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ABSTRACT 

 

Objective: Our in vitro study evaluated chondrocyte death in canine articular cartilage 

exposed to 0.5% bupivacaine without (B) and with methylparaben (BP) and compared 

the viability with intact (SI) and mechanically debrided surfaces (SR).  We hypothesized 

that B or BP would cause chondrocyte death in vitro in a time dependent manner and that 

chondrocyte death would be increased in SI osteochondral cores compared to SR.    

Materials and Methods: Intact cartilage cores with underlying subchondral bone were 

collected aseptically from both humeral heads of 16 fresh canine cadavers. Joints from 

each dog were randomly assigned to SI or SR. Ten osteochondral cores were harvested 

from each humeral head. Synovium and one core were examined to verify joint health. 

The remaining 9 cores were exposed at random to canine chondrocyte culture media 

(CCCM), B, or BP for 5, 15, or 30 minutes. The pH of each solution was measured at the 

beginning and end of each treatment. The treated cartilage was stained with ethidium and 

calcein and digital images were captured under laser confocal microscopy. Three zones 

of each core (superficial, middle, deep) were examined. The number of dead/ (live+dead) 

chondrocytes were counted with digital image editing software. The proportion of dead 

cells (chondrocyte death) was expressed as a percentage and transformed to follow a 

normal distribution for analysis.  

Results: Superficial zone of SI—The BP had significantly higher %cell death at 5 

minutes (47.7%) than B (23.6%) or CCCM (25.4%) but by 30 minutes B (53.8%) and BP 

(62.5%) was similar while CCCM (20.0%) remained unchanged and significantly lower. 

Superficial zone of SR—The BP had significantly higher %cell death at 30 minutes 

(59%) compared to 5 minutes (37.7%); The BP had significantly higher %cell death at 30 

minutes (59%) than CCCM (28.9%). The pH was significantly lower for B (5.81-6.52) 

and BP (5.36-6.36) than CCCM (7.51-7.85).  

Conclusions and Clinical Relevance: This study shows a cytotoxic effect of 0.5% 

bupivacaine with and without preservative on canine articular chondrocytes in a time 

dependant manner in vitro. Intra-articular administration of 0.5% bupivacaine with or 

without preservative should be used with caution.
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CHAPTER 1: BACKGROUND AND REVIEW OF THE LITERATURE 

 

Bupivacaine is an amide local anesthetic with an intermediate onset of action, a high 

potency due to its lipid solubility, and a long duration of action. When local anesthetics are 

combined with systemic analgesics, less systemic analgesics are required and negative side 

effects of these drugs can be minimized1,2. Intra-articular bupivacaine is an effective analgesic in 

the perioperative period in people, sheep, and dogs1-4. It is used as a component of multimodal 

perioperative pain management after arthrotomy or arthroscopy in dogs 1,2. Currently accepted 

intra-articular administration protocols in dogs employ bupivacaine preserved with 

methylparaben or preservative-free bupivacaine at 0.25% or 0.5% concentrations1,2,5.  

Bupivacaine is used for intra-articular analgesia despite clear understanding of its effects 

on articular cartilage. Use of intra-articular bupivacaine in dogs has been considered safe due to 

reports in previous studies6-8. In an in vivo study in pigs and dogs, structural damage to 

chondrocytes was not evident up to 4 to 6 days after intra-articular administration of varying 

concentrations of bupivacaine in saline solution6,7, although proteoglycan synthesis was inhibited 

for at least 3 days6. Cartilage degeneration was not apparent following intra-articular 

administration of bupivacaine in dogs after 1, 14, and 28 days based on histopathologic 

evaluation8. These results are open to interpretation due to the subjective nature of 

histopathologic evaluation and grading and the assumed correlation between gross appearance 

and cellular function. To date, no studies have been performed assessing whether bupivacaine 

causes chondrocyte death. 

Despite the aforementioned studies, more recent case reports of complications in people 

and investigations on bovine, rabbit, and human cartilage have raised concerns that intra-articular 

administration of bupivacaine may result in chondrolysis and subsequent rapid onset of 

osteoarthritis9-16. In vitro exposure of human, bovine, and rabbit articular cartilage to bupivacaine 

resulted in chondrocyte death9,13-16. In a clinical trial investigating intra-articular administration 

of 0.5% bupivacaine in rabbits, articular cartilage damage and synovial inflammation were 

observed over 10 days9. In vitro exposure of bovine cartilage to 0.5% bupivacaine significantly 

increased chondrocyte death14. Chondrocyte death was increased to a lesser extent in intact 

cartilage (26%) compared to cartilage with mechanically disrupted articular surface (75%)14. In 

vitro mixture of bupivacaine with methylparaben preservative and human osteoarthritic synovial 

fluid resulted in a crystalline precipitate in half of the four samples tested6. When human 
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articular chondrocyte cultures were exposed to 0.25% bupivacaine for 15 minutes, significant 

time and dose dependent chondrocyte death occurred15. 

Considering that loss of chondrocytes can result in development of chondrosis and 

osteoarthritis17, the recent evidence that intra-articular use of bupivacaine results in chondrocyte 

death in some species is disconcerting9-16. Although increased chondrocyte death has been 

observed after human, bovine and rabbit articular cartilage is exposed to bupivacaine9,13-16, these 

results can not be directly extrapolated to dogs due to species variation in cartilage composition 

and physiology.  Furthermore, the effect of the pH or the preservative methylparaben on 

chondrocyte death in dogs is unknown.  The purpose of our in vitro study was to measure 

chondrocyte death in articular cartilage of dogs exposed to 0.5% bupivacaine with and without 

methylparaben preservative and to compare the effect on intact and mechanically debrided 

articular surfaces. We hypothesized that exposure of canine articular cartilage to 0.5% 

bupivacaine would increase chondrocyte death in a time-dependent manner over 5 to 30 minutes 

and that chondrocyte death would be increased to a lesser extent in surface intact cartilage cores 

compared to those with the surface mechanically debrided. 

1.1  Bupivacaine 

Local anesthetics act by reversibly blocking the propagation of action potential along 

nerve axons by reversibly binding to voltage-gated sodium channels18-20. They are relatively 

unique in that their application is applied directly to the target tissue, meaning that systemic 

circulation is not required for the desired effect. Local anesthetics prevent or reduce pain or 

nocioceptive input by interrupting neural transmission in sensory afferent nerves or tracts after 

local tissue infiltration, regional nerve blocks, or epidural or intrathecal (subarachnoid) 

injection20. The use of local anesthetics offer additional benefit to the patient by avoiding general 

anesthesia or reducing the amount of general anesthetics required to perform various procedures. 

Bupivacaine has the chemical name of 1-Butyl-2’, 6 pipecoloxylidide-HCl (Figure 1.1). It 

may be dosed at 0.25% for infiltration, 0.5% for nerve and epidural blocks20. It has an 

intermediate onset of action and a duration of 3-10 hours20. It has a lipid solubility of 30 

(procaine is 1) and an acid dissociation constant (pKa) of 8.1. It is 95% protein bound and has a 

molecular weight of 288 daltons20. 

1.1.1  History of Local Anesthetics 

 Cocaine was the first clinically used local anesthetic20. This plant alkaloid was extracted 

from the coca leaf originally found in the Andes Mountains. The local inhabitants of the region 
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would chew or suck the leaves and achieve a sense of well-being. Gaedicke first extracted 

erythroxylin (the coca plant is also known as Erythroxylon coca) from the coca leaf in 1855. 

Later, Niemann isolated cocaine in 1860. The first clinical use of cocaine as a local anesthetic 

was by a Peruvian army surgeon20. Koeller first reported cocaine’s use as an ophthalmic local 

anesthesia in 188421. Following its applications as an ophthalmic anesthetic, it was then applied 

as a peripheral nerve block by Halsted and for spinal anesthesia by Bier20.  

Due to cocaine’s addictive and toxic side effects, the first synthetic local anesthetic was 

developed.  Procaine, an ester of para-aminobenzoic acid, was developed by Einhorn in 1904 and 

led to the formulation of other benzoic acid derived local anesthetics. Other amino-ester local 

anesthetics were then synthesized including tetracaine in 1932 and chloroprocaine in 1955. In 

1943, Lofgren developed lidocaine, an amide derived from diethylaminoacetic acid. More local 

anesthetics were developed including mepivacaine in 1956, bupivacaine in 1957, prilocaine in 

1959, etidocaine in 1971, articaine in 1974, and ropivacaine in the 1980’s19,22,23. More recently, 

levobupivacaine, the pure S- (-) enantiomer, has been developed and reportedly is less likely to 

cause side effects19. Levobupivacaine has less affinity for brain and myocardial tissue than either 

the R- (+) enantiomer or the racemic bupivacaine24. 

1.1.2  Properties of Local Anesthetics 

1.1.2.1  Chemistry of Local Anesthetics 

 Most local anesthetics used clinically have similar chemical structures and physical 

properties19,20. Most of the local anesthetics are weak basic tertiary amines, but a few secondary 

amines do exist.  Amines are composed of a nitrogen atom with three organic groups attached20. 

Anesthetic molecules are generally made up of a hydrophilic end connected to a lipophilic end 

by an intermediate hydrocarbon chain (Figure 1.2). The hydrophilic end, commonly amino 

derivatives of ethyl alcohol or acetic acid, is responsible for the water solubility. The aromatic 

lipophilic end, which is derived from benzoic acid or aniline, contributes to the lipid solubility. 

Substitution of alkyl groups on the aromatic ring or amine end increases lipid solubility and 

potency19. 

1.1.2.2  Grouping of Local Anesthetics 

 Broad categorizations of local anesthetics are based on the molecule’s intermediate 

linkage and are classified as ester-linked (cocaine, procaine, benzocaine, tetracaine, 

chloroprocaine) or amide-linked (lidocaine, prilocaine, dibucaine, articaine, etidocaine, 

bupivacaine, mepivacaine, ropivacaine)19,20. These broad categories determine how the drugs are 
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biotransformed. Ester-linked local anesthetics are derived from benzoic acid and amide-linked 

are derived from aniline. Ester-linked local anesthetics are hydrolyzed plasma cholinesterase and 

have short half-lives when stored in solution without preservatives. Amides are very stable and 

cannot be hydrolyzed by plasma cholinesterases. They undergo biotransformation via hepatic 

microsomal enzymes. 

 Local anesthetic behavioral characteristics (onset of action, duration of action, and 

potency) are based on the chemical properties of the molecular structure19,20. The potency of a 

local anesthetic is greatly influenced by the molecule’s size and lipid solubility25. The smaller the 

molecule and the more lipophilic it is, the more readily it will penetrate the axonal membrane 

and bind the sodium channels with greater affinity. Given that the membranes of axons have a 

high lipid concentration, local anesthetics have a strong effect on these structures. If the methyl 

group on the lipophilic end of the amide-linked local anesthetic mepivacaine is replaced with a 

butyl group, the result is bupivacaine. Bupivacaine is 30 times more lipid soluble and 8 times 

more potent than procaine and 15 times more lipid soluble and 4 times more potent than 

mepivacaine19,20. 

 Local anesthetic duration of activity is believed to be due to its respective protein binding 

properties and the vasoactivity of the drug19,20. For the given local anesthetic, the greater the 

protein binding affinity to the axonal membrane protein, the longer the duration of local 

anesthetic activity. More lipid-soluble local anesthetics are relatively water insoluble and highly 

protein bound. The duration of effect is inversely related to the rate of systemic absorption. The 

rate of vascular absorption is variable and changes based on the vascularity of the tissue at the 

injection site and the properties and dose of the local anesthetic. Bupivacaine is highly lipid-

soluble, it is slowly washed out from isolated nerves and it is not readily removed by the 

bloodstream from nerve membranes, which contributes to the long duration of action19. 

Bupivacaine is 16 times more protein bound and its anesthetic duration of effect is 3 to 6 times 

longer than procaine.  

 The speed of onset of action of local anesthetics is most likely associated inversely with 

the lipid solubility and its acid dissociation constant (pKa)19. Local anesthetic agents exist in 

solution in both the charged cationic (+) and the uncharged base forms. The percentage of local 

anesthetic molecules present in the uncharged non-ionized base form, which is primarily 

responsible for membrane permeability, decreases with increased pKa at any given tissue pH26. It 
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is suspected that the base is responsible for onset of action because the charged form diffuses 

readily across the nerve membrane. 

1.1.2.3  Mechanism of Action  

 Local anesthetics block the formation of an action potential by blocking the influx of 

sodium into the nerve axons18-20. The resting membrane potential is the difference between the 

inside and the outside of the nerve cell and is maintained at -70mV. The resting membrane 

potential is maintained by the plasma membrane sodium/potassium (Na+/K+) pump18. This 

pumps 3 Na+ out of the cell for every 2 K+ pumped into the cell. An action potential is generated 

when a change in membrane permeability permits large amounts of sodium to pass through 

sodium-gated channels in the cell membrane. The action potential is terminated by closure of the 

sodium channels and opening of the slow potassium channels. The cell repolarizes as potassium 

passes out of the cell.  

 Local anesthetics are believed to act primarily on binding receptors located on sodium 

channels27. Each local anesthetic may have its own way of binding to the sodium channel based 

on the conformational state of the channel. There are families of channels and in a given tissue 

there may be multiple forms of sodium channels28. For example, the sodium channels in the 

heart, brain, and axons are not identical20. 

1.1.2.4  Differential Nerve Blockade 

Local anesthetics have the ability to preferentially provide analgesia or anesthesia 

without affecting motor function20,29,30. This indicates that sensory nerve fibers may be more 

sensitive to the effects of local anesthetics than the larger motor fibers. Studies have shown that 

the level of sympathetic blockade extends further than sensory block which extends further than 

motor function blockade31. This suggests that there is a rank order of sensitivity to local 

anesthetics, implying that preganglionic sympathetic B nerve fibers are more sensitive than small 

sensory A-delta nerve fibers, which are more sensitive than large A-alpha motor fibers. The 

sensitivity of unmyelinated C fibers appears to be quite similar to myelinated fibers29. For 

myelinated axons, local anesthetic concentrations must be high enough to block three 

consecutive nodes of Ranvier to stop electrical transmission20. This does not apply to 

unmyelinated axons. The fiber groups appear to have individual sensitivities with regard to 

blockade. It is believed that the frequency of axon discharge is related to the sensitivity of local 

anesthetic effect. Axons with a higher discharge rate, such as C fibers and A-delta fibers, are 
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more sensitive to local anesthetics than those fibers with lower discharge rates, such as A-beta 

fibers30.  

1.1.3  Pharmacokinetics of Local Anesthetics 

1.1.3.1  Absorption 

 Absorption of local anesthetics after extravascular infiltration is dependent on a variety of 

factors including the particular local anesthetic, the patient’s hemodynamic condition, the site of 

administration, the concentration and dose, the vascularity of the site of administration, and the 

effect of an added vasoactive drug such as epinephrine32. The faster the rate of systemic 

absorption, the shorter the duration of anesthetic activity and the greater the risk for systemic 

toxicity20. For this reason, vasoconstrictors may be added to the local anesthetic infusions to 

reduce local blood flow and in turn minimize absorption to maximize effect and decrease the 

risks of systemic toxicity. Epinephrine is the most commonly utilized vasoconstrictor and may be 

used at concentrations of 1:200,000 (5µg/ml) or 1:400,000 (2.5µg/ml)20.  

Local anesthetics are not routinely injected intravascularly for the purposes of anesthesia. 

Exceptions include intravenous regional anesthesia of a distal limb and, more recently, the use of 

low-dose lidocaine constant rate infusions as adjuncts to inhalant anesthetics33-36.  

In some cases, local anesthetics may have a topical effect20. They may be applied to the 

skin, but are only effective if the integrity of the skin is compromised. They may also be 

effective at providing analgesia to the mucous membranes and the cornea. Recently, lidocaine 

dermal patches have gained popularity as part of a post-operative multimodal analgesia plan37,38. 

 Reports indicate that following intra-articular injections, bupivacaine is absorbed over 

several hours, with peak serum concentrations within the first hour39,40. Some authors advocate 

decreasing the bupivacaine concentration from 0.5% to 0.25% when the joint is compromised to 

decrease the risk of systemic toxicity41. Following a single intra-articular injection of 1.5mg/kg 

of 0.5% bupivacaine in dogs, delayed absorption into the systemic circulation occurred resulting 

in a peak serum concentration at 11 minutes with the absence of clinical signs of toxicity42. 

1.1.3.2  Distribution 

 Local distribution of anesthetic at the injection site depends on the volume of agent 

infused, the tissue resistance to the spread of local anesthetic, and the specific drug employed20. 

To enhance the spread of local anesthetic, especially when instilling local anesthesia to the bony 

orbit to anesthetize the eye, hyaluronidase may be added to the local anesthetic solution20. 

Systemically, the liver and lungs are the major sites of plasma clearance of local anesthetics. 
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Extraction fractions explain the amount of local anesthetic extracted from the plasma by a given 

organ20. The liver has a high extraction fraction for most local anesthetics (0.75 for lidocaine).  A 

decrease in hepatic blood flow or function may prolong the plasma high-life. The pH may also 

affect the local distribution of a local anesthetic. Increasing the pH (more basic) increases the 

ratio of uncharged to charged molecules in solution. The uncharged molecules readily diffuse to 

the target tissue increasing the speed of onset of action.  

 The distribution of amino-ester local anesthetics (procaine, chloroprocaine, tetracaine) in 

body tissues is limited due to their rapid enzymatic hydrolysis by non-specific plasma 

pseudocholinesterases19. Amide local anesthetics (lidocaine, mepivacaine, prilocaine, 

bupivacaine, levobupivacaine, etidocaine, ropivacaine) are widely distributed in the body after 

intravenous bolus injection or a fast rate of vascular absorption19. Their pharmacokinetic 

properties are typically described as a two- or three-compartment model43,44. 

1.1.3.3  Elimination 

The liver and lungs are major sites for plasma clearance of local anesthetics. Metabolism 

converts relatively lipid soluble anesthetics into smaller, more water-soluble agents19. For esters, 

the primary step is ester hydrolysis, catalyzed by nonspecific plasma cholinesterases. The rate of 

plasma hydrolysis is rapid, yielding half-lives measured in seconds, and is inversely related to 

toxicity19,45. Ester metabolism can be slowed by reduced cholinesterase activity during 

pregnancy and long-term cholinesterase inhibition via poisons, thereby prolonging the clearance 

of ester anesthetics and increasing the potential for toxicity19. 

The amino-amide are almost exclusively metabolized by the liver and hepatic 

degradation, which requires conjugation with glucuronic acid46. Cats glucuronidate drugs to a 

lesser extent that dogs, increasing the risks of developing side effects when given amide local 

anesthetics46. Less than 5% of these agents are excreted unchanged in the urine. Mepivacaine, 

etidocaine, bupivacaine and ropivacaine also undergo N-dealkylation and hydroxylation. They 

are further conjugated with glucuronide before excretion from the body in the urine or bile19,45. 

Since the liver metabolizes amide local anesthetics, drug clearance is highly dependent 

on hepatic blood flow, hepatic extraction, and enzyme function. Amide local anesthetic clearance 

can be slowed or reduced by factors that decrease hepatic blood flow, such as beta-adrenergic or 

H2-receptor antagonists, by hypotension during regional and general anesthesia, or by heart or 

liver failure19,45. 
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1.1.3.4  Toxicity 

 Toxic reactions to local anesthetics may be categorized as systemic or localized. Such 

reactions are rarely fatal if recognized and treated early. The most common clinical toxicities 

involve acute reactions involving the central nervous system (CNS) and/or the cardiovascular 

system. Bupivacaine is considered to have higher levels of cardiotoxicity than other local 

anesthetics47,48 and has been documented to cause deaths related to its cardiotoxicity49. It is 

believed that bupivacaine affects the heart differently than other local anesthetics. Most toxicities 

are due to accidental intravascular injection of local anesthetics20,49,50. Needle aspiration of the 

vessel prior to injection of the dose may minimize these accidents20.  

 Signs related to the CNS typically precede cardiovascular changes when local anesthetic 

toxicity occurs. In humans, the first signs of CNS toxicity are drowsiness, followed by numbness 

of the lips, slurring of speech, and fine tremors, and with increasing doses, progression to grand 

mal seizures. A large enough dose could cause generalized CNS depression. Interestingly, 

lidocaine has been shown to be effective against tonic-clonic and simple partial status epilepticus 

when combinations of other anticonvulsant agents failure51. Conclusive evidence to explain this 

finding is lacking. Studies indicate that seizures induced by local anesthetics originate in the 

limbic brain52. Local anesthetics produce CNS signs by interfering with sodium conductance by 

a similar mechanism to their effects on the peripheral nervous system. Studies suggest that the 

cardiotoxic effects of local anesthetics, especially bupivacaine, are not only directly toxic to the 

myocardium, but may be partially due to effects on the brain53. 

 Local anesthetics affect the cardiovascular system by a number of ways. They may act 

directly on the heart or on the peripheral vasculature or indirectly by causing conduction 

blockade on autonomic fibers20. Their main effect is directly on the myocardium by decreasing 

electric excitability, conduction rate, and the force of contraction54. The effects on the 

vasculature are dose dependant. High concentrations of local anesthetics cause vasodilation 

while low concentrations may cause vasoconstriction55. Inhibition of sodium conductance 

increases appears to play a major role in the cardiac effects of local anesthetics. Studies suggest 

that part of the cardiotoxic effects of local anesthetics may be attributed to potassium channel 

blockade56. Lidocaine and bupivacaine are commonly compared when evaluating the cardiotoxic 

effects57. Both cause profound cardiac depression, however, bupivacaine toxicity is more 

difficult to treat than lidocaine toxicity49. Animal studies have shown that resuscitation may be 

successful if treated immediately after bupivacaine intoxication50. More recent studies have 
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shown that elevated progesterone levels (pregnancy)58, hyponatremia59, and diabetes mellitus60 

may potentiate the cardiotoxic effects of local anesthetics.  

Local anesthetics have also been reported to cause methemoglobinemia, which occurs 

when the ferrous iron (Fe++) in hemoglobin undergoes oxidation to the ferric form (Fe+++). 

Although prilocaine is primarily implicated and is the only clinically used secondary amine local 

anesthetic, benzocaine, lidocaine, and procaine have also been associated with 

methemoglobinemia61.  

 Local anesthetics have been reported to cause local tissue toxicity, resulting in irritation 

and lysis of cells. Muscle and nerve cells appear the most susceptible to damage62-64. Factors 

such as pH of the solution or the preservatives in the solutions may contribute to the deleterious 

effects20. The highly lipid soluble, highly potent, and long lasting local anesthetics reportedly 

cause more tissue damage compared to other local anesthetics65. According to electron 

microcopy studies, the perineurium, Schwann cells, and axons are all structural disrupted by 

local anesthetics66. 

 Allergic reactions to local anesthetics are rare and have only been reported in case 

reports67. Allergic reactions are more likely to occur with ester-linked local anesthetics than with 

amide-linked agents20. The preservatives, such as methylparaben, added to local anesthetic 

solutions may be responsible for the allergic reactions68. 

 More recently, chondrolysis is being recognized as a potential complication associated 

with intra-articular administration of bupivacaine. Several reports in both humans10-12,69 and 

veterinary species9,13,14 suspect an association between intra-articular administration of 0.5% 

bupivacaine and increased chondrocyte death. 

1.1.4  Bupivacaine as an Intra-articular Anesthetic 

1.1.4.1  Intra-articular Bupivacaine in People 

Bupivacaine has been used routinely as part of a multi-modal peri-operative anesthetic 

since arthroscopic day-patient care gained popularity70-75. Its properties as a local anesthetic are 

appealing and despite the published toxicities its use as an intra-articular anesthetic is considered 

safe. The duration of action of intra-articular bupivacaine is reportedly 2 to 4 hours39,76,77. Multi-

modal analgesia combines drugs that work through different mechanisms or that target different 

receptors and is currently recommended for perioperative pain management78-80. This 

methodology takes advantage of the additive or synergistic effects of different analgesics, 

allowing for lower doses of each drug subsequently minimizing adverse effects75,78,81. 
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Administration of intra-articular analgesics in combination with systemic analgesics has been 

used to prolong the effect of perioperative pain control. Bupivacaine has been shown to be an 

effective intra-articular analgesic when administered at concentrations of 0.25%4,76,82-87 or 

0.5%88-91. Bupivacaine has been shown to be an effective sole intra-articular analgesic76,85-87,90,91. 

It can be administered either pre-operatively86,87,92,93 or post-operatively4,76,82-85,88-91,94. It has 

been used effectively intra-articularly in combination with non-steroidal anti-inflammatory drugs 

(NSAIDs)95, opioids4,84,89,94,96, and corticosteroids97. More recently, bupivacaine has been 

effectively delivered to offer a longer analgesic effect through a variety of indwelling intra-

articular catheters98-100. 

1.1.4.2  Intra-articular Bupivacaine in Dogs 

 Bupivacaine has been used as an intra-articular analgesic in dogs. Intra-articular analgesia 

using 0.5% bupivacaine and intra-articular morphine were compared in dogs following stifle 

surgery for ruptured cranial cruciate ligament in dogs2. They found that intra-articular 

administration of either 0.5% bupivacaine or morphine provided better analgesic control than 

saline, and bupivacaine showed the greatest effect. Comparing analgesia provided by epidural 

bupivacaine and morphine to either intra-articular 0.5% bupivacaine or intravenous 

hydromorphone showed a significantly longer time to first dose of rescue analgesics between the 

epidural and bupivacaine groups compared to the control group and that more supplemental 

analgesics were required for the control group1. 

1.2  Cartilage101-103 

Cartilage is a form of connective tissue specialized for a supportive role in the body. 

Three basic forms of cartilage exist, each type containing chondrocytes within an amorphous 

ground substance or matrix. This matrix contains sulfated glycosaminoglycans complexed with 

protein to form proteoglycan macromolecules. Proteoglycans are electrostatically bound to unit 

fibrils of collagen, forming a firm but flexible substance. In general, this tissue is devoid of 

vessels, lymphatics, and nerves. 

1.2.1  Cartilage Cells 

Two types of cells, the chondroblast and chondrocyte, are recognized as cartilage. The 

chondroblast is found in growing cartilage. Following formation of the cartilage matrix, the 

chondroblast becomes the less active chondrocyte. The chondrocytes are located within lacuna 

and are responsible for the ongoing maintenance of the surrounding matrix.  
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1.2.2  Cartilage Matrix 

 The matrix of cartilage is similar to other types of connective tissue but there are some 

unique properties to cartilage matrix. Collagen forms the matrix framework, with type II 

collagen predominating. Type I collagen is predominate in fibrocartilage. The ground substance 

contains the glycosaminoglycans (GAGs), chondroitan sulfate, keratan sulfate, and hyaluronic 

acid. These substances have an important role in transporting water and electrolytes and in 

binding water to give hyaline cartilage its resiliency. The GAGs form complexes with proteins to 

form proteoglycans. Aggrecan is formed when proteoglycans are joined to a hyaluronic aid core 

with linking proteins. A loose network is formed by proteoglycans bound to collagen fibers, 

which limits the movement of larger cells. The adhesive molecules chondronectin, anchorin, CII, 

and fibronectin are involved in the interaction between collagen and chondrocytes. The cartilage 

matrix is mineralized by hydroxyapatite in the zone of hypertrophy of the physis and the deeper 

regions of the articular matrix. 

1.2.3  Types of Cartilage 

 Fibrous cartilage, or fibrocartilage, is a dense connective tissue with linear groupings of 

chondrocytes embedded in a small amount of matrix. This type of cartilage occurs least 

frequently and is found in the intervertebral discs, the menisci of the stifle, in the cardiac 

skeleton (the atria and ventricles are connected by fibrocartilage), and in some tendons close to 

their attachments to bone. There is a predominance of type I collagen fibers in the matrix which 

is most abundant in the vicinity of the cells. Fibrocartilage lacks a distinct perichondrium and a 

cellular chondrogenic layer is absent. 

 Elastic cartilage is very similar to hyaline cartilage, however, it contains large amounts of 

dense elastic fibers throughout the matrix. The elastic fibers are visible on H&E preparations. It 

is found in the tissues requiring elasticity, as well s rigidity, in such tissue as the epiglottis, part 

of the larynx (corniculate and cuneiform cartilages), and the pinna.  

Hyaline cartilage is the most common form of cartilage. It forms a large portion of the 

developing vertebrate skeleton, progresses to form epiphyseal discs, articular cartilage, tracheal 

components, bronchial components, and other tissues. The ground substance of hyaline cartilage 

can be separated into a pale staining interterritorial matrix and a darkly staining substance called 

territorial matrix. The territorial matrix stains darkly due to the higher concentration of sulfated 

glycosaminoglycans. Chondrocytes are confined to small spaces, or lacunae, within the matrix. 

Small clusters of chondrocytes form isogenous groups due to cellular division. Cartilage matrix 
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is usually invested by a perichondrium whose inner layer is chondrogenic. This chondrogenic 

layer contains cells with the ability to become chondroblasts. The outer portion of the 

perichondrium is composed of dense irregular connective tissue. 

 Four morphologically distinct layers are present within articular cartilage104. Closest to 

the joint surface, the two-layered superficial zone is the thinnest layer and consists of discoid 

chondrocytes with long and flat profiles. These cells are orientated with their long axis parallel to 

the joint surface and the thin collagen fibrils are aligned parallel to the joint surface. A thin sheet 

of fibrils with little polysaccharide and no cells covers the articular surface of the superficial 

zone103. Deep to the superficial layer lies the transitional, or intermediate zone, which is a much 

thicker zone with more spherical cells and larger collagen fibrils that are not organized in a 

parallel fashion. The next layer is the radial, or deep, zone in which the chondrocytes are 

organized in a columnar orientation and collagen fibrils are vertically oriented, perpendicular to 

joint surface. Adjacent to the subchondral bone lies the calcified cartilage. A basophilic tidemark 

delineates the radial zone from the calcified cartilage. 

 Variation of the articular cartilage thickness exists and is believed to be due to weight 

bearing forces. A study evaluating rabbit articular cartilage reported weight-bearing articular 

cartilage to be thicker and containing a small number of large chondrocytes within a large mass 

of matrix compared to less-weight-bearing surfaces105. 

  All synovial joints contain a synovial fluid that provides lubrication for the 

hyaline cartilage or fibrocartilage articular surfaces. Fibrocartilage has very few blood vessels or 

nerves and hyaline cartilage does not have either. The synovial fluid has a secondary function of 

providing nutrients to and removing waste from the hyaline cartilage. This fluid allows for 

leukocytes to circulate and phagocytize debris. The amount of synovial fluid of stifles of adult 

canines ranges from 0.2ml to 2ml, and the volume may be a reflection of the overall health of the 

dog. Synovial fluid is thought to be a dialysate because the chemical composition resembles 

tissue fluid. The mucin is thought to be produced by the fibroblasts of the synovial membrane106. 

Synovial fluid also contains salts, albumin, fat, and cellular debris. 

 Articular cartilage covering the bone surfaces of synovial joints is usually hyaline 

cartilage. The deeper layers in contact with the bone may be calcified. Lacking vessels and 

nerves, hyaline cartilage derives its nutrition from the synovial fluid and is capable of some 

regeneration following injury107. The thickness of the cartilage varies depending on the particular 

joint and the portion of the joint. It is thickest in young, healthy joints and in joints that bear 



 13 

increased weight. The thickness is proportional to the weight it is subjected to. Disuse atrophy of 

the hyaline cartilage may occur. Hyaline cartilage has both elastic and compressibility qualities 

to absorb shock and protect the underlying bone from trauma. 

1.2.4  Articular Cartilage Metabolism 

 Chondrocytes make up a small proportion of cartilage by volume in the mature dog yet 

they are responsible for synthesizing, maintaining and regulating the pericellular, territorial, and 

interterritorial matrix108. Structural organization, cellularity, DNA content, biochemical 

composition, the pattern of nutritional supply, repair potential, rate of protein and proteoglycan 

metabolism, and proliferative activity of chondrocytes differ between immature and mature 

cartilage105. Mature articular cartilage is devoid of lymphatics and blood supply so metabolism is 

primarily anaerobic108. Nutrients, including glucose, oxygen, and amino acids, diffuse from the 

synovial fluid that surrounds the articular cartilage109. Diffusion is dependent on variables such 

as molecular size, shape, charge of the molecule and on the concentration of proteoglycans in the 

cartilage110. Intermittent weight bearing as occurs while ambulating aids in diffusion via a 

pumping action, forcing substances out of the cartilage while bearing weight and bringing 

substances into the cartilage while non-weight bearing108,111. Metabolism of the extracellular 

matrix is influenced by the mechanical environment and cytokines and growth factors produced 

by synovial cells and chondrocytes108. 

1.2.5  Response to Cartilage Injury 

 The response of cartilage to injury differs from classic tissue healing because of two 

important features of the structure of cartilage, the most important feature being it’s avascular 

status112. The second difference is that chondrocytes are within a mesh of collagen and 

proteoglycan and can therefore not migrate to the site of injury from the adjacent healthy 

cartilage104. When partial-thickness injury to the articular surface occurs, a zone of necrosis 

develops adjacent to the site with ghost cells seen within the chondrocyte lacunae112,113. A brief 

period of mitotic activity and matrix activity follows but rapidly ceases with no healing112,113. 

The healing has not been shown to progress over time, however, these lesions remain stable and 

rarely progress to osteoarthritis112. 

These conditions are different if the cartilage injury penetrates through the subchondral 

bone providing a pathway to the highly vascular bone112. In this injury scenario, response to 

injury is similar to that seen elsewhere in the body. The defect is filled with a fibrin plug which 

traps cells from the blood and bone marrow, including undifferentiated mesenchymal cells114. 
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The inflammatory and reparative phases proceed as other tissues would respond to injury and the 

new tissue in the cartilage defect undergoes a metaplasia to a hyaline-like chondroid tissue114. By 

2 weeks following injury rounded chondrocytes appear and produce substantial amounts of Type 

II collagen104. However, later in the process, there is still 20-35% Type I collagen present115, the 

proteoglycan content decreases significantly, and the tangential layers of collagen in the 

superficial zone fail to appear116. Collagen fibers of the repair tissue are not well integrated with 

those of healthy cartilage, which is thought to lead to vertical shear stresses between the repaired 

and healthy cartilage leading to micromotion and potentially to degenerative changes114. The 

chondrocyte lacunae adjacent to the repaired cartilage are devoid of chondrocytes, which could 

be detrimental to metabolism of the matrix114.  

1.3  Arthroscopic Surgery Irrigating Solutions 

 With the gaining popularity of arthroscopic procedures in the early to mid-1980’s, studies 

were performed to assess the effect of irrigating solutions and intra-articular analgesics on the 

articular cartilage and synovium. Systemic analgesics have inherent side effects and risks 

associated with their use. Local anesthetics, especially bupivacaine, were shown consistently to 

offer analgesia at the surgical site perioperatively. This allowed for decreased administration of 

systemic analgesics and gaining popularity of day or outpatient arthroscopic procedures. 

 Traditionally, normal saline had been used for irrigation during arthroscopy due to its 

characterization as a physiologic solution based on the ionic concentrations of sodium (Na+) and 

chloride (Cl-). However the pH of this solution was determined to be 5.3, more acidic than 

normal physiologic pH of 7.4. It also lacked potassium, calcium, phosphate, bicarbonate, acetate, 

and lactate, supporting the idea that saline is truly not physiologic and possibly not the ideal 

solution to use for arthroscopic procedures. An in vitro study was performed In efforts to 

determine the optimum solution for irrigation during arthroscopy by comparing the effects of 

multiple commercially available solutions on cartilage proteoglycan synthesis117. Proteoglycan 

synthesis is essential to maintain the cartilage matrix and can be assessed through the use of 
35SO4. Results indicated that Lactated Ringer’s solution (LRS) supports chondrocyte metabolism 

for 8 hours in an ex-vivo organ culture system and does so as effectively as Ham F12 medium. 

A simulated arthroscopic procedure in rabbits evaluated the effects of various local 

anesthetic agents and irrigating solutions on chondrocyte function118. Normal saline and Lactated 

Ringer’s solution (LRS) were compared for synovial and cartilage metabolism measured by 

tissue purine nucleotide content. Also, 0.5% bupivacaine, hydrochloric acid in an amount equal 
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to that bound by bupivacaine, 0.5% bupivacaine with 1:200,000 epinephrine, 0.25% bupivacaine, 

and autologous blood were compared. Results of the study revealed evidence of acute stress 

evidenced by elevated purine nucleotide levels on both cartilage and synovial cells by all 

solutions in the immediate post-exposure samples, with saline causing more stress than LRS. All 

bupivacaine solutions and blood caused more stress on the cartilage and synovial cells than either 

saline or LRS. By one week post-exposure, stress patterns approached similarity to unirrigated 

control joints. A transient decrease in matrix staining was observed for all variables upon 

histopathologic examination but there was no evidence of morphologic damage at any time. 

The ultrastructure of human hyaline cartilage biopsy specimens was evaluated with 

scanning electron microscopy following exposure to 1.5% glycine, Synovisol (an irrigating 

solution used for electrosurgery), saline, Ringer’s lactate, or water for 30 and 45 minutes119. 

Scanning electron microscopy revealed that all solutions caused macroscopic changes to the 

articular cartilage surface. The 1.5% glycine solution showed the fewest changes, followed by 

Synovisol, then saline and Ringer’s lactate, and finally water. 

The effects 0.9% NaCl, Ringer’s solution, Ringer glucose 5%, Ringer lactate, and 

Betadine on anatomically intact rat patellar articular cartilage metabolism were compared to 

M199 culture medium as a control120. Following treatment, each sample was radiolabeled with 
35SO4 as a marker of cartilage metabolism. Findings revealed that only Betadine solution caused 

macroscopic softening of the cartilage. The Betadine treatment group inhibited chondrocyte 

metabolism by 55% compared to the M199 culture medium, where as saline and Ringer lactate 

solutions reduced metabolism by 20%, Ringer glucose by 10%, and Ringer’s solution by 5%. 

Chlorhexidine has previously been used as an arthroscopic irrigating solution because of 

its bactericidal effects and its lack of deleterious effects on wound healing. A case series of five 

men who had diagnostic and/or therapeutic arthroscopy performed on their knees reported the 

accidental use of a 1% chlorhexidine irrigation solution causing rapid chondrolysis evidenced by 

radiographic loss of the joint space and histopathologic necrosis, non-specific inflammation, and 

fibrosis of the cartilage and synovium121. Another review of 3 cases of chondrolysis of the knee 

following arthroscopy that utilized 0.02% chlorhexidine as an irrigating solution was 

published122. All patients in the report developed clinical signs and radiographic evidence of 

chondrolysis within four months of their initial procedure that was confirmed on arthroscopic 

and histopathologic evaluation and resulted in the necessity for total knee replacements. 



 16 

Temperature of arthroscopic solutions has been shown to have an effect on chondrocyte 

viability. An ex vivo study showed decreased chondrocyte death with arthroscopic solution of 

37°C compared to standard room temperature (22°C) solutions123. With regard to cartilage 

thermal injury, A strong relationship exists between increasing temperature and chondrocyte 

death when chondrocytes are exposed to solutions of varying temperatures, with a sharp increase 

in chondrocyte death between 50° and 55°C124. 

1.4  Chondrocytotoxicity  

 Several proposed inciting causes have been elucidated in the etiology of chondrolysis and 

many of the proposed inciting causes involve a surgical event. Several case reports, case series, 

and in vitro and in vivo research projects have been published describing chondrolysis following 

a variety of procedures. 

The term idiopathic chondrolysis of the hip was first used 1975 to describe cases of hip 

chondrolysis of unknown etiology125. Since then, multiple case reports and case series have been 

published126-132. This uncommon condition primarily affects prepubertal adolescent women, 

primarily of African descent. It is characterized by progressive loss of the articular cartilage of 

the femoral head and decreased range of motion that may progress to ankylosis. Idiopathic 

chondrolysis is reportedly a form of cartilaginous dysplasia133 and affected individuals have 

absence of trauma, infection, rheumatoid arthritis or systemic illness in their histories. 

Radiographs show narrowing of the coxofemoral joint, premature closure of the proximal 

femoral and greater trochanteric growth plates, and periarticular osteopenia. Debate exists about 

the proper treatment of these patients, but the goal of treatment remains to be relief of pain, 

correction of deformity, and restoration of hip motion129,134. 

The surgery for treatment of slipped capital femoral epiphysis (SCFE) involves the use of 

pins to stabilize the epiphysis. The findings in seventeen patients with chondrolysis following 

surgery for treatment of SCFE have been reported135. Fourteen of the 17 cases had evidence 

supportive of pin penetration of the femoral head. One had evidence of pin penetration of the 

intra-articular femoral neck on postoperative radiographs. The remaining 2 cases both had pins 

placed within 2mm of the articular cartilage. The authors concluded that there was a relationship 

between articular pin penetration and chondrolysis in patients with SCFE. A rabbit model to 

research the association between pin protrusion and chondrolysis was performed results 

suggested that both enzymatic degradation and mechanical destruction of the articular cartilage 

occurred136. Conclusions were that the mechanical injury of the pins was not as detrimental as 
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the associated inflammatory response and enzymatic damage. Cartilage at sites remote from the 

pins appeared to experience more purely enzymatic damage. The articular cartilage lost 30% of 

its proteoglycan content, however, they found that the joint spaces did not narrow like 

chondrolysis cases typically do, but instead increased. They concluded that some other factor is 

necessary to produce chondrolysis. Their theory suggests that the mechanical damage of the pins 

induces an autoimmune response responsible for the chondrolysis. This is supported by a human 

case series report of 11 patients with SCFE. It was concluded that transient intra-articular pin 

penetration did not lead to chondrolysis over the 2 years that cases were followed137. 

Chondrolysis affecting the shoulder following the utilization of gentian violet for color 

testing has been reported in Japan138-142. Gentian violet has also been used as an extrinsic 

antiseptic and as a treatment for oral thrush in infants. The pathogenesis of the chondrolysis for 

these cases was unknown at the time of publication. Various concentrations of gentian violet 

injected into rat knees has been since shown to cause chondrocyte death in the superficial layer 

of the articular cartilage 7 days post-injection139.  

Rapid lateral femoro-tibial chondrolysis following arthroscopic lateral meniscectomy has 

also been reported in four cases following arthroscopic lateral meniscectomy in young 

athletes143. At the time of meniscectomy, the cartilage of the lateral compartment was grossly 

normal. A second arthroscopic procedure was performed after a mean of 6 months due to 

persistence of signs consistent with chondrolysis. Chondrolysis was diagnosed based in the 

presence of cartilaginous debris floating in the joint, along with severe cartilage damage in the 

lateral compartment. The etiology was suspected to be mechanical, but was not definitively 

known. The authors speculated that the rapid chondrolysis represented an acute form of chronic 

slow chondrolysis, which is a known complication after lateral meniscectomy. A similar 

American case report has been published144. 

Rapid chondrolysis has also been reported following accidental intra-articular injection of 

bone cement into the coxofemoral joint for treatment of a benign acetabular subchondral bone 

cyst145. Contrast imaging of the cyst prior to treatment showed no communication with the joint, 

however, after injection of a small amount of methylmethacrylate it was noted to have leaked 

into the joint space so the injection was immediately discontinued. Pain intensified following the 

treatment so five days after injection arthroscopy was performed and the bone cement present 

within the joint was ablated. There were no macroscopic cartilage lesions at the time. Pain 

persisted and 8 weeks post-treatment radiographs revealed loss of the joint space. Chondrolysis 
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was diagnosed and a total hip replacement was performed. Proposed mechanisms responsible for 

the chondrolysis include exothermic reaction of the methylmethacrylate and release of free 

radicals by the cement.  

Transfer of the greater trochanter is a surgical technique that is used for overgrowth of 

the greater trochanter arising from a disturbance of the growth plate of the proximal femur. 

Chondrolysis of the hip has been reported in three patients following transfer of the greater 

trochanter146. In this report, one patient had Perthes’ disease, one had bilateral developmental 

dysplasia of the hip, and the third had unspecified arthritis of the hip. This was the first report of 

chondrolysis as a complication of this procedure. Mechanisms proposed by the authors included 

joint immobilization for 6 weeks and mechanical derangements as a result of increased pressure 

on the joint surface produced by the descent of the gluteal attachment. 

Axillary nerve injury, recurrent instability, capsular obliteration, and adhesive capsulitis 

are known complications of thermal capsulorrhaphy that have been documented in the literature 

however, case reports of glenohumeral chondrolysis attributed to thermal capsulorrhaphy have 

recently been published147-150. Two cases of glenohumeral chondrolysis after capsulorrhaphy in 

young athletes have been attributed to the use of thermal energy147. A case of glenohumeral 

chondrolysis was attributed to a capsular release procedure using bipolar radio frequency probe 

for treatment of adhesive capsulitis148. A case of glenohumeral chondrolysis in a young woman 

following treatment of a shoulder luxation using monopolar radiofrequency to perform a thermal 

stabilization procedure has also been reported149. A retrospective study evaluated 8 cases of 

glenohumeral chondrolysis following arthroscopic procedures that utilized thermal energy found 

no patients had evidence of cartilage damage at the time of initial surgery and no patient received 

an intra-articular pain pump catheter post-operatively150. Open surgical stabilization has not been 

shown to be associated with chondrolysis so it has been speculated that heating of the joint fluid 

at the time of arthroscopy played a role in the chondrolysis. Bipolar radiofrequency probes have 

been shown to raise the temperature inside the joint high enough to kill chondrocytes123,151,152. A 

case report of chondrolysis following debridement of a partial thickness articular cartilage defect 

that was treated with arthroscopic chondroplasty using bipolar radiofrequency energy has been 

published153. The detrimental effect of elevated temperature on chondrocytes has been proven in 

the literature154-156. Both monopolar and bipolar radiofrequency energy applied to articular 

cartilage has been shown to cause time-, temperature-, and power-dependent chondrocyte 

death151,154,156-159.  
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Fibronectin and fibronectin fragments are extracellular matrix proteins that have been 

implicated in chondrocyte cellular breakdown by suppression of proteoglycans160-171. Increased 

levels of fibronectin and fibronectin fragments in the synovial fluid of arthritic patients trigger 

expression of proteinases and cause subsequent chondrolysis160. Small amounts of free 

fibronectin fragments in bovine cartilage cultures resulted in increased levels of stromelysin, 

gelatinase, and collagenase activity. It was also shown that fibronectin fragments not only 

increase matrix metalloproteinases (MMPs), but they suppress proteoglycan synthesis and 

increase rates of proteoglycan loss from cartilage tissue168. It is speculated that a signaling 

pathway exits that regulates MMP-13 and MMP-1 stimulation by fibronectin fragments172. These 

fibronectin fragments stimulate MMPs such as collagenase-3 (MMP-13) and are capable of 

degrading the extracellular matrix of cartilage.  

Disruption of the cartilage extracellular organization has been shown to lead to 

chondrolysis173. Transmembrane receptors mediate cell matrix activity and these receptors are 

vital to the maintenance of cartilage homeostasis. A dose-dependent chondrolysis occurs when 

articular cartilage slices are exposed to hyaluronic acid hexasaccharides. When hyaluronic acid 

hexasaccharides bind to CD44, the chondrocytes are uncoupled from the matrix, resulting in 

deleterious changes in matrix structure and modifications in chondrocyte metabolism.  

All of these discussed mechanisms of chondrolysis are currently recognized as clinical 

concerns and are therefore respectable considerations when joint surgery is performed. However, 

cases of chondrolysis have been documented where these previously discussed causes have been 

diagnostically and therapeutically ruled-out. 

1.5  Bupivacaine-Associated Chondrolysis  

With the increasing popularity of arthroscopy and intra-articular local anesthetic 

injections, it was important to determine bupivacaine’s effects on articular cartilage. The first 

research examining the effect of bupivacaine on cartilage was published in 1985 and evaluated 

the immediate effects of bupivacaine in isotonic saline solution on pig and canine articular 

cartilage6. Their findings indicated that saline solution has a profound acute effect on articular 

cartilage, but the ability to incorporate sulfate into proteoglycan was apparently restored to 

normal 3 days later. Sulfate uptake is a marker of cartilage proteoglycan metabolism and is a 

reflection of cartilage anabolism174. Bupivacaine caused slight additional inhibition of sulfate 

uptake, which indicates bupivacaine caused greater proteoglycan synthesis inhibition than saline. 

However, there was a return to normal proteoglycan synthesis by 3 days after treatment. When 
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bupivacaine containing methylparaben preservative was incubated with human inflammatory 

synovial fluid, half of the samples formed a crystalline precipitate that was not further 

characterized. 

A study evaluated and compared the short- and long-term histopathologic effects of intra-

articularly administered bupivacaine and neostigmine on rabbit stifle articular cartilage and the 

synovial membranes9. The joints that received bupivacaine and neostigmine had significantly 

more inflammation of the articular cartilage compared to the joints treated with saline. The 

cartilage inflammation was more pronounced in the neostigmine group at 24 hours when 

compared to the bupivacaine group, however by 10 days the bupivacaine group showed more 

evidence of inflammation than the neostigmine group. All joints treated with bupivacaine 

showed minimal or mild changes in synovial membrane cell hyperplasia. 

 Reports of shoulder arthroscopy in young athletes that resulted in glenohumeral 

chondrolysis within 6 months of surgery have been published10. At the time of each initial 

arthroscopic procedure, no cartilage pathology was reported in any of the patients. In two of the 

three cases, radiofrequency energy was used. Thermal energy could not be excluded as a 

contributing factor but the authors suggested that these patients potentially had an autoimmune 

component to the development of chondrolysis. They theorized that the arthroscopy episode 

potentially triggered this autoimmune response, causing migration of inflammatory cells to the 

joint. These inflammatory cells could then release chondrolytic substances resulting in cartilage 

death. However, one case received an intra-articular pain pump catheter in the immediate post-

operative period. Immediate post-operative pain management was not described for the other 2 

cases. One of these cases received a bupivacaine injection 4 months post-surgery, which was one 

month prior to a diagnosis of chondrolysis.  

A report describes a case of chondrolysis of the ankle of a 21-year-old male following 

treatment of a soft tissue injury to the ankle that occurred five years previously and progressed to 

chronic instability11. Arthroscopy on the ankle joint was followed by a lateral ankle ligament 

reconstruction. Postoperative analgesia included an intra-articular bupivacaine continuous pump 

infusion. No complications were encountered with the surgery or in the 4 months 

postoperatively, however 11 months post-surgery he represented for ankle pain. Upon the second 

arthroscopic examination of the joint, chondrolysis was present.  The patient signalment and the 

affected joint were not typical for idiopathic chondrolysis. Speculation arose regarding the use of 

the intra-articular administration of bupivacaine with a pain pump catheter.  



 21 

The records of 152 patients that underwent 177 shoulder arthroscopies were reviewed for 

post-arthroscopic glenohumeral chondrolysis12,69. Twelve shoulders in 10 patients developed 

chondrolysis, and 83% of these required a subsequent procedure. All cases of chondrolysis had 

been treated post-operatively with an intra-articular pain pump catheter (IAPPC) administering 

0.25% bupivacaine and 1:200,000 epinephrine. The pH of the bupivacaine and epinephrine 

administered was between 3.5 and 5.5 and was administered at a rate of 4.16cc/hour for 2 to 3 

days. All patients had negative results on the rheumatologic and infectious work-ups. No other 

risk factors were identified that could account for the chondrolysis. Of the 30 arthroscopic 

procedures with IAPPCs, 63% had developed chondrolysis at the time of publication.  

An experimental model examining IAPPCs was performed to investigate the potential 

chondrotoxic effects of a continuous intra-articular infusion of bupivacaine in the rabbit shoulder 

and the experiment was designed to mimic the clinical application of IAPPC’s used in human 

shoulder surgery13. An IAPPC was surgically placed and a constant flow rate of 0.25% 

bupivacaine, saline, or 0.25% bupivacaine and 1:200,000 epinephrine was administered for 48 

hours. Findings revealed that the group with bupivacaine infusions had 50% reduction in 

articular cartilage 35S04 uptake compared to the saline group. The group with both bupivacaine 

and epinephrine had a 56% reduction in sulfate uptake when compared to the saline group. When 

cell viability was quantified with confocal microscopy, the group with bupivacaine infusions had 

a 32% decrease in cell viability when compared to the saline group. The bupivacaine and 

epinephrine group had a 20% decrease in cell viability when compared to the saline group. On 

histological analysis of the cartilage and synovium, both the bupivacaine and bupivacaine and 

epinephrine groups had significantly worse histological grades on all evaluated parameters when 

compared to the saline group. The comparatively larger reduction in sulfate uptake than in cell 

viability suggests that even cells that survived after bupivacaine infusion remained at a decreased 

metabolic state 5 days after cessation of the infusion. 

The effects of 0.5% bupivacaine on the viability of bovine articular chondrocytes in vitro 

was performed to determine if 0.5% bupivacaine is chondrocytotoxic to articular chondrocytes 

and if an intact articular surface protects chondrocytes from the effects of short-term 0.5% 

bupivacaine exposure14. Alginate bead cultures were evaluated with flow cytometry and intact 

cartilage cores were evaluated with fluorescent viability stains and laser confocal microscopy to 

evaluate chondrocyte death. Following exposure of the chondrocyte cultures to 0.5% 

bupivacaine for 15, 30, and 60 minutes, 99% chondrocyte death was observed compared to 31% 
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chondrocyte death was observed following saline exposure. When evaluating the cartilage cores, 

the saline-treated intact cores had predominantly live chondrocytes near the articular surface. 

Following exposure to 0.5% bupivacaine for 30 minutes, dead chondrocytes were present 

extending below the intact articular cartilage surface. The percentage of live chondrocytes for the 

saline-treated control cores was 74% and for the bupivacaine treated cores was 58%. Again, the 

study found that the saline-treated cores with the surface removed had predominantly live 

chondrocytes near the articular surface. However, treatment of these cores with 0.5% 

bupivacaine resulted in a zone of dead chondrocytes that extended to a depth of 0.5mm to 

1.0mm. When quantified with confocal microscopy, the cores with the surface removed 

preserved 76% live chondrocytes for the saline-treated samples, and when treated with 0.5% 

bupivacaine decreased chondrocyte viability to 25%. The findings suggest increased chondrocyte 

death in the superficial regions of both intact articular cartilage and the cartilage with the surface 

removed following 30 minutes of exposure to 0.5% bupivacaine. The data also suggests that the 

intact surface of articular cartilage offers some protection from the chondrocytotoxic effects of 

0.5% bupivacaine. 

 The findings in a case series of 4 young patients with rapid-onset glenohumeral 

chondrolysis following arthroscopy were reported175. All 4 patients had normal articular cartilage 

based on pre-operative MRI and no complications occurred during the surgical procedures. By 6 

months after the procedures, all 4 patients had decreased range of motion in the joint and follow-

up radiographs revealed narrowing of the joint space. No loose intra-articular bodies or marginal 

osteophytes were present at the time of imaging. The inciting mechanism of the chondrolysis 

was not determined but the use of bupivacaine as a post-operative intra-articular analgesic was 

mentioned as a possibility. 

 Given the recent evidence that intra-articular bupivacaine may cause chondrocyte death, a 

group of investigators wanted to determine if lidocaine, an amide local anesthetic similar to 

bupivacaine, also had similar chondrocytotoxic effects. Using similar methodology as Chu’s 

2006 in vitro study14, bovine chondrocyte cell cultures and explants were exposed to 1% and 2% 

lidocaine and chondrocyte death was assessed176. The tissues were treated for 15 to 30 minutes 

and compared to saline controls. Cell viability was assessed at three different time points: 1 hour, 

24 hours, and 1 week after exposure. They also compared chondrocyte viability of articular 

surface intact explants to explants with the articular surface removed. Results indicated that 

lidocaine had time and dose-dependent cytotoxic effects on both bovine articular chondrocyte 
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cell cultures and explants. Cell viability decreased over the week of assessment and 

chondrocytotoxicity was greater for 2% lidocaine treat chondrocytes compared to 1% lidocaine. 

In contrast to their bupivacaine study14, lidocaine did not cause as great an amount of 

chondrocytotoxicity and an intact surface did not offer an apparent protective effect against 

lidocaine. However, similar to the bupivacaine study, the cell cultures did exhibit greater 

chondrocyte death compared to the explants, which suggests a protective effect of the cartilage 

matrix. Bupivacaine and lidocaine have an acidic pH, much lower than a physiologic pH, so the 

effects of saline at pH 5.0, pH 7.0, and pH 7.4 on chondrocyte viability were compared. There 

were no statistical differences between the different saline pH treatments on chondrocyte 

viability. 

With the recent evidence that bupivacaine and lidocaine have been shown to be 

chondrocytotoxic, other intra-articular analgesics were investigated. Ropivacaine is a long acting 

aminoamide local anesthetic that has been shown to have fewer systemic side effects than 

bupivacaine due to its lower lipid solubility and to be an effective intra-articular analegesic177-181. 

Comparing the effects of 0.5% bupivacaine, 0.5% ropivacaine, and saline exposed for 30 

minutes on macroscopically normal human cartilage explants and cell cultures, bupivacaine was 

found to cause significantly greater chondrocyte death than either ropivacaine or saline16. There 

was no difference in viability between the ropivacaine and saline treated groups. Similar to other 

studies, chondrocyte death was greater in the cell cultures compared to the osteochondral 

explants14,176.  

After establishing that bovine chondrocytes exposed in vitro to 0.5% bupivacaine caused 

increased chondrocyte death compared to controls, human cartilage was exposed to bupivacaine 

in a similar study design15. Also, bovine cartilage was exposed to a variety of bupivacaine 

concentrations for up to 60-minutes and results showed that 0.25% and 0.5% bupivacaine caused 

time-dependent chondrocytotoxicity in both human and bovine chondrocytes in vitro. The 

viability of bovine and human chondrocytes exposed to 0.125% bupivacaine for up to 60 minutes 

was similar to saline exposed chondrocytes. They also found a time-dependent increase in bovine 

chondrocyte death and rates of apoptosis using flow cytometry and time-lapse confocal 

microscopy. Cellular death occurred more rapidly with 0.5% bupivacaine compared to 0.25% 

bupivacaine and faster in the human chondrocytes than the bovine chondrocytes. 

The purpose of this in vitro study was to measure chondrocyte death in articular cartilage 

of dogs exposed to 0.5% bupivacaine with and without methylparaben preservative and to 
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compare chondrocyte death when the articular surface is intact to when mechanically debrided. 

We hypothesized that exposure of canine articular cartilage to 0.5% bupivacaine would increase 

chondrocyte death in a time-dependent manner over 5 to 30 minutes and that chondrocyte death 

would be increased to a lesser extent in intact cartilage cores compared to those with the surface 

mechanically debrided. 

 

Figure 1.1 Molecular structure of bupivacaine 

 

 

 

Figure 1.2 Basic molecular structure of local anesthetics. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1  Collection of Phase 1 Tissue Samples 

Six mature, fresh, canine cadavers weighing between 9.6kg and 19.8kg (mean 15.8kg) 

were used immediately after humane euthanasia according to an approved IACUC protocol. 

Cadavers were excluded if any overt gross joint pathology was present. The glenohumeral joints 

of each dog were randomly assigned to one of two articular surface preparations prior to 

collection: surface intact (SI) or surface removed (SR). For SI, the articular surface was 

preserved. For SR, the cartilage surface was debrided by rubbing a sterilized abrasive pad 

(Devon® Demolisher™, The Ludlow Company LP, Chicopee, MA) on the articular cartilage 

surface (Figure 2.1). Then osteochondral cores were aseptically harvested from each 

glenohumeral joint. 

Cores of articular cartilage and the underlying subchondral bone were aseptically 

harvested to a depth of 6mm by cutting the articular surface of each humeral head in a grid-like 

fashion of 6mm x 6mm squares with a sterilized jig saw (Figure 2.2). Phosphate buffered saline 

(PBS) at 37°C was flushed over the cartilage surface during cutting to minimize thermal damage. 

Final osteochondral core dimensions were 6mm x 6mm x 6mm. The cores were labeled as SI or 

SR depending on collection site and prior randomization. Cores were washed with PBS and then 

submerged in sterile 60mm Petri dishes containing 37°C canine chondrocyte culture medium 

(CCCM; Cell Applications, Inc., San Diego, CA). The cores were maintained at 37°C under a 

5% CO2/95% air atmosphere until further testing was performed (approximately 24 hours). 

2.2  Treatment and Evaluation of Phase 1 Tissue Samples 

Each glenohumeral joint from 6 dogs was randomly assigned to SI or SR surface 

preparations. Two cartilage cores from each humeral head of 6 dogs were randomly assigned to 

one of three treatment solutions containing 15ml CCCM, 0.5% bupivacaine (B; AstraZeneca LP, 

Wilmington, DE), or 0.5% bupivacaine with methylparaben preservative (BP; Hospira, Inc., 

Lake Forrest, IL), all with 0.1% methylene blue (MB)111. All cores were maintained in the 

treatment baths at 37°C for either 15 minutes or 30 minutes (Figure 2.3; Table 2.1). After either 

15 or 30 minutes, each core was washed with PBS. A 1mm slice was collected from the center of 

each core with two scalpel blades spaced 1mm apart.  

A digital image was taken of each slice under 10x magnification standard light 

microscopy (Figure 2.4). The depth of stain penetration from the articular surface and the cut 
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surfaces, and the depth of the articular cartilage to the subchondral bone were measured in 

micrometers (µm) using a graticule. The dimensions of the unstained portion of the cartilage 

after treatment determined the size of the unstained central section.  

2.3  Collection of Phase 2 Tissue Samples 

Ten mature, fresh, canine cadavers weighing between 14.5kg and 27.3kg (mean 20.1kg) 

were used immediately after humane euthanasia according to an approved IACUC protocol. 

Cadavers were excluded if any overt gross joint pathology was present. The glenohumeral joints 

of each dog were randomly assigned to one of two articular surface preparations prior to 

collection: SI or SR. Surface debridement for SR cores was performed as described for Phase 1. 

Then osteochondral cores were aseptically harvested from each glenohumeral joint. One synovial 

tissue sample and one core from each humeral head was randomly selected and fixed in 10% 

buffered formalin and prepared for standard light microscopy to determine the overall health of 

the articular cartilage. The SR osteochondral core for histopathologic assessment was collected 

prior to surface debridement. 

Cores of articular cartilage and the underlying subchondral bone were aseptically 

harvested to a depth of 6mm by cutting the articular surface of each humeral head in a grid-like 

fashion of 6mm x 6mm squares with a sterilized jig saw (Figure 2.2). PBS at 37°C was flushed 

over the cartilage surface during cutting to minimize thermal damage. Final osteochondral core 

dimensions were 6mm x 6mm x 6mm. The cores were labeled as SI or SR depending on 

collection site and prior randomization. Cores were washed with PBS and then submerged in 

sterile 60mm Petri dishes containing 37°C CCCM. The cores were maintained at 37°C under a 

5% CO2/95% air atmosphere until further testing was performed (approximately 24 hours). 

2.4  Treatment and Evaluation of Phase 2 Tissue Samples 

One core from each humeral head was assigned to 1 of 3 treatment solutions (CCCM, B, 

or BP) and 1 of 3 time periods (5, 15, or 30 minutes) (Figure 2.5, Table 2.2). Cores were treated 

in 60mm sterile Petri dishes containing 15ml of treatment solution maintained at 37°C. The pH 

of each treatment solution was recorded with a digital pH probe (Topac, Inc., Cohasset, MA) and 

meter (Corning, Inc., Corning, NY) at the beginning and end of each timed treatment. 

The formalin fixed synovial tissue and articular cartilage from each joint were prepared 

and stained with hematoxylin and eosin (H&E) for microscopic evaluation and verification that 

the joints were normal. A board-certified veterinary pathologist blinded to the subsequent 

treatment of the cores from that joint evaluated the synovial tissue and articular cartilage. Any 
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pathology was noted and samples were graded for inflammation. Grades of 0 to 4 were assigned 

as previously described162,163: 0) no inflammation; 1) minimal inflammation, minimal congestion 

and edema; 2) mild inflammation, evidenced by an increase in cell lining thickness and presence 

of inflammatory cells (neutrophils); 3) moderate inflammation, evidenced by an increase in cell 

lining thickness, synoviocyte hyperplasia and an increase in inflammatory cells (neutrophils and 

macrophages); or 4) severe inflammation, evidenced by the marked numbers of inflammatory 

cells (neutrophils and macrophages), fibrin exudation, increase in cell lining thickness and 

synoviocyte hyperplasia. 

One millimeter thick slices extending from the articular surface through the subchondral 

bone were taken from the center of each osteochondral core prior to viability staining. The slices 

were washed with PBS and then stained with 0.4µl calcein AM and 13µl ethidium homodimer-1 

(LIVE/DEAD Viability/Cytotoxicity Kit, Molecular Probes, Eugene, OR) in 1ml PBS for 30 

minutes. Living cells with intact plasma membranes and active cytoplasm metabolize calcein and 

exhibit green fluorescence. Cell membranes of dead, damaged or dying cells are penetrated by 

ethidium and their nuclei will exhibit red fluorescence. The samples were washed with PBS after 

staining and mounted (VECTASHELD, Vector Laboratories, Burlingame, CA) on slides prior to 

imaging. 

Imaging was performed within one hour of staining using a laser confocal microscope 

(Leica TCS SP2, Leica Microsystems, Wetzlar, Germany) equipped with fluorescein and 

rhodamine filters at 10x magnification (Figure 2.6). The laser confocal microscope was used to 

visualize intact viable tissue by forming serial optical sections through the depth of the 

specimen182. Digital images were acquired of fourteen sequential planes of the center field of 

view from the articular surface to the subchondral bone of each cartilage slice. One of the 

fourteen image planes was randomly evaluated for each cartilage slice. The cartilage was divided 

into three equal zones from the surface to the subchondral bone (superficial zone, middle zone, 

deep zone) and the live and dead cells were quantified for each zone of each selected image 

(Figure 2). The cells were counted using digital image editing software (Photoshop CS, Adobe 

Systems, Inc., San Jose, CA). For each zone of each image, the number of pixels contained in ten 

cells was counted to calculate the average pixel count for a cell of that zone. This was performed 

for both the calcein stained cells and the ethidium stained cells. The number of cells in each zone 

was calculated by dividing the total number of green or red pixels in that zone by the respective 
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average cell pixel count. The percentage of chondrocyte death (dead cells / live + dead cells x 

100) was determined for the 3 zones of each randomly selected image from each tissue slice. 

2.5  Statistical Methods 

Phase 1: The proportional penetration of MB from the surface of the cartilage was 

calculated by dividing the depth of penetration by the thickness of the cartilage to the level of the 

subchondral bone. The proportional penetration was the response variable used to compare the 

fixed effect of treatment (bath solution) and time. The proportional penetration was normally 

distributed with failure to reject the null hypothesis of normality at p<0.05 using the Shapiro-

Wilk statistic.  The fixed effect of treatment and time on proportional penetration was evaluated 

for SI and SR samples using a mixed effect linear model that accounted for the random variance 

of dog across treatment and time.  Where there were significant fixed effects at p<0.05, pair-wise 

comparisons across treatments and time were considered significant with a Scheffe adjustment at 

p<0.05.  The behavior of SI and SR samples was compared and described.  PROC 

UNIVARIATE, MEANS, and MIXED were used for the analysis (SAS v 9.1, SAS Institute, 

Cary, NC). 

 Phase 2: Synovial tissue and cartilage histopathologic grades and viability within and 

between treatment groups were compared. All data was categorical and was analyzed using 

Mantel-Haenszel methods, stratifying across time. The frequency of outcomes was compared 

across treatments with the null-hypothesis of like distributions rejected at p<0.05. Where there 

was a significant difference, ad hoc comparisons were made using Fisher’s exact test maintaining 

type I error at 0.05. The ph of the solution was compared before and after treatment using a 

paired t-test (parametric) or Mann-Whitney U test (non-parametric) with significance determined 

at p<0.05. The test used was based on the distribution of the data (normal or non-normal), using 

the Shapiro-Wilk statistic with the null hypothesis of normality rejected at p<0.05. The 

proportion of dead cells (chondrocyte death) was expressed as a percentage and transformed to 

follow a normal distribution for analysis. The fixed effect of treatments, time and zones were 

evaluated using a mixed effect linear model including the random variance of dogs across 

treatments. Where there were significant fixed effects at p<0.05, pair-wise comparisons were 

performed using a Scheffe adjustment to maintain type I error at 0.05. All results were 

considered significant at p<0.05. PROC UNIVARIATE, PROC FREQ, MIXED, T TEST and 

PROC NPAR1WAY (SAS V9.1) were used for the analysis. 
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Figure 2.1  Photomicrograph at 10x of H&E stained osteochondral cores with an intact 
surface (A) and with the surface mechanically debrided (B). 
 

 

 

 

 

Figure 2.2  Humeral heads (A) were cut in a grid-like fashion using a jigsaw (B) to harvest 
osteochondral cores with final dimensions of 6mm x 6mm x 6mm (C). 
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Figure 2.3  Schematic diagram of the experimental design describing the tissue sample 
collection and treatment distribution for Phase 1. 
 
 
 
 
Table 2.1  Phase 1 osteochondral core treatments and sample size. 

15 minutes CCCM with MB B with MB BP with MB 

SI 6 6 6 

SR 6 6 6 

 

 

 

 

   

30 minutes CCCM with MB B with MB BP with MB 

SI 6 6 6 

SR 6 6 6 

 
SI (Surface Intact); SR (Surface Removed); MB (Methylene Blue) 
CCCM (Canine Chondrocyte Culture Medium); B (0.5% Bupivacaine without preservative);  
BP (0.5% Bupivacaine with Preservative)  
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Figure 2.4  Standard light microscopic digital image at 10x of a 1mm slice of a surface 
intact osteochondral core treated with 0.5% bupivacaine and methylene blue at 15 minutes 
(A) and 30 minutes (B). 
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Figure 2.5  Schematic diagram of the experimental design describing the tissue sample 
collection and treatment distribution for Phase 2. 
 
 
 
 
Table 2.2  Phase 2 osteochondral core treatments and sample size. 
 

SI Treatment Time CCCM B BP 

 5 minutes 10 10 10 

 15 minutes 10 10 10 

 30 Minutes 10 10 10 

     

SR Treatment Time CCCM B BP 

 5 minutes 10 10 10 

 15 minutes 10 10 10 

 30 minutes 10 10 10 

 
SI (Surface Intact); SR (Surface Removed) 
CCCM (Canine Chondrocyte Culture Medium) 
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 



 33 

 

 
Figure 2.6  Confocal microscopic digital image at 10x of a surface intact osteochondral core 
treated with canine chondrocyte culture media for 5 minutes stained with calcein AM (A) 
and ethidium homodimer-1 (B). Images A and B are superimposed in image C showing the 
greater chondrocyte death that occurred in the superficial zone. 
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CHAPTER 3: RESULTS 

 

3.1  Phase 1 Results 

No gross lesions were present on the articular cartilage of any of the six cadavers. Phase 

1 results revealed minimal penetration of MB from the cut surfaces of the cartilage core (Table 

3.1). The average penetration from the side cut surface for all treatments ranged from 37 µm to 

49 µm with the average core width ranging from 5901 µm to 5925 µm. There was a slight 

increase in the penetration from the side cut surfaces over time but the remaining stain free core 

was of more than adequate width for evaluation of surface penetration of treatment solutions. 

The subchondral bone blocked any penetration of treatment solutions from the deep margin of 

the core.  Thus, the cores were deemed adequate for evaluation of surface penetration since side 

or deep penetration was not contributing to any staining into the central core.  

There was surface penetration on all cores (Table 3.2, Figure 3.1). For SI cores, the mean 

proportional penetration significantly increased from 15 to 30 minutes for all treatment solutions. 

For SI cores, there was no significant difference in the mean proportional penetration across 

treatment solutions at 15 minutes or 30 minutes.  For SR cores, the mean proportional 

penetration significantly increased from 15 to 30 minutes for all treatment solutions except BP. 

For SR cores, there was no significant difference in the mean proportional penetration across 

treatment solutions at 15 minutes or 30 minutes.   

3.2  Phase 2 Results 
No gross lesions were present on the articular cartilage of any of the ten cadavers. 

Histopathology of the synovium and articular cartilage in Phase 2 samples was normal for 19 of 

the 20 joints examined. One of the joints from dog 1 had a focal area of grade 1 inflammation of 

the synovium. The articular cartilage of that joint showed no evidence of histologic disease. 

3.2.1  Surface Intact  

Comparing chondrocyte death in SI cartilage across zones (Table 3.3; Figures 3.2 & 3.3), 

chondrocyte death was significantly higher in the superficial zone for all treatment solutions at 

each time compared to that of the middle and deep zones. In the superficial zone of SI cartilage, 

BP had significantly higher chondrocyte death at 5 minutes (47.7%) than B (23.6%) or CCCM 

(25.4%) but by 30 minutes B (53.8%) and BP(62.5%) had similar chondrocyte death while 

CCCM (20.0%) had significantly less chondrocyte death. In the middle and deep zones of SI 

cartilage, chondrocyte death did not progress over time for B, BP, or CCCM. In the middle zone 
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of SI cartilage, BP caused significantly higher chondrocyte death at 30 minutes (27.6%) 

compared to CCCM (7.6%). In the deep zone of SI cartilage, BP had significantly higher 

chondrocyte death at 30 minutes (14.1%) compared to B (6.4%). 

3.2.2  Surface Removed  

Comparing chondrocyte death in SR cartilage across zones (Table 3.3; Figures 3.4 & 

3.5), chondrocyte death was significantly higher in the superficial zone for all treatments at each 

time compared to that of the middle and deep zones. In the superficial zone of SR cartilage, BP 

had significantly higher chondrocyte death at 30-minutes (59.0%) compared to 5-minutes 

(37.7%). In the superficial zone of SR cartilage, BP had significantly higher chondrocyte death at 

30 minutes (59.0%) than CCCM (28.9%). In the superficial zone of SR cartilage, chondrocyte 

death did not progress over time for B and CCCM. In the middle and deep zones of SR cartilage, 

chondrocyte death did not increase over time for any treatment solution or between treatment 

solutions at any time. 

3.2.3  Surface Intact Compared to Surface Removed  

In the superficial zone (Table 3.3), chondrocyte death was significantly higher in SR 

cartilage treated with B (48.2%) and CCCM (42.7%) at 5 minutes than in SI cartilage treated 

with B (23.6%) and CCCM (25.4%). In the superficial zone, chondrocyte death was significantly 

higher in SR cartilage at 15 minutes treated with CCCM (43.3%) than in SI treated with CCCM 

(25.3%). In the middle zone, chondrocyte death was significantly higher in the SR cartilage 

treated with CCCM (19.3%) at 5 minutes than in SI cartilage treated with CCCM (8.4%). In the 

deep zone, chondrocyte death was significantly higher in the SR cartilage treated with B (17.0%) 

at 30 minutes than in SI cartilage treated with B (6.4%). 

3.2.4  pH  

The pH significantly increased during the treatment period for all treatments with 

exception to CCCM at 5 minutes in both the SI and SR osteochondral cores (Tables 3.4, 3.5 & 

3.6). The pH was always significantly lower for B (SI 5.81, SR 6.52) and BP (SI 5.36, SR 6.36), 

than CCCM (SI 7.51, SR 7.85).  The ph of BP at the end of treatment (SI 6.38, SR 6.35) was 

significantly lower than B at 5 minutes (SI 6.34, SR 6.32) and 15 minutes (SI 6.45, SR 6.48), but 

by 30 minutes (SI 6.52, SR 6.51) it was the same. When comparing the SI and SR cores, there 

was no difference for any treatment solution at any time. 
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Table 3.1  Mean (standard deviation) methylene blue stain penetration measured in 
microns from the cut sides of the cores following either 15 or 30 minute exposure.  

 
Surface Time Side penetration (µm) 

Width stain-free  

core (µm) 

Surface Intact 15 minutes 39 (10.7) 5921 (21) 

 30 minutes 49 (11.7) 5901 (23) 

Surface Removed 15 minutes 37 (12.5) 5925 (25) 

 30 minutes 47 (9.3) 5905 (19) 
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Figure 3.1  Mean (standard deviation) proportional penetration of methylene blue stain 
from the articular surface of surface intact and surface removed osteochondral cores 
following either 15 or 30 minute exposure to canine chondrocyte culture medium (CCCM), 
0.5% bupivacaine (B), or 0.5% bupivacaine with preservative (BP). For surface intact and 
surface removed, means with like superscripts are not significantly different.  
 
 
 
 
Table 3.2  Mean (standard deviation) proportional penetration of methylene blue stain 
from the articular surface of surface intact and surface removed osteochondral cores 
following either 15 or 30 minute exposure to canine chondrocyte culture medium (CCCM), 
0.5% bupivacaine (B), or 0.5% bupivacaine with preservative (BP). For surface intact and 
surface removed, means with like superscripts are not significantly different. 
 

Surface Intact 15 Minutes 30 Minutes 

CCCM  0.7 (0.16) a 0.9 (0.17) b 
B 0.5 (0.18) a 0.9 (0.07) b 

BP 0.7 (0.08) a 0.9 (0.21) b 

  

 

  
Surface Removed 15 Minutes 30 Minutes 

CCCM  0.5 (0.22) c 0.9 (0.07) d 
B 0.6 (0.19) c 0.9 (0.15) d 

BP 0.8 (0.05) d 0.9 (0.16) d 
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Table 3.3  Mean (standard deviation) of chondrocyte death following 5 minute, 15 minute 
or 30 minute exposure to canine chondrocyte culture medium (CCCM), 0.5% bupivacaine 
(B), or 0.5% bupivacaine with preservative (BP) for surface intact (SI) and surface 
removed (SR) osteochondral cores. For each zone, superscripts indicate that means with 
like superscripts (a,b,c) across each row are not significantly different. For each zone, 
subscripts indicate that means with like subscripts (x,y,z) down each column are not 
significantly different. Bold numbers indicate surface intact means are significantly lower 
compared to corresponding surface removed means. 
 
Surface Treatment 5 minutes 15 minutes 30 minutes 
SUPERFICIAL ZONE    
SI B 23.6 (14.67) ax 49.9 (21.53) bx 53.8 (14.96) bx 

 BP 47.7 (16.54) ab
y 37.6 (23.0) axy 62.5 (19.42) b

x 
 CCCM 25.4 (16.42) ax 25.3 (18.9) ay 20.0 (23.29) ay 

SR B 48.2 (27.06) a
x 38.8 (28.29) a

x 47.2 (19.9) a
xy 

 BP 37.7 (20.72) a
x 48.6 (20.92) ab

x 59.0 (19.24) b
y 

 CCCM 42.7 (25.94) a
x 43.3 (23.08) a

x 28.9 (19.76) a
x 

MIDDLE ZONE     
SI B 8.6 (6.84) a

x 24.0 (24.42) a
x 18.0 (15.24) a

xy 
 BP 16.7 (20.66) a

x 28.8 (20.62) a
x 27.6 (18.22) a

x 
 CCCM 8.4 (9.35) a

x 11.9 (10.68) a
x 7.6 (8.10) a

y 
SR B 9.2 (16.13) a

x 12.1 (11.45) a
x 19.8 (18.89) a

x 
 BP 19.6 (19.28) a

x 17.1 (18.75) a
x 29.5 (18.99) a

x 
 CCCM 19.3 (16.67) a

x 13.3 (16.92) a
x 14.8 (11.30) a

x 
DEEP ZONE    
SI B 5.0 (4.64) a

x 10.7 (19.92) a
x 6.4 (12.58) a

x 
 BP 13.0 (24.60) a

x 12.2 (16.98) a
x 14.1 (11.15) a

y 
 CCCM 5.2 (6.42) a

x 10.38 (8.06) a
x 7.2 (7.06) a

xy 
SR B 7.8 (12.70) a

x 15.5 (14.28) a
x 17.0 (13.68) a

x 
 BP 12.2 (16.49) a

x 10.5 (7.29) a
x 16.1 (17.86) a

x 
 CCCM 8.9 (9.03) a

x 5.9 (6.50) a
x 11.0 (17.53) a

x 
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Figure 3.2  Mean % chondrocyte death comparisons within treatment solutions across time 
in the superficial zone of surface intact osteochondral cores. Means with like superscripts 
are not significantly different. 
SI (Surface Intact); SR (Surface Removed);  
CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative 
 
  

 

Figure 3.3  Mean % chondrocyte death comparisons across time in the superficial zone of 
surface intact osteochondral cores. Means with like superscripts are not significantly 
different. 
SI (Surface Intact); SR (Surface Removed);  
CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 
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Figure 3.4  Mean % chondrocyte death comparisons within treatment solutions across time 
in the superficial zone of surface removed osteochondral cores. Means with like 
superscripts are not significantly different.  
CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 
 
 

 

Figure 3.5  Mean % chondrocyte death comparisons across time in the superficial zone of 
surface removed osteochondral cores. Means with like superscripts are not significantly 
different. 
CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 
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Table 3.4  Mean (standard deviation) pH of canine chondrocyte culture medium (CCCM), 
0.5% bupivacaine (B), or 0.5% bupivacaine with preservative (BP) for surface intact (SI) 
and surface removed (SR) osteochondral cores before and after 5 minute treatment. Means 
with like subscripts (x,y,z) across each row (within surface and treatment solution) are not 
significantly different. Asterisks (*) indicate that the pH is significantly higher than initial 
pH. 
 

Surface Treatment 5 minutes 

  Before After Difference 

SI B 5.8 x (0.42) *6.3 x (0.26) -0.5 x (0.33) 

 BP 5.6 x (0.22)  *6.1 y (0.17)  -0.4 x (0.20) 

 CCCM 7.5 y (0.26)    7.8 z (0.28)  -0.2 y (0.30) 

     

SR B 5.8 x (0.36)  *6.3 x (0.24)  -0.6 x (0.31)  

 BP 5.6 y (0.23)  *6.1 y (0.16)  -0.4 x (0.21)  

 CCCM 7.6 z (0.28)    7.7 z (0.28)  -0.2 y (0.31)  
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Table 3.5 Mean (standard deviation) pH of canine chondrocyte culture medium (CCCM), 
0.5% bupivacaine (B), or 0.5% bupivacaine with preservative (BP) for surface intact (SI) 
and surface removed (SR) osteochondral cores before and after 15 minute treatment. 
Means with like subscripts (x,y,z) across each row (within surface and treatment solution) 
are not significantly different. Asterisks (*) indicate that the pH is significantly higher than 
initial pH. 
 
Surface Treatment 15 minutes 

  Before After Difference 

SI B 5.8 x (0.42) *6.5 x (0.20) -0.7 x (0.34) 

 BP 5.6 x (0.22) *6.3 y (0.11) -0.6 x (0.17) 

 CCCM 7.5 y (0.42) *7.8 z (0.26) -0.7 y (0.45) 

     

SR B 5.8 x (0.36) *6.5 x (0.21) -0.7 x (0.27) 

 BP 5.6 x (0.23) *6.3 y (0.11) -0.6 x (0.16) 

 CCCM 7.6 y (0.28) *7.8 z (0.27) -0.3 y (0.30) 
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Table 3.6 Mean (standard deviation) pH of canine chondrocyte culture medium (CCCM), 
0.5% bupivacaine (B), or 0.5% bupivacaine with preservative (BP) for surface intact (SI) 
and surface removed (SR) osteochondral cores before and after 30 minute treatment. 
Means with like subscripts (x,y,z) across each row (within surface and treatment solution) 
are not significantly different. Asterisks (*) indicate that the pH is significantly higher than 
initial pH. 
 
Surface Treatment 30 minutes 

  Before After Difference 

SI B 5.8 x (0.42) *6.5 x (0.22) -0.7 x (0.45) 

 BP 5.6 x (0.22) *6.4 x (0.10) -0.7 x (0.15) 

 CCCM 7.5 y (0.26) *7.9 y (0.23) -0.3 y (0.28) 

     

SR B 5.8 x (0.36) *6.5 x (0.22) -0.8 x (0.41) 

 BP 5.6 x (0.23) *6.4 x (0.09) -0.7 x (0.17) 

 CCCM 7.6 y (0.28) *7.9 y (0.22)  -0.3 y (0.29) 
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Figure 3.6  Mean pH within treatment solutions across time of surface intact osteochondral 
cores. Asterisks indicate significant increases compared to initial pH. 
CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 
 
 
 

Figure 3.7  Mean pH across time of surface intact osteochondral cores. Means with like 
superscripts are not significantly different. 
CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 
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Figure 3.8  Mean pH within treatment solutions across time of surface removed 
osteochondral cores. Asterisks indicate significant increases compared to initial pH. 
CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 
 
 
 

Figure 3.9  Mean pH across time of surface intact osteochondral cores. Means with like 
superscripts are not significantly different. 
CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 
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CHAPTER 4: DISCUSSION 
  

 Phase 1 was performed in part to confirm that osteochondral cores used for Phase 2 of the 

study were of adequate dimensions. The results of Phase I demonstrated that there was no 

penetration from the deep cut surface at the level of the subchondral bone, and that side 

penetration was minimal and did not approach the central core.  The remaining central core was 

of more than adequate dimensions to evaluate chondrocyte death attributed to surface 

penetration.  

 Phase 1 results also showed an increasing mean proportional penetration of MB from the 

articular surface in a time dependent manner from 15 to 30 minutes in all treatment solutions and 

in both SI and SR cores. Our finding of time-dependent surface penetration from the articular 

surface of cartilage consistent with previous research111. The increased penetration of BP with 

MB in the SR cores suggested that when the articular surface was mechanically debrided, BP 

with MB penetrated significantly faster compared to B with MB or CCCM with MB. When 

comparing the Phase 2 chondrocyte death results to the Phase 1 MB penetration results, a direct 

causal relationship between BP rate of penetration and BP chondrocyte death could not be 

proven. In the superficial zone of SI cores, cores treated with BP for 30 minutes had significantly 

higher chondrocyte death compared to 15 minutes. This pattern is consistent with phase 1 results, 

where SI cores treated with BP and MB for 30 minutes had significantly more penetration 

compared to 15 minutes. In the superficial zone of SI cores, cores treated with B for 15 and 30 

minutes had significantly higher chondrocyte death compared to 5 minutes. This pattern is not 

consistent with the results of Phase 1, where SI cores treated with B and MB for 30 minutes had 

significantly more penetration compared to 15 minutes. In the superficial zone of SR cores, cores 

treated with BP for 30 minutes had significantly higher chondrocyte death compared to 5 

minutes. These results are not consistent with the results of Phase 1, where SR cores treated with 

BP and MB for 30 minutes did not have more penetration compared to 15 minutes. Both 

bupivacaine solutions caused significantly greater chondrocyte death over time compared to 

CCCM, but the rapid penetration of BP treated cores in Phase 1 and the chondrocyte death in BP 

treated cores of Phase 2 can not be considered a causal relationship. The increased chondrocyte 

death in the superficial zone and the increasing chondrocyte death over time are more likely a 

reflection of a time-dependent toxic effect on the exposed chondrocytes.  
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Methylene blue was mixed with each of the tested solutions to act as a visual marker to 

quantify the depth of surface penetration over time. Methylene blue has been shown to penetrate 

the surface of articular cartilage in a time-dependant manner111. An assumption of this study was 

that the depth of methylene blue penetration was dependent upon and consistent with the 

penetration of the treatment solution in which it was added. It is not known how the different 

treatment solutions interact with MB or if MB penetration is independent of treatment solution 

penetration.  If the MB and the treatment solution penetrate independently and since Phase 1 

results are a reflection of only MB penetration, then Phase 1 and Phase 2 results would have to 

be considered independently. 

In this study, both B and BP treated cores exhibited time-dependent chondrocyte death 

and the greatest chondrocyte death occurred in the superficial zone of both the SI and SR cores. 

This is a consistent finding in other studies examining bupivacaine-associated chondrocyte 

death14-16. This could be at least partially due to the lower proteoglycan content in the superficial 

zone of the articular cartilage. The concentration of proteoglycans increases with increasing 

depth from the articular surface108. Chondrocytes in the histologic superficial zone degrade 

proteoglycans more rapidly and synthesize less collagen and proteoglycans than do cells in the 

deeper zones103. Also, higher concentrations of fibronectin and water are present in the 

superficial zone103. Any insult that decreases chondrocyte proteoglycan production will result in 

extracellular matrix changes that could no longer sustain chondrocytes. It has been shown that 

0.5% bupivacaine causes a decline in proteoglycan synthesis6,13 and loss of 50% of the 

proteoglycans from articular cartilage results in irreversible degeneration of the joint183. This 

decreased metabolism could leave chondrocytes vulnerable to the toxic effect of bupivacaine. 

Methylene blue penetration and chondrocyte death were attributed to time-dependent solution 

penetration from only the articular surface. Therefore, the superficial zone is going to experience 

the most exposure to bupivacaine for the most time. It follows that the superficial zone would 

experience the most chondrocyte death. 

When the SI and SR cores were compared, both had the greatest chondrocyte death in the 

superficial zone. In the middle and deep zones of SI cores, there were no statistical differences in 

chondrocyte death across time within treatments, but there were significant differences between 

treatment solutions at 30 minutes. Interestingly, in the middle and deep zones of SR cores, there 

were no statistical differences in chondrocyte death across time within treatments or between 

treatment solutions at any given time. Experimentally, removal of the superficial zone increases 
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the permeability of cartilage103. We hypothesized that SR cores exposed to bupivacaine would 

have greater chondrocyte death than SI cores. This was true for several of the time points but not 

a consistent finding as reported by other studies14-16.  

The hypothesis that BP would cause greater chondrocyte death compared to B was based 

on the report of a crystalline precipitate when BP was mixed with human osteoarthritic synovial 

fluid6. Complications associated with methylparaben are reported to be hypersensitivity reactions 

following parenteral administration in people68. Investigations comparing chondrocyte death 

following B and BP exposure have not been published15. Our results support our hypothesis that 

cartilage exposed to BP had greater chondrocyte death compared to B or CCCM. We did not mix 

B or BP with synovial fluid to see if crystalline precipitates developed as previously described6. 

This mechanism is not suspected to be the cause of increased chondrocyte death since there was 

no synovial fluid associated with the project design. The pH was always significantly lower for B 

and BP, than CCCM.  The ph of BP at the end of treatment was significantly lower than B at 5 

minutes and 15 minutes, however, by 30 minutes it was the same. Based on these results, the low 

pH of BP could potentially be responsible for the increased chondrocyte death compared to the 

other treatment solutions. 

Our study evaluated the pH of the treatment solutions to determine if pH might contribute 

to differences in chondrocyte death. The pH increased significantly for all treatments during the 

treatment period (with exception to the CCCM at 5 minutes) suggesting that ongoing metabolism 

offers some buffering. Both B and BP had a consistently significantly lower pH than CCCM. 

Although a causal relationship has not been established, the lower pH of both bupivacaine 

solutions may play a role in canine chondrocyte death. Bovine osteochondral explants were 

treated with saline at pH 7.4, pH 7.0 and pH 5.0 for 15 to 60 minutes176. There were no 

differences in chondrocyte death of the pH of 5.0 and pH 7.0 treated chondrocytes compared to 

the pH 7.4 control group of at any time point, suggesting that saline with a pH as low as 5.0 did 

not cause chondrocyte death. Due to species variation, the effect of pH on canine cartilage 

remains unknown. The critical pH for causing canine chondrocyte death has not been 

determined. Furthermore, the relationship between pH and bupivacaine-associated canine 

chondrocyte death also remains unknown. Given that the pH of both B and BP were significantly 

lower than CCCM, lower than physiologic pH, and that B and BP treated cores had greater 

chondrocyte death compared to CCCM treated cores, it is possible that a low pH could contribute 

to, accentuate, or cause bupivacaine-associated chondrocyte death. Ideally a physiologic pH 
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bupivacaine would be compared to differentiate the effect of pH and the effect of bupivacaine 

itself. However, buffering bupivacaine solutions to a pH of 7.4 would alter the pKa and chemical 

effect of the solutions, in turn potentially negating the analgesic effect. 

In this in vitro study, canine osteochondral cores exposed to both B and BP treatment 

solutions showed a time-dependant chondrocyte death compared to CCCM, however, the 

mechanisms responsible for bupivacaine-associated death of canine chondrocytes are unknown. 

It has been shown that there is a relationship between local anesthetic exposure and cartilage 

inflammation. A single intra-articular dose of 0.5% bupivacaine in rabbits caused increased 

articular cartilage inflammation by 24 hours after administration9. Bupivacaine has also been 

shown to cause inflammation through potentiating nitric oxide synthase-2 activity in rat glial 

cells and astrocytes174. Nitric oxide synthase-2 activity can be induced in normal cells through 

immunostimulation and bupivacaine has been shown to exacerbate ongoing inflammation 

through the production of nitric oxide174,175. Lidocaine has been shown to selectively up-regulate 

pro-inflammatory proteins and down-regulate anti-inflammatory and some pro-resolution 

peptides and proteins thereby inhibiting resolution of ongoing inflammation184. It is possible that 

bupivacaine shares this characteristic of inflammation inhibition with lidocaine. However, an 

inflammatory mechanism causing chondrocyte death in this study is unlikely because the joints 

were considered free of overt inflammation based on gross examination and histopathology of 

each joint.  

 Bupivacaine caused a time and dose-dependent apoptosis in Schwann cell cultures by 

stimulating the production of reactive oxygen species (ROS)177. When the ROS was blocked 

with anti-oxidants, bupivacaine induced apoptosis was significantly inhibited. Apoptosis of 

human articular chondrocytes has also been observed and proposed to have at least a partial role 

in chondrolysis following exposure to 0.25% bupivacaine15. In our study, B and BP had greater 

chondrocyte death in the superficial zones of both the SI and SR cores compared to CCCM. It 

has been shown that a greater proportion of apoptotic chondrocytes are within the histologic 

superficial zone of articular cartilage, especially in the face of osteoarthritis185,186. These 

chondrocytes undergo early apoptosis and have been detected with techniques such as 

TUNEL186-189. Theoretically, cartilage in this study exposed to bupivacaine could undergo 

decreased proteoglycan synthesis, leading to early chondrocyte apoptosis and the increased 

chondrocyte death that was observed. The combination of low proteoglycan content in the 

superficial aspect of cartilage, proteoglycan synthesis inhibition caused by bupivacaine, and the 
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propensity for chondrocytes in the histologic superficial zone to undergo apoptosis could result 

in the chondrocyte death that was observed in the superficial zones following exposure to 

bupivacaine. 

Bupivacaine has also been shown to disrupt mitochondrial homeostatic mechanisms and 

could therefore contribute to bupivacaine-associated chondrocyte death. Local anesthetics with a 

high lipid-solubility, such as bupivacaine, penetrate the cell and reach the mitochondria, disrupt 

the mitochondrial transmembrane potential and subsequently lead to cellular apoptosis65,190. If 

the local anesthetic is removed before apoptosis is initiated, the effect is reversible and the 

mitochondria recover. Bupivacaine has been shown to cause mitochondrial depolarization and 

opening of permeability transition pores which play a key role in many forms of cell death191. 

The uncoupling effect on the mitochondria was noticed 6 minutes after incubating chondrocytes 

with bupivacaine65 and our studied exposed chondrocytes for up to 30 minutes. The time to 

initiation of apoptosis was not defined so the critical exposure time is unknown. This 

mitochondrial mechanism could be at least partially responsible for chondrocyte death in our 

study. 

With the recent in vitro evidence that bupivacaine causes chondrocyte death in bovine 

and human articular cartilage, the effects of other local anesthetics on chondrocytes were studied. 

Lidocaine176 and ropivacaine16 have both been shown in vitro to cause increased chondrocyte 

death compared to saline controls. Similar to bupivacaine, they caused greater chondrocyte death 

in cell cultures than intact tissues16,155. Lidocaine and ropivacaine are useful as intra-articular 

analgesics50,158,159,171 as they reportedly have minimal systemic side effects and are therefore 

considered safer than bupivacaine when administered intra-articularly156,157,172. These local 

anesthetics have been shown to cause chondrocyte death, but not to the same degree as 

bupivacaine, which suggests that an inherent behavioral characteristic of bupivacaine is 

responsible for chondrocyte death. Mepivacaine has also been shown to cause increased cell 

death in equine articular cartilage explants challenged with lipopolysaccharide173. Chu et al14,15 

and Piper et al16 compared the effect of cartilage surface integrity and found that cell cultures 

were much more sensitive to the effects of local anesthetics than intact tissues with the surface 

debrided. This suggests that not only an intact articular surface may have a protective effect but 

also that the cartilage matrix itself may have an integral role in chondrocyte protection. 

 The phase 2 viability assessment methodology provided objective assessment of cell 

viability. Confocal microscopy with vital staining is recognized as an accurate and sensitive 
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method of determining cell viability155,188,192-195. Living cells with intact plasma membranes and 

active cytoplasm metabolize calcein and exhibit green fluorescence and cell membranes of dead, 

damaged or dying cells are penetrated by ethidium and their nuclei will exhibit red fluorescence. 

This methodology easily discriminates between the live or dead/dying state of a given cell. 

However, the methodology of actually counting the cells was potentially associated with 

variability. Due to the number of cells in a given sample tissue, manual cell counts were 

impractical from a time and labor perspective. An average pixel count for cells of each zone of 

each image was used due to the layered structure of cartilage. The cells in the superficial zone of 

articular cartilage are flatter and would appear to be smaller in a 2-dimensional microscopic 

image than more spherical cells in the deeper zones. The average pixel count was done for both 

live and dead cells due to the structure of cartilage and the size discrepancy between green and 

red staining cells. Also, by nature of the staining properties, red cells will always have fewer 

pixels than a green staining cells since it is the nucleus that stains red and the cytoplasm that 

stains green. This methodology does have some shortcomings, especially when counting the SR 

cores. The surface debridement process caused debris to collect on the articular surface that 

could not be completely rinsed off the surface. When stained and imaged with the laser confocal 

microscope, this debris stained red and was then subtracted from the pixel counts. This added 

variability to the assessment that could have affected the results of Phase 2. 

To the author’s knowledge, the tissue collection methodology used in this study has not 

been previously described. We investigated the possibility of using similar collection 

methodology described by Chu et al for their research on bovine chondrolysis but were restricted 

by the size of the canine humeral head14,15. We found that we could collect osteochondral 

explants of similar dimensions of 6mm x 6mm x 6mm cubes. In vivo models of canine 

osteoarthritis have been reported in which disruption of the superficial zone occurs as a 

consequence169,170; however, to the authors’ knowledge, an in vitro osteochondral surface 

disruption protocol has not been established. Chu et al removed the superficial 1mm of cartilage 

of their bovine osteochondral explants14,15, however, the thickness of canine humeral head 

cartilage is considerably thinner than that of bovine stifles so this methodology could not be 

duplicated with consistency in this study. Our surface debridement methodology may have 

contributed to increased chondrocyte death in the SR cores. Preliminary histopathology 

confirmed disruption of the superficial layers of the articular surface and that the collection of 

these tissues did not cause overt pathology along the cut edges of the cartilage. The debridement 
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methodology was not standardized therefore disruption may have not been uniform from core to 

core. Any variation in pressure could easily result in variation of surface debridement. When the 

chondrocyte death was compared between SI and SR, significantly more chondrocyte death 

occurred in the superficial zone of the SR cores treated with CCCM for 5 and 15 minutes 

compared to the SI cores. In the middle zone, SR cores treated with CCCM for 5 minutes had 

significantly greater chondrocyte death than SI cores. This is probably a reflection of the severe 

trauma inflicted by the surface debridement, which set in motion a terminal process for 

chondrocytes no matter to which treatment solution these cores were exposed. Therefore, our 

study does not clearly evaluate the effect of cartilage disruption, but it does suggest a potential 

protective effect of an intact articular cartilage surface. 

Osteochondral core collection and storage prior to treatment may have affected the 

chondrocyte viability, especially of the superficial zone chondrocytes. Articular cartilage 

undergoes primarily anaerobic metabolism and exposing the articular cartilage to air may have 

detrimental effects195. Collection of the cores occurred immediately following euthanasia to 

minimize any post-mortem autolysis. The osteochondral cores were collected as quickly as 

possible, rinsed with 37°C PBS during collection to maintain moisture and minimize trauma, and 

then immediately placed in CCCM at 37°C in a 5% CO2/95% air atmosphere. The CCCM is 

manufactured specifically for use with canine chondrocytes. All tissues were treated and imaged 

within 24 hours of euthanasia and collection to minimize in vitro chondrocyte death. Every joint 

was collected with this same protocol to minimize variability that may have been due to 

collection or storage artifact. However, this methodology likely inserted some degree of variation 

to the evaluation and analysis. 

 This in vitro study showed that 0.5% bupivacaine with and without methylparaben 

preservative are associated with a time-dependant penetration of canine articular cartilage and 

increased chondrocyte death compared to controls, with both an intact and mechanically 

debrided surface. Significantly higher chondrocyte death occurred in the superficial zones of 

both SI and SR cores at every time period. These results suggest that an intact articular cartilage 

surface is susceptible to chondrocyte death when exposed to 0.5% bupivacaine and that when the 

surface is mechanically debrided chondrocyte death increases. 

 



 53 

CHAPTER 5: SUMMARY AND CONCLUSIONS 

 

With the popularity of day-case arthroscopy procedures in people, a need for safe and 

effective analgesia became a necessity. Bupivacaine has been thoroughly investigated as an 

intra-articular analgesic following arthroscopic procedures and has been widely accepted as an 

effective perioperative analgesic in people and animals. As an amide local anesthetic, it has an 

immediate onset of action and a long duration of activity, so when combined with decreased 

amounts of systemic analgesics, post-operative pain and systemic drug complications are 

minimized so these patients can be discharged from the hospital the same day as the surgical 

procedure. A variety of side effects associated with the use of intra-articular bupivacaine, 

however, when accepted protocols are adhered to these side effects can be minimized. 

While the use of intra-articular bupivacaine was gaining popularity among human 

arthroscopic surgeons, research was performed to evaluate the safety of intra-articular 

administration of irrigating solutions and bupivacaine on articular cartilage. Mature cartilage is 

virtually devoid of blood supply and lymphatics so nutrition is provided by synovial fluid103. 

However, due to this difference compared to other tissues, response to cartilage injury is poor 

and the risks of degenerative changes are increased196. Early animal studies showed that 

chondrocytes exposed to bupivacaine suffered from a transient proteoglycan synthesis inhibition 

however no structural alterations were noted6. Intra-articular bupivacaine was therefore 

considered non-toxic to chondrocytes and research continued to determine the optimal protocol 

to maximize efficacy and minimize associated side effects. 

Years after the administration of intra-articular bupivacaine was considered non-toxic to 

cartilage, concerns arose that intra-articular bupivacaine may actually be associated with more 

delayed detrimental effects.  Cartilage exposed to 0.5% bupivacaine showed evidence of 

worsening inflammation beyond the time frame of previous studies9. Also, human case reports of 

chondrolysis were emerging and speculation arose that intra-articular bupivacaine may be 

responsible10-12,69,175. In vivo research in rabbits supported this theory13. In vitro studies assessing 

chondrocyte death following bupivacaine exposure revealed a time-dependent toxic effect on 

bovine and human cartilage14,15. Lidocaine and ropivacaine have since been shown to cause 

chondrocyte death as well, but to a lesser degree than bupivacaine16,176.  

The primary objective of this in vitro study was to determine if canine osteochondral 

cores exposed to 0.5% bupivacaine would have increased chondrocyte death compared to 
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controls. We measured chondrocyte death in articular cartilage of dogs exposed to 0.5% 

bupivacaine with and without methylparaben preservative and compared chondrocyte death 

when the articular surface was intact to when it was mechanically debrided. We hypothesized 

that exposure of canine articular cartilage to 0.5% bupivacaine would increase chondrocyte death 

in a time-dependent manner over 5 to 30 minutes and that chondrocyte death would be increased 

to a lesser extent in intact cartilage cores compared to those with the surface mechanically 

debrided. 

Results of this study showed that articular cartilage of dogs following in vitro exposure to 

0.5% bupivacaine with and without methylparaben preservative has greater chondrocyte death 

than controls. Cartilage with an intact surface had less chondrocyte death following exposure to 

the bupivacaine solutions compared to cartilage with the surface mechanically debrided, 

however, our debridement methodology was so severe that results were potentially confounded. 

Also, the pH of bupivacaine with and without methylparaben preservative were recorded and 

found to be significantly lower than the control at pH 7.4.  

The mechanisms responsible for bupivacaine-associated chondrocyte death are currently 

unknown. The role of the low pH of the bupivacaine solutions may be important but researchers 

have exposed cartilage to acidic saline solutions and found no increases in chondrocyte death 

compared to controls176. Chondrocytes have been shown to undergo early apoptosis when 

exposed to bupivacaine. Our results are consistent with other studies that found the greatest 

chondrocyte death in the superficial zones of the cartilage where chondrocytes appear susceptible 

to early apoptosis15. Cartilage inflammation has been implicated to exacerbate bupivacaine’s 

toxic effect, however, in this study the cartilage was considered histologically free of 

inflammation. Long acting, highly lipid soluble local anesthetics including bupivacaine have 

been shown to disrupt mitochondrial membrane potentials, leading to cell death. This mechanism 

could theoretically been a mechanism of chondrocyte death in this study. 

Aside from the given in vitro study limitations, several other limitations should be 

considered. There was a temporal delay from tissue collection to treatment and evaluation that 

could have introduced increased chondrocyte death. The Phase 1 penetration results were based 

on the assumption that methylene blue penetration was a direct reflection of treatment solution 

penetration. It is unknown if methylene blue penetrates articular cartilage independently from the 

treatment solutions. Also, chondrocytes were counted using digital image editing software and 

pixel counts to calculate chondrocyte numbers which could have been over- or underestimated 
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due to technical considerations. The surface debridement methodology resulted in increased 

chondrocyte death in controls so this methodology was potentially too aggressive. 

Based on the results of this in vitro study, canine articular cartilage exposed to 0.5% 

bupivacaine has greater chondrocyte death compared to controls. Further in vitro and in vivo 

studies will be necessary to further evaluate time or dose dependent effects, single injections and 

continuous infusions, healthy and osteoarthritic cartilage, and the role of pH in bupivacaine-

associated chondrolysis. Further research is indicated to determine if intact healthy cartilage is 

less susceptible to injury, or if only cartilage with pathology is affected. This is of clinical 

significance as many animals undergoing joint-related surgical procedures have concurrent 

chondropathy or suffer iatrogenic cartilage injury during surgery. Joint pathology characterized 

by loss of articular cartilage surface continuity occurs with conditions such as osteochondritis 

dissecans197, cranial cruciate ligament rupture198, articular fractures199, and patellar luxations200. 

This pathology results in subsequent chondrosis and osteoarthritis. Until further research is 

conducted, the intra-articular administration of 0.5% bupivacaine with or without methylparaben 

preservative should be used with caution in dogs, especially those with concurrent chondropathy. 
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APPENDIX I: PHASE 1 RAW METHYLENE BLUE PENETRATION DATA 

 
MB Penetration (um) 

Specimen Dog 

Weight 

(kg) Surface Solution 

Time 

(min) Top Right Left 

Total 

Depth 

A-33 A3 19.8 SI CCCM 30 72  F F 72 

A-34 A3 19.8 SI CCCM 30 65  F F 65 

A-37 A3 19.8 SI B 30 58 50 44 69 

A-38 A3 19.8 SI B 30 57 55 56 64 

A-39 A3 19.8 SI BP 30 25 45 52 51 

A-40 A3 19.8 SI BP 30 56 65 55 58 

A-41 A3 19.8 SR CCCM 30 60 61 52 67 

A-42 A3 19.8 SR CCCM 30 64 48 55 78 

A-45 A3 19.8 SR B 30 35 30 27 55 

A-46 A3 19.8 SR B 30 56  F F 56 

A-47 A3 19.8 SR BP 30 43 62 40 59 

A-48 A3 19.8 SR BP 30 48  F F 48 

A-49 A4 16.5 SI CCCM 30 72  F F 72 

A-50 A4 16.5 SI CCCM 30 56  F F 56 

A-53 A4 16.5 SI B 30 42  F F 42 

A-54 A4 16.5 SI B 30 34 40 40 40 

A-55 A4 16.5 SI BP 30 37  F F 37 

A-56 A4 16.5 SI BP 30 36  F F 36 

A-57 A4 16.5 SR CCCM 30 60  F F 60 

A-58 A4 16.5 SR CCCM 30 55  F F 55 

A-61 A4 16.5 SR B 30 46  F F 46 

A-62 A4 16.5 SR B 30 35  F F 35 

A-63 A4 16.5 SR BP 30 55 50 70 63 

A-64 A4 16.5 SR BP 30 34  F F 34 

A-65 A5 14.8 SI CCCM 30 40 42 35 64 

A-66 A5 14.8 SI CCCM 30 50 50 25 70 
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A-69 A5 14.8 SI B 30 43  F F 43 

A-70 A5 14.8 SI B 30 52 45 40 60 

A-71 A5 14.8 SI BP 30 44  F F 44 

A-72 A5 14.8 SI BP 30 46  F F 46 

A-73 A5 14.8 SR CCCM 30 40 45 30 45 

A-74 A5 14.8 SR CCCM 30 45 52 55 48 

A-77 A5 14.8 SR B 30 40 42 35 52 

A-78 A5 14.8 SR B 30 45 45 50 56 

A-79 A5 14.8 SR BP 30 44  F F 44 

A-80 A5 14.8 SR BP 30 40 45 50 65 

A-81 A6 9.6 SI CCCM 15 27 48 42 50 

A-82 A6 9.6 SI CCCM 15 28 26 28 52 

A-85 A6 9.6 SI B 15 33 38 38 45 

A-86 A6 9.6 SI B 15 30 27 37 57 

A-87 A6 9.6 SI BP 15 32 30 50 57 

A-88 A6 9.6 SI BP 15 30 42 40 42 

A-89 A6 9.6 SR CCCM 15 10 27 30 51 

A-90 A6 9.6 SR CCCM 15 21 34 30 40 

A-93 A6 9.6 SR B 15 34 40 30 51 

A-94 A6 9.6 SR B 15 22 30 22 62 

A-95 A6 9.6 SR BP 15 42 34 30 55 

A-96 A6 9.6 SR BP 15 33 28 30 43 

A-97 A7 17.6 SI CCCM 15 50 45 50 60 

A-98 A7 17.6 SI CCCM 15 32 44 42 46 

A-101 A7 17.6 SI B 15 43 52 52 56 

A-102 A7 17.6 SI B 15 21 24 33 46 

A-103 A7 17.6 SI BP 15 31 47 48 50 

A-104 A7 17.6 SI BP 15 37 70 48 48 

A-105 A7 17.6 SR CCCM 15 35 62 51 54 

A-106 A7 17.6 SR CCCM 15 18 34 34 56 
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A-109 A7 17.6 SR B 15 35 51 27 58 

A-110 A7 17.6 SR B 15 44 24 26 52 

A-111 A7 17.6 SR BP 15 36 32 20 49 

A-112 A7 17.6 SR BP 15 48 55 55 58 

A-113 A8 16.4 SI CCCM 15 30 48 54 62 

A-114 A8 16.4 SI CCCM 15 45 44 44 54 

A-117 A8 16.4 SI B 15 19 24 25 62 

A-118 A8 16.4 SI B 15 25 20 18 55 

A-119 A8 16.4 SI BP 15 37 30 42 60 

A-120 A8 16.4 SI BP 15 42 25 35 63 

A-121 A8 16.4 SR CCCM 15 31 21 32 65 

A-122 A8 16.4 SR CCCM 15 49 49 44 60 

A-125 A8 16.4 SR B 15 27 30 49 64 

A-126 A8 16.4 SR B 15 27 33 22 67 

A-127 A8 16.4 SR BP 15 40 43 39 59 

A-128 A8 16.4 SR BP 15 44 89 50 58 

 
SI (Surface Intact); SR (Surface Removed); CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 
F: indicates that there was full penetration across the width of the core 
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APPENDIX II: PHASE 2 RAW CHONDROCYTE DEATH DATA 
 

Specimen Image Zone Live Dead % Death 

B001 B001_Series10_z000.tif 1 37 42 53.0 

B001 B001_Series10_z000.tif 2 28 3 10.5 

B001 B001_Series10_z000.tif 3 5 0 0.0 

B002 B002_B002_z001.tif 1 162 87 35.1 

B002 B002_B002_z001.tif 2 115 28 19.7 

B002 B002_B002_z001.tif 3 35 3 8.6 

B003 B003_B003_z001.tif 1 53 201 79.0 

B003 B003_B003_z001.tif 2 180 61 25.3 

B003 B003_B003_z001.tif 3 53 3 5.9 

B004 B004_B004_z002.tif 1 143 38 21.0 

B004 B004_B004_z002.tif 2 127 16 11.2 

B004 B004_B004_z002.tif 3 106 16 13.1 

B005 B005_B005_z001.tif 1 93 97 51.1 

B005 B005_B005_z001.tif 2 111 50 31.1 

B005 B005_B005_z001.tif 3 97 43 30.7 

B006 B006_B006_z000.tif 1 21 29 58.0 

B006 B006_B006_z000.tif 2 127 4 3.1 

B006 B006_B006_z000.tif 3 67 0 0.0 

B007 B007_B004_z002.tif 1 108 97 47.3 

B007 B007_B004_z002.tif 2 153 25 14.0 

B007 B007_B004_z002.tif 3 157 32 16.9 

B008 B008_B008_z001.tif 1 33 50 60.2 

B008 B008_B008_z001.tif 2 103 28 21.4 

B008 B008_B008_z001.tif 3 86 3 3.4 

B009 B009_B009_z003.tif 1 31 92 74.8 

B009 B009_B009_z003.tif 2 126 50 28.4 

B009 B009_B009_z003.tif 3 73 12 14.1 

B010 B010_B010_z000.tif 1 98 89 47.6 
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B010 B010_B010_z000.tif 2 147 29 16.5 

B010 B010_B010_z000.tif 3 79 24 23.3 

B011 B011_Series004_z004.tif 1 40 72 64.3 

B011 B011_Series004_z004.tif 2 49 17 25.8 

B011 B011_Series004_z004.tif 3 46 28 37.8 

B012 B012_B012_z000.tif 1 288 50 14.8 

B012 B012_B012_z000.tif 2 318 12 3.6 

B012 B012_B012_z000.tif 3 172 3 1.7 

B013 B013_B013_z005.tif 1 104 115 52.5 

B013 B013_B013_z005.tif 2 190 15 7.3 

B013 B013_B013_z005.tif 3 196 9 4.4 

B014 B014_B014_z003.tif 1 55 122 68.9 

B014 B014_B014_z003.tif 2 150 62 29.2 

B014 B014_B014_z003.tif 3 107 54 33.5 

B015 B015_B015_z002.tif 1 65 198 75.3 

B015 B015_B015_z002.tif 2 150 84 35.9 

B015 B015_B015_z002.tif 3 251 1 0.4 

B016 B016_B016_z003.tif 1 30 29 49.2 

B016 B016_B016_z003.tif 2 117 32 21.5 

B016 B016_B016_z003.tif 3 143 0 0.0 

B017 B017_B017_z000.tif 1 312 41 11.6 

B017 B017_B017_z000.tif 2 272 40 12.8 

B017 B017_B017_z000.tif 3 258 27 9.5 

B018 B018_B018_z004.tif 1 13 93 87.7 

B018 B018_B018_z004.tif 2 86 53 38.1 

B018 B018_B018_z004.tif 3 55 17 23.6 

B019 B019_B019_z008.tif 1 915 19 2.0 

B019 B019_B019_z008.tif 2 831 3 0.4 

B019 B019_B019_z008.tif 3 413 0 0.0 

B020 B020_B020_z014.tif 1 349 177 33.7 
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B020 B020_B020_z014.tif 2 677 19 2.7 

B020 B020_B020_z014.tif 3 399 2 0.5 

B021 B021_B021_z004.tif 1 337 28 7.7 

B021 B021_B021_z004.tif 2 805 9 1.1 

B021 B021_B021_z004.tif 3 249 1 0.4 

B022 B022r1_B022_z011.tif 1 824 675 45.0 

B022 B022r1_B022_z011.tif 2 802 116 12.6 

B022 B022r1_B022_z011.tif 3 403 0 0.0 

B023 B023_B023_z009.tif 1 393 576 59.4 

B023 B023_B023_z009.tif 2 702 47 6.3 

B023 B023_B023_z009.tif 3 355 1 0.3 

B024 B024_B024_z011.tif 1 225 168 42.7 

B024 B024_B024_z011.tif 2 427 43 9.1 

B024 B024_B024_z011.tif 3 181 2 1.1 

B025 B025_B025_z014.tif 1 947 331 25.9 

B025 B025_B025_z014.tif 2 901 0 0.0 

B025 B025_B025_z014.tif 3 349 0 0.0 

B026 B026_B026_z002.tif 1 274 104 27.5 

B026 B026_B026_z002.tif 2 475 19 3.8 

B026 B026_B026_z002.tif 3 70 1 1.4 

B027 B027_B027_z006.tif 1 426 348 45.0 

B027 B027_B027_z006.tif 2 659 134 16.9 

B027 B027_B027_z006.tif 3 395 81 17.0 

B028 B028_B028_z008.tif 1 494 71 12.6 

B028 B028_B028_z008.tif 2 653 5 0.8 

B028 B028_B028_z008.tif 3 261 0 0.0 

B029 B029_B029_z004.tif 1 317 89 21.9 

B029 B029_B029_z004.tif 2 493 0 0.0 

B029 B029_B029_z004.tif 3 319 0 0.0 

B030 B030_B030_z005.tif 1 812 419 34.0 
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B030 B030_B030_z005.tif 2 780 14 1.8 

B030 B030_B030_z005.tif 3 218 7 3.1 

B031 B031_B031_z012.tif 1 787 747 48.7 

B031 B031_B031_z012.tif 2 839 28 3.2 

B031 B031_B031_z012.tif 3 276 40 12.7 

B032 B032_B032_z002.tif 1 435 424 49.4 

B032 B032_B032_z002.tif 2 927 14 1.5 

B032 B032_B032_z002.tif 3 178 0 0.0 

B033 B033_B033_z003.tif 1 93 70 42.9 

B033 B033_B033_z003.tif 2 392 15 3.7 

B033 B033_B033_z003.tif 3 282 46 14.0 

B034 B034_B034_z005.tif 1 278 175 38.6 

B034 B034_B034_z005.tif 2 386 1 0.3 

B034 B034_B034_z005.tif 3 286 1 0.3 

B035 B035_B035_z003.tif 1 184 98 34.8 

B035 B035_B035_z003.tif 2 455 33 6.8 

B035 B035_B035_z003.tif 3 251 0 0.0 

B036 B036_B036_z007.tif 1 185 204 52.4 

B036 B036_B036_z007.tif 2 323 55 14.6 

B036 B036_B036_z007.tif 3 329 17 4.9 

B037 B037_Series004_z002.tif 1 215 100 31.7 

B037 B037_Series004_z002.tif 2 151 0 0.0 

B037 B037_Series004_z002.tif 3 89 0 0.0 

B038 B038_Series005_z002.tif 1 66 106 61.6 

B038 B038_Series005_z002.tif 2 224 3 1.3 

B038 B038_Series005_z002.tif 3 37 0 0.0 

B039 B039_Series007_z004.tif 1 551 69 11.1 

B039 B039_Series007_z004.tif 2 382 13 3.3 

B039 B039_Series007_z004.tif 3 184 5 2.6 

B040 B040_Series005_z003.tif 1 557 62 10.0 
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B040 B040_Series005_z003.tif 2 398 10 2.5 

B040 B040_Series005_z003.tif 3 407 8 1.9 

B041 B041_Series004_z000.tif 1 125 107 46.1 

B041 B041_Series004_z000.tif 2 221 6 2.6 

B041 B041_Series004_z000.tif 3 72 0 0.0 

B042 B042_Series005_z002.tif 1 25 65 72.2 

B042 B042_Series005_z002.tif 2 27 9 25.0 

B042 B042_Series005_z002.tif 3 35 1 2.8 

B043 B043_Series004_z003.tif 1 16 14 46.7 

B043 B043_Series004_z003.tif 2 38 10 20.8 

B043 B043_Series004_z003.tif 3 4 0 0.0 

B044 B044_Series004_z002 1 16 33 67.3 

B044 B044_Series004_z002 2 70 29 29.3 

B044 B044_Series004_z002 3 50 8 13.8 

B045 B045_Series004_z003.tif 1 49 512 91.3 

B045 B045_Series004_z003.tif 2 84 91 52.0 

B045 B045_Series004_z003.tif 3 19 5 20.8 

B046 B046_Series004_z002.tif 1 17 217 92.7 

B046 B046_Series004_z002.tif 2 119 144 54.8 

B046 B046_Series004_z002.tif 3 96 9 8.6 

B047 B047_Series004_z006.tif 1 88 202 69.7 

B047 B047_Series004_z006.tif 2 193 179 48.1 

B047 B047_Series004_z006.tif 3 111 16 12.6 

B048 B048_Series004_z000.tif 1 48 11 18.6 

B048 B048_Series004_z000.tif 2 58 7 10.8 

B048 B048_Series004_z000.tif 3 16 1 5.9 

B049 B049_Series004_z003.tif 1 287 170 37.2 

B049 B049_Series004_z003.tif 2 542 1 0.2 

B049 B049_Series004_z003.tif 3 140 1 0.7 

B050 B050_Series004_z001.tif 1 441 6 1.3 
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B050 B050_Series004_z001.tif 2 146 8 5.2 

B050 B050_Series004_z001.tif 3 62 36 36.7 

B051 B051_Series005_z006.tif 1 65 73 52.9 

B051 B051_Series005_z006.tif 2 109 90 45.2 

B051 B051_Series005_z006.tif 3 68 38 35.8 

B052 B052_Series003_z003 1 131 106 44.7 

B052 B052_Series003_z003 2 114 149 56.7 

B052 B052_Series003_z003 3 101 110 52.1 

B053 B053_Series004_z000.tif 1 97 155 61.5 

B053 B053_Series004_z000.tif 2 265 34 11.4 

B053 B053_Series004_z000.tif 3 224 1 0.4 

B054 B054_Series004_z001.tif 1 137 324 70.3 

B054 B054_Series004_z001.tif 2 209 66 24.0 

B054 B054_Series004_z001.tif 3 111 0 0.0 

B055 B055_Series005_z006.tif 1 419 107 20.3 

B055 B055_Series005_z006.tif 2 266 10 3.6 

B055 B055_Series005_z006.tif 3 134 20 13.0 

B056 B056_Series004_z003.tif 1 99 63 38.9 

B056 B056_Series004_z003.tif 2 481 20 4.0 

B056 B056_Series004_z003.tif 3 191 9 4.5 

B057 B057_Series004_z004.tif 1 498 40 7.4 

B057 B057_Series004_z004.tif 2 491 22 4.3 

B057 B057_Series004_z004.tif 3 298 31 9.4 

B058 B058_Series005_z001 1 348 37 9.6 

B058 B058_Series005_z001 2 154 21 12.0 

B058 B058_Series005_z001 3 269 15 5.3 

B059 B059_Series004_z002.tif 1 13 6 31.6 

B059 B059_Series004_z002.tif 2 66 12 15.4 

B059 B059_Series004_z002.tif 3 76 2 2.6 

B060 B060_Series004_z003.tif 1 83 167 66.8 



 78 

B060 B060_Series004_z003.tif 2 216 28 11.5 

B060 B060_Series004_z003.tif 3 174 6 3.3 

B061 B061_Series004_z003.tif 1 62 74 54.4 

B061 B061_Series004_z003.tif 2 124 0 0.0 

B061 B061_Series004_z003.tif 3 27 0 0.0 

B062 B062_Series003_z003.tif 1 75 34 31.2 

B062 B062_Series003_z003.tif 2 58 17 22.7 

B062 B062_Series003_z003.tif 3 39 0 0.0 

B063 B063_Series003_z004.tif 1 33 55 62.5 

B063 B063_Series003_z004.tif 2 74 20 21.3 

B063 B063_Series003_z004.tif 3 30 0 0.0 

B064 B064_Series003_z003.tif 1 640 267 29.4 

B064 B064_Series003_z003.tif 2 76 76 50.0 

B064 B064_Series003_z003.tif 3 131 130 49.8 

B065 B065_Series003_z001.tif 1 103 52 33.5 

B065 B065_Series003_z001.tif 2 190 8 4.0 

B065 B065_Series003_z001.tif 3 79 5 6.0 

B066 B066_Series006_z002.tif 1 60 9 13.0 

B066 B066_Series006_z002.tif 2 149 22 12.9 

B066 B066_Series006_z002.tif 3 119 0 0.0 

B067 B067_Series003_z003.tif 1 370 44 10.6 

B067 B067_Series003_z003.tif 2 464 1 0.2 

B067 B067_Series003_z003.tif 3 33 0 0.0 

B068 B068_Series003_z004.tif 1 251 40 13.7 

B068 B068_Series003_z004.tif 2 408 15 3.5 

B068 B068_Series003_z004.tif 3 247 4 1.6 

B069 B069_Series004_z001.tif 1 73 60 45.1 

B069 B069_Series004_z001.tif 2 245 17 6.5 

B069 B069_Series004_z001.tif 3 109 0 0.0 

B070 B070_Series003_z005.tif 1 516 52 9.2 
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B070 B070_Series003_z005.tif 2 413 36 8.0 

B070 B070_Series003_z005.tif 3 144 12 7.7 

B071 B071_Series003_z000.tif 1 176 103 36.9 

B071 B071_Series003_z000.tif 2 215 43 16.7 

B071 B071_Series003_z000.tif 3 36 6 14.3 

B072 B072_Series003_z001.tif 1 292 115 28.3 

B072 B072_Series003_z001.tif 2 368 55 13.0 

B072 B072_Series003_z001.tif 3 289 24 7.7 

B073 B073_Series012_z002.tif 1 257 103 28.6 

B073 B073_Series012_z002.tif 2 235 34 12.6 

B073 B073_Series012_z002.tif 3 156 17 9.8 

B074 B074_Series005_z006.tif 1 385 41 9.6 

B074 B074_Series005_z006.tif 2 315 40 11.3 

B074 B074_Series005_z006.tif 3 151 39 20.5 

B075 B075_Series004_z001.tif 1 312 201 39.2 

B075 B075_Series004_z001.tif 2 664 29 4.2 

B075 B075_Series004_z001.tif 3 401 2 0.5 

B076 B076_Series005_z002.tif 1 573 111 16.2 

B076 B076_Series005_z002.tif 2 476 16 3.3 

B076 B076_Series005_z002.tif 3 181 18 9.0 

B077 B077_Series005_z005.tif 1 158 68 30.1 

B077 B077_Series005_z005.tif 2 172 42 19.6 

B077 B077_Series005_z005.tif 3 102 1 1.0 

B078 B078_Series006_z000.tif 1 132 85 39.2 

B078 B078_Series006_z000.tif 2 143 0 0.0 

B078 B078_Series006_z000.tif 3 124 0 0.0 

B079 B079_Series005_z001.tif 1 208 134 39.2 

B079 B079_Series005_z001.tif 2 331 0 0.0 

B079 B079_Series005_z001.tif 3 120 0 0.0 

B080 B080_Series003_z004.tif 1 158 1 0.6 
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B080 B080_Series003_z004.tif 2 42 24 36.4 

B080 B080_Series003_z004.tif 3 129 9 6.5 

B081 B081_Series003_z003.tif 1 120 138 53.5 

B081 B081_Series003_z003.tif 2 84 2 2.3 

B081 B081_Series003_z003.tif 3 70 1 1.4 

B082 B082_Series003_z001.tif 1 166 52 23.9 

B082 B082_Series003_z001.tif 2 451 5 1.1 

B082 B082_Series003_z001.tif 3 121 1 0.8 

B083 B083_Series004_z000.tif 1 89 66 42.6 

B083 B083_Series004_z000.tif 2 316 2 0.6 

B083 B083_Series004_z000.tif 3 131 0 0.0 

B084 B084_Series005_z006.tif 1 152 1 0.7 

B084 B084_Series005_z006.tif 2 148 23 13.5 

B084 B084_Series005_z006.tif 3 73 51 41.1 

B085 B085_Series003_z002.tif 1 40 110 73.3 

B085 B085_Series003_z002.tif 2 103 5 4.6 

B085 B085_Series003_z002.tif 3 127 0 0.0 

B086 B086_Series003_z006.tif 1 423 173 29.0 

B086 B086_Series003_z006.tif 2 670 22 3.2 

B086 B086_Series003_z006.tif 3 241 12 4.7 

B087 B087_Series003_z003.tif 1 382 105 21.6 

B087 B087_Series003_z003.tif 2 497 43 8.0 

B087 B087_Series003_z003.tif 3 120 23 16.1 

B088 B088_Series004_z006.tif 1 249 22 8.1 

B088 B088_Series004_z006.tif 2 510 3 0.6 

B088 B088_Series004_z006.tif 3 426 21 4.7 

B089 B089_Series003_z000.tif 1 67 49 42.2 

B089 B089_Series003_z000.tif 2 201 8 3.8 

B089 B089_Series003_z000.tif 3 114 14 10.9 

B090 B090_Series005_z005.tif 1 33 40 54.8 
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B090 B090_Series005_z005.tif 2 81 32 28.3 

B090 B090_Series005_z005.tif 3 90 19 17.4 

B091 B091_Series002_z003.tif 1 635 342 35.0 

B091 B091_Series002_z003.tif 2 459 209 31.3 

B091 B091_Series002_z003.tif 3 397 89 18.3 

B092 B092_Series004_z003.tif 1 334 51 13.2 

B092 B092_Series004_z003.tif 2 391 49 11.1 

B092 B092_Series004_z003.tif 3 255 31 10.8 

B093 B093_Series003_z001.tif 1 374 91 19.6 

B093 B093_Series003_z001.tif 2 573 7 1.2 

B093 B093_Series003_z001.tif 3 87 3 3.3 

B094 B094_Series005_z003.tif 1 65 31 32.3 

B094 B094_Series005_z003.tif 2 100 5 4.8 

B094 B094_Series005_z003.tif 3 32 0 0.0 

B095 B095_Series003_z000.tif 1 152 101 39.9 

B095 B095_Series003_z000.tif 2 402 3 0.7 

B095 B095_Series003_z000.tif 3 284 0 0.0 

B096 B096_Series003_z002.tif 1 39 77 66.4 

B096 B096_Series003_z002.tif 2 51 26 33.8 

B096 B096_Series003_z002.tif 3 31 0 0.0 

B097 B097_Series003_z001.tif 1 89 118 57.0 

B097 B097_Series003_z001.tif 2 184 86 31.9 

B097 B097_Series003_z001.tif 3 155 41 20.9 

B098 B098_Series004_z004.tif 1 99 63 38.9 

B098 B098_Series004_z004.tif 2 67 115 63.2 

B098 B098_Series004_z004.tif 3 190 115 37.7 

B099 B099_Series004_z002.tif 1 174 263 60.2 

B099 B099_Series004_z002.tif 2 259 139 34.9 

B099 B099_Series004_z002.tif 3 271 52 16.1 

B100 B100_Series003_z002.tif 1 99 125 55.8 
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B100 B100_Series003_z002.tif 2 93 34 26.8 

B100 B100_Series003_z002.tif 3 51 4 7.3 

B101 B101_Series006_z002.tif 1 196 97 33.1 

B101 B101_Series006_z002.tif 2 265 36 12.0 

B101 B101_Series006_z002.tif 3 109 13 10.7 

B102 B102_Series003_z003.tif 1 292 94 24.4 

B102 B102_Series003_z003.tif 2 232 31 11.8 

B102 B102_Series003_z003.tif 3 321 0 0.0 

B103 B103_Series003_z002.tif 1 90 51 36.2 

B103 B103_Series003_z002.tif 2 385 10 2.5 

B103 B103_Series003_z002.tif 3 141 1 0.7 

B104 B104_Series003_z003.tif 1 368 33 8.2 

B104 B104_Series003_z003.tif 2 277 127 31.4 

B104 B104_Series003_z003.tif 3 184 93 33.6 

B105 B105_Series003_z003.tif 1 249 53 17.5 

B105 B105_Series003_z003.tif 2 236 19 7.5 

B105 B105_Series003_z003.tif 3 148 57 27.8 

B106 B106_Series003_z004.tif 1 339 69 16.9 

B106 B106_Series003_z004.tif 2 134 6 4.3 

B106 B106_Series003_z004.tif 3 75 3 3.8 

B107 B107_Series003_z002.tif 1 92 237 72.0 

B107 B107_Series003_z002.tif 2 206 67 24.5 

B107 B107_Series003_z002.tif 3 183 45 19.7 

B108 B108_Series003_z000.tif 1 111 330 74.8 

B108 B108_Series003_z000.tif 2 256 423 62.3 

B108 B108_Series003_z000.tif 3 89 124 58.2 

B109 B109_Series003_z001.tif 1 142 110 43.7 

B109 B109_Series003_z001.tif 2 852 0 0.0 

B109 B109_Series003_z001.tif 3 146 0 0.0 

B110 B110_Series003_z002.tif 1 301 149 33.1 
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B110 B110_Series003_z002.tif 2 317 167 34.5 

B110 B110_Series003_z002.tif 3 162 23 12.4 

B111 B111_Series004_z004.tif 1 676 229 25.3 

B111 B111_Series004_z004.tif 2 463 93 16.7 

B111 B111_Series004_z004.tif 3 378 32 7.8 

B112 B112_Series003_z003.tif 1 179 74 29.2 

B112 B112_Series003_z003.tif 2 81 22 21.4 

B112 B112_Series003_z003.tif 3 21 1 4.5 

B113 B113_Series003_z002.tif 1 295 293 49.8 

B113 B113_Series003_z002.tif 2 142 152 51.7 

B113 B113_Series003_z002.tif 3 113 174 60.6 

B114 B114_Series003_z001.tif 1 177 120 40.4 

B114 B114_Series003_z001.tif 2 106 74 41.1 

B114 B114_Series003_z001.tif 3 80 19 19.2 

B115 B115_Series003_z000.tif 1 141 189 57.3 

B115 B115_Series003_z000.tif 2 123 209 63.0 

B115 B115_Series003_z000.tif 3 66 248 79.0 

B116 B116_Series003_z001.tif 1 340 92 21.3 

B116 B116_Series003_z001.tif 2 103 126 55.0 

B116 B116_Series003_z001.tif 3 72 66 47.8 

B117 B117_Series004_z002.tif 1 98 90 47.9 

B117 B117_Series004_z002.tif 2 143 163 53.3 

B117 B117_Series004_z002.tif 3 48 25 34.2 

B118 B118_Series003_z006.tif 1 474 114 19.4 

B118 B118_Series003_z006.tif 2 697 98 12.3 

B118 B118_Series003_z006.tif 3 358 74 17.1 

B119 B119_Series003_z003.tif 1 201 140 41.1 

B119 B119_Series003_z003.tif 2 508 24 4.5 

B119 B119_Series003_z003.tif 3 226 30 11.7 

B120 B120_Series004_z001.tif 1 67 65 49.2 
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B120 B120_Series004_z001.tif 2 200 120 37.5 

B120 B120_Series004_z001.tif 3 204 18 8.1 

B121 B121_Series003_z000.tif 1 35 75 68.2 

B121 B121_Series003_z000.tif 2 412 66 13.8 

B121 B121_Series003_z000.tif 3 179 3 1.6 

B122 B122_Series004_z002.tif 1 384 333 46.4 

B122 B122_Series004_z002.tif 2 402 74 15.5 

B122 B122_Series004_z002.tif 3 187 6 3.1 

B123 B123_Series003_z001.tif 1 101 84 45.4 

B123 B123_Series003_z001.tif 2 69 75 52.1 

B123 B123_Series003_z001.tif 3 72 32 30.8 

B124 B124_Series003_z003.tif 1 99 207 67.6 

B124 B124_Series003_z003.tif 2 401 194 32.6 

B124 B124_Series003_z003.tif 3 394 37 8.6 

B125 B125_Series003_z002.tif 1 29 115 79.9 

B125 B125_Series003_z002.tif 2 45 90 66.7 

B125 B125_Series003_z002.tif 3 20 3 13.0 

B126 B126_Series003_z000.tif 1 64 167 72.3 

B126 B126_Series003_z000.tif 2 102 151 59.7 

B126 B126_Series003_z000.tif 3 72 31 30.1 

B127 B127_Series017_z006.tif 1 772 164 17.5 

B127 B127_Series017_z006.tif 2 592 51 7.9 

B127 B127_Series017_z006.tif 3 482 14 2.8 

B128 B128_Series005_z000.tif 1 499 14 2.7 

B128 B128_Series005_z000.tif 2 422 3 0.7 

B128 B128_Series005_z000.tif 3 257 28 9.8 

B129 B129_Series004_z002.tif 1 217 5 2.3 

B129 B129_Series004_z002.tif 2 169 21 11.1 

B129 B129_Series004_z002.tif 3 360 110 23.4 

B130 B130_Series003_z002.tif 1 146 125 46.1 
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B130 B130_Series003_z002.tif 2 517 16 3.0 

B130 B130_Series003_z002.tif 3 579 1 0.2 

B131 B131_Series004_z001.tif 1 115 375 76.5 

B131 B131_Series004_z001.tif 2 182 123 40.3 

B131 B131_Series004_z001.tif 3 247 27 9.9 

B132 B132_Series005_z002.tif 1 283 115 28.9 

B132 B132_Series005_z002.tif 2 314 1 0.3 

B132 B132_Series005_z002.tif 3 295 0 0.0 

B133 B133_Series005_z000.tif 1 140 99 41.4 

B133 B133_Series005_z000.tif 2 288 16 5.3 

B133 B133_Series005_z000.tif 3 97 0 0.0 

B134 B134_Series003_z001.tif 1 64 172 72.9 

B134 B134_Series003_z001.tif 2 100 71 41.5 

B134 B134_Series003_z001.tif 3 124 0 0.0 

B135 B135_Series003_z002.tif 1 186 75 28.7 

B135 B135_Series003_z002.tif 2 341 6 1.7 

B135 B135_Series003_z002.tif 3 175 2 1.1 

B136 B136_Series004_z000.tif 1 46 129 73.7 

B136 B136_Series004_z000.tif 2 140 25 15.2 

B136 B136_Series004_z000.tif 3 111 1 0.9 

B137 B137_Series007_z003.tif 1 21 56 72.7 

B137 B137_Series007_z003.tif 2 80 3 3.6 

B137 B137_Series007_z003.tif 3 87 1 1.1 

B138 B138_Series004_z000.tif 1 33 175 84.1 

B138 B138_Series004_z000.tif 2 195 96 33.0 

B138 B138_Series004_z000.tif 3 40 154 79.4 

B139 B139_Series002_z000.tif 1 0 38 100.0 

B139 B139_Series002_z000.tif 2 40 46 53.5 

B139 B139_Series002_z000.tif 3 28 18 39.1 

B140 B140_Series003_z001.tif 1 18 269 93.7 
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B140 B140_Series003_z001.tif 2 258 34 11.6 

B140 B140_Series003_z001.tif 3 334 51 13.2 

B141 B141_Series003_z002.tif 1 214 382 64.1 

B141 B141_Series003_z002.tif 2 321 132 29.1 

B141 B141_Series003_z002.tif 3 184 86 31.9 

B142 B142_Series003_z003.tif 1 192 94 32.9 

B142 B142_Series003_z003.tif 2 282 13 4.4 

B142 B142_Series003_z003.tif 3 46 20 30.3 

B143 B143_Series004_z002.tif 1 179 103 36.5 

B143 B143_Series004_z002.tif 2 284 7 2.4 

B143 B143_Series004_z002.tif 3 155 5 3.1 

B144 B144_Series003_z001.tif 1 586 344 37.0 

B144 B144_Series003_z001.tif 2 407 126 23.6 

B144 B144_Series003_z001.tif 3 579 22 3.7 

B145 B145_Series003_z002.tif 1 421 12 2.8 

B145 B145_Series003_z002.tif 2 321 43 11.8 

B145 B145_Series003_z002.tif 3 222 12 5.1 

B146 B146_Series003_z002.tif 1 217 3 1.4 

B146 B146_Series003_z002.tif 2 159 39 19.7 

B146 B146_Series003_z002.tif 3 120 41 25.5 

B147 B147_Series003_z000.tif 1 694 21 2.9 

B147 B147_Series003_z000.tif 2 440 41 8.5 

B147 B147_Series003_z000.tif 3 256 42 14.1 

B148 B148_Series003_z001.tif 1 323 10 3.0 

B148 B148_Series003_z001.tif 2 400 1 0.2 

B148 B148_Series003_z001.tif 3 138 16 10.4 

B149 B149_Series004_z002.tif 1 154 44 22.2 

B149 B149_Series004_z002.tif 2 318 1 0.3 

B149 B149_Series004_z002.tif 3 49 0 0.0 

B150 B150_Series003_z003.tif 1 51 64 55.7 
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B150 B150_Series003_z003.tif 2 95 26 21.5 

B150 B150_Series003_z003.tif 3 27 0 0.0 

B151 B151_Series003_z000.tif 1 192 181 48.5 

B151 B151_Series003_z000.tif 2 306 2 0.6 

B151 B151_Series003_z000.tif 3 128 0 0.0 

B152 B152_Series003_z001.tif 1 83 49 37.1 

B152 B152_Series003_z001.tif 2 165 0 0.0 

B152 B152_Series003_z001.tif 3 48 0 0.0 

B153 B153_Series003_z002.tif 1 101 410 80.2 

B153 B153_Series003_z002.tif 2 184 131 41.6 

B153 B153_Series003_z002.tif 3 93 31 25.0 

B154 B154_Series003_z000.tif 1 343 451 56.8 

B154 B154_Series003_z000.tif 2 333 61 15.5 

B154 B154_Series003_z000.tif 3 66 0 0.0 

B155 B155_Series003_z003.tif 1 218 69 24.0 

B155 B155_Series003_z003.tif 2 205 0 0.0 

B155 B155_Series003_z003.tif 3 71 0 0.0 

B156 B156_Series003_z001.tif 1 92 49 34.8 

B156 B156_Series003_z001.tif 2 79 2 2.5 

B156 B156_Series003_z001.tif 3 71 0 0.0 

B157 B157_Series003_z000.tif 1 140 98 41.2 

B157 B157_Series003_z000.tif 2 257 0 0.0 

B157 B157_Series003_z000.tif 3 82 0 0.0 

B158 B158_Series003_z001.tif 1 223 185 45.3 

B158 B158_Series003_z001.tif 2 168 41 19.6 

B158 B158_Series003_z001.tif 3 95 20 17.4 

B159 B159_Series003_z002.tif 1 279 141 33.6 

B159 B159_Series003_z002.tif 2 218 11 4.8 

B159 B159_Series003_z002.tif 3 48 5 9.4 

B160 B160_Series003_z000.tif 1 66 68 50.7 
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B160 B160_Series003_z000.tif 2 56 36 39.1 

B160 B160_Series003_z000.tif 3 28 1 3.4 

B161 B161_Series003_z001.tif 1 258 196 43.2 

B161 B161_Series003_z001.tif 2 192 44 18.6 

B161 B161_Series003_z001.tif 3 112 28 20.0 

B162 B162_Series003_z000.tif 1 267 187 41.2 

B162 B162_Series003_z000.tif 2 197 70 26.2 

B162 B162_Series003_z000.tif 3 113 19 14.4 

B163 B163_Series003_z001.tif 1 419 103 19.7 

B163 B163_Series003_z001.tif 2 243 17 6.5 

B163 B163_Series003_z001.tif 3 173 5 2.8 

B164 B164_Series003_z001.tif 1 387 117 23.2 

B164 B164_Series003_z001.tif 2 223 35 13.6 

B164 B164_Series003_z001.tif 3 238 32 11.9 

B165 B165_Series005_z002.tif 1 562 39 6.5 

B165 B165_Series005_z002.tif 2 376 0 0.0 

B165 B165_Series005_z002.tif 3 228 13 5.4 

B166 B166_Series003_z003.tif 1 246 74 23.1 

B166 B166_Series003_z003.tif 2 220 39 15.1 

B166 B166_Series003_z003.tif 3 244 13 5.1 

B167 B167_Series005_z002.tif 1 28 316 91.9 

B167 B167_Series005_z002.tif 2 64 165 72.1 

B167 B167_Series005_z002.tif 3 44 1 2.2 

B168 B168_Series003_z004.tif 1 73 152 67.6 

B168 B168_Series003_z004.tif 2 289 151 34.3 

B168 B168_Series003_z004.tif 3 221 136 38.1 

B169 B169_Series003_z000.tif 1 29 86 74.8 

B169 B169_Series003_z000.tif 2 61 28 31.5 

B169 B169_Series003_z000.tif 3 46 7 13.2 

B170 B170_Series003_z004.tif 1 574 135 19.0 
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B170 B170_Series003_z004.tif 2 387 68 14.9 

B170 B170_Series003_z004.tif 3 433 53 10.9 

B171 B171_Series003_z002.tif 1 26 113 81.3 

B171 B171_Series003_z002.tif 2 43 13 23.4 

B171 B171_Series003_z002.tif 3 16 2 11.1 

B172 B172_Series003_z002.tif 1 374 583 60.9 

B172 B172_Series003_z002.tif 2 239 159 39.9 

B172 B172_Series003_z002.tif 3 119 49 29.2 

B173 B173_Series003_z003.tif 1 92 70 43.2 

B173 B173_Series003_z003.tif 2 129 166 56.3 

B173 B173_Series003_z003.tif 3 114 26 18.6 

B174 B174_Series003_z002.tif 1 484 284 37.0 

B174 B174_Series003_z002.tif 2 173 50 22.4 

B174 B174_Series003_z002.tif 3 148 25 14.5 

B175 B175_Series004_z001.tif 1 362 62 14.6 

B175 B175_Series004_z001.tif 2 385 28 6.8 

B175 B175_Series004_z001.tif 3 198 45 18.5 

B176 B176_Series004_z003.tif 1 528 267 33.6 

B176 B176_Series004_z003.tif 2 364 2 0.5 

B176 B176_Series004_z003.tif 3 234 29 11.0 

B177 B177_Series003_z003.tif 1 104 295 73.9 

B177 B177_Series003_z003.tif 2 245 12 4.7 

B177 B177_Series003_z003.tif 3 238 10 4.0 

B178 B178_Series003_z000.tif 1 70 103 59.5 

B178 B178_Series003_z000.tif 2 173 70 28.8 

B178 B178_Series003_z000.tif 3 230 30 11.5 

B179 B179_Series003_z000.tif 1 44 89 66.9 

B179 B179_Series003_z000.tif 2 104 8 7.1 

B179 B179_Series003_z000.tif 3 72 12 14.3 

B180 B180_Series003_z000.tif 1 187 525 73.7 
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B180 B180_Series003_z000.tif 2 321 16 4.8 

B180 B180_Series003_z000.tif 3 113 1 0.9 

Zone 1 = Superficial Zone 
Zone 2 = Middle Zone 
Zone 3 = Deep Zone 
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APPENDIX III: PHASE 2 RAW pH DATA 
 

Specimen Dog Surface Treatment pH: initial pH: end 

B001 1 SI CCCM 5 min. 7.49 7.47 

B002 1 SI CCCM 15 min. 7.49 7.46 

B003 1 SI CCCM 30 min. 7.49 7.67 

B004 1 SI B 5 min. 5.49 6.14 

B005 1 SI B 15 min. 5.49 6.18 

B006 1 SI B 30 min. 5.49 6.48 

B007 1 SI BP 5 min. 5.45 5.96 

B008 1 SI BP 15 min. 5.45 6.10 

B009 1 SI BP 30 min. 5.45 6.23 

B010 1 SR CCCM 5 min. 7.49 7.47 

B011 1 SR CCCM 15 min. 7.49 7.46 

B012 1 SR CCCM 30 min. 7.49 7.67 

B013 1 SR B 5 min. 5.49 6.14 

B014 1 SR B 15 min. 5.49 6.18 

B015 1 SR B 30 min. 5.49 6.48 

B016 1 SR BP 5 min. 5.45 5.96 

B017 1 SR BP 15 min. 5.45 6.10 

B018 1 SR BP 30 min. 5.45 6.23 

B019 2 SI CCCM 5 min. 7.54 7.57 

B020 2 SI CCCM 15 min. 7.54 7.58 

B021 2 SI CCCM 30 min. 7.54 7.65 

B022 2 SI B 5 min. 5.41 6.28 

B023 2 SI B 15 min. 5.41 6.43 

B024 2 SI B 30 min. 5.41 6.60 

B025 2 SI BP 5 min. 5.39 6.13 

B026 2 SI BP 15 min. 5.39 6.24 

B027 2 SI BP 30 min. 5.39 6.35 

B028 2 SR CCCM 5 min. 7.54 7.57 
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B029 2 SR CCCM 15 min. 7.54 7.58 

B030 2 SR CCCM 30 min. 7.54 7.65 

B031 2 SR B 5 min. 5.41 6.28 

B032 2 SR B 15 min. 5.41 6.43 

B033 2 SR B 30 min. 5.41 6.60 

B034 2 SR BP 5 min. 5.39 6.13 

B035 2 SR BP 15 min. 5.39 6.24 

B036 2 SR BP 30 min. 5.39 6.35 

B037 3 SI CCCM 5 min. 7.70 7.78 

B038 3 SI CCCM 15 min. 7.70 7.86 

B039 3 SI CCCM 30 min. 7.70 7.93 

B040 3 SI B 5 min. 5.80 6.31 

B041 3 SI B 15 min. 5.80 6.33 

B042 3 SI B 30 min. 5.80 6.36 

B043 3 SI BP 5 min. 5.37 6.21 

B044 3 SI BP 15 min. 5.37 6.16 

B045 3 SI BP 30 min. 5.37 6.31 

B046 3 SR CCCM 5 min. 7.70 7.78 

B047 3 SR CCCM 15 min. 7.70 7.86 

B048 3 SR CCCM 30 min. 7.70 7.93 

B049 3 SR B 5 min. 5.80 6.31 

B050 3 SR B 15 min. 5.80 6.33 

B051 3 SR B 30 min. 5.80 6.36 

B052 3 SR BP 5 min. 5.37 6.21 

B053 3 SR BP 15 min. 5.37 6.16 

B054 3 SR BP 30 min. 5.37 6.31 

B055 4 SI CCCM 5 min. 7.80 8.03 

B056 4 SI CCCM 15 min. 7.80 7.94 

B057 4 SI CCCM 30 min. 7.80 8.03 

B058 4 SI B 5 min. 5.48 6.31 
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B059 4 SI B 15 min. 5.48 6.35 

B060 4 SI B 30 min. 5.48 6.14 

B061 4 SI BP 5 min. 5.81 6.05 

B062 4 SI BP 15 min. 5.81 6.48 

B063 4 SI BP 30 min. 5.81 6.50 

B064 4 SR CCCM 5 min. 7.80 8.03 

B065 4 SR CCCM 15 min. 7.80 7.94 

B066 4 SR CCCM 30 min. 7.80 8.03 

B067 4 SR B 5 min. 5.48 6.31 

B068 4 SR B 15 min. 5.48 6.35 

B069 4 SR B 30 min. 5.48 6.14 

B070 4 SR BP 5 min. 5.81 6.05 

B071 4 SR BP 15 min. 5.81 6.48 

B072 4 SR BP 30 min. 5.81 6.50 

B073 5 SI CCCM 5 min. 7.20 7.24 

B074 5 SI CCCM 15 min. 7.20 7.46 

B075 5 SI CCCM 30 min. 7.20 7.64 

B076 5 SI B 5 min. 5.20 5.83 

B077 5 SI B 15 min. 5.20 6.19 

B078 5 SI B 30 min. 5.20 6.53 

B079 5 SI BP 5 min. 5.36 5.68 

B080 5 SI BP 15 min. 5.36 6.14 

B081 5 SI BP 30 min. 5.36 6.21 

B082 5 SR CCCM 5 min. 7.20 7.24 

B083 5 SR CCCM 15 min. 7.20 7.46 

B084 5 SR CCCM 30 min. 7.20 7.64 

B085 5 SR B 5 min. 5.20 5.83 

B086 5 SR B 15 min. 5.20 6.19 

B087 5 SR B 30 min. 5.20 6.53 

B088 5 SR BP 5 min. 5.36 5.68 
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B089 5 SR BP 15 min. 5.36 6.14 

B090 5 SR BP 30 min. 5.36 6.21 

B091 6 SI CCCM 5 min. 7.01 8.04 

B092 6 SI CCCM 15 min. 7.01 8.03 

B093 6 SI CCCM 30 min. 7.01 8.10 

B094 6 SI B 5 min. 5.67 6.73 

B095 6 SI B 15 min. 5.67 6.81 

B096 6 SI B 30 min. 5.67 6.95 

B097 6 SI BP 5 min. 5.66 6.01 

B098 6 SI BP 15 min. 5.66 6.25 

B099 6 SI BP 30 min. 5.66 6.32 

B100 6 SR CCCM 5 min. 7.01 8.04 

B101 6 SR CCCM 15 min. 7.01 8.03 

B102 6 SR CCCM 30 min. 7.01 8.10 

B103 6 SR B 5 min. 5.67 6.73 

B104 6 SR B 15 min. 5.67 6.81 

B105 6 SR B 30 min. 5.67 6.95 

B106 6 SR BP 5 min. 5.66 6.01 

B107 6 SR BP 15 min. 5.66 6.25 

B108 6 SR BP 30 min. 5.66 6.32 

B109 7 SI CCCM 5 min. 7.91 8.15 

B110 7 SI CCCM 15 min. 7.91 8.26 

B111 7 SI CCCM 30 min. 7.91 8.29 

B112 7 SI B 5 min. 6.11 6.17 

B113 7 SI B 15 min. 6.11 6.53 

B114 7 SI B 30 min. 6.11 6.35 

B115 7 SI BP 5 min. 5.66 6.04 

B116 7 SI BP 15 min. 5.66 6.31 

B117 7 SI BP 30 min. 5.66 6.33 

B118 7 SR CCCM 5 min. 7.91 8.15 
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B119 7 SR CCCM 15 min. 7.91 8.26 

B120 7 SR CCCM 30 min. 7.91 8.29 

B121 7 SR B 5 min. 6.11 6.17 

B122 7 SR B 15 min. 6.11 6.53 

B123 7 SR B 30 min. 6.11 6.35 

B124 7 SR BP 5 min. 5.66 6.04 

B125 7 SR BP 15 min. 5.66 6.31 

B126 7 SR BP 30 min. 5.66 6.33 

B127 8 SI CCCM 5 min. 7.47 7.72 

B128 8 SI CCCM 15 min. 7.47 7.68 

B129 8 SI CCCM 30 min. 7.47 7.69 

B130 8 SI B 5 min. 6.30 6.58 

B131 8 SI B 15 min. 6.30 6.53 

B132 8 SI B 30 min. 6.30 6.56 

B133 8 SI BP 5 min. 5.85 6.18 

B134 8 SI BP 15 min. 5.85 6.22 

B135 8 SI BP 30 min. 5.85 6.46 

B136 8 SR CCCM 5 min. 7.68 7.77 

B137 8 SR CCCM 15 min. 7.68 7.81 

B138 8 SR CCCM 30 min. 7.68 7.78 

B139 8 SR B 5 min. 6.32 6.49 

B140 8 SR B 15 min. 6.32 6.65 

B141 8 SR B 30 min. 6.32 6.68 

B142 8 SR BP 5 min. 5.92 6.26 

B143 8 SR BP 15 min. 5.92 6.37 

B144 8 SR BP 30 min. 5.92 6.40 

B145 9 SI CCCM 5 min. 7.47 7.72 

B146 9 SI CCCM 15 min. 7.47 7.68 

B147 9 SI CCCM 30 min. 7.47 7.69 

B148 9 SI B 5 min. 6.30 6.58 
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B149 9 SI B 15 min. 6.30 6.53 

B150 9 SI B 30 min. 6.30 6.56 

B151 9 SI BP 5 min. 5.85 6.18 

B152 9 SI BP 15 min. 5.85 6.22 

B153 9 SI BP 30 min. 5.85 6.46 

B154 9 SR CCCM 5 min. 7.60 7.87 

B155 9 SR CCCM 15 min. 7.60 8.02 

B156 9 SR CCCM 30 min. 7.60 8.00 

B157 9 SR B 5 min. 6.02 6.48 

B158 9 SR B 15 min. 6.02 6.65 

B159 9 SR B 30 min. 6.02 6.48 

B160 9 SR BP 5 min. 5.90 6.14 

B161 9 SR BP 15 min. 5.90 6.30 

B162 9 SR BP 30 min. 5.90 6.42 

B163 10 SI CCCM 5 min. 7.52 7.77 

B164 10 SI CCCM 15 min. 7.52 7.81 

B165 10 SI CCCM 30 min. 7.52 7.78 

B166 10 SI B 5 min. 6.32 6.49 

B167 10 SI B 15 min. 6.32 6.65 

B168 10 SI B 30 min. 6.32 6.68 

B169 10 SI BP 5 min. 5.92 6.26 

B170 10 SI BP 15 min. 5.92 6.37 

B171 10 SI BP 30 min. 5.92 6.40 

B172 10 SR CCCM 5 min. 7.83 7.87 

B173 10 SR CCCM 15 min. 7.83 8.02 

B174 10 SR CCCM 30 min. 7.83 8.00 

B175 10 SR B 5 min. 6.02 6.48 

B176 10 SR B 15 min. 6.02 6.65 

B177 10 SR B 30 min. 6.02 6.48 

B178 10 SR BP 5 min. 5.90 6.14 
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B179 10 SR BP 15 min. 5.90 6.30 

B180 10 SR BP 30 min. 5.90 6.42 

 
SI (Surface Intact); SR (Surface Removed)  
CCCM (Canine Chondrocyte Culture Medium);  
B (0.5% Bupivacaine); BP (0.5% Bupivacaine with Preservative) 
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