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ABSTRACT 

Early generation selection of sugarcane families using means is inadequate while visual seedling 

selection is subjective and inefficient. Data from advanced variety trials (yield, quality and 

agronomic traits) are collected over several crop-years to determine yield potential and ratooning 

ability of genotypes follow a multivariate repeated measures structure. In Louisiana, the 

sugarcane borer and recently the Mexican rice borer are major insect pests of sugarcane. Both 

borers have similar feeding habits, providing an opportunity for investigating if genotypes 

resistant to one species would provide resistance to the other (cross-resistance). The objectives of 

the study were to identify statistical methods to evaluate family yield potential and repeatability, 

enhance seedling selection for yield, analyze advanced variety trials data and prove cross 

resistance between the sugarcane borer and the Mexican rice borer.  

Random coefficient models (RCM) identified elite families with higher cane yield 

potential and higher repeatability between seedlings and clones. These elite families comprised a 

larger proportion of higher yield seedlings that produced high yielding clones. Logistic 

regression models (LRM) provided an objective statistical decision support tool for selecting 

high yielding seedlings and were more flexible at adjusting the number of seedlings to advance 

than visual selection. The LRM can be used to identify important traits in breeding populations 

as well as directionally shifting population trait values during selection. Neural network models 

can be used to automate the LRM. The multivariate repeated measures analysis (MRM) reduced 

Type I errors associated with univariate analysis by including covariance to compute 

experimental errors. The MRM showed greater statistical differences among genotypes for yield 

traits than univariate analysis. Cross resistance between the sugarcane and Mexican rice borer 
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was proved using log linear models, and using a population with known sugarcane borer 

resistance status.   

Using RCM will significantly increase the efficiency of early generation selection by 

identifying families with high yield potential and repeatability while LRM will increase 

efficiency of identifying high yielding seedlings from these elite families. MRM will increase the 

accuracy of evaluating genotypes for yield and ratooning ability. Cross-resistance will allow 

breeders to take advantage of parents from the sugarcane borer recurrent selection program.  
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CHAPTER 1: GENERAL INTRODUCTION 

Sugarcane improvement through plant breeding started around 1888 after the observation in 

1858 of viable seeds (Stevenson, 1965). Up until then, sugarcane was cultivated vegetatively 

from noble canes (Saccharum officinarum) (James, 2004). The S. officinarum varieties, the noble 

canes, were highly susceptible to diseases and therefore plant breeding started as an attempt to 

develop resistant varieties (Heinz, 1987).  

Sugarcane (Saccharum spp. hybrid) is a crop for which interspecific hybridization has 

provided a major breakthrough in its improvement (Berding et al., 2004). Modern sugarcane 

cultivars were derived from the interspecific hybridization between two major Saccharum 

species, namely S. officinarum and S. spontaneum, in the early 1900s (Price, 1963). S. 

officinarum was the primary source of genes for sucrose accumulation whereas S. spontaneum 

contributed genes for general adaptability and high biomass, but also contributed unfavorable 

attributes relating to sugar quality (Roach, 1986).  

Significant achievements towards increasing cane and sugar yield (Hogarth and Berding, 

2006; Milligan et al., 1994; Nuss, 2001; SASRI, 2007a, b; Zhou, 1996, 2004), disease resistance 

(Bailey, 2004; Walker, 1987; Zhou, 1996, 2004), insect resistance (Leslie, 2004; White et al., 

1996), and stress tolerance (Moore, 1987) have occurred across the world through sugarcane 

breeding. Recently, there have been reports of a sugarcane yield plateau in sugarcane in 

Australia, South Africa and other sugarcane breeding programs (Garside et al., 1997). Horgath 

and Berding (2006), and Butterfield and Ulian (2006) have advocated new innovations and 

approaches to break the yield plateau and create opportunities for further advances in sugar yield.  

This study focused on introducing and demonstrating statistical methods and models for 

improving early generation selection, analyzing data from advanced variety trials and 
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determining if cross resistance exist between the sugarcane borer and the Mexican rice borer in 

sugarcane breeding populations.  

1.1 Early Generation Selection 

Early generation selection involves identifying sugarcane families (elite families) comprising a 

greater proportion of high cane yielding seedlings followed by selecting individual seedlings 

with the potential to produce high cane yield from these elite families. Genotype-by-environment 

(GE) interaction effects and the competition among closely spaced seedlings as well as clones 

planted in small plots (Jackson and McRae, 2001; Tovey et al., 1973) are known to influence the 

precision of individual seedling selection during early generation selection (Skinner et al., 1987). 

GE interaction effects are known to be particularly important for traits controlled by quantitative 

genes such as cane yield (Jackson and Horgath, 1992; Jackson and McRae, 1998; Falconer and 

Mackay, 1996; Kang and Miller, 1984; Kimbeng et al., 2002, 2009; Mirzawan et al., 1993). 

Reducing GE interaction effects in early generation selection through replicating plots may not 

be possible in all cases because of limited planting material, shortage of land and the cost of 

planting large numbers of genotypes in multiple plots. Therefore, an investigation of other 

approaches to reduce the impact of GE interaction effects such as using statistical methods and 

models that account for the effects and also using decision support tools that reduce the 

subjectivity in selection is warranted. 

Marker assisted selection is unlikely to have an impact on selecting for traits controlled 

by quantitative genes such as cane yield in the immediate future (Bernado, 2008; Xu and Crouch, 

2008; Heffner et al., 2009). In the short to medium term, improving the current selection 

methods remains one of the most promising options available to breeders for increasing selection 
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efficiencies (Hogarth and Berding, 2006). Statistical methods that offer easy computations can be 

used as decision support tools provide the greatest potential for improving family evaluation and 

individual seedling selection in sugarcane breeding programs. 

1.1.1 Family Evaluation 

Research done in Australia has proven that family selection was superior to seedling selection 

(Hogarth, 1971) particularly for traits with low heritability such as cane yield (Jackson and 

McRae, 1998; Falconer and Mackay, 1996). Family selection occurs when all the seedlings in a 

family are selected or rejected based on their family means (Falconer and Mackay, 1996). The 

selected families are expected to produce a higher proportion of seedlings producing high cane 

yield (Kimbeng and Cox, 2003; Cox and Hogarth, 1993). The proven cross system is a family 

evaluation method that uses the proportion of advanced seedlings and the performance of 

varieties from each cross to define the value of a family (Skinner et al, 1987). It has been widely 

used in Australia, South Africa (Heinz and Tew, 1987; Skinner et al., 1987) and several other 

sugarcane breeding programs. The proven cross system focuses on old crosses to the exclusion 

of new ones. Family evaluations using means and the proven cross system have proved to be 

inadequate. The number of high yielding seedlings recovered from some of the elite families 

were found to deviate significantly from expectations based on family means and the proven 

cross system advancement numbers (Kimbeng et al., 2000; Skinner et al., 1987).  Therefore the 

investigation of other approaches to improving family evaluation and selection is required. 

The first stage of a sugarcane selection program involves the evaluation of clones as 

single plants grown from true seed (Jackson and McRae, 2001). Subsequent stages and the 

commercial crops are planted from vegetative material, creating a potential confounding due to 
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the seed type between the seedling and clonal stages. Repeatability between seedlings and clones 

has been shown to be significant indicating that seedlings can be used to predict the performance 

of clones (Hogarth, 1971; Cesnik and Venkovsky, 1974; Ladd et al., 1974; Marriotti, 1974, 

1977; James and Miller, 1975; Miller and James, 1975; Kang et al., 1983; Bressiani et al., 2003). 

To date, repeatability between seedlings and clones is not directly used in most breeding 

programs and continues to be overlooked during family evaluation. One of the reasons for not 

using the repeatability between seedlings and clones in family selection could be the 

unavailability of appropriate statistical methods that are adapted to the use of repeatability to 

evaluate families.  

Random coefficient models (RCM) are statistical methods developed from the analysis of 

covariance (ANCOVA) (Bryk and Raudenbush, 1992). The RCM analysis offers the potential 

for evaluating families for both their yield potential and repeatability. Repeatability of each 

family would be approximated by the slope of the association between the cane yield of the 

seedlings and clones. We hypothesize that there could be variability for repeatability among 

families and this variability can be used to select for those families that produce higher 

repeatability and also have higher yield potential. If this hypothesis is true, then the families 

could be compared for their repeatability, and the repeatability comparisons could be used as a 

proxy to predict and compare the trends in the distribution of yield between the seedlings and 

clones.   

1.1.2 Seedling Selection 

In sugarcane seedling selection, one of the greatest challenges facing sugarcane breeders is the 

correct identification of seedlings with the potential to produce high cane yield. Competition 



5 

effects are known to be large for seedlings planted in small plots (Jackson and McRae, 2001; 

Milligan et al., 2007) yet because of lack of resources and space, close spacing continues to be 

used. Visual selection, the primary method that is currently used for individual seedling selection 

is largely subjective (Cox and Stringer, 1998) and has proved to be inefficient (Hogarth and 

Berding, 2006). The confounding influence on seedling performance caused by the effects of 

genotype by environment interaction and the competition among seedlings planted in close 

spacing further reduces the precision of visual selection.  

Path coefficient analysis studies in sugarcane proved that there was strong and significant 

influence of stalk number, stalk height and stalk diameter (the cane yield components) on cane 

yield (De Sousa-Vieira and Milligan, 2005; Kang et al., 1983, 1989; Milligan et al., 1990). Yield 

components are rarely measured in most sugarcane breeding programs because of the cost and 

labor limitations required to make these measurements. The yield components are also probably 

considered too costly to measure partly because of the unavailability of appropriate statistical 

methods and models that would generate quick selection decisions using these yield components. 

If statistical methods that use the yield components for seedling selection are made available, and 

these methods produce significant gains in selecting seedlings that produce higher cane yield, 

then there would be an incentive to measure the yield components. One study investigated the 

utility of the logistic regression model as a potential decision support statistical tool for aiding 

individual seedling selection where the stalk number, stalk height and stalk diameter would be 

used as the predictor variables. A second study investigated the utility of the artificial neural 

network (ANN) model as a decision support tool for enhancing individual seedling selection.  
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1.2 Multivariate Repeated Measures Analysis of Data from Advanced Variety Trials 

Data from sugarcane breeding advanced variety trials include several variables measured from 

each experimental unit (plot) every year for several years. These data are used to evaluate the 

potential of genotypes to produce high yield, high quality, desirable agronomic traits, and high 

ratooning ability (Gauch et al., 2008). Data for several variables measured from the same plot 

resemble a multivariate structure (Johnson and Wichern, 2002). Values of variables measured 

from the same plot are likely not independent because they are influenced by the same factors 

existing in the plot. Data of a variable measured from each plot over several years resemble 

repeated measures (Littell et al., 2002, 2005). These measurements are likely not independent 

because the sequential crop-years cannot be randomized to the experimental units. Therefore the 

analysis of data from advanced variety trial should account for the within plot correlation of the 

multiple variables measured (multivariate structure) and the correlation from one crop-year to 

another (repeated measures). 

Currently, the univariate analysis method is used. Univariate analysis assumes split-plot 

in time as the experimental design. The univariate analysis approach also assumes independence 

among the variables measured from each plot and also assumes independence of measurements 

derived from each plot across years (Freund and Wilson, 2003). The multiple variables derived 

from each plot are likely to be correlated, thereby invalidating the assumption of independence. 

The measurements of a variable from each plot over several years are also likely to be correlated 

because the years are always sequential. The univariate analysis could therefore result in the 

likely violation of the assumption of independence. The violation of the assumption of 

independence may result in the underestimation or overestimation of the experimental errors 

used to test the effects. Significantly underestimating or overestimating experimental errors 
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would result in inaccurate tests and incorrect interpretation of the data. The ideal analysis should 

combine multivariate and repeated measures, to create multivariate repeated measures analysis. 

Multivariate repeated measures would account for both the correlation between variables and the 

correlations between crop-years. 

1.3 Cross Resistance Between the Sugarcane Borer and the Mexican Rice Borer 

Moth (Lepidoptera) stem borers are major pests of sugarcane (Smith et al., 1993). In North 

America, two important stem borers are the crambids, Diatraea saccharalis (F.) (= sugarcane 

borer) and Eoreuma loftini (Dyar) (= Mexican rice borer). The sugarcane borer has been the 

dominant stem borer of sugarcane in the U.S.; however, in 1980, the Mexican rice borer became 

established in the Lower Rio Grande Valley of Texas (Johnson and van Leerdam, 1981) and 

subsequently supplanted the sugarcane borer as the dominant insect pest of that industry 

(Johnson 1984). In December 2008, the Mexican rice borer was identified in Louisiana as 

predicted by Reay-Jones et al. (2007). 

The Mexican rice borer and the sugarcane borer are taxonomically closely related 

species, and share the same hosts but differ in their oviposition behavior. Once the first instar 

larvae eclose from the egg, the larvae of both species share similar feeding habits. The larvae 

move to the green leaf sheaths and begin feeding (Ring et al., 1991; White, 1993). They bore 

into the young, developing internodes. Larvae enter the stalk more quickly in susceptible 

varieties than resistant ones (White et al., 1996). This study hypothesized that, due to the 

similarities in larval behavior, particularly the feeding habits of the two borer species, selecting 

for resistance for one species will obtain resistance to the other, that is, cross resistance. 
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1.4 Objectives of the Study 

The objectives of the dissertation research projects were: 

1. To investigate the use of random coefficient models (RCM) as a tool for evaluating sugarcane 

families for cane yield potential and repeatability. 

2. To investigate the potential of using the SAS enterprise miner (SAS Institute, 2007) artificial 

neural network (ANN) model as a decision support tool for identifying individual seedlings 

with high cane yield potential at the seedling stage of a sugarcane breeding program. 

3. To demonstrate the use of the logistic regression models as a decision support statistical tool 

for individual seedling selection in sugarcane using the cane yield components namely, stalk 

number, stalk height, and stalk diameter as the independent or predictor variables. The study 

also evaluated the utility of the confidence intervals in enhancing decision making during the 

seedling selection process. 

4. To demonstrate the use of multivariate repeated measures analysis of the linear mixed model 

as a tool for analyzing sugarcane breeding data from advanced variety trials. Specifically we 

determined the multivariate effects, and the appropriate covariance structure for analyzing the 

ratooning effects. The study also compared the univariate and multivariate repeated measures 

analyses for model fit and the ability to discriminate between the experimental and control 

genotypes. 

5. To determine if cross resistance exist among sugarcane genotypes between two sugarcane 

pests, namely the Mexican rice borer and the sugarcane borer. 
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CHAPTER 2: EVALUATING SUGARCANE FAMILIES FOR YIELD POTENTIAL 

AND REPEATABILITY USING RANDOM COEFFICIENT MODELS 

2.1 Introduction 

Selection is the cornerstone of plant breeding and is done across all stages of a sugarcane 

breeding program (Skinner et al., 1987). Although sugarcane is clonally propagated, the first 

stage of selection in sugarcane breeding programs involves the evaluation of clones as seedlings 

that are planted from true seed. Referred to as the Seedling Stage or Stage I, this is the only stage 

to be established from true seed and the seedlings are appraised either as individual seedlings or 

in family plots. The second stage of selection, Stage II, occurs when individual seedlings 

selected in Stage I are clonally (vegetatively) propagated and evaluated in clonal plots. 

The seedlings grown from true seed are subjected to individual seedling selection for 

cane yield via its components and this selection process aims to predict the cane yield of clones 

that are grown from vegetative material harvested from the selected seedlings. This scenario 

creates confounding for seed type between the seedlings (Stage I) and clones (Stage II). 

Confounding could negatively impact the early selection stages. If confounding exists, some of 

the seedlings selected as high cane yield in Stage I may produce lower cane yield when planted 

as clones in Stage II. In sugarcane, confounding could occur when the seed type affects 

differently the genotype cane yield between the seedlings and clones. In crops established from 

true seed such as cotton, this confounding is less important. The effect of seed type could be 

caused by seedlings grown from true seed yielding differently compared to the same genotypes 

planted from vegetative material as clones. The confounding could also be a reflection of the 

effect of plot size between the seedlings and clones. The seedlings in stage I can only be 

represented by one stool transplanted as one seedling plant grown from one true seed. The clones 

in stage II are grown from vegetative material harvested from the seedlings. At maturity, each 
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seedling, also called a stool, would have produced several stalks due to the tillering 

developmental process, facilitating the planting of clones in larger plots. The tiller development 

process is known to differ significantly between genotypes and is significantly influenced by plot 

sizes and spacing (Zhou et al., 2003). All these factors could play an important role by 

contributing to the confounding that could exist between the yield of seedlings and clones.  

Family selection involves the selection or rejection of whole families of seedlings based 

on information derived from family plots (Falconer and Mackay, 1996). Family selection is now 

widely practiced in the Seedling Stage by sugarcane breeding programs all over the world 

including Australia (Hogarth et al., 1990; Cox and Stringer, 1998; Kimbeng et al., 2000; Jackson 

et al., 1995a, b), the USA (Milligan and Legendre, 1990; Chang and Milligan, 1992a, b), India 

(Shanthi et al., 2008) and Brazil (de Resende and Barbosa, 2006). Family selection is followed 

by individual seedling selection which is restricted to the selected families. Some of the 

advantages of family selection stem from the facts that, families can be evaluated in replicated 

family plots across locations and the plots can be harvested mechanically and weighed. This 

cannot be achieved with individual seedlings because of the lack of planting material but more 

importantly, because of the large number of seedlings involved at this stage of the program. The 

ability to replicate families across time and space would account for genotype by environment 

interaction effects and increase gains to selection particularly for traits controlled by quantitative 

genes such cane yield. This aspect is important because cane yield is the primary trait that is 

selected at the early selection stages in most breeding programs.    

Prior to family selection, sugarcane breeders relied on the proven cross status to assess the 

potential of a family or cross to produce elite progeny (Heinz and Tew, 1987). The proven cross 

system defined elite families using the proportion of seedlings advanced to later stages of the 
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program. It was widely used in Australia and South Africa (Heinz and Tew, 1987; Skinner et al., 

1987) and several other breeding programs. The value of the proven cross system was questioned 

by Walker (1963) because larger numbers of seedlings were planted from elite families at the 

expense of new crosses creating a bias against the new families. Another disadvantage of the 

proven cross system was the lack of statistical tests to compare the families. The proven cross 

system also took several years to evaluate the family potential because the breeder had to wait 

for advancements of clones to later stages to quantify the value of the individual families.    

The availability of objectively measured data (e.g., cane yield and sucrose content) from 

family plots has prompted sugarcane breeders to rely increasingly upon information obtained from 

family appraisals to make selection decisions that impact several other important aspects of the 

breeding program. Decisions relating to the  breeding value of parents (Balzarini, 2000; Cox and 

Stringer, 1998; Stringer et al., 1996; Chang and Milligan, 1992a, b)  to retain for future crossing, 

which cross combinations to make, and the number of crosses and seedlings per cross to plant and 

ultimately select from are all guided by information derived during family selection. It is therefore, 

vitally important for breeding programs to apply the most appropriate methods to collect, analyze and 

interpret data from family appraisals. 

Sugarcane breeders have customarily relied on differences between the family mean 

values as determined by the analysis of variance (ANOVA) to select elite families during family 

selection (Hogarth et al., 1990; Cox and Stringer, 1998; Kimbeng et al., 2000; Jackson et al., 

1995a, b; Milligan and Legendre, 1990; Chang and Milligan, 1992a, b). Despite its success in 

improving genetic gain, relative to individual seedling selection alone, these gains are not 

optimal because clones have been found to perform better or worse than expected on the basis of 

their family performance in seedling trials (Kimbeng et al., 2000; Hogarth et al., 1990). Even 

when within family variances were taken into consideration, Skinner et al. (1987) found that 
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families with similar means and variances produced different proportions of elite clones 

indicating the need to explore other statistical methods that could be used to characterize 

sugarcane populations in the early stages of the program. The deficiency of family means was 

attributed to the failure to determine and account for the distribution patterns for cane yield of 

seedlings within the families (Skinner et al., 1987) yet it is generally acknowledged that the 

objective of selection is to alter the distribution patterns of the cane yield of seedlings within the 

families. Evaluating families using clones was also found to be correlated to family evaluation 

using seedlings by Chang and Milligan (1992a, b) further pointing to the need to investigate 

other alternative approaches to family evaluation.   

Although an overall increase in family mean is desirable, the ultimate goal for sugarcane 

breeders is to select seedlings that lead to the best-yielding clones (Kimbeng and Cox, 2001).  

Thus, the repeatability between seedling and clonal performance should be an important aspect 

of selection in sugarcane (Bressiani et al., 2003; Ladd et al., 1974; Miller and James, 1974). 

Despite this acknowledgement, studies that have evaluated performance in the seedling and 

clonal stages have relied upon statistics such as the ranks, means, BLUPS and correlations 

(Chang and Milligan, 1992a, b; Cox and Stringer, 1998; Kimbeng et al., 2000) between the two 

stages to draw inferences. No studies have evaluated and modeled the potential variation for 

repeatability that could exist among families between the seedling and clonal plots.  Several 

studies looking at repeatability in sugarcane have been confined to between the seedling and 

clonal stages (Hogarth, 1971; Cesnik and Venkovsky, 1974; Ladd et al., 1974; Marriotti, 1974, 

1977; James and Miller, 1975; Miller and James, 1975; Kang et al., 1983; De Sousa-Vieira et al., 

2005; Bressiani et al., 2003), and no studies have investigated the variability in repeatability 

among families. To date, repeatability between seedlings and clones is not directly used in most 
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breeding programs and continues to be overlooked as a parameter for use in family evaluation. 

One of the reasons for not using the repeatability between seedlings and clones in family 

selection could be the unavailability of appropriate statistical methods adapted to use 

repeatability for family evaluation. 

Accounting for repeatability as a parameter for family evaluation and selection would 

allow comparison of the family distribution patterns and trends between the seedlings and clones.  

In this study, we hypothesized that variation for repeatability among families exists causing some 

families to produce larger correlations between seedlings and clones than others. If this 

hypothesis is true, then families can be evaluated for repeatability between seedlings and clones 

for cane yield using a novel statistical tool known as random coefficient models (RCM). With 

RCM the clonal cane yield could be modeled as the response variable and seedling cane yield the 

predictor variable. The intercept would be used to measure yield potential while the slopes would 

measure the repeatability of the families.   

The objective of this study was to demonstrate the use of RCM analysis to evaluate 

sugarcane families for yield potential and repeatability between the seedling and clonal stages. 

The ability of the RCM analysis, analysis of covariance (ANCOVA) and family means derived 

from ANOVA to identify elite families was compared.  

2.2 Materials and Methods 

2.2.1 Experimental Materials and Data Collection 

2.2.1.1 Families 

The 17 sugarcane families (crosses) used in this study were a random sample from the 2000 

(HB00 series) and 2001 (HB01 series) crossing program at the United States Department of 

Agriculture, Agricultural Research Service (USDA, ARS) Sugarcane Research Station at 
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Houma, Louisiana, USA (Table 2.1). The seedlings from these families were germinated and 

grown in the greenhouse, and later transplanted to the field as individual plants in the spring of 

2002. The transplanted seedlings were harvested in the fall and left to over winter. 

 2.2.1.2 Stage I Trial (Seedlings) 

The stage I trial refers to seedling stools that were initially established from true seed. One set of 

the unselected individual seedlings was planted in the first replication and the other set in the 

second replication. Seedlings from each family were planted to 2-row plots with about 16 

seedlings per row.  Families but not seedlings were replicated. The seedlings were harvested and 

left to overwinter in 2003 (Table 2.1). From the seedlings that survived the winter (Table 2.1), 

eight seedlings (four seedlings from each row) were randomly chosen per family per replication 

(plot). At harvest, the number of stalks produced by each of the chosen seedlings was counted. 

The stalk height was measured as the height from the base of the tallest stalk to the top most 

visible dewlap. The stalk diameter of three random stalks per seedling was measured at the 

center of the stalk (without reference to the node) using a caliper and the mean diameter together 

with stalk number and stalk height were used to estimate the seedling cane yield (Equation 2.1). 

The seedling cane yield was calculated using the formula used by De Sousa-Vieira and Milligan 

(1999) (Equation 2.1). Their calculation assumed the sugarcane stalk was a perfect cylinder with 

specific gravity of 1.00 g cm
3
 (Miller and James, 1974; Gravois et al., 1991; Chang and 

Milligan, 1992b).  

Seedling cane yield (g) = ndπr
2
L,                                        Equation 2.1 

where, n = number of stalks, d = density at 1.00 g cm
-3

, r = stalk radius (cm) (radius was 

calculated from the diameter divided by 2), and L = stalk length (cm). 
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Table 2.1: The crossing series, family female and male parents, and number of seedlings that 

survived winter in replications 1 and 2 of the 17 sugarcane families used in family 

appraisal trials.    

Series Family Female Parent Male Parent Rep 1 Rep2 

HB00 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

306 

3055 

3074 

3093 

3101 

3107 

3111 

3174 

3249 

3255 

3256 

3257 

3276 

3322 

3328 

3345 

3417 

Ho94-856 

HoCP00-945 

HoCP00-950 

HoCP00-945 

HoCP99-866 

HoCP00-950 

HoCP99-866 

HoCP00-945 

N27 

HoCP00-945 

HoCP00-950 

L98-207 

TUCCP77-42 

TUCCP77-42 

HoCP91-555 

HoCP91-555 

HoCP91-555 

HoCP96-540 

HoCP99-866 

HoCP96-540 

HoCP96-540 

HoCP96-540 

LCP85-384 

LCP85-384 

LCP85-384 

LCP85-384 

Ho94-856 

Ho94-856 

Ho94-856 

HoCP99-866 

L98-207 

LCP85-384 

L98-207 

TUCCP77-42 

18 

18 

16 

17 

17 

18 

18 

18 

23 

18 

17 

18 

17 

18 

18 

17 

18 

17 

17 

19 

18 

16 

16 

18 

18 

11 

18 

18 

18 

17 

18 

20 

17 

18 

2.2.1.3 Stage II Trial (Clones) 

In stage II, the 17 families were planted in a trial with two replications where each family was 

randomized to a plot. Each family was planted to two rows per plot. Each row of a plot was 

planted to four clones, making up a total of eight clones per plot. Each clone was planted to a 

sub-plot that was one row by 1.2 meters long within the main plot. Therefore the families and not 

the clones were replicated. Each family was represented by sixteen individual clones derived 

from the 16 chosen seedlings from Stage I. The identity of the seedlings was maintained in the 
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clonal plots in stage II. At harvest, the number of stalks per sub-plot was counted. From each 

sub-plot, five random stalks were manually cut and weighed. The five-stalk sample weights were 

used to calculate the average stalk weight (in kilograms) for each clone. The number of stalks per 

sub-plot was multiplied by the average stalk weight for that sub-plot to estimate the clonal cane 

yield.  The data were measured in the plant (2004) and second ratoon (2006) crops. The first 

ratoon crop (2005) was severely lodged after hurricane Katrina and no data were collected.      

2.2.2 Statistical Considerations and Data Analysis Using Random Coefficient Models 

The RCM or conditional hierarchical linear models were developed from ANCOVA (Bryk and 

Raudenbush, 1992). In ANCOVA, the families are treated as fixed populations and produce 

fixed intercepts and slopes. In sugarcane breeding, the RCM analysis assumes a hierarchical or 

multilevel arrangement between the population and the sub-populations within the population 

(Goldstein, 1987; Bryk and Raudenbush, 1992). The individual families (sub-populations) are 

nested within the population of families grown every year in the breeding program. In RCM 

analysis, the families are independent and random subjects derived from the fixed population 

(Littell et al., 2005). The intercepts and slopes of each family that are derived from the 

regression of the cane yield of clones and seedlings are therefore treated as random parameters. 

Within each family, the intercept and slope are correlated because they come from the same 

subject. The family intercepts and slopes, like any random variable are described by their 

variances and covariance. The covariance defines the correlation between the intercept and slope 

of the families. With RCM analysis, the intercept and slope of each family is tested against the 

population intercept and slope (Longford, 1993). The RCM analysis was previously applied in 

animal breeding (Longford, 1993), education (Raudenbush, 1988), finance (Fieldsend et al., 

1987), health (Lundbye-Christensen, 1991), and real estate (Harrison and Rubinfeld, 1978) 



22 

studies. For example, in real estate, the RCM analysis was used to compare the trends for house 

prices over time across states, cities and suburbs.  

In sugarcane family appraisal, the objective is to identify the families that comprise the 

highest proportion of high cane yielding seedlings from a population of crosses made each year 

in a breeding program. The seedlings within each family represent a sub-population derived from 

the several seedlings from all the crosses. The individual family seedling population therefore 

represents a random sample from the entire breeding population. Family appraisal aims to 

identify those sub-populations of seedlings with high yield potential than the population and 

have a distribution pattern that show the high yielding seedlings are associated with high yielding 

clones (high repeatability). Individual families (sub-populations) are compared to the population 

and those families that produce higher yield potential and higher repeatability than the 

population are selected as the elite families. The statistical comparison and test of the family sub-

populations against the entire seedling population planted in a breeding program provides an 

ideal application of the RCM analysis.        

In this study, the population regression model was,    

                                       Equation 2.2 

where yj is the cane yield of the j
th

 clone (j = 1, 2, …, s), α is the population intercept, β is the 

population slope, xj is the cane yield of the j
th

 seedling and ε is the residual error. The individual 

family model was, 

,                                        Equation 2.3 
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where yij is the cane yield of the j
th

 clone nested within the i
th

 family (i = 1, 2, …, f), ai is the i
th

 

family intercept, bi is the i
th

 family slope ei is the residual error for the i
th

 family. The intercepts 

and slopes are not independent and follow a normal distribution where 

;   and ej(i) ~ iid N(0, σ
2
), 

and  is their covariance matrice,  is the variance for intercepts,  is the variance for slopes 

and  is the covariance of slopes and intercepts, iid means the families have identical and 

independent distributions. 

Equations 2.2 (population) and 2.3 (family) are combined to produce the effects model, 

                                Equation 2.4 

where ;   and . 

The random effect  is the deviation of the ith family intercept from the fixed population 

intercept , and the random effect  is the deviation of the ith family slope from the fixed 

population slope (β). The random effects  and  have a mean of zero and covariance matrice 

. Equation 2.4 resembles a mixed model, 

,                              Equation 2.5 

where  is the fixed effects component of the model (population model), and, 

 is the random effects component of the model. Equation 2.5 can be written as,  

                                           Equation 2.6 
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where , produces the fixed effects component of the model, and, 

  the variance used for testing the random effects. Equation 

2.5 was used in the mixed procedure of SAS (SAS Institute, 2007) to perform the RCM analysis. 

2.2.3 Data Analysis Using Simple Linear Regression, ANCOVA and ANOVA 

Simple linear regression was performed using SAS mixed procedures to determine if the 

population intercept and slope were significant. This analysis would test if the population 

produced significant yield potential (intercept) and if there was significant repeatability (slope) 

between clones and seedlings for the population. Using SAS mixed procedures removed the 

variation associated with the random variables (crop-years, replications and clones within 

families) from the experimental error. The clonal cane yield was the response variable and the 

seedling cane yield was the independent variable. The cane yield of seedlings was the 

independent variable because it was used to predict the cane yield of clones, the response 

variable. The linear mixed model used was,  

, Equation 2.7  

where  is the clonal yield estimated from the ith crop-year (i = 1, 2), jth replication (j = 1, 

2), kth family (k = 1, 2,…, 17) and mth clone (m = 1, 2,…, 16),  is the random effect of the ith 

crop-year,  is the random effect of the jth replication nested within the ith crop-year,  is 

the population intercept,  is the random interaction effect of the interaction of the jth 

replication by the kth family nested in the ith crop-year,  is the random effect of the mth 

clonal effect nested within the kth family,  is the population slope,  is the estimated 
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seedling cane yield from the mth clone nested within the ith crop-year, jth replication and kth 

family and  is the residual error.  

The ANCOVA was performed using SAS mixed procedures and generated individual 

family intercepts and slopes. The clonal cane yield was the response variable and the seedling 

cane yield was the covariate. The linear mixed model used was, 

,Equation 2.8 

where,  is the kth family intercept, and  is the kth family slope. The correlation coefficient 

of the cane yield of the clones and seedlings of each family was also determined. 

The ANOVA was performed for the seedlings and clones using the SAS mixed 

procedures. The linear mixed model used for the seedlings was, 

,                     Equation 2.9 

and the linear mixed model used for the clones was, 

  ,        Equation 2.10 

where is the fixed effect of the kth family. Family means for the seedlings and clones derived 

from ANOVA was used to select the elite families as is currently done. The mean cane yield of 

the seedlings and clones of the elite families that were selected using ANOVA, ANCOVA and 

RCM analysis was compared to determine the method that would consistently identify those 

families producing high yield in the seedlings and clonal stages. 
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2.3 Results 

2.3.1 Population Parameters 

Preliminary analysis of the cane yield data using ANOVA, ANCOVA and RCM produced 

similar trends for the plant and second ratoon crops. Therefore further analyses combined the 

data from the plant and second ratoon crops. The clonal cane yield (y-axis) was plotted against 

seedling cane yield (x-axis) (Figure 2.1) and was also analyzed using simple linear regression 

(Equation 2.7). The best fit trend of the clonal cane yield versus the seedling cane yield was 

fitted using least squares. A perfect association representing the model of predicting clonal cane 

yield from the seedling cane yield was plotted against the population trend. This perfect linear 

association (PLA) assumed an intercept of zero and a slope of 3.17 [(92-0)÷(29-0)), where 92 kg 

was the maximum clonal cane yield, 29 kg was the maximum seedling cane yield and 0 was the 

minimum cane yield for seedlings and clones. The slope of 3.17 means that for every one 

kilogram increase in seedling cane yield, the clonal cane yield was expected to increase by 3.17 

kilograms. The slope of the population trend line (Figure 2.1) was highly significant (r = 0.45, P 

< 0.01) and smaller than the PLA indicating a less than perfect association between the cane 

yield of seedlings and clones. The significant slope indicated that the seedling cane yield was 

predicting the clonal cane yield and also indicated significant repeatability between seedlings and 

clones. The slope of 1.66 meant that for every kilogram increase in seedling cane yield, the 

clonal cane yield was expected to increase by 1.66 kilograms. The wide scatter (Figure 2.1) 

represented the variability in intercepts and slopes among the family trends. This variability 

suggested the potential of comparing and selecting families for intercepts (yield potential) and 

slope (repeatability).  
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Figure 2.1: The clonal cane yield (y-axis) plotted against the seedling cane yield (x-axis) of the 

17 families, their population trend and the perfect linear association (PLA). Each 

family comprised 16 entries. 

2.3.2 Family Evaluation Using ANCOVA 

The ANCOVA was performed using the clonal cane yield as the response variable and the 

seedling cane yield as the covariate. The analysis assumed that each family was a fixed sub-

population. The overall fixed effects tests for the intercepts and slopes were highly significant (P 

< 0.01). Significant overall family intercepts indicate that at least one of the intercepts was 

significantly larger or smaller than zero. Similarly, significant overall family slopes indicate that 

at least one of the slopes was significantly larger or smaller than zero. Table 2.2 shows the 

estimates of the intercepts and slopes, their standard errors (S.E.), probability (P-value) of the 
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tests, and the correlation coefficient for each family. The estimates of the parameters (intercepts 

and slopes) divided by the standard errors produces a t-statistic. The P-value is the probability of 

obtaining a larger value of the t-statistic. All families except 3101 (P = 0.41), 3111 (P = 0.04) 

and 3174 (P = 0.03) produced significantly larger intercepts (P < 0.01) than zero. Families 3249 

(44.08 kg) and 3257 (45.18 kg) produced the largest intercepts while 3101 (5.76 kg) and 3174 

(11.74 kg) produced the smallest. Families 3055, 3093, 3101, 3107, 3111, 3174, 3255, 3276, 

3322, 3345 and 3417 produced significantly larger slopes (P < 0.05) than zero indicating 

significant repeatability. Families 3101 (4.08) and 3174 (3.55) produced the largest slopes and 

3249 (-0.42) and 3257 (-1.43) produced the smallest. Families with larger intercepts produced 

smaller slopes, whereas families with smaller intercepts produced larger slopes indicating that 

there could be negative correlations between the intercepts and slopes. Families with larger 

slopes (3101, 3174, 3276, and 3322) produced relatively higher correlations coefficients and 

families with smaller slopes (3249, 3257, and 3328) produced lower correlation coefficients 

between the cane yield of seedlings and clones (Table 2.2). From the ANCOVA, families 3093, 

3101, 3111, 3174, 3255, 3276, 3322 and 3417 were selected as the elite families and 3249, 3257 

and 3328 were rejected. Statistical comparison of families across trends is not possible with 

ANCOVA. With ANCOVA, when slopes of all the families are equal, larger intercepts would 

mean higher yield potential. Similarly, when intercepts of all the families are equal, then larger 

slopes mean higher repeatability. However, when the intercepts and slopes of all the families are 

different (Table 2.2), as is the case in this study, the comparison of the family parameters is more 

complex. In such a situation, the family intercepts and slopes can only be compared at a 

particular seedling cane yield using contrast statements. Such tests would provide limited insight 

into the differences in the distribution patterns for cane yield among the families.    
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Table 2.2: The estimates, standard errors (S.E.), and probability of a larger t-statistic (P-value) 

for the intercept and slope, and the correlation coefficient of the 17 families derived 

from the analysis of covariance with the clonal cane yield as the response variable and 

the seedling cane yield as the covariate. 

 

Family 

Intercept Slope Correlation 

coefficient 
Estimate ± S.E. P-value Estimate ± S.E. P-value 

306 

3055 

3074 

3093 

3101 

3107 

3111 

3174 

3249 

3255 

3256 

3257 

3276 

3322 

3328 

3345 

3417 

27.36 ± 5.38 

18.73 ± 4.93 

29.73 ± 6.00 

18.15 ± 4.27 

5.76 ± 6.86 

21.24 ± 6.25 

15.59 ± 7.48 

11.74 ± 5.20 

44.08 ± 5.16 

29.41 ± 5.97 

33.60 ± 5.56 

45.18 ± 5.87 

25.56 ± 4.99 

16.79 ± 4.88 

32.15 ± 5.72 

20.43 ± 5.59 

23.67 ± 4.50 

0.01 

0.01 

0.01 

0.01 

0.41 

0.01 

0.04 

0.03 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

1.01 ± 0.63 

1.62 ± 0.47 

0.97 ± 0.71 

1.94 ± 0.34 

4.08 ± 0.68 

1.32 ± 0.62 

2.03 ± 0.69 

3.55 ± 0.56 

-0.42 ± 0.63 

1.84 ± 0.67 

1.16 ± 0.76 

-1.43 ± 0.85 

2.06 ± 0.44 

2.88 ± 0.48 

0.38 ± 0.90 

1.22 ± 0.59 

1.71 ± 0.42 

0.11 

0.01 

0.17 

0.01 

0.01 

0.03 

0.01 

0.01 

0.50 

0.01 

0.13 

0.09 

0.01 

0.01 

0.68 

0.04 

0.01 

0.45 

0.46 

0.38 

0.71 

0.67 

0.33 

0.57 

0.62 

0.01 

0.57 

0.38 

-0.08 

0.61 

0.67 

0.07 

0.39 

0.56 

2.3.3 Interrelationships Among the Family Parameters 

The interrelationships among family intercepts, slopes, means and standard deviations were 

investigated graphically (Figure 2.2). A significant (P < 0.01) negative correlation was found 

between the slopes (y-axis) and intercepts (x-axis) (Figure 2.2a), a result suggested in Table 2.2. 

The means (y-axis) and intercepts (x-axis) showed significant (P < 0.05) and positive correlation 

(Figure 2.2b) suggesting that intercepts could indicate yield potential. The means (y-axis) and 
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slopes (x-axis) were not significantly (P > 0.05) correlated (Figure 2.2c) indicating that family 

means provided no insight into the repeatability between the cane yield of seedlings and clones. 

The slopes (y-axis) and standard deviations (x-axis) showed significant (P < 0.01) and positive 

correlation (Figure 2.2d) indicating that slopes could be used to infer within population 

variability in addition to measuring repeatability.     

 
Figure 2.2: The plots of the family slopes (y-axis) versus the family intercepts (x-axis) (a), the 

family means (y-axis) versus the family intercepts (x-axis) (b), the family means (y-

axis) versus the family slopes (x-axis) (c) and, the family slopes (y-axis) versus the 

family standard deviations (x-axis) (d) of the 17 families. 
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2.3.4 Covariance Parameter Estimates Derived From the Random Coefficient Models 

Analysis  

The covariance parameters generated from RCM analysis describe the variation within, and 

association between the family intercepts and slopes. The ability to model the covariance 

structure creates more statistical power for the RCM analysis tests than those from ANCOVA. 

The covariance between the intercepts and slopes is included when computing the variances used 

to test the family intercepts and slopes against the population intercepts and slopes (Equation 

2.6). The covariances account for the correlation between intercepts and slopes in the variances 

used for these tests. The covariance matrix was modelled using the unstructured structure 

(Appendix 1, Table 2.3). The variances for the family intercepts and slopes (P < 0.05) were 

significant indicating variability among the families. The covariance of the intercepts and slopes 

was negative and not significant (P > 0.05). The negative covariance confirmed the negative 

association reported in Figure 2.2a and suggested in Table 2.2.  

Table 2.3: The estimates, standard errors, normal distribution statistic (Z-value) and the 

probability of obtaining a larger Z-value for the covariance parameters of the family 

intercepts and slopes 

Parameters Estimate Standard Error Z-value Probability 

Variance (intercepts) 39.58 21.68 1.83 0.03 

Covariance (slopes, intercepts) -3.67 2.39 -1.54 0.12 

Variance (slopes) 0.53 0.31 1.69 0.05 

Residual 186.70 11.76 15.87 <0.01 

2.3.5 Family Evaluation Using Random Coefficient Models 

The RCM analysis tested the family intercepts and family slopes against the population intercept 

and population slope, respectively. These tests provide a mechanism for testing the family yield 
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potential (intercept) and the family repeatability (slope), where families with larger values are 

desirable. The intercept effect was computed as the family intercept minus the population 

intercept. Similarly, the family slope effect was computed as the family slope minus the 

population slope. Positive effects indicated larger family intercepts or larger family slopes than 

the population intercept or population slope, respectively. Negative effects indicated smaller 

family intercepts or smaller family slopes than the population intercept or population slope, 

respectively. Equation 2.6 and the covariance parameters (Table 2.3) were used to compute the 

variances that were used for testing the family effects. The overall tests for the intercept and 

slope effects were highly significant (P < 0.01) (data not shown). The significant overall 

intercept effects indicated that the intercept effect of at least one family was significantly larger 

than zero. Similarly, significant overall slope effects indicated that the slope effect of at least one 

family was significantly larger than zero. Families 3249 and 3257 produced significant (P < 

0.05) and positive intercept effects (Table 2.4) indicating higher yield potential than the entire 

population. Families 3101 and 3322 produced significant (P < 0.10) and positive slope effect 

indicating higher repeatability than the population while 3249 and 3257 produced significant (P 

< 0.10) and negative slope effects indicating lower repeatability. Using the RCM tests in Table 

2.4, families 3101, 3174, 3255, 3256, 3276 and 3322 were selected as the elite families. These 

families produced positive slope effects, and a combination of both positive and negative 

intercept effects indicating higher repeatability and similar yield potential to the population. The 

rejected families (3249, 3257, and 3328) produced positive intercepts and negative slope effects, 

indicating lower repeatability than the population despite apparent greater yield potential. 
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Table 2.4: The effects (kg), standard errors (S.E) (kg) and the probability of obtaining a larger t-

statistic (P-value) for the tests of the intercept and slope of the 17 families 

 

Family 

Test for the intercept Test for the slope 

Effect of intercept ± S.E. P-value Effect of slope ± S.E. P-value 

306 

3055 

3074 

3093 

3101 

3107 

3111 

3174 

3249 

3255 

3256 

3257 

3276 

3322 

3328 

3345 

3417 

0.92 ± 3.82 

-3.37 ± 3.75 

1.53 ± 4.10 

-4.55 ± 3.23 

-7.27 ± 4.60 

-1.50 ± 4.48 

-3.79 ± 4.70 

-5.14 ± 3.82 

11.60 ± 3.78 

1.11 ± 4.17 

4.93 ± 3.85 

8.65 ± 3.88 

0.68 ± 3.62 

-4.42 ± 3.64 

3.80 ± 3.85 

-2.85 ± 4.01 

-0.31 ± 3.38 

0.81 

0.37 

0.71 

0.16 

0.11 

0.74 

0.42 

0.18 

0.01 

0.79 

0.20 

0.03 

0.85 

0.23 

0.32 

0.48 

0.93 

-0.25 ± 0.49 

-0.12 ± 0.45 

-0.10 ± 0.51 

0.25 ± 0.37 

1.07 ± 0.52 

-0.34 ± 0.51 

0.01 ± 0.49 

0.73 ± 0.47 

-0.99 ± 0.50 

0.48 ± 0.52 

-0.05 ± 0.53 

-0.95 ± 0.54 

0.31 ± 0.40 

0.71 ± 0.44 

-0.48 ± 0.57 

-0.30 ± 0.49 

0.01 ± 0.40 

0.61 

0.79 

0.84 

0.50 

0.04 

0.51 

0.98 

0.13 

0.05 

0.35 

0.93 

0.08 

0.44 

0.10 

0.40 

0.54 

0.98 

  

In addition to Table 2.4, the families were also evaluated graphically by plotting the 

seedling cane yield (x-axis) of each family against its clonal cane yield (y-axis) for all the 

families. The least square best fit lines were fitted for each family alongside the population best 

fit trend and the 1:1 line (Figure 2.3). Four clusters emerged from Figure 2.3. Families 3101, 

3174, 3255, 3256, 3276, and 3322 made up cluster 1. The families in cluster 1 produced larger 

slopes or larger intercepts or both than the population, and were categorized as the elite families. 

Families 306, 3074, 3093, and 3417 (cluster 2) produced similar intercepts and similar slopes to 
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the population and were categorized as the average families. The families in cluster 3 were 3055, 

3107, 3111, and 3345, and produced smaller intercepts, smaller slopes or both compared to the 

population. These families were categorized as below average. The families 3249, 3257, and 

3328 (cluster 4) produced larger intercepts and smaller slopes than the population and were 

categorized as families to discard. The families in cluster 3 (low yield potential) and cluster 4 

(lack of repeatability) could be rejected because they are likely to comprise a significantly low 

proportion of superior yielding genotypes. The families in clusters 1 and 2 are expected to yield 

more high cane yielding seedlings and clones and would be subjected to individual seedling 

selection. 

2.3.6 Random Coefficient Models Analysis of Four Classified Family Groups 

A new data set was created with the four family groups (elite, average, below average and 

discard) derived from the groupings defined in Figure 2.3, as the random subjects. The data set 

was subjected to RCM analysis to determine the RCM effects of the family groups. The elite 

families produced significant (P < 0.10) and positive slope effects while the discarded families 

produced significant (P < 0.05) and negative slope effects (Table 2.5). The discarded families 

produced significant (P < 0.01) and positive intercept effects. The elite, average and below 

average families produced non-significant negative intercept effects. The elite family trend was 

consistently larger than that of the population and the PLA, indicating greater yield potential and 

higher repeatability than the population. The average families were similar to the population 

while the below average families produced lower yield potential and marginally lower 

repeatability than the population. The discarded family trend showed zero repeatability and 

produced the largest intercept effect. 
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Figure 2.3: The best fit trend lines for the population, perfect linear association (PLA) and the 17 

families (classified into elite, average, below average and discard) derived from the 

plot of clonal cane yield (y-axis) versus seedling cane yield (x-axis). 
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Table 2.5: The effects ± standard errors (S.E.) (kg) and the probability of obtaining a larger t-

statistic (P-value) for the test of the intercepts and slopes of the elite, average, below 

average and discard family groups 

Family 

Group 

Test for the intercept Test for the slope 

Effect of intercept ± S.E. P-value Effect of slope ± S.E. P-value 

Elite 

Average 

Below Average 

Discard 

-3.17 ± 3.99 

-2.23 ± 4.00 

-4.87 ± 4.17 

10.26 ± 4.19 

0.43 

0.58 

0.24 

0.01 

0.93 ± 0.50 

0.22 ± 0.50 

-0.03 ± 0.51 

-1.13 ± 0.55 

0.06 

0.66 

0.95 

0.04 

2.3.7 Family Group Parameters 

The group parameters for the elite, average, below average and discard families were evaluated. 

The group intercepts, slopes, means and standard deviations were compared to determine the 

most discriminating parameters among families. The elite, average and below average families 

produced similar intercepts while that of the discard families was double that of other groups 

(Table 2.6), indicating that the intercept could not discriminate between the elite, average and 

below average families. The group slopes decreased from the elite (highest) to the discarded 

family (lowest). The elite families produced a 49 % larger slope than that of the average families. 

The elite and discarded family groups produced similar means while the average and below 

average families also produced similar means. The elite families produced the largest standard 

deviations while the below average and discarded families produced the smallest. The slopes 

followed by the standard deviation were the most discriminating parameters while the intercept 

and family means (yield parameters) were the least discriminating. The slopes and standard 

deviations were significantly correlated (Figure 2.2d).  

A mock seedling selection was done, targeting seedlings that produced ≥10 kg (1.5 times 

the population mean) cane yield.  The group means of clones derived from seedlings with ≥10 kg 
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(1.5 times the population mean) decreased consistently from the elite (highest) to discarded 

(lowest) families. The seedlings selected from the elite families produced more clonal cane yield 

than the average (16 %), below average (47 %) and discarded families (62 %). Evaluation of the 

family groups further justified that the below average and discarded families could be discarded 

because of low within family variability and the seedlings selected from these families produced 

significantly lower cane yield than the elite and average families.    

 

Table 2.6: The intercepts (kg), slopes, family mean (kg) and standard deviations (kg) (STDEV), 

clone mean cane yield of seedlings selected with ≥10 kg of the elite, average, below 

average and discard group of families 

 

 

Family Group 
 

Intercept (kg) 

 
Slope 

Family  

Mean (kg) 

Selected Clone  

mean (kg) 

STDEV (kg) 

(clones) 

Elite 21.84 2.48 38.86 56.36 18.39 

Average 23.17 1.67 33.22 48.62 15.69 

Below average 19.49 1.51 31.23 38.45 13.25 

Discard 37.79 -0.01 37.75 34.69 13.99 

2.3.8 Distribution Patterns Within the Four Classified Family Groups 

The seedling cane yield (x-axis) and clonal cane yield (y-axis) of the elite, average, below 

average and discarded families were plotted separately to evaluate their distribution patterns 

(Figure 2.4). Most of the scatter points of the elite families were located above the 1:1 and 

population lines indicating higher yield potential (Figure 2.4 (a)). These points also showed an 

ascending banding pattern, indicating higher repeatability. The trend of the elite families 

produced a larger slope than the population (Table 2.6) also indicating higher repeatability. The 

average family group was located around the population trend line (Figure 2.4(b)). Most of the 



38 

scatter plots of the below average group were located largely below the population trend line 

indicating lower yield potential than the population (Figure 2.4(c)). The discarded families 

produced a random distribution indicating no association between seedling and clonal cane yield 

(Figure 2.4(d)). From Figure 2.4, it can be deduced that if one selected seedlings that produced 

≥10 kg cane yield more clones with cane yield greater than 45 kg would be recovered from the 

elite families and fewer clones from the discarded families in the clonal stage. Selecting 

seedlings from the discard families would be equivalent to a random selection for cane yield. 

 
 

Figure 2.4: The scatter and trend lines of the clonal cane yield (y-axis) plotted against seedling 

cane yield (x-axis) of the elite (a), average (b), below average (c) and discard (d) families 

compared to the perfect linear association (PLA) and the population trends. 
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2.3.9 Comparison of Families Selected Using RCM Analysis, Family Means and ANCOVA 

Family mean cane yield of the seedlings was ranked to identify the top 6 (high cane yield) and 

bottom 6 (low cane yield) families that would be selected using ANOVA, mimicking the method 

currently used for family evaluation. The ANOVA (Equations 2.9 and 2.10) showed no 

significant differences among families (P < 0.05) for seedling and clonal yield (data not shown). 

The 17 families were also ranked using their correlation coefficient (Table 2.2) to identify the top 

6 and bottom 6 families that would have been selected using ANCOVA. The RCM analysis 

output (Table 2.4, Figure 2.3) was used to select the top 6 and bottom 6 families using intercept 

effects (yield potential) and slopes (repeatability). The means for the top 6 and bottom 6 families 

were calculated for the seedling and clonal stages as selected using ANOVA, ANCOVA and 

RCM analysis (Table 2.7). The means of the top 6 seedling families were 47 % (ANOVA), 16 % 

(ANCOVA) and 11 % (RCM) greater than that of the bottom 6 families. The ANOVA and 

ANCOVA clonal mean yields were similar for the top 6 and bottom 6 families indicating that 

these family evaluation methods failed to predict clonal cane yield of the families. The top 6 

families selected using RCM analysis produced 14 % greater clonal yield than the bottom 6 

families. The P-value (P = 0.11) of the difference between RCM top 6 and bottom 6 clonal cane 

yield was much smaller than that of the family means (0.86) and ANCOVA (0.92), indicating 

that the RCM analysis was more discriminating between high cane yield and low cane yield 

families than ANOVA and ANCOVA. The families identified by RCM analysis as high cane 

yield produced high seedling cane yield and high clonal cane yield indicating the ability of RCM 

analysis to identify families that produced high cane yield as seedlings and clones. 
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Table 2.7: The seedlings and clonal mean cane yields (kg) for the top 6 and bottom 6 families, 

and probability of a larger difference between top 6 and bottom 6 derived from family 

means, R
2
 from ANCOVA and RCM family analysis methods. 

 

Family 

Category 

Family means R
2
 from ANCOVA RCM analysis 

Seedling Clones Seedlings Clones Seedlings Clones 

Top 6 

Bottom 6 

7.89 

5.37 

36.53 

36.05 

6.90 

5.96 

37.19 

36.93 

6.85 

6.17 

38.86 

33.97 

P-value 0.06 0.86 0.46 0.92 0.45 0.11 

2.4 Discussions 

The confounding of seed type between seedlings and clones that is ignored during family 

evaluation while using the ANOVA can be resolved by adopting RCM analysis. Family 

evaluation at the seedling stage as is the current practice ignores the existence of this 

confounding. The RCM analysis solved the influence of confounding by evaluating families 

using trends between cane yield of seedlings and clones. These trends provided for the 

evaluation for both the yield potential and repeatability between the seedlings and clones. The 

fact that the family means were not associated with slope, a measure of repeatability, indicated 

that family evaluation using means was not addressing the confounding between the seedling and 

clonal stages. The confounding effect of seed type results in smaller plots planted for seedlings 

and larger plots for clones. 

Whereas ANOVA and ANCOVA produced large differences between the top 6 and 

bottom families for seedling cane yield these differences were not reflected among the clones, 

indicating the influence of confounding. The mean cane yields of the top 6 and bottom 6 families 

in the seedling and clonal stages also confirmed the superiority of RCM analysis and the 

deficiency of using means for family evaluation. Using RCM analysis, the seedling cane yield 
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differences between the top 6 and bottom 6 were reflected in the clones, indicating that RCM 

analysis identified families with higher repeatability.  

The seedlings selected with high cane yield from the elite families that were identified by 

RCM analysis produced high cane yield clones. The seedlings selected from the elite families 

with ≥10 kg cane yield produced at least 47 % more clonal cane yield than seedlings selected 

with ≥10 kg from the rejected families (below average and discard). The elite families selected 

by RCM analysis also produced the largest proportion of high cane yielding clones. Therefore, 

seedlings selected as high in cane yield from the elite families that were identified by RCM 

analysis provides a greater chance of producing clones with high cane yield, for example, greater 

than 45 kg. The elite families identified by family means indicated that seedling selection from 

these families would be equivalent to random seedling selection compared to the elite families 

identified using RCM analysis.   

The families identified as elite and average by RCM analysis produced larger standard 

deviations, indicating greater within family variability. Selection generally takes advantage of 

the within family variability. It is easier to select from a population where there is large 

variability among seedlings (Allard, 1960). Fewer seedlings with high cane yield from the below 

average and the discarded families produced higher yielding clones because of the low within 

family variability in these groups compared to the elite and average families. Selection from 

families with low within family variability appeared similar to random selection, and would 

result in limited or no gains in cane yield. This study showed that these families can be discarded 

because the effort expended in selecting from these families would not match the expected gains.    

Family evaluation using RCM analysis produced more discriminating parameters than the 

family means. Sugarcane breeders are generally interested in discarding families that have low 



42 

number of seedling producing high cane yield. The slope, representing repeatability, was the 

most discriminating parameter. In family selection, the goal is to differentiate between families 

with a high proportion of high cane yielding seedlings from those with low population of high 

cane yielding seedlings. Larger slopes were associated with families whose high cane yield 

seedlings produced high cane yield clones. Larger slopes were also significantly correlated with 

larger standard deviations, indicating greater within family variability. Therefore, using RCM 

analysis, families that have a lower chance of producing high yielding clones can be discarded 

with greater precision than with family means, as is currently practiced. 

Family mean cane yields produced from ANOVA failed to separate the elite and 

discarded families. Previous studies by Hogarth et al. (1990) and Kimbeng et al. (2000) reported 

significant deviations in the number of expected high cane yielding clones that were selected 

from the elite families evaluated using family means. In this study, family means derived from 

ANOVA produced no significant (P < 0.05) differences in cane yield for both the seedlings and 

clones, indicating that there was no statistical justification for family selection using family 

means. These families were statistically similar for cane yields, according to ANOVA. 

Statistically, family evaluation and selection would be valid if there were significant differences 

for cane yield. When there are significant differences, means separation using, for example, the 

least significant difference, could be used to identify families that are significantly higher 

yielding as elite families and those significantly lower yielding can be discarded. 

The graphical presentation of the output data from the RCM analysis provided for easy 

interpretation of the results. The advantage of graphical presentation is in their ability to provide 

for the visualization of the trends in the data (Yan and Kang, 2002). The population trend in 

Figure 2.1 clearly showed the variability among the families. Figures 2.3 provided easy 



43 

visualization of the family groups and together with the output in Table 2.4, helped classify the 

families as well as identify the elite families. The graphs in Figure 2.4 provided easy 

visualization of the attributes of each of the family group and displayed the distribution patterns 

of the genotypes within the family groups. In Figure 2.4, the number of seedlings identified by a 

mock selection from each group of families can be evaluated visually for their potential clonal 

cane yield.  

The data requirements will remain a challenge for the adoption of RCM analysis for 

family evaluation. Most breeding programs do not measure yield of seedlings and the first clonal 

plots. For those breeding programs that collect this data, retrospective and parallel evaluations 

are suggested. Retrospective evaluation will use yield data from seedlings and clones after stage 

II harvest. Parallel evaluation requires a breeding program to establish a family selection stage 

before the seedling selection stage. Fewer seedlings per family, say 10 to 20, can be planted from 

each of the several families and the data generated would be used to select the elite families. 

Only seedlings from the elite families will be grown for individual seedling selection. The fewer 

seedlings planted for individual seedling selection and the expected higher yield gains could 

more than compensate for the extra cost. In programs with active family evaluation, this 

approach entails an extra year to grow and select the best families using RCM analysis. 

2.5 Conclusions 

Our study showed that the ability to account for the influence of confounding for seed type 

between seedlings and clones was important for family evaluation for cane yield. The elite 

families selected by the RCM analysis produced high clonal cane yield from seedlings selected 

with high cane yield. The elite families identified using RCM analysis produced the highest 

proportion of high cane yield clones selected from seedlings that were identified to have 
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produced high cane yield. The slope (repeatability) was the most discriminating parameter 

among families indicating the importance of evaluating family distribution trends for cane yield. 

Families 3101, 3174, 3255, 3256, 3276, and 3322 were selected as the elite families using RCM 

analysis. These families produced high family for cane yield in the seedling and clonal stages 

and high within family variability (larger standard deviations). From our study, family means 

were inadequate for family evaluation because they failed to account for repeatability and 

therefore confounding effect on cane yield between seedlings and clones. In our study, the means 

were statistically similar among the families, a situation that could also weaken family selection 

based on family means. We suggest that the RCM analysis can be implemented using the 

retrospective or the parallel approach. Retrospective evaluation can use yield data available from 

Stages I and II of sugarcane breeding programs. Parallel evaluation would involve establishing a 

parallel family evaluation stage before the individual seedling selection stage. 
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CHAPTER 3: ARTIFICIAL NEURAL NETWORK MODELS: A DECISION SUPPORT 

TOOL FOR ENHANCING SEEDLING SELECTION IN SUGARCANE 

BREEDING 

3.1 Introduction 

Sugarcane is grown commercially as a clone, yet the first episode of selection must occur among 

individual seedlings raised from true seed. The identification of seedlings with high cane yield 

potential remains a challenge facing sugarcane breeders. Visual appraisal for cane yield is used 

during individual seedling selection. Visual selection is subjective (Cox and Stringer, 1998) and 

likely to be inefficient (Hogarth and Berding, 2006). Visual selection is confounded by the 

effects of genotype by environment interaction and competition among seedlings. The effects of 

genotype by environment interaction are exacerbated because seedlings cannot be replicated at 

this stage of the program due to space limitation owing to the large numbers involved.  

Seedlings are often closely spaced because of the need to plant large numbers on limited 

land. Closely spaced seedlings result in altered phenotypic expression for cane yield components 

(stalk number, stalk height, and stalk diameter) (Breaux and Miller, 1987; de Sousa-Vieira and 

Milligan, 1999). De Sousa-Vieira and Milligan (1999) reported reduced genetic expression for 

yield component traits in closely spaced seedlings. However, most breeding programs continue 

to use narrow spacing because of the limited land resources (Breaux and Miller, 1987). Planting 

smaller seedling populations which are better managed has been suggested as one strategy to 

increase selection efficiency (Hogarth and Berding, 2006; Kimbeng and Cox, 2003). Hogarth 

and Berding (2006) also suggested the exploration of more innovative statistical techniques to 

improve selection efficiency. In this study, we explore a novel statistical technique known as 

artificial neural network (ANN) for use in sugarcane seedling selection.   
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An ANN model, often called neural network model, is a mathematical or computational 

model based on biological neural networks (Nelson and Illingworth, 1991). The ANN is a 

supervised learning method and uses pattern learning from training data to produce models that 

generate predictions of response variables (Masters, 1993; Nelson and Illingworth, 1991). The 

ANN consists of a layered, free forward and completely connected network restricted to a single 

direction of flow (Nelson and Illingworth, 1991). The ANN has an input layer, a hidden layer, 

and an output layer (Figure 3.1). The ANN models complex relationships between input 

variables and outputs (Gurney, 1997; Fausett, 1994). The model must be ‘trained’ by processing 

data with input and output patterns similar to the data to be predicted. The model detects 

similarities in the new input data, and uses these similarities to generate output predictions 

(Smith, 1993). The logistic function calculates probabilities used to make predictions (Allison, 

2003; Agresti, 2007). Multiple linear regression equations form the linear predictors (Hertz et al., 

1990; Agresti, 2007). 

  

 

 

 

 

Figure 3.1: The input layers, hidden layer and output layer of the artificial neural network model. 

 

The ANN models have been used in financial risk management (Huang et al., 2004; 

Sethuraman, 2006), process control in manufacturing (Lee and Paik, 2006), predicting credit 

scores and interest rates (Perkins and Brabazon, 2006), and predicting fish abundance (Iglesias et 

al., 2006). In predicting credit card scores and interest rates using ANN models, for example, the 
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payment history and other variables from other individuals are used as the training data set to 

calculate probabilities.  The probabilities calculated for all individuals including the applicant 

using the full data set determines the relative risk of the applicant and are used to determine the 

interest rates on credit cards or loans. Few uses of the ANN techniques have been reported in 

plants. Recently the ANN model was used to assign tea accessions into taxonomic groups using 

leaf morphological measurements as input variables (Pandolfi et al., 2009). The same group of 

researchers used the ANN model to classify Camellia japonica using phyllometric and fractal 

parameters (Mugnai et al., 2008).  

 The same concept used above can be applied to sugarcane seedling selection. At early 

selection stages, Brix (% soluble solids in juice) measured by a hand refractometer is used to 

screen for sucrose content. Stalk diameter, stalk length and stalk number evaluate cane yield 

(Chang and Milligan, 1992). These yield components (Milligan et al., 1990) can be used as input 

variables in the ANN models to predict the probability of either selecting or rejecting a seedling. 

During selection, the decision to select or reject a seedling depends on the combination and 

magnitude of the cane yield components as assessed visually. The outcome or response variable 

would be to either select (1) or reject (0) a seedling which is binary in nature. In this case a 

training data set consisting of previously defined response variables (select or reject) and the 

input or independent variables (cane yield components) are used by the ANN model to determine 

the logistic regression function. Then a new data set consisting of input variables is fed into the 

logistic regression function which produces probabilities of either selecting or rejecting a 

seedling as the output (Figure 3.1).   

The objective of this study was to evaluate the potential of using the SAS enterprise 

miner ANN models for identifying seedlings with high cane yield potential at the seedling stage 



51 

of a sugarcane breeding program. The yield of seedlings selected using the ANN models were 

compared to those selected using the visual method. 

3.2 Materials and Methods 

3.2.1 Experimental Materials and Data Collection 

Data were collected from seedlings raised from true seed at the United States Department of 

Agriculture, Agricultural Research Service (USDA), Ardoyne Research Farm, at Schreiver, LA., 

and Louisiana State University Agricultural Center (LSU AgCenter) Sugar Research Station at 

St. Gabriel, LA. The seedlings from 17 crosses (USDA) and 5 crosses (LSU AgCenter) (Table 

3.1) were first germinated and established in the greenhouse and then transplanted into the field 

as single stools in the summer of 2002. At the USDA, the seedlings of each cross were divided 

and transplanted into two replications. The crosses were replicated but not the seedlings. In each 

plot, two rows were planted, each to 16 seedlings. In 2003, eight seedlings (four from each row 

per plot) were randomly chosen from each plot and used for data collection.  

At the LSU AgCenter, five crosses (Table 3.1), each with more than 500 seedlings, were 

selected from the seedling program. Thirty seedlings were randomly chosen from each cross in 

2003. The chosen seedlings from the two populations were evaluated subjectively to determine if 

they would have been selected (1) or rejected (0). The decision to select (1) or reject (0) a 

seedling was based on a consensus by two experienced sugarcane breeders. From the chosen 

seedlings, stalk number was counted, stalk height was measured from the base of the stool to the 

top most visible dewlap, and stalk diameter was measured at the center of the stalk on three 

random stalks using a caliper and without reference to the bud.   
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Table 3.1: Cross showing female and male parents of sugarcane seedlings planted at the United 

States Department of Agriculture (USDA) and Louisiana State University Agricultural 

Center (LSU AgCenter) sugarcane research farms.    

Cross ID Female Parent Male Parent Cross Female Parent Male Parent 

Crosses evaluated at the USDA research farm 

306 

3055 

3074 

3093 

3101 

3107 

3111 

3174 

3249 

Ho94-856 

HoCP00-945 

HoCP00-950 

HoCP00-945 

HoCP99-866 

HoCP00-950 

HoCP99-866 

HoCP00-945 

N27 

HoCP96-540 

HoCP99-866 

HoCP96-540 

HoCP96-540 

HoCP96-540 

LCP85-384 

LCP85-384 

LCP85-384 

LCP85-384 

3255 

3256 

3257 

3276 

3322 

3328 

3345 

3417 

HoCP00-945 

HoCP00-950 

L98-207 

TUCCP77-42 

TUCCP77-42 

HoCP91-555 

HoCP91-555 

HoCP91-555 

Ho94-856 

Ho94-856 

Ho94-856 

HoCP99-866 

L98-207 

LCP85-384 

L98-207 

TUCCP77-42 

Crosses evaluated at the LSU AgCenter research farm 

XL01-001 

XL01-050 

XL01-059 

XL01-215 

XL01-460 

HoCP92-624 

LCP86-454 

HoCP95-951 

TucCP77-42 

Ho95-988 

HoCP91-552 

LC85-384 

HoCP96-540 

LCP85-384 

L99-238 

 

 

3.2.2 Estimation of Seedling Cane Yield From Yield Components 

The seedling cane yield was calculated based on the formula used by De Sousa-Vieira and 

Milligan (1999) (Equation 3.1). Their calculation assumed the sugarcane stalk was a perfect 

cylinder with specific gravity of one (1.0) as determined from previous studies (Miller and 

James, 1974; Gravois et al., 1991; Chang and Milligan, 1992).  

Seedling cane yield (g) = ndπr
2
L                                     Equation 3.1 
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where n = seedling stalk number, d = density at 1.0 gcm
-3

, r = stalk radius (cm), and L = stalk 

length (cm).  

3.2.3 Data Analysis Using Artificial Neural Network Models 

The training data consisted of 20 % (30 seedlings, LSU AgCenter) and 10 % (28 seedlings, 

USDA) of the original data. The input variables were stalk number, stalk height, and stalk 

diameter and the response was either to select (1) or reject (0) a seedling as determined by the 

two experienced sugarcane breeders. The training data was run in SAS enterprise miner (SAS 

Institute, 2007) to produce the coefficients of the multiple linear regressions. The data collected 

from 150 (LSU AgCenter) and 272 (USDA) seedlings constituted the prediction data. In the 

prediction data, the response values, select (1) or reject (0) a seedling were coded as missing 

values and were estimated by the model. The model selection criteria used was the ‘average 

error’ and the network architecture was the ‘generalized linear model’. The training technique 

used was the ‘Levenberg-Marquadt’ set at 50 preliminary runs. The ANN flow chart for the 

analysis is shown in Figure 3.2.  

     
Figure 3.2: The artificial neural network flow chart used in analyzing the LSU AgCenter training 

(ANN.LSU_AGCENTER_T), LSU AgCenter prediction 

(ANN.LSU_AGCENTER_P), USDA training (ANN.USDA_T), and USDA 

prediction (ANN.USDA_P) data sets. ANN references the name of the SAS data 

library from where the data files were stored. 
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3.3 Results  

3.3.1 Coefficients of the Prediction Models 

The ANN models use the training data to produce coefficients that define the logistic regression 

functions. The coefficients represent the relative weighting of each input variable, similar to 

coefficients in multiple linear regressions (Table 3.2). The coefficients (Table 3.2) were used to 

build the prediction functions (Equations 3.2 and 3.3). Equations 3.2 and 3.3 were used to 

calculate the probability of either selecting or rejecting a seedling by plugging in the values of 

the stalk number, stalk height and stalk diameter of that seedling. 

Table 3.2: Model coefficients for stalk diameter, stalk height, stalk number, and the intercept 

from artificial neural network analyses of data from the LSU AgCenter and USDA 

populations 

Variable LSU AgCenter USDA 

Diameter 11.20 5.71 

Height 6.16 2.73 

Stalk number 1.38 0.04 

Intercept -50.20 -18.11 

P (Y = 1) =        Equation 3.2 

P (Y = 1) =       Equation 3.3 

3.3.2 Model Fit Statistics 

The ANN analysis produces six fit statistics for evaluating the robustness of the model (Table 

3.3). The average profit (prediction power) is estimated by the correlation between the response 
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variable (1 or 0) and probability (Agresti, 2007). A higher profit means the response variable was 

closely associated with the probability of selection. The misclassification rate is estimated as the 

proportion of the total observations that are classified by the model into different response 

categories from what was observed. Lower values indicate correct model classification and 

accurate training data. The average squared error (ASE) is calculated as, 

.          Equation 3.4 

Smaller values indicate better model fit. The final prediction error (FPE) is estimated as, 

,                                          Equation 3.5 

 where, P is the number of parameters including the intercept. FPE is an adjustment to ASE 

using (N+P)/(N–P). The adjustment penalizes for over-parameterization (model complexity) or 

the inclusion of too many input variables. Over-parameterization inflates FPE and increases 

prediction errors. It is generally desirable to achieve the best model fit by specifying the simplest 

or most parsimonious model. Just like with ASE, lower values indicate better model fit. The 

Akaike Information Criterion (AIC) (Akaike, 1974) and Schwarz Bayesian Criterion (SBC) 

(Schwarz, 1978) are used to compare the relative model fit for two or more models. Lower 

values indicate better model fit.  

The fit statistics produced higher prediction power for the LSU AgCenter than the USDA 

data set (Table 3.3). Misclassification, ASE, FPE, AIC and SBC values were greater for the 

USDA population indicating poorer model fit of the data compared to that from the LSU 

AgCenter population. 
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Table 3.3: Model Fit Statistics from artificial neural network analysis of sugarcane seedling data 

from the USDA and LSU AgCenter populations 

Fit Statistic LSU AgCenter USDA 

Average profit 

Misclassification rate 

Average squared error 

Final Prediction error 

Akaike’s Information Criterion (AIC) 

Schwarz’s Bayesian Criterion (SBC) 

0.61 

0.07 

0.06 

0.08 

19.79 

25.52 

0.36 

0.11 

0.13 

0.17 

31.72 

37.05 

   

The distribution patterns of the two populations were evaluated graphically by plotting 

the estimated seedling cane yield (x-axis) against their corresponding probabilities of selection 

(y-axis). The LSU AgCenter data followed closely the theoretical logistic cumulative distribution 

function (Casella and Berger, 2003) compared to the USDA data (Figure 3.3). The distribution 

patterns depicted trends that were similar to the fit statistics (Table 3.3), confirming the larger 

variability found within the USDA than the LSU AgCenter data.    

 
Figure 3.3: The logistic cumulative distribution functions for estimated seedling cane yield (kg) 

(x-axis) plotted against selection probabilities (y-axis) for the LSU AgCenter (a) and 

USDA (b) populations. 
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3.3.3 Probabilities and Seedling Selection 

The probability is calculated by plugging in the input values of stalk number, stalk height, and 

stalk diameter of each seedling into the logistic regression function (Equations 3.2 and 3.3). The 

probability is larger for higher values of input variables and smaller for lower values. Only one 

probability (P) can be modeled, in this case the probability to select. The probability to reject is, 

therefore, 1–P. To predict the response, a threshold probability must be specified. If the select 

probability is modeled, the response would be to select when the probability is equal to or greater 

than the threshold and to reject when the probability is less than the threshold. In SAS ANN 

models, the default threshold is 0.5. Larger thresholds produces more stringent selection criteria 

and vice versa.  

The probability to select was calculated using Equations 3.2 (LSU AgCenter) and 3.3 

(USDA). In Tables 3.4 and 3.5, P(Y = 1) was the probability to select and P(Y = 0) was the 

probability to reject. The threshold probability was 0.5. When P(Y = 1) was equal to or greater 

than 0.5, the seedling was selected and categorized into select (1), otherwise it was categorized 

into reject (0). The column labeled ANN in Tables 3.4 and 3.5 represents the predicted 

categories. The input variables are included in the output, and can aid the breeder to decide 

border line seedlings. Other variables such as Brix, disease or insect damage can also be included 

to aid selection.  

Generally, seedlings were selected at higher probability from the LSU AgCenter 

population (Table 3.4) than the USDA population (Table 3.5). Eighteen out of the 30 seedlings 

(LSU AgCenter population) were selected with probabilities ranging from 0.58 to 1.00 (mean = 

0.88). Nine out of the 30 seedlings (USDA population) were selected with probabilities ranging 

from 0.53 to 0.91 (mean = 0.72). This indicated a greater precision of selection from the LSU 
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AgCenter population compared to the USDA population, reflecting the effect of relative 

variability depicted in Figure 3.3. In Figure 3.3(a) (LSU AgCenter population), a threshold of 0.5 

selected seedlings with estimated seedling cane yield greater than 7.5 kg while, in Figure 3.3 (b) 

(USDA population), the same threshold selected seedlings with estimated seedling cane yield as 

low as 3.5 kg. 

3.3.4 Discriminating Ability of the Artificial Neural Network Models Versus Visual 

Selection 

The means of the seedling stalk number, stalk height, stalk diameter, and estimated cane yield 

were calculated for each group of selected and rejected seedlings. The difference between the 

means of the selected and rejected seedlings was calculated and expressed as a percentage of the 

rejected seedlings (Tables 3.6). This metric was used to describe and evaluate the discriminating 

ability of the ANN models and the visual method. A larger percentage of the difference between 

the means of the selected and rejected seedlings was used as an indicator of greater 

discriminating ability.   

The ANN models produced greater discrimination between the selected and rejected 

seedlings than the visual method (Tables 3.6, Figure 3.4). The ANN models were twice (LSU 

AgCenter population) and 1.5 times (USDA population) more discriminating between the 

selected and rejected seedlings than the visual method. The seedlings selected by the ANN 

models produced more stalks than those selected by the visual method. These selected seedlings 

also produced stalks with greater diameter for both populations and taller stalks for the USDA 

population.  
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Table 3.4: Probability of selecting [P(Y = 1)] or rejecting [P(Y = 0)] a seedling, the predicted 

selection decision by the artificial neural network (ANN) model, the selection decision 

by the visual method (visual), stalk number, stalk height (height), stalk diameter 

(Diameter), and seedling cane yield (Cane) for the first 30 seedlings derived from the 

LSU AgCenter population. 

 

Seedling 

 

P(Y=1) 

 

P(Y=0) 

 

ANN 

 

Visual 

Number 

of stalks  

Height  

(m) 

Diameter 

(cm)  

Cane 

(kg) 

1 1 0 1 1 23 2.37 1.70 12.38 

2 0.09 0.91 0 0 11 2.25 1.68 5.49 

3 0.31 0.69 0 0 9 2.50 1.93 6.59 

4 1 0 1 1 25 2.40 2.12 21.19 

5 1 0 1 1 20 2.50 1.70 11.35 

6 0.01 0.99 0 0 12 1.90 1.51 4.08 

7 0 1 0 0 12 1.70 1.34 2.88 

8 1 0 1 1 16 2.40 1.84 10.21 

9 0 1 0 0 4 2.40 2.11 3.36 

10 0.87 0.13 1 1 11 2.35 2.00 8.12 

11 0.03 0.97 0 0 10 2.40 1.63 5.01 

12 1 0 1 1 17 2.60 2.33 18.85 

13 0.91 0.09 1 1 10 2.40 2.13 8.56 

14 0.13 0.87 0 0 6 2.40 2.25 5.73 

15 1 0 1 1 14 2.45 2.08 11.66 

16 0.9 0.1 1 0 14 2.20 1.75 7.41 

17 1 0 1 1 23 2.30 1.90 15.00 

18 0.34 0.66 0 0 10 2.20 1.98 6.78 

19 0.01 0.99 0 0 10 2.05 1.72 4.77 

20 0 1 0 0 8 2.40 1.68 4.26 

21 0.91 0.09 1 1 16 2.30 1.45 6.08 

22 1 0 1 1 19 2.30 1.72 10.16 

23 0.33 0.67 0 1 11 2.15 1.88 6.57 

24 1 0 1 1 13 2.55 2.23 12.95 

25 0.58 0.42 1 1 10 2.35 1.98 7.24 

26 0 1 0 0 8 2.30 1.48 3.17 

27 1 0 1 1 19 2.40 1.63 9.52 

28 0.74 0.26 1 1 14 2.30 1.58 6.32 

29 1 0 1 1 18 2.20 1.66 8.57 

30 0.84 0.16 1 1 13 2.35 1.74 7.27 
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Table 3.5: Probability of selecting [P(Y = 1)] or rejecting [P(Y = 0)] a seedling, the predicted 

selection decision by the artificial neural network (ANN) model, the selection decision 

by the visual method (visual), stalk number, stalk height (height), stalk diameter 

(Diameter), and seedling cane yield (Cane) for the first 30 seedlings derived from the 

USDA population. 

 

Seedling 

 

P(Y=1) 

 

P(Y=0) 

 

ANN 

 

Visual 

Number 

of stalks  

Height  

(m) 

Diameter 

(cm)  

Cane 

(kg) 

1 0.53 0.47 1 0 19 2.31 1.95 13.11 

2 0.05 0.95 0 0 10 1.88 1.67 4.12 

3 0.08 0.92 0 0 22 1.68 1.78 9.20 

4 0.53 0.47 1 1 20 2.06 2.07 13.87 

5 0.33 0.67 0 0 19 2.01 1.95 11.41 

6 0.05 0.95 0 0 6 1.88 1.72 2.62 

7 0.12 0.88 0 0 15 2.06 1.73 7.27 

8 0.11 0.89 0 0 5 2.08 1.77 2.56 

9 0.75 0.25 1 1 15 2.24 2.18 12.55 

10 0.07 0.93 0 0 4 1.78 1.83 1.87 

11 0.48 0.52 0 0 14 1.93 2.13 9.63 

12 0.91 0.09 1 1 6 2.39 2.40 6.49 

13 0.03 0.97 0 0 11 1.63 1.70 4.07 

14 0.85 0.15 1 1 24 2.08 2.30 20.75 

15 0.29 0.71 0 0 7 2.29 1.87 4.40 

16 0.02 0.98 0 0 11 1.63 1.67 3.93 

17 0.35 0.65 0 1 10 2.13 1.97 6.49 

18 0.02 0.98 0 0 15 1.91 1.45 4.73 

19 0.28 0.72 0 0 20 2.26 1.78 11.25 

20 0.23 0.77 0 0 9 2.16 1.86 5.28 

21 0.13 0.87 0 0 11 2.03 1.78 5.56 

22 0.87 0.13 1 0 5 2.16 2.43 5.01 

23 0.75 0.25 1 0 5 2.49 2.13 4.44 

24 0.14 0.86 0 0 10 2.24 1.72 5.21 

25 0.12 0.88 0 0 2 1.85 1.93 1.08 

26 0.29 0.71 0 0 4 2.24 1.92 2.60 

27 0.11 0.89 0 0 24 2.11 1.62 10.44 

28 0.48 0.52 0 0 2 2.24 2.08 1.52 

29 0.70 0.3 1 1 8 2.11 2.25 6.71 

30 0.61 0.39 1 0 10 2.29 2.08 7.78 
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Further evaluation of the discriminating ability was done for each of the five families 

from the LSU AgCenter population (Table 3.7). The ANN model produced greater 

discrimination between the selected and rejected seedlings than the visual method for all the 

families. The seedlings selected by the ANN model also produced more stalks that were thicker 

than those selected by the visual method. The magnitude of the discrimination of the ANN model 

was greater than that of the visual method in situations where the ANN model selected more 

seedlings than the visual method for example, families XL01-001, XL01-050, XL01-059, and 

XL01-460 (Table 3.7). When the number of seedlings selected by both methods was equal, for 

example, family XL01-215, the discriminating ability of the ANN model was similar to that of 

the visual method. 

Table 3.6: The means for stalk number, stalk height, stalk diameter and cane yield for seedling 

selected (S) and rejected (R) by visual selection and artificial neural network models 

and the means expressed as a percent of rejected seedlings ((S-R)/R %) for the LSU 

AgCenter and USDA populations. 

 

Population 

 

Trait 

Visual Selection Artificial Neural Networks 

Rejected Selected (S-R)/R% Rejected Selected (S-R)/R % 

 

LSU  

AgCenter 

Stalks 

Height (m) 

Diameter (cm) 

Cane (kg) 

9.74 

2.11 

2.17 

7.62 

15.58 

2.28 

2.17 

12.62 

60 

8 

0 

66 

7.83 

2.16 

1.99 

5.08 

14.28 

2.19 

2.24 

12.01 

82 

1 

13 

136 

 

USDA 

Stalks 

Height (m) 

Diameter (cm) 

Cane (kg) 

12.17 

2.07 

1.73 

6.02 

11.89 

2.22 

2.13 

9.37 

-2 

8 

24 

56 

11.89 

2.05 

1.70 

5.65 

13.08 

2.26 

2.17 

10.44 

10 

10 

27 

85 
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Figure 3.4: Comparison of mean cane yield (kg) for the seedlings selected and rejected using 

visual and artificial neural network models for the LSU AgCenter (a) and USDA (b) 

populations. 

3.3.5 Selection Efficiency of the Artificial Neural Network Models Versus Visual Selection 

Improving selection efficiency is a challenge shared by sugarcane breeders. Selection efficiency 

is the ability to discard a seedling that would eventually produce low cane yield and or select a 

seedling that would produce high cane yield. From the LSU AgCenter population, the visual 

method selected 57 seedlings while the ANN model selected 96 seedlings. Three out of the 57 

seedlings selected by the visual method were rejected by the ANN model. The ANN model 

selected an additional 42 seedlings from those seedlings rejected by the visual method. From the 

USDA population, the visual method selected 46 seedlings while the ANN model selected 53 

seedlings. Thirteen of the 46 seedlings selected by the visual method were rejected by the ANN 

model. An additional 20 seedlings were selected by the ANN model from those seedlings 

rejected by the visual method. The means of seedlings selected by the visual method and rejected 

by the ANN models, and the means of seedlings rejected by the visual method and selected by 

the ANN models were calculated (Table 3.8).  
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Table 3.7: The difference between the means of the selected and rejected seedlings expressed as a percent of the rejected seedlings for 

the seedlings selected using the visual method (Visual) and the artificial neural network model (ANN) for stalk number, 

stalk height, stalk diameter and cane yield and the number of seedlings selected (Number selected) for the individual crosses 

derived from the LSU AgCenter population. 

 

Trait 

XL01-001 XL01-050 XL01-059 XL01-215 XL01-460 

Visual ANN Visual ANN Visual ANN Visual ANN Visual ANN 

Stalk number 

Stalk height (m) 

Stalk diameter (cm) 

Cane yield (kg) 

Number selected 

89 

-1 

3 

104 

16 

104 

-1 

6 

126 

21 

72 

9 

7 

115 

6 

76 

5 

16 

166 

16 

50 

4 

2 

59 

10 

88 

9 

6 

144 

14 

71 

7 

7 

119 

18 

77 

7 

6 

126 

18 

45 

0 

-14 

73 

7 

60 

2 

14 

100 

27 
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The seedlings selected by the ANN models and rejected by the visual method produced 

75 % (LSU AgCenter population) and 51 % (USDA population) more cane yield than seedlings 

rejected by the ANN models and selected by the visual method (Table 3.8, Figure 3.5). The 

seedling selected by the ANN model and rejected by the visual method produced 22 % (LSU 

AgCenter population) and 30 % (USDA population) more stalks that were generally thicker and 

taller (USDA population) than seedlings rejected by the ANN model and selected by the visual 

method. 

 
Figure 3.5: The mean cane yield (kg) for the seedlings rejected by the artificial neural network 

(ANN) model and selected by the visual method (Rejected) and seedlings selected by 

the ANN model and rejected by the visual method (Selected) for the LSU AgCenter 

and USDA populations. 
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Table 3.8: The means of the rejected and selected seedlings, and the difference of the means of 

selected and rejected seedlings expressed as a percent of rejected seedlings ((S-

R)/R%) for stalk number, stalk height, stalk diameter and seedling cane yield for the 

LSU AgCenter and USDA populations. 

 

Trait 

LSU AgCenter USDA 

Rejected Selected (S-R)/R% Rejected Selected (S-R)/R% 

Stalk number 

Stalks height (m) 

Stalk Diameter (cm) 

Cane yield (kg) 

10.00 

2.15 

1.91 

6.17 

12.21 

2.05 

2.39 

10.78 

22 

-4 

25 

75 

11.31 

2.12 

1.97 

7.09 

14.65 

2.26 

2.12 

10.74 

30 

7 

8 

51 

†Rejected refers to seedlings selected by the visual method and rejected by the ANN model. 

‡Selected refers to seedlings rejected by the visual method and selected by the ANN model. 

 

The number of seedlings that were selected by each method and produced less cane yield 

than the population mean, and the number of seedlings that produced higher cane yield than the 

population mean and were rejected were counted for both populations. From the LSU AgCenter 

population, all the seedlings that produced higher cane yield than the population mean were 

selected by the ANN model. From the same population, the visual method rejected 21 seedlings 

that produced higher cane yield than the population mean. The ANN and the visual method 

erroneously included similar numbers of low yielding seedlings in the select category although 

most of the seedlings included by the ANN model had lower probability of selection and could 

have been rejected by raising the threshold probability. From the USDA population, the ANN 

model selected 12 seedlings that produced lower cane yield than the population mean while the 

visual method selected 14 seedlings that produced lower cane yield than the population mean. 

The ANN model rejected 79 seedlings that produced higher cane yield than the population mean 

while the visual method rejected 88 seedlings that produced higher cane yield than the 

population mean. The seedlings rejected by the ANN model could have been selected by 

lowering the threshold probability since they were rejected with marginally lower probability 
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than the threshold. Generally, the visual method rejected more higher yielding and included more 

lower yielding seedlings than the ANN model, indicating lower selection efficiency. The ANN 

model was also more efficient than the visual method when selecting from the more variable 

USDA population. Recognizing that the USDA data had a poor fit to the model (Table 3.3, 

Figure 3.3(b)), one could, after gaining experience, learn to adjust the threshold probability for 

the ANN model to further improve selection efficiency when dealing with this type of 

population.     

3.3.6 Seedling Cane Yield Increased With Increasing Selection Probabilities  

We investigated the relationship between the probability and estimated seedling cane yield. The 

ANN output data were ranked in ascending order of probability. The 150 seedlings (LSU 

AgCenter) and the 272 seedlings (USDA) were divided into 10 groups each. Group 1 had the 

lowest probability and group 10, the highest. The means of each group for each trait were 

calculated. The means (y-axis) were plotted against group probability rankings (x-axis). The 

trends for cane yield and stalk number from the LSU AgCenter population were similar and 

increased with probability rankings (Figure 3.6(a)). The trends for stalk height and diameter were 

less similar to that for cane yield and marginally increased with probability rankings. From the 

USDA population, the trends for stalk diameter and stalk height were very similar to that for 

cane yield and increased with probability rankings (Figure 3.6 (b)). The trend for stalk number 

fluctuated and showed no clear pattern across probability rankings.    

3.3.7 Artificial Neural Network Models Versus Visual Method at Identical Selection Rates 

Comparison of the ANN model and the visual method at different selection rates likely obscured 

their impact on selection. A balanced comparison should use identical selection rates. Therefore, 
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to produce a balanced comparison of the ANN models and the visual method during seedling 

selection, identical selection rates were used. From the LSU AgCenter population, 57 out of 150 

seedlings (38 %) were selected by the visual method while from the USDA population, 46 out of 

272 (17 %) were selected. The ANN model selected 96 out of the 150 seedlings (64 %) from the 

LSU AgCenter population and 53 out of the 272 seedlings (19 %) from the USDA population. 

To produce identical comparisons, the visual selection rates were used as standard for the ANN 

models. The number of seedlings selected by the ANN model was adjusted to equal that of the 

visual method by ranking the probability and adjusting the probability threshold. The means of 

the highest 38 % for the LSU AgCenter population and 17 % for the USDA population were 

used for the comparison (Table 3.9). The seedlings selected by the ANN model produced 16 % 

(LSU AgCenter population) and 8 % (USDA population) more cane yield than those selected by 

the visual method. The seedlings selected by the ANN model produced 8 % more stalks that 

were thicker than those selected by the visual method. 

Table 3.9: The means for stalk number, stalk height, stalk diameter and estimated seedling cane 

yield of seedlings selected by the artificial neural network models (ANN) and the 

visual method (Visual), and of seedlings selected by the ANN method expressed as a 

percent of seedlings selected by the visual method (ANN % Visual) for the LSU 

AgCenter (38 % selection rate) and USDA (17 % selection rate) populations.   

 

 

Trait 

LSU AgCenter USDA 

 

Visual 

 

ANN  

ANN  

% Visual 

 

Visual 

 

ANN 

ANN  

% Visual 

Stalk number 

Height (m) 

Diameter (cm) 

Cane yield (kg) 

15.58 

2.28 

2.12 

12.62 

16.77 

2.25 

2.24 

14.65 

108 

98 

106 

116 

11.89 

2.22 

2.13 

9.37 

12.87 

2.28 

2.19 

10.45 

108 

102 

103 

108 
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Figure 3.6: Trends for means of seedling stalk number, stalk height, stalk diameter, and cane 

yield (kg) (y-axis) plotted against the group probability rankings (x-axis) for the LSU 

AgCenter (a) and USDA (b) populations. 

3.4 Discussions 

The ANN model was superior to visual selection in identifying seedlings with high cane yield 

potential as evidenced from several comparisons between the two selection methods. For 
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example, the proportion of high yielding seedlings selected by the ANN model was greater than 

that selected by the visual method. This proportion increased when similar selection rates were 

used for both methods. Generally, seedlings selected by the ANN model produced more stalks 

that were thicker and taller than those selected by the visual method. The visual method rejected 

a greater proportion of seedlings that produced estimated cane yields higher than the population 

mean compared to the ANN model. A good number of these seedlings rejected by the visual 

method were selected by the ANN model. Conversely, the ANN model rejected low yielding 

seedlings that were selected by the visual method. Because only a limited number of seedlings 

can be advanced to the next stage, the low efficiency of the visual method would greatly reduce 

the overall efficiency of a breeding program. The ANN model uses fast and automated 

computations and was superior to the visual method even for a variable data set with poor model 

fit such as was the situation with the USDA population. A good aspect of the ANN model is that 

as the breeder gains in experience, they will be in a better position to recognize data with a poor 

model fit and adjust the probability threshold accordingly.   

The effects of genotype by environment interaction are known to be large in sugarcane 

particularly for cane yield because of competition effects (Jackson and McRae, 2001) and the 

fact that cane yield is controlled by quantitative genes (Falconer and Mackay, 1996; Jackson and 

McRae, 1998). Genotype by environment interaction is expected to be even larger in non-

replicated seedling plots. During seedling selection, it is also not possible to precisely pin point 

the seedlings that will eventually produce high clonal cane yield. Therefore, sugarcane breeders 

are inadvertently discarding low yielding seedlings rather than directly selecting for high 

yielding ones. Erroneously advancing seedlings that should have been rejected increases the 

costs of the clonal evaluation stages and reduces the efficiency as more clones are handled than 



70 

is necessary.  Our data suggest that the ANN model was better at rejecting low cane yielding 

seedlings than the visual method.   

The ANN model selected seedlings based on those traits that exhibited the largest 

variability within the population. Conversely, the traits with the low variability would be less 

associated with the estimated seedling cane yield and would have little influence in determining 

the probability of seedling selection. This aspect of the ANN models confirmed the long held 

view by breeders to base their selection on traits exhibiting the greatest genetic variability. 

Genetic variability creates the best opportunity for selection (Allard, 1960). Therefore, the ability 

of the ANN models to use the most genetically variable traits during seedling selection leads to 

higher selection efficiency than is the case with the visual method. In this study, the ANN 

models selected seedlings that produced more stalk numbers than visual selection. Research done 

on early selection stages in Zimbabwe showed that the stalk numbers was positively associated 

with cane yield (Zhou, 2004b). In Louisiana, seedlings producing high stalk numbers are 

routinely selected to enhance cane yield and ratooning ability (Milligan et al., 1990).   

Since land is always a limiting resource in most breeding programs, the breeder has little 

choice but to design the best allocation of resources. The ANN model offers the breeder greater 

flexibility for adjusting the numbers of seedlings to advance during seedling selection. The 

breeder can increase or decrease the number of seedlings to advance by decreasing or increasing 

the threshold probability, respectively. These adjustments can be used to refine selection using 

the trait values that can be included in the output, for example, disease and insect resistance 

scores that were not used in developing the ANN prediction model. Other traits such as Brix can 

be added to the model. To reduce the number of seedlings to be advanced using the visual 

method, the breeder will have to go back to the field and review all the selected seedlings and 
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decide on the seedlings to discard. To increase the number of seedlings to be advanced, the 

breeder will have an equally daunting task of physically reviewing all the rejected seedlings in 

order to identify those seedlings that have to be included. With the ANN model, adjusting the 

numbers can be done easily using the probability of selection and the associated trait values of 

the seedlings. 

A disadvantage of the ANN model for seedling selection is the required measurements of 

variables such as stalk number, stalk height, stalk diameter, Brix, disease and pest resistance. 

Most breeding programs cannot afford to measure these variables because of the high cost 

associated with the manual labor in some of these countries.  However in some programs, for 

example the Zimbabwe sugarcane breeding program, these variables are routinely measured 

during visual selection and used for adjusting the numbers to advance (Zhou, 2004a). 

Measurement costs can be reduced by excluding seedlings that are too inferior and would 

probably never be selected. Visual scores for stalk numbers, stalk height, and stalk diameter can 

be used as input variables. The scores are easier and quicker to collect but will reduce precision. 

Scores may be more useful as a validation tool and their precision may improve with time as 

staff become more experienced.  

The other disadvantage and limitation of the ANN model is their strong dependence on 

the amount, suitability and precision of measurements of the training data (Pandolfi et al., 2009). 

Pandolfi et al. (2009) noted that the ANN model training data should capture the variation in the 

population to attain the best results. However, Pandolfi et al. (2006) noted that even when the 

parameters of the training data were not statistically representative of the target population, the 

neural network models appeared capable of generalizations beyond the training data and 

produced correct results even in different populations. Pandolfi et al. (2009) applied the ANN 
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model for the classification of tea accessions. In their study, it was important to capture the 

variation in the population. This may not be entirely necessary during selection as the intent is to 

shift the trait values, in this case, cane yield in one direction.   

In sugarcane selection, the training data can be collected from part of the seedling 

population or from special populations created from some of the elite families. This population 

of elite families would constitute a reservoir of the ideal trait combinations. With selection, the 

objective is to shift the population towards a desired direction of trait values, such as high cane 

yield. As previously indicated, therefore the ideal training data need not have similar variability 

to that of the target population. Rather, the training data should be a population with the desired 

combination of trait values that will be mimicked by the selection process. In this case, the ANN 

models provide the added advantage of allowing the breeder to directionally shift the population 

towards high cane yield more objectively than the visual method.  

3.5 Conclusions 

The greatest challenge facing sugarcane breeders is the identification of seedlings with high cane 

yield potential. The seedling stage is planted to a large number of single seedlings that are not 

replicated and visual selection is used as a proxy for cane yield.  The ANN model is a statistical 

tool that can be used to increase selection efficiency at this stage. The ANN model requires the 

measurement of yield component traits such as stalk number, stalk height and stalk diameter and 

these are used as input variables to the logistic regression equations that compute probabilities 

that are used to decide whether to select or reject a seedling. 

The ANN model was superior to the visual method in discriminating between the 

seedlings with high and low cane yield. The magnitude of the difference between the selected 

and rejected seedlings was greater for the ANN model than the visual method.  The magnitude of 
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the difference increased when similar selection rates were applied for the visual method and the 

ANN model. The computations in the ANN model are automated by the SAS software and fast, 

and therefore large numbers of seedlings can be evaluated quickly. The output in the neural 

network models provides a decision to select or reject a seedling based on a threshold probability 

that is user-defined. Yield component traits with high variability have a greater influence in 

determining threshold probabilities thus mimicking what breeders try to achieve during selection. 

Although the ANN model was demonstrated on the seedling stage using cane yield components, 

traits such as Brix (that are less affected by competition in small plots (Jackson and McRae, 

2001)) and insect and disease resistance can be added to improve the training data and the model. 

Additionally, the model can be applied across all the stages of a breeding program, and would be 

particularly useful in the non-replicated stages. 
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CHAPTER 4: LOGISTIC REGRESSION MODELS: A DECISION SUPPORT 

STATISTICAL TOOL FOR ENHANCING SEEDLING SELECTION IN 

SUGARCANE BREEDING  

 

4.1 Introduction 

 

The correct identification of seedlings with the potential to produce high cane yield is a major 

challenge faced by sugarcane breeders during selection. Currently, visual appraisal of seedlings 

for cane yield using stalk number, stalk height and stalk diameter is used for individual seedling 

selection. Visual selection is subjective (Cox and Stringer, 1998) and therefore can be inefficient 

(Hogarth and Berding, 2006). The confounding effect of genotype by environment interaction 

and the competition among closely spaced seedlings reduces the efficiency of visual selection. 

The influence of these confounding effects to seedling selection cannot be resolved by 

replication. The large number of seedlings planted meant that there would be insufficient land to 

plant the seedlings in replicated plots. At planting, each seedling is represented by one plant and 

therefore replication is also practically impossible because of limited planting material. Closely 

spaced seedlings alter phenotypic expression for stalk number, stalk height, and stalk diameter 

(De Sousa-Vieira and Milligan, 1999) making the visual identification of high cane yielding 

seedlings less precise. Sugarcane breeders generally plant closely spaced seedlings because of 

limited land and the need to plant large number of seedlings to enable high selection intensity 

(Breaux and Miller, 1987). Large numbers of seedlings are planted in order to capture the 

transgressive segregants that combine the unique and desirable traits. While family selection 

identified high cane yield crosses (Cox and Hogarth, 1993; Hogarth and Mullins, 1989; Kimbeng 

et al., 2001b), seedling selection from the elite crosses has remained inefficient because of the 

dependence on visual appraisal for yield (Kimbeng et al., 2001a).  
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Path coefficient analysis studies (De Sousa-Vieira and Milligan, 2005; Kang et al., 1983, 

1989; Milligan et al., 1990; Singh et al., 2005) has proven the contributions of the yield 

components (stalk number, stalk height and stalk diameter) to cane yield. However, despite this 

knowledge, the yield components are not directly used in selection. One of the reasons for this 

could be the expense involved in measuring these yield components and, the unavailability of 

appropriate statistical models that incorporate the yield components to create a decision support 

tool that can be used for individual seedling selection. To increase seedling selection efficiency, 

Hogarth and Berding (2006) suggested that sugarcane breeders should explore and adapt 

available statistical decision support tools. In this study, we propose and demonstrate the 

potential of using the logistic regression model as a statistical decision support tool for individual 

seedling selection. The logistic regression model would use the stalk number, stalk height and 

stalk diameter as predictor variables. The output from the model, a probability would be used as 

the decision support tool for deciding to either select or reject a seedling. This statistical decision 

support tool is expected to reduce the bias and subjectivity associated with the visual appraisal 

method during seedling selection for high cane yield. 

The objective of this study was to introduce and demonstrate the utility of the logistic 

regression models as a statistical decision support tool for sugarcane seedling selection. 

4.1.1 Statistical Considerations in Logistic Regression Models 

Logistic regression models are part of the generalized linear models that are used to predict the 

probability of occurrence of binary events by fitting the data of predictor variables to a logistic 

curve (Agresti, 2007). Generalized linear models are made up of three components namely the 

random, the systematic, and the link function (Casella and Berger, 2003). The response variable 
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is the random component and in this study, it was the decision to either select or reject a 

seedling, which is binary. The systematic component is a linear function of predictor variables 

and in this study would be a function of the stalk numbers, stalk height and stalk diameter. The 

predictor function would follow a multiple linear regression. The link function is the logit or 

logistic transformation. The link function is used to linearize the relationship between the 

random component (the binary response variable) and the systematic component (Allison, 2003).    

Logistic regression models can use both numerical and categorical predictor variables 

(Le, 1998). Logistic regression models have been used extensively in medical research to predict 

the onset of diseases (Hosmer and Lemeshow, 1989), in political sciences to determine opinions 

for candidates (Cohen, 2006), and in education to predict pass or fail of students (Bowie, 2006). 

The logistic regression cumulative distribution function is, 

.                        Equation 4.1 

By re-arranging the terms, Equation 4.1 can be expressed as, 

,            Equation 4.2 

where  is the probability of selecting the ith seedling (i = 1, 2, …, n),  is the ith 

seedling stalk number,  is the ith seedling stalk height, and  is the ith seedling stalk 

diameter,  is the intercept of the predictor function,  is the coefficient of the stalk number, 

 is the coefficient of the stalk height,  is the coefficient of the stalk diameter. The  

transforms the odds to produce log of odds. It is the log of odds that are modelled by the multiple 

linear regression function in Equation 4.2 (Hosmer and Lemeshow, 1989). The log 
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transformation linearizes the relationship between the odds and the function of predictor 

variables.  

By re-arranging the terms, Equation 4.2 can be expressed as, 

,                           Equation 4.3 

where the odds of selecting a seedling are equal to the exponential of the function of the 

predictor variables. The probability of selecting a seedling is estimated using Equation 4.1. The 

confidence intervals of the probability of selecting a seedling are calculated indirectly from the 

confidence intervals of the log of odds of selecting a seedling. Equation 4.2 is used to calculate 

the log of odds of selecting a seedling. Let  be the log of odds of selecting a seedling where, 

.                                Equation 4.4 

The coefficients , ,  and  are estimated from a training data set. The variance of  is, 

,                     Equation 4.5 

which is equal to,  

 

 

.                                                                                    Equation 4.6 

Equation 4.6 includes the variances and covariance of the coefficients of the predictor variables. 

The use of the covariance improves the estimates of the confidence intervals by accounting for 

the correlation between the predictor variables when computing the variances. The standard error 
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( ) is equal to . The 95 % confidence limits for  is equal to  . The 

confidence limits for the probability of selecting a seedling is calculated by, 

.                Equation 4.7 

4.2 Materials and Methods 

4.2.1 Experimental Materials and Data Collection 

The data were collected from seedlings germinated and grown from true seed. Seedlings from 17 

crosses were grown at the United States Department of Agriculture, Agricultural Research 

Service (USDA-ARS), Sugarcane Research Station at Houma (Table 4.1) and 5 crosses grown at 

the Louisiana State University Agricultural Center (LSU AgCenter), Sugar Research Station, St. 

Gabriel, (Table 4.2), Louisiana, USA. The seedlings were transplanted in the summer of 2002, 

harvested in the fall of 2002 and left to over winter. At the USDA, one set of the individual 

seedlings was planted in the first replication and the other set in the second replication. Families 

but not seedlings were replicated. The number of seedlings that survived winter was counted in 

2003 (Table 4.1). In each plot, there were two rows, each with 16 seedlings. Eight seedlings 

(four from each row per plot) were randomly chosen from each plot. 

For the LSU AgCenter population, five crosses (Table 4.2), each with more than 500 

seedlings, were selected from the breeding program. From the seedlings that survived the winter, 

thirty seedlings were randomly chosen from each cross. For both the USDA and LSU AgCenter 

populations, the chosen seedlings were evaluated visually to determine if they would have been 

selected (1) or rejected (0). The decision was based on a consensus by two experienced 

sugarcane breeders. The stalk number was counted for each of the chosen seedlings. The stalk 
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diameter of three stalks from each seedling was measured at the middle of the stalk using a 

caliper (without reference to the node) and used to estimate a mean.  The stalk height of each 

seedling was measured from the base of the seedling to the top most visible dewlap. 

Table 4.1 Series, cross number, female parent, male parent and number of seedlings in 

replication 1 and 2 of the USDA population. 

Series Family Female Parent Male Parent Rep 1 Rep2 

HB00 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

HB01 

306 

3055 

3074 

3093 

3101 

3107 

3111 

3174 

3249 

3255 

3256 

3257 

3276 

3322 

3328 

3345 

3417 

Ho94-856 

HoCP00-945 

HoCP00-950 

HoCP00-945 

HoCP99-866 

HoCP00-950 

HoCP99-866 

HoCP00-945 

N27 

HoCP00-945 

HoCP00-950 

L98-207 

TUCCP77-42 

TUCCP77-42 

HoCP91-555 

HoCP91-555 

HoCP91-555 

HoCP96-540 

HoCP99-866 

HoCP96-540 

HoCP96-540 

HoCP96-540 

LCP85-384 

LCP85-384 

LCP85-384 

LCP85-384 

Ho94-856 

Ho94-856 

Ho94-856 

HoCP99-866 

L98-207 

LCP85-384 

L98-207 

TUCCP77-42 

18 

18 

16 

17 

17 

18 

18 

18 

23 

18 

17 

18 

17 

18 

18 

17 

18 

17 

17 

19 

18 

16 

16 

18 

18 

11 

18 

18 

18 

17 

18 

20 

17 

18 

4.2.2 Estimation of Seedling Cane Yield From Yield Components 

The seedling cane yield was estimated using the formula used by De Sousa-Vieira and Milligan 

(1999) (Equation 4.8). Their calculation assumed the sugarcane stalk was a perfect cylinder with 
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specific gravity of 1.0 g cm
3
 (Miller and James, 1974; Gravois et al., 1991; Chang and Milligan, 

1992).  

,                                Equation 4.8 

where n = seedling stalk number, d = density at 1.0 g cm
-3

, r = mean stalk radius (cm), and l = 

seedling stalk length (cm). 

Table 4.2: The female and male parent of seedlings from crosses derived from the LSU 

AgCenter population. 

Cross Female Parent Male Parent 

XL01-001 

XL01-050 

XL01-059 

XL01-215 

XL01-460 

HoCP92-624 

LCP86-454 

HoCP95-951 

TucCP77-42 

Ho95-988 

HoCP91-552 

LC85-384 

HoCP96-540 

LCP85-384 

L99-238 

4.2.3 Data Analysis 

The data were analyzed using the logistic procedure of SAS (SAS Institute, 2007). The data were 

divided into the training data set (30 %) and prediction data set (70 %). The prediction data had 

the values of the response variable coded as missing. The training data set was used to produce 

the parameters that were used to build the logistic regression models. The SAS code used for 

data analysis is shown in Appendix 2. 
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4.3 Results  

4.3.1 Likelihood Ratio, Score and Wald Statistical Tests 

The logistic regression analysis (Appendix 2) produced the Likelihood Ratio, the Score and the 

Wald statistics that were used to test the robustness of the model (Table 4.3). The Likelihood 

Ratio, the Score and the Wald statistics are generated from the training data set and follow a Chi-

square distribution. A significant statistic means that at least one of the predictor variables (stalk 

numbers, stalk height, stalk diameter) was significantly associated with the response variable (the 

decision to either select or reject a seedling). The Likelihood Ratio statistic is the most powerful, 

while the Wald statistic is the least. If any one of the Likelihood Ratio, Score and Wald statistic 

is not significant, then the model may be unreliable (Agresti, 2007). The Likelihood Ratio, the 

Score and the Wald statistics were highly significant (P < 0.01) for both populations, indicating 

that at least one of the predictor variables was significantly associated with the response variable 

(Table 4.3). The Likelihood Ratio statistic (greatest power) produced the largest Chi-square 

value and the Wald produced the least. 

4.3.2 Variable Selection and Logistic Regression Cumulative Distribution Functions  

The parameter estimates of the coefficients of the predictor variables (Table 4.4) are generated 

from the training data set. The coefficients of the predictor variables are interpreted the same 

way as with the multiple linear regression models. As is the case with multiple linear regression 

models, the intercept of the model has no meaningful interpretation. A significant coefficient of 

the predictor variables means that the predictor variable significantly influences the decision to 

either select or reject a seedling. Higher levels of significance mean higher levels of influence by 

a predictor variable on the selection decision. As is done with multiple linear regressions, 
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variable selection is used to eliminate non significant predictor variables from the model. Multi-

collinearity among variables is considered during variable selection and occurs when two or 

more predictor variables are highly correlated. Multi-collinearity leads to variance inflation and 

variance inflation causes poor predictions. The effects of multi-collinearity are corrected by 

including only one of the highly correlated predictor variables in the model.      

Table 4.3: The Chi-square statistic and the probability of obtaining a larger statistic (P-value) for 

the Likelihood Ratio, Score and Wald tests for the USDA and LSU AgCenter 

populations 

 

Statistic 

USDA LSU AgCenter 

Chi-square P-value Chi-square P-value 

Likelihood Ratio 

Score 

Wald 

42.64 

33.77 

20.59 

0.0001 

0.0001 

0.0001 

32.67 

25.20 

13.54 

0.0001 

0.0001 

0.0011 

  

The parameter estimates of the coefficients of the predictor variables for the USDA and 

LSU AgCenter populations are shown in Table 4.4. From Table 4.4, the estimate column 

presents the coefficients for intercept, stalk number, stalk height and stalk diameter. Each 

coefficient is divided by its standard error to produce a t-statistic. The t-statistic is squared to 

produce the Chi-square statistic with one degree of freedom. The P-value is the probability of 

producing a larger Chi-square statistic. 

For the USDA population, the stalk number and stalk diameter produced significant 

coefficients (P < 0.05) while stalk height (P = 0.06) was not significant (Table 4.4). The stalk 

diameter had the highest P-value, indicating that it was the most influential predictor variable for 

determining the decision to either select or reject a seedling compared to stalk number and stalk 

height. The stalk diameter was not significant (P = 0.79) for the LSU AgCenter population, 
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indicating that it had no significant influence on the decision to either select or reject a seedling. 

The stalk diameter was removed from the model during the variable selection process. The stalk 

numbers was highly significant (P < 0.01) and was the most influential predictor variable of the 

decision to either select or reject a seedling. The coefficients of the predictor variables were 

different between the USDA and the LSU AgCenter populations. The differences reflected the 

variability of the trait values of seedlings present within each population. 

Table 4.4: The estimates, standard errors, chi-square statistic and probability (P-value) of 

obtaining a larger statistic for the coefficients of the parameters for the intercept, stalk 

number, stalk height and stalk diameter from the USDA and LSU AgCenter 

populations. 

Population Parameter Estimate Standard Error Chi-Square P-value 

 

USDA 

Intercept 

Stalk number 

Stalk height 

Stalk diameter 

-23.06 

0.12 

3.37 

6.71 

5.31 

0.05 

1.79 

1.67 

18.87 

5.35 

3.52 

16.24 

0.0001 

0.0207 

0.0605 

0.0001 

 

LSU AgCenter 

Intercept 

Stalk number 

Stalk height 

Stalk diameter 

-17.34 

0.36 

5.44 

0.29 

6.40 

0.10 

2.01 

1.10 

7.33 

12.22 

7.37 

0.07 

0.0068 

0.0005 

0.0066 

0.7936 

LSU AgCenter 

(without 

Stalk diameter) 

Intercept 

Stalk number 

Stalk height 

-16.25 

0.36 

5.20 

4.71 

0.10 

1.75 

11.89 

12.25 

8.83 

0.0006 

0.0005 

0.0030 

 

The parameter estimates of the coefficients of the predictor variables (Table 4.4) were 

used to build the cumulative logistic regression distribution functions (Equations 4.9 and 4.10) 

that were in turn used to calculate the probability of selecting a seedling. The cumulative logistic 

regression distribution functions were constructed by substituting the values of the coefficients in 
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Table 4.4 into Equation 4.1. The cumulative logistic regression distribution function for the 

USDA population was, 

.     Equation 4.9 

The logistic cumulative distribution function for the LSU AgCenter population was, 

.             Equation 4.10 

The probability of selecting a seedling is calculated by substituting the values of the stalk 

numbers, stalk height and stalk diameter for that seedling in Equations 4.9 and 4.10. The 

probability is larger for higher values and smaller for lower values of the predictor variables. 

The probability of selecting a seedling (y-axis) was plotted against the seedling cane yield 

(x-axis) to show the cumulative distribution patterns (Figure 4.1). The probability increased with 

increasing seedling cane yield for both populations. The LSU AgCenter population (Figure 

4.1(b)) produced a slightly more variable pattern than the USDA population (Figure 4.1(a)). The 

patterns of the distributions reflect the variability within the populations.  

4.3.3 Covariance Matrix of the Logistic Regression Coefficients 

The covariance matrix is automatically generated by the SAS code (Appendix 2) from the 

training data set. The variances and covariance (Table 4.5) are substituted in Equation 4.6 to 

compute the variance of the log of odds that is in turn used to compute the standard errors of the 

log of odds. The standard errors of the log of odds are used for calculating the confidence limits 

of the log of odds. The confidence limits of the probability of selecting a seedling are calculated 

from the confidence limits of the log of odds using Equation 4.7. The covariance of two variables 
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can also be used to calculate their correlation coefficient. Using the covariance to compute the 

variance helps account for the correlation of predictor variables in calculating the probability 

confidence limits. In Table 4.5, the intersection of a coefficient row and its column represent the 

variance of that coefficient. For example, the variance of the intercept is 28.19 and that for the 

coefficient for stalk numbers is 0.0024. The intersection of the intercept and the coefficient of 

stalk numbers is their covariance, -0.128. In general, the diagonal represents the variances and 

the off-diagonals represent the covariance. Positive covariance mean positive correlation and 

negative covariance mean negative correlation between the two coefficients of the predictor 

variables. For both populations, the coefficients of stalk numbers, stalk number, stalk height and 

stalk diameter were negatively correlated with the intercept. The stalk number was positively 

correlated to stalk height and negatively correlated to stalk diameter.  

 

 

 Figure 4.1: The cumulative logistic regression distribution patterns of the probability of 

selecting a seedling (y-axis) plotted against the seedling cane yield (x-axis) for the 

USDA (a) and LSU AgCenter (b) populations.   
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Table 4.5: The variances (diagonal) and covariances (off-diagonals) for the coefficients of the 

intercept, stalk number, stalk height and stalk diameter for the USDA and LSU 

AgCenter populations.  

Population Variable Intercept Stalk number Stalk height Stalk Diameter 

 

USDA 

Intercept 

Stalk number 

Stalk height 

Stalk diameter 

28.199 

-0.128 

-6.842 

-5.801 

-0.128 

0.003 

0.009 

0.036 

-6.842 

0.009 

3.221 

-0.113 

-5.801 

0.036 

-0.113 

2.776 

LSU  

AgCenter 

Intercept 

Stalk number 

Stalk height 

22.204 

-0.371 

-7.974 

-0.371 

0.011 

0.106 

-7.974 

0.106 

3.067 

† 

†The stalk diameter for the LSU AgCenter population was not significant (P = 0.79, Table 4), 

and was excluded when calculating the covariance parameters after elimination during the 

variable selection process. 

 4.3.4 Output of Selection Probability and the Selection Probability Confidence Limits 

A sample of the logistic regression analysis output is shown in Table 4.6 (USDA population) and 

Table 4.7 (LSU AgCenter population). The output includes variables used in building the logistic 

regression model (stalk number, stalk height and stalk diameter) and those variables not used to 

build the model such as cane yield. Other variables such as Brix, disease and insect damage 

ratings can be included in the output as aids to selection. The probability of selecting a seedling, 

P, is calculated using Equations 4.9 (USDA population) and Equation 4.10 (LSU AgCenter 

population) by plugging in the values of stalk numbers, stalk height and stalk diameter of a 

seedling. Only one probability, in this case, the probability of selecting a seedling, is computed. 

The probability of rejecting a seedling would be 1–P. The confidence limits of the probability of 

selecting a seedling are computed using Equations 4.4, 4.6, and 4.7. The seedling stalk number, 

stalk height and stalk diameter are plugged in the Equation 4.4 to compute the log of odds of 
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selecting a seedling. The seedling stalk number, stalk height and stalk diameter, and the 

variances and covariance from Table 4.5 are plugged in Equation 4.6 to compute the variance of 

the log of odds of selecting a seedling. The square root of the variance of the log of odds of 

selecting a seedling provides the standard error of the log of odds of selecting a seedling. The 

product of 1.96 (the 95 % confidence limit of the Z-distribution) by the standard error of the log 

of odds is added to (upper confidence limit) or subtracted from (lower confidence limit) the log 

of odds to provide the confidence limits of the log of odds of selecting a seedling. Equation 4.7 

calculates the confidence limits of the probability of selecting a seedling by plugging in the 

confidents limits of the log of odds of selecting a seedling. 

The probability and its confidence limits are used as selection aids. A selection threshold, 

that is user defined, determines the minimum probability of selecting a seedling. For example, 

using the threshold probability of 0.5, we selected seedlings 8, 9, 10, 11, 12, 13, 14, 15 from the 

USDA population (Table 4.6) and 1, 2, 3, 4, 5, 7, 10, 11, 14, 15 from the LSU AgCenter 

population (Table 4.7). 

The probability confidence limits can be used to define a selection criterion where the 

seedlings are selected with a significantly larger probability than a given threshold. Using 

confidence limits, we can select seedlings with a probability that is significantly (P < 0.05) 

greater than the 0.5 threshold, that is the probability is greater than 0.5 and excludes 0.5 between 

the confidence limits of this probability. The seedlings 11, 14, 15 (USDA population) and 1, 2, 3, 

4, 5, 7, 10, 14 (LSU AgCenter population) were selected at significantly (P < 0.05) larger 

threshold probability than 0.5. This criterion significantly reduced the number of seedlings 

selected compared to just selecting based on the probability threshold of 0.5. 
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Table 4.6: Sample output of the logistic regression analysis of the USDA population showing 

seedling number, stalk number, stalk height, stalk diameter, seedling cane yield, 

seedling selection probability and 95 % probability confidence limits.  

 

 

Seedling 

 

Stalk  

Numbers 

Stalk 

Height 

(m) 

Stalk 

Diameter 

(cm) 

Cane  

Yield 

(kg)  

 

Selection 

Probability 

 

Lower 

Limit 

 

Upper  

Limit 

1 7 2.26 1.48 2.74 0.010 0.001 0.078 

2 12 2.44 1.63 6.13 0.081 0.015 0.337 

3 4 1.88 1.62 1.54 0.005 0.001 0.040 

4 10 2.44 1.38 3.67 0.013 0.001 0.136 

5 7 2.18 2.20 5.81 0.479 0.270 0.696 

6 17 2.54 1.72 10.00 0.285 0.063 0.702 

7 4 1.80 2.40 3.26 0.404 0.088 0.827 

8 7 2.16 2.38 6.75 0.743 0.446 0.912 

9 7 2.03 2.37 6.26 0.628 0.304 0.867 

10 12 2.51 2.05 9.96 0.652 0.318 0.883 

11 10 2.46 2.30 10.24 0.869 0.605 0.966 

12 18 2.06 2.12 13.04 0.565 0.322 0.780 

13 11 2.41 2.05 8.76 0.541 0.284 0.777 

14 18 2.21 2.32 16.77 0.893 0.661 0.973 

15 24 2.51 2.18 22.60 0.951 0.712 0.994 

To further demonstrate the advantage of using confidence limits for seedling selection, 

the mean cane yield for the seedlings selected using the threshold probability of 0.5 and those 

selected using the probability significantly (P < 0.05) larger than the threshold of 0.5 was 

calculated. The mean seedling cane yield for the seedlings selected at the 0.5 threshold 

probability was 8.95 kg and that for significantly larger than 0.5 threshold probability was 16.54 
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kg for the USDA population. For the LSU AgCenter population, the mean was 7.60 kg (0.5 

threshold probability) and 16.15 kg (significantly (P < 0.05) larger than the 0.5 threshold 

probability). Seedlings selected at significantly (P < 0.05) larger than 0.5 threshold probability 

produced 85 % (USDA population) and 112 % (LSU AgCenter population) more cane yield than 

those selected at the 0.5 threshold probability.    

Table 4.7: Sample output of the logistic regression analysis of the LSU AgCenter population 

showing seedling number, stalk number, stalk height, stalk diameter, seedling cane 

yield, seedling selection probability and 95 % probability confidence limits. 

 

 

Seedling 

 

Stalk 

numbers 

Stalk 

Height 

(m) 

Stalk 

Diameter 

 (cm) 

Cane 

Yield 

 (kg) 

 

Selection 

Probability 

 

Lower 

Limit 

 

Upper 

Limit 

1 16 2.50 2.35 18.36 0.926 0.688 0.986 

2 17 2.40 2.22 16.71 0.914 0.687 0.981 

3 15 2.50 1.85 10.70 0.897 0.637 0.977 

4 12 2.70 2.65 19.01 0.893 0.551 0.983 

5 22 2.30 1.76 13.06 0.974 0.814 0.997 

6 5 2.35 2.75 7.40 0.098 0.021 0.359 

7 15 2.30 2.30 15.16 0.754 0.522 0.896 

8 8 2.40 2.50 10.03 0.294 0.109 0.585 

9 5 2.70 2.19 5.38 0.402 0.094 0.813 

10 14 2.60 2.44 18.11 0.911 0.629 0.984 

11 12 2.40 1.93 8.97 0.637 0.379 0.835 

12 9 2.50 1.70 5.40 0.501 0.217 0.784 

13 8 2.30 1.72 4.54 0.198 0.070 0.450 

14 25 2.20 1.99 18.09 0.985 0.846 0.999 

15 11 2.40 1.96 8.42 0.550 0.301 0.777 



92 

4.3.5 Yield Trends of the Seedlings Identified Using Different Selection Strategies and 

Comparison to Visual Selection 

 Further investigation into the utilization of the probabilities and their confidence limits was done 

for the entire seedling populations. The output data from the logistic regression models were 

ranked using the probability of selecting a seedling. Within the populations, three groups were 

defined as rejected seedlings (seedlings to discard), average seedlings and elite seedlings 

(seedlings to advance). The rejected seedlings were defined as those seedlings with a probability 

of selection significantly (P < 0.05) lower than the 0.5 threshold, which is the probability lower 

than 0.5 and excluded 0.5 between their confidence limits. The average seedlings included 0.5 

between their confidence limits. The probability of the elite seedling was significantly (P < 0.05) 

larger than the 0.5 threshold, which is larger than 0.5 and excluded 0.5 between their confidence 

limits. A data set was created with the group names as the class variables. This data set was 

subjected to analysis of variance and mean separation using Tukey’s adjustment (Freund and 

Wilson, 2003). The elite seedlings produced significantly (P < 0.05) higher cane yield than the 

average and rejected seedlings (Table 4.8). The elite seedlings produced 39 % (USDA 

population) and 26 % (LSU AgCenter population) more yield than the average seedlings. The 

reject seedlings produced significantly (P < 0.05) less cane than the average seedlings. The elite 

seedlings produced significantly (P < 0.05) more stalks than the reject seedlings (USDA 

population), and the rejected and average seedlings (LSU AgCenter population). The elite 

seedlings were significantly (P < 0.05) taller for both populations and thicker (USDA 

population) than the rejected and average seedlings.  
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Table 4.8: The seedling means of selection probability and its confidence limits, stalk number, 

stalk height, stalk diameter, cane yield and cane yield expressed as percent of the elite 

for the reject, average and elite groups of the USDA and LSU AgCenter populations 

 

 

 

Population 

 

 

 

Group 

Mean selection 

Probability 

(Confidence 

 limits) 

 

Number 

of  

stalks 

 

Stalk 

height  

(m) 

 

Stalk 

diameter  

(cm) 

 

Cane 

yield 

 (kg) 

Cane 

yield 

% of 

elite 

 

USDA 

Reject 

Average 

Elite 

0.07 (0.03,0.18) 

0.46 (0.20,0.73) 

0.88 (0.64,0.96) 

10.8a 

15.2b 

14.5b 

2.01a 

2.28b 

2.31b 

1.69a 

1.98b 

2.33c 

4.84a 

10.00b 

13.90c 

35 

72 

100 

LSU  

AgCenter 

Reject 

Average 

Elite 

0.10 (0.03,0.29) 

0.50 (0.27,0.73) 

0.89 (0.66,0.96) 

8.3a 

13.0b 

17.2c 

2.04a 

2.23b 

2.39c 

2.20a 

2.17a 

2.05b 

6.73a 

11.48b 

14.48c 

46 

79 

100 

 

The means for cane yield, stalk number, stalk height and stalk diameter of the selected 

and the rejected seedlings (visual appraisal method) were calculated (Table 4.9) and compared to 

means of seedlings selected using probability (Table 4.8). The elite seedlings selected by 

probability produced 48 % (USDA population) and 15 % (LSU AgCenter population) more cane 

yield than the seedlings selected by the visual appraisal method. For the USDA population, 

seedlings selected by visual appraisal produced 6 % less seedling cane yield than those seedlings 

classified in the average group by the logistic regression probability. The elite seedlings selected 

using probability produced more stalks that were taller and thicker than those seedlings selected 

using the visual method. Table 4.9 shows that gains can be made using visual selection but these 

gains could be increased significantly by using logistic regression probability as a decision 

support tool for seedling selection.   
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Table 4.9: The means of stalk number, stalk height, stalk diameter, cane yield and cane yield 

expressed as a percent of selected for seedlings selected and rejected by the visual 

method for the USDA and LSU AgCenter populations 

 

Population 

Selection 

Decision† 

Stalks 

Numbers 

Stalk 

Height (m) 

Stalk 

Diameter (cm) 

Cane 

yield (kg) 

Cane yield 

%Selected 

USDA Rejected 

Selected 

12.17 

11.89 

2.07 

2.22 

1.73 

2.13 

6.02 

9.37 

64 

100 

LSU 

AgCenter 

Rejected 

Selected 

9.74 

15.58 

2.11 

2.28 

2.17 

2.12 

7.62 

12.62 

60 

100 

†The decision to select a seedling was based on a consensus of the visual appraisal for cane yield 

using stalk number, stalk height and stalk diameter by two experienced sugarcane breeders. 

4.3.6 Relationship of Seedling Stalk Numbers, Stalk Height and Stalk Diameter to Seedling 

Cane Yield Within the Populations 

We investigated the trends in cane yield and the yield components across probabilities. The 

output data was ranked using the probability of seedling selection. Groups 1, 2, 3, and 4 were 

comprised of seedlings that produced a probability of selection significantly (P < 0.05) less than 

0.1, 0.2, 0.3, and 0.5, respectively but without any overlapping of the probabilities of the groups 

for the USDA population. Group 5 comprised seedlings with probability similar to 0.5, that is, 

included 0.5 between their confidence limits, and group 6 comprised seedlings with probability 

significantly (P < 0.05) larger than 0.5. For the LSU AgCenter population, groups 1, 2, and 3 

comprised seedlings with probability significantly (P < 0.05) less than 0.2, 0.3, and 0.5, 

respectively without any overlapping of groups. Group 4 comprised seedlings with probability 

similar to 0.5 and group 5 comprised seedlings with probability significantly (P < 0.05) larger 

than 0.5. The group mean probability rankings (x-axis) were plotted against the group trait means 

(y-axis) for stalk number, stalk height, stalk diameter and cane yield (Figures 4.2 and 4.3). The 

trends for the stalk number, stalk height, stalk diameter and cane yield increased with increasing 

mean probability rankings for the USDA population (Figure 4.2). The trend for cane yield was 
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more similar to that of stalk diameter. The trends for stalk number and stalk height were similar. 

Previously, we showed that stalk diameter was more associated with the decision to select 

seedlings with high cane yield (Table 4.4). For the LSU AgCenter population, the trends for the 

seedling cane yield, stalk number and stalk height increased with increasing mean probability 

rankings (Figure 4.3). The trend for the number of stalk was similar to that for cane yield. The 

stalk number was shown to be more associated with the decision to select seedlings with high 

cane yield than were stalk height and stalk diameter (Table 4.4). The stalk diameter produced a 

different trend to that for cane yield. Stalk diameter was not significantly associated with 

selection decision for seedling cane yield (Table 4.4). The trends in Figures 4.2 and 4.3 showed 

that the probability of seedling selection can also be used to study the relationship of traits to 

cane yield in breeding populations. 

 
 

Figure 4.2: The trends of the means of seedling cane yield (kg), stalk number, stalk height (m) 

and stalk diameter (m) (y-axis) plotted against mean group probability rankings (x-

axis) for the USDA population. 
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Figure 4.3: The trends of the means of seedling cane yield (kg), stalk number, stalk height (m) 

and stalk diameter (cm) (y-axis) plotted against probability rankings (x-axis) for the 

LSU AgCenter population. 

4.4 Discussions 

The logistic regression models selected higher cane yield seedlings than the visual appraisal 

method. The probability used in seedling selection by the logistic regression models is a function 

of the stalk number, stalk height and stalk diameter where higher seedling values produced 

higher seedling selection probability and were also associated with higher seedling cane yield 

than lower values. Seedlings selected using probability significantly (P < 0.05) greater than a 

selection threshold of 0.5 produced higher cane yield than those selected by visual selection. 

Logistic regression is a powerful statistical decision support tool for seedling selection that uses 

the yield components that are known to be strongly correlated with cane yield from path 

coefficient analysis studies (De Sousa-Vieira and Milligan, 2005; Kang et al., 1983, 1989; 

Milligan et al., 1990). It is easy to implement in SAS (Appendix 2) and other software. 

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

6

8

10

12

14

16

18

0 1 2 3 4 5 6

St
al

k 
h

e
ig

h
t 

(m
) a

n
d

 S
ta

lk
 D

ia
m

e
te

r 
(c

m
)

C
an

e
 y

ie
ld

 (k
g)

 a
n

d
 N

u
m

b
e

r 
o

f s
ta

lk
s 

Group probability rankings

Stalks

Cane

Height

Diameter



97 

The use of logistic regression models as a statistical decision support tool for sugarcane 

seedling selection can reduce the influence of genotype by environment interaction. At the 

seedling selection stage, the effects of genotype by environmental interaction are known to be 

very large (Kimbeng and Cox, 2003, Jackson and McRae, 2001). Genotype by environment 

interaction effects are particularly important for traits controlled by quantitative genes such as 

cane yield (Falconer and Mackay, 1996; Jackson and McRae, 1998). The logistic regression 

models would capture and account for the variability within a population when estimating the 

parameters used for building the models. The confidence intervals of the probability of selecting 

a seedling can also be used as indicators of the variability of the population. Larger confidence 

intervals indicate larger variability and the likely larger influence of genotype by environment 

interaction effects than lower confidence intervals. In such a situation, the selection can be 

adjusted according by relaxing the threshold probability of selection.  

Using logistic regression models will provide sugarcane breeders with a decision support 

statistical tool for easily and quickly adjusting the number of seedlings to advance. Sugarcane 

breeders always have limited land to plant advanced seedlings necessitating the need to always 

adjust the number of seedlings selected to suit the available land. The breeder is interested in 

advancing the best yielding seedlings within the population after selection. With the logistic 

regression models, the probability and its confidence limits provide an easy and quick method to 

objectively adjust the numbers and also to help the breeder advance the best cane yielding 

seedlings. With the visual selection method, adjusting numbers would require the breeder to go 

back to the field and to reassess the seedlings to be added or removed, a daunting task. Because 

of the immense effort required to adjust the numbers and the limited time available to reassess 

the seedling to add or discard, the breeder would be tempted to just make a random selection for 
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seedling to be added or discarded. The output from the logistic regression models can also be 

programmed to include other variables such as disease and pest ratings that can be used as 

additional aids to selection.     

The logistic regression models were also used to study the traits relationships within the 

populations providing insight into traits significantly influencing the decision to select. The 

logistic regression models can be used to identify the important traits within the breeding 

populations. This information on the important traits can also be used to identify parents with the 

appropriate traits that are required to improve the breeding populations, further improving the 

composition of desired traits in the breeding population. Over the years, breeding populations 

can shift because of the selection pressure imposed on the parents and their progenies. The 

logistic regression models can also be used to determine the magnitude of the shift in populations 

over the selection cycles. These studies can be done for individual crosses providing another 

mechanism for family evaluation. Those traits that do not respond to selection for cane yield 

such as diameter at the LSU AgCenter population can be assumed to be stable in a breeding 

population. Therefore emphasis during selection can be placed on responsive traits such as stalk 

number and stalk height. These evaluations can also be used to determine the progress achieved 

in improving traits in a breeding program. 

The logistic regression model was capable of identifying the traits that were positively 

contributing to cane yield. For example, at the LSU AgCenter, the stalk number was the most 

significant trait contributing to the decision to select for cane yield. Previous studies in early 

selection stages by Zhou (1998, 2004b) also showed that stalk number were significantly and 

positively correlated with cane yield. The knowledge of the interrelationships of the traits being 

used as predictor variables for the selection decision is also important. In this study, the stalk 
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number was positively correlated to stalk height while the stalk height and stalk diameter were 

negatively correlated, a result also reported by Zhou (1998). This scenario requires that a balance 

be maintained between the stalk height and diameter during the planning of the development of 

the breeding populations and seedling selection.  

The logistic regression models offer the breeder a method for directionally shifting the 

population to meet the breeding objectives. The objective of selection in plant breeding is to shift 

the population in the direction of interest to the breeder and the program objectives, for example 

high cane yield. With the logistic regression models, the shifting of the populations can be done 

easily and objectively using the training data. The training data is used to determine the 

parameters for building the logistic regression models that are in turn used to calculate the 

probability of selection. The training data can be defined and collected from a population that 

represents the desired outcome of the trait combination of the selected progenies. This training 

data will determine logistic regression parameters that when used to generate the probability to 

select will shift the selected population to resemble the training data. The populations for the 

training data can be derived from a fraction of the seedling population or from a set of families 

known to possess the desired trait combination expected in the selected progenies. 

The potential constraint to the wide adoption of the logistic regression models in 

sugarcane seedling selection would be the required measurements of the stalk numbers, stalk 

height and stalk diameter. Because these measurements are labor intensive, most countries do not 

routinely measure the yield components at seedling selection. However, in countries where the 

labor costs are lower, such as in Zimbabwe, these measurements are routinely taken and used to 

adjust the numbers of seedlings to be advanced (Zhou, 2004a). We can also speculate that one of 

the reasons why these measurements are considered expensive to collect could be that there has 
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been no available statistical method for using them in seedling selection. From this study, the 

benefits associated with using logistic regression models for sugarcane seedling selection were 

significant compared to the visual selection method and could motivate sugarcane breeders to re-

evaluate the cost versus the benefit to be gained by using this objective seedling selection 

decision support statistical tool. 

While our study was primarily focused on the application of logistic regression models in 

seedling selection, there is potential for applications in other stages. The logistic regressions 

models could be particularly more useful in the first clonal stage that is generally planted to non-

replicated and small plots. Application to replicated stages of the breeding programs could be of 

benefit where clones are planted to small plots (Jackson and McRae, 2001) and may aid in 

making selection decisions by reducing the influence of genotype by environment interaction 

effects.  

4.5 Conclusions 

The logistic regression models identified seedlings that produced higher cane yield than visual 

selection. The confounding effect of genotype by environment interaction is reduced by using 

logistic regression models for seedling selection. The logistic regression models provide for easy 

adjustment of the number of seedlings to advance by making use of the probability and their 

confidence intervals. Confidence intervals also help to account for the influence of genotype by 

environment interaction effects. The objective of selection in plant breeding is to shift the 

population towards desirable values of traits. Logistic regression models allow the plant breeders 

to achieve this shift by using the appropriate training data that would represents the desired 

outcome population after selection. Trends in traits and their influence on each other in breeding 

populations can also be investigated using the logistic regression models. These trends can also 
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be used to evaluate the progress made by the breeding program. While data for the predictor 

variables is labor intensive and costly to collect, the potential benefits and availability of logistic 

regression models that uses the data could motivate more breeding programs to re-evaluate the 

cost versus the benefit. The logistic regression models can be applied in other stages and would 

be particularly useful in the non-replicated stages where clones are planted to small plots. 
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CHAPTER 5: MULTIVARIATE REPEATED MEASURES ANALYSIS OF DATA 

FROM ADVANCED VARIETY TRIALS USING THE MIXED 

PROCEDURES OF SAS 

5.1 Introduction 

 

In sugarcane advanced variety trials, the data used to evaluate the differences between genotypes 

or entries are collected for several variables (yield, quality and agronomic traits) from individual 

plots every year for several years.  The data collected in each crop every year for the several 

years are also used to determine the ratooning ability of the experimental genotypes (Berding et 

al., 2004).  

Ratooning refers to the harvesting of several crops for several years from the same 

planting and it is important in sugarcane production economics. The sugarcane crops are 

harvested sequentially from the plant, first, and second ratoon, in successive years resulting in 

crop and year confounding to form crop-years (Kang et al., 1987). Planting varieties with high 

cane yield and high ratooning ability increases the profitability in sugarcane production (Berding 

et al., 2004; Clowes and Breakwell, 1998; Ellis and Merry, 2004; Salassi and Giesler, 1995). In 

sugarcane production, it is cheaper to maintain the ratoon crops than to plant a new crop every 

year. Planting sugarcane crops requires large quantities of bulky vegetative planting material that 

is expensive to transport from the source field to the field to be planted. In irrigated sugarcane 

production systems, the expensive land preparation, irrigation system rehabilitations, and 

planting operations add to the cost of establishing a crop. Growing more crops from each 

planting allows growers to recover these costs. Therefore, it is logical that ratooning ability is an 

important trait in sugarcane breeding and therefore varieties are evaluated for ratooning ability in 

advanced variety trials.   
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Data from multiple variables measured in each plot resemble a multivariate structure 

(Johnson and Wichern, 2002). Values of the multiple variables measured from each plot may not 

be independent because they are influenced by the same factors existing in that plot. For 

example, a plot that produced high cane yield is also likely to produce taller and thicker stalks. 

The result is that the multiple variables measured from the same plot could be correlated. The 

data of each variable measured from each plot over several crop-years resemble repeated 

measures (Littell et al., 2002, 2005). The measurements from one crop-year are likely not to be 

independent from measurements from other crop-years because the measurements come from 

sequential crop-years. The crop-years cannot be randomized to the plots (as would be done in an 

ideal split plot design). Additionally, a plot that produced high cane yield in crop-year 1 is also 

likely to produce high cane yield in crop-year 2 and subsequent crop-years. The result is that, for 

example cane yield from crop-year 1 could be correlated to cane yield measured in crop-year 2. 

Therefore the analysis of plant breeding data may need to account for the within plot correlation 

of the multiple variables (multivariate structure) and the correlation of the value of variables 

measured across crop-years (repeated measures). 

Currently, the univariate analysis method that assumes a split-plot in time experimental 

design is used to analyze data from the advanced variety trials. The univariate method assumes 

independence between variables measured from the same plot and also assumes independence 

between values of a variable measured in successive crop-years (Freund and Wilson, 2003). The 

assumption of independence between data from multiple variables measured from the same plot 

and between data measured from the same plot across crop-years may not always be valid. The 

values of the multiple variables are influenced by the same factors that exist in the plot from 

which they are measured. These multiple variables are likely to be correlated. If these multiple 
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variables are significantly correlated, then there could be a violation of the assumption of 

independence. One of the consequences of the violation of the assumption of independence 

would be the underestimation or overestimation of the experimental errors. The underestimation 

or overestimation of experimental errors could increase Type I or Type II errors, respectively, 

leading to inaccurate statistical tests and incorrect interpretations. The underestimation or 

overestimation of experimental errors is caused by the exclusion of the covariance between 

variables as well as the covariance between crop-years in the computation of the variances. The 

covariance helps account for the correlation between the multiple variables and the correlation 

between crop-years. The ideal analysis should combine multivariate and repeated measures, to 

create a multivariate repeated measures analysis. The multivariate repeated measures analysis 

would account for the correlation between the multiple variables as well as the correlations 

between the sequential crop-years in a single analysis. We hypothesize that combining the 

multivariate and the repeated measures in one analysis will increase precision in the analysis of 

sugarcane advanced variety trials breeding data and therefore produce accurate tests and correct 

interpretation of the data.  

The objectives of this study were to introduce and demonstrate the use of the multivariate 

repeated measures analysis method for sugarcane breeding advanced variety trials data using the 

linear mixed models of the SAS procedures (SAS Institute, 2007). Specifically we determined 

multivariate effects, the appropriate covariance structure for crop-years, and compared the 

univariate and multivariate repeated measures analysis methods for yield (cane and stalk dry 

matter yield), quality (sucrose % cane and Fiber % cane) and agronomic (stalk height and stalk 

diameter) traits. 
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5.1.1 Multivariate Repeated Measures Analysis Using the Mixed Procedures of SAS 

The mixed model procedure of SAS can perform both the multivariate and the repeated measures 

analysis. The linear mixed model equation is, 

Y = Xβ + Zu + ε,                                         Equation 5.1 

where Y is the column vector of the response variables, X is the fixed effects design matrix, β is 

the column vector of the fixed effects parameters, Z is the random effects design matrix, u is the 

column vector of the random effects parameters and ε is the column vector of the residual errors 

(Littell et al., 2005). The linear mixed model (Equation 5.1) combines the analysis of fixed (Xβ) 

and random (Zu) effects as well as modelling covariance parameters (ε). The ability of the mixed 

models to perform multivariate and repeated measures analysis, and to model covariance 

parameters was utilized in this study to perform the multivariate repeated measures analysis.  

The discovery of the direct (Kronecker) product structures allows the implementation of 

the multivariate repeated measures analyses (Galecki, 1994). The unstructured (UN) structure 

(representing the multivariate component) and the repeated measures covariance structures are 

merged by the direct product. In SAS, the products are coded TYPE = UN@AR(1), modeling the 

first order auto-regressive, TYPE = UN@CS, modeling the compound symmetry, and TYPE = 

UN@UN modeling the unstructured structure in the repeated measures. The direct product of the 

two matrices has rows equal to the product of rows for, say, UN and AR(1) and columns equal to 

the product of the columns for UN and AR(1). The UN@UN models unequal covariance, 

UN@CS models equal covariance, and UN@AR(1) models covariance decay over time. 
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5.1.2 Profile Analysis 

Profile analysis provides detailed comparisons of the treatments involving multivariate data by 

incorporating tests that use linear combinations of the response variables (Moser, 2005). While 

the multivariate repeated measures analysis identifies the effects that are significant, it is also 

important to find out how the treatments vary over time that is across crop-years. The tests are 

done for parallel, coincident, and level profiles (Morisson, 1976; Srivastava and Carter, 1983).   

The parallel profile test asks if the difference between treatments is the same across the 

times of measurement. The hypothesis being tested is, 

 

 

 

where μ1 is the mean of treatment 1, μ2 is the mean of treatment 2, and j indexes the time 

intervals between the measurements being compared. When there are more than 2 treatments, 

say 5 treatments, treatments 1, 2, 3 and 4 will be tested against treatment 5 for the overall test.  

The coincident profile test determines if the profiles are on top of each other. The 

hypothesis being tested is, 

 

If the means of the treatments at each time are the same, then the profiles are coincident.  If the 

sums of the treatment means are equal, then the profiles are also coincident.  

Level profiles should have the same mean for each time measurement for each treatment. 

The hypothesis being tested is, 
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Therefore, when the profiles are level, the slope of the profiles will be zero. 

5.1.3 Covariance Structure Selection  

The objective of covariance structure selection is to determine the most parsimonious structure 

(Moser, 2005). Information criteria are used to select and measure the relative fit of two or more 

competing models. The Akaike Information Criterion (AIC) (Akaike, 1974) and the Bayesian 

Information Criterion (BIC) (Schwarz, 1978) are used to compare the competing models. The 

AIC is calculated using  

AIC = –2 log (L) + 2k,                                       Equation 5.5 

where L is the maximum likelihood function of the model and k is the number of effective 

covariance parameters, that is, those that enter the optimization process, are not held fixed by the 

user, and are not zero. 

The BIC method was developed using the Bayesian approach and is not sensitive to prior 

distributions when the sample size is large. The BIC is calculated as 

BIC = −2 log (L) + k log(n),                                  Equation 5.6 

where n is the sample size. Studies by Guerin and Stroup (2000) found that larger values of BIC 

were associated with larger Type II errors. 

5.2 Materials and Methods 

5.2.1 Locations, Experimental Design, and Crop Management 

Data were collected from the plant breeding advanced variety trials grown at the Mkwasine and 

Triangle locations in the South East Lowveld of Zimbabwe. The plots were arranged as a 
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randomized block design, blocking across irrigation furrows. The Mkwasine location had four 

blocks while the Triangle location had five. Each block was divided into 16 plots and each plot 

was planted to one of the 16 genotypes. The plots were made up of 6 rows that were 12m long 

and spaced 1.5m apart. The trials were planted on April 25, 1995 (Mkwasine) and April 26, 1995 

(Triangle) and harvested at 12 months crop age every year for eight crop-years. At both 

locations, water was applied using furrow irrigation. Planting, fertilizer application, irrigation, 

and weed, disease, and insect control were done according to standard recommendations for the 

commercial crop (Clowes and Breakwell, 1998). 

5.2.2 Data Collection 

At harvest, all the sugarcane in the plots was burnt to remove the dry leaves. All the millable 

stalks in each plot were hand cut, hand trashed to remove the green leaves and hand topped at the 

natural breaking point. The millable stalks were weighed using a digital scale mounted on a 

tractor operated hydraulic boom. The weights per plot were divided by the plot area to calculate 

cane yield (Mg/ha). Twenty-four millable stalks were randomly picked from each plot, and 

bundled. The length of the bundle from bottom to the top provided the stalk height of each plot. 

The stalk diameter of each of the 24 stalks was measured at the center of the stalk using a caliper 

without reference to the bud and the average stalk diameter of the 24 stalks provided the values 

for each plot used in this study. After measuring the stalk diameter, the 24 stalks were divided 

into three groups of eight stalks each. From the first group, the bottom one-third of the stalk was 

cut. From the second group, the middle one-third was cut and from the third group, the top one-

third was cut. The bottom, middle and top portions of the stalks were bundled together to form 

one sub-sample per plot. Each sub-sample was shredded to simulate milling. Two sub-sub-

samples were collected from each shredded sub-sample. One sub-sub-sample was analyzed for 
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sucrose content which was expressed as estimable recoverable crystal (ERC % cane) using an 

empirical equation determined from mill sugar recovery data derived from the previous season. 

The other sub-sub-sample was dried for 24 hours in an oven at a constant temperature of 100 
o
C 

and used to determine the Fiber % cane and moisture content. The moisture content (MC) was 

then used to estimate the stalk dry matter (SDM) from cane yield (Equation 5.7), 

SDM = Cane yield *(100 – MC) ÷ 100.                           Equation 5.7 

Three groups of data emerged, that is, yield, quality, and agronomic traits data. Yield 

traits (cane and SDM) were measured at the plot level, the agronomic traits (stalk height and 

stalk diameter) were measured from the 24 stalks sampled from each plot, and the quality traits 

(ERC % cane and Fiber % cane) were measured from the sub-sub-sample derived from the 

shredded sub-sample of a third of the 24 stalk sample. As a result, the correlation within yield, 

quality, and agronomic traits was likely to be larger than the correlation between the trait groups. 

Therefore each trait group was analyzed separately. 

5.2.3 Data Arrangement and Analysis Using the Multivariate Mixed Model of SAS 

The multivariate repeated measures analysis was done using the mixed procedure of SAS. A 

response variable (Y) was created with all the response variables stacked. A class variable, RV, 

was created identifying each variable by stacking the corresponding variable names. The data 

was arranged as shown in Table 5.1. In Table 5.1, using yield data as an example, RV = 1 

referenced cane yield and RV = 2 referenced SDM yield. Location = 1 referenced the Triangle 

location and location = 2 referenced the Mkwasine location. The effects were nested in RV and 

together with the NOINT option of SAS produced the multivariate analysis and testing of the 

effects (Appendices 3, 4, 5). The NOINT option allows each variable in RV (for example, cane 
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yield and SDM yield) to be treated as unique variables. With the NOINT option, the levels of RV 

are not compared. The comparisons are done within the levels of RV and the effects within the 

RV are added up for both the variables in the multivariate structure to provide the multivariate 

tests of the effects. The SAS codes used to implement the multivariate repeated measures 

analysis using the UN@UN, UN@CS and UN@AR(1) covariance structures are shown in 

Appendices 3, 4 and 5, respectively. Also shown in Appendix 4 is the SAS option statement that 

was used for performing the tests for the difference between the experimental genotypes and the 

control genotype using Dunnett’s test using the UN@CS covariance structure. 

5.2.4 Multivariate Repeated Measures Linear Mixed Model  

The multivariate repeated measures linear mixed model for yield traits with two response 

variables (for example cane yield and SDM yield), two locations (1, 2), r replications per 

location planted to g genotypes and harvested for c crop-years, is 

 

where Yijkmn is the response for the ith variable (i = 1, 2), jth location (j = 1, 2), kth replication 

within jth location (k = 1, 2, …, r), mth genotype (m = 1, 2, …, g) by replication (plot), and nth 

crop-year (n = 1, 2, …, c). The model effects are as follows: πi is the effect of the ith response 

variable (RV), α(π)j(i) is the effect of the jth location nested within the ith variable, ρ(α(π))k(j(i)) is 

the random effect of the kth replication nested within the jth location that is in turn nested within 

the ith variable, γ(π)m(i) is the effect of the mth genotype nested within the ith variable, 
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Table 5.1: Data arrangement for the response class variable (RV), location, replication, genotype, 

crop-year, and measured values (Y) for the multivariate repeated measures analysis 

using the linear mixed model procedure of SAS 

RV Location Replication Genotype Crop-year Y 
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1 

1 

1 
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1 

1 

. 

. 
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1 
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1 
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1 
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2 

2 
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1 

1 

1 

. 

. 

1 

2 

2 

2 

. 

. 

g 

1 

1 

1 

. 

. 

g 

1 

2 

3 

. 

. 

c 

1 

2 

3 

. 

. 

c 

1 

2 

3 

. 

. 

c 

y11111 

y11112 

y11113 

. 

. 

y1111c 

y11121  

y11122  

y11123  

. 

. 

y111gc  

y11211  

y11212  

y11213  

. 

. 

y11rgc 

1 

1 

1 

. 

. 

1 

2 

2 

2 

. 

. 

2 

1 

1 

1 

. 

. 

r 

1 

1 

1 

. 

. 

g 

1 

2 

3 

. 

. 

c 

y12111  

y12112 

y12113 

. 

. 

y12rgc 

2 

2 

2 

. 

. 

2 

1 

1 

1 

. 
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1 
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y21111 
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y21113 
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. 

y21rgc 
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2 

2 

2 

. 

. 
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1 

1 

1 

. 

. 

r 

1 

1 

1 

. 

. 

g 

1 

2 

3 

. 

. 

c 

y22111 

y22112 

y22113 

. 

. 

y22rgc 
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ω(π)n(i) is the effect of the nth crop-year nested within the ith variable, αγ(π)jm(i) is the interaction 

effect of the jth location and the mth genotype nested within the ith variable, αω(π)jn(i) is the 

interaction effect of the jth location and the nth crop-year nested within the ith variable, γω(π)mn(i) 

is the interaction effect of the mth genotype and the nth crop-year nested within the ith variable, 

αγω(π)jmn(i) is the interaction effect of the jth location by the mth genotype by the nth crop-year 

nested within the ith variable, and εijkmn is the residual error. The above linear mixed model 

(Equation 5.8) was used for the quality and agronomic traits. All the effects in Equation 5.8 are 

nested within the response variable (RV) to create the multivariate analysis and multivariate 

testing of the effects. 

5.2.5 Comparison of the Efficiency of the Univariate and the Multivariate Repeated 

Measures Analysis 

 

The multivariate repeated measures and univariate analysis were compared for their ability to 

account for the variability in the data, which is their model fitness. The model fit of the 

multivariate repeated measures and univariate analysis were compared using the fit statistics and 

the likelihood ratio tests. The multivariate repeated measures analysis was compared to the 

univariate analysis to evaluate the efficiency in the discriminating ability of the statistical 

methods on the experimental genotypes mean for the yield, quality and agronomic traits. The 

multivariate repeated measures and univariate analysis methods were compared for their 

discriminating ability of the difference in trait values between the experimental genotypes and 

the control. The difference between the experimental genotypes and the control is routinely used 

by plant breeders to identify superior genotypes in variety trials. The experimental genotypes 

were compared to genotype 16, the control genotype, using Dunnett’s test for both the 

multivariate repeated measures and univariate analysis methods (Appendix 4). The P-value, 
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which is the probability of obtaining a larger value of the difference between the experimental 

genotype and genotype 16, was used to compare the discriminating ability between the 

multivariate repeated measures and univariate analysis methods. The statistical method that 

produced greater differences among the genotypes for the difference between the experimental 

genotypes and the control was considered to be more discriminating.  

5.3 Results 

The objective of the sugarcane breeding advanced variety trials is to evaluate the performance of 

the experimental genotypes for yield potential, quality, agronomic traits and ratooning ability and 

to determine the potential of these genotypes for release as commercial cultivars as well as their 

potential as parents for use in future crosses. Genotypes with potential for commercial varieties 

must produce similar or greater sugar yield and greater ratooning ability than the current 

cultivars in addition to excelling in other important traits such as disease and insect pest 

resistance. The sugarcane breeder is interested in evaluating genotype yield across locations 

(genotype by environment interaction) and ratooning ability (genotype by crop-year interaction). 

The genotype within RV, location by genotype within RV, genotype by crop-year within RV and 

location by genotype by crop-year within RV effects are used to evaluate genotype yield 

potential, determine the influence of locations, crop-years, and location by crop-year 

interactions, respectively, on the genotype yield potential. The location effects test environmental 

adaptation to factors such as soil type, changes in temperature and rainfall across locations while 

the crop-year effects test the ratooning ability of the genotypes, which is the fluctuation in yield 

across crop-years.  
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5.3.1 Multivariate Repeated Measures Analysis of Yield, Quality and Agronomic Traits 

Data 

The multivariate repeated measures mixed model analysis for yield traits (cane yield, SDM 

yield) produced highly significant (P < 0.01) P-values for all the effects for the UN@CS and 

UN@AR(1) covariance structures (Table 5.2). The UN@UN covariance structure failed to 

converge. The multivariate repeated measures analysis for the quality traits (ERC % cane and 

Fiber % cane) and the agronomic traits (stalk height and stalk diameter) produced highly 

significant (P < 0.01) P-values for all the effects and for all the covariance structures (Tables 5.3 

and 5.4). 

Table 5.2: The numerator and denominator degrees of freedom and the probability of obtaining a 

larger Multivariate F-value (Multivariate P-values) for the multivariate effects for the 

yield traits (Cane (t/ha) and SDM (t/ha)) derived from the UN@UN, UN@CS and 

UN@AR(1) covariance structures. 

 

Effect 

Degrees of Freedom Multivariate P-values 

Numerator Denominator UN@UN† UN@CS UN@AR(1) 

RV 

Location(RV) 

Genotype(RV) 

Crop-Year(RV) 

Genotype*Location(RV) 

Crop-Year*Location(RV) 

Genotype*Crop-Year(RV) 

Genotype*Location*Crop-

Year(RV) 

2 

2 

30 

14 

30 

14 

210 

210 

14 

14 

1778 

1778 

1778 

1778 

1778 

1778 

 

D
id

 n
o

t co
n

v
erg

e 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.0002 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

†The model did not converge because it was unable to make hessian positive definite matrix 
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Table 5.3: The numerator and denominator degrees of freedom and the probability of obtaining a 

larger Multivariate F-value (Multivariate P-values) for the multivariate effects for 

quality traits (ERC % cane and Fiber % cane) derived from the UN@UN, UN@CS 

and UN@AR(1) covariance structures. 

 

Effect 

Degrees of Freedom Multivariate P-values 

Numerator Denominator UN@UN UN@CS UN@AR(1) 

RV 

Location(RV) 

Genotype(RV) 

Crop-Year(RV) 

Genotype*Location(RV) 

Crop-Year*Location(RV) 

Genotype*Crop-Year(RV) 

Genotype*Location*Crop-

Year(RV) 

2 

2 

30 

14 

30 

14 

210 

210 

14 

14 

1778 

1778 

1778 

1778 

1778 

1778 

<0.0001 

0.0004 

<0.0001 

<0.0001 

0.0223 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.0007 

<0.0001 

<0.0001 

0.0170 

<0.0001 

<0.0001 

0.0002 

<0.0001 

0.0006 

<0.0001 

<0.0001 

0.0072 

<0.0001 

<0.0001 

0.0002 

Table 5.4: The numerator and denominator degrees of freedom and the probability of obtaining a 

larger Multivariate F-value (Multivariate P-values) for the multivariate effects for the 

agronomic traits (stalk height and stalk diameter) derived from the UN@UN, UN@CS 

and UN@AR(1) covariance structures. 

 

Effect 

Degrees of Freedom Multivariate P-values 

Numerator Denominator UN@UN UN@CS UN@AR(1) 

RV 

Location(RV) 

Genotype(RV) 

CropYear(RV) 

Genotype*Location(RV) 

CropYear*Location(RV) 

Genotype*CropYear(RV) 

Genotype*Location*Crop-

Year(RV) 

2 

2 

30 

14 

30 

14 

210 

210 

14 

14 

1778 

1778 

1778 

1778 

1778 

1778 

<0.0001 

0.0043 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.0014 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.0019 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.0006 

The interpretation of the multivariate effects must recognize that the effects are computed 

within each of the variables making up the multivariate component. The effects computed within 
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each variable are then added up to produce the values of the multivariate F-statistic that are 

tested. The multivariate P-values (Tables 5.2, 5.3, 5.4) refer to the probability of obtaining a 

larger value of the multivariate F-statistic for the multivariate effects. The multivariate F-statistic 

of each multivariate effect follows the F-distribution with the numerator and denominator 

degrees of freedom shown in Tables 5.2, 5.3, and 5.4. The significant multivariate F-statistic 

would mean that at least one of the variables making up the multivariate structure produced 

significant effects. 

The significant genotype within RV effects for the yield traits, for example, meant that 

the genotype effects were significantly different for cane yield or SDM yield or both. This test is 

also equivalent to the multivariate coincident profiles test for all the 16 genotypes. The 

significant multivariate non-coincident profiles for the yield traits suggest that at least one pair of 

the 16 genotypes was significantly different for cane yield or SDM yield or both. The significant 

location by genotype within RV effects for yield traits suggests that the location by genotype 

interaction effects were significantly different for cane yield or SDM yield or both. The 

significant crop-year within RV effects for yield traits meant that the crop-year effects were 

significantly different for cane yield or SDM yield or both. The crop-year within RV effects is 

equivalent to the multivariate level profiles test for all the 8 crop-years. Significant multivariate 

non-level profiles for yield traits suggest that at least one pair of the 8 crop-years was 

significantly different for cane yield or SDM yield or both. Significant genotype by crop-year 

within RV effects for the yield traits meant that the genotype by crop-year interaction effects 

were significantly different for cane yield or SDM yield or both. This test is equivalent to the 

multivariate parallel profiles test for all the 16 genotypes across all the 8 crop-years. The 

significant multivariate non-parallel profiles for the yield traits suggests that at least one pair of 
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the 16 genotypes was significantly different in at least one pair of the 8 crop-years for cane yield 

or SDM yield or both. Significant location by genotype by crop-year within RV effects for the 

yield traits meant that the location by genotype by crop-year interaction effects were 

significantly different for cane or SDM yield or both. The interpretation for the quality traits 

(ERC % cane and Fiber % cane) (Table 5.3) and agronomic traits (stalk height and stalk 

diameter) (Table 5.4) followed the same pattern to that for yield traits.   

5.3.2 Covariance Structure Selection 

 

The covariance structure UN@CS was selected as the most appropriate because it used fewer 

parameters than the UN@UN covariance structure (simplicity) and produced lower AIC and BIC 

than the UN@AR(1) covariance structure (Table 5.5). The covariance structure UN@AR(1) 

produced higher BIC values indicating larger Type II errors particularly for the yield and 

agronomic traits than UN@CS. The UN@CS covariance structure was used in performing the 

Dunnett’s tests comparing genotypes to the control. The probability values obtained from 

Dunnett’s test were used to evaluate the efficiency of the univariate and multivariate repeated 

measures analysis in discriminating between the experimental genotypes. 

Table 5.5 The number of fitted covariance parameters, the Akaike information criterion (AIC), 

and the Bayesian information criterion (BIC) derived from the multivariate repeated 

measures analysis for the yield, quality and agronomic traits using the UN@UN, 

UN@CS and UN@AR(1) covariance structures. 

Covariance 

Structure 

Number of 

Parameters 

Yield traits Quality traits Agronomic traits 

AIC BIC AIC BIC AIC BIC 

UN@UN 

UN@CS 

UN@AR(1) 

42 

7 

7 

- 

10403.0 

10423.5 

- 

10404.4 

10424.9 

4967.7 

5047.4 

5047.6 

4975.8 

5048.7 

5048.9 

-363.5 

-321.6 

-287.7 

-355.4 

-320.3 

-286.4 
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5.3.3 Comparison of the Univariate and the Multivariate Repeated Measures Model Fit 

Model fitness determines if a statistical model adequately explains the variation in the data and 

can be used to compare two or more competing models after statistical analysis (Littell et al, 

2002, 2005). Three fit statistics, -2 Residual Log Likelihood (RLL), AIC (Akaike, 1974) and 

BIC (Schwarz, 1978) were used to compare the univariate and multivariate repeated measures 

analysis model fitness. Smaller values of the fit statistics indicated a better model fit.  

The multivariate repeated measures analysis produced consistently lower values of the 

AIC, BIC and RLL for the yield traits (cane and SDM) and stalk height than the univariate 

analysis (Table 5.6). The quality traits (ERC % cane and Fiber % cane) and stalk diameter 

produced similar values of the fit statistics for the multivariate repeated measures and univariate 

analysis. The lower values of the AIC statistic of the yield traits and stalk height for multivariate 

repeated measures analysis indicated better model fit and lower Type I errors than the univariate 

analysis (Guerin and Stroup, 2000).  

The differences in model fitness between the multivariate repeated measures and 

univariate analysis was further evaluated using likelihood ratio tests. The likelihood ratio test 

tests if the model that produced a lower RLL has a significantly better model fit to the data than 

the model that produced a larger RLL. The likelihood ratio statistic is calculated as the difference 

between the RLL of the univariate and the multivariate repeated measures analysis. The 

likelihood ratio statistic follows a Chi-square distribution with degrees of freedom equal to the 

difference between the numbers of covariance parameters modelled by the models being 

compared. The multivariate repeated measures fitted three covariance parameters and univariate 

analysis fitted two, producing one degree of freedom for the test. The multivariate repeated 

measures analysis produced significantly (P < 0.001) better model fit for yield traits and stalk 
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height than univariate analysis (Table 5.6). The likelihood ratio tests for the quality traits and 

diameter produced non-significant (P > 0.05) value of the likelihood ratio test statistic, indicating 

similar model fit between the univariate and the multivariate repeated measures analysis 

methods.  

5.3.4 Efficiency of the Univariate and Multivariate Repeated Measures Analysis in 

Determining Differences Between Experimental Genotypes and the Control Cultivar  

Sugarcane breeders are generally interested in comparing the experimental genotypes to the 

control genotype (usually the dominant or widely grown cultivar) using data from variety trials. 

Experimental genotypes that produce significantly greater yield than the control cultivar are 

recommended for release to growers particularly if other important traits such as disease and pest 

tolerance are acceptable. The 15 experimental genotypes in this study were compared to the 

control (genotype 16, the most widely grown cultivar in Zimbabwe (Zhou, 2004)) using 

Dunnett’s test for both the univariate and multivariate repeated measures analysis using the SAS 

code in Appendix 4.  At Triangle, the univariate analysis produced highly significant (P < 0.001) 

differences between the experimental genotypes and the control cultivar for cane yield for all 

genotypes (Table 5.7) while the multivariate repeated measures analysis showed that six of the 

experimental genotypes were similar to the control. At Mkwasine, two experimental genotypes 

that were significantly (P < 0.01) different from the control cultivar using the univariate analysis 

were found similar to the control by the multivariate repeated measures analysis. The SDM of all 

genotypes at Triangle was significantly (P < 0.001) different from the control using univariate 

analysis but seven genotypes were found similar to the control by the multivariate repeated 

measures analysis. The SDM yield of three genotypes at the Mkwasine location was similar to 

the control using the multivariate repeated measures analysis but showed significant (P < 0.01) 

differences using the univariate analysis. 
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Table 5.6: The Model Fit Statistics (-2Residual log likelihood (RLL), Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC)) and the probability of obtaining a larger value of the Likelihood ratio test statistic (P-value) for yield, 

quality and agronomic traits derived from the univariate and multivariate repeated measures (multivariate) analysis for the 

data from  the Triangle and Mkwasine locations.  

 

Fit  

Statistic 

 

 

Location 

 

 

Method 

Yield traits Quality traits Agronomic traits 

Cane yield 

(t/ha) 

SDM yield 

(t/ha) 

ERC % 

cane 

Fiber % 

cane 

Stalk  

height (m) 

Stalk  

diameter (cm) 

 

 

 

 RLL 

 

Triangle 

Univariate 4413.1 3215.2 1269.7 1795.1 96.2 -237.3 

Multivariate 4219.3 3047.2 1269.4 1793.9 -15.1 -239.9 

P-value  <0.001 <0.001 0.584 0.273 <0.001 0.107 

 

Mkwasine 

Univariate 3065.2 2150.2 959.7 1256.0 10.1 -102.0 

Multivariate 3020.1 2112.0 959.3 1254.3 -12.7 -104.9 

P-value  <0.001 <0.001 0.527 0.192 <0.001 0.089 

 

 

AIC 

Triangle Univariate 4417.1 3219.2 1273.7 1799.1 100.2 -233.3 

Multivariate 4225.3 3053.2 1275.4 1799.9 -9.1 -233.9 

Mkwasine Univariate 3069.2 2154.2 963.7 1260.0 14.1 -98.0 

Multivariate 3026.1 2118.0 965.3 1260.3 -6.7 -100.9 

 

 

BIC 

Triangle Univariate 4416.3 3218.5 1272.9 1798.3 99.4 -234.1 

Multivariate 4224.1 3052.1 1274.2 1798.7 -10.3 -235.0 

Mkwasine Univariate 3068.0 2153.0 962.4 1258.8 12.9 -99.3 

Multivariate 3024.3 2116.1 963.4 1258.4 -8.5 -102.1 
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Table 5.7: The significance levels of the difference between the experimental genotypes and 

control cultivar for the cane and SDM yield when the data from Triangle and 

Mkwasine locations was analyzed using the univariate (UNIV) and multivariate 

repeated measures (MRM) analysis.  

 

 

Genotype 

Cane yield (t/ha) SDM (t/ha) 

Triangle Mkwasine Triangle Mkwasine 

UNIV MRM UNIV MRM UNIV MRM UNIV MRM 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

* 

NS 

** 

** 

NS 

NS 

NS 

* 

*** 

NS 

NS 

*** 

*** 

*** 

*** 

*** 

NS 

*** 

*** 

*** 

NS 

** 

*** 

*** 

NS 

NS 

*** 

*** 

*** 

*** 

*** 

NS 

*** 

NS 

** 

NS 

NS 

** 

*** 

NS 

NS 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

NS 

NS 

NS 

*** 

** 

NS 

* 

NS 

*** 

NS 

NS 

*** 

*** 

*** 

*** 

*** 

** 

*** 

*** 

*** 

NS 

*** 

*** 

*** 

NS 

NS 

*** 

*** 

*** 

*** 

*** 

NS 

*** 

*** 

*** 

NS 

** 

NS 

*** 

NS 

NS 

* = significant at 0.05.  

** = significant at 0.01.  

*** = significant at 0.001.  

NS = not significant at P = 0.05. 

 

For the  quality traits (ERC % cane and Fiber % cane), both the  univariate and 

multivariate repeated measures analyses produced similar trends in p-values for the tests of the 

differences between experimental genotypes and the control (Table 5.8). The results in Table 5.8 

followed the same trends shown by the fit statistics and the likelihood ratio tests in Table 5.6. 



124 

The correlation coefficients between the crop-years for quality traits produced by multivariate 

repeated measures analysis ranged from -0.01 to 0.04 (data not shown) and were not significant 

(P > 0.05), indicating independence among crop-years. When the crop-years are independent, 

then the univariate and multivariate repeated measures analysis are expected to produce similar 

results. 

Table 5.8: The significance levels of the difference between the experimental genotypes and 

control cultivar for the ERC % cane and Fiber % cane when the data from Triangle 

and Mkwasine locations was analyzed using the univariate (UNIV) and multivariate 

repeated measures (MRM) analysis. 

 

 

Genotype 

ERC % cane Fiber % cane 

Triangle Mkwasine Triangle Mkwasine 

UNIV MRM UNIV MRM UNIV MRM UNIV MRM 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

NS 

NS 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

NS 

NS 

NS 

*** 

*** 

*** 

*** 

** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

NS 

NS 

NS 

*** 

*** 

*** 

*** 

** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

NS 

NS 

NS 

NS 

*** 

*** 

*** 

*** 

NS 

*** 

*** 

*** 

*** 

NS 

*** 

NS 

NS 

NS 

NS 

*** 

*** 

*** 

*** 

NS 

*** 

*** 

*** 

*** 

NS 

*** 

NS 

NS 

NS 

NS 

*** 

*** 

*** 

*** 

NS 

*** 

*** 

*** 

*** 

NS 

*** 

NS 

NS 

NS 

NS 

*** 

*** 

*** 

*** 

NS 

*** 

*** 

*** 

*** 

NS 

*** 

NS 

NS 

* = significant at 0.05.  

** = significant at 0.01.  

*** = significant at 0.001.  

NS = not significant at P = 0.05. 
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The means of the stalk height of four experimental genotypes from the data collected at 

the Triangle location were similar to that of the control when the data was analyzed using the 

multivariate repeated measures analysis. The same experimental genotypes showed significantly 

(P < 0.05) different mean stalk height compared to the control cultivar when the data was 

analyzed using the univariate method (Table 5.9). When the data collected at the Mkwasine 

location were analyzed using the multivariate repeated measures method, the mean of the stalk 

height of two experimental genotypes was similar to the control cultivar using the multivariate 

repeated measures analysis but the same experimental genotypes showed significant differences 

(P < 0.01) in stalk height between the experimental and the control cultivar when the data was 

analyzed using the univariate method.  

There were similar trends in P-values for the differences in stalk diameter between the 

experimental genotypes and the control cultivar when the data was analyzed using the 

multivariate repeated measures and univariate methods (Table 5.9). The trends in P-values for 

the differences between the experimental genotypes and the control cultivar for stalk diameter 

were similar to the trends shown by the fit statistics and the likelihood ratio tests, where the 

multivariate repeated measures and the univariate analysis methods produced similar model fit 

statistics (Table 5.6). The correlation coefficient between the crop-years was -0.04 and non 

significant (P > 0.05) for the data from the Triangle and Mkwasine locations indicating 

independence of stalk diameter values across crop-years. Therefore the multivariate repeated 

measures and the univariate analysis methods would be expected to produce similar results.  

5.4 Discussions 

The multivariate repeated measures analysis method produced greater discrimination of the 

differences in cane and SDM yield between the experimental genotypes and the control cultivar 
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Table 5.9: The significance levels of the difference between the experimental genotypes and 

control cultivar for the stalk height and stalk diameter when the data from Triangle 

and Mkwasine locations were analyzed using the univariate (UNIV) and multivariate 

repeated measures (MRM) analysis. 

 

 

Genotype 

Stalk height (meters) Stalk diameter (centimeters) 

Triangle Mkwasine Triangle Mkwasine 

UNIV MRM UNIV MRM UNIV MRM UNIV MRM 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
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*** 

*** 

NS 

*** 

NS 

NS 

*** 

*** 

*** 

NS 

* 

** 

*** 

*** 

*** 

*** 

*** 

NS 

*** 

NS 

NS 

*** 

*** 

NS 

NS 

NS 
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*** 
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*** 

*** 

NS 

NS 

*** 
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NS 
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NS 

NS 

* 

*** 

*** 

NS 

*** 

NS 

*** 

*** 

*** 

*** 

NS 

*** 

** 

NS 

* = significant at 0.05.  

** = significant at 0.01.  

*** = significant at 0.001.  

NS = not significant at P = 0.05. 
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than the univariate method. The univariate analysis method declared that most experimental 

genotypes were significantly different from the control but these genotypes were found to be 

similar to the control when the data was analyzed using the multivariate repeated measures 

method. The implications of this result to sugarcane breeders is that genotypes similar to the 

control are currently being declared significantly superior or inferior to the control using the 

univariate method, because the univariate method is widely and exclusively used by plant 

breeders to analyze advanced variety trials data. The implication of erroneously declaring that a 

genotype was significantly higher yielding than the control when it was similar to the control is 

that some genotypes that were released as higher yielding would produce lower yield than 

expected in the commercial crops. Such genotypes would eventually show no yield benefits to 

the growers than the current cultivar that they are intended to replace. This scenario has occurred 

many times in the sugarcane industries where released varieties have produced no yield gains in 

commercial crops. Conversely, erroneously rejecting genotypes as inferior when they are similar 

to the control could also result in the loss of parental germplasm that would be similar to the 

control but excelling in other important traits such as disease and insect pest resistance. An 

example could be the case with the sugarcane borer (White et al., 1996) where very few 

sugarcane borer resistant genotypes are advanced because of low yield. Erroneously discarding 

potential parental genotypes could also narrow genetic diversity in the breeding populations. 

The poor discrimination of the differences in yield between the experimental genotypes 

and the control cultivar when the data was analyzed using the univariate method could explain 

the phenomenon of yield plateau alluded to by some sugarcane breeders (Garside et al., 1997). 

The univariate methods are currently widely used for the analysis of advanced variety trials data. 

Some sugarcane breeding programs including Australia (Garside et al., 1997) and South Africa 
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have reported yield plateaus. This yield plateau could be attributed to some of the varieties that 

are released being erroneously described as significantly higher yielding when they are similar to 

the control because of the error due to the use of the univariate analysis method. The use of the 

multivariate repeated measures analysis is likely to help alleviate the screening of varieties and 

quantify if indeed there is a yield plateau in sugarcane variety improvement. Multivariate 

repeated measures would also offer a potential to assist in breaking the yield plateau by 

producing more accurate statistical comparisons of genotypes for yield during selection and 

advanced variety testing. 

The multivariate repeated measures analysis produced significantly better model fit to the 

data than the univariate analysis method. The better model fitness suggests that the multivariate 

repeated measures analysis is explaining more of the variation within the data than the univariate 

analysis method. Better model fitness also indicates that the variances used for computing the 

tests of the effects are neither inflated nor deflated and therefore correct variances would be used 

for testing the genotype effects. The multivariate repeated measures achieved better model 

fitness by accounting for the correlation between the variables as well as the correlations 

between measurements of the variables measured between the crop-years. The correlation 

between variables and between crop-years is ignored when the data is analyzed by the univariate 

method because of the assumption of independence by this analysis. The covariances that 

measure the correlations between the variables and the correlations between the crop-years are 

also added to the variances of each variable during the computation of experimental errors that 

are used to perform test of effects with the multivariate repeated measures analysis. The test of 

the differences between the experimental genotypes and the control cultivar were inflated by the 

univariate method because of the exclusion of the covariance in the computation of the 
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experimental errors. The statistical power of the multivariate repeated measures comes from the 

inclusion of covariance in the computation of experimental errors.   

The large significant differences declared by the univariate method for yield traits are 

likely to be due to the higher Type I errors than with the multivariate repeated measures. The 

Type I errors occur when significant differences are erroneously declared during statistical tests 

(Allchin, 2001). In Table 5.6, AIC values, -2 Residual Log Likelihood and likelihood ratio tests 

showed that the univariate method produced a significantly poorer model fit than the multivariate 

repeated measures analysis. One of the consequences of a poorer model fit is the underestimation 

of experimental errors. Some of the variation in the data remains unaccounted for when there is a 

poor model fit. Underestimating experimental error increases Type I errors. The underestimation 

of experimental errors by the univariate analysis is caused by the assumption of independence. 

The covariance between the variables and the covariance between crop-years is ignored by the 

univariate method as the covariance is assumed to be negligible. This covariance is used to 

account for the correlation between the variables and the correlation between the crop-years. The 

multivariate repeated measures include the covariance between the variables and between crop-

years to estimate experimental errors, thereby reducing Type I errors and increasing the power of 

the tests.    

The yield traits showed the greatest difference between the tests of the difference 

between the experimental genotypes and control cultivar by the univariate and multivariate 

repeated measures analysis. Yield traits are generally more difficult to improve through plant 

breeding and selection compared to other traits because they are controlled by quantitative genes 

and therefore more susceptible to the influence of genotype by environment interaction effects 

(Falconer and Mackay, 1996; Mirzawan et al., 1993). Because of the large genotype by 
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environment interaction effects, more accurate statistical methods are required to separate the 

genotypes effects from the environmental effects and thereby identifying true genotype 

differences. The likely large Type I errors associated with the univariate analysis would also 

decrease the precision of the tests when the genotype by environmental interaction effects 

increase. The negative effects of the genotype by environmental interaction are increased by the 

poorer model fit associated with the univariate analysis compared to the multivariate repeated 

measures analysis. In a study of genotype by environment interaction and resource allocation by 

Kimbeng et al. (2009), differences in cane yield of less than 15 – 20 % was proven to be more 

difficult to detect in advanced variety trials. However, contrary to the findings reported by 

Kimbeng et al. (2009), in this study, the univariate analysis method showed significant 

differences for cane yield between the experimental and the control ranging from 5 to 10 %, a 

result that is likely to be caused by the high Type I errors. The multivariate repeated measures 

analysis method found such differences not significant, a result likely to be correct. Therefore the 

multivariate repeated measures analysis method offer a more statistically powerful method for 

identifying true differences between the experimental genotypes and also for reducing the effects 

of genotype by environmental interaction for yield traits. 

Significant gains have been achieved and continue to be achieved for sucrose content 

using the univariate analysis method. This study also explains one of the reasons why gains in 

sucrose content have remained higher than those for cane yield. Univariate analysis was shown 

to be similar to the multivariate repeated analysis in this study, indicating that these gains can 

partly be attributed to correct statistical analysis for quality traits using the univariate method. 

The study by Kimbeng et al. (2009) also showed that the influence of genotype by environment 

interaction effects was lower for sucrose content than for cane yield. Studies in Australia have 
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shown that the effects for genotype by environment interaction (Bull et al., 1992) and of 

competition between genotypes (Jackson and McRae, 2001) were lower for sucrose content than 

for cane yield. 

The multivariate repeated measures analysis method was statistically more powerful at 

identifying true differences between the experimental genotypes and control by using correct 

experimental errors for the tests. This is important because sugarcane breeders are generally 

more interested in discarding low yield genotypes as well as identifying genotypes that 

significantly out yield the control. The significantly superior yielding genotypes would be 

targeted for release as commercial cultivars. Genotypes that are similar to the control would be 

useful as parents for the future particularly if they excel in other important traits such disease and 

insect pest resistance. The genotypes that are similar in yield to the control and have higher 

disease and insect resistance would be valuable for resistance breeding. Statistical methods that 

reject varieties that are similar to the control are undesirable as some potential good parental 

genotypes would be lost and could result in narrowing the genetic diversity among breeding 

populations. Equally important, statistical methods that declare significantly larger yield when 

the genotypes are similar to the control are misleading the breeder. These erroneously superior 

yielding genotypes would be included in further yield testing when they should have been 

discontinued. Therefore many varieties are included in advanced testing, increasing the costs of 

the breeding program. The multivariate repeated measures would reduce these erroneous 

interpretations and could probably reduce the cost of advanced variety testing by advancing 

fewer and higher yielding genotypes.  

The multivariate component of the multivariate repeated measures is also important in 

determining the validity of the significance of further tests including univariate tests. Because the 
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multivariate tests include the covariance between variables, they are more precise than the 

univariate tests. When the multivariate tests are not significant, significant univariate tests should 

not be interpreted because they are likely to be due to Type I errors (Johnson and Wichern, 

2002). Significant univariate tests should only be interpreted when the multivariate tests are 

significant when analyzing data that comprise a multivariate structure. Therefore the multivariate 

repeated measures analysis provides a quality control for the statistical analysis that includes 

multiple response variables measured from experimental units such as is the case with sugarcane 

breeding data and other crops with similar data structure. 

5.5 Conclusions 

The multivariate repeated measures produced significantly better model fits than the univariate 

analysis for yield traits. Multivariate repeated measures analysis method was more 

discriminating for the differences in yield between the experimental genotypes and the control 

than univariate analysis. Greater discrimination would result in correct selection decision during 

variety testing for the yield traits. Multivariate repeated measures analysis produced correct 

computation of experimental errors by including the covariance between variables as well as the 

covariance between crop-years leading to correct tests particularly for the yield traits. Univariate 

analysis was likely to have larger Type I errors because of the violation of the assumption of 

independence that would result in the underestimation of experimental errors. Multivariate 

repeated measures would reduce the erroneous interpretations for the yield traits likely to be 

associated with univariate analysis. Multivariate repeated measures analysis was a potentially 

powerful statistical tool for controlling the influence of genotype by environment interaction 

effects generally associated with complex traits like cane yield that are controlled by quantitative 
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genes. Quality traits showed that univariate analysis was adequate in identifying the true 

differences between genotypes.  
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CHAPTER 6: CROSS RESISTANCE BETWEEN THE MEXICAN RICE BORER AND 

THE SUGARCANE BORER (LEPIDOPTERA: CRAMBIDAE): A CASE 

STUDY USING SUGARCANE BREEDING POPULATIONS 
 

6.1 Introduction 

 

Moth (Lepidoptera) stem borers are major pests of sugarcane (Saccharum spp. hybrids) and other 

important gramineous crops worldwide. Stem borers attacking tropical gramineous crops chiefly 

belong to the families Pyralidae, Noctuidae and Castniidae (Smith et al., 1993). These authors 

list 19 important genera of the family Pyralidae; however, later taxonomic revisions separate the 

tribe Crambinae from Pyralidae creating Crambidae as an additional family (Munroe and Solis, 

1999). In North America, two important stem borers are the crambids, Diatraea saccharalis (F.) 

(= sugarcane borer) and Eoreuma loftini (Dyar) (= Mexican rice borer). The sugarcane borer has 

been the dominant stem borer of sugarcane in the U.S.; however, in 1980, the Mexican rice borer 

became established in the Lower Rio Grande Valley of Texas (Johnson and van Leerdam, 1981) 

and subsequently supplanted the sugarcane borer as the dominant insect pest of that industry 

(Johnson, 1984). Reay-Jones et al. (2007) predicted the arrival of the Mexican rice borer into 

Louisiana in 2008 and the first specimens were indeed found near Vinton, Louisiana on 

December of 2008. 

While being taxonomically closely related species and sharing many of the same 

cultivated and wild hosts, the species are a contrast to one another in certain aspects of their 

behavior: in particular, oviposition behavior. The ovipositor of the Mexican rice borer is laterally 

compressed, which allows oviposition in crevices, whereas the ovipositor of the sugarcane borer 

is vertically depressed, which facilitates oviposition on flat surfaces (Smith et al. 1993). Mexican 

rice borer eggs are found deep within the canopy and near the soil surface on dry leaf material 

while the moths of the sugarcane borer oviposite on the young leaves in the sugarcane canopy. 
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However, once the first instar larvae eclose from the egg, the behavior of the two species 

becomes similar. Specifically, both species’ larvae move to the green leaf sheaths and begin 

feeding (Ring et al., 1991 and White, 1993) and later the larvae then bore into the young, 

developing internodes. The speed with which these larvae enter the stalk depends upon the 

genotype: more quickly in susceptible genotypes than resistant ones (White et al., 1996).  

We hypothesize that, due to the similarities in larval feeding behavior of the two species, 

selecting for resistance to one species will obtain resistance to the other, henceforth referred to as 

cross resistance. Being able to accept this hypothesis would be a great benefit to both the 

Louisiana and Texas sugarcane breeding programs as it would eliminate the need for maintaining 

dual breeding programs needed to develop resistance to both species.  

The objective of this study was to determine if cross resistance exist among sugarcane 

genotypes between the Mexican rice borer and the sugarcane borer using breeding populations 

derived from Louisiana and Texas breeding programs.     

6.2 Materials and Methods 

Eighty sugarcane genotypes were planted at the SRS farm, in Santa Rosa, Texas on November 

11, 2005. The field design was a randomized complete block design with four replications. 

Individual plots were 6 m in length. Thirty of the genotypes were from Louisiana, and they 

represented clones chosen at random from different sub-populations. Sixteen of the thirty 

genotypes were from the USDA, ARS Sugarcane Research Laboratory’s recurrent selection 

program for sugarcane borer resistance (White et al., 1996). Ten were sampled from among 

commercial genotypes and were identified as either resistant or susceptible to the sugarcane 

borer based on previous field evaluations. The remaining four genotypes were selected for the 

self-stripping trait (e.g. leaves and associated sheath drop from the cane stalk) and their 
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resistance status was unknown. The 50 genotypes from the Texas A&M University program 

were from the 2002 breeding series and their resistance status to either stem borer species was 

unknown and therefore, represented a random population. 

Standard cultural practices for cultivating sugarcane in Texas were followed.  However, 

no insecticide applications were made to the experiment and damage was ascribed to native 

infestations of both stem borers.  

On August 2 to 9, 2006 random 10-stalk samples were hand-cut from each plot in the 

plant-cane. These stalks were topped at the last fully-expanded internode and stripped of all 

leaves and leaf-sheaths. The samples were returned to the laboratory where stalks were evaluated 

for insect damage. Stalks were split longitudinally and the pieces examined externally and 

internally for presence of larvae or presence of larval entrance and moth exit holes. Although 

both species damage sugarcane by boring into the internodes, the sugarcane borer primarily 

makes longitudinal tunnels in the internodes, whereas the Mexican rice borer often bores around 

and across the internode causing transverse tunnels (Johnson, 1981). Additionally, sugarcane 

borer larvae regularly deposit their frass outside the entrance of the tunnel. In contrast, the 

Mexican rice borer larvae maintain closed tunnels by plugging the traversed area with frass and 

detritus, thus packing the tunnels (Meagher et al., 1994). These two contrasts in tunneling 

behavior were used to distinguish between the two stem borer species when making the damage 

assessment. The assessment involved counting the number of bored internodes on each stalk 

made by each of the pests.  The data, percent borer-damaged internodes, were computed as the 

ratio of the bored internodes per plot to the total number of internodes per plot expressed as a 

percentage.   
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The sugarcane in the experiment was harvested and allowed to ratoon and data were 

again collected in the first-ratoon crop. The first-ratoon crop was harvested on August 6 to 8, 

2007 and the data were collected following the same procedure as in the plant-cane crop.  

6.2.1 Data Analysis 

The data collected from field plots were coded to identify genotypes as subsets from either 

Louisiana or Texas. The Louisiana population was further coded to identify three subgroups 

based on prior information.  One subgroup comprised of 18 genotypes that were known to be 

resistant to the sugarcane borer. A second subgroup comprised 7 genotypes known to be 

susceptible to the sugarcane borer, and the third subgroup had genotypes with unknown 

resistance status.  The performance of the resistant and susceptible genotypes were used as a 

benchmark to classify all the 80 genotypes in the trial into two subgroups, that is, resistant or 

susceptible to the sugarcane borer.  To achieve this we calculated the mean and their associated 

95% confidence limits for each of the resistant and susceptible groups.  Genotypes with % 

sugarcane borer-damaged internodes values lower than the upper confidence limit of the resistant 

group were classified as resistant while the rest were classified as susceptible to the sugarcane 

borer.         

The experimental design variables in this experiment were populations (Texas and 

Louisiana), resistance status to the sugarcane borer (resistant and susceptible) and crop-year 

(plant and first-ratoon).  The data were analyzed using the analysis of variance (ANOVA), 

analysis of covariance (ANCOVA) and log linear models.  The rationale for these analyses was 

to determine the significant experimental design variables for % borer-damaged internodes, the 

strength of the association for % borer-damaged internodes between the two pests, and finally to 
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determine the strength of dependency of % borer-damaged internodes on experimental design 

variables (population/resistance status, and crop).  

The ANOVA was done using SAS Mixed procedures (SAS Institute, 2007). The linear 

mixed model equation used was: 

,                     

Equation 6.1 

where  is the % borer-damaged internodes from the ith replication (i = 1, 2), jth population 

(Texas vs. Louisiana) or resistance status (resistant vs susceptible to the sugarcane borer) (j = 1, 

2), kth genotype (k = 1, 2, …, 80) and mth crop year (m = 1, 2),  is the overall mean,  is the 

random effect from the ith replication,  is the fixed effect of the jth population,  is the 

fixed effect of the kth genotype nested within the jth population,  is the random effect 

of the interaction of the ith replication by the kth genotype nested within the jth population and 

was the experimental error for population and genotype nested within population effects,  is 

the fixed effect of the mth crop year,  is the interaction fixed effect of the jth population by 

the mth crop year,  is the interaction fixed effect of the mth crop year by the kth 

genotype nested within the jth population, and  is the random interaction effect of 

the ith replication by the mth crop year by the kth genotype nested within the jth population and 

was the residual error. 

ANCOVA was used to investigate the association in % borer-damaged internodes 

between the two borer species and if the type of association differed between the Louisiana vs 

Texas population and among resistant vs. susceptible genotypes.  ANCOVA was run in SAS 

Mixed procedures with the % Mexican rice borer-damaged internodes as the response variable 
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and sugarcane borer % borer-damaged internodes as the covariate. The % sugarcane borer-

damaged internodes was used as the covariate because the sugarcane borer resistance status of 

the Louisiana genotypes was known and was used to establish the resistance status of other 

genotypes in the trial, as the status of Mexican rice borer resistance is not known.  The analysis 

determined the strength of the association between % borer-damaged internodes of the two 

species. The linear mixed model was: 

,                   Equation 6.2 

where  is the % Mexican rice borer-damaged internodes in the ith replication, jth population 

or resistance status, kth genotype and mth crop year,  is the slope of the regression equation 

representing the association in the % borer-damaged internodes between the Mexican rice borer 

and sugarcane borer,  is the % sugarcane borer-damaged internodes in the ith replication, 

jth population or resistance status, kth genotype and mth crop year and was the covariate. The 

ability of the mixed procedure to account for the random variation associated with experimental 

design variables increases statistical power of the tests compared to simple linear regression 

(Abraham and Ledolter, 2006).   

The log linear analysis was done using the SAS GENMOD procedure and the linear 

model used was: 

,         Equation 6.3 

where  is the cell count from the combination of the ith crop year (plant or ratoon), jth 

population or resistance status and kth bored status (bored or not bored),  is the intercept,  is 

the effects of the ith crop,  is the effect of the jth population or resistance status,  is the 
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effect of the kth bored status,  is the interaction effect of the ith crop year by the jth 

population (or resistance status),  is the interaction effect of the ith crop year by the kth bored 

status,  is the interaction effect of the jth population (or resistance status) by the kth bored 

status, and  is the interaction effect of the ith crop year by the jth population (resistance 

status) by the kth bored status. The interpretation of log linear analysis is done using odds ratios. 

The odds ratios are calculated by exponentiating the coefficients of the effects. For example, the 

odds ratios for the number of bored internodes in population Y1 versus population Y2 would be 

estimated as the ratio of the odds of being bored for population Y1 to the odds of being bored for 

population Y2 and were estimated using the formula, 

.                                           Equation 6.4 

The confidence intervals of the odds ratios are calculated by exponentiating the coefficients of 

their confidence intervals. 

6.3 Results 

6.3.1 Analysis of Variance 

The Mexican rice borer was the dominant species encountered during the study. The % borer-

damaged internodes ascribed to the Mexican rice borer was approximately four times that of the 

sugarcane borer (Table 6.1). For both pests, borer damage was slightly greater (12% by the 

Mexican rice borer and 18% by the sugarcane borer) in the plant crop compared to the first 

ratoon crop, possibly because the plant crop is slower to establish and therefore, more susceptible 

to insect damage, e.g. the internodes remain susceptible to larval establishment for a greater 

length of time. However, the degree to which the two populations (Texas and Louisiana) were 
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damaged by both pests was not consistent across crops as evidenced from the significant 

population by crop effect (Table 6.1). The Louisiana population suffered significantly (P < 0.01) 

more (14%) damage by the Mexican rice borer compared to the Texas population in the plant 

crop whereas in the first ratoon crop, the Texas population suffered significantly (P < 0.05) more 

(11%) damage than the Louisiana population. Likewise for the sugarcane borer, the Texas 

population suffered significantly (P < 0.01) more damage (45 %) than the Louisiana population 

in the plant crop whereas in the ratoon crop, the Louisiana population suffered slightly more 

(non-significant) damage than the Texas population.  When the data were averaged across crops, 

there was no clear indication of which population was superior against the Mexican rice borer 

while the Louisiana population suffered comparatively less damage from the sugarcane borer 

(Table 6.1).  Little insight could be gained from this analysis with respect to the existence of 

cross-resistance between the two borer species.      

A second data subset comprising sugarcane borer resistant and susceptible genotypes 

from the Louisiana population was subjected to ANOVA. As previously reported, the plant crop 

suffered significantly (P < 0.05) more borer damage from both pests (19 % by the Mexican rice 

borer and 32% by the sugarcane borer) compared to the first ratoon crop.  As expected, 

genotypes previously identified as resistant to the sugarcane borer suffered significantly (P < 

0.01) less damage from the sugarcane borer in both the plant (45 %) and first ratoon (52 %) 

crops compared to their susceptible counterparts.  But more importantly, genotypes previously 

identified as resistant to the sugarcane borer also suffered significantly (P < 0.01) less damage 

from the Mexican rice borer in both crops compared to their susceptible counterpart.  When the 

entire dataset comprising all 80 genotypes were subsequently coded as either resistant or 

susceptible to the sugarcane borer and analyzed, the trends were similar to those reported above 
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(Table 6.1).  While the % borer-damaged internodes for both pests were significantly (P < 0.05) 

influenced by crop and prior sugarcane borer resistance status the interaction between resistance 

status and crop was not significant (Data not shown). The above results indicated that the 

significant variables for % borer-damaged internodes were similar for the Mexican rice borer and 

the sugarcane borer, and was suggestive of cross resistance in sugarcane between the sugarcane 

borer and the Mexican rice borer.  However, it must be considered that, while the ANOVA can 

be used to show differences between groups, no reliable inferences can be made about the 

association between the borer-damaged internodes between the species.  To accomplish this we 

performed the ANCOVA. 

6.3.2 Analysis of Covariance 

In the ANCOVA, the % Mexican rice borer-damaged internodes was used as the response 

variable while that of the sugarcane borer was used as the covariate (Table 6.2). A significant 

positive association would mean that the plants within the populations responded similarly to 

attack by both pests. The analyses produced two regression equations for each data set, one each 

for the Louisiana and Texas populations, and one each for the resistant and susceptible 

genotypes. The equations were, 

,                      Equation 6.5  

for the Louisiana population,   

,                                 Equation 6.6 

for the Texas population,  

,                        Equation 6.7  



144 

Table 6.1: Mean percent bored internodes and standard errors (S.E) for the Mexican Rice Borer and Sugarcane borer in the Plant and 

Ratoon Crops sampled from the Louisiana and Texas breeding populations, the Louisiana resistant and susceptible sub-

populations and all genotypes reclassified into resistant and susceptible populations.   

 

Population 

Mexican Rice Borer Sugarcane borer 

Plant ± SE Ratoon ± SE Mean ± SE Plant ± SE Ratoon ± SE Mean ± SE 

Louisiana and Texas populations 

Louisiana 

Texas 

Mean 

Significance 

24.97 ± 1.02 

21.90 ± 0.87 

23.43 ± 0.80 

** 

19.83 ± 1.03 

22.10 ± 0.87 

20.97 ± 0.81 

* 

22.40 ± 0.85 

22.00 ± 0.76 

22.19 ± 0.42 

NS 

5.24 ± 0.86 

7.61 ± 0.79 

6.43 ± 0.77 

*** 

5.54 ± 0.86 

5.32 ± 0.79 

5.43 ± 0.77 

NS 

5.39 ± 0.78 

6.47 ± 0.75 

5.93 ± 0.24 

* 

Louisiana Resistant and Susceptible Sub-populations 

Resistant 

Susceptible 

Resistant % Susceptible 

Mean 

Significance 

19.80 ± 1.17 

29.47 ± 1.74 

67 

24.63 ± 1.17 

*** 

16.90 ± 1.19 

24.60 ± 1.74 

69 

20.75 ± 1.17 

*** 

18.35 ± 1.00 

27.03 ± 1.36 

68 

20.66 ± 0.71 

** 

4.01 ± 0.52 

7.26 ± 1.45 

55 

5.63 ± 0.51 

** 

2.76 ± 0.53 

5.74 ± 0.85 

48 

4.25 ± 0.52 

** 

3.38 ± 0.39 

6.50 ± 0.62 

52 

4.22 ± 0.34 

* 

All Genotypes reclassified into Resistant and Susceptible populations 

Resistant 

Susceptible 

Resistant % Susceptible 

Mean 

Significance 

19.53±1.29 

25.57±1.16 

76 

22.55±0.96 

*** 

17.20±1.31 

24.32±1.17 

71 

20.76±0.97 

*** 

18.37±1.03 

24.95±0.95 

74 

22.19±0.42 

** 

3.74±0.94 

8.76±0.90 

43 

6.25±0.74 

*** 

2.62±0.94 

7.12±0.91 

37 

4.87±0.74 

*** 

3.18±0.87 

7.94±0.85 

40 

5.93±0.24 

* 

NS = not significant. *, **, *** significant at 0.05, 0.01, 0.001 respectively 
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for the resistant population (Louisiana subgroups),  

,                    Equation 6.8 

for the susceptible population (Louisiana subgroups),  

,                          Equation 6.9 

for the resistant population (80 genotypes grouped), and, 

,                   Equation 6.10 

for the susceptible population (80 genotypes grouped). 

In the ANCOVA, the intercept of each population represents the level of damage caused 

by the Mexican rice borer whereas the slopes measure the strength of the association (Figure 

6.1). The intercepts are represented by the Population (Vartype) or Resistance Status 

(Resistance) effect while the slopes are represented by the SCBP*Population or 

SCBP*Resistance Status effect (Table 6.2; Figure 6.1). The intercepts show that, similar levels 

of Mexican rice borer-damaged internodes were experienced by the Louisiana and Texas 

populations as previously indicated by the ANOVA (Table 6.1). However, the coefficient of the 

slope or SCBP*Population effect for the Louisiana population was positive and significant (P < 

0.01) indicating a positive association in the % borer-damaged internodes between the Mexican 

rice borer and the sugarcane borer in this population. No such significant (P > 0.05) association 

was found for the Texas population. 

The second data set comprised Louisiana genotypes with known sugarcane borer 

resistance status. The sugarcane borer resistant genotypes had a smaller intercept indicating that 

this group incurred less Mexican rice borer damage than their susceptible counterpart (Table 

6.2). A significant association (P < 0.01) was found between the Mexican rice borer and the 
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Table 6.2: The estimate, standard error, t-value and probability of obtaining a larger t-value (Pr > 

|t|) for the intercepts (Vartype) and slopes (SCBP*Vartype) derived from the analysis 

of covariance of the % Mexican rice borer-damaged internodes (response variance) 

and % sugarcane borer-damaged internodes (covariate) for the Louisiana and Texas 

populations, the Louisiana resistant and susceptible sub-populations and all the 

genotypes reclassified into resistant and susceptible populations 

Effect Population Estimate Standard Error t Value Pr > |t| 

Louisiana and Texas Populations 

Vartype Louisiana 20.54 1.43 14.33 0.0001 

Vartype Texas 22.19 1.27 17.48 0.0001 

SCBP*Vartype Louisiana 0.36 0.12 3.01 0.0001 

SCBP*Vartype Texas -0.03 0.08 -0.36 0.7181 

Louisiana Resistant and Susceptible Sub-populations 

Resistance Resistant 16.78 1.75 9.58 0.0001 

Resistance Susceptible 24.84 2.55 9.76 0.0001 

SCBP*Resistance Resistant 0.48 0.18 2.67 0.0095 

SCBP*Resistance Susceptible 0.34 0.22 1.51 0.1346 

All Genotypes Reclassified into Resistant and Susceptible populations 

Resistance Resistant 17.22 0.84 20.57 0.0001 

Resistance Susceptible 25.15 0.80 31.46 0.0001 

SCBP*Resistance Resistant 0.37 0.18 2.04 0.0423 

SCBP*Resistance Susceptible -0.02 0.08 -0.27 0.7867 
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sugarcane borer among the group of genotypes identified as resistant to the sugarcane borer, 

whereas, no such association (P > 0.05) was found among the susceptible genotypes (Table 6.2). 

Similar trends were found when the data subset comprising the sugarcane borer resistant versus 

susceptible groups drawn from all 80 genotypes was analyzed (Table 6.2). These results indicate 

that factors that influence the % borer-damaged internodes were similar for the sugarcane borer 

and the Mexican rice borer (Equations 6.5, 6.7, 6.9) and are also suggestive of cross resistance 

between the sugarcane and Mexican rice borers.  However, whereas the ANCOVA showed that 

there was significant association in the response of sugarcane genotypes to infestation by the two 

borer species, the method in strict statistical terms is not robust enough to identify factors 

responsible for the association. To accomplish this we used Log linear models which can 

determine the variables responsible for the response. 

6.3.3 Log Linear Model Analysis 

Log linear models have not typically been used in these types of analyses, therefore, additional 

details about how it is being applied in this study is warranted.  The input data used by log linear 

models are counts arranged in a contingency table with the cell values in the table treated as the 

response variable (Table 6.3). In this study, the experimental design variables namely, the crop, 

population, and borer damage status (bored or not bored) were treated as the independent 

variables.  The analysis was used to determine the association or independence of one factor (e.g. 

borer damage status) on the other factors (crop, population), but the interpretation is based on the 

odds of insect damage (borer damage status) occurring in one crop or population relative to 

another. This is accomplished by first identifying and interpreting the significant interaction 

effects in the model. For example, to determine the extent to which borer damage status is 

dependent on the crop, the population, and their interaction (that is, of crop and population), one 
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would first identify if the estimates or coefficients associated with the borer damage status by 

crop, borer damage status by population, and borer damage status by crop by population 

interaction effects, respectively, are significant in the model.   

 

 
Figure 6.1: Mexican Rice Borer (% borer-damaged internodes) plotted against Sugarcane borer 

(% borer-damaged internodes) for genotypes selected from the Louisiana (a) and 

Texas (b) breeding populations. The trends in the graphs were fitted using simple 

linear regression and the coefficients are different from those in Table 2, that were 

derived from the analysis of covariance using the mixed procedure of SAS. The 

mixed procedure of SAS removes the variation associated with random variables 

such as replication. 
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Each of these coefficients is associated with a standard error, confidence intervals, chi-

square and probability of the chi-square value which is used to test for its significance as shown 

in Table 6.4.  A significant estimate for the effect of borer damage status by crop or borer 

damage status by population would indicate a departure from unity (1.0) meaning that the borer 

damage status was dependent on the crop or population, respectively.  To derive the 

comparisons, these coefficients are exponentiated to produce odds ratios and it is the odds ratios 

that are interpreted. For example, the odds ratios for borer damage occurring in the Louisiana 

versus Texas population are calculated as the odds of being bored for the Louisiana population 

divided by the odds of being bored for the Texas population. Significant, positive odds ratios that 

are greater than 1.0 would mean that the odds of borer damage occurring in the Louisiana 

population were greater than that for the Texas population.  

For example, when the dataset comprising sugarcane borer resistant and susceptible 

genotypes from the Louisiana population were subjected to log linear model analysis, the output 

would be as shown in Table 6.4. The highest significant effects were the two-way interactions of 

borer status by resistance and borer status by crop. From Table 6.4, the resistance by crop effect 

is not within the scope of this study and is therefore not interpreted. The resistance by Mexican 

rice borer and crop by Mexican rice borer effects are interpreted because they provide 

information on how the resistance status to the sugarcane borer and the crop affects the % 

Mexican rice borer-damaged internodes, respectively. The coefficients of the resistance by 

Mexican rice borer (-0.5055), from Table 4 represents the log of the odds ratio of being bored by 

the Mexican rice borer for the resistant genotypes versus the susceptible genotypes. The odds 

ratio (resistance versus susceptible) are calculated by exponentiating the log odds ratio (-0.5055) 

and is equal to 0.60 (Table 6.5). The confidence limits of the odds ratio 0.60, are calculated by 
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exponentiating the confidence limits of the log of the odds ratio (-0.5826, -0.4285) to provide the 

limits 0.56 and 0.65 in Table 6.5. The log of the odds ratio divided by the standard error (S.E.) 

provides a t-statistic which is squared to provide the Chi-square statistic (Chi-square) in Table 

6.5. The probability (Pr > ChiSq) of obtaining a larger value of the Chi-Square statistic is given 

in Table 4 and this value can be read off the Chi-Square tables and indicates the strength of the 

dependency or association of the borer damage to the resistance status. 

Log linear model analysis is interpreted the same way as factorial analysis. As with 

factorial analysis, only the highest order significant interaction effect is interpreted. In this study, 

the borer damage status by crop by population interaction effect for the Louisiana and Texas 

populations was significant (P < 0.01). Significant three-way interactions are interpreted by 

comparing two variables at each level of a third, just as is done with factorial analysis. Therefore, 

odds ratios for borer damage in the Louisiana versus Texas population were compared for each 

crop.  

One area of similarity between ANOVA and log linear models is that both populations 

incurring borer damage were not consistent across crops (Table 6.5). In the plant crop Louisiana 

genotypes were 17 % (significant at P < 0.05) more likely to incur Mexican rice borer damage 

than Texas genotypes but the reverse was true in the first ratoon crop where Louisiana genotypes 

were 35 % (significant at P < 0.05) less likely to incur Mexican rice borer damage.  For the 

sugarcane borer, Louisiana genotypes were 10 % (significant at P < 0.05) less likely to incur 

borer damage than Texas genotypes in the plant crop and in the first ratoon crop, genotypes from 

both populations were equally likely to incur borer damage as the odds ratio was close to 1.00 

(Table 6.5) and the coefficient was not significant (P > 0.05).   
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Table 6.3: Number and proportion (in brackets) of internodes bored by the Mexican rice borer 

and Sugarcane borer in the plant and ratoon crops for the genotypes from the 

Louisiana and Texas populations, the Louisiana resistant and susceptible sub-

populations, and all the genotypes reclassified into resistant and susceptible 

populations. 

 

Crop 

 

Population 

Mexican Rice Borer Sugarcane Borer 

Bored Not Bored Bored Not Bored 

Louisiana and Texas populations 

Plant Louisiana 3392 (0.25) 10334 678(0.05) 13048 

Texas 5016(0.22) 17833 1686(0.07) 21163 

Ratoon Louisiana 2066(0.20) 8245 507(0.05) 9804 

Texas 3685(0.22) 13280 846(0.05) 16119 

Louisiana Resistant and Susceptible Sub-populations 

Plant Resistant 1569(0.25) 6366 307(0.04) 7628 

Susceptible 773(0.42) 1851 185(0.08) 2439 

Ratoon Resistant 999(0.20) 4947 166(0.03) 5780 

Susceptible 518(0.32) 1596 123(0.06) 1991 

All Genotypes Reclassified into Resistant and Susceptible populations 

Plant Resistant 3042 (0.19) 12590 562 (0.04) 15070 

Susceptible 5366 (0.26) 15577 1802 (0.09) 19141 

Ratoon Resistant 2000 (0.17) 9658 304 (0.03) 11354 

Susceptible 3571 (0.24) 11867 1049 (0.07) 14569 
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Table 6.4: The output from log linear models showing the parameters, levels of resistance 

[Resistant (R) and Susceptible (S)], levels of crop [Plant (P) and Ratoon (R)], and 

levels of internode borer damage status (Damage (D) and Not Damaged (N)), Degrees 

of freedom (DF), parameter estimates (estimate), Standard error of the estimates 

(S.E.), the Wald 95 % confidence limits, Chi-square value (Chi-square) and the 

probability of obtaining a larger Chi-square value (Pr > ChiSq) for the Mexican rice 

borer (MRB) data. 

  

Parameter 

  

Levels 

 

DF 

 

Estimate 

 

S.E. 

Wald 95 %  

Confidence Limits 

Chi- 

Square 

Pr >  

ChiSq 

Intercept     1 7.3701 0.0238 7.3234 7.4168 95691.2 <.0001 

Resistance R   1 1.1382 0.0269 1.0854 1.1909 1791.20 <.0001 

Resistance S   0 0.0000 0.0000 0.0000 0.0000 . . 

Crop P   1 0.1579 0.0309 0.0974 0.2184 26.13 <.0001 

Crop R   0 0.0000 0.0000 0.0000 0.0000 . . 

MRB D   1 -1.1042 0.0391 -1.1808 -1.0277 798.83 <.0001 

MRB N   0 0.0000 0.0000 0.0000 0.0000 . . 

Resistance*Crop R P 1 0.0913 0.0341 0.0245 0.1581 7.18 0.0074 

Resistance*Crop R R 0 0.0000 0.0000 0.0000 0.0000 . . 

Resistance*Crop S P 0 0.0000 0.0000 0.0000 0.0000 . . 

Resistance*Crop S R 0 0.0000 0.0000 0.0000 0.0000 . . 

Resistance*MRB R D 1 -0.5055 0.0393 -0.5826 -0.4285 165.24 <.0001 

Resistance*MRB R N 0 0.0000 0.0000 0.0000 0.0000 . . 

Resistance*MRB S D 0 0.0000 0.0000 0.0000 0.0000 . . 

Resistance*MRB S N 0 0.0000 0.0000 0.0000 0.0000 . . 

Crop*MRB P D 1 0.2158 0.0371 0.1432 0.2884 33.90 <.0001 

Crop*MRB P N 0 0.0000 0.0000 0.0000 0.0000 . . 

Crop*MRB R D 0 0.0000 0.0000 0.0000 0.0000 . . 

Crop*MRB R N 0 0.0000 0.0000 0.0000 0.0000 . . 
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Table 6.5: The odds ratios (and their confidence intervals) for the Louisiana versus Texas 

populations, Louisiana Resistant versus Susceptible sub-populations, and all the 

genotypes re-classified into resistant and susceptible populations and plant versus 

ratoon crop for the Mexican rice and sugarcane borers 

 

Borer 

  

Plant Ratoon Louisiana Texas 

Mexican rice borer 1.17 (1.11, 1.23) 0.65 (0.60, 0.71) 1.31 (1.23, 1.39) 1.01 (0.97, 1.06) 

Sugarcane borer 0.90 (0.85, 0.96) 0.99 (0.88, 1.10) 1.00 (0.89, 1.13) 1.52 (1.39, 1.65) 

Louisiana Resistant and Susceptible sub-populations 

                                                                    

Mexican rice borer 0.60 (0.56, 0.65) 1.24 (1.15, 1.33) 

Sugarcane borer 0.50 (0.44, 0.58) 1.33 (1.15, 1.54) 

All genotypes Re-classified into Resistant and Susceptible populations 

                                                                    

Mexican rice borer 0.68 (0.66, 0.71) 1.18 (1.08, 1.16) 

Sugarcane borer 0.39 (0.36, 0.42) 1.33 (1.24, 1.42) 

The sugarcane borer is believed to damage the plant crop more than the ratoon crops 

because the plant crop establishes more slowly than the ratoon crop and therefore remains in a 

vulnerable state longer. Also, the diversity and numbers of predators are lower in the plant-cane 

crop than in subsequent stubble crops. We therefore investigated the odds ratio for borer damage 

in the two populations between the plant and ratoon crops to determine if the same pattern of 

borer damage existed for the Mexican rice borer (Table 6.5). For the Louisiana population, the 

plant crop was significantly (P < 0.05; 31 %) more likely to be bored by the Mexican rice borer 

than the first ratoon crop. The Texas population was significantly (P < 0.05; 52 %) more likely to 

be bored by the sugarcane borer. Both the Louisiana and Texas populations were equally likely 

to be bored in the plant versus the ratoon crop by the sugarcane borer and Mexican rice borer, 
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respectively. From Table 6.5, it can be deduced that each population was more likely to be bored 

in the plant crop than the ratoon crop by the borer less prevalent in the area from which the 

population originated, that is, the Mexican rice borer for the Louisiana population and the 

sugarcane borer for the Texas population. As previously mentioned the similarity in damage by 

both borer species to the plant versus ratoon crops could indicate similar patterns of damage by 

both species.    

Louisiana genotypes previously selected for resistance to the sugarcane borer were 40 

% (significantly at P < 0.01) less likely to incur Mexican rice borer damage and 50 % less likely 

to incur sugarcane borer damage compared to susceptible genotypes (Table 6.5). When the 

analysis was repeated assuming prior knowledge of the sugarcane borer resistant and susceptible 

status of all 80 genotypes in the experiment, the results corroborated the above findings with 

resistant genotypes being 32 % less likely to incur Mexican rice borer damage and 61 % less 

likely to incur sugarcane borer damage than their susceptible counterparts (Table 6.5). The 

results corroborate previous evidence in suggesting that prior knowledge of the sugarcane borer 

resistance status of a plant could be useful as a predictive tool in determining how they would 

react when exposed to infestation by the Mexican rice borer.  The dependency of Mexican rice 

borer-damaged internodes on the sugarcane borer resistance status of the plant provided evidence 

for cross resistance between the borer species. Therefore, mechanisms governing resistance to 

the sugarcane borer could also be active against the Mexican rice borer, although at marginally 

lower levels (Table 6.5). The plant crop was 24 % (Mexican rice borer) and 33 % (sugarcane 

borer) more likely to be bored than the ratoon crop; an indication that screening of both borers 

would be best carried out in the plant crop. That genotypes were more susceptible to damage by 
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both borers in the plant crop further highlights the notion that the patterns of damage for both 

borer species were similar, and perhaps one of the reasons for the cross resistance. 

6.4 Discussion 

The objective of this study was to determine whether cross resistance exist, among sugarcane 

genotypes, between the sugarcane borer and the Mexican rice borer. In particular, we wanted to 

know whether prior knowledge of the sugarcane borer resistance status of a genotype could be 

useful for predicting its reaction when exposed to the Mexican rice borer.  The study was 

prompted as a measure of preparedness of the Louisiana sugarcane industry to the encroachment 

of the Mexican rice borer. The study sought to take advantage of resources developed through a 

long history of selection and breeding for sugarcane borer resistance in Louisiana (Hensley and 

Long, 1969; Kyle and Hensley, 1970; Pan and Hensley, 1973; White and Hensley, 1987; White, 

1993; Milligan et al., 2003; Kimbeng et al., 2006).  No formal program to select and breed for 

resistance to either pest existed in Texas.  At the time the study was initiated, both the Mexican 

rice borer and the sugarcane borer were present in Texas whereas only the sugarcane borer was 

present in Louisiana.  However, the Mexican rice borer was reported present in Louisiana by the 

time the study was concluded.  

The study provided evidence of cross-resistance between the sugarcane borer and the 

Mexican rice borer. Evidence of a cross resistance between the sugarcane borer and the Mexican 

rice borer was more pronounced in the Louisiana population presumably because it had 

previously been selected for varying levels of resistance to the sugarcane borer (Figure 6.1; 

Table 6.2).  This population was subdivided into two groups (resistant versus susceptible to the 

sugarcane borer) based on prior information. Using this information as a standard, it was also 
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possible to make a similar classification (resistant versus susceptible to the sugarcane borer) of 

all 80 entries in the trial. The analyses of these data showed that, % borer-damaged internodes 

for both the sugarcane borer and Mexican rice borer were substantially higher among the 

susceptible compared to the resistant group of genotypes (Tables 6.1 and 6.2). The resistant 

genotypes showed a strong positive association between the sugarcane borer and the Mexican 

rice borer (Figure 6.1 and Table 6.2) and were 32 % less likely to incur Mexican rice borer 

damage compared to their susceptible counterparts (Table 6.4).   

Cross resistance would be a great benefit to the Louisiana sugarcane breeding program as 

it would eliminate the need for maintaining dual breeding programs needed to develop resistance 

to both species. The existence of cross resistance means the Louisiana sugarcane industry is not 

completely unprepared for the arrival of the Mexican rice borer. Genotypes identified as resistant 

to both pests in this study, especially Louisiana adapted germplasm, would form the base 

population of a program designed to elevate the level of resistance in sugarcane to both pests.   

Most of the genotypes in the Louisiana population had previously been selected for their 

reaction to the sugarcane borer, whereas, none of the Texas genotypes had undergone any formal 

selection for either pests.  Mean comparisons, from the ANOVA, of percent borer-damaged 

internodes for both pests, between the Louisiana and Texas population was probably not a 

reliable measure because the Louisiana samples deliberately included resistant and susceptible 

entries.  However, the log linear model analysis showed that the Louisiana population was 

generally less likely to incur sugarcane borer damage compared to the Texas population. Log 

linear model analysis also showed that the Louisiana population responded more to fluctuations 

(within population comparison across crops) in Mexican rice borer pressure and less to 

fluctuations in sugarcane borer pressure while the Texas population succumbed more to 
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sugarcane borer pressure and less to Mexican rice borer pressure.  The data seem to suggest that 

the Texas population has acquired at least a marginal to moderate level of resistance to the 

Mexican rice borer although no formal selection and breeding has been practiced for this trait.  

One can assume that native infestations of the Mexican rice borer in Texas are probably high 

enough to exert natural selection for this trait.  It would, therefore, be possible to increase the 

level of Mexican rice borer resistance in sugarcane through active selection and breeding.     

This study supports our contention that it is possible to simultaneously increase levels of 

stem borer resistance to both the Mexican rice borer and the sugarcane borer; unfortunately, 

those traits that possibly confer resistance to the stem borers are also inversely correlated with 

sucrose yields (White et al., 2006). We are currently reviewing advancement records to evaluate 

how valuable our sugarcane borer parental lines are to the commercial breeding programs in 

Louisiana. Our initial evaluations suggest that an additional cycle of backcrossing may be 

necessary to obtain sucrose yields required for a genotype to be accepted by growers. If borer 

resistance becomes diluted with subsequent backcrossing, then it may be necessary to identify 

other sources of resistance that are less correlated to low yields. 

There could be negative side effects to increasing the cross resistance between the 

sugarcane borer and the Mexican rice borer. White et al. (2006) reported that the traits that 

confer resistance to the stem borers were negatively correlated with sucrose content. Increasing 

cross resistance could have the effect of significantly decreasing the sucrose content to 

uneconomic levels. Therefore information on the optimum levels of cross resistance that do not 

significantly reduce the values of other important traits like sucrose content could be used to 

reduce the negative side effects of high levels of cross resistance.     
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The choice of material to evaluate was an important consideration in confirming cross 

resistance in this study. A population comprising individuals with known levels of resistance to 

one of the borers is required in studying cross resistance. Little insight into the existence of cross 

resistance was gained when we analyzed the data from the Louisiana and Texas populations 

assuming all entries to be random with no defined resistance status for either one of the borer 

species.  The use of a population that was defined for resistance to the sugarcane borer provided 

an experimental control for quantifying the existence and levels of cross resistance between the 

borer species.   

Appropriate statistical methods are also important to investigate cross resistance. Borer 

damage by both species should depend on the same experimental design variables that are 

associated with the resistance. ANOVA can only identify significant experimental design 

variables but cannot reveal associations as well as test the dependency between borer damage 

and experimental design variables. Moreover, the ANOVA is not the most appropriate statistical 

method for analyzing categorical data that follows a Poisson distribution but it does help 

determine the important experimental design variables when the data follow a normal 

distribution as was the case in this study. While ANCOVA determines the strength of the 

association of the % borer-damaged internodes between species, and can suggest cross-

resistance, it does not provide information of the design variables that are associated with the 

levels of borer damage.  Log linear models test dependency of borer damage to experimental 

design variables. In this study, it was demonstrated that a combination of appropriate populations 

and statistical methods were required to determine the existence of cross resistance between the 

Mexican rice borer and sugarcane borer species.    
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This is only the first study to investigate cross resistance to pests in sugarcane.  The study 

provides a good model for determining the ideal populations, experimental design and statistical 

methods for determining if cross resistance exists in other multi-pest agro-ecosystems. For 

example, in the Zimbabwe sugar industry, currently, the stem borer, Eldana saccharina, remains 

the major insect pest of sugarcane (Mazodze et al., 1999; Mutambara-Mabveni, 2007). Recently, 

another stem borer, Chilo sacchariphagus has been detected in Mozambique at the Mafambisse 

sugar estate (Conlong and Goebel, 2002) and is advancing from Mozambique to Zimbabwe, 

Malawi, Swaziland and South Africa sugarcane growing areas. Evidence of genotype resistance 

to C. sacchariphagus has been observed in Mozambique (Conlong et al., 2004). Currently, there 

is active selection for eldana resistance (Rutherford, 1998) but no active selection for C. 

sacchariphagus. Investigating cross resistance between the E. saccharina and C. sacchariphagus 

would help the Southern Africa sugarcane industries develop strategies to control both borer 

species. 

6.5 Summary   

There was a significant association between the Mexican rice borer damage and the sugarcane 

borer damage for the Louisiana population and the sugarcane borer resistant sub-population, 

suggesting the probable existence of cross resistance. Sugarcane borer resistant genotypes were 

significantly less bored by the Mexican rice borer than susceptible genotypes indicating that 

resistance to the sugarcane borer also imparted resistance to the Mexican rice borer. The analysis 

of covariance showed strong association in % bored internodes between the Mexican rice and 

sugarcane borers. Log linear models support the existence of cross resistance between the 

sugarcane borer and the Mexican rice borer. However, sugarcane borer resistance conferred 

marginally lower resistance to the Mexican rice borer. The plant crop was more likely to be 
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bored by both the borers because the plant crop was slower to establish and also indicating that 

screening for both borers could be best done in the plant crop. The approach followed in this 

study can be applied to breeding for pest resistance in other sugarcane industries and crop 

species with similar pest problems. These findings demonstrate that those traits conferring 

resistance to the sugarcane borer (i.e. fiber, rind-hardness, tight leaf sheaths) are likely conferring 

resistance to the Mexican rice borer. However, there was still a marginally lower resistance to 

the Mexican rice borer. If increasing levels of resistance to the Mexican rice borer are required to 

successful manage this new stem borer, the existing recurrent selection for sugarcane borer 

would provide germplasm for starting recurrent selection for the Mexican rice borer, but 

ultimately direct selection for the Mexican rice borer may become necessary. The marginal 

resistance to the Mexican rice borer among the genotypes from Texas indicates that natural 

selection was working in this population. Active screening for the Mexican rice is likely to 

significantly increase the resistance to the Mexican rice borer. 
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CHAPTER 7: GENERAL DISCUSSIONS, CONCLUSIONS AND PROSPECTS FOR 

FUTURE RESEARCH 

7.1 Early Generation Selection Stages 

To date, the challenges of the early generation selection have emphasized identifying families 

with greater proportions of high yielding seedlings as well as identifying the seedlings with 

potential to produce high cane yield from these families. Although current family evaluation 

methods using family means have increased gains in early generation selection, they remain 

inadequate. Current family evaluation methods are inadequate because they do not provide 

insight into the distribution patterns of the seedling cane yield within the families. The 

distribution patterns of seedling cane yield within families could be a key parameter that could 

help identify families with higher yield clones as well as identify those families where high cane 

yield seedlings can be easily identified during individual seedling selection. Visual seedling 

appraisal has produced gains in seedling selection and is also very easy to implement. However, 

the confounding influence of genotype by environment interaction effects and the competition 

among closely planted seedlings can significantly reduce the precision of visual selection. 

Statistical models with the capability of performing fast computations can provide decision 

support tools that are more objective for individual seedling selection. Such methods could also 

provide more flexible parameters for reviewing the selection process as well as evaluating the 

sugarcane breeding populations. 

7.1.1 Family Evaluation and Selection 

7.1.1.1 General Discussions 

This study showed that accounting for the confounding influence on cane yield between the 

seedlings and the clones substantially improved the evaluation of families. The families 
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classified as elite using RCM analysis generally produced higher cane yield in both the seedlings 

and clones than those derived from family means. Seedling selection for high cane yield from 

these elite families (Stage I) produced clones with high cane yield (Stage II). The use of the 

intercept and slopes helped evaluate the families for yield potential and repeatability. 

Repeatability, as described by the slope was used to evaluate the distribution pattern of cane 

yield of the seedlings and clones. The elite families selected by RCM analysis produced larger 

within family variance among the seedlings and clones, making these families ideal populations 

for selection. The RCM analysis also produced the most discriminating parameter, the slope. The 

disadvantage associated with the implementation of the RCM analysis would be the required 

cane yield data from the seedlings, and first clonal stage. This data is not routinely collected in 

most breeding programs because of the high labor cost and availability. However, in breeding 

programs capable of collecting the data, parallel and retrospective family evaluation can be 

implemented. With the parallel family evaluation approach, fewer seedlings per family would be 

planted as seedlings and clones, and would be used to evaluate the families. Large numbers of 

seedlings for individual selection would only be planted from the elite families. The savings in 

planting fewer families for individual seedling selection could compensate for the cost associated 

with the data collection required for RCM family evaluation. The retrospective approach would 

use data collected in seedlings and first stage clones to evaluate families after seedling selection 

has already been done. However, the analysis would be used to determine the families to replant.  

7.1.1.2 General Conclusions 

In conclusion, the RCM analysis offers potential for family evaluation because of its ability to 

simultaneous screen families for yield potential and repeatability, thereby comparing the families 
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for their distribution patterns of cane yield of the seedlings and clones within the families. The 

elite families that were selected using RCM analysis comprised a greater proportion of seedlings 

that produced high cane yield. These elite families also showed better distribution patterns where 

the cane yield of the clones increased consistently with the increases in the cane yield of the 

seedlings. Because fewer high quality families will be planted for individual seedling selection, 

these seedlings are likely to be better managed and intensive selection can be practiced because 

of the fewer numbers involved than is the case with current methods. Parallel family evaluation 

appears more attractive as a strategy for implementing RCM analysis because the resources 

saved by planting fewer families for individual seedling selection are likely to compensate for 

the extra cost associated with data collection required to implement the RCM analysis.  

7.1.2 Seedling Selection 

7.1.2.1 General Discussions 

Logistic regression offered great potential as an objective decision support statistical tool for 

seedling selection. The logistic regression model identified higher yielding seedlings and was 

more flexible in adjusting the number of seedlings selected than visual selection. The probability 

was the parameter used for selection.  Statistical tests generated for the probability using 

confidence limits provided an extra aid to seedling selection. Trait relationships among families 

and between populations were evaluated from the trends of the probability plotted against the 

trait values, providing the breeder with a mechanism to quantify the effects of a selection 

strategy over time. The logistic models provided a statistical tool for shifting breeding 

populations towards, for example, high cane yield by using populations created with the desired 

trait combination that impart high cane yield as sources of the training data set. The cost of 

collecting the required seedling data would be a disadvantage to the wide adoption of the logistic 
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regression models as a decision support tool but this disadvantage could be overcome by 

calibrating models that could use scores derived from yield components. 

 The logistic regression models can be implemented using the SAS Enterprise Miner 

Artificial Neural Network (ANN) models. Both approaches produce similar results and 

interpretations. When using the ANN models, the user specifies the training and prediction data 

set and the selection threshold probability. The SAS code is not required because the SAS 

Enterprise Miner has the code behind the scenes. The output of the ANN models provides the 

probability of selection and the selection decision (elect or reject). When similar training data 

sets and selection threshold probability are used for both models, the outputted results would be 

identical for both methods and the selection decisions would also be identical. Because the ANN 

models do not require a SAS code, they therefore provide faster computations because the user 

does not need to spend time writing the code. Furthermore, the user need not have any 

knowledge of SAS programming to implement the analysis. The decision to select or reject that 

is automatically produced in the output of the ANN models reduces the need to make the 

decisions manually based on the threshold as is done with the logistic regression models, further 

saving the user more time.    

7.1.2.2 General Conclusions 

The logistic regression models provided a quick and objective decision support tool for objective 

individual seedling selection. The effect of genotype by environment interaction that would 

significantly confound visual selection is reduced by logistic regression models. The numbers of 

seedlings to advance to clonal stages can be easily and quickly adjusted using the probability of 

selection, saving the breeder a lot of time and also providing a more objective parameter for 
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refining the selection process. Gains achieved by using the RCM analysis for family evaluation 

could be further enhanced by incorporating logistic regression models for seedling selection. The 

interrelationships among the yield components in breeding populations can also be inferred from 

plots of logistic regression models output data. The logistic regression model analysis can be 

automated in SAS by using the Artificial Neural Network models, thereby increasing the speed 

of the analysis. 

7.2 Multivariate Repeated Measures Analysis of Data From Advanced Variety Trials 

7.2.1 General Discussions 

The multivariate repeated measures analysis produced better model fit and greater discrimination 

between the differences in means of the yield traits of experimental genotypes and the control 

than the univariate analysis. The multivariate repeated measures analysis produced more 

appropriate experimental errors by including the covariance between variables and between 

crop-years in computing the variances used for the tests. The univariate analysis assumptions of 

a split plot in time as its experimental design and the independence between variables and 

between crop-years resulted in the univariate analysis significantly underestimating the standard 

errors used for testing the differences among genotypes for yield traits, causing incorrect 

interpretations. Yield traits are generally controlled by quantitative genes and therefore are more 

susceptible to genotype by environment interaction effects (Falconer and Mackay, 1996; 

Kimbeng et al., 2009; Mirzawan et al., 1993). The effects of genotype by environment 

interaction could be reduced by using the multivariate repeated measures approach. The yield 

plateau alluded to by Garside et al. (1997) could partially have been caused by some released 

varieties being erroneously defined as statistically higher yielding than the control because of the 
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Type I error associated with the univariate analysis. More appropriate analysis such as the 

multivariate repeated measures could result in correct interpretations of the results. 

7.2.2 General Conclusions 

The multivariate repeated measures analysis showed increased separation of the differences in 

means of the yield traits between the experimental genotypes and the control. However, the 

multivariate repeated measures analysis produced similar inferences to the univariate analysis for 

quality traits. Traits more influenced by genotype by environment interaction effects, for 

example, yield traits, would benefit immensely from the multivariate repeated measures analysis 

than those that are less influenced by genotype by environment interaction such as quality traits. 

The gains achieved from early generation selection using RCM analysis and logistic regression 

models could be further enhanced by adopting the multivariate repeated measures analysis in the 

advanced variety trials of sugarcane breeding programs. 

7.3 Cross Resistance Between the Sugarcane Borer and the Mexican rice borer 

7.3.1 General Discussions 

This study proved that cross resistance existed between the sugarcane borer and the Mexican rice 

borer. The existence of cross-resistance implies that breeding for resistance to one of the borer 

species would achieve control for both, significantly lowering the costs associated with running 

parallel resistance breeding programs. The benefits of the recurrent selection for the sugarcane 

borer resistance can be used to enhance the genetic control of the Mexican rice borer. The type of 

populations and statistical methods were proved to be important in demonstrating the existence 

of cross resistance. Populations with known resistance status to one of the species were 

important in this study. The information of the resistance status to the sugarcane borer provided a 
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control variable that was used to determine the existence of cross resistance, thereby simplifying 

the study. While ANCOVA showed the associations, and ANOVA only identified significant 

experimental design variables, these statistical methods only provided indications of the possible 

existence of cross-resistance but were inadequate for proving concrete evidence of the existence 

of cross resistance. The log linear model analysis was able to prove cross resistance by 

identifying the variables that determined the levels of borer-damage between the populations. 

This study will provide a reference to other researchers facing similar dual pest problems. 

7.3.2 General Summary 

This study demonstrated that selecting for resistance to the sugarcane borer would produce 

resistance to the Mexican rice borer, that is, cross-resistance. This finding would benefit the 

Louisiana sugarcane industry by limiting the yield losses from the Mexican rice borer that was 

recently observed in Louisiana. The type of populations and the statistical methods used were 

important in demonstrating the existence of cross resistance between the borer species. The 

recurrent selection for sugarcane borer resistance in Louisiana should provide parent genotypes 

for initiating resistance breeding to the Mexican rice borer. This study would also provide a good 

reference for the experimental design and statistical procedures to other sugarcane industries that 

are facing similar multiple pest problems.         

7.4 Prospects and Recommendations for Future Research 

7.4.1 Early Generation Selection 

Future research should focus on determining the optimum number of seedlings and or clones that 

should make up each family for RCM evaluation. Simulation studies can be used for optimizing 

the family population sizes and the optimum family selection rates. Previous studies have shown 
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the influence of genotype by environment interactions on family selection using family means 

(Jackson et al., 1995a, b). There is also a need to investigate the fluctuation in the family RCM 

parameters (intercept and slope) across environments. Such a study would provide more 

information on the stability of the RCM analysis parameters. 

Using logistic regression models for seedling selection requires a training data set. The 

training data set determines the parameters that are used to build the models used to compute the 

probability of selection. Further studies, probably using simulation models, is required to 

determine the optimum population size for the training data set. Because the logistic regression 

models offer an opportunity for shifting the population using the training data set, there is an 

opportunity to investigate the potential and magnitudes of these shifts by changing the 

parameters of the training data set. Such studies can also be done using simulation models. 

Previous studies have reported significant influence of genotype by environment interaction 

effects on seedling selection (Bull et al., 1992; Jackson and McRae, 1998). There is a need to 

evaluate if the selection rates within families would change across different environments when 

the logistic regression model is used. 

Further research should also evaluate the gains that would be achieved by combining 

RCM analysis and logistic regression models in the early generation selection stages. By 

evaluating the gains in yield across the stages of a selection program using RCM analysis and 

family means, the magnitude of the potential gains from RCM analysis over family analysis 

would be quantified for breeding programs. Alternatively, experiments designed specifically to 

evaluate these gains would be ideal. These studies would encourage the wide adoption of these 

models even in programs that may deem data collection expensive particularly if the gains would 

compensate for the cost of the data collection.          
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7.4.2 Multivariate Repeated Measures Analysis 

The likely erroneous interpretations of results using univariate analysis need to be investigated 

using historical data. Data from advanced variety trials is plentiful among sugarcane breeding 

programs. Studies using this historical data should shed more light on the potential impact and 

benefits of using multivariate repeated measures in analyzing advanced variety trials data. In 

addition to providing information on the potential gains likely to be derived from using 

multivariate repeated measures analysis, cultivars already released may have to be redefined if 

studies on historical data conclude their yield advantages have been overstated particularly when 

the varieties were described erroneously as significantly higher yielding than the controls. Some 

rejected varieties discarded as inferior to the controls may be found similar to the controls, and if 

these varieties offer certain added advantages such as superior disease or pest resistance, these 

varieties could be useful as parents for future crossing. 

Modelling Type I and Type II errors for both the univariate and the multivariate repeated 

measures analysis would shed more insight into the benefits of using the multivariate repeated 

measures analysis of yield traits in advanced variety trials. Such a study could also be used to 

determine experimental designs that would enhance the reduction of Type I errors and therefore 

enhance the effectiveness of the sugarcane breeding programs. 

The gains achieved in early generation selection could be further enhanced by adopting 

the multivariate repeated measures analysis for the advanced variety testing stages. There is need 

for research to evaluate the gains from the use of a combination of RCM analysis, logistic 

regression models and multivariate repeated measures analysis in a breeding program. Following 

every series from Stage I to Stage V, for example in the Zimbabwe program, would provide data 

to evaluate these gains. Additionally, the gains can also be evaluated using simulation models for 
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the current system and the new approach that use RCM analysis, logistic regression and 

multivariate repeated measures analysis. Such studies would further enhance the value of these 

statistical methods. 

While these methods have been demonstrated using SAS procedures, other software such 

as GENSTAT, R, SPSS and others that are widely used by plant breeders should be able to 

perform these analysis adequately. However, it is important to get the analysis evaluated with all 

the software that breeders are more familiar with and use frequently. The evaluation of the 

efficiency of the other statistical software may indicate the necessary improvements that may 

need to be incorporated in the deficient software. Additionally, such studies could also be used to 

identify the best software for performing these analyses, further providing the breeders with a 

wider choice. 

While these studies used sugarcane as a case study crop, we can speculate that these 

statistical methods are likely to be applicable to most of the other perennial crops with similar 

growing patterns to sugarcane. Obvious examples will include perennial forage grasses, among 

others. Studies to evaluate their application in these situations would be valuable.        

7.4.3 Cross Resistance 

Further studies are needed to investigate, between the sugarcane borer and the Mexican rice 

borer, the species that would be easier to screen and then in future develop resistance for that 

species. Also, there is need to investigate which species, after selecting for resistance, would 

result in higher borer resistance levels for both species. Alternatively, the species more prevalent 

in an area would be selected for as this would also provide resistance for the less prevalent 

species.  
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Future studies could also quantify the strength of the cross resistance. It is necessary to 

investigate if the cross resistance is stable across environments and crop-years. To enhance the 

incorporation of the cross resistance into breeding populations, it will be important to evaluate 

those genotypes that show the greatest cross resistance but are deficient in important agronomic 

traits. More research is needed to quantify the agronomic traits of the progenies of crosses done 

between the high cross-resistant genotypes and the agronomically acceptable parental genotypes, 

and verify if recombinants with both high cross-resistance and acceptable agronomic qualities 

occur in large enough proportions. Such a study could also quantify the heritability of cross 

resistance.  

Studies to determine the optimum selection rates that would allow the advancement of 

cross resistant genotypes for further use in the crossing program as parents is also needed. Such 

studies can be done using statistical simulation models. This approach would eventually have the 

effect of increasing agronomic value as well as capturing the borer cross resistance. This 

approach would act as a form of simultaneous recurrent selection for both cross resistance and 

agronomic traits. 

The negative side effects of incorporating cross resistance between the Mexican rice 

borer and the sugarcane borer would need to be investigated further. White et al. (2006) reported 

that the traits that confer resistance to the stem borers were negatively correlated with sucrose 

content. Investigations that quantify the threshold levels of cross resistance that is unlikely to 

negatively impact sucrose content would provide guidance to plant breeders on the levels of 

backcrossing required to recover economically acceptable genotypes with acceptable borer cross 

resistance. 
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Southern Africa sugarcane growers encounter the same predicament presented here for 

the Louisiana and Texas industries. Two borers, Eldana saccharina and Chilo sacchariphagus 

have been reported to coexist in Mozambique. Eldana saccharina is currently known to be 

widely distributed throughout Southern Africa while C. sacchariphagus is reportedly spreading 

fast from Mozambique into the neighboring countries. Studies to determine the potential 

existence of cross resistance between the sugarcane borers would help prepare Southern Africa 

sugarcane growers to mitigate the impact brought by the two devastating sugarcane borers. Such 

studies would also determine if parallel resistance breeding programs are required. 

7.5 References 

Bull, J.K., Hogarth, D.M. and Basford, K.E. (1992). Impact of genotype by environment 

interaction on response to selection in sugarcane. Australian Journal of Experimental 

Agriculture 32: 731 – 737. 

Falconer, D.S. and Mackay, T.F.C. (1996). Introduction to Quantitative Genetics. Fourth Edition. 

Longman Group Ltd, UK. 

Garside, A.L., Smith, M.A., Chapman, L.S., Hurney, A.P. and Magarey, R.C. (1997). The yield 

plateau in the Australian Sugar industry: 1970 – 1990. In Keating, B.A. and Wilson, J.R. 

(editors). Intensive Sugarcane Production: Meeting the Challenges Beyond 2000. CAB 

International, Wallingford, United Kingdom: 103 – 124. 

Jackson, P.A. and McRae, T.A. (1998). Gains from selection of broadly adapted and specifically 

adapted sugarcane families. Field Crops Research 59: 151 – 162. 

Jackson, P.A., McRae, T. and Hogarth, M. (1995a). Selection of sugarcane families across 

variable environments I. Sources of variation and an optimal selection index. Field Crops 

Research 43: 109 – 118. 

Jackson, P.A., McRae, T. and Hogarth, M. (1995b). Selection of sugarcane families across 

variable environments I. Patterns of response and association with environmental factors. 

Field Crops Research 43: 119 – 130. 

Kimbeng, C.A., Zhou, M.M. and da Silva, J.A. (2009). Genotype by environment interactions 

and resource allocation in sugarcane yield trials in the Rio Grande valley region of Texas. 

Journal of the American Society of Sugar Cane Technologists (In press). 



175 

Mirzawan, P.D.N., Cooper, M. and Hogarth, D.M. (1993). The impact of genotype by 

environment interactions for sugar yield on the use of indirect selection in southern 

Queensland. Australian Journal of Experimental Agriculture 33: 629 – 638. 

White, W.H., Tew, T.L., and Richard, E.P., Jr. 2006. Association of sugarcane pith, rind 

hardness, and fiber with resistance to the sugarcane borer. Journal American Society of 

Sugar Cane Technologist 26: 87 – 101.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



176 

APPENDIX 1 RANDOM COEFFICIENT MODELS ANALYSIS CODE 

 

 

Proc MIXED data=one scoring=8 COVTEST Method=REML; 

Class Family; 

Model CY = SY/solution; 

Random intercept SY/TYPE=UN subject=Family solution; 

run; 

The COVTEST Method=REML option provided the covariance test of the random effects using 

the Restricted Maximum Likelihood (REML). The TYPE=UN in the RANDOM statement 

provided the estimates of the variances and covariance of the slopes and intercepts and models 

an UNSTRUCTURED 2x2 covariance matrix for the random intercept and slope. The option 

SUBJECT=FAMILY in the RANDOM statement specified that the intercept and slope of each 

family was independently distributed from the intercepts and slopes of the other families, and the 

intercept and slope within each family were correlated and were random. The SOLUTION 

option on the MODEL statement provides a test for the population intercept and slope. The 

SOLUTION option on the RANDOM statement produces the tests for the effects of the intercept 

and slope (differences of the family intercept and slope from the population intercept and slope, 

respectively) of each family separately using the covariance matrix generated. The option 

SCORING=8 requested the PROC MIXED procedure to use Fisher’s scoring method with eight 

iterations.  
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APPENDIX 2 LOGISTIC REGRESSION MODELS ANALYSIS CODE 

 

Proc Logistic data=one Descending covout outest=Houma; 

Model Response = Stalks Height Diameter; 

Output out=predict p=Estimate lower=LCL upper=UCL;  

run; 

Where the DESCENDING option allows the modelling of the probability of selecting a seedling 

(1), COVOUT option produces the covariance matrix of the intercept and coefficients of the 

independent variables, the OUTEST = HOUMA option outputs the covariance matrix, OUT = 

PREDICT option outputs the predicted values, and P = ESTIMATE, LOWER = LCL, and 

UPPER = UCL option renames the predicted probability, the lower and upper confidence 

intervals for the predicted probability. 
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APPENDIX 3 MULTIVARIATE REPEATED MEASURES CODE FOR UN@UN 

 

Proc mixed data=sugar; 

Class Location Genotype CropYear Rep RV; 

Model Y = RV Location(RV) Genotype(RV) CropYear(RV) Location*Genotype(RV) 

Location*CropYear(RV) Genotype*CropYear(RV) Location*Genotype*CropYear(RV) / noint; 

Random RV / Subject=Rep(Loc) type=UN; 

Repeated RV CropYear / Subject=Genotype*Rep(Location) type=UN@UN;  

Run; 

The multivariate covariance structure was determined by the PROC MIXED random statement, 

RANDOM RV/SUBJECT=Rep(Loc) TYPE=UN. The PROC MIXED statement, REPEATED 

RV CropYear/SUBJECT=Genotype*Rep(Location) TYPE=UN@UN, determined the repeated 

measures covariance structure. The option TYPE = UN@UN or UN@AR(1) or UN@CS 

specified the covariance structure. The UN@UN modeled different covariance for the 

multivariate effects (UN) and different covariance for the repeated measures, while UN@AR(1) 

modeled a decay in covariance over time for the repeated measures and UN@CS modeled equal 

covariance for the repeated measures. For the yield, quality, and agronomic traits, each with two 

variables and eight crop-years, the UN@UN covariance had a 2x2 matrix for the multivariate 

effects (UN) and an 8x8 matrix for the repeated measures (UN) giving a 16x16 matrix for each 

of the covariance structures of UN@UN, UN@CS, and UN@AR(1). 
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APPENDIX 4 MULTIVARIATE REPEATED MEASURES CODE FOR UN@CS 

 

Proc mixed data=sugar; 

Class RV Location Genotype CropYear Rep; 

Model Y = RV Location(RV) Genotype(RV) CropYear(RV) Location*Genotype(RV) 

Location*CropYear(RV) Genotype*CropYear(RV) Location*Genotype*CropYear(RV) /noint;   

Random RV / Subject=Rep(Location) type=UN; 

Repeated RV CropYear / Subject=Genotype*Rep(Location) type=UN@CS; 

Lsmeans Gen/pdiff adjust=Dunnett diff=control("16"); 

Run; 

Where the statement LSMEANS GEN/PDIFF ADJUST=DUNNETT DIFF=CONTROL("16") 

generates the comparison of each experimental genotype to the control, genotype 16.  
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APPENDIX 5 MULTIVARIATE REPEATED MEASURES CODE FOR UN@AR(1) 

 

Proc mixed data=sugar; 

Class RV Location Genotype CropYear Rep; 

Model Y = RV Location(RV) Genotype(RV) CropYear(RV) Location*Genotype(RV) 

Location*CropYear(RV) Genotype*CropYear(RV) Location*Genotype*CropYear(RV) /noint;   

Random RV / Subject=Rep(Location) type=UN; 

Repeated RV CropYear / Subject=Genotype*Rep(Location) type=UN@AR(1); 

Run; 
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APPENDIX 6 LOG LINEAR MODELS ANALYSIS CODE 

 

proc Genmod data=resistance; 

class Resistance Crop MRB; 

model Count = Resistance Crop MRB Resistance*Crop Resistance*MRB Crop*MRB / 

Dist=POI Link=Log Obstats Residuals type3; 

Title3 'Log Linear Mexican Rice Borer (Resistance/Susceptible Sub-Groups)'; 

run; 

where DIST=POI option refers to the data following the Poisson distribution. LINK=LOG option 

refers to the log transformation that is used to linearise the data. OBSTATS RESIDUALS option 

outputs the observation statistics and the residuals. TYPE3 option produces the likelihood ration 

type 3 tests.  
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