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ABSTRACT 

 Cotton (Gossypium spp.) is the most extensively used natural fiber in the textile industry. 

Understanding the genetic diversity, population structure and marker trait associations are of great 

importance in marker assisted selection.  

 Microsatellite, AFLP and TRAP markers were used to construct a linkage map with 94 F2 

diploid individuals derived from a cross between G. arboreum x G. herbaceum. A total of 606 

polymorphic markers gave rise to 37 linkage groups covering a total of 1109cM with an average 

distance of 7.92cM between each loci. Discriminant analysis identified three markers each for petal 

color and seed fuzziness, and four markers for petal spot.  For quantitative traits, a total of 19 QTL’s 

were identified and linked with five fiber traits using composite interval mapping. Markers such as 

qFL4-1, qFS4-2, qELO1-1 and qSI2-1 were found to be significantly linked with fiber length, 

strength, elongation and seed index respectively. 

 Association mapping principles were applied to upland cotton genotypes in order to examine 

population structure and marker trait associations. A set of 232 genotypes were genotyped using 

AFLP markers. The molecular diversity was in the range of 0.48-0.574 with molecular variance 

found to be 10% among the groups. Bayesian and MCMC based population structure analysis, there 

existed six subpopulations, in accordance with their geographical origin. The mixed and mixed-

multiple regression (MMR) models identified significant markers for lint yield and fiber traits, 

showing low AICC, BIC and SBC values and high adj. R
2
. Two way epistatic interaction analyses 

further confirmed their strong association. 

 In the similar study, a set of 75 upland cotton genotypes were analyzed for seed quality traits 

such as seed protein, oil and fiber content. Population structure based mixed models showed 32 

significant markers, associated with these seed quality traits. MMR models identified several 



xiv 
 

markers, notably E4M3_440, E4M3_200 and E5M7_195 for seed protein, oil and fiber content 

respectively. 

 Finally, 60 upland genotypes from RBTN program were screened with AFLP markers. The 

pairwise kinship estimates were ranging between 0.1-0.88 accounting for most of the shared 

ancestral alleles. The MMR models improved the efficiency of marker selection with 38 markers 

associated with eight traits. 
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CHAPTER 1 GENERAL INTRODUCTION 

Cotton (Gossypium spp.) is the most extensively used natural fiber in the textile industry and 

is the sixth most abundantly grown oilseed crop. It is grown commercially in the tropical and 

subtropical regions of more than 50 countries. Worldwide, cotton production has been relatively 

stable for the last several years. In the United States however, planted acreage fell to 9.1 million in 

2009 the lowest since 1983 and well below the 15.5 million acres planted in 2006. In Louisiana, 

producers planted 240,000 acres and are expected to harvest 420,000 bales, up 49 percent from last 

year’s hurricane devastated crop (NASS, 2009).  Due to the global economic downturn, world cotton 

consumption fell by 12% in 2008-2009 after a decade of uninterrupted growth. As the world 

economy gradually stabilizes, world cotton use is also expected to recover slowly. Increases in 

cotton consumption will mainly be driven by a rebound in Asia, in particular China (mainland), India 

and Pakistan.  

Genetic improvements that enhance the economics of production and fiber processing 

characteristics will allow this natural renewable product to compete in favorably in the market place 

with petroleum derived synthetic fibers and enrich the livelihoods of millions of people worldwide. 

Therefore, over the years scientists have set a broad goal for genetic improvement of cotton through 

concerted application of traditional plant breeding, genetic engineering and molecular genetics tools. 

Traditionally, cotton being polyploid, has been considered as an excellent model system for studying 

plant genome size evolution, polyploidization and its fiber for single celled biological processes. 

Elucidating the cotton genomes will significantly contribute to our understanding of the functional 

and agronomic significance of polyploidy. The genus Gossypium consist of 45 diploid species 

divided in to 8 subgenomes (A-G and K) and five tetraploids (AD, Brubaker et al., 1999). Of all the 

Gossypium species, two tetraploids (G. hirsutum and G. barbadense; 2n=4x=52) and two diploid 

species (G. arboreum and G. herbaceum; 2n=2x=26) are commercially grown for natural fiber. G. 
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hirsutum and G. barbadense being natural allopolyploids are derived from an interspecific 

hybridization of a African-Asian A-subgenome (G. herbaceum var. africanum) and an American D-

subgenome(G. raimondii) species about 1-2 mya (Wendel and Cronn, 2003). The A genome species 

produce natural fiber, whereas the D genome does not. Significant impact of the D genome on fiber 

traits in the cultivated allotetraploids has been indicated by marker assisted QTL (Quantitative Trait 

Loci) localization (Jiang et al., 1998) and substitution line performance (Saha et al., 2006). 

Efficient strategies for capturing the sequence diversity represented within the Gossypium 

genus are greatly influenced by large differences in genome size and organization across genus. As 

the cotton genome is relatively large at 2700 Mbp a highly saturated genetic map of cotton with 5000 

cM long genome will require 3000 DNA probes to map at an average of 1cM density 

(Armuganathan and Earle, 1991). The architecture of the Gossypium genus and its subgenomes 

composition with 2C DNA content is illustrated in Fig 1.1 (Wendel and Cronn 2003); 

 

Fig 1.1 Evolutionary relationships among species of Gossypium. The 2C DNA content of each 

subgenomes is given in circle. 

Gossypium
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Traditional plant breeding procedures can be enhanced by using the linkage between markers 

and traits. An important step towards the establishment of such linkages is the development of 

genetic maps. Genetic mapping of traits comes down to finding linkages (associations) between 

mapped markers and phenotypic trait observations, mostly quantitative in nature. Finding such 

linkage can be done in several ways. Two commonly used approaches are; a) linkage analysis using 

a bi-parental mapping population segregating for the trait(s) of interest, or b) linkage Disequilibrium 

/association mapping using a well chosen (natural) population of lines, accessions, or genotypes. 

1.1 Genetic Linkage Mapping and QTL Analysis of Fiber Traits in Diploid Cotton Using 

AFLP-SSR-TRAP Markers 

 

  Genetic linkage map construction has been recognized as an essential tool for plant molecular 

breeding using DNA markers because they are neutral, lack epistasis and are simply inherited in a 

Mendelian nature. Utilizing robust DNA markers that map to QTL’s associated with fiber traits will 

be an important approach in fine mapping and marker assisted selection (MAS). The method of 

linkage analysis is well developed for bi-parental crosses between inbred lines. Estimation of 

recombination rates between loci allows the construction of a genetic linkage map. Associations 

between a trait and marker alleles identify the genomic regions in which the loci controlling the trait 

are located. In this way, QTL locations and effects are determined.  

The A genome cottons occur naturally in Africa and Asia, while the D-genome species occurs 

only in the Americas. Meiotic pairing analysis has detected less bivalent formation between the 

tetraploid subgenomes than between the diploid A and D suggesting that the allotetraploid 

subgenomes are more divergent from one another than those of the descendants of their diploid 

progenitors (Endrizzi et al., 1962). Cytogenetic analysis has revealed that G. herbaceum (A1) and G. 

arboreum (A2) differ by a single translocation, while the At (A subgenome in tetraploid) differed 
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from A, D and Dt (D subgenome in tetraploid) genomes by two reciprocal translocations (Endrizzi et 

al., 1985). 

 Several types of molecular markers are available to dissect the complex genome of a crop 

such as cotton including random amplified polymorphic DNA (RAPD), Restricted fragment length 

polymorphism (RFLP), Amplified fragment length polymorphism (AFLP), Simple sequence repeats 

(SSR) and Expressed sequence tag (EST-SSR). To date several genetic maps of cotton genomes have 

been constructed using diverse molecular marker technologies and different mapping populations in 

tetraploid cottons (Reinisch et al., 1994; Ulloa et al., 2002; Rong et al., 2004; Mei et al., 2004; 

Nguyen et al., 2004 and Han et al., 2004). Few genetic maps have been developed in segregating 

populations involving diploid species. An RFLP linkage map was constructed for the diploid A 

genome with 275 loci using an F2 interspecific G. arboreum × G herbaceum cross (Desai et al., . 

2006).  The 13 chromosomes of the A genome were represented by 12 large linkage groups reflecting 

an expected inter-chromosomal translocation between the parents. Although the diploid mapping 

parents represent the closest living relatives of the allotetraploid At genome progenitor, two 

translocations and seven inversions were observed between the A and At genomes. The 

recombination rates are similar between them but the At genome shows a 93% increase in 

recombination relative to its diploid progenitors (Desai et al., 2006).  

Genetic research on A genome cottons has declined with the decrease in their importance as a 

crop species during the first half of this century. Although tools to conduct molecular genetics 

research have been available for a long time, only limited research has been conducted on the Asiatic 

cotton species (Brubaker et al., 1999). Understanding the molecular genetics of the A genome cotton 

can be important for many reasons. For one, it provides a simple model system to study complex 

traits as it is commercially fiber producing species.  Further, by knowing how fiber related QTLs are 

inherited in diploids, inferences on the mode of inheritance can be made to the existing maps of 
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tetraploid cotton. Ideally, one can integrate all the QTLs associated with fiber and yield components 

in diploid and tetraploids with their inheritance pattern. Thus the present study aims to elucidate the 

inheritance, location and marker association with fiber traits in a simple diploid model system. 

1.2 Association Mapping of Fiber Traits in Upland Cotton Using Molecular Markers 

  One of the limiting factors in genomic analysis of many plant species, including cotton, is that 

most genomic studies have been conducted in experimental populations developed from a bi-parental 

cross. Thus, while many QTLs have been reported, the effects of these QTLs often turn out to be 

unique to a specific genetic background, and there has been limited success in applying the results 

across breeding populations. Many researchers now consider that association analysis, whereby genes 

and QTL are detected in a random set of genotypes from a mixed genetic background, is a viable 

solution to this problem (Breseghello and Sorrells, 2006). The increased availability of molecular 

markers and the refinement of statistical tools have kindled renewed interest in this approach. 

Although association analysis shows great promise as an efficient and valuable tool for gene 

discovery, the analysis of marker-trait associations must account for the presence of population 

structure. Failure to do so can cause the detection of spurious associations between traits and unlinked 

markers. 

  Association mapping (AM) is based on the assumption that there is a set of markers available 

and either they represent actual genes (or alleles) or that of the markers are so close to the actual 

functional genes that they co-segregate and happen to be in linkage disequilibrium (LD). This 

implies that the LD mapping is done with a natural population in which association between traits 

and markers exists due to linkage disequilibrium. The degree of LD depends on the recombination 

events that have taken place in history (Nordborg et al., 2002). It is a result of the interaction 

between many factors, e.g. the mating system, recombination rate, selection, and population 

subdivision (Flint-Garcia et al., 2003). Not all LD occurring in a germplasm is due to linkage 
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between loci. Linkage disequilibrium between unlinked loci can occur, attributable to population 

structure, admixture, outcrossing events and selection. Therefore, observed associations between 

markers and traits should be interpreted with care. 

Two approaches are commonly applied in association mapping; (1) whole genome scans 

(Kraakman et al., 2004) and (2) a candidate gene approach (Wilson et al., 2004). Whole genome 

scans focus on identification of genomic regions on all chromosomes related to the trait of interest. 

Success and resolution of genome scans is dependent on the extent of LD. For example, increased LD 

decay, often represented by plotting LD versus genetic distance, requires a large number of closely 

linked markers, rendering the use of genome scans more laborious. Where a candidate gene for a trait 

has been identified, polymorphisms within the gene (SNPs) can be correlated with phenotypic 

variation (Thornsberry et al., 2001) and are most useful when LD decays rapidly with increasing 

physical distance. The candidate gene approach has been effective at identifying single nucleotide 

polymorphisms in Dwarf8 (Thornsberry et al., 2001) and Y1 (Palaisa et al., 2003) associated with 

phenotypic variation in flowering time and β-carotene accumulation, respectively, in maize.   

The advantages of population-based association studies, utilizing a sample of individuals from 

germplasm collections or a natural population, over traditional QTL-mapping in biparental crosses are 

primarily due to; (1) availability of broader genetic variations with wider background for marker-trait 

correlations; (2) likelihood for a higher resolution mapping because of the utilization of 

recombination events from a large number of meiosis throughout the germplasm developmental 

history; (3) possibility of exploiting historically measured trait data for association, and (4) no need 

for the development of expensive and tedious biparental populations makes the approach time saving 

and cost-effective (Kraakman et al., 2004). The disadvantages of this approach are mainly Type I 

errors, associations could be caused by population structure and there would be a lack of linkage 
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information among the markers identified for significant associations.  All these can be attributed to 

population stratification caused by gene drift, founder effects or selection (Pritchard et al., 2000).  

Several methods have been proposed for estimating population structure and modeling 

population structure in AM studies, including distance and model based methods (Pritchard et al., . 

2000; Peleg et al., 2008). Distance based estimates of population structure are generally based on 

clustering of individuals with pair-wise genetic distance estimates between individuals (Nei 1972; 

Rogers 1972; Nei 1978). Although visually appealing, distance-based methods are not suitable for 

statistical inference. In contrast, model based methods assign individuals probabilistically to one or 

more sub-population. The most common model-based approach is Bayesian modeling where allele 

frequencies are used to estimate the likelihood of an individual belonging to a particular 

subpopulation. This approach allows assignment of individuals to respective populations that can be 

integrated into statistical models to account for population structure in AM studies. The software 

STRUCTURE (Pritchard et al., 2000) has been developed to account for population structure and has 

been implemented in AM studies in a number of crop species. 

 Association or linkage disequilibrium (LD) mapping, based on pair-wise comparisons 

between observed and expected haplotype frequencies has been used extensively in human studies 

(Cardon and Abecasis, 2003) and in maize among polymorphic pairs of SNPs, notably 

insertions/deletions of individual candidate genes for maturity and plant height (Remington et al., 

2001; Thornsberry et al., 2001). Cotton provides a good platform for using genome-wide association 

mapping to catalogue genes responsible for natural variation and identification of QTL’s for 

economic traits. LD mapping involving 285 exotic G. hirsutum germplasm (including Uzbek, 

Mexican and African landrace stocks) was performed with 210 chromosome specific SSR’s 

(Abdurakhomonov et al., 2008). The LD estimates were higher in exotic accessions than variety 

accessions. An exotic germplasm involving 260 G. hirsutum lines were used to associate polymorphic 
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SSR markers with fiber traits. A total of 314 polymorphic markers were able to divide the panel into 

six clusters and 59 markers were associated with fiber traits (Zeng et al., 2009). Fifty-six G. 

arboreum germplasm accessions introduced from nine regions of Africa, Asia and Europe were 

evaluated for major fiber traits using 98 SSR markers. The marker–trait associations based on single 

marker regression models for phenotypic traits were performed with correction for population 

structure. The study revealed 30 significant marker–trait associations with 19 SSR markers located on 

11 chromosomes (Kantartzi and Stewart, 2008). 

The numerous examples of association mapping studies performed in various germplasm 

resources, including the model plant Arabidopsis, demonstrates the enthusiasm with which LD-based 

association has met. The near-future completion of genome sequencing projects of crop species, 

powered with more cost-effective sequencing technologies, will certainly create a basis for 

application of whole genome-association studies  accounting for rare and common copy number 

variants  and epigenomics details of the trait of interest in plants (Abdurakhmonov et al., 2008). 

1.3 Characterization and Marker Trait Associations of Seed Quality Traits in Upland Cotton   

 (Gossypium hirsutum L.) 

 Cotton (G. hirsutum) is primarily grown for fiber production; it is also the world's sixth largest 

source
 
of vegetable oil. Cotton acreage has been cannibalized in recent years by corn and soybeans, a 

trend fueled in large part by the ethanol boom.  Despite an anticipated 28 percent reduction in cotton 

production this year from the previous, the cottonseed crush will remain quite steady. This year’s 

estimated 4.71 million tons of cottonseed combines with ending stocks to set the stage for a crush of 

2.7 million tons, compared to last year’s 2.76 million tons (NCPA report, 2008). 

Cottonseed oil is a versatile vegetable oil derived from the seeds of the cotton plant after the 

cotton lint has been removed and comprises about 16% of a seed, by weight. Commonly used in 

frying applications for snack foods and baked goods, cottonseed oil does not require hydrogenation 

(the process that produces artificial trans fatty acids) because of its inherent high stability. It is 
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typically composed of about
 
26% palmitic acid (C16:0), 15% oleic acid (C18:1), and 58% linoleic

 

acid (C18:2). The relatively high level of palmitic acid provides
 
a degree of stability to the oil that 

makes it suitable for high-temperature
 
frying applications, but is nutritionally undesirable due to the 

low-density lipoprotein cholesterol-raising properties
 
of this saturated fatty acid (Cox et al., 1995). 

Cottonseed oil is one of only a few oils that are stable in the beta‐prime crystal form, which is 

desirable in most solidified products because it promotes a smooth, workable consistency usually 

referred to as plasticity, which is important in baking applications. It also promotes relatively high 

levels of tocopherols (Vitamin E), a natural antioxidant; is cholesterol free; and satisfies kosher 

quality restrictions. 

After crushing to remove the oil, cottonseed meal is used as a source of fodder protein in the 

livestock industry, but the sphere of its use in agriculture is limited. Constituting nearly half of a 

seed’s weight, the meal contains 23% high biological-value protein. Limiting its more widespread use 

is the presence of gossypol which binds with the proteins. The digestibility of the protein is 

diminished and consequently, is its assimilability in the animal. The fractionation of various protein 

components of the meal has shown that the amount of gossypol bound with the proteins depends on 

amino acid composition and structure. In view of this, the primary task in the technology of obtaining 

cottonseed proteins is the fraction of proteins containing different amounts of gossypol. For years, 

scientists have tried to breed cotton with gossypol levels safe for consumption. In the 1950s they 

succeeded, but because the toxin was missing from leaves as well as seeds, the plants proved 

defenseless against pests. With the help of a new technique called RNA interference, or RNAi, a 

gene-silencing mechanism succeeded in lowering the gossypol level in seeds only with minimum or 

no change in the rest of the plant (Ganesan et al., 2006). 

Edible cottonseed has a high protein efficiency ratio (PER = 2.35) greater than that found in 

other vegetable proteins. It contains 64 g of protein per 100 g of edible cottonseed compared to 24 g 
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of protein in beef. The protein in cottonseed is 100% assimilated by the body. It contains all nine 

essential amino acids, is extremely high in potassium, serves as a rich source of complex 

carbohydrates, and contains only polyunsaturated fatty acids. Its calcium-phosphorous ratio is 

considered ideal for building tissue for bone formation.  

Whole cottonseed is high in protein, fat, fiber and energy. This combination of nutrients in one 

feedstuff is unusual. Whole cottonseed with the lint still attached is white and fuzzy in appearance. 

The typical cottonseed meal is composed of moisture (7%), ash (6.6%), protein (45.3%), fiber (6.3%), 

nitrogen-free extract (24.6%) and fat (10.2%).  In order to balance the oil, protein and fiber content in 

the existing germplasm/cultivars, there is a need to survey the whole genome to identify 

genes/controlling elements responsible for these metabolic pathways.    

1.4  Characterization of Upland Cotton Genotypes for Molecular Diversity and Marker Trait 

Associations 

 

  Plant breeders develop populations for variety development from crosses within regionally 

adapted germplasm. Understanding genetic diversity, population structure and marker trait 

associations with quantitative characters are of great importance in MAS. The narrow genetic base of 

upland cotton germplasm that is used in breeding programs is one of the factors recognizable for the 

lack of appreciable progress in improving yield and fiber traits over last two decades (Meredith 

2000). Several studies have documented the decline in genetic diversity due to frequent use of only a 

few parents and the lack of contribution from the secondary gene pool (Bowman et al., 1996). The 

current cultivated upland cottons utilize an estimated 1% of the potential genetic variability 

available. Direct use of primitive accessions of cotton has been limited due to their photoperiodic 

sensitivity, negative linkages and poor fiber qualities. Care needs to be taken to intensively select in 

repeated backcrosses, keeping the desirable characteristics of the recurrent parent intact transferring 

a few desirable genes from wild species as possible. 
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  The national collection of Gossypium species at Germplasm Research Unit TX, USA 

comprises of 9332 accessions representing 49 species from 74 countries assigned to three germplasm 

pools (Wallace et al., 2009). There is a need to screen the core germplasm with high density 

molecular map based PCR markers to fingerprint all accessions in order to minimize any sort of 

duplications. The development of a standard set of SSR markers that represents the diversity across 

the cotton genome is needed. Based on most of the previous studies in cotton on diversity, it is 

understood that genetic diversity exists in the primary gene pool. But there is much room for 

broadening the genetic base of the commercial germplasm. The Regional Breeder Testing Network 

(RBTN) has been developed as a mechanism for sharing particularly elite germplasm.  This 

represents a valuable resource for research into genetic diversity and for the identification QTL’s 

associated with fiber traits utilizing multi-location phenotypic and polymorphic molecular marker 

data in association mapping system. 

    In this context, the present study was undertaken to genetically dissect the cotton genome in 

order to identify associations between molecular markers and the developmental, fiber and seed 

quality traits. Surveying the genetic diversity in diploid (from A1 and A2 cross) and tetraploid cotton 

(representing US upland genotypes) may also provide a valuable insight into the interrelationships 

among the genotypes. The broad objectives of the investigation are listed as follows: 

1) Genetic linkage mapping and QTL analysis of floral, seed and fiber traits in A genome diploid F2 

population using SSR, TRAP and AFLP markers. 

2) Defining the cryptic population structure, genetic diversity and marker trait associations in US 

upland cottons. 

3) Genetic diversity among upland cotton varieties and marker trait associations using the AFLP 

markers. 

4) Molecular diversity and genetic association mapping of seed quality traits in upland cottons. 
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CHAPTER 2 GENETIC LINKAGE MAPPING AND QTL ANALYSIS IN DIPLOID 

COTTON USING AFLP-SSR-TRAP MARKERS 

2.1  Introduction 

The genus Gossypium consists of four cultivated cotton species. Among the diploid species 

(2n=2X=26), G. arboreum and G. herbaceum are generally cultivated on marginal and drought 

prone environments in Asia. They can be distinguished based on plant habit as well as leaf, bracteole 

and boll features (Fryxell, 1979). Long and narrow lobed leaves, bracteoles with fewer teeth and 

round tapering bolls are the characteristics of G. arboreum, while constricted leaf lobes, wide 

bracteole and round, less pitted bolls are the common features of G. herbaceum. Within the A 

genome, G. herbaceum and G. arboreum diverged relatively recently. Cytologically these species 

can be distinguished by a reciprocal translocation (Gerstel, 1953), while the At (A subgenome in 

tetraploid) differs from A, D and Dt (D subgenome in tetraploid) genomes by two reciprocal 

translocations. This suggests that G. arboreum arose as an incipient species with the origin through 

the fixation of the translocation (Endrizzi et al., 1985).  

 Potentially valuable genetic variability has been observed for developmental traits, yield and 

fiber characters in G. arboreum (Singh and Singh 1984) and G. herbaceum (Singh 1983). Old world 

Asiatic diploid cottons were economically important during early global expansion of commercial 

cotton production. In the 1950’s, with the introduction of New world cotton, that had superior fiber 

quality and yield potential with desirable plant type, the area under diploid cotton cultivation 

drastically reduced. Diploid cotton, however, is a model system for studying the genetics of fiber 

development compared to the more complicated system in tetraploid New world cottons. Therefore 

an understanding of the genetic inheritance and genomic regions controlling the fiber genes of 

diploid cotton species is critical. In order to use the extant genetic diversity in the development of 

superior genotypes or transferring elite genes for biotic or abiotic stresses into cultivated tetraploids, 
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molecular breeding techniques using molecular markers offers promising avenue compared to 

traditional breeding methods. 

 Molecular linkage maps provide essential tools for plant genetic research, facilitating 

quantitative trait locus (QTL) mapping, marker-assisted selection and map based cloning. The 

method of linkage analysis is well developed for bi-parental crosses between inbred lines. Estimation 

of recombination rates between loci allows for the construction of genetic linkage map. Besides, 

associations between a trait and marker alleles identify the genomic regions in which the loci 

controlling the trait are located. Several types of molecular markers are being employed to dissect 

the genome viz., RAPD (Random Amplification of Polymorphic DNA), RFLP (Restriction 

Fragment Length Polymorphism), AFLP (Amplified Fragment Length Polymorphism), SSR (Simple 

Sequence Repeat) and EST-SSR (Expressed Sequence Tag).  

To date several genetic maps of cotton genomes have been constructed using diverse 

molecular markers and different mapping populations in tetraploid cottons (Reinisch et al., 1994; 

Ulloa et al., 2002; Rong et al., 2004; Mei et al., 2004; Nguyen et al., 2004; Han et al., 2004 and 

Zhang et al., 2009). Comparatively few genetic maps have been developed in segregating 

populations involving diploid species. Interspecific linkage maps of diploid cottons have been 

constructed for the A genome (G. herbaceum × G. arboreum), the D genome (G. trilobum × G. 

raimondii) (Brubaker et al., 1999; Rong et al., 2004; Desai et al., 2006) and the G genome (G. 

nelsonii × G. australe) (Brubaker and Brown 2003) taxa. An RFLP linkage map using interspecific 

A genome diploid F2 population mapped 275 loci (Desai et al., 2006). The 13 chromosomes of the A 

genome were represented by 12 large linkage groups reflecting an expected inter-chromosomal 

translocation between the parents. Although the diploid mapping parents represent the closest living 

relatives of the allotetraploid At genome progenitor, two translocations and seven inversions were 
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observed between the A and At genomes. The recombination rates are similar between them but the 

At genome shows a 93% increase in recombination relative to its diploid progenitors.  

Among the different molecular marker technologies, the AFLP technique has also been 

frequently used in establishing the extent of genetic diversity and relatedness in cotton due to its high 

polymorphic nature. Evolutionary and genetic relationships of various germplasm resources 

including cultivars from subgenomes such as G. raimondi, G. incanum, G. herbaceum and G. 

arboreum were estimated using AFLPs (Iqbal et al., 1997). Genetic similarities revealed by AFLP 

analyses were in agreement with taxonomic relationships at the species level and this was also 

suggested by other groups using different marker systems (Abdalla et al., 2001; Murtaza 2006).  

The AFLP marker system has also been used extensively to develop genetic linkage maps and 

as a basis for map based QTL analysis. A map based on F2 population developed from a cross 

between G. hirsutum acc. TM-1 x G. barbadense acc. 3–79 was constructed using RAPD and AFLP 

markers comprising 11 linkage groups that covered 521.7 cM (Altaf et al., 1997). In another study, 

490 AFLP markers associated with agronomic traits were identified using an F2 population 

developed from an interspecific cross (Reddy et al., 1997). A backcross interspecific population was 

surveyed using 465 AFLP loci along with 229 SSRs, 192 RFLPs, and two morphological markers 

resulted in a map composed of 37 linkage groups and covered 4400 cM distance (Lacape et al., 

2003). More than 50 AFLP markers have been surveyed on 92 recombinant inbred lines (RILs) of G. 

hirsutum grown in China and the USA, and identified AFLPs associated with fiber and agronomic 

traits. One to four markers were associated with 22–93% of the phenotypic variability of each of the 

seven traits which suggest that the selected markers could be used in MAS (Wu et al., 2009).  

Markers assigned to chromosomes are more useful than unlinked markers in MAS and map 

based cloning (Baogong, 2004). Out of 42 linkage groups developed using an interspecific F2 

population, 19 were assigned to 12 chromosomes using aneuploid interspecific hybrids and a set of 
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29 RFLP and SSR framework markers (Mei et al., 2004). Seven QTLs were also detected for six 

fiber-related traits; five of these were distributed among A-subgenome chromosomes (Mei et al., 

2004). To identify abundant polymorphisms for mapping, a trispecific F2 mapping population was 

screened with AFLP and RAPD markers (Khan et al., 1998). A linkage map containing 51 linkage 

groups spanning about 6,663 cM was developed and suggested a higher level of recombination and 

polymorphism in the D genome than the A genome (Khan et al., 1998). The possibility of 

identifying AFLPs as diagnostic markers for G. hirsutum and its closest relative G. tomentosum 

(endemic to the Hawaii) was explored in a study where 11 and 16 species-specific markers were 

identified for G. tomentosum and G. hirsutum, respectively (Hawkins et al., 2005). These species-

specific AFLP markers would be useful for detecting gene flow between G. hirsutum and G. 

tomentosum that had occurred in the past and might occur in the future. Thus AFLP system has 

proven to be valuable in evolutionary, molecular diversity and QTL or marker trait association 

studies in cotton. 

Genetic research on A genome cottons declined with the decrease in their importance as crop 

species during the later half of the 20
th

 century. Although tools to conduct molecular genetics 

research have been available for a long time, only limited research has been conducted on the Asiatic 

cotton species (Brubaker et al., 1999). Understanding the molecular genetics of A genome cotton 

can be important for many reasons. They can foremost serve as a simple model system to study 

complex quantitative traits, yet only a limited number of genetic maps and QTL studies have been 

conducted.  There is a significant opportunity for further mining of the diploid genome with new 

marker systems to facilitate genetic mapping and MAS of fiber genes. In the present study, we used 

AFLP, SSR and TRAP markers to generate a framework genetic map of cultivated diploid cottons. 

We also describe herein the preliminary assessment of fiber QTL’s and detection of putative QTL’s 

using an interspecific F2 population. Thus the broad objectives of the present study are; 
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1. Construction of an A genome diploid linkage map using AFLP, SSR and TRAP markers. 

2. QTL analysis for qualitative and quantitative traits using both traditional linkage map based 

methods and robust General Linear Methods (GLM). 

2.2 Materials and Methods 

2.2.1 Plant Material and Phenotypic Analysis 

An interspecific F2 population was developed from a cross between G. arboreum (acc. SMA-

4, PI529740) x G. herbaceum (acc. A-97, PI529670), (provided by Dr. A.H. Paterson, University of 

Georgia, Athens). The parents and 94 F2 segregating plants were grown in the green house, at LSU 

AgCenter, Baton Rouge, LA. The phenotypic data on qualitative traits such as petal color (yellow or 

white), petal spot (absent or present) and seed hair (fuzzy or naked) was recorded for all 94 F2 

individuals and parents in the green house. The parent SMA-4 possesses yellow flowers with petal 

spot and naked seeds while A-97 has white flowers without petal spot and fuzzy seeds. The 

quantitative traits namely, fiber length (inches), fiber strength (g/tex), short fiber index (SFI), fiber 

elongation (%), seed index (g), and uniformity ratio were measured on an individual plant basis. 

The fiber analysis was done via HVI system at the LSU AgCenter Cotton Fiber Testing Laboratory. 

HVI measurements were repeated two times.  

Micronaire is measured by relating airflow resistance to the specific surface of fibers. Fiber 

length is measured optically in a tapered fiber beard which is automatically prepared, carded, and 

brushed. Fiber strength is measured physically by clamping a fiber bundle between 2 pairs of 

clamps at known distance. The second pair of clamps pulls away from the first pair at a constant 

speed until the fiber bundle breaks. The distance it travels, extending the fiber bundle before 

breakage, is reported as elongation. Uniformity index is the ratio of mean length and upper half 

mean length expressed in percentage. Short fiber index is evaluated utilizing a prediction model to 

derive short fiber index from the HVI measurements of length and uniformity index. 
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 Means of the phenotypic data from segregating individuals were used to test for normal 

distribution using PROC UNIVARIATE (SAS, 9.1.3, Cary, NC). Correlation analysis between pairs 

of traits was performed using PROC CORR in SAS. The correlation coefficients and a matrix plot 

were generated showing interrelationships among fiber traits. 

2.2.2 DNA Isolation and Genotypic Analysis 

The total genomic DNA from young leaves of the parents and F2 plants was isolated using 

the cetyltrimethyl-ammonium bromide (CTAB) method as described previously (Zhang and Stewart 

2000). Cotton leaves were frozen in liquid nitrogen after being collected and ground to a fine 

powder with a mortar and pestle. In a 50ml eppendorf tube, CTAB DNA extraction buffer (15ml) 

was added to each 1-1.5g finely ground sample. The supernatant was extracted twice with 

chloroform/isoamyl alcohol (24:1) after being incubated at 65
o 

C for 30 min. Then the supernatant 

was treated with ice cold isopropanol and RNase (Qiagen, Valencia, CA) in succession. The 

precipitated DNA was washed with 70% ethanol and dissolved in ddH2O (200μl). DNA 

concentration was measured using a NanoDrop-1000 spectrophotometer (NanoDrop, Wilmington, 

DE) at an optical density ration of 260/280 nm. Samples yielding ratios between 1.8 and 2.0 were 

considered good quality DNA samples. 

Sixty four primer combinations were used to generate AFLP data following the procedure 

given by Vos et al., (1995) with some modifications (Table: 2.1a). Individual plant DNA (20-

50ng/μl) was digested with EcoRI (infrequent cutter with GAATTC recognition sequence) and MseI 

(frequent cutter with TTAA recognition sequence) restriction enzymes and oligonucleotide adapters 

specific to restriction sites were ligated to the resulting fragments through incubation (37
o
C for 180 

min) with DNA ligase. Pre-amplifications were done in an iCycler (BioRad Labs, Hercules, CA) 

using EcoRI+A and Mse I+C oligo primers. The amplification was carried out with 50ng/ul of oligo 

primers, 5mM dNTP’s, 25mM MgCl2, 10X buffer, Taq (5U/ul) and restrict- ligated template DNA 
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in a total volume of 20 μl. The PCR was set up with initial denaturing for 94
o
C 2 min followed by 

26 cycles at 94
o
C 1 min, 56

o
C 1 min., 72

o
C 1 min., and final extension at 72

o
C for 5min.  

Table  2.1a Adapters and primers of AFLP marker system used for pre and selective 

amplification in diploid F2 population 

Primer/adapter  Nomenclature†   Sequence (5’-3’) 

 

ECORI primers: 

EcoRI linker 1   E-I    CTC GTA GAC TGC GTA CC 

EcoRI linker 2   E-II    AAT TGG TAC GCA GTC TAC 

EcoRI + A    E+A    GAC TGC GTA CCA ATT CA 

E- AAC    E1    GACTGCGTACCAATTCAAC 

E- AAG    E2    GACTGCGTACCAATTCAAG 

E-ACA    E3    GACTGCGTACCAATTCACA 

E-ACT    E4    GACTGCGTACCAATTCACT 

E-ACC    E5    GACTGCGTACCAATTCACC 

E-ACG    E6    GACTGCGTACCAATTCACG 

E-AGG    E8    GACTGCGTACCAATTCAGG 

E-AGA    E9    GACTGCGTACCAATTCAGA 

 

MseI primers: 

MseI linker 1    M-I    GAC GAT GAG TCC TGA G 

MseI linker 2    M-II    TAC TCA GGA CTC AT 

MseI + C    M+C    GAT GAG TCC TGA GTA AC 

M-CAA    M1    GATGAGTCCTGAGTAACAA 

M-CAC    M2    GATGAGTCCTGAGTAACAC 

M-CAG    M3    GATGAGTCCTGAGTAACAG 

M-CAT    M4    GATGAGTCCTGAGTAACAT 

M-CTA    M5    GATGAGTCCTGAGTAACTA 

M-CTC    M6    GATGAGTCCTGAGTAACTC 

M-CTG    M7    GATGAGTCCTGAGTAACTG 

M-CTT    M8    GATGAGTCCTGAGTAACTT 

†: Nomenclature is in accordance with the Lacape et al., 2003; Myers et al., 2009.  

The pre amplified products were diluted with ddH2O and selective amplification was done 

using two selective nucleotides. The EcoRI+ANN oligo primers were dye labeled with 700 and 800 
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IR dye. The PCR for selective amplification was carried out in a reaction volume of 10 μL 

consisting of 10X reaction buffer, 25 mM MgCl2, 2.5 mM dNTPs, 1 μM each of EcoRI-ANN and 

MseI+CNN primers and 5U Taq polymerase (Promega, Madison, WI). The reactions were run on 

an i-Cycler (BioRad Labs, Hercules, CA). The PCR conditions for selective amplifications were as 

follows: initial denaturing step at 94
o
C for 2 min followed by initial 12 cycles at 94

o
C for 30 s, 65

o
C 

for 30 s (with 0.7
o
C decrement every cycle) and 72

o
C for 1 min, then followed by 23 cycles at 94

o
C 

for 30 s, 56
o
C for 30 s, and 72

o
C for 1 min with a final extension step at 72

o
C for 2 min. A total of 

64 EcoR I - Mse I selective amplification primer combinations were used. The PCR amplified 

products were run on a LI-COR 4300 sequencer (LI-COR Inc., Lincoln, NE). The gels were saved 

onto a computer and scored manually. Presence of band was recorded as ‘1’ and absence as ‘0’, for 

a typical dominant marker system.  Ambiguous data that could not be resolved were discarded. The 

nomenclature of AFLP loci was followed according to Lacape et al., 2003 and Myers et al., 2009, 

which indicates the enzyme primer combinations with band size. 

In addition, we used 44 SSR/EST-SSR markers (BNL, CIR and MUSS) which were selected 

from At subgenome of the previous tetraploid maps, potentially associated with fiber genes. The 

forward primer of these microsatellite markers were IR dye labeled (700 and 800) (MWG-Biotech, 

Germany). PCR amplification was performed in a total volume of 10μl containing 20-50ng of 

genomic DNA, each primer at 1μM, 5X buffer, 25mM MgCl2, 5mM dNTP’s and 1U of Taq 

polymerase (Promega, WI) with the following cycling profile: 1 cycle of 4min at 94
o
C, 35 cycles of 

45s at 94
o
C, 45s at 55

o
C (varying for different SSR’s depending on their Tm values), followed by 7 

min at 72
o
C. The PCR was carried out using iCycler and the PCR products were separated using 

LICOR 4300 sequencer. The gels were saved onto a computer and scored manually as A 

(homozygous dominant), H (heterozygous) and B (homozygous recessive). Four combinations of 

TRAP markers, a two primer PCR technique (Hu and Vick, 2003) were also tried utilizing sequence 
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information on sucrose synthase (SuSy) and sucrose phosphate synthase (SuPS) genes (Table: 

2.1b). The forward IR dye labeled TRAP primers were combined with arbitrary reverse primers 

(kindly provided by the Sugarcane lab, SPESS, LSU). The above described PCR protocol was used 

to amplify genomic regions of 94 F2 individuals. The PCR products were separated using (LICOR 

4300) and the bands were scored similar to a dominant marker system. 

Table 2.1b Forward and reverse primer sequences of TRAP markers used in diploid F2 

population. 

Fixed/Forward primer Fixed primer sequence (5’-3’) GenBank number 

Sucrose Synthase (SuSy) GGAGGAGCTGAGTGTTTC AF263384 

Sucrose Phosphate Synthase 

(SuPS) 

CGACAACTGGATCAACAG AB001338 

Revere primer   

R1 GACTGCGTACGAATTAAT IR Dye700 

R2 GACTGCGTACGAATTTGA IR Dye700 

 

Allelic diversity at a given locus can be determined by Polymorphism Information Content 

(PIC) and it was calculated as ‘PIC=1-∑fi
2’

 where, fi is the frequency of the i
th

 allele (Weir, 1996). 

PROC ALLELE was used to calculate the PIC values and frequency estimate was done using 

PROC Freq (SAS, 9.1.3, Cary, NC). 

2.2.3 Linkage Map Construction 

The segregation ratio for each marker was tested against expected Mendelian ratios using the 

Chi-square goodness of fit test. Only markers which are not significantly (P≤0.05) different from the 

expected 3:1 for dominant markers such as AFLP and TRAP and 1:2:1 for co-dominant markers such 

as SSR were utilized for map construction. 

Linkage map construction was performed using JOINMAP 3.0 (Stam and Oojien 1995). The 

Kosambi map function was used (Kosambi, 1994) to convert recombination frequency to genetic map 

distance (centiMorgan, cM). All the linkage groups were determined at LOD (logarithm of odds) 

scores ≥3.0 and recombination frequency of 0.4 to provide evidence of linkage (Wu et al., 1992). The 
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graphical representation of the LG was obtained using JOINMAP. Markers showing evidence of 

segregation distortion were marked specifically and used for mapping separately. 

2.2.4 Data Analysis and QTL Mapping 

a) Discriminant Analysis for Qualitative Traits 

Qualitative traits such as petal color, petal spot and seed fuzziness were analyzed using 

Discriminant Analysis (DA). DA is used to classify cases into the values of a categorical dependent 

variable, usually a dichotomous (Fisher, 1936). Discriminant analysis has two steps: (1) an F test 

(Wilk’s lambda) is used to test if the discriminant model as a whole is significant, and (2) if the F 

test shows significance, then the individual independent variables are assessed to see which differ 

significantly in mean (by group) and these are used to classify the dependent variable. The smaller 

the Wilk’s lambda value for an independent variable, the more that variable contributes to the 

discriminant function.  

 The qualitative traits were divided into two groups based on yellow or white petal color, 

presence or absence of petal spot or seed fuzziness (present or absent). To identify the marker data 

that best differentiates training samples within each subpopulation, the parametric discriminant 

analysis (PROC STEPDISC of SAS 9.1.3) forward method was used in the first step. The non 

parametric method within the PROC DISCRIM procedure was then performed considering only the 

selected markers to construct and validate the class prediction function and to predict group 

membership. An error rate defined by ‘percent correct classification’ was calculated to measure 

ability of the markers to correctly assign individual lines to 5, 10 and 15% of the training samples. 

The CROSSVALIDATION option provides a better assessment of classification accuracy. This 

classification is also done for each observation; however, the discriminant function used in each 

case is constructed by taking that observation out of the data set.  With high value of percent correct 

classification, an association between marker (s) and phenotype is inferred. 
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b) QTL Analysis for Quantitative Traits 

A diploid segregation panel consisting of 94 individual cotton plants was evaluated for fiber 

length, strength, seed index, uniformity ratio, elongation percent and short fiber index. Using the 

linkage map and phenotypic information, QTL analysis was performed through interval and 

composite interval mapping via Windows QTL Cartographer 2.5 (Basten et al., 2001). Composite 

interval mapping (CIM) was carried out using the Zmapqtl component of Cartographer (Zeng and 

Weir, 1996). The analysis was performed with a maximum of five background markers based on the 

forward-backward regression method of selection. Zmapqtl provides estimates for the square of the 

partial correlation coefficient (R
2
), the additive and the dominant effect. A LOD threshold of ≥2.5 

(1000 permutations) was used to declare significant QTLs in the present investigation. A Chi-square 

test was performed to determine whether the allele frequency at each individual locus had normal 

segregation. The multiple interval mapping method (MIM) was employed whenever IM/CIM 

detected more than one QTL on the same linkage group to verify their significance. 

QTL analysis was also performed using multiple regression employing PROC 

GLMSELECT in SAS. A variety of model selection methods are available, offering extensive 

capabilities for customizing the selection and stopping criteria. GLMSELECT compares most 

closely to PROC REG and PROC GLM. We used 52 types of GLMSLECT models. Stepwise 

selection method was used with all possible combinations of CHOOSE, SELECT and STOP. 

Different options used for these selection methods included, Bayesian Information Content (BIC), 

SBC (Schwarz Bayesian Information Criterion), Adjusted R
2
, AICC (the Corrected Akaike 

Information Criterion), SL=0.15 (the significance level of the F statistic for entering or departing 

effects) and Cross validation (CV). Traits were considered as dependent variables and all markers 

were treated as independent variables. Each trait was analyzed separately and those independent 

variables with a calculated test statistic estimate less than the specified P value (0.05) were added to 
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the model. To reduce Type I error, selected models were further tested with a validation step by 

using the ‘PRESS’ criterion in the ‘STOP’ option. The best model was then selected based on 

adjusted R
2
 and least number of effects for a particular trait. 

The QTL’s identified by the Cartographer and multiple regression methods were compared, 

with respect to significance of the marker, potential for explaining most of the phenotypic 

variability and their localization on the LG. The analysis were separately carried out and compared 

in order to identify common markers. 

2.3 Results 

2.3.1 Phenotypic Trait Analysis 

The phenotypic data for fiber traits of the parents and the F2 individuals are summarized in 

Table 2.2. The two parents differed significantly for most of the fiber traits except fiber strength.  

Table 2.2 Univariate analyses of FL, UNI, SFI, FS, ELO and SI characters in parental and 

diploid F2 population 

Parameters  FL (inch) UNI SFI FS (g/tex) ELO SI (g) 

Min 0.70 71.70 9.90 15.90 4.20 5.01 

Max 1.02 81.70 29.80 30.90 5.70 11.90 

Mean 0.86 77.42 16.40 22.71 4.89 7.79 

SE 0.02 0.53 1.12 0.87 0.07 0.35 

Var 0.01 6.45 29.07 17.58 0.13 2.82 

SD 0.08 2.54 5.39 4.19 0.35 1.68 

Skewness -0.36 -0.74 1.09 0.35 0.58 0.50 

Kurtosis -0.48 -0.44 0.08 -0.99 -0.13 -0.27 

Parents 

      PI529740 1.00 80.6 12.1 26.50 5.90 5.90 

PI529670 0.86 77.1 15.5 26.70 8.45 8.45 

# FL= Fiber length, UNI= Uniformity index, SFI= Short fiber index, FS= Fiber strength, ELO= Elongation percentage, 

SI= Seed index, SD=Standard deviation, Var= Variance and SE= Standard error 
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The F2 population showed transgressive segregants for all traits. Based on the wide range of values 

and high variance estimates, it is evident that moderate to high phenotypic diversity was present in the 

population. The wide ranges of values were evident for fiber traits, such as FL (0.7-1.02inch), UNI 

(71.7-81.7), SFI (9.9-29.8), FS (15.9-30.9g/tex) and SI (5-11.9g). 

The frequency distribution for fiber traits among the F2 individuals is graphically shown in Fig 

2.1. Based on the amount of diversity present, it was concluded that the F2 population possessed 

sufficient variation for QTL analysis. The correlation coefficients among the quantitative traits 

revealed that there was a significant positive relationship among the fiber traits (Table 2.3). The traits 

such as FL, UNI, FS and SFI were highly correlated with values ranging from 0.55-0.95. While, ELO 

had negative correlation with FL, UNI and FS. Seed index (SI) was positively correlated (not 

significant) with with FL, UNI and FS but negatively associated with SFI and ELO.  

 
 FL= Fiber length, UNI= Uniformity index, SFI= Short fiber index, FS= Fiber strength, ELO= Elongation percentage, SI= 

Seed index 

Fig 2.1 Frequency distribution in a G. arboreum x G. herbaceum F2 population for fiber quality 

and seed index. The mark (*) indicates parental values for each trait. 
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Fig  2.2 The phenotypic diversity present in the segregating F2 population of A genome cottons, 

with respect to flower color and petal spot (center left: SMA-4 and center right: A-97 and F2 are 

around), boll size and shape and seed fuzziness( extreme left: A-97 and extreme right: SMA-4 

and center: F2 segregants (clockwise from upper left). 

The binaries of phenotypic diversity for flower color, boll size and shape and seed fuzziness is 

demonstrated in Fig 2.2. The parent SMA-4 possesses yellow flowers with petal spot and naked seeds 

while A-97 has white flowers without petal spot and fuzzy seeds. The segregation for the qualitative 

traits was recorded for each individual as categorical data.  

Table 2.3 Pearson correlation coefficients among fiber traits of diploid F2 population 

  FL UNI SFI FS ELO SI 

FL 1      

UNI 0.94** 1     

SFI 0.86** 0.95** 1    

FS 0.55* 0.69** -0.69** 1   

ELO -0.52* -0.52* 0.48* -0.29 1  

SI 0.262 0.30 -0.51* 0.51* -0.45* 1 

*, **  Significant at P ≤ 0.05, 0.01 respectively. FL= Fiber length, UNI= Uniformity index, SFI= 

Short fiber index, FS= Fiber strength, ELO= Elongation percentage, SI= Seed index 
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2.3.2 Molecular Analysis 

Sixty four AFLP primer combinations were screened by selective amplification using 

diploid genomic DNA. A total of 539 polymorphic bands were generated with eight each ECORI 

and MseI primer combinations. In addition, SSR and TRAP markers generated 50 and 17 

polymorphic loci respectively (Table 2.4). Among the different ECORI primers tried, E2-AAG and 

E6-ACG generated the highest number of polymorphic bands across all the MseI primers. The 

frequency of shared alleles among the F2 population is presented in Fig 2.3. As expected, the F2 

segregants showed normal distribution with most of the individuals showing 60-80% similarity with 

a peak at 70%. Although the parents differed with respect to many distinguishable characters, the 

amount of genetic marker variability was moderate among the F2 segregants. 

Table 2.4 Summary of AFLP primers used and the number of polymorphic loci identified by 

each combination 

Primer M1
†
 M2 M3 M4 M5 M6 M7 M8 Total 

E1 - - - - - - - - - 

E2 - 29 19 14 13 9 5 9 98 

E3 - 11 7 6 5 7 6 8 50 

E4 - 15  - 9 10 16 11 11 72 

E5 - 21 10 10 4 14 15 13 87 

E6 - 15 33 13 5 12 9 11 98 

E8 - 22 8 15 10 6 4 7 72 

E9 - 22 18 3 9 4 4 3 63 

SSR                 50 

TRAP                 17 

† = nomenclature of the AFLP markers is in accordance with Lacape et al., 2003 and Myers et al., 

2009 

The polymorphic information content (PIC) is commonly used in genetics as a measure of 

polymorphism and to estimate the informativeness of a marker locus used in linkage analysis. In the 

present study, PIC values varied from 0.087 to 0.37 with an average of 0.253 (Fig 2.4).  The AFLP, 

TRAP and SSR markers produced moderate variability, mirroring to the narrow genetic base of the 
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characters in the selected parents. Representative AFLP and SSR gel images showing typical 

marker segregation among the F2 population is presented in Fig: 2.5. 

 

Fig 2.3 Frequency of shared alleles among the diploid F2 segregating population. X axis: 

proportion of shared alleles; Y axis: frequency values 

 
 

Fig 2.4 Frequency distribution of polymorphic information content (PIC) values in AFLP-

SSR-TRAP markers in cotton association mapping. X axis: PIC estimates; Y axis: frequency 

values. 
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AFLP 

 

SSR: 

 

Fig  2.5  Representative gel pictures illustrating allele polymorphismof AFLP (E4M5) and 

SSR markers in diploid F2 population from a cross between G. arboreum x G. herbaceum. M- 

molecular weight standard 
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2.3.3 Construction of Genetic Map  

A total of 606 polymorphic markers were amplified from 94 F2 individuals. Significant 

departures from the expected 3:1 (for AFLP and TRAP) and 1:2:1 (for SSR) segregation ratios were 

detected for 146 loci at P≤0.05, accounting for 24% of the polymorphic loci detected.  A total of 140 

markers were mapped on 37 linkage groups ranging from to 11 to 98cM in length (Table: 2.5). The 

remaining markers were ungrouped. The linkage groups were numbered from LG1-LG37 in 

descending order of length.  The map covered a total of 1109 cM with an average distance of 7.92 cM 

between loci.   

Nine linkage groups were considered as major ones (hosting more than 4 markers/LG) and the 

remaining were minor groups. The number of markers ranged from 2 to 21 per linkage group. One 

linkage group (LG7) consisted only of segregation distorted markers. 

Few of the linkage groups had dense marker coverage. A majority of the linkage groups 

hosted evenly distributed markers. The diploid cotton has 26 chromosomes and the expected 

number of linkage groups is 13. Obviously, a greater number of polymorphic markers and a larger 

population size would aid in covering the number of linkage groups and fill in the remaining gaps. 

2.3.4 QTL Analysis 

a) Qualitative Traits 

In cotton, the A genome diploids and the tetraploid species share a common morphology for 

various qualitative traits. In the present study, a survey of floral and seed morphology was done in 

the segregating F2 population of a cross between the A1 (SMA-4) and A2 (A-97) genomes. A total 

of 606 markers including AFLP, SSR and TRAP were used to discriminate populations for two 

floral characters and seed fuzziness.  The number of markers selected by the STEPDISC procedure 

applied after DA and the percent correct classification of F2 individuals based on the selected 

markers is presented in Table 2.6.  
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Table  2.5 Number of genetic loci per LG, estimated LG length and average distance in the 

diploid linkage map 

Linkage group Number of loci Estimated LG length (cM) Average distance 

LG1 21 98 4.7 

LG2 7 96 13.7 

LG3 3 25 8.3 

LG4 8 77 9.6 

LG5 8 55 6.9 

LG6 7 43 6.1 

LG7 6 17 2.8 

LG8 3 38 12.7 

LG9 3 33 11.0 

LG10 3 24 8.0 

LG11 2 13 6.5 

LG12 2 19 9.5 

LG13 2 17 8.5 

LG14 2 25 12.5 

LG15 2 11 5.5 

LG16 2 20 10.0 

LG17 2 20 10.0 

LG18 17 60 3.5 

LG19 4 45 11.3 

LG20 4 45 11.3 

LG21 3 26 8.7 

LG22 3 30 10.0 

LG23 3 23 7.7 

LG24 3 45 15.0 

LG25 2 23 11.5 

LG26 2 31 15.5 

LG27 2 23 11.5 

LG28 2 22 11.0 

LG29 2 3 1.5 

LG30 2 18 9.0 

LG31 2 12 6.0 

LG32 2 20 10.0 

LG33 2 27 13.5 

LG34 2 25 12.5 

LG35 2 26 13.0 

LG36 2 22 11.0 

LG37 2 22 11.0 
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Fig  2.6  A genetic linkage map of the A genome diploid cotton based on the AFLP, SSR and TRAP 

markers. The map contains 37 linkage groups covering 1109cM with an average of 7.92 cM  between 

loci. A total of 146 markers were identified as distorted ones, departing from the Mendelian 

segregation. They were represented with asterisk (*). QTL’s for fiber traits and seed index are 

represented as boxes to the right side of each LG. 
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   (Figure cont.) 
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DA identified three markers each for petal color and seed fuzziness and four markers for 

petal spot. The percent correct classification (obtained by cross-validation) was 100% with no error 

rate estimate. For petal color, DA selected AFLP markers E5M2_60, E5M6_205 and E9M1_560, 

which were able to discriminate the F2 individuals with 100% correct classification in each training 

samples (5, 10 and 15%). Similar markers showed significant correlations with qualitative traits 

across different training samples selected for the study. 

Table 2.6 Discriminant analyses selected markers for petal color, seed fuzziness and petal spot 

in a diploid F2 population of cotton 

 

Markers entered Model R
2
 Pr > F Wilk’s λ Pr < λ

†
 

 Petal Color 

E5M2_60 0.39 0.0001 0.60 0.0001 

 E5M6_205 0.75 <0.0001 0.24 <0.0001 

 E9M1_560 1.00 <0.0001 0.00 <0.0001 

 Seed fuzziness 

E2M3_342 0.58 <0.0001 0.41 <0.0001 

 E8M8_510 0.84 <0.0001 0.15 <0.0001 

 E9M3_440 1.00 <0.0001 0.00 <0.0001 

 Petal Spot 

SUPSTRP1_175 0.32 0.0008 0.67 0.0008 

 E6M1_410 0.77 <0.0001 0.22 <0.0001 

 E9M2_520 0.87 <0.0001 0.12 <0.0001 

 E2M5_520 1.00 <0.0001 0.00 <0.0001 

 
†: λ = Wilk’s lambda used to test the significance of the discriminant model; Partial R

2
 and Model 

R
2
 were calculated from multiple regression (PROC REG, SAS Institute, ver. 9.1.2); % correct 

classification were calculated by leave one out validation within the training samples. 

The ‘Wilk’s lambda’ P values are significant for the Discriminant model as a whole and 

E9M1_560 was found to contribute more variation to the discriminant function. Similarly, DA 

identified E2M3_342, E8M8_510 and E9M3_440 as suitable marker for discriminating the 

population for seed fuzziness. The marker E2M3_342 is located on LG 27 and the marker 
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E9M3_440 on LG 21 where it is also associated with SFI. For the petal spot, DA identified 

SUSTRAP1_175 (LG 18), E6M1_410, E9M2_520 and E2M5_520 as significant markers for 

discriminating F2 segregants with high adj. R
2
. 

b) Quantitative Traits 

The locations, LG, LOD scores and additive and dominant effect estimates of major QTL’s 

for all the fiber traits and seed index are given in Table 2.7. A total of 19 QTL’s were identified and 

linked with five fiber traits or seed index by composite interval mapping. Of the 19 QTL’s 

identified, LG4 and LG1 hosted markers linked with more than three traits.  

 A total of four QTL’s were detected for the fiber length, which were located on linkage 

groups, 4, 17, 22 and 24 (Table 2.7). The qFL4-1 and qFL17-2 had high LOD values and explained 

11.58 and 7.55% of the phenotypic variation, respectively.  Three QTL’s were detected for 

uniformity ratio in this population located on LG 1, 22 and 25 with R
2
 values ranging from 5.6-9.5. 

The major QTL (LOD=9.48) was found in the interval of E1M8_90 - CIR-199. For SFI, five 

QTL’s on LG 1, 2, 4, 18 and 21 were identified which had R
2
 values ranging from 1.1-2.4. The 

major QTL (qSFI 2-2) was in the interval E9M1_505-E1M3_400, with an LOD value of 8.8 and 

dominant effect (17.7). 

Two QTL’s affecting fiber strength were identified, one, qFS4-2 on LG4 possessed an LOD 

value of 2.92 and both negative additive and dominant effects. The other QTL, qFS1-1, had an LOD 

value of 2.55 and explained about 9.5% of the phenotypic variation. A major QTL for uniformity 

index also mapped in the same region as one for fiber strength. A QTL located on E4M2_145 

(qELO1-1) recorded a 2.95 LOD and explained 9.6% of phenotypic variation for elongation. 

Although there were two QTL’s for seed index, only qSI2-1 located on LG2, possessed 4.17 LOD 

score, explaining 10.09% of the phenotypic variation. The significant QTLs identified showed 

additive and dominant effect across various fiber traits. 
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Table 2.7 Composite Interval Mapping for fiber traits using F2 diploid cotton population from a 

cross between G. arboreum and G. herbaceum. QTLs are listed traitwise along with 

their position on LG, LOD, additive and dominant effects. 

QTL† LG Position LOD Marker Interval Additive* Dominant R
2
 

FL  

qFL4-1 4 4.0 5.1 E6M8_270-E6M3_410 -0.05 0.42 11.58 

qFL17-2  17 14.0 5.1 E6M6_370-E6M4_165 -0.02 0.47 7.55 

qFL22-3 22 2.0 2.7 E4M6_350-E5M7_303 0.14 -0.14 9.65 

qFL24-4 24 20.0 4.3 E5M7_290-E5M3_225 0.03 0.78 4.80 

UNI  

qUNI1-1 1 76.8 2.9 E5M7_300-E4M2_145 11.98 -14.4 9.56 

qUNI22-2 22 2.0 2.5 E4M6_350-E5M7_303 12.40 -14.3 8.44 

qUNI25-3 25 14.0 9.4 E1M8_90-CIR199 -1.31 25.6 5.60 

SFI  

qSFI1-1 1 44.5 3.4 E3M6_80-E3M6_225 -0.36 18.44 1.41 

qSFI2-2 2 33.1 8.8 E9M1_505-E1M3_400 0.37 17.17 1.90 

qSFI4-3 4 12.0 7.5 E6M8_270-E6M3_410 -0.11 16.97 1.10 

qSFI18-4 18 9.1 3.8 E8M3_385-E9M6_475 -1.50 19.74 2.36 

qSFI21-5 21 23.5 3.4 E9M5_270-E9M3_440 0.30 -0.51 1.70 

FS  

qFS1-1 1 77.0 2.5 E4M2_145 3.56 -5.31 9.50 

qFS4-2 4 60.0 2.9 E5M3_115-E5M7_300 -1.35 -8.51 1.07 

ELO  

qELO1-1 1 77.0 2.9 E4M2_145 0.76 -0.90 9.60 

qELO19-2 19 10.0 2.5 E5M7_65-E5M8_160 0.86 -1.37 9.10 

qELO22-3 22 2.0 2.5 E4M6_350-E5M7-303 0.78 -0.89 8.51 

SI  

qSI2-1 2 91.0 4.1 E4M7_140-E4M1_370 1.61 0.45 10.09 

qSI4-2 4 15.7 2.9 E6M8_270-E6M3_410 -1.32 7.60 6.80 

 

† Nomenclature for the QTL was followed as per Shen et al., 2003. 

*positive or negative additive effect leads to increased/decreased trait value with reference to SMA-4 

 

 Multiple regression is a statistical procedure that has been used to explore associations 

between molecular markers and quantitative traits. The assumption was made of a linear 

relationship between the markers and the quantitative trait of interest. In the present study, a total of 

33 markers were identified to be associated with five fiber traits and seed index in diploid cotton 

(Table 2.8). The multiple regression method using 52 models with various selection options found 

to be robust enough to identify significant markers associated with fiber traits.   
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Table 2.8 Significant markers selected using PROC GLMSELECT for fiber traits in diploid 

F2 mapping population. 

Markers 
Model 

R2 
Adj. R2 AICC BIC SBC PRESS F value Pr > F 

FL† 

E9M2_380 0.170 0.161 -1.085 -200.132 -191.067 11.223 18.680 <.0001 

BNL 3661 0.314 0.299 -1.251 -217.798 -204.200 9.497 18.830 <.0001 

E4M2_145 0.406 0.386 -1.370 -231.138 -213.008 8.364 13.730 0.000 

CIR 241 0.519 0.492 -1.533 -250.913 -223.717 7.042 10.530 0.002 

E9M5_310 0.573 0.544 -1.627 -261.978 -230.250 6.309 10.870 0.001 

E9M1_545 0.629 0.599 -1.741 -275.045 -238.785 5.600 12.820 0.001 

E8M6_325 0.704 0.672 -1.911 -295.957 -250.631 4.745 11.270 0.001 

E6M3_410 0.990 0.981 -3.45 -616.83 -403.80 2.369 6.27 0.015 

FS 

        E9M2_380 0.172 0.163 5.486 410.896 419.961 8004.312 18.870 <.0001 

BNL 3661 0.316 0.301 5.317 393.051 406.649 6760.882 19.040 <.0001 

E4M2_145 0.406 0.386 5.200 379.923 398.054 5965.966 13.490 0.000 

E9M1_545 0.619 0.588 4.858 338.586 374.847 4105.780 12.040 0.001 

SFI 

        E9M2_380 0.151 0.141 4.947 360.757 369.822 4669.877 16.160 0.000 

E1M5_485 0.264 0.247 4.828 347.504 361.102 4348.084 13.780 0.000 

E9M8_395 0.363 0.342 4.706 333.953 352.083 3832.187 13.960 0.000 

BNL3661 0.445 0.420 4.593 321.151 343.814 3484.333 12.990 0.001 

E8M6_380 0.514 0.486 4.485 308.798 335.994 3009.731 12.360 0.001 

ELO 

        E9M2_380 0.172 0.163 2.378 121.835 130.900 357.780 18.880 <.0001 

BNL3661 0.306 0.290 2.224 105.417 119.015 307.086 17.380 <.0001 

E4M2_145 0.401 0.381 2.101 91.717 109.847 269.143 14.130 0.000 

E8M8_300 0.617 0.585 1.757 50.247 86.508 194.137 12.880 0.001 

SI 

        E4M1_370 0.130 0.120 3.658 240.908 249.973 1292.379 13.560 0.0004 

E9M3_200 0.303 0.287 3.460 220.304 233.901 1062.668 22.320 <.0001 

E1M5_485 0.381 0.361 3.364 209.155 227.285 958.009 11.340 0.001 

E6M3_500 0.466 0.442 3.241 195.427 218.090 878.357 14.000 0.000 

E5M2_60 0.530 0.503 3.140 183.660 210.855 804.784 11.740 0.001 

E9M7_350 0.729 0.696 2.724 132.420 182.278 507.689 11.180 0.001 

UNI 

        E9M2_380 0.173 0.164 7.897 635.104 644.170 89228.452 19.000 <.0001 

BNL3661 0.311 0.296 7.737 618.043 631.641 76041.022 18.120 <.0001 

E4M2_145 0.406 0.386 7.613 604.359 622.489 66688.242 14.110 0.000 

CIR241 0.517 0.489 7.457 585.140 612.336 56425.459 9.880 0.002 

E9M5_310 0.571 0.541 7.364 574.094 605.822 50569.328 10.850 0.001 

E9M1_545 0.627 0.596 7.249 560.988 597.248 44872.756 12.860 0.001 

E8M6_325 0.705 0.674 7.068 539.066 584.392 37547.020 11.710 0.001 
 

† FL=fiber length, FS=fiber strength, SFI=short fiber index, ELO=elongation percentage, SI=seed 

index and UNI=uniformity ratio. 



40 
 

 Fiber length was associated with seven significant markers. Markers such as E9M1_545, 

BNL3661 and E6M3_410 which possessed the highest Adj. R
2
 values of 62.9, 31.4 and 99%, 

respectively, also had the lowest AICC, BIC and SBC values. The marker E9M3_410 was also 

detected by composite interval mapping with a LOD value of 5.1 and is located on LG4. 

 The F2 population showed wide range of values for the FS (15.90-30.90g/tex). This 

phenotypic variation was efficiently captured (40-62%) by the markers E4M2_145 and E9M1_545. 

Low AICC, SBC and BIC values along with lowest P values (P≤0.001) for these markers showed 

the potential marker trait associations. The QTL qFS1-1 also mapped with the marker E4M2_145 

on LG1 at 77cM with an LOD value of 2.55. 

 Markers such as BNL3661 and E8M6_380 were found to be strongly associated with SFI 

explaining 44.5 and 51.4% of phenotypic variation respectively. Both CIM and multiple regression 

methods identified several markers for SFI. 

 The marker E4M2_145 was found to be strongly associated with UNI and ELO using 

multiple regression methods. This marker was also found by the CIM method and mapped on LG1 

(qUNI-1-1) and qELO1-1, for UNI and ELO traits respectively. Overall, this marker is associated 

with ELO, UNI, FL, and FS traits, found by CIM as well as multiple regression methods. 

 Seed index is a measure of seed weight (g/100 seed) and the F2 segregants showed a wide 

range of values, 4.90-11.90g.  Six markers were found to be significantly associated with seed 

index. Markers such as E4M1_370, E9M3_200 and E9M7_350 were able to capture 13, 30.3 and 

72.9% of phenotypic variation respectively. Among these, E4M1_370 was also identified by the 

CIM method and located on LG2 at 91cM with an LOD of 4.17. For most of the traits, except SFI, 

composite interval mapping and multiple regression results are matching, due to the strong linkage 

of the marker and trait. Such a common markers were of high importance due to less probability of 

occurrence of false positives. 
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2.4 Discussion 

2.4.1 Phenotypic  and Molecular Diversity  

Floral characters such as petal color, petal spot and seed related traits such as seed index and 

fuzziness showed a moderate degree of phenotypic diversity among the F2 segregants. The G. 

arboreum petals are white without petal spot, while G. herbaceum has yellow flower with petal 

spot. These traits fit a monogenic inheritance models with the presence of petal spot as dominant 

over its absence and yellow petal color as dominant over white (Desai et al., 2006). The A genome 

cottons also exhibit a correlation between petal size and petal color with white color petals mostly 

associated with small flowers (Hutchinson, 1931).  

Phenotypic diversity for fiber traits showed a wide range of values except for the ELO and 

UNI. The FL (0.7-1.02 inch), SFI (9.9-29.8), FS (15.90-30.90 g/tex) and SI (4.90-11.90g) showed a 

wide range of values in the segregants. The traits such as FL, UNI, SFI, FS and ELO were 

significantly correlated. Our results showed that approximately 75% of the F2 individual plants were 

identical 60-70% at the molecular level for loci measured by markers. According to Kebede et al., 

(2007) microsatellite analysis revealed a low to moderate interspecific and intraspecific genetic 

diversity in G. herbaceum and G arboreum accessions. The study also indicated the extent of 

polymorphism up to 0.37 with an average of 0.253. The narrow genetic base of the parents could be 

due to the moderate diversity present in the contrasting characters under study. A similar study 

involving A1 and A2 genomes showed genetic similarities to the extent of 0.62 to 0.86 (Kebede et 

al., 2007).   

2.4.2 Construction of Linkage Map 

Among the 606 AFLP, SSR and TRAP markers used in this study, 460 markers were used to 

construct a diploid genetic map. Excluding 24% of the distorted markers, the map consists of 140 

markers assembled on 37 linkage groups. The map covers 1109 cM with each loci at an average of 
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7.92 cM. Similar cross using 274 RFLP loci covered a map length of 1147 cM with an average 

distance of 4.2 cM between adjacent markers (Desai et al., 2006).  Obviously more markers are 

needed to make this map more saturated.  

Segregation distortion, the deviation of segregation ratios from expected Mendelian ratios has 

been reported in a wide range of plant species (Jenczewski et al., 1997). As many as 140 markers 

were considered to be segregation distorted accounting for 24% of the polymorphic markers scored. 

Segregation distortion may be due to the presence of lethal genes and/or overlapping fragments 

consisting of identically sized fragments (Hansen et al., 1999). It could also be related to different 

sizes of the parent genomes or to distorting factors, such as self-incompatibility alleles (Bert et al., 

1999). Population size also influences the segregation distortion when the two markers are separated 

by more than 10cM (Hackett and Broadfoot, 2003).  

2.4.3 QTL Analysis 

Many genes are important to developmental, yield and fiber traits, but small population sizes, 

lack of marker saturation or over emphasis on tetraploid mapping without understanding the basic 

inheritance pattern of fiber genes in model diploid system has lead to meager success towards 

marker assisted selection (MAS) in cotton. Therefore, the present study attempts to map QTL’s in a 

model A genome population.  

Based upon discriminant analysis (DA) analysis, our study revealed that markers E5M2_60 and 

E5M6_205 were associated with petal color, while SUSTRAP1_175 and E6M1_410 were associated 

with petal spot. According to Desai et al., (2006), QTL’s for floral characters showed a high 

correspondence among the At and Dt genomes and much lower correspondence among A and Dt. 

E2M3_342 was  able to discriminate seed fuzziness and was found to be located on LG27. Seed 

fuzziness or naked seed was categorically discriminated by this marker and its parallel association 

with SFI indicated its role in suppressing seed fiber growth. In another G. arboreum x G. herbaceum 
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segregating population, Rong et al., 2005 mapped the naked seed phenotype, sma-4(fz), near the 

terminus of LG A.  

Based on composite interval mapping, 19 QTL’s were identified on 10 linkage groups for the 

five fiber and one seed related trait under study. The phenomenon of QTL clustering has been 

reported earlier in cotton (Shappely et al., 1998; Ulloa and Meredith, 2000; Qin et al., 2008). A total 

of four intervals were found to be involved in the control of more than two traits and located on LG 1, 

2, 4 and 22. Not only are these fiber traits highly correlated, but they are also influenced by tight 

linkage, which was observed as linkage drag in breeding for these traits (Qin et al., 2008).  

Since the parents, type of populations and marker system varied among different experiments 

reported in the literature and availability of few diploid linkage maps, detailed comparisons among 

different findings are difficult. With assignments of DNA markers or QTL’s to specific 

chromosomes, such comparisons can be more valid. 

For the significant QTL’s identified, alleles associated with an increase in the trait value 

originated from both the parent. The potential QTL’s having high LOD values, affecting UNI, FS on 

LG1 and 22 showed significant additive effects and explained 8.44-9.56% of the phenotypic 

variation. Similarly, Zhang et al., (2005) also observed additivity for UNI and FL on chromosome 5 

of the upland cotton map, explaining 25% of trait variation. The marker E4M2_145 was found to be 

significantly associated with UNI, FS and ELO with high LOD values explaining up to 12% of the 

phenotypic variation. The significance of this marker was confirmed using composite interval 

mapping. In addition, multiple regression methods jointly confirmed the linkage of E4M2_145 with 

UNI, FS and ELO, E4M1_370 with SI, BNL 3661 and E8M6_380 with SFI and E9M3_410 with FL. 

Although the QTL’s detected in this study have moderate genetic effects and their number is limited, 

the findings will help in validation and comparison to the tetraploid map. 
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2.5 Conclusion 

The present study revealed moderate level of genetic diversity for the F2 segregants. The study 

explored the diploid cotton genome as model system to map floral, fiber and seed traits. DA was 

effective in identifying potential markers which can differentiate among the floral traits. Both the 

composite interval mapping and multiple regression models confirmed the association of various 

QTL’s to fiber and seed traits. 

The construction of an A genome diploid map, combining AFLP, TRAP and SSR markers, can 

serve as a model for the advancement of cotton genetics, including the understanding of the 

inheritance of fiber genes. Adding additional markers to the existing map will assist in future map 

based cloning efforts and in gene discovery. However, the putative locations of the QTL do not 

necessarily represent physical distances (Shappley et al., 1998). Thus, a physical map is very much 

needed and would be of great value in cloning informative QTL’s in cotton. 
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CHAPTER 3 GENETIC ASSOCIATION MAPPING OF QUANTITATIVE TRAITS IN 

UPLAND COTTON 

3.1 Introduction 

Upland cotton (Gossypium hirsutum L., 2n = 52), one of four cultivated Gossypium species, is 

the world’s leading fiber crop providing natural fiber for the textile industry (Endrizzi et al., 1985). 

Demands for enhancement of fiber quality traits such as fiber length and fiber strength have been 

increasing because of changes in spinning technology in the textile industry; however, most 

commercial cultivars, although high in yields, are lacking in desirable fiber quality. The primary 

breeding goal is how to simultaneously improve both yield and fiber quality. 

Modern cotton cultivars show significant variation for agriculturally important traits (El-Zik and 

Thaxton 1989). For example, the longest, strongest and finest cotton  fibers are produced by the G. 

barbadense cultivars of the Egyptian, Sea Island, and Pima groups. However, Upland G. hirsutum 

cultivars have earlier maturity, higher yields, and are adapted to a wider range of environments. An 

understanding of the genetic and genomic relationships of extant cotton species and cultivars is critical 

for the further utilization of cotton genetic diversity in the development of superior cultivars that 

combine the favorable qualities conditioned by this diverse germplasm. 

A variety of molecular-marker technologies have been used to study the genetic diversity and 

relationships of crop species and their wild relatives. Studies using allozymes and RFLPs have been 

limited by low levels of polymorphism particularly at the intraspecific and even at the interspecific 

level. The amplified fragment length polymorphism (AFLP) method (Vos et al., 1995) has been 

successfully used to analyze genetic diversity among a wide range of crop species and their wild 

relatives (Powell et al.,1996).  AFLPs have been used to estimate genetic relationships in many studies 

including cotton (Pillay and Myers, 1999), lentil (Sharma et al.,1996), soybean (Maughan et al., 1996), 

and barley (Becker et al.,1995). The major advantage of AFLP is its power to identify large numbers 

of potentially polymorphic loci. Evolutionary and genetic relationships of various germplasm 
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resources including 43 cultivars of G. raimondii, G. incanum, G. herbaceum and G. arboreum were 

estimated using AFLP markers (Iqbal et al., 2001). Molecular evidence for species distinctness from 

diversity analysis using AFLP markers in cultivated Indian diploid cotton indicated that G. herbaceum 

and G. arboreum formed two different clusters (Rana and Bhat 2004). 

A bulked segregant analysis (BSA) approach combined with AFLP was used to identify 

additional molecular markers linked to the root knot nematode (Meloidogyne incognita) resistance 

genes rkn1I (Wang and Roberts 2006). AFLPs and SSRs were also used to search for novel markers 

linked to the Xanthomonas compestris (Xcm) resistance locus to facilitate introgression of this trait into 

G. barbadense through MAS.  AFLP-RGA (Resistant Gene Analogs) was employed in cotton to 

search for polymorphisms in putative RGAs (Zhang et al., 2007). The level of polymorphism detected 

with this technique was similar to that of AFLP. Approximately 300 polymorphic AFLP-RGA markers 

were identified, many of which were placed on an existing linkage map (Niu et al., 2007). 

The breeding process can be enhanced by using the linkage between markers and traits, which 

enables indirect selection via markers avoiding the phenotypic assessment of traits. This is especially 

important for traits whose expression is modified by the environment or for which conventional assays 

are difficult to do. An important step towards the establishment of such linkages is the development of 

genetic maps. Genetic mapping of traits comes down to establishing linkage between mapped markers 

and phenotypic trait observations, mostly quantitative in nature. Finding such linkage can be done in 

several ways. Two commonly used approaches are: a) linkage analysis using a bi-parental mapping 

population segregating for the trait(s) of interest, or b) linkage disequilibrium /association mapping 

using a well chosen (natural) population of lines, accessions, or cultivars. 

Association mapping (AM) is based on the assumption that there is a set of markers available 

and either they represent actual genes (or alleles) or that of the markers are so close to the actual 

functional genes that they co-segregate and happen to be in linkage disequilibrium. This implies that 
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the LD mapping is done with a natural population in which an association between traits and markers 

exists due to linkage disequilibrium. It has been used to study the genetics of complex traits in 

agricultural crops such as rice, maize, and barley (Iwata et al., 2007). Association mapping studies 

make much broader use of available germplasm, thus ensuring a more comprehensive and precise 

mapping of QTLs. Association mapping identifies QTLs by examining the marker-trait associations, 

and enables researchers to use modern genetic technologies to exploit natural diversity and locate 

valuable genes in the genome (Zhu et al., 2007).  

The degree of LD in a germplasm depends on the recombination events that have taken place in 

history (Nordborg and Tavaré, et al., 2002). It is a result of the interaction between many factors, e.g. 

the mating system, recombination rate, selection, and population subdivision (Flint-Garcia et al., 

2003). Not all LD occurring in a germplasm is due to linkage between loci. LD between unlinked loci 

can occur, attributable to population structure, admixture, outcrossing events and selection. Therefore, 

observed associations between markers and traits should be interpreted with care. 

Two approaches are commonly applied in association mapping (1) whole genome mapping 

(Kraakman et al., 2004) and (2) a candidate gene based approach (Wilson et al., 2004). The 

candidate gene-association approaches rely on combining multiple lines of evidence to restrict the 

number of genes that are evaluated. Genome sequencing, comparative genomics, transcript 

profiling, low-resolution QTL analysis, and large scale knockouts provide opportunities to develop 

and refine candidate gene lists. These approaches are powerful at identifying candidate genes, but 

not at evaluating allelic affects. They can substantially reduce the amount of genotyping required, 

but most importantly, it can reduce the multiple issues created by testing thousands of sites across 

the genome.  

Whole genome scans focus on the identification of genomic regions on all chromosomes related 

to the trait of interest. Success and resolution of this method depends on the extent of linkage 
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disequilibrium (LD). The advantages of a population-based association study, which utilizes a sample 

of individuals from the germplasm collection or a natural population, over traditional QTL-mapping in 

biparental crosses are primarily due to; (1) availability of broader genetic variations with wider 

background for marker-trait correlations; (2) likelihood for higher resolution mapping because of the 

utilization of major recombination events from a large number of meiosis throughout the germplasm 

development history; (3) possibility of exploiting historically measured trait data for association; and 

(4) no need for the development of expensive and tedious biparental populations that makes the 

approach time saving and cost-effective (Kraakman et al., 2004). The disadvantages of this approach 

are mainly Type I errors; associations could be caused by population structure resulting in a lack of 

linkage information among the markers identified for significant associations.  All these can be 

attributed to population stratification caused by gene drift, founder effects or selection (Pritchard et al., 

2000).  

Several methods have been proposed for estimating population structure and its modeling in 

AM studies (Pritchard et al., 2000a and 2000b; Peleg et al., 2008). Population structure is an important 

component in association mapping analyses because it can reduce both type I and type II errors 

between molecular markers and traits of interest in an autogamous species (Yu et al., 2006). Distance 

based estimates of population structure are generally based on the clustering of individuals using pair-

wise genetic distance estimates between individuals (Nei 1972; Rogers 1972; Nei 1978). In contrast, 

model based methods assign individuals probabilistically to one or more sub-populations. The most 

common model-based approach is Bayesian modeling where allele frequencies are used to estimate the 

likelihood of an individual belonging to a particular subpopulation. A mixed linear model (MLM) 

approach was found effective in removing the confounding effects of the population substructure in 

association mapping (Yu et al., 2006) by using both the population structure information (Q-matrix) 

and pair-wise relatedness coefficients-’kinship’ (K-matrix). The MLM or Q + K model works better 
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than either the K model or Q model alone, as demonstrated in a highly structured Arabidopsis 

population (Yu et al., 2006; Zhao et al.,2007). These approaches allow assignment of individuals to 

respective populations that can be integrated into statistical models to account for population structure 

in AM studies.  

Various biometrical methods have been used in the past for estimating the mode of gene 

action controlling different agronomic and quality characters. In most of the genetic designs used, it 

is assumed that non-allelic interactions are absent, whereas the contrary is often true. Most methods 

also calculated a much larger standard error for the dominance component than for the additive 

component. Using modified QTL mapping one can identify two-way epistatic interactions by 

performing a complete pair-wise analysis of all the molecular markers. Fiber quality traits of cotton 

are inherited in a complex manner and tend to vary with the environment. Epistasis has been 

suggested to be the foundation of these complex traits. Adding epistasis to a model can increase the 

accuracy of prediction. 

The numerous examples of association mapping studies performed in various plant germplasm 

resources including the model plant Arabidopsis, demonstrates the enthusiasm with which LD-based 

association mapping has met. Cotton provides a good platform for using genome-wide association 

mapping to catalogue genes responsible for natural variation and identification of QTL’s for economic 

traits but relatively few studies have been done using this approach. LD mapping involving wild, 

Uzbekistan cotton varieties and exotic G. hirsutum germplasm lines was performed with 210 

chromosome specific SSR’s and detected higher linkage disequilibrium estimates in exotic accessions 

than varieties (Abdurakhomonov et al., 2008). In a study involving 260 G. hirsutum lines, 314 

polymorphic SSR markers derived from exotic crosses were used to identify those associated with 

fiber traits. Structure analysis divided the panel into six clusters and 59 markers were associated with 

fiber traits (Zeng et al., 2009).  
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In light of the prospects of association mapping in other crops and as well as in cotton and the 

paucity of such studies in cotton, the present investigation was undertaken with following objectives; 

1. Estimation of genetic diversity in a pool of genotypes representing US upland cottons. 

2. Defining the cryptic population structure among US cotton genotypes. 

3. Association of markers with yield and fiber quality parameters using various statistical models 

such as mixed and general linear models. 

3.2 Materials and Methods 

3. 2.1 Plant Material 

 A set of 220 upland cotton (G. hirsutum L.) and 12 genotypes from a standardized panel, 

representing subgenome donors, introgression breeding source, genetic standards and popular and 

or historical genotypes were considered for association mapping. The cotton association mapping 

panel (CAM) composition is given in Tables 3.1a and b. The entire CAM panel was divided into six 

groups based on the geographical origin of the breeding programs that developed them and or the 

region of their primary cultivation; Louisiana, Arkansas, South East (SE), Delta, Texas and 

Wild/Std. panel. A significant percentage of the genotypes were advanced breeding lines entered 

into the Regional Breeder’s Trial Network (RBTN), a multistate cooperative testing program of 

public breeding programs.  

Using the CTAB method, DNA was extracted from the young leaves of field grown plants 

(Zhang and Stewart 2000). The phenotypic data on yield and fiber traits for the RBTN entries in 

CAM panel was downloaded from the project website (www.cottonrbtn.com). The LA (kindly 

provided by Dr. G. Myers, Louisiana State University) and ARK (kindly provided by Dr. F. 

Bourland, University of Arkansas) genotypes phenotypic data, especially yield and fiber quality 

data was compiled from multiyear or multi location data (minimum of four environments and four 

replication).  

http://www.cottonrbtn.com/
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Table  3.1a  List of genotypes selected from five growing regions utilized for cotton 

association mapping 
Louisiana LA04307047 0111-24 9721-23-08 DP444BR 

LA00405034 LA04307125 0112-11 9801-36-03 PHY485WRF 

LA1110001 LA04308077 0112-25 9801-36-08 SG105 

LA1110105 LA04308019 0112-32 9801-37-04 STV-4892BR 

LA1110011 LA04307004 0112-34 9805-06-01 

 LA1110147 LA04308064 0112-40 9811-15-07 

 LA1110148 LA04308030 0114-03 9815-05-09 

 LA1110062 LA04308044 0114-09 9803-17-04 

 LA1110083 LA04307074 0114-11 9803-23-04 

 LA1110034 LA04307063 0114-12 9803-23-08 

 LA1110023 LA04308036 0114-20 9803-23-12 

 LA1110069 LA04307062 0114-28 9823-05-04 

 LA1110035 LA04307027 0114-46 0121-01 

 LA1110015 LA04307014 0114-53 DELCOT277 

 LA1110021 Arkansas 0022-11 0110-2NE 

 LA1110003 0101-10 0023-12 0141-15NE 

 LA1110002 0101-12 0023-13 99F-87 

 LA1110085 0101-24 0023-15 South Eastern 

 LA1110038 0101-26 0023-16 AU 1065 

 LA1110046 0101-34 0023-17 AU1107 

 LA1110014 0101-39 0034-15 AU1403 

 LA1110061 0101-41 0117-16 AU5210 

 LA01407117 0101-42 0120-21 AU6207 

 LA01407009 0101-46 0121-23 COKER100 

 LA01407045 0101-49 0105-15 GA2002212 

 LA01407074 0101-55 0113-06 GA2003118 

 LA01407072 0101-59 0113-15 GA2003156 

 LA01407070 0102-11 0113-17 GA3003131 

 LA01407020 0102-13 0113-19 PD03001 

 LA01407029 0102-48 0113-48 PD03011 

 LA01407076 0103-06 0113-49 PD2165 

 LA03404034 0103-45 0113-57 PD3025 

 LA03404039 0103-70 0001-01-03 PD99036 

 LA03404204 0104-03 0001-01-04 PD99041 

 LA03404035 0104-07 0001-01-09 Texas 

 LA03404019 0104-10 0002-03-02 FM800B2R 

 LA03404192 0104-11 0002-19-04 FM9060F 

 LA03404027 0104-20 0006-03-05 FM9063B2F 

 LA03404238 0104-31 0006-11-05 FM9068F 

 LA03404076 0104-36 0007-32-03 FM955LLB2 

 LA03404138 0104-44 0008-22-10 FM958 

 LA03404148 0104-47 0009-13-01 FM960B2R 

 LA03404077 0108-04 0011-11-03 FM960BR 

 LA03404074 0108-20 0011-11-04 FM965LLB2 

 LA03404171 0109-01 0012-03-08 FM991B2R 

 LA03404142 0109-11 0015-06-09 LANKART57 

 LA03404065 0109-18 0015-06-11 MCNAIR235 

 LA03404086 0110-16 0015-10-01 PM54 

 LA03404063 0110-21 0015-11-04 Delta 

 LA03404018 0110-38 0016-05-10 DPL393 

 LA03404051 0110-40 9704-13-05 DPL493 

 LA03404052 0107-03 9704-13-08 DPL491 

 LA04307061 0107-39 9706-36-05 DPL-458BR 

 LA04307066 0111-20 9706-38-06 DP393 

 LA04307003 0111-23 9706-39-10 DPL117B2RF 
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Table 3.1b Cotton Microsatellite Database (CMD) - a standardized Panel of cotton genotypes 

used to compare with association mapping genotypes (www.cottonmarker.org) 

Code Genotype Characteristics 

CMD01 TM-1 G. hirsutum (AD1)-genetic standard (BAC donor /RI parent) 

CMD02 3-79 G. barbadense (AD2) -genetic standard (fiber QTLs /RI parent) 

CMD03 Acala Maxxa California Upland cotton (AD1) and BAC donor 

CMD04 DPL 458BR Upland cotton (AD1) with significant acreage 

CMD05 Paymaster 1218BR Upland cotton (AD1) with significant acreage 

CMD06 Fibermax 832 Upland cotton (AD1) with significant acreage 

CMD07 Stoneville 4892BR Upland cotton (AD1) with significant acreage 

CMD08 Pima S-6 Pima (AD2) germplasm breeding source 

CMD09 G. arboreum A subgenome representative 

CMD10 G. raimondii D subgenome representative 

CMD11 G. tomentosum Introgression breeding source 

CMD12 G. mustelinum Introgression breeding source 

 

Environments were treated as replicates. The four replication data on lint yield, micronaire, 

fiber length, fiber strength, uniformity ratio, maturity coefficient and Short Fiber Index (SFI) were 

averaged across all testing locations to calculate variances. DP 393 was considered as check and all 

the comparisons were made in accordance with the performance of this cultivar. Especially for lint 

yield, DP 393 was taken as standard check and values of other CAM panel were adjusted to it. Fiber 

analysis data is derived from the High Volume Instrument (HVI) system. Correlation analysis for 

each trait was performed using PROC CORR in SAS. 

3.2.2 Genotyping with Molecular Markers 

Sixty four primer combinations were used to generate AFLP data (Table: 3.2) following the 

procedure given by Vos et al., (1995) with some modifications. Sample DNA was digested with 

EcoRI (infrequent cutter with GAATTC recognition sequence) and MseI (frequent cutter with 

TTAA recognition sequence) restriction enzymes and oligonucleotide adapters specific to 

restriction sites were ligated to the resulting fragments through incubation (37°C for 180 min) with 

DNA ligase via in an iCycler (BioRad Labs, Hercules, CA.) 
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Table  3.2 Adapters and primers of AFLP markers system used for pre and selective 

amplification in cotton association mapping. 

Primer/adapter  Nomenclature*  Sequences(5’-3’) 

ECORI primers: 

EcoRI linker 1   E-I    CTC GTA GAC TGC GTA CC 

EcoRI linker 2   E-II    AAT TGG TAC GCA GTC TAC 

EcoRI + A    E+A    GAC TGC GTA CCA ATT CA 

E- AAC    E1    GACTGCGTACCAATTCAAC 

E- AAG    E2    GACTGCGTACCAATTCAAG 

E-ACA    E3    GACTGCGTACCAATTCACA 

E-ACT    E4    GACTGCGTACCAATTCACT 

E-ACC    E5    GACTGCGTACCAATTCACC 

E-ACG    E6    GACTGCGTACCAATTCACG 

E-AGG    E8    GACTGCGTACCAATTCAGG 

E-AGA    E9    GACTGCGTACCAATTCAGA 

MseI primers: 

MseI linker 1    M-I    GAC GAT GAG TCC TGA G 

MseI linker 2    M-II    TAC TCA GGA CTC AT 

MseI + C    M+C    GAT GAG TCC TGA GTA AC 

M-CAA    M1    GATGAGTCCTGAGTAACAA 

M-CAC    M2    GATGAGTCCTGAGTAACAC 

M-CAG    M3    GATGAGTCCTGAGTAACAG 

M-CAT    M4    GATGAGTCCTGAGTAACAT 

M-CTA    M5    GATGAGTCCTGAGTAACTA 

M-CTC    M6    GATGAGTCCTGAGTAACTC 

M-CTG    M7    GATGAGTCCTGAGTAACTG 

M-CTT    M8    GATGAGTCCTGAGTAACTT 

*Nomenclature is in accordance with the Lacape et al., 2003; Myers et al., 2009.  

Pre-amplifications were done using EcoR I+A and Mse I+C oligo primers. The amplification 

was carried out with 50ng/ul of oligo primers, 5mM dNTP’s, 25mM MgCl2, 10X buffer, Taq 

polymerase (5U/µl), restrict ligated template DNA and ddH2O in a total volume of 20ul. The PCR 

was set up with initial denaturing for 94
o
C (2 min.) followed by 26 cycles at 94

o
C (1 min), 56

o
C (1 

min), 72
o
C (1 min) and final extension at 72

o
C for 5min. The pre amplified products were diluted 
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with ddH2O and selective amplification was done using two selective nucleotides. The EcoRI+ANN 

oligo primers were dye labeled with 700 and 800 IR dye (MWG Biotech, Germany). The PCR for 

selective amplification was carried out in a reaction volume of 10 μL consisting of 10X reaction 

buffer, 25 mM MgCl2, 2.5 mM dNTP 1μM each EcoRI-ANN ANN and MseI+CNN primers and 

5U Taq polymerase (Promega, Madison, WI). The reactions were run on an i-Cycler (BioRad Labs, 

Hercules, CA, USA). The working PCR conditions for selective amplifications were standardized as 

follows: initial denaturing step at 94
o
C for 2 min followed by 12 cycles at 94

o
C for 30 s, 65

o
C for 30 

s (with 0.7
o
C decrement every cycle) and 72

o
C for 1 min, then followed by 23 cycles at 94

o
C for 30 

s, 56
o
C for 30 s, and 72

o
C for 1 min with a final extension step at 72

o
C for 2 min. A total of 64 EcoR 

I - Mse I selective amplification primer combinations were used. The PCR amplified products were 

run on a LI-COR 4300 sequencer (LI-COR Inc., Lincoln, NE).  

The gels were saved onto a computer and scored manually. Presence of band was recorded 

as ‘1’ and absence as ‘0’, a typical dominant marker system.  Ambiguous data that could not be 

resolved were discarded. The nomenclature of AFLP loci was followed according to Lacape et al., . 

(2003) and Myers et al., (2009), indicating the enzyme primer combination with band size. 

3.2.3 Molecular Diversity and Population Structure 

For each marker used, sub-populationwise diversity statistics including number of bands, 

unique bands, number of observed and effective alleles, Nei’s genetic distances, expected 

heterozygosity and Shanon’s information index were calculated using GenAlex 6.1 software 

(Peakall and Smouse, 2006). Allelic diversity at a given locus can be determined by Polymorphism 

Information Content (PIC) and was calculated as ‘PIC=1-∑fi
2
  where, fi is the frequency of the i

th
 

allele (Weir, 1996). PROC ALLELE was used to calculate PIC values and frequency estimates were 

done using PROC FREQ (SAS 9.1.3, SAS Institute, Cary, NC).  
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 Genetic differentiation among the subpopulation was estimated using hierarchical analysis 

of molecular variance (AMOVA; Excoffier et al., 2005) method in GenAlEx 6.1 (Peakall and 

Smouse, 2006). The pairwise FST values (Wright 1965) were estimated using the Bayesian model 

for dominant markers without prior knowledge of inbreeding coefficients. Wright’s F-statistic is a 

hierarchical series of measures that indexes the fixation of different alleles in different populations. 

The pairwise FST values among the six predefined groups were calculated using AFLPSURV 

(Vekemans 2002). In order to know the possible structure in the set of CAM panel, various 

statistical analysis were performed on the basis of allelic frequencies. First, the Dice similarity 

coefficient was calculated using the formula D = 2a/(2a + b + c), where a = the number of 

fragments present in both accessions, b and c are the numbers of fragments that are present in either 

accession, respectively (Sneath and Sokal, 1973). The genetic similarity coefficient matrix was then 

used to construct a tree with the neighbor joining procedure (Saitou and Nei, 1987) in MEGA 

software (Kumar et al., 2004). In addition, Principal Coordinate Analysis (PCoA) was performed 

using a genetic similarity matrix based on Nei – Li (1979) estimates to supplement the findings 

obtained from cluster analysis. All the above analyses were performed employing different modules 

of NTSYS-PC software, version 2.2 (Rohlf, 2000).  

 Correspondence analysis was also performed on the CAM panel using the marker matrix of 

band incidences (Greenacre, 1984). The multivariate nature of correspondence analysis can reveal 

relationships that would not be detected in a series of pair wise comparisons of variable. Another 

important feature is the graphical display of row and column points in biplots, which can help in 

detecting structural relationships among the variable categories and objects. The whole procedure 

was implemented in PAST software (Hammer et al., 2001) using AFLP marker data with 

predefined cultivar groups. 
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Bayesian model based clustering was performed using Structure software according to 

Pritchard et al., (2000a). The main criteria for this type of clustering is the allocation of individual 

genotypes into groups in such a way that Hardy-Weinberg equilibrium and linkage disequilibrium 

are valid within clusters, but absent between clusters. Gene flow between genetically distinct 

populations creates linkage disequilibrium (admixture linkage disequilibrium [ALD]) among all loci 

(linked and unlinked) that have different allele frequencies in the founding populations. Based on 

the prior information about the historical and popular cultivars included in the study along with 

standardized panel genotypes, we thought that sufficient exchange of favorable alleles among these 

genotypes can be accounted in the model. Therefore, the admixture model in Structure software was 

used and allele frequencies among populations were assumed to be correlated. To determine the 

optimum number of subpopulations, values for k ranging from 2-10 were performed with three 

independent runs for each value. Each run was carried out using 100,000 iterations with 100,000 

burn-in iterations.  

The optimum number of clusters (k) was determined based on the estimated logarithmic 

likelihood of the data (Yu et al., 2006). This value reaches a plateau when the minimum number of 

groups that best describes the population structure has been reached (Pritchard et al., 2000a; Evanno 

et al., 2005). Additionally, if there are separate populations the inferred value of alpha, which is 

defined as the ‘Dirichlet’ parameter for the degree of admixture, should remain constant (range 

~0.2) while running the program. The mean alpha value for this data set was 0.0630 at k=6.  

Another criterion for deciding the most appropriate value of k is the proportion of 

individuals belonging to the various populations should not be equal. If the population membership 

is symmetric (~1/K is 0.167) most of the individuals will be fairly admixed and one should infer 

that there is no real population structure. The membership of individuals in the populations 

determined by Structure for this data set was between 0.093–0.261. Therefore, based on the 
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biological information on cultivar grouping and various statistics employed, it was evident that 

there exists at least six clusters. A graphical display of subpopulation composition from Structure 

software was generated using DISTRUCT (Rosenberg, 2002). 

Nonrandom mating induces correlations in allelic states within and among loci, which can 

be used to understand the genetic structure of natural populations (Wright, 1965). For many species 

including cotton, it is important to quantify the contribution of two forms of nonrandom mating; 

inbreeding (mating among relatives) and population substructure (limited dispersal of gametes). To 

do this, ‘INSTRUCT’ model allowing for population structure and selfing rates was used (Gao et 

al., 2007). INSTRUCT implements a Markov Chain Monte Carlo (MCMC) algorithm for the 

generalized Bayesian clustering (extension of STRUCTURE) method to estimate the self 

fertilization rates or inbreeding coefficients and population-of-origin classification using multilocus 

marker data. The clustering of individuals into subpopulations is based on the genotypic data 

consisting of unlinked markers (Gao et al., 2007). The diploid model with 100000 burns, 200000 

iterations, inferring populations structure with admixture specifications was run for ‘k’ ranging from 

2-10. The data file was analyzed using the Computational Biology Application Suite for High 

Performance Computing, (Cornell University, Ithaca, NY). A graphical display of subpopulation 

composition from Instruct software was generated with DISTRUCT (Rosenberg, 2004). The 

deviance information criterion (DIC) was used to infer optimal k (Gao et al., 2007). A common 

methodology to check the model convergence is by tracking the Gelman-Rubin convergence 

statistics (Brooks and Gelman, 1998). A Gelman–Rubin statistic under 1.2 indicates approximate 

convergence and it is used to assess when convergence occurs. 

Pairwise kinship estimates were calculated using SPAGeDi software (Hardy and Vekemans, 

2002). A kinship matrix consisting of coefficients along with Q-matrix obtained from 
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STRUCTURE, INSTRUCT and eigenvectors of PCoA, describing the assignment of each cultivar 

to a specific cluster, was used in the mixed model for association analysis. 

3.2.4 Association Analysis: Statistical Models and Procedures 

a) Mixed Models for Association Mapping 

In association mapping, there is need to account for type I error or spurious 

associations/false positives. Incorporating the outcome of population structure and Principal 

coordinate analyses (PCA) increases the power to detect true marker trait associations. Eight 

statistical mixed models were tested (Table 3.3) for 568 AFLP markers and adjusted Rsquare values 

were computed for the fixed marker effects using TASSEL 2.1 beta version (Bradbury et al., 2007). 

Tests for significance were applied using the ‘F’ statistic associated with each marker. The model 

possessing the highest adj. R
2
 was considered best at capturing the maximum variation. A cutoff P 

value (0.05) was used to determine whether a QTL was associated with a marker and adj. R
2
 

estimates were used to determine the magnitude of the QTL effect. Most of the marker trait 

associations were made based on a 215 genotypes subset that excluded the wild/std. panel for which 

phenotypic data was not available. 

Table 3.3 Mixed models designed for association mapping in cotton using TASSEL software. 

Code† Model Statistical equation 

MT Marker+Trait Y=Aά+e 

MTS Marker+Trait+Structure Y=Aά+Qν+e 

MTI Marker+Trait+Instruct Y=Aά+Qν+e 

MTP Marker+Trait+PCA Y=Aά+Qν+e 

MTK Marker+Trait+Kinship Y=Aά+Zu+e 

MTSK Marker+Trait++Structure+Kinship Y=Xß+ Aά+ Qν+Zu+e 

MTIK Marker+Trait+Instruct+Kinship Y=Xß+ Aά+ Qν+Zu+e 

MTPK Marker+Trait+PCA+Kinship Y=Xß+ Aά+ Qν+Zu+e 

 

† : Y = vector of phenotypic observations, ά= vector of allelic effects, e=vector of residual effects, ν=vector 

of population effects, ß=vectors of fixed effects other than allelic or population group effects, u=vector of 

polygenic background effects, Q=population membership assignment matrix, X, A and Z are incidence 

matrices of 1s and 0s relating y to ß, ά and u (Casa et al., 2008). 
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b) Mixed – Multiple Regression Models for Association Analysis 

The GLMSELECT procedure in SAS performs effect selection in the framework of general 

linear models. A variety of model selection methods are available offering extensive capabilities for 

customizing and for using a wide variety of selection and stopping criteria. The GLMSELECT 

procedure compares most closely to PROC REG and PROC GLM. The PROC REG procedure 

supports a variety of model-selection methods but does not support a CLASS statement. The PROC 

GLM procedure supports a CLASS statement but does not include effect selection methods. The 

GLMSELECT procedure fills this gap. It focuses on the standard independently and identically 

distributed general linear model for univariate responses and offers great flexibility for, and insight 

into, the model selection algorithm. 

In order to exploit the advantages of multiple regression procedures, all trait-wise significant 

markers selected by the mixed model procedures of TASSEL were screened for using fifty two 

GLMSLECT models. A stepwise selection method was used with all possible combinations of the 

CHOOSE, SELECT and STOP options. Options used included, Bayesian Information 

Content(BIC), SBC(Schwarz Bayesian Information Criterion), Adjusted R
2
, AICC (Corrected 

Akaike Information Criterion), SL=0.15 (the significance level of the F statistic for entering or 

departing effects) and Cross validation (CV). Trait scores were considered as dependent variables 

and all markers were treated as the independent variables. Each trait was analyzed separately and 

those independent variables showing test statistic estimates of less than P= 0.05 were added into the 

model. To reduce Type I error, selected models were tested with a validation step by using the 

‘PRESS’ criterion in the ‘STOP’ option. The best model was then selected based on adjusted R
2
 and 

the least number of effects for a particular trait. 

To estimate epistasis we calculated contrasts for two gene interactions in an additive x 

additive model in SAS (SAS, 9.1.3). The selected QTL’s from mixed-multiple regression model 
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were used to build an epistatic model. Those markers found significant at P<0.05 level were 

selected for each trait using PROC GLM. 

3.3 Results and Discussion 

3.3.1 Phenotypic Analysis 

 The cotton association mapping panel consisted of 232 genotypes representing five 

geographical regions of the USA along with standard panel (Table: 3.1a and 3.1b). The phenotypic 

data was collected from 215 genotypes (excluding standard panel) and statistically analyzed using 

PROC UNIVARIATE in SAS (Table: 3.4). The 215 genotypes had a mean lint yield of 95.78% in 

relation to the DP 393 check. The mean values observed for MIC (4.70), fiber length (1.14 inch), 

strength (31.10 g/tex), UI (84.34%), elongation (8.47) and SFC (4.78) were in accordance with 

national averages. The range and variances indicated a significant amount of phenotypic diversity 

present in the CAM panel.  Similar variation was observed in a collection of 285 land race stocks 

from Africa and Mexico (Abdurakhmonov et al., 2008). Large genetic effects and relatively small 

genotype x environment (GXE) variance was observed in a 260 individual exotic mapping 

population (Zeng et al., 2009). The environmental factors influence in the development and 

modification of a trait. 

Table 3.4 Phenotypic variation for yield and fiber traits in CAM panel 

 

Parameters  LY† LP MIC FL FS UI ELO SFC 

N 215 215 215 215 215 215 215 215 

Min 71.69 34.15 4.03 1.06 26.88 64.12 5.41 3.04 

Max 147.85 45.93 5.91 1.26 36.74 87.19 11.39 8.01 

Mean 95.78 40.11 4.70 1.14 31.10 84.34 8.47 4.78 

SE 0.73 0.13 0.02 0.00 0.13 0.11 0.07 0.06 

Variance 114.37 3.79 0.10 0.00 3.65 2.70 1.18 0.84 

SD 10.69 1.95 0.32 0.03 1.91 1.64 1.08 0.92 
 

†: LY = lint yield (standardized to DP 393); LP = Lint percentage; MIC = micronaire; FL = fiber 

length; FS = fiber strength; UI = uniformity index; ELO = elongation percentage; SFC = short fiber 

index. 
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The correlation studies among lint yield and fiber traits revealed significant trait 

relationships, for example, FS and UI, LY, MIC and FL; UI with MIC, FL (Table 3.5 and Fig: 3.1). 

The LY was positively correlated with MIC, FS, FL and ELO, while MIC was significantly 

negatively correlated with FL and ELO. Fiber length was positively correlated with FS, UI and 

negatively with ELO and SFC. A significant negative correlation was evident between SFC with 

other fiber traits.  

 
 

Fig 3.1 Pearson correlation matrix among lint yield and major fiber traits in cotton 

association mapping panel. 

 

Table 3.5 Correlations between lint yield and major HVI fiber properties in upland cotton. 

 

Traits LY
†
 MIC FL FS UI ELO SFC 

LY 1 

      MIC 0.0021 1 

     FL 0.085 -0.374*** 1 

    FS 0.156*** 0.341*** 0.175*** 1 

   UI 0.0352 0.203*** 0.31*** 0.534*** 1 

  ELO 0.014 -0.0298 -0.122** -0.0245 0.058 1 

 SFC -0.079 -0.115** -0.238*** -0.436*** -0.326*** -0.443*** 1 
 

** P<0.01, *** P<0.001, † ;  LY=Lint yield, MIC=Micronaire, FL=Fiber length, FS=Fiber strength,  

UI=Uniformity index, ELO=Elongation %, SFC=Short fiber content. 
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A similar positive correlation between FS and FL was also observed by earlier investigators using 

an exotic upland AM panel (Abdurakhmonov et al., 2008). Some of the earlier studies also 

indicated negative correlations between MIC and FL, MIC and FS, FS and ELO in an upland and 

diploid association mapping panel (Zeng et al., 2009; Kantartzi and Stewart, 2008).  

3.3.2 Genetic Analysis with AFLP Markers 

Based on geographical origin, the CAM panel was divided into six groups, viz., Louisiana, 

Arkansas, Southeast (SE), Texas, Delta and Wild/Std. panel. A total of 64 AFLP enzyme primer 

combinations were deployed to mine the cotton genome in order to estimate the extent of diversity 

present. Marker analysis of the panel resulted in 561 polymorphic loci. Heterozygosity was in the 

range of 0.33 to 0.39 among the groups (Table 3.6). Shannon-Weiner's Diversity Index (I), an index 

used in ecological studies to determine how diverse a population is, showed that diversity was 

moderate with values ranging from 0.485-0.574. The polymorphic Information Content measures 

the probability that two randomly chosen alleles from a population are distinguishable. 

Table 3.6 Population genetic parameters for the inferred six clusters of cotton association 

mapping panel. 

 

  N
†
 No. bands Na Ne Mean He I 

LA 69 554 1.82 1.58 0.33 0.48 

ARK 112 556 1.93 1.71 0.39 0.57 

SE 16 558 1.84 1.7 0.38 0.54 

Texas 14 562 1.84 1.68 0.37 0.53 

Delta 12 560 1.81 1.68 0.37 0.52 

W/SP 09 559 1.80 1.62 0.34 0.49 

† ;  N=No. of accessions, Na=No. of different alleles, Ne=No. of effective alleles,  He=expected 

heterozygosity, I=Shannon’s Information Index;  LA= Louisiana, ARK=Arkansas, SE=South 

eastern, W/SP=wild or standard panel genotypes. 
 

The PIC value for AFLP makers was in the range of 0.05-0.35 with an average of   0.254 (Fig 3.2). 

The frequency distribution of the PIC values demonstrated higher values for the range 0.15-0.35. 

The Nei’s genetic diversity estimates revealed that all of the inferred groups were highly diverse 
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with wild/Std. panel being the most diverse (0.118-0.197; Table 3.7) followed by the LA group with 

the SE and Delta groups.  

 

Fig 3.2 Frequency distribution for PIC values using AFLP markers in cotton association 

mapping panel. X axis: PIC values, Y axis: frequency estimates. 

The allele frequency divergence among subpopulations as measured by nucleotide distances using 

Structure software (Pritchard et al., 2000a) revealed that allele frequency distances ranged from 

0.148 (between SE and Std. panel) to 0.644 (between Arkansas and standard panel; Table 3.8). The 

Delta and std. panel seemed to be highly divergent from other groups.  

Table 3.7 Nei’s genetic diversity estimates for the inferred six clusters in cotton association 

mapping panel. X axis: PIC values, Y axis: frequency. 

 

  LA
†
 Ark SE T Delta Wild 

LA 0.000 

     Ark 0.041 0.000 

    SE 0.124 0.096 0.000 

   T 0.133 0.100 0.060 0.000 

  Delta 0.127 0.102 0.079 0.082 0.000 

 Wild 0.197 0.148 0.132 0.118 0.125 0.000 

†LA= Louisiana, ARK=Arkansas, SE=South eastern, T=Texas 

 

A SSR based genetic diversity estimate of upland cultivars gave rise to 66 alleles with PIC 

values ranging from 0.18-0.62 (Candida et al., 2006); while other studies have reported PIC values 
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of 0.08-0.89 (with an average of 0.55); (Lacape et al., 2007) and 0.05-0.82 (Liu et al., 2000).  

Previous association mapping studies reported a range of 0.007-0.380 PIC values in a 285 exotic 

upland panel and 0.006-0.50 for a panel of 334 Uzbekistan G. hirsutum accessions with average 

frequency of four SSR alleles per primer pair (Abdurakhmonov et al., 2008; 2009). 

Table 3.8 Allele frequency divergence among inferred subpopulations in cotton association 

genotypes 
 

  LA ARK SE Texas Delta W/SP 

LA - 

     ARK 0.595 - 

    SE 0.498 0.587 - 

   Texas 0.569 0.556 0.184 - 

  Delta 0.576 0.555 0.282 0.305 

  W/SP 0.564 0.644 0.148 0.239 0.324 - 

 

 SSR based allele frequency divergence estimates in an upland exotic panel resulted in values 

ranging from 0.11-0.27 (Zeng etl., 2009) and 0.00-0.66 in a diverse diploid panel (Kantartzi and 

Stewart, 2008). The average genetic distance within G. hirsutum accessions of specific ecotypes 

(Uzbekistan, Latin American and Australian) was very close and ranged from 0.12 to 0.14, while 

the highest GD among G. hirsutum varieties was observed within the Australian ecotype group 

(0.26) (Abdurakhmonov et al., 2009). These observations provide evidence for the existence of 

population substructure among cotton association mapping panels. 

3.3.3 Analysis of Molecular Variance 

The levels of genetic variation within and among the CAM groups identified by the cluster 

analysis were estimated from allelic frequencies using analysis of molecular variance, AMOVA 

(Weir and Cockreham 1984; Weir 1996). The within group genetic variation was 90percent while 

10 percent of the variation was observed among the groups (Table 3.9). Wright’s (1965) FST (ø) 

statistic was used to evaluate the genetic differentiation between populations in the CAM panel 

(Table 3.10). The overall FST estimate was 0.0615. 
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Table 3.9 Analysis of Molecular Variance (AMOVA) among and within inferred groups 

      Source df† SS MS Estimated Variance % variation 

Among Populations 5 1600.123 320.025 8.076 10% 

Within Populations 226 15932.795 70.499 70.499 90% 

Total 231 17532.918 

 

78.575 100% 

 

† df=degrees of freedom, SS= sum of square, MS= mean sum of square 

The pairwise FST values between the six groups indicated that genetic differentiation among clusters 

was highest between the LA and W/SP groups (0.158). Among groups, the Texas and SE had the 

lowest FST values (0.0001) indicating shared ancestry of these genotypes. The Texas genotypes 

under study seemed to support extensive utilization of putative ancestors from wild/Std. panel in 

their breeding program (lower FST=0.027). As 90% of the genetic variation was attributed to be 

within groups, highly significant variations were observed within predefined groups, the existence 

of population structure. 

Table 3.10 Pairwise FST values between six inferred groups of cotton association genotypes. 

  LA† ARK SE Texas Delta W/SP 

LA - 

     ARK 0.048 - 

    SE 0.11 0.066 - 

   Texas 0.111 0.063 0.0001 - 

  Delta 0.101 0.0587 0.0074 0.007 - 

 W/SP 0.158 0.0958 0.0382 0.027 0.0284 - 

† LA= Louisiana, ARK=Arkansas, SE=South eastern, W/SP=Wild or Standard panel genotypes. 

Values were calculated as per the Wright (1965). 

Prior results from a locus-by-locus AMOVA, employing only polymorphic AFLP markers 

among G. tomentosum and G. hirsutum accessions, demonstrated that there was little inter-

population differentiation with only 13.2% of the variation occurred among populations and 86.8% 

of the variation residing within populations (Hawkins et al., 2005). The within group component of 

genetic variance prevailed in an upland exotic association panel and accounted for 96.73% of the 

total variance. The 3.27% of the genetic variance observed among groups was significant with 
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overall FST value of 0.032 (Abdurakhmonov et al., 2008). A distribution of molecular genetic 

variation among (26.9%) and within (76.4%) six clusters of diploid accessions was reported by 

Kantartzi and Stewart (2008). In this study, the greatest proportion of genetic variance of cotton 

germplasm groups was attributed to within population groups, however the small variation observed 

among predefined groups was highly significant, suggesting the existence of population structure. 

3.3.4 Kinship Estimates 

 Complex structures and familial relationships are common in inbred cultivated crops. In 

such crops, allele frequencies evolve between divergent structured populations via drift, mutation 

and selection. Differences in allele frequencies may be correlated with any morphological traits that 

differentiate two populations. A statistical correlation between a gene and a trait is not necessarily 

associated with causative relationship between a trait and gene, which can lead to false positives. 

The use of population structure and a matrix of kinship coefficients prove efficient in association 

studies (Yu et al., 2006).  In the CAM panel, the pairwise kinship values varied from 0-0.69. 

Although 47% of the pairwise kinship estimates were close to zero, a significant percentage around 

0.25 and 0.35 represented the relationships within families (Fig 3.3). About 16% of kinship pairs 

had a value of 0.25 and 22% had 0.35-0.49. 

 

Fig 3.3 Relative frequency for kinship values estimated using allele frequency data in Cotton 

association mapping panel. X axis: range values for relative kinship estimates, Y axis: 

frequency values. 

0

5

10

15

20

25

0-0.09 0.1-0.19 0.2-0.29 0.3-0.39 0.4-0.49 0.5-0.59 0.6-0.69 0.7-0.79 0.8-0.89 0.9-0.99



71 
 

This indicates use of common ancestral genotypes in the history of most of the breeding programs 

due to their premium trait values. Abdurakhmonov et al., (2008) observed that the majority of the 

pairs of cotton accessions (55%) had zero estimated kinship values, while the remaining pairs had a 

value of 0.05-0.25, suggesting involvement of some common parental genotypes in these 

germplasm groups. Kinship estimates can be used in mixed linear models, where in family structure 

is ignored. The inclusion of kinship improved model fit, as well as reducing the false positives and 

increasing the power to detect QTL.  

3.3.5 Population Structure 

 

 Based on the neighbor joining analysis (NJ), the genetic distances among all the mapping 

genotypes is represented as a tree (Fig 3.4). The NJ tree consists of six clusters with a random 

spread of genotypes from the predefined CAM groups. The six broad clusters can be identified with 

LA and Arkansas genotypes spread out randomly. There is no distinct pattern observed and it is 

difficult to conclude the assignment of genotypes to their respective groups based on NJ analysis. 

 Correspondence analysis confirmed the population structure (Fig: 3.5). Genotypes 

representing LA and Arkansas regions grouped into a cluster on the left side, while most of the SE, 

Delta and Texas genotypes congregated in the center. The W/std. panel, owing to their high 

diversity, formed a small cluster in the top right side. From this analysis, a split could be proposed 

based upon geographical arguments and also based on molecular diversity. In addition, it also 

strongly supports the involvement of subgenome donors and Std. panel entries in the breeding 

programs of the Delta, Texas and SE regions. Thus it is concluded from this study that more 

ancestral sharing of alleles between LA and Arkansas and to a lesser extent between Arkansas and 

SE genotypes has occurred. 

In order to gain additional insight into the genetic diversity of the CAM panel, Principal 

Coordinate analysis (PCoA) was performed using data from the genetic similarity matrix (Nei and 
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Li, 1979). Here, genetic relationships were most easily seen by plotting first three PCoA which 

explained 68% (35.51+18.56+14.25%) of the genetic variation (Fig 3.6). Three separate clusters 

were observed (LA, Ark, Std. panel) and are delineated based on their geographical origin. 

 

 

Fig 3.4 Neighbor-joining cluster analysis based on the pairwise Dice coefficient of association 

showing the genetic relationships among CAM panel. The DICE similarity 

coefficients were calculated in NTSYS software and tree diagram was constructed 

using MEGA software. 
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The LA and Arkansas groups seemed more genetically related, while std. panel was highly diverse, 

owing to the presence of wild or subgenomes contributors. Delta and SE genotypes are interspersed 

with each other with no definite pattern.  

 

L=Louisiana; A=Arkansas, T=Teaxs, SE=South Eastern; D=Delta and W=Wild or Standard panel 

genotypes. 

 

Fig  3.5 Correspondence analysis based on AFLP marker matrix. The marker matrix 

estimated across 232 cotton association genotypes. X and Y axis: coordinate 1 and 2 

respectively.  

 

In summary, most of the genotypes under study were fairly well grouped through 

correspondence and PCoA analysis, with few outliers. The information provided by the similar 

diversity analyses could help the breeders to plan their breeding programs.  
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LA=Louisiana, ARK=Arkansas, SE=South eastern, T=Texas, Del=Delta, W=Wild/standard panel 

 

Fig  3.6  PCoA of cotton association mapping genotypes using AFLP marker matrix. The 

PCoA explained 68% of the genetic variation on three dimensional scales. 

A Bayesian model based clustering method was used to infer population structure and assign 

individuals to discrete population based on AFLP markers. Multiple runs of Structure (ver. 2.2) 

were performed by setting k from 2 to 10. The posterior probability of the data (LnP(D)) showed an 

increasing trend, and from k=6 onwards, started getting constant(Fig: 3.7a). Due to the increasing 

trend even after the divergence at k=6 (which should otherwise plateau), the alpha (Dirichelt) 

parameter for the degree of admixture was estimated and it remained constant from k=6 onwards. A 

bar plot diagram showed that the splitting of Arkansas, Delta and Std. panel was not as expected 

(Fig: 3.9 left). The Arkansas group was the largest subgroup with 112 genotypes and showed two 

distinct sub groups with Structure, which is hard to explain. The primary composition of each of the 
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ancestral blocks across 232 genotypes under study cannot be explained consistently using a 

Bayesian model. 

 

Fig 3.7 a) Posterior probabilities, LnP(D) as function of k, where k=2-10; b) Alpha  (Dirichlet) 

values as function of k, where k=2-10. The LnP(D) and Alpha values are used to decide 

the ideal number of subpopulation existing. X axis: number of subpopulations 

assumed, Y axis: LnP(D) and Alpha values, respectively. 

In a separate study upland cotton accessions were assigned to distinct clusters based on their 

geographical origin, viz., Uzbekistan, Australian and Latin America using Structure 

(Abdurakhmonov et al., 2009). Similarly, analysis of genetic distance and population structure 

provided evidence of significant population structure amongst G. arboreum accessions and 

identified the highest likelihood at K = 6 (Kantartzi and Stewart, 2008). 

To get more insight into CAM population structure, we used the MCMC algorithm for the 

generalized Bayesian clustering with Instruct software (Gao et al., 2007). Cotton is basically a self 

pollinated crop with moderate chance of cross pollination (10-30%).  Instruct revealed that posterior 

probabilities started increasing and become constant after k=6. The Deviance Information Criterion 

(DIC) also started stabilizing at k=6 (Fig: 3.8). The Gelman-Rubin convergence statistic was 0.999 

at k=6 and supported model convergence. Visual comparison of Structure and Instruct bar plots 

revealed numerous differences with respect to grouping of genotypes in to subpopulations (Fig 3.9).   
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Fig 3.8 Posterior likelihood and deviance information content (DIC) statistics for CAM panel 

with k=2 to10 estimated using Instruct. X axis : Posterior log likelihood and DIC estimates 

respectively, Y axis: number of subpopulations assumed. 

 

Fig 3.9 Bar plot of inferred population structure using Structure and InStruct softwares in 

CAM panel, with k = 2-6. Each individual is represented by a line partitioned in six colored 

segments that represent the individual’s estimated membership fractions to each one of the six 

clusters. 

 Instruct seemed to more logically assign LA and Arkansas genotypes into distinct clusters 

although these clusters showed evidence of admixture. The number of Texas and Delta genotypes in 

the CAM panel was small in size, yet the MCMC algorithm fairly distinguished them and indicated 

that there was a considerable ancestral genomic exchange taken place during their development. 

The Louisiana genotypes were fairly intact with less admixture, while few had unexpected 
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introgression from Arkansas. Overall, based on the biological significance and geographical 

adaptation, Instruct assigned CAM panel in to six sub clusters. This is also consistently supported 

by correspondence and PCoA analysis. Henceforth we considered six subpopulations as existing in 

the CAM panel for association analysis.  

3.3.6 Association Analysis 

a) Mixed Models Using TASSEL 

 Population structure and kinship among individuals does not only affect the amount 

and nature of diversity in a large inbred line collection, but can also lead to spurious associations 

(Gaut and Long, 2003). In this study, we tested the performance of eight models in minimizing type 

I error. We initially evaluated the naïve model (marker+trait) and then added population structure 

(either structure/Instruct) and eigenvectors of PCoA. These models were analyzed using the GLM 

procedures in TASSEL for all the eight traits under study (Fig 3.10).  

             

Fig 3.10 Genetic variations explained (adj. R
2
) by different mixed and mixed-multiple regression 

models across yield and fiber traits. The mixed models were performed using TASSEL, while 

mixed multiple regression models using SAS. X axis: mixed and mixed-multiple regression 

models, Y axis: Adj. R
2
.  

 

   M=marker; T= trait;  I= Instruct; P=eigen values of PCA; K=kinship; S= structure; MMR=mixed 

multiple regression; ELO=Elongation percentage; FL=fiber length; FS=fiber strength; LP=lint 

percentage; LY=lint yield; MIC=micronaire; SFC=short fiber content; UI=uniformity index. 
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 Utilizing 561 AFLP markers, the naïve model explained a negligible amount of the genetic 

variation with model R
2
 ranging between 2.7-5.7% for the traits. Inclusion of Structure/PCoA 

resulted in an improved R
2
 up to 43.5%. Mixed Linear Models (MLM), which consists of kinship, k 

along with population structure, or PCoA, were considered with k=6.  

 The MTIK model identified several markers associated with traits based on the cut off P 

value, 0.05 (Table 3.11). Fiber elongation had highest number of associated QTL (50) with R
2
 value 

of 57.5%. The traits FL (24 QTL), LY (25 QTL) and MIC (29 QTL) had registered low model R
2
 

values of 25.66, 23.3 and 29.2%, respectively. Lint percent, being complex trait being influenced by 

many independent fiber traits, had 42 QTL’s with an 31.9% of phenotypic variation being 

explained. 

Thus MLM models incorporating information from Instruct or PCoA explained high degree 

of genetic variation; Instruct (57.5%) and PCoA (58%). Incorporating information about population 

structure from Structure software did not improve model efficiency. For most of the traits studied, 

the MTIK mixed model resulted in a high model R
2
, except for the LY and MIC, which are highly 

influenced by environmental factors. Based on earlier results, where in Instruct assigned the CAM 

genotypes fairly well into six subpopulation, the MTIK method was selected as best among all 

models for association analysis. In MLM, the MTIK model was able to fit up to 60% for LY and 

SFC and between 53-57% for FL, FS, LP and MIC. Using the multiple QTLs graphs showing 

observed v/s predicted scores for fiber traits are given in Fig: 3.11. One of the initial association 

studies in cotton reported SSR marker associations using a small 56 accessions panel of diploid 

cottons. A total of 30 marker–trait associations were identified with 19 SSR markers located on 11 

chromosomes (Kantartzi and Stewart 2008). Around 17 SSRs were associated with fiber quality 

traits such as,  MIC, 23 with FL, 18 with UI, 19 with STR and 11 with ELO traits in the association 

mapping study of Abdurakhmonov et al., (2008).  
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Table 3.11 Quantitative trait alleles identified by the MTIK mixed model using TASSEL. 

Based on the high adj.R
2
 and significant P value, the QTAs were identified for each trait in 

cotton association mapping panel. 

 

Trait Significant QTAs selected, given P<0.05 

 

 

ELO 

E6M4_297, E6M8_325, E6M3_520, E6M1_382, E4M1_348, E6M2_640, E6M2_375, E3M8_175, 

E3M8_305, E5M2_75, E5M2_110, E5M3_148, E3M4_50, E3M4_70, E5M4_450, E3M5_104, 

E3M5_250, E5M1_204, E5M1_395, E8M7_140, E9M8_370, E8M8_60, E8M8_330, E8M8_430, 

E9M4_280, ,E9M4_460, E8M4_385, E8M3_165, E8M6_55, ,E8M2_45, E9M5_50, E9M5_230, 

E8M5_70, E8M5_225, E9M3_160, E9M1_202, E8M1_195, E8M1_130, E2M8_315, E1M4_55, 

E6M7_55, E1M7_335, E6M5_310, E6M5_80,E2M5_295, E1M2_50, E4M6_60, E4M6_50, 

E1M6_130, E2M6_225 

 

FL 

E4M4_229, E4M4_177, E6M3_363, E6M2_375, E4M2_135, E3M4_364, E3M4_250, E5M1_204, 

E3M7_370,E8M8_605, E7M6_140,E8M2_75,E8M2_270, E2M3_60, E6M7_105, E1M8_97, 

E6M5_145,E1M5_200,E1M2_45, E1M2_210, E6M6_140, E4M6_175, E1M6_190, E1M6_270 

 

 

FS 

E6M8_362, E6M3_342,E6M1_218E4M1_382, E4M1_357, E4M1_348, E6M2_255, E4M2_206, 

E3M6_300, E5M3_345, E5M5_75,  E5M7_325, E3M3_60, E9M7_350, E9M7_370, E8M3_200, 

E8M2_157, E9M1_58, E1M3_55, E1M3_150, E1M3_175, E4M7_180, E6M7_100, E6M7_125, 

E6M5_160, E1M5_60, E1M5_225, E2M5_295, E1M2_65, E4M5_70 

 

 

LP 

E6M4_249, E4M4_100, E4M3_219, E4M3_214, E4M3_220, E4M3_222, E4M1_348, E5M2_75, 

E3M6_70,E3M6_95, E3M6_300, E5M3_110, E3M4_70, E3M4_364, E3M5_355, E5M1_204, 

E5M7_70, E5M7_325,E3M3_90, E8M7_175, E8M7_295, E8M7_75 E8M4_420, E8M4_385, 

E7M6_140, E9M2_100, E9M1_140, E8M1_120, E6M7_180, E2M2_460,E1M8_85, E1M7_55, 

E1M7_112, E2M7_210, E2M5_295, E1M2_55, E1M2_215, E4M6_65, E4M6_220, E4M6_240, 

E1M6_210, E2M6_225 

 

LY 

E4M4_280, E4M1_357, E4M2_206, E5M8_260, E3M2_145, E3M6_70, E3M6_300, E3M4_60, 

E3M4_364, E5M4_450,  E5M7_325, E8M7_75, E8M8_245, E8M4_385, E8M3_50, E9M1_54, 

E4M7_45, E4M7_195, E2M2_200, E4M8_320, E6M5_145,E6M5_150, E1M5_225, E6M6_75, 

E2M1_65 

 

MIC 

E6M4_325, E6M1_320, E6M1_196, E4M1_348, E4M2_265, E5M2_75, E5M6_145, E5M3_100, 

E5M4_225, E5M5_45, E5M5_415, E5M1_55,  E5M7_325,  E5M7_375, E9M8_330, E8M8_265, 

E9M4_460, E8M3_50, E8M3_255, E7M6_140, E9M2_60, E9M1_54, E9M1_140, E8M1_120, 

E1M4_200, E2M4_135, E1M2_210, E4M5_55, E2M6_180 

 

SFC 

E6M4_297, E6M4_270, E6M4_249, E4M4_280, E6M3_288, E6M1_218, E5M8_175, E5M8_260, 

E5M2_45, E5M6_40, E5M3_152, E3M5_98, E5M1_204, E5M1_395 , E5M7_325, E8M7_185, 

E8M7_280, E8M8_60, E7M6_65, E8M2_159, E8M2_185, E8M5_315, E8M1_130, E8M1_140, 

E2M8_155, E2M8_260, E2M2_280, E2M2_218, E1M5_225, E2M5_50, E2M5_190, E1M2_213, 

E2M6_185 

UI E4M4_217, E4M3_473, E4M1_348, , E6M2_364, E3M2_204, E5M2_75, E5M3_115, E5M3_175, 

E3M7_370, E3M3_195, E8M3_225, E9M2_208, E8M2_155, E8M2_159, E9M5_53, E8M5_315, 

E9M1_52, E1M3_220, E6M6_75, E6M6_140 ,E4M6_175, E1M6_60 
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Fig 3.11 The observed v/s predicted scores of lint yield and fiber traits in CAM panel. 

Predicated values were based on the polymorphic AFLP-TRAP-SSR markers from mixed 

model analysis using TASSEL software. 
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In a mapping panel of 334 upland accessions, Mixed linear model (MLM), General linear model 

(GLM), and Structure analysis (SA) as implemented in TASSEL, identified 12-28 SSR’s 

significantly associated with fiber traits from Uzbek and Mexican environments (Abdurakhmonov 

et al., 2009). Similar to the present study, Zeng et al., (2008) also noticed the power of the MLM 

method by inclusion of population structure and kinship data. As many as 12 of the 23 marker trait 

associations for yield components in a 260 mapping panel survived stringent correction and 

remained significant. 

 The success of association mapping in a polyploid species like cotton is getting improved by 

reducing the Type I errors, thereby setting up stringent threshold values for significance. The 

present study explored all possible mixed models in achieving true associations and reducing the 

false positives to identify QTL associated with lint yield and fiber quality traits in a diverse panel of 

genotypes with 6 distinct subpopulations. 

b) Mixed-Multiple Regression Model 

 GLMSELECT, a general linear method for selecting models based on various statistical 

parameters is a new procedure, implemented in SAS. In order to consider all the markers 

simultaneously and perform stepwise multiple regression, 52 models were designed with different 

selection criteria and options. The significant QTL’s identified by the MTIK mixed model for each 

trait were considered for validation using multiple regression. The mixed-multiple regression 

(MMR) model proved extremely powerful in improving the efficiency of the model by capturing 

40.55-74% of the genetic variation for most of the traits under study (Table 3.12a- 3.12h). Among 

the 52 MLM-MMR models under study, the highest adj R
2 

with minimum effective QTL’s was 

selected from a model with the following options: CHOOSE=Adj.R
2
, SELECT=AdjR

2
 and 

STOP=Adj.R
2
. All other models produced low R

2
 values with high number of QTL’s, which was 
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seen as unreliable. These various statistical parameters were included to make the model more 

stringent, thus reducing the false positives efficiently. 

Table 3.12a Significant QTL’s selected from MLM-MMR based models for fiber elongation         

QTL'S Model R2 Adj.  R
2
 AIC AICC BIC SBC Pr > F 

E6M4_297 0.179 0.175 -4.289 0.990 -5.410    2.452 <.0001 

E6M1_382 0.375 0.366 -59.032 0.736 -61.278 -45.549 <.0001 

E9M5_50 0.431 0.420 -77.213 0.652 -79.798 -60.359 <.0001 

E9M3_160 0.483 0.471 -95.742 0.567 -98.387 -75.518 <.0001 

E2M8_315 0.558 0.543 -125.392 0.430 -127.641 -98.427 <.0001 

E1M7_335 0.524 0.510 -111.350 0.495 -113.893 -87.755 <.0001 

E1M6_130 0.311 0.305 -40.053 0.824 -41.741 -29.941 <.0001 

E6M3_520 0.614 0.595 -148.644 0.325 -149.968 -111.567 0.0028 

E6M2_640 0.655 0.632 -166.441 0.246 -165.831 -119.252 0.0054 

E3M5_104 0.682 0.656 -178.254 0.196 -175.147 -120.953 0.0265 

E5M1_204 0.578 0.562 -133.458 0.394 -135.547 -103.122 0.0019 

E8M7_140 0.665 0.642 -171.087 0.226 -169.677 -120.527 0.0130 

E8M8_330 0.689 0.662 -181.012 0.186 -177.012 -120.340 0.0370 

E9M5_230 0.696 0.668 -184.128 0.173 -179.058 -120.086 0.0310 

E8M5_70 0.629 0.609 -155.309 0.295 -156.073 -114.861 0.0043 

E9M1_202 0.674 0.649 -174.894 0.210 -172.665 -120.964 0.0206 

E2M5_295 0.641 0.620 -160.138 0.274 -160.376 -116.320 0.0114 

E4M6_60 0.703 0.674 -187.152 0.161 -180.907 -119.739 0.0330 

E2M6_225 0.597 0.579 -141.225 0.359 -143.005 -107.519 0.0023 

        
Fiber elongation is a property of fiber that is measured during the determination of bundle 

strength (Hertel, 1953). Increased fiber elongation is associated with improved yarn quality. The 

variability for fiber elongation values was from 5.41-11.39, with variance of 1.18 in the association 

panel. The MLM-MMR identified 19 significant markers out of the 50 from the mixed model alone 

(Table: 3.12a). Among all the markers selected, E2M8_315 and E1M7_335 proved to be 

significantly associated, explaining 54 and 51% phenotypic variation respectively. This is also 

supported by the low AICC, BIC, SBC statistics and highly significant P value. 
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Lint yield and lint percentage, are complex quantitative traits. In the present study, as many 

as 12 and 17 markers were associated with LY and LP respectively (Table 3.12b & c). The MLM-

MMR identified E3M6_300 and E5M7_325 as common markers for both of these traits.  

Table 3.12b Significant QTL’s selected from MLM-MMR based models for Lint yield 

QTL'S 
Model 

R2 

Adj.  

R
2
 

AIC AICC BIC SBC Pr > F 

E5M7_325 0.086 0.082 1002.607 5.673 1003.354 1009.348 <.0001 

E3M6_70 0.262 0.237 968.619 5.519 968.957 995.584 0.0160 

E3M6_300 0.351 0.312 951.161 5.443 953.672 994.979 0.0329 

E3M4_60 0.191 0.176 982.427 5.581 982.545 999.280 0.0072 

E3M4_364 0.336 0.300 954.015 5.455 955.942 994.463 0.0203 

E5M4_450 0.318 0.284 957.730 5.471 959.085 994.807 0.0200 

E8M8_245 0.217 0.198 977.399 5.558 977.500 997.623 0.0090 

E8M4_385 0.163 0.151 987.839 5.605 988.078 1001.322 0.0040 

E4M7_45 0.300 0.269 961.445 5.487 962.346 995.152 0.0253 

E4M7_195 0.129 0.121 994.298 5.635 994.744 1004.410 0.0014 

E4M8_320 0.241 0.219 972.667 5.537 972.850 996.261 0.0108 

E6M5_150 0.282 0.254 964.708 5.501 965.300 995.044 0.0175 

 

Table 3.12c Significant QTL’s selected from MLM-MMR based models for Lint percentage 

 

QTL'S Model R
2
 Adj.  R

2
 AIC AICC BIC SBC Pr > F 

E8M1_120 0.096 0.091 267.557 2.254 267.490 274.299 <.0001 

E6M4_249 0.372 0.345 205.126 1.969 203.598 238.832 0.004 

E5M2_75 0.254 0.236 234.255 2.101 232.416 254.479 0.002 

E3M6_70 0.346 0.320 211.931 2.000 210.128 242.267 0.002 

E3M6_95 0.481 0.442 176.217 1.843 178.212 230.147 0.017 

E3M6_300 0.409 0.377 196.183 1.930 195.223 236.631 0.015 

E5M3_110 0.502 0.459 171.350 1.824 174.857 232.022 0.041 

E3M5_355 0.142 0.134 258.138 2.211 257.458 268.250 0.001 

E5M1_204 0.491 0.450 173.937 1.835 176.614 231.238 0.047 

E5M7_325 0.217 0.202 242.674 2.140 241.073 259.527 0.004 

E9M2_100 0.315 0.292 219.876 2.036 217.879 246.841 0.002 

E9M1_140 0.185 0.173 249.183 2.170 248.014 262.665 0.001 

E1M7_55 0.391 0.361 200.514 1.949 199.224 237.591 0.012 

E2M7_210 0.281 0.261 228.113 2.074 226.072 251.707 0.005 

E4M6_65 0.426 0.391 192.021 1.912 191.491 235.839 0.016 

E4M6_240 0.466 0.429 180.340 1.861 181.492 230.899 0.002 

E2M6_225 0.441 0.405 188.258 1.896 188.231 235.447 0.020 
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Fiber strength is one of the most important fiber properties other than length contributing to 

cotton’s use as a textile fiber. It translates directly into yarn strength and is related to spinnability. 

For fiber strength, MLM-MMR identified 17 markers significantly associated with high adj. R
2
 

ranging from 16.2-50.4%. Markers E4M1_382 and E4M2_206 registered low AIC, BIC and SBC 

values (Table 3.12d). Fiber length was associated with 17 markers compared to 24 by MLM alone 

(Table 3.12e). Significant markers were E4M2_135, E7M6_140, E1M2_45 and E1M6_270 all with 

high adj. R
2
 values of 32, 38, 37 and 35.9%, respectively, and low AIC, BIC and SBC values. 

 Table  3.12d  Significant QTL’s selected from MLM-MMR based models for fiber strength 

QTL'S Model R
2
 Adj.  R

2
 AIC AICC BIC SBC Pr > F 

E4M2_206 0.238 0.231 224.995 2.057 224.642 235.107 <.0001 

E4M1_382 0.166 0.162 242.448 2.138 242.487 249.189 <.0001 

E6M3_342 0.278 0.268 215.432 2.013 214.711 228.914 0.0008 

E6M1_218 0.499 0.466 157.072 1.751 158.675 204.261 0.0381 

E4M1_348 0.349 0.333 197.312 1.930 196.303 217.536 0.0028 

E6M2_255 0.488 0.457 159.684 1.762 160.770 203.502 0.0105 

E3M6_260 0.423 0.400 177.397 1.839 176.767 207.733 0.0078 

E5M3_345 0.532 0.494 148.187 1.715 152.103 205.488 0.0313 

E9M7_370 0.471 0.442 164.677 1.784 165.086 205.125 0.0184 

E8M3_200 0.441 0.417 172.316 1.817 171.987 206.023 0.0095 

E4M7_180 0.543 0.504 145.087 1.702 150.022 205.758 0.0308 

E6M7_100 0.511 0.477 153.713 1.737 156.035 204.272 0.0258 

E6M7_125 0.521 0.485 151.233 1.727 154.256 205.163 0.0420 

E6M5_160 0.456 0.429 168.582 1.801 168.558 205.659 0.0198 

E1M5_60 0.320 0.307 204.557 1.963 203.678 221.410 0.0004 

E1M5_225 0.382 0.364 188.025 1.887 187.143 211.620 0.0010 

E2M5_295 0.402 0.382 182.807 1.864 181.981 209.772 0.0085 

Fiber fineness or micronaire determines the spin limit and contributes to yarn strength and 

spinnability. Increased levels of fineness promote fiber to twist. The CAM panel had micronaire 

values in the range of 4.03-5.91. Low MIC can result from two major factors, immature fiber or 

genetically fine fiber. Maturity and fineness account for 90% of the variation in MIC reading. 
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Table  3.12e Significant QTL’s selected from MLM-MMR based models for fiber length 

QTL'S Model R2 Adj.  R2 AIC AICC BIC SBC Pr > F 

E4M4_177 0.127 0.114 -1488.454 -5.912 -1489.059 -1474.97 0.0014 

E6M3_363 0.083 0.075 -1480.064 -5.874 -1480.303 -1469.95 0.0032 

E4M2_135 0.357 0.319 -1536.275 -6.126 -1535.660 -1492.45 0.0163 

E3M4_364 0.171 0.155 -1497.599 -5.954 -1498.397 -1480.74 0.0010 

E8M8_605 0.229 0.207 -1509.224 -6.007 -1510.257 -1485.63 0.0064 

E7M6_140 0.432 0.380 -1550.889 -6.184 -1546.173 -1486.84 0.0435 

E8M2_75 0.320 0.287 -1528.340 -6.092 -1528.654 -1491.26 0.0181 

E8M2_270 0.301 0.271 -1524.435 -6.075 -1525.037 -1490.72 0.0129 

E2M3_60 0.280 0.252 -1519.934 -6.055 -1520.761 -1489.59 0.0078 

E6M7_105 0.338 0.302 -1532.116 -6.108 -1532.044 -1491.66 0.0197 

E6M5_145 0.395 0.349 -1543.297 -6.154 -1541.103 -1489.36 0.0482 

E1M5_200 0.045 0.040 -1473.215 -5.842 -1472.927 -1466.47 0.0018 

E1M2_45 0.420 0.370 -1548.407 -6.175 -1544.625 -1487.73 0.0374 

E6M6_140 0.371 0.331 -1539.179 -6.138 -1538.054 -1491.99 0.0325 

E4M6_175 0.255 0.229 -1514.528 -6.031 -1515.523 -1487.56 0.0081 

E1M6_190 0.201 0.182 -1503.525 -5.981 -1504.496 -1483.30 0.0056 

E1M6_270 0.407 0.359 -1545.666 -6.164 -1542.758 -1488.36 0.0452 

         Table 3.12f    Significant QTL’s selected from MLM-MMR based models for Micronaire 

QTL'S Model R
2
 Adj.  R

2
 AIC AICC BIC SBC Pr > F 

E6M4_325 0.077 0.073 -505.143 -1.340 -504.783 -498.402 <.0001 

E6M1_320 0.337 0.311 -562.215 -1.601 -561.926 -531.880 0.0213 

E6M1_196 0.320 0.297 -558.666 -1.585 -558.567 -531.701 0.002 

E4M2_320 0.183 0.171 -527.258 -1.442 -527.519 -513.776 0.0006 

E5M7_375 0.222 0.207 -535.807 -1.481 -536.191 -518.954 0.0013 

E9M8_330 0.368 0.337 -568.584 -1.628 -567.673 -531.507 0.0275 

E8M3_50 0.396 0.360 -574.133 -1.651 -572.291 -530.315 0.0319 

E8M3_255 0.409 0.371 -577.050 -1.663 -574.577 -529.861 0.0322 

E7M6_140 0.382 0.348 -571.219 -1.639 -569.906 -530.772 0.0367 

E9M1_54 0.136 0.127 -517.111 -1.395 -517.130 -506.999 0.0002 

E9M1_140 0.255 0.237 -543.057 -1.514 -543.461 -522.833 0.0027 

E8M1_120 0.353 0.325 -565.453 -1.615 -564.897 -531.746 0.0256 

E2M4_135 0.288 0.267 -550.765 -1.549 -551.010 -527.171 0.0022 

E1M2_210 0.425 0.385 -580.684 -1.679 -577.371 -530.125 0.0222 

 

It is also being highly modified by the environmental factors and stress. The present study 

investigates 14 markers identified by MLM-MMR which were associated with MIC (Table: 3.12f). 
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The significant markers like E9M8_330, E8M3_50, E8M3_255 and E1M2_210 had high adj. R
2 

(33-38.5%), supported by lower AIC, BIC and SBC values. 

 There were nine markers significantly associated with uniformity index (Table: 3.12g). The 

adj. R
2
 was relatively low to moderate for this trait (10.6-33.4%). Markers such as E4M4_217, 

E5M3_115 and E3M7_370 were found significant with adj. R
2
 values of 31.2, 34.6 and 33.5% 

respectively. 

Table 3.12g Significant QTL’s selected by MLM-MMR based models for uniformity index 

 

QTL'S Model R
2
 Adj.  R

2
 AIC AICC BIC SBC Pr > F 

E4M1_348 0.174 0.166 177.358 1.835 178.060 187.470 <.0001 

E9M5_53 0.110 0.106 191.353 1.900 192.178 198.094 <.0001 

E4M4_217 0.335 0.312 140.960 1.669 142.790 167.926 0.010 

E5M3_115 0.374 0.346 131.968 1.629 134.982 165.674 0.0349 

E5M3_175 0.228 0.217 164.869 1.778 165.649 178.352 0.0002 

E3M7_370 0.360 0.335 134.647 1.641 137.156 164.983 0.0048 

E8M2_155 0.261 0.247 157.594 1.744 158.475 174.447 0.0026 

E1M3_220 0.313 0.293 145.873 1.691 147.282 169.467 0.0066 

E4M6_175 0.288 0.271 151.512 1.717 152.596 171.736 0.0051 

        Table 3.12h Significant QTL’s selected from MLM-MMR based models for SFI 

QTL'S Model R2 Adj.  R
2
 AIC AICC BIC SBC Pr > F 

E4M4_280 0.306 0.303 -113.097 0.484 -113.397 -106.356 <.0001 

E6M3_288 0.416 0.410 -148.127 0.321 -148.592 -138.015 <.0001 

E5M8_175 0.457 0.449 -161.943 0.257 -162.687 -148.461 <.0001 

E6M4_297 0.626 0.604 -224.253 -0.024 -222.480 -180.435 0.0177 

E6M4_270 0.492 0.482 -174.270 0.201 -175.124 -157.417 0.0002 

E5M6_40 0.616 0.595 -220.247 -0.007 -219.114 -179.799 0.0087 

E5M3_152 0.635 0.612 -227.409 -0.037 -224.980 -180.220 0.0283 

E5M1_204 0.559 0.544 -198.415 0.091 -199.042 -171.450 0.0015 

E7M6_65 0.593 0.575 -211.866 0.030 -211.681 -178.159 0.0032 

E8M2_159 0.602 0.583 -214.931 0.017 -214.443 -177.854 0.0285 

E8M2_185 0.518 0.506 -183.463 0.159 -184.351 -163.240 0.0010 

E2M8_260 0.536 0.523 -189.857 0.130 -190.754 -166.263 0.0044 

E2M2_280 0.575 0.559 -204.723 0.062 -205.057 -174.387 0.0048 

E2M2_218 0.643 0.618 -230.054 -0.048 -226.932 -179.495 0.0379 

 

Short fiber content (SFC) is the percentage of fibers by weight with a length of less than 

12.7 mm (Behery, 1993). The source for SFC comes from inherent nature of the genotype, the 
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environment, or may be introduced by extensive mechanical handling of the cotton. Genetic factors 

such as those imparting fiber strength may also be involved in causing SFC. The association 

mapping study revealed 14 significant markers identified by MLM-MMR models that were 

associated with SFC (Table: 3.12h). Markers E4M4_280, E6M3_288, E5M8_175 and E2M2_218 

were most responsible for the short fiber content. 

Fiber traits associated with AFLP markers from this study were compared with earlier AFLP 

based mapping studies. It was hard to make any correlated Conclusion. Previous reports on 

associating AFLP markers with fiber traits using either general linear methods or combined MLM-

MMR are few in cotton. Wu et al., (2007) reported E6M3_266 to have a strong association with LP. 

However, 1-4 markers were associated with 22-93% of the phenotypic variability of the fiber traits 

using GLM methods. The published association mapping studies do reveal the significance of MLM 

methods in reducing Type I errors (Abdurakhmonov et al., 2008; 2009; Zeng et al., 2008). The 

present study went further and explored multiple regression methods in order to validate the 

existence of QTL or trait associations. 

The significant QTL’s associated with fiber traits suggests that multiple linear regression 

models coupled with mixed model effect selection to be a promising approach for use in future 

cotton association based studies. The results provide strong evidence that through the application of 

multiple selection criteria such as R
2
, BIC, AIC, AICC and SBC that it is possible to identify fewer 

markers that explain a greater proportion of the phenotypic variation, than the standard F tests 

commonly implemented in standard QTL mapping studies.  

c) Epistasis for Fiber Quality Parameters 

A total of 82 QTL’s for fiber quality were identified by MLM-MMR model based QTL 

analysis. Although partial dominance and over dominance cannot be ruled out, additive genetic 

variance was predominant.  
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Common QTLs were detected in each trait found to be interacting with other significant 

QTL’s. The QTL’s identified through the additive epistatic model for major fiber traits are 

summarized in Table 3.13. With respect to lint yield, markers E4M7_45, E5M7_325 and E3M6_70 

were found to be common and interacting with other markers. Our results indicate that additive 

gene action was the primary mechanism responsible for genetic variability in fiber quality traits. 

Table 3.13 Significant QTL’s identified interacting in additive epistatic manner for various 

fiber traits in cotton association mapping genotypes 

ELO MS 

F 

Value  Pr > F 

 

FS MS 

F 

Value  Pr > F 

E1M6_130 x E2M6_525  2.528 8 0.0057 
 

E6M2_255 x E6M7_100 9.23 4.97 0.0292 

E9M5_50 x E4M6_60 1.859 5.89 0.0171 
 

E6M7_125 x E2M5_295  8.03 4.32 0.0415 

E2M8_315 x E1M7_335  1.456 4.61 0.0343 
 

E6M2_255 x E4M7_180  7.46 4.01 0.0493 

    
 

   
 

LP 

   
 

FL 

  
 

    
 

E8M2_270 x E1M2_45  0.006 10.47 0.0017 

E6M4_249 x E4M6240  12.269 7.34 0.0079 
 

E4M2_135 x  E1M2_45  0.005 8.69 0.0041 

E3M6_95 x E5M3_110  11.227 6.71 0.0109 
 

E7M6_140 x E2M3_60  0.003 5.05 0.0273 

E5M2_75 x E5M7_325  10.174 6.08 0.0153 
 

E6M3_363 x E6M6_140  0.002 4.27 0.0419 

E3M6_95 x E5M7_325   9.496 5.68 0.0190 
 

   
 

E3M6_70 x E5M3_110  9.185 5.49 0.0210 
 

MIC 

   E6M4_249 x E3M6_95  7.730 4.62 0.0339 
 

E5M7_375 x E8M3_255  0.288 4.86 0.0292 

    
 

E4M2_265 x E8M3_50  0.235 3.97 0.0485 

LY 

  
  

E6M4_325 x E5M7_375  0.206 3.48 0.05 

    
 

   
 

E4M7_45 x E4M8_320 768.94 11.7 0.0008 
 

SFC 

  
 

E3M6_70 x E3M6_300  589.90 8.97 0.0032 
 

E2M8_260 x E2M2_280  2.193 6.8 0.0101 

E5M4_450 x E5M7_325  429.00 6.53 0.0116 
 

E6M4_270 x E7M6_65  1.961 6.08 0.0149 

E3M6_70 x E5M7_325 380.32 5.78 0.0173 
 

   
 

E8M8_245 x E4M8_320  319.52 4.86 0.029 
 

UI 

   E4M7_45 x E4M7_195 291.30 4.43 0.0369 
 

E4M1_348 x E4M6_175 2.99 4.92 0.0278 

E5M7_325 x E4M7_45  288.53 4.39 0.0378 
 

E4M1_348 x E3M7_370  2.83 4.67 0.0321 

 

3.4 Conclusion 

While further validation is required, the markers showing strongest effects in this study 

provide ideal candidates for further study or future inclusion in strategies of marker assisted 

selection. The six groups identified in the CAM panel with high allelic divergence among the 

clusters and wide genetic distances proved to be efficient in capturing the enormous phenotypic 
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variability present in the fiber traits. The insights provided by the in MLM-MMR approach reported 

herein, demonstrate the feasibility of this approach in reducing the false positives. Out of 568 AFLP 

markers used in this study, 255 markers were initially found to be significantly associated with eight 

traits using the traditional MLM approach. Inclusion of MMR improved the model, reducing the 

number of markers significantly associated with these traits to 111. The MMR based epistatic 

interactions revealed 49 QTLs responsible for eight fiber traits. Thus mixed MMR models were 

efficient in reducing the Type I error. 
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CHAPTER 4 CHARACTERIZATION OF UPLAND COTTON GENOTYPES FOR 

MOLECULAR DIVERSITY AND MARKER TRAIT ASSOCIATIONS 

     4.1 Introduction 

Cotton (primarily Gossypium hirsutum L. and G. barbadense L.) is the most extensively 

used natural fiber in the textile industry and is the sixth most abundantly grown oilseed crop. It is 

grown commercially in the tropical and subtropical regions of more than 50 countries. Worldwide, 

cotton production has been relatively stable for the last several years. In the United States however, 

planted acreage fell to 9.1 million in 2009 the lowest since 1983 and well below the 15.5 million 

acres planted in 2006 (NASS, 2009). In Louisiana, producers planted 240,000 acres and expected 

to harvest 420,000 bales, up 49 percent from last year’s hurricane devastated crop (NASS, 2009). 

Due to the global economic downturn, world cotton consumption fell by 12% in 2008/09 after a 

decade of uninterrupted growth. As the economy gradually stabilizes, world cotton use is expected 

to recover slowly. Increases in cotton consumption will mainly be driven by a rebound in Asia, in 

particular China (mainland), India and Pakistan.  

Fiber quality has become an increasingly important consideration in marketing cotton and 

choosing varieties. Modern spinning technologies demand cotton with the most consistent and 

highest-quality fiber properties. Conventional breeding has played an important role in yield and 

fiber quality improvement of upland cotton. The advent of molecular markers may make it possible 

for plant breeders to even more rapidly and precisely improve crop economic and agronomic traits 

(Tanksley and Hewitt 1988).  

Molecular marker technology can also be a valuable tool for exploring the genetic diversity 

in cotton. A variety of molecular-marker technologies have been used to study the genetic diversity 

and relationships between cultivated cottons and their wild relatives. Of these methods, random 

amplified polymorphic DNAs (RAPDs) have been most widely used (Multani and Lyon 1995; 



96 
 

Tatineni et al.,1996; Iqbal et al., 1997). RFLPs (Wendal and Brubaker 1993) have numerous 

advantages over RAPD’s (reproducibility), but have been limited in their use due to their technical 

complexity. Recently, the amplified fragment length polymorphism (AFLP) method (Zabeau and 

Vos 1993; Vos et al., 1995) has also been successfully used to analyze genetic diversity among a 

wide range of crop species and their wild relatives (Hill et al.,1995; Maughan et al., 1996; Powell 

et al., . 1996). AFLP’s have higher repeatability than RAPD’s and are technically easier than 

RFLP’s. Their highly polymorphic nature is also an advantage, especially in Gossypium genus, 

where intraspecific polymorphism is low. At least in cultivated cottons, recent studies using 

molecular markers suggest a fairly high degree of genetic uniformity and similarity. Van Becelaere 

et al., (2005) and Lu and Myers (2002) reported very high levels of genetic similarity ranging from 

0.91 to 0.97 and 0.93 to 0.98, respectively. 

The narrow genetic base of upland cotton germplasm that is used in breeding programs is 

one of the factors in failing to achieve appreciable amount of progress in improving yield and fiber 

traits over last two decades (Meredith 2000). Some studies have postulated that decline in genetic 

diversity is due to frequent use of few parents and lack of contribution from the secondary gene 

pool (Bowman et al., 1996). Thus there is need to improve the genetic base of the existing 

genotypes by tapping the secondary and tertiary gene pools. Several breeding programs have been 

initiated over the past few years to breed superior genotypes through the co-ordinated efforts of 

several breeders across the US.  

The National collection of Gossypium species at Germplasm Research Unit TX, USA 

comprises of 9332 accessions representing 49 species from 74 countries assigned to three 

germplasm pools (Wallace et al., 2009). There is a need to screen the core germplasm with high 

density molecular map based PCR markers to fingerprint all accessions, in order to minimize any 

sort of duplications. The development of a standard set of SSR markers that represents the diversity 
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across the cotton genome is needed. Based on most of the previous studies in cotton on diversity, it 

is understood that genetic diversity exists in the primary gene pool. But there is much room for 

broadening the genetic base of the commercial germplasm. The National regional breeder trial 

network (RBTN) has been the mainstay in developing new upland varieties incorporating various 

traits to combat biotic and abiotic stresses apart from improving fiber traits. The newly developed 

Louisiana and other upland cotton genotypes suitable for cultivation in wide agro climatic 

conditions has to be screened for their inherent genetic diversity and for the presence of novel 

QTL’s associated with fiber traits utilizing multi-location phenotypic and polymorphic molecular 

marker data in association mapping system. 

Hence the present study was planned to determine the efficiency of AFLP for estimating 

genetic diversity among a collection of 60 accessions of upland cotton and also for the 

identification of potential marker trait associations for major fiber traits. 

4.2   Materials and Methods 

4.2.1 Plant Material and Phenotypic Analysis 

 A set of 60 upland cotton genotypes from Louisiana, Regional Breeding testing Network 

and a set of newly developed heat tolerant genotypes were included in the study (Table 4.1). The 

Regional Breeder’s Trial Network (RBTN) is a multistate testing program of public breeding lines. 

The genotypes were segregated into categories based upon region of origin. 

Plants were field grown in 2008 as per LA Cooperative Extension Service guidelines at the 

Dean Lee Research Station in Alexandria, LA. Leaf samples from representative plants were 

collected and bulked for DNA extraction. Phenotypic data on yield and fiber traits was obtained 

from the RBTN trial website (www.cottonrbtn.com). The four replication data on lint yield, 

micronaire, fiber length, strength, uniformity ratio, maturity coefficient and Short Fiber index (SFI) 

was  averaged to calculate mean and variances using SAS 9.1.3 (SAS Institute, Cary, NC). 

http://www.cottonrbtn.com/
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Deltapine DP 393 (Bridge and Gowan 2005; US patent 6930228) and Phytogen 72, Acala (US 

PVP 200100115) were considered as check and all the comparisons were made in relation with the 

performance of these genotypes. 

     Table 4.1 List of Upland cotton genotypes selected for the study with their description 

Code Cultivar Description† Code Cultivar Description 

LA-1 AU-5491 SE region LA-31 LA 05307113 Louisiana region 

LA-2 NM-03012 SW region LA-32 LA 05307095 Louisiana region 

LA-3 GA-2004230 SE region  LA-33 LA 05307027 Louisiana region 

LA-4 04PST-250 Delta LA-34 LA 05307087 Louisiana region 

LA-5 0020-31ne Arkansas region LA-35 LA 05307107 Louisiana region 

LA-6 PD-04012 SE region LA-36 LA04308035 Louisiana region 

LA-7 0028-16ne Arkansas region LA-37 LA 05307094 Louisiana region 

LA-8 04PST 246  Delta LA-38 AGC 208  SW region 

LA-9 ARK 0015-06-11 Arkansas region LA-39 8824  Delta 

LA-10 0147-22ne Arkansas region LA-40 PX03201-38-5 Heat tolerant 

LA-11 ACALA 1517-99  SW region LA-41 PX03202-83-3 Heat tolerant 

LA-12 TAM B 182-34 Texas  LA-42 PX03202-9-1 Heat tolerant 

LA-13 AU-6103 SE region LA-43 PX03203-25-2 Heat tolerant 

LA-14 AU-5367 SE region LA-44 PX03203-65-3 Heat tolerant 

LA-15 8921-2-2-14-13-11 Arkansas region LA-45 PX03204-21-1 Heat tolerant 

LA-16 04-PST-275 Arkansas region LA-46 PX03201-66-7 Heat tolerant 

LA-17 0149-17ne Arkansas region LA-47 PX03201-19-3 Heat tolerant 

LA-18 GA-2004089 SE region LA-48 PX03201-38-5 Heat tolerant 

LA-19 GA-2004303 SE region LA-49 PX03203-65-3 Heat tolerant 

LA-20 LA 05307083 Louisiana region LA-50 PX03202-9-1 Heat tolerant 

LA-21 LA 05307029 Louisiana region LA-51 PX03201-19-2 Heat tolerant 

LA-22 LA 0530761 Louisiana region LA-52 PX03201-66-1 Heat tolerant 

LA-23 LA 05307025 Louisiana region LA-53 PHYTOGEN 72 California Acala 

LA-24 LA 05307119 Louisiana region LA-54 SG 747 Delta 

LA-25 LA 05307073 Louisiana region LA-55 PX03201-19-4 Heat tolerant 

LA-26 LA 05307042 Louisiana region LA-56 PX03203-25-2 Heat tolerant 

LA-27 LA 05307062 Louisiana region LA-57 PX03204-21-1 Heat tolerant 

LA-28 LA 05307028 Louisiana region LA-58 PX03202-83-3 Heat tolerant 

LA-29 LA 05307057 Louisiana region LA-59 PX03202-65-1 Heat tolerant 

LA-30 LA 05307088 Louisiana region LA-60 PX03201-66-8 Heat tolerant 

 † : SE=South eastern; LA=Louisiana; SW=South west;  

 

Seed cotton yield and lint yield were standardized by setting the yield of DP 393 as equal to 100%. 

Fiber analysis was conducted by using High Volume Instrument (HVI) system. The phenotypic 

data was subjected to ANOVA to determine replication and genotypic differences. Correlation 

analysis for pair of traits was performed using PROC CORR in SAS. 
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4.2.2 Genotyping with AFLP Markers 

Sixty four primer combinations were used to generate AFLP data (Table 4.2) following 

procedure given by Vos et al., (1995) with minor modifications. Sample DNA was digested with 

EcoRI (infrequent cutter with GAATTC recognition sequence) and MseI (frequent cutter with 

TTAA recognition sequence) restriction enzymes and oligonucleotide adapters specific to 

restriction sites were ligated to the resulting fragments through incubation (180 min, 37 °C) with 

DNA ligase using a iCycler (BioRad Labs, Hercules, CA). 

 Table 4.2 Adapters and primers of AFLP marker system used for pre and selective   

amplification in upland cottons. 

 

Primer/adapter Nomenclature*  Sequences(5’-3’) 

ECORI primers: 

EcoRI linker 1  E-I    CTC GTA GAC TGC GTA CC 

EcoRI linker 2  E-II    AAT TGG TAC GCA GTC TAC 

EcoRI + A  E+A    GAC TGC GTA CCA ATT CA 

E- AAC   E1    GACTGCGTACCAATTCAAC 

E- AAG   E2    GACTGCGTACCAATTCAAG 

E-ACA   E3    GACTGCGTACCAATTCACA 

E-ACT   E4    GACTGCGTACCAATTCACT 

E-ACC   E5    GACTGCGTACCAATTCACC 

E-ACG   E6    GACTGCGTACCAATTCACG 

E-AGG   E8    GACTGCGTACCAATTCAGG 

E-AGA   E9    GACTGCGTACCAATTCAGA 

 

MseI primers: 

MseI linker 1  M-I    GAC GAT GAG TCC TGA G 

MseI linker 2  M-II    TAC TCA GGA CTC AT 

MseI + C   M+C    GAT GAG TCC TGA GTA AC 

M-CAA   M1    GATGAGTCCTGAGTAACAA 

M-CAC   M2    GATGAGTCCTGAGTAACAC 

M-CAG   M3    GATGAGTCCTGAGTAACAG 

M-CAT   M4    GATGAGTCCTGAGTAACAT 

M-CTA   M5    GATGAGTCCTGAGTAACTA 

M-CTC   M6    GATGAGTCCTGAGTAACTC 

M-CTG   M7    GATGAGTCCTGAGTAACTG 

M-CTT   M8    GATGAGTCCTGAGTAACTT 

*Nomenclature is in accordance with the Lacape et al., 2003; Myers et al., 2009.  
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Pre-amplifications were done using EcoR I+A and Mse I+C oligo primers. The amplification 

was carried out with 50ng/ul of oligo primers, 5mM dNTP’s, 25mM MgCl2, 10X buffer, Taq 

polymerase(5U/μl) and restrict ligated template DNA making total volume of 20μl. The PCR was 

set up with initial denaturing for 94
o
C for 2 min followed by 26 cycles at 94

o
C for 1 min, 56

o
C for 1 

min., 72
o
C for 1 min., and final extension at 72

o
C for 5min. The pre amplified products were diluted 

with ddH2O. Selective amplification was done using two selective nucleotides. The EcoRI+ANN 

oligo primers were dye labeled with 700 and 800 IR dye (MWG Biotech, Germany). The PCR for 

selective amplification was carried out in a reaction volume of 10 μL consisting of 10X reaction 

buffer, 25 mM MgCl2, 2.5 mM dNTPs, 1 μM each of EcoRI-ANN and MseI+CNN primers and 5U 

Taq polymerase (Promega, Madison, WI). The reactions were run on an i-Cycler (BioRad Labs, 

Hercules, CA). Touchdown PCR was used for selective amplifications using the following profile: 

initial denaturing step at 94
o
C for 2 min followed by initial 12 cycles at 94

o
C for 30 s, 65

o
C for 30 s 

(with 0.7
o
C decrement every cycle) and 72

o
C for 1 min, then followed by 23 cycles at 94

o
C for 30 s, 

56
o
C for 30 s, and 72

o
C for 1 min with a final extension step at 72

o
C for 2 min. A total of 64 EcoR I 

- Mse I selective amplification primer combinations were used. The PCR amplified products were 

run on a LI-COR 4300 sequencer (LI-COR Inc., Lincoln, NE). Gels images were saved onto a 

computer, printed  and scored manually. Presence of a band was recorded as ‘1’ and absence as ‘0’, 

as per a typical dominant marker system.  Ambiguous data that could not be resolved was 

discarded. The nomenclature of AFLP loci was followed according to Lacape et al., (2003); and 

Myers et al., (2009), indicating the enzyme primer combinations with band size. 

4.2.3   Molecular Analysis 

For each marker used, sub-populationwise diversity statistics including number of bands and 

Nei’s genetic distances were calculated using GenAlex 6.1 software (Peakall and Smouse 2006). 

Allelic diversity at a given locus can be determined by Polymorphism Information Content (PIC) 
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and it was calculated as ‘PIC=1-∑fi
2
 where, fi is the frequency of the i

th
 allele (Weir, 1996). PROC 

ALLELE was used to calculate PIC values and frequency estimate was done using PROC Freq 

(SAS, 9.1.3).  

In order to know the possible structure in the set of core panel, various statistical analyses 

were performed on the basis of allelic frequencies. First, the Dice similarity coefficient was 

calculated using the formula D = 2a/(2a + b + c), where a = the number of fragments present in both 

accessions, b and c are the numbers of fragments that are present in either accession, respectively 

(Sneath and Sokal, 1973). From the similarity data, genetic distance data were calculated for each 

pair of genotypes (distance =1- similarity) and used for UPGMA clustering in MEGA 4.0 (Kumar et 

al., 2004). In addition, Principal Coordinate Analysis (PCoA) was also performed using a genetic 

similarity matrix based on the Nei – Li (1979) to supplement the findings obtained from cluster 

analysis. All the above analyses were performed employing PAST software (Hammer et al., 2001).  

Correspondence analysis was performed on core panel by marker matrix of band incidences 

(Greenacre 1984). The multivariate nature of correspondence analysis can reveal relationships that 

would not be detected in a series of pair wise comparisons of variable. Another important feature is 

the graphical display of row and column points in biplots, which can help in detecting structural 

relationships among the variable categories and objects. The whole procedure was implemented in 

PAST software (Hammer et al., 2001) using AFLP marker data with predefined cultivar groups. 

4.2.4 Association Analysis; Statistical Models and Procedures 

a) Mixed Models for Marker-Trait Association 

For a successful marker trait association, one has to account for type I error or spurious 

associations/false positives. Incorporating the outcome of population structure and PCA increases 

the power to detect true marker trait associations. In view of this, we tested four statistical mixed 

models for 254 AFLP markers and adjusted R
2
 values were computed for the fixed marker effects 
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using TASSEL 2.1 beta version (Bradbury et al., 2007). Tests for significance were applied using F 

statistic associated with the marker. The model possessing highest adjusted R
2
 was considered best 

among all, capturing maximum variation explained by the model. The cutoff P value (0.05) 

determines whether a QTL is associated with the marker and R
2
 estimates magnitude of the QTL 

effects. Most of the marker trait associations were made based on 60 genotypes. 

b)  Mixed – Multiple Regression Models for Association Analysis 

In order to exploit the advantages of multiple regression procedures, we used all those 

traitwise significant markers selected by mixed model procedures using TASSEL and screened for 

52 PROC GLMSLECT models. Stepwise selection method was used with all possible combinations 

of CHOOSE, SELECT and STOP. Different options were used for these selection methods such as, 

Bayesian Information Content (BIC), SBC (Schwarz Bayesian Information Criterion), Adj. R
2
, 

AICC (the Corrected Akaike Information Criterion), SL=0.15 (the significance level of the F 

statistic for entering or departing effects) and Cross validation (CV). Traits were considered as 

dependent variable and all the markers were treated as independent variables. Each trait was 

analyzed separately and those independent variables showing test statistic estimate less than the P 

value (0.05) were added in the model. To reduce the Type I error, selected models were tested with 

validation step by using ‘PRESS’ criterion in ‘STOP’ option. The best model was then selected 

based on adjusted R
2
 and less number of effects for a particular trait. 

4.3. Results 

4.3.1 Phenotypic Analysis 

 The 60 genotypes were evaluated in Louisiana to obtain estimates of agronomic 

performance and fiber quality. The phenotypic data for seed cotton yield (SCY) and fiber traits was 

obtained from the RBTN coordinators (summarized in Table: 4.3). The Louisiana cultivar, 
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LA05307042 recorded 16% more SCY than the check variety, while among the heat tolerant lines, 

PX3201-38-5 yielded 24% more SCY compared to the check. 

Table 4.3 Phenotypic variability for LY and fiber quality traits among upland cotton 

genotypes 

 

Variable SCY† LY LP MIC FL FS UI ELO SFC 

N 60 60 60 60 60 60 60 60 60 

Mean 97.35 89.71 44.47 4.80 1.16 31.69 84.30 7.85 5.49 

SD 12.12 15.99 8.60 0.35 0.07 2.23 1.61 1.66 1.37 

Min. 64.06 35.25 32.50 3.91 1.06 26.45 74.19 4.00 3.33 

Max. 143.01 141.49 64.71 5.86 1.42 37.50 87.44 10.82 8.60 

 

† SCY=Seed cotton yield (Standardized); LY=Lint yield (Standardized);  LP=Lint percentage (%); 

MIC=Micronaire; FL=Fiber length (inches); FS=Fiber strength (g/tex); UI=Uniformity index; 

ELO=Elongation percentages (%); SFC=Short fiber index. 

 

The cultivar 8824-1-2-25-192-8 from the Delta region registered the highest SCY (43%) 

improvement over the check variety. With respect to fiber quality parameters, fine (3.91 MIC) and 

extra long (1.42 inch) fibers were observed in TAMB182-34, while PX3203-65-3 had strong fibers 

with an estimated value of 37.50 g/tex. The uniformity index showed a moderate range value of 74-

87%, with a mean of 84%. Short fiber content (SFC) describes the amount of short fibers within a 

sample that are below half an inch in fiber length.  Irrespective of the genotypes, SFC values ranged 

from 3.33-8.60 with a mean of 5.49. 

Most of the Louisiana genotypes possessed coarse fiber (MIC 4.6-5.2), high uniformity 

(84%), medium staple (1.07-1.11 inch) and very strong fibers (30.22-32.9 g/tex). The heat tolerant 

genotypes bred and screened in the SW region showed much variability for the micronaire (4.15-

5.23), fiber length (1.08-1.28 inch) and strength (31.46-37.50 g/tex).  

 Pearson correlation analysis identified significant positive and negative relationships among 

the phenotypic traits measured in this study (Fig 4.1 and Table 4.4). Significant negative correlation 

was observed between LY and FL, FS; between MIC with FL; and between ELO with FL and FS. 
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Significant positive correlations were detected between MIC and ELO and between FL and FS. 

 

Fig 4.1 Scatter plot showing pair wise Pearson correlation coefficients among fiber traits 

Significant negative correlations were found between SFC and both MIC and ELO.As expected, 

SFC had negative correlation with most of the fiber traits except for FS and FL.  

Table 4.4 Phenotypic correlations (Pearson) for lint yield and fiber traits in upland cotton 

  LY† LP MIC FL FS UI ELO SFC 

LY 1        

LP 0.308 1       

MIC 0.142 -0.00 1      

FL -0.427** 0.08 -0.450** 1     

FS -0.372* -0.417** -0.159 0.451* 1    

UI -0.024 0.287 -0.127 0.410 0.105 1   

ELO 0.182 -0.049 0.382* -0.663** -0.374* -0.151 1  

SFC -0.128 -0.106 -0.418** 0.293 0.278 -0.101 -0.710** 1 
 

† LY=Lint yield (standardized); LP=Lint percentage; MIC=Micronaire; FL=Fiber length (inches); FS=Fiber 

strength (g/tex); UI=Uniformity index; ELO=Elongation (%); SFC=Short fiber index. 

 

4.3.2 Molecular Diversity Analysis 

Information on the memberships of individuals in specific clusters and the relatedness of 

individuals are important in the characterization of a diverse group of genotypes. The pairwise 
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kinship values were estimated based on 254 polymorphic AFLP markers using TASSEL software. 

The pairwise kinship values varied between 0.1-0.88 with average of 0.55 (Fig 4.2). Many of the 

genotypes under study shared common ancestral genotypes and 59% of the pairwise estimates were 

in the range of 0.6-0.88 indicating significant relatedness.  

 

Fig 4.2 Percent kinship values among set of 60 Upland cotton genotypes as assessed by AFLP 

markers (X axis: percent kinship estimates; Y-axis: frequency). 

The expected heterozygosity under Hardy-Weinberg genotypic proportions, also 

known as Nei's genetic diversity index, was 0.27 for the AFLP markers analyzed. The 

estimates of genetic diversity were in the range of 0.1–0.340 with an average of 0.23 (Fig 4.3).  

 

Fig  4.3 Polymorphic information content values for AFLP markers in a set of 60 upland 

cotton genotypes (X axis: polymorphic information content; Y-axis: frequency) 

Around 80% of the AFLP markers showed a PIC range of 0.15-0.3. Earlier studies have 

reported polymorphic information content values in cotton of 0.05-0.82 with average of 0.31 (Liu et 
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al., 2000) and between 0.08-0.89 with an average of 0.55 (Lacape et al., 2007). In the present study, 

we observed less diversity for the AFLP markers used. The narrow genetic composition of the 

genotypes in this study explains the lower mean observed here and yet is indicative of the efficiency 

of AFLP marker technology in capturing allelic diversity. 

Genotypes can be grouped into clusters based on genetic similarity/dissimilarity matrices. 

Various graphical or tree based algorithms utilizing marker information can partition the genetic 

variability into single or multidimensional scales. Correspondence analysis is one such descriptive 

technique for investigating the association between markers and graphically displays the patterns in 

the data. In the present study, most of the genotypes formed a single cluster (Fig 4.4).  

 

Fig 4.4 Correspondence analysis showing upland cotton genotypes using AFLP marker 

matrix. The plot was generated using PAST software using marker matrix (X-axis: dimension 

1 and Y-axis: dimension 2). 
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One small cluster consisted of 8824, GA2004089, LA05307087 and LA 05307107.  Some 

of the genotypes such as ACALA 1517-99, AU5367 and LA 05307025 were distinct outliers and 

more diverse from the other genotypes.  In order to visualize the genetic relationships within the 

upland genotypes, Principal Coordinate Analysis (PCoA), based on genetic similarity matrices (Nei 

and Li, 1979) was used. The first two eigenvectors accounted for 63% of the variation observed. 

PCA (Fig. 4.5) again placed most of the genotypes into one cluster. The plot illustrated results very 

similar to the correspondence analysis. No obvious clustering was observed with respect to 

geographical origin of the genotypes under study. 

 

Fig  4.5  PCoA analysis of upland cotton genotypes assessed using DICE similarity coefficients 

in NTSYS software. X and Y axis describes coordinate 1 and 2 respectively. 
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An Unweighted Pair Group Method with Arithmetic mean (UPGMA) dendrogram of the 60 

upland genotypes was constructed (Fig 4.6) based on the dissimilarity matrix using 234 AFLP 

markers. Ark-15-6-11 and 0147-22ne were highly similar, while AU 5367, ACALA 5367 and LA 

05307025 were highly diverse from rest of the population. Most of the other genotypes were found 

to be genetically similar. The diverse Louisiana genotypes were LA5307025, LA5307029 and 

LA5307119, while among the heat tolerant group; PX3201-66-7, PX3201-19-3 and PX 3201-66-8 

were the most diverse. Some of the publicly bred genotypes such as AU-5367, 04PST 250, 0020-

31ne and GA2004089 were found to be dissimilar to rest of the genotypes. Nevertheless, the DICE 

distance estimates among all the 60 genotypes reached a maximum of less than 0.15, indicating the 

relative lack of genetic diversity in this group of genotypes as a whole. 

4.3.3 Marker Trait Associations 

a)  Mixed Models for Marker Trait Associations 

 

 Association mapping using AFLP markers for LY and fiber traits was done using GLM and 

mixed models implemented in TASSEL (Bradbury et al., 2007). Initial analysis to detect population 

structure (Pritchard et al., 2000) did not find any clusters. The population was genetically related 

and formed only one group. Subsequently considered was PCA and kinship data in a mixed model. 

Initially the naïve model, comprising marker scores and trait data resulted in a low adj. R
2 

(average 

10.06%), while marker and PCA showed 16.9% adj. R
2
. Including kinship data in both the mixed 

model and the simple model (marker+kinship) increased the adj. R
2 

value to 29%. Inclusion of PCA 

data improved model R
2
 value even further (41.7%). Using a MTPK (Marker+Trait+PCA+Kinship) 

model found significant associations between markers and quantitative traits (Table 4.5). As many 

as 112 markers were found to be significantly associated with the eight traits under study (P<0.05). 

Among all the traits, SFC had the highest number of associated markers (26), while UI was 

associated with the least number of markers (10). 
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Fig 4.6 UPGMA dendrogram of 60 upland cotton genotypes based on DICE distance estimates 

calculated using AFLP   markers.  
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Table 4.5 Significant markers selected from mixed model using AFLP markers in upland 

cotton. The models were evaluated in TASSEL software. 

 

Trait Significant QTLs selected based on MTPK mixed model 

ELO† E4M2_55, E4M2_70, E6M8_280, E9M5_70, E5M5_170,E5M4_365, E9M2_170, E1M5_65, 

E2M4_60, E9M3_185, E8M3_200 

FL E6M8_140, E9M5_265, E3M5_150, E5M5_70, E5M5_170, E5M4_365, E9M2_170, 

E9M7_135, E1M5_175, E2M8_265, E2M4_60, E9M3_185, E8M3_200 

FS E8M5_90,E3M5_70, E3M5_150, E5M5_145, E5M3_100, E5M3_160, E5M3_204, E5M2_70, 

E5M2_260, E8M2_65, E8M4_65, E1M7_170, E2M7_180, E9M7_135, E1M6_140 

LP E6M5_140, E8M5_90, E5M1_60, E5M5_70, E5M5_145, E5M3_100, E5M4_120, E9M2_150, 

E9M2_155, E8M2_85, E1M7_75, E1M7_115, E8M1_155, E8M3_60 

LY E6M5_140, E8M5_90, E5M1_60, E5M5_70, E5M5_145, E5M3_100, E5M4_120,  

E9M2_150, E9M2_155, E8M2_85, E1M7_75, E1M7_115, E8M1_155,E8M3_60 

        

E8M2_

85 

E1M1_

53 

E2M8_

265 
 

MIC E6M2_255, E4M2_55, E6M8_140, E5M1_115, E5M1_170, E3M8_170, E5M8_120, 

E5M5_70, E3M3_60, E5M4_365, E3M2_150, E6M6_80, E6M6_100, E1M2_60, E9M7_135 

SFC E6M8_140, E6M1_130, E5M4_365, E4M7_140, E6M6_150, E8M2_85, E1M1_53, 

E9M3_300, E4M2_55, E4M8_350, E5M1_300, E5M5_170, E5M4_365, E9M2_180, 

E8M2_65, E2M4_60 

UI E6M2_370, E3M5_150, E5M4_270, E1M7_75, E1M7_185, E1M7_200, E1M8_55, E2M4_60, 

E6M3_65, E6M3_110 

 

† LY=Lint yield; LP=Lint percentage; MIC=Micronaire; FL=Fiber length; FS=Fiber strength; 

UI=Uniformity index; ELO=Elongation ratio; SFC=Short fiber index. 

 

Most of these markers stayed significant as progressed the analysis from the naïve to the MTPK 

model. Among the highly significant markers selected, E6M8_140 was associated with FL, MIC, 

LY and SFC. Other common markers were E3M5_150 for FL and FS, E5M3_204 for FS and LY, 

E8M2_85 for LP and LY and E2M4_60 for ELO, FL, FC and UI. As many as five markers were 

common between ELO and FL, viz., E9M2_170, E1M5_65, E2M4_60, E9M3_185, E8M3_200 and 

E5M4_365. The correlation between the lint yield and fiber properties could be the reason as the 

same set of markers were influencing the different traits. 
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b) Mixed – Multiple Regression Models for Association Analysis 

 Yu et al., (2006) commented on the efficiency of mixed models as well as on their ability to 

reduce the incidence of false positives. In order to further reduce the number of potential false 

positives and increase the efficiency of marker trait association models, we performed mixed- 

multiple regression (MMR) analysis. In this type of statistical analysis, all significant markers from 

the MTPK mixed model (from TASSEL) are validated under stringent statistical parameters using 

general linear models. The GLMSELECT (SAS) procedure was used as a MMR model selection 

procedure or a set of candidate models. We used 52 different general linear models with an array of 

CHOOSE, SELECT and STOP options and different model selection criteria : SBC, Adj. R
2
, AIC, 

AICC, BIC and PRESS. The MMR method proved highly efficient in capturing most of the genetic 

variation with 38 significant markers (Table 4.6) for eight traits under the study. A total of 297 

markers were identified by GLM and 108 by mixed models. After accounting for shared markers 

across yield and fiber traits, a total of 254 unique polymorphic markers were found and used in 

subsequent analyses. As most of the fiber traits are interrelated, we noticed several set of markers 

found common governing more than one fiber trait. The sequential validation of markers is an 

improved method for reducing false positives and identifying truly significant associations.  

Table 4.6 Composition of the number of markers selected for yield and fiber traits by 

alternate marker-trait association models with range values for R
2
  

Traits GLM MTPK MTPK-GLM 

ELO 43(99%) 11(16-46%) 6 (17-42%) 

LY 19 (99%) 14(86-93%) 5 (19-50%) 

LP 21(99%) 14(42-56) 4 (30-56%) 

FL 48(99%) 13(10-36%) 6 (18-56%) 

FS 36(99%) 15(14-23%) 4(15-38%) 

MIC 52(99%) 15(35-57%) 3 (12-21%) 

UI 35(99%) 10(14-21%) 4 (12-36%) 

SFC 43(99%) 16(26-53%) 6(15-57%) 

Total 297 108 38 
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 Mixed multiple regression models improved the efficiency of selection of significant markers 

associated with the fiber traits studied herein. Most of the markers had high R
2
 values, to the extent 

of 12.4-57.4% (Table 4.7). Lint yield and lint percentage (LP), being the most complex dependent 

variables, were associated with five and four QTL’s, respectively. The most significant QTL were 

E6M8_140 and E5M4_365 for LY and E5M5_145 and E1M7_75 for LP. 

  Micronaire, of the fiber traits under study, is the most affected by environmental factors. 

Three significant QTL’s, viz., E5M8_120, E5M4_365 and E1M2_60 were associated with this 

character. Fiber length and ELO were associated with the common QTL’s, E9M3_185 and 

E5M4_365. The QTL E5M5_170 was associated with both ELO and SFC traits.  There were four 

markers associated with UI and the most significant one was E2M4_60.  

Table 4.7 Marker trait associations in upland cotton using Mixed-Multiple regression models.  

  LY MODELR
2
 ADJ.R

2
 AIC AICC BIC SBC PRESS Pr > F 

 E6M8_140 0.20 0.19 294.69 5.95 295.26 298.87 8000.63 0.0001 

 E5M4_365 0.29 0.27 289.32 5.86 289.91 295.60 7636.79 0.008 

 E5M7_210 0.37 0.34 284.01 5.78 285.03 292.38 6982.78 0.009 

    E8M2_85 0.45 0.41 278.06 5.69 280.13 288.53 6433.68 0.007 

  E8M5_110 0.53 0.47 272.85 5.62 277.22 287.51 6077.18 0.02 

   LP 
E5M5_145 0.30 0.29 237.93 5.00 238.09 242.12 3209.48 <0.0001 

E1M7_75 0.56 0.53 215.55 4.65 217.41 226.02 2192.21 0.002 

E5M3_100 0.39 0.37 231.15 4.89 231.24 237.43 2844.80 0.004 

E5M1_60 0.47 0.45 224.59 4.79 225.09 232.97 2531.83 0.005 

    MIC 
E5M8_120 0.31 0.27 -149.66 -1.44 -146.71 -141.29 4.947 0.006 

E5M4_365 0.12 0.10 -138.69 -1.27 -137.22 -134.51 5.855 0.007 

    E1M2_60 0.21 0.18 -143.59 -1.34 -141.70 -137.31 5.380 0.011 

   FL 
    E5M5_70 0.18 0.17 -333.22 -4.51 -333.20 -329.03 0.236 0.001 

E5M4_365 0.31 0.28 -341.45 -4.64 -341.43 -335.16 0.202 0.00 

E9M3_185 0.39 0.36 -347.55 -4.74 -347.23 -339.17 0.180 0.00 

E3M5_150 0.47 0.43 -353.41 -4.83 -352.30 -342.93 0.166 0.00 

E6M8_140 0.53 0.49 -358.82 -4.91 -356.44 -346.26 0.155 0.01 

E9M5_265 0.57 0.52 -361.60 -4.94 -357.98 -346.94 0.150 0.01 

    FS 
E8M4_65 0.15 0.13 89.36 2.53 90.10 93.55 261.93 0.00 

E5M3_100 0.26 0.24 82.76 2.42 83.72 89.04 234.41 0.00 

E1M7_170 0.38 0.33 76.31 2.33 78.25 86.78 209.78 0.02 

E5M3_204 0.32 0.28 79.78 2.38 81.03 88.16 222.45 0.03 
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Contd….. 

     

   UI MODELR
2
 ADJ.R

2
 AIC AICC BIC SBC PRESS Pr > F 

    E2M4_60 0.12 0.10 51.95 1.90 52.99 56.14 173.83 0.00 

  E3M5_150 0.20 0.17 48.33 1.85 49.43 54.58 169.38 0.02 

    E1M7_75 0.30 0.26 42.22 1.75 44.27 50.80 156.24 0.00 

    E1M8_55 0.35 0.31 39.28 1.71 41.91 49.67 150.87 0.03 

   SFC 

        E5M5_170 0.17 0.16 28.42 1.51 29.25 32.61 93.86 0.00 

E5M4_365 0.27 0.25 22.46 1.42 23.49 28.74 84.83 0.00 

E4M8_350 0.33 0.29 19.66 1.38 20.98 28.03 80.80 0.03 

E5M1_300 0.38 0.33 16.97 1.34 18.88 27.44 74.91 0.03 

    E4M2_55 0.43 0.37 14.31 1.30 17.16 26.88 70.89 0.04 

   ELO 

        E5M4_365 0.15 0.13 54.01 1.94 54.07 58.20 146.36 0.00 

E5M5_170 0.26 0.24 47.22 1.83 47.18 53.50 130.81 0.00 

    E1M5_65 0.34 0.31 42.43 1.75 42.52 50.81 119.37 0.01 

E9M2_170 0.43 0.39 35.60 1.65 36.55 46.07 107.88 0.00 

    E4M2_70 0.48 0.43 32.18 1.60 33.97 44.75 99.83 0.02 

E9M3_185 0.57 0.50 26.81 1.55 32.10 45.66 95.80 0.04 

 

4.4 Discussion 

The present study explores the efficiency of AFLP markers in capturing phenotypic 

variability using association mapping principles. The high genetic similarity between the genotypes 

included in this study is attributed to the use of common ancestral genotypes in the breeding 

programs. Narrow genetic diversity has also been observed in other cotton association mapping 

studies (Abdurakhmonov  et al., 2008; 2009).  

Progress in using breeding approaches to improve fiber quality traits is dependent upon 

exploiting genetic variability. Genetic diversity studies on G. hirsutum germplasm collections from 

Africa, Uzbekistan and Mexico regions identified diversity for fiber traits within the germplasm. 

Cluster analysis also suggested that diversity remains in the PeeDee germplasm collection following 

50 years of breeding (Campbell et al., 2009).  

Genetic diversity studies conducted previously in Gossypium species, inferred from isozyme, 

random amplification of polymorphic DNA (RAPDs), restricted fragment length polymorphism 

(RFLPs), amplified fragment length polymorphism (AFLPs), and SSRs data have reported a low 
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level of molecular diversity within G. hirsutum cotton germplasms (Abdurakhmonov, 2007). Our 

results obtained from genetic distance analysis confirmed the narrow genetic base among elite G. 

hirsutum cotton genotypes. Zeng et al., (2009) attributed moderate allele frequency divergence 

(0.11-0.27) among six groups of upland genotypes to be due to natural selection for fitness among 

exotic genes in the local environment. The range of genetic similarity in present study is much higher 

than the previous reports (Guiterez et al., 2002; Rahaman et al., 2002; Zhang, 2005). Based on PCA, 

correspondence and UPGMA analysis it is evident that distantly related primary gene pool members 

or secondary gene pool of the cotton have been utilized in the development of the 60 upland 

genotypes studied here.  

According to Abdalla et al., (2001), one possible explanation for low genetic diversity is that 

selfing (following hybridization) will result in the decrease in the number of loci that are 

polymorphic in subsequent generations by 50%. In addition to creating a set of closely related 

descendent genotypes, various markers would have independently become fixed to one or the other 

parental allele. Thus, high levels of similarity within upland cluster could be due to the fact that these 

genotypes have been subjected to a greater degree of inter-cultivar gene flow (Kellogg et al., . 1996; 

Wendel and Doyle 1998). 

Refining the MLM approach of Yu et al., (2006), we considered the use of  PCA and 

kinship estimates  to eliminate spurious associations. This approach identified a number of AFLP 

markers significantly associated with yield and fiber traits. Improvement upon the MLM approach 

in our study came from multiple regression based GLM studies. The MLM-MR approach reduced 

the number of significant markers. The general linear method has been used before in cotton, with 

molecular markers, where it reduced the number of significant markers by 6-21%. This study for 

the first time explored the MLM-MMR statistical approaches using AFLP markers in cotton. 
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In line with the present study, Wu et al., (2007) observed a large number of AFLP markers 

strongly associated with yield, boll weight and lint percentage. Here only a few AFLP markers 

were selected using linear regression models. Out of an original set of 297 significant markers for 

eight cotton traits, the addition of PCA and kinship data reduced this number to 108. Using MLM-

MMR approach, the number of significant markers was reduced even further to 38. Zhang et al., 

(2009) also reported that the specification of additional criteria can reduce the number of 

significant QTLs identified. This is the first report of such model based selection criteria being 

applied to AFLP data in cotton. 

4.5 Conclusion 

The narrow genetic base of upland cotton germplasm that is used in breeding programs is 

one of the factors in failing to achieve appreciable amount of progress in improving yield and fiber 

traits. The present investigation attempts to determine efficiency of AFLP markers in estimating 

genetic diversity in 60 Upland accessions of Louisiana. Genetic distance analysis confirmed the 

narrow genetic base among G. hirsutum genotypes. The PCA and kinship estimates in MLM 

approach identified number of significant AFLP markers associated with yield and fiber traits. The 

MLM-MMR approach using AFLP markers found to be useful in reducing the false positives and 

improving reliability of the data. 
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CHAPTER 5 CHARACTERIZATION AND MARKER TRAIT ASSOCIATIONS OF SEED 

QUALITY TRAITS IN UPLAND COTTON (Gossypium hirsutum) 

5.1 Introduction 

Cottonseed oil is a versatile vegetable oil derived from the seeds of the cotton plant after the 

cotton lint has been removed and comprises about 16% of a seed, by weight. It is typically 

composed of about 26% palmitic acid (C16:0), 15% oleic acid (C18:1), and 58% linoleic acid 

(C18:2). The relatively high level of palmitic acid provides a degree of stability to the oil that makes 

it suitable for high-temperature frying applications, but is nutritionally undesirable due to the low-

density lipoprotein cholesterol-raising properties of this saturated fatty acid (Cox et al., 1995). 

Cottonseed oil is one of a few oils that are stable in the beta‐prime crystal form, which is desirable 

in most solidified products as it promotes a smooth, workable consistency usually called plasticity.  

Cottonseed meal is left after oil extraction and used as a source of fodder protein in the 

livestock industry, but the sphere of its use in agriculture is limited. Constituting nearly half of a 

seed’s weight, the meal contains 23% of high biological-value protein. The presence of bound 

gossypol in proteins considerably changes their properties, including their biological value. The 

gossypol in cottonseed feed products could be toxic to some animals in certain situations. Some of 

the classical signs of chronic gossypol toxicity are loss of appetite, weakness, emaciation, weight 

loss, decreased egg size and hatchability in poultry. These symptoms have been observed 

consistently in non-ruminants and occasionally in young ruminants or in mature ruminants with 

very high free gossypol intakes. The ability of ruminants to tolerate higher oral doses of gossypol 

than non ruminants is due to the binding of free gossypol by soluble ruminant proteins (Hudson et 

al., 1988). 

 The fractionation of various protein components of the meal has shown that the amount of 

gossypol bound with the proteins depends on their amino acid composition and structure. Therefore, 
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the primary task in the technology of obtaining cottonseed proteins is the fraction of proteins 

containing different amounts of gossypol. For years, scientists have tried to breed cotton with 

gossypol levels safe for consumption. In the 1950s they succeeded, but because the toxin was 

missing from leaves as well as seeds, the plants were more susceptible to damage from pests. With 

the help of a new technique called RNA interference, or RNAi, a gene-silencing mechanism has 

been developed that lowered the gossypol level in seeds while sparing the rest of the plant (Ganesan 

et al., 2006). 

Edible cottonseed has a higher protein efficiency ratio (PER = 2.35) than other vegetable 

proteins. It contains 64 g of protein per 100 g of edible cottonseed compared to 24 g of protein in 

beef. It contains all nine essential amino acids, is extremely high in potassium, is a rich source of 

complex carbohydrates, and contains only polyunsaturated oil. Its calcium-phosphorous ratio is 

considered ideal for building tissue for bone formation. Whole cottonseed is high in protein, fat, 

fiber and energy. This combination of nutrients in one feedstuff is unusual. Whole cottonseed with 

the lint still attached is white and fuzzy in appearance. The typical cottonseed meal is composed of 

moisture (7%), ash (6.6%), protein (45.3%), fiber (6.3%), nitrogen-free extract (24.6%) and fat 

(10.2%).  In order to balance the oil, protein and fiber content in the existing germplasm/cultivars, 

there is a need to survey the genome to identify genes/controlling elements responsible for these 

metabolic pathways.   

Protein and oil concentration, kernel index and kernel percentage in cotton are controlled by 

multiple genes (Singh et al., 1985; Dani and Kohel, 1989; Ye et al., 2003) and are strongly 

influenced by the environment (Kohel and Cherry, 1983; Singh et al., 1985; Ye et al., . 2003). Seed 

traits may be simultaneously controlled by seed nuclear genes, cytoplasmic genes and maternal 

nuclear genes (Ye et al., 2003). Previous studies showed significant negative associations between 

oil and protein content (Kohel and Cherry, 1983; Chen et al., 1986; Sun et al., 1987). Such factors 
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may hinder progress in the simultaneous improvement of these traits in conventional cotton 

breeding programs. Genetic mapping provides a useful tool to understand the genetic architecture of 

quantitative traits at the molecular level. DNA markers linked to quantitative trait loci (QTL) 

controlling seed protein content have been identified in soybean (Chung et al., 2003; Panthee et al., 

2005), rice (Tan et al., 2001), barley (See et al., 2002) and field pea (Tar’an et al., 2004). DNA 

markers associated with loci controlling seed oil content or fatty acid composition have been 

identified in soybean (Kianian et al., 1999), rapeseed (Zhao et al., 2006), sunflower (Bert et al., 

2003; Pe´rez-Vich et al., 2004), oilseed mustard (Gupta et al., 2004) and canola (Hu et al., 2006). In 

cotton, 11 single QTL’s were found associated with oil and protein content (Song and Zhang 2007). 

Amino acid specific epistatic QTL’s were also detected, which explained 4.43-9.55% of the 

phenotypic variation. A recent study using chromosome substitution lines identified chromosome 4 

of the 3-79 in a G.barbadense, introgressed TM-1 background, to be associated with seed oil, 

protein and fiber percentage (Wu et al., 2009). None of the studies in cotton, to date, have explored 

the possibility of screening a broad array of germplasm for molecular marker associations with 

these traits using association/LD principles. 

The present study was planned to identify and map genomic regions associated with seed 

protein, seed oil and fiber content in a diverse collection of upland cotton cultivars. The study also 

explores the extent of genetic variability present in upland cultivars to facilitate selection of these in 

traits in introgression breeding. 

5.2 Materials and Methods 

5.2.1 Plant Material 

A set of 75 G. hirsutum upland cotton genotypes and 2 diploid genotypes were selected for 

analyzing seed quality traits. (Table 5.1). The entire upland mapping panel was divided into five 

groups based on their geographical origin viz., Louisiana (25), Arkansas(17), SE (22), Delta (4), 
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Texas/SW(6). In addition two diploid subgenomes representatives’ G. arboreum (A1) and G. 

herbaceum (A2) we also considered for comparison.  

Table  5.1 List of genotypes used for analyzing seed quality traits in upland cotton 

Cultivar Region 

 
Cultivar Region 

LA1110001 Louisiana 

 

AU-5491 South eastern 

LA1110147 Louisiana 

 

AU1065 South eastern 

LA1110148 Louisiana 

 

AU1107 South eastern 

LA03404204 Louisiana 

 

AU1403 South eastern 

LA01407117 Louisiana 

 

AU5210 South eastern 

LA01407009 Louisiana 

 

AU6207 South eastern 

LA1110023 Louisiana 

 

AU-6103 South eastern 

LA1110035 Louisiana 

 

AU-5367 South eastern 

LA03404148 Louisiana 

 

GA2002212 South eastern 

LA03404171 Louisiana 

 

GA2003118 South eastern 

LA03404065 Louisiana 

 

GA2003156 South eastern 

LA1110061 Louisiana 

 

GA3003131 South eastern 

LA01407074 Louisiana 

 

GA-2004089 South eastern 

LA01407072 Louisiana 

 

GA-2004303 South eastern 

LA04307004 Louisiana 

 

GA-2004230 South eastern 

LA04307074 Louisiana 

 

PD03001 South eastern 

LA04307063 Louisiana 

 

PD03011 South eastern 

LA1110014 Louisiana 

 

PD3025 South eastern 

LA03404051 Louisiana 

 

PD99036 South eastern 

LA04308044 Louisiana 

 

PD99041 South eastern 

LA04307027 Louisiana 

 

PD-04012 South eastern 

LA-05307083 Louisiana 

 

COKER100 South eastern 

LA05307029 Louisiana 

 

DPL393 Delta 

LA-0530761 Louisiana 

 

DP393 Delta 

LA05307094 Louisiana 

 

SG105 Delta 

9801-37-04 Arkansas 

 

SG747 Delta 

9811-15-07 Arkansas 

 

ACALA1517-99 South west 

9815-05-09 Arkansas 

 

FM958 Texas 

9803-17-04 Arkansas 

 

NM-03012 South west 

9803-23-04 Arkansas 

 

TAMB182-34 Texas 

9801-37-04 Arkansas 

 

TM-1 Texas 

0015-06-11 Arkansas 

 

MCNAIR235 Texas 

0147-22ne Arkansas 

 

PX03203-25-2 South west 

0110-2ne Arkansas 

 

G. arboreum Diploid 

0141-15ne Arkansas 

 

G. herbaceum Diploid 

0020-31ne Arkansas 

   0028-16ne Arkansas 

   0149-17ne Arkansas 

   8921-2-2-14-13-11 Arkansas 

   04-PST-275 Arkansas 

   04PST-250 Arkansas 

   04PST-246 Arkansas 
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Most of the genotypes, except the historical ones were selected from advanced breeding 

lines tested in the Regional Breeder’s Trial Network (RBTN), a multistate testing program of public 

breeding lines covering cotton producing regions (www.cottonrbtn.com). Plants were field grown in 

2008 as per LA cooperative extension service guidelines at the Dean Lee Research Station in 

Alexandria, LA. Leaf samples from representative plants were collected and bulked for DNA 

extraction. Phenotypic data on yield was obtained from the RBTN trial website 

(www.cottonrbtn.com). The four replication data on seed cotton yield and lint percentage was 

averaged to calculate variances using SAS (SAS 9.1.3, SAS Institute, Cary, NC). Deltapine, DP 393 

was considered as the check variety and all the comparisons were made in relation with the 

performance of this cultivar. For lint yield, the values of other CAM panel were adjusted based on 

the relative performance of the check variety, DP393. 

From remnant planting seed, ten grams of acid delinted seeds for each cultivar were sent to 

Department of Agricultural Chemistry, LSUAgCenter, Baton Rouge, Louisiana, to determine total 

oil, protein and fiber content. The determination of seed quality traits was done following modified 

American Oil Chemist’s Society (AOCS) methods of analysis protocols. Seed protein was estimated 

using the Nitrogen combustion method (AOAC 990.03); crude fat/oil content by petroleum ether as 

solvent using Soxtec System HT6; and crude fiber content by AOCS 962.09. Two replications were 

run and averaged over each cultivar. Correlation analysis for each trait was performed using PROC 

CORR in SAS. 

5.2.2 Genotyping with AFLP Markers 

Sixty four primer combinations were used to generate Amplified Fragment Length 

Polymorphism (AFLP) data (Table: 5.2a) following the procedure given by Vos et al., (1995) with 

minor modifications. Sample DNA was digested with EcoRI (infrequent cutter with GAATTC 

recognition sequence) and MseI (frequent cutter with TTAA recognition sequence) restriction 

http://www.cottonrbtn.com/
http://www.cottonrbtn.com/
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enzymes and oligonucleotide adapters specific to restriction sites were ligated to the resulting 

fragments through incubation (180 min, 37 °C) with DNA ligase using a iCycler (BioRad Labs, 

Hercules, CA.). 

 

Table 5.2a Adapters and primers of AFLP marker system used for pre and selective 

amplification in upland cottons. 

Primer/adapter Nomenclature†   Sequence (5’-3’) 

ECORI primers: 

EcoRI linker 1   E-I    CTC GTA GAC TGC GTA CC 

EcoRI linker 2   E-II    AAT TGG TAC GCA GTC TAC 

EcoRI + A    E+A    GAC TGC GTA CCA ATT CA 

E- AAC    E1    GACTGCGTACCAATTCAAC 

E- AAG    E2    GACTGCGTACCAATTCAAG 

E-ACA    E3    GACTGCGTACCAATTCACA 

E-ACT    E4    GACTGCGTACCAATTCACT 

E-ACC    E5    GACTGCGTACCAATTCACC 

E-ACG    E6    GACTGCGTACCAATTCACG 

E-AGG    E8    GACTGCGTACCAATTCAGG 

E-AGA    E9    GACTGCGTACCAATTCAGA 

MseI primers: 

MseI linker 1    M-I    GAC GAT GAG TCC TGA G 

MseI linker 2    M-II    TAC TCA GGA CTC AT 

MseI + C    M+C    GAT GAG TCC TGA GTA AC 

M-CAA    M1    GATGAGTCCTGAGTAACAA 

M-CAC    M2    GATGAGTCCTGAGTAACAC 

M-CAG    M3    GATGAGTCCTGAGTAACAG 

M-CAT    M4    GATGAGTCCTGAGTAACAT 

M-CTA    M5    GATGAGTCCTGAGTAACTA 

M-CTC    M6    GATGAGTCCTGAGTAACTC 

M-CTG    M7    GATGAGTCCTGAGTAACTG 

M-CTT    M8    GATGAGTCCTGAGTAACTT 

 

† : Nomenclature is in accordance with the Lacape et al., 2003; Myers et al., 2009.  

 

Pre-amplifications were done using EcoR I+A and Mse I+C oligo primers. The amplification 

was carried out with 50ng/ul of oligo primers, 5mM dNTP’s, 25mM MgCl2, 10X buffer, Taq 

polymerase(5U/μl) and restrict ligated template DNA making total volume of 20μl. The PCR was 

set up with initial denaturing for 94
o
C for 2 min followed by 26 cycles at 94

o
C for 1 min, 56

o
C for 1 

min., 72
o
C for 1 min., and final extension at 72

o
C for 5min. The pre amplified products were diluted 
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with ddH2O. Selective amplification was done using two selective nucleotides. The EcoRI+ANN 

oligo primers were dye labeled with 700 and 800 IR dye (MWG Biotech, Germany). The PCR for 

selective amplification was carried out in a reaction volume of 10 μL consisting of 10X reaction 

buffer, 25 mM MgCl2, 2.5 mM dNTPs, 1 μM each of EcoRI-ANN and MseI+CNN primers and 5U 

Taq polymerase (Promega, Madison, WI). The reactions were run on an i-Cycler (BioRad Labs, 

Hercules, CA). Touchdown PCR was used for selective amplifications using the following profile: 

initial denaturing step at 94
o
C for 2 min followed by initial 12 cycles at 94

o
C for 30 s, 65

o
C for 30 s 

(with 0.7
o
C decrement every cycle) and 72

o
C for 1 min, then followed by 23 cycles at 94

o
C for 30 s, 

56
o
C for 30 s, and 72

o
C for 1 min with a final extension step at 72

o
C for 2 min. A total of 64 EcoR I 

- Mse I selective amplification primer combinations were used. The PCR amplified products were 

run on a LI-COR 4300 sequencer (LI-COR Inc., Lincoln, NE). Gels images were saved onto a 

computer, printed  and scored manually. Presence of a band was recorded as ‘1’ and absence as ‘0’, 

as per a typical dominant marker system.  Ambiguous data that could not be resolved was 

discarded. The nomenclature of AFLP loci was followed according to Lacape et al., (2003); and 

Myers et al., (2009), indicating the enzyme primer combinations with band size. 

5.2.3 Molecular Diversity Analysis: 

For each marker used, sub-populationwise diversity statistics including the number of 

observed and effective alleles, Nei’s genetic distances, expected heterozygosity and Shannon’s 

information index were calculated using GenAlEx 6.2 software (Peakall and Smouse, 2006). Allelic 

diversity at a given locus can be determined by Polymorphism Information Content (PIC) and it was 

calculated as ‘PIC=1-∑fi
2
 where, fi is the frequency of the i

th
 allele (Weir, 1996). PROC ALLELE 

was used to calculate PIC values and frequency estimate was done using PROC FREQ (SAS 9.1.3, 

SAS Institute, Cary, NC).  
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Genetic differentiation among the subpopulation was estimated using hierarchial analysis of 

molecular variance (AMOVA; Excoffier et al., 2005) via GenAlEx 6.2. In order to identify possible 

structure, various statistical analyses were performed on the basis of allelic frequencies. First, the 

Dice similarity coefficient was calculated using the formula D = 2a/(2a + b + c), where a = the 

number of fragments present in both accessions, b and c are the numbers of fragments that are 

present in either accession, respectively (Sneath and Sokal, 1973). From the similarity data, genetic 

distance data were calculated for each pair of genotypes (distance =1- similarity) and used for 

UPGMA clustering in MEGA 4.0 (Kumar et al., . 2004). In addition, Principal Coordinate Analysis 

(PCoA) was also performed using a genetic similarity matrix based on the formula of Nei and Li 

(1979) to supplement the findings obtained from cluster analysis. All the above analyses were 

performed employing Paleontological Statistics (PAST) software (Hammer et al., 2001).  

 A Bayesian model based clustering was performed using the software program Structure 

according to Pritchard et al., (2000). The main criteria for this type of clustering is the allocation  of 

individual genotypes to groups in such a way that Hardy-Weinberg equilibrium and linkage 

disequilibrium are valid within clusters but absent between clusters. The admixture model was 

selected in the software and allele frequencies among populations were assumed to be correlated. 

Each run was carried out using 100,000 iterations with 100,000 burn-in iterations. The optimum 

number of cluster (k) was determined based on the estimated logarithmic likelihood of the data (Yu 

et al., 2006). This value reaches a plateau when the minimum number of groups that best describes 

the population structure has been reached (Pritchard et al., 2000; Evanno et al., 2005). In addition, 

alpha values were also monitored to assess the minimum number of subpopulation. The alpha value 

becomes lowest and starts to plateau. The minimum number of subpopulation at this stage would be 

the ideal k value.  A graphical display of subpopulation composition from Structure software was 

generated using DISTRUCT (Rosenberg, 2002). 
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5.2.4 Association Analysis 

a) Mixed Models for Association Mapping 

Six statistical mixed models (Table: 5.2b) and their adjusted R
2
 values were computed for 

fixed marker effects using TASSEL 2.1, beta version (Bradbury et al., 2007). Several models 

incorporated the outcome of population structure and PCA analysis in an effort to increase the 

power to detect true marker trait associations. Tests for significance were calculated using the F 

statistic associated with the marker. The model possessing the highest adjusted R
2
 was considered 

the best since it captured the maximum variation. A cutoff P value of 0.05 was used to determine 

whether a QTL was associated with a marker. R
2
 estimates were used to calculate the magnitude of 

the QTL effects. Most of the marker trait associations were made based on 77 genotypes.  

Table 5.2b  Mixed models designed for association mapping of seed quality traits in upland cottons 

using TASSEL software. 

Code Model Statistical equation† 

MT Marker+Trait Y=Aά+e 

MTS Marker+Trait+Structure Y=Aά+Qν+e 

MTP Marker+Trait+PCA Y=Aά+Qν+e 

MTK Marker+Trait+Kinship Y=Aά+Zu+e 

MTSK Marker+Trait++Structure+Kinship Y=Xß+ Aά+ Qν+Zu+e 

MTPK Marker+Trait+PCA+Kinship Y=Xß+ Aά+ Qν+Zu+e 

†: Y = vector of phenotypic observations, ά= vector of allelic effects, e=vector of residual effects, ν=vector 

of population effects, ß=vectors of fixed effects other than allelic or population group effects, u=vector of 

polygenic background effects, Q=population membership assignment matrix, X, A and Z are incidence 

matrices of 1s and 0s relating to y to ß, ά and u(Casa et al., 2008). 

b) Mixed – Multiple Regression Models for Association Analysis 

The GLMSELECT in SAS performs effect selection in the framework of general linear 

models. A variety of model selection methods are available, offering extensive capabilities for 

customizing the wide variety of selection and stopping criteria. The GLMSELECT compares most 

closely to PROC REG and PROC GLM. The PROC REG procedure supports a variety of model-
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selection methods but does not support a CLASS statement. The GLM procedure supports a CLASS 

statement but does not include effect selection methods. The GLMSELECT procedure fills this gap. 

It focuses on the standard independently and identically distributed general linear model for 

univariate responses and offers great flexibility for and insight into the model selection algorithm. 

In order to exploit the advantages of multiple regression procedures, we used all those 

traitwise significant markers selected by mixed model procedures using TASSEL and screened for 

52 PROC GLMSLECT models. Stepwise selection method was used with all possible combinations 

of CHOOSE, SELECT and STOP. Different options were used for these selection methods i.e., 

Bayesian Information Content (BIC), SBC (Schwarz Bayesian Information Criterion), Adjusted R
2
, 

AICC (the Corrected Akaike Information Criterion), SL=0.15 (the significance level of the F 

statistic for entering or departing effects) and Cross validation (CV). Traits were considered as 

dependent variables and all the markers were treated as independent variables. Each trait was 

analyzed separately and those independent variables showing test statistic estimates of less than 

P=0.05 were added in the model. To reduce the Type I error, selected models were further tested 

with validation step by using ‘PRESS’ criterion in ‘STOP’ option. The best model was then selected 

based on adjusted R
2
 and the fewest number of effects for a particular trait. 

Following simple GLM and MLM in TASSEL, Mixed multiple regressions in GLMSELECT 

enormously improved the efficiency of statistical model selection in order to cull out false positives 

and increasing the power to detect QTL. 

5.3 Results 

5.3.1 Genetic Analyses 

 A total of 64 ECoRI-MseI primer combinations were screened across 77 cotton genotypes 

and 234 polymorphic fragments were scored. Based on the prior knowledge and the confirmation of 

5 subgroups via Structure analysis, several genetic diversity parameters were calculated. The 
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Shannon Index, a measurement used to compare diversity between two or more subpopulations, 

ranged between 0.45-0.61 (Table: 5.3). The number of effective alleles was highest for Arkansas 

(1.7) while lowest for Delta genotypes (1.5). The heterozygosity for the AFLP markers ranged from 

0.318 (DELTA) to 0.43 (ARK). ARK and SE showed the highest heterozygosity among all the 

subgroups studied. The pairwise Nei genetic similarity between upland genotypes ranged from 

0.822 between DELTA and LA to 0.948, between SE and ARK subgroups (Table: 5.4).  Across 

different subpopulations, we observed moderate to low genetic diversity.  

Table 5.3 The genetic diversity parameters for five subgroups in upland cotton genotypes. 

Pop Na Ne I He UHe 

LA 1.885 1.613 0.507 0.347 0.354 

ARK 1.966 1.795 0.615 0.431 0.444 

SE 1.966 1.788 0.610 0.427 0.437 

DELTA 1.709 1.589 0.453 0.318 0.353 

SW/T 1.748 1.637 0.484 0.341 0.364 

      Na=No. of different alleles, Ne=No. of effective alleles, I=Shannon’s index, He=Expected heterozygosity, 

UHe=Unbiased expected heterozygosity, LA=Louisiana, ARK=Arkansas, SE=South Eastern, SW/T=South 

West/Texas 

The frequency distribution values for relative kinship revealed that the relatedness ranged 

from 0-0.9 (Fig: 5.1). Although 60% of the pairwise kinship estimates were below 0.5, there were 

moderate peaks around 0.7 and 0.8. Genetic relatedness is often prominent among elite genotypes, 

as they often share common genotypes in their breeding development programs. The polymorphic 

Information Content (PIC) measures how different populations are distinguished based on 

probability of randomly chosen alleles. The frequency distribution for PIC using AFLP markers 

ranged from 0-0.40 with more than 90% of them falling between 0.15-0.40 (Fig: 5.1). 
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Table  5.4 Pairwise Population Matrix of Nei Genetic identity among upland cotton genotypes 

 

LA† ARK SE DELTA SW/T 

LA 1.000 

    ARK 0.928 1.000 

   SE 0.908 0.948 1.000 

  DELTA 0.822 0.863 0.881 1.000 

 SW/T 0.875 0.898 0.907 0.864 1.000 

†: LA=Louisiana; ARK=Arkansas; SE=South eastern; SW/T= South western or Texas 

 

 

  

Fig 5.1 Frequency distribution for percent kinship and PIC estimates for AFLP markers in 

upland cotton genotypes. X axis: percent kinship and PIC estimates respectively; Y axis: 

frequency values. 

5.3.2 Phenotypic Analyses 

The cotton upland genotypes considered for this study was comprised of 75 upland and 2 

diploid elite germplasm lines developed by breeding programs covering five relatively distinct 

geographical regions. Data on the yield components SCY and LP were collected from RBTN 

coordinators and averaged across four replications. The mean values were used to perform 

univariate analysis. The standardized seed cotton yields ranged from 64% (GA-2004089) to 

139.16% (LA1110001) with a mean of 97.11 (Table: 5.5). Lint percentage varied from 35.67% to 

57.35% with average of 42.97%. These two traits showed considerable genetic variance among the 

upland cottons. Looking at seed traits, the seed protein content ranged from 18.05% to 28.45% with 
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an average of 23.4%, oil content ranged from 6.47% to 25.16% with an average of 17.86%, while 

fiber content varied between 15.88% to 37.12% with an average of 20.23%.  

Table 5.5  Univariate analysis of yield and seed quality traits in upland cotton genotypes 

 Traits N† Min. Max. Mean SE Variance SD Median 

Protein 77 18.05 28.45 23.4 0.47 16.73 4.09 24.1 

Oil 77 6.47 25.16 17.86 0.36 10.07 3.17 17.96 

Fiber 77 15.88 37.12 20.23 0.36 10.12 3.18 19.54 

SCY 77 64.52 139.16 97.11 1.79 226.75 15.06 97.34 

LP 77 35.67 57.35 42.97 0.57 22.67 4.76 41.53 
 

†: N= Number of genotypes, SE=Std. error, SD=Std. deviation; LP=lint percentage; SCY=seed cotton yield 

 The frequency distribution graphs for lint percentage and quality traits were presented in 

Fig: 5.2. A majority of the germplasm lines and genotypes showed a LP ranging between 37.6-45%.  

  

  

 

Fig  5.2 Frequency distribution for lint percentage and seed quality traits in upland cotton 

genotypes. X axis: oil content (%); fiber content (%); protein content (%) and lint 

percentage (%) respectively. Y axis: frequency values. 
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Generally, high lint percentages favor more seed cotton/boll
 
and smaller seed (seed index) 

than does low
 
lint percentage. The major frequency classes for oil content were between 12.6-

22.5%, for fiber content were between 17.6-25% and for oil content were between 17.6-27.5% 

across all the genotypes studied. Only a few extreme peaks were observed.                 

The correlations among the yield and quality traits are graphically represented in Table: 5.6 

and Fig: 5.3. There were a significant negative correlations between fiber content with oil and 

protein percentage. While not significant, Protein and oil percentages were negatively correlated,  

Table 5.6 Correlation coefficients among yield and seed quality traits of upland cottons 

Traits  SCY† LP Protein Oil Fiber 

SCY 1         

LP -0.074 1       

Protein 0.045 -0.240 1     

Oil -0.040 0.027 -0.224 1   

Fiber 0.268 0.033 -0.340* -0.61** 1 

* significant at P≤0.05; ** significant at P≤0.01,  †: SCY=seed cotton yield; LP=lint percentage 

 

 

Fig  5.3 Scatter plot showing correlations among yield and seed quality traits in upland cotton 

leading to the fact that both cannot be balanced in a single cultivar. All other correlations, 

particularly those between SCY and LP with seed quality traits were not significant. Of these, 
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however, two were relatively large; SCY with fiber (0.268) and LP with Protein (-0.240). Typically 

high yielding cotton has a high LP which is most easily achieved by decreasing seed size (G. 

Myers, personal communication). In this study, fiber content was determined from hulled seeds. 

The hull is expected to be higher in fiber than the embryo, so as seed size decreases (SCY 

increases) there is a positive correlation with precent fiber. Similarily, since a majority of seed 

protein is in the embryo, as lint percentage increases (smaller seed), it is expected that protein 

percentages would decrease. 

5.3.3 AMOVA and Cluster Analysis 

In order to estimate genetic diversity within and among the predefined subpopulations, we 

calculated Wright’s FST index (Table: 5.7). In addition, an estimate molecular variance present in 

the upland genotypes using 234 AFLP markers using AMOVA test (Table: 5.8) was done. Based on 

the pairwise FST estimates, SE and SW/T (South Western/Texas) was very closely related (0.0095), 

while Delta and LA was highly diverse (0.141). The average estimate of FST was 0.0529 indicating 

a low level of genetic differentiation among groups. The AMOVA also revealed that although most 

of the genetic diversity was attributable to differences within populations (94%), there was still 

some variation among groups (6%). The DICE distances among individuals were plotted in a two-

dimensional graph using PCoA analysis (Fig: 5.4).  

Table 5.7 Pairwise FST values estimated based on Weir and Cockerham (1984) approach for 

five subgroups of upland cottons. 

FST  LA† ARK SE DELTA SW/T 

LA 0         

ARK 0.0823 0       

SE 0.0909 0.017 0     

DELTA 0.141 0.0492 0.0174 0   

SW/T 0.0983 0.0212 0.0095 0.0078 0 

†: FST=Wright’s fixation index; LA=Louisiana; ARK=Arkansas; SE=South eastern; SW/T=South 

west-Texas 
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Table 5.8 Analysis of Molecular Variance (AMOVA) among and within subgroups of upland 

genotypes 

Source df† SS MS Estimated Variance %variance 

Among Pops 4 270.901 67.725 2.280 6% 

Within Pops 72 2495.775 34.664 34.664 94% 

Total 76 2766.675   36.944 100% 
 

†: df=degrees of freedom; SS=Sum of square; MS=mean sum of square  

 

 

Fig 5.4  PCoA based on DICE similarity coefficients using AFLP markers in upland cotton 

genotypes. The PCoA was constructed using PAST software, which formed distinct three 

clusters. X and Y axis specify co-ordinate 1 and 2 respectively. 

The first two co-ordinates explained 49% of the genetic variation. The general grouping did 

not clearly establish the separation of samples according to the geographical origin of each 
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population. Most of the LA genotypes grouped in top right side (I) with some Arkansas genotypes 

too. The second cluster consisted of SE genotypes, except GA-2004089. The third cluster on left 

side (III) comprised of Arkansas and few representatives from LA, SE, Delta and SW groups. Some 

diverse genotypes like LA111047, LA0530761, Acala1517-99 moved away from any of the 

designed clusters. The diploid species, G. herbaceum was located in second cluster, while G. 

arboreum was seen in the middle of the three clusters. Overall the PCoA did not give clear 

separation of genotypes. 

Results of the DICE genetic distances and cluster analysis are presented in the form of a 

dendrogram in Fig: 5.5. On the basis of the DICE coefficients, the 77 genotypes can be
 
classified 

into two major groups, one comprised of most of the LA, SE, ARK genotypes, while the other 

groups consisted of diverse LA, SE and SW/Texas genotypes along with the outgroup, diploid 

species. Genotypes such as GA-2004089, LA0530761 and 04-PST-275 were highly diverse 

compared to rest of the upland genotypes.  

5.3.4 Population Structure 

In order to assess the levels of genetic structure within the five identified clusters, the 

estimate of posterior distribution of pairwise Wright’s FST (Wright, 1951), a measure of the genetic 

variance among populations was also calculated using 100,000 iterations (Fig: 5.6). FST values 

between all groups were significant (P<0.001) and ranged from 0.2 to 0.53, supporting the existence 

of genetic structure.  

For the AFLP data, the clustering of genotypes using STRUCTURE did produce a clear 

discrimination of the genotypes into predefined groups with some exceptions. The population 

structure analysis revealed that LnP(D) estimates increased with increase of k up to k=4 and then 

suddenly dropped and continued to increase again leading to plateau at k=6 (Fig: 5.6).  There could 

be a possibility of either k=4 or 5 in this population. Going with prior information of k=5 based on  
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Fig 5.5  UPGMA based dendrogram of 77 upland cotton genotypes estimated using DICE distances 
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Fig 5.6 Distribution of pairwise FST values (k=5) and Posterior probability, lnP(D) of the data 

as function of the number of subpopulations(k), where k ranged from 2-8.  

geographical grouping, we decided to set k=5 for all our future analysis. The bar plot diagram on 

population structure is presented in Fig: 5.7. 

The barplot indicated LA genotypes showing uniformity with less admixture, mainly from 

Delta, SW/T and Ark ancestral genes. Similar is the case with ARK, and SE clusters too. Although 

the bars indicate that some genotypes have a genetic background with a large fraction from one of 

the five predefined subpopulations, substantial intermixing between the groups was evident. 

 

Fig 5.7 Bar plot representing population structure of five subgroups of upland cotton. Each 

individual genotype is represented by a line partitioned in five colored segments that 

represent estimated membership fractions too each one of the five subgroups. The bar plot 

was generated using Structure (Pritchard et al., 2000) software following admixture model. 

5.3.5 Association Analyses 

The population structure and kinship analysis is important to check spurious associations 

and minimize Type I error in association mapping. We tested the performance of five different 



139 
 

association models in controlling for false positives or spurious associations (Fig: 5.8). The models 

studied were: 1) model that did not control population structure or relatedness; naïve (MT), 2) 

model that accounted for either PCA (MTP) or 3) population structure (MTS), 4) a naïve mixed 

model(MTK), 5) a model with kinship and or population structure (MTSK) and 6) a kinship model 

with PCA (MTPK). The pairwise relatedness of each indivuals based on allelic information was 

obtained through TASSEL software. The relative performance of each model was evaluated based 

on the extent of genetic variation explained by them (model R
2
). The MTSK model was found 

efficient among all those studied in explaining the highest genetic variation in phenotypic trait 

values. The model was able to describe 30-50% of variation for the seed quality traits and 60% for 

the lint percentage. Over all, MTSK model gave the best fit with the fewest effects (markers) and 

high model R
2
. Therefore, we selected MTSK as the mixed model for determining marker trait 

associations. 

 

Fig 5.8 Performance of the mixed models based on the proportion of genetic variation 

explained (model R
2
) in upland cotton. The mixed models were designed in SAS using PROC 

GLMSELECT statistics. X axis: Models selected; Y axis: Model R
2
.  M=marker; T=trait; 

S=structure; P=eigenvalues of PCA; K=kinship estimates 

Association analysis identified marker trait associations (P<0.05) from MTSK mixed model 

for all the seed quality traits evaluated, viz., SCY, LP, protein, oil and fiber content (Table: 5.9).  

The MTSK model identified 45 significant markers (P<0.05) for five traits.  Traits such as SCY and 
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LP were associated with five and eight markers respectively, while seed quality traits, oil, protein 

and fiber content were found significantly associated with  12, 15 and 5 markers respectively. 

Markers such as E3M5_255, E6M1_218 and E3M6_260, E4M1_365 were strongly associated with 

SCY and LP respectively with high adj. R2. The seed quality traits oil and protein content were 

governed by common markers; E4M3_255, E4M3_218, E6M2_595 and E3M3_60. Fiber content 

was governed by 5 markers, with E4M4_177 and E5M7_195 having highly influential. 

Table 5.9 Significant QTLs (P<0.05) for yield and seed quality traits in upland cotton. The 

QTLs were identified using mixed model (MTSK) of TASSEL software. 

Traits Significant QTL’s identified 

SCY E3M5_255, E6M1_218 E6M3_473, E5M1_55, E5M7_158 

Lint % E3M6_260, E4M1_365, E4M4_242, E4M2_440 E3M3_255, E3M8_305, 

E6M4_249, E5M3_65 

Oil E4M3_255, E6M4_341,  E3M7_370, E4M3_200, E6M2_595, E4M3_218,  

E3M3_130, E4M2_206, E3M3_60, E3M2_145,       E6M2_364,       E5M7_70 

Protein E4M1_382, E5M3_230, E6M2_320, E6M2_595, E4M3_440, E3M3_60, 

E5M2_642, E4M3_255, E6M3_285, E3M7_210, E5M4_170, E4M3_245, 

E5M7_180, E4M3_218, E6M1_196 

Fiber E4M4_177, E5M7_195, E5M6_170 E5M1_395, E5M6_130 

  

In order to further validate markers selected from mixed models, multiple regression using 

52 mixed-multiple regression models was performed. Mixed multiple regression supposedly 

reduces false positives by simultaneously comparing all the markers in stepwise regression. Among 

the 52 MLM-MMR models under study, high Adj. R
2 

with minimum effective QTL’s were selected 

from a model with CHOOSE=Adj.R
2
, SELECT=AdjR

2
 and STOP=Adj.R

2
. The other models 

produced low R
2
 values with high number QTL’s, which was unreliable. 

As many as 14 significant markers were identified for five traits using Mixed-MMR 

approach (Table: 5.10). For SCY, E5M1_55 and E6M1_218 were significantly associated, while LP 

was governed by E4M4_242, E4M1_365 and E6M3_260.  The seed quality trait protein was 

associated with E4M3_440, E6M2_595 and E6M1_196, while oil content was associated with 
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E4M3_200, E6M2_364 and fiber content with E5M7_195. These significant markers recorded high 

adj. R
2
, lower P values and the lowest AIC, BIC and SBC estimates.  

Table 5.10 Significant QTLs identified for yield and seed quality traits using Mixed-Multiple 

regression models in upland cotton. The QTLs were identified using PROC GLMSELECT of 

SAS. 

Protein Model R2 Adj. R2 AIC AICC BIC SBC Pr > F 

E4M3_440 0.2125 0.202 158.4213 3.0877 159.3483 163.1089 <.0001 

E6M2_595 0.3033 0.2845 150.9882 2.9941 152.106 158.0196 0.0027 

E6M1_196 0.3839 0.3585 143.5283 2.901 145.302 152.9036 0.0028 

E5M3_130 0.4263 0.3944 140.0381 2.8602 142.4716 151.7571 0.0239 

Oil 

       E4M3_200 0.1455 0.1341 168.7024 3.2212 169.9945 173.3901 0.0006 

E6M2_364 0.217 0.1958 163.9766 3.1628 165.4378 171.0081 0.0113 

E3M2_145 0.2799 0.2503 159.5324 3.1088 161.4715 168.9076 0.0138 

E4M3_255 0.3259 0.2885 156.4413 3.0733 159.0364 168.1603 0.0297 

Fiber 

       E5M7_195 0.3166 0.3075 151.9285 3.0033 154.1251 156.6162 <.0001 

Seed cotton yield 

      E5M1_55 0.0835 0.0705 386.3652 6.3989 388.1783 390.9185 0.0138 

E6M1_218 0.1484 0.1237 383.0788 6.3566 385.2394 389.9088 0.0249 

Lint percentage 

     E4M4_242 0.4688 0.4612 181.8918 3.559 182.6868 186.4451 <.0001 

E4M1_365 0.5484 0.5353 172.1962 3.4277 173.3405 179.0262 0.0009 

E6M3_260 0.6028 0.5853 164.9529 3.3314 166.8073 174.0595 0.0032 

 

5.4 Discussion 

The achievement and progress of conventional breeding in improving the complex genetic 

base for cotton seed quality traits is limited. There has been no exclusive breeding work initiated in 

improving seed quality traits. Recently molecular markers have provided a useful base for 

understanding and manipulating the genetic factors governing seed quality traits. In the present 
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study, association mapping was successfully employed for the identification of AFLP markers 

associated with the seed quality traits oil, protein and fiber content in addition to yield parameters. 

The 64 primer combinations of AFLP markers generated heterozygosity in the range of 

0.347(LA) to 0.431(ARK). The frequency of kinship revealed that genetic relatedness is prominent 

among the genotypes under study. High levels of similarity within upland cluster are due to the fact 

that these genotypes have been subjected to a great degree of inter-cultivar gene flow (Kellogg et al., 

. 1996; Wendel and Doyle 1998). However, the PIC values ranged from 0.15-0.40 for most of the 

genotypes, thus AFLP markers are useful to distinguish genotypes based on allelic frequencies.  

The phenotypic data on seed quality traits suggested wide variability for protein (18-

28.45%), oil (6-25.6) and fiber content (15.88-37.2%).  Kohel (1978) and Song and Zhang (2007) 

also suggested that there was wide variability for seed oil, weight and seed oil index in the G. 

hirsutum germplasm collection. A wide range of variability has been observed for seed oil content in 

the wild species and perennial races of G. arboreum. The highest seed oil content (22.89%) was 

observed in the wild species G. lobatum and the lowest (10.26%) was recorded in G. stocksii 

(Gotmare et al., 2004). In the present study diploids had the lowest values for oil content (6.47% for 

G. herbaceum and 10.79% for G. arboreum) in comparison to the tetraploid accessions (25.16% in 

ARK-9811-15-07). Mert et al., (2004) reported oil content varying between 19.1-25.2%, while 

protein percentage ranged from 22.9-26.2% across two locations in upland cotton, whereas the 

present study showed better range of values for the oil (6.47-25.16% ) and protein (18.05-28.45% ) 

content in the upland cotton. Interspecific cross derivatives offer an even wider variability for the 

quality traits. A TM-1 x Hai7124 generated BC1S1 population recorded 28.97-40% kernel oil and 32-

47% of protein content (Song and Zhang, 2007). Based on these results, association mapping can be 

a good choice in order to identify significant markers associated with seed traits utilizing upland and 
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diploid cotton accessions (historical/wild) or traditional QTL mapping using interspecific 

segregating populations.   

 Seed quality traits are directly influenced by the lint percentage, seed cotton yield, seed 

number, seed index or weight, seed coat content, moisture level and external environmental factors. 

In the present study, SCY and LP were negatively but not significantly correlated (-0.074). We 

observed positive correlations between SCY and protein and between LP and oil, while negative 

correlations between SCY and oil and between LP and protein content were observed. To increase 

oil and protein in a given seed size would require the increase to take place at the expense of other 

residual constituents, e.g., by reducing the seed coat. Most cultivated upland cotton lines show a 

decrease in seed coat thickness compared to their primitive ancestors, but the seed coat is required 

as protective cover during development of the embryo. The thin seed coat lines are prone to break 

during ginning and fiber processing leading to embryo damage (Kohel et al., 1985).  

Simultaneous improvement of oil and protein is complicated, owing to their negative 

correlation (-0.224 in the present study) has been reported. Several reports in the past have also 

noticed such a pattern in upland and interspecific crosses. According to Kohel et al., (1985) and 

Gotmare et al., (2004), the relationship between percentage of protein and oil are significantly 

negative. Oil and protein in seed percentages also decrease
 
with harvest date, but the greatest 

change is in the amount
 
of oil (Kohel and Cherry, 1983). Here, fiber content was negatively 

correlated with protein and oil content, with non-significant positive correlations with SCY and LP. 

Ye et al., (2003) revealed significant phenotypic correlation between oil, protein and lysine index at 

various developmental stages. Looking to the complex pathways involved in the synthesis of oil and 

protein, the addition of more markers to catalogue multi environment phenotypic variation would 

improve the understanding of genetic factors governing these traits. 
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Several studies have been conducted to understand the inheritance pattern and gene action 

governing quality traits. Seed index was found to be predominantly under the control of genes 

acting additively thus this trait could easily be manipulated through selection for the production of 

pure line variety. The oil content is governed by dominant genes (Singh et al., 1985), while 

significant epistatic interaction was observed for oil percentage and seed index (Dani and Kohel 

1989). Although the effects of environment and genotype on oil and protein content are well 

documented and relationships between yield, seed quality and fiber properties in cotton have been 

identified, studies on the inheritance and genetic factors governing these traits have not been widely 

addressed. This may be due to the lack of understanding of the complex pathways and multiple 

genes interacting in epistatic manner controlling these traits. Analysis of reciprocal backcrosses 

suggests the existence of maternal effects (Dani and Kohel 1989). Recently, there is only one report 

documenting linkage based QTL mapping of seed quality traits in upland cotton (Song and Zhang, 

2007). The present study explored the possibility of identifying QTL’s responsible for oil, protein 

and fiber content using association mapping approaches based on extensive statistical models to 

explain phenotypic variation. 

Based on the MLM approach (Yu et al., 2006), we considered population structure, principal 

component analysis and kinship to eliminate spurious associations. The present study identified a 

number of AFLP markers significantly associated with fiber traits. Initially using mixed models, we 

identified 45 significant markers associated with seed cotton yield (SCY), lint percentage (LP) and 

quality traits. The potential mixed model, utilizing population structure data, identified common 

markers (E4M3_255, E4M3_218, E6M2_595 and E3M3_60) governing seed oil and protein 

content. The adj. R
2
, which measures the quantity of explainable genetic variation ranged from 30-

60%. Similarly a significant QTL (qPP-D9-1) for total protein percentage was identified in a BC1 
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population involving G. hirsutum and G. barbadense parents but it did not reflect large variations in 

protein components (Song and Zhang 2007). 

More support and validity of the MLM approach in our study came from multiple regression 

based GLM studies.  As many as 14 significant markers were associated with the five traits. 

Markers such as E4M3_440 and E6M2_595 for seed protein, E4M3_200, E6M2_364 for seed oil 

and E5M7_195 for fiber content showed high adj. R2 and low AIC, BIC and SBC statistics. The 

consistency of these markers was confirmed both in mixed model and mixed-multiple regression 

models. Most of the markers selected through mixed-MMR models provide a good insight into 

deciding the most robust model. The robustness and high efficiency of the models in explaining the 

phenotypic variation provide a tool for their further use in fine mapping and MAS. 

5.5 Conclusion and Future Work 

In cotton, yield and fiber quality are the main crop features, whereas cotton seed 

components are typically seen as by-products and are not major breeding objectives. There has been 

little systematic effort in improving the nutritional quality of cotton meal beyond efforts to remove 

or eliminate gossypol. This is partly attributable to our lack of understanding of the genetics and 

complexity of the traits involved and is responsible for achieving marginal success in improving 

these traits. With the help of high throughput genomic tools, efforts have been initiated to dissect 

the pathways underlying these traits. For example, a genetically modified fatty acid composition of 

cottonseed oil using the hairpin RNA-mediated gene silencing technique was developed and 

demonstrated successfully (Liu et al., 2002). Similarly, Ganesan et al., (2006) successfully used 

RNAi to disrupt gossypol biosynthesis in cottonseed tissue by interfering with the expression of the 

delta-cadinene synthase gene during seed development. These results illustrate that targeted genetic 

modification provides a mechanism to improve this important source of nutrition. Marker assisted 
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introgression and transfer of specific alleles would also undoubtedly increase the efficiency of seed 

quality focused breeding programs in the future.  
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CHAPTER 6 SUMMARY AND CONCLUSIONS 

Cotton (Gossypium spp.) is the most extensively used natural fiber in the textile industry. 

Understanding the genetic diversity, population structure and marker trait associations are of great 

importance in marker assisted selection. The present study was undertaken to genetically dissect the 

cotton genome in order to identify associations between molecular markers and the developmental, 

fiber and seed quality traits. Surveying the genetic diversity in diploid (involving A1 and A2 

subgenome cross derivatives) and tetraploid cottons (representing US upland genotypes) may also 

provide a valuable insight into the interrelationships among the genotypes. 

The diploid species, G. arboreum and G. herbaceum are generally cultivated on marginal and 

drought prone environments in Asia. Microsatellite, AFLP and TRAP markers were used to 

construct a linkage map with 94 F2 diploid individuals derived from a cross between G. arboreum x 

G. herbaceum. A total of 606 polymorphic markers gave rise to 37 linkage groups covering a total of 

1109cM with an average distance of 7.92cM between each loci. Discriminant analysis identified 

three markers each for petal color and seed fuzziness, and four markers for petal spot.  For 

quantitative traits, a total of 19 QTL’s were identified and linked with five fiber traits using 

composite interval mapping. Markers e.g., qFL4-1, qFS4-2, qELO1-1 and qSI2-1 were found to be 

significantly linked with fiber length, strength, elongation and seed index respectively. The 

construction of an A genome diploid map, combining AFLP, TRAP and SSR markers, can serve as a 

model for the advancement of cotton genetics, including the understanding of the inheritance of fiber 

genes. Adding additional markers to the existing map will assist in future map based cloning efforts 

and in gene discovery. 

Association mapping principles were applied to upland cotton genotypes in order to examine 

population structure and marker trait associations. A set of 232 genotypes were genotyped using 

AFLP markers. Based on 568 polymorphic markers, molecular diversity was found to be in the 
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range of 0.48-0.574 with a variance around 10% among the groups. Based upon Bayesian and 

MCMC, population structure analysis, there existed six subpopulations, in agreement with their 

geographical origin. The mixed and mixed-multiple regression (MMR) models identified significant 

markers for lint yield and fiber traits, showing low AICC, BIC and SBC values and high adj. R
2
. 

Out of 568 AFLP markers used in this study, 255 markers were initially found to be significantly 

associated with eight traits using the traditional MLM approach. Inclusion of MMR improved the 

model, reducing the number of markers significantly associated with these traits to 111. The MMR 

based epistatic interactions revealed 49 QTLs responsible for eight fiber traits. Thus mixed MMR 

models were efficient in reducing the Type I error. This sequential validation of marker is an 

improved method for reducing false positives and identifying truly significant associations. 

The narrow genetic base of upland cotton germplasm that is used in breeding programs is 

one of the factors in failing to achieve appreciable amount of progress in improving yield and fiber 

traits over last two decades. Hence the present study was planned to determine the efficiency of 

AFLP for estimating genetic diversity among a collection of 60 accessions of upland cotton and also 

for the identification of potential marker trait associations for major fiber traits. The pairwise 

kinship estimates were ranging between 0.1-0.88 accounting for most of the shared ancestral alleles. 

Genetic distance analysis confirmed the narrow genetic base among G. hirsutum genotypes. The 

PCA and kinship estimates in MLM approach identified a number of significant AFLP markers 

associated with yield and fiber traits. The MMR identified 38 markers associated with eight traits. 

These models improved the efficiency of marker trait association by reducing the false positives. 

The achievement and progress of conventional breeding in improving the complex genetic 

base for cotton seed quality traits is limited. There has been very limited breeding work exclusively 

devoted to improving the seed quality traits. Therefore, the present study was planned to identify 

AFLP markers associated with the yield and seed quality traits using association mapping 
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principles. A set of 75 upland cotton genotypes were analyzed for seed quality traits such as seed 

protein, oil and fiber content. Population structure based mixed models showed 32 significant 

markers associated with these seed quality traits. MMR models identified several markers, notably 

E4M3_440, E4M3_200 and E5M7_195 for seed protein, oil and fiber content respectively. Marker 

assisted introgression and transfer of specific alleles would also undoubtedly increase the efficiency 

of seed quality focused breeding programs in the future.  
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