

the magnitude of Ca2+ signals observed in both control and TRPM4 knockdown groups 

when stimulated with AVP, KCl and L-Arg. However, treatment with BayK 8644 

resulted in increased glucagon secretion above basal in both groups. Perhaps direct 
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opening of L-type VDCCs is sufficient to promote Ca2+ influx to stimulate secretion. 

Although TRPM4 knockdown resulted in less glucagon release than controls, it agrees 

with the magnitude of Ca2+ signals during BayK 8644 stimulation. We also investigated 

the responses to acetylcholine in Ca2+ signaling and glucagon secretion, which is a 

neurotransmitter used physiologically by the parasympathetic nervous system to elicit 

glucagon secretion (Verspohl et al., 1990). Yet, neither control nor TRPM4 knockdown 

cells responded to treatment. We can speculate that the murine α-cell line used in the 

study may not have the receptors for acetylcholine. 

Based on our findings, we propose a model of glucagon secretion in which 

depolarization by TRPM4 contributes to the secondary phase of Ca2+ influx through 

VDCCs (Fig. 2.10). Direct depolarization, as with L-Arg and KCl, opens VDCCs 

allowing Ca2+ influx and glucagon secretion, but it also activates TRPM4. Sodium influx 

through TRPM4 depolarizes the membrane, resulting in an increase in Ca2+ signals. 

These events potentiate glucagon secretion. For Gq-protein coupled receptor agonists 

(e.g. AVP), Ca2+ release from the ER caused by an increase in IP3 activates TRPM4 

leading to depolarization. The depolarization opens VDCCS allowing Ca2+ influx during 

the secondary phase and sustained glucagon secretion. The findings in our study provide 

the foundation for further research into the specific components of the glucagon secretion 

pathway. Clarifying this mechanism may allow for the control of hyperglucagonemia in 

Type 2 diabetic patients. 
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CHAPTER 3 
GENERAL CONCLUSION 

Prior to this study the presence and function of TRPM4 in pancreatic α-cells was 

unknown. After identifying TRPM4 and carefully assessing its function in these cells, we 

were able to establish a relation between the control of Ca2+ entry and the control of 

glucagon release. We have learned that TRPM4 does affect Ca2+ signaling in the α-cell, 

and in turn glucagon secretion. Inhibition of TRPM4 in mouse αTC1-6 cells decreased 

Ca2+ signals and glucagon secretion in response to the stimuli: L-arginine, KCl, arginine 

vasopressin, and BayK 8644. Each of these stimuli utilizes a pathway that results in an 

increased [Ca2+]i  that stimulates exocytosis of glucagon granules. Based on the data 

presented in this thesis, we reason that TRPM4 is controlling the [Ca2+]i allowing for 

regulation of the amount of glucagon release. Depolarization caused by Na+ entry 

through TRPM4 directly controls the Ca2+ entry through VDCCs; this indicates TRPM4 

as a key player in the glucagon secretion pathway. These findings bring the field one step 

closer to uncovering the exact mechanism of glucagon secretion. The elucidation of this 

pathway has the potential to provide many new targets for the treatment of 

hyperglucagonemia in diabetic patients. 
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