
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2015

Integrating Soil Nitrate Level in Refining Nitrogen
Fertilizer Management in Louisiana Corn
Production Systems
Payton Dupree
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Dupree, Payton, "Integrating Soil Nitrate Level in Refining Nitrogen Fertilizer Management in Louisiana Corn Production Systems"
(2015). LSU Master's Theses. 1616.
https://digitalcommons.lsu.edu/gradschool_theses/1616

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/1616?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1616&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 
 

INTEGRATING SOIL NITRATE LEVEL IN REFINING NITROGEN 
FERTILIZER MANAGEMENT IN LOUISIANA CORN PRODUCTION 

SYSTEMS 

 
 
 
 
 
 
 
 
 
 

A Thesis 
 

Submitted to the Graduate Faculty of the 
Louisiana State University and  

Agricultural and Mechanical College 
in partial fulfillment of the  

requirements for the degree of 
Master of Science 

 
in 
 

The School of Plant, Environmental, and Soil Sciences 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by 
Payton Dupree 

B.S., University of Louisiana at Lafayette, 2011 
August 2015 

 



ii 
 

 

Acknowledgements 
 

The support I have received throughout this program has been 

immeasurable.  Many people were involved with this project and I will try to cover 

all of them.   

 To my boss, major professor, and mentor Dr. Brenda Tubana, thank you 

for your constant guidance, spot on advice, and seemingly endless patience with 

me.  You have given me more opportunities than I can count and I am truly 

grateful.   I could not have accomplished this without you, you believed in me 

even when I didn’t believe in myself and I’ve grown in several ways thanks to the 

time spent working as your associate.  

 To Dr. Henry “Rick” Mascagni and Dr. Josh Lofton, thank yall so much for 

sharing your wisdom with me whenever you could and always checking on us 

while we were in the field to see if we needed help with anything.  Your 

assistance with conducting the field trials was paramount and thank you for the 

opportunity to “play” with some of the equipment.   

 To my soil fertility group, Brandon, Tapasya, Marilyn, Saoli, Daniel, Murilo, 

Flavia, Wookilee, Sam, Gustavo, Lucas, Suelen, Yumiko, Ronaldo, Jessica, Anil, 

Rohan, Juan, and Wesley, without yall’s constant support and putting up with the 

heat, cold, and even darkness and rain to take my soil samples year round, I 

could not have accomplished this feat.  I will never forget your generosity and 

constant smiles despite the hard times. I’m forever in your debt. Other students 

that aided me in this journey were Scott Pensky, John Young, Negar Tafti, Kelly 

Arceneaux, Nutifafa Adotey, and April Newman.   



iii 

 

 To Michael Breithaupt, Sue Chin, and Rodney Henderson, thank you for 

letting me raid your lab on a seemingly monthly basis and always sharing your 

thoughts when I came seeking wisdom.   

 To Dr. Don Labonte, Dr. Steve Harrison, Dr. Kun-Jun Han, Dr. Chang 

Jeong, Dr. Maud Walsh, Dr. Magdi Selim, Dr. Jim Wang, Connie Dubois, Jere 

Townshed, Sheila Rohwer, and Becky Jolibois, thank you for your words of 

encouragement and positive attitudes.  

 To my family, Maureen, Tim, Ryan, Bea, Fry, Lois, Jim, and Sugar, you 

guys were so awesome during this time.  Thank you so much for your steadfast 

support when I would call or visit while losing my mind.  

 Thank you to the Louisiana Soybean and Small Grain Research and 

Promotion Board for their funding and support.  

 Above all, I thank God for bringing me in contact with this group of people 

I’ve spent the last 2-3 years with and challenging me in multiple ways as I’ve 

worked through this program.  I have felt his presence throughout this difficult 

challenge and it is only through him that I am able to accomplish anything.   

 Finally, I would like to thank the band 311 for their positive music and 

soothing vibes that would pick me up when I was struggling.  “Stay positive and 

love your life!”  

 
 
 
 
 
 
 

 



iv 

 

Table of Contents 
 

Acknowledgements ............................................................................................... ii 
 
List of Tables ........................................................................................................ vi 
 
List of Figures ..................................................................................................... viii 
 
Abstract ................................................................................................................ ix 
 
Chapter 1. Introduction ......................................................................................... 1 
 
Chapter 2. Investigating Early-Season Nitrogen Requirement of Corn Based on 
Soil Texture and Early-Season Soil Nitrate Level ................................................. 7 
2.1 Introduction ..................................................................................................... 7 
2.2 Materials and Methods ................................................................................... 9 

2.2.1 Site Description, Treatment Structure, and Trial Establishment .......  9 
2.2.2 Soil Sampling .................................................................................. 13 
2.2.3 Soil Analysis ................................................................................... 14 
2.2.4 Grain Yield and Yield Components ................................................. 16 
2.2.5 Grain Nitrogen Analysis .................................................................. 17 
2.2.6 Nitrogen Use Efficiency Determination ........................................... 18 
2.2.7 Statistical Analysis of Measured Parameters .................................. 18 

2.3 Results and Discussion ................................................................................ 19 
2.3.1 Effect of N Rate on Grain Yield ....................................................... 19 
2.3.2 Effect of Different N Application Method on Grain Yield .................. 22 
2.3.3 Effect of Soil Inorganic N Content on Yield ..................................... 25 
2.3.4 Effect of N rate on Yield Components and N Uptake ...................... 28 
2.3.5 Nitrogen Use Efficiency ................................................................... 34 

2.4 Conclusions .................................................................................................. 35 
2.5 References ................................................................................................... 36 
 
Chapter 3. Documenting the Changes in Inorganic Nitrogen Level and 

Distribution in Soil Profile Within and Across Cropping Seasons at Varying 

Nitrogen Fertilization Levels ............................................................................... 43 

3.1 Introduction ................................................................................................... 43 
3.2 Materials and Methods…………………………………………………………… 44 

3.2.1 Site Description, Treatment Structure, and Trial Establishment ...... 44 

3.2.2 Soil Sampling .................................................................................. 49 

3.2.3 Soil Analysis ................................................................................... 50 

3.2.4 Grain Yield ...................................................................................... 52 

3.2.5 Soil Texture Analysis ...................................................................... 53 

3.2.6 Weather Data Collection ................................................................. 54 
3.2.7 Statistical Analysis of Measured Parameters .................................. 55 



v 

 

 
3.3 Results and Discussion ................................................................................ 55 

3.3.1 Texture Analysis ............................................................................. 55 

3.3.2 Soil Profile Inorganic N Distribution ................................................. 55 

3.3.3 Soil Inorganic N Content at V8 Leaf Stage and its Effects on  

Yield ......................................................................................................... 65 

3.4 Conclusions .................................................................................................. 71 
3.5 References ................................................................................................... 72 

 

Chapter 4. Conclusions ...................................................................................... 75 
 

Appendix A. Corn Grain Ratings in 2014 for MRRS and NERS ......................... 76 
Figure A.1 Corn Grain Ratings for MRRS 2014 ....................................... 76 

Figure A.2 Corn Grain Ratings for NERS 2014 ........................................ 78 

 

Appendix B. Rainfall Data for MRRS and NERS in 2013 and 2014.................... 80 
Table B.1. Rainfall Data for MRRS 2013 ................................................. 80 

Table B.2. Rainfall Data for MRRS 2014 ................................................. 81 

Table B.3. Rainfall Data for NERS 2013 .................................................. 82 

Table B.4. Rainfall Data for NERS 2014 .................................................. 83 

 

Vita ..................................................................................................................... 84 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



vi 

 

List of Tables 
 

Table 2.1 Chemical Properties of Soil at Different Depths for Both Locations .... 11 
 
Table 2.2 Field Activity Dates and Plot Size for MRRS and NERS for Years 2013 
and 2014 ............................................................................................................ 12 
 
Table 2.3 Treatment Description of the Field Trials Conducted in St. Joseph, LA 
and Winnsboro, LA in 2013 and 2014 ................................................................ 14 
 
Table 2.4 Contrast Analyses for Early-Season Only vs Split Application of 268 kg 
N ha-1 for site MRRS 2013 and 2014 .................................................................. 24 
 
Table 2.5 Contrast Analyses for Early-Season Only vs Split Application of 268 kg 
N ha-1 for NERS 2013 and NERS 2014 .............................................................. 24 
 
Table 2.6 Corn Ratings for MRRS 2014 and NERS 2014 .................................. 25 
 
Table 2.7 Average of Soil Inorganic N Distribution Across the Entire Field for 
Both Locations in 2013 and 2014 for Planting and Harvest Sampling Periods ... 28 
 
Table 2.8 Effect of N Rate on Corn Yield Components in 2014 for MRRS and 
NERS ................................................................................................................. 31 
 
Table 2.9 Effect of N Rate on N Uptake and Grain N Content for Site MRRS 2013 
and 2014 ............................................................................................................ 32 
 
Table 2.10 Effect of N Rate on N Uptake and Grain N Content for Site NERS 
2013 and 2014 .................................................................................................... 33 
 
Table 2.11 Nitrogen Use Efficiency for MRRS and NERS in 2013 and 2014 ..... 35 
 
Table 3.1 Chemical Properties of Soil at Different Depths for Both Locations .... 46 
 
Table 3.2 Field Activity Dates and Plot Size for MRRS and NERS for Years 2013 
and 2014 ............................................................................................................ 47 
 
Table 3.3 Record of Soil Sampling Dates for MRRS and NERS in 2013 and  
2014 ................................................................................................................... 48 
 
Table 3.4 Treatment Description of the Field Trials Conducted in St. Joseph, LA 
and Winnsboro, LA in 2013 and 2014 ................................................................ 49 
 
Table 3.5 Particle Size Distribution for MRRS and NERS .................................. 56 
 



vii 

 

Table 3.6 Grain Yield and Inorganic N Distribution within 0-30 cm Soil Depth of 
Plots Applied with 0, 201, 403 kg N ha-1, for MRRS 2013 and 2014 .................. 70 
 
Table 3.7 Grain Yield and Inorganic N Distribution within 0-30 cm Soil Depth of 
Plots Applied with 0, 201, 403 kg N ha-1, for NERS 2013 and 2014 ................... 71 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 



viii 

 

List of Figures 

 
Figure 2.1Map of Louisiana Showing Tensas Parish (Purple) and Franklin Parish 
(Gold) Where the Two Field Trials Were Established ......................................... 10 
 
Figure 2.2 Grain Yields of Corn Treated with Varying N Rate and Timing 
Applications at MRRS Site in 2013 and 2014 ..................................................... 21 
 
Figure 2.3 Grain Yields of Corn Treated with Varying N Rate and Timing 
Applications at NERS Site in 2013 and 2014 ..................................................... 22 
 
Figure 3.1 Inorganic N Distribution within the Profile of Unfertilized (0 kg N ha-1) 
Soil in Winnsboro, LA (MRRS) ........................................................................... 59 
 
Figure 3.2 Inorganic N Distribution within the Profile of 201 kg N ha-1 Treated Soil 
in Winnsboro, LA (MRRS) .................................................................................. 60 
 
Figure 3.3 Inorganic N Distribution within the Profile of 403 kg N ha-1 Treated Soil 
in Winnsboro, LA (MRRS) .................................................................................. 61 
 
Figure 3.4 Amount and Distribution of Rainfall Measured in Chase, LA from 
January 2013 to December 2014 ....................................................................... 62 
 
Figure 3.5 Inorganic N Distribution within the Profile of Unfertilized (0 kg N ha-1) 
Soil in St. Joseph, LA (NERS) ............................................................................ 66 
 
Figure 3.6 Inorganic N Distribution within the Profile of 201 kg N ha-1 Treated Soil 
in St. Joseph, LA (NERS) ................................................................................... 67 
 
Figure 3.7 Inorganic N Distribution within the Profile of 403 kg N ha-1 Treated Soil 
in St. Joseph, LA (NERS) ................................................................................... 68 
 
Figure 3.8 Amount and Distribution of Rainfall Measured in St. Joseph, LA from 
January 2013 to December 2014 ....................................................................... 69 

 
 
 
 
 
 

 

 
 
 
 



ix 

 

Abstract 
 

In some corn (Zea mays L.) producing regions of the US, soil testing is still 

recognized as an effective decision tool for nitrogen (N) fertilizer 

recommendation.  This study was conducted to investigate the early-season N 

requirement of corn based on early-season soil nitrate level and document the 

seasonal changes of inorganic N distribution throughout the soil profile.  A Gigger 

silt loam soil and a Sharkey clay soil were selected to establish the trial located in 

northeastern Louisiana.  Treatments of varying N rates were arranged in a 

randomized complete block design with four replications.  Nitrogen fertilizer rates 

of 0, 67, 134, 201, 268, 335, and 403 kg N ha-1 were applied at early-season VE-

V3 leaf stage.  Four split application treatments of the Louisiana N 

recommendation (268 kg N ha-1) were applied at early-season and midseason 

V7-V9 leaf stages (0-268, 67-201, 134-134, 201-67 kg N ha-1). Grain yield and 

yield components were determined. Soil inorganic N content was determined by 

1 M KCl extraction procedure followed by continuous flow injection analysis. 

Gigger silt loam reached a maximum yield of 13.2 Mg ha-1 when the N rate was 

134-134 kg N ha-1 and soil inorganic N content was 80 kg N ha-1.  Sharkey clay 

achieved a maximum yield of 13.1 Mg ha-1 when 268 kg N ha-1 was applied in 

early-season and soil inorganic N content was less than 60 kg N ha-1. Split N 

applications optimized yield for the Gigger silt loam, but experience a yield 

reduction for the Sharkey clay. The optimum N rate for the Gigger silt loam was 

134-134 kg N ha-1 treatment and 201 kg N ha-1 for the Sharkey clay soil applied 

only at early-season (P<0.05). Nitrogen rate had a significant effect on grain yield 
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and 100-grain weight (P<0.01) as well as N uptake and total N grain content 

(P<0.05).  Seasonal changes in inorganic N content occurred mostly in the 0-15 

cm soil layer with decreasing variability with depth. These results show the 

potential for using inorganic N content to determine N application method in 

northeastern Louisiana corn production systems.  
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Chapter 1. Introduction 
 
 Corn (Zea mays L.) is the most widely produced feed grain in the United 

States. Roughly 32.3 million hectares of land in the US are planted to corn with 

most being in the heartland region (USDA - ERS, 2013).  Furthermore, the US is 

the largest producer of corn accounting for 32% of the world’s corn production 

and each American consumes approximately 11 kg of corn annually (NCGA, 

2013).  Archeological evidence suggests that the plant is as old as 80,000 years 

from pollen grain found 200 foot under Mexico City (Gibson and Benson, 2002).  

With the increase in technology over the last century along with research to 

improve farming practices, nationwide production has increased from 1.2 Mg ha-1 

in 1912 to as much as 7.7 Mg ha-1 in 2012 (NCGA, 2013). Corn can be found in 

several different products such as food, drinks (in the form of corn syrup used as 

a sweetener), and even plastics. It is also mixed with livestock feed, which is 

what most of the US corn production is used for. It takes approximately 3 kg of 

corn feed to produce 0.45 kg of beef (NCGA, 2013). It is also used in bio-fuel 

production as well as bio-based plastics (Foley, 2013).  With corn being such a 

versatile crop, a substantial amount of research has gone into improving its yield 

production, disease resistance, and nutrient quality (Saxena and Hooker, 1968; 

Castleberry et al., 1984; Collins et al., 1998; Tollenaar and Lee, 2002; Wisser et 

al., 2006; Amujoyegbe et al., 2007; Major et al., 2010). The corn plant is 

indigenous to the western hemisphere, although the exact location where the first 

corn plants emerged is not known.   
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In Louisiana, corn is the 3rd most produced grain crop, most of which is 

produced in the state’s northeastern region. Planted hectares fluctuate from year 

to year, but have stabilized around ~220,000 hectares over the last few years. 

Although corn production has increased recently, rice (Oryza sativa) has passed 

corn in planted hectares, while soybean (Glycine max) still remains as the most 

planted crop in Louisiana.  Price per kg ha-1 of corn produced also fluctuates 

from year to year, but has remained around $6 recently (USDA-NASS, 2014).  

Louisiana’s average corn yield is about 10.8 Mg ha-1 which is above the national 

average of 7.7 Mg ha-1 (NCGA, 2013). Louisiana owes its high production 

potential partly to the hydrology and soils unique to the area.  The Mississippi 

river is responsible for depositing fertile alluvial soils throughout Louisiana over 

the last few thousand years. Due to frequent flooding of the area, multiple dams, 

weirs, levees, etc. were constructed and subsequently, new sediment deposits 

have been cutoff leading to subsidence, particularly along the coast line.  

Common soils in the Mississippi river alluvial plain are Vertisols, Alfisols, 

Inceptisols, and Entisols. “They are thermic soils and typically have an aquic 

moisture regime that are loamy or clayey, and possess smectitic clay mineralogy” 

(Weindorf, 2008). The area is known to receive a high amount of rainfall and 

averages roughly 1500 to 1700 mm of rain annually (USDA-NASS, 2014) which 

can compromise the nutrient value of soils (Weindorf, 2008).    

Nitrogen (N) is the most yield limiting nutrient in non-leguminous irrigated 

crop production systems. As a result it is the most heavily researched plant 

nutrient in an effort to understand its dynamics in soil and plant systems (Krantz 
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et al., 1943; Stanley and Smith, 1956; Olsen et al., 1970; Devitt et al., 1976; 

Sinclair, 1986; Smil, 1999; Ercoli et al., 1999; Zhu and Chen, 2002).  Nitrogen 

fertilizer application increased dramatically after World War II.  As explained by 

the Wessels Living History Farm (2015), N is the main component in high 

explosives such as trinitrotoluene (TNT) and due to the need for explosives 

during wartime, multiple chemical plants were built to keep up with the demand. 

These chemical plants were then used to produce ammonia for agricultural 

fertilization purposes.  Since researchers, as well as producers, already had 

knowledge of nutrient management as a way to help boost yields, fertilizer use 

increased significantly during this time period.  During the 1940s most of the 

ammonia produced was applied as “ammonium nitrate pellets.” (Wessels Living 

History Farm, 2015).  However, this form of fertilizer is highly explosive making it 

difficult to transport.  After several accidents transporting the material, scientists 

began working on a way to use anhydrous ammonia as a fertilizer. Anhydrous 

ammonia is not explosive, but needs to be kept under pressure and refrigerated.  

In 1943, researchers at the Mississippi Experimental Research Station 

developed a system that uses knife like applicators to deposit the anhydrous 

ammonia about 15-20 cm below the soil surface.  This application was 

immediately followed by a soil mixing tool that covered the hole left behind from 

application of the fertilizer thereby trapping it in the ground.  This method began 

to replace the application of the pellet form of N fertilizers and is still used today 

in the Midwest. 
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As an insurance, most producers apply N in excess amounts to maximize 

yields.  Unfortunately, this can have negative impacts on the environment 

through groundwater and surface water contamination via leaching and runoff 

(Power and Schepers, 1989; Ju et al., 2003). Excess N can also decrease 

disease resistance. Long et al. (2000) reported an increase in disease incidence 

of rice blast (Magnaporthe grisea) when N was applied in excess. Several 

different methods have been developed over the years to improve N fertilization 

conservation methods.  One of which being the split application of N fertilizers in 

which a portion of the field recommendation is applied early-season VE-V3 leaf 

stage and the remainder applied midseason or at V7-V9 leaf stage.  Abbasi et al. 

(2012) reported a 14% increase in N use efficiency (NUE) when N fertilizer is 

split applied for maize production. Similarly, Lopez-Bellido et al. (2005) reported 

increases in NUE in wheat (Triticum aestivum) when N fertilizer was split applied 

and experienced significantly increased yields when half or one-third of the N 

recommendation was applied at stem elongation.  

The use of optical sensors to determine N deficiency level in plants and 

derive an N fertilizer recommendation is a relatively new N decision tool 

undergoing research in the past decade. Raun et al. (2001) developed a system 

that measures and records the crop reflectance of two parts of the N managed 

field using an optical sensor: A strip of the field that has been sufficiently fertilized 

and the rest of the field that has been applied with a portion of the N 

recommendation for the area. The difference in these two values is called a 
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response index and can be used to calculate yield response to determine if 

further N should be applied.  

While the previously mentioned N decision tool is proficient in many ways, 

soil testing has consistently been the best way to determine the nutrient content 

of soil.  However, this can be labor intensive when used in large fields as well as 

financially detrimental to the producer, thus promoting the use of other methods. 

Multiple soil testing methods were developed for the purpose of determining soil 

N content and its impact in predicting proper fertilizer application. The first 

successful method, the Pre-Sidedress Nitrate Test, was pioneered by Magdoff et 

al. (1984).  Samples are taken when the crop is approximately 15-30 cm tall.  

Once the soil inorganic N content is known, a proper N recommendation can be 

made and applied.  This method only recommends N fertilizer based on soil N 

concentration and the yield goal of the crop (Magdoff, 1991).  Another soil testing 

method, developed by Schmit and Randall (1994), takes 24 cm soil samples 

before planting and determines concentration of NO3-N.  With the concentrations 

of NO3-N and calculating a soil N credit by “subtracting the optimum N rate, 

which was measured experimentally, from the tabular N recommendation 

presently used in Minnesota,” they were able to accurately determine N 

recommendations for corn.  The advantages of this method are that it is able to 

estimate residual N from all other possible N sources that the current N 

recommendation is adjusted for and it does not necessarily call for further N 

applications.   
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 Although extensive research has been conducted on N dynamics in 

different parts of the US, very limited research has been done in Louisiana 

relating soil inorganic N to corn production systems.  This study was conducted 

to evaluate the relationship between soil inorganic N content and corn yield as 

well as to document the changes in inorganic N distribution patters throughout 

the root zone and lower rooting depth within two cropping seasons on soils in 

Northeastern Louisiana that are commonly grown to corn.   
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Chapter 2. Investigating Early-Season Nitrogen Requirement of Corn Based 
on Soil Texture and Early-Season Soil Nitrate Level.  
 
2.1 Introduction 
 

Corn (Zea mays L.) is the most widely produced feed grain in the United 

States. Roughly 32.3 million hectares of land in the US are planted to corn with 

most being in the Heartland region.  Approximately 20% of the crop is exported 

to other countries (USDA - ERS, 2013). Corn ranks third in planted hectares in 

the state of Louisiana behind rice (Oryza sativa) (second) and soybeans (Glycine 

max) (first). Planted hectares typically fluctuate from year to year, but hover 

around ~220,000 ha each year with most of the crop being grown in the 

northeastern region (USDA – NASS, 2014).  In Louisianan, corn is often times 

rotated with cotton which improves cotton (Gossypium hirsutum) lint yields 

(Boquet and Coco, 1994). They found that lint yields of cotton were higher when 

rotated with corn compared to continuous cotton.  

 Nitrogen (N) is the most limiting plant nutrient in non-leguminous irrigated 

crop production systems and because of this, extensive research has been done 

on understanding its effects on crop production (Broadbent et al., 1958; Fox and 

Hoffman., 1981; Varvel and Peterson., 1990; Benbi et al., 1991; Arregui and 

Quemada., 2008; Schmitt and Randal., 2013).  Frequently, N is applied in excess 

of crop requirement as a means to minimize crop N deficiencies. While this will 

insure the crop will receive adequate N, it can lead to excessive vegetative 

growth that may cause the crop to lodge negatively affecting yields (Basak et al., 

1962).  Excess N can also cause nitrate pollution in surface waters via runoff and 

ground water via infiltration (Bijay-Singh et al., 1995).   Understanding N 
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dynamics within the soil profile is critical for proper N management.  Soil texture 

plays an important role in N behavior. Tremblay et al. (2012) reported that soil 

textures (fine or medium texture) can have a large effect on N response. Crops 

growing on fine texture soils such as clays, silty clays, silty clay loams, and clay 

loams are more likely to have pronounced N responses than those planted on 

medium texture groups such as loams, silt loams, sandy clay loams, and loamy 

fine sands.  A study by Ping et al. (2008) reported that corn grown on sandy soils 

would require less N fertilizer than corn grown on clayey soils. Nitrogen 

mineralization is less pronounced in clayey soils than soils with less clay content 

(Zhu et al., 2009; Ros et al., 2011).  Physical changes to the soil profile such as 

compaction or water logging may lead to the development of anaerobic 

conditions, which can in turn lead to a decrease in microbial activity, stimulating 

ammonium (NH4-N) formation and accumulation, and causing nitrate (NO3-N) 

losses by denitrification (Jansson and Person, 1982). It is because of these 

dynamic transformation processes that make N one of the most challenging 

nutrients to understand and adjust for in agriculture.  As a result, development of 

N fertilizer rate decision tools are being researched to help deliver the proper 

amount of N to the crop without causing detrimental effects to the environment. 

One N decision tool is the use of soil testing to determine the amount of inorganic 

N present in the soil in the early-season and using this to adjust N fertilizer rates 

to maximize crop yield without applying excess N. One such soil testing method 

is the Magdoff Pre-Sidedress Nitrate Test (PSNT; Magdoff, 1991) for corn in 

which soil samples are taken to a depth of 30 cm when the crop is 15-30 cm tall 



9 

 

and then tested for available soil NO3-N.  This method uses the height of the crop 

as a gauge for determining soil sampling time.  According to Magdoff (1991), a 

better estimate of plant available N and fertilizer recommendation can be drawn 

when soil sampling is done right before or as close as possible to when the N 

fertilization will be made.   

 Although the effects of N fertilization on crop yield has been researched 

extensively, very little research has been conducted to relate soil inorganic N to 

yield in Louisiana corn production systems. To better understand these concepts, 

a study was conducted to determine the optimum N fertilizer rate for corn 

production in northeastern Louisiana based on soil texture and early-season soil 

NO3-N testing.  

 
2.2 Materials and Methods 

 
2.2.1 Site Description, Treatment Structure, and Trial Establishment 

 
In 2013 and 2014, a corn research trial was established on two soils of 

differing textures in northeastern LA: a Sharkey clay soil in St. Joseph, LA at the 

Northeast Research Station (31°, 56’, 28.94” N, 91°, 14’, 11.43” W) and a Gigger 

silt loam soil in Winnsboro, LA at the Macon Ridge Research Station (32°, 08’, 

22.05” N; 91° 41’, 13.93” W).  Saint Joseph is located in Tensas Parish while 

Winnsboro is in Franklin Parish hereafter termed as NERS and MRRS, 

respectively (Fig 2.1).  Sharkey clay is classified as; very fine, smectitic, thermic 

Chromic Epiaquerts (USDA - NCSS, 2013).  This soil is very deep, poorly to very 

poorly drained, very slowly permeable that formed in an clayey alluvium. Gigger 
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silt loam soil is classified as; fine-silty, mixed, active, thermic, Typic Frafiudalfs 

(USDA - NCSS, 2003) and is described as, very deep, moderately well drained, 

slowly permeable soils with fragipans that formed in a thin mantle of loess over 

loamy sediments. All four site-years were established and managed under an 

irrigated system.  Irrigation at NERS was supplied using furrow irrigation via poly 

pipe and overhead sprinkler irrigation was used at MRRS.  Important field activity 

dates can be found in Table 2.2. Initial chemical properties of soil from both 

locations are reported in Table 2.1. 

 

 

Figure 2.1 Map of Louisiana showing Tensas Parish (purple) and Franklin Parish 
(gold) where the two field trials were established (Family search, 2015). 
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Table 2.1 Chemical properties of soil at different depths for both locations. 

‡Site  *pH 
Organic 
matter 

Total 
N 

Total    
C  

P K S Ca Mg Cu Zn 

 Depth, 
cm 

 
% ------------------------------------------------†mg kg-1 ----------------------------------------------- 

MRRS 

0-15 6.7 2.24 6164 41164 26 74 12 994 109 1.1 2.7 

15-30 6.7 2.04 1885 10920 12 54 9 1,123 125 0.5 0.5 

30-45 5.4 - 1689 8524 9 80 18 1,084 167 1.1 0.2 

45-60 5.0 - 1518 7623 10 92 17 968 205 1.0 0.5 

>60 4.6 - 1514 7230 13 95 18 1,042 298 1.6 0.6 

NERS 

0-15 6.1 5.91 1354 12661 55 454 5 4,240 890 4.5 4.4 

15-30 6.6 5.95 1042 2517 32 361 2 4,780 1,005 6.2 2.9 

30-45 7.2 - 1030 2051 14 349 3 5,339 1,118 6.1 1.9 

45-60 7.6 - 1106 2410 11 349 4 5,446 1,151 5.8 1.9 

>60 7.8 - 1072 1764 13 353 6 5,261 1,132 5.2 2.1 

*10g soil:10 mL DI H20 for pH analysis procedure, equilibrate for 2 hours, then measured. †Total N and C were 
based on dry combustion while all other nutrients were based on Mehlich-3 procedure. ‡Site: MRRS – Macon 
Ridge Research Station, NERS – Northeast Research Station.  
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Table 2.2 Field activity dates and plot size for MRRS and NERS for years 2013 and 2014.  

*V# = leaf collar stage of corn crop. ¶Length x width. †Site : MRRS – Macon Ridge Research Station, NERS – Northeast 
Research Station.  
 

†Site-year 
Designation 

¶Plot Size, 

m 
Planting 

*Early-Season 
N application 

*Midseason        
N application 

Harvest 

MRRS 2013 13.76 x 4 10-Mar-13 27-Mar-13 (V3) 
23-May-13       

(V7-V8) 
16-Aug-13 

MRRS 2014 13.76 x 4 19-Mar-14 6-Apr-14 (V3) 
8-May-14        
(V8-V9) 

19-Aug-14 

NERS 2013 12.19 x 4 28-Mar-13 30-Apr-13 (V5) 
20-May-13        

(V8-V9) 
27-Aug-13 

NERS 2014 13.76 x 4 21-Apr-14 8-May-14 (V3) 
27-May-14      

(V8-V9) 
16-Sept-14 
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Corn hybrids used were Pioneer 2088HYR and Pioneer 1319HR on Sharkey clay 

and Gigger silt loam, respectively. Seeding rates were 80,000 seeds per hectare 

with row spacing of 1 m.  Irrigation was used when necessary via a poly pipe 

irrigation system for Sharkey clay soil and an overhead sprinkler system for 

Gigger silt loam soil.  Eleven treatments consisted of N applications at varying N 

rates and different application times (Table 2.3). One check plot (0 applied N) 

was included in each replication. Nitrogen rates of 0, 67, 134, 201, 268, 335, and 

403 kg ha-1 were applied at VE-V3 leaf stage, hereafter referred to as early-

season, while the Louisiana N fertilizer recommendation of 268 kg N ha-1 was 

split into four applications (0-268, 67-201, 134-134, 201-67 kg ha-1) and applied 

at early-season and the V8 leaf stage, hereafter referred to as midseason. 

Nitrogen source for Sharkey clay was UAN-S (32-0-0-2) injected with a fertilizer 

rig and granular urea (46-0-0) was broadcast by hand for Gigger silt loam.  

Phosphorus (P) and Potassium (K) rates were applied in accordance with test 

results performed by the LSU AgCenter Soil Testing and Plant Analysis 

Laboratory to maintain sufficient nutrient levels.  Weed and pest management 

practices recommended by the LSU AgCenter were followed.   

2.2.2 Soil Sampling 

Soil samples were collected at the early-season and harvest stage with a 

standard soil probe (JMC; Model No. 641-792-8285) from the two middle rows of 

four-row plots.  A total of eight soil cores from each plot were sampled to a depth 
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Table 2.3 Treatment description of the field trials conducted in St. Joseph, LA 
and Winnsboro, LA in 2013 and 2014. 
 
 
 

 

 

 

 

 

of 30 cm and then divided into 15 cm sections. Soil samples were then oven-

dried (Despatch LBB series; model number LBB2-18-1) at 55°C for a minimum of 

3 days, then processed using a Humboldt electric flail soil grinder, and then 

sieved through a built in 2 mm sieve. 

2.2.3. Soil Analysis 

 Inorganic N content was determined by weighing 5 g of soil into 125 mL 

plastic bottles followed by the addition of 35 mL of 1 M KCl.  Samples were 

shaken for 1 hour on a reciprocal shaker (Eberbach; model number-E6010.00) 

then filtered using No. 42 Whatman filter paper.  Extracts were analyzed for NH4-

N and NO3-N/nitrite (NO2-N) content using a continuous flow injection analyzer 

(Lachat QuickChem 8500 series 2), simultaneously.  The method for determining 

NO3-N content is similar to that outlined by Keeney and Nelson (1982).  Nitrate is 

reduced to NO2-N by passing through a cadmium reduction column and then 

Early-Season        
N rate, kg ha-1 

Midseason               
N rate, kg ha-1 

0 0 

67 0 

134 0 

201 0 

268 0 

335 0 

403 0 

0 268 

67 201 

134 134 

201 67 



15 

 

reacts with a color reagent (sulfanilamide) to produce a pinkish color that can be 

measured colorimetrically at 520 nm. Ammonium analysis method was similar to 

that outlined by Reardon (1966). Ammonium present in the sample reacts with 

salicylate-nitroprusside-hypochlorite mixture to produce an blue color that can be 

measured colorimetrically at 660 nm. Total inorganic N in kg ha-1 within the 0-30 

cm soil layer was determined by summing the inorganic N content from the 0-15 

cm and 15-30 cm soil samples for each plot.  Conversions of mg L-1 to mg kg-1 to 

kg ha-1 are shown below.      

mg L x 
0.035 L 1 M KCl

0.005 kg soil
 = mg kg

-1
 

mg kg
-1

x 2 = lbs acre 

lbs ac x 
1 lbs

1 ac
 x 

2.47 ac

1 ha
 x 

kg

2.204 lb
 = 1.12 kg ha

-1
 

lbs acre x 1.12 = kg ha
-1

 

 Organic matter was determined using a modified version of the 

combustion method.  First, 20-mL crucibles were weighed (g) and recorded.  Ten 

grams of soil was then weighed into crucible and placed into a furnace for 8 

hours at 550° C.  After cooling, samples were weighed again and percent organic 

matter was estimated using the following equation: 

Equation 2.1 

OM %= 
Crucible+soil before combustion-Crucible+soil after combustion

Crucible+soil before combustion
 x 100 
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2.2.4 Grain Yield and Yield Components  

At harvest, a plot combine (Massey Ferguson 8XP) was used to collect 

grains from the two middle rows of each plot. The harvester was equipped with 

Harvest Master Instrumentation to determine plot weight.  Sub samples were 

taken to determine grain moisture and seed weight.  Grain moisture for all four 

site-years was determined using a grain analysis computer (Dickey-john; model 

number – GAC2500 UGMA) for further analysis once plot yield was determined.  

Grain moisture was adjusted to 155 g kg-1 and yield was calculated in bushels 

per acre and then converted to kg ha-1 using the following equations:  

Equation 2.2 

Yield 155 g kg-1 moist adj. (lbs/ac)= [

Plot yield (lbs)

(
Plot size (ft

2
)

43560
)

] x [
(100-moisture content)

(100-15.5)
] 

Equation 2.3 

 

Adjusted yield (bu/ac)= 
155 g kg-1 moist adj. (lbs/ac)

56
 

 

 

Equation 2.4 

 

Yield (kg ha
-1

)=Yield (bu/ac) x 
56 lbs

bu
x 

1 kg

2.2 lbs
x

2.47 ac

ha
 

 

One hundred (100) grains were counted using an Agriculex ESC-1 automated 

seed counter and weighed (g).  Stalk and ear counts were taken in 2014 in both 

locations from the inner 3-m sections of the second and third rows of each plot.  

A 3-m polyvinyl chloride (PVC) pole was used to mark the section from which 

stalk and ear counts were taken.  Plant population was determined by multiplying 
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stalk count by the area of 1 ha then dividing by the area that stalk counts were 

measured.  Kernels per ear were also determined. The equations are shown 

below:  

Equation 2.5 

Plant population per ha=
stalk ct. x 10000 m2

6.18 m2 
 

Equation 2.6 

Kernels per ear= 

[
 
 
 
 
Yield kg ha

-1

Ears ha
-1

(Seed wt. (kg)

100
) ]

 
 
 
 

 

2.2.5 Grain Nitrogen Analysis 

Grain subsamples taken from each plot were oven dried at 55C for a 

minimum of 48 hours, processed using a WonderMill grain processor (Model No. 

– WM200) and then dried again for 24 hours at 55C before analysis.  Each 

sample was then weighed to 20 mg and analyzed using a CN dry combustion 

analyzer (Elementar Americas Inc, Vario EL Cube) to determine total N content. 

Nitrogen uptake in kg ha-1 was computed using the following equation:  

 

Equation 2.7 

N Uptake (kg ha-1)=Plot Yield (kg ha
-1

) x (
Total N%

100
) 
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2.2.6 Nitrogen Use Efficiency Determination 

 

 Nitrogen use efficiency (NUE) was calculated for all four site-years using 

the difference method outlined by Pomares-Garcia and Pratt (1978). This method 

calculates NUE by subtracting N uptake in kg ha-1 of the plants that were 

unfertilized from N uptake of plants that were fertilized, then dividing by the rate 

of N applied in kg ha-1.  The equation used to determine NUE can be found 

below.  

Equation 2.8 

NUE (%)= 
N uptake of fertilized crop (kg ha

-1)- N uptake of unfertilized crop (kg ha
-1

)

Rate of N fertilizer applied (kg ha
-1

)
 x 100 

 

2.2.7 Statistical Analysis of Measured Parameters  

For each site-year, measured parameters were analyzed by performing 

one-way analysis of variance using PROC MIXED procedure in SAS 9.3 (SAS, 

2012). Fixed variable was N treatment (rate and applications scheme) and 

random variable was replication.  Mean separation procedure and contrast 

analysis were conducted for variables with statistically significant effect in 

ANOVA.  Contrast analysis between the early-season only and split applications 

of the current Louisiana N recommendation of 268 kg N ha-1 was performed 

using orthogonal contrast.  The least significant difference (LSD) method at the 

5% level of confidence was used to determine significant differences among 

treatments unless otherwise indicated.  Average, standard error, and standard 

deviation of soil inorganic N content were computed using Microsoft Excel 2010. 
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2.3 Results and Discussion 

2.3.1. Effect of N Rate on Grain Yield 

Grain yield results for MRRS 2013 and 2014 and NERS 2013 and 2014 

can be found in Fig. 2.2 and Fig. 2.3, respectively. Maximum yield in 2013 was 

achieved with the application of 134-134 kg N ha-1 returning the highest yield 

(13.2 Mg ha-1) for MRRS (P<0.05) and 268 kg N ha-1 in early-season returning 

the highest yield (13.1 Mg ha-1)  for NERS (P<0.05). For MRRS in 2013, the 134-

134 kg N ha-1 split application had similar yields to single applications of 403 kg 

N ha-1 (13 Mg ha-1) and 335 kg N ha-1 (12.6 Mg ha-1), despite the reduced 

amount of applied N.  Similarly, at NERS for 2013 the 268 kg N ha-1 treatment 

had similar yield (13.1 Mg ha-1) to 403 (13 Mg ha-1) and 335 (12.7 Mg ha-1) kg N 

ha-1 treatments.  The only split treatment of 268 kg N ha-1 that was significantly 

different was 67-201 kg N ha-1for NERS in 2013.  Yields for early-season only 

applications increased linearly and were significant up to 335 kg N ha-1 for MRRS 

2013 and 268 kg N ha-1 for NERS 2013.  Effects of increasing yield with 

increasing N rates were similar to those found by Halvorson et al. (2005), 

Shapiro et al. (2006), and Schlegel and Havlin (2013). These results suggest that 

the optimum N rate and application timing for MRRS and NERS in 2013 are 134-

134 kg N ha-1 split application and 268 kg N ha-1 single application, respectively. 

Treatments of 67-201 kg N ha-1 and 268 kg N ha-1 were the optimum N rates and 

applied timings for MRRS and NERS in 2014, respectively.   

The decrease in yield in 2014 compared to 2013 may be partially 

attributed to heavy rainfall in the early part of the growing season. For MRRS 
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2014, shortly after N application and corn was approximately at V2-V3 leaf stage, 

a heavy rain event passed through dropping ~65 mm of rain resulting in the trial 

being flooded for about 24 hours.  With this event, there was a high likelihood 

that the N fertilizer was washed away which resulted in the trial experiencing a 

yield reduction averaging 26% for early-season only applications and 16% for 

split N applications compared to the previous year.  These findings are consistent 

with those of Singh et al. (1985) and Mukhtar et al. (1990) wherein a reduction in 

grain yield was observed when the crop was exposed to flooded conditions for a 

minimum of 24 hours in the early part of their growing seasons.  Although a 16% 

reduction in yield was a significant loss, it demonstrated the benefits of split 

applying N fertilizer in that it can reduce the loss to total yield if the early-season 

application of N were to be compromised by weather factors. The highest yield 

that an early-season only application of N attained for MRRS 2014 was 8.7 Mg 

ha-1 at 403 kg N ha-1, while the split applications of 67-201 kg N ha-1 both had 

yields of 10 Mg ha-1. In addition to the heavy rainfall, what appeared to be 

Diplodia ear rot (Stenocarpella maydis) was also present within the trial.  Rating 

of corn grain for MRRS 2014 was done to qualitatively assess possible damage 

the disease had on the crop.  Grain rating was also done for NERS 2014, even 

though no disease was found in the crop.  Ratings of corn grains for site-years 

MRRS 2014 and NERS 2014 are reported in Table 2.6.  Wet conditions 

prevented the timely planting of corn at NERS in 2014.  Planting took place in 

mid-April when traditionally, planting occurs in mid-March.  Due to the late 

planting, the yield potential of the crop was compromised resulting in the 
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reduction in yield for this site-year.  Early-season N treatments suffered an 

average loss of 58% while split N applied treatments suffered a loss of 46% 

when compared to the previous year. Mascagni and Boquet (1996) pointed out 

that the optimum planting dates for the area are from mid-March to mid-April and 

experienced similar results with some years showing a reduction in yield due to 

mid-April planting.  

 

Figure 2.2 Grain yields of corn treated with varying N rate and timing applications 
at MRRS site in 2013 and 2014. *Differences in letter groups are results of mean 
separation using LSD in SAS (P<0.05). 
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Figure 2.3 Grain yields of corn treated with varying N rate and timing applications 
at NERS in 2013 and 2014.  *Differences in letter groups are results of mean 
separation using LSD in SAS (P<0.05).  
 

2.3.2 Effect of Different N Application Method on Grain Yield 

Mean corn grain yield under split and early-season only application of the 

Louisiana N fertilizer recommended rate of 268 kg N ha-1 is reported in Table 2.4 

and Table 2.5.  Two out of the four treatments returned high yields with 

significant differences (P<0.05) in MRRS 2013 with the even split application 

(134-134 kg N ha-1) returning a 20% increase in yield and the highest yield out of 
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all treatments. However, yield suffered a 9% reduction when the total N 

recommendation was applied at midseason for MRRS 2013 (P<0.05). For NERS 

2013, all four treatments had a reduction in yield with the 0-268 kg N ha-1 

application being significant at 26% (P<0.05).    For MRRS 2014, yield increases 

as high as 33% were attained by treatments 0-268 and 67-201 kg N ha-1 

(P<0.05).  Yield increases of 16% were also seen in 134-134 and 201-67 kg N 

ha-1, but were not significant. Similarly, site-year NERS 2014, experienced 

reductions in yield across all four treatments as high as 28% (P<0.1) alluding to 

the fact that split applications of N fertilizer are not conducive for this soil.   

Several studies have been conducted that point to the benefits of split application 

of N fertilizers. Gehl et al. (2005) reported that a 40% reduction of N rates could 

be expected when N was split applied. Herron et al. (1971), Gerwing et al. 

(1979), and Abbasi et al. (2012) all reported yield increases with the use of split 

N applications.  Although split N treatments returned maximum yields in the 

Gigger silt loam soil and early-season only applications returned maximum yields 

in the Sharkey clay soil, it is difficult to say soil texture was the cause for the 

difference in timing of fertilizer application.  Soil texture has been reported to 

have an effect on crop N response (Tremblay et al., 2012). However, no 

evidence was found to suggest soil texture would influence the timing of fertilizer 

application.  
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Table 2.4 Contrast analyses for early-season only vs split application of 268 kg N 
ha-1 for site MRRS 2013 and 2014.  

†Site-Year 
N Application                 

kg N ha-1 
Yield,         

Mg ha-1 

% 
increase/decrease      

in yield 
*P-value 

MRRS 
2013 

268-0 11.0 - - 

0-268 10.0 -9 <0.05 

67-201 11.3 +3 NS 

134-134 13.2 +20 <0.05 

201-67 12.1 +10 <0.05 

MRRS 
2014 

268-0 7.7 -  

0-268 10.2 +32 <0.05 

67-201 10.3 +33.5 <0.05 

134-134 8.9 +16 NS 

201-67 8.9 +16 NS 

†Site: MRRS – Macon Ridge Research Station. *NS = Not significant at 0.05 
probability level. 

 
Table 2.5 Contrast analyses for early-season only vs split application of 268 kg N 
ha-1 for site NERS 2013 and 2014.  

†Site-Year 
N Application 

kg N ha-1 
Yield,      

Mg ha-1 

% 
increase/decrease   

in yield 
*P-value 

NERS 
2013 

268-0 13.1 - - 

0-268 9.6 -26 <0.05 

67-201 11.6 -11 NS 

134-134 12.7 -2.5 NS 

201-67 12.0 -8 NS 

NERS 
2014 

268-0 7.4 - - 

0-268 5.3 -28 <0.1 

67-201 6.4 -14 NS 

134-134 7.1 -4.5 NS 

201-67 6.0 -19 NS 
†Site: NERS – Northeast Research Station. *NS = Not significant at 0.05 
probability level.  
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Table 2.6 Corn ratings for MRRS 2014 and NERS 2014.  

†Site 
N Rate,       
kg ha-1 

*,¶Rating 

 0 1.5 d 

 67 3.4 bcd 

 134 3.0 cd 

 201 4.1 bcd 

MRRS 268 3.9 bcd 

 335 5.5 abc 

 403 3.6 bcd 

 0-268 7.3 a 

 67-201 5.8 abc 

 134-134 6.0 ab 

 201-67 5.9 abc 

 0 4 cd 

 67 2.1 d 

 134 5.1 bc 

 201 6.8 b 

NERS 268 8.8 a 

 335 8.1 a 

 403 9.3 a 

 0-268 8.1 a 

 67-201 8 ab 

 134-134 7.5 ab 

 201-67 7.5 ab 
*Differences in letter groups in columns are results of mean separation using LSD 
in SAS (P<0.05). ¶Rating scale on 1-10 with 1 being poor quality grain and 10 
being premium quality grain.  †Site: MRRS – Macon Ridge Research Station 
NERS – Northeast Research Station.  

 

2.3.3 Effect of Soil Inorganic N Content on Yield 

 Early-season and harvest soil inorganic N content was averaged across 

the field for both soil depths (0-15, 15-30 cm) and then added together to 

determine the average total inorganic N content for both locations. Soil inorganic 

N content for both locations can be found in Tables 2.7.  Results show 

approximately early-season N levels of 60 kg N ha-1 for NERS 2013 and 80 kg N 
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ha-1 for MRRS 2013 even before N application.  These levels were rather high 

compared to unpublished data of previous years where the inorganic N content 

averaged only 10-15 kg N ha-1 for NERS and 50-60 kg N ha-1 for MRRS. Site-

year NERS 2013 at harvest showed a slight increase in soil inorganic N content 

from 60-67 kg N ha-1 which appeared to be the result of increasing NO3-N in the 

0-15 cm soil layer. This may be due to residual NO3-N remaining from UAN 

applications not taken up by the previous crop. On the other hand, there was, no 

apparent change in total inorganic N content seen in the 15-30 cm soil layer from 

early-season to harvest. Conversely, MRRS 2013 showed a substantial decrease 

in inorganic N from 80 to 30 kg N ha-1.  When looking at the breakdown of 

inorganic N, a substantial reduction in NH4-N from 62 to 24 kg N ha-1 from early-

season to harvest was observed in both the 0-15 and 15-30 cm layer as the 

probable cause for this drop in total inorganic N.  There was a slight reduction in 

NO3-N (18 to 13 kg N ha-1), but this was not as substantial as the NH4-N 

reduction.  Soil inorganic N reductions for 2013 appeared to occur mostly in the 

0-15 cm soil layer.  Site-year NERS 2014 experienced a decrease in total 

inorganic soil N from 54 to 41 kg N ha-1 of which the decrease was attributed to a 

reduction in NH4-N from 40 to 26 kg N ha-1 that occurred mostly in the 0-15 cm 

layer.  Site-year MRRS 2014 reported an early-season soil N of 25 kg N ha-1 

which was substantially less than the early-season soil N of the previous year (80 

kg N ha-1).  At harvest, MRRS 2014 showed an increase in total inorganic soil N 

from 25 to 43 kg N ha-1 with a marked increase of NO3-N in the 0-15 cm layer 

and NH4-N in both the 0-15 and 15-30 cm layer.   
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For MRRS 2013 the maximum yield recorded was 13.2 Mg ha-1 from plots 

with early-season soil inorganic N level of approximately 80 kg N ha-1 and if 

treated with 134-134 kg N ha-1. This N application resulted in a numerically 

higher yield when compared to the 403 kg N ha-1 treatment showing a yield 

increase, with less N applied. The following year early-season soil N dropped to 

25 kg N ha-1 and the maximum yield recorded was 10 Mg ha-1 when the split 

application of 67-201 kg N ha-1 was applied.  For NERS 2013, early-season soil 

N was 60 kg N ha-1 and the maximum yield achieved was 13.1 Mg ha-1 when 268 

kg N ha-1 was applied. The following year, the early-season soil N level only 

reduced to 54 kg N ha-1, but the maximum yield was reduced to 7.9 Mg ha-1.  

Again, this was most likely the cause of late planting, not the reduction in soil 

inorganic N.  

Soil testing could be used to determine N application rates on a field scale 

or a regional scale over may site-years (Blackmer et al., 1989).  It was difficult to 

establish an optimal early-season soil inorganic N content level for both of these 

locations given that the second year of data was affected due to climatic 

conditions.  In 2014, both locations had reductions in yield for different reasons: 

rain washing away the applied N for MRRS and rainfall delaying planting for 

NERS.  Because of this, only the 2013 data can be used to estimate optimal N 

rate for each location weakening the estimation.  Based on the data from 2013, 

the application of 134-134 kg N ha-1 when soil inorganic N is approximately 75-90 

kg N ha-1 would potentially optimize yield.  Likewise, application of 268 kg N ha-1 

would be the optimal N rate when soil inorganic N was 55-65 kg N ha-1.   
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2.3.4 Effect of N rate on Yield Components and N uptake 

Yield components for MRRS 2014 and NERS 2014 can be found in Table 

2.8.  Nitrogen rate effect showed significant differences in yield and 100 grain 

weight for both site-years (P<0.01).  Split N applications achieved higher grain 

weight than all other treatments for MRRS 2014, although these increases were 

not significant. 

 
Table 2.7 Average of soil inorganic N distribution at 0-15 and 15-30 cm depth 
across the entire field for both locations in 2013 and 2014 for early-season and 
harvest sampling periods. 

†Site-Year         
Sampling Time  

Depth, 
cm 

Ammonium,        
kg ha-1 

Nitrate,                
kg ha-1 

Total Inorganic 
N,  kg ha-1 

MRRS 2013          
Early-Season 

0-15 35 11 46 
15-30 26 7 33 
sum 62 18 80 

 
0-15 13 8 22 

MRRS 2013 Harvest 15-30 11 5 8 

 
sum 24 13 29 

MRRS 2014          
Early-Season 

0-15 13 5 18 
15-30 6 1 7 
sum 19 6 25 

 
0-15 18 11 29 

MRRS 2014 Harvest 15-30 12 2 14 

 
sum 30 13 43 

NERS 2013          
Early-Season   

0-15 29 4 34 
15-30 15 11 26 
sum 44 16 60 

 
0-15 23 18 41 

NERS 2013 Harvest 15-30 17 9 26 

 
sum 40 27 67 

NERS 2014          
Early-Season 

0-15 24 6 30 
15-30 16 8 24 
sum 40 14 54 

 
0-15 15 9 24 

NERS 2014 Harvest 15-30 11 6 17 

 
sum 26 15 41 

†Site: MRRS – Macon Ridge Research Station, NERS – Northeast Research 
Station. *n=120 
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 Conversely, the early-season only applications of 403, 335, and 268 kg N ha-1 

achieved higher grain weight than the split N treatments for NERS 2014. These 

increases were also not significant.  For MRRS 2014, the split N application of 

67-201 and 134-134 kg N ha-1 achieved the maximum grain weight compared to 

all treatments and were significantly different from 0, 67, 134, 201, and 268 kg N 

ha-1 applied plots (P<0.01). However, the treatment of 67-201 kg N ha-1 resulted 

in a 15% increase in yield when compared to 134-134 kg N ha-1 that was 

significant (P<0.01). Nitrogen rate had no significant effect on plant population for 

both locations.  For NERS in 2014, plant population averaged ~79,400 plants ha-

1 for early-season only treatments and ~77,600 plants ha-1 for split N treatments.  

At MRRS in 2014, plant population averaged ~72,000 plants ha-1 for early-

season only and ~74,000 plants ha-1split N treatments. There was significant 

difference among treatments for kernels per ear at both locations.  For MRRS 

2014, there was no significant difference between the early-season only 

application of 268 kg N ha-1 and all split N applications.  Treatments of 67, 134, 

201, and 268 kg N ha-1 were all statistically similar (P<0.05).  At NERS, the early-

season only application of 268 kg N ha-1 was significantly different from the 

treatments of 0-268 kg N ha-1 (P<0.05). 

 A number of factors can affect yield components of corn.  Extensive 

research has shown that increasing N rates can increase yield as well as yield 

components of corn (Samira et al., 1998; Eck, 1984; Kandil, 2013).  While N rate 

can have an effect on grain weight, plant population can also affect this 

parameter.  Arif et al. (2010) reported plant population had a significant effect on 
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corn grain weight between populations of 7.5 (33.2 g) and 9 (30.4 g) plants m2. 

Furthermore, N stress can reduce the number of ears m2 (Pandey et al., 2000) 

and kernels per ear (Sticker et al., 1995), thus decreasing yields.  

 Grain N uptake can be found in Table 2.10 and 2.11. Nitrogen grain 

uptake significantly increased with N rate for all four site-years (P<0.05). Grain N 

uptake of corn receiving split N applications of 134-134 and 201-67 kg N ha-1 

were significantly different from those which received 268 kg N ha-1 in MRRS 

2013 (P<0.05).  These treatments achieved numerically higher N uptake than 

335 and 403 kg N ha-1 applications, but were not significant.  There was no 

treatment effect observed on total N content of corn grain for MRRS in 2014.  

The effects of early-season only applications of 268, 335, and 403 kg N ha-1 on N 

uptake were all statistically similar in NERS 2013 and achieved numerically 

higher N uptake than all split N applications. However, the N rate of 403 kg N ha-

1 was the only treatment that differed significantly (P<0.05).  Plots applied with 

335, 403, and 0-268 kg N ha-1 had the highest grain N content and were only 

significantly different from plots applied with 0, 67, 134, and 201 kg N ha-1 

(P<0.05).  For MRRS 2014, no significant differences were found for grain N 

content.  Split N treatments that were significantly higher than the early-season 

only application (with the exception of 403 kg N ha-1) were those fertilized with 0-

268 and 67-201 kg N ha-1 (P<0.05).  For NERS 2014, early-season only N  

applications achieved the numerically highest N uptake among the treatments, 

but only 403 kg N ha-1 was significantly different from all split N applications 

(P<0.05).  
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Table 2.8 Effect of N rate on corn yield components in 2014 for MRRS and 
NERS. 

*Differences in letter groups in columns are results of mean separation using 
LSD in SAS.  †Site: MRRS – Macon Ridge Research Station, NERS – Northeast 
Research Station. ¶NS = Not significant at α = 0.05. 
 
 
 
 

†Site 
N rate, kg 

ha-1 
Yield, Mg 

ha-1 
Kernels per 

ear 

Plant 
population , 

ha 

100 Grain wt. 
(g) 

 0 1.6 f 102.2 c 84547 a 21.4 d 

 67 4.1 e 306.6 b 72411 ab 22.2 cd 

 134 5.3 e 325.8 b 70793 ab 24.1 cd 

 201 6.5 d 380.1 ab 76861 ab 24.4 cd 

MRRS 268 7.7 c 411.2 ab 68366 ab 29.7 bc 

 335 8.2 bc 457.2 a 72816 ab 26.9 ab 

 403 8.7 bc 451.8 a 72411 ab 29.6 ab 

 0-268 10.2 a 477.5 a 76052 ab 29.1 ab 

 67-201 10.3 a 485.1 a 71602 ab 32.5 a 

 134-134 8.9 b 461.2 a 67152 b 31.3 a 

 201-67 8.9 b 445.5 a 73220 ab 29.7 ab 

N effect P-value <0.05 <0.05 NS <0.01 

 0 0.6 f 3.4 e 79693 abc 24.4 bcd 

 67 1.4 ef 95.1 d 76052 bc 19 e 

 134 2.9 e 152.2 cd 80502 ab 22.9 de 

 201 5.5 cd 275.6 ab 79693 abc 23.7 cd 

NERS 268 7.4 ab 305.5 a 82120 a 27.9 abc 

 335 7.4 ab 309.5 a 78884 abc 28.6 ab 

 403 7.9 a 327.4 a 79288 abc 28.9 ab 

 0-268 5.3 d 222.3 bc 80906 ab 27.9 abc 

 67-201 6.4 abcd 284.1 ab 80097 abc 25.9 abcd 

 134-134 7.1 abc 319.2 a 75243 bc 27.8 abc 

 201-67 6 bcd 309.3 a 74434 c 24.9 abcd 

   N effect P- value <0.05 <0.05 NS <0.01 
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Table 2.9 Effect of N rate on N uptake and grain N content for site MRRS 2013 
and 2014.   

*Differences in letter groups in columns are results of mean separation using LSD 
in SAS.  †Site: MRRS – Macon Ridge Research Station, NERS – Northeast 
Research Station.  ¶NS = Not significant.  
 

†Site-year N rate, kg ha-1 *Grain N Content, % *Grain N Uptake, kg ha-1 

 0 1.12 abc 19 g 

 67 1.04 cd 51 f 

 134 1.00 d 73 e 

 201 1.13 abc 116 cd 

MRRS 
2013 

268 1.13 ab 125 cd 

 335 1.14 ab 144 ab 

 403 1.19 ab 155 a 

 0-268 1.11 bc 111 d 

 67-201 1.17 ab 133 bc 

 134-134 1.20 a 160 a 

 201-67 1.21 a 146 ab 

N effect P - value <0.05 <0.05 

 0 1.21 20 f 

 67 1.24 52 e 

 134 1.29 68 de 

 201 1.22 80 cd 

MRRS 
2014 

268 1.25 96 bc 

 335 1.17 96 bc 

 403 1.26 111 ab 

 0-268 1.30 134 a 

 67-201 1.31 134 a 

 134-134 1.20 106 b 

 201-67 1.24 112 ab 
¶N effect P - value NS <0.05 
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Table 2.10 Effect of N rate on N uptake and grain N content for site NERS 2013 
and 2014.  

 *Differences in letter groups of columns are results of mean separation using 
LSD in SAS. †Site: MRRS – Macon Ridge Research Station, NERS – Northeast 
Research Station.  

†Site-year N Rate, kg ha-1 *Grain N Content, % *Grain N uptake, kg ha-1 

 

0 1.13 def 23 g 

 

67 0.98 g 50 f 

 

134 1.05 fg 85 e 

 

201 1.11 ef 126 d 

NERS 
2013 

268 1.21 bcde 159 abc 

 

335 1.29 ab 165 ab 

 

403 1.35 a 176 a 

 

0-268 1.28 abc 124 d 

 

67-201 1.25 abcd 146 bc 

 

134-134 1.21 bcde 155 bc 

 

201-67 1.16 cde 139 cd 

N effect P- value <0.05 <0.05 

 

0 1.07 abc 1 e 

 

67 1.07 abc 16 de 

 

134 1.01 c 30 d 

 

201 1.13 ab 63 bc 

NERS 
2014 

268 1.04 bc 78 ab 

 

335 1.05 bc 78 ab 

 

403 1.18 a 94 a 

 

0-268 1.05 bc 56 c 

 

67-201 1.03 bc 66 bc 

 

134-134 1.07 abc 76 b 

 

201-67 1.13 ab 68 bc 

N effect P- value <0.05 <0.05 
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2.3.5 Nitrogen Use Efficiency 
 
 Nitrogen use efficiency generally decreased with increasing N rates (Table 

2.12). For MRRS in 2013, the highest NUE of 52% was achieved by corn treated 

with 134-134 kg N ha-1. This was also the maximum NUE across all four site-

years of the study. Furthermore, this N application was significantly different from 

all other 268 kg N ha-1 split applications with the exception of 201-67 kg N ha-1 

treatment (P<0.05).  Site-year NERS 2013 experienced high NUE percentages 

as well with 50 and 51% for 268 kg N ha-1 and 201 kg N ha-1 treatments, 

respectively. Plots which received 134-134 kg N ha-1 in MRRS 2013 and 268 kg 

N ha-1 in NERS 2013 had the highest yields that were greater than 13 Mg ha-1. 

While 201 kg N ha-1 at NERS 2013 achieved an NUE of 51%, the yield was only 

11 Mg ha-1 which was significantly lower than the plots applied with 268 kg N ha-1 

(P<0.05).  Furthermore, the NUE from 201 and 268 kg N ha-1 treatments were 

not significantly different from 3 out of the 4 split N applied plots (67-201, 134-

134, 201-67 kg N ha-1).  When the NUE of early-season only and split N 

applications were averaged there was no difference between N application 

treatments in NUE for MRRS 2014 (44%) and NERS 2014 (25%).  For MRRS 

2013, NUE averaged 41% for early-season only N applied plots and 44% for split 

N applied plots. Likewise, NERS 2013 NUE averaged 31% for early-season only 

N applied plots and 38% for split N applied plots.  

 Similar studies reported an increase in NUE when N fertilizer is split 

applied (Varvel et al., 1997; Fernandez et al., 1998; Zhen-xie et al., 2006). 

Multiple factors can affect the NUE of corn, including soil type, N rate, crop 
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rotation, pest, tillage and weed management practices can all cause a change in 

the NUE of the crop (Balasubramanian et al., 2004).  

 

 
Table 2.11 Nitrogen use efficiency for MRRS and NERS in 2013 and 2014.   

 
NUE, % 

N Rate          
kg ha-1 

*MRRS 2013 *MRRS 2014 *NERS 2013 *NERS 2014 

0 - - - - 

67 47 abc 48 a 39 b 22 cd 

134 40 cde 36 abc 46 ab 22 cd 

201 48 ab 30 bc 51 a 31 a 

268 40 cde 28 c 50 a 29 ab 

335 37 de 23 c 42 ab 23 bcd 

403 34 e 23 c 38 b 23 bcd 

0-268 34 de 43 ab 38 b 21 d 

67-201 42 bcd 43 ab 46 ab 24 abcd 

134-134 52 a 32 bc 49 a 28 abc 

201-67 47 abc 34 abc 43 ab 25 abcd 

Early-Season 
applied N 

41 44 31 25 

Split Applied N 44 44 38 25 
*Difference in letter groups in columns are results of mean separation using LSD 
performed by SAS (P<0.05). MRRS = Macon Ridge Research Station in 
Winnsboro, LA. NERS = Northeast Research Station in St. Joseph, LA.  
 

 

2.4 Conclusions 

The outcomes of this study demonstrated that split application of N 

fertilizer would optimize yields if the early-season inorganic N content of the soil 

is approximately 80 – 100 kg N ha-1.  The optimum N rate to obtain maximum 

yields for MRRS 2013 and MRRS 2014 appeared to be 134-134 kg N ha-1 and 

67-201 kg N ha-1, respectively.  Conversely, early-season only N applications 

performed best on the heavy clay soil with 268 kg N ha-1 being the optimum rate 
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for NERS 2013 and 201 kg N ha-1 for NERS 2014. This study was unable to 

effectively produce a soil inorganic N content level recommendation given the 

climatic challenges that took place during the course of the experiment. However, 

this study showed the benefits of split application of N fertilizer when heavy rains 

occurred in the early part of the growing season.  The heavy rains in the early 

part of the growing season may have washed the early-season applied N 

fertilizer. Given this scenario, significant reductions in yield were expected due to 

N deficiency, but with extra supply of N coming from midseason application of N 

fertilizer this reduction in yield was minimized. Nitrogen rate showed to have a 

significant impact on yield and grain weight. Further research would be required 

to refine the N recommendation based on soil inorganic N content at the time of 

planting.  The purpose is that this information can then be used to enhance the 

Louisiana N recommendation for corn production and offer some guidance on 

improving fertilizer application practices. 
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Chapter 3. Documenting the Changes in Inorganic Nitrogen Level and 

Distribution in Soil Profile Within and Across Cropping Seasons at Varying 

Nitrogen Fertilization Levels.  

 

3.1 Introduction 

 

 Over application of nitrogen (N) fertilizers can have detrimental effects to 

both crop production and the surrounding environment. Several studies have 

been conducted to determine N movement and its impacts on crop physiology 

and the environment (Krantz et al., 1943; Devitt et al., 1976; Gerwing et al., 1979; 

Datta et al., 1997; Pacheco and Cabrera, 1997; Di and Cameron, 2002).  Aside 

from the negative physiological impacts that can occur in crops, ground and 

surface waters can become polluted when excess fertilizer is applied.  Today, 

nitrate (NO3) is one of the top water pollutants across the globe (Spalding and 

Exner, 1993).  Agricultural runoff is considered to be a non-point source of NO3 

pollution, but NO3 pollutions can also come from point sources such as irrigation 

of land by sewage effluent (Keeney, 1986; Bouchard et al., 1992; Eckhardt and 

Stackelberg, 1995; Mclay et al., 2001; Babiker et al., 2004).  Since agricultural 

fertilization has the potential to be a big factor in groundwater contamination, N 

decision tools have begun to be developed as a means of regulating N fertilizer 

applications by determining if N application will significantly increase yields.  One 

such tool is the Pre-Sidedress Nitrate Test developed by Magdoff et al. (1984).  

This test takes into account the soil NO3-N present in the soil when the crop is 

15-30 cm tall and roughly two weeks prior to in-season N application.  With this 

information, proper recommendations can be made to maximize yield without 

over applying fertilizer N.   Another N decision tool is the use of optical sensors to 
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determine if N application will boost yields. Raun et al. (2001) developed this 

method which essentially determines the proper N application by measuring crop 

reflectance with optical sensors of an adequately N fertilized crop and a crop that 

is fertilized using a standard farmer’s practice.  The difference in these two 

readings is called a response index and this can be used to determine if added N 

fertilizer will improve yields.  The general theme for these tools is that they take 

into account residual N that may have carried over from the previous year. Bundy 

and Malone (1988) concluded that profile NO3-N can significantly influence corn 

(Zea mays) response to applied N and may be useful on soils in humid areas. In 

a study performed by Meisinger (1984), it was pointed out that soil characteristics 

and precipitation data would be required to properly estimate soil NO3-N carrying 

over into another cropping season. Carryover of profile NO3-N in humid regions is 

dependent to a large part upon over winter precipitation (Bundy and Malone, 

1988). 

 Although research has been conducted to determine inorganic N seasonal 

patterns in the soil profile throughout the US, limited research has been carried 

out in the northern Louisiana area.  Therefore, this study was conducted to 

document the seasonal changes in soil profile inorganic N at varying N rates on 

two different soil types.  

3.2 Materials and Methods 

3.2.1 Site Description, Treatment Structure, and Trial Establishment 

This study was conducted across all four site-years from 2013-2014. Two 

soils of differing textures in Northeastern LA were selected to address the 
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objective of this study.  A Sharkey clay soil in St. Joseph, LA (31°, 56’, 28.94” N, 

91°, 14’, 11.43” W) and a Gigger silt loam soil in Winnsboro, LA (32°, 08’, 22.05” 

N; 91° 41’, 13.93” W).  St. Joseph is located in in Tensas Parish while Winnsboro 

is in Franklin Parish hereafter termed as NERS and MRRS, respectively.  The 

Sharkey clay is a heavy textured soil classified as; very fine, smectitic, thermic 

Chromic Epiaquerts. (USDA, 2013) This soil is very deep, poorly to very poorly 

drained, very slowly permeable that formed in a clayey alluvium. Gigger silt loam 

soil is classified as; fine-silty, mixed, active, thermic, Typic Frafiudalfs. (USDA, 

2003) and is described as, very deep, moderately well drained, slowly permeable 

soils with fragipans that formed in a thin mantle of loess over loamy sediments. 

All four site-years were established and managed under an irrigated system.  No 

tillage took place for both locations throughout the 2 year study.  Irrigation at 

NERS was supplied using furrow irrigation via poly pipe and overhead sprinkler 

irrigation was used at MRRS.    Tables containing information on initial soil 

chemical properties (Table 3), (Table 3.2), and soil sampling dates (Table 3.3) 

are provided below.  Corn hybrid varieties used were Pioneer 2088HYR and 

Pioneer 1319HR on Sharkey clay and Gigger silt loam, respectively. Seeds were 

80,000 seeds per hectare with spacing being 30 cm between seeds.  Irrigation 

was used when necessary via a poly pipe irrigation system for Sharkey clay soil 

and an overhead sprinkler system for Gigger silt loam soil.  This study was 

superimposed from an existing trial on corn response to N rate and application 

time.  The treatment structure is provided in Table 3.4. The applications of 0, 
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Table 3.1 Chemical properties of soil at different depths for both locations. 

*10g soil:10 mL DI H20 for pH analysis procedure, equilibrate for 2 hours, then measured. †Total N and C were 
based on dry combustion while other nutrients were based on Mehlich-3 procedure. ‡Site: MRRS – Macon Ridge 
Research Station, NERS – Northeast Research Station 
 
 
 

‡Site  pH 
Organic 
matter 

Total 
N 

Total    
C  P K S Ca Mg Cu Zn 

 Depth, 
cm 

 
% --------------------------------------------------†mg kg-1  -------------------------------------------- 

MRRS 

0-15 6.7 2.24 6164 41164 26 74 12 994 109 1.1 2.7 

15-30 6.7 2.04 1885 10920 12 54 9 1,123 125 0.5 0.5 

30-45 5.4 - 1689 8524 9 80 18 1,084 167 1.1 0.2 

45-60 5.0 - 1518 7623 10 92 17 968 205 1.0 0.5 

>60 4.6 - 1514 7230 13 95 18 1,042 298 1.6 0.6 

NERS 

0-15 6.1 5.91 1354 12661 55 454 5 4,240 890 4.5 4.4 

15-30 6.6 5.95 1042 2517 32 361 2 4,780 1,005 6.2 2.9 

30-45 7.2 - 1030 2051 14 349 3 5,339 1,118 6.1 1.9 

45-60 7.6 - 1106 2410 11 349 4 5,446 1,151 5.8 1.9 

>60 7.8 - 1072 1764 13 353 6 5,261 1,132 5.2 2.1 
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Table 3.2 Field activity dates and plot size for MRRS and NERS for years 2013 and 2014. 

*V# = leaf collar stage of corn crop. 
† - length x width. 
 

Site-year 
Designation 

Plot Size,† 
m 

Planting 
*Early-season 
N application 

*Midseason N 
application 

Harvest 

MRRS 2013 13.76 x 4 10-Mar-13 27-Mar-13 (V3) 
23-May-13      

(V7-V8) 
16-Aug-13 

NERS 2013 12.19 x 4 28-Mar-13 30-Apr-13 (V5) 
20-May-13      

(V8-V9) 
27-Aug-13 

MRRS 2014 13.76 x 4 19-Mar-14 6-Apr-14 (V3) 
8-May-14       
(V8-V9) 

19-Aug-14 

NERS 2014 13.76 x 4 21-Apr-14 8-May-14 (V3) 
27-May-14     

(V8-V9) 
16-Sept-14 
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Table 3.3 Record of soil sampling dates for MRRS and NERS in 2013 and 2014. 

*Sampling conducted in February. ¶Sampling conducted in September at harvest due to late planting. ╒May 
sampling times were conducted when crop was at V8 leaf stage. ‡Sampling did not occur due to poor field 
conditions. 

Site-Year March ╒May August October December 

MRRS 2013 7-Mar-2013 22-May-2013 19-Aug-2013 26-Oct-2013 18-Dec-2013 

NERS 2013 21-Mar-2013 17-May-2013 27-Aug-2013 31-Oct-2013 ‡ 

MRRS 2014 *18-Feb-2014 8-May-2014 19-Aug-2014 27-Oct-2014 18-Dec-2014 

NERS 2014 27-Mar-2014 26-May-2014 ¶16-Sept-2014 21-Oct-2014 18-Dec-2014 
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201, and 403 kg N ha-1 at early-season only were selected for this study.  Rates 

were selected on a “low”, “medium”, and “high” basis.   One check plot (0 applied 

N) was included in each replication. Nitrogen source for Sharkey clay was UAN-S 

(32-0-0-2) knifed in with a mechanical applicator and granular urea (46-0-0) was 

broadcast by hand for Gigger silt loam.  Phosphorus (P) and Potassium (K) rates 

were applied in accordance with test results performed by the LSU AgCenter Soil 

Testing and Plant Analysis Laboratory to maintain sufficient nutrient levels.  

Weed management practices recommended by the LSU AgCenter were 

followed. 

 
Table 3.4 Treatment description of the field trials conducted in St. Joseph, LA 
and Winnsboro, LA in 2013 and 2014. 
 
 

 

 

 

 

 

 

 

 

3.2.2 Soil Sampling  

Two deepcore samples were obtained from the center 3 m of the plot 

between the two middle rows of four-row plots in the months of March (early-

Early-Season        
N rate, kg ha-1 

Midseason               
N rate, kg ha-1 

0 0 

67 0 

134 0 

201 0 

268 0 

335 0 

403 0 

0 268 

67 201 

134 134 

201 67 
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season), May (V8 leaf stage), August (harvest), October and December. The V8 

leaf stage was targeted for sampling since this is more or less a critical growth 

stage for the crop (Hanway, 1963).  Determining the inorganic N content of the 

upper soil profile (0-30 cm) may be beneficial in predicting yields.  During the 

months of March, August, October and December, a hydraulic powered probe 

(Giddings; model no. - GSRPS) with a 6.35 cm diameter probe mounted on a 4-

wheel drive pick-up truck was used to obtain the deepcore samples.  During the 

month of May at V8 leaf stage, samples were obtained by hand using a slide 

hammer (AMS; model no. – 400.99) mounted to a soil probe (AMS; model no. – 

425.52) with a 60 cm slot. Due to the challenges involved with hand sampling to 

60 cm depths, samples were unable to be collect  at the >60 cm depth at MRRS 

2013 and NERS 2013.  However, in 2014 changes were made on the sampling 

scheme and samples were able to be collected at the >60 cm depth. Core 

samples were divided into 15 cm sections (0-15, 15-30, 30-45, 45-60, >60 cm) at 

the time of sampling.  Soil samples were then oven-dried (Despatch LBB series; 

model number LBB2-18-1) at 55°C for a minimum of 3 days, processed using a 

Humboldt electric flail soil grinder, and then sieved through a 2 mm sieve. 

 

3.2.3. Soil Analysis 

Inorganic N content was determined by weighing 5 g of soil into 125 mL 

plastic bottles followed by the addition of 35 mL of 1 M KCl.  Samples were 

shaken for 1 hour on a mechanical shaker (Eberbach; model number-E6010.00) 

then filtered using No. 42 Whatman filter paper.  Extracts were then analyzed for 
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ammonium (NH4-N) and NO3-N/nitrite (NO2-N) content using a continuous flow 

injection analyzer (Lachat QuickChem 8500 series 2), simultaneously.  The 

method for determining NO3-N content is similar to that outlined by Keeney and 

Nelson (1982).  Nitrate is reduced to NO2-N by passing through a cadmium 

reduction column and then reacts with a color reagent (sulfanilamide) to produce 

a pinkish color that can be measured colorimetrically at 520 nm. Ammonium 

analysis method was similar to that outlined by Reardon (1966). Ammonium 

present in the sample reacts with salicylate-nitroprusside-hypochlorite mixture to 

produce a blue color that can be measure colorimetrically at 660 nm.  Total 

inorganic N in kg ha-1 within the 0-30 cm soil layer was determined by summing 

the inorganic N content from the 0-15 cm and 15-30 cm soil samples for each 

plot.  Conversion of inorganic N from mg L-1 to mg kg-1 to kg ha-1 is shown below.  

mg L x 
0.035 L 1 M KCl

0.005 kg soil
=mg kg

-1
 

mg kg
-1

x 2=lbs acre 

lbs ac x 
1 lbs

1 ac
 x 

2.47 ac

1 ha
 x 

kg

2.204 lb
=1.12 kg ha

-1
 

lbs acre x 1.12=kg ha
-1

 

Organic matter was determined using a modified version of the 

combustion method.  First, 20-mL crucibles were weighed (g) and recorded.  Ten 

grams of soil was then weighed into crucible and placed into a furnace for 8 
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hours at 550° C.  After cooling, samples were weighed again and percent organic 

matter was estimated using the following equation: 

Equation 3.1 

% OM= 
Crucible+soil before combution-Cricible+soil after combustion

Crucible+soil before combustion
 x 100 

3.2.4 Grain Yield  

At harvest, a plot combine (Massey Ferguson 8XP) was used to collect 

grains from the two middle rows of each plot. The harvester was equipped with 

Harvest Master Instrumentation to determine plot weight.  Sub samples were 

taken to determine grain moisture and seed weight.  Grain moisture for all four 

site-years was determined using a grain analysis computer (Dickey-john; model 

number – GAC2500 UGMA) for further analysis once plot yield was determined.  

Grain moisture was adjusted to 155 g kg-1 and yield was calculated in bushels 

per acre and then converted to kg ha-1 using the following equations:  

 

Equation 3.2 

Yield 155 g kg-1 moist adj. (lbs/ac)= [

Plot yield (lbs)

(
Plot size (ft

2
)

43560
)

] x [
(100-moisture content)

(100-15.5)
] 

Equation 3.3 

 

Adjusted yield (bu/ac)= 
155 g kg-1 moist adj. (lbs/ac)

56
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Equation 3.4 

 

Yield (kg ha
-1

)=Yield (bu/ac) x 
56 lbs

bu
x 

1 kg

2.2 lbs
x

2.47 ac

ha
 

 

3.2.5 Soil Texture Analysis 

One soil core was taken from each site to a depth of >60 cm, divided into 

15 cm sections, and analyzed to determine soil texture. Texture analysis was 

performed using a modified version of the hydrometer (Humboldt; model no. – 

H4241) method similar to that outlined by Kettler et al. (2001). First, 10 g of soil 

were weighed and oven dried (Yamato DKN600) at 90° C for 24 hours and then 

weighed again to determine the soil moisture factor (SMF). Soil samples 

weighing either 30 g or 25 g (depending on clay content) were placed into 500 

mL shake bottles.   Twenty mL of 10% sodium hexametaphosphate was then 

added followed by about 250 mL of deionized water.  Samples were then shaken 

(Eberbach; model number-E6010.00) over night or for about 16-20 hours. After 

shaking, a USA standard test sieve No. 270 was used to sift out the sand portion 

of the samples. Sand portions were then transferred to a small glass beaker of 

which the weights were pre-recorded and oven dried (Yamato DKN600) for about 

24 hours at 90° C and then weighed (g).  Remaining mixture of silt and clay was 

then transferred to a 1000 mL graduated cylinder.  Deionized water was added to 

make a 1000 mL suspension, mixed with a plunger, then left undisturbed for 6 

hours.  Clay portions were measured using the hydrometer. Hydrometer readings 

were adjusted using a blank that followed the same process as the soil samples. 
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Silt portion was determined by subtracting sand and clay portions from one. 

Equations used for particle size analysis can be found below.  

Equation 3.5 

SMF= 
10 g soil-Soil weight after drying (g)

Soil weight after drying (g)
+1 

 

Equation 3.6 

Oven dry Wt. = 
Sample Wt. Shaken

SMF
 

Equation 3.7 

Sand %= 
Dried sand from sieveing (g)

Oven Dry Wt. 
 

Equation 3.8 

Clay %= 
(Hydrometer Reading-Hydrometer Blank)

Oven Dry Wt.
 

Equation 3.9 

Silt %=1-Sand %-Clay % 

3.2.6 Weather Data Collection 

 Rainfall data for MRRS was measured at a weather station located in 

Chase, LA about 5 miles south of the research trial.  For NERS, rainfall was 

measured using a rain gauge installed at the Northeast Research Station itself 

located less than one mile from the research trial.  
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3.2.7 Statistical Analysis of Measured Parameters 

For each site-year, measured parameters were analyzed by performing 

analysis of variance using PROC MIXED procedure in SAS 9.3 (SAS, 2012). 

Fixed variable was N treatment (rate and application scheme) and random 

variables were replication and year.  The least significant difference (LSD) 

method at the 5% level of confidence was used to determine significant 

differences among treatments unless otherwise indicated. Average, standard 

error, and standard deviation of soil inorganic N content were computed using 

Microsoft Excel 2010. 

3.3 Results and Discussion 

3.3.1 Texture Analysis 

 Soil texture data can be found in Table 3.5.  For MRRS, soil texture was a 

silt loam from 0-45 cm soil layer.  From 45 to >60 cm soil layer, soil texture 

changed to a silty clay loam. In NERS, soil texture was clay and consistent 

throughout the profile.  

3.3.2 Soil Profile Inorganic N Distribution 

 Results for MRRS 2013 and 2014 inorganic N distribution can be found in 

Figures 3.1, 3.2, and 3.3. Inorganic N content throughout the profile had its 

highest level during the month of March in 2013.  Inorganic N content was 

highest in the 0-15 cm layer for all sampling times.  As depth increased, the 

lowest inorganic N level was typically found in the 15-30 cm layer.  Below this 

layer inorganic N content slightly increased with each successive layer.   
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This was unexpected as we believed to find less inorganic N with each layer we 

passed in depth.  In the check plots (0 kg N ha-1) inorganic N content at the >60 

cm layer (30 kg N ha-1) had higher inorganic N than the 0-15 cm layer (25 kg N 

ha-1) for the months of March and August in 2013.  The spike in inorganic N 

content for the 0-15 cm layer of the N applied plots in May of 2013 is believed to 

be the result of early-season N applications of urea. 

 
 
Table 3.5 Particle size distribution for MRRS and NERS.  

*Location Depth, cm Sand % Silt % Clay % 
Texture 

Classification 

MRRS 

0-15 7.24 79.29 13.47 Silt Loam 

15-30 6.23 76.94 16.83 Silt Loam 

30-45 4.65 71.61 23.74 Silt Loam 

45-60 5.56 63.71 30.73 Silt Clay Loam 

>60 6.43 66.20 27.37 Silt Clay Loam 

NERS 

0-15 2.64 38.66 58.70 Clay 

15-30 1.51 35.60 62.89 Clay 

30-45 1.47 31.45 67.08 Clay 

45-60 1.26 31.65 67.09 Clay 

>60 1.13 31.78 67.09 Clay 

*MRRS – Macon Ridge Research Station; NERS – Northeast Research Station 

 

The sampling period that returned the lowest amount of inorganic N throughout 

the soil profile appeared to be August.  Throughout the year, fluctuations in total 

inorganic N appeared to be due to the change in NO3-N.  Ammonium-N 

appeared to be the majority of total inorganic N in the soil profile throughout the 

two year trial, except in the month of May following fertilization took place.  

Furthermore, there was no apparent change in the surface layer N during the 

month of May for N applied plots.  Both treatments averaged ~70 kg N ha-1 in the 
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0-15 cm soil layer during the month of May and ~20 kg N ha-1 in the 15-30 cm 

soil layer.  Nitrogen rates appeared to have no effect on increasing inorganic N 

content for these soil layers.  The 15-30 cm soil layer reported similar inorganic N 

amounts for both treatments; however, 403 kg N ha-1 applied plots showed an 

increase in inorganic N content as depth increased when compared to 201 kg N 

ha-1 applied plots. The high N rate plots reported a total inorganic N content of 35 

kg N ha-1 with most of it being in NO3-N form (30 kg N ha-1) in the 45-60 cm soil 

layer.  Treatment 201 kg N ha-1 reported about 18 kg N ha-1 in total inorganic N 

and 12 kg N ha-1 being in NO3-N form. This would suggest that the increased N 

rate had an increasing effect on NO3-N leaching.  All plots showed an increase in 

inorganic N of the 0-15 cm soil layer in the month of October in 2013. The 0 and 

201 kg N ha-1 treatments had values of about 28 kg N ha-1 while the 403 kg N ha-

1 treatment reported approximately 32 kg N ha-1.  Rainfall during this time was 

recorded as approximately 150 mm during September and 45 mm during 

October in 2013.   

For MRRS in 2014 soil samples were taken in February to determine if soil 

inorganic N began to mineralize any sooner than March.  This sampling period 

returned low inorganic N levels that were less than 10 kg N ha-1 across all 

treatments and less than the inorganic N content that was recorded in March 

2013.  Most of the inorganic N at this time was in NH4-N form. In May of 2014, 

shortly after N treatments were applied, the site received ~65 mm of precipitation 

within a short period followed by a period of standing water for approximately 24 

hours.  With this event, there is a possibility that the N fertilizer that was applied 
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was washed away leading to the reduction of inorganic N in the upper soil profile 

and no spike during the 2014 growing season.  A study by Shaw (1962) reported 

that as much 134 kg N ha-1 of NO3-N can be removed from the upper 15 cm soil 

layer by 20 cm of rain in a sandy soil. If an additional 20 cm of rain occurs, only 

about 40% of the applied N remained in the 30-45 cm soil layer (Olsen et al. 

1970).  The trial also received rain over the course of one week from May 27, 

2014 to June 2, 2014 that measured about 180 mm (Figure 3.4).  Significant rain 

events, which took place during the period of the trial, are shown in Figure 3.4.  

August was once again a low point throughout the growing season with inorganic 

N content being less than 10 kg N ha-1 across all treatments. However, increases 

were noted in the 0-15 cm soil layer during the months of October and 

December. Beneath the surface soil layer, inorganic N content varied little and 

was less than that seen the previous year. One week prior to soil sampling in 

October, the area experienced a four day rain event that dropped approximately 

120 mm of rain on the trial.  It is unknown if this rain event is responsible for the 

reduction in inorganic N levels when compared to the previous year.  The area 

received a total of 2330 mm of rain throughout the year, which is much higher 

than its normal total of 1650 mm.  Four single rain events dropped over 80 mm of 

rain throughout the year, three of which occurred during the months of 

November. For MRRS 2014, approximately 915 mm of rain fell during the 

growing season, which was much higher than the 560 mm of rain MRRS 2013 

experienced.  
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Figure 3.1 Inorganic N distribution within the profile of unfertilized (0 kg N ha-1) 
soil in Winnsboro, LA (MRRS). *Values on y-axis are kg ha-1. n=8
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Figure 3.2 Inorganic N distribution within the profile of 201 kg N ha-1 treated soil 
in Winnsboro, LA (MRRS).  *Values on y-axis are kg ha-1. n=8 
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Figure 3.3 Inorganic N distribution within the profile of 403 kg N ha-1 treated soil 
in Winnsboro, LA (MRRS).  *Values on y-axis are kg ha-1.  n=8 
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Figure 3.4 Amount and distribution of rainfall measured in Chase, LA from January 2013 to December 2014. ¶No data 
collected Jan 1, 2013-Feb 8, 2013. *One day after N application.
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 Results for NERS 2013 and 2014 soil inorganic N distribution can be 

found in Figures 3.5, 3.6, and 3.7. At NERS in 2013, reduction of inorganic N 

content was more pronounced as depth increased throughout the Sharkey clay 

profile.  During the month of March, inorganic N content varied little across all 

treatments and depths.  Unlike MRRS, the month of March reported little 

inorganic N content with the most being 35 kg N ha-1 in the 0-15 cm soil layer of 

the check plots. In January, this location received approximately 250 mm of 

within a week period (Figure 3.9).  Whether this had a direct effect on the low 

amount of inorganic N present in the soil by March was unclear.  Similar to 

MRRS, spikes in inorganic N were seen during the month of May, of which was 

mostly NO3-N.  This can be attributed to UAN fertilizer as the N source for this 

location.  Around 25% of the N in UAN fertilizers is in NO3 form (IPNI, 2015). For 

both site-years, N application appeared to have an effect on increasing the soil 

inorganic N content, although, only in the 0-15 cm soil layer. Inorganic N content 

of this layer was ~60 kg N ha-1 for 201 kg N ha-1 treatment and ~195 kg N ha-1 for 

403 kg N ha-1 treatment.  At the lower depths, little variability was observed 

during this sampling period with inorganic N content maintaining at ~20 kg N ha-1. 

Inorganic N content for 403 kg N ha-1 treatment decreased by harvest in August 

to less than 50 kg N ha-1 in the 0-15 cm soil layer and less than 20 kg N ha-1 for 

soil layers; 30-45, 45-60 and >60 cm. The 201 kg N ha-1 treatment had similar 

results. Similar to MRRS location, a slight increase in inorganic N content was 

observed in October, potentially due to the breakdown of crop residue from 
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harvest. Unfortunately, soil sampling data for December for this site-year is not 

available due to excessive moisture in the field.  

Inorganic N distribution during the month of March in 2014 was similar to 

the distribution patterns recorded in 2013. In May of 2014, another spike was 

recorded that may potentially be due to fertilization. The 201 kg N ha-1 treatment 

averaged approximately 160 kg N ha-1 with about 121 kg N ha-1 being NO3-N 

while the 403 kg N ha-1 treatment averaged 205 kg N ha-1 with about 170 kg N 

ha-1 being NO3-N. In both N applied treatments, soil inorganic N dropped 

significantly in the 15-30 cm soil layer suggesting that most of the applied N 

remained on the surface soil layer exposing it to potential loss processes such as 

denitrification (Papendick and Campbell, 1981; Colbourn and Downdell, 1984; 

Groffman and Tiedje, 1989).  Similar to 2013, NO3-N reduced greatly by the time 

of harvest and was less than 30% of total inorganic N found in the soil during the 

months of October and December in 2014.  

 Results found in this study for this particular location are similar to those 

found by Bergstrom and Brink (1985) that studied if NO3-N leaching increases 

with N fertilizer rate in heavy clay soils. They found total inorganic N displayed 

similar distribution patterns during September, or approximately harvesting time, 

and the fallow months of October and December. Inorganic N amounts were less 

than 40 kg ha-1 and decreased significantly with depth across treatments of 0, 

100, and 200 kg N ha-1.  However, they also found NO3-N accumulated in the 1.5 

m to 3 m soil layers in the 200 kg N ha-1 treatment with NO3-N content of ~40 kg 

N ha-1.  Since this study only soil sampled to a depth of ~76 cm, we were unable 
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to determine if a NO3-N pooling effect was taking place in this heavy clay soil as 

well.  Bergstrom and Brink (1985) later concluded that applications of N over 100 

kg ha-1 can increase the risk of introducing excess NO3 into the environment.  

Probable causes for low residual N at the NERS location for both years may be 

related to its soil texture and the climate of the area.  Rainfall during the growing 

season totaled approximately 725 mm. Leaching and denitrification can take 

place in areas that receive high annual rainfall.  In a study performed by Peterson 

and Attoe (1965), retention of profile NO3-N was documented in some soils in the 

humid Midwest (Bundy and Malone, 1988).  Applications of large amounts of N 

can certainly have an effect on the seasonal changes in profile N content 

(Bergstrom and Brink, 1986).  

 

3.3.3 Soil Inorganic N Content at V8 Leaf Stage and Its Effects on Yield 

 Results for soil inorganic N content in the upper 30 cm of the soil profile at 

the V8 leaf stage can be found in Table 3.6 and Table 3.7. Maximum yields were 

obtained for both site locations in 2013.  Plots that had at least 80 kg N ha-1 

produced yields of 10 Mg ha-1or more, while plots that contained less than 50 kg 

N ha-1 returned yields less than 2 Mg in both locations. Conversely, 2014 showed 

the opposite effect.  In MRRS 2014, all plots averaged anywhere from 35 to 45 

kg N ha-1, yet returned significantly different yields (P<0.001) with the highest 

being the 403 kg N ha-1 treatment producing 8 Mg ha-1. For NERS 2014 despite 

that the 0-30 cm soil layer had ~200 kg N ha-1 at the V8 leaf stage, yield level 

was lower than the previous year. The late planting is believed to be the primary 
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Figure 3.5 Inorganic N distribution within the profile of 0 kg N ha-1 treated soil in 
St. Joseph, LA (NERS). *Values on y-axis are kg ha-1 

0

10

20

30

40

50
0-15 cm 

0

10

20

30

40
15-30 cm 

0

10

20

30

40
30-45 cm 

0

10

20

30

40
45-60 cm 

0

10

20

30

40

Mar May Aug Oct Mar May Sept Oct Dec

>60 cm 

Ammonium Nitrate

NERS 
0 kg N ha-1 

2013 2014 

* 



67 

 

 

 

 

 

 

 
Figure 3.6 Inorganic N distribution within the profile of 201 kg N ha-1 treated soil 
in St. Joseph, LA (NERS).  *Values on y-axis are kg ha-1.  
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Figure 3.7 Inorganic N distribution within the profile of 403 kg N ha-1 treated soil 
in St. Joseph, LA (NERS).  *Values on y-axis are kg ha-1. 
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Figure 3.8 Amount and distribution of rainfall measured in St.  Joseph, LA from January 2013 to December 2014.  *Rain 
recorded for 6 days, no rain Jan-13.
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cause for the yield reduction.  However, it should be noted that both treatments 

had values of 51 kg N ha-1 as NH4-N.  Of the total inorganic N (~190 kg N ha-1) in 

the upper 30 cm for the 201 kg N ha-1 treatment, 136 kg N ha-1 was in NO3-N 

form.  Similarly, for the 403 kg N ha-1 treatment, 190 kg N ha-1 of the 240 kg N ha-

1 total inorganic N was in NO3-N form suggesting that NO3-N is probably 

contributing to the significant increase in yield for NERS 2014.   

Similar studies have been conducted to establish an inorganic N level 

content that would optimize yields. Cui et al. (2008) reported that a minimum of 

~90 kg N ha-1 of inorganic N in the upper 90 cm soil layer should be available to 

minimize N deficiency. Blackmer et al. (1989) reported that the optimal level of 

inorganic N should be 20 to 25 mg kg-1 in the 0-30 cm soil layer in Iowa. Binford 

et al. (1992) also reported optimal concentrations of inorganic N to be 23 to 26 

mg kg-1. 

 

Table 3.6 Grain yield and inorganic N distribution within 0-30 cm soil depth of 
plots applied with 0, 201, 403 kg N ha-1, for MRRS 2013 and 2014.  

*Total inorganic N is the summation of NH4-N and NO3-N.  †Significant 
differences at P<0.001. 
 

Year 
Early-Season      

N rate,         
kg ha-1 

NH4-N NO3-N 
*Total                              

Inorganic N 
Yield,              
kg ha-1 

 -----------------------------------------kg ha-1--------------------------------------- 

 0 22 18 40 †1720 

2013 201 28 64 92 †10290 

 403 27 61 88 †13011 

2014 

0 23 16 39 †1625 

201 26 11 37 †6515 

403 28 17 45 †8779 
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Table 3.7 Grain yield and inorganic N distribution within 0-30 cm soil depth of 
plots applied with 0, 201, 403 kg N ha-1, for NERS 2013 and 2014.  

*Total inorganic N is the summation of NH4-N and NO3-N.  † Significant 
differences at P<0.001.  
 

 

3.4 Conclusions  

Both soil types displayed different patterns of inorganic N distribution 

within the soil profile between cropping seasons.  Inorganic N content in the 

Sharkey clay soil at NERS did not appear to change significantly, except 

following fertilizer application prior to soil sampling. Across all treatments and 

depths, inorganic N content in excess of 50 kg N ha-1 was only reported in the 

month of May at NERS.  Soil inorganic N content was generally below 50 kg N 

ha-1 year round throughout the soil profile. Similar results were reported in the 

Gigger silt loam soil in both MRRS site-years. Except the only time inorganic N 

content reached >50 kg N ha-1 levels was in March of 2013 when the trial was 

established and May of 2013, due to fertilization weeks prior to soil sampling.  

Furthermore these amounts of greater than 50 kg N ha-1 inorganic N were only 

Year 
Early-Season     

N rate,              
kg ha-1 

NH4-N NO3-N 
*Total 

inorganic N 
Yield,            
kg ha-1 

 ------------------------------------------kg ha-1--------------------------------------- 

 0 40 20 60 †2070 

2013 201 42 40 82 †11348 

 403 83 113 196 †13047 

 0 44 21 64 †60 

2014 201 51 136 187 †5532 

 403 51 189 240 †7933 
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found in the 0-15 cm soil layer. In the 15-30 cm soil layer to >60 cm soil layer, 

inorganic N content was generally below 40 kg N ha-1.   

 Inorganic N variability occurred mostly in the 0-15 soil layer.  Some 

variability occurred in the 15-30 cm soil layer, but from there to the >60 cm soil 

layer, variability decreased.  Soil inorganic N content appeared to follow a 

seasonal pattern of reduced content during the winter months and increased 

content during summer months.  This study demonstrated the potential use of 

soil testing to help manage N fertilization and increase information on N 

dynamics for these two soil types. However, we were unable to establish a 

specific optimal inorganic N level for this region.  
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Chapter 4. Conclusions 

 
Weather played a significant role during this study and two years of 

consistent data were unable to be obtained.  However, all four site-years showed 

that with increasing N rates, yields also increased.  Based on the data recorded 

in 2013, split application of the current recommended N rate for corn production 

in Louisiana worked best in the Gigger silt loam soil and early-season only 

applications returned the highest yields in the Sharkey clay soil. Split N 

applications also reported better NUE than the early-season only application 

methods. Furthermore, split applications of N fertilizer demonstrated its 

effectiveness in reducing yield losses if large amounts of rainfall were to occur in 

the early part of the growing season.  The optimum N rate for the MRRS location 

appeared to be 134-134 N kg N ha-1 while 201 kg N ha-1 is estimated to be the 

recommendation for NERS.  Nitrogen rates showed significant effects on grain 

weight, and N uptake for both locations.  

Inorganic N content variability occurred mostly in the 0-15 cm soil layer.  

Nitrogen fertilizer application did not appear to have a significant effect on 

increasing inorganic N content in the Gigger silt loam soil.  However, N rate did 

significantly increase inorganic N content in the Sharkey clay soil, but only in the 

0-15 cm soil layer. The only time inorganic N content reached levels above 50 kg 

N ha-1 was recorded in the month of May only weeks after fertilization.  Both soil 

types followed similar seasonal patterns with reduced inorganic N content during 

the winter and early spring months and increasing inorganic N content during the 

summer months. 
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Appendix A. Corn grain ratings in 2014 for MRRS and NERS. 
 

 
 

Figure A.1 Corn grain ratings for MRRS 2014.  Scale is 1-10 with 10 being 
premium and 1 being poor quality. 
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Figure A.1 (continued) Corn grain ratings for MRRS 2014. Scale is 1-10 with 10 
being premium and 1 being poor quality. 
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Figure A.2 Corn grain ratings for NERS 2014.  Scale is 1-10 with 10 being 
premium and 1 being poor quality. 
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Figure A.2 (continued) Corn grain ratings for NERS 2014.  Scale is 1-10 with 10 
being premium and 1 being poor quality. 
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Appendix B. Rainfall data for MRRS and NERS in 2013 and 2014. 
 
Table B.1 Rainfall data for MRRS 2013   

 
Month Jan Feb Mar Apr May June July  Aug Sept Oct Nov Dec 
Day mm 

1 
   

25.1 6.9 
    

0.3 95.5 
 

2 
    

33.8 31.8 
   

1.5 
  

3 
   

5.8 16.3 2.0 
      

4 
   

3.3 1.0 
   

3.3 
   

5 
   

0.5 0.3 
       

6 
  

0.3 
  

31.0 
   

4.8 
 

6.1 
7 

     
0.5 

    
4.1 7.1 

8 
      

33.0 
     

9 
 

0.3 
     

5.8 
   

2.3 
10 

    
41.1 

     
0.5 10.2 

11 
 

46.2 13.7 35.3 
 

0.3 
 

5.3 
    

12 
 

15.0 
 

20.1 
 

1.8 23.9 
 

0.3 
   

13 
 

42.2 
     

1.5 
 

9.4 
  

14 
   

0.8 
   

18.3 
   

17.0 
15 

      
5.6 1.3 

 
3.0 

  
16 

      
8.1 

  
1.3 2.8 

 
17 

     
0.3 6.6 

  
0.3 2.0 

 
18 

    
0.3 7.9 0.3 

 
6.9 0.3 0.3 

 
19 

 
14.2 

 
22.1 

 
21.8 13.5 

  
0.3 

  
20 

  
1.0 

   
0.3 

 
0.3 

 
10.7 

 
21 

        
50.0 

 
16.8 

 
22 

 
15.5 0.8 

 
23.6 

  
7.4 0.8 

 
8.9 39.6 

23 
 

9.9 1.8 
   

0.3 
   

1.5 1.5 
24 

  
5.1 23.4 

    
4.8 

 
93.2 

 
25 

   
8.4 

 
0.8 

  
8.6 

 
5.8 

 
26 

 
21.1 

    
0.3 

     
27 

      
18.5 

     
28 

            
29 

   
18.3 

       
4.1 

30 
   

0.3 
 

1.8 
  

0.3 
   

31 
  

10.2 
      

8.4 
  

Total 0 164.3 32.8 163.3 123.2 99.8 110.2 39.6 75.2 29.5 242.1 87.9 

             
Total for year  1167.9 
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Table B.2 Rainfall data for MRRS 2014 

 
Month Jan Feb Mar Apr May June July  Aug Sept Oct Nov Dec 
Day mm 

1 
     

1.0 
 

13.2 1.5 
   

2 5.8 
    

5.6 
 

14.7 
 

0.3 
 

22.9 
3 

 
23.9 19.6 

   
1.8 6.6 22.4 17.8 

 
0.3 

4 
   

34.8 
   

0.3 
    

5 
 

40.1 
 

0.3 
   

0.3 
   

0.3 
6 1.8 

 
10.2 15.5 

    
9.4 

 
8.1 2.0 

7 
 

0.5 0.8 63.8 
    

0.3 
   

8 
 

2.3 
          

9 
   

7.1 24.6 2.8 
      

10 
    

1.0 41.1 38.1 1.5 
 

13.0 
  

11 29.5 6.6 
    

13.5 1.5 
 

5.3 
  

12 
  

6.1 
 

0.3 
  

17.5 
  

0.5 2.3 
13 14.7 16.3 

  
0.3 

   
1.0 48.5 

 
0.3 

14 3.0 
  

5.6 15.0 
    

54.6 
  

15 
   

39.6 9.4 
 

92.7 
     

16 
  

53.1 
 

4.3 0.3 4.1 
   

21.1 3.3 
17 

          
92.7 

 
18 

      
31.2 

     
19 

 
0.3 

    
6.1 

    
2.0 

20 
           

16.8 
21 

     
2.0 

      
22 

            
23 

  
1.5 

      
0.3 6.9 

 
24 

  
0.3 

   
11.2 

   
6.1 8.9 

25 
     

1.8 0.3 
     

26 
 

10.7 
   

15.2 
 

9.1 
    

27 
    

7.9 16.8 
 

0.3 
   

0.5 
28 

  
50.8 

 
30.7 1.3 

   
0.3 

 
39.4 

29 
  

40.4 18.8 54.4 8.6 
   

1.0 
 

11.4 
30 

   
1.5 55.1 

  
1.8 

    
31 

    
22.4 

  
11.7 

    
Total 54.9 100.6 182.6 186.9 225.3 96.5 198.9 78.5 34.5 141.0 135.4 110.2 

Total for year  1545.3 
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Table B.3 Rainfall data for NERS 2013 

 
Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 
Day mm 

1 NR 
  

25.4 3.8 
     

68.6 
 

2 57.2 
   

33.8 65.8 
      

3 NR 31.75 
 

9.1 30.5 
      

NR 
4 NR NR 

 
3.8 31.2 

      
NR 

5 NR NR 
 

NR 
  

NR 
    

NR 
6 NR NR 0.8 

   
10.2 

  
25.9 

 
NR 

7 10.9 NR 
   

NR 
    

5.1 11.9 
8 

 
NR 

   
1.5 15.7 

   
NR 2.5 

9 
 

NR 
  

NR 
      

NR 
10 132.8 NR 

  
38.9 1.3 

 
NR 

   
NR 

11 3.6 NR 51.1 17.8 
   

NR 
   

NR 
12 13.5 NR 

 
12.7 

  
92.7 

   
NR NR 

13 
 

NR 
      

NR 10.2 
 

NR 
14 14.5 NR 

 
18.5 

   
20.3 10.7 

 
NR 37.1 

15 14.7 NR 
    

22.4 
    

0.5 
16 47.0 NR 

        
1.5 NR 

17 12.2 NR 
 

NR 
     

2.0 
 

NR 
18 NR NR 

   
1.0 

   
NR 

 
NR 

19 
 

NR 
 

22.4 
 

NR 2.5 
  

2.8 NR NR 
20 

 
NR 

      
3.6 

  
NR 

21 
 

NR 
      

95.3 
  

3.3 
22 

 
NR NR 

 
13.7 

     
NR 34.5 

23 
 

NR 8.1 
    

NR 
 

NR NR 
 

24 
 

NR 0.5 35.8 
    

NR 
 

35.8 0.8 
25 

 
NR 

    
NR 

 
41.9 NR NR 

 
26 

 
NR 

        
NR 

 
27 

 
NR 

    
49.3 

   
113.0 

 
28 

 
NR 

 
0.5 

  
1.0 

  
4.6 

 
1.5 

29 
    

8.9 NR 
     

5.8 
30 27.4 

    
NR 

  
5.1 NR 

  
31 

  
2.5 

      
NR 

  
Total 333.756 31.8 63.0 146.1 160.8 69.6 193.8 20.3 156.5 45.5 224.0 98.0 

Total for year 1543.1 
         

 

NR = No reading from weather station. 
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Table B.4 Rainfall data for NERS 2014 

NR = No reading from weather station. 

Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

Day mm 

1 
     

2.5 
 

4.6 
    

2 NR 
      

60.5 21.6 
   

3 NR 31.2 9.7 
  

3.0 10.4 1.3 29.5 13.0 
  

4 
 

0.2 
 

35.8 
 

1.8 
      

5 
 

15.2 
 

1.8 
   

11.7 
    

6 
  

8.4 36.6 
    

1.3 
 

2.8 
 

7 
  

2.5 36.3 
        

8 
 

2.0 
          

9 
   

6.1 31.5 
 

1.8 
     

10 
 

1.0 
  

7.9 61.5 21.6 29.7 
 

1.0 
  

11 43.2 20.3 
   

1.0 0.5 36.3 
    

12 
 

15.2 22.6 
 

4.3 
  

33.8 
  

2.0 
 

13 6.9 
    

24.9 
  

9.4 2.0 
  

14 7.6 
  

13.0 80.8 
    

69.6 
  

15 
   

30.0 3.8 
 

45.5 
     

16 
  

41.4 
   

5.3 
    

37.3 

17 NR 
       

NR 
 

62.7 
 

18 
 

1.5 
    

25.1 
     

19 
      

7.6 
     

20 
   

NR 
   

20.1 NR 
  

9.9 

21 
 

1.5 
          

22 
   

NR 
 

0.5 
 

0.8 
    

23 
          

5.1 32.0 

24 
  

0.3 
       

1.5 3.8 

25 
            

26 
 

13.0 NR 
  

27.7 
      

27 
   

0.8 1.3 3.3 
      

28 63.5 
 

87.6 
 

21.1 2.0 
     

65.0 

29 
  

27.4 12.2 21.8 7.1 
   

1.0 
 

9.1 

30 
  

NR 
 

6.6 
  

5.1 
    

31 
       

15.5 
    

Total 121.2 101.2 199.9 172.5 179.1 135.4 117.9 219.2 61.7 86.6 74.2 157.2 

Total for year 1626.0 
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