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ABSTRACT 

Developing improved cotton cultivars depends on how cotton cultivars perform the best 

when under stresses. Reniform nematode is a major plant pathogen, causing 4-6% yield loss in 

southern United States. A variation in reproduction and pathogenicity across reniform isolates 

collected from Louisiana on susceptible cotton was reported. This study was conducted to 

determine the response of resistant/tolerant cotton genotypes to multiple reniform isolates by 

inoculating 10,000 juveniles into seven days old seedlings. Across genotypes, the Evan and 

Avoyelles isolates had significantly higher vermiform nematodes (33,793 and 27,800/250 g soil, 

respectively) than other isolates. Across isolates, the number of juveniles on A2-190 and Lonren-

2 (5,573 and 6,013, respectively) were significantly lower than that on other genotypes. There 

was a significant interaction between the genotypes and isolates suggesting that the response of 

genotypes to reniform isolates was different.  

Salt stress is a major abiotic stress, affecting cotton production in the Macon Ridge and 

Red River regions in Louisiana. In a preliminary study, 150 day neutral primitive cotton 

accessions were screened at 0, 125, 250 mM NaCl under hydroponics. A promising subset was 

rescreened for salt tolerance in pot culture. MT11 had the lowest reduction in plant height and 

dry shoot weight (32% and 47%), significantly less than FM958 (43% and 66%) across salt 

concentrations. MT1219 had the lowest accumulation of Na+ (1,026.37 mM) at 250 mM NaCl, 

and significantly lower than FM958 (2,135.39 mM). Based on reduction in plant parameters, 

MT11, MT1219, MT45, and MT245 performed better than other genotypes. This study also 

showed that both hydroponics and pot culture are effective in the screening of a large number of 

cotton genotypes against elevated salt concentrations. 
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In addition to stresses, cotton breeders are interested to develop a selection index, which 

aids in an efficient selection of multiple fibers traits. Using the data mining techniques, all 

developed models agreed that fiber length and strength are the most important fiber properties in 

determining the spinning consistency index (SCI). This study showed that SCI can be used as 

alternative selection index for combining the multiple fiber traits to enhance yarn spinning. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 INTRODUCTION 

Cotton (primarily Gossypium hirsutum L. and to a lesser extent G. barbadense, G. 

arboreum, and G. herbaceum) is the leading natural textile fiber as well as one of the most 

important oilseed crops in the world. In terms of total area harvested, cotton ranks fourth after 

corn, soybean and wheat in the United States. Globally, US cotton production is ranked third 

after China and India. In the US, it is estimated that 16.08 million bales were produced in 

2014/2015, which is 25% higher than in 2013/2014. The production increase in 2014 vs 2013 is 

largely a result in an increase in production area from 3.05 to 3.93 million hectares (USDA, 

2014). As an oilseed, cotton is also ranked in the third position, worldwide, in terms of volume 

behind soybean and corn. The oil produced from cotton is largely used for human consumption. 

The cake left after oil extraction is a high protein animal feed principally used in the beef and 

dairy industries (National Cottonseed Products Association, 2014). Collectively, these uses 

contribute to cotton’s prominence as one of the most important agricultural row crops in the US. 

Reniform nematode (Rotylenchulus reniformis) is a significant pathogen in upland cotton 

production and causes an estimated 1.48% yield loss in the United States. In the southern United 

States, i.e., Louisiana, Arkansas, Georgia, Texas, and Tennessee, more severe losses (>4%) were 

observed in 2013 (Lawrence et al., 2014). The loss caused by reniform nematode may be 

exaggerated under water-stressed conditions, while foliar symptoms may not appear in well-

managed cotton fields (Robinson, 2007). Symptomatically, reniform nematode infection reduces 

seedling growth at early stages (2-3 leaf stages), which results in severe stunting (pathogenicity). 

In addition, it causes a yellowing of lower leaves, a 1-2 node delay in fruit set a browning of the 
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lower leaf margins and tips that result in a delay in maturity, and yield reduction (pathogenicity) 

(Birchfield and Jones, 1961; Jones et al., 1959).  

The reniform nematode is a sedentary semi-endoparasite, which feeds on more than 350 

plant species across 77 families in warm temperate, sub-tropical, and tropical regions of world 

(Dasgupta and Seshadri, 1971; Gaur and Perry, 1991). Unlike the root-knot nematode 

(Meloidgyne incognita), the infective stage is the immature female, which penetrates and disrupts 

the cortex cells as it moves into a root and establishes a feeding site on the stele (Bird, 1984). 

While feeding on the endodermis, it produces a multinucleated cell resulting from cell wall 

dissolution and hypertrophy without hyperplasia of pericycle cells, which is known as a syncytia 

(Cohn, 1973; Heald, 1975). Due to disruption of the cortex and dissolution of pericycle cells, 

reniform nematode infestation hinders the movement of water and nutrient throughout the root 

system. After establishing a feeding site, the reniform nematode develops further and forms the 

typical kidney shape. Reproduction is by amphimixis resulting in a lay of 60-200 eggs in a 

gelatinous matrix outside of the root. Male reniform nematodes have a less developed stylet and 

oesophageal glands than females and can’t feed and produce syncytial cells (Bird, 1984; Gaur 

and Perry, 1991; Leach et al., 2009). 

The geographical infestation and intensity of reniform nematodes in the Cotton Belt has 

been rapidly increasing over years. In Louisiana, reniform nematode is well established in most 

of the cotton producing parishes. Over a period from 1961-2010, reniform infestation has 

increased from three to twenty four parishes (McGawley et al., 2010). Since an active horizontal 

movement of reniform nematode is minimal (2 meters per year), it is believed that the rapid 

infestation is due to cotton monoculture and movement of equipment from infested fields to 

other fields (Moore et al., 2010a; Robinson, 2007). Once it is established, the reniform nematode 
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can spread horizontally and vertically throughout a cotton field by tillage and water flow (Moore 

et al., 2010a). To manage the reniform infestation in cotton fields, cotton growers have 

implemented various management practices, such as crop rotation with non-host species, use of 

nematicides, planting of tolerant or resistant cotton varieties, sometimes combined with site 

specific management (Burris et al., 2010; Davis et al., 2003; Lawrence and McLean, 2000; 

Lawrence et al., 1990; Rich and Kinloch, 2000; Robinson, 2007; Starr et al., 2007; Wolcott et al., 

2005). Until recently, aldicarb (Temik) was a cheap, effective, and widely used nematicide to 

suppress the reniform nematode population in the reniform infested fields, but its usage was 

restricted after 2014 due to concerns about its acute toxicity. At present, there are no commercial 

reniform resistant/tolerant cotton varieties available for cotton growers. The use of a reniform 

resistant/tolerant cotton genotype would be an alternative and economically viable management 

option to manage reniform nematodes in the infested areas.  

With the increasing prevalence of field infestation with reniform nematodes and its 

elevation to being a primary pest for cotton in recent years, cotton breeders initiated the 

evaluation of cotton germplasm accessions to identify a source of reniform resistance. Yik and 

Birchfield (1984) evaluated four different cultivated and wild species of the genus Gossypium 

and found that G. longicalyx, collected from Africa, has an immune response to reniform 

nematode. They also reported that G. barbendense ‘Texas 110’ demonstrated a high degree of 

resistance. Bell et al. (2014) developed two highly reniform resistant lines: Lonren-1 and 

Lonren-2 using a hexaploid bridging strategy to incorporate the diploid G. longicalyx source of 

resistance into a tetraploid upland cotton background. Robinson et al. (2004) evaluated the entire 

collection of Pima (G. barbadense) and upland primitive cotton accessions and found that GB-

713 was highly tolerant to infestation by the reniform nematode. The study also found that most 
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upland cotton accessions were moderately to highly susceptible to the reniform nematode. 

Stewart and Robbins (1994) reported that the Old World cultivated diploid cotton G. arboreum 

(A2-190) was highly tolerant to the reniform nematode. As a result of the long standing interest 

in reniform nematode resistance, most of the wild and cultivated diploid and tetraploid cotton 

species, such as G. hirsutum, G. longicalyx, G. barbadense. G. herbaceum, G. somalense, G. 

aridum, and G. african have been evaluated for their reaction. Currently, the Lonren-1, Lonren-

2, GB-713, and TX-110 sources of resistance are the most commonly used sources in cotton 

breeding programs.  

Historically, research on the reniform nematode has been conducted using only a single 

isolate collected from a specific geographical region of US, typically a locally infested field. 

However, variations in both morphological and genetic, as well in reproduction and 

pathogenicity, of the isolates have been observed (Agudelo et al., 2005; Arias et al., 2009; 

Dasgupta and Seshadri, 1971; McGawley et al., 2010; Tilahun et al., 2008). Based on 

reproduction on host species, Dasgupta and Seshadri (1971) designated race A and race B of the 

reniform nematode in India. More recently, four races of reniform nematode were reported in 

India (Singh and Azam, 2011). Agudelo et al. (2005) reported a variation in morphology and 

reproduction among reniform populations and found that a population collected from Texas had 

the highest reproduction. McGawley et al. (2010) reported that reniform nematode populations 

collected from Mississippi and Louisiana had a higher level of reproduction than other 

populations. It is now well established there is a variation in reniform nematode populations 

collected from different states. However, there is still a lack of information about variation in 

reproduction and pathogenicity among reniform isolates collected within Louisiana. Common to 

all these prior studies as well is that when cotton was used as a host species that only a single or 
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a very few genotypes were used and that variation in species source of resistance (e.g. 

longicalyx, barbadense, hirsutum) was not incorporated. This study seeks to investigate how the 

source of reniform nematode resistance/tolerance in cotton genotypes interacts across different 

reniform isolates collected from different cotton production regions in Louisiana. Results may 

enable the identification of cotton genotypes (sources of resistance), which display a favorable 

reaction across reniform isolates that could be used to develop reniform resistant cultivars in a 

cotton breeding program.  

In addition to biotic factors, abiotic stresses, such as drought and salinity are major 

environmental limiting factors, which affect the growth and productivity of crop species. Soil 

salinity is one of agriculture’s major abiotic stress factors, affecting 23% and 20% of the total 

irrigated land in the US and the world, respectively (Ghassemi et al., 1995; Wang et al., 2003). 

Salinity is a severe problem in areas of high evaporation and low rainfall, i.e. arid and semi-arid 

regions (e.g. Southwest and West regions in US). In these regions, rainfall is not enough to leach 

accumulated salts out from soil surface, which results in rapid accumulations (Bernstein, 1975; 

Brady and Weil, 2009). In Louisiana, salinity is a problem in the Upper Red River and Macon 

Ridge regions where cotton is one of the major crops grown. In these regions, water quality is 

one of the major issues with irrigation water from Red River, which contains nearly 2600 ppm 

salt (Morgan, 2010). 

Although cotton is moderately tolerant to salinity with a threshold of 7.7 dSM-1 (4,928 

ppm) (Maas and Hoffman, 1977), the effect of salt concentrations on the growth and 

development of cotton during different growth stages may be observed in these regions. Due to a 

long spell of dry weather during the growing season in recent years, cotton growers are irrigating 

fields through surface or sprinkler irrigation to supplement the water requirements at critical 
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stages of cotton growth. In these regions, 40% of cotton fields are irrigated and the percentage is 

likely to increase to maximize production and reduce a risk of crop failure. It is likely that 

irrigating cotton fields with elevated saline water from Red River will increase the accumulation 

of salt residues on the soil surface over time, exacerbated because of a shallow hard pan and poor 

drainage in these areas. The increased use of the Red River as a source of irrigation water is due 

to high salt concentrations in the ground water and high cost of well pumping, and salt levels in 

the irrigating water have been increasing over the last 20 years in this regions (Morgan, 2010). 

As irrigation becomes more prevalent in cotton production, salinity might become a significant 

issue in the near future, which will need to be managed either through the soil reclamation 

/management practices or through the development of salt tolerant genotypes. Though soil 

salinity can be temporarily reclaimed by crop management practices to some extent, use of 

improved salt tolerant cotton genotypes would be an alternative and economically viable 

management option to manage cotton production in the salt affected regions.  

Salt concentrations in the soil surface impair the absorption of macro- and micro-

nutrients required for plant growth and development. The increased concentration of Na+ and Cl- 

within the plant system may partially or fully inhibit the metabolic, physiological, and 

biochemical processes, and all these effects together reduce plant growth and development at 

different developmental stages (Hasegawa et al., 2000; Munns and Tester, 2008). It has been 

well documented that salinity reduces seed germination and emergence, primary and secondary 

root growth, plant height, fresh and dry shoot weight, shoot/root ratio, and stem thickness, and all 

these effects together cause in dwarf plants with necrosis and chlorosis of old leaves in many 

crop species (Chen et al., 2010; Hamdy et al., 1993; Khan et al., 1995; Latif and Khan, 1976; 

Reinhardt and Rost, 1995; Wang et al., 2011; Ye et al., 1997; Younis et al., 1987). Munns and 
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Tester (2008) reported two distinct growth responses resulting from elevated salt concentrations: 

a rapid decrease in growth due to sudden exposure to high salt concentrations (external osmotic 

pressure) followed by a slow response as the Na+ accumulates in the leaves. A reduction in leaf 

expansion is a direct result of salt stress because increased external osmotic pressure causes a 

rapid loss in cell turgidity, which results in a rapid reduction of shoot growth (Wang and Nii, 

2000). The shoot growth reduction causes a delay in emergence of leaves and lateral buds, which 

reduces the number of lateral branches (Munns and Tester, 2008). In term of production, cotton 

yield is reduced as the salt concentration increases due to higher boll shedding and lower number 

of fruiting branches (Chen et al., 2010; Longenecker, 1974). Additionally, excess salinity has 

been shown to reduce lint percentage, fiber fineness, maturity, length, strength, and micronaire, 

which combine to reduce fiber quality (Ashraf and Ahmad, 2000; Korkor et al., 1974; 

Longenecker, 1974).  

Exclusion of Na+, ion regulation and compartmentalization, osmotic adjustment, 

induction of antioxidants, and synthesis of solutes are well known salt tolerant mechanisms 

observed in many plant species (Munns and Tester, 2008; Parida and Das, 2005). Janardhan et al. 

(1976) reported Na+ exclusion in salt tolerant Indian cotton varieties, which prevents Na+ 

accumulation to toxic levels in the leaves. At a cellular level, compartmentalization of Na+ into 

the vacuoles from the cytosol through a Na+/H+ anti-transporter was observed in Avp1 

expressing cotton genotypes (Pasapula et al., 2011). For cotton breeders, identification of inter- 

and intra-specific sources of variation and the identification of the mechanisms of salt tolerance 

across accessions are important to the development of salt tolerant cotton cultivars. Compared to 

the total number of germplasm accessions in US cotton germplasm collection, even 
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cumulatively, the number of cotton germplasm lines included in past studies for screening and 

characterizing their salt tolerance is quite low.  

With regard to salt tolerance, there is scant data available on the variation in the cotton 

germplasm pool. The lack of information hinders efforts to understand the mechanism of salt 

tolerance and to select appropriate salt tolerant cotton genotypes for use in the development or 

breeding of salt tolerant cotton varieties. There is a need for more systematic studies of salt 

tolerance response over a larger number of germplasm accessions to provide the foundation upon 

which to develop salt tolerant cotton cultivars. This study provides an opportunity to identify the 

degree of salt tolerance among one hundred fifty genotypes obtained from the Mississippi 

Converted Race Stock program. The information collected, in regard to salt tolerance will be 

available in the National Cotton Germplasm collection so that cotton breeders can use this 

information to develop and improve the salt tolerant cotton cultivars.  

In addition to biotic and abiotic stresses, cotton breeders from public and private 

institutions are interested is to develop high yielding cotton varieties with improved fiber 

qualities to meet the requirements of standard yarn properties. The improved fiber quality is a 

key to success in the competitive global textile industries. Knowledge of the relationship 

between yarn and fiber properties is important for cotton breeders to select high quality 

genotypes/offspring in the breeding program. In the textile industry, yarn quality is a vital 

component which determines the quality of fabric and clothes (Zhu and Ethridge, 1996). 

High volume instruments (HVI) and Advanced Fiber Information System (AFIS) are 

widely used instruments in selection of high quality cotton bales in the textile industry (Sasser, 

1981; Shofner et al., 1990). For cotton breeders, HVI is the most popular tool in selection of 

progenies and cultivars with high quality fibers because a large number of fiber samples can be 



9 
 

processed in short periods of time at low cost (Suh and Sasser, 1996). Although various fiber 

properties are determined by using HVI and AFIS, it is still challenging to give priority to a 

parameter or group of parameters to select the best fibers for industrial uses (Majumdar, 2010). 

The interrelationship between the various HVI and AFIS parameters is not represented and it is 

their interplay, along with spinning equipment variables that lead to the production of usable 

yarn. In essence, some sort of selection index could be useful if it was able to reasonably and 

reliably predict yarn quality. Two recent attempts to develop such an index, based on the HVI 

data and consultation with the textile professionals, are the fiber quality indices: Qscore 1 and 

Qscore 2. Although these indices were developed as a single index incorporating four different 

fiber properties, most cotton breeders hesitate to use this score in their breeding program because 

this algorithm gives an arbitrary weight for each fiber property and the optimum weight of each 

fiber property in relation to yarn quality is still unknown (Bourland et al., 2010). 

With an advancement of computational and analytical tools, a number of data mining and 

machine learning techniques, such as multiple linear regression, path analysis, regression tree, 

random forest, boosting and artificial neural network, are increasingly popular and widely used 

to develop predictive models for simple to complex data in many scientific disciplines (Breiman, 

2001; Gurney, 1997; James et al., 2014; Kang et al., 1983; Kutner et al., 2004). There are limited 

studies in the application of other data mining tools and techniques in cotton breeding. Since as 

early as 1980, cotton breeders have investigated two data mining and machine learning 

techniques, such as classical linear regression and artificial neural network (ANN) to determine 

the functional relationship between yarn and fiber properties (Cheng and Adams, 1995; Ramesh 

et al., 1995). The varieties used in these older experiments and their limited data sets may no 

longer be relevant. Additionally, none of the published classical linear regression and ANN 
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models used AFIS data. From HVI it is possible to calculate a spinning consistency index (SCI), 

which suggests the overall quality and spinning ability of cotton fibers and can be used to 

evaluate the technological value of cotton fibers. Unfortunately, this index is a “black box” for 

the cotton breeder, as the research that led to its development provides little rationale about how 

and what fiber parameters were considered in its development and SCI’s ability to predict yarn 

properties. Therefore, the objective of this research is to develop a number of statistical models 

using data mining and machine learning tools to identify the important fiber properties, which 

affects SCI and to compare this index with yarn strength to determine its applicability in the 

textile industries. 
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CHAPTER 2: RESPONSE OF FIVE RESISTANT/TOLERANT COTTON CULTIVARS 

TO ISOLATES OF ROTYLENCHULUS RENIFORMIS COLLECTED FROM 

RENIFORM INFESTED FIELDS OF LOUISIANA  
 

2.1 INTRODUCTION  

Cotton (primarily Gossypium hirsutum L. and to a lesser extent G. barbadense, G. 

arboreum, and G. herbaceum) is the leading textile fiber as well as one of the most important 

oilseed crops in the world. In terms of total area harvested, cotton ranks fourth after corn, 

soybean and wheat in the United States. Approximately two-thirds of the cotton grown in the US 

is exported, amounting to 10.50 million bales (500 lbs lint/bale) in 2012/13. Exports have been 

steadily rising as a percent of total production largely due to strong demand from China (USDA, 

2014). Globally, US cotton production is ranked third after China and India. In the US, it is 

estimated that 13.19 million bales were produced in 2013/2014, 24% lower than in 2012/2013. In 

comparison, world cotton production in 2013/14 (117.81 million bales) decreased 4% relative to 

2012/2013. This worldwide production decrease is a direct response to a decrease in planted area 

from 34.13 to 33.12 million hectares in 2013/14 to 2012/13, respectively. In the US, the 

production decrease in 2013/14 vs 2012/13 is largely a result of a decrease in production area 

from 3.79 to 3.10 million hectares (USDA, 2014). As an oilseed, cotton is ranked third, 

worldwide, in terms of volume behind soybean and corn. The oil produced from cotton is largely 

used for human consumption. The cake left after oil extraction is a high protein animal feed 

principally used in the beef and dairy industries (National Cottonseed Products Association, 

2014). Collectively, these uses contribute to cotton’s prominence as one of the important 

agricultural row crops in the US.  

Cotton is vulnerable to several plant insects and diseases that decrease production. Out of 

12% loss in cotton production caused by various insects and diseases, the loss caused by 
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reniform nematode (Rotylenchulus reniformis) is estimated to be 1.48% in the US (Lawrence et 

al., 2014). The most severe yield losses (> 4%) to reniform nematode are observed in Louisiana, 

Arkansas, Georgia, Mississippi, Texas, and Tennessee (Lawrence et al., 2014). Depending upon 

the level of infestation, cultivars grown, and environment conditions, yield losses caused by 

reniform nematode have been estimated to be as high as 40% (Farias et al., 2002). The reniform 

nematode was first reported as a cotton parasite in Louisiana in 1941 (Smith and Taylor, 1941). 

Since the initial report of its occurrence in Louisiana, the reniform nematode has spread, 

increasing from 3 to 24 parishes during the period of 1961 to 2010 (McGawley et al., 2010). 

Compared to the root knot nematode (Meloidogyne incognita), the area infested by reniform 

nematode has increased rapidly over the years because of its short life cycle (16-22 days), its 

ability to establish feeding sites along primary, secondary and tertiary roots, as well as its ability 

to survive in desiccated weather and soil conditions (Gaur and Perry, 1991; Rebois, 1973). Due 

to its aggressive nature, the reniform nematode out competes root knot nematode populations in 

cotton fields and has rapidly begun the major nematode pathogen affecting cotton production 

(Robinson, 2007).  

Reniform nematode is a sedentary, amphimictic and semi endoparasite, which feeds on 

more than 350 plant species across 77 families in warm temperate, sub-tropical, and tropical 

regions of world (Gaur and Perry, 1991). The mature female is easily identified by her kidney 

shape, while the male is vermiform in shape and shorter than females. The life cycle of the 

reniform nematode is comprised of four vermiform stages i.e. eggs, J1, J2 J3, J4 and adults. A 

mature female can lay from 60-200 eggs in a gelatinous matrix she exudes on the surface of plant 

roots (Dasgupta and Seshadri, 1971). It takes 7-10 days for eggs to hatch before entering the 

different vermiform stages, which are demarcated by molting. Upon infection by root 
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penetration, a multinucleated cell is formed from the dissolution of cell walls between adjacent 

cells forming a syncytia (Cohn, 1973; Heald, 1975). Upon infestation, the anterior portion of 

female is embedded in the root, whereas posterior portion remains outside the root surface. After 

establishing a feeding site in the root cortex, females develop further and form the typical kidney 

shape (Gaur and Perry, 1991). The life cycle of the reniform nematode normally takes about 16-

22 days, but is dependent upon the host species, temperature, and soil conditions (Bird, 1984; 

Gaur and Perry, 1991; Leach et al., 2009). Host plant symptoms include stunting, yellowing of 

lower leaves, browning of the lower margins and tips, a delay in maturity, and yield reduction 

(pathogenicity) (Birchfield and Jones, 1961; Jones et al., 1959). 

Cotton growers have various management options available to reduce yield loss due to 

reniform nematode infestation. These include crop rotation, the use of nematicides or the 

planting of resistant/tolerant varieties to manage reniform nematodes in the field (Burris et al., 

2010; Davis et al., 2003; Robinson, 2007; Starr et al., 2007). Crop rotation with non-host crops, 

such as peanut, corn, resistant soybean or sorghum is effective in reducing the reniform 

population (Davis et al., 2003; Gazaway et al., 2000; Koenning et al., 2004). Nematicides are a 

reliable option for growers because they are easy to apply at the time of planting and effectively 

reduce initial nematode population densities (Lawrence and McLean, 2000; Lawrence et al., 

1990; Rich and Kinloch, 2000; Wolcott et al., 2005). However, there are environmental concerns 

associated with nematicide use and they can be expensive. Host plant resistance is an effective, 

viable, and typically profitable management option to manage and control nematode infestations 

in cotton fields. To date, several cotton germplasm lines that show moderate to high levels of 

resistance or tolerance to the reniform nematode have been released (Bell et al., 2014; McCarty 

et al., 2013; McCarty et al., 2012; Robinson et al., 2004; Robinson and Percival, 1997; Yik and 
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Birchfield, 1984). No commercial cultivars that have high level of resistance to reniform 

nematode are available. 

Due to increasing infestation of the reniform nematodes in cotton fields, researchers 

started screening wild and cultivated species of cotton genotypes to identify a source of 

resistance for reniform nematode in late 1980. Yirk and Birchfield (1984) evaluated four 

different species of Gossypium and found that the germplasm line TX-110 was highly tolerant to 

reniform nematodes. Robinson et al. (2004) screened 1866 primitive accessions of G. hirsutum 

and 907 of G. barbendese against reniform nematodes. They reported that a majority of the G. 

hirsutum accessions were moderate to highly susceptible, while six primitive accessions of G. 

barbendese were moderately tolerant to reniform nematode. Out of these six accessions, GB-713 

was highly tolerant to reniform nematodes and has been widely used to develop reniform 

resistant breeding germplasm. Bell et al. (2014) developed two highly reniform resistant lines; 

Lonren-1 and Lonren-2 by introgression of a source of reniform resistance from G. longicalyx 

into upland cotton. Stewart and Robbins (1994) evaluated Asiatic cotton germplasm and found 

that G. arboreum (A2-190) was highly tolerant to reniform nematodes. Although moderate levels 

of reniform resistance were observed in wild species of G. aridum and G. herbaceum, they are 

not extensively used for breeding because of genetic incompatibility and linkage drag.  

Past research on the reniform nematode was conducted by using a single isolate collected 

from a specific geographical region of US, typically a locally infested field. However, variations 

in both morphological and genetic, as well in reproduction and pathogenicity of the isolates, have 

been observed (Agudelo et al., 2005; Arias et al., 2009; Dasgupta and Seshadri, 1971; 

McGawley et al., 2010; Tilahun et al., 2008). Dasgupta and Seshadri (1971) designated two races 

of reniform nematode, i.e. race A and race B, based on host assay and the rate of reproduction on 
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castor, cowpea and cotton in India. Out of ten isolates, nine isolates of similar morphology 

reproduced on all three hosts, while one isolate reproduced only on cowpea. In Japan, Nakasono 

(2004) classified the reniform nematode into three categories: small, medium, and large based on 

body size and three different biological types, i.e. male-numerous type, male-rare type, and male-

absent type. Rao and Ganguly (1998) reported a variation in body length and width, stylet length, 

distance from head to vulva, and position of the dorsal esophageal gland orifice among reniform 

populations from different geographic regions in India. Agudelo et al. (2005) observed variation 

in nematode morphology and reproduction among isolates collected from different geographical 

regions. They reported that a reniform population collected from Hawaii has a larger body than 

other isolates, while a population collected from Limestone, Alabama has a small body size. 

Morphological variations i.e. size and length of stylet, position of esophagus gland orifice, and 

esophagus length were also observed among reniform populations. The population collected 

from Limestone, Alabama had a higher rate of reproduction on the hosts than isolates collected 

from Huxford, Alabama, Louisiana, and Hawaii. 

Based on the 18S ribosomal DNA and first internally transcribed space (ITS1), genetic 

variation was observed among the populations collected within reniform infested fields of 

Alabama (Tilahun et al., 2008). Arias et al. (2009) reported that 88 microsatellite markers are 

polymorphic across six isolates collected from Texas, Louisiana, Mississippi, and Georgia. The 

isolate collected from Georgia had the highest reproduction and pathogenicity as compared to 

other isolates. McGawley et al. (2010) showed that reniform populations collected from 

Mississippi and Louisiana had higher reproduction than populations collected from Arkansas, 

Texas, Hawaii, and Alabama. A common feature of all of these studies, however, is that the 
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reproduction and pathogenicity tests were conducted upon a single host genotype (but not 

necessarily the same one across the studies). 

It is now established that there is variability in reproduction and pathogenicity among 

various reniform nematode isolates collected from different US States. The variation in 

reproduction and pathogenicity may have an impact on host plant resistance management. It is 

unknown if there is variation among reniform nematode isolates collected from reniform infested 

fields within Louisiana. Furthermore, if variation does exist, is it detectable by the use of 

different host genotypes of the same genus. It would be valuable to establish a differential 

response of resistant/tolerant lines of cotton to different reniform isolates if such variation exists. 

Therefore, this study seeks to evaluate the response of tolerant cotton cultivars to reniform 

nematode isolates collected from reniform infested fields in Louisiana and provide information 

useful to plant breeders for future research to develop cotton cultivars with resistance/tolerance 

to the reniform nematode.  

2.2 MATERIALS AND METHODS 

2.2.1 Reniform isolates and cotton cultivars 

Five isolates collected from reniform nematode infested fields in Louisiana were used in 

this study (Table 2.1). Using a dissecting microscope, 25 egg masses were collected from each 

isolate and transferred to previously established tomato seedlings (Lycopersium esculentum L. 

cv. ‘Rutgers’) planted in 20.3 cm (diameter) terra cotta pots filled with steam pasteurized sandy 

loam soil in a greenhouse under natural light conditions. The reniform isolates were carefully 

handled and maintained in the greenhouse to maintain isolate purity. Reniform inoculum was 

extracted on the day of inoculation by using the centrifugal sugar flotation technique (Jenkins, 

1964).  
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Table 2.1 Reniform isolates and cotton genotypes used in this study. 

Reniform isolates Cotton genotypes 

Isolates Parishes Name Sources References 

Evan Evangeline Lonren-1 G. longicalyx Bell et al. (2014) 

LA Rapides Lonren-2 G. longicalyx Bell et al. (2014) 

Avoyelles Avoyelles Barbren-713 G. barbadense Robinson et al. (2004) 

Oak Tree cut Tensas  TX-110 G. barbadense Yik and Birchfield (1984) 

Old Crop rotation  Tensas A2-190 G. arboreum Stewart and Robbins (1994) 

  Delta Pearl G. hirsutum  

 

2.2.2 General information 

Seed of resistant and susceptible cotton cultivars was planted in 3.8 L plastic pots filled 

with steam-sterilized sandy loam soil in summer 2013; two seeds per pot. The pots were 

arranged in randomized complete block design (RCBD) with a factorial arrangement of 

treatments (reniform isolates and genotypes) and five replications per treatment in the 

greenhouse. The experiment was repeated in the early fall of 2013. The cotton variety “Delta 

Pearl” (PVP 20000061, Delta & Pine Land, Co., Scott, MS) was used as the susceptible check. 

Plants without reniform nematode inoculation were used as controls. After seed germination, 

pots were thinned to one seedling per plot. At 7 days after germination, 10,000 vermiform 

nematodes from each isolate were used to inoculate each pot. The inoculum was injected 2-5 cm 

deep into the soil at three spots 1-2 cm away from the plant stem to facilitate vermiform contact 

with the host root system. The pots were watered via drip irrigation as required to maintain 

adequate soil moisture to support the plant growth. Fertilizers and pesticides were applied as 

needed. The pots were harvested at 9 weeks (63 days) after inoculation. This should allow the 

reniform nematode to complete at least four complete reproduction cycles.  

Before plant harvest, plant height was recorded. Harvested shoot and root of each 

genotype was oven dried at 65○ C for 72 hours and weight was recorded. Soil from individual 

pots was carefully transferred to a flat plastic pan and any root materials removed from the soil. 
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After thoroughly mixing the soil, 250 g of soil was taken for extraction of vermiform nematodes 

using an elutriator (customized by Agriculture Engineering, University of Georgia, 1998) (Byrd 

et al., 1976). A soil suspension was poured through the elutriator and collected on stacked sieves 

arranged 100 mesh sieve on the top followed by a 400 mesh sieve. The materials collected on the 

400 mesh sieve was transferred into a 50 mL centrifuge tube and centrifuged at 1500 rpm 

(revolutions per minute) for 5 minutes. The suspension at the top of centrifuge tube was carefully 

discarded without disturbing the soil pellet at the bottom. About forty (40) mL of sugar solution 

(450 g sucrose/L) was added and thoroughly mixed in the centrifuge tube. This was then 

centrifuged at 1500 rpm for 1 minute. The supernatant was quickly poured into 400 mesh sieve 

and washed thoroughly with tap water. The suspension was collected in graduated sample 

beakers and adjusted to the final volume of 100 mL. For vermiform counting, 10 mL of 

suspension was pipetted onto a petri dish having 5 mm cross section lines. Using the dissecting 

microscope, vermiform nematodes across a cross section (2 or 4 lines) were counted at 4X (or 

10X) and multiplied by 800 (counted across 2 cross section line) or 400 (4 cross sectional lines) 

to calculate the total number of reniform nematodes in 250 gram soil. The number of nematodes 

in 250 gram of soil was multiplied by 10 to get the total number of vermiform nematodes (pf) in 

each pot. The reproduction value (Rf) was determined by dividing the final population (pf) by 

the initial inoculum level (pi).  

2.2.3 Statistical analysis 

Analysis of variance (ANOVA) were conducted using SAS 9.3 (SAS Institute Inc., Cary, 

NC) for number of vermiform nematodes per 250 g soil, plant height, dry shoot and root weight. 

Prior to ANOVA, the number of vermiform nematodes was log transformed to meet an 
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assumption of normality. To determine the difference among isolates and genotypes, T-grouping 

was used for mean comparisons. 

2.3 RESULTS 

2.3.1 Reproduction of reniform isolates on cotton genotypes 

The reproduction value of reniform isolates across the different genotypes is presented in 

Table 2.2. Based on the reproduction on Delta Pearl (susceptible check), the Evan isolate had the 

highest reproduction value (Rf) followed by the Avoyelles isolate, while the lowest reproduction 

was reported in the Oak Crop rotation isolate. The reproduction values of reniform isolates on 

Lonren-1, Lonren-2, and G. arboreum (A2-190) were lower than on TX-110 and Barbren-713 

genotypes (Table 2.2).  

Table 2.2 The reproduction values (Rf) of reniform isolates across cotton genotypes. 

 Reniform isolates 

Genotypes Evan LA Old Crop rotation Oak Tree cut Avoyelles 

Delta Pearl 107.60 66.80 51.04 61.76 86.08 

TX-110 29.52 14.96 20.28 17.00 32.00 

Barbren-713 29.32 10.56 13.76 12.72 21.52 

Lonren-1 17.72 10.40 11.76 3.12 10.64 

Lonren-2 9.36 7.52 8.44 3.36 7.40 

A2-190 9.24 4.76 7.08 3.20 9.16 

 

The two nine week duration experiments were combined for analyses of variance because 

there were not significant differences for a number of vermiform nematodes between two set of 

experiments. There were significant differences among reniform isolates and genotypes for a 

number of vermiform nematodes (P<0.01). There was a significant interaction between 

genotypes and isolates for a number of vermiform nematodes implying that there was a 

differential response of different cotton genotypes across reniform isolates (P<0.01) (Table 2.3). 

This might be expected due to the different sources of reniform resistance genes among the 



24 
 

tested genotypes. Lonren-1 and Lonren-2 are derived from G. longicalyx, while Barbren-713 

derives its resistance from G. barbadense L. accession GB713. 

Table 2.3 Number of vermiform nematodes as affected by reniform isolate and cotton genotype. 

Source df Mean square F value 

Isolate 4 1.52 36.54** 

Genotype 5 8.41 201.89** 

Isolate x Genotype 20 0.12 2.73** 

**=Significant at P ≤ 0.01. 

 

The Evan and Avoyelles reniform isolates had the highest mean number of vermiform 

nematodes (33,793 and 27,800/250 g soil, respectively), and both were significantly higher than 

other isolates (Figure 2.1). The Oak Tree cut isolate had a significantly lower number of 

vermiform nematodes than the other reniform isolates (16,860/250 g soil), while the LA and Old 

Crop rotation isolates were intermediates (Figure 2.1).  

 
Figure 2.1 Reproduction of reniform isolates across cotton genotypes. Means with same letter do 

not differ significantly (P ≤ 0.05, T-grouping).  

 

Across reniform isolates, Delta Pearl had the highest number of vermiform nematodes 

(74,656/250 g soil) followed by TX-110 (22,752/250 g soil), and Barbren-713 (17,576/250 g 
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soil) and all were significantly different for number of juveniles from each other (Figure 2.2). 

Lonren-2 and A2-190 (diploid cotton) had the lowest number of vermiform nematodes 

(6,688/250 g soil) (Figure 2.2). 

Figure 2.2 Reproduction on six cotton genotypes across five reniform isolates. Means with same 

letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

On Delta Pearl, the Evan isolate had the highest rate of reproduction (107,600/250 g soil) 

followed by the Avoyelles isolate (86,080/250 g of soil) and both were significantly higher than 

the Old Crop rotation isolate (51,040/250 g soil) (Figure 2.3). In contrast to reproduction on 

Delta Pearl, the Avoyelles isolate had the highest rate of reproduction on TX-110 (32,000/250 g 

soil) followed by the Evan isolate (29,520/250 g soil) and both were significantly different from 

the Oak Tree cut and LA isolates. On Barbren-713, the Evan isolate had the highest number of 

vermiform nematodes (29,320/250 g soil), but it was not significantly different than the 

Avoyelles isolate (21,520/250 g soil). The LA isolate reproduced the lowest number of 
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vermiform nematodes (10,500/250 g soil) and was not significantly different than the Old Crop 

rotation and Oak Tree cut isolates (Figure 2.3). The data also showed that the differences in 

number of juveniles of reniform isolates across the cotton genotypes were much wider than the 

differences in reproduction of reniform isolates within the cotton genotypes.  

 Figure 2.3 Reproduction of reniform isolates on cotton genotypes. Within genotypes, means 

with same letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

On Lonren-1, all reniform isolates reproduced fewer than 20,000 vermiform nematodes. 

On Lonren-1, the Evan isolate had the highest number of vermiform nematodes (17,720/250 g 

soil), but was not significantly different from the Old Crop rotation isolate (11,760/250 g soil). 

The Oak Tree cut isolate (3,120/250 g soil) had significantly lower reproduction than the other 

isolates (Figure 2.3). All reniform isolates reproduced fewer than 10,000 vermiform nematodes 

on Lonren-2. The Evan isolate had the highest number of vermiform nematodes on Lonren-2 
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(9,360/250g soil), but it was not significantly different compared to the Old Crop rotation, LA 

and Avoyelles isolates. Since both Lonren-1 and Lonren-2 have resistance from G. longicalyx 

source, they demonstrated a similar pattern of response to the different reniform isolates. Lonren-

1 and Lonren-2 suppressed reproduction the most of all tetraploid genotypes across all isolates. 

Even the order of the isolates is generally preserved, although Lonren-2 limited reproduction 

almost twice as much as Lonren-1. On the diploid cotton genotype, G. arboreum (A2-190), the 

Evan isolate had the highest reproduction potential (9,240/250 g soil) followed by the Avoyelles 

isolate (9,160/250 g soil), but they were not significantly different with each other or the Old 

Crop rotation isolate. 

2.3.2 Effect of reniform isolates on plant height 

 As was true for reproduction, there were significant differences among reniform isolates 

and cotton genotypes for plant height (P<0.01). There was also a significant interaction between 

the genotypes and isolates for plant height suggesting that there is a differential pathogenicity of 

reniform isolates across the cotton genotypes (P<0.01) (Table 2.4). Mirroring the reproduction 

numbers, the Evan and Avoyelles isolates reduced plant height the most across the genotypes 

(Figure 2.4). 

Table 2.4 Impact of cotton genotype and reniform isolate on plant height, dry shoot and root 

weight. 

  Plant height Dry shoot weight Dry root weight 

Source df Mean 

square 

F value Mean 

square 

F value Mean 

square 

F value 

Isolate 5 2470.91 15.04** 116.80 7.50** 25.27 17.47** 

Genotype 5 12265.00 74.65** 408.94 26.25** 63.08 43.60** 

Isolate* 

Genotype 

25 418.28 2.55** 21.07 1.35 1.73 1.20 

**=Significant different at P ≤ 0.01. 

The controls were significantly taller than the inoculated cotton genotypes averaged over 

the genotypes. The Old Crop rotation treatments gave the smallest average reduction in plant 
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height (103.1 cm). Across genotypes, the Evan isolate resulted in the short plant (92.9 cm), 

followed by the Avoyelles isolate (94.8 cm), but they were not significantly different from each 

other (Figure 2.4).  

 
Figure 2.4 Average height of six cotton genotypes across the five reniform isolates. Means with 

same letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

The LA isolate reduced plant height of Delta Pearl the most, but was not significantly 

different from the other isolates except for the control (Figure 2.5). On Lonren-1, Lonren-2, and 

G. arboreum (A2-190), the Evan isolate reduced the plant height the most followed by the 

Avoyelles isolate, and both were significantly shorter than the control. There were no significant 

differences among reniform isolates for plant height on Barbren-713 (Figure 2.5). 
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Figure 2.5 Height of six cotton genotypes across five reniform isolates. Within genotypes, means 

with same letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

2.3.3 Effect of reniform isolates on dry shoot weight  

There were significant differences among reniform isolates and genotypes for dry shoot 

weight (P<0.01), and the differences were consistent across genotypes (P=0.12) (Table 2.4). 

Average dry shoot weight of the control (18.6 g) was significantly higher than reniform 

inoculated genotypes (Figure 2.6). The genotypes inoculated with the Avoyelles isolate had the 

lowest dry shoot weight (14.5 g), but it was not significantly different from the Evan and Old 

Crop rotation isolates. 
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Figure 2.6 Average dry shoot weight of six cotton genotypes across the five reniform isolates. 

Means with same letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

2.3.4 Effect of reniform isolates on dry root weight 

There were significant differences for dry root weight among reniform isolates and 

genotypes (P<0.01), but no interaction between reniform isolates and genotypes was found 

(P=0.24) (Table 2.4). Across genotypes without reniform nematode infestation (control) was 

observed the highest dry root weight (4.7 g) and this was significantly higher than for genotypes 

inoculated with reniform isolates (Figure 2.7). Across genotypes, those inoculated with the Evan 

isolate had the lowest dry root weight (2.9 g) and were significantly lower than the Old Crop 

rotation, LA, Oak Tree cut, and Avoyelles isolates (Figure 2.7). 
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Figure 2.7 Average dry root weight of six cotton genotypes across the five reniform isolates. 

Means with same letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

2.4 DISCUSSION 

This study revealed significant variation in reproduction and pathogenicity (reduction in 

plant height, dry shoot and root weight) among reniform isolates collected from cotton fields in 

Louisiana. The data showed that the response of cotton genotypes reported to be 

tolerant/resistant were varied for the number of vermiform nematodes across reniform isolates. 

Variation in reproduction among isolates collected from reniform infested soil might be due to 

their adaptation to different soil textures under the site-specific crop management system 

(Koenning et al., 1996; Sturhan, 2012). Differences in reproduction and pathogenicity might 

occur because of a genetic variation in reniform isolates (Arias et al., 2009; Tilahun et al., 2008). 

In addition to the polymorphism across the reniform populations collected from different US 

states, Arias et al. (2009) reported that twenty-two SSR markers showed the polymorphism 

across three reniform populations collected from reniform infested fields within Mississippi. 
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Phenotyping and the identification of polymorphic molecular markers within segregating 

progenies are essential for successful quantitative trait loci (QTL) mapping and eventual marker 

assisted selection. After identifying reniform resistant germplasm, cotton breeders have been 

developing mapping populations and identifying QTL linked to reniform resistance loci. 

Robinson et al. (2007) reported a single dominant gene was associated with reniform resistance 

in G. longicalyx. Dighe et al. (2009) mapped a single dominant QTL locus, designated (Renlon), 

on chromosome 11 in G. longicalyx. Romano et al. (2009) reported that a single dominate QTL 

locus (Renari) on chromosome 21 is responsible for reniform resistance in G. aridium. Gutiérrez 

et al. (2011) found two major QTLs linked to reniform resistance on chromosome 21 (Renbar1, 

Renbar2) and one minor QTL on chromosome 18 (Renbar3) in the G. barbadense L. accession 713. 

The underlying assumption in all these studies was that there is no variation among reniform 

populations regardless of geographic origin and/or that the response of cotton genotypes across 

reniform isolates is uniform. There is still a lack of information about whether these QTLs are 

stable across different reniform isolates. In this study, the reproduction of reniform isolates on 

Lonren-2 and G. arboreum (A2-190) was significantly lower than on other cotton genotypes, 

Lonren-2 and G. arboreum (A2-190) also had significantly different responses across the 

multiple reniform isolates. It would be valuable to investigate if QTL map differently for 

reniform resistance across diverse reniform isolates.  

Based on the reproduction potential, cotton fields infested with the Evan isolate are likely 

to build reniform populations faster than fields infested with the Old Crop rotation or Oak Tree 

cut isolates. It is anticipated that cotton fields infested with the Evan isolate may require a longer 

crop rotation with corn, sorghum, resistant soybean or peanut non hosts than fields infested with 

other reniform isolates to suppress the juvenile’s populations. Due to differential reproduction 
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and host preferences, Kirkpatrick and Sasser (1984) recommended a specific crop rotation 

scheme for each race of root-knot nematode (Meloidogyne incognita) to suppress root-knot 

populations in cotton. Due to differential rate of reproduction, application rate of nematicides 

may need to vary to manage the reniform isolates in cotton fields in specific agro-ecological 

regions. With respect to reproduction, the source of reniform resistance is also important to 

manage the reniform nematodes in infested fields. Based on nematode reproduction on TX-110 

and Barbren-713, improved cotton varieties derived from these two sources are likely to build up 

the reniform population to an economic threshold level after two growing seasons and is wise to 

do a crop rotation with corn, sorghum or resistance soybean after two years. Utilization of 

reniform resistance sources A2-190, Lonren-2, and Lonren-1 provide better resistance than TX-

110 and Barbren-713, but growing resistant cotton year after year may lead to the resistance 

breaking down to the reniform populations. Although Lonren-1 and Lonren-2 display a 

hypersensitive reaction at high reniform populations, improved cultivars from these sources can 

be utilized to manage Oak Tree cut and Old Crop rotation isolates because the reproduction of 

these reniform isolates on Lonren-1 and Lonren-2 are quite low and may not build up enough 

juvenile’s populations that cause hypersensitivity. Crop rotation with reniform resistant/tolerant 

cultivars is recommended to manage reniform infested cotton fields because it maintains the 

reniform population below economic threshold level and reduces the vulnerability to the 

development of resistance breaking reniform populations in the field. The reproduction and 

pathogenicity of specific reniform isolates as well as a degree of resistance among cotton 

cultivars will dictate the type of management needed for acceptable control. 

The results of this study justify further investigation into the interaction between the 

reproduction of reniform isolates on different sources of resistance in cotton. It also implies that 
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different management strategies may need to be applied to reduce damage from specific reniform 

nematode isolates that are specific to geographical regions. Furthermore this study suggests that 

both Lonren-2 and G. arboreum (A2-190) exhibit a high level of resistance regardless of the 

reniform isolates geographic origin. Within a cotton breeding program, both Lonren-1 and 

Lonren-2 (both tetraploids) are good sources of resistance and relatively amenable to use though 

they both, especially Lonren-1, have other agronomic performance deficiencies. The diploid 

cotton G. arboreum (A2-190) exhibited the highest level of resistance across the reniform 

isolates, but would be more problematic to use within a breeding program.  
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CHAPTER 3: IDENTIFICATION OF DAY NEUTRAL PRIMITIVE COTTON 

ACCESSIONS TOLERANT TO ELEVATED LEVELS OF SALT CONCENTRATIONS  

 

3.1 INTRODUCTION 

Cotton (primarily Gossypium hirsutum L. and to a lesser extent G. barbadense, G. 

arboreum, and G. herbaceum) is the leading textile fiber as well as one of the most important 

oilseed crops in the world. In terms of total area harvested, cotton ranks fourth after corn, 

soybean and wheat in the United States. Approximately two-thirds of the cotton grown in the US 

is exported amounting to 10.50 million bales (500 lbs lint/bale) in 2012/13. Exports have been 

steadily rising as a percent of total production largely due to strong demand from China (USDA, 

2014). Globally, US cotton production is ranked third after China and India. In the US, it is 

estimated that 13.19 million bales were produced in 2013/2014, which is 24% lower than in 

2012/2013. In comparison, world cotton production in 2013/14 (117.81 million bales) decreased 

4% relative to 2012/2013. This worldwide production decrease is a direct response to a decrease 

in planted area from 34.13 to 33.12 million hectares. In the US, the production decrease in 

2013/14 vs 2012/13 is largely a result of a decrease in production area from 3.79 to 3.10 million 

hectares (USDA, 2014). As an oilseed, cotton is ranked in the third position, worldwide, in terms 

of volume behind soybean and corn. The oil produced from cotton is largely used for human 

consumption. The cake left after oil extraction is a high protein animal feed principally used in 

the beef and dairy industries (National Cottonseed Products Association, 2014). Collectively, 

these uses contribute to cotton’s prominence as one of the important agricultural row crops in the 

US.  

Abiotic stresses, i.e. drought, salinity, temperature, and flooding are major problems in 

crop production that can reduce yields by 50% (Bray et al., 2000). Of these, soil salinity affects 

20% of the total irrigated land in the world (Wang et al., 2003). In the US, soil salinity is a 



40 
 

significant problem in the Southwest and West regions that affects 23% of the irrigated land 

(Ghassemi et al., 1995). Globally, Wang et al. (2003) predicted that 30% of arable land will be 

deteriorated by salinity in the coming 25 years and further project that salinity will affect 50% of 

total arable land by 2050. Over this same period, food production needs to be increased by 38% 

by 2025 and by 57% by 2050 to supply the current levels of food for a growing world population 

(Wild, 2003). In the near future, salinity might become a significant enough issue that it will 

need to be managed for crop production either through the soil reclamation /management 

practices or through the development of salt tolerant crops and forest trees by breeding 

techniques to meet food and fiber demands from a growing global population.  

Salinity is a severe problem in areas of high evaporation and low rainfall i.e. arid and 

semi-arid regions. In these regions, the amount of rainfall is not enough to leach salt from the 

surface resulting in salt accumulations (Bernstein, 1975; Brady and Weil, 2009). Though salt 

naturally originated from the weathering of parent materials, the accumulation of salts on the soil 

surface is accelerated by the application of fertilizers, soil amendments, and irrigation with salt-

rich water (Chhabra, 1996). The increased availability of sodium ions in the soil surface may 

depress other macronutrients available for plant absorption and increases the external osmotic 

potential, which hinders the influx of water into the root system (Grattan and Grieve, 1998). 

Increased sodium ion concentrations also damage soil structure and cause the dispersal of soil 

particles, and ultimately reduces the overall soil aeration (Brady and Weil, 2009).  

High concentration of sodium ions within the plant system may partially or fully inhibit 

various metabolic, physiological, and biochemical processes and collectively effect, in a negative 

manner, plant growth and development at different developmental stages (Hasegawa et al., 2000; 

Munns and Tester, 2008). Gossypium spp. are generally considered to be moderately tolerant to 
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salinity with an injury threshold of 7.7 dSM-1 (Maas and Hoffman, 1977). However, even low 

levels of salt (concentrations less than 1 dSM-1 or 640 ppm) in the surface soil have been shown 

to affect the growth and development of cotton plants (Ahmad et al., 2002; Ashraf, 2002; Ashraf 

and Ahmad, 2000; Chachar et al., 2008; Qadir and Shams, 1997; Razzouk and Whittington, 

1991). The effect of salinity is more severe when cotton is exposed to salinity for the longer 

periods (Ashraf and Ahmad, 2000). Seed germination and emergence are both drastically 

decreased with increasing salt concentrations in the soil (Hamdy et al., 1993; Khan et al., 1995; 

Latif and Khan, 1976; Younis et al., 1987). Salinity reduces both primary and secondary root 

growth, vegetative growth, leaf size and expansion, shoot/root ratio, and stem thickness resulting 

in dwarf plants with necrosis and chlorosis of leaves (Chen et al., 2010; Khan et al., 1995; 

Reinhardt and Rost, 1995; Wang et al., 2011; Ye et al., 1997). Shoots are more sensitive than 

roots in response to salinity (Babu et al., 1987). The effects of salinity on older leaves are more 

prominent than on younger leaves because Na+ accumulates over time and at higher levels is 

toxic (Munns and Tester, 2008). 

The number of cotton bolls per plant is drastically reduced with increasing salt 

concentrations due to higher boll shedding and a concomitant decrease in fruit positions (Chen et 

al., 2010; Longenecker, 1974). Additionally, salinity has been shown to reduce lint percentage, 

fiber fineness, maturity, length, strength, and micronaire, eventually reducing fiber quality 

(Ashraf and Ahmad, 2000; Korkor et al., 1974; Longenecker, 1974). At higher salt 

concentrations in the soil beyond the threshold level for cotton, salinity kills cotton plants 

completely. Overall, high salinity reduces the economic return of cotton by reducing cotton lint 

production and the fiber’s quality. 
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In Louisiana, cotton is one of the major crops grown in the Upper Red River region and 

on the Macon Ridge. The cotton grown in these areas is susceptible to drought due to low rainfall 

during the growing season and shallow hardpans. In such situations, irrigating the field through 

surface or sprinkler irrigation methods is the main option to supplement the plant water 

requirements at critical stages of development. In these regions, 40% of cotton fields are irrigated 

and the percentage is likely to increase to maximize production and reduce risk. Due to high salt 

concentrations in the ground water and high cost of pumping, the Red River is the main source of 

water for growers in the Red River Valley of northwest Louisiana (Branch, 2004).  

Water quality is a key factor in irrigation systems, and is determined by amount of salt 

concentration in the irrigating water. Good quality irrigation water should contain less than 400 

ppm salt. In the Red River area, some irrigation water contains nearly 2600 ppm salt; which 

causes severe injury and limits soybean production (Morgan, 2010). In this region, salt levels in 

the irrigation water have been increasing over the last 20 years (Morgan, 2010). As irrigation 

becomes more prevalent in cotton production, salinity is likely to become a more serious 

problem and the area affected by salinity is expected to rise. To some extent, salinity levels can 

be managed by surface drainage, leaching or cultural practices. On the other hand, use of salt 

tolerant cotton cultivars would be an alternative option to manage salt affected production 

regions. Currently, there are no commercial salt tolerant cotton varieties available for growers. 

A logical first step is the identification of variability in response to elevated salt 

concentrations among cotton plants. To date, there are a limited number of studies seeking to 

identify salt tolerant cotton germplasm. Abul-Naas and Omran (1974) reported that G. 

barbadense is more tolerant to salt relative to G. hirsutum. Bhatti and Azhar (2002) evaluated the 

root growth of nine cotton cultivars under saline conditions and identified two genotypes as 
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being the most tolerant. Higbie et al. (2010) evaluated six cultivars of pima and upland cotton 

and found three genotypes moderately tolerant to salinity. Basel (2011) evaluated five upland 

cotton genotypes and found three varieties with moderate to high tolerance against salinity. 

Abbas et al. (2011) screened fifty cotton genotypes against different salt concentrations and 

identified six genotypes as tolerant. They further reported that salt tolerance traits have a 

moderate to high genetic variability and are highly heritable. Castillo (2011) screened 209 wild 

primitive TX accessions using a hydroponic technique and found that the accession TX307 was 

the most salt tolerant genotypes out of 109 surviving genotypes. Compared to the total number of 

germplasm accessions in US cotton germplasm collection, even cumulatively, the number of 

cotton germplasm lines included in these past studies for screening and characterizing their salt 

tolerance is quite low.  

With regard to salt tolerance, there is no comprehensive data available in cotton 

germplasm pool. The lack of information hinders researcher’s efforts to understand the 

mechanism of salt tolerance and to select appropriate salt tolerant cotton genotypes for use in the 

development or breeding of salt tolerant cotton varieties. There is a need for more systematic 

studies of salt tolerance response over a larger number of germplasm accessions to provide the 

foundation upon which to develop salt tolerant cotton cultivars. This study provides an 

opportunity to identify the degree of salt tolerance among one hundred fifty genotypes obtained 

from the Mississippi Converted Race Stock program. In this program to date, 169 photoperiodic 

primitive accessions collected from Mexico and Central America have been converted to be day 

neutral through a series of backcrosses with a day neutral donor “Deltapine 16”. The day neutral 

progenies in F2 were selected and backcrossed four times to their original race stock and day 

neutral F2 progenies were selected in each backcross (McCarty and Jenkins, 1993; McCarty and 
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Jenkins, 2002; McCarty et al., 2004). The day neutral primitive accessions provide a source of 

genetic variation for agronomic and fiber traits, insect and disease resistance (Knutson et al., 

2014; McCarty et al., 1996; McCarty et al., 2006). The information collected, in regard to salt 

tolerance will be available in the National Cotton Germplasm collection so that cotton breeders 

can use this information to develop and improve the salt tolerant cotton cultivars. 

3.2 MATERIALS AND METHODS 

3.2.1 Plant materials 

Out of one hundred sixty nine day neutral primitive cotton accessions, one hundred fifty 

genotypes of G. hirsutum (2n=4x=52) were utilized in this study. The 150 lines were obtained 

from Dr. Jack McCarty, USDA-ARS, and are from the Converted Race Stock program.  

3.2.2 Hydroponic technique 

A preliminary screening was conducted using a hydroponic system consisting of plastic 

tubs aerated with an air pump in the greenhouse. The study was conducted in summer, 2013. The 

flat plastic tubs (64.4 L) with dimensions of 15x45x100 cm were fitted with one aquarium air 

pump and 2 bubble stones of approximately 90 cm in length per tub. A split plot design with two 

replications (five plants/replication) was used. A nutrient solution was prepared by dissolving 1 g 

of Peter® fertilizer (20:20:20), 150 mg of calcium nitrate and 150 mg of magnesium sulfate per 

liter (Castillo, 2011). To limit algal growth, tubs were painted white to reduce light penetration 

through the tubs.  

Germination towels were used for seed germination. Uniform seven day old seedlings 

were transferred individually into holes bored into a Styrofoam insulation panel floating on the 

nutrient solution. The dimension of each hole was 1 cm in diameter and holes are spaced in a 2 

cm grid. A fine (1mm x 1mm) nylon mesh was attached to the bottom of the styrofoam to hold 



45 
 

the seedlings more firmly. An X-shaped hole was made in the nylon mesh that works like a valve 

to prevent root girdling. Four days after being transferred to the hydroponic system, holes were 

plugged with a small amount of cotton fiber to support upright seedling growth. Seven days after 

seedlings being transferred to X hole in hydroponics, sodium chloride (NaCl) was added in an 

increments of 62.50 mM every 24 hours until the final concentrations of 125 or 250 mM NaCl 

were reached in each tub. Tubs without added sodium chloride were used as a control. The 

hydroponic system was monitored daily and solution pH maintained between 6.5-7.0. The 

electrical conductivity (EC) was measured daily and adjusted as necessary. The seedlings were 

harvested at 18 days after initiation of salt treatments. At harvest, seedling height, fresh shoot 

and root weight were measured (from cotyledonary scar). Harvested shoot and root of each 

genotype was oven dried at 65○C for 72 hours and weight was recorded. 

3.2.3 Advanced salt screening 

Based on the performance of day neutral primitive cotton accessions (primarily percent 

reduction in seedling height) across salt concentrations under hydroponic technique and 

availability of seeds, ten genotypes were selected for further analyses. In addition to the ten 

selected genotypes, FiberMax958 (FM958) (Bayer CropScience, Indianapolis, IN) was used as a 

check variety. In this study, seedlings were treated with salt solution for one week longer than in 

the hydroponics system (preliminary screening) to determine salt tolerance levels among 

genotypes. The hydroponic system was felt to have a limitation in its ability to support the 

seedlings beyond 18 days after initiation of salt treatments as seedlings became bigger. 

Therefore, potting mixture was used in this study.  

Due to limited availability of seeds, a single seed was sown in one quart plastic pots 

(8.9x6.4x12.7 cm) filled with the Miracle Gro potting mixture (Scotts Company LLC). Seeds of 
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each cultivar were also sown in additional pots to swap the pots (if it was necessary). Seedlings 

were watered every 24 hours for two weeks before salt treatments. It was observed that pots still 

held a good amount of moisture after 24 hours. After germination, seedlings were fertilized by 

adding 300 mL of nutrient solution prepared by dissolving 4 g of Peter® fertilizer (20:20:20) per 

liter once each week. At two weeks after sowing, NaCl was added in an increment of 62.50 mM 

every 24 hours until the final concentrations of 125 or 250 mM were reached. Seedlings without 

added sodium chloride was used as the control. Salt treated plants were treated with 300 mL of 

125 and 250 mM salt solutions every 24 hours for 21 days, while control plants were watered 

with 300 mL of tap water. It is expected that accumulation of salt in the pots is unlikely because 

excess salt or water was well drained out from the bottoms of the pots and the salt concentrations 

were maintained in each pot. The seedlings were harvested at 25 days after initiation of salt 

treatments. After harvesting, seedling height, fresh and dry shoot weight, fresh and dry root 

weight were measured.  

3.2.4 Physiological measurement 

After measuring dry leaf weight, the tissue was ground with a mortar and pestle. Ground 

leaf tissue was processed through a flame photometer to determine Na+ and K+ content in the 

leaves. 

3.2.5 Statistical analysis 

 Analysis of variance (ANOVA) was conducted using the SAS 9.3 (SAS Institute Inc., 

Cary, NC). T-grouping was used to compare the plant parameters (percent reduction in plant 

height, fresh and dry shoot weight, fresh and dry root weight, and accumulation of sodium (Na+), 

potassium (K+), and K+/Na+ ratios) among the cotton genotypes under 0, 125, and 250 mM salt 

concentrations. 
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3.3 RESULTS 

3.3.1 ANOVA for hydroponics technique 

Sixty six day neutral primitive cotton accessions survived at 250 mM salt treatments. The 

ANOVA showed that there were significant differences between salt treatments and genotypes 

for percent reduction in plant height, fresh and dry shoot weight, and fresh and dry root weight 

(P<0.01) (Tables 3.1 and 3.2). There was no interaction between genotypes and salt treatments, 

suggesting that there is a similar trend in response of all genotypes against elevated salt 

concentrations. Under hydroponic technique, the performance of day neutral primitive cotton 

accessions across salt concentrations for a number of plant parameters (percent reduction in plant 

height, fresh and dry shoot weight, and fresh and dry root weight) are presented in Table 3.3.  

Table 3.1 Impact of genotype and salt concentration on percent reduction in plant height, fresh 

and dry shoot weight. 

**=Significance at P ≤ 0.01. 

 

Table 3.2 Impact of genotype and salt concentration on percent reduction in fresh and dry root 

weight. 

**=Significance at P ≤ 0.01. 

 

Table 3.3 Percent reduction in plant parameters across salt concentrations under hydroponic 

technique. 

Genotype 

Plant height 

(%) 

Fresh shoot wt. 

(%) 

Fresh root 

wt. (%) 

Dry shoot wt. 

(%) 

Dry root wt. 

(%) 

MT45 55.76a 67.66ab 64.04ab 59.37a-c 62.71a-d 

MT113 52.38ab 53.32a-g -34.91m-o 62.04ab 3.50f-n 

MT201 52.02a-c 44.27c-j 5.13b-n 54.38a-g 26.71a-m 

  Plant height (%) Fresh shoot wt. (%) Dry shoot wt. (%) 

Source df Mean 

square 

F value Mean 

square 

F value Mean 

square 

F value 

Genotype 65 242.93 2.75** 484.46 1.80* 421.63 1.68* 

Salt 1 60871.00 469.26** 46494.00 1339.16** 39722.00 3371.94** 

Genotype*Salt 65 107.72 1.22 248.64 0.92 327.71 1.30 

  Fresh root wt. (%) Dry root wt. (%) 

Source df Mean square F value Mean square F value 

Genotype 65 2936.97 1.64** 3956.25 2.33** 

Salt 1 89520.00 83.37 45378.00 15.98 

Genotypes*Salt 65 1148.21 0.64 1689.03 1.00 
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(Table 3.3 continued) 

Genotype 

Plant height 

(%) 

Fresh shoot wt. 

(%) 

Fresh root 

wt. (%) 

Dry shoot wt. 

(%) 

Dry root wt. 

(%) 

MT117 51.10a-d 51.36a-h 14.64a-m 50.81a-h 26.30a-m 

MT641 49.67a-e 62.71a-c 50.21a-f 56.67a-e 74.55ab 

MT104 49.56a-f 47.69b-j -9.28g-o 50.16a-h -30.86m-p 

MT175 49.03a-g 56.49a-d 51.98a-e 38.90c-n 41.18a-j 

MT106 48.04a-g 25.23j-l -24.68j-o 52.60a-g -2.60h-o 

MT320 47.74a-g 44.21c-j 8.49a-m 59.08a-d 54.89a-h 

MT188 47.54a-g 47.30b-j 34.78a-i 43.19a-m 40.90a-j 

MT171 47.15a-g 49.64a-i 29.24a-j 44.42a-l 28.16a-l 

MT246 47.06a-g 50.98a-h 23.45a-m 37.09d-n 52.75a-h 

MT1000 46.64a-g 41.17c-k 8.20a-n 35.31e-n -57.78op 

MT36 46.54a-g 43.49c-j 28.23a-j 42.39a-m 38.21a-k 

MT99 46.51a-g 48.35b-i 18.88a-m 64.18a 33.85a-l 

MT100 46.14a-h 48.96b-i 13.27a-m 45.82a-j 28.15a-l 

MT636 45.80a-h 62.85a-c 64.43a 44.86a-k 54.16a-h 

MT89 45.06a-i 45.37b-j 1.63d-n 46.78a-i -17.28k-p 

MT41 43.93a-j 43.31c-j 15.45a-m 49.31a-i 39.70a-k 

MT55 43.83a-k 53.01a-g -50.86n-o 37.66c-n 2.76f-n 

MT101 43.63a-k 45.74b-j -1.10e-n 40.19b-n 34.72a-l 

MT81 42.74a-l 34.99d-l -25.46j-o 47.02a-i -13.22j-o 

MT180 42.54b-l 56.72a-d 48.13a-g 46.11a-i 35.71a-l 

MT754 42.40b-l 34.63d-l -1.21e-n 22.98k-n -2.47h-o 

MT620 41.99b-l 49.35a-i 36.14a-h 53.00a-g 26.47a-m 

MT223 41.41b-m 36.98d-l 9.91a-m 45.30a-j 24.69a-m 

MT93 41.23b-n 54.30a-f 32.35a-j 54.69a-f 81.56a 

MT326 41.21b-n 51.65a-h 60.98abc 51.08a-h 40.75a-j 

MT720 41.14b-n 38.04d-l -23.38h-o 40.62b-n -35.04np 

MT347 41.08b-n 50.74a-h 41.18a-h 40.96b-n 50.71a-i 

MT62 40.82b-n 55.37a-e 26.63a-k 62.07ab 66.75a-d 

MT612 40.73b-n 36.78d-l -7.65f-o 38.26c-n 7.97e-n 

MT477 40.69b-n 43.66c-j 27.12a-j 44.98a-k 18.08b-n 

MT61 40.52b-o 37.99d-l 26.13a-k 37.82c-n 47.60a-i 

MT198 40.36b-o 42.00c-k 9.69a-m 52.67a-g 14.10c-n 

MT1291 39.50b-p 32.10f-l -7.97f-o 40.59b-n -21.12l-p 

MT764 39.02c-q 34.65d-l 20.21a-m 34.21g-n 18.95b-n 

MT249 38.64d-r 40.15c-k 10.12a-m 45.17a-j 21.58b-n 

MT53 38.52d-r 39.41d-l -15.55h-o 35.69e-n 32.54a-l 

MT32 38.27d-r 29.34h-l 40.49a-h 41.93b-m 53.57a-h 

MT27 38.12d-s 37.02d-l 22.16a-m 39.41c-n 62.03a-d 

MT221 37.85e-t 48.19b-i 25.19a-k 40.88b-n 26.06a-m 

MT241 37.56e-t 33.39e-l 1.01d-n 33.45g-n 14.91c-n 
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(Table 3.3 continued) 

Genotype 

Plant height 

(%) 

Fresh shoot wt. 

(%) 

Fresh root 

wt. (%) 

Dry shoot wt. 

(%) 

Dry root wt. 

(%) 

MT11 37.47e-t 62.59a-c 59.40a-d 36.38e-n 59.17a-f 

MT247 37.20e-u 72.17a 27.23a-j 48.73a-i 38.21a-k 

MT239 37.17e-u 37.39d-l 2.68c-n 41.77b-m -10.33j-o 

MT668 36.51f-u 31.58f-l -34.13l-o 49.87a-h 12.65c-n 

MT52 36.19g-u 43.96c-j 36.87a-h 43.65a-m 13.25c-n 

MT212 35.92g-u 36.41d-l 17.61a-m 34.18g-n 10.56d-n 

MT199 33.30h-u 45.35b-j 24.24a-l 40.59b-n 58.28a-f 

MT68 33.06h-u 38.73d-l 16.55a-m 33.33g-n 41.20a-j 

MT281 32.29i-u 41.66c-k 37.12a-h 39.89c-n 66.76a-d 

MT257 31.76j-u 36.57d-l 17.13a-m 32.55g-n 9.33d-n 

MT242 31.53j-u 19.94kl -10.60g-o 19.58n 52.79a-h 

MT43 30.71k-u 51.61a-h 43.03a-h 49.73a-h 55.19a-g 

MT6 30.33l-u 35.92d-l 26.72a-j 47.74a-i -5.10i-o 

MT57 28.78m-u 35.76d-l 25.86a-k 30.43h-n 58.91a-f 

MT1219 28.11n-u 29.27h-l -65.82o 23.80j-n -72.10p 

MT650 27.44o-u 29.77h-l 3.65c-n 42.59a-m -0.46g-o 

MT790 26.91p-u 32.31e-l 35.51a-i 29.02h-n 42.26a-j 

MT120 26.20q-u 18.17l 9.61a-m 22.78l-n 68.32abc 

MT634 25.78r-u 32.73e-l 35.45a-i 43.71a-m 57.90a-f 

MT245 25.72r-u 27.84i-l -5.14e-n 37.90c-n -0.26g-o 

MT224 25.09s-u 29.08h-l 16.23a-m 21.90mn 53.87a-h 

MT48 24.84tu 36.92d-l 40.64a-h 27.57i-n 61.68a-d 

MT244 24.24u 30.43g-l -32.43k-o 22.06mn 19.34b-n 

Means with the same letter within each plant parameter do not differ significantly (P ≤ 0.05, T-

grouping). 

3.3.2 Correlation of plant parameters 

A strong positive correlation among various plant parameters (i.e. percent reduction in 

plant height, fresh and dry shoot weight, fresh and dry root weight) was observed (P<0.01) 

(Table 3.4). The results showed that the increased sodium ion (Na+) concentrations in the leaf 

tissues adversely affected the plant growth parameters (P<0.01), but that the potassium sodium 

ion ratio (K+/Na+) had a positive effect on plant parameters (P<0.01). There was a strong 

negative correlation between sodium (Na+) and potassium (K+) concentrations in the leaves, 

suggesting that increased Na+ concentrations impair the absorption of K+ (P<0.01). However, 
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there was a no correlation between percent reduction in plant parameters and K+ concentration in 

the leaves (P>0.10).   

Table 3.4 Correlation among plant parameters and ionic concentrations across salt concentrations 

in pot culture. 

 Plant 

height  

 Fresh 

shoot wt. 

 Dry 

shoot wt.  

Fresh 

root wt. 

Dry 

root wt.  

Na+ K+  K+/Na+ 

ratio 

Plant 

height  
1.00 0.95** 0.89** 0.83** 0.72** 0.69** -0.12 -0.59** 

Fresh 

shoot wt.  
 1.00 0.97** 0.90** 0.85** 0.75** -0.18 -0.67** 

Dry 

shoot wt.  
  1.00 0.91** 0.89** 0.76** -0.20 -0.67** 

Fresh 

root wt. 
   1.00 0.84** 0.69** -0.11 -0.56** 

Dry root 

wt.  
    1.00 0.84** -0.39 -0.80** 

Na+      1.00 -0.54** -0.87** 

K+        1.00 0.77** 

K+/Na+ 

ratio 
       1.00 

**=Significance at P ≤ 0.01. 

 

3.3.3 Plant height 

Data from two sets of experiments were combined because time was no significantly 

different for percent reduction in plant height between two set of treatments. Analysis of 

variance showed that there were significant differences among cotton genotypes and salt 

treatments for percent reduction in plant height (P<0.01) (Table 3.5). There was no significant 

genotype by salt interaction, which suggests that the performance of all genotypes was similar 

over salt treatments (P=0.94). The data revealed that plant height was significantly reduced as 

salt concentration increased. Across genotypes, an average reduction in genotype height was 

46% at 250 mM NaCl, which was significantly higher than at 125 mM NaCl (30%) (Figure 3.1). 

Across salt concentrations, MT 11 had the lowest reduction in height (32%) followed by MT43 

(34%) and both were significantly lower than MT99 (41%) and FM958 (43%) (Figure 3.2). In 
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addition to percent reduction in plant height across salt treatments, further analyses within each 

salt treatment is important for cotton breeders to select the best performance cotton accessions 

within salt concentrations for developing/improving salt tolerant cotton cultivars. The data 

showed that there was significantly higher reduction in height for all the cotton genotypes used 

in this study at 250 mM NaCl than at 125 mM NaCl (Figure 3.3). At 250 mM NaCl, MT11 had 

the lowest reduction in plant height (38%) followed by MT45 (42%) and both were significantly 

lower than FM958 (52%). At 125 mM NaCl, MT43 had the lowest reduction in plant height 

(26%) than MT224 (34%) (Figure 3.3).  

Table 3.5 Effect of salt concentration and genotype on percent reduction in plant height.  

Source df Mean square F value 

Salt 1 7715.02 151.60** 

Genotype 10 123.80 2.43** 

Salt *Genotype 10 20.46 0.40 

**=Significance at P ≤ 0.01. 

 

Figure 3.1 Percent reduction in plant height (cm) between salt treatments across cotton genotypes 

compared to control. Means with same letter do not differ significantly (P ≤ 0.05, T-grouping).  
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Figure 3.2 Percent reduction in plant height (cm) of cotton genotypes across salt concentrations 

compared to control. Means with same letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

Figure 3.3 Percent reduction in plant height among cotton genotypes within salt treatments 

compared to control. Within salt treatments, means with same letter do not differ significantly (P 

≤ 0.05, T-grouping).  
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3.3.4 Fresh and dry shoot weight 

Analysis of variance showed that there were significant differences among genotypes and 

salt treatments for fresh and dry shoot weight (P<0.01) (Table 3.6). There was no significant 

genotype by salt interaction for fresh and dry shoot weight, which suggests that the trend of 

genotype response was similar across salt treatments (P=0.99 and 0.68, respectively). The data 

also revealed that increased salt concentration significantly decreased fresh shoot weight across 

the genotypes. At 250 mM NaCl, an average percent reduction in shoot weight was 72%, which 

was significantly higher than at 125 mM NaCl (50%) (Figure 3.4). Across salt concentrations, 

MT11 had the lowest reduction in fresh shoot weight (53%), followed by MT1219 (56%), while 

the largest reduction in fresh shoot weight was observed in FM958 (67%) (Figure 3.5). 

In addition to percent reduction in plant height across salt treatments, it is also important 

to determine the percent reduction in plant height across primitive cotton accessions within salt 

treatments so that plant breeder can select the best salt tolerant cotton genotypes within salt 

treatments. The data showed that highest level of salt treatments (250 mM NaCl) reduced the 

fresh weight by at least 60%, while modest level of salt treatments (125 mM NaCl) causes at 

least 40% reduction in fresh shoot weight for the primitive cotton accessions used in this study 

(Figure 3.6). MT 11 had the significantly lowest reduction in fresh shoot weight (42% and 65%, 

respectively) than FM958 (58% and 76%, respectively) at 125 and 250 mM NaCl (Figure 3.6).   

Table 3.6 Effect of genotype and salt concentration on percent reduction in fresh and dry shoot 

weight.  

  Fresh shoot weight Dry shoot weight 

Source df Mean square F value Mean square F value 

Salt 1 16412.00 273.54** 15690 118.84** 

Genotype  10 273.54 3.42** 434.82 3.28** 

Salt*Genotype 10 16.53 0.28 98.58 0.74 

**=Significance at P ≤ 0.01. 
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Figure 3.4 Percent reduction in fresh shoot weight (g) between salt treatments across cotton 

genotypes compared to control. Means with same letter do not differ significantly (P ≤ 0.05, T-

grouping).  

 

Figure 3.5 Percent reduction in fresh shoot weight (g) among cotton genotypes across salt 

concentrations compared to control. Means with same letter do not differ significantly (P ≤ 0.05, 

T-grouping).   
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Figure 3.6 Percent reduction in fresh shoot weight among cotton genotypes within salt treatments 

compared to control. Within salt treatments, means with same letter do not differ significantly (P 

≤ 0.05, T-grouping).  

 

There was also a significant decrease in dry shoot weight as salt concentration increased.  
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Figure 3.7 Percent reduction in dry shoot weight (g) between salt concentrations across cotton 

genotypes compared to control. Means with same letter do not differ significantly (P ≤ 0.05, T-

grouping).  

 

Figure 3.8 Percent reduction in dry shoot weight (g) among cotton genotypes across salt 

concentrations compared to control. Means with same letter do not differ significantly (P ≤ 0.05, 

T-grouping).   
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Figure 3.9 Percent reduction in dry shoot weight among cotton genotypes within salt treatments 

compared to control. Within salt treatments, means with same letter do not differ significantly (P 

≤ 0.05, T-grouping).  
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both were significantly lower in reduction than MT117 (41%) and FM958 (69%) (Figure 3.11). 

Although MT45 had the lowest reduction in fresh root weight (30%), it was not significantly 

different than all the genotypes in this study at 250 mM NaCl. The data showed that 125 mM 

NaCl increased the root growth by 3% on MT45, while FM958 had the highest reduction in fresh 

root weight at 125 mM NaCl (39%) (Figure 3.12). 

Table 3.7 Effect of genotype and salt concentration on percent reduction in fresh and dry root 

weight. 

  Fresh root weight Dry root weight 

Source df Mean square F value Mean square F value 

Salt 1 21587.00 42.27** 16919.00 54.17** 

Genotype  10 1037.20 2.05* 1232.04 3.95** 

Salt*Genotype 10 149.40 0.30 263.03 0.84 

 * and **=Significance at P ≤ 0.05 and P ≤ 0.01, respectively. 

 

Figure 3.10 Percent reduction in fresh root weight (g) between salt treatments across cotton 

genotypes compared to control. Means with same letter do not differ significantly (P ≤ 0.05, T-

grouping).  
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Figure 3.11 Percent reduction in fresh root weight (g) among cotton genotypes across salt 

concentrations compared to control. Means with same letter do not differ significantly (P ≤ 0.05, 

T-grouping).  

 

 
Figure 3.12 Percent reduction in fresh root weight among cotton genotypes within salt treatments 

compared to control. Within salt treatments, means with same letter do not differ significantly (P 

≤ 0.05, T-grouping).  
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A similar trend in the dry root weight among genotypes across salt concentrations was 

observed. At 250 mM NaCl, the average reduction in dry root weight (53%), was significantly 

higher than at 125 mM NaCl (30%) (Figure 3.13). Across salt concentrations, MT1219 had the 

lowest reduction in dry root weight (17%) and was significantly lower than all other genotypes, 

while the highest reduction in dry root weight was observed in FM958 (54%) (Figure 3.14). At 

250 mM NaCl, MT1219 had the significantly lowest reduction in dry root weight (34%) than 

FM958 (63%). The data showed that 125 mM salt concentration had the positive effect on 

MT1219 for dry root weight (increased by 1%), while MT43 had the highest reduction in dry 

root weight (46%) (Figure 3.15). 

Figure 3.13 Percent reduction in dry root weight (g) among salt treatments across cotton 

genotypes compared to control. Means with same letter do not differ significantly (P ≤ 0.05, T-

grouping).  
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Figure 3.14 Percent reduction in dry root weight (g) among cotton genotypes across salt 

concentrations compared to control. Means with same letter do not differ significantly (P ≤ 0.05, 

T-grouping).  

 

Figure 3.15 Percent reduction in dry root weight among cotton genotypes within salt treatments 

compared to control. Within salt treatments, means with same letter do not differ significantly (P 

≤ 0.05, T-grouping). 
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3.3.6 Sodium and potassium concentrations 

For Na+ concentration, there were significant differences between salt treatments, 

genotypes, and there was a significant salt by genotype interaction, which implies that the 

performance of genotypes did not exhibit a similar trend across salt concentrations (P<0.01) 

(Table 3.8). The Na+ accumulation in the leaves significantly increased as salt concentrations 

increased. Averaged across genotypes, leaf Na+ concentration on a dry weight (DW) basis in the 

control was 211.50 mM/Kg, which was significantly lower than its concentration at 125 mM 

(1,304.41 mM/Kg) and at 250 mM (1753.40 mM/Kg) (Figure 3.16). Across salt treatments, 

MT1219 had the lowest accumulation of Na+ in leaf tissues (656.69 mM/Kg, DW), and was 

significantly lower than all other genotypes in this study. Although MT1219 had the lowest 

accumulation in salt in the leave tissues (158.43 mM/Kg, DW), it was not significantly different 

than all cotton genotypes in this study. At 250 mM NaCl, MT1219 had the significant lowest Na+ 

concentration (1,026.37 mM/Kg, DW), followed by MT45 (1,573.99 mM/Kg, DW), and both 

were significantly different from each other. The highest Na+ concentration was observed in 

FM958 (2,135.39 mM/Kg, DW) at 250 mM NaCl, which was two times higher than salt tolerant 

genotype MT1219 (Figure 3.17). Similarly, MT1219 had the significantly lowest Na+ 

concentrations in the leave tissues (785.27 mM/Kg, DW), followed by MT245 (1093.53 mM/Kg, 

DW) at 125 mM NaCl, and both were significantly different from each other. 

Table 3.8 Effect of salt concentration and genotype on Na+, K+ and K+/Na+ ratio in the leaf 

tissues.  

  Na+ concentrations K+ concentrations K+/Na+ ratio 

Source df Mean square F value Mean 

square 

F value Mean 

square 

F value 

Salt 2 41508241.00 615.40** 194250.00 14.35** 2901.93 28.60** 

Genotype  10 664241.00 9.85** 97067.00 7.13** 216.49 2.13* 

Salt*Genotype 20 182752.00 2.71** 8906.21 0.65 198.58 1.96* 

* and **=Significance at P ≤ 0.05 and P ≤0 .01, respectively. 
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Figure 3.16 Na+ concentrations (mM/Kg, DW) among salt treatments across cotton genotypes. 

Means with same letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

Figure 3.17 Na+ concentrations (mM/Kg, DW) among cotton genotypes within salt treatments. 

Within salt treatments, means with same letter do not differ significantly (P ≤ 0.05, T-grouping). 
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The trend of K+ accumulation was contrary to Na+ accumulation in the leaf tissues. K+ 

concentration, averaged across genotypes, at control was 1019.25 mM/Kg (DW) of leaf tissue, 

and was significantly higher than at both 125 mM NaCl (931.25 mM/Kg, DW) and 250 mM 

NaCl (919.25 mM/Kg, DW); there was no significant difference between 125 mM and 250 mM 

NaCl (Figure 3.18). Across salt treatments, MT1219 had the highest K+ accumulation in the 

leaves (1145.60 mM/Kg, DW), which was significantly higher than all the cotton genotypes 

included in this study, while the lowest K+ concentration was reported in MT32 (863.06 mM/Kg, 

DW) (Figure 3.19). It showed that MT1219 had significantly highest accumulation of K+ in the 

leaves (1215.39, 1168.14, and 1053.27 mM/Kg, DW, respectively) than MT32 (943.04, 818.90 

and 826.31 mM/Kg, DW respectively) at three salt treatments; control, 125 mM and 250 mM 

NaCl (Figure 3.20). 

Figure 3.18 K+ concentrations (mM/Kg, DW) across cotton genotypes among salt treatments. 

Means with same letter do not differ significantly (P ≤ 0.05, T-grouping).  
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Figure 3.19 K+ concentrations (mM/Kg, DW) among cotton genotypes across salt 

concentrations. Means with same letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

Figure 3.20 K+ concentrations (mM/Kg, DW) among cotton genotypes within salt treatments. 

Within salt treatments, means with same letter do not differ significantly (P ≤ 0.05, T-grouping).  
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The K+/Na+ ratios drastically decreased as salt concentration increased. There was a 

significant interaction between genotypes and salt treatments for K+/Na+ ratio, which suggests 

that the performance of cotton genotypes was different for K+/Na+ ratio across salt treatments. 

The K+/Na+ ratio at 250 mM NaCl was 0.56, which was significantly lower than the control 

(12.18), but was not significantly different from than at 125 mM NaCl (0.83) (Figure 3.21). 

Although MT1219 had the highest K+/Na+ ratios: 1.44 and 0.91 at 125 and 250 mM NaCl, 

respectively, it wasn’t significantly higher than that of all the other genotypes (Figure 3.22).  

Figure 3.21 K+/Na+ ratio across cotton genotypes among salt treatments. Means with same letter 

do not differ significantly (P ≤ 0.05, T-grouping).  
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Figure 3.22 K+/Na+ ratio among cotton genotypes within salt treatments. Within salt treatments, 

means with same letter do not differ significantly (P ≤ 0.05, T-grouping).  

 

3.4 DISCUSSION 

A preliminary test was conducted in the greenhouse under a hydroponic technique using 

0, 125, and 250 mM salt concentration treatments for 14 days on cotton seedlings. It was 

observed that seedlings wilted rapidly and died within 2 and 5 days at 250 mM and 125 mM 

NaCl, respectively. The rapid death may be due to osmotic shock, which may result in rapid loss 

of water from leaves cells, ultimately leading to cell collapse (Yeo et al., 1991). Therefore, the 

experimental protocol was revised and an increment of salt concentrations over time was used to 

acclimate the seedlings to elevated salt concentrations until final concentrations were reached. 

Timing of salt application is an important factor in the experiment since Gossypium spp. 

seedlings are most vulnerable at early stages of development before the emergence of the first 

true leaves after 10-14 days. Application of salt treatments before the emergence of first true 

0

5

10

15

20

25

30

35

40

Control 125mM 250mM

K
+
/N

a+
ra

ti
o

K+/Na+ ratio among cotton genotypes within salt tratments 

MT1219 MT117 MT45 MT245 MT11 MT171

MT43 MT224 MT32 FM958 MT99

a a aa aa aaa aa aaa a aaa aa aa

a

b

bc

c

c

c
cc

c

c

c



68 
 

leaves is not recommend because the salt might suppress or kill the first true leaves and mask 

genotypic differences in salt tolerance parameters. Using our recommended protocol, we delayed 

the initiation of the salt treatments until the attainment of the first true leaf stage (14 days after 

seed sowing) and only then applied the salt concentration treatments in increments of 62.50 mM 

in each day to prevent salt stress shock. 

Researchers have developed a number of salt screening techniques to evaluate the salt 

tolerant cotton genotypes. Due to spatial and temporal variations in soil salinity across the field, 

hydroponic and pot cultures have been widely used for salt screening because they are rapid and 

reliable (Akhtar et al., 2010; Munns et al., 2002). Akhtar et al. (2010) reported that hydroponic 

and soil based screening techniques are both effective in salt screening for cotton genotypes. 

However, Tavakkoli et al. (2012) reported that salt screening using hydroponic techniques did 

not truly replicate field conditions because seedlings are exposed to salt stress for only a short 

period of time. In contrast to hydroponics, a strong correlation between a pot culture based salt 

screening technique and field screening was observed (Tavakkoli et al., 2012). In this study, the 

hydroponic technique had presented a limitation due to its inability to provide adequate physical 

support to seedlings beyond 14 days after salt treatments. The hydroponic technique did have the 

advantage of using less space but after the initial screening a pot based protocol was used. 

Based on reduction in plant height, there was a similarity in genotype ranking for salt 

tolerance across salt treatments between hydroponic and pot culture except for MT45 and 

MT224. In the hydroponic technique, MT45 and MT224 had one of the highest and lowest 

reduction in plant height across salt concentrations, but the opposite was observed for MT45 and 

MT224 in the pot culture, respectively. There were also some discrepancies among the measured 

plant parameters between the hydroponics and pot culture. These discrepancies for genotype 
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rankings against elevated salt concentrations might be due to fundamental differences in nature 

between the hydroponic and pot culture (Tavakkoli et al., 2012). Compared to pot culture, 

smaller and thicker leaves were observed in the medium and high salt concentrations (125 and 

250 mM) under hydroponic technique. The rate of reduction (percent reduction) in plant 

parameters measured over time was faster in hydroponics than pot culture.  

Identification of variation in genotype response to elevated salt concentrations is a first 

step to identify and breed for more salt tolerant cotton. Researchers have been using a variety of 

phenotypic, physiological, and biochemical criteria to identify the salt tolerant genotypes in 

many crop species (Higbie et al., 2010; Parida and Das, 2005). Phenotypic criteria, such as 

percent reduction in plant height and dry shoot weight under salt stress are easy and efficient 

screening criteria to identify salt tolerant cotton genotypes. Reduction in plant height under salt 

stress in the field condition might be an easy, reliable, and non-destructive selection criteria 

because the impact of increasing salt concentration on plant height is prominent (Higbie et al., 

2010; Lashin and Atanasiu, 1972). In contrast, Abbas et al. (2011) argued that percent reduction 

in dry shoot weight was a more viable criteria to select salt tolerant genotypes because it is 

highly correlated with Na+ concentration in the leaves. This study showed that reduction in plant 

height and dry shoot weight were both equally effective in screening for salt tolerance of any 

cotton genotypes because they were highly correlated with each other (Table 3.4). This study 

also supports the finding that reduction in plant height is an easy, rapid, and reliable criteria for 

screening salt tolerance in both greenhouse and field conditions.  

Although cotton is relatively tolerant to salt (7.7 dSM-1) compared to many other row 

crops, a significant and rapid decrease in plant height and dry shoot weight was observed across 

elevated salt concentrations. Out of 11 genotypes, the performance of MT1219 and MT245 were 
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phenotypically consistent and better than other genotypes in both hydroponic and pot culture. 

Based on pot based screening method, FM958, MT99, and MT224 had the greatest reduction in 

plant height, fresh and dry shoot weight and should be considered as salt sensitive genotypes. 

Compared to other genotypes, MT11, MT1219, MT45, and MT245 had the lowest reduction in 

plant height, fresh and dry shoot weight and should be considered as salt tolerant genotypes.  

Physiologically, the accumulation of Na+ in leaves is the primary response of genotypes 

against elevated salt concentrations (Cramer, 2002; Meneguzzo et al., 2000). It is well 

established that a low Na+ concentration in leaf tissues is positively correlated with salt tolerance 

in many crops species (Basel, 2011; Munns et al., 2003). There was a significant positive 

correlation between the percent reduction in plant parameters (plant height, fresh and dry shoot 

weight, fresh and dry root weight) and Na+ accumulation in this study, supported by the 

observation that the lowest reduction in plant height and dry shoot weight was found across 

genotypes with the smallest accumulation of Na+ in the leaf tissues (Table 3.4). The data 

revealed that there was an increase in Na+ concentration among genotypes when salt treatments 

increased from 0 to 250 mM NaCl, but the rate of Na+ accumulation in the leaves varied across 

the genotypes (Figures 3.16 and 3.17). Compared to the control, a thin stem with small leaves 

was observed across genotypes under salt stress. This might be due to a rapid accumulation of 

Na+ on the leaf tissue under elevated salt concentrations which interferes with cellular metabolic 

activities, and ultimately reduces cell division and elongation (Cramer, 2002; Fricke and Peters, 

2002). Under both low and high salt concentrations (125 mM and 250 mM NaCl), chlorosis and 

necrosis was observed in the older leaves across all genotypes. Such symptomology is likely due 

to longer exposure to salt stress in old vs. young leaves (Munns and Tester, 2008). Across salt 
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concentrations (250 mM), the lowest Na+ accumulation in the leaf tissues was observed in 

MT1219 followed by MT45, MT245, and MT11 and all are considered as salt tolerant varieties.  

The pattern of Na+ accumulation in various plant tissues under salt stress may be due to 

both inter- and intra-specific variation among genotypes, which allows for the discrimination 

between salt tolerant and susceptible genotypes (Ashraf, 2002; Flowers et al., 1977). Exclusion 

of sodium ion entry and control of its transport through the root system is one of the important 

physiological mechanisms to limit the accumulation of Na+ and prevent it from reaching toxic 

levels in leaf tissues. Such exclusion can be achieved by low net Na+ uptake by the root cortex 

and by tight control of ion transport into the xylem through the parenchyma cells in the roots 

(Davenport et al., 2005). Previous studies reported that Na+/H+ and K+/Na+ anti-transporter are 

the two important transport systems, which regulate the flow of Na+ in, between, and within 

plant cells (Apse et al., 1999; Zhu et al., 1993). Compartmentalization of Na+ into vacuoles in the 

cytosol, regulation of K+, and maintaining a high K+/Na+ ratio in the cytosol are features, also 

observed in many salt tolerant crop species (Munis et al., 2010; Munns and Tester, 2008).  

The increased concentration of Na+ in the medium competes with K+ for absorption, 

which leads to a significant decreased in K+ and an increase in Na+ concentration in the leaves 

(Ashraf and Ahmad, 2000; Higbie et al., 2010; Qadir and Shams, 1997). The decrease in K+ 

concentration in the leaves may also be responsible for reduction in the leaf expansion and plant 

growth (Higbie et al., 2010). In this study, K+ concentrations were significantly decreased in the 

leaf tissues at elevated salt concentrations (Figure 3.18). Previous studies have shown that 

K+/Na+ ratio significantly decreases with increased salt concentration (Ahmad et al., 2002; Khan 

et al., 2009). The high K+/Na+ ratio in the leaves is important for normal cellular function and 

might be considered another useful indicator for salt tolerance in many crop species (Zhu, 2003). 
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This study also showed that high K+/Na+ ratio in the leaf tissues decreases the rate of reduction in 

plant growth under salt stress conditions (Table 3.4). Although there were no significant 

differences among genotypes at 250 mM, salt tolerant genotypes, i.e. MT1219, MT45, MT245, 

and MT11 had slightly higher K+/Na+ ratios than the salt susceptible genotypes MT224, FM958, 

and MT99. A high K+/Na+ ratio in the leaf tissues in the salt tolerant genotypes might be due to 

selective uptake of K+ over Na+ and exchange of K+ over Na+ during ion transport in the plasma 

lemma of root cortex (Jeschke and Wolf, 1988).  
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CHAPTER 4: PREDICTION OF SPINNING VALUES OF COTTON FIBERS 

 

4.1 INTRODUCTION  

Cotton is the leading natural textile fiber as well as one of the most important oilseed 

crops in the world. It is important in agricultural trade and is grown in more than 80 countries. 

The goal of cotton breeders from public and private institutions is to develop high yielding 

cotton varieties with improved fiber qualities to meet the requirements of standard yarn 

properties. The development of new cotton varieties takes about 8-10 years and requires 

meticulous effort and time (Poehlman, 1987; Russell, 1978). Knowledge of the relationship 

between yarn and fiber properties is important for cotton breeders to select high quality 

genotypes/offspring in the breeding program. Yarn is a long twisted strand of the cotton fibers 

prepared by using various spinning techniques. In the textile industry, yarn quality is a vital 

component which determines the quality of fabric and clothes (Zhu and Ethridge, 1996). 

Before the introduction of High Volume Instrument techniques, cotton breeders used 

hand grading and staple length of fibers to select the cotton fibers for the spinning industry 

(Majumdar et al., 2004). In 1969, the High Volume Instrument (HVI) was developed by the 

United States Department of Agriculture (USDA) to mechanically measure the fiber properties. 

HVI provides information about upper half mean length (UHML), micronaire, strength, 

uniformity, elongation, reflectance, and yellowness of fibers (Sasser, 1981). HVI is currently 

used as the marketing tool for textile mills to evaluate the fiber properties in the bales of cotton 

(Suh and Sasser, 1996). It is very popular tool for cotton breeders because a large number of 

fiber samples can be processed in short periods of time at low cost. One of the problems with 

using HVI data directly, is that multiple, individual data points are generated. The 

interrelationship between the various HVI parameters is not represented and it is their interplay, 
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along with spinning equipment variables that lead to the production of usable yarn. In essence, 

some sort of selection index could be useful if it was able to reasonably and reliably predict yarn 

quality. Two recent attempts to develop such an index, based on the HVI data and consultation 

with the textile professionals, are the fiber quality indices: Qscore 1 and Qscore 2. These were 

developed as a single index incorporating four different fiber properties (length, strength, 

uniformity, and micronaire) (Bourland et al., 2010). Most cotton breeders hesitate to use this 

score in their breeding program because this algorithm gives an arbitrary weight for each fiber 

property and the optimum weight of each fiber property in relation to yarn quality is still 

unknown (Bourland et al., 2010). 

Though HVI provides the overall properties of fiber, textile professionals are also 

interested in the variability of individual fiber properties within a sample because uniform 

individual fiber properties enhance spinning efficiency and control the quality of fabric products 

(Hearle and Morton, 2008). In 1990, the Advanced Fiber Information System (AFIS) was 

developed to measure twenty different fiber properties and distribution of fiber length in a 

sample used for processing (Shofner et al., 1990). Although various fiber properties are 

determined by using HVI and AFIS, it is still challenging to give priority to a parameter or group 

of parameters to select the best fibers for industrial uses (Majumdar, 2010). Since various 

properties of cotton fibers largely influence the final quality of yarn, researchers have developed 

mathematical, regression, and other computation models using various properties of fibers 

obtained from HVI and AFIS technology to predict the yarn properties.  

With an advancement of computational and analytical tools, a number of data mining and 

machine learning techniques are increasingly popular and widely used to develop predictive 

models for simple to complex data in many scientific disciplines. Generalized linear models are 
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the simplest and the most widely used tools to determine the functional relationships between 

independent and dependent variables. This technique enables us to quantify the effect of each 

independent variable on the dependent variable (Tranmer and Elliot, 2008). Multiple linear 

regression is represented by the following expression (Kutner et al., 2004). 

𝒀 = 𝑿𝜷 + 𝜺 

 

In the model, 𝑌 is represented by the n × 1 matrix of the dependent observations, 𝑋 and 

𝛽 are represented by n × p matrix of the independent observations and p × 1 vectors of the 

unknown regression coefficients, respectively. The error term (𝜀) is represented by n × 1 matrix 

of the errors and assumed to be independent and normally distributed (N (0, σ2)) (Kutner et al., 

2004). The least square estimation is most commonly used in the regression analysis such that it 

minimizes sum of square deviations between the actual observation and the regression 

(Matthews, 2005). The least square estimator for 𝛽 is given by  

�̂� =  (𝑿′𝑿)−𝟏 𝑿′𝒀 

 

The individual coefficient (�̂�𝑖) determines the partial effect of 𝑋𝑖 on 𝑌 holding all the 

regressors constant (Matthews, 2005; Myers, 2000). In cotton breeding, it has been used to 

determine the functional relationship between fiber and yarn properties (Üreyen and Gürkan, 

2008; Zhu and Ethridge, 1996).  

Path analysis is a form of standardized linear regression, which has been widely used in 

agriculture (Bhatt, 1973; Wullschleger et al., 2010). Path analysis determines the interrelation 

among the variables, which affect the dependent variable. In other words, it allows us to 

determine the direct and indirect effects of each explanatory variable on the response variable in 

the system (Wright, 1921). Path analysis is applicable in highly correlated agronomic and genetic 

traits (Kang et al., 1983). 
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Regression/decision tree methods are more complex and flexible analytical tools than 

classical linear regression, and can be applied to determine the simple linear to complex non-

linear relationships among multiple traits. This technique splits data sequentially into two distinct 

and exclusive sets by applying a recursive binary splitting approach and building the trees (Loh, 

2002). This approach splits the traits in such a way that minimizes the residual sum of squares 

(RSS) and maximizes the homogeneity within each resulting group. The cost complexity pruning 

method is used to optimize the size of the trees by pruning the trees and prevent over fitting 

(James et al., 2014). Compared to linear modeling, the decision tree method is more graphically 

representative, similar to a flow chart and is easier to interpret, but it might not have the same 

prediction accuracy (De'ath and Fabricius, 2000). Boosting and random forest are both ensemble 

methods, which combine a large number of regression trees obtained from the bootstrapped 

dataset (Breiman, 1996; Büchlmann and Yu, 2002; James et al., 2014). These ensemble 

techniques improve the stability of the regression tree (Breiman, 1996; Witten et al., 2011). 

Boosting uses prior tree information to build the new trees and reduces the correlation between 

bagging trees (James et al., 2014). In contrast, random forest uses a random subset of predictors 

from all available predictors in each split so that this technique might reduce the correlation 

among the bagging trees (Breiman, 2001). Although ensemble techniques minimize the variance 

and improve the prediction accuracy, the interpretation is very difficult compared to regression 

trees (James et al., 2014). 

Artificial neural networks (ANN) is a complex and highly flexible data mining and 

machine learning technique, which is widely applied in the modeling of highly correlated, 

complex, linear to non-linear, and multidimensional data (Altun et al., 2007). ANN data 

processing systems mimic biological nervous systems and seek to establish the complex 
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relationship of between the input and output parameters (Gurney, 1997). In ANN models, input 

layers receive the information in the form of explanatory variables and process them through 

‘hidden’ layers using the sigmoid activation function and predict the output (Goh, 1995; 

Karayiannis and Venetsanopoulos, 1992; Priddy and Keller, 2005). The predicted output is 

compared with actual output to determine an error. An error signal is back propagated from the 

output layers towards the input layers through a neural network. With ANN, the steepest descent 

method is used to adjust the weight in each iteration so that the error signal is decreased and this 

process is continued until a minimal difference between two outputs is achieved (Khazaei et al., 

2008; Majumdar, 2010).  

Since as early as 1980, cotton breeders have investigated two data mining and machine 

learning techniques, such as classical linear regression and artificial neural network (ANN) to 

determine the functional relationship between yarn and fiber properties (Cheng and Adams, 

1995; Ramesh et al., 1995). The varieties used in these older experiments and their limited data 

sets may no longer be relevant. Additionally, none of the published classical linear regression 

and ANN models used AFIS data. In addition, there are limited studies in the application of other 

data mining tools and techniques in cotton breeding. From HVI it is possible to calculate a 

spinning consistency index (SCI), which suggests the overall quality and spinning ability of 

cotton fibers and can be used to evaluate the technological value of cotton fibers. Unfortunately, 

this index is a “black box” for the cotton breeder, as the research that led to its development 

provides little rationale about how and what fiber parameters were considered in its development 

and SCI’s ability to predict yarn properties. Therefore, the objective of this research is to develop 

a number of statistical models using data mining and machine learning tools to identify the 
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important fiber properties, which affects SCI and to compare this index with yarn strength to 

determine its applicability in the textile industries. 

4.2 METHODS AND MATERIALS 

4.2.1 Data collection 

The yarn strength, HVI, and AFIS fiber data were obtained from the Southern Regional 

Research Center, New Orleans. The data consists of US National Cotton Variety Trial (NCVT) 

fibers samples collected over a two year period (2012 and 2013 growing seasons). The NVCT is 

a collaborative testing program wherein adapted high yielding varieties are compared across their 

larger target environments. A subset of the NCVT is the Regional High Quality Test where 

varieties of superior quality are compared across their target environments. All varieties grown 

are harvested for yield and boll sampling is used to analyze fiber quality prior to small scale yarn 

spinning. This NCVT data set provides the information about fiber traits of cotton cultivars 

grown in 22 locations across 12 US states in 2012 and 2013 growing seasons. In this study, we 

used 1610, 1539, and 1552 HVI, AFIS and yarn strength observations for statistical modeling, 

respectively. High volume instrument (HVI) provides the following fiber properties (Sasser, 

1981): 

1. Fiber length expressed as upper half mean length (UHML): It is the average of the 

longest 50% of the fibers.  

2. Fiber uniformity: It is the ratio of average length to UHML of fibers. 

3. Micronaire (Mic): It is determined by measuring the permeability of air passing through 

cotton samples. It is an indirect measure of fineness and maturity of the fibers. 

4. Fiber strength: It measures the amount of force (g) required to break one tex of fiber 

bundle. 
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5. Fiber elongation: It refers to the elasticity of fibers.  

6. Reflectance (whiteness) of fibers. 

7. Yellowness of fibers. 

HVI data also provides the information necessary to calculate a SCI, which determines the 

spinning ability of fibers for ring spun in the textile industry (Majumdar et al., 2004).  

AFIS provides twenty different fiber properties. Out of them, the following are the most 

important fiber properties in cotton breeding program (Kelly et al., 2012): 

1. Neps: Refers to clumps of the immature fibers. AFIS measures the number of neps in the 

sample. 

2. Fiber length expressed as upper quartile length (UQL): AFIS measures the length that 

exceeded by 25% of the fibers by weight.  

3. Fineness: AFIS measures the cross-section area of individual fiber by penetrating the near 

infrared spectrum to determine the fineness. 

4. Immature fiber contents (IFC): AFIS measures the number of immature fibers in the 

sample. 

5. Short fiber content (SFC): It measures the amount of short fiber contents by weight 

(length less than 12.5 mm) in the sample. 

6. Trash content: It measures the total amount of trash, such as leaf, bark, seed coats per 

gram in the fiber sample. 

For the fiber data used in this research, HVI data was determined using a Uster® HVI 

1000 (Uster Technologies AG, Switzerland). AFIS data was determined using a Uster® AFIS 

PRO (Uster Technologies AG, Switzerland). Yarn strength measurements were determined using 

a Uster® TENSORAPID (Uster Technologies AG, Switzerland). 
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4.2.2 Model development 

The data mining and machine learning tools available in R software (www.r-project.org) 

were used to develop the statistical modeling for spinning consistency index except the artificial 

neural network. The artificial neural network model was developed in JMP Pro 11.2 (SAS 

Institute Inc., Cary, NC). The dataset was randomly split into a 70:30% training to validation 

data. The lm and lm.beta functions were used for classical multiple linear regression and path 

analysis, respectively. The rpart library package was used for building the regression/decision 

trees. The ensemble methods, such as random forest and boosting were developed by using 

randomforest and gbm library packages, respectively. Each ensemble method combined 5,000 

trees together to determine the relative importance of parameters for spinning value of cotton 

fibers. In artificial neural network, the number of hidden layers and number of neurons in each 

hidden layer were adjusted to improve the best fitting model.  

After developing the models on the training data set, they were validated on the 

validation data set to determine the reliability and accuracy of the models. The best models were 

selected based on the coefficient of determination (R2) obtained from validation data set.   

4.3 RESULTS 

4.3.1 Multiple linear regression  

Fiber length and uniformity index were highly correlated (>0.75). This is not surprising 

because the estimate of uniformity index is based on fiber length. Consequently, uniformity 

index was dropped as a independent variable from the statistical models to avoid over fitting, 

except in path analysis. Multiple linear regression resulted in all fiber parameters being highly 

significant (P<0.01) (Table 4.1). This suggests that any improvement in fiber length, strength, 
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and elongation significantly increases the SCI, while increasing micronaire reduces the spinning 

ability of fibers. 

Table 4.1 Regression coefficients from multiple linear regression of HVI fiber properties on 

spinning consistency index. 

Parameters Estimate Standard error t value 

Intercept -113.03 3.69 -30.62** 

Mic -5.03 0.45 -11.19** 

Length 142.44 3.20 44.45** 

Strength 3.04 0.07 44.25** 

Elongation 2.00 0.19 11.23** 

**=Significant at P ≤ 0.01. 

 

Although nep was not significant (P=0.73), it showed that it reduced the spinning values 

of cotton fibers (Table 4.2). Higher values for measurements of fiber fineness represent coarse 

fibers, whereas lower values represent finer fibers. The model indicates that as fiber fineness 

values increase, fibers are more coarse, and this has the significant effect of reducing the 

spinnability (P<0.01). Thus, fibers with a lower fineness values demonstrated superior 

spinnability. Similarly, upper quartile length (UQL) significantly affected spinnability as longer 

fiber samples had a superior spinnability (P<0.01). The amount of short fiber content (SFC), 

immature fiber content (IFC), trash content (TC) decreased the spinnability of cotton fibers 

(P<0.01) (Table 4.2). 

Table 4.2 Regression coefficients from multiple linear regression of AFIS fiber properties on 

spinning consistency index. 

Parameters Estimate Standard error t value 

Intercept -10.21 11.99 -0.85 

Nep -0.002 0.008 -0.34 

SFC -1.50 0.28 -5.22** 

UQL 169.70 5.59 30.36** 

Fineness -0.22 0.03 -6.10** 

IFC -1.80 0.36 -4.88** 

TC -0.006 0.0006 -10.83** 

** = Significance at P ≤ 0.01. 
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4.3.2 Path analysis  

Path analysis provided detailed information how the predictors were correlated with each 

other and how they collectively affected the spinning consistency index (Figure 4.1). Each 

predictor had its own direct effect (partial standardized coefficient) and the indirect effects 

(association with other predictors). Based on partial standardized coefficients, the HVI fiber data 

showed that fiber strength and uniformity index had the highest direct effect (0.52 and 0.42, 

respectively). Although the fiber length had the modest direct effect on spinning values of cotton 

fibers (0.18), it had the highest indirect effects through all predictors (0.69, 0.76, -0.14, -0.10). 

The lowest direct and indirect effects were observed for micronaire and fiber elongation. Based 

on the path analysis, any improvement on strength and uniformity index improved the spinning 

ability of fibers, while length had a modest direct (but a substantial indirect effect) on the 

spinning ability of fibers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 A path diagram showed the direct and indirect effects of HVI fiber traits on SCI. 
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The AFIS data showed that upper quartile length (UQL) had the highest direct effect 

(0.71) and modest indirect effects through all fiber traits (-0.66, -0.20, -0.01, -0.09) on the 

spinning values of fibers (Figure 4.2). The short fiber content, fineness, and amount of trash 

content had the modest direct effect on spinning ability of cotton fibers (-0.15, -0.11, and -0.16, 

respectively). The short fiber content and fiber fineness had the highest indirect effects through 

all fiber traits (-0.66, 0.55, -0.35, and 0.10, and -0.35, -0.50, -0.20, and -0.09, respectively) on 

spinning value of cotton fibers (Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 A path diagram showed the direct and indirect relationship of AFIS fiber parameters 

on SCI. 

 

4.3.3 Regression/decision trees  

The regression/decision tree analysis of HVI data indicates that fiber length was the most 

important parameter, followed by fiber strength, and both together had the highest effect on the 

spinning ability of cotton fibers, considerably more so than other HVI parameters (Figure 4.3). It 
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can be concluded that cotton fiber of length less than 0.93 inches had the lowest spinning 

consistency index. The highest spinning index was achieved by selecting for fiber which had a 

length and strength greater than 1.36 inches and 44.07 g/tex, respectively. The decision tree 

makes it easier for cotton breeders to select those fiber traits, which have the most effect on 

spinning value of cotton fibers to improve fiber quality. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.3 Regression/Decision trees showing impact of HVI fiber length and strength at each 

split on spinning consistency index. 
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spinning value of cotton fibers (Figure 4.4). The amount of trash content and short fiber content 

had the modest effect on spinning values of cotton than other parameters. It suggests that the 

increased trash content and short fiber content in the fiber bundles decreased the spinning values 

of cotton.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Regression/Decision trees showing the impact of AFIS UQL at top split, and TC and 

SFC at bottom splits on spinning consistency index. 
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micronaire and elongation (Figure 4.5). In random forest, the mean decrease in prediction 

accuracy (or %IncMSE – percent increase in mean square error) was calculated for each fiber 

trait, suggesting that fiber traits with highest values are the most important parameters for 

improving the spinning consistency index.  

    
Figure 4.5 Relative importance of HVI parameters on spinning consistency index as determined 

by random forest (left) and boosting (right). 

 

Analysis of AFIS data for both methods (random forest and boosting) clearly 

demonstrates that upper quartile length (UQL) is the most important parameter to improving the 

spinning ability of cotton fibers (Figure 4.6). Although there were some discrepancies in ranking 

of the other fiber parameters, short fiber content and trash content were consistently ranked as 

important and only modest effect estimates were detected for fiber fineness and immature fiber 

content on the spinning ability of cotton fibers. Nep counts (Nep) had the lowest effect on 

spinning values of cotton fibers (Figure 4.6). 
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Figure 4.6 Relative importance of AFIS fiber parameters on spinning consistency index as 

determined by random forest (left) and boosting (right). 

 

4.3.5 Artificial neural network  

Using HVI fiber properties the spinning consistency index (SCI) was best predicted by a 

4:6:4:1 neural network model. The 4:6:4:1 neural network refers to four inputs, 6 and 4 neurons 

in hidden layers 1 and 2, and one output, respectively as shown in the Figure 4.7. Fiber length 

was the most important fiber trait, followed by fiber strength, in determining the spinning value 

of cotton fibers (Figure 4.8). 

The AFIS fiber properties resulted in a 6:3:4:1 artificial neural network as being the best 

model for predicting spinning consistency index (Figure 4.9). The artificial neural network 

showed that upper quartile length and short fiber content were the most important fiber 

properties, while nep was the least important fiber property in predicting the spinning value of 

cotton fibers (Figure 4.10). 
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Figure 4.7 A 4:6:4:1 Artificial neural network model for predicting SCI (HVI). 

 

 
Figure 4.8 Relative importance of HVI fiber traits on spinning consistency index as determined 

by artificial neural network analysis. 
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Figure 4.9 A 6:3:4:1 Artificial neural network model for predicting SCI (AFIS). 

 

 
Figure 4.10 Relative importance of AFIS fiber traits on spinning consistency index as determined 

by artificial neural network analysis. 
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4.3.6 Correlation between SCI and yarn strength 

The Pearson correlation showed that spinning consistency index (SCI) and yarn strength 

were significantly correlated with each other (r=0.59, P<0.01). The positive correlation 

suggested that higher spinning consistency index (SCI) significantly improved the yarn strength 

(Table 4.3). 

Table 4.3 Pearson correlation coefficient. 

 Qscore1 Qscore2 SCI Yarn strength 

Qscore1 1.00 0.86** 0.62** 0.42** 

Qscore2  1.00 0.72** 0.48** 

SCI   1.00 0.59** 

Yarn strength    1.00 

** = Significance at 0.01. 

4.3.7 Comparisons of statistical models 

All the statistical models developed from HVI fiber parameters predicted the spinning 

value of cotton well (Table 4.4). Based on the coefficient of determination (R2), all the statistical 

models could be considered as competing models. In comparison to the other evaluated models 

in this study, regression tree had the lowest R2 values for both training and validation data, to 

predict the spinning consistency index. The random forest model seems to over predict in the 

training data, but it predicted well in the validation data. Path analysis had the highest R2 values 

for both training and validation datasets because of inclusion of uniformity index for model 

development. It must be noted that uniformity index was dropped in other models due to a high 

collinearity with upper half mean length (UHML).  

Table 4.4 The coefficient of determination (R2) of statistical models (HVI). 

Statistical models Training data Validation data 

1. Multiple linear regression  0.93 0.93 

2. Path analysis 0.98 0.98 

3. Regression trees  0.86 0.84 

4. Random forest  0.98 0.92 

5. Boosting  0.92 0.91 

6. Artificial neural network 0.93 0.92 
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The developed models based on the AFIS fiber properties successfully predicted the 

spinning consistency index (SCI) of cotton fibers (Table 4.5). The lack of fiber strength data in 

this dataset is likely a culprit for this. As was the case for HVI fiber data, regression trees had the 

lowest R2 values for both datasets, while random forest over predicted in the training data, but 

had a lower R2 in the validation data. Although artificial neural network had relatively higher R2 

value in validation data, all the developed models could be considered as competing models for 

prediction of spinning consistency (SCI) index of cotton fibers.  

Table 4.5 The coefficient of determination (R2) of statistical models (AFIS). 

Statistical models Training data Validation data 

1. Multiple linear regression  0.76 0.72 

2. Path analysis 0.76 0.72 

3. Regression trees  0.70 0.66 

4. Random forest  0.95 0.72 

5. Boosting  0.79 0.73 

6. Artificial neural network 0.77 0.78 

 

4.4 DISCUSSION 

 Except for the regression tree analysis, all the developed models agree that fiber length, 

strength, micronaire, and elongation were important fiber parameters in determining the spinning 

value of cotton fibers as calculated using the SCI formula. Among them, upper half mean length 

and fiber strength were the most important parameters that largely affected the spinning value of 

fibers. Previous studies have also shown that long fibers increased the efficiency of ring spinning 

yarn than short and medium fibers (Long et al., 2010). The importance of length and strength to 

maximizing SCI was also supported by path analysis, with a suggestion that they are positively 

associated with each other both directly and indirectly (Figure 4.1). The path analysis also 

showed that there was a significant positive correlation between fiber length and uniformity 

index. A high uniformity in fiber length reduces the amount of defective yarn, increases the 

efficiency of ring spinning, and enhances uniform dyeing, all ultimately leading to a high quality 
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end fabric products (Bradow and Davidonis, 2000). Fiber length is highly heritable trait, 

governed by four to six major genes, but genotype in response to growing environment is also 

partly responsible for fiber length (Paterson et al., 2003; Zhang et al., 2009). Over 50 years, 

cotton breeders have been incorporating this trait in cotton breeding program to improve the fiber 

quality, which also ultimately increases the spinning performance of cotton fibers.  

These models also showed that increasing micronaire had a significant negative impact 

on the spinning ability of cotton fibers. The USDA Agricultural Marketing Service classifies 

cotton fibers based on the micronaire: values from 3.7-4.2 refer to premium category, the 

acceptable category ranges from 3.2-3.6 and 4.3-4.9, while a discount rate is applied to values 

outside of these ranges (El Mogahzy and Gowayed, 1995). The relative magnitude of micronaire 

compared to other traits in the models predicting SCI is, however, indicative of its lower rank 

amongst fiber quality selection criteria. The relatively broad acceptable micronaire range lacks 

comparative focus; fiber length and strength are clearly more directional. Within its range, 

increasing micronaire can be seen as a tradeoff to increasing yield. Consequently, cotton 

breeders have placed more emphasis on other fiber traits. Micronaire is also a dimensionless 

proxy value for information about the fineness and maturity of fibers, and is highly influenced by 

environment (Long et al., 2010). What is clearly demonstrable is that high micronaire is caused 

by mature and coarse fibers, and significantly reduces ring spinning performance, yarn evenness, 

and the number of fibers in yarn cross-section (Bradow and Davidonis, 2000; Kloth, 1998). 

Conversely, fine fibers and the amount of immature fiber are both responsible for low micronaire 

(Bradow and Davidonis, 2000). The AFIS models showed that fine fibers increased the spinning 

ability of cotton, while immature fibers decreased the spinning value of fibers (Table 4.2). 

Compared to discount range, premium and acceptable ranges have relatively a small amount of 
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immature and coarse fibers. As expected, micronaire does not have a huge impact on spinning 

performance of fibers because premium and acceptable ranges are most widely used in the 

selection of breeding progenies, cultivated varieties, and bales for yarn spinning.  

All the models agreed that fiber strength is one of the important fiber traits, which 

influences the spinning value of cotton fibers. Munro (1987) reported that the individual fiber 

strength directly affects the yarn strength. With the advancement of high speed spinning 

technology, textile professionals prefer highly elastic, strong fibers because they minimize yarn 

breakage, and improve the spinning efficiency at low cost and also increase the elasticity of the 

fabrics (Bradow and Davidonis, 2000; Cheng and Adams, 1995). Here the developed models 

showed that fiber elongation had a very insignificant effect on the spinning consistency index. 

This may be due to the fact that all of the varieties used in this study would be considered to have 

good to excellent fiber elongation values to begin with, giving the models little variation to 

utilize. The path analysis agreed with previous studies and suggested that there was no 

significant correlation between fiber strength and elongation (Chee et al., 2005; Riley, 1997). 

Fiber strength is also genetically controlled by two to four major genes and highly heritable from 

generation to generation (Kohel et al., 2001; Zhang et al., 2009). Therefore, it can be 

successfully incorporated into breeding programs to improve the fiber quality. However, fiber 

elongation was controlled by twenty two minor genes and hard to incorporate all of them into a 

breeding program (Chee et al., 2005).  

Using AFIS fiber property data, all the models agreed that upper quartile length (UQL) 

was the most important fiber property and positively influenced the spinning performance of 

fibers as calculated by SCI. Although there were some discrepancies in the ranking of the other 

fiber traits, fiber fineness was one of the more important traits for increasing the spinning value 
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of cotton fibers. Compared to coarse fibers, fine fibers increase yarn strength and uniformity 

leading to the production of strong and uniform fabrics largely by fitting a large number of fibers 

per unit cross-section (Hearle and Morton, 2008; Munro, 1987). The models also showed that the 

amount of short fiber content (SFC) reduced the spinning ability of fibers. Previous studies have 

also reported that increased short fiber contents increases the rate of yarn breakage and 

irregularities, and also reduces yarn uniformity, strength, and appearance of fabric products 

(Backe, 1986; Thibodeaux et al., 2008). Although the fiber length is largely determined by 2-4 

major genes, short fiber content is determined by an interaction between genotypes by 

environment, harvesting techniques, and processing (e.g. ginning) (Bradow et al., 1999; Cui et 

al., 2003). Although nep was not significantly different, both nep and immature fiber contents 

reduced the spinning performance of cotton fibers. These factors are somewhat related in that 

immature fibers are more likely to entangle and lead to the formation of neps in yarn. These are 

important traits from the dyeing point of view, with elevated levels of both drastically reducing 

the uniformity dyeing (Smith, 1991; Thompson and Hsieh, 1998). Fortunately, the path analysis 

results imply that any improvement in the upper quartile length of fibers drastically reduced the 

amount of short and immature fiber contents in the bales. All the developed models agreed that 

the amount of trash in the cotton bales reduced the spinning performance of fibers. The presence 

of large leaf, bark, and pin trash reduces the marketing value of cotton and processing to remove 

them is very expensive (Kang and Kim, 2002).  

In the process of variety development the selection of progenies with highly elastic, long, 

strong and fine fibers is a key to success in the competitive global textile industries. However, a 

complex association among the fiber traits makes the task of combining all these desirable traits 

into a single variety difficult for cotton breeders. And therein lies one of the paradoxes that this 
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research and other (e.g. Qscore) seek to address. The immediate clientele for a variety is a 

producer whose marketing is influenced by a few specific traits: first and foremost yield, then 

fiber quality traits roughly in the order length, strength and micronaire. The textile spinner, on 

the other hand has no interest in yield, but considers traits that affect the efficiency of their yarn 

production in addition to all the spinning variables such as yarn type, breakages, imperfections, 

etc. The SCI is an attempt to condense the needs of the spinner into an index value that could be 

of use by the breeder. Historical and more modern attempts, such as Qscore are poorly 

documented or not empirically derived. The SCI index is a documented attempt to combine the 

important fiber traits into a single index, which enables us to select the multiple fiber traits even 

it is imprecisely presented. Assuming SCI is a suitable proxy for actual spinning performance or 

at least yarn strength, whether one uses the HVI or AFIS instruments, our results indicate the 

relative importance of easily measured individual traits and suggests how they can be combined 

into a useful index. Although there were some discrepancies in the ranking of the determined 

fiber traits, all the developed statistical models agreed that they can be used to predict the 

spinning consistency index, which is also positively associated with yarn strength. In short, this 

study revealed that spinning consistency index (SCI) can be used as an alternative and efficient 

selection index for combining the multiple fiber traits to enhance yarn spinning.  
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CHAPTER 5: CONCLUSIONS 

Reniform nematode is one of the major plant pathogens for cotton, which causes heavy 

economic loss in Southern United States. Due to lack of resistant/tolerant commercial cotton 

varieties, application of nematicides, and crop rotation with nonhost crop species have been 

implemented to manage the reniform nematode in cotton fields to some extent. Over last two 

decades, extensive screening was conducted to identify sources of reniform resistance within the 

cotton germplasm pool available in the National Cotton Germplasm Collection. To date, a 

number of cotton genotypes, which are resistant to reniform nematode have been identified, but 

little information is available about their response across reniform isolates collected from 

different geographical regions. This study showed that tolerant/resistant cotton genotypes had 

different responses across the reniform isolates collected from renifrom infested fields across 

Louisiana. Compared to other genotypes, both Lonren-2 and G. arboreum (A2-190) exhibit a 

high level of resistance regardless of reniform isolates or itsgeographic origin. Within a cotton 

breeding program, both Lonren-1 and Lonren-2 (both tetraploids) are good sources of resistance 

and relatively amenable to use though they both, especially Lonren-1, have other agronomic 

performance deficiencies (poor yield). The diploid cotton G. arboreum (A2-190) exhibited the 

highest level of resistance across the reniform isolates, but would be more problematic to use 

within a breeding program. 

This study also showed that there is a significant variation in reproduction and 

pathogenicity among reniform isolates collected from reniform infested cotton fields across 

Louisiana. Across reniform isolates, the Evan isolate had the highest reproduction and 

pathogenicity compared to other reniform isolates, suggesting that the Evan isolate may build up 

a juvenile population in the field faster than other reniform isolates. Although there were limited 
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studies in site specific management for a reniform isolates, different management strategies are 

needed to reduced damage from specific reniform nematode isolates that are specific to 

geographical regions. This study provides the foundation for the nematologists and agronomists 

to identify reniform isolates or races within or across specific geographical regions and develop 

appropriate management strategies to suppress the reniform populations in reniform infested 

cotton fields. The presence of an interaction between cotton genotypes with different sources of 

reniform resistance and reniform isolates from different geographic regions suggests that distinct 

races may exist, potentially describable with a differential host series. This information will 

enable the cotton breeders and pathologists to select and deploy different resistant/tolerant cotton 

genotypes to effectively manage reniform populations existing in production fields.  

Salt stress has become a serious problem worldwide, and one, which may already be 

limiting cotton production in the Macon Ridge and Red River regions of Louisiana. To date, 

there have been a limited number of studies seeking to identify salt tolerant cotton germplasm 

and, there is no comprehensive data available. The lack of information hinders researcher’s 

efforts to both understand the mechanism of salt tolerance and to select appropriate salt tolerant 

cotton genotypes for use in the development or breeding of salt tolerant cotton varieties. This 

study showed that both hydroponics and pot culture are fast, efficient and effective in the 

screening of a large number of cotton germplasm accessions against elevated salt concentrations. 

Compared to pot culture, the effect of sodium chloride on plant parameters under the hydroponic 

technique was more rapidly expressed and able to discriminate the salt tolerant genotypes in a 

short period of time. In terms of time and space, the use of the hydroponic technique has an 

advantage over pot culture in that it can handle a large number of accessions. Logistically, it can 

be laborious to randomize the genotypes and collect the data. The hydroponic system was also 



106 
 

highly sensitive to abrupt change in water temperature, which might cause complete shut down 

the plant growth.  

Although pot culture takes more time and space than hydroponic techniques, it is a way 

to identify the salt tolerant cotton genotypes, which might perform well under salt stress in the 

field due to its greater similarity. Although there were a few discrepancies between the two 

systems, a combination of both systems is an efficient way to identify salt tolerant genotypes. It 

is suggested to use the hydroponic technique to first discriminate salt tolerant genotypes from a 

larger germplasm pool and reconfirm the reaction of promising accessions by using pot culture. 

This study showed that salt stress affects the morphology and physiology of cotton genotypes. It 

also showed the presence of variation in degree of salt tolerance among cotton germplasm by 

using different salt concentrations. All measured plant parameters were affected to some extent 

due to elevated salt concentrations. The effect on plant parameters was slightly varied, which 

results in a discrepancy in the ranking of genotypes across salt treatments. Compared to other 

genotypes, MT1219, MT11, MT45, and MT245 consistently performed better in all the 

measured parameters.  

In addition to biotic and abiotic stresses, cotton breeders are interested to develop the 

high yielding cotton cultivars with improved fiber quality to meet the standard yarn properties. 

Cotton breeders use HVI fiber trait to select the progenies/cultivars with high fiber quality. In 

addition to HVI, textile industries use AFIS fiber traits to some extent because they are interested 

in variability of individual fiber properties in the cotton bales. Although various fiber parameters 

are measured by HVI and AFIS, it is still challenging to give priority a fiber trait or group of 

traits to select best fiber for industrial uses. Historical and more modern attempts, such as 

Qscores are poorly documented or not empirically derived based on HVI fiber properties. The 
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SCI index is a documented attempt to combine the important fiber traits into a single index, 

which enables us to select the multiple fiber traits even it is imprecisely presented. Based on the 

developed statistical models, fiber length and strength are the two important parameters in 

determining the spinning consistency index of cotton fibers. This result also supports the 

selection criteria used by cotton breeders over 50 years to improve the fiber quality. The results 

also showed that the amount of neps, coarse fibers, immature and short fiber contents, and trash 

contents in the bales reduce the spinnability of cotton fibers. Assuming SCI is a suitable proxy 

for actual spinning performance or at least yarn strength, whether one uses the HVI or AFIS 

instruments, our results indicate the relative importance of easily measured individual traits and 

suggests how they can be combined into a useful index. Although there were some discrepancies 

in the ranking of the determined fiber traits, all the developed statistical models agreed that they 

can be used to predict the spinning consistency index, which is also positively associated with 

yarn strength. In short, this study revealed that spinning consistency index (SCI) can be used as 

an alternative and efficient selection index for combining the multiple fiber traits to enhance yarn 

spinning. 
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APPENDIX 
 

TABLE A.1: LIST OF DAY NEUTRAL PRIMITIVE COTTON ACCESSIONS USED IN 

HYDROPONICS TECHNIQUE. 

S. No Genotypes S. No Genotypes S. No Genotypes S. No Genotypes 

1 MT4 38 MT257 75 MT677 112 MT86 

2 MT764 39 MT149 76 MT347 113 MT368 

3 MT636 40 MT634 77 MT242 114 MT60 

4 MT620 41 MT460 78 MT96 115 MT171 

5 MT763 42 MT224 79 MT725 116 MT640 

6 MT610 43 MT73 80 MT178 117 M-238 

7 MT477 44 MT633 81 MT250 118 MT62 

8 MT115 45 MT245 82 MT215 119 MT320 

9 MT281 46 MT29 83 MT668 120 MT76 

10 MT52 47 MT241 84 MT33 121 MT27 

11 MT53 48 MT239 85 MT72 122 MT188 

12 MT11 49 MT338 86 MT104 123 MT100 

13 MT1291 50 MT249 87 MT293 124 MT106 

14 MT212 51 MT786 88 MT81 125 MT466 

15 MT1219 52 MT235 89 MT32 126 MT36 

16 MT701 53 MT68 90 MT101 127 MT180 

17 MT244 54 MT89 91 MT1117 128 MT117 

18 MT71 55 MT74 92 MT246 129 MT206 

19 MT278 56 MT43 93 MT91 130 MT1175 

20 MT209 57 MT237 94 MT41 131 MT17 

21 MT650 58 MT223 95 MT754 132 MT31 

22 MT478 59 MT50 96 MT198 133 MT612 

23 MT70 60 MT255 97 MT113 134 MT228 

24 MT493 61 MT240 98 MT55 135 MT175 

25 MT202 62 MT219 99 MT1004 136 MT63 

26 MT216 63 MT93 100 MT24 137 MT30 

27 MT220 64 MT173 101 MT1000 138 MT99 

28 MT6 65 MT199 102 MT201 139 MT154 

29 MT195 66 MT243 103 MT1063 140 MT121 

30 MT1195 67 MT221 104 MT1046 141 MT140 

31 MT790 68 MT664 105 MT77 142 MT155 

32 MT48 69 MT226 106 MT7 143 MT182 

33 MT119 70 MT139 107 MT88 144 MT156 

34 MT57 71 MT804 108 MT326 145 MT122 

35 MT18 72 MT64 109 MT116 146 MT2 

36 MT67 73 MT247 110 MT641 147 MT164 

37 MT120 74 MT720 111 MT61 148 MT45 

      149 MT90 

      150 MT570 
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