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ABSTRACT 

 

Unilateral arytenoid lateralization is a commonly performed surgical treatment for 

laryngeal paralysis in dogs. It involves fixing the moveable arytenoid cartilage to the 

thyroid (TAL) or cricoid (CAL) cartilage or both (CTAL). This increases the area of the 

rima glottidis (RGA), to allow reduced airway pressure and laryngeal resistance in vitro 

and ameliorates clinical signs in vivo. It may also increase the patient’s predisposition 

for aspiration pneumonia, which occurs in around 20% of clinical patients. No surgical 

technique has been correlated with clinical outcome or risk of aspiration pneumonia. 

Objective analysis of the effects of surgery on the three dimensional structure of the 

larynx has not been performed. Non-invasive assessment and standardization or 

classification of arytenoid lateralization techniques would allow more effective 

prospective clinical trials to identify prognostic factors for outcome and complications. 

Eight cadaver larynges were secured to radiolucent materials for Computed 

Tomography (CT) before and after TAL, CAL and CTAL with sutures tensioned to 

100g or 500g. 

 

Multiple measurements were taken from CT 3D reconstructions of the larynx to assess 

arytenoid displacement in three separate planes. No significant changes were found for 

any CT measure except the distance between the arytenoid and thyroid wing (ATW). 

CTAL at 500g and TAL at 500g showed significantly smaller ATW compared to CAL 

at 100g suggesting that a high tension TAL or CTAL causes the most lateralization of 

the arytenoid. CAL may allow reduction in airway pressure without excessive 
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lateralization of the arytenoid. ATW is a candidate for a marker of lateralization of 

UAL procedures, which could be implemented in future prospective clinical studies. 

Sequential tensioning and loosening of the suture had no significant effect on any 

measured parameter validating the use of larynges in sequential measurements.  
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1. INTRODUCTION 

Laryngeal paralysis is most commonly an idiopathic1 disease of older large breed dogs 

that causes inspiratory dyspnea, hyperthermia, exercise intolerance, inspiratory stridor 

and dysphonia. For the majority of dogs, idiopathic laryngeal paralysis (iLP) is regarded 

as part of a generalized polyneuropathy2 complex which also affects swallowing 

function and may make dogs predisposed to aspiration of food and fluid. Conservative 

management may allow a sedentary lifestyle in some dogs however surgery is 

recommended for any dog with an owner perceived reduction in quality of life. 

Unilateral arytenoid lateralization (UAL), where the movable arytenoid cartilage is 

sutured at tension to the more caudal cricoid or more lateral thyroid cartilage3 is the 

most commonly performed surgery for laryngeal paralysis. Patients have an 

approximately 20% risk of developing aspiration pneumonia4 within the perioperative 

period.  It is postulated that insufficient lateralization of the arytenoid cartilage will 

result in continued dyspnea while excessive lateralization will cause further 

predisposition to aspiration pneumonia by mismatch of the epiglottis and glottis, which 

normally creates a tight seal to protect against the leakage of oropharyngeal contents5. 

No information exists regarding the effects of arytenoid lateralization on the 3 

dimensional motion of the arytenoid cartilage and the volume of the larynx. Previous in 

vitro and in vivo studies have characterized the effect of surgery on rima glottidis area 

(RGA), which the area for air passage between the vocal folds and arytenoid cartilages 

6,7-9, airway resistance5 and airway pressure10. No study has been able to correlate 

surgical technique or objectively measured parameters with outcome. A non-invasive 
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measure could provide a prospective marker for investigations into the true effect of 

technique on outcome. 

 

Computed tomography (CT) can be performed with minor sedation in awake animals 

and allows the delineation between the cartilages of the larynx11 and has been utilized to 

diagnose multiple causes of upper airway obstruction including iLP12.  

 

The aim of this study is to characterize the effect of arytenoid lateralization techniques 

and suture tension on 3 dimensional motion of the arytenoid cartilage, laryngeal volume 

and to see if CT could be a useful tool for assessing arytenoid lateralization surgeries 

for future prospective evaluation in the small number of cases typically seen in 

veterinary studies. 
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2. REVIEW OF LITERATURE 

2.1. Laryngeal paralysis 

The larynx has a number of functions, the most important of which are the optimization 

of airflow during inspiration, vocalization, and prevention of aspiration of food or 

liquids during swallowing13. iLP is a common disease primarily affecting older large 

breed dogs and involves the loss of the normal arytenoid cartilage abduction during 

inspiration due to paralysis of the recurrent laryngeal and nerve and loss of the function 

of the cricoartytenoid dorsalis muscle, amongst others13. Congenital or inherited forms 

have been reported in the Bouvier de Flandres	
  14, German Shepherd15, Rottweiler16 and  

Siberian husky	
   17. Additionally, other breeds have been implicated in association with 

polyneuropathies. The majority of cases are suggested to be acquired13. Causes of 

acquired laryngeal paralysis include trauma, neoplasia, iatrogenic causes such as 

radiotherapy and most commonly idiopathic1(iLP).  

 

2.2. The relevance of airway mechanics and inspiration to laryngeal function 

The recurrent laryngeal nerve and cricoarytenoid dorsalis muscle are actively 

responsible for opening the rima glottidis (RG) on inspiration, allowing negative 

pressure generated during expansion of the thoracic cavity during inspiration to move 

air along a pressure gradient into the respiratory tract. The laryngeal musculature is also 

responsible for closing the RG when the dog swallows, allowing a secure fit between 

the glottis and epiglottis and preventing aspiration of flood or fluid. This loss of  
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dynamic function is both crucial in the pathological processes involved in the disease 

process, as well as on the diagnosis on laryngeal examination under a light plane of 

anesthesia1. 

 

Inspiration is initiated by chest expansion and the negative pressure within the chest 

creates a differential pressure across the walls of the airway, which includes the trachea 

and the larynx18. The trachea has some structural protection because of its c-shaped 

rings, the overlap of laryngeal cartilages and the attachment of various ligamentous 

structures, which may resist collapse. The flow of air exists in two forms- laminar flow 

and turbulent flow. Laminar flow, where air travels in a single direction, exists with a 

proportional relationship between flow and pressure18. Turbulent flow, where multi-

directional flow predominates, has a different relationship and pressure is proportional 

to the square of flow in the airway. The switch between laminar and turbulent flow is 

indicated by a Reynolds number of over 2000, which takes into account a number of 

variables (the radius and diameter of a tube, viscosity of gas and flow rate). Importantly 

it is generally thought that only air in terminal bronchioles exists in laminar flow18. The 

radius of the tube also has a huge effect on resistance to airflow shown by the following 

equation 

 R = 8nl/pr4, where R is resistance, n is gas viscosity, l is length of the passage, and r is 

radius of the tube. It is clear that in animals with respiratory disease, which suffer from 

airway narrowing, a situation of increased airflow rates and airway pressure exists and 

dyspnea can easily become a terminal event. The pressure gradient across the walls of 
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the airway may itself cause narrowing of the airway, with a halving of airway radius 

causing a 16-fold increase in inspiratory pressure. Dynamic laryngeal collapse has been 

reported in exercising horses19. In addition, application of enough negative pressure to a 

cadaver larynx and proximal tracheal construct can cause laryngeal collapse which 

appears to be centered at the RG10. Whether this is occurring in dyspneic canines or 

whether this only occurs in excised canine larynges at airflow rates and airway pressure 

above physiological levels is unknown. In the clinical situation, visualization of the 

larynx itself generally only occurs during a laryngeal exam at a light plane of anesthesia, 

by which point clinical dyspnea has abated. 

During laminar flow along a tube, the flow profile is parabolic, i.e. fastest at the center 

and slowest at the periphery18. This is the case for a cylinder but for both the larynx and 

trachea, this is an oversimplification20. Dekker observed that physical models fabricated 

from laryngeal–tracheal casts experienced laminar-to-turbulent flow transitions at 

significantly lower flow rates than their straight tube counterparts21. Another study of 

the internal surface of computerized models of the human trachea found that the 

presence of cartilage rings in the trachea has a significant effect on airflow and particle 

deposition20. Martonen22 identified a distinct laryngeal jet, i.e. the narrowing of the RG, 

has a substantial effect of airflow to the lower airways23. In a human 3D larynx model 

used to investigate phonation, high pressure gradients lead to increased airway velocity 

and whether the glottis is parallel, divergent or convergent has an effect on the pressure  

difference 24. This may suggest that changes in the internal surface and volume of the 

canine larynx may be a source of airway resistance in addition to the RG. 
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2.3.  Denervation of the larynx and polyneuropathy 

The traditional etiopathologic theory relating to laryngeal paralysis were based on 

equine hemiplegia, the equivalent disease in horses, where a ‘distal back’ axonopathy25 

was proposed because the long axons in the recurrent laryngeal nerve would be 

relatively susceptible. However, in canines, examination of previous and current 

literature implicates a more important systemic disease rather than one restricted to a 

single pair of nerves or muscles. 

 

Despite the common misconception that the only affected muscle and nerve in laryngeal 

paralysis are the cricoarytenoideus dorsalis and recurrent laryngeal nerve respectively, 

an experimental investigation from 193326 showed that experimental denervation of the 

recurrent laryngeal nerve resulted in instant constriction of the glottis and severe 

dyspnea, rather than the dynamic inspiratory obstruction which occurs due to loss of 

muscular tone in the larynx as seen in iLP patients. The reason for this is due to the 

balance of muscular tone in the larynx; the RGA is affected dynamically by the 

muscular balance between the abductor of the larynx (cricoarytenoid dorsalis) supplied 

by the recurrent laryngeal nerves and the adductors of the larynx (all other intrinsic 

laryngeal muscles, particularly the cricothyroideus), which are supplied by the para-

recurrent nerves. The para-recurrent laryngeal nerves also supply the cervical and 

cranial thoracic esophagus and have a role in the intricately coordinated process of 

swallowing. With the loss of abductor tone in an otherwise normal larynx leads to tight 

constriction of the adductors and narrowing of the airway, which is not characteristic of 

iLP. In these experiments, further sectioning of the para-recurrent laryngeal nerves, i.e. 
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inducing multiple nerve dysfunction, resulted in the arytenoids maintaining a paralyzed 

median position as seen in iLP.  

 

Due to the emergency presentation of a subset of iLP patients, a full neurologic exam is 

often not performed or not deemed interpretable due to hypoxia and weakness.  One 

study looked at patients presenting with laryngeal paralysis and sought to investigate 

whether there were any documentable signs of a concurrent polyneuropathy2. Age 

matched controls were compared to dogs with laryngeal paralysis. This study examined 

electromyographic (EMG) examination of the left thoracic and left pelvic limbs, 

pharyngeal and esophageal musculature as well as motor nerve conduction velocities 

(MNCV) of the left tibial and right ulnar nerves. All dogs in the iLP group had 

neurological deficits and or electromyographic changes associated with polyneuropathy, 

which were more consistent with axonal degeneration2. A study by Thieman revealed 

histopathologic changes in both the muscles and nerves of dogs with only respiratory 

signs27. Pathologic changes were present in muscle biopsies from all dogs evaluated. 

Muscle fiber atrophy, large nerve fiber loss, axonal degeneration, and endoneurial 

fibrosis confirmed the diagnosis of polyneuropathy due to chronic axonal degeneration 

and nerve fiber loss in this group of dogs with laryngeal paralysis. 

 

2.4 Esophageal disease and aspiration pneumonia in laryngeal paralysis patients 

Dogs with iLP often present to the hospital with a concurrent history of dysphagia and 

coughing after drinking and the most common complication of surgery for laryngeal 

paralysis is aspiration pneumonia4,28,29. A study by Stanley et al. specifically investigated 



	
  

	
  8 

esophageal disease in iLP patients compared to aged matched controls30. The results 

showed that based on blinded but subjective grading of an esophagram, abnormalities in 

the liquid phase of swallowing showed that dysphagia was located in the cranial 

esophagus. A significant difference was found in esophagram scores for dogs with iLP 

compared to controls and these findings were more predictive of aspirating after surgery 

than a full neurological examination. Two control dogs with relatively high esophagram 

scores went on to develop iLP within 6 months. This study adds weight to the idea of 

concurrent para-recurrent nerve degeneration, given the function of those nerves in 

swallowing. 

 

An important part of the swallowing process is the closure and coverage of the RG 

when swallowing to prevent aspiration of fluid and food into the respiratory system. 

One in vitro study hypothesized that deformation of the RG due to unilateral arytenoid 

lateralization techniques could lead to a mismatch between the RG and the epiglottis31, 

leading to an ‘aperture’ through which food or fluid may be more likely to be aspirated. 

The same group was then able to demonstrate a difference in closed glottal resistance 

for the same procedures- i.e. how well did the seal between the RG and epiglottis resist 

airflow27. These studies both investigated the effect of suture tension for cricoartytenoid 

lateralization (CAL) and found that increased tension on the suture opened the ‘aperture’ 

significantly and reduced closed glottal resistance, both of which were hypothesized to 

predispose to aspiration pneumonia, however this has not been demonstrated in clinical 

studies. 
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On further examination of the etiology of aspiration pneumonia, multiple reasons have 

been postulated. 

• Pre-existing esophageal disease related to generalized polyneuropathy and concurrent 

disruption of the para-recurrent laryngeal nerves27,28,30,32. 

• Upper respiratory edema both from high pressure during dyspnea as well as iatrogenic 

damage during surgery and anesthesia. 

• Increased inspiratory pressure seen in dyspneic animals has been linked with increased 

gastro-esophageal reflux. 

• As unilateral arytenoid lateralization results in deformation of the shape of the RG and 

holds it in a fixed position, the creation of a less airtight seal has been postulated to 

allow aspiration5. 

• Although it is known that a large amount of these cases present with esophageal 

dysfunction, it is unknown whether the surgical approach itself results in further 

damage to the nerves or muscles associated with the cranial oesophagus and may 

increase the severity of dysphagia in some patients.  

 

These recent findings suggest a particularly important cause for post-operative 

morbidity and mortality and a crucial new challenge for the laryngeal surgeon; how we 

can improve airflow through the larynx without detrimentally increasing the risks of 

aspiration pneumonia. 
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2.5 Surgical treatments for idiopathic Laryngeal Paralysis 

Numerous surgical techniques exist for treatment including castellated laryngofissure 33, 

nerve-muscle pedicle grafts  34, partial laryngectomy 35, bilateral TAL with vocal fold 

excision and mucosoplasty 36, bilateral ventriculocordectomy via ventral laryngotomy37 

and unilateral and bilateral arytenoid lateralization 29,38. Nitinol stenting39 has also been 

evaluated in a cadaver model.  

 

• Castellated laryngofissure 33 

This utilizes a ventral approach to increase the volume of the larynx and therefore 

abduct the arytenoid and enlarge the RG. This surgery has largely been abandoned due 

to the high risk of severe laryngeal edema and bleeding, and the necessity for a 

perioperative tracheostomy. It is the only previous surgery to utilize an increase in 

laryngeal volume indirectly to increase the RGA. 

 

• Nerve-muscle pedicle grafting34 

This technique was used on a model of experimental transection one of the recurrent 

laryngeal nerves to cause unilateral laryngeal paralysis. The authors used a graft of the 

1st cervical nerve and sternothyroideus muscle onto the denervated muscle after 1 week. 

An observer blindly measured arytenoid abduction and found that although better than 

controls at 19 weeks, abduction was still significantly worse than before surgery. This 

has not been used clinically due to the slow onset of its effects but has been used in 

humans with laryngeal muscle palsy40. 
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• Partial laryngectomy 35 

An oral approach can be utilized to allow vocal cord resection with partial 

arytenoidectomy. Rates of aspiration pneumonia were significantly higher than with 

arytenoid lateralization in one study35. 

 

• Bilateral TAL with vocal fold excision and mucosoplasty 36 

This technique was able to reduce the risk of aspiration pneumonia but major 

postoperative complications were surgical failures; 12/67 surgeries failed with mean 

recurrence of clinical signs was at 19 weeks (range 2–30 weeks). Minor complications 

occurred in 22 (33%) of dogs and proved less successful than arytenoid lateralization 

with regard to the requirement for repeated surgeries. 

• Bilateral ventriculocordectomy via ventral laryngotomy37 

A recent study documented a ventral approach to the larynx, allowing symmetrical 

ventriculocordectomy; the authors subjectively evaluated this as a technically less 

demanding procedure than arytenoid lateralization and with a lower rate of clinical 

aspiration pneumonia compared to historical controls. No other controls were present  

 

and no monitoring was performed for subclinical aspiration pneumonia, although this 

remains to be compared prospectively to other surgical techniques in clinical patients. 
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• Unilateral Arytenoid Lateralization4,5,7-9,29,31,41,42 

Unilateral arytenoid lateralization (UAL) involves a lateral (or less commonly ventral 

followed by lateral) approach to the larynx to allow one arytenoid cartilage (usually the 

left arytenoid cartilage) to be abducted out of the airway replacing the function of the 

cricoarytenoid dorsalis muscle using suture material. The arytenoid cartilage is 

permanently sutured to a more external cartilage of the larynx. This has emerged as a 

preferred technique due to ease of procedure and good reported clinical outcome 29,42. 

 

• Nitinol stenting39 

Small self-expanding nitinol stents were placed into the arytenoid cartilages of an 

excised cadaver larynx. A significant reduction in airway resistance was maintained but 

the approach to apply such a stent would be difficult; so far no documented clinical 

trials have been performed. 

 

2.6 Clinical outcome and complication rates for laryngeal surgery 

The largest retrospective study of iLP patients evaluated the outcome of 140 cases and 

looked at multiple different surgeries. Overall these patients suffered a 34.3% 

complication rate and 14.3% dogs died of disease-related causes. Aspiration pneumonia 

occurred in 23.6% and seven dogs died of aspiration pneumonia more than 1 year after 

surgery. Complication and mortality rate were increased by bilateral arytenoid 

lateralization surgeries, patient age, temporary tracheostomy placement, concurrent 

respiratory tract abnormalities, concurrent esophageal disease, postoperative 
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megaesophagus, concurrent neoplastic disease, and concurrent neurologic disease. 28 A 

study of 40 dogs which were subject to UAL by a single experienced surgeon showed 

that 18% of cases suffered post-operative aspiration pneumonia; in this study 6/7 

affected by aspiration pneumonia recovered. Minor complications were observed in 

56% of dogs and included unresolved coughing or gagging, continued exercise 

intolerance, vomiting and seroma formation were the most common. In this study, 90% 

of owners reported an improvement in postoperative quality-of-life score. Median 

survival time was 12 months; only 1 dog was euthanized because of respiratory tract 

disease following surgery.4 

 

A similar study from another surgeon took retrospective data from sixty-two dogs over 

a three-year period. The perioperative complication rate was approximately 10%, while 

the success rate as judged by owners one year postoperatively was greater than 90 per 

cent.29 

 

2.7 Measurement techniques for evaluation of Unilateral Arytenoid Lateralization  

Owner or veterinarian assessment of outcomes of a surgical procedure is useful but 

subjective and potentially biased evaluation.  Objective data for complication rates such 

as aspiration pneumonia can provide some useful data however small sample sizes and 

the variability in the spectrum of clinical patients tend to preclude useful case-control 

studies or comparisons of surgical techniques. Other more objective measurement 

techniques have been utilized to attempt to compare different surgical techniques. 
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• Rima Glottidis Area (RGA)6-9,31,35 

Measurement of RGA has been used as a surrogate marker for airflow through the 

larynx due to its ease of measurement in the cadaver and in the live animal. Since most 

surgeries are aimed at increasing the RGA, this is an objective method of classification, 

although has not been correlated to clinical success. Since increased airway radius will 

lead to increased RGA, increased RGA is thought to increase flow rates or reduce 

airway pressure based on the following equation:  

V=P πr4/8nl where V is flow, P pressure, n viscosity of gas, l is length and r is radius 

of a tube. It is important to remember that RGA is not a direct measurement of any of 

the aforementioned variables. 

 

• Laryngeal resistance5,39 and airway pressure42 

Two papers have examined the direct measurement of laryngeal resistance by utilizing 

positive pressure flow oral to the larynx in a testing chamber.5,39 Resistance was 

calculated using the isovolumetric flow method, which assumes that flow is laminar. 

Resistance was measured at a flow of approximately 60L/min. A recent paper from the 

present author measured airway pressure whilst maintaining constant airflow and found 

that the measured airflow during that experiment was not laminar10. The simultaneous 

measurement of flow and pressure showed that by calculating laryngeal resistance by 

the isovolumetric method as above, that resistance changes with flow, suggesting that 

either deformation of the larynx is significant for the excised, paralyzed larynx, or (and) 

that the isovolumetric method does not apply, as expected. For that reason, the author 
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concluded that raw data such as pressure is a more reliable measure than resistance, as it 

does not require calculation based on assuming laminar or turbulent flow in the system. 

Since flow exists over a spectrum of laminar to turbulent, the change between them may 

be arbitrary.  

 

2.8 Unilateral arytenoid lateralization techniques 

UAL involved the suturing of the arytenoid cartilage to a more external cartilage to fix 

the position of the arytenoid. Lateralization techniques are broadly grouped into 

thyroarytenoid lateralization (TAL)3 where the arytenoid is fixed laterally to the thyroid 

cartilage, and cricoarytenoid lateralization (CAL) 42 where the arytenoid is fixed to the 

caudal aspect of the cricoid cartilage. CAL and TAL procedures both cause a significant 

increase in RGA and alleviation of clinical signs associated with laryngeal paralysis 

8,9,31,35. In vivo, TAL increased RGA by a smaller proportion than CAL8 and a cadaveric 

study showed similar findings9. It has been postulated that the combination of these two 

procedures (CTAL) may lead to optimal positioning of the arytenoid cartilage within 

the rigid structure formed by the thyroid and cricoid cartilage 3. Comparison between 

CAL and CTAL in the live animal showed no significant difference between RGAs and 

no detectable difference in clinical signs 7.  A study in this author’s laboratory 

determined that CTAL and CAL consistently reduced airway pressure, at airflow rates 

seen in normal and affected canines, compared to TAL but no significant differences 

were noted between CAL and CTAL10. 

 



	
  

	
  16 

The inter-arytenoid sesamoid band (IA band) provides a dorsal attachment between the 

arytenoid cartilages and prevents independent movement of the left and right arytenoids 

in the live animal 42,43. It has been hypothesized that cricoarytenoid disarticulation 

combined with IA band transection allows dorso-lateral arytenoid movement to cause 

greater increase in RGA3. One author9 found that sectioning the IA band caused 

significant reduction in the dorsoventral height of the RG but no significant increase in 

RGA.  A recent study by the current author showed that sectioning of the interarytenoid 

band had no effect on airway pressure, but for a low tension TAL procedure, it did 

allow an increase in RGA. 10 

 

The cricothyroid (CTJ) joint is a firm bilateral attachment between the cricoid and 

thyroid cartilages that prevents the overriding of those cartilages and maintains the 

dorsoventral height of the rima glottidis during abduction. 6,43Although CTJ 

disarticulation has been recommended to increase surgical exposure, its necessity has 

been debated as no significant increase in RGA or change in RG geometry was found 

9,31 and the risk of dorsoventral collapse has been postulated with bilateral procedures 6. 

This author’s study found that disarticulation of the cricothyroid joint had no significant 

effect on airway pressure in an excised cadaver larynx. 10 

 

Another variable factor in arytenoid lateralization is the tension of the suture employed. 

It is reported that for unilateral CAL, a low suture tension resulted in a lower percentage 

increase in rima glottidis area than a high tension suture (82% and 129% increase 

respectively) but misalignment of the RG and epiglottis in a high tension CAL was 
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postulated to play a role in the increased risk of aspiration pneumonia 31. This study did 

not objectively classify high and low tension and the necessity or practicality of an 

optimum suture tension to balance a possible risk of aspiration against increased airflow 

is unclear.  A further study by the same group found that increasing suture tension 

(which included further dissection of the laryngeal specimen) on a CAL procedure did 

not significantly affect laryngeal resistance with an open glottis used as a measure of 

maximum airflow. However higher suture tension reduced closed glottal resistance, 

which was used as a measure of the fit of the RG and epiglottis, and was predicted to 

increase the risk of aspiration pneumonia in vivo5. This has not been investigated or 

confirmed by any clinical study. A previous study by the present author showed that 

increasing tension without an increase in dissection significantly reduced airway 

pressure for TAL at 30 L/ min, CAL at 45 to 120 L/min, which incorporates resting 

flow rates recorded for both normal animals with and those with iLP. 10 

The RG is considered to be the most important resistor to airflow, and is the therapeutic 

target for laryngeal surgeries. CAL procedures in the canine cadaver larynx result in 

significantly reduced airway pressure compared to the TAL procedure8,10,35.  At 

consistent levels of dissection and suture tension (100g), a significant increase in RGA 

(114.8% to 152.5% increase in RGA) was seen after sectioning of the IA band, however 

no significant reduction in airway pressure was seen. It is unknown why an increase in 

RGA would not result in reduced airway pressure but the effects of the TAL and CAL 

suture have not been examined with regard to 3D cross sectional imaging of the larynx. 

The TAL, CAL, and CTAL procedures had different effects on airway pressure and 
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may have altered airflow by a more complex mechanism than simply by increasing the 

RGA. The RGA was not a reliable correlate of airway pressure in that study10.  

2.9 Computed Tomography of the larynx 

Computed tomography (CT) of the larynx is commonly used in humans in the pre and 

post therapeutic work-up for neoplastic conditions44 and has been used to produce 

computerized 3D models for assessing fluid flow and particle deposition through the 

trachea and larynx. More recently a veterinary study used CT to classify upper airway 

obstruction including iLP12. No study has examined the measurable volume of the 

larynx and it is currently unknown what effect surgical manipulation of the arytenoid 

cartilages may have on structures other than the RG. The volume of air contained within 

the larynx is measurable on CT using proprietary software (Osirix©, Osirix foundation, 

Geneva) and CT can be performed with patients under minor sedation at minimal risk 

and therefore provides a non-invasive and objective tool for anatomical assessment. 

Only one other study has utilized CT in assessing the normal anatomy of the canine 

larynx11. 

 

2.10 Conclusions regarding Unilateral Arytenoid Lateralization surgery for the 

idiopathic Laryngeal Paralysis patient  

Ultimately all surgical options except the nerve-muscle pedicle graft have aimed to 

increase the size of the RG, whether by directly removing tissue, or fixing the arytenoid 

cartilage out of the path of airflow. UAL has been suggested to cause mismatch 

between the RG and epiglottis in dogs that may have significant esophageal disease and 
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swallowing dysfunction, possibly predisposing to aspiration pneumonia preoperatively 

and for the rest of their lives post-operatively. The decision of how far to lateralize the 

arytenoid cartilage is a subjective decision made by the surgeon, with no published 

clinical outcome studies available. Given that often the underlying factors responsible 

for aspiration cannot be reversed and a patient’s life can be permanently affected by this 

decision, more objective assessment of the UAL procedure is required.  

 

2.11 Rationale for this study 

Arytenoid lateralization is a technique by which the RG is enlarged by an amount 

subjectively assessed by the operating surgeon to allow sufficient airflow to prevent 

clinically relevant dyspnea without significantly increasing the risk of aspiration 

pneumonia in dogs that already have esophageal disease or have a predisposition for 

developing it.30 In vitro evidence exists that high tension CAL procedures lead to 

greater reduction in airway pressure at clinically relevant flow rates 10 as well as 

increased RGA and a postulated mismatch between the epiglottis and glottis that may 

allow increased aspiration of fluid or food into the lower airways31. Clinical studies 

have failed to demonstrate differences in outcome related to technique and currently 

there is no validated method to measure laryngeal airway pressure or laryngeal 

resistance, or the mismatch of the epiglottis and glottis in the live patient. Variability of 

surgical technique between surgeons is an unknown factor in arytenoid lateralization 

and may result in a heterogeneous treatment effect of patients subject to arytenoid 

lateralization. 
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To allow the prospective assessment of clinical patients, a desirable measurement of the 

treatment effect of arytenoid lateralization would be non-invasive, in that full anesthesia 

and surgical measures would not be required, objective in that it could be measured 

consistently with low number of patients and would correspond directly to lateralization 

of the arytenoid and/or indirectly to increases in RGA or mismatch of the epiglottis and 

glottis. CT may offer the ability to examine the displacement of the arytenoid cartilage 

within the rigid 3 dimensional structures formed by the overlapping cricoid and thyroid 

cartilages.  The ability to classify the amount of lateralization objectively and correlate 

the ‘surgical dose’ with outcome or complication rates could allow the standardization 

of surgical treatment for iLP and subsequently its optimization by well-designed 

prospective assessment.  

 

2.12 Overall goals of this study 

• Assess the feasibility of CT for measuring arytenoid displacement in arytenoid 

lateralization. 

• Identify potential CT measures of arytenoid lateralization for future prospective 

assessment in clinical cases 

 

2.13 Null hypotheses 

1. Computed tomography of the excised canine cadaver larynx will be unable to detect the 

arytenoid cartilages as a separate entity within the larynx and their change in position 

due to arytenoid lateralization surgery. 
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2. No significant differences will be seen between measurements made after dissection of 

the larynx (prior to suture tightening) and the end of the experiment, suggesting that 

sequential tensioning of sutures in this experiment deform the larynx and invalidate 

sequential measures. 

 

3. No significant differences will be seen due to the effects of surgical techniques and 

tension and no suitable CT measurement parameter, which might warrant further 

prospective evaluation in clinical studies, will be identified. 

  



	
  

	
  22 

3. MATERIALS AND METHODS 

 

3.1 Specimens 

Eight laryngeal specimens were obtained from young adult large breed shelter dogs of 

similar body size (weight varied from 16.9 kg to 30.3 kg dependent on body condition; 

Mean bodyweight 22.71 kg), which were euthanized by IV solution of a pentobarbital-

phenytoin solution for reasons other than upper respiratory disease. The dog’s weights 

are shown in table 1.   

 

Table 1. Dog weight  

A table to show the weight of the dogs used in this study. 

Dog 
ID 

Body Weight 
(Kg) 

1 20.9 
2 19.0 
3 22.0 
4 16.9 
5 24.9 
6 30.3 
7 22.8 
8 24.9 

 

Each specimen comprised of the larynx, caudal oropharynx, proximal esophagus and 

proximal 5 tracheal rings. All larynges were examined to ensure that they were 

anatomically normal. Data collection was performed within 24 hours of tissue 

harvesting. Excess cervical tissue was excised and the esophagus was incised dorsally 

to permit visualization of the RG. Each larynx was secured to an acrylic board (Optix, 
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Eden Praire, Mn) using a polyvinyl chloride attachment (Ryan Herco Flow Solutions, 

Ca) at the base of the epiglottis and the third tracheal ring.  The epiglottis was allowed 

to rest in a neutral position and was not pulled cranially. This allowed stabilization of 

the larynx without impeding arytenoid motion or the use of radio-opaque materials, 

which might cause CT artefact.  Fiducial markers (Beekley Corporation, Bristol, CT) 

were secured at the base of the RG and at the most caudal point of the cricoid cartilage 

(Gluture, Abbott Animal Health, Il) to establish the laryngeal axis. The prepared 

laryngeal specimen is shown in figure 1. 

 

 

Figure 1. The prepared laryngeal specimen 

Figure 1 shows the prepared canine cadaver larynx. The larynx has been mounted on an 
acrylic board with two PVC attachments.  The acrylic board contains markers to allow 
orientation of true cranio-caudal alignment of the specimen. This specimen has had the 
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TAL and CAL suture placed as in Griffiths et al.8 and fiducial markers placed as 
illustrated in Fig 2. 
 

3.2 Laryngeal specimen preparation 

All procedures were performed on the left arytenoid cartilage by a single surgeon (JW) 

as described in a previous study10. Thyroarytenoid lateralization (TAL) and 

cricoarytenoid lateralization (CAL) sutures were placed using 2-0 polypropylene 

(Prolene, Ethicon, Blue Ash, Ohio) as described previously8 but the cricothyroid 

articulation and inter-arytenoid band was left intact. Sutures were passed through the 

ventral portion of the articular surface of the muscular process of the arytenoid cartilage, 

which has been shown to have the greatest cartilage thickness45. Sutures were tensioned 

using a tensionmeter (Berkley 50lb Digital Fish Scale, Pure fishing inc., Spirit lake, IA) 

using 100g (a tension that caused fixing of the arytenoid with minimal abduction) and 

500g (a significant level of abduction without risking arytenoid fracture or pull through), 

as in previous studies10, and the sutures were secured with a fluid administration set 

clamp (Churchill medical systems, Lansdale, PA) which was radiolucent and 

maintained abduction during measurement but permitted the same suture to be used in  

sequential interventions.  Figure 2 shows the position of the fiducial markers on the 

lateral projection achieved from a Maximal Intensity Projection (MIP) a volume 

rendering method used in 3D reconstruction of the larynx. 
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Fig 2. Fiducial marker placement illustrated on MIP 3D reconstruction  
This figure shows a lateral projection of the larynx, taken from the 3D MIP 
reconstruction of the larynx depicted in Fig 1. This illustrates the placement of the 
fiducial markers. The cranial fiducial marker is placed at the base of the rima glottidis. 
The caudal marker is placed at the most medial, dorsal and caudal aspect of the cricoid 
cartilage. 
 

3.3 Computed Tomography 

Computed tomography (CT) (GE Lightspeed 16-slice) was performed with 0.6mm 

transverse slice thickness for each specimen before intervention (presurgical) and after 

dissection and suture placement of TAL and CAL sutures and a fiduciary marker fixed 

with cyanoacrylate glue (Gluture, Abbott Animal Health, Il) to the muscular process of 

the arytenoid cartilage (this data was recorded as ‘dissected’). CT was performed for 

TAL, CAL and CTAL at 100g tension, which was found to cause minimal abduction 

and 500g tension which was used for high tension in a previous study10. For CTAL, the 

CAL suture was tightened prior to the TAL suture as previously reported7.  Procedures 
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were performed in a random order dictated by generation of a random number between 

0 and 1 for each procedure using a proprietary website (www.random.org). Arytenoid 

lateralization procedures were performed based on the descending order of random 

number. After the last arytenoid lateralization procedure was performed, the sutures 

were loosened and CT was repeated (this data was recorded as postsurgical). 

 

 Measurement of laryngeal volumes and fiducial marker measurement were measured 

solely by one operator for each measure (JW or NR) who was blinded to the suture type 

and tension employed, however blinding for the presence of the suture fastening clamp 

could not be achieved.  Volume was calculated by measuring the cross sectional area of 

the larynx on each axial slice and using the volume measurement tool of Osirix© v. 

3.6.1. (Osirix foundation, Geneva) Volume was measured on the soft tissue window, to 

replicate most closely the parameters that would be used for the live animal and 

minimize edge effect. 3D reconstructions using the same software application were 

performed in order to allow orientation of each laryngeal specimen along a conserved 

axis made by the superimposition of the cranial and caudal fiducial markers. From this 

axis horizontal and vertical displacement of the arytenoid cartilage marker, and 

measurement derivations thereof could be objectively assessed. Reconstructions were 

also positioned to allow a conserved rostral projection to allow measurements to assess 

the distance between left and right arytenoid cartilages (Inter-arytenoid distance), left 

arytenoid cartilage and thyroid cartilage (Arytenoid thyroid wing distance, ATW).  
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3.4 Computed Tomographic measures of Laryngeal volume 

3.4.1 Laryngeal volume  

The internal volume of the larynx was measured between the most rostral axial slice 

with dorsal coverage by the interarytenoid band, as illustrated in figure 3a, to the most 

caudal axial slice containing the caudal fiducial marker, as shown in figure 3b. The 

volume was calculated using the Osirix measurement tool, after manual tracing the 

cross sectional area of air contained within the larynx at each 0.6mm axial slice between 

the rostral and caudal limits of measurement.  

 

Fig 3a. Laryngeal Volume, cranial extent 
Fig 3a shows an axial (above) and lateral (below) multiplanar reconstruction of the 
larynx.  The cursor rests on the most cranial point of measurement for volume. This is 
the most cranial axial slice with complete dorsal coverage.  
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Fig 3b. Laryngeal volume, caudal extent 
This figure shows an axial (above) and lateral (below) multiplanar.  The cursor rests on 
the most caudal point of measurement for volume. This is the most caudal axial slice 
with a complete dorsal coverage of cartilage (caudal cricoid cartilage). 
 

3.4.2. Central to rostral laryngeal cross sectional area; cCSA  

Central to rostral laryngeal cross sectional area (cCSA) was measured on the MIP 

setting incorporating a 1.8mm rostral slice which contained both the cranial fiducial  
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marker and dorsal coverage provided by the interarytenoid band. The single displayed 

cross sectional area of air was traced and the area calculated using the Osirix© v. 3.6.1. 

 

 

Fig 4. Central to rostral cross sectional area; cCSA 
This axial MIP CT slice illustrated the measurement of cCSA. The cross sectional area 
of the airway was measured at the most rostral axial MIP slice (incorporating 1.8mm of 
tissue), which included the cranial fiducial marker and the interarytenoid sesamoid band.  
The green tracing shows the outline of the area measured. 
 
 
3.4.3 Conserved laryngeal axis length; CLA 

The lateral projection of the 3D MIP reconstruction was aligned by superimposition of 

the thyroid cartilages. A line (conserved laryngeal axis, CLA) was projected which 

Cranial fiducial marker!

Interarytenoid band!

Thyroid cartilage!

Arytenoid cartilage!
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passes through the center of the cranial and caudal fiducial markers. The length between 

the center of the cranial and caudal fiducial markers was measured as CLA. 

 

Fig 5. Conserved laryngeal axis length; CLA 
This lateral projection, taken from the 3D MIP reconstruction, illustrates the 
measurement of the laryngeal axis. The solid blue line represents the conserved 
laryngeal axis (CLA), which is the distance between the cranial and caudal fiducial 
markers.  
 

3.4.4 Horizontal displacement of the arytenoid fiducial marker; fid horiz  

 The dorsoventral projection of the 3D MIP reconstruction was used to assess horizontal 

arytenoid displacement from midline. The laryngeal axis was aligned end on to ensure a 

constant and repeatable positioning of the larynx. It was then rotated to ensure 

symmetrical positioning.  Horizontal displacement of the arytenoid was measured by 
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the distance between the central axis of the larynx and the fiducial marker placed on the 

muscular process of the arytenoid cartilage. 

 

 

Fig 6. Horizontal fiducial marker displacement; fid horiz 
This dorsoventral projection was taken from the 3D MIP reconstruction was used to 
assess horizontal arytenoid motion. The cranial and caudal fiducial markers were 
superimposed to ensure a constant and repeatable positioning of the larynx.  The larynx 
was then rotated to ensure it was symmetrically aligned around the positioning markers. 
Horizontal displacement of the arytenoid was measured by the distance between the 
central axis of the larynx and the fiducial marker previously placed on the muscular 
process of the arytenoid cartilage. 
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3.4.5 Vertical displacement of the arytenoid fiducial marker; fid vert  

 The lateral projection of the 3D MIP reconstruction was used to position the larynx in 

true lateral based on a superimposition of the thyroid cartilages. The CLA was 

established and vertical displacement of the arytenoid was measured by the distance 

between the CLA of the larynx and the fiducial marker placed on the muscular process 

of the arytenoid cartilage. The fid vert measurement is illustrated in Fig 7. 

 

Fig 7. Vertical fiducial marker displacement; fid vert 
This lateral projection was taken from the 3D MIP reconstruction and used to position 
the larynx in true lateral based on superimposition of the thyroid cartilages. The 
laryngeal axis was established and vertical motion of the arytenoid was measured by the 
vertical distance between the conserved laryngeal axis and the arytenoid fiducial marker. 
The measured distance is annotated with a solid black double-ended arrow. 
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3.4.6 Caudal arytenoid displacement; CauAM  

The lateral projection of the 3D MIP reconstruction was used to position the larynx in 

true lateral based on a superimposition of the thyroid cartilages. Caudal arytenoid 

displacement was measured between the intercept point of the CLA and Fid vert 

measurements (see Fig 7) to the most caudal point of the CLA. The CauAM 

measurement is illustrated in figure 8. 

 

Fig 8. Caudal arytenoid displacement; CauAM 
The lateral projection of the 3D MIP reconstruction was used to position the larynx in 
true lateral based on an overlap of the thyroid cartilages. The conserved laryngeal axis 
(CLA) was established and caudal arytenoid motion (CauAM) was the measured 
distance on the CLA between the point where the Fid vert measurement line contacted 
the CLA and the caudal fiducial marker. The measured distance is annotated with a 
solid black double-ended arrow. 
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3.4.7 Arytenoid to thyroid wing distance; ATW  

The 3D MIP reconstruction in a mixed soft tissue window (WL 168; WW 200) was 

oriented to show the rostral view of the larynx. The distance between the inner surface 

of the arytenoid cartilage and the center of the wing of thyroid cartilage was measured 

as the arytenoid to thyroid wing distance (ATW) and is shown in Fig 9.  

 

 
Fig 9. Arytenoid to external thyroid wing; ATW 
3D MIP reconstruction in a mixed soft tissue window (WL 168; WW 200) was oriented 
to show the rostral view of the larynx. The distance between the inner surface of the 
arytenoid cartilage and the wing of thyroid cartilage was measured as ATW.  The 
measured distance is annotated with a dashed white line with a double-ended arrow. 
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3.4.8 Interarytenoid distance; IAD 

The 3D MIP reconstruction in a mixed soft tissue window (WL 168; WW 200) was 

oriented to show the rostral view of the larynx. The distance between the most medial 

portions of the arytenoid cartilages was measured as inter arytenoid distance (IAD) and 

is shown on figure 10. 

 

 

Fig 10. Interarytenoid distance, IAD 
3D MIP reconstruction in the soft tissue window was oriented to show the rostral view 
of the larynx. The distance between the inner surfaces of the arytenoid cartilages was 
measured as Interarytenoid distance. The measured distance is annotated with a solid 
white line with a double-ended arrow. 
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3.5 Statistical analysis 

One-way analysis of variance with fixed effects (surgical procedure and order of 

procedure) was performed to identify overall significance. Significant differences 

between measured CT parameters for presurgical, dissected and postsurgical data as 

well as different arytenoid lateralization techniques and suture tensions were assessed 

by the least square means procedure and pairwise differences were assessed using a 

Tukey adjustment for type 1 error control. Each observation was normalized as a 

percentage of the presurgical parameter if available or dissected parameter (for fiducial 

marker measurements) for each larynx. The assumptions of the independence of 

observations, their normality, and homoscedasticity were assessed.  Significant 

associations were assessed with the Shapiro-Wilk test for departures for normality. 

Dissected and post surgical data was assessed for significant associations by assessment 

of a Kernel distribution of bootstrapped means. Open source statistical software was 

used throughout (R Trick or Treat version 2.15.2, Vienna, Austria).  
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4. RESULTS 

 

All CT scans were able to distinguish the arytenoid cartilage from the thyroid and 

cricoid cartilage. CT scans of unaltered larynges were inspected by one author (JW) and 

assessed for abnormal anatomy. All specimens were assessed to be within normal limits. 

All CT scans were deemed diagnostic and no data points were discarded. 

4.1 Laryngeal Volume 

Figure 11 shows the normality plot for laryngeal volume data.  

 

Fig 11. Laryngeal Volume, normality plot 
The normality plot for volume data for the 8 dogs used in the study is shown in fig. 11. 
Visual assessment suggests no departure from normality. 
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Shapiro-Wilk normality test

data: lar.dfvalue[lar.dfvariable == ”vol1.norm”] W = 0.9559, p-value = 0.01308

[1] ”Volume measurement 2”

Shapiro-Wilk normality test

data: lar.dfvalue[lar.dfvariable == ”vol2.norm”] W = 0.9088, p-value = 6.998e-
05

The final assumption of homoskedasticity is supported by evidence from Breusch-
Pagen tests of both response variables against the proposed independent variables:
order of surgery, type of surgery, and for each larynx.

studentized Breusch-Pagan test

data: value tension + type + order + type * order + dog BP = 40.89, df = 88,
p-value = 1
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In general, laryngeal volume was greatest prior to surgery, as shown in fig 12. All 

surgical interventions caused a reduction in volume however these reductions were not 

significant. Surgical manipulation of the larynx by all arytenoid lateralization 

procedures had no significant effect on laryngeal volume. Mean and standard deviation 

is shown in table 2 and the box and whiskers plot in figure 12.  

 

 

Fig 12. Laryngeal volume, box and whiskers plot 
 
 This figure shows the box and whiskers plot for the normalized means of laryngeal 
volume by surgery type. No significant differences are noted between presurgical values 
(normalized to 1.00) and different surgery types. No significant differences are noted 
between surgery types. 
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Table 2. Laryngeal volume, mean+-SD, pairwise comparisons 
 
This table shows the mean and standard deviation for Laryngeal Volume and the p 
values for pairwise comparison with the presurgical value (p<0.05 is taken as 
significant) i.e. how does surgery affect laryngeal volume. 
 

Surgical Intervention 

Means Laryngeal 
Volume  (cm3) p value,  pairwise 

comparison  to 
presurgical Presurgical 7.33 

Dissected 7.24 
TAL100 7.19 1.00 
TAL500 7.24 1.00 
CAL100 7.18 1.00 
CAL 500 7.12 1.00 

CTAL 100 7.13 1.00 
CTAL 500 7.15 1.00 

Postsurgical 7.15 1.00 
 

SD Laryngeal Volume  (cm3) 

Presurgical 1.93 
Dissected 1.84 
TAL100 1.62 
TAL500 1.71 
CAL100 1.71 
CAL 500 1.96 

CTAL 100 1.73 
CTAL 500 1.67 

Postsurgical 1.63 
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4.2 Central to rostral laryngeal cross sectional area (cCSA) 

Table 3 shows the mean and standard deviation for cCSA. All surgeries increase cCSA 

compared to presurgical however this is not a significant increase. CAL procedures 

followed by CTAL followed by TAL procedures show the greatest increase compared 

to presurgical values. Increasing tension from 100g to 500g increased cCSA for all 

procedures however this was not significant. The box and whisker plot shown in figure 

13 shows data normalized to presurgical values. 

 

Table 3. cCSA, mean+-SD, pairwise comparisons  
This table shows the mean and standard deviation for Central cross sectional area 
(cCSA) and the p values for pairwise comparison to presurgical values (p<0.05 is taken 
as significant). No significant changes are seen. 
 

Surgical Intervention MIP projection 
p value, pairwise 

comparison to 
presurgical 

Means Central CSA (cm2) 

Presurgical 0.81 
Dissected 0.80 
TAL100 0.86 1.00 
TAL500 0.87 1.00 
CAL100 0.94 1.00 
CAL 500 0.99 1.00 

CTAL 100 0.92 1.00 
CTAL 500 0.93 1.00 

Postsurgical 0.68 1.00 
  

	
  SD Central CSA (cm2) 
	
  Presurgical 0.29 
	
  Dissected 0.33 
	
  TAL100 0.32 
	
  TAL500 0.36 
	
  CAL100 0.32 
	
  CAL 500 0.34 
	
  CTAL 100 0.29 
	
  CTAL 500 0.40 
	
  



	
  

	
  41 

 

 

Fig 13. cCSA, box and whiskers plot 
This figure shows the box and whiskers plot for the normalized means of central to 
rostral cross sectional area (cCSA). No significant differences are noted between 
presurgical values (normalized to 1.0) and different surgery types. No significant 
differences are noted between surgery types. 
 

4.3 Horizontal displacement of the arytenoid fiducial marker  

Fid horiz is greatest for CTAL procedures followed by CAL and TAL. There is a weak 

trend for suture tension increasing displacement however no significant associations are 

seen. No comparison can be made with presurgical values since no fiducial marker may 

be placed prior to surgery. The Fid horiz data is illustrated in table 4 and fig 14 is a box 

and whisker plot normalized to dissected data. Table 5 shows the p values for pairwise 

comparisons between procedures with no significant differences seen. Figure 15 shows 
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a representative MIP reconstruction view of a larynx. The lines shown for each surgical 

procedure are scaled to represent the mean horizontal displacement of the arytenoid 

fiducial marker (fid horiz).  

 

Table 4. fid horiz and fid vert, mean+-SD, pairwise comparisons 
This table shows the mean and standard deviation for horizontal (Fid Horizontal) and 
vertical (Fid Vertical) motion of the arytenoid fiducial marker. 

 

Surgical 
Intervention 3D reconstruction 

Means Fid Horizontal (mm) Fid Vertical (mm) 
TAL100 13.19 13.01 
TAL500 12.90 12.81 
CAL100 12.14 13.50 
CAL 500 12.40 12.91 

CTAL 100 12.94 12.83 
CTAL 500 13.23 12.68 

Postsurgical 13.06 13.78 
 

SD Fid Horizontal (mm) Fid Vertical (mm) 
Dissected 1.17 0.86 
TAL100 1.72 1.14 
TAL500 1.79 1.23 
CAL100 1.15 1.45 
CAL 500 0.86 1.48 

CTAL 100 1.27 1.02 
CTAL 500 1.29 0.88 

Postsurgical 2.04 1.14 
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Fig 14. fid horiz, box and whiskers plot 
This figure shows the box and whiskers plot for the normalized means of Horizontal 
motion of the arytenoid fiducial marker (Fid Horizontal) by surgical technique. No 
significant differences are noted between different surgery types.  
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Fig 15. fid horiz means, MIP reconstruction 
This figure shows a representative MIP reconstruction view of a larynx. The lines 
shown for each surgical procedure are scaled to represent the mean horizontal motion of 
the arytenoid fiducial marker (fid horiz). No significant differences are seen between 
procedures. 
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4.4 Vertical fiducial marker displacement relative to the laryngeal axis (fid vert) 

No significant trends or associations are seen when comparing suture tension or 

technique. Suture tension and technique within arytenoid lateralization have no effect 

on fid vert. No comparison can be made with presurgical values since no fiducial 

marker may be placed prior to surgery. The mean fid vert data is illustrated in table 4 

and fig 16 is a box and whisker plot normalized to dissected data. Table 5 shows the p 

values for pairwise comparisons between procedures. No significant differences are 

seen. Figure 17 shows a representative MIP reconstruction view of a larynx. The lines 

shown for each surgical procedure are scaled to represent the mean vertical 

displacement of the arytenoid fiducial marker (fid vert). 

 

 

Fig 16. fid vert, box and whiskers plot 
 
 This figure shows the box and whiskers plot for the normalized means of vertical 
motion of the arytenoid fiducial marker (Fid Vert) by surgical technique. Increasing 
tension shows a trend for reducing mean fid vert. No significant differences are noted 
between different surgery types.  
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Fig 17. fid vert means, MIP reconstruction  
This figure shows a representative MIP reconstruction view of a larynx. The lines 
shown for each surgical procedure are scaled to represent the mean vertical motion of 
the arytenoid fiducial marker (fid vert). No significant differences are seen between 
procedures. 
 
 
Table 5. fid vert and fid horiz, pairwise comparisons 
This table shows the p values for pairwise comparison between arytenoid lateralization 
surgeries of different types and suture tension. Values for Horizontal motion of the 
arytenoid fiducial marker (Fid Horizontal) and vertical (Fid Vertical) motion of the 
arytenoid fiducial marker are shown concurrently. 
 

Surgical 
Intervention TAL100 TAL500 CAL100 CAL 

500 
CTAL 

100 
CTAL 

500 
Fi

d 
ve

rt 
TAL100   1.000 0.954 1.000 1.000 0.993 
TAL500 1.000   0.767 1.000 1.000 1.000 
CAL100 0.954 0.728   0.565 0.781 0.565 
CAL 500 1.000 0.973 1.000   1.000 1.000 

CTAL 100 1.000 1.000 0.650 0.949   1.000 
CTAL 500 0.993 0.992 0.244 0.621 0.997   

	
  	
   Fid horiz   
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4.5 Caudal arytenoid displacement (CauAM) 

CAL 500 (the high tension CAL suture) shows the lowest mean CauAM. Minor 

reduction in mean displacement is seen with increase in suture tension for a set 

technique but no significant trends or associations are seen between CauAM 

measurements. Suture tension and technique within arytenoid lateralization have no 

significant effect on caudal displacement of the arytenoid. No comparison can be made 

with presurgical values since no fiducial marker may be placed prior to surgery. The 

mean and standard deviation are shown in table 6 and fig 18 shows a box and whiskers 

plot. Table 7 shows the pairwise comparison for CauAM by surgery types. Figure 19 

shows a representative MIP reconstruction view of a larynx. The lines shown for each 

surgical procedure are scaled to represent the caudal displacement of the arytenoid 

fiducial marker along the conserved laryngeal axis (CauAM). 

 
Table 6. CauAM mean +-SD  
This table shows the mean and standard deviation for caudal motion of the arytenoid 
fiducial marker (CauAM) measured on CT 3D reconstruction of the larynx. 
 

Surgical Intervention CauAM (mm) 
Means SD 

Dissected 21.51 1.66 
TAL100 19.68 1.63 
TAL500 19.68 1.69 
CAL100 19.98 1.64 
CAL 500 18.81 2.08 

CTAL 100 19.51 2.22 
CTAL 500 19.58 1.66 

Postsurgical 21.16 2.06 
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Fig 18. CauAM, box and whiskers plot 
This figure shows the box and whiskers plot for the normalized means of caudal motion 
of the arytenoid fiducial marker (CauAM) by surgical technique. No significant 
differences are noted between different surgery types.  
 

Table 7. CauAM, pairwise comparisons 
This table shows the p values for pairwise comparison between arytenoid lateralization 
surgeries of different types and suture tension, for caudal motion of the arytenoid 
fiducial marker (CauAM). 
 

Surgical Intervention TAL100 TAL500 CAL100 CAL 
500 

CTAL 
100 

TAL500 1.000     
CAL100 1.000 1.000    
CAL 500 0.761 0.734 0.441   

CTAL 100 1.000 1.000 0.992 0.905  
CTAL 500 1.000 1.000 0.998 0.843 1.000 

Caudal Arytenoid Motion, CauAM 
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Fig 19. CauAM means, MIP reconstruction 
This figure shows a representative MIP reconstruction view of a larynx. The lines 
shown for each surgical procedure are scaled to represent the caudal displacement of the 
arytenoid fiducial marker along the conserved laryngeal axis (CauAM). No significant 
differences are seen between procedures. 
 

4.6 Inner dorsal arytenoid process distance (IAD) 

 Table 8 and fig 20 show that the distance between the right and left arytenoid cartilages 

does not change significantly between presurgical values and any technique, or between 

any techniques. Table 10 shows the p values for comparison between techniques and 

tensions.  Figure 20 shows the box and whiskers plot for the normalized data of the 

interarytenoid distance. Figure 21 shows a representative rostral 3D reconstruction view 

of a larynx. The lines shown for each surgical procedure are scaled to represent the 

interarytenoid distance. No significant differences are seen between procedures. 
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Table 8. IAD, mean +-SD, pairwise comparisons  
This table shows the mean and standard deviation for the interarytenoid distance (IAD) 
measured on the rostral view of the 3D reconstruction of the larynx. p values shown are 
for pairwise comparison to presurgical values (p<0.05 is taken as significant). 
 

Surgical 
Intervention 

IAD (mm) 
p value, 
pairwise 

comparison to 
presurgical Mean SD 

Presurgical 6.01 1.27 
Dissected 6.16 1.07 
TAL100 7.36 3.11 1.00 
TAL500 6.18 1.74 0.74 
CAL100 6.54 1.50 1.00 
CAL 500 6.73 1.52 0.98 

CTAL 100 6.44 1.48 1.00 
CTAL 500 6.75 1.78 0.98 

Postsurgical 5.56 0.96 0.99 
 

 
Fig 20. IAD, box and whiskers plot  

 
This figure shows the box and whiskers plot for the normalized data of the 
interarytenoid distance. No significant differences are seen. 
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Fig 21. IAD, MIP reconstruction  
This figure shows a representative rostral 3D reconstruction view of a larynx. The lines 
shown for each surgical procedure are scaled to represent the interarytenoid distance. 
No significant differences are seen between procedures. 
 
4.7 Arytenoid to external thyroid wing distance (ATW) 

Significant differences were seen between CAL 100 and CTAL 500 (p<0.005) and 

between CAL 100 and TAL 500 (p<0.012) in the distance between arytenoid cartilage 

and thyroid wing measured from the rostral view of the larynx.. Table 9 shows the mean 

+-SD data for ATW. There is a tendency for CAL procedures to have higher ATW 

distances than TAL and CTAL procedures. Suture tension reduces ATW for all 
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techniques but this is not significant. A comparison of all other arytenoid lateralization 

techniques was unable able to show a significant difference. 

 

Fig 22 shows the box and whiskers plot with significances noted. Table 10 shows the p 

values for the pairwise comparison of techniques. Figure 23 shows a representative 

rostral 3D reconstruction view of a larynx with scaled data plotted to show the mean 

ATW for each procedure. Fig 24 shows the best illustration of the data by plotting the 

mean ATW distance between the CAL 100, TAL 500 and CTAL 500 on an example 

rostral view of a larynx. Table 9 shows the p values for comparison between techniques. 

The Shapiro-Wilk normality test in fig 25 suggests that ATW data is normally 

distributed validating the use of parametric statistics. Data to ensure that order of data 

and previous surgeries are not significant is shown in fig 27. 

 

Table 9. ATW, mean +-SD, pairwise comparisons This table shows the mean and 
standard deviation for the arytenoid to thyroid wing distance (ATW) measured on the 
rostral view of the 3D reconstruction of the larynx. p values shown are for pairwise 
comparison to presurgical values (p<0.05 is taken as significant). 
 

Surgical 
Intervention 

ATW (mm) p value, 
pairwise 

comparison 
to 

presurgical 

Mean SD 
Presurgical 15.26 1.33 
Dissected 16.84 1.77 
TAL100 15.40 1.12 1.00 
TAL500 14.84 0.89 0.99 
CAL100 16.54 1.62 1.00 
CAL 500 15.94 1.66 0.99 

CTAL 100 15.30 1.13 0.51 
CTAL 500 14.73 1.27 0.97 

Postsurgical 16.91 1.63 0.18 
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Fig 22. ATW, box and whiskers plot  
This figure shows the box and whiskers plot for the normalized means of the arytenoid 
to thyroid wind distance (ATW). Significant differences were seen between CAL 100 
and CTAL 500 (p<0.005) and between CAL 100 and TAL 500 (p<0.012) 
 

 

 

Fig 23. ATW, MIP reconstruction, all surgeries 
This figure shows a representative rostral 3D reconstruction view of a larynx. The lines 
shown for each surgical procedure are scaled to represent the distance between the 

15.26=Pre*3.54*
Cal*100*16.54*=3.84*
Tal*500*14.84*=3.44*
CTAL*500*14.73*=*3.42*
*

Arytenoid to Thyroid Distance; mean!

TAL 100!

TAL 500!

CAL 100!

CAL 500!

CTAL 100!

CTAL 500!
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arytenoid and the thyroid wing (ATW). Significant differences include CAL 100 and 
TAL 500 (p=0.012) and between CAL 100 and CTAL 500 (p=0.005) which are 
illustrated in figure 24. 
 
 

 

 
Fig 24. ATW, MIP reconstruction, significant differences 
This figure shows the rostral view whereby ATW measurements are made. This is a 
presurgical larynx (no fiducial marker placed) and the white line (presurgical) shows the 
measured distance. The other arrowed lines correspond to the means ATW of CAL 100 
(yellow), TAL 500 (red) and CTAL 500 (green) to illustrate the difference in mean 
distance for these values. Significant differences are shown between CAL 100 and TAL 
500 (p=0.012) and between CAL 100 and CTAL 500 (p=0.005).  
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Fig 25. ATW, departure from normality  
Shapiro-Wilk test for departure from normality for arytenoid to thyroid wing distance 
(ATW), for all larynges. p-value = 0.3199 suggesting normal distribution. 
 
 
Table 10. ATW and IAD, pairwise comparisons  
This table shows the p values for the pairwise comparison between surgical techniques 
for the arytenoid to thyroid wing distance (ATW) and for the interarytenoid distance 
(IAD) measured on the rostral view of the 3D reconstruction of the larynx. p<0.05 is 
taken as significant and highlighted in red. 
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Surgical 
Intervention TAL100 TAL500 CAL100 CAL 

500 
CTAL 

100 CTAL 500 

IAD 

TAL100  0.662 0.922 0.981 0.877 0.984 

TAL500 0.926  1.000 0.992 1.000 0.990 

CAL100 0.237 0.012  1.000 1.000 1.000 

CAL 500 0.956 0.311 0.871  1.000 1.000 

CTAL 100 1.000 0.978 0.144 0.879  1.000 

CTAL 500 0.804 1.000 0.005 0.181 0.912  

 ATW 
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 4.8 Conserved laryngeal axis length (CLA) 

Conserved laryngeal axis length was not significantly different between any 

interventions on the same larynx, suggesting no relative movement between the thyroid 

and cricoid cartilages. Table 11 and fig 26 show small variations in mean and median 

values and table 12 illustrates the p values from the pairwise comparisons of all 

procedures. No significant differences are noted. 

 

Table 11. CLA, mean +-SD 
This table shows the mean and standard deviation for the conserved laryngeal axis 
(CLA).  
 
 

Surgical Intervention CLA (mm) 
Mean SD 

Presurgical NA NA 
Dissected 39.82 2.61 
TAL100 39.41 2.83 
TAL500 39.49 2.76 
CAL100 39.48 2.67 
CAL 500 39.21 3.03 

CTAL 100 39.46 3.12 
CTAL 500 39.43 3.14 

Postsurgical 39.35 3.12 

 

4.9 Dissected vs. postsurgical 

A comparison of the dissected larynx (whereby sutures have been placed but not 

tightened) and the post surgical larynx (whereby sutures have been repeatedly tightened 

and loosened for each experiment and then left loose) was performed to identify any 

changes in measured parameters that might be caused by repeated tensioning. Table 13 
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Fig 26. CLA, box and whiskers plot 
This figure shows the box and whiskers plot for the normalized data of the conserved 
laryngeal axis (CLA). No significant differences are seen. 
 

shows the means of such data and the p values from pairwise comparisons. No 

significant differences are seen in any of the measured parameters. Figure 27 shows a 

Kernel distribution of bootstrapped means specifically for ATW since significant 

differences were seen. One hundred bootstrap samples were taken of these values and 

the densities are shown above.  Visually the densities appear similar.  This gives us 

confidence that larynges are not materially affected by sequential surgeries at the level 

of measurement we were able to carry out. 
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Table 12. CLA, pairwise comparisons  
This table shows the p values for the pairwise comparison between surgical techniques 
for the Conserved Laryngeal Axis (CLA). p<0.05 is taken as significant. 
 
 

Surgical Intervention TAL100 TAL500 CAL100 CAL 500 CTAL 100 
TAL100      
TAL500 1.000     
CAL100 1.000 1.000    
CAL 500 0.998 0.987 0.990   

CTAL 100 1.000 1.000 1.000 0.996  
CTAL 500 1.000 1.000 1.000 0.999 1.000 

Conserved laryngeal axis, CLA 
 

 

Table 13. Dissected vs. postsurgical, mean +-SD, pairwise comparisons  
This table shows the means and standard deviation for all variables between the 
dissected and the postsurgical larynx. p values are given for the pairwise comparison 
dissected and the postsurgical larynx  (p<0.05 is taken as significant). This is a 
comparison of larynges after dissection and placement of sutures (dissected) and at the 
end of the procedure when the sutures have been sequentially tied and loosened 
(postsurgical). No significant changes are seen in measured parameters are seen by 
sequential suture tightening. 
 

 

Surgical 
Intervention M

ea
ns ATW 

(mm)

Dissected 16.84
Postsurgical 16.91

P value 
dissected vs. 
post surgical 

1.000

SD

ATW 
(mm)

Dissected 1.77
Postsurgical 1.63

1.07
0.96

IAD 
(mm)

6.16
5.56

0.994

IAD 
(mm)

Cranial 
view

Volume 
measurement MIP 

Laryngeal 
Volume (cm3)

Central 
CSA 
(cm2)

Cau 
AM 

(mm)

Fid 
Horiz 
(mm)

Fid 
Vert 
(mm)

CLA 
(mm)

7.24 0.80 21.51 12.55 14.33 39.82
7.15 0.68 21.16 13.06 13.78 39.35

1.000 0.999 0.999 0.896 0.986 0.817

Laryngeal 
Volume (cm3)

Central 
CSA 
(cm2)

Cau 
AM 

(mm)

Fid 
Horiz  
(mm)

Fid 
Vert 
(mm)

CLA 
(mm)

1.84 0.33 1.66 1.17 0.86 2.61
1.63 0.15 2.06 2.04 1.14 3.12

3D reconstruction
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Fig 27. Kernel distribution of bootstrapped means; a comparison of dissected and 
postsurgical 
 
This figure 27 shows a Kernel distribution of bootstrapped means specifically for ATW. 
One hundred bootstrap samples were taken of these ATW values for dissected and 
postsurgical data and the densities are shown above.  Visually the densities appear 
similar.  This gives confidence that larynges are not materially affected 
by sequential surgeries at the level of measurement we were able to carry out. 
 

4.10 Arytenoid displacement  

Figures 28 and 29 compile the best visual appraisal of the effect of technique and 

tension on measured parameters.  ATW and fid horizon represent lateralization of the 
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larynx (ATW decreases with increasing lateralization and fid horiz increases with  

 

increasing lateralization). Fid vertical is the only measure of vertical displacement and 

CauAM represents caudodorsal displacement parallel to the conserved laryngeal axis. 

 

For a set tension of 100g, there is a tendency for CAL procedures to cause less vertical 

and more caudal displacement than the TAL, which produces a greater lateralization.  

This is illustrated in fig 28. At a tension of 500g, there is a similar tendency for CAL 

procedures to cause less lateralization than TAL procedures, shown in fig 29. 
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Fig 28; Combined box and whiskers plot for arytenoid displacement in three 
planes, at 100g suture tension 
 
This box and whiskers plot displays the combined affect on the lateralization (ATW 
(small values indicate more lateralization) and fid horiz (larger values represent more 
lateralization)), vertical motion (fid vert) and caudodorsal motion (CauAM) or the 
arytenoid due to different UAL techniques. For a set tension of 100g, there is a 
tendency for CAL procedures to cause less vertical and more caudal displacement than 
the TAL, which produces a greater lateralization. 
 

 

Fig 29. Combined box and whiskers plot for arytenoid displacement in three 
planes, at 500g suture tension 
 
This box and whiskers plot displays the combined effect on the lateralization (ATW 
(smaller values indicate more lateralization) and fid horiz (larger values represent more 
lateralization)), vertical motion (fid vert) and caudodorsal motion (CauAM) or the 
arytenoid due to different UAL techniques. For a set tension of 500g, there is a 
tendency for CAL procedures to cause less lateralization than the TAL and CTAL 
procedures. 
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5. DISCUSSION 
 

All CT scans were able to distinguish the arytenoid cartilage from the thyroid and 

cricoid cartilage. The method described was easy to perform and repeatable. 

 

ATW and lateralization  

This study found significant changes in ATW when a high tension TAL suture was used 

as part of the surgical treatment (TAL 500 and CTAL 500) compared to a low tension 

CAL.  TAL is postulated to move the arytenoid more laterally3. The significant 

difference found in this study may correspond to excessive lateralization and may 

correlate to a similar mismatch between the RG and the epiglottis as noted by Bureau31. 

In that study increased tension and further dissection in a CAL may predispose to 

aspiration pneumonia by creating a mismatch between the RG and epiglottis and 

allowing an ‘aperture’ between the two for fluid or food to be aspirated31. A lower 

closed glottal resistance, as an assessment for the seal created by the glottis and 

epiglottis, was found by Greenberg at al. for the same subjectively measured increase in 

tension for CAL procedures5.  

 

No significant changes were seen on any measures of the arytenoid fiducial marker 

motion when comparing arytenoid lateralization techniques controlled for tension. This 

suggests that lateralization techniques achieve very similar effects on arytenoid motion 

except for ATW. The use of a high tension TAL suture caused a significant effect on 

lateralization without significantly affecting other measured parameters. These 
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techniques were compared by the same surgeon in a previous study10, and CAL and 

CTAL procedures were shown to reduce airway pressure compared to TAL procedures. 

No significant differences were seen between CAL and CTAL procedures. Reduced 

airway pressure is expected to improve clinical outcome, unless it leads to excessive 

lateralization and an increased predisposition to aspiration pneumonia. This data 

suggests that CAL procedures are able to provide significant reductions in airway 

pressure, without excessive lateralization measured by a significant reduction in ATW.  

 

Comparisons between surgical procedures performed by different surgeons are 

commonly made when evaluating literature and the translation of surgical information 

relies on the assumption that inter-operator variability between surgeons is low, 

however caution should be taken in correlating the results of airway pressure 

experiments with this CT study. Intraoperator differences and effects are unknown for 

repeated laryngeal surgeries.  

 

CTAL and TAL at 500g of tension achieve significant reductions in ATW compared to 

CAL 100g but not fid horiz. Both of these measures were designed to assess lateral 

motion of the arytenoid. Fid horiz shows a similar trend without showing statistical 

significance; this can be explained by the lower effect size of fid horiz than ATW, 

shown in figure 31. 
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The effects of Arytenoid lateralization technique alone 

This study examined the effects of TAL, CAL and CTAL procedures on the 3D 

structure of the larynx and displacement of the arytenoid cartilage, which can be 

summarized in figures 28 and 29.  Subjective observation of the laryngeal lumen shows 

deformation at the rima glottis in a dorsolateral direction, which is most prominent for 

high-tension TAL and CTAL procedures. On sagittal observation, minor arytenoid 

translation is observed rather than tilting of the arytenoid cartilage. Data suggests that 

although minor changes are present for different surgical techniques, measures of 

laryngeal volume and arytenoid position are not significantly different between TAL, 

CAL and CTAL procedures when tension and other aspects of technique remain the 

same. No study has been able to show a significant difference in clinical outcome 

between these techniques, however some objective changes have been seen by the 

measurement of RGA and airway pressure. CAL has been shown to increase RGA 

compared to TAL in vivo8  and in cadaver studies9  and reduced airway pressure 

compared to TAL in cadaver studies10.  

 

The effects of suture tension alone 

The effects of suture tension (i.e. comparisons of TAL 100 vs. TAL 500, CAL 100 vs. 

CAL 500 and CTAL 100 vs. CTAL 500) revealed no significant differences, although 

examination of the data suggests non-significant trends in increasing fid horiz (fig 14) 

and reductions in fid vert (fig 16) for all techniques. Subjective observation of the 

laryngeal lumen shows deformation at the rima glottis in a dorsolateral direction, which 

is most prominent for high-tension procedures. On sagittal observation, minor arytenoid 
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translation is observed rather than tilting of the arytenoid cartilage.  In previous cadaver 

investigations of unilateral CAL, lower suture tension has been shown to cause a 

smaller increase in RGA31 and further dissection with increased suture tension has been 

found to have no effect on laryngeal resistance5. A previous study from this author 

which performed the same UAL procedures while measuring airway pressure, found 

that increased suture tension led to significant changes is airway pressures were seen in 

TAL at air flow rates of 30L/min and CAL at air flow rates of 45-120L/min, with 30 

and 60L/min being recorded in normal dogs and those with laryngeal paralysis 

respectively.10 Suture tension employed in clinical cases of UAL has not been compared 

to clinical outcome.  The present study showed that increasing tension alone has no 

significant effect on measured CT parameters of laryngeal volume and arytenoid 

position. The CAL suture is postulated to recreate the function of the cricoarytenoideus 

dorsalis muscle3, abducting the arytenoid and drawing it in a caudal direction, along the 

laryngeal axis. Type II error cannot be ruled out and CT may have been unable to detect 

a statistically significant difference.  

 

Volume 

No significant changes were found in the volume of the larynx, suggesting that 

lateralization technique and tension have no effect on volume and that volume would 

not correlate with airflow. The internal volume and internal surface of a tube are 

expected to have an effect on airflow through a tube due to generation of turbulent flow 

which exists at higher pressure than laminar flow18. The idea of the larynx being a 

single aperture at the end of a tube may be an oversimplification. Additional less 
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significant points of narrowing or airway turbulence, caudal to the RG could have an 

effect on airflow through the upper airway. The ventricular folds and vocal folds are 

implemented as significant source of airway resistance in the computer simulated 

models of the human larynx and trachea22. This study showed that UAL technique and 

tension has no significant effect on laryngeal volume and a tendency to reduce volume 

rather than increase volume.  Increased volume would be an expected result to improve 

airflow through the larynx, although if the RG is the most significant source of 

narrowing volume may have limited clinical significance. The limitations of volume 

measurement on CT are that measurement may only occur when the airway is 

surrounded 360° by tissue, therefore it is measured within the fixed overlapping 

structure of the cricoid and thyroid cartilage. Because of the caudal slope of the RG 

relative to the long axis of the larynx measured on CT, this omits the volume of air 

between the vocal folds, which might be expected to change with RG size. This volume 

of air is illustrated in figure 30. 

 

Given that the cricoid and thyroid cartilages are two semi rigid structures with an intact 

adjoining cricothyroid ligament, it is expected that UAL would have no significant 

effect on laryngeal volume measured in this study.  

 

Cross sectional area at the central to rostral section of the larynx (cCSA) shows an 

interesting pattern of results. Increase in tension increases cCSA and CAL/CTAL 

procedures show increases in cCSA compared to TAL procedures, results shared in 
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Fig 30. Cranial unmeasured laryngeal volume and the comparison of cCSA and  
RGA measurement techniques 
 
As is fig 3a, this shows a sagittal projection of the larynx taken from multiplanar 
reconstruction. The area highlighted in purple is the cranial volume of the larynx, which 
could not be included in the measurement of laryngeal volume.  The white arrows show 
the direction from which cCSA is measured in the axial slice on CT and the typical 
direction of laryngoscopic measurement of RGA, which is typically performed with 
cranial epiglottic traction.  
 

measurements of RGA and the inverse of airway pressure data in this authors previous 

study. Statistical analysis shows that the differences in mean are unlikely to be 

significant. Due to the variation between laryngeal and standard deviation of +- 0.3 cm3 

for the presurgical larynges, a difference in cCSA of approximately 0.2cm3 would be 

required to give this test statistical significance. Although cCSA does incorporate the 

dorsal and ventral limits of the RGA as measured by laryngoscopy, it measures from an 
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alternate angle, measuring the end on view of a tilted RG, which would expect to be 

lower. This is illustrated in figure 30.  

 

The interarytenoid distance is not significantly affected by surgical technique or tension. 

This is an expected finding given that this surgical technique maintains the 

interarytenoid band, a cartilaginous attachment between the left and right arytenoid 

cartilages. It has been hypothesized that interarytenoid band transection allows dorso-

lateral arytenoid movement to cause greater increase in RGA3. One author9 found that 

sectioning the IA caused significant reduction in the dorsoventral height of the rima 

glottidis but no significant increase in RGA.  A recent study showed that sectioning of 

the interarytenoid band had no effect on airway pressure, but for a low tension TAL 

procedure, it did allow an increase in RGA10. Given this information, repeating the 

present study with IA band sectioning might allow greater movement of the arytenoid 

and more detectable differences in technique or tension. A previous study found that IA 

sectioning can increase the RGA achieved by a TAL procedure without affecting airway 

pressure10. 

 

It is important to note that statistical significance does not necessarily equal clinical 

significance in this study, and this study is not designed to evaluate clinical effect. 

Airflow through any tube is represented by R=8nl/πr4 where R= resistance, n= gas 

viscosity, l= length of tube and r = radius of tube18, whereby small changes in radius can 

greatly affect airway resistance and pressure.  
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Interpretation of CT measurements and potential use in prospective analysis 

In a single clinical patient both visual assessment and Osirix based measurements could 

be used to objectively assess the measurable effects of surgery. Example CT images of 

the mean effects of each procedure are available for each measured parameter (Figures 

15 (Fid horiz), 17 (Fid vert), 19 (CauAM) and figure 21 (IAD)) and show minimal 

visible movement of the arytenoid cartilage and fiducial markers, which would be 

unlikely to allow an observer to distinguish between techniques, suggesting either that 

there is no difference in the effects of techniques and tensions or a lack of sensitivity for 

these CT measures. The significant differences seen for ATW in figures 23 and 24 may 

be more likely to yield a result from an observer, however a prospective analysis would 

rely on the measurement of ATW on a 3D CT reconstruction to objectively grade the 

level of lateralization achieved by UAL and compare to clinical outcome. 

 

Limitations 

Cadaver studies for regional CT have the benefit of removing extraneous tissue that 

could contribute to artifact but also it is unknown whether loss of supporting tissue 

could affect the structure of the larynx. A small number of dogs were used in this study 

however using a single surgeon with repeatable technique and consistent placement of 

the suture 45 should limit variation between the surgical dose and allow the larynges to 

act as their own control. As with previous studies8,10, all CTAL procedures were 

performed by tightening the CAL suture prior to the TAL suture and the effect of 

reversing this is unknown and has not been previously studied. 
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 It is important to remember that this study does not take into account the effect of 

dynamic motion within the larynx or the effects of inspiration and expiration on 

measured CT parameters. The excised larynx may deform at high airway pressures 

which has been documented in a previous study by this author 10. This deformation 

would be expected to affect CT measurements such as those performed here.  The 

application of a set suture tension may be of questionable clinical significance, as no 

information exists as to the inter-operator variation in suture tying. In this study 

objective tensioning is used to eliminate heterogeneity in surgical technique and to 

allow a basis for prospective study.  This study was not designed to assess the clinical 

significance of different techniques of arytenoid lateralization. The aim of the study was 

to assess the effects of arytenoid lateralization on the measurable structure of the larynx, 

to allow inference about its value to clinical scenarios. No conclusions about clinical 

outcome can be made based on this data. 

 

The amount of arytenoid motion is small, based on fid horiz and fid vertical data.  As 

such, minor differences between procedures may not be detected or if detected may not 

be statistically significant. A much greater difference in arytenoid cartilage 

displacement would be expected by comparing the presurgical values to the arytenoid 

lateralization techniques. However, since the fiducial marker could not be placed prior 

to surgery, this investigation was unable to ascertain if significant arytenoid 

displacement occurs between the presurgical and larynx and the lateralized arytenoid.  

This could be achieved by the identification of a repeatable objective marker on the 

arytenoid cartilage itself. ATW was the only direct measure of arytenoid displacement 
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that could be compared before and after surgery, i.e. did not require a fiducial marker. 

This was the only variable significantly affected by technique and tensions. Placing any 

kind of fiducial marker, even an inert biomaterial could have the potential for post-

operative migration, infection or fistulation, therefore any measurement used 

prospectively would ideally not involve placement of a fiducial marker. Dissected data 

was included to allow a source of normalization for this data, however an objective 

comparison of dissected data and any surgical technique would be clinically irrelevant. 

 

Osirix measurement software was used during this study; no studies exist to assess the 

accuracy of such measurements on the larynx. One study based on drilling osseous 

tunnels into the porcine distal femur assessed the comparison between digital calipers 

and Osirix 3D reconstruction measurements. 46 The authors found the differences in 

measurements to be generally less than 0.1mm with a maximum difference of 0.3mm. 

This would suggest that the application of Osirix to this study could be achieved with a 

reasonable level of accuracy given the magnitude of measurements made during the 

study. 

 

Rima Glottidis Area 

RGA was not directly measured as in some previous studies, which precludes cross 

comparison of one documented effect of this study’s lateralization procedures. Other 

studies have similarly omitted this measurement technique when evaluating cadaver 

laryngeal surgeries5,39. Virtual endoscopy in Osirix (Osirix foundation, Geneva) was 

unable to measure the equivalent value and unlike other studies, the epiglottis was not 
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retracted cranially (for laryngoscopic exam in live animals or for pinning in cadaver 

studies) which may limit the assessment of true RGA as previously measured. Although 

video laryngoscopy has been used for the assessment of the effect on anesthetic agent 

on the larynges of normal dogs47, dogs with laryngeal paralysis48 and normal cats49, no 

information exists for references ranges for RGA measured by this method and no study 

has compared RGA measured on video laryngoscopy with standard laryngoscopic 

measurement of RGA or measurement in the cadaver larynx.  cCSA incorporates the 

rostral 1.8mm segment of the larynx and includes the ventral and dorsal limits of the 

RG. cCSA can be compared to the corresponding RGA measured in a technique similar 

to laryngoscopic exam in this author’s previous study (table 14). The same surgeon 

performed these procedures, but breed of dog is different. Data was normalized to 

minimize breed differences and to show that cCSA may be a different measurement 

compared to RGA.  This may be due to the alternate angle of measurement, which is 

illustrated in figure 30. 

As this study was aimed to recreate the natural position of the larynx of a sedated dog, it 

was important to leave the epiglottis in a neutral position. The effect of epiglottic 

retraction on RGA is currently unknown.  

 

Power Study 

Due to the low number of cadaver specimens in this study, the aim of this study was not 

to specifically evaluate the significance of each individual measure or it’s power at 

distinguishing one surgery from another. The major aim of the study was to evaluate 
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Table 14. A comparison of the central to rostral cross sectional area of the larynx 
(cCSA) to Rima Glottidis area (RGA) directly measured with a cranially retracted 
epiglottis in Wignall et al. 2012 
This table shows mean and normalized mean cCSA data compared to mean Rima 
Glottidis area (RGA) directly measured with a cranially retracted epiglottis in Wignall 
et al. 2012, for each surgical procedure. Procedures were performed by the same 
surgeon but on different larynges. Measurement techniques differ as shown in figure 30. 
 

Surgical 
Intervention MIP projection 

Direct 
measurement 

(Wignall et 
al., 2012) 

Means cCSA (cm2) Normalized to 
presurgical 

Normalized 
RGA 

Presurgical 0.81 100.00 100.00 
TAL100 0.86 106.17 152.50 
TAL500 0.87 106.91 161.20 
CAL100 0.94 115.80 159.20 
CAL 500 0.99 121.85 179.30 

CTAL 100 0.92 113.33 164.20 
CTAL 500 0.93 114.44 183.00 

 

 

whether any of the CT measurements would be suitable for further investigation or 

prospective assessment in live patients. Due to the low power of some of the variables 

examined, shown in table 15, this study would not allow the generation and proving of 

the null hypotheses of non-significance for values of laryngeal volume, Fid horiz, Fid 

vert, CauAM and IAD.  

 

A larger sample population or more homogenous sample might be required to prove or 

disprove the null hypothesis. Figure 31 shows the relationship between power and effect 
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Table 15. Power study for measured CT parameters 
The table shows the statistical power for 8 dogs for each measured CT parameter. 
 

Variable 
Median 
Effect 

Overall 
Mean Power 

CLA 0.009 0.991 0.050 
Laryngeal volume 0.016 0.984 0.051 

Fid horiz 0.036 1.020 0.053 
CauAM 0.070 0.930 0.061 

ATW 0.076 1.033 0.063 
Fid vert 0.077 0.923 0.063 

IAD 0.172 1.073 0.126 
cCSA 0.182 1.106 0.137 

 

size for each variable. Since this shows an exponential relationship, the recruitment of 

further numbers may increase statistical power considerably.	
  	
  

	
  

 
Fig 31. Power against effect size for measured parameters on CT 
Figure 31 shows the relationship between power and effect size for each variable. Since 
this shows an exponential relationship, the recruitment of further numbers may increase 
statistical power considerably. In the number of patients likely included in a prospective 
veterinary study, significant differences for the majority of the measured parameters 
may be unlikely. 
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 In the number of patients likely included in a prospective veterinary study, significant 

differences for the majority of the measured parameters would be unlikely. The fact that 

differences in ATW were found despite low power shows the strength of this difference, 

and that it would be a useable hypothesis for the typical low number of dogs involved in 

veterinary studies. This number of replicates has been used previously in similar studies 

but the effect size of variables in this study may be too small to allow the detection of 

significant differences between this many specimens 5,10,39,31.  

 

Repeated measures 

CT analysis of the larynx found no significant differences between the dissected larynx 

(fiducial markers and sutures placed, with no tension applied) and the postsurgical 

larynx (fiducial markers and sutures placed, with tension having been applied for six 

short periods of varied tension, then loosened), suggesting that no permanent 

deformation occurs by temporary suturing.  Figure 27 shows a Kernel distribution of 

bootstrapped means specifically for ATW since significant differences were seen. One 

hundred samples were taken of these values and the densities are shown.  Visually the 

densities appear similar.  This gives us confidence that larynges are not materially 

affected by sequential surgeries at the level of measurement we were able to carry out. 

Mean CLA also remains within a small window of variability, particularly given the 

previously reported error level of Osirix measurements46 suggesting that no significant 

movement occurs between the thyroid and cricoid cartilage. 
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6. CONCLUSIONS 

Significant changes in the distance between the arytenoid cartilage and thyroid wing are 

seen between low-tension CAL procedures and high tension TAL and CTAL 

procedures.  

 

The effects of all procedures and tensions on measured CT parameters are the same 

except for ATW. High tension TAL and CTAL procedures cause excessive 

lateralization of the arytenoid not found in low-tension CAL procedures. CAL may 

provide an optimum reduction in airway pressure as seen in previous studies10, without 

excessive lateralization. 

 

Prospective analysis could be performed on clinical laryngeal paralysis patients before 

and after UAL, with the hypothesis that dogs with a detectable increase in ATW may be 

predisposed to aspiration due to excessive lateralization. 

 

The use of larynges for repeated measures has no visible effect on the anatomic 

structure as examined by this study’s CT measures. 

Greater numbers of canine larynges would be required to prove the remaining null 

hypotheses of this study however this would be unlikely to hold clinical significance 

given the typical low numbers of dogs is veterinary clinical studies. 
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