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ABSTRACT 

For certain soil salinity characteristics, it would be desirable to know the individual 
concentrations of the major solutes in the soil water over the range of water contents that 
occur in the field and to obtain this information in the field, without the taking of soil 
samples and the carrying out of laboratory analyses. No practical methods are available at 
present to permit such detailed determinations…. 
–J.D. Rhoades, U.S. Salinity Laboratory, Riverside, California 

Soil scientists have been using the same quantification methods for soluble salts for 

decades. Yet they have long struggled with an effective method for quantifying gypsum content, 

because current methods are fraught with problems. Saline soil has been historically defined as 

soil containing salts more soluble than gypsum (e.g., various combinations of Na+, Mg2+, Ca2+, 

K+, Cl-, SO4
2-, HCO3

- and CO3
2-) to the extent that soil fertility is severely reduced across a wide 

array of climates and geological settings. Since salinity is not germane to specific soil 

characteristics such as texture or parent material, it can be challenging to predict salt 

concentrations within a profile. Given the success of previous studies using portable x-ray 

fluorescence (PXRF) as a tool for measuring soil characteristics, the evaluation of soluble salts in 

soil with PXRF seems timely. Not only does this newer technology offer more accurate, 

quantifiable data to investigators, it produces results in-situ, in seconds. Recent enhancements to 

PXRF spectrometers have provided better detection limits especially for lighter elements such as 

S and Cl, a key component of gypsum and other salts. Thus, this research aimed to test the 

effectiveness of PXRF as a means of directly quantifying gypsum and salinity in soils. A total of 

102 soil samples containing a wide variety of gypsum (~2–95%) and 122 samples with various 

salt concentrations were subjected to both traditional laboratory analysis (thermogravimetry and 

electrical conductivity, respectively) and elemental analysis via PXRF. Simple and multiple 

linear regression were used to establish the relationship between the two datasets. Log 

transformation of some datasets was necessary to normalize the data. Using simple linear 
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regression between laboratory and PXRF data, an R2 of 0.88 was produced for the gypsum data, 

and an R2 of 0.839 was produced for salinity data. Similarly, simple linear regression for 

laboratory-quantified gypsum vs. PXRF S produced an R2 of 0.91. Multiple linear regression of 

laboratory quantified gypsum vs. both PXRF S and Ca produced an R2 of 0.91, and 0.8669 for 

laboratory determined EC (dS m-1) vs. PXRF Cl, S, Ca, and K. No significant differences were 

observed between model generation and validation datasets. Overall, PXRF shows great promise 

for the direct quantification of soluble salts in soils. 
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CHAPTER 1: INTRODUCTION 

Soluble Salts: Gypsum and Salinity 

Gypsiferous soils can contain both gypsum (CaSO4·2H2O) as well as anhydrite 

compounds containing Ca. The interest of studying gypsum in semiarid regions is due to its 

solubility (Porta, 1988). With relatively little to no rainfall in these regions, gypsum can be 

dissolved and its ions translocated within the soil profile. Pervasive secondary accumulations of 

Ca in soils can occur as gypsum precipitates in the substratum or is inherited from parent 

materials (Figure 1.1) (Soil Survey Staff, 1993). Field identification of gypsum is possible, but 

must be undertaken carefully so as not to confuse gypsum with other salts. Gypsum can have 

several morphological expressions from transparent/translucent blocks or lenticular 

spires/platelets to white sand-sized soil deeper in the profile (Figure 1.2).  

 

Figure 1.1. Highly gypsic in West Texas (Photo: Weindorf). 



 

2 
 

Figure 1.2. Lenticular gypsum in a soil profile from West Texas (Photo: Weindorf). 

The term ‘salinity’ more generally describes the presence of dissolved soluble salts (e.g., 

various combinations of Na+, Mg2+, Ca2+, K+, Cl-, SO4
2-, HCO3

- and CO3
2-) in soil to the extent 

that soil fertility is severely reduced, including naturally occurring salt weathered from primary 

materials from the earth’s crust, coastal regions with influence from ocean currents and tides, 

arid to semi-arid regions, or others of anthropogenic origin (Wang et al., 2007; Benito et al., 

1995; Merrill et al., 1980; Hao and Chang, 2003; Saadi et al., 2007). Salt accumulation disturbs 

the normal metabolism, water quality, and nutrient uptake for plants and biota (Qadir and Oster, 

2004). Salt affected soils have lower osmotic potential for plants to absorb water, causing the 

protoplasmic lining in plants to shrink; an action termed plasmolysis (Liu and Hellebust, 1976; 

Gardolinski et al., 2003; Childs and Hanks, 1975; Hasagawa et al., 2000). Accumulation of 

soluble salts in soils can occur across a wide variety of climate and geological settings, even 

impacting irrigated land used for agronomic production. Saline conditions are primarily found in 
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semiarid to arid regions; however, they can occur in humid regions. For example, soils in coastal 

areas can be subjected to sea water from storm surges (Salinity Staff, 1954). In arid regions, the 

rate of evaporation exceeds annual rainfall (300-350 mm y-1) and further concentrates salts in 

soils and surface water. In Louisiana, the humid climate and excessive rainfall (>170 cm y-1) 

from extreme weather patterns have impacted the coastal region in the Mississippi River delta. 

The majority of coastal Louisiana is below sea level (maximum 2.5 m), accelerating the rate of 

saltwater intrusion from the Gulf of Mexico. 

Gypsum Quantification 

A study by Porta (1998) reviews methodologies and techniques of characterizing gypsum 

in soils, each with limitations. In the field, it is only possible to detect gypsum by identifying 

SO4
2- ions using 1M BaCl2 to a mixture of soil and water, and observing turbidity. The Ba2+ ion 

replace Ca2+ ions in the gypsum structure which becomes insoluble and causes the turbidity. For 

further investigation, samples can be subjected to laboratory analysis. However, when 

gypsiferous soil is heated to 105°C, part of the crystal water of gypsum (CaSO4 ·2H2O) is lost, 

which is 20.91% of its weight, and can result in false quantification. To prevent this loss, 

samples should not be heated to more than 50°C. Alternately, a method that does not require 

drying the samples may be utilized (Artieda et al., 2006). When all the gypsum of a sample has 

been dissolved, it is possible to calculate both SO4
2- and Ca2+ simultaneously.  However, 

interference often comes from other sources of Ca2+ not associated with gypsum (e.g., calcium 

carbonate). After dissolving gypsum in water, it is possible to precipitate a fraction of the 

gypsum, specifically the Ca2+ ions, by adding acetone. A hot dissolution of gypsum in 

concentrated HCl will precipitate the SO4
2- ions, even if the sample is coated by CaCO3. There 

are more sensitive methods for determining SO4
2- ions in gypsum, but they require lengthy 
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analysis by determining organic and inorganic forms of S, and multiple extractions to calculate a 

difference.  A rapid conductance method precipitates the Ca specifically within CaCO3 by adding 

acetone. The Ca precipitate is dissolved in water, and measured by electrical conductivity (EC) 

meter. The EC of CaSO4 is 2.2 dS m-1, when in a saturated aqueous solution. In salt-affected 

soils, a commonality in semiarid regions, there can be interference from various salts in 

electroconductometric measurements as salts often co-precipitate in various forms. Porta (1998) 

also examined an x-ray diffraction technique for qualitative identification of bulk mineralogy. 

This method requires multiple replicates and is substandard for quantitative determination 

because of the orientation of gypsum crystallites. For this research, the samples had relatively 

high gypsum contents (Appendix A). Thus, gypsum was quantified using thermogravimetric 

analysis (Artieda et al., 2006) (Appendix A). This method is based on the loss of weight when a 

sample is heated, due to dehydration of gypsum. 

Electrical Conductivity (EC) 

A variety of indicators exist for locating areas of high salt accumulation in soils. When 

water from the soil profile starts to evaporate, the dissolved salts are carried to the soil surface 

and deposited, leaving a visible salt crust on the surface (Figure 1.3). This salt crust can readily 

dissolve during episodes of rainfall or irrigation, subsequently infiltrating again into the rooting 

zone of plants. Vegetative communities are highly impacted in saline systems. Wilting or entire 

plant mortality is common in species unable to survive in such harsh conditions. Traditional 

methods of measuring salinity have used electrical conductance measurements to estimate total 

soluble salts in soils. The probe passes electrical currents through the soil/soil solution to 

quantify the conductance. This technique is termed ‘electrical conductivity’ (EC), and is used in 

the laboratory to determine soil salinity (Rhoades et al., 1987; Corwin and Lesch, 2001). Soil 
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Figure 1.3. Salt crusts and halophytic vegetation in coastal Louisiana soils. 

samples are ground and mixed with distilled water to form a saturated paste, then allowed 24 h 

to equilibrate. While it is desirable to measure the soil saturation extract to measure the 

conductance of only the salt dissolved in water, there is a dilution effect with certain textures. 

Finer textures or organic materials have a much higher saturation percentage than coarser 

textures, which can give a false reading of true conductance. When prepared properly, electrical 

conductance in soil/soil solution shows a strong relationship to the amount of salts more soluble 

than gypsum, which readily dissolve in water. However, EC does not provide any information on 

the type of salts present. 

Portable X-ray Fluorescence Spectrometry 

Recently, the use of portable X-ray fluorescence (PXRF) spectrometry has been shown 

effective at quantifying a number of elemental concentrations in soils via a non-invasive and 

non-destructive scanning in situ. Previous studies using PXRF to determine soil characteristics 

include soil texture (Zhu et al., 2001), gypsum quantification (Weindorf et al., 2009, 2013), 



 

6 
 

heavy metal pollution (Weindorf et al., 2013, Clark et. al., 1999) and elemental analysis in 

compost (McWhirt et al., 2012). 

When a beam of x-rays strike matter, the energy produced ejects electrons from the inner 

levels of the atoms of the targeted material (Jones, 1982). Next, outer shell electrons quickly 

replace the voids in the inner shells, but in order to do so, they must release energy, termed 

fluorescence. The fluorescent energy released is specific to each element. While previous 

experiments have been successful in determining certain soil characteristics, the instrument does 

have limitations. The instrument is not able to detect compounds present in the sample, only 

individual elements (e.g., K+ and Cl- are quantified separately, not KCl). The instrument is 

unable to quantify elements with an atomic weight lighter than Mg, given their stable electron 

shells and small fluorescent energy release. Zhu et al. (2011) examined moisture interferences 

with the instrument, and confirmed moisture contents >20% can denude PXRF elemental 

accuracy. Homogeneity of samples is also important to alleviate any matrix interferences within 

the sample. Such limitations can often be overcome with standard laboratory preparation such as 

air-drying samples and grinding them to pass a 2mm sieve. 

Method Development  

Dr. Juan Herrero of the Estacion Experimental de Aula Dei, Consejo Superior de 

Investigaciones Cientificas used the thermogravimetric method for gypsum quantification, and 

HCl digestion for total Ca concentrations (Appendix A). These methods were compared to 

prediction models from PXRF (Appendix A). Weindorf et al. (2009) completed a preliminary 

study using PXRF to predict gypsum concentrations in soil. The PXRF used (Innov-X PXRF 

Alpha) in their study featured a Si-PIN diode detector with limited S detection. Thus, Ca was 

used as a proxy for gypsum content. The newer PXRF (Olympus/Innov-X Delta PXRF) used in 
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the present study has much greater sensitivity for S; a result of the newly integrated silicon drift 

detector (Appendix A). Simple and multiple linear regression models were used to compare the 

laboratory methods of quantifying Ca and gypsum with PXRF Ca and S as a proxy for direct soil 

quantification of gypsum in situ (Appendix A). 

This research examines PXRF’s ability to determine specific salt concentrations 

regardless of other physicochemical interferences often included with conductance. While EC is 

an accurate method, which has been used for decades, its inability to detect elements present can 

be overcome with use of PXRF. One key limitation of PXRF is that it cannot presently detect 

Na; a key constituent of NaCl, a common salt. Consequently, the salinity models developed used 

Cl concentration as a proxy to measure salinity concentrations in situ. Simple and multiple linear 

regression models compared EC values to PXRF concentrations of common salt ions, 

specifically Cl, S, K, and Ca. 

The Future of Soil Testing 

Field pedologists currently use rudimentary testing (e.g., acid effervescence, slake 

testing, colorimetric tests for qualitative nutrient value) to make simple determinations of soil 

properties. Many determinations are based primarily on field observations combined with 

ancillary information such as climate, vegetation, and topography. Yet the future of classifying 

and mapping soils include evolutionary improvements in technology and available data. Where 

surveyors once relied on paper maps and a compass, contemporary surveyors utilize geographic 

information systems (GIS), the global positioning system (GPS), and remotely sensed data (via 

satellites or aerial views) to improve the consistency and accuracy of mapping soils. Thus, the 

enhancement of older, simplistic techniques such as EC determination of soluble salts with 

newer, advanced technologies such as PXRF spectrometry seems timely. Not only do such newer 



 

8 
 

technologies offer more accurate, quantifiable data to investigators, they produce results in-situ, 

in seconds. 

The objectives of this research were to: 1) collect samples containing gypsum and salts 

more soluble than gypsum, 2) quantify concentrations of soluble salts and gypsum using 

traditional laboratory methods, 3) use PXRF to quantify elemental concentrations in the collected 

samples, and 4) compare results of both methods using regression models to determine if PXRF 

can be used as a tool for in situ measurement of soluble salts and/or gypsum. 
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CHAPTER 2: MEASURING SOIL SALINITY VIA PORTABLE X-RAY 
FLUORESCENCE SPECTROMETRY 

Abstract 

Saline soil has historically been defined as a soil containing salts more soluble than 

gypsum (e.g., various combinations of Na+, Mg2+, Ca2+, K+, Cl-, SO4
2-, HCO3

- and CO3
2-) to the 

extent that soil fertility is severely reduced across a wide array of climates and geological 

settings. Thus, it is not related to specific soil characteristics, such as texture or parent material. 

As technology has advanced, so has soil testing and evaluation for optimal soil characterization. 

Traditional methods of measuring soil salinity, while accurate, are labor intensive and require 

laboratory analysis. Given the success of previous studies using PXRF as a tool for measuring 

soil characteristics, the evaluation of soil salinity with PXRF spectrometry is worth examination. 

Not only does this newer offer more accurate, quantifiable data to investigators, it produces 

results in-situ, in seconds. For this study, 122 soil samples were collected from salt impacted 

soils of coastal Louisiana, USA. Samples were collected from the soil surface (0-15 cm), sealed 

in plastic bags, and returned to Louisiana State University for laboratory analysis. Standard soil 

characterization included loss on ignition (LOI) organic matter, particle size analysis, electrical 

conductivity, and elemental quantification via PXRF. Regression models were developed to 

correlate elemental concentrations from PXRF to EC results using statistical analysis software 

(SAS Institute, 2011). Both simple and multiple linear regressions were employed in this study. 

In order to meet the assumptions for simple and multiple linear regressions, logarithmic 

transformation was used to normalize the variables to obtain a normal distribution for the error 

term (residual, ei). While both models resulted in similar acceptable R2 (0.839, and 0.8669, 

respectively), simple linear regression is recommended per the law of parsimony. 
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Figure 2.1. Salt-impacted soil at an old petroleum production site in Southern Louisiana 
(Photo: Weindorf). 

Introduction 

Soil Salinity 

Saline soil is defined as a soil containing salts more soluble than gypsum (e.g., various 

combinations of Na+, Mg2+, Ca2+, K+, Cl-, SO4
2-, HCO3

- and CO3
2-) to the extent that soil fertility 

is severely reduced (US Soil Salinity Laboratory Staff, 1954). Globally, >20% of irrigated land 

has been negatively impacted by salinization. Salinity effectively lowers the osmotic potential of 

water, making it difficult for plants to absorb or causes the protoplasmic lining of cells to shrink; 

an action called plasmolysis (Childs and Hanks, 1975; Hasagawa et al., 2000; Liu and Hellebust, 

1976; Gardolinski et al., 2003; Qadir and Oster, 2004). 

Soil salinity can appear across a wide range of climates and geological settings. Thus, it 

is not related to specific soil characteristics, such as texture or parent material (Caballero et al., 

2001; Biggs and Jiang, 2009; Zeng and Shannon, 2000). Saline conditions in soil can occur in 

areas at or near coastal regions, arid to semi-arid regions where evaporation exceeds 

precipitation, and in areas of anthropogenic impact (e.g., oil production wells pumping brine to 

the surface where it is contained within artificial ponds; Figure 2.1) (Wang et al., 2007; Benito et 

al., 1995; Merrill et al., 1980; Hao and Chang, 2003; Saadi et al., 2007). In areas of pervasive 

salinity, native vegetative species have been replaced by salt-tolerant halophytes (Figure 2.2). 

 

 

 

 

Fig.	  3.1.	  Salt-‐impacted	  soil	  at	  an	  old	  petroleum	  production	  site	  in	  Southern	  
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Figure 2.2. Salt-affected organic marshland with halophytes in Grand Isle, Louisiana. 

 

 

 

 

 

 

 

Land management practices have sought to maintain soil productivity through evaluation 

of morphological, physical, chemical, and biological soil properties; often used as differentia for 

evaluating the overall quality of soils (e.g., one soil series to another or even within a given 

profile) (Hudson, 1991; McBratney et al., 2000; Wilson et al., 2008; Bouma et al., 2007). As 

technology has advanced, so has testing and evaluation for optimal soil characterization (Soil 

Survey Staff, 1993). Traditional methods of measuring soil characteristics, while accurate, often 

require laboratory analysis and are labor intensive. 

Electrical Conductivity 

Older methods of measuring salinity in soil utilized an electrode probe (e.g., Solubridge), 

which passed electrical currents through the soil/soil solution to measure electrical conductivity 

through the solution. Higher salt concentrations were found to generally be proportional to 

electrical conductance. Hence, the term ‘electrical conductivity’ (EC) and became synonymous 

with soil salinity quantification (Rhoades et al., 1987; Corwin and Lesch, 2001). To facilitate 
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complete salt dissolution, soil samples are ground and mixed with distilled water to form a 

saturated paste, then allowed equilibrate for 24 h (US Soil Salinity Laboratory Staff, 1954). 

Uniform preparation of the saturated paste is critical. However, the amount of water required to 

saturate the soil varies considerably with soil texture (e.g., sands require less water than clays to 

reach saturation). Adding too much water could cause a dilution effect and render atypically low 

EC values (Hogg and Henry, 1984; Sudduth et al., 2005; Saxton and Rawls, 2006). Thus, the 

consistent preparation of the soil paste requires considerable skill. Rhoades et al. (1989) explored 

the effect of soil-water slurry dilutions (e.g., 1:1, 1:2, or 1:5 v/v) using the aforementioned probe, 

and found that larger volumes of water resulted in lower EC values. While the established EC 

techniques have been widely used for a number of years, they are not able to differentiate 

specific elements associated with salinity. 

In coastal Louisiana, salt accumulation in tidal marsh soils are highest where inputs (tide) 

and output (drainage and diffusion) begin to balance, or when high and low tides occur in 

proximity to each other or frequently. Seawater is rife with dissolved salts, many of which are 

comprised of the anion Cl including NaCl, MgCl2, and CaCl2. Chloride is an essential plant 

nutrient, and is highly soluble and leachable in a soil profile (Frankenberger et al., 1996). 

Chloride’s solubility and variability in concentration (few to several hundred milligrams per 

kilogram) within a soil profile makes it an accurate tracer for salt and water movement.  

Portable X-ray Fluorescence Spectrometry 

Recently, portable X-ray fluorescence (PXRF) spectrometry has been shown effective at 

quantifying elemental concentrations to determine soil characteristics, including soil texture (Zhu 

et al., 2001), pedon horizonation (Weindorf et al., 2011) and gypsum content (Weindorf et al., 

2009, Weindorf et al., 2013). X-ray fluorescence is a technique utilizing X-rays generated from a 
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Ta/Au (or other) X-ray tube, which strike the soil. When x-rays strike matter, it causes inner 

shell electrons to be ejected (Jones, 1982). Subsequently, outer shell electrons cascade down to 

fill the inner electron shell void. In doing so, they must relinquish energy which is emitted as 

fluorescence. The wavelength of emitted radiation is specific to each element, while the intensity 

quantifies to elemental abundance. Piorek et al. (1998) outline techniques to decrease the 

counting error including sample homogenization, multiple scans per sample, and increasing x-

ray beam exposure time to ensure an optimal quantification of x-ray photons (e.g., shorter 

measurements (<60 s for initial screening of specific elemental detection, or longer 

measurements (up to 300 s) for a precise and accurate measurement). Given the success of 

previous studies using PXRF as a tool for measuring soil characteristics, the evaluation of soil 

salinity with PXRF spectrometry seems timely. Not only does PXRF offer accurate, quantifiable 

data to investigators, it does so in-situ, in seconds. 

Field pedologists currently use rudimentary testing (e.g., acid effervescence, slake 

testing, colorimetric tests for qualitative nutrient value) and field observations (climate, 

vegetation, topography) to make determinations of soil properties. Yet the future of classifying 

and mapping soils must embrace evolutionary improvements in technology and available data. 

Where surveyors once relied on paper maps and a compass, contemporary surveyors utilize 

geographic information systems (GIS), the global positioning system (GPS), and remotely 

sensed data (via satellites or aerial views) to improve the consistency and accuracy of mapping 

soils. Thus, the enhancement of older, simplistic techniques such as electrical conductivity 

determination of soluble salts with newer, advanced technologies such as PXRF is beneficial. 

The objectives of this research were to: 1) collect salt-impacted soil samples from areas 

of coastal Louisiana, 2) examine soil salinity properties through traditional laboratory methods 
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and PXRF, and 3) determine the relationship between soluble elements and their electrical 

conductivity. If PXRF proves a reliable method for quantification and differentiation of salts in 

soils, it could be used to quickly assess salinity in various regions worldwide. 

Materials and Methods 

Soil Sampling 

A total of 122 samples were collected in Jefferson, Plaquemine, and Cameron Parishes to 

represent Louisiana’s organic and mineral marshland in 2012 and 2013. Soil series collected 

included: Scatlake (Very-fine, smectitic, nonacid, hyperthermic Sodic Hydraquent), Felicity 

(Mixed, hyperthermic Aquic Udipsamment), Hackberry (Sandy, mixed, hyperthermic Aeric 

Endoaquepts), Peveto (Mixed, thermic Typic Udipsamments), Creole (Fine, smectitic, nonacid, 

hyperthermic Typic Hydraquents), Convent (Coarse-silty, mixed, superactive, nonacid, thermic 

Fluvaquentic Endoaquepts), and Commerce (Fine-silty, mixed, superactive, nonacid, thermic 

Fluvaquentic Endoaquepts) (Soil Survey Staff, 1995; Soil Survey Staff, 1983; Soil Survey Staff, 

2000). Samples were collected from the surface (0-15 cm), sealed in plastic bags, and returned to 

Louisiana State University for laboratory analysis. 

Standard Laboratory Testing 

Samples were air-dried and passed through a 2 mm sieve prior to additional analysis. 

Standard soil characterization included loss on ignition (LOI) organic matter, particle size 

analysis, electrical conductivity, and elemental quantification. Soils featuring appreciable organic 

contents were tested first, then thoroughly oxidized with H2O2 prior to conducting particle size 

analysis. Particle size analysis was via the pipette method per Gee and Bauder (1986). Sands 

were determined via wet sieving with a 53 µm sieve. Loss on ignition (LOI) organic matter was 

determined per Ben-Dor and Banin (1989). Samples were combusted for 8-16 h at 400°C such 
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that maximum weight loss (ashing) of all organic matter occurred with minimal dehydroxylation 

of clay minerals (Ben-Dor and Banin, 1989). Soil electrical conductivity (EC) was determined 

for each sample via saturated paste. Deionized water was added to approximately 20-30 g of soil 

until it reached complete saturation (US Salinity Laboratory Staff, 1954). Samples were allowed 

to equilibrate for 24 h. A model 4063CC digital salinity bridge (Traceable Calibration Control 

Company, Friendswood, TX) was then inserted to the sample and allowed to equilibrate for 60-

90 s before a conductivity reading was made and reported in dS m-1. 

Portable X-ray Fluorescence Spectrometry 

A Delta Premium portable x-ray fluorescence spectrometer (Olympus Innov-X, Woburn, 

MA) was used to facilitate total elemental characterization. Samples were subjected to PXRF 

scanning both in-situ and in the laboratory; the former for initial screening to ensure saline soil 

conditions, and the latter for the development of regression models for this research. The PXRF 

features a Ta/Au x-ray tube operated at 10-40 kV and a 2 cm aperture for sample scanning. Prior 

to scanning, the instrument was calibrated with a “316” metal alloy clip, tightly secured to the 

aperture. The PXRF was operated in a proprietary configuration known as soil mode with the 

light elements analysis program (LEAP) engaged. Optimal Cl quantification (the element of 

interest for a large portion of the current study) was enhanced by longer scanning time and 

averages of multiple scans. The Delta PXRF uses three beam sequential scanning for elemental 

analysis. For this study, each beam was set to scan for 30 s. Thus, one complete scan took 90 s. 

The instrument was then repositioned and the sample scanned a second time such that an average 

between scans was obtained. 

A few sources of error must also be considered with PXRF: 1) moisture, 2) sample 

homogeneity, and 3) inter-elemental interferences. Zhu et al. (2011) noted that excessive (>20%) 
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soil moisture degraded the accuracy of PXRF data. Specifically, when only dry sample scans 

were considered, the correlation between PXRF readings and laboratory measurements improved 

substantially. Another disadvantage of in-situ measurements is the degree of uncertainty caused 

by sample heterogeneity (Argyraki et al., 1997; Zhu et al., 2011). Jones (1982) noted that sample 

homogeneity is promoted when soils are dried and ground to pass a 2mm sieve; practices 

followed as part of this study. Finally, with respect to salinity assessment, current PXRF 

equipment not able to quantify Na, given it small, stable electron cloud. Nonetheless, many Na 

based salts associate with Cl, which can accurately be quantified by PXRF. 

Statistical Analysis 

Regression models were developed to correlate PXRF elemental concentrations with EC 

results using statistical analysis software (SAS Institute, 2011). Both simple and multiple linear 

regressions were employed in this study. In order to meet assumptions for simple and multiple 

linear regressions, logarithmic transformation was used to normalize the variables to obtain a 

normal distribution for the error term (residual, ei). To normalize the data, the command term 

“LOG” was used with each variable to validate the regression models. PROC REG was used for 

regression analysis based on the method of least squares, and is capable of tests of linear 

hypothesis, producing co-linearity diagnostics, residuals, and predicated values among other 

output statistics (Cody and Smith, 2006). PROC UNIVARIATE was used to test the 

performance of the regression. Variables included in regression analysis included results from 

various physiochemical analysis results, including particle size, organic matter, elemental 

concentration via PXRF, and EC. All statistical analyses were conducted at a significance level 

of α=0.05. Regression models were validated by randomly selecting 22 (~20%) of the total (122) 

scanned soil samples. Different statistical analyses were applied to quantify significant 
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differences and the correlation between laboratory measured values and predicted values from 

the regression models for Cl and salinity. Tukey’s test was used to identify significant 

differences of least squares means between the two datasets. The null hypothesis for the 

validation analysis was “there are no significant differences between the measured observations 

and the predictions from each model.” 

Results and Discussions 

Elemental concentrations of Cl, S, K, and Ca were determined via PXRF and used to 

predict EC values. In addition to overall models inclusive of all samples, additional models were 

parsed based on specific physicochemical properties per characteristics outlined in the Soil 

Survey Manual (Soil Survey Staff, 1993) such as sand percentage, clay percentage, and organic 

matter. 

Simple Linear Regression 

Saline soils were split into 5 classes based on their respective EC value: Class 0, Non 

saline (0-2 dS m-1), Class 1, Very slightly saline (2-4 dS m-1), Class 2, Slightly saline (4-8 dS m-

1), Class 3, Moderately saline (8-16 dS m-1), and Class 4, Strongly saline (>16 dS m-1). Table 2.1 

describes the average EC and Cl concentration from experimental analysis. To determine the 

validity of the model, residual normality was tested. For the prediction model of EC based on 

PXRF Cl readings, the residual term for simple linear regression was not normally distributed (P 

> 0.05). In order to obtain normal distribution, a log-transformation was applied to normalize the 

error term (Weindorf et al., 2013). For consistency, log-transformation was applied to both the Y 

(EC) and X (PXRF Cl) variables. Samples with EC >2 dS m-1 had Cl concentrations ranging 

701-23,142 mg kg-1 (0.07-2.30% Cl). Samples with EC of 0-2 dS m-1 averaged Cl concentrations 

of 0.39 mg kg-1 (0.000039 % Cl). As the latter class was below the detection limit for PXRF (60-
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100 mg kg-1), those samples were excluded from simple linear regression analysis (excluded 

samples n=33) (Papachristadoulou et al., 2006). Furthermore, EC values in the range of 0-2 dS 

m-1 are not considered saline (Soil Survey Staff, 1993; Hoppin et al., 1995). In Figure 2.3, the 

PXRF Ln Cl concentrations were compared with Ln EC readings based on the constructed 

models. The residual normality test for the log-transformed data passed (P > 0.05) (Table 2.2). 

Table 2.1. Average Cl concentrations and EC (dS m-1) for all samples (n=122) from Louisiana, 
USA. 

 

With all samples in the modeling dataset considered (n=67), each model’s validity was 

determined by residual normality after log transformation. The correlation between Ln Cl and Ln 

EC was 0.8397 (n=67) (Figure 2.3 (a)). The validation dataset (n=22) showed different trends 

with R2 between Ln Cl and Ln EC of 0.7688 (Figure 2.3 (b)). Finally, the validation data (n=22) 

was applied to the developed modeling equation to test its predictive accuracy against actual lab 

quantified EC. The correlation coefficient (“R”) showed a strong relationship with lab measured 

EC and predicted EC from simple linear regressions (R=0.827). 

Salinity Class EC range (dS m-1) Avg. EC (dS m-1) Avg. Cl (mg kg-1) 

0 0-2 0.39 36.09 

1 2-4 3.05 804.19 

2 4-8 6.24 1265.64 

3 8-16 11.08 2362.16 

4 >16 37.52 6676.92 

Total 0≥16 13.92 2564.24 
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R² = 0.76877 
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Figure 2.3. a. Simple linear regression between Ln EC and Ln Cl via portable X-ray fluorescence 
(PXRF) with 95% confidence for modeling data(n=67) b. Simple linear regression between Ln 
EC and Ln Cl via PXRF with 95% confidence for validation data (n=22) with saline soils in 
Louisiana, USA. 
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Table 2.2. Parameters of fitting lines between PXRF Cl and EC (dS m-1), and PXRF Cl, S, K, Ca 
and EC (dS m-1) under different linear regression models for soil samples from Louisiana, USA. 
  

ǂ= The normality test for the error term or residual (ei) was achieved based on the Shapiro–Wilk test in which the p 
value should be greater than the significance level of 0.05. 

ѱ = The statistical significance test was achieved based on the one way ANOVA test which the p value should be 
less than the significance level of 0.0001. 

Variability in physical field conditions was examined with respect to EC and Cl. To test 

influence of physical properties, additional regression models were created based on organic 

matter (LOI%), sand content, and clay content. Models created were restricted to criteria outlined 

in the Soil Survey Manual (Soil Survey Staff, 1993) (Table 2.3). Evaluated parameters included: 

non-organic (LOI 0-2%), moderate-highly organic (LOI >2%), predominately sand (sand content 

>80%), and those with appreciable clay (clay content >20%). Each model’s validity was 

determined by residual normality after log transformation. Moderately high organic soils showed 

SLR and MLR 
Models 

Model Parameter Untransformed 
Variables 

Log transformed X and Y 
variable 

SLR Cl and EC Intercept 2.761 -3.305 

 Slope 0.0041 0.755 

 R2 0.731 0.839 

 RMSE (Antilog) 9.524 (-) 0.5691 (1.766) 

 Normality testǂ (p) Failed (<0.0001) Passed (0.5867) 

 
 

MLR Cl, S, K, Ca 
and EC 

Significanceѱ (p) 
 

Intercept 

Passed (<0.0001) 
 

-0.72509 

Passed (<0.0001) 
 

-3.651 

 Slope (Cl) 0.00424 0.6759 

 Slope (S) -0.00126 -0.0859 

 Slope (K) 0.000794 0.1646 

 Slope (Ca) -0.00001014 -0.0054 

 R2 0.758 0.8669 

 RMSE (Antilog) 9.165 (-) 0.6692 (2.012) 

 Normality testǂ (p) 
 

Significance 

Failed (<0.0001) 
 

Passed (<0.0001) 

Passed (0.4884) 
 

Passed (<0.0001) 
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the highest average EC (20.33 dS m-1), followed by clayey soils (13.42 dS m-1), non-organic 

soils (10.36 dS m-1), and sandy soils (5.82 dS m-1). PXRF Cl readings showed an identical 

pattern with moderately high organic soils, clayey soils, non-organic soils, and sandy soils 

having Cl readings of 3,437, 2,586, 2,111, and 1,639 mg kg-1, respectively. Interestingly, the 

sandy and non-organic soils had the strongest correlations between EC and PXRF Cl with R2 of 

0.93 and 0.90, respectively. While systems that offer electrostatic attraction to free cations in soil 

solution may effectively bind them to the exchange complex of clays or integrate them into the 

molecular structure of complex organics, anions such as Cl would still be freely available as like 

charges repel each other. However, clays and organics may exchange/contribute cations to soil 

salinity, which would be reflected in higher overall soil EC, but not reflected by higher PXRF Cl 

readings, and not captured by simple linear regression with Cl as the single element of analysis. 

This is likely the rationale behind lower EC/PXRF correlations with regard to more clayey and 

more organic soils. 

One limitation of using single element analysis (e.g., Cl) via PXRF is the potential for 

matrix interference from other elements with higher concentrations. However, such limitations 

can be managed with extended scanning time, sample homogenization, correction via NIST 

standards, and consideration of multiple scans (Anderson and Olin, 1990). 

Multiple Linear Regressions 

In consideration of the possibility of more diverse types of salt contributing soil salinity, 

multiple linear regression was used to compare EC readings with concentrations of Cl, K, S, and 

Ca. Another model was created including K, S, Ca, and Cl salts from PXRF as constituent 

elements of common salt compounds. Similar to the procedure described with simple linear 

regression, residual normality was tested and log transformation was applied. After log 
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transformations, the residual normality data passed (P > 0.05) with an acceptable R2 of 0.8669 

(Table 2.2). 

Table 2.3. Parameters of restricted SLR models of EC (dS m-1) and Cl (mg kg-1) for physical and 
chemical characteristics of soils from Louisiana, USA: Non-organic (LOI 0-2%); Moderate-High 
Organic (LOI >2%); Sand fraction >80%; and Clay fraction >20%. 

 

With all samples in the modeling dataset considered (n=67), the correlation between Ln 

Cl/S/K/Ca and Ln EC was 0.8669. The validation dataset (n=22) showed different trends with R2 

between Ln Cl/S/K/Ca and Ln EC of 0.6644. Since the R2 of simple and multi linear regressions 

(n=67) had similar acceptable results, the former is recommended with deference to the law of 

parsimony (Figure 2.3 (a) and (b)). Though the simple linear regression model was slightly less 

accurate, the multi linear model has greater complexity (Table 2.4). Figure 2.4 applied the 

validation data (n=22) to respective modeling equations to test its predictive accuracy against 

actual lab quantified EC. The correlation coefficient (“R”) showed similar trends for simple and 

 Non-Organic (0-
2% LOI) 

Moderate-High 
Organic (>2% 

LOI) 

Sand >80% Clay >20% 

Avg. EC (dS m-1) 10.356 20.334 5.822 13.423 

Avg. Cl (mg kg-

1) 
2111.478 3436.829 1638.759 2586.445 

Avg. %† 0.779 5.566 92.904 36.142 

R2 0.9 0.78 0.93 0.56 

Significant 

(P<0.001) 

Yes Yes Yes Yes 

n 45 43 29 22 

Normality (p) Yes Yes Yes No (0.0049) 

†
Average of physicochemical parameter for each column; LOI, LOI, sand %, and clay %, respectively. 
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multiple linear regressions (0.827 and 0.823, respectively). For research of specific salts, the use 

of multiple linear regression models may be preferable. Both models provide options for future 

studies, but for most applications the use of simple linear regression as a predictor of EC is 

recommended. 

	   

 

Table 2.4. Prediction equations for Ln EC produced from modeling dataset (n=67) of PXRF Ln 
Cl and PXRF Ln Cl, S, K, Ca under simple and multiple linear regression models, respectively, 
in saline samples in Louisiana. 
Prediction Regression Model Regression Equation R2 

Cl Simple Ln EC = -3.305 + (0.755 X Ln (Cl PXRF)) 0.839 

Cl, S, K, 

Ca 
Multiple 

Ln EC = -3.651 + (0.6759 X Ln (Cl PXRF)) + (-

0.0859 X Ln (S PXRF)) + (0.1646 X Ln (K 

PXRF)) + (-0.0054 X Ln (Ca PXRF)) 

0.8669 
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Figure 2.4. Prediction model created using laboratory measured EC (dS m-1) and Cl via PXRF 
for SLR, and Cl, S, K, and Ca via PXRF for MLR using validation set (n=22) for saline soil 
samples in Louisiana, USA. 

R	  =	  0.827 

R	  =	  0.823 
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Conclusions 

Previous studies using PXRF to measure physical, chemical, and morphological 

properties in soil have been proven successful. For decades, the technique for measuring salinity 

in soils used an electrode to measure the electrical conductance of soil solution, which has been 

directly correlated to total salts present in soil. This research sought to develop a method of using 

PXRF to enhance measuring salinity in soils by elemental quantification, as a corollary to 

measurements such as EC. Salt impacted soil samples were collected from Louisiana coastal 

parishes, representing a wide variety of soil organic matter, texture, and salinity. Samples were 

subjected to traditional methods of measuring physical and chemical properties, with subsequent 

elemental quantification via PXRF. Simple and multiple linear regression models were created to 

relate EC to PXRF data as an accurate method of measuring salinity in situ. While both models 

resulted in similar acceptable R2 (0.839, and 0.8669, respectively), simple linear regression is 

recommended given its simplicity and practicality for field use. 
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CHAPTER 3: CONCLUSIONS 

Determining soluble salt concentration in situ is possible, but the identification of specific 

types of salts and their constituent elements is not possible with current field methods. Visual 

indicators can guide pedologists to areas of suspected salinity, but the question still remains as to 

the concentration of salt, and what specific salt is present. To answer these questions, samples 

with broad ranges of gypsum and salts were examined with PXRF for elemental quantification 

(Appendix A). For gypsum, samples were treated for carbonate digestion before 

thermogravimetric gypsum quantification (Appendix A). For salinity, samples were dried and 

sieved for uniform representation of the sample. The PXRF scanned each sample for 90 s, with 

replications to generate an average. Prior to scanning, the instrument was calibrated with a “316” 

alloy clip and validated using an NIST reference standard. 

Simple and multiple linear regression models were used to compare laboratory analysis 

(thermogravimetry and EC) and elemental analysis via PXRF. Simple linear regression and 

multiple linear regressions were used to establish the relationship between the two datasets. To 

predict gypsum, simple linear regressions using Ca, laboratory data, and PXRF Ca data produced 

an R2 of 0.8794 (Appendix A). Similarly, simple linear regression for laboratory-quantified 

gypsum versus PXRF S produced an R2 of 0.9120 (Appendix A). Multiple linear regression of 

laboratory quantified gypsum versus both PXRF S and Ca produced an R2 of 0.9127 (Appendix 

A). To predict salinity, simple linear regression using EC data and PXRF Cl data produced an R2 

of 0.839. Multiple linear regressions of EC data versus PXRF Cl, S, Ca, and K produced an R2 of 

0.8669. Since the R2 values of multiple and simple linear regressions are very similar, it is 

recommended to only require PXRF Cl concentrations to predict salinity values. Overall, PXRF 

shows great promise for the direct quantification of soluble salts in soils. 
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In order to use PXRF in the field as a tool for determining various soluble salts, 

interference considerations must be addressed. PXRF can also be used in the laboratory 

following previously mentioned pre-treatments for specific salts, because of its increased 

efficiency of detection when samples are homogenized, thus minimizing the risk of interference. 

A pedologist can use PXRF in the field as a reliable tool for sampling by detecting “hot spots,” 

or areas of high elemental concentration to prevent over-sampling, thus increasing research 

efficiency by only collecting samples with known salinity/gypsum. This technology can enhance 

the previously mentioned laboratory techniques by providing elemental concentrations of the 

soil. Summarily, PXRF shows excellent promise for providing salinity and/or gypsum 

quantification from elemental concentrations in soil. 
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APPENDIX A: DIRECT SOIL GYPSUM QUANTIFICATION VIA PORTABLE X-RAY 
FLUORESCENCE SPECTROMETRY 

Abstract 

Soil scientists have long struggled with an effective method for quantifying gypsum 

content in soils. Several methods exist, but each is fraught with problems. Recent enhancements 

to portable X-ray fluorescence (PXRF) spectrometers have provided better detection limits 

especially for lighter elements such as S, a key component of gypsum. Thus, this research aimed 

to test the effectiveness of PXRF as a means of directly quantifying gypsum in soils. A total of 

102 soil samples containing a wide variety of gypsum (~2–95%) were subjected to both 

traditional laboratory analysis (thermogravimetry) and elemental analysis via PXRF. Simple 

linear regression and multiple linear regression were used to establish the relationship between 

the two datasets. Log transformation of some datasets was necessary to normalize the data. Using 

simple linear regression for Ca, laboratory data and PXRF Ca data produced an R2 of 0.8794. 

Similarly, simple linear regression for laboratory-quantified gypsum vs. PXRF S produced an R2 

of 0.9120. Multiple linear regression of laboratory quantified gypsum vs. both PXRF S and Ca 

produced an R2 of 0.9127. No significant differences were observed between model generation 

and validation datasets. Overall, PXRF shows great promise for the direct quantification of 

gypsum in soils. 

Introduction 

Soils with high gypsum contents are commonplace in many arid and semiarid regions of 

the world (e.g., Syria, Libya, Tunisia, New Mexico, Spain, and western Texas). The direct 

determination of gypsum (CaSO4 ● 2H2O) in soils is difficult since there are inherent drawbacks 

involved with the extraction of this mineral with water. The factors that influence the extracted 

Ca and sulfate from gypsiferous soils involve the solubility of gypsum, other sources of Ca and 
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sulfate, and exchange reactions between soluble Ca and other cations, such as Na and Mg 

(Bashour and Sayegh, 2007). Frequent errors associated with other methodologies were reviewed 

by Herrero et al. (2009). Morphologically, the Soil Survey Staff (2010) indicates that the “suffix 

yy is used when the horizon has such an abundance of gypsum (generally 50% or more, by 

volume) that pedogenic and/or lithologic features are obscured or disrupted by growth of gypsum 

crystals.” But how much gypsum is present in a given horizon? How can a field pedologist 

reliably distinguish between a horizon of 40–45% gypsum and one of >50% gypsum when both 

can appear as nondescript, white, powdery soil? 

Field pedologists have struggled with these questions for years. Qualitative field 

estimates are possible but imprecise. Several methods have attempted to provide quantitative 

data on gypsum content, but require laboratory processing and are fraught with problems 

(Herrero et al., 2009). Among them are acetone precipitation (Soil Survey Staff, 2004) and loss 

of the structural water of the gypsum (Nelson et al., 1978; Artieda et al., 2006; Lebron et al., 

2009). Zhu and Weindorf (2009) and Weindorf et al. (2009) used PXRF spectrometry to quantify 

Ca and then gypsum, respectively. Laboratory calibration used a polynomial fit to associate 

PXRF Ca content with reagent grade gypsum at different concentrations, achieving an R2 of 

0.986. Field application of the technique proved more challenging. The procedure involved first 

calculating total Ca in the soil. As soil horizons often contain both gypsum and CaCO3, the latter 

was quantified using a pressure calcimeter. The Ca associated with calcite was then subtracted 

from total Ca obtained by PXRF. The remaining Ca was assumed to be associated with gypsum 

and estimates made. Strong, significant correlations of PXRF data to acetone precipitation (R = 

0.85) and quantitative X-ray diffraction (R = 0.96) were observed (Weindorf et al., 2009). Yet 

the necessity of backing out the Ca associated with calcite made this method cumbersome when 
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mixed calcite/gypsum horizons were observed. The elegant solution to this challenge was to use 

S as a proxy for gypsum rather than Ca. However, earlier versions of the PXRF instrument 

lacked sufficient sensitivity for S detection to provide meaningful results. 

Four years later, newer versions of the PXRF instrument have greatly increased the 

sensitivity for S detection and quantification making direct calculation of gypsum from S data 

possible. The published limits of detection of S for the Innov-X PXRF Alpha (older) and 

Olympus/Innov-X Delta (newer) are 10,000–50,000 mg kg-1 and <200 mg kg-1, respectively. The 

key advantage of the newer PXRF (Delta) is three beam sequential scanning and an ultra-high 

resolution silicon drift detector. Notably, other manufacturers (e.g., Oxford Instruments, Niton) 

also produce PXRF equipment with similar features, though those instruments were not tested as 

part of this study. 

X-ray fluorescence is a technique whereby X-rays are generated from a Ta/Au (or other) 

X-ray tube for sample bombardment. Upon striking the soil, electrons from the inner shell (k and 

l orbitals) are ejected, causing outer shell electrons to cascade down to fill the inner shells. In 

doing so, they must relinquish energy, which is the fluorescence emitted by each element. The 

wavelength of fluoresced radiation is characteristic of each element, while the intensity gives an 

indication of the elemental abundance. Use of portable X-ray fluorescence for elemental 

determination in soils and sediment is sanctioned by the EPA per method 6200 (USEPA, 2007). 

An excellent overview of X-ray fluorescence operational theory is given by Potts and West 

(2008). In recent years, PXRF has quickly gained popularity for in situ environmental 

(Gutiérrez-Ginés et al., 2013; Gardner et al., 2013; Scott et al., 2013, Weindorf et al., 2012a), 

pedological (Zhu et al., 2011; Weindorf et al., 2012b; Weindorf et al., 2012c; McLaren et al., 
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2012b), and agronomic applications (McLaren et al., 2012a; Paltridge et al., 2012a; Paltridge et 

al., 2012b). 

Given promising results from earlier applications of PXRF for gypsum quantification, 

coupled with increased sensitivity of contemporary PXRF instruments, the study of PXRF for 

direct quantification of gypsum using S as a proxy seems timely. As such, the objective of this 

research was to evaluate the use of contemporary PXRF for direct quantification of gypsum. The 

authors theorize that PXRF will provide robust data for on-site gypsum quantification 

minimizing the need for laboratory analysis. 

Materials and Methods 

A total of 102 soil samples were collected near Zaragoza, Spain in 2007 and 2010. The 

parent material of these soils is a horizontal stratum of Miocene rocks or derived sediments, all 

of them with considerable gypsum content (~2–95%). The soils were mostly Typic Calcigypsids, 

Typic Haplocalcids, Typic Haplogypsids, and Gypsic Aquisalids (Soil Survey Staff, 2010). 

Samples were ground to pass a 2-mm sieve and subjected to gypsum quantification per 

thermogravimetry (Artieda et al., 2006). For carbonate determination, HCl was used to produce 

CO2, which was then measured with a Bernard calcimeter to calculate CaCO3 equivalent (CCE) 

percentage (Sherrod et al., 2002). 

The molecular weight of gypsum is 172.171, that of CaCO3 is 100.087, and the atomic 

weight of Ca is 40.078, so the total concentration of Ca content measured in the laboratory can 

be calculated as follows: 

Total Calab %( ) = 0.2328*gypsum+0.4004*CCE  

where total Calab is the calculated Ca from laboratory results of CCE and gypsum and reported as 

a percentage. The results from this equation were compared to the total Ca concentration from 
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PXRF to produce the best model for describing the data set. Determinations of S were made 

directly via PXRF. 

PXRF Scanning 

A subsample of each soil was sent to Louisiana State University for characterization by 

PXRF. A Delta Premium PXRF (Olympus Innov-X, Waltham, MA) featuring a Ta/Au X-ray 

tube was operated at 15–40 KeV for sample analysis. Before sample analysis, the PXRF was 

standardized using a “316” alloy clip (containing 16.130% Cr, 1.780% Mn, 68.760% Fe, 

10.420% Ni, 0.200% Cu, and 2.100% Mo) tightly fitted over the aperture. Fluorescent radiation 

detection was accomplished via ultra-high resolution (<165 eV) silicon drift detector. Scanning 

was conducted using a proprietary Olympus software configuration known as Soil Mode with the 

light elements analysis program (LEAP) engaged. Samples were scanned directly through sealed 

plastic bags, ensuring excellent contact between the PXRF aperture and sample to be scanned. 

Sequential scanning was conducted for 30 s per beam (three-beam operation), such that total 

scanning time was 90 s per sample. Each sample was scanned in duplicate, with data 

subsequently averaged for analysis. The Delta Premium PXRF limits of detection (LOD) for Ca 

and S are <50 and <200 mg kg-1, respectively. These LODs are considerably lower than the older 

version Alpha PXRF that was previously used by Weindorf et al. (2009). 

Results of PXRF scans produced total elemental concentrations of Ca and S reported as 

milligrams per kilogram. As the concentrations of those elements were high in the evaluated soil 

samples, the final concentrations were expressed as g kg-1. When measured Ca and S exceeded 

10,000 mg kg-1 the PXRF instrument reported them as percentages (10,000 mg kg-1 = 1%). 

Percentages were transformed for expression as g kg-1 so that all measurements used the same 

unit. 
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Statistical Analysis 

The results of 82 soil samples were utilized to construct different regression models; the 

remaining 20 samples (randomly selected) were used for model validation. Specifically, the 

PXRF readings for Ca were used to create simple linear and nonlinear regression models. 

Additionally, PXRF readings for S were used to construct simple regression models to quantify 

gypsum content. Furthermore, PXRF readings for both Ca and S were utilized to produce 

multiple linear regression models to estimate gypsum content. 

Logarithmic transformation was used in this study to normalize the variables to obtain a 

normal distribution for the error term (residual, ei), an established assumption when producing 

simple and multiple linear regression models. Using logarithmic transformation of the Y variable 

(exponential relationships) or X and Y variables (power relationships) in simple and multiple 

regressions is one of the most frequently used methods of fitting various quantitative data in 

environmental studies (Newman, 1993). The PROC REG statement in SAS® 9.3 software (SAS 

Institute, 2011) was employed to construct the regression models and ANOVA table, and 

produce the correlation plots based on the log-transformed variables. All statistical analysis was 

conducted at a significance level of α = 0.05. 

Model validation was used to determine if model predictions were in agreement with 

measured observations. The regression models were validated by randomly selecting 20 (20%) 

of the total (102) scanned soil samples. The PROC BOXPLOT statement was used to statistically 

describe the differences between the measured and predicted data for the validation samples. 

Different statistical analyses were applied to quantify significant differences and the correlation 

between laboratory measured values and predicted values from the regression models for Ca and 

gypsum. Tukey’s test was used to identify significant differences of least squares means between 
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the two datasets. The null hypothesis for the validation analysis was “there are no significant 

differences between the measured observations and the predictions from each model.” 

Additionally, PROC CORR was used to produce the Pearson correlation coefficient. All the 

validation analyses were conducted at a significance level of α = 0.05. 

Results and Discussion 

Total elemental concentrations of Ca and S were acquired from PXRF readings. These 

readings were used to fit the required models to predict the respective values for total Calab (CCE 

+ gypsum) and gypsum. The statistical parameters for the 82 soil samples that were used to 

produce the regression models are shown in Table A.1. 

Shacklette and Boerngen (1984) provided a comprehensive study of 50 element 

concentrations in soil samples that covered the entire United States. In their project, they 

established averages and ranges of those 50 elements including total Ca and S, which were 

compared to the measured Ca and PXRF readings for Ca and S in the current study samples 

(Table A.1). Additionally, the averages of soil samples of the current study were compared to the 

average of total Ca and S concentrations of Vinogradov (1959). These averages were calculated 

based on worldwide samples (Table A.1). The averages of measured Ca and PXRF Ca readings 

of targeted soil samples (144.5 and 114 g kg-1) were higher compared to averages of Shacklette 

and Boerngen (1984) and Vinogradov (1959) but likely related to the high gypsum contents of 

the studied soils. 
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Table A.1. Descriptive statistical parameters of gypsum (laboratory measured), Total Calab 
(calculated based on Ca from CaCO3 equivalent (CCE) and gypsum), and the portable X-ray 
fluorescence (PXRF) readings for Ca and S for gypsiferous soils from Spain. 

† Total Calab = CaCO3 equivalent + Ca in gypsum. 

The statistical parameters presented in Table A.1 indicate that PXRF readings of Ca were 

reasonably related to the total Calab calculated based on the Ca content in CCE and gypsum, as 

the parameters had close values. The positive values of skewness indicate that the data was not 

perfectly normal, but it skewed to the right. For measured gypsum and PXRF S readings, the 

higher values of kurtosis (7 and 10) and skewness (2.5 and 3), compared to total Calab or PXRF 

Ca readings, indicate that the data was not normally distributed and it was more skewed. 

Modeling of Ca 

To examine the validity of the regression model, the residual normality was tested. For 

the modeling of Ca based on the PXRF Ca readings and the total Calab, the residual term for the 

simple linear regression model was not normally distributed using the untransformed dataset (P 

< 0.05) (Table A.2). Consequently, log-transformation was needed to normalize the error term 

and validate the regression model. In SAS, the function “LOG” was used to produce the natural 

Parameter Laboratory Measured PXRF Reading 
CaSO4.2H2O Total Calab† Ca S 

 —————————- g kg-1—————————- 

N 82 82 82 82 
Mean 180.528 144.543 114.007 30.055 
Median 126.850 133.851 99.019 18.722 
Minimum 21.600 102.113 66.104 4.023 
Maximum 947.000 256.057 244.217 176.373 
Standard Deviation 169.517 35.251 43.425 37.617 
Kurtosis 7.232 1.928 1.033 9.917 
Skewness 2.499 1.539 1.336 2.950 
Shacklette and Boerngen 
(1984) (Average, Range) 

– (24, 0.1–320) (1.6, 0.8–48) 

Vinogradov (1959) 
(Average) 

– (20) (0.85) 
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log of the data. Two simple linear regression models were created using the transformed dataset. 

The first model was created by log-transforming only the Y variable (total Calab) and used the 

untransformed X variable (PXRF Ca readings). The second model was produced by log-

transforming both variables (X and Y). The PXRF Ca readings (g kg-1) were matched with the Ln 

total Calab (g kg-1) based on the constructed models (Figure A.1). As the residual normality test 

for the log-transformed dataset of only the Y variable (total Calab) passed (Table A.2), this 

regression model was used as a valid relation between Ln total Calab and PXRF Ca data with an 

acceptable R2 of 0.88 (Table A.2 and Figure A.1). The simple linear relationship shown in Table 

2.3 explains the correlation between Ln total Calab and the PXRF Ca reading. Poor regressions 

were obtained between total Calab and CCE and between CCE and PXRF Ca readings, especially 

with a higher content of gypsum. These results were consistent with the findings of Weindorf et 

al. (2009). Validation samples were used to examine the appropriateness and efficiency of the 

constructed model. Correlation between the total Ca, produced by the regression model based on 

PXRF Ca readings, and total Calab, based on the calculations of (CCE + gypsum), was examined. 

Figure 2.2 shows the boxplot for both groups: total Calab, as a measured group, and predicted 

total Ca from a regression model, as a predicted group. The boxplot indicated that both groups 

are reasonably matched with no significant differences between measured and predicted values. 

This result was confirmed by Tukey’s test with no significant differences in the least square 

means between the two groups, with P value > 0.05 (P = 0.7843). Additionally, a good 

correlation coefficient (R = 0.938) was achieved between the measured and predicted values 

based on Pearson Correlation, which indicated a high positive correlation between the measured 

total Ca (CCE + gypsum) and the total Ca content obtained by the regression model based on the 

PXRF Ca readings (Figure A.3). 
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Table A.2. Parameters of fitting lines between total Calab and measured gypsum and portable X-
ray fluorescence (PXRF) Ca and S readings under different linear regression models for 
gypsiferous soils from Spain. 

† The normality test for the error term or residual (ei) was achieved based on the Shapiro–Wilk test in which the p 
value should be greater than the significance level of 0.05. 
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regression 

model 
Model parameter Untransformed 

variables 

Log-transformation 

Y variable Y and X 
variables 
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Intercept 57.5216 4.4148 2.1285 

Slope 0.7633 0.00468 0.6031 
R2 0.8842 0.8794 0.8757 

RMSE (Antilog) 12.073 (-) 0.0758 (1.0787) 0.0769 (1.0799) 
Normality test (p)† Failed (0.0016) Passed (0.5978) Failed (0.0066) 

—
—

—
- G

yp
su

m
 (S

)—
—

—
- 

Intercept 49.9627 4.3605 3.0014 
Slope 4.3443 0.0171 0.6653 

R2 0.9293 0.6412 0.9120 
RMSE (Antilog) 45.346 (-) 0.4842 (1.6229) 0.2398 (1.2710) 

Normality test (p) Failed (<0.0001) Failed (<0.0001) Passed (0.3893) 

—
M

ul
tip

le
—

 

Intercept 78.5998 5.0469 3.2986 

Slope (S PXRF) 4.5578 0.0222 0.6694 
(Ca PXRF) −0.3075 −0.0073 −0.0661 

R2 0.9333 0.7425 0.9127 
RMSE (Antilog) 44.3359 (-) 0.4128 (1.5110) 0.2404 (1.2718) 

Normality test (p) Failed (<0.0001) Passed (0.4511) Passed (0.7778) 
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Table A.3. The constructed regression models for Ca and gypsum prediction of the normalized 
variables for gypsiferous soils from Spain. 

 

 

Prediction Regression 
model Regression equation R2 

Ca 
Simple 

Ln total Calab = 4.415 + (0.005 X Ca PXRF) 0.8794 

Gypsum 

Ln Measured Gypsum = 3.001 + (0.665 X Ln S 
PXRF) 0.9120 

Multiple 

Ln Measured Gypsum = 5.047 + (0.022 X S PXRF) – 
(0.007 X Ca PXRF) 0.7425 

Ln Measured Gypsum = 3.299 + (0.669 X Ln S 
PXRF) – (0.066 X Ln Ca PXRF) 0.9127 

Ca PXRF (g kg-1)
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Ln total Calab = 4.415 + (0.005 * Ca PXRF), R2 = 0.879 

Figure A.1. Simple linear regression between the log-transformed total Calab (Ln total Calab) 
and PXRF Ca readings with 95% confidence and prediction intervals for gypsic soils from 
Spain. 
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Figure A.2. Boxplot for the descriptive statistical parameters of the total Calab as measured and 
total Ca from the regression model based on PXRF Ca readings as predicted for gypsic soils 
from Spain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure A.3. Correlation between the total Calab as measured and total Ca from the regression 
model based on PXRF Ca readings as predicted for the validation samples for gypsic soils from 
Spain. Circles represent the Ca observations, N represents number of observations, and R 
represents the correlation coefficient.    
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Based on the aforementioned discussion, a simple linear regression model is 

recommended for predicting the total Ca content using PXRF Ca readings. Supporting this 

conclusion, McLaren et al. (2012b) found a strong linear correlation between Ca measured by 

standard microwave aqua regia digestion and PXRF Ca readings in Vertisols from Australia. 

Additionally, the current study results were consistent with the findings from Weindorf et al. 

(2009) who reported a correlation coefficient (R) of 0.84 between measured Ca and PXRF Ca 

readings in soil samples from Texas and New Mexico. 

Modeling of Gypsum 

As there is no direct method for measuring gypsum by PXRF, elemental readings were 

used to develop regression models between PXRF S and Ca and thermogravimetrically measured 

gypsum. Similar to Ca modeling, the error term normality test was performed over the linear 

regression models. The residual normality test indicated that the simple linear regression models, 

based on untransformed data, or based on the log-transformed measured gypsum, were not valid 

as the error terms for both models were not normally distributed (P < 0.05) (Table A.2). 

However, the regression model based on the log-transformation of both measured gypsum and 

PXRF S readings was valid since the residual was normally distributed (P > 0.05) (Table A.2). 

As a result, the simple linear relationship between the log-transformed measured gypsum (Ln 

Measured Gypsum) and the log-transformed PXRF S readings (Ln S PXRF) was created and 

shown in Table A.3 and Figure A.4 (a). A very high R2 of 0.91 was obtained from this 

relationship based on the provided dataset. 

As gypsum is a compound that contains both Ca and S in its formulation, multiple 

regression models based on the PXRF readings of both S and Ca were examined. When the 

multiple linear regression model was constructed based on untransformed data, the model was 
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not valid since the error term was not normally distributed (P < 0.05) (Table 2.2). Yet when 

measured gypsum data was log-transformed and when all variables (measured gypsum and 

PXRF S and Ca readings) were log-transformed, the error terms were normally distributed (P > 

0.05) and the models were valid (Table A.2). The log-transformation for only the Y variable 

(measured gypsum) produced a poor relationship with an R2 of 0.74 compared to the higher R2 of 

0.91 for both simple and multiple linear regression models using the same dataset (Table A.3 and 

Figure A.4 (b) and (c)). 
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Figure A.4. Different linear regression models; a) simple linear regression between log-transformed 
thermogravimetrically measured gypsum (Ln measured gypsum) and log-transformed PXRF S 
readings (Ln S PXRF), b) multiple linear regression between Ln measured gypsum and 
untransformed PXRF S and Ca readings, and c) multiple linear regression between Ln measured 
gypsum and Ln S and Ca PXRF readings. The 95% confidence and prediction intervals are provided 
for each regression model. 
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Using the validation samples, strong agreements were found between the prediction 

model based on simple regression (Predicted S PXRF) and the prediction model based on 

multiple regression (Predicted Ln S&Ca PXRF(2)). These two models were highly matched for 

measured gypsum of <400 g kg-1. For higher gypsum content, lower estimations were observed 

using the two regression models (Figure A.5). Another multiple regression model (Predicted 

S&Ca PXRF(1)) with the lowest R2 of 0.74 was matched reasonably with the other two models 

when the gypsum content was >400 g kg-1; however, with lower gypsum content, this model was 

not good enough to simulate the data. The result of Tukey’s test indicated no significant 

differences in the least squares means between the three created models and the measured 

gypsum, with a very high P value of 0.90. Additionally, a strong correlation coefficient of (R > 

0.95) was achieved between the measured and predicted values based on Pearson correlation 

(Table A.4 and Figure A.6), which indicated a high positive correlation between the measured 

gypsum and the predicted gypsum obtained by the regression models based on PXRF S&Ca 

readings (Figure A.6). 

 

 

 

 

 

Figure A.5. Boxplot for the descriptive statistical parameters of the thermogravimetrically 
measured gypsum and predicted gypsum from; simple linear regression model based on PXRF S 
reading, multiple linear regression model based on the log-transformed gypsum and 
untransformed PXRF S and Ca readings (S&Ca PXRF(1)), and multiple linear regression model 
based on the log-transformed gypsum and PXRF S and Ca readings (S&Ca PXRF(2)) for the 
validation dataset for gypsic soils from Spain. 
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Table A.4. Pearson correlation matrix for the thermogravimetrically measured gypsum and the 
three created models to predict the gypsum content based on the validation dataset for 
gypsiferous soils from Spain. 

† Simple linear regression model based on portable X-ray fluorescence (PXRF) S reading. 
‡ Multiple linear regression model based on the log-transformed gypsum data and untransformed PXRF S and Ca 
readings. 
§ Multiple linear regression model based on the log-transformed gypsum data and PXRF S and Ca readings. 
¶ Each pair(s) of variables with positive correlation coefficients and P values < 0.05. 
 

 

 

 

 

 

 

 

 

 

 

Figure A.6. Correlation between thermogravimetrically measured gypsum and the predicted 
gypsum from the three models; simple linear regression model based on PXRF S reading, 
multiple linear regression model based on the log-transformed gypsum and untransformed PXRF 
S and Ca readings (S&Ca PXRF(1)), and multiple linear regression model based on the log-
transformed gypsum and PXRF S and Ca readings (S&Ca PXRF(2)) for the validation dataset for 
gypsic soils from Spain. R represents the correlation coefficient for each relationship.  

 Measured 
gypsum 

Predicted S 
PXRF † 

Predicted 
S&Ca PXRF(1) 

‡ 

Predicted 
S&Ca PXRF(2) 

§ 
Measured 
gypsum 

1.000 ¶    

Predicted S 
PXRF 

0.961 1.000   

Predicted S&Ca 
PXRF(1) 

0.973 0.978 1.000  

Predicted S&Ca 
PXRF(2) 

0.953 0.999 0.974 1.000 

Measured (Gypsum, g kg-1)

0 200 400 600 800

Pr
ed

ic
te

d 
(G

yp
su

m
 R

eg
re

ss
io

n 
m

od
el

s, 
g 

kg
-1

)

0

100

200

300

400

500

Reg. based S PXRF, R = 0.961
Reg. based S&Ca PXRF, R = 0.973
Reg. based S&Ca PXRF, R = 0.953



 

48 
 

Accordingly, simple and multiple regression models are recommended for soil gypsum 

prediction based on PXRF S and Ca readings with R2 up to 0.91. As the PXRF is a relatively new 

application in soil science, there are few studies in the literature about using PXRF to predict 

gypsum content. However, Harris et al. (2011) performed a project in Texas in which a Niton 

XL3t handheld XRF analyzer was used as a predictor for S and, thus, sulfate content. Their 

results indicated that this device was not suitable for predicting low concentrations (<4500 mg 

kg−1) of sulfate when using S as the predictor whereas the limits of detection of the device for Ca 

were more suitable. Notably, gypsiferous soils are rife with S, essentially eliminating this 

constraint. However, Berger et al. (2009) used a Niton XRF XLt 500He for detecting S 

concentrations in river sediment samples under different water contents. Their results indicated 

that samples with S varying from 0.3 to 2.0% were successfully measured with this instrument 

with an estimated quantitation limit of 237 mg kg−1 S. In other PXRF studies on soil, moisture 

has been cited as a potential source of error, especially when soil moisture is >20% (Laiho and 

Perämäki, 2005). Laiho and Perämäki (2005) added 5–40% moisture (gravimetrically) to oven 

dried soils and then evaluated the performance of multiple PXRF instruments. They concluded 

that soil moisture of 5–15% caused nominal errors to PXRF elemental readings, supporting 

Piorek’s (1998) finding that soil moisture of <20% had nominal effects on PXRF accuracy. 

Thus, applied to gypsiferous soils in arid environments, it likely that PXRF data would not be 

substantially compromised unless soils moisture levels exceeded 20%. 

Conclusions 

Soil samples from Spain with a broad range of gypsum content were evaluated via 

traditional laboratory analysis and compared with elemental (Ca and S) data obtained from a 

contemporary PXRF spectrometer. Previous versions of the PXRF lacked sufficient sensitivity 
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for S, necessitating the use of Ca as a proxy for gypsum quantification. The newer model PXRF 

was able to produce quality Ca and S data, such that direct quantification of total soil Ca content 

as well as the direct prediction of gypsum content from S data is possible. For the former, simple 

linear regression was used and produced a valid relation between lab generated (total Calab) and 

PXRF Ca data with an acceptable R2 of 0.88. Notably, it was necessary to log transform some 

datasets to normalize the data. Similarly, regression of log-transformed lab-measured gypsum 

and log-transformed PXRF S data produced an R2 of 0.91. Multiple regression approaches 

including both Ca and S for gypsum prediction were somewhat weaker. No significant 

differences were observed between modeling and validation datasets. Summarily, contemporary 

PXRF shows strong potential for directly predicting gypsum content in soil samples with minor 

gypsum contents as well as truly “gypsic” soils with much larger gypsum contents. 
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APPENDIX B: COMPREHENSIVE ANALYSIS RESULTS 

  
Via PXRF 

   Sample EC Cl S K Ca Sand Clay LOI 
  ---dS m-1--- ---------------------mg kg-1----------------- ---------------%--------------- 

P1 11.29 1498.0 1245.8 13410.6 9637.1 12.9 45.2 2.4 
P2 16.54 3457.3 1116.6 12172.5 9494.4 27.0 35.4 2.2 
P3 10.82 973.5 815.5 12944.4 10373.1 11.1 8.3 2.2 
P4 1.87 -45.3 1586.2 9074.2 97009.0 55.1 19.6 6.3 
P5 1.30 -74.8 373.2 10404.2 7165.0 - - 3.5 
P6 12.65 3452.5 13328.3 11596.5 15314.4 2.7 35.9 16.1 
P7 1.10 5.7 741.2 8201.7 28377.7 - - 3.3 
P8 19.87 8141.5 10620.0 9947.0 8785.7 5.6 16.0 24.5 
P9 21.90 9064.8 13291.0 10035.5 14963.3 6.6 19.3 24.1 
P10 13.75 5700.8 12152.5 9739.5 13618.0 1.9 23.2 22.5 
J1 11.72 2056.5 2380.0 8353.3 2870.1 71.2 2.6 1.1 
J2 7.41 3525.8 3179.6 8459.9 37392.6 93.9 4.8 0.5 
J3 20.80 10793.8 1560.8 8156.2 4738.2 97.8 1.8 0.4 
J4 3.52 1560.8 1274.7 6958.0 7987.5 95.1 3.4 0.4 
J5 10.31 4993.8 1650.5 9190.6 7491.1 89.1 5.7 0.6 
J6 11.11 5832.5 5571.3 9224.4 9034.0 92.1 2.1 1.6 

J7A 4.70 1366.5 688.3 10847.5 4022.8 83.7 11.6 1.2 
J7B 5.44 1350.0 1726.2 10199.3 3627.8 86.3 8.9 1.2 
C1 0.10 -49.3 171.0 2053.3 4689.0 97.2 0.7 0.1 
C2 0.22 -31.7 254.3 1699.5 115.0 95.4 0.29 0.1 
C3 0.12 -25.0 77.5 1620.0 -120.7 96.9 1.6 0.2 
C4 0.07 -25.0 142.0 1574.3 46.0 98.9 0.32 0.1 
C5 0.14 -15.7 233.7 2152.5 341.0 97.3 1.75 0.2 
C6 0.16 -26.0 314.8 2057.0 1034.8 97.0 0.4 0.1 
C7 0.16 -23.0 251.5 5040.5 8019.5 93.7 3.4 0.5 
C8 0.12 -8.3 141.3 1241.8 127.0 98.9 5.1 0.3 
C9 0.09 -20.0 130.3 1809.8 1158.5 98.5 4.7 0.2 
C10 0.10 -19.7 221.8 2749.0 1273.5 98.3 6.4 0.2 
C11 0.11 19.8 402.3 1786.8 4134.3 97.0 2.0 0.3 
C12 2.52 514.8 1157.8 3332.5 5970.0 96.4 5.8 0.3 
C13 3.07 872.3 670.0 1540.4 119.8 62.4 3.8 0.2 
C15 0.37 45.5 494.8 1862.8 1862.8 93.5 3.7 0.2 
C16 3.61 1165.5 479.9 1240.5 113.0 97.0 2.0 0.2 
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Via PXRF 

   Sample EC Cl S K Ca Sand Clay LOI 
  ---dS m-1--- --------------------mg kg-1----------------- ---------------%--------------- 

C17 0.11 -18.0 156.0 2306.0 5703.0 94.1 3.8 0.3 
C18 0.13 -17.3 164.7 3460.5 5571.3 83.2 5.9 0.4 
C19 0.11 -18.0 36.5 2094.3 558.3 97.0 2.0 0.2 

C20D 0.18 -45.3 172.8 5948.8 14832.3 97.0 2.0 0.4 
C20L 0.10 -18.0 107.0 1363.5 133.5 97.0 2.0 0.1 
C21 0.17 -19.7 298.3 5312.5 5594.0 97.0 2.0 0.3 
C22 0.16 -27.3 194.3 5841.8 5312.8 97.0 2.0 0.5 
C23 0.16 -52.0 83.0 6062.5 6806.5 97.0 2.0 0.3 
C24 0.18 -18.0 271.8 5255.5 3724.0 97.0 2.0 0.2 
C25 0.26 -88.3 200.3 5166.0 6384.0 97.0 2.0 0.3 
C26 0.20 -57.3 277.7 6061.8 5475.0 97.0 2.0 0.3 
C27 0.16 -49.0 203.3 5384.0 5048.0 97.0 2.0 0.3 
C28 0.16 -20.7 95.3 6289.8 5620.0 97.0 2.0 0.3 
C29 0.20 -61.0 75.3 5836.5 4364.8 97.0 2.0 0.4 
C30 0.44 13.5 134.3 5575.0 3265.3 97.0 2.0 0.3 
C31 0.15 -25.0 165.7 5442.8 4061.8 97.0 2.0 0.3 
C32 0.16 24.7 114.3 4820.5 8165.3 97.0 2.0 0.6 
C33 0.22 8.5 275.0 4677.3 4483.5 97.0 2.0 0.3 
C34 0.19 -75.3 419.5 6244.3 22184.8 97.0 2.0 0.4 
C35 7.90 1176.3 723.6 5412.3 6362.6 97.0 2.0 0.4 
C36 0.25 -70.0 517.3 5695.5 43201.0 97.0 2.0 0.8 
C37 0.30 -25.7 334.7 6040.0 35554.0 97.0 2.0 0.2 
C38 0.22 -17.7 254.5 6008.8 4235.5 97.0 2.0 0.2 
C39 8.29 802.5 941.4 9618.1 3954.4 41.6 36.2 2.5 
C40 9.29 1552.5 2916.3 7866.5 15963.9 70.8 26.4 1.7 
C41 18.59 3978.5 529.8 9108.6 7938.4 31.6 48.6 2.7 
C42 10.51 1571.0 535.8 10668.3 15634.5 23.7 61.5 2.7 
C43 13.20 1293.3 1846.6 8079.8 5606.9 52.9 26.4 1.6 
C44 7.80 1108.3 1597.0 6228.8 21256.0 85.1 12.7 0.9 
C45 10.70 545.7 4334.3 8732.9 13192.4 56.1 30.3 2.9 
C46 2.70 413.2 4513.2 4983.2 14100.0 - - 0.3 
C47 5.20 722.7 251.6 11655.2 7694.5 7.5 40.7 2.2 
C48 8.40 480.3 756.7 9839.2 7479.8 - - 1.9 
C49 5.52 1130.0 1407.3 10404.8 29226.3 27.1 57.8 3.6 
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Via PXRF 

   Sample EC Cl S K Ca Sand Clay LOI 
  ---dS m-1--- --------------------mg kg-1------------------ ---------------%--------------- 

C50 9.90 976.8 336.4 9780.5 26863.3 33.4 3.9 3.1 
C51 8.83 1419.8 572.2 9577.0 75729.5 27.6 38.4 4.4 
C52 8.72 1419.8 280.8 11096.3 11617.5 29.8 46.9 2.1 
C53 7.40 1027.0 203.2 10311.5 65588.9 27.0 36.8 2.5 
C54 5.61 415.8 1224.8 8926.3 21446.7 31.3 30.4 2.6 
C55 12.81 2814.4 2186.0 6843.7 67463.5 76.7 10.4 2.8 
C56 4.30 599.8 1732.3 7076.8 22915.7 85.6 11.9 1.1 
C57 6.27 1112.3 2881.2 6986.5 48193.3 62.1 5.5 3.6 
C58 11.90 2198.5 2778.8 6851.0 37707.8 65.1 10.6 3.5 
C59 11.10 3777.3 717.0 6388.3 32868.0 98.6 1.3 0.7 
C60 18.42 3384.5 2985.2 7114.7 22787.7 81.2 10.1 1.3 
C61 3.39 285.0 1275.0 7134.8 60620.8 18.48 26.22 7.3 
C62 3.33 89.3 402.5 5809.2 11295.5 66.8 36.0 8.5 
C63 7.60 1426.0 878.0 11020.8 13722.7 17.7 50.4 6.6 
C64 2.80 603.5 3598.3 4765.0 100876.3 82.5 2.3 3.2 
G1 1.16 53.5 365.0 7469.0 2404.5 71.5 11.9 0.9 
G2 26.00 2250.5 722.5 7958.9 2637.3 66.4 15.1 1.3 
G3 1.20 16.8 1665.0 9503.5 10836.0 36.4 18.4 5.1 
G4 5.93 1493.1 1651.0 8996.8 16922.6 73.5 1.5 3.4 
G5 39.40 13292.4 1867.3 8031.9 14545.1 84.8 9.7 1.3 
G6 20.20 4335.6 1965.9 7117.1 16504.9 85.2 0.03 2.0 
G7 2.52 701.8 1182.4 7924.4 13194.1 86.8 3.6 2.6 
G8 13.14 2809.0 427.0 8345.6 15177.0 86.2 9.2 0.7 
G9 15.66 5213.2 1054.8 7365.6 18206.8 87.5 9.4 1.3 
G10 1.92 279.6 481.0 7681.1 8926.3 39.9 1.1 2.6 
G11 42.70 10059.5 410.9 7889.4 2583.4 79.1 12.3 1.9 
G12 32.00 8052.7 1034.8 8584.9 6700.8 87.8 6.7 1.3 
G13 55.90 6557.5 1519.0 8968.6 16899.1 63.8 18.7 1.7 
G14 58.40 6251.0 1929.9 8015.9 14537.0 43.4 0.21 1.8 
G15 16.01 1798.4 1977.6 7191.0 17084.4 66.3 6.6 1.3 
G16 34.50 4599.5 410.9 7889.4 2583.4 30.1 8.3 4.4 
G17 39.70 5849.8 1034.8 8584.9 6700.8 60.6 4.2 1.4 
G18 41.80 9961.4 1519.0 8968.6 16899.1 85.4 9.7 1.6 
G19 69.80 10858.8 1929.9 8015.9 14537.0 63.0 0.8 6.0 
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Via PXRF 

   Sample EC Cl S K Ca Sand Clay LOI 
  ---dS m-1--- --------------------mg kg-1----------------- ---------------%--------------- 

G20 79.70 23142.6 1977.6 7191.0 17084.4 6.8 5.5 11.1 
G21 46.00 5962.9 393.4 7947.9 2486.9 39.9 2.6 4.5 
G22 11.30 1330.0 692.3 8157.8 4649.3 73.7 1.0 1.6 
G23 44.50 5460.5 1637.8 9097.1 15081.6 60.7 17.7 3.6 
G24 42.20 8912.3 1804.2 8470.2 14919.3 85.9 0.6 1.4 
G25 28.90 4414.8 1962.2 7676.8 17107.5 75.8 1.2 1.3 
G26 25.30 5155.8 462.2 7526.7 2307.8 74.9 9.7 2.6 
G28 0.75 175.7 315.8 8288.8 2592.8 81.0 10.9 1.1 
G29 20.50 2661.5 617.2 7721.7 2607.0 62.1 17.1 4.2 
G30 30.20 3086.5 1754.5 9258.3 10903.3 30.1 10.5 2.3 
G31 30.10 2630.8 1249.2 9047.3 18867.0 24.7 15.0 4.3 
G32 49.70 4371.3 1996.5 8088.2 13558.2 72.7 2.2 5.1 
G33 58.70 9602.8 2249.7 7496.0 18089.8 63.4 0.02 3.4 
G34 57.70 7749.8 1517.0 6947.8 14941.7 70.5 4.5 2.3 
G35 33.40 4781.3 1472.5 7206.5 14621.8 66.6 0.7 2.7 
G36 53.40 4800.0 748.0 8455.2 10738.5 63.5 6.8 6.7 
G37 26.10 3592.3 361.0 7752.7 7083.0 33.1 3.7 0.9 
G38 1.98 1654.5 664.3 8988.2 23623.7 13.2 21.5 3.7 
G39 46.20 8172.0 892.8 7690.0 22863.7 76.1 23.8 1.8 
G40 48.20 6508.3 1071.5 6966.8 13482.3 76.1 23.8 2.8 
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APPENDIX C: SAS CODE FOR SINGLE AND MULTI LINEAR REGRESSION 
 

Simple Linear Regression, Calab and CaPXRF: 

dm 'log;clear;output;clear'; 
options nodate nocenter pageno = 1 ls=78 ps=53; 
data gypsum; 
Input Sample $ Calab CaPXRF; 
LCalab=log(Calab); cards; 
proc print data=gypsum; run; 
proc plot data=gypsum; plot LCalab*CaPXRF; run; 
proc reg data=salinity; model LCalab=CaPXRF / clb cli clm influence; 
OUTPUT out=outdata p=predicted r=resid cookd=cooksd dffits=diffits H=hat 
student=student rstudent=rstudent lclm=lclm uclm=uclm lcl=ccl ucl=ucl; run; 
proc print data=outdata; var LCalab predicted resid student rstudent; run; 
proc plot data=outdata; plot resid*predicted; run; 
proc univariate data=outdata normal plot; var resid; run; 

Simple Linear Regression, gypsumlab and SPXRF: 

dm 'log;clear;output;clear'; 
options nodate nocenter pageno = 1 ls=78 ps=53; 
data gypsum; 
Input Sample $ gypsumlab SPXRF; 
Lgypsum=log(gypsumlab); LSPXRF=log(SPXRF); cards; 
proc print data=gypsum; run; 
proc plot data=gypsum; plot Lgypsum*LSPXRF; run; 
proc reg data=gypsum; model Lgypsum=LSPXRF / clb cli clm influence; 
OUTPUT out=outdata p=predicted r=resid cookd=cooksd dffits=diffits H=hat 
student=student rstudent=rstudent lclm=lclm uclm=uclm lcl=ccl ucl=ucl; run; 
proc print data=outdata; var Lgypsum predicted resid student rstudent; run; 
proc plot data=outdata; plot resid*predicted; run; 
proc univariate data=outdata normal plot; var resid; run; 

Multiple Linear Regression, Gypsumlab and CaPXRF + SPXRF 

dm 'log;clear;output;clear'; 
options nodate nocenter pageno = 1 ls=78 ps=53; 
data gypsum; 
Input Sample $ gypsum S Ca; 
Lgypsum=log(gypsum); cards; 
proc print data=gypsum; run; 
proc plot data=gypsum; 
plot Lgypsum*S; 
plot Lgypsum*Ca; run; 
proc reg data=gypsum; model Lgypsum=S Ca / clb cli clm influence; 
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OUTPUT out=outdata p=predicted r=resid cookd=cooksd dffits=diffits H=hat 
student=student rstudent=rstudent lclm=lclm uclm=uclm lcl=ccl ucl=ucl; run; 
proc print data=outdata; var Lgypsum predicted resid student rstudent; run; 
proc plot data=outdata; plot resid*predicted; run; 
proc univariate data=outdata normal plot; var resid; run; 

Multiple Linear Regression, Gypsumlab and CaPXRF + SPXRF 

dm 'log;clear;output;clear'; 
options nodate nocenter pageno = 1 ls=78 ps=53; 
data gypsum; 
Input Sample $ gypsum S Ca; 
Lgypsum=log(gypsum); 
LCa=log(Ca); LS=log(S); cards; 
proc print data=gypsum; run; 
proc plot data=gypsum; 
plot Lgypsum*LS; 
plot Lgypsum*LCa; run; 
proc reg data=gypsum; model Lgypsum=LS LCa / clb cli clm influence; 
OUTPUT out=outdata p=predicted r=resid cookd=cooksd dffits=diffits H=hat 
student=student rstudent=rstudent lclm=lclm uclm=uclm lcl=ccl ucl=ucl; run; 
proc print data=outdata; var Lgypsum predicted resid student rstudent; run; 
proc plot data=outdata; plot resid*predicted; run; 
proc univariate data=outdata normal plot; var resid; run; 
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Simple Linear Regression, EClab and ClPXRF: 

dm 'log;clear;output;clear'; 
options nodate nocenter pageno = 1 ls=78 ps=53; 
data salinity; 
Input Sample $ EC Cl; 
LEC=log(EC); LCl=log(Cl); cards; 
proc print data=salinity; run; 
proc plot data=salinity; plot LEC*LCl; run; 
proc reg data=; model LEC=LCl / clb cli clm influence; 
OUTPUT out=outdata p=predicted r=resid cookd=cooksd dffits=diffits H=hat 
student=student rstudent=rstudent lclm=lclm uclm=uclm lcl=ccl ucl=ucl; run; 
proc print data=outdata; var LEC predicted resid student rstudent; run; 
proc plot data=outdata; plot resid*predicted; run; 
proc univariate data=outdata normal plot; var resid; run; 

Multiple Linear Regression, EC and ClPXRF + SPXRF+ KPXRF+ CaPXRF 

dm 'log;clear;output;clear'; 
options nodate nocenter pageno = 1 ls=78 ps=53; 
data salinity; 
Input Sample $ EC Cl K S Ca; 
LEC=log(EC); 
LCl=log(Cl); LS=log(S); 
LK=log(K); LCa=log(Ca); cards; 
proc print data=salinity; run; 
proc plot data=salinity; 
plot LEC*LCl; plot LEC*LS; plot LEC*LK; plot LEC*LCa; run; 
proc reg data=salinity; model LEC=LCl LS LK LCa / clb cli clm influence; 
OUTPUT out=outdata p=predicted r=resid cookd=cooksd dffits=diffits H=hat 
student=student rstudent=rstudent lclm=lclm uclm=uclm lcl=ccl ucl=ucl; run; 
proc print data=outdata; var LEC predicted resid student rstudent; run; 
proc plot data=outdata; plot resid*predicted; run; 
proc univariate data=outdata normal plot; var resid; run; 
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