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ABSTRACT 

Identification of synoviocytes surrounding the canine cranial cruciate ligament (CrCL) has not 

been investigated. 

Objectives 

1) Develop and validate a technique to identify and quantify normal canine CrCL associated 

synoviocytes. 

2)  Compare synoviocyte phenotype proportions surrounding normal and abnormal canine 

CrCLs 

Design 

In vitro experimental 

Animals 

 Cranial cruciate ligaments from 4 intact female and 6 intact adult male mixed-breed dogs 

(objective 1) and from 8 adult female hound dogs (objective 2) 

Methods 

Objective 1) Normal CrCLs - CD18 and HSP25 epitopes were colocalized using  

immunohistochemistry. Sagittal sections were quantified in the proximal, middle, and distal 

aspects of each section. Western blot, RT-PCR and immunoelectron microscopy was used to 

confirm the presence of CD18 and HSP25 in the canine CrCL.  

Objective 2) Normal, artificially stretched and naturally partially disrupted canine CrCLs -  

CD18 and HSP25 epitopes were colocalized using fluorescent immunohistochemistry. Sagittal 

sections were prepared from the central aspect of each CrCL and phenotypes were quantified in 

the proximal, middle, and distal aspects of each section.  
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Results 

Objective 1) Synoviocyte populations stained positive for CD18 (CD18+) or HSP25 (HSP25+), 

and a small population of cells stained for both epitopes (DS+). The proportion (mean ± SEM) of 

HSP25 + synoviocytes (57 ± 7.5 %) was significantly greater than the proportion of CD18 + 

synoviocytes (27 ± 8.2 %), which was significantly greater than the proportion of DS+ 

synoviocytes (16 ± 3.5%). Western blot, RT-PCR and immunoelectron microscopy confirmed 

the presence of CD18 and HSP25 epitopes in the canine CrCL. 

Objective 2) The pixel count for HSP25 + synoviocytes (57 ± 7.5 %) was significantly greater 

than the proportion of CD18 + synoviocytes (27 ± 8.2 %), which was significantly greater than 

the proportion of DS+ synoviocytes (16 ± 3.5%) in all groups. There was no significant 

difference in the proportions of each of the phenotypes between CrCLs. 

Conclusion 

Three synoviocyte phenotypes were identified using immunohistochemical staining. 

Synoviocyte phenotype proportions did not differ between normal and abnormal CrCLs, 

however the HSP25+ synoviocytes were the predominant phenotype in all CrCLs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 1. BACKGROUND AND REVIEW OF THE LITERATURE  

1.1 Cranial Cruciate Ligament  

1.1.1 Microscopic Anatomy  

 The cranial cruciate ligament (CrCL) is made up of multiple fibers composed of collagen 

types I, II, III and IV (Arnoczky 1983).  A loose band of connective tissue known as the 

endotenon surrounds each fascicle (Arnoczky 1983). The individual fascicles are oriented in a 

spiral fashion around the long axis of the ligament or pass directly between the bony attachments 

of the ligament (Arnoczky 1983). The fascicles collectively are surrounded by the paratenon, a 

connective tissue covering (Arnoczky 1983).  The CrCL is enveloped by a fold of synovium 

which divides the joint in a sagittal plane (Arnoczky 1983). Therefore, though the CrCL is intra-

articular, it is actually extra-synovial. This synovial membrane resembles a mesentery and is 

richly endowed with blood vessels that originate primarily from the middle geniculate artery 

(Arnoczky 1979, Arnoczky 1983). 

 

Figure 1.1  Photomicrograph of a normal canine cranial cruciate ligament. The long arrow 
represents the synovium, the short arrow represents the collagen fibers, and the arrow 
head represents the blood vessels within the synovium. 
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1.1.2 Macroscopic Anatomy  

The CrCL originates on the medial aspect of the lateral femoral condyle, traverses 

diagonally, and attaches on the tibia cranial and  lateral to the tibial spine (Arnoczky 1983). The 

bony attachments do not occur as a single cord, but instead as a collection of individual fibers 

that fan out over a broad flattened area (Arnoczky 1983). These fibers are divided into a 

craniomedial band and a caudolateral band (Arnoczky 1983). Both the craniomedial and 

caudolateral bands function reciprocally during extension and flexion of the stifle such that part 

of the ligament is taut at any given joint angle (Odensten et al. 1985, Hirokawa et al. 2001).  

When the stifle is extended both bands are taut.(Odensten et al. 1985, Hirokawa et al. 2001). 

However when the stifle is flexed, the craniomedial band tightens and the caudolateral band 

loosens.(Girgis et al. 1975). Also present is an intermediate component, which represents the 

transition between the craniomedial band and the caudolateral band with fibers in varying 

degrees of tension.(Girgis et al. 1975).    

 

Figure 1.2  Schematic diagram of stifle, CrCL and the synovium. Note how the synovium 
surrounds the CrCL such that the CrCL does not come into contact with the joint fluid. (C 
= CrCL, m = meniscus, and red line represents the synovium) 
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1.1.3  Comparative Anatomy  

The CrCL is well conserved across mammalian species both in function and structure. 

However, differences between species exist. Murray compared CrCLs from multiple species, 

including human, bovine, ovine, and canine (Murray et al. 2004). She found normal human 

CrCLs to be similar to canine CrCLs with respect to fibroblast density, smooth muscle actin 

expression, vascularity, and fibroblastic cell nuclear morphology (Murray et al. 2004). When 

human CrCLs were compared to bovine CrCLs differences were noted in vascularity and cell 

morphology (Murray et al. 2004). The bovine CrCLs consisted of fewer spheroid fibroblasts and 

greater vessel density than human CrCLs (Murray et al. 2004).  

1.1.4 Innervation 

Innervation of the CrCL is by way of fibers from branches of the tibial nerve (Arnoczky 

1983). Four distinct types of articular receptor endings (mechanoreceptors) – Ruffini endings, 

Pacinian corpuscles, Golgi tendon organ-like endings and free nerve endings have been 

identified in the human and feline CrCL (Girgis et al. 1975). Mechanoreceptors have also been 

identified in the feline and human joint capsule, human menisci, feline collateral ligaments, and 

human infrapatellar fat pad (Halata et al. 1985, Zimny et al. 1988, Sojka et al. 1991, Krauspe et 

al. 1992). Mechanoreceptors are pressure sensitive corpuscles that send impulses to the brain 

during stifle motion (Krauspe et al. 1992).  The exact role that these receptors play in the CrCL is 

not known, however, they are thought to play a role in proprioception, pain perception, and the 

regulation of blood flow (Krauspe et al. 1992). Proprioception has been shown to be deficient in 

human patients with CrCL rupture and correlations have been seen with reduced proprioception 

and increased age, low activity level, and cartilage injuries following CrCL rupture (O'Connor et 

al. 1989, Masayoshi 2004).  In addition to affecting proprioception, CrCL rupture has been 
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 shown to affect motor co-ordination on a global level, including head and trunk abnormalities 

(O'Connor et al. 1989, Masayoshi 2004).  

1.1.5  Function  

Stability of the stifle joint is achieved through the action of soft tissues including 

muscles, ligaments, menisci, and the joint capsule (Arnoczky 1977, Arnoczky et al. 1977). The 

CrCL is the most important stabilizer of the stifle. The function of the CrCL is to prevent cranial 

displacement of the tibia relative to the femur, prevents hyperextension of the stifle and acts as a 

restraint against abnormal medial axial rotation during flexion of the stifle (Arnoczky 1977, 

Arnoczky et al. 1977).  

 

Figure 1.3  Schematic representation of various forces acting on the stifle 
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1.1.6  Rupture  

Rupture of the CrCL is one of the most common causes of hind limb lameness in the dog 

(Lampman 2003, Powers et al. 2005). A survey carried out in 2003 estimated that dog owners in 

the USA spend over a billion dollars a year  for the treatment of CrCL injury (Wilke et al. 2005). 

Similarly, in people, billions of dollars are spent each year for treatment of CrCL rupture (Cumps 

et al. 2007). Disruption of the support mechanism that the CrCL provides alters the joint 

kinematics, induces joint instability, and contributes to osteoarthritic changes. Rupture of the 

CrCL is considered multifactorial and is classified as either traumatic or atraumatic. Progressive 

degeneration of the CrCL is known to lead to rupture of the ligament.   

Poteinases such as tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinases 

(MMPs) and cathepsin K are increased in ruptured CrCLs as compared to normal CrCLs 

suggesting that these proteins may play a role in the progressive degeneration of the CrCL (Muir 

et al. 2002).  It is not known whether these proteinases are elevated prior to rupture or if they are 

a consequence of rupture. Tartrate-resistant acid phosphatase has been localized to macrophage-

like synoviocytes within the  joint capsular synovium suggesting that the synovium may also 

play a role in CrCL rupture (Muir et al. 2002). Furthermore, cytokine induced expression of 

modulators of inflammation such as nitric oxides are elevated in ruptured CrCLs leading to 

premature apoptosis of the CrCL (Murakami et al. 2005, Murakami et al. 2006).  

1.1.7  Unilateral and Bilateral Rupture 

Though unilateral CrCL rupture is the most common presentation in the dog, up to 37 % 

of CrCL ruptures are bilateral (Doverspike et al. 1993). Rupture of the contra-lateral CrCL has 

been reported to occur between ten and twenty two months after diagnosis of the contra-lateral 

rupture (Doverspike et al. 1993). The pathogenesis behind bilateral CrCL ruptures is not known. 
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   It has been shown that contra lateral limb loading is not increased following transection 

of the CrCL, so from a mechanical stand point, a CrCL rupture in one stifle should not 

predispose the contra-lateral CrCL to rupture (O'Connor et al. 1989, Doverspike et al. 1993).  

Human females have been shown to be at increased risk for bilateral tears (Tifford et al. 2001). 

Also, an inheritance factor has been suggested in people with bilateral CCL rupture. In one study 

up to 31% (11/31) human patients with bilateral CrCL rupture had a family history of CrCL 

rupture (Harner et al. 1994). Inheritance patterns have also been identified in canines (Wilke 

2004). Wilke et al detected a recessive mode of inheritance in the Newfoundland breed (Wilke 

2004). They however found the inheritance to be of partial penetrance, and therefore not all dogs 

with the recessive genotype exhibited clinical signs (Wilke 2004). 

1.1.8 Healing Potential 

Following complete rupture of the human and canine CrCL, the ligament fails to heal and 

eventually bridge (Murray 2000, Hayashi et al. 2003). The ruptured human CrCL undergoes four 

distinct phases of tissue repair, which include inflammation, epiligamentous regeneration, 

proliferation and remodeling (Murray 2000, Hayashi et al. 2003). However, despite the effort to 

repair itself, a bridging scar does not form (Murray 2000, Hayashi et al. 2003). Proliferation of 

synovium at the sites of rupture may inhibit formation of the bridging scar. Development of a 

bridging scar may be further prevented by the expression of myofibroblasts which result in 

retraction of the CrCL ends (Murray 2000, Hayashi et al. 2003).  

Studies have been designed to investigate the healing potential of both partially and 

completely ruptured CrCLs. Hefti et al reported no regeneration of the CrCL following complete 

transection in male rabbits and  months following complete transection no CrCL remnants 

remained (Hefti et al. 1991). In contrast, partially ruptured CrCLs were repaired with connective 
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tissue within 6 weeks (Hefti et al. 1991). Proliferation of fibroblasts appeared to originate from 

the synovial membrane surrounding the CrCL (Hefti et al. 1991). One year after partial 

transection the connective tissue resembled normal ligamentous tissue (Hefti et al. 1991). 

Biomechanical testing of the ligaments revealed progressive strengthening over time with 

ligamentous failure rates of 88% and 56%, three months and one year after partial transection 

respectively (Hefti et al. 1991). Naturally occurring disruption of human CrCLs that involves 

less than 25% of the ligament have been shown to heal (Noyes et al. 1989). Tears involving 50% 

or 75% of the CrCL progressed to complete rupture 50% and 86% of the time respectively 

(Noyes et al. 1989). However, magnetic resonance image (MRI) confirmed complete CrCL 

rupture in an adult human, healed completely within one year (Nawabi et al. 2006). Complete 

healing of the CrCL was confirmed one year after the injury via arthroscopy (Nawabi et al. 

2006).  

Manipulation of the intra-articular stifle environment has been carried out in order to 

stimulate healing of partially ruptured CrCLs.(Kobayashi et al. 1997).  Kobayashi et al attached 

basic fibroblast (bFGF) impregnated beads to partially transected canine CrCL sites (Kobayashi 

et al. 1997). In vitro, bFGF stimulates growth of mesenchymal cells, induces plasminogen 

activator, and enhances cell migration (Rifkin et al. 1989). In vivo, bFGF induces 

neovascularization and subsequent wound repair (Greenhalgh et al. 1990). Kobayashi et al 

reported a pannus like tissue extending from the synovium as early as one week after the rupture 

(Kobayashi et al. 1997). At three weeks the defects were completely filled by granulation tissue, 

and by six weeks the granulation tissue was replaced by ligamentous tissue (Kobayashi et al. 

1997). No such healing was seen in the control group in which a non bFGF impregnated bead 

was implanted at the rupture site (Kobayashi et al. 1997). Despite totally filling the defect, the 
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ligamentous tissue had an irregular collagen fiber network two years following partial rupture 

(Kobayashi et al. 1997). No mechanical testing of the ligaments was carried out (Kobayashi et al. 

1997). In a canine partial CrCL rupture model, healing of the CrCL had not occurred 6 weeks 

after creation of the defect (Spindler et al. 2006). However, infusion of a collagen protein rich 

plasma scaffold into this model stimulated healing of the CrCL histologically and 

biomechanically (Murray et al. 2006).   Bone marrow derived mesenchymal stem cells (MSCs) 

injected into rabbit stifle joints with artificially created partial CrCL tears has been shown to 

promote healing of the CrCL, whereas no healing occurred in control joints in which no MSCs 

were injected (Kanaya et al. 2007).   

As has been previously mentioned, retraction and enzymatic degradation of the CrCL 

stumps is thought to prevent healing of a completely ruptured CrCL (Hayashi et al. 2003). In 

order to counteract this effect, Demirag et al infused alpha 2 macroglobulin into the stifles of 

rabbits after experimental transection of the CrCL (Demirag et al. 2004).  Alpha 2 macroglobulin 

is an inhibitor of metalloproteinase enzymes such as collagenases (Demirag et al. 2004). Ten 

days following infusion, the CrCL stumps retained their brightness, volume, and had not 

retracted (Demirag et al. 2004). In contrast the CrCL stumps in the control group in which saline 

was infused were swollen, showed signs of degeneration and had retracted (Demirag et al. 2004). 

Due to the short duration of the study (ten days), any further effect that the alpha 2 

macroglobulin had on the CrCL was not evaluated (Demirag et al. 2004).   

1.1.9  Factors Associated With Rupture 

 Breeds such as the Newfoundland, boxer, Siberian husky, bichon frise, Saint Bernard, 

rottweiler, Labrador retriever, Neopolitan mastiff, akita, Chesapeke Bay retriever, and the 

American Staffordshire terrier are at increased risk of CrCL rupture (Duval et al. 1999, 
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Lampman 2003). The reason why these breeds are more at risk is not known, however a genetic 

predisposition has been identified in the Newfoundland (Wilke 2004). Size of the CrCL may also 

contribute to rupture: Biomechanical comparison of the rottweiler and greyound CrCLs revealed 

that rottweilers CrCLs required only half the load to rupture per unit body mass than did the 

greyhound CrCLs (Wingfield et al. 2000). Size of the dog may also play a role. Dogs weighing 

greater than 22Kg had the highest incidence of CrCL rupture than dogs weighting less than 22Kg 

(Duval et al. 1999).  

A narrow intercondylar notch has been shown to be associated with rupture of the CrCL 

in people and dogs (Anderson et al. 1987, Aiken 1995). The intercondylar notch (ICN) lies 

between the distal femoral condyles and consists of four structures including the cranial outlet, 

intercondylar shelf, caudal arch, and caudal outlet. Narrowing of the ICN is usually due to 

chondrophyte or osteophyte formation associated with degenerative joint disease following 

rupture of the CrCL (Anderson et al. 1987). However, congenital stenosis of the ICN has been 

described in people and has been shown to be associated with CrCL rupture (Anderson et al. 

1987). Similarly in dogs with naturally occurring CrCL rupture, the ICN width is narrower than 

in dogs without CrCL rupture (Aiken 1995). It is thought that the CrCL is constricted within the 

confines of the of the ICN leading to rupture of the CrCL (Anderson et al. 1987, Aiken 1995).  

Neutered and spayed dogs have been shown to be at increased risk for CrCL rupture 

(Duval et al. 1999, Slauterbeck et al. 2004). Compared to male intact dogs, male neutered dogs, 

and female intact dogs seen for various conditions at a private referral practice, female spayed 

dogs had the highest incidence of CrCL rupture (5.15%) across size and breed (Slauterbeck et al. 

2004). The sexually intact males had the lowest incidence (2.09%) of CrCL rupture (Slauterbeck 

et al. 2004).  
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The incidence of human female CrCL tears is three and a half times higher than that of 

human males (Arendt et al. 1995). Non contact mechanisms are the primary cause of human 

female CrCL tears (Arendt et al. 1995). Potential risk factors cited for human female CrCL 

rupture include body movement, muscular strength, shoe surface interface, joint laxity, limb 

alignment, ICN size, hormonal influence, and ligament size (Arendt et al. 1995).  

Dragoo et al recently reported relaxin, a peptide hormone to be associated with ruptured 

CrCLs in the human female (Dragoo et al. 2003). Relaxin is secreted by the corpus luteum 

during pregnancy and by the ovaries during the luteal phase (Qin et al. 1997). It facilitates the 

birth process by causing softening and lengthening of the cervix and the pubic symphysis (Qin et 

al. 1997).  

Relaxin receptors have been immunolocalized to fibroblasts in the CrCL stroma and to 

cells in the synovial lining and blood vessel walls of the human female CrCL (Bryant-

Greenwood et al. 1995, Qin et al. 1997). Its primary effect is via activation of MMP 9, a type IV 

collagenase (Bryant-Greenwood et al. 1995, Qin et al. 1997). This activation could result in 

remodeling and weakening of the CrCL by digesting the collagen fibers that make up the CrCL.  

Immune mediated disease has also been associated with CrCL disease and rupture. 

Goldberg et al reported weakening of rabbit CrCLs following experimentally induced immune 

synovitis and antibodies to collagen I and II and immune complexes have been detected in sera, 

synovial fluid and synovium of dogs with ruptured CrCLs (Goldberg et al. 1982, Niebauer et al. 

1982, Niebauer et al. 1987, Bari et al. 1989, Lawrence et al. 1998, de Rooster et al. 2000). 

However, these same antibodies and immune complexes have also been detected in the same 

fluids from dogs with various causes of osteoarthrosis secondary to other pathologic conditions 

including rheumatoid arthritis, infective arthritis and idiopathic arthritis (Goldberg et al. 1982, 
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Niebauer et al. 1982, Niebauer et al. 1987, Bari et al. 1989, Lawrence et al. 1998, de Rooster et 

al. 2000). Therefore it is still unclear whether these antibodies and immune complexes play a role 

in the primary etiologic mechanism in CrCL rupture, or if they occur secondary to CrCL rupture.  

1.2 Biomechanics of the Stifle  

1.2.1 Passive Two Dimensional Model  

The stifle is a complex condylar synovial joint composed of the femorotibial and 

femoropatellar joints (Howard 1993).  Though the exact biomechanics of the stifle are yet to be 

established, several models of the stifle have been developed and have evolved over the years. It 

is important to understand how the biomechanics of the stifle and the function of the CrCL are 

related. The oldest described model of the stifle was derived by analysis of sagittal sections 

through the femoral condyles (Arnoczky 1977, Gerber 1983). In this model the stifle is assumed 

to be a two dimensional, single degree of freedom linkage moving in a frictionless, single plane 

(Slocum et al. 1993). Since this dictates that the femur and tibia have no forces acting upon them, 

it is considered a passive force model (Slocum et al. 1993). The CrCL, caudal cruciate ligament 

(CdCL), tibia, and femur form a four bar hinge mechanism (Goodfellow et al. 1978). This model 

explains cranial translation of the tibia relative to the femur (cranial drawer), if the CrCL is 

ruptured (Goodfellow et al. 1978). The discrepant distances between successive points of contact 

indicate that caudal rolling is accompanied by cranial sliding at a ratio of about two to one 

(Goodfellow et al. 1978).  

Due to the non circular geometry of the femoral condyles and the structure of the 

ligamentous and muscular constraints, the axis of rotation of the femur relative to the tibia does 

not remain constant as the stifle is flexed, unlike a simple pivot joint such as the hock joint 

(Arnoczky 1977). However, at any one instant in time, there is a point on the femur which has 
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zero velocity with respect to the tibia (Arnoczky 1977). This point varies with the degree of 

flexion, and is called the instantaneous center of rotation (ICR) (Arnoczky 1977).  The ICR is 

determined by identifying the displacement of two points on the femur as the femur moves from 

one position to another relative to the tibia (Arnoczky 1977). The lines defined by the 

displacement are bisected, and the intersection of the perpendicular bisectors represents the ICR 

(Arnoczky 1977). When the stifle is flexed the ICR is closest to the joint surface which results in 

slackening of the collateral ligaments and the CrCL (Smith et al. 2003). In extension the ICR is 

furthest from the articular surfaces resulting in tensing of the collateral ligaments and the CrCL 

(Smith et al. 2003). This brings the stifle into its most stable position (Smith et al. 2003).  

There are several pitfalls in this model. Firstly, it does not take in to account the active 

forces such as the muscles and gravity acting upon the stifle. Secondly, the ICR theory assumes 

that the flexion and extension axis lies exactly in the sagittal plane. The flexion-extension axis of 

the stifle has been shown to be offset from the sagittal by seven degrees (Hollister et al. 1993, 

Smith et al. 2003). Therefore, this would result in a single, fixed axis and not an ICR (Smith et 

al. 2003). Secondly, a non fixed axis is less efficient than a fixed axis as a constantly moving 

axis is inefficient because the moment of inertia is also constantly changing (Smith et al. 2003).   

1.2.2 Active Two Dimensional Model  

In an attempt to address the deficiencies of the passive model, the active model was 

derived. It is an expansion of the two dimensional model which also takes into account the 

effects of muscular and weight bearing forces on the stifle (Slocum et al. 1993). The foundation 

for the active model is cranial tibial thrust. Cranial tibial thrust is an internally generated force 

through interaction of the femoral condyles and the tibial plateau (Slocum et al. 1993). Weight 

bearing and the effect of extensors of the limb (gastrocnemius and quadriceps) results in tibial 
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compression (Slocum et al. 1993). Because of the slope of the tibial plateau, and because the 

contact point between the tibia and femur lies cranial to the forces directed through the stifle, 

tibial compression (during weight bearing or tibial compression test) results in a cranially 

directed tibial force (Slocum et al. 1993). When the CrCL is ruptured this force results in cranial 

tibial translation (Slocum et al. 1993).  

1.2.3 Three Dimensional Model 

With the advent of total stifle arthroplasty, a thorough understanding of stifle kinematics 

was necessary since inadequate stifle axis reproduction has been shown to cause loosening and 

accelerated wear of the stifle prosthesis (Walker et al. 1972). With the aim of improving 

prosthetic design, MRI, radiostereometry, and computed tomography have been used to build a 3 

– dimensional model of stifle motion (Kurosawa et al. 1985, Blankevoort et al. 1996, Siu et al. 

1996, Sathasivam et al. 1997, Iwaki et al. 2000, Smith et al. 2003). 

Three independent axes of motion within a novel human stifle model have been described 

(Hollister et al. 1993, Iwaki et al. 2000).  Between 15 and 150 degrees of stifle flexion, the 

caudal condylar axis is effective and it is offset from the sagital plane by 7 degrees (Hollister et 

al. 1993, Hollander et al. 2004). As the stifle approaches extension, the axis shifts from the 

caudal condylar axis to the to the cranial condylar axis (Hollister et al. 1993, Hollander et al. 

2004). The third axis is the longitudinal axis of rotation (Hollister et al. 1993, Hollander et al. 

2004).   

The medial condyle is shorter and wider than the lateral condyle resulting in an axis of 

rotation during flexion and extension (Hollister et al. 1993). The exact location of the axis of 

rotation is dependent on the asymmetry of the tibial plateau (Hollister et al. 1993). Since the 

medial tibial plateau is concave and deepened by the medial meniscus, and the lateral tibial 
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plateau is saddle shaped, the axis of longitudinal rotation of the stifle is centered through the 

medial side of the stifle (Iwaki et al. 2000).  

1.3 The Synovium 

The CrCL is intimately associated with the synovial membrane surrounding it (Arnoczky 

1983). While the synovial membrane is normally a supportive structure, playing a role in 

synovial fluid generation, maintenance and joint immunity, cells within the synovium play an 

active role in some arthritides, primarily through generation of inflammatory mediators (Bari et 

al. 1989). Three synoviocyte phenotypes have been identified in the intimal layer of human joint 

capsular synovium; macrophage like (type A), fibroblast like (type B), and an intermediate type 

(Stevens et al. 1990, Wilkinson et al. 1992).  

Type B synoviocytes have been conclusively identified in human stifle joint capsule with 

monoclonal antibody 67 (CD55) staining and uridine diphosphoglucose dehydrogenase 

(UDPGD) activity (Stevens et al. 1990, Wilkinson et al. 1992).  In the horse, joint capsular type 

B synoviocytes have been identified using the neuronal marker PGP 9.5 (Kitamura et al. 1999). 

Type A synoviocytes have been positively identified in the human stifle joint capsule with CD68 

antibody and non specific esterase (NSE) activity (Stevens et al. 1990, Wilkinson et al. 1992).                

Though joint capsular synovial cells resembling macrophages and fibroblasts have been 

identified in a number of species, published reports differ on their origin/behavior. One report 

indicates that porcine joint capsular synoviocytes belong to a single cell line originating from the 

mononuclear phagocyte system that can differentiate into either type A or type B cells (Barratt et 

al. 1977).  Another report indicates mouse type A cells are derived from bone marrow (Edwards 

et al. 1982).  Maekawa et al used light and electron microscopy to evaluate the synoviocytes 

within rat synovium associated with the infrapatellar fat pad (Maekawa et al. 1996). They 
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reported seeing type A and type B cells (Maekawa et al. 1996). The type A cells contained 

lysosomes and the type B produced fibronectin and laminin (Maekawa et al. 1996). Interestingly 

they were able to identify transformation of type B cells to type A cells (Maekawa et al. 1996). 

This study suggests that the type B cells are a type of stem cell capable of differentiation into 

different phenotypes dependent on the condition of the CrCL. 

1.4 Identification and Validation of Synoviocyte Phenotypes 

1.4.1 Immunohistochemistry  

An antigen-antibody complex is the basis for immunohistochemistry. A labeled antibody 

directly or indirectly binds to an antigen of interest within a section of tissue. The label may be a 

fluorescent dye, enzyme, radioactive element or colloidal gold. Frozen or formalin fixed samples 

may be used for immunohistochemistry. The advantage of formalin fixed samples over frozen is 

that tissue architecture and cell morphology is maintained. Frozen sections are not commonly 

used because they are difficult to section which may compromise tissue architecture and cell 

morphology, have poor resolution at higher magnifications, and special storage is needed.  

The main advantage of frozen sections over formalin sections is that antigen retrieval is 

not required. Formalin fixation causes protein cross linking over the antigenic sites thereby 

preventing antibody access to the antigen. Following fixation in formalin for at least 24 hours, 

the tissue is embedded in paraffin wax. Embedding in paraffin may alter or even destroy the 

antigens.  Once embedded in paraffin wax, sections ranging in thickness from 5-7 micrometers 

are prepared using a microtome. Immediately following sectioning the sections are immersed in 

warm water. This helps smooth the section. After a few minutes the sections are transferred to 

glass slides. The slides are then dried on a hot plate at just above the melting temperature of the 

paraffin wax.  
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Figure 1.4  Schematic Representation of Double Immunolabelling 
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Prior to immunohistochemical staining, the paraffin wax must be removed. The sections 

are immersed in xylene which dissolves the paraffin wax. In order to attain their original 

architecture and morphology, the sections are hydrated by immersing in alcohol ranging in 

concentration from 100% to 70% and finally in water. Dependent on the antigen, antigen 

retrieval may or may not be required. Heat or protein digestion or both are used for antigen 

retrieval. 

When heat is used, sections are immersed in a buffer solution such as citrate buffer, 

which is then exposed to a heat source such as a microwave oven, pressure cooker, steamer, or 

hot water bath. When protein digestion is used, the sections are immersed in an enzyme such as 

trypsin, proteinase K, and pepsin.  

Before incubation of the sections with the antibody, the section must be blocked. In 

addition to binding to the specific antigen, the antibody may also bind to non specific sites. 

Binding at these non specific sites is not through an antigen-antibody complex, but through 

electrostatic forces. If the antibodies is allowed to bind to these non specific sites background 

staining will result. Background staining will affect the quality of the slides and may make 

interpretation difficult. In order to prevent this background staining the sections are incubated in 

normal serum which blocks the non specific sites.  

The antibody that binds directly to the antigen is referred to as the primary antibody. The 

primary antibody may have a label attached to it. Instead of using just one antibody, two 

antibodies may be used. The second antibody that is specific to and that will bind to the primary 

antibody is referred to as the secondary antibody. In this case the secondary antibody is labeled 

and this technique is referred to as indirect immunohistochemistry. The secondary antibody must 

be against the IgG of the animal species in which the primary antibody has been raised. Antibody 
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labels for light microscopy include chromogens such as DAB and fluorescent dyes such as FITC, 

rhodamine or Texas red.  

Since endogenous peroxidase and phosphates are present in many tissues, in order to 

minimize the amount of background, the section must be blocked with hydrogen peroxide in the 

case of antibodies labeled with peroxidase, or with levamisole in the case of antibodies labeled 

with phosphatase. The indirect method is most commonly used as it is more sensitive due to 

signal amplification through several secondary antibody reactions with different antigenic sites 

on the primary antibody. For antibodies attached to an enzyme, in order to visualize the antigen-

antibody reaction, the tissue is incubated in a chromogenic substrate that will develop a color 

(chromogen) when exposed to the enzyme attached to the secondary antibody. The chromogen 

can then be seen with bright field light microscopy. For antibodies attached to a fluorescent dye, 

the reaction is seen with a fluorescent microscope.  

When there is more than one antigen of interest, double or even triple labelling of tissue 

sections can be performed. The technique is the same as single labeling except that more than 

one antibody is used. The antibodies used must be developed in different species, and different 

chromogenic substrates or fluorescent dyes (fluorophores) must be used.  

Once the tissue sections are stained, they must be dehydrated and cover slipped when 

chromogens are used. When fluorescent dyes are used, the dehydration procedure will cause loss 

of the fluorescence and so the sections are cover slipped without dehydration. Fluorescent dyes 

fade or bleach rapidly and therefore slides must be examined within a short period of time. Using 

special mounting media and storing the slides in the dark in a freezer can delay fading or 

bleaching. Xylene soluble mounting media is used in the case of chromogens and water soluble 

mounting media is used in the case of fluorophores.   
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For antibodies attached to a chromogen a conventional light microscope is used. For 

antibodies attached to a fluorescent dye (fluorophore), the reaction is visualized using a 

fluorescent microscope. In fluorescent microscopy, molecules that are excitated via chemical or 

physical means emit light.  Some atoms will absorb light at a particular wavelength and 

subsequently emit light of a particular longer wavelength. This is termed the fluorescence life 

time. A fluorescent microscope uses mirrors and filters that excite fluorophores within a sample 

of tissue. The resultant fluorescence is then transmitted to the eyepiece.   

The tissues can be viewed using either a conventional fluorescent microscope or a 

confocal laser scanning microscope. In a conventional fluorescent microscope the section is 

bathed in light from a single light source, usually a xenon or mercury lamp. The resultant image 

is then viewed.  

In confocal microscopy the section is scanned with one or more beams of light from a 

laser source.  A photomultiplier tube detects the light generated and the image is then processed 

and generated by a computer. The advantages of confocal microscopy over conventional 

fluorescent microscopy is that depth of field can be controlled, background can be eliminated, 

serial optical sections can be collected from a section, and images with higher resolution can be 

obtained. 

 1.4.2 Western Blot 

Western blot utilizes an antigen-antibody reaction to identify a particular protein within a 

mixture of proteins. The protein molecules are firstly separated using sodium dodecyl (lauryl) 

sulfate (SDS) polyacrylamide gel electrophoresis. Electrophoresis is the migration of particles 

within an electric field. The rate of movement of the particles is dependent on their size, their 
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shape, the strength of the electric field, and also on the ionic strength, viscosity and temperature 

of the medium in which the particles are submerged.   

The sample tissue is macerated and filtered. The filtrate rich in the protein of interest is 

loaded onto a SDS polyacrylamide gel. When exposed to an electric current, proteins will 

migrate towards the cathode. The SDS denatures proteins and binds to the proteins resulting in 

the proteins having a negative charge since the SDS is anionic. By denaturing the proteins the 

proteins attain a linear configuration as the SDS disrupts the opposing electrical charges on the 

amino acid chains. Disruption of the protein tertiary structure is also attained via addition of 2-

mercaptoethanol or dithiothreitol to the SDS. Therefore, all proteins will migrate linearly through 

the gel based on their weight and not on their tertiary structure or charge.  

Following electrophoresis, the proteins are transferred to a nitrocellulose membrane. 

Electrophoretic transfer is most commonly used. The gel is placed in direct contact with a 

nitrocellulose membrane. A current is applied and the proteins migrate and bind to the 

nitrocellulose membrane. The membrane is then blocked using milk or serum, so that unreacted 

sites are blocked. The membrane is then incubated with an antibody specific for to the antigen of 

interest. Incubation times and antibody concentrations vary dependent on the antibody and the 

antigen. The membrane is then incubated in the secondary antibody that is attached to an 

enzyme.  

The reaction is developed either by chemiluminescence or color development by addition 

of a substrate that reacts with the enzyme on the secondary antibody. Luminol is a commonly 

used luminescent agent. Oxidization of luminol occurs in the presence of horseradish peroxidase 

and hydrogen peroxide. Three-aminophthalate is produced which emits light. The membrane is 

then exposed to a radiographic film. An alternative to radiographic film is to use a CCD camera.    
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Figure 1.5  Schematic representation of the Western blot procedure 
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1.4.3 Reverse Transcriptase Polymerase Chain Reaction 

Reverse transcriptase polymerase chain reaction (RT-PCR) is a highly sensitive method 

by which mRNA is detected and quantified (Singleton 2000).  The first step is the production of 

a complementary strand of DNA (cDNA) on a RNA target (Singleton 2000). The cDNA is then 

used as a template for a PCR.  

Firstly, RNA is isolated from the tissue of interest. The tissue is homogenized in a 

reagent containing phenol and guanidine thiocyanate which inhibits RNAse activity (Singleton 

2000). The addition of bromochloropropane or chloroform causes separation of the homogenate 

into aqueous and organic phases (Singleton 2000). RNA partitions to the aqueous phase, DNA to 

the interphase, and proteins to the organic phase (Singleton 2000). Following the addition of 

isopropanol, RNA is precipitated from the aqueous phase (Singleton 2000).DNAse is added to 

destroy any DNA that may be present. RT-PCR is performed to obtain cDNA.  

Primers are required for the PCR.  A primer is a short strand of DNA or RNA needed for 

initiation of DNA synthesis using a DNA or RNA template (Singleton 2000). Primers are 

synthesized based on the known sequence of the gene of interest. The primers are usually 15-25 

nucleotides in length (Singleton 2000). The primers must not include sequences that will allow 

primer to primer binding, or binding of one part of a primer to another part of the same primer 

(Singleton 2000).  

It is important not to use primers with complementarity at the 3’ of the primers as this 

will lead to primers acting as templates and the production of primer-dimers (Singleton 2000). In 

order for cDNA to be synthesized the primer binds to a specific site on the template thereby the 

primer determines which part of the template is to be copied. The primer is then extended by 

sequential addition of deoxyribonucleotides from its 3’ end (Singleton 2000). The enzyme 
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responsible for this step is reverse transcriptase and the resultant product is a strand of cDNA 

(Singleton 2000).  An RNAse destroys the RNA strand and a second strand of cDNA is produced 

(Singleton 2000).  This double stranded cDNA then undergoes a PCR (Singleton 2000).  

The PCR reaction mixture undergoes thermal cycling (Singleton 2000). Thermal cycling 

involves repeated exposure to a cycle of 3 levels of temperature: 1. Denaturation (separation of 

cDNA strands; 2. Annealing (binding of primers); 3. Extension (DNA synthesis by polymerase) 

(Singleton 2000). At the end of the reaction, the result is a PCR product. Confirmation and or 

quantification of the PCR product are then made.  

The amplicon length is a specific length since the amplicon is delimited by a pair of 

primers (Singleton 2000). Therefore when run on an agarose gel, the amplicons from a specific 

PCR will localize at a specific location based on its weight (Singleton 2000). A standard or 

ladder is run at the same time.  

The bands are detected by staining the gel with ethidium bromide. When the ethidium 

binds to DNA its fluorescence increases more than 20 times under ultraviolet light (Singleton 

2000). SYBR® Green I fluoresces brightly at 530nm when it binds to double stranded DNA 

(Singleton 2000). It is added to the PCR mixture and as the amount of the product increases, so 

does the intensity of the fluorescence.  

The fluorescence is monitored at the end of the extension stage. A curve is generated and 

a positive inflection indicates a positive PCR product (Singleton 2000). However, false positives 

can result if primer-dimers are present (Singleton 2000). Once confirmed, the PCR product is 

sequenced and the sequence is compared to known sequences on a database of sequences 

available on the NCBI website.   
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1.5 Antigens Used to Distinguish Between Synoviocyte Phenotypes 

1.5.1 CD18 

CD18 is a leukocyte integrin belonging to the leukocyte cell adhesion molecule that  is 

only expressed on leukocytes (Danilenko et al. 1992).  Integrins are a cell surface adhesive 

receptors involved in diverse cell functions which involve leukocyte adhesion and are therefore 

critical in the immune response (Danilenko et al. 1992). Cells positive for CD18 have been 

shown to be increased in joint capsular synovium from CrCL deficient stifles (Klocke et al. 

2005).  The number of CD18 cells correlated with the degree of arthritis (Klocke et al. 2005).  

1.5.2 HSP25 

Heat shock proteins (HSPs) are a family of proteins that play an important role in cellular 

defense and are up regulated in response to injury. Most HSPs are molecular chaperones that 

bind and stabilize proteins at intermediate stages of folding, assembly, translocation across 

membranes and degradation. Heat shock protein 25/27 is involved in regulation of actin 

assembly/disassembly. Up regulation of HSP25/27 has been shown to preserve neuronal function 

following nerve injury, and to protect the heart against ischemic-reperfusion injury in the mouse 

(Hollander et al. 2004, Sharp et al. 2006).  Despite the normal protective role of HSPs, auto 

antibodies directed against them have been reported to play a role in immune mediated arthrides 

(Oda et al. 1994).  Additionally HSP25/27 has been shown to be up regulated in canine 

mammary carcinomas and in human prostatic cancer (Horman et al. 1999). Heat shock protein 

25/27 has also been shown to be up regulated in tissue development such as in adipogenesis, 

temperomandibular joint development, and in the development of skin (Ikeda et al. 2004, 

Duverger et al. 2005).  
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CHAPTER 2. CHARACTERIZATION OF NORMAL CANINE CRANIAL CRUCIATE 
LIGAMENT ASSOCIATED SYNOVIOCYTES* 
 

2.1 Introduction  

The Cranial cruciate ligament (CrCL) is highly conserved between species, and the 

canine stifle is an acceptable animal model for musculoskeletal investigations including but not 

limited to joint disease and CrCL healing and reconstruction (Chu et al. 2002, Lopez et al. 2003).  

The structure, vasculature, composition, and function of the canine CrCL have been the 

focus of multiple investigations (Girgis et al. 1975, Arnoczky et al. 1977, Arnoczky 1983, 

Krauspe et al. 1992, Dragoo et al. 2003, Murray et al. 2004).  Like the majority of mammalian 

CrCLs, The canine CrCL is intra-articular and extrasynovial since it is surrounded by a synovial 

membrane (Arnoczky et al. 1977, Arnoczky et al. 1979, Arnoczky 1983).  While significant 

scientific focus has been dedicated to the canine CrCL, the synoviocytes surrounding it have 

received little attention. 

Differentiation of synoviocyte phenotypes requires immunostaining or electron 

microscopy, and three synoviocyte phenotypes have been identified in the joint capsular 

synovium in several species (Barland et al. 1962, Barratt et al. 1977, Edwards et al. 1982, 

Stevens et al. 1990, Wilkinson et al. 1992, Kitamura et al. 1999, Ikeda et al. 2004, Klocke et al. 

2005, Nagai et al. 2006).  

The synoviocyte phenotypes identified include the type A (macrophage-like), type B 

(fibroblast-like), and an intermediate type (type C) (Barland et al. 1962, Barratt et al. 1977, 

Edwards et al. 1982, Stevens et al. 1990, Wilkinson et al. 1992, Kitamura et al. 1999, Ikeda et al. 

2004, Klocke et al. 2005, Nagai et al. 2006).  

 

*Reprinted by permission of the Journal of Orthopedic Research 
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To date, techniques used to characterize joint capsular synoviocytes have not been 

applied to CrCL associated synoviocytes. Expression of cathepsin K and tartrate resistant acid 

phosphatase (TRAP), both collagenolytic enzymes, are elevated in ruptured canine CrCLs and in 

joint capsular synovium from humans with rheumatoid arthritis (Hummel et al. 1998, Muir et al. 

2002). It is not possible to distinguish between the synoviocyte phenotypes based on these 

enzymes since they are produced by both type A and type B synoviocytes (Drake et al. 1996, 

Hummel et al. 1998). 

Synoviocytes normally maintain and protect the joint (Sledge 2001).  Healthy CrCL 

hamstring grafts are surrounded by synovium indicating graft maturity and joint incorporation 

(Lopez et al. 2003). Though synoviocytes are normally supportive, they are also known to 

contribute to some disease processes (Zhu et al. 2006, Kontny et al. 2007). In rheumatoid 

arthritis, idiopathic arthritis, and CrCL rupture, type B synoviocytes express interleukins 6 and 8, 

prostaglandin E2, and nitrous oxide (Zhu et al. 2006, Kontny et al. 2007). While CrCL rupture in 

human is mostly due to trauma, many are spontaneous (Arendt et al. 1995).  

Spontaneous CrCL rupture is the most common cause of CrCL damage in the canine 

(Vasseur et al. 1985, Hayashi et al. 2003). Characterization of canine CrCL synovicytes is 

important to understanding their potential contributions to CrCL health, disease, healing, and 

graft incorporation and maturation. CD18 is a highly conserved leukointegrin beta subunit that 

has been localized on canine synovial macrophages (Klocke et al. 2005).  Rat 

temporomandibular joint type B synoviocytes express HSP25, a small heat shock protein (Ikeda 

et al. 2004). This study was designed to identify and quantify canine CrCL synoviocyte 

phenotypes based on immunohistochemical staining with CD18 and HSP25.  We hypothesized 

that there are at least 2 synoviocyte phenotypes with distinct topographical distributions. 
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2.2 Materials and Methods  

This study was performed in accordance with Institutional and National Institutes of 

Health regulations governing the treatment of vertebrate animals. Cranial cruciate ligaments 

were collected immediately post mortem from one randomly selected stifle of 4 intact female and 

6 intact male dogs that were clinically healthy and that had no evidence of orthopedic disease. 

They were mixed breed young adults with a mean + SD weight of 22.6 + 0.45kg. Animals were 

euthanized for reasons unrelated to this study.   

2.2.1 Immunohistochemistry 

The CrCLs were aseptically harvested by transection at the origin and insertion. They 

were divided into two equal sagittal sections and fixed in 10% formalin. Three 7µm serial 

sections were cut from the axial and abaxial aspects of each sagittal section following paraffin 

embedding (Fig 2.1). Deparaffinized sections were immunostained for two different synoviocyte 

phenotypes using a murine monoclonal antibody against canine CD18 (PF Moore, Davis, CA) 

and a rabbit polyclonal antibody against murine heat shock protein 25 [HSP25 (Stressgen 

Bioreagents, Ann Arbor, MI)].   

An auto-stainer (DAKO, Carpinteria, CA) was used for all double staining procedures. 

Following deparaffinization and rehydration, endogenous peroxidase was quenched with 

hydrogen peroxide. Antigen retrieval was carried out with heated citrate and proteinase K (Dako, 

Carpinteria, CA). Slides were blocked with normal horse serum (Vector Labs, Burlingame, CA) 

followed by incubation with anti-CD18 antibody (diluted 1:5). Following incubation with horse 

radish peroxidase (HRP) conjugated secondary antibody (DAKO EnVision, Dako, Carpinteria, 

CA), color was developed with a peroxidase substrate (DAB). Slides were next incubated with  

anti-HSP25 antibody (diluted 1:200) followed by incubation in a horseradish peroxidase 
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conjugated secondary antibody (DAKO EnVision, Dako, Carpinteria, CA).  

The slides were incubated with a second peroxidase substrate (VIP, Vector Labs, 

Burlingame, CA). Positive controls for the CD18 and HSP25 were canine lymph node and 

murine urinary bladder, respectively. Negative controls were the canine CrCL with the primary 

antibody omitted. Slides were counterstained with methyl green (Vector Labs, Burlingame, CA).  

2.2.2 Microscopy 

For purposes of cell quantification, the Cranial and Caudal surfaces of each medial, 

central, and lateral sagittal section were evaluated in three equal transverse planes; proximal, 

middle, and distal for a total of 18 separate regions (Fig 2.1). Slides were evaluated at a 

magnification of 600x with light microscopy (Model DM5000, Leica Microsystems Inc., 

Bannockburn, IL). Digital photomicrographs of three representative fields were generated in 

each region and the digital images were exported as uncompressed tagged-image file format files 

(TIFF) at 400X400 dots per inch (dpi) and implemented in Adobe Photoshop v5.5 (Adobe 

Systems, Seattle, WA).  

The software was used to quantify the number of pixels corresponding to each color of 

interest in the replicate images within each region. The software tolerance was adjusted to ensure 

that only intact cells with a clearly stained cytoplasm were counted. There were three colors of 

interest; brown, representing CD18 positive synoviocytes (CD18 +) within the cytoplasm; 

purple, representing synoviocytes that positively stained with the HSP25 antibody (HSP25+) 

within the cytoplasm and nucleus; and both purple and black, representing synoviocytes 

positively stained for both antibodies [double stained positive (DS+)] in which the nucleus was 

purple and the cytoplasm was black (combination of brown and purple).  The mean proportional 

pixel count for each phenotype was the response variable used for statistical purposes. 

28 
 



 

Figure 2.1  Schematic representation of regions evaluated within each CrCL. P = proximal, 
Mi = middle, D = distal, M = medial, C = central, and L = lateral.  
 

2.2.3 Validation 

The presence of HSP25 and CD18 in the canine CrCL was validated with western blot 

analysis, reverse transcriptase polymerase chain reaction (RT-PCR) and immunoelectron 

microscopy. Immunohistochemistry using light microscopy was performed on ten normal canine 

CrCLs. For western blot analysis, the CrCL was homogenized in phosphate buffered saline and 

heated to 95 ºC. The homogenate was centrifuged at room temperature and the supernatant was 

collected. For detection of HSP25, a reducing western blot method was used, however for CD18 a 

non reducing method was used.  

Following resolution by electrophoresis, proteins were transferred to a nitrocellulose 

membrane (Biorad, Hercules, CA) and probed with either anti-HSP25 antibody or anti-CD18 

antibody. Primary antibody was detected with an HRP conjugated goat anti rabbit antibody (1:1000) 

and an HRP conjugated horse anti murine antibody (1:2000) for HSP25 and CD18, respectively. 

Antibody complexes were imaged with a chemiluminescent analysis system (GE health care, 
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Buckinghampshire, UK) and the nitrocellulose membrane was exposed to a blue light sensitive film 

(Amersham, Piscataway, NJ). Canine lymph node (CD18) and murine urinary bladder (HSP25) were 

positive controls. 

Total RNA was extracted from canine CrCL, murine heart and bladder, and canine lymph 

node tissue by homogenization in TRI reagent (Sigma, ST. Louis, MO), and cDNA was generated. 

(BD Biosciences, Palo Alto, CA).  Primers were designed based on homologous regions between 

canine HSP27 (NCBI accession # UI9368.1) and murine HSP25 (NCBI accession # L11608), since 

anti murine HSP25 antibody cross reacts with the HSP27 protein according to the manufacturer. 

Primers for canine CD18 were designed using the available CD18 mRNA sequence (NCBI 

accession # AF181965). Primers were optimized and validated using real-time RT PCR SYBR 

Green™ (Clontech, Mountain View, CA) technology. Both amplicons were sequenced and 

compared to known sequences.  

For detection of the CD18 epitope using immunoelectron microscopy, 10µm CrCL sections 

were immunostained with anti-CD18 antibody using the avidin-biotin technique as described 

previously.(Russinova et al. 2000). Following deparaffinization, antigen retrieval was carried out 

with heated citrate. Slides were blocked with goat serum followed by incubation with the anti-CD18 

antibody (diluted 1:5). Following incubation with biotinylated goat anti murine secondary antibody 

(Electron Microscopy Sciences, Hatfield, PA), the sections were incubated in streptavidin colloidal 

gold with a 20nm particle size (EY Laboratories, San Mateo, CA). Slides were covered with epoxy 

resin and, following curing, the resin and attached tissue were removed from the slide. Thin 80µm 

sections were cut, placed on grids and stained with uranium acetate (Electron Microscopy Sciences, 

Hatfield, PA) and lead citrate (Electron Microscopy Sciences, Hatfield, PA). The positive control 

was canine lymph node and negative control was the CrCL with the primary antibody omitted.  
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For identification of the HSP25 antibody-epitope complex, a different technique was used. 

Following formaldehyde and glutaraldehyde fixation and embedding in LR white resin (Electron 

Microscopy Sciences, Hatfield, PA) 80µm sections of canine CrCL and murine urinary bladder were 

prepared. Proteinase K antigen retrieval was performed and sections were incubated with anti-

HSP25 antibody (diluted 1:10) followed by incubation with a goat anti rabbit secondary antibody 

(diluted 1:50) conjugated to 10nm gold particles (Sigma-Aldrich, St. Louis, MO). Sections were 

stained with uranyl acetate and lead citrate and sections were imaged with a transmission electron 

microscope (Model JEM 1011, JEOL, Tokyo, Japan). 

2.2.4 Statistical Analysis 

 The total pixel count for each phenotype was considered continuous and found to follow 

a normal distribution with failure to reject the null hypothesis of normality using the Shapiro-

Wilk statistic at p≤0.05. The count and proportional count were summarized as mean +/- SD. 

The proportional pixel count was evaluated for a fixed effect of phenotype using a mixed linear 

model that included the random variance of canine distributed across all phenotypes. Where 

there was a significant effect of phenotype, ad hoc comparisons across phenotype were made 

using Scheffe’s adjustment to maintain type I error at 0.05.  

The proportional pixel count that stained for each phenotype within each of the regions 

was calculated and used for statistical analysis.  The data did not follow a normal distribution. 

Transformation of the data failed. Dummy variables were created for each phenotype for a given 

region. A comparison among regions across phenotypes was made using the Kruskall-Wallis test 

with significance determined at p<0.05.  Ad hoc comparisons were made using the Kruskall-

Wallis procedure, maintaining type I error at 0.05. The median, quartiles and range of the 

regional pixel count and the regional pixel proportion is reported to summarize the data.  PROCS 
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UNIVARIATE and PROC MIXED, PROC NPARIWAY were used for analysis (SAS v 9.1, 

SAS institute, Cary, NC).    

2.3 Results 

 Three distinct synoviocyte populations were identified within the canine CrCL synovium 

with light microscopy: CD18 +, HSP25 +, and DS+ (Fig 2). The total pixel count for HSP25 + 

synoviocytes (57 ± 7.5 %) was significantly greater than the proportion of CD18 + synoviocytes 

(27 ± 8.2 %), which was significantly greater than the proportion of DS+ synoviocytes (16 ± 

3.5%).  

In a comparison of the mean (± SEM) pixel proportion within medial, central and lateral 

sections, HSP25+ synoviocytes were significantly greater than that DS+ synoviocytes in 

proximal, middle and distal regions and significantly greater than the CD18+ synoviocytes in 

middle and distal regions. (Table 2.1)  CD18+ synoviocytes were significantly greater than DS+ 

synoviocytes in proximal and distal regions (Table 2.1).  

In a comparison of the mean (± SEM) pixel proportion within cranial and caudal regions 

the HSP25+ synoviocytes were significantly greater than the DS+ synoviocytes in central and 

lateral regions. (Table 2.2) CD18+ synoviocytes were significantly greater than the DS+ 

synoviocytes in only the central region. (Table 2.2)  

Western blotting with anti-CD18 yielded an immunoreactive band at approximately 160 

kD. (Figure 2.3)  The amplicon sequence was 98% homologous to that of canine CD18 (NCBI 

accession # AF181965). Western blotting with anti-HSP25 antibody yielded an immunoreactive 

band at approximately 27 kD in murine bladder and heart as well as canine CrCL extracts. 

(Figure 2.3B) The canine amplicon sequence was 85% homologous to that of murine HSP25 
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(NCBI accession # L11608). Immunoelectron microscopy revealed gold labeling of synoviocytes 

enveloping the CrCL with either anti-CD18 or anti-HSP25 antibodies. (Figure 2.4)   

 

Figure 2.2  Photomicrographs of double immunostained CrCL sections. A: HSP25+ 
synoviocytes (arrows). B: CD18+ synoviocyte (arrow). C: DS+ synoviocyte (arrow). D: 
HSP25+ (thick arrow), CD18+ (short narrow arrow) and DS+ synoviocytes (narrow long 
arrow). E: CD18 positive control. F HSP25 positive control. (Magnification A-E: 600x, F: 
200x, and counterstain A-F: methyl green)  
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Table 2.1  Mean (± SEM) pixel proportion for each phenotype within proximal, middle, and 
distal regions of medial, central, and lateral sections. Proportions with the same superscript 
are not significantly different. 
 
 CD18 HSP25 DS 

PROXIMAL 11 ± 1.8 b 16 ± 2.2 ab 0.09 ± 0.05 c 

MIDDLE 9 ± 1.8 bc 25 ± 2.1 a 0.5 ± 0.3 c 

DISTAL 12 ± 1 b 23 ± 2 a 1 ± 0.1 c 

 
Table 2.2  Mean (± SEM) pixel proportion for each phenotype within medial, central, and 
lateral regions of cranial and caudal sections. Proportions with the same superscript are not 
significantly different. 
 
 CD18 HSP25 DS 

MEDIAL 6 ± 1.6 b 14 ± 2.8 ab 0.05 ± 0.03 c 

CENTRAL 24 ± 10.7 bc 24 ± 1.4 a 0.7 ± 0.4 c 

LATERAL 12 ± 2.2 b 27 ± 3.4 a 0.9 ± 0.4 c 

 
 

 

Figure 2.3  Western blot analyses of A: CD18 in control (canine lymph node) and canine 
CrCL tissues. CD18+ bands from both tissues are at approximately 160kD; and B: HSP25 
in control (murine bladder) and canine CrCL tissues. Both bands are at approximately 
27kD.   
 

 

34 
 



Figure 2.4  Transmission electron photomicrographs of immunogold labeling (arrows) of 
(A) canine CrCL synoviocytes with CD18 (30 000x); (B) canine CrCL synoviocytes with 
HSP25 (30 000x); (C) murine bladder with HSP25 (positive control, 40 000x); and (D) 
canine lymph node with CD18 (positive control, 60 000x). Gold labeling of the CD18 and 
HSP25 appear as black dots in the images.  
 

35 
 



2.4 Discussion 

Three distinct synoviocyte phenotypes enveloping the normal canine CrCL were 

identified in this study with light microscopic immunostaining.  The presence of CD18 and 

HSP25 epitopes in the canine CrCL was validated with western blot, RT-PCR, and TEM 

analysis.  Based on quantification of regional immunostaining, distinct and consistent 

topographical distributions were identified for each synoviocyte phenotype.  The two proteins 

selected for co-localization were based on current knowledge of synoviocyte phenotypes. There 

is evidence of at least two, and likely three joint capsular synoviocytes in a number of species; 

type A, type B and a transitional or stem cell like cell (type C) (Barland et al. 1962, Stevens et al. 

1990, Wilkinson et al. 1992).  

Small heat shock proteins play an important role in cellular defense and HSP25 is up 

regulated in response to injury (Hollander et al. 2004, Sharp et al. 2006). With light and TEM, 

HSP25 was localized to the cytoplasm and the nucleus consistent with previous study findings 

(Miron et al. 1991). Based on the fact that HSP25 is established as a type B joint capsular 

synoviocyte marker in the rat and human, it is likely that the labeled canine synovioycytes 

identified in this study are type B.   

The CD18 antibody used in this study is specific for an epitope on common beta subunit 

of the leukocyte integrin family (Moore et al. 1992).  The CD18 epitope is both cytoplasmic and 

membrane associated, and so, labeled cells are likely macrophage like (Pavalko et al. 1993). This 

is further supported by the knowledge that macrophage like synoviocytes make up 10-20% of the 

synovium of the human joint capsule which is similar to these study findings (Sledge 2001).   

Synovioyctes that share characteristics of both type A and type B phenotypes have been 

previously identified (Barratt et al. 1977). The origin of canine synoviocytes has not been 

36 
 



established, however porcine synoviocyte have been shown to originate from the mononuclear 

phagocyte system and murine type A synoviocytes from bone marrow (Barratt et al. 1977, 

Edwards et al. 1982). It has been postulated that the type C macrophages are pluripotent and 

some consider that the type A, B, and C synoviocytes represent different functional states of the 

same cell (Fell et al. 1976, Barratt et al. 1977). The DS+ cells in our study may be analogous to 

the type C cells. Multipotent stem cells (MSC) have been identified within joint capsular 

synovium and the infrapatellar fat pad in the human stifle, and under cell culture conditions they 

have been shown to differentiate into chondrocyte, osteocyte, and adopocyte lineages (Bari et al. 

1989, Wickham et al. 2003). Characterization and a means of identification of this cell type on 

the CrCL is important for future studies focused on the optimal conditions for desirable MSC 

differentiation.   

HSP25 and CD18 antibodies have not been used extensively for routine canine CrCL 

immunostaining, so the presence of the proteins and mRNA expression was confirmed for both 

epitopes. Western blot analysis confirmed the presence of both proteins within the canine CrCL.  

HSP25 antibody cross-reacts with the HSP27 protein and, based on the western blot findings, the 

HSP27 epitope was isolated in this study (Engel et al. 1991). Further evidence for the presence of 

the proteins within the canine CrCL was obtained with RT PCR. Additional confirmation of 

localization of the epitopes was provided by the TEM. These validation steps substantiate the 

presence of CD18 and HSP25 epitopes on synoviocytes surrounding the CrCL.  

The proportion of pixels stained for HSP25 + cells was significantly greater than for 

CD18 + synoviocytes or the double stained synoviocytes. Assuming that the HSP25 + 

synoviocytes have a fibroblastic function, a higher proportion of the phenotype would be 

expected for routine CrCL maintenance. Strain distribution along the length of the CrCL is not 
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uniform (Hirokawa et al. 2001). Additionally, the medial aspect of the CrCL is under  greater 

stress than the lateral aspect with the most stress near the femoral insertion (Hirokawa et al. 

2001). Therefore, variations in the proportions of each phenotype would be expected if stress or 

strain has an effect on the expression of particular phenotypes at specific regions. We did not 

observe any differences between the lateral and medial regions of the CrCL, however the 

proportion of pixels for HSP25+ synoviocytes was significantly greater than CD18+ or DS+ 

synoviocytes at the proximal region in all sections. Enumeration of synoviocyte phenotypes was 

necessary to obtain phenotypic proportions from normal CrCLs for purposes of potential 

comparison to damaged or diseased CrCLs in future studies. 

Factors such as gender, anatomical, hormonal, and immune mediated processes have 

been implicated in the pathogenesis of spontaneous CrCL rupture though the precise 

pathogenesis is not known (Goldberg et al. 1982, Harner et al. 1994, Liu et al. 1997, Duval et al. 

1999).  Rupture of the CrCL is well described at the gross and histological level, and the 

synovium enveloping the CrCL has been described. However, a distinction between and the role 

of the synoviocytes within the synovium has received little attention (Arnoczky 1983, Hayashi et 

al. 2003, Hayashi et al. 2003). We have developed a novel mechanism to evaluate the CrCL that 

may facilitate understanding of the pathogenesis of CrCL rupture. Additionally, it may 

potentially be used to assess methods to augment CrCL graft reconstruction through acceleration 

of synovial encapsulation.  

In conclusion, an immunohistochemical technique for the identification and 

quantification of three distinct synoviocyte phenotypes within the synovium enveloping the 

canine CrCL was developed and validated. Information may be useful for future studies 

surrounding CrCL disease, healing, and graft reconstruction. Additionally this information may 
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be useful for studies on synoviocyte phenotypes in canine models of CrCL disease. This novel 

approach to evaluation of the CrCL may significantly enhance future studies involving CrCL 

treatment and reconstruction. 
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 CHAPTER 3. COMPARISON OF SYNOVIOCYTES ASSOCIATED WITH NORMAL, 
ARTIFICIALLY STRETCHED, AND NATURALLY DISRUPTED CANINE CRANIAL 
CRUCIATE LIGAMENTS 
 

3.1 Introduction 

 The canine cranial cruciate ligament (CrCL) is composed of predominantly collagen and 

is surrounded by a 2-3 cell layer synovium (Arnoczky 1983). Synoviocytes normally maintain 

and protect the joint. Though synoviocytes are normally supportive, they are also known to 

contribute to some disease processes. In rheumatoid arthritis, idiopathic arthritis, and CrCL 

rupture, synoviocytes express interleukins 6 and 8, prostaglandin E2, and nitrous oxide (Zhu et 

al. 2006, Kontny et al. 2007). While significant scientific focus has been dedicated to the canine 

CrCL, the synoviocytes surrounding it have received little attention. 

Microscopically, at least two synoviocyte phenotypes have been identified in the joint 

capsular synovium in several species.  The synoviocyte phenotypes that have been identified 

include the type A (macrophage-like), type B (fibroblast-like), and an intermediate type (type C) 

(Stevens et al. 1990, Wilkinson et al. 1992, Kitamura et al. 1999, Ikeda et al. 2004, Lemburg 

2004, Zhu et al. 2006). Similarly, in our lab we have identified and quantified three synoviocyte 

phenotypes within the synovium surrounding the CrCL in normal dogs (Vasanjee et al. 2008).  

Antibodies to CD18 and HSP25 epitopes were used to identify at least 3 synoviocyte 

phenotypes: CD18 positive (CD18+), HSP25 positive (HSP25+), and a population of cells in 

which co-localization of CD18 and HSP25 occurred (DS+) (Vasanjee et al. 2008). HSP25 

synoviocytes are the predominant phenotype and DS synoviocytes are the least abundant in the 

synovium associated with the normal canine CrCL (Vasanjee et al. 2008).  

The role that the synoviocytes play in health and disease of the CrCL is not known. 

Insight as to whether these synoviocytes play a role in CrCL disease may be obtained by 
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comparing the proportions of each of the phenotypes between diseased and normal CrCLs. The 

purpose of this study was therefore to identify and compare synoviocyte phenotypes proportions 

between normal, naturally partially disrupted, and artificially stretched canine CrCLs. We 

hypothesized that there would be three synoviocyte phenotypes in each group and that naturally 

disrupted and artificially stretched CrCLs would have a greater proportion of CD18 positive 

synoviocytes compared to normal CrCLs. 

3.2 Materials and Methods 

  This study was performed in accordance with Institutional and National Institutes of 

Health regulations governing the treatment of vertebrate animals. Elongation of the CrCL was 

carried out in one randomly selected stifle from eight mature intact female mixed breed hounds 

with no clinical signs of orthopedic disease. The contra-lateral limb served as a non operated 

control. The CrCLs were elongated by approximately 25% using a specifically designed 

instrument using a standard open surgical approach (Lopez et al. 2006). Dogs were euthanized 

12 weeks after surgery. Double fluorescent immunolabelling was carried out on each CrCL in 

order to determine the proportions of each synoviocyte phenotype.  

3.2.1 Surgical CrCL Elongation 

Following premedication with acepromazine (0.10 mg/kg, subcutaneously) and 

butorphanol (0.20 mg/kg, subcutaneously), the dogs were induced with thiopental (5%, 

intravenously [IV]) to effect. The dogs were then intubated and maintained on halothane in 

oxygen. Cefazolin (22mg/kg, IV) was administered at induction and repeated six hours later. The 

treated stifle was clipped and aseptically prepared for surgery. Following a medial arthrotomy, 

the patella was luxated laterally to allow examination of the CrCL and the joint. Single-

interrupted sutures (2-0 Silk) were placed approximately 5mm apart in the CrCL mid-substance 
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with the distal most suture just proximal to the intermeniscal ligament. A bar type tension gauge 

(McMaster-Carr, Chicago, IL) was used to apply 2.5 N of tension to the distal aspect of the CrCL 

during measurements.  

A specially designed device was used to stretch each CrCL midsubstance (Fig 3.1). The 

device had a hollow cylinder (7.5mm inner diameter; 10mm outer diameter) with a 2.5-mm-wide 

textured (80 grit) rim. Within the cylinder was a removable 10-gauge stainless-steel hook (5mm 

diameter, 2mm depth) attached to a retractable ratchet system that locked in place every 1.5mm. 

To effect tissue stretch, the hook was placed beneath each CrCL approximately equidistantly 

between sutures and retracted until it was entirely inside the cylinder. The textured surface of the 

cylinder was then engaged with the CrCL surface by pressing the device firmly against the 

CrCL.               

                              

Figure 3.1 Specifically designed device used to stretch the CrCL  

With the stifle held in 135 degrees of flexion, the hook was retracted at a rate of 0.4–

0.5mm/s to a displacement of approximately 3mm which was held for one minute then released. 

The joints were lavaged with 0.9% normal saline and sutured closed. Butorphanol tartrate  
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(0.2mg/kg IV) was administered once during anesthetic recovery and then intramuscularly every 

four hours for 24 hours as needed for analgesia. Etodolac (10mg/kg) was administered beginning 

24 hours after surgery, and continued for seven days. Dogs were confined to 4 x 6 ft runs and 

taken for leash walks three times a day for the duration of the study.  

Following euthanasia both the elongated and control CrCLs were aseptically harvested by 

transection at the origin and insertion, and fixed in 10% formalin. Gross evaluation of control 

CrCLs revealed four of the seven CrCL’s to be partially disrupted. These CrCLs were classified 

as a naturally partially disrupted and included in the analyses.  

3.2.2 Immunohistochemistry 

Following embedding in paraffin, 7µm sagittal sections were cut from approximately the 

central aspect of each CrCL. The central aspect of the CrCL was chosen based on findings from 

a previous study that found no major differences between medial, central and lateral 

sections.(Vasanjee et al. 2008). Deparaffinized sections were immunostained for two different 

synoviocyte phenotypes using a murine monoclonal antibody against canine CD18 (PF Moore, 

Davis, CA) and a rabbit polyclonal antibody against murine heat shock protein 25 [HSP25 

(Stressgen Bioreagents, Ann Arbor, MI)] that were validated in a previous study (Vasanjee et al. 

2008).  

Following deparaffinization and rehydration, endogenous peroxidase was quenched with 

hydrogen peroxide. Antigen retrieval was carried out with heated citrate and proteinase K (Dako, 

Carpinteria, CA) in order to expose CD18 and HSP25 antigens respectively. Slides were blocked 

with normal horse serum (Vector Labs, Burlingame, CA) followed by incubation with undiluted 

anti-CD18 antibody. All incubations were carried out in a humidified chamber to ensure sections 

would not dessicate. 
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Following incubation with biotinylated secondary antibody (DAKO EnVision, Dako, 

Carpinteria, CA), slides were incubated with Texas red conjugated streptavidin for 7 minutes. 

Slides were next blocked with normal goat serum, incubated with anti-HSP25 antibody (diluted 

1:200) followed by incubation in a biotinylated secondary antibody (DAKO EnVision, Dako, 

Carpinteria, CA).  

The slides were incubated with fluorescene conjugated streptavidin for 7 minutes. The 

slides were cover slipped and stored at -80º in the dark until microscopic analysis. All slides 

were evaluated by one of the investigators (SCV) who was aware of cruciate types. Positive 

controls for the CD18 and HSP25 were canine lymph node and murine urinary bladder, 

respectively. Negative controls were the canine CrCL with the primary antibody omitted. 

3.2.3 Fluorescent Microscopy 

For purposes of cell quantification, the medial and lateral aspects of the proximal, middle 

and distal regions were evaluated. Slides were evaluated at a magnification of 400x with a 

fluorescent microscope (Model DM5000, Leica Microsystems Inc., Bannockburn, IL). Digital 

photomicrographs were generated separately for each of the channels (Texas red and 

Fluoresceine). The digital images were exported as uncompressed tagged-image file format files 

(TIFF) at 400X400 dots per inch (dpi) and implemented in Adobe Photoshop CS (Adobe 

Systems, Seattle, WA). The separate images from each channel were merged, and the digital 

images were exported into Image-Pro Plus 5.0 (Media Cybernetics, Bethesda, MD).  

The Adobe software was used to quantify the number of pixels corresponding to each 

color of interest within each region. There were three fluorescent colors of interest; red, 

representing synoviocytes that were CD18 +; green, representing synoviocytes that were  

HSP25+; and yellow, representing DS+ synoviocytes.  The mean proportional pixel count 

44 
 



for each phenotype was the response variable used for statistical analysis. 

3.2.4 Confocal Microscopy 

Cellular localization and co-localization of CD18 and HSP25 was determined using confocal 

microscopy. Double immunofluorescent labeling as described above was carried out on a 10µm 

sections from an artificially stretched CrCL. Sections were examined with a TCS SP2 laser scanning 

microscope (Leica Microsystems, Exton, Pa.) fitted with a 63X Leica objective (1.4 numerical 

aperture; Planachromatic). Individual optical sections in the z axis, averaged three times, were 

collected in the different channels at 1024 by 1024 pixel resolution. Images analysis and co-

localization fluorograms were generated and analyzed using the Leica confocal software.     

3.2.5 Statistical Analysis 

The proportion of all pixels that stained for each phenotype was calculated and used for 

statistical analysis. Log transformation normalized the data, verified by failure to reject the null 

hypothesis of normality at p<0.05 using the Shapiro-Wilk statistic. A comparison among regions 

and sections across phenotypes was made using a mixed linear model including the random 

variance of dog nested within groups. Significance was determined at p<0.05.  Ad hoc 

comparisons were made using a Scheffe’s adjustment, maintaining type I error at 0.05.  The 

mean, standard deviation, median, quartiles and range of the pixel proportion is reported to 

summarize the data. PROCS UNIVARIATE and PROC MIXED, PROC NPARIWAY were used 

for analysis (SAS v 9.1, SAS Institute, Cary, NC).    

3.3 Results 

Three distinct synoviocyte populations were identified within the artificially stretched, 

naturally partially disrupted, and control canine CrCL synovium with fluorescent microscopy: 

CD18 +, HSP25 +, and DS+ (Fig 3.2).  
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The proportional pixel count for HSP25 + synoviocytes (57 ± 7.5 %) was significantly 

greater than the proportion of CD18 + synoviocytes (27 ± 8.2 %), which was significantly 

greater than the proportion of DS+ synoviocytes (16 ± 3.5%) in all groups. There was no 

significant difference in the proportions of each of the phenotypes between groups (tables 3.1, 

3.2, and 3.3). 

 

Figure 3.2  Photomicrographs of double immunostained CrCL sections A: HSP25+ 
synoviocytes. B: CD18+ synoviocytes. C: Merged image displaying co-localization of CD18 
and HSP25 (DS+). (400X) 
 
Table 3.1  Mean (± SEM) pixel proportion for each phenotype within proximal, middle, and 
distal central, and lateral regions for naturally partially disrupted CrCLs. 
 
 CD18 HSP25 DS 

PROXIMAL LATERAL 25 ± 19.7  73 ± 20.2  3 ± 0.6  

PROXIMAL MEDIAL 29 ± 14.3  71 ± 14.7  1 ± 0.72  

DISTAL LATERAL 16 ± 9.4  36 ± 20.6  19 ± 11.4  

DISTAL MEDIAL 0.2 ± 0.4 3 ± 2 4 ± 1.8 

MIDDLE 1 ± 0.7 89 ± 5.5 9 ± 5.3 
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Table 3.2  Mean (± SEM) pixel proportion for each phenotype within proximal, middle, and 
distal central, and lateral regions for normal CrCLs. 
 
 CD18 HSP25 DS 

PROXIMAL LATERAL 6 ± 4.2  74 ± 21.3  21 ± 17 

PROXIMAL MEDIAL 28 ± 28.5  66 ± 26.6  5 ± 2.9  

DISTAL LATERAL 4 ± 2.9  96 ± 3.2  0.3 ± 0.3  

DISTAL MEDIAL 7 ± 6.9 76 ± 14.3 17 ± 14.1 

MIDDLE 21 ± 12.4 76 ± 13.2 2.5 ± 1.6 

 
Table 3.3  Mean (± SEM) pixel proportion for each phenotype within proximal, middle, and 
distal central, and lateral regions for artificially stretched CrCLs. 
 
 CD18 HSP25 DS 

PROXIMAL LATERAL 16 ± 13.8  75 ± 12.8  8.5 ± 2.9 

PROXIMAL MEDIAL 12 ± 8.1 76 ± 8.8 11 ± 4.9  

DISTAL LATERAL 2 ± 1.1  91 ± 4.8  7.1 ± 4.8  

DISTAL MEDIAL 13 ± 9.5 81 ± 11.4 5.6 ± 4.1 

MIDDLE 3.3 ± 2.9 93 ± 3.9 4 ± 2.9 

 
Confocal laser microscopy confirmed the presence 3 synoviocyte phenotypes and 

generation of a fluorogram revealed co-localization of CD18 and HSP25 epitopes to the same 

cell (DS+ synoviocytes). The CD18+ staining was represented by the red staining and the HSP25 

staining was represented by the green staining (Fig 3.3). Distinct red and green regions were 

evident within the fluorogram. The red region represented CD18+ staining and the green region 

represented HSP25+ staining indicating localization of CD18 and HSP25 epitopes to different 

regions within the same cell.  
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Figure 3.3  A. Confocal photomicrograph of double immunostained CrCL section (400X). 
B. Fluorogram depicting co-localization (B). 

 
3.4 Discussion 

We have used immunohistochemistry to identify and characterize three distinct 

synoviocyte phenotypes (CD18+, HSP25+, and DS+) enveloping the normal and abnormal 

canine CrCL. Co-localization of CD18 and HSP25 (DS+) to the same cell rather than to the same 

epitope was confirmed with confocal laser microscopy. We previously identified and validated 

the three synoviocyte phenotypes identified in the current study. However, fluorescent 

microscopy provided additional information with regards to characterization of co-localization.  

The pathogenesis of CrCL rupture in dogs is not known. In order to gain insight into 

CrCL rupture, the CrCL has been evaluated extensively at the molecular and cellular levels. For 

instance, fibroblast shape and numbers within the core of the CrCL and concentrations of 

enzymes such as cathepsin K, have been shown to differ between normal and ruptured canine 

CrCLs (Murray 2000, Muir et al. 2002, Hayashi et al. 2003).  The core of the CrCL does not 

come into contact with the synovial fluid since the CrCL is enveloped by a synovial membrane. 
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Antibodies to collagen types that make up the core of the CrCL have been detected in the 

synovial fluid from canine stifles with CrCL ruptures.(de Rooster et al. 2000). It is therefore 

possible that disruption of the CrCL associated synovial membrane may lead to immune 

complex formation between the CrCL collagen and the collagen antibodies from the synovium 

leading to degeneration and subsequent rupture of the CrCL. Thus by studying the CrCL 

associated synovium in normal and diseased CrCLs may provide information into the 

pathogenesis of CrCL rupture.  

As previously reported, the proportion of pixels stained for HSP25 + cells was 

significantly greater than that for CD18 + synoviocytes or the DS+ synoviocytes in normal 

CrCLs. Assuming that the HSP25 + synoviocytes have a fibroblastic function, a higher 

proportion would be expected for routine CrCL maintenance. Conversely, given the likely 

phagocytic function of the C18+ synoviocytes, the proportion of pixels stained for CD18+ 

synoviocytes would be expected to be greater in diseased compared to normal CrCLs. We did 

not detect any differences between normal and diseased CrCLs for the proportion of CD18+, or 

for the other two synoviocyte phenotypes.  The proportion of HSP25+ synoviocytes was the 

greatest in all CrCLs with the DS+ synoviocytes the least.  

There are several possibilities as to why we did not detect differences in the proportion 

for each synoviocyte phenotype between diseased and normal CrCLs. Changes in the 

synoviocyte proportions may occur over time and therefore evaluation of multiple time points 

may be necessary to detect any differences. Secondly, our sample sizes for each CrCL type were 

small. An increased sample size may be necessary to detect differences. Thirdly, there may not 

be differences between diseased and normal CrCLs. While our model of CrCL disease does not 

represent natural disease, the partially disrupted CrCLs were as a result of natural disease.  
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The current study utilized fluorescent microscopy to detect the synoviocytes. However, a 

previous study utilized light microscopy. Identification of DS+ synoviocytes was easier when 

fluorescence was used. Confocal laser microscopy was used to characterize the co-localization in 

DS+ synoviocytes. Based on the fluorogram generated, CD18 and HSP25 antibodies in DS+ 

synoviocytes co-localized to different epitopes in the same cell. This finding suggests that the 

DS+ synoviocyte may in fact be a stem cell that shares characteristics of both CD18+ and 

HSP25+ synoviocytes.    

We developed and validated a fluorescent immunohistochemical technique for the 

identification and quantification of three distinct synoviocyte phenotypes within the synovium 

enveloping the normal and diseased canine CrCL. All three synoviocyte phenotypes are present 

in both diseased and normal CrCLs and are present in similar proportions across normal and 

diseased CrCLs.  
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CHAPTER 4.  CONCLUSION 

  Immunohistochemistry was used to identify and characterize three distinct synoviocyte 

phenotypes (CD18+, HSP25+, and DS+) enveloping the normal and abnormal canine CrCL in 

this study. We have validated these techniques using western blot, immunoelectron microscopy, 

confocal microscopy and RT-PCR.  

Identification of synoviocyte phenotypes enveloping the CrCL in any species has not 

been previously reported in the literature. However, synoviocytes within the joint capsular 

synovium have been identified in multiple species (Barland 1962, Barland et al. 1962, Barratt et 

al. 1977, Burmester et al. 1983, Stevens et al. 1990, Kitamura et al. 1999, Ikeda et al. 2004, 

Klocke et al. 2005). It is not known whether synoviocytes within the joint capsule are identical to 

those enveloping the CrCL. Studies comparing these synoviocytes in different regions of the 

stifle are warranted. 

 The synovium has an important role in maintaining joint health. It is responsible for 

nourishing the joint (Walsh 1997, Sledge 2001). The importance of the synovium is highlighted 

in arthropathies such as rheumatoid arthritis and osteoarthritis in which the amount of hyaluronic 

acid is decreased in the synovial fluid (Yoshida et al. 2004). Hyaluronic acid is produced by 

fibroblast-like synovioctes and is responsible for joint lubrication and homeostasis (Yoshida et 

al. 2004). Hyaluronic acid inhibits prostaglandin synthesis, free radical damage, and enzyme 

degradation (Yoshida et al. 2004). This vital role may be one reason why the HSP25 synoviocyte 

phenotype was the predominant phenotype within the synovium enveloping the CrCL in our 

studies. Damage to this synovium via trauma, an immune mediated process, or secondary to 

stifle instability will reduce the amount of hyaluronic acid within the joint predisposing it to 

pathologic processes.  
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In our studies, the HSP25+ synoviocyte was the predominant phenotype surrounding 

both normal and diseased CrCLs. Based on the literature, and also based on the fact they were 

the predominant phenotype, the HSP25+ synoviocytes most likely represent the fibroblast-like 

synoviocytes. If damage to a CrCL results in reduction of the number of fibroblast-like 

synoviocytes, then we should have seen a lower proportion of HSP25+ synoviocytes from 

abnormal CrCLs. However, no significant differences were present. The synoviocyte proportions 

may be dynamic and difference may only be detected with evaluation at multiple time points. 

Although heat shock proteins have roles in both health and disease, a  link between CrCL rupture 

and HSP25 is yet to be identified.  

Since the CD18 antigen is present on leukocytes such as macrophages, the most likely 

synoviocyte phenotype labeled with the anti CD18 antibody is the macrophage-like synoviocyte. 

Macrophage-like synoviocytes, similar to other types of macrophages are phagocytic in nature. 

They contain degradative enzymes such as nonspecific esterase, acid phosphatase, 

and cathepsins B, D, and L (Yoshida et al. 2004). Macrophage-like synoviocytes degrade 

hyaluronic acid (Yoshida et al. 2004). For these reasons, the proportion of macrophage-like 

synoviocytes within the synovium are expected to be low in the normal CrCL. In the synovium 

encompassing normal CrCLs, the proportion of synoviocytes staining CD18+ were significantly 

lower than for  HSP25+. Increased  CD18+ staining would be expected to be increased at high 

stress areas such as sites of attachment or insertion of the CrCL. Increased staining was not seen 

in these regions.  

As expected, the numbers of CD18+ synoviocytes within joint capsular synovium from 

dogs with CrCL rupture are increased when compared to normal joint capsular synovium 

(Klocke et al. 2005). The CD18+ synoviocytes numbers are higher the greater degree of 
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osteoarthritis (Klocke et al. 2005). This suggests that the CD18+ synovioctes may be responsible 

for modulating the progression of osteoarthritis via degradative enzymes and inflammatory 

mediators (Yoshida et al. 2004). Given their phagocytic nature, the numbers of CD18+ 

synoviocytes would be expected to be higher in abnormal CrCLs as retraction and resorption of 

the CrCL occurs following injury.(Murray 2000, Hayashi et al. 2003). However, no significant 

differences between normal and abnormal CrCLs were seen in our study.   

Further studies are needed to determine if differences are noted when sampling at 

different time points. We evaluated the abnormal CrCLs 12 weeks after injury. A previous study 

revealed partial loss of the CrCL fiber matrix by 12 week after injury (Hayashi et al. 2003). It is 

not known whether the macrophage-like synoviocytes were responsible for this, but it does 

support the need to evaluate the CrCLs prior to 12 weeks when active damage to the CrCL is 

most likely occurring.   

We have shown that a third phenotype, the DS+ synoviocyte has both CD18 and HSP25 

antigens. This synoviocyte may represent the type C synoviocyte.  Using confocal microscopy, 

we have shown that the antigens are present on different parts of the cell. The CD18 antigen is 

present on the cell membrane and the HSP25 antigen is present in both the cytoplasm and the 

nucleus. Given that the DS+ synoviocytes share characteristics of the CD18 and the HSP25 

synoviocytes, the DS+ synoviocytes may represent a transitional phenotype that is a pluripotent 

stem cell with phenotypic plasticity. It has been postulated that type C synoviocytes are 

pluripotent, and some consider that the type A, B, and C synoviocytes represent different 

functional states of the same cell.(De Bari et al. 2001). 

Mesenchymal stem cells have been identified in the human join capsular synovium (De 

Bari et al. 2001, Shirasawa et al. 2006). These stem cells are comparable to bone marrow derived 
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stem cells with respect to expansion ability (Sakaguchi et al. 2005).  Synovium mesenchymal 

stem cells isolated from the synovium  have excellent potential for differentiation into fat, 

cartilage and bone (Sakaguchi et al. 2005, Shirasawa et al. 2006). The DS+ synoviocytes in our 

study may represent a stem cell. Isolation and expansion of the DS+ synoviocyte phenotype in 

culture is warranted to determine if it is a stem cell.  

Intra-articular infusion of bone marrow derived MSCs into rat joints with artificially 

created partial CrCL tears results in healing of the CrCL (Kanaya et al. 2007). Similar healing 

does not occur in control joints (Kanaya et al. 2007). A similar study is warranted in canine 

joints but with both artificially created and naturally partially ruptured CrCLs. A mechanism 

would need to be developed to ensure that the infused MSCs remain in the joint and close to the 

damaged portion of the CrCL for an extended period of time.    

Light and fluorescent microscopy was used to identify the synoviocyte phenotypes. In the 

first study, light microscopy and chromogens were used. The number of different colored 

chromogens available is limited. Also, not all chromogens are compatible with each other, thus 

further limiting the number of chromogens that can be used concurrently. When double 

immunolabelling is carried out using chromogens, the chromogens must be easily distinguishable 

from each other. We used a purple and a brown chromogen. Though we were easily able to 

distinguish synoviocytes that solely stained CD18+ from those that solely stained HSP25+, it 

was difficult at times, to distinguish between the DS+ and the HSP25+. Adobe Photoshop 

software was therefore employed. Color subtraction was used to count the number of pixels 

corresponding to each color of interest. Once individual synoviocytes were identified, the Adobe 

Photoshop software’s tolerance was adjusted and the wand tool was used to identify each color 

of interest. The result was a pixel count for each color of interest.    
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In the subsequent study, in order to clearly distinguish each phenotype, fluorescent 

immunolabelling was employed. The fluorescent dyes attached to each of the antibodies were of 

a different wavelength and therefore by using different filters, each phenotype was clearly 

identified.  This appeared to be a more accurate assessment of staining for each phenotype 

proportion. It was difficult to identify individual synoviocytes, and hence  the actual numbers of 

cells were not counted, but instead the pixels corresponding to each color of interest were 

determined using Image Pro software. Therefore our technique actually quantified and compared 

the proportions of CD18 and HSP25 localization or co-localization and not the actual numbers of 

individual synoviocytes. Given that the CD18 only stained the membrane and cytoplasm, and the 

HSP25 both the nucleus and cytoplasm, the pixel value may not be a reflection of the number of 

synoviocytes. For example, if the total pixel value for 3 CD18+ synoviocytes is 25, a single 

HSP25+ synoviocyte pixel value could be greater than 75.   

The stifle joint capsular synovium in human cases of rheumatoid arthritis (RA) has been 

extensively studied. In RA, the synovium is characterized by extensive proliferation of 

fibroblast–like cells. These fibroblast-like cells produce interleukins and therefore are thought to 

be involved in the inflammatory process in RA (Harada et al. 1999). Macrophages present within 

the synovium also produce inflammatory mediators (Harada et al. 1999). It is not clear from 

these previous studies whether the macrophages originate from the synovium or if they originate 

from the vascular system. Whether this is similar to other forms of arthritis is not known, but 

does indicate that the synoviocytes are relatively quiescent under normal conditions but highly 

active during disease. Synthesis of interleukins and other inflammatory mediators from the 

synoviocytes surrounding the CrCL needs to be investigated. Determination of protein levels and 

mRNA levels of each of the interleukins warrants investigation to determine if in fact the 
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inflammatory mediators are produced from CrCL associated synoviocytes in CrCL rupture. This 

can be accomplished by performing RT-PCR and protein analysis on CrCL associated synovium 

as well on cultured synoviocytes.  

Immunohistochemistry has been used to evaluate the efficacy of various treatments in 

human patients with RA. A marker of human macrophage-like synoviocytes, CD68 has been 

used to determine the effects of steroids, gold compounds, leflunomide, and methotrexate on 

these cells (Yanni et al. 1994, Gerlag et al. 2004, Haringman et al. 2005, Bresnihan et al. 2007, 

Gerlag et al. 2007). The number of macrophage-like synoviocytes decreased with each of these 

treatments, and there was a positive correlation with clinical symptoms. These studies indicate 

that the macrophage-like synoviocytes play a role in the synovitis and that by modulating their 

numbers, clinical improvement is seen. To determine if the same holds true for dogs with CrCL 

rupture, studies need to be carried out in which dogs with partial cranial cruciate ligament 

rupture are treated with various drugs that will modulate the synoviocyte phenotypes to 

determine if healing of the CrCL occurs. Similar results would be expected if CrCL rupture is 

truly an immune mediated process as is RA.   

Before clinical studies are carried out canine synoviocyte cell lines of each phenotype 

that are stable and with an appropriate life span need to be established. The CrCL associated 

synoviocytes must be harvested such that contamination of other cells from the rest of the CrCL 

will not occur.  Optimal conditions will need to be established to ensure propagation of each 

synoviocyte phenotype. The immunohistochemical techniques that we have developed will need 

to be employed to identify and monitor each synoviocyte phenotype. Growth of the various 

synoviocyte phenotypes within the same culture will be ideal so that characteristics of each 

phenotype under various conditions can be studied.  Synthesis and expression of interleukins, 
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matrix metalloproteinases, and acute phase proteins have been evaluated using RA synoviocyte 

cell lines (Han et al. 2006, Mullan et al. 2006). Response to treatment with various drugs has also 

been evaluated (Haupt et al. 2005, Han et al. 2006).  These studies with RA synoviocyte cell 

lines indicate that similar studies using CrCL rupture cell lines is plausible.  

Synovial fluid from dogs with CrCL rupture contains antibodies to collagen (Bari et al. 

1989, de Rooster et al. 2000). Since the CrCL is predominantly composed of collagen, this may 

suggest an auto-immune response targeting the CrCL. It is not known whether these antibodies 

are secondary to CrCL rupture or if CrCL rupture is secondary to development of these 

antibodies. Since the CrCL is surrounded by the synovium, it would not be possible for 

antibodies present in the synovial fluid to come into contact with the collagen unless damage was 

to occur to the synovium. Damage to the synovium will expose the CrCL to the joint fluid 

environment. The body may now see the previously unexposed CrCL proteins as foreign 

antigens. Antibodies would then be generated. Immune complexes may then deposit on the CrCL 

resulting in weakening and destruction of the CrCL. Alternatively, antibodies generated 

elsewhere in the body may gain access to the joint fluid or even the blood stream. These 

antibodies may then disrupt the synovium.  

The presence of antibodies targeting the synoviocytes needs to be investigated to 

determine if an immune response that causes damage to the synovium surrounding the CrCL is 

in fact present and the origin of these antibodies needs to be determined. Western blot or an 

enzyme linked immunosorbant assay (ELISA) would be used to detect any antibodies. Since we 

know that the CrCL associated synoviocytes have CD18 or HSP25 antigens, the presence 

antibodies to these antigens in synovial fluid and serum needs to be evaluated.   In conclusion, 

we have developed and validated a novel mechanism to evaluate the canine CrCL synoviocytes 
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that may facilitate understanding of the pathogenesis of CrCL rupture in future studies.  The 

synoviocytes associated with the joint capsule have been identified previously in several species, 

however, as far as we know, this is the first time that synoviocytes associated the CrCL have 

been identified. This information will provide an alternate approach to understanding the 

pathogenesis of CrCL rupture. The ultimate goal is to prevent CrCL rupture, thereby mitigating 

animal and human morbidity as well as eliminating the financial burden.  
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APPENDIX I: RAW DATA 

Mean +/- SEM pixel number for each phenotype (Phen) at proximal (Prox), distal (Dist), middle 
(Mid), and central (Cent) regions of the normal canine CrCL.  

 

 

 

 

 

 

 

 

 

Dog Phen Prox Dist Mid Cent 
270 HSP 406882 419155 388700 502688 
270 CD18 442417 344719 90824 253628 
270 DS 1299 96350 - 95051 
271 HSP 27620 751881 681345 475263 
271 CD18 220171 113770 81012 134283 
271 DS - - - - 
272 HSP 221114 284375 281368 316741 
272 CD18 202332 276198 309215 436303 
272 DS 7942 0 7498 5005 
268 HSP 71318 85230 44457 78331 
268 CD18 23242 27474 47057 23955 
268 DS - 333 - - 
269 HSP 180271 202831 243761 214367 
269 CD18 114466 81857 48111 77150 
269 DS - - - - 
273 HSP 285866 209534 232314 202946 
273 CD18 220286 139065 62237 1430998 
273 DS - 13230 38675 - 
274 HSP 272721 433462 449109 461179 
274 CD18 273653 178224 167811 359557 
274 DS - - - - 
265 HSP 65543 251205 241731 247545 
265 CD18 29328 129592 32264 119274 
265 DS - - 8062 - 
266 HSP 179628 190731 311185 261103 
266 CD18 44773 145173 62922 104427 
266 DS - 46450 - 14457 
267 HSP 172288 156630 275538 236792 
267 CD18 64903 53894 104687 138426 
267 DS 2977 8094 3867 6797 
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Mean +/- SEM pixel number for each phenotype (Phen) at lateral (Lat), medial (Med), cranial 
(Cr), and caudal (Ca) regions of the normal canine CrCL.  

 
Dog Phen Lat Med Cr Ca 
270 HSP 414024 298025 661408 553329
270 CD18 273724 350608 573984 303976
270 DS - 2598 96350 1299
271 HSP 687113 547120 1017432 692064
271 CD18 129448 151222 317963 96990
271 DS - - - -
272 HSP 287068 183048 309904 476953
272 CD18 285938 65504 347754 439991
272 DS 7498 2937 2937 12503
268 HSP 122674 - 129626 272384
268 CD18 73818 - 72290 123256
268 DS 333 - - 666
269 HSP 412496 - 323601 930125
269 CD18 167284 - 150664 338204
269 DS - - - -
273 HSP 348762 176006 443829 1012139
273 CD18 176699 101791 338782 504394
273 DS 51905 - 51905 51905
274 HSP 390745 303368 660650 494642
274 CD18 191957 68174 121928 497760
274 DS - - - -
265 HSP 110770 200164 954679 162279
265 CD18 50808 21102 265241 117127
265 DS 8062 - 16124 -
266 HSP 202851 217590 959163 403925
266 CD18 24083 124358 346965 158771
266 DS 30413 1580 76863 16037
267 HSP 231275 136389 402913 201543
267 CD18 63931 21127 90247 133237
267 DS 4274 3867 14938 -
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APPENDIX II:  COMPARISON OF NORMAL AND ABNORMAL CRCLs 

Pixel percentage for each phenotype  at distal (D), middle (Mi), proximal (P), lateral (L), and 
medial regions of control CrCLs.  

Dog Phen Region Percentage 
3438 HSP DL 97.45254
3438 CD18 DL 2.54746
3438 DS DL 0
3438 HSP DM 100
3438 CD18 DM 0
3438 DS DM 0
3438 HSP MiL 74.37
3438 CD18 MiL 16.48
3438 DS MiL 9.15
3438 HSP MiM 100
3438 CD18 MiM 0
3438 DS MiM 0
3438 HSP PL 100
3438 CD18 PL 0
3438 DS PL 0
3438 HSP PM 96.75
3438 CD18 PM 0
3438 DS PM 3.25
3951 HSP DL 86.58
3951 CD18 DL 12.42
3951 DS DL 1
3951 HSP DM 64.25
3951 CD18 DM 27.66
3951 DS DM 8.09
3951 HSP MiL 14.48
3951 CD18 MiL 74.89
3951 DS MiL 10.62
3951 HSP MiM 100
3951 CD18 MiM 0
3951 DS MiM 0
3951 HSP PL 89.24
3951 CD18 PL 3.29
3951 DS PL 7.47
3951 HSP PM 13.5
3951 CD18 PM 85.49
3951 DS PM 1
4611 HSP DL 100
4611 CD18 DL 0
4611 DS DL 0
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 4611 HSP DM 40.88
4611 CD18 DM 0
4611 DS DM 59.12
4611 HSP MiL 100
4611 CD18 MiL 0
4611 DS MiL 0
4611 HSP MiM 19.98
4611 CD18 MiM 80.01
4611 DS MiM 0.09
4611 HSP PL 31.43
4611 CD18 PL 14
4611 DS PL 54.56
4611 HSP PM 89.17
4611 CD18 PM 0
4611 DS PM 10.82
3115 HSP DL 100
3115 CD18 DL 0
3115 DS DL 0
3115 HSP DM 98.77
3115 CD18 DM 0
3115 DS DM 1.23
3115 HSP MiL 100
3115 CD18 MiL 0
3115 DS MiL 0
3115 HSP MiM 100
3115 CD18 MiM 0
3115 DS MiM 0
3115 HSP PL                       0 
3115 CD18 PL                       - 
3115 DS PL                       - 
3115 HSP PM                       - 
3115 CD18 PM                       - 
3115 DS PM                       - 
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Pixel percentage for each phenotype  at distal (D), middle (Mi), proximal (P), lateral (L), and 
medial regions of artificially stretched CrCLs.  

Dog Phen Region Percentage 
3438LDL HSP 3438LDL 91.91
3438LDL CD18 3438LDL 6.55
3438LDL DS 3438LDL 1.54
3438LDM HSP 3438LDM 99.8
3438LDM CD18 3438LDM 0.2
3438LDM DS 3438LDM 0
3438LMiL HSP 3438LMiL 94.37
3438LMiL CD18 3438LMiL 4.63
3438LMiL DS 3438LMiL 1
3438LMiM HSP 3438LMiM 97.59
3438LMiM CD18 3438LMiM 1.45
3438LMiM DS 3438LMiM 0.96
3438LPLF HSP 3438LPLF 96.07
3438LPLF CD18 3438LPLF 1.16
3438LPLF DS 3438LPLF 2.77
3438LPM HSP 3438LPM 92.26
3438LPM CD18 3438LPM 0.79
3438LPM DS 3438LPM 6.96
3579RDL HSP 3579RDL 87.7
3579RDL CD18 3579RDL 3.31
3579RDL DS 3579RDL 8.98
3579RDM HSP 3579RDM 86.97
3579RDM CD18 3579RDM 12.38
3579RDM DS 3579RDM 0.66
3579RMiL HSP 3579RMiL 100
3579RMiL CD18 3579RMiL 0
3579RMiL DS 3579RMiL 0
3579RMiM HSP 3579RMiM 100
3579RMiM CD18 3579RMiM 0
3579RMiM DS 3579RMiM 0
3579RPL HSP 3579RPL 0.61
3579RPL CD18 3579RPL 98.3
3579RPL DS 3579RPL 1.13
3579RPM HSP 3579RPM 65.47
3579RPM CD18 3579RPM 4.27
3579RPM DS 3579RPM 30.26
3951RDL HSP 3951RDL 98
3951RDL CD18 3951RDL 0
3951RDL DS 3951RDL 1.97
3951RDM HSP 3951RDM 100
3951RDM CD18 3951RDM 0
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3951RDM DS 3951RDM 0
3951RMiL HSP 3951RMiL 100
3951RMiL CD18 3951RMiL 0
3951RMiL DS 3951RMiL 0
3951RMiM HSP 3951RMiM 100
3951RMiM CD18 3951RMiM 0
3951RMiM DS 3951RMiM 0
3951RPL HSP 3951RPL                        - 
3951RPL CD18 3951RPL                        - 
3951RPL DS 3951RPL                        - 
3951RPM HSP 3951RPM 35.11
3951RPM CD18 3951RPM 57.37
3951RPM DS 3951RPM 7.52
3471RDL   3471RDL                        - 
3471RDL   3471RDL                        - 
3471RDL   3471RDL                        - 
3471RDM   3471RDM                        - 
3471RDM   3471RDM                        - 
3471RDM   3471RDM                        - 
3471RMiL HSP 3471RMiL 57.68
3471RMiL CD18 3471RMiL 40.76
3471RMiL DS 3471RMiL 1.56
3471RMiM   3471RMiM                        - 
3471RMiM   3471RMiM                        - 
3471RMiM   3471RMiM                       -  
3471RPL HSP 3471RPL 78.7
3471RPL CD18 3471RPL 13.97
3471RPL DS 3471RPL 7.33
3471RPM   3471RPM              - 
3471RPM   3471RPM              - 
3471RPM   3471RPM              - 
3732LDL HSP 3732LDL 100
3732LDL CD18 3732LDL 0
3732LDL DS 3732LDL 0
3732LDM HSP 3732LDM 21.35
3732LDM CD18 3732LDM 69.03
3732LDM DS 3732LDM 9.61
3732LMiL HSP 3732LMiL 100
3732LMiL CD18 3732LMiL 0
3732LMiL DS 3732LMiL 0
3732LMiM HSP 3732LMiM 100
3732LMiM CD18 3732LMiM 0
3732LMiM DS 3732LMiM 0
3732LPL HSP 3732LPL 99.9
3732LPL CD18 3732LPL 0
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3732LPL DS 3732LPL 0.1
3732LPM HSP 3732LPM 99.86
3732LPM CD18 3732LPM 0.14
3732LPM DS 3732LPM 0
3115LDL HSP 3115LDL                        - 
3115LDL CD18 3115LDL                        - 
3115LDL DS 3115LDL                        - 
3115LDM HSP 3115LDM 100
3115LDM CD18 3115LDM 0
3115LDM DS 3115LDM 0
3115LMiL HSP 3115LMiL 100
3115LMiL CD18 3115LMiL 0
3115LMiL DS 3115LMiL 0
3115LMiM HSP 3115LMiM 100
3115LMiM CD18 3115LMiM 0
3115LMiM DS 3115LMiM 0
3115LPL HSP 3115LPL 87.12
3115LPL CD18 3115LPL 0
3115LPL DS 3115LPL 12.88
3115LPM HSP 3115LPM 73.2
3115LPM CD18 3115LPM 20.66
3115LPM DS 3115LPM 6.13
4611LDL HSP 4611LDL 99.88
4611LDL CD18 4611LDL 0.03
4611LDL DS 4611LDL 0.09
4611LDM HSP 4611LDM 100
4611LDM CD18 4611LDM 0
4611LDM DS 4611LDM 0
4611LMiL HSP 4611LMiL                         -
4611LMiL CD18 4611LMiL                         -
4611LMiL DS 4611LMiL                         -
4611LMiM HSP 4611LMiM 99.51
4611LMiM CD18 4611LMiM 0
4611LMiM DS 4611LMiM 0.49
4611LPL HSP 4611LPL 83.91
4611LPL CD18 4611LPL 1.94
4611LPL DS 4611LPL 14.14
4611LPM HSP 4611LPM 100
4611LPM CD18 4611LPM 0
4611LPM DS 4611LPM 0
4712LDL HSP 4712LDL 69.18
4712LDL CD18 4712LDL 0.61
4712LDL DS 4712LDL 30.21
4712LDM HSP 4712LDM 60.66
4712LDM CD18 4712LDM 10.46
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 4712LDM DS 4712LDM 28.88
4712LMiL HSP 4712LMiL 88.37
4712LMiL CD18 4712LMiL 0
4712LMiL DS 4712LMiL 11.63
4712LMiM HSP 4712LMiM 60.06
4712LMiM CD18 4712LMiM 0
4712LMiM DS 4712LMiM 39.94
4712LPL HSP 4712LPL 79.17
4712LPL CD18 4712LPL 0
4712LPL DS 4712LPL 20.83
4712LPM HSP 4712LPM 69.57
4712LPM CD18 4712LPM 0.84
4712LPM DS 4712LPM 29.6
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Pixel percentage for each phenotype  at distal (D), middle (Mi), proximal (P), lateral (L), and 
medial regions of partially disrupted CrCLs.  

Dog Phen Region Percentage 
3732 HSP DL                    -
3732 CD18 DL                    -
3732 DS DL                    -
3732 HSP DM                    -
3732 CD18 DM                    -
3732 DS DM                    -
3732 HSP MiL 100
3732 CD18 MiL 0
3732 DS MiL 0
3732 HSP MiM 80.52
3732 CD18 MiM 4.47
3732 DS MiM 15
3732 HSP PL 93.02
3732 CD18 PL 4.33
3732 DS PL 2.64
3732 HSP PM 100
3732 CD18 PM 0
3732 DS PM 0
3471 HSP DL 100
3471 CD18 DL 0
3471 DS DL 0
3471 HSP DM 100
3471 CD18 DM 0
3471 DS DM 0
3471 HSP MiL 98.08
3471 CD18 MiL 0
3471 DS MiL 1.92
3471 HSP MiM 100
3471 CD18 MiM 0
3471 DS MiM 0
3471 HSP PL 32
3471 CD18 PL 64.15
3471 DS PL 3.84
3471 HSP PM 54.68
3471 CD18 PM 44.94
3471 DS PM 0.38
4712 HSP DL 93.12
4712 CD18 DL 0
4712 DS DL 6.88
4712 HSP DM 95.63
4712 CD18 DM 0
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4712 DS DM 4.37
4712 HSP MiL                    -
4712 CD18 MiL                    -
4712 DS MiL                    -
4712 HSP MiM                    -
4712 CD18 MiM                    -
4712 DS MiM                    -
4712 HSP PL                    -
4712 CD18 PL                    -
4712 DS PL                    -
4712 HSP PM                    -
4712 CD18 PM                    -
4712 DS PM                    -
3476 HSP DL 34.96
3476 CD18 DL 28.07
3476 DS DL 36.97
3476 HSP DM 93.09
3476 CD18 DM 0.68
3476 DS DM 6.23
3476 HSP MiL 66.41
3476 CD18 MiL 0.1
3476 DS MiL 33.49
3476 HSP MiM 92.91
3476 CD18 MiM 1.3
3476 DS MiM 5.78
3476 HSP PL 92.49
3476 CD18 PL 5.8
3476 DS PL 1.7
3476 HSP PM 57.06
3476 CD18 PM 40.61
3476 DS PM 2.33
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