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ABSTRACT 

 Initially, 46 petroleum contaminated and non-contaminated soil samples were collected 

and scanned using visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) at three 

combinations of moisture content and pretreatment. The VisNIR spectra of soil samples were 

used to predict total petroleum hydrocarbon (TPH) content using partial least squares (PLS) 

regression and boosted regression tree (BRT) models. The field-moist intact scan proved best for 

predicting TPH content with a validation r2  of 0.64  and relative percent difference (RPD) of 

1.70. Those 46 samples were used to calibrate a penalized spline (PS) model. Subsequently, the 

PS model was used to predict soil TPH content for 128 soil samples collected over an 80 ha 

study site. An exponential semivariogram using PS predictions revealed strong spatial 

dependence among soil TPH [r2 = 0.76, range = 52 m, nugget = 0.001 (log10 mg kg-1)2, and sill 

1.044 (log10 mg kg-1)2]. An ordinary block kriging map produced from the data showed that TPH 

distribution matched the expected TPH variability of the study site. Another study used DRS to 

measure reflectance patterns of 68 artificially constructed samples with different clay content, 

organic carbon levels, petroleum types, and different levels of contamination per type. Both first 

derivative of reflectance and discrete wavelet transformations were used to preprocess the 

spectra. Principal component analysis (PCA) was applied for qualitative VisNIR discrimination 

of variable soil types, organic carbon levels, petroleum types, and concentration levels. Soil 

types were separated with 100% accuracy, and organic carbon levels were separated with 96% 

accuracy by linear discriminant analysis. The support vector machine produced 82% 

classification accuracy for organic carbon levels by repeated random splitting of the whole 

dataset. However, spectral absorptions for each petroleum hydrocarbon overlapped with each 

other and could not be separated with any classification scheme when contaminations were 

mixed. Wavelet-based multiple linear regression performed best for predicting petroleum amount 
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with the highest residual prediction deviation (RPD) of 3.97. While using the first derivative of 

reflectance spectra, PS regression performed better (RPD = 3.3) than the PLS (RPD= 2.5) model. 

Specific calibrations considering additional soil physicochemical variability are recommended to 

produce improved predictions. 
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CHAPTER 1 

INTRODUCTION 

1.1. Oil Spills and Visible Near-infrared Diffuse Reflectance Spectroscopy 

 The term “petroleum” originated from the Latin word “petra” meaning rock and “oleum” 

meaning oil. However, in the present day world, petroleum is used synonymously with crude oil 

and natural gas. Crude oil which is the raw, unprocessed oil, is mostly mined from deep geologic 

deposits (both inland and off-shore). Crude oil and natural gas are the sources of large number of 

consumer products ranges from gasoline and kerosene to asphalt and chemical agents have 

played a crucial role in energy sector and numerous petrochemical industries (Chung et al., 

1999). The United States ranks third in crude oil production. However, crude oil alone does not 

satisfy the total U.S. petroleum demand. Therefore, high internal petroleum demand has led the 

U.S. to be a major consumer of crude oil and refined petroleum products1 (Fig. 1) (USEIA, 

2010). During 2009, while net imports and domestic petroleum as shares of total U.S. need 

accounted for 49% and 51%, respectively; daily consumption of petroleum products was 18.8 

million barrels (Fig. 2). Daily petroleum production (including crude oil, natural gas plant liquid, 

and other oils) in U.S. during 2009 was 7.27 million barrels day-1. This massive dependency on 

petroleum and petroleum products inevitably brings about frequent spillage accidents during 

petroleum extraction, refinement, and transportation (Fig. 3) (USCG, 1999). Moreover, natural 

disasters like hurricanes Katrina, Rita, and Wilma in 2005 can also cause oil spill accidents 

(Burgherr, 2006). The disruption of fragile marine and coastal environments due to oil spills has 

become a sensitive environmental issue during recent years. Off shore oil spills breach the food 

chain by poisoning benthic, neritic, and pelagic organisms. The Amoco Cadiz, Exxon Valdez, 

and Deepwater Horizon oil spills have stressed the need for effective contingency planning and 
                                                             
1This dissertation follows the style of “Soil Science Society of America Journal”. 
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Fig. 1. Average (2006-2010) annual petroleum consumption of different countries. (USEIA, 
2010). 

 

Fig. 2. Net foreign import and domestic petroleum as shares of total U.S demands in 2009. 
(USEIA, 2010). 
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Fig. 3. Reported oil spills by type (annual average from 1994 to 1999) (USCG, 1999). 
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monitoring systems to reduce the impact of devastating oil spills. However, massive oil spills 

from offshore rig blowout and tanker accidents only characterize a small portion of total annual 

oil spillage. According to the Emergency Response Notification System (ERNS), the inland oil 

spills from pipelines, storage tanks, fixed industrial facilities, railways, automobiles, and barges 

account for the major part of total oil spill (Stalcup et al., 1997). Pipelines are a major source of 

oil spill in U.S as they have spilled more oil than tankers and barges combined since 1985 (Etkin, 

2001). The damages caused by oil spills ranges from human health hazards to environmental 

damage. Polycyclic aromatic hydrocarbons (PAH), which mainly occur in petroleum, are 

potentially carcinogenic to human health. Inland oil spill causes human exposure to PAHs by 

inhalation, ingestion, and skin contact (Bofetta et al., 1997). Pérez-Cadahía et al. (2007) reported 

that PAHs form covalent links with macromolecular DNA and initiate the process of chemical 

carcinogenesis. According to International Agency for Research on Cancer (1983) small amounts 

of PAHs can induce malignant tumors that affect mostly the skin and other epithelial tissues of 

humans. Moreover, oil spill results in considerable loss of wetlands. Therefore, there is an 

extreme need for reliable monitoring approaches for effective response to inland oil spills. 

 According to Clark (1999), spectroscopy deals with light as a function of wavelength that 

has been emitted, reflected or scattered from a solid, liquid, or gas. Spectral measurement can 

measure the quantity of reflected or transmitted light from an object (Workman and Shenk, 

2004). Since soil is heterogeneous in nature, the standard physicochemical evaluations of soil 

attributes are both expensive and time-consuming (Chang et al., 2001). However, application of 

spectroscopy in the visible to near-infrared range (350-2500 nm) in combination with regression 

analysis (multilinear, principal component regression, and partial least squares regression) offers 
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a non-destructive means for measurement of different soil components (Meyer, 1989; Sudduth 

and Hummel, 1993; Reeves et al., 2001; McCarty et al., 2002).  

 Spectral preprocessing involving transformations, averaging, splicing, and smoothing is a 

prerequisite for a robust regression model. Transformation of lognormal data is essential to 

maintain the assumption of normality when models with linear framework like partial least 

squares regression and principal component regression are considered. Derivative spectroscopy 

is a useful tool for simplifying a large hyperspectral database, thereby removing the inherent 

noise of the spectral data. Tsai and Philpot (1998) reported that the first and second derivatives of 

the reflectance spectra significantly enhance the absorption features by reducing the albedo 

effect. They created a modular program to execute derivative analysis by means of either a 

convolution (Savitzky-Golay) or finite divided difference algorithm. Earlier, the simplified least-

square-fit convolution for smoothing and computing first and higher order derivatives from the 

average reflectance was revealed by Savitzsky and Golay (1964). According to Williams (1987), 

smoothing helps in removing the noises which arise from atmospheric influences and light 

intensity fluctuations. 

 By utilizing the visible to near infrared range (350-2500 nm) of the electromagnetic 

spectrum, radiation reflected from the soil surface can be modeled against total petroleum 

hydrocarbon (TPH) content of the petroleum contaminated soil, determined by traditional wet 

chemical analysis. Furthermore, the constructed statistical model could be successfully utilized 

to quantify the TPH from unknown soil samples. Scientists generally use TPH, a mixture of 

different hydrocarbons as an indicator of petroleum contaminated soils. Visible near-infrared 

diffuse reflectance spectroscopy (VisNIR DRS) permits rapid and cost-effective quantification of 

TPH as compared to the traditional costly and time consuming chemical analyses (Schwartz et 
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al., 2009). Cloutis (1989) reported two characteristic absorption peaks (1730 nm and 2310 nm) 

as spectral signatures of hydrocarbon-bearing substances. Schneider et al. (1995) assembled a 

near-infrared fiber-optic chemical sensor for remote detection of organics in soils.  Stallard et al. 

(1996) investigated motor oil contaminated sandy loam soil with near-infrared reflectance 

spectroscopy and indicated the potentiality of this technology for other types of soil matrices. 

However, Malley et al. (1999) reported low correlation (r=0.68) while dealing with field 

collected samples. To date, information on the prediction accuracy of VisNIR DRS when 

quantifying TPH in soil samples is lacking. Moreover, none of the previous studies explicitly 

revealed the effects of different types of petroleum fractions, soil organic carbon, and soil 

textures on spectral reflectance variability of petroleum contaminated soils.  

 The overall objectives of this research project were to: 1) determine the prediction 

accuracy of VisNIR DRS in quantifying the amount of hydrocarbons in contaminated soils; 2) 

compare the accuracies of partial least squares regression and boosted regression trees in 

predicting TPH in contaminated soils; 3) investigate whether the combination of VisNIR 

spectroscopy and geostatistics  has the potential to identify the spatial distribution of TPH 

contamination; and 4) examine the effect of variable soil texture, organic carbon, and oil types 

on VisNIR reflectance patterns of petroleum contaminated soils. We used an ASD AgriSpec 

VisNIR portable spectroradiometer (Analytical Spectral Devices, Boulder, CO) with a spectral 

range of 350 to 2,500 nm [a) ultra violet / VISNIR (350-965 nm), b) short wave infrared 1 (966-

1,755 nm), and c) short wave infrared 2 (1,756-2,500 nm)] (Fig 4.). The results of this pilot 

research will help to determine the potentiality and limitations of using a VisNIR DRS for 

quantifying petroleum contaminated soils. 
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Fig. 4. Inner diagram of an ASD AgriSpec® portable visible and near-infrared diffuse reflectance  
spectrometer. (D. Hatchell, personal communication, 2009) 
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CHAPTER 2 

RAPID IDENTIFICATION OF OIL CONTAMINATED SOILS USING VISIBLE NEAR-
INFRARED DIFFUSE REFLECTANCE SPECTROSCOPY 

2.1. Synopsis 

 In the United States, petroleum extraction, refinement, and transportation present 

countless opportunities for spillage mishaps. A method for rapid field appraisal and mapping of 

petroleum hydrocarbon contaminated soils for environmental cleanup purposes would be useful. 

Visible near-infrared (VisNIR, 350–2,500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, 

non-destructive, proximal-sensing technique that has proven adept at quantifying soil properties 

in-situ. The objective of this study was to determine the prediction accuracy of VisNIR DRS in 

quantifying petroleum hydrocarbons in contaminated soils. Forty-six soil samples (including 

both contaminated and reference samples) were collected from six different parishes in 

Louisiana. Each soil sample was scanned using VisNIR DRS at three combinations of moisture 

content and pretreatment: a) field-moist intact aggregates, b) air-dried intact aggregates, c) and 

air-dried ground soil (sieved through a 2-mm sieve). The VisNIR spectra of soil samples were 

used to predict total petroleum hydrocarbon (TPH) content in the soil using partial least squares 

(PLS) regression and boosted regression tree (BRT) models. Each model was validated with 30% 

of the samples that were randomly selected and not used in the calibration model. The field-

moist intact scan proved best for predicting TPH content with a validation r2  of 0.64  and relative 

percent difference (RPD) of 1.70. Because VisNIR DRS is promising for rapidly predicting soil 

petroleum hydrocarbon content, future research is warranted to evaluate the methodology for 

identifying petroleum contaminated soils.2  

                                                             
2 Reprinted by permission of “Journal of Environmental Quality”. 
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2.2. Introduction 

 While petroleum provides abundant energy, economic, and manufacturing resources for 

the United States, its extraction, refinement, and transportation also present innumerable 

opportunities for spillage accidents or operational losses. Given that petroleum hydrocarbon is a 

potential soil and water contaminant and neurotoxin for humans and animals (Schwartz et al., 

2009), long term exposure could increase the risk of lung, skin, and bladder cancer (Hutcheson et 

al., 1996; Boffetta et al., 1997). The protection and enhancement of the nation’s natural resource 

base and environment require the development of innovative, low cost, and reproducible 

analytical tools to assess the spatial and temporal variability of soil and soil contamination. So 

far, researchers have established several spectroscopic techniques to identify specific petroleum 

properties including the application of nuclear magnetic resonance or near-infrared spectroscopy 

for predicting octane numbers of gasoline compounds, along with the quantification of petroleum 

contaminants based upon combinations and overtones of C-H, N-H, O-H, and S-H bonds (Kelly 

et al., 1989; Dorbon et al., 1990; Stallard et al., 1996; Lee and Chung, 1998). Crude oil 

signatures originate mainly from combinations or overtones of C-H stretching vibrations of 

saturated CH2 and CH3 groups in addition to methylenic, oleifinic, or aromatic C-H functional 

groups (Aske et al., 2001).  The introduction of Urbach tail edge detection technology (Mullins 

et al., 1992) has established distinctive spectral signatures for most crude oils in the near-infrared 

region (2,298 nm [stretch+bend]; 1,725 nm [two-stretch]; 1,388 nm [two-stretch+bend]; 1,190 

nm [three-stretch]; 1,020 nm [three-stretch+bend]; 917 nm [four-stretch]). Chung et al. (1999) 

reported 95% (for light gas oil) and 99 % (for light straight-run, kerosene, gasoline, and diesel) 

near-infrared prediction accuracy, while principal component analysis (PCA) combined with 

Mahalanobis distance could be used to segregate unique spectral signatures for each of those 
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fractions. Moreover, internal research from Analytical Spectral Devices (ASD) (Boulder, CO) 

has clearly reported unique spectral reflectance signatures for crude oil, hexane, and diesel fuel 

(D. Hatchell, personal communication, 2007). However, the inherent complexity of petroleum 

composition has made it impossible to screen out any particular spectroscopic technique for the 

whole range of petroleum spectral signatures. The task of identifying a specific petroleum 

signature becomes more complex when petroleum products are mixed with another 

heterogeneous mixture like soil (Wang and Fingas, 1997).  

Visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) is a scanning 

technology that has recently become popular for rapidly quantifying and identifying soil 

properties in the laboratory and on-site (in-situ). Stoner and Baumgardner (1981) reported close 

association between soil parameters and their spectral reflectance curve forms. Krishnan et al. 

(1980) utilized spectral reflectance in the VisNIR range to select optimal wavelengths for 

predicting percent organic matter content in soil.  Moreover, simultaneous predictions of total 

organic carbon, total nitrogen, and moisture content of air-dried soils were carried out utilizing 

reflectance at three wavelengths in the form of log (1/R) (Dalal and Henry, 1986). In the 

laboratory, VisNIR DRS has been used to quantify soil electrical conductivity, pH, organic 

carbon, particle size, mineralogy, cation exchange capacity, nutrients, lime requirement, and clay 

mineralogy, both rapidly and non-destructively (Henderson et al., 1992; Thomasson et al., 2001; 

Shepherd and Walsh, 2002; Brown et al., 2006; Madari et al., 2006; Viscarra Rossel et al., 

2006a; Viscarra Rossel et al., 2006b; Vasques et al., 2009).   

This proximal soil sensing technology, which is well suited for rapid scanning, has been 

used with portable equipment, on-site, to quantify soil organic and inorganic carbon, and clay 

content (Sudduth and Hummel, 1993; Ge et al., 2007; Waiser et al., 2007; Morgan et al., 2009). 
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Several soil spectral libraries were created using a wide array of soils considering their 

physicochemical and biological properties (Ben-Dor et al., 1999; Malley et al., 2000; Chang et 

al., 2001). However, only a few studies have been reported so far on VisNIR DRS 

characterization of oil contaminated soils. Malley et al. (1999) reported linear regression 

relationships between NIR-predicted total petroleum hydrocarbon (TPH) concentrations and 

reference data. Additionally, VisNIR DRS has been used to show unique reflectance patterns for 

bitumen (a heavy, tar-like hydrocarbon used in making asphalt) in a sand-clay-water matrix 

under field conditions in Alberta, Canada (Analytical Spectral Devices, 2007). A portable 

version of the ASD spectrometer has become a useful tool for mapping the spatial extent 

(vertical and horizontal) of oil spills.  

The standard gravimetric lab method (Clesceri et al., 1998) is time consuming and costly 

(~USD 50 per sample). If reliable models that estimate contamination concentrations could be 

developed and validated for on-site VisNIR spectroscopy, oil and hydrocarbon contamination in 

soils could be rapidly mapped, minimizing time consuming laboratory measurements. 

Conversely, if VisNIR DRS cannot be used on-site, soil samples could be collected, air-dried and 

scanned in a matter of hours under lab conditions. Either way, a tool for rapid identification, 

mapping, and quantification of oil and hydrocarbon spills in soils could be obtained. Therefore, 

the overall goal of this study was the successful combination of spectrometry and chemometry to 

investigate the usefulness of VisNIR DRS for predicting petroleum hydrocarbons in 

contaminated soils.  

Application of the technology and methods tested in this study could be used for rapidly 

and inexpensively identifying concentrated areas of contamination requiring remediation prior to 

rebuilding. Furthermore, contamination might be recognized in areas where it may have gone 
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undetected. Hence, the specific objectives of this research were the following: 1) determine the 

prediction accuracy of VisNIR DRS in quantifying the amount of hydrocarbons in contaminated 

soils; and 2) compare the accuracies of partial least squares regression and boosted regression 

trees in predicting TPH in contaminated soils. 

2.3. Materials and Methods 

2.3.1. Soil Samples  

 Forty-six soil samples (including both contaminated and reference or uncontaminated 

samples) were collected from six sites each located in a different parish within southern and 

central Louisiana (Table 1). The sampling scheme was carefully developed in accordance with 

the prior knowledge of oil spill in locations provided by Louisiana Oil Spill Coordinators Office 

(LOSCO) to ensure maximum TPH variability within the soil samples collected. Areas of known 

oil contamination or spillage were identified by visible evidence or odor of petroleum and 

sampled first. Subsequently, nearby areas of similar soil series with no known contamination 

were identified and sampled. The samples were collected to a depth of 15 cm and placed in air-

tight glass bottles to prevent hydrocarbon volatilization and preserve field moisture status. 

Samples were placed on ice for transport to the lab and refrigerated at 5οC in the lab. The official 

soil series description of each sampling site showed a wide variation in soil properties between 

sites (Table 1).  

2.3.2. VisNIR DRS Scanning  

 The collected soil samples were scanned with an ASD AgriSpec VisNIR portable 

spectroradiometer (Analytical Spectral Devices, Boulder, CO) with a spectral range of 350 to 

2,500 nm [a) ultra violet / VISNIR (350-965 nm), b) short wave infrared 1 (966-1,755 nm), and 
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c) short wave infrared 2 (1,756-2,500 nm)]. The spectroradiometer had a 2-nm sampling 

resolution and a spectral resolution of 3 nm and 10 nm wavelengths from 350–1,000 nm and 

1,000–2,500 nm, respectively. For field-moist, intact aggregates scanning, each sample was 

spread evenly on a plastic dish and scanned with a contact probe, having a 2-cm diameter 

circular viewing area and built-in halogen light source. Each sample was scanned four times with 

the contact probe at different locations within a sample to obtain multiple sample spectra for 

averaging purposes. Each individual scan was an average of 10 internal scans over a time of 1.5 

seconds. The detector was white referenced using a white spectralon panel with 99% reflectance, 

ensuring that fluctuating downwelling irradiance could not saturate the detector. Moreover, white 

referencing removes dark current and ambient temperature humidity variation effects. After 

scanning, the samples were again bottled and sent to a commercial lab for TPH analysis.  

Following TPH analysis, the samples were air dried, equally divided into two parts (weight 

basis), and placed into separate air-tight plastic bags. For each air-dried sample, one part was left 

as intact aggregates and the other part was ground to pass a 2-mm sieve to produce air-dried 

ground soil for scanning. Thirty (30) grams of each sample was spread evenly in a borosilicate 

optical-glass petri dish and scanned from below four times with a muglight (high intensity source 

probe with a halogen light source), connected to the ASD AgriSpec. Between each of the four 

scans, the sample was rotated 90ο. 

2.3.3. Laboratory Analysis 

 In the commercial lab, petroleum in soil samples was extracted using method 5520 D 

Soxhlet extraction (Clesceri et al., 1998) and TPH was quantified by method 5520 F (Clesceri et 

al., 1998). In the Soxhlet extraction, petroleum was extracted at a rate of 20 cycles h-1 for 4 h 

using n-hexane or solvent mixture (80% n-hexane/20% Methyl tert-butyl ether, v/v).
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Table 1. Location, soil series, and classification of soils evaluated for petroleum contamination using visible and near infrared diffuse 
reflectance spectroscopy in Louisiana, USA. 

Site Parish Soil series Classification† Contaminated 

samples 

Non-contaminated samples 

Alpine Jefferson Barbary Very-fine, smectitic, nonacid, hyperthermic 

Typic Hydraquents 

6 6 

Mississippi River 1 Plaquemine Carville Coarse-silty, mixed, superactive, calcareous, 

hyperthermic Fluventic Endoaquepts 

1 1 

Mississippi River 2 Saint Charles Cancienne Fine-silty, mixed, superactive, nonacid, 

hyperthermic Fluvaquentic Epiaquepts 

1 1 

Sabine Cameron Creole Fine, smectitic, nonacid, hyperthermic Typic 

Hydraquents 

4 4 

Sonat Vernon Ruston Fine-loamy, silicious, semiactive, thermic 

Typic Paleudults 

6 6 

Winn Dixie East Baton 

Rouge 

N/A Udarents 5 5 

 

† Soil Survey Staff, 2005. 
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 For gravimetric determination of TPH (method 5520 F), the extracted oil was redissolved 

in n-hexane and an appropriate amount of silica gel was added. The solution was stirred with a 

magnetic stirrer for 5 minutes and filtered through a filter paper pre-moistened with solvent. 

 Other laboratory analyses of each soil sample consisted of standard physical and 

chemical soil analyses, including particle size analysis by modified hydrometer method with 24 h 

and 40 s clay and sand determinations (Gee and Bauder, 1986), respectively; saturated paste pH 

(Soil Survey Staff, 2004), salinity (Soil Survey Staff, 2004), and total organic carbon by dry 

oxidation (Nelson and Sommers, 1996). All samples were subjected to Mehlich III extraction 

(Mehlich, 1984) and ion concentrations in the extracted solution were quantified by inductively 

coupled argon plasma (ICAP) analysis (Soltanpour et al., 1996) with a SPECTRO CIROS CCD 

(SPECTRO Analytical Instruments Inc, NJ, USA). X-ray diffraction analysis was conducted for 

bulk soil mineralogy confirmation (Wittig and Allardice, 1986) on selected representative 

samples. Siemens Diffrac AT V3.1 software was used to run the Siemens D5000 X ray 

diffractometer (Bruker AXS Inc., Madison, WI, USA).  The MacDiff 4.0.0 program, a 

Macintosh shareware application, was used to interpret each representative sample using the 

International Centre for Diffraction Data’s Powder Diffraction File. Estimates of quantitative 

mineral abundance (% weight basis) were obtained with XRDFIL, a computer application based 

on the technique described by Cook et al. (1975), except that the total clay mineral peak intensity 

factor was changed to 20.  

2.3.4. Spectral Preprocessing  

 Spectral data was processed in ‘R’ (R Development Core Team, 2004) using custom ‘R’ 

routines (Brown et al., 2006). These routines included: (i) a parabolic splice to correct for “gaps” 

between detectors; (ii) averaging replicate spectra; and (iii) fitting a weighted (inverse 
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measurement variance) smoothing spline to each spectra with direct extraction of smoothed 

reflectance; (iv) first derivatives at 10-nm intervals; and subsequently (v) second derivatives at 

10-nm intervals. The resulting 10-nm average reflectance, first derivative, and second derivative 

spectra were individually combined with the laboratory measured TPH contents. These 

processed data were used to create prediction models using partial least squares (PLS) regression 

and boosted regression tree (BRT) analyses. 

2.3.5. Partial Least Squares: Model Calibration and Validation 

 Partial least squares regression was used to develop TPH prediction models through 

spectral decomposition. This regression technique produces robust statistical models by utilizing 

all available soil reflectance data (Vasques et al., 2009).  

 In the present study, the original TPH contents of the samples were widely and non-

normally distributed from 44.3 to 48,188 mg kg-1of soil. Therefore, the Box-Cox transformation 

(Box and Cox, 1964) was applied to the original TPH data and the original data (λ=1) was log10-

transformed (λ=0) to make it more normal (Fig. 5.). Thus, PLS models were developed based on 

log10-transformed data that approximated a Gaussian distribution after stabilizing the variance. 

 A total of nine models were developed using the PLS algorithm with Unscrambler 9.0 

(CAMO Software, Woodbridge, NJ) to identify the effects of different levels of soil processing 

on VisNIR DRS prediction of TPH. In response to the variability of TPH distribution, 70% (32) 

of the samples were randomly selected to build the calibration or training dataset and the 

remaining 30% (14) were used for the validation or testing dataset. The same split for the 

calibration, or training dataset, was used for all scans with leave-one-out cross-validation for 

model creation and selection for the number of latent factors. Models with as many as ten factors           
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Fig. 5. a) Original (λ=1) and b) log-transformed (λ=0) total petroleum hydrocarbon (TPH) 
contents of the soil samples collected from six different parishes in Louisiana, USA. Increase in 
Shapiro-wilk statistic for log-transformed data revealed that the Box-Cox transformation made 
the original TPH data more normal. 

 

 

 

 

 

 

a) 

Shapiro-Wilk            
stat: 0.296 

b) 

Shapiro-Wilk     
stat: 0.924 
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were considered, and the optimal model was determined by choosing the number of factors with 

the first local minimum in root mean square error of cross-validation (RMSEcv). The significant 

wavelengths in the first derivative model were plotted to identify what portions of the spectra 

were important for TPH predictions. The significant wavelengths (p<0.05) were selected by ‘R’ 

based on Tukey’s jackknife variance estimate. The coefficient of determination (r2), root mean 

square error of prediction (RMSEp), relative percent difference (RPD), and bias were calculated 

for each model using the validation data. The statistical formulae of the aforementioned 

indicators followed Gauch et al. (2003), Brown et al. (2005), and Chang et al. (2005) in the 

following equations: 

  2
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Where, SD is the standard deviation of measured TPH of the validation data, and n is the number 

of validation data. 

2.3.6. Boosted Regression Tree Analysis 

 Following Friedman's Gradient Boosting Machine (Friedman, 2001), boosted regression 

tree (BRT) analysis was employed as well. These models have the ability to partition the data, 

creating more homogeneous classes by separating the target variables recursively (Vasques et al., 

2009). The analysis was carried out by Treenet®2.0 (Steinberg et al., 2002)(Salford Systems, San 
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Diego, CA, USA), a multiple additive regression trees (MART) based program. The same 

datasets used in PLS (70% calibration, 30% validation) were used for boosted regression tree 

with a maximum of 12 branches per node, to identify the higher order interactions. Log10-

transformed data was used in boosting mode to have a fair comparison with the PLS models. The 

Huber-M loss criterion (Huber, 1981), which encompasses the best properties of least absolute 

deviation and least square deviation, was utilized. Initially, the maximum number of trees to be 

grown was set to 200. The number of trees was increased (>200)  manually in two conditions: a) 

up to a point when RMSEp value stopped decreasing and b) when the optimal number of trees 

was close enough to the maximum numbers of trees specified beforehand. 

2.3.7. Principal Component Analysis 

 Principal component analysis was performed in ‘R’ (R Development Core Team, 2004) 

to determine the ability of VisNIR-DRS to distinguish contaminated versus non contaminated 

soils qualitatively. The first 15 principal components (PC) of field-moist intact first derivative 

spectra were used to produce a “Screeplot”, which was used to choose the number of PCs in the 

following supervised classification. Fisher’s Linear Discriminant Analysis (LDA) was used, 

assuming equal prior probability for each group. Additionally, pairwise scatterplots of the first 3 

PCs were produced to generate the ideas on how contaminated and reference soils were 

separated from each other in the spectral space.   

 2.4. Results and Discussion 

 Forty six soil samples were analyzed for TPH and used as dependent variable for the PLS 

and BRT analyses. Calibration (n=32) and validation (n=14) datasets were selected randomly; 

however, both had similar means (2.62 and 2.66 log10 mg kg-1) along with similar standard 
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deviations (0.72 and 0.58 log10 mg kg-1), respectively. The similarity among the validation and 

calibration data indicated that validation models should not be skewed. Among other soil 

properties, soil salinity varied from 0 to 2.54 dS m-1. The highest salinity was identified in the 

soils of coastal areas. Substantial variability was observed for soil pH (5.20 to 7.85), clay content 

(160 to 600 g kg-1), organic matter (9.3 to 130.5 g kg-1), and bulk mineral concentrations (% 

weight basis) from site to site (Table 2).  The Sabine site samples had the highest salinity, which 

was further supported by the elemental extraction analysis (7,758 mg kg-1 Na, on average). 

Extractable element concentrations differed between sites, as expected. No significant 

relationship was identified between organic matter, clay, and TPH content (both F-test and 

randomization test p-values were 0.11 using 0.05 or 0.10 as significance level).  

2.4.1. Partial Least Squares Regression Models 

 Using the PLS regression algorithm for VisNIR DRS analysis, calibration models were 

developed using reflectance, first, and second derivatives. The calibration quality was evaluated 

by calibration r2. Despite the widespread use of the first derivative of reflectance spectra for 

VisNIR models to predict soil properties (Reeves et al., 1999; Brown et al., 2006; Waiser et al., 

2007); reflectance and first-derivative-based calibration models of field moist intact scans 

performed similarly, while  the second derivative model was unsatisfactory (calibration r2 < 

0.15) (Table 3).  Although the field-moist intact first derivative model exhibited a slightly better 

RMSEcv than the field-moist intact reflectance model, the main advantage of the first derivative 

was fewer latent factors (5) as compared to the reflectance-based model (eight latent factors) to 

prevent over-fitting. Results indicated a continuous reduction of latent factors as the model 

changed from reflectance to first and second derivatives. This reduction of principal components
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Table 2. Soil pH, quantitative mineral abundance (% weight basis), clay (g kg-1), and organic matter (g kg-1) of soils evaluated for 
petroleum contamination using visible and near infrared diffuse reflectance spectroscopy in Louisiana, USA. 

 pH Minerals Clay Org. matter 

Site Quartz K-feldspar Plagioclase Anhydrite Clay minerals  

                                                           ...................................... ……%.............................................................      ………g kg-1…… 

Alpine 7.66 87.7 4.3 6.0 - 1.7 224.9 9.3 

Mississippi River 1 7.85 82.1 3.8 6.0 - 8.0 206.5 47.9 

Mississippi River 2 7.20 73.0 - - - 6.0 160.0 43.0 

Sabine 6.46 39.8 2.3 3.5 1.0 53.3 600.0 130.5 

Sonat 5.20 97.8 0.7 0.1 - 1.3 229.7 20.7 

Winn Dixie 7.01 72.3 3.6 6.5 - 17.4 335.2 126.6 
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Table 3. Calibration and validation statistics for partial least square regression models of soils evaluated for petroleum contamination 
using visible and near infrared diffuse reflectance spectroscopy in Louisiana, USA.  

Model  Latent factors Calibration r2 RMSEcv †  
(log10 mg kg-1) 

Validation r2 RMSEp‡ 
(log10 mg kg-1) 

 

RPD§ Bias 
(log10 mg kg-1) 

 
Field-moist intact 

Reflectance 8 0.79 0.323 0.64 0.353 1.64 -0.101 
First derivative 5 0.81 0.311 0.64 0.341 1.70 -0.054 

Second derivative -  Unsatisfactory ¶ Unsatisfactory - - - - 
     

Air-dried intact 
Reflectance 5 0.57 0.436 0.63 0.216 1.94 -0.07 

First derivative 4 0.64 0.393 0.57 0.335 1.25 -0.20 
Second derivative - Unsatisfactory Unsatisfactory - - - - 

  
Air-dried ground 

Reflectance 5 0.75 0.346 0.48 0.429 1.35 -0.14 
First derivative 5 0.81 0.303 0.42 0.547 1.06  0.15 

Second derivative 4 0.79 0.312 - - - - 
†RMSEcv: root mean square error of cross-validation. 
‡ RMSEp: root mean square error of prediction. 
§ RPD:  relative percent difference. 
¶ Model performance was unsatisfactory based upon very low calibration r2 (<0.15) . 
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(latent factors using PLS) could be due to the use of higher degree spectrally preprocessed (first 

and second derivatives) data to refrain from viewing geometry effects (Demetriades-Shah et al., 

1990). Brown et al. (2006) reported the advantage of using the PLS regression to surmount the 

inherent dimensionality of spectral data. When all calibration models were compared, the field-

moist intact and air-dried ground models outperformed the air-dried intact models. Prediction 

accuracies of the aforementioned calibration models were evaluated incorporating the separate 

validation sets where only the reflectance and first derivative were taken into consideration (Fig. 

6). According to Chang et al. (2001), accuracy and stability of spectroscopic models should be 

based on their RPD statistics. Stable and accurate predictive models showed an RPD >2.0; fair 

models with potential for prediction improvement had an RPD value between 1.4 and 2.0; while 

models with RPD values <1.4 were categorized as poor predictive models. Therefore, the present 

study considered validation r2 and RPD as the main criteria for comparing model performances, 

but other error statistics were provided, including the RMSEp and bias (Table 3). The field-moist 

intact first derivative model was superior to the more biased field-moist intact reflectance model, 

with a slightly higher RPD value of 1.70 though the validation r2 value for both was 0.64. 

However, both in terms of validation r2 and RPD, the air-dried intact reflectance and air-dried 

ground reflectance models always performed better than their first derivative models. The air-

dried ground scan showed the largest prediction error (0.547 log10 mg kg-1) with dispersion about 

the validation subset. Moreover, in both reflectance and first derivative models, the air-dried 

ground scan showed a very low RPD (1.34 and 1.06, respectively). It is worth noting that the 

prediction accuracy of the air-dried intact reflectance model (validation r2=0.63) was comparable 

to the field-moist intact scan models (validation r2=0.64 in both reflectance and first derivative). 

Additionally, the air-dried intact reflectance model showed the highest RPD (1.94).  
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Fig. 6. Predicted vs. measured total petroleum hydrocarbon (TPH) content of the validation data 
set for a) field-moist intact reflectance, b) field-moist intact first derivative, c) air-dried intact 
reflectance, d) air-dried intact first derivative, e) air-dried ground reflectance, and f) air-dried 
ground first derivative models for soils from Louisiana, USA. The triangles represent validation 
samples. The dashed line and dark line represent the 1:1 line and the prediction trend, 
respectively. 
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2.4.2. Boosted Regression Tree Analysis 

 Model statistics for the BRT analysis, summarized in Table 4, showed much higher 

validation RMSEp as compared to the PLS models. Field-moist intact models included most 

optimal trees. Notably, the numbers of predictors increased as first derivative data were used. 

Perhaps the first derivative models used more predictors because of multiple interactions with 

linear and non-linear co-relations, as reported by Brown et al. (2006). In terms of validation r2 

and RPD, BRT did not perform as well as PLS. However, the field-moist intact first derivative 

model exhibited the highest predictability (RPD=1.49), which somewhat confirmed the PLS 

trend. Considering the calibration quality of field-moist intact scans, the first derivative 

calibration model generated a better calibration r2 (0.85) than the reflectance model (0.38), 

whereas in the air-dried intact scan, the BRT reflectance model did not performed satisfactorily 

(calibration r2 < 0.15). Improving BRT predictive performance by increasing the number of 

important predictors from reflectance to first derivative based models was consistent with prior 

knowledge of BRT model performance (Snelder et al., 2009). However, in case of field-moist 

intact scan, the reflectance model exhibited more optimum trees (507) as compared to the first 

derivative model (500). Given that tree based models require large data sets for robust model 

predictions (Vasques et al., 2009), the small dataset was most likely the crucial factor for BRT 

underperformance as compared to PLS models.  

2.4.3. Underperformances of Air-dried Models 

 Results indicated that in both PLS and BRT, the first derivative model of the field-moist 

intact scan outperformed the air-dried intact and air-dried ground models, respectively (except in
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Table 4. Calibration and validation statistics for boosted regression tree models of soils evaluated for petroleum contamination using 
visible and near infrared diffuse reflectance spectroscopy in Louisiana, USA.  

Model Important 
predictors 

Calibration r2 Validation r2 RMSEp† 
(log10 mg kg-1) 

 

RPD‡ Optimal trees 

   Field-moist intact    
Reflectance 11 0.38 0.42 0.420 1.38 507 

First derivative 13 0.85 0.52 0.387 1.49 500 
    

Air-dried intact 
   

Reflectance - Unsatisfactory§ - - - - 
First derivative 7 0.68 

 
0.45 0.589 0.98 179 

   Air-dried ground    
Reflectance 5 0.41 0.39 0.437 1.32 75 

First derivative 12 0.47 
 

0.42 0.392 1.47 204 

†RMSEp: root mean square error of prediction. 
‡RPD: relative percent difference. 
§ Model performance was unsatisfactory based upon very low calibration r2 (<0.15). 
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the air-dried intact reflectance PLS model). Soil reflectance is an integrated property which 

depends on various soil parameters like soil moisture, texture, and organic matter content 

(Morgan et al., 2009). The air-dried ground models were expected to perform better due to the 

removal of some water signals (due to air drying) that could mask the spectral signatures of other 

important predictors (soil properties). Additionally, smaller, more homogeneous particle sizes 

are known to produce higher absorption peaks because of more surface area for absorption. 

 However, to study the possible reasons for the air-dried model’s underperformances, air-

dried intact subsamples (10 samples) from the whole range of samples (46) were carefully 

selected so that each of them would represent a specific range of TPH. These subsamples were 

further analyzed for TPH in the same commercial lab using method 5520 D Soxhlet extraction 

and method 5520 F for quantification (Clesceri et al., 1998). Results confirm that TPH contents 

were significantly (sign test p-value: 0.001) lower  in most of the subsamples, reanalyzed for 

TPH, as compared to the primary TPH contents as a result of drying (Fig. 7). Similar losses in 

TPH contents were reported as a result of varying degrees of weathering where volatilization, 

oxidation, reduction, and microbial metabolism were the prime factors (Whiteside, 1993; Malley 

et al., 1999). 

 The regression coefficients (black) of the first derivative PLS model of each scan and 

those that were significant (red, thick bar, p < 0.05) based on Tukey’s jackknife variance 

estimate were plotted in Fig. 8. Notably, both the number and intensities of significant 

wavelengths changed in air-dried intact and air-dried ground scans as compared to field-moist 

intact scans. The change in numbers and intensities were apparent, specifically in the 1,600-

1,850 and ~2,250-2,350 nm regions which could contain the 1,725 nm (two-stretch) and 2,298 
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Fig. 7. Total petroleum hydrocarbon (TPH) contents (mg kg−1) of 10 selected subsamples for 
soils from Louisiana. The black bars and gray bars represent TPH contents of subsamples before 
and after air drying, respectively. 
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Fig. 8. Regression coefficients (black) of the first-derivative partial least squares model of each 
visible and near-infrared diffuse reflectance spectroscopy scan of contaminated soils from 
Louisiana. The magnitude of the regression coefficient at each wavelength is proportional to the 
height of the bar. Significant wavebands (p < 0.05) as indicated by Tukey’s jackknife variance 
estimate procedure are shown as thick, red bars. All plots are on the same x axis. Values of all 
the y axes are not shown, but all y axes are on the same scale. 
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nm (stretch+bend) crude oil spectral signatures as reported by Mullins et al. (1992). Moreover, 

typical 1,450 and 1,940 nm spectral signatures for water were not highly significant.  This trend 

was somewhat consistent with previous VisNIR DRS work by Waiser et al. (2007), where the 

amount of water in the soil samples did not alter the predication accuracy of the validation 

models.  

 Soil moisture loss due to air drying might have some effects on decreasing predictability 

(decreasing validation r2 and RPD) in the first derivative models of field-moist intact to air-dried 

ground scans, but random loss of TPH in the air dried samples was likely the principal 

contributor for poor performance of the air-dried intact and air-dried ground models. Notably, 

due to random loss of TPH upon air drying, the air-dried model statistics weakened and the field-

moist intact first derivative PLS model was selected as the best among all the models 

investigated.  

 While the RPD was not as high as that obtained for other constituents of soils (Malley, 

1998), the results were encouraging, considering the effects of weathering processes on 

petroleum hydrocarbon. Moreover, it should be remembered that TPH does not have a fixed 

composition and is a term used to express a large family of several hundred chemical compounds 

originating from crude oil.  Nonetheless, the corresponding RPD of 1.70 also indicated that there 

is sufficient scope for model enhancement (Chang et al., 2001). Malley et al. (1999) reported   

comparable statistics for near-infrared TPH predictions (validation r2 of 0.68 and 0.72). 

2.4.4. Principal Component Analysis 

 The “Screeplot” of the first 15 PCs of field-moist intact first derivative spectra was 

plotted in Fig 9. The first PC accounted for 61% of the variance, whereas the second and third 
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PCs accounted for 16% and 11% of the variance, respectively. Thus, the first 3 PCs accounted 

for 88% of the total variance. It was obvious that the selection of 3 or 6 PC scores for LDA were 

appropriate considering their percent variance in each PC. Pair-wise principal component plots 

(i.e. PC1 vs PC2, PC2 vs PC3, and PC1 vs PC3) of the field-moist intact first derivative spectra 

were plotted in Fig. 10. The circles and squares represent contaminated and non-contaminated 

samples, respectively.  

  The supervised classification results of contaminated versus non-contaminated soils 

using the Fisher’s LDA method were presented in Table 5.  The first 3 and 6 PC scores of the 

field-moist intact first derivative spectra were used as the explanatory variable. The classification 

results were quite promising. Using 3 PCs, the overall classification accuracy was 76% (35 out 

of 46 were correct); and when 6 PCs were used, the overall accuracy was 91%.   

 Thus, PCA results indicated that the soil spectra were highly correlated and a 3-d 

representation could capture the intrinsic data structure fairly well. Contaminated and un-

contaminated samples could be reasonably separated by the first 3 PCs or first 6 PCs, which was 

an indication that the spectral method might be useful for distinguishing contamination 

qualitatively. 

2.5. Conclusion 

 The present feasibility study with varying degrees of TPH contamination indicated that 

petroleum hydrocarbon could be predicted from the soil spectra in the visible-near-infrared range 

without any prior sample preparation. Among all models investigated, TPH was estimated by the 

field-moist intact first derivative PLS model with greatest accuracy. In validation mode, this 

model explained 64% of the variability of the validation set. Nevertheless, random loss of TPH 
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Fig. 9. “Screeplot” of the first 15 principal components (PCs) of field-moist intact first derivative 
spectra of soils evaluated for petroleum contamination using visible and near-infrared diffuse 
reflectance spectroscopy from Louisiana. 
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Fig. 10. Pairwise principle component (PC) plots for (a) PC1 vs. PC2, (b) PC2 vs. PC3, and (c) 
PC1 vs. PC3 of field-moist intact first-derivative spectra of soils evaluated for petroleum 
contamination using visible and near-infrared diffuse reflectance spectroscopy from Louisiana, 
USA. The circles and squares represent contaminated and noncontaminated samples, 
respectively. 
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Table 5. Classification result of contaminated versus non-contaminated soils using the Fisher’s Linear Discriminant Analysis method 
for soils from Louisiana, USA.  The first three and six principal component (PC) scores of the field-moist intact first derivative spectra 
were used as the explanatory variable. 

  Using first three PCs  Using first six PCs  

To group To group 

  Contaminated Non-contaminated Sum Contaminated Non-contaminated Sum 

From group Contaminated 16 7 23 20 3 23 

 Non-contaminated 4 19 23 1 22 23 

Sum  20 26 46 21 25 46 

Overall accuracy    76%   91% 
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due to air drying was a major constraint responsible for the poor predictive abilities of air-dried 

models. Furthermore, the use of a small sample set in the BRT failed to produce robust models 

with good generalization capacity. It is noteworthy that no significant effect of variable water 

contents was observed.  

           A fair RPD value (1.70) for field-moist intact first derivative PLS model identified the 

scope for model improvement. In particular, continued research is recommended with a larger 

sample set along with other approaches like wavelet analysis, random forest, support vector, and 

spatial variability analysis evaluating VisNIR DRS prediction efficacy on a larger diversity of 

soils and a wider assortment of soil properties. 

           Summarily, provided that soil petroleum contamination is costly and time consuming to 

estimate, the prospect of using VisNIR DRS as a proximal soil sensor of petroleum 

contamination appears promising. If specific wavelengths related to various hydrocarbon 

signatures can be more precisely defined, remote sensing of hydrocarbon contamination plumes 

may be possible from airborne or satellite platforms. 
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CHAPTER 3 

ASSESSING SPATIAL VARIABILITY OF SOIL PETROLEUM CONTAMINATION 
USING VisNIR DRS 

3.1. Synopsis 

 This study evaluated whether a combination of two methods, penalized spline regression 

and geostatistics could provide an efficient approach to assess spatial variability of soil TPH 

from visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS), using soil samples 

from an 80-ha crude oil spill location in central Louisiana. Initially, a penalized spline model was 

calibrated to predict TPH contamination in soils by combining lab TPH values of 46 

contaminated and uncontaminated soil samples and the first-derivative of VisNIR reflectance 

spectra of these samples. The r2, RMSE, and bias of the calibrated penalized spline model were 

0.81, 0.289 log10 mg kg-1, and 0.010 log10 mg kg-1, respectively. Subsequently, the penalized 

spline model was used to predict soil TPH content for 128 soil samples collected over the 80-ha 

study site. When assessed with a randomly chosen validation subset (10 samples) from the 128 

samples, the penalized spline model performed satisfactorily (r2=0.70; residual prediction 

deviation=2.0). That same validation subset was used to assess ordinary block kriging 

interpolation after the remaining 118 predictions were used to produce an experimental 

semivariogram and map. The experimental semivariogram was fitted with an exponential model 

which revealed strong spatial dependence among soil TPH [r2 = 0.76, nugget = 0.001 (log10 mg 

kg-1)2, and sill 1.044 (log10 mg kg-1)2]. In the kriged map, TPH distribution matched with the 

expected TPH variability  of the study site. Since the combined use of VisNIR prediction and 

geostatistics was promising to identify the spatial patterns of TPH contamination in soils, future 
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research is warranted to evaluate the approach for mapping spatial variability of petroleum 

contaminated soils. 

3.2. Introduction 

Petroleum contamination of soil is a widespread problem that occurs frequently with 

adverse environmental and human health consequences (MacEwan and Vernot, 1985; Hutcheson 

et al., 1996; Boffetta et al., 1997). Accidental release of crude oil and refined oil products from 

oil drilling rigs (such as the BP Deepwater Horizon), automobiles, immense oil tanker accidents 

(such as Exxon Valdez, Erika, and Prestige), and pipeline and storage tank leakages, endanger 

local and regional ecological systems (Calabrese and Kostecki, 1988). The extent of 

environmental contamination by petroleum spillage depends on the capability of soil to filter, 

retain, biodegrade, and release petroleum (Fine et al., 1997). Besides, vapor pressure and 

solubility of crude oil and other fractions (n, iso, and cycloparaffins, napthene, and aromatics) 

also influence the dynamics of petroleum distribution in soil. Remediation specialists are 

constantly challenged by the need to measure spatial variation of total petroleum hydrocarbons 

(TPH) within and across a spillage area for site specific remediation practices (Cole, 1994). Soil 

TPH contamination maps are generated using a large number of soil samples and traditional soil 

chemical analyses. However, such soil analyses are laborious, costly, time consuming, and 

inadequate when high spatial and temporal resolution of TPH content are warranted (Odlare et 

al., 2005). Consequently, there is a persistent need for the development of innovative, low-cost, 

and reproducible analytical package for mapping spatial variability of petroleum contaminated 

soils. Hyperspectral visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) can be 

used for detecting and mapping inland oil spills. This proximal optical sensor has already 

demonstrated its potential as a viable alternative to the laborious field sampling and expensive 
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lab analysis for on-site quantification of TPH. Chakraborty et al. (2010) reported the feasibility 

of VisNIR DRS for predicting soil TPH with a validation r2 of 0.64 and relative percent 

difference (RPD) of 1.70. Forrester et al. (2010) used a partial least squares (PLS) cross-

validation approach for infrared spectroscopic identification of TPH with an r2 of 0.81 and 

RMSE of 4653 mg kg-1. Moreover, Chakraborty et al. (unpublished data, 2011) evaluated three 

types of classification analysis (linear discriminant analysis, support vector machines, and 

random forest) and three multivariate regression methods (stepwise multiple linear regression, 

MLR; partial least squares regression, PLSR; and penalized spline) for pattern recognition and 

developing TPH predictive models. The approach provides multiple benefits over traditional 

sampling/labwork: 1) results are returned to the investigator, on-site instantly, 2) the process is 

non-destructive allowing for sample preservation for future comparisons, and 3) minimization or 

elimination of traditional laboratory analyses saves considerable money over long periods of 

deployment. 

While VisNIR DRS-TPH predictions have already shown potentiality for future use, 

spatial dependence among soil TPH contents has not received much consideration yet. One of 

the key presumptions in VisNIR DRS modeling is that the targeted component (soil TPH, in our 

case) should be independently distributed from each other to guarantee an optimal prediction 

model. Nevertheless, in case of high spatial resolution of soil sampling, the spatial 

autocorrelation among soil TPH contents in a geographic space is likely. Ignoring the issue of 

spatial dependency can render sub-optimal VisNIR-TPH predictive models. However, a 

successful combination of geostatistics with VisNIR DRS could identify spatial correlation 

among soil TPH contents, faster than traditional soil physicochemical analysis. In precision 

agriculture, several researchers have proposed the combination of VisNIR DRS and multivariate 
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geostatistics for improved spatial prediction of soil properties (Bilgili et al., 2010; Ge et al., 

2007). Hengl et al. (2004) reported a basic framework for spatial variability mapping of soil 

properties based on hybrid regression-kriging. Geostatistics is a combination of variography and 

kriging. While variography aims to produce semivariograms for modeling spatial variance of 

data, kriging uses the modeled variance to estimate interpolated values between samples (Odlare 

et al., 2005).  

Because of rapidity in prediction and incorporation of geostatistics, VisNIR spectroscopy 

could greatly enhance the spatial variability mapping of soil petroleum contamination. We 

combined two techniques: penalized spline regression and geostatistics. A penalized spline 

model to predict TPH contamination in soils was created and used to predict soil TPH content 

over a particular spill location. Predictions from the model were used to produce an experimental 

semivariogram and ordinary block kriging map. The objective of this study was to investigate 

whether the combination of VisNIR spectroscopy and ordinary block kriging has the potential to 

identify the spatial distribution of TPH contamination and test the accuracy of that map with the 

measured locations at the study site.  

3.3. Materials and Methods 

3.3.1. Study Area and Soil Sampling 

 The field chosen for mapping was a crude oil well blowout site located in Kisatchie 

National Forest in Vernon Parish, central Louisiana (30˚ 59'23'' N, 93˚ 1' 48'' W) (Fig. 11). One 

hundred and twenty-eight surface (0–15 cm) soil samples were collected within an 80 ha area 

that is densely vegetated by trees, shrubs, and grasses. The soils and sampling locations at the 

site are represented by four soil series: Caddo silt loam (fine-silty, siliceous, active, thermic  
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Fig. 11. The location, field boundary of the study site, and locations of collected soil samples in 
Louisiana, USA. 
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Typic Glossaqualf), Guyton silt loam (fine-silty, siliceous, active, thermic Typic Glossaqualf), 

Malbis fine sandy loam (fine-loamy, siliceous, subactive, thermic Plinthic Paleudult), and Ruston 

fine sandy loam (fine-loamy, siliceous, semiactive, thermic Typic Paleudult) (Soil Survey Staff, 

2009). A sampling scheme was designed in ArcGIS 9.3 (Environmental Systems Research 

Institute, 2008) by combining both grid and random sampling. Sampling points were uploaded 

into a hand-held GPS receiver and geo-located in the field for sampling (location error approx. ± 

six meters). All soil samples were sealed in air-tight plastic bags to prevent hydrocarbon 

volatilization and preserve field-moisture status before scanning.  

3.3.2. Calibration Data Set for VisNIR Prediction 

 Forty-six soil samples (including both contaminated and uncontaminated samples) were 

collected from six sites, each located in a different parish within southern and central Louisiana. 

The sampling scheme was developed with the prior knowledge of oil spill locations supplied by 

the Louisiana Oil Spill Coordinators Office (LOSCO) to guarantee maximum TPH variability 

within the soil samples collected. The original TPH contents of the samples were widely and 

non-normally distributed from 44.3 to 48,188 mg kg-1of soil. Crude oil was the source of TPH. 

Soil texture mainly varied from clay to sandy loam. Twelve samples came from the Ruston fine 

sandy loam series. More detailed information on soil sample collection, soil sample preparation, 

and the official soil series description for sampling sites was reported by Chakraborty et al. 

(2010). 

3.3.3. VisNIR  Spectroscopy and Laboratory Analyses  

 An AgriSpec VisNIR portable spectroradiometer (Analytical Spectral Devices, Boulder, 

CO) with a spectral range of 350 to 2500 nm (2-nm sampling resolution and a spectral resolution 

of 3- and 10-nm wavelengths from 350 to 1000 nm and 1000 to 2500 nm, respectively) was used 
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to scan field–moist soil samples (both calibration samples and study site samples) with a contact 

probe. The contact probe had a circular viewing area (20-mm diameter) and its own halogen light 

source. Each sample was scanned four times with a 90° rotation between scans to obtain an 

average spectral curve. A spectralon panel with 99% reflectance was used every four samples to 

optimize and white reference the spectroradiometer to offset dark current and temperature 

effects. The spectroscopic reflectance measurement for each soil sample was then obtained by 

averaging the four raw scans.  

 A statistical analysis software package, R version 2.11.0 (R Development Core Team, 

2008) was used to preprocess raw reflectance spectra. Based on a comparative analysis by 

Chakraborty et al. (2010), only the reflectance and the first-derivative of reflectance spectra on 

10-nm intervals were extracted using custom ‘R’ routines (Brown et al., 2006). Spectroscopic 

reflectance splines and first derivative spectra of three soil samples are presented in Fig. 12. 

 A validation subset with 10 samples was randomly selected from the 128 study site 

samples. In a commercial laboratory, TPH was measured gravimetrically for both 46 calibration 

samples and 10 validation subset samples, following the method of Clesceri et al. (1998). 

Detailed procedures for TPH and other lab analyses were reported by Chakraborty et al. (2010). 

3.3.4. Penalized Spline Model  

 The penalized spline calibration model was developed using the first-derivative of the 

reflectance spectra of the 46 contaminated and uncontaminated soils collect in six Louisiana 

parishes. Penalized spline is more stable and flexible than parametric PCR and PLSR as the 

shape of the functional relationship amongst covariates and the dependent variable (TPH, in this 

study) is governed by the data (Marx and Eilers, 1999; Crainiceanu et al., 2005). Penalized spline 

attempts to take advantage of the additional structure from the order of regressors. Namely, it  
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Fig. 12. a)Average reflectance spectra and b) first-derivative spectra for three randomly selected 
soil samples from Louisiana, USA.  
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forces the regression coefficients to be smooth (i.e. constraining the difference between the 

neighboring regression coefficients). The smoothness comes from a difference penalty on 

adjacent regression coefficients. This penalty is proportional to the size of the difference between 

neighborhood coefficients. Because of the additional constraint imposed by the difference 

penalty, penalized spline is well-suited for ill-posed problems (the dimensionality is much larger 

than the sample size) such as signal regression problems.  

 Although the penalized spline model can handle both parametric and non-parametric 

data, transformation on the response variable is necessary because the TPH content of the 

samples was widely and non-normally distributed from 44.3 to 48188 mg kg-1 of soil. Therefore 

without transformation, the model results were highly affected by outliers. Vasques et al. (2009) 

also transformed on the response variable even though they had a large dataset for non-

parametric models.  

 In the present study, the Box-Cox transformation (Box and Cox, 1964) was applied to the 

original TPH data and the original data (lambda = 1) was log10–transformed (lambda = 0) to 

bring the data to a more normal distribution (Fig. 13). Thus, penalized spline model was 

developed based on log10–transformed data that approximated a Gaussian distribution after 

stabilizing the variance. As such, the remaining penalized spline model and kriging interpolation 

reported here all show log10–transformed TPH. 

The cubic B-spline was used (using R version 2.11.0.) as the base function with 100 

equally-spaced knots. The order of the penalty was set to the default value of three. The optimal 

value for the penalty-tuning parameter was selected by minimizing the leave-one-out cross-

validation error. This penalized spline model was used to predict the TPH contents of the study 

site samples (128). The validation subset (n=10) was utilized to validate both penalized spline  
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Fig. 13. Normal Q-Q plots of the a) Original (λ=1) and b) log10-transformed (λ=0) total 
petroleum hydrocarbon (TPH) contents of the soil samples collected from six different parishes 
in Louisiana, USA and used to calibrate the penalized spline model to predict TPH. Increase in 
Shapiro-wilk statistic for log-transformed data revealed that the Box-Cox transformation made 
the original TPH data more normal. 
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predictive model and kriging exercise. The rest 118 VisNIR-based penalized spline predictions 

were used for kriging. 

3.3.5. Geostatistical Analyses and Kriging  

 A variogram and subsequently a kriged map of THP were created using the 118 VisNIR-

based penalized spline predictions. According to the usual method of moments (Matheron, 1965; 

Webster and Oliver, 2001), the experimental semivariogram of soil TPH at the Kisatchie 

National Forest site was calculated using Eq. 1,  

훾(ℎ) =
× ( )

∑ {푧(푠( ) ) − 푧(푠 + ℎ)}                               [1] 

where γ(h) is the experimental semivariance at distance interval h; n(h) is the number of 

observation pairs separated by the lag distance h (omnidirectional); and z(si) and z(si+h) denote 

soil TPH contents at spatial locations si and (si+h), respectively. Geostatistical package GS+ 9.0 

(Gamma design Software, Plainwell, MI) was used to calculate the semivariogram of predicted 

TPH. A cross-validation approach was used to perform jackknife analysis in which every 

measured point in the data set was temporarily deleted from the data set and then estimated to 

provide an indication of the appropriateness of the semivariogram model. Interpolation by 

ordinary kriging was then conducted based on the parameters of the semivariogram (C0 as the 

nugget, C0+C as the sill, and A0 as the range). The nugget was used to indicate the combination 

of measurement error and fine-scale spatial variability. The range indicates the distance in the 

field where TPH concentrations are no longer spatially correlated. The strength of the spatial 

structure was calculated in terms of sill: nugget ratio. The goodness of fit between experimental 

and theoretical semivariograms was measured in terms of r2. Ordinary kriging is a geostatistical 

method which uses information from neighboring points to calculate a specific variable at a 
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target point. It relies on the spatial autocorrelation structure of the target variable to define the 

weighting values, and can be calculated using Eq. 2 (Cressie, 1990): 

                               푍∗ (푠 ) = ∑ 푤 	 푧(푠 )																																				[2] 

where,	푍∗ (푠 ) is the ordinary kriging estimate at an unvisited place(s0), n is the number of 

samples in the search neighborhood, while wi are the weights assigned to the ith observation z(si). 

In the present study, ordinary block kriging using 16 neighbors and lag class distance of 22.22 m 

for data interpolation was used to produce a TPH contour map. Ordinary block kriging is a 

straightforward extension of ordinary kriging which predicts the average value over a whole 

block. Note that the exponential model, as shown in Eq. 3, best fit the experimental 

semivariogram for TPH in this study. 

훾(ℎ) = 퐶 + 퐶 1 − 푒 						when		|ℎ| > 0													[3] 

The objective criterions for measuring the goodness of fit for ordinary block kriging were 

the coefficient of determination (r2) and RMSE. Calculated RMSE was derived with Eq. 4 (Ge et 

al., 2007): 

                    푅푀푆퐸 = 	 ∑ 푍 − 푍 	                                 [4] 

where, Zpi and Zli were the predicted and laboratory-measured TPH values of ith sample, 푍̅  was 

the mean of laboratory-measured TPH values, and N was the total number of sample in the 

validation subset (10 in the present study).Additionally, the kriged map was used to investigate if 

the VisNIR detected soil TPH variability could match the expected TPH variability of the study 

site, considering variable topography. 
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3.4. Results and Discussion 

 For the initial set of soil samples used for penalized spline model building, soil salinity 

(0-2.5 dS m-1), soil pH (5.2-7.8), clay content (160-600 g kg-1), organic matter (9.3-130.5 g kg-1), 

and bulk mineral concentration (% weight basis) showed wide ranges of variation (see 

Chakraborty et al. 2010  Table 2 for details). Salinity was identified in the coastal soil samples. 

No association between clay, organic matter, and TPH was recognized (both F-test and 

randomization test p-values were 0.11 using 0.05 or 0.10 as significance level). 

  Calibration (n = 46) and validation (n = 10) datasets both had non-significantly (t test p-

value= 0.08) different means (2.60 and 2.21 log10 mg kg-1) as well as similar standard deviations 

(0.66 and 0.67 log10 mg kg-1), respectively. The similarity among the validation and calibration 

data specified that validation model should not be skewed. The results of the TPH prediction 

model using penalized splines indicated that using VisNIR to predict TPH was reasonable. The 

calibration statistics, using full cross validation, resulted in a r2 of 0.81, an RMSE of 0.289 log10 

mg kg-1, a bias of  0.010 log10 mg kg-1, and an RPD of  1.77.   This calibration was created 

without using any soils from the actual contaminated site; therefore, the true performance of the 

model was difficult to evaluate on the calibration statistics alone. In the soil VisNIR literature, it 

is well established that the accuracy of VisNIR-based prediction of a soil constituent is closely 

related to the likeness of the calibration set to that of the validation of test set that is to be 

predicted (Brown et al., 2005; Waiser et al., 2007; Morgan et al., 2009). This relationship is 

especially true when using intact, field-moist soil samples (Waiser et al., 2007). Furthermore, the 

prediction accuracy and stability of the penalized spline model (using the 10 field-specific 

validation subset) were evaluated according to the residual prediction deviation (RPD)-based 

guidelines by Chang et al. (2001). While the best prediction models are characterized by a RPD 
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of >2.0, fair models with potential for prediction improvement include RPD values of 1.4-2.0, 

while unreliable models have RPD values of <1.40.  The prediction of soil TPH was reasonably 

satisfactory with a validation r2 of 0.70 and an RPD of 2.0. The results were encouraging, 

considering the chemical complexity and decomposability of crude oil. Other validation 

statistics, such as the  RMSE and bias were 0.409 and 0.235 log10 mg kg-1, respectively. The left 

panel of Fig.14 shows the actual versus predicted TPH concentration using the penalized spline 

prediction model. The right panel of Fig. 14 shows the fitted coefficient curve from the penalized 

spline. The fitted coefficient curve was smooth across the spectrum, indicating the stability of the 

model. The grey-shaded band shows the 95% confidence interval for the coefficients and can be 

used to discover the region that has a coefficient significantly different from zero, and the impact 

of this region on the response. Based on the foregoing results, it can be concluded that TPH was 

reasonably predicted by the penalized spline model. Figure 15 shows the experimental 

semivariogram and the fitted, exponential model for the predicted TPH values of the 118 

collected samples. The maximum separation distance was 200 m. Bounded semivariance was 

observed at 200 m, indicating second-order stationarity of log10-transformed TPH. No nested 

spatial effect was detected visually. As showed, the isotropic experimental semivariogram was 

best fitted by an exponential model with a r2 of 0.76. In addition, the effective range, nugget, sill, 

and nugget-to-sill ratio were 52m, 0.001 (log10 mg kg-1)2, 1.044 (log10 mg kg-1)2, and 0.001, 

respectively, implying a strong spatial dependence of the TPH values according to the 

classification criteria reported by Cambardella et al. (1994). Moreover, a nugget close to zero 

revealed that all variance of TPH was reasonably well explained, at the sampling distance used in 

this experiment by the lag. Using the semivariogram of the predicted TPH values, a distribution 

map was developed using ordinary block kriging interpolation in GS+ (Fig.  
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Fig. 14. a) Actual versus predicted total petroleum hydrocarbon (TPH) (log10 mg kg-1) using 
penalized splines. The dotted line is the 1:1line and b) Fitted penalized splines coefficient curve 
at each waveband. The grey-shaded area is the 95% confidence interval.  
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Fig 15. Experimental semivariogram and fitted theoretical model of log10-transformed total 
petroleum hydrocarbon (TPH). As showed, the isotropic experimental semivariogram was best 
fitted by an exponential model with r2, range, nugget, sill, and nugget-to-sill ratio of 0.76, 52 m, 
0.001 (log10 mg kg-1)2, 1.044 (log10 mg kg-1)2, and 0.001, respectively. 
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Fig 16. Kriging map for log10-transformed total petroleum hydrocarbon (TPH). 
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16). The prediction capability of ordinary block kriging (using penalized spline predictions) in 

terms of r2 (0.56) was less than simple penalized spline predictions in the validation subset, 

however, it showed a much smaller RMSE (0.307 log10 mg kg-1) (Fig. 17). Perhaps the 

experimental semivariogram which was fitted in a trial-and–error mode was sub-optimal in 

reflecting the precise spatial pattern of TPH, as indicated by Ge et al. (2007). McBratney and 

Webster (1983) also revealed that the performance of kriging could be sufficiently enhanced by 

the use of a large dataset and optimal semivariogram. The 118 TPH predictions contained in the 

semivariogram may have been too limiting to generate kriging that had good generalization 

capability, i.e., that had high r2 and low RMSE values. Nonetheless, as shown in Figure 16, the 

TPH distribution matched well with the topography of the study site (Fig. 11). The highest TPH 

values were found around the area where the oil spill occurred (Fig. 11). In the valley (the 

middle section of the study site), significantly elevated TPH level can also be identified readily 

as expected. After the occurrence, the spilled oil accumulated in the surrounding area and then 

naturally moved down to the area with lower elevations along with surface runoff and sediment. 

It should be noted that only a fairly low level of TPH was predicted in the valley and the elevated 

TPH values were also limited to within the valley. This implies that the spilled oil had a fairly 

low mobility and the impacts can be limited within a small area if proper remediation was 

implemented. Overall, the interpolated TPH predictions matched the topography and the 

expectation well. The prediction based on VisNIR DRS could provide a fast way to understand 

the spatial distribution of TPH contamination, to estimate the impacted area, and finally to 

expedite the process of decision making after contamination occurred. 

 There are some important issues that need to be explained. Data with a lognormal 

distribution which is characterized by a positive skewness, poses potential problem in kriging  
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Fig. 17. Lab measured versus predicted (kriging interpolated) total petroleum hydrocarbon 
(TPH) (log10mg kg-1) for the validation subset (n=10). The dotted line is the 1:1line. 
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estimation. Journel (1983) revealed that experimental semivariograms are highly affected by 

lognormal data and there are only two solutions: trimming off high values or data transformation. 

Transformations can help validate assumptions of normality for kriging interpolation. Yamamoto 

and Furuie (2010) reported that logarithmic data transformation is always a better solution than 

data trimming in geostatistics. However, kriging approximations in the transformed domain need 

to be back-transformed into the original scale to obtain an unbiased result, after correcting the 

smoothing effect (Yamamoto, 2007). Note that in the present study, while using the penalized 

spline model predicted results for modeling the semivariogram, we did not back transform the 

kriging estimates. When we developed the penalized spline calibration model with lognormal 

data, we tried to fit the linear relationship in Eq. 5: 

                               푌 = 푏 + 푏 푥 + 푏 푥 + ⋯+ 푏 푥 + 푒																																[5]                     

where Y stands for the abundance of the response of interest (TPH) at the log10 space, and x1, x2, 

…, xp are the spectral variables; p and b are the number of spectral variables and penalized spline  

coefficients for spectral variables, respectively. We attempted to identify the optimal fitting at 

the log10 space, i.e., e (error) is i.i.d (independently and identically distributed) normal at the 

log10 space.  However, if back transformation is applied, it approximates the relationship (not 

mathematically strict but close) given in Eq. 6: 

exp(Y) = exp b + b x + b x + ⋯+ b x ∗ exp(e) 												[6] 

The error e would not be optimal at the original (non log10-transformed) space in the sense 

log10Y was used instead of Y. It is noteworthy that this error is not additive, but rather 

multiplicative.  To obtain the optimal solution (in the sense of ordinary least squares) of the 

original space, it is necessary to start with the non-transformed variable.  However, that would 

have produced useless predictions, affected by outliers. Therefore, it could be concluded that the 
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statistical relationship is not as simple as just doing the forward transformation then 

transformation back while the mathematical formulation indicates a far more complicated 

relationship. A solution to the aforementioned issue could be the further improvement of non-

parametric modeling that could offset the outlier effect and handle the lognormal, limited data 

without transformation. Subsequently, VisNIR model predicted results could be transformed and 

used in kriging interpolation with the option of back-transformation. Further improvement could 

be made by using co-kriging or hybrid regression-kriging which is a combination of regression 

of spectral variable (reflectance) and geostatistical analysis of prediction residuals (Ge at al., 

2007; Bilgili et al., 2010). With VisNIR DRS, regression-kriging utilizes cheaply and quickly 

obtainable reflectance spectra of the target component (with spatial reference via GPS) as 

auxiliary co-variables instead of landform attributes (such as slope, curvature, aspect, and 

elevation) derived from a digital elevation model. Nonetheless, a combination of VisNIR 

spectroscopy and ordinary kriging appears to be a reliable and efficient strategy for determining 

the spatial patterns of TPH contamination in soils, providing information for unvisited locations. 

3.5. Conclusion 

In this pilot study, the VisNIR predicted TPH results were incorporated into ordinary 

block kriging to identify spatial patterns of soil TPH contamination. A penalized spline model 

was developed with full cross-validation to predict TPH contamination in soils using lab TPH 

data and VisNIR spectra (First-derivative only) from contaminated and uncontaminated soils 

from central and southern Louisiana. This penalized spline model was used to predict soil TPH 

content for 128 soil samples collected over an 80 ha crude oil spill location. When validating 

with an independently chosen validation subset (n=10) from the aforementioned 128 samples, 

the penalized spline model performed satisfactorily with an r2 of 0.70 and an RMSE of 0.409 
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log10mgkg-1. That same validation dataset was used to validate kriging interpolation after the 

remaining 118 predictions were used to produce an experimental semivariogram and kriging 

map. The experimental semivariogram was fitted with an exponential model which revealed 

strong spatial dependence among soil TPH contents. The prediction capability of ordinary block 

kriging using penalized spline predictions in terms of RMSE was 0.307 log10 mgkg-1. In the 

kriging map, TPH distribution matched well with the topography of the study site. Overall, this 

study suggested that the combined use of VisNIR prediction and geostatistics have the potential 

to identify the spatial patterns of TPH contamination in soil quickly on site, reducing the need for 

expensive laboratory analyses.                   
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CHAPTER 4 

SPECTRAL REFLECTANCE VARIABILITY FROM SOIL PHYSICOCHEMICAL 
PROPERTIES IN OIL CONTAMINATED SOILS 

4.1. Synopsis 

 Oil spills occur across large landscapes in a variety of soils. Visible and near-infrared 

(VisNIR, 350–2500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, cost-effective sensing 

method that has shown potential for characterizing petroleum contaminated soils. This study 

used DRS to measure reflectance patterns of 68 samples made by mixing samples from two soils 

with different clay content, three levels of organic carbon, three petroleum types and three or 

more levels of contamination per type. Both first derivative of reflectance and discrete wavelet 

transformations were used to preprocess the spectra. Three classification analyses (linear 

discriminant analysis, support vector machines, and random forest) and three multivariate 

regression methods (stepwise multiple linear regression, MLR; partial least squares regression, 

PLSR; and penalized spline) were used for pattern recognition and to develop the petroleum 

predictive models. Principal component analysis (PCA) was applied for qualitative VisNIR 

discrimination of variable soil types, organic carbon levels, petroleum types, and concentration 

levels. Soil types were separated with 100% accuracy (LDA), and levels of organic carbon were 

separated with 96% accuracy by linear discriminant analysis using the first nine principal 

components. The support vector machine produced 82% classification accuracy for organic 

carbon levels by repeated random splitting of the whole dataset. However, spectral absorptions 

for each petroleum hydrocarbon overlapped with each other and could not be separated with any 

classification scheme when contaminations were mixed. Wavelet-based MLR performed best for 

predicting petroleum amount with the highest residual prediction deviation (RPD) of 3.97. While 

using the first derivative of reflectance spectra, penalized spline regression performed better 
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(RPD = 3.3) than PLSR (RPD= 2.5) model. Specific calibrations considering additional soil 

physicochemical variability and integrating wavelet-penalized spline are expected to produce 

useful spectral libraries for petroleum contaminated soils. 

4.2. Introduction 

Oil contaminated soils are problematic in many areas; both coastal and inland. While 

there is heightened media attention on the 2010 Deepwater Horizon oil spill in the Gulf of 

Mexico, smaller inland spills occur on a regular basis. These spills typically occur in the form of 

broken oil well service lines, leaking storage tanks or crumbling infrastructure, long term 

leakage, and underground gasoline storage tanks at local fuel stations. In some cases, agricultural 

soils are affected (where oil production is occurring concurrently with crop production), but in 

other instances, the contamination may take place in wildlife refuges or national parks. Soil 

petroleum contamination endangers local and regional ecological systems, food chains, and even 

creates the risk of explosion in urban areas (Fine et al., 1997). To better understand contaminate 

transport, fate, and remediation, reliable methodologies for monitoring/measuring petroleum 

hydrocarbon contamination in soils are warranted. 

Measurement of petroleum hydrocarbons in contaminated soils is time consuming and 

requires rigorous field sampling besides costly wet chemical analyses, making wide-scale 

quantitative assessment challenging (Dent and Young, 1981). Gas-chromatography based 

laboratory methods for total petroleum hydrocarbon (TPH) quantification lack field-portability 

(Forrester et al., 2010). Moreover, a lack of standardized methods has resulted in high variability 

(an order of magnitude) in TPH results across commercial laboratories (Graham, 1998; Malle 

and Fowlie, 1998; Malley et al., 1999). Hence, there is a pressing need for an innovative, rapid, 

environmentally responsible, and cost-effective sensing technology to identify petroleum 
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contaminated areas for remediation and to monitor restoration on an ongoing basis (Prince, 

1993).  

Optical sensors can differentiate and quantify spectrally alike (but unique) objects having 

subtle signature variations (Wetzel, 1983; Hyvarinen et al., 1992; Ge et al., 2007). Besides, 

advancements in both near-infrared (NIR) based proximal sensors with a fiber optic probe and 

chemometric analysis have extended near-infrared spectrometry (NIRS) to petroleum industries 

for identification of gasoline and middle distillate fuel properties (Westbrook, 1993; Workman, 

1996; Current and Tilotta, 1997; Chung et al., 1999; Chung and Ku, 2000; Yoon et al., 2002; 

Balabin and Safieva, 2008). Synergistic arrangement of optical sensors for diverse regions of the 

electromagnetic spectrum is capable of identifying petroleum contamination in a targeted matrix. 

Visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) might be a useful 

proximal sensing tool to identify soil petroleum contamination because the scanning is rapid and 

non-destructive, instruments are field portable, and costs are fixed. Recent evidence suggests that 

VisNIR DRS and chemometric modeling offer comparable levels of accuracy to standard 

physicochemical analysis of various soil properties (Ben-Dor and Banin, 1995; Reeves et al., 

2000; Islam et al., 2003; Brown et al., 2005; Viscarra Rossel et al., 2006; Morgan et al., 2009; 

Vasques et al., 2009). To date, researchers have identified various spectral regions in VisNIR 

associated with soil clays and organic matter. Ben-Dor and Banin (1990) proved the usefulness 

of near-infrared reflectance spectroscopy in chemical characterization of clay minerals. 

Moreover, Waiser et al. (2007) concluded that VisNIR DRS could predict soil clay content with 

reasonable accuracy. While overtones of OH-, SO4
2-, and CO3

2- groups and combination bands of 

H2O and CO2 are responsible for unique spectral signatures of common clay minerals; O-H, C-N, 

N-H, and C=O groups are active bonds for soil organic matter in the NIR region (Bowers and 
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Hanks, 1965; Hunt and Salisbury, 1970; Al-Abbas et al., 1972; Hunt, 1982; Malley et al., 2002; 

Brown et al., 2005). A number of studies have reported an increase in prediction accuracy   when 

VisNIR-organic C models were created for small, homogenous areas (Lee et al., 2003; Chang et 

al., 2005). Concurrently, other researchers have observed decreased prediction accuracy for 

larger geographic areas (Dunn et al., 2002; Shepherd and Walsh, 2002; Brown et al., 2006; 

Kusumo et al; 2008). Nonetheless, less attention has been given to quantitative spectral analysis 

of petroleum contaminated soils with variable texture and organic carbon and remains a 

considerable task. 

While researchers have proposed several calibration techniques to relate NIR spectra with 

measured soil properties, only a few studies have sought to quantitatively understand the effect 

of petroleum hydrocarbon on shortwave reflection. Malley et al. (1999) reported validation r2 of 

0.68 and 0.72 for NIR TPH predictions in diesel fuel contaminated soils. Forrester et al. (2010) 

used PLS cross-validation chemometric modeling for infrared spectroscopic identification of 

TPH.  Chakraborty et al. (2010) used PLS regression and boosted regression tree modeling for 

identification of petroleum contaminated soils. However, there has been little effort on the 

development of dedicated spectral libraries for soil-petroleum contamination appraisal. 

The goal of this communication is two-fold and is a continuation of the work by 

Chakraborty et al. (2010), which demonstrated the feasibility of VisNIR DRS for rapid and in-

situ identification of petroleum hydrocarbon in soil, without prior sample preparation. Our 

primary goal is the further clarification of the relationship between soil petroleum hydrocarbon 

and reflectance measurements based on multivariate regression methods and classification 

techniques, in the context of variable soil texture and organic carbon levels. Furthermore, this 
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research investigates the possibility of linking specific wavebands to unique petroleum 

hydrocarbons.  

The authors acknowledge that the limited number of samples (68) somewhat constrain 

the global applicability of the dataset. However, this research was intended to investigate the 

effect of soil variability on VisNIR-based TPH predictions in soil, investigate the viability of 

different spectral analysis techniques and ascertain which techniques show the most promise for 

future investigations.   

The applicability of VisNIR technology and methods tested in this study is broad. Most 

NIR spectroscopic investigations of petroleum contaminated soils have had limited scope 

because of the limited variability of oil types, and/or because less importance was given to soil 

texture and organic carbon, which can be both spatially and temporally variable, and 

management dependent (Russell et al., 2005). Characterization of petroleum spectral patterns for 

variable amounts of soil organic carbon and variable soil texture might be more useful for 

creating a spectral library for large geographic areas. Combinations of ideal data-mining or 

pattern-detection tools for using VisNIR DRS to characterize petroleum contaminated soil is 

useful for understanding other potential applications of the technology. The present research 

envisions a VisNIR-DRS optical sensor located in a soil probe for in-situ characterization of both 

surface and subsurface petroleum contamination in soils. Hence, the specific objectives of this 

research were to: (i) examine the effect of variable soil texture, organic carbon, and oil types on 

VisNIR reflectance patterns of petroleum contaminated soils and, (ii) compare different spectral 

preprocessing and multivariate data-mining tools for characterizing petroleum contaminated soils 

and future development of VisNIR-based optical sensors. 
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4.3. Materials and Methods 

4.3.1. Sample Preparation 

Two soil samples (10-30 cm) with no known hydrocarbon contamination were collected 

from an active agricultural production field at the LSU AgCenter St. Gabriel Research Station, 

near Baton Rouge, Louisiana, USA, (30°16' 8'' N, 91°6' 16'' W).  Soil A is a Commerce silt loam 

(Fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquept), and  Soil B is a 

Schriever clay (Very-fine, smectitic, hyperthermic Chromic Epiaquert) (Soil Survey Staff, 2005). 

Soil samples were air-dried, ground, and passed through a 2-mm sieve. A gravimetric soil 

moisture subsample was used for oven-dry weight correction for laboratory analysis.  Laboratory 

procedures included particle size analysis by pipette method with an error of ±1% clay (Steele 

and Bradfield, 1934; Kilmer and Alexander, 1949; Gee and Or, 2002) and saturated paste pH 

(Soil Survey Staff, 2004). Total carbon levels were determined by Dumas Method combustion 

using a TruSpec ® CN analyzer (LECO, St. Joseph, MI, USA) (Dumas, 1831; Wang et al., 2003). 

Inorganic C was measured using the modified pressure calcimeter method (Sherrod et al., 2002). 

Organic carbon was determined as the difference of total carbon and inorganic carbon. Natural 

organic carbon levels for Soil A and Soil B were both very low (≤0.5%). These soils were spiked 

with a mixture of natural muck (collected from a local swamp) and commercially available 

sphagnum so that Soils A and B were made to contain approximately 1%, 5%, and 10% organic 

carbon on a gravimetric basis. Before spiking the soils, the dried sphagnum was chopped and the 

spagnum and muck were sieved (2 mm).  Each of the soil-organic matter mixtures were spiked 

with three types of petroleum and at three concentrations.  The three grades of petroleum 

included crude oil, diesel, and used (Penzoil 10-30 weight) motor oil, and the  three levels of 

concentration were 1000, 10000, and 30000 ppm. Additionally, an extra set of nine intermediate 
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levels of crude oil concentrations (4000-28000 ppm at 3000 ppm intervals) was created for Soil 

B, organic carbon content of 5 %, improve the capability to fit models and to test their results. 

Before spiking with organic material and petroleum, all soil samples were moistened to reach 

7.5% moisture content, by weight. Each sample was thoroughly homogenized using a stainless 

steel spatula, stored in sealed glass jars capped with an aluminum lined cap, and refrigerated to 

prevent hydrocarbon volatilization. 

4.3.2. VisNIR DRS Scanning  

 In the laboratory, the constructed samples were scanned using a field portable AgriSpec 

VisNIR spectroradiometer (Analytical Spectral Devices, CO, USA) with a spectral range of 350 

to 2500 nm (ultraviolet/VisNIR [350–965 nm], short-wave infrared 1 [966–1,755 nm], and short-

wave infrared 2 [1756–2500 nm]). The spectroradiometer had a 1-nm sampling interval and a 

spectral resolution of 3- and 10-nm wavelengths from 350 to1000 nm and 1000 to 2500 nm, 

respectively. About 30 g of each sample was placed into a Duraplan® borosilicate optical-glass 

Petri dish and scanned from below using a muglamp with a tungsten quartz halogen light source 

(Analytical Spectral Devices, CO, USA). Each sample was scanned four times with a 90° 

rotation between successive scans to obtain an average spectral curve. A spectralon panel with 

99% reflectance was used every five samples to optimize and white reference the 

spectroradiometer.   

4.3.3. Pre-treatment of Spectral Data 

In the present study, we compared two techniques (1st derivative of reflectance and 

discrete wavelet transform) to preprocess the soil spectra prior to analysis. Three classification 

analysis techniques were utilized for pattern recognition, including linear discriminant analysis, 

support vector machines, and random forest. Moreover, three multivariate regression methods 
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(stepwise multiple linear regression, MLR; partial least squares regression, PLSR; and penalized 

spline) were compared to develop the petroleum predictive models. A statistical analysis 

software package, R version 2.11.0 (R Development Core Team, 2008) was used to preprocess 

raw reflectance spectra. Based on a comparative analysis described by Chakraborty et al. (2010), 

only the smooth reflectance and the first-derivative of reflectance spectra on 10-nm intervals 

were extracted using custom ‘R’ routines (Brown et al., 2006). From previous studies, it is 

apparent that first-derivative spectra can remove the baseline shift arising from detector 

inconsistencies, albedo, and sample handling, improving the accuracy of quantification 

(Demetriades-Shah et al., 1990).  

4.3.4. Wavelet Analysis and Stepwise Multiple Linear Regression  

In VisNIR spectroscopic analysis, wavelets have been proposed by several researchers to 

pre-treat spectral data and develop calibration models (Lark and Webster, 1999; Ge et al., 2007; 

Viscarra Rossel and Lark, 2010).  Wavelet coefficients at higher scales have local support and 

correspond to fast varying, undesirable noise of individual bands in the spectral measurement; 

whereas, those at lower scales have wide support and correspond to slow, varying signal shifts 

involving many contiguous bands (e.g., instrument dark current shift due to ambient temperature 

change). For these reasons, wavelets are regarded as a useful tool for VisNIR spectral data 

pretreatment and model calibration.  By discarding wavelet coefficients at high and low scales, 

the remaining coefficients capture the absorption information and give rise to a more informative 

calibration model compared to PLSR techniques. A spectroscopy-specific example of wavelet 

transformation can be seen in Ge et al. (2007).  

The Haar wavelet system was used to process spectral data and the filter bank algorithm 

was implemented to dyadically decompose each soil spectrum (original noise corrupted, 1-nm 
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interval) from the highest scale (Scale 11, representing the raw spectrum itself) to lowest (scale 

0, representing the average of the spectrum).  The wavelet coefficients at scales 7, 6, and 5 which 

had bandwidths of 128, 64, and 32 nm, respectively, were extracted.  Among them, six wavelet 

coefficients were selected (by stepwise multiple linear regression) for VisNIR model 

development. The wavelet decomposition was performed using the Wavelet Toolbox in MatLab 

R20009a (The MathWorks, MA, USA) while the stepwise MLR model was built in R version 

2.11.0. 

4.3.5. Principal Component Analysis  

Principal component analysis (PCA) was applied for qualitative VisNIR discrimination of the 

prepared samples according to the variable soil types, organic carbon levels, oil grades, and oil 

concentrations. The cumulative proportion of variance explained by the leading principal 

components (PC) was used to extract optimum PCs. Fisher’s linear discriminant analysis (LDA) 

was then applied on the selected leading PCs, assuming equal prior probability for each group. 

To assess classification results, kappa coefficients were computed (Thompson and Walter, 1988). 

Furthermore, pairwise scatterplots of the first three PCs were produced to provide visual 

assessment on how different groups were separated in the PC space. To test whether soil type 

and organic carbon content mask the signature of different oil types, pairwise scatterplots of the 

first nine PCs were produced for a particular soil type with a specific organic carbon content and 

multiple oil grades. PCA was performed using R version 2.11.0 (function: prcomp).   

4.3.6. Support Vector Machine and Random Forest 

Support vector machine (Boser et al., 1992; Vapnik, 1995) and random forest (Breiman, 

2001) are two popular data mining methods, which were recently proposed for VisNIR modeling 

applications (Stum, 2010). From the geometric perspective, support vector machine is a margin-
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based classifier. For a separable binary classification problem support vector machine chooses a 

hyperplane so that the distance from it to the nearest data point on each side is maximized. For 

non-separable data (VisNIR data), the soft-margin support vector machine chooses a hyperplane 

that splits two classes as cleanly as possible, while still maximizing the distance to the nearest 

cleanly split examples. A complex space with non-linear multivariate relationships is 

transformed into a higher dimensional, linear (inner product) space via the kernel trick, the SVM 

problem is solved in the linear dataspace, then back-transformed to the lower dimensional space 

for the result. A desirable property of support vector machine is that its solution only depends on 

a subset of training examples called support vectors. The support vector machine was performed 

by using the “e1071 package”, an R interface to library for support vector machines (LIBSVM) 

(Chang and Lin, 2001). The radial basis kernel was used. 

Random forest is an enhancement that aims to improve the performance of a single 

decision tree by fitting many trees (and thus the name ‘forest’) and combining them for 

prediction. The final prediction is based on majority votes over all the trees built. In random 

forest, the decision trees are different because of the following two factors: (1) at each tree node 

(splitting point), a best split is chosen from a random subset of the input variables rather than all 

of them and, (2) each tree is built based on a bootstrap sample of the observations. The random 

forest was performed in R using the “randomForest package” developed by Breiman and Cutler 

(Breiman, 2001). A total of 500 trees were generated for each random forest model. 

4.3.7. Wavelet- Support Vector Machine Classifier 

The discrete wavelet decomposition algorithm (Mallat, 1989) was applied to the spectral 

matrix (both reflectance and first-derivative of reflectance at 10-nm intervals) and the wavelet 
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coefficients to extract important features. Before the wavelet coefficients were decomposed, 

thresholding was applied to eliminate “unimportant” (not significantly different from zero mean) 

coefficients considered to be noise. Details of wavelet thresholding are elucidated by Donoho 

and Johnstone (1994). After wavelet decomposition, support vector machine was applied to the 

extracted features (the wavelet coefficients after thresholding). After thresholding, 108 wavelet 

coefficients were left (i.e. at least one non-zero value among all the samples). 

4.3.8. Partial Least Squares Regression  

Partial least squares regression was employed to help predicting petroleum content 

through spectral and concentration matrix decomposition using R version 2.11.0. Quantitative 

PLSR modeling can handle the complicated relationship between the predictors and responses 

resulting from multicolinearity of predictors, random linear baselines, and overlapping of major 

spectral components of predictors with that of the analytes (Wold et al., 2001). The whole dataset 

(68 samples) was used for training with leave-one-out cross-validation for model creation and 

selection for the number of latent factors (rotations of PCs for a different optimization criterion). 

Models with as many as nine factors were considered, and the optimal model was determined by 

choosing the number of latent factors with the first local minimum in root mean squared error of 

cross-validation (RMSEcv). The coefficient of determination (r2), and residual prediction 

deviation (RPD) (the ratio of standard deviation to RMSECV) were used as rubrics for evaluating 

the quality of PLSR and other models in real-world situations. 

4.3.9. Penalized Spline 

In PLSR, the order of the regressor channels (wavelengths) is ignored. In other words, the 

same results will be obtained when the regressors are shuffled. Penalized spline (Eilers and 

Marx, 1996) attempts to take advantage of the additional structure from the order of regressors. 
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Namely, it forces the regression coefficients to be smooth (i.e. constraining the difference 

between the neighboring regression coefficients). The smoothness comes from a difference 

penalty on adjacent regression coefficients. This penalty is proportional to the size of the 

difference between neighborhood coefficients. Because of the additional constraint imposed by 

the difference penalty, penalized spline is well-suited for ill-posed problems (the dimensionality 

is much larger than the sample size) such as signal regression problems. A nice property of the 

penalized spline is that it is within the linear regression framework. Hence, it inherits all the 

statistical inferences of linear regression, such as confidence intervals. In addition, like linear 

regression, penalized spline can run the leave-one-out cross-validation by fitting the model on 

the entire dataset once, without recomputation of the regression model omitting each 

observation. For the details of penalized spline, we refer readers to Eilers and Marx (1996).   

In the present study, the cubic B-spline was used (using R version 2.11.0) as the basis 

functions with 100 equally-spaced knots. The order of the penalty was set to the default value of 

three. The optimal value for the penalty-tuning parameter was selected by minimizing the leave-

one-out cross-validation error.  

4.4. Results and Discussion 

Particle size analysis confirmed soil textures of soil A and B as silt loam (8.7% clay) and 

clay (47.1% clay), respectively. Both soils exhibited similar pHs (6.3 and 6.6, respectively).   

Average reflectance spectra for soil samples with 1% organic carbon and three concentrations of 

diesel (ppm or mg kg-1) are shown in Fig. 18. In general, mean spectral reflectance decreased as 

diesel concentration increased, as expected (Hoerig et al., 2001). Note that, the specific 

absorption maximums of petroleum at 1730 (C-H stretch 1st overtone band) and 2310 nm (C-H  
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Fig. 18. Average reflectance spectra is shown for Soil A from Louisiana, USA with 1% organic 
carbon and different concentrations of diesel (ppm or mg kg-1).  
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stretch combination band), as already exhibited by Cloutis (1989), were clearly identified by 

VisNIR DRS. Other researchers identified that the first overtone of the C-H band makes the most 

important contribution for analysis of oil systems (Balabin and Safieva, 2007). It is always 

desirable to use individual reflectance/absorption features while calibrating petroleum 

concentrations and spectral reflectance. 

4.4.1. Classification 

 Eighty-eight percent of the spectral variance was explained by the first nine PCs. Despite 

the high dimensionality of the spectral data (215 channels from 350 to 2500 nm at 10-nm 

intervals), three quarters of the variation was primarily explained by the first five PCs (76%). 

Separate pairwise PC score plots for soil types and oil grades indicating organic carbon levels 

were used (Figs. 19 and 20, respectively) to discriminate reflectance spectra and identify 

classification patterns. Figure 19a, illustrates how the first PC separates the samples from Soil A 

and B with less differentiation by organic carbon content.  Principal component two delineates 

the three quantities of organic carbon (Fig. 19a and b).  Conversely, clear separations between 

contaminant oil types and concentrations were not delineated by first three PCs nor any of the 

first nine PCs.   

Results of LDA classification closely followed results of visual PC plot inspections.  

Notably, for soil type classification, LDA was 100% accurate in classifying soil types; LDA 

correctly classified all but three samples by  soil organic carbon content, but oil type was not 

discernable using LDA (Table 6).  

Figure 21 shows pairwise scatterplots of the first nine PCs for soil B with 5% organic 

carbon and multiple oil types. It was challenging to test whether soil type and organic carbon  
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Fig. 19. Principal component (PC) plots for (a) PC1 vs. PC2, (b) PC1 vs. PC3, and (c) PC2 vs. PC3 of the first-derivative of VisNIR 
reflectance spectra. The solid circles and open circles represent Soil A and Soil B, respectively. Blue, red, and green represent soils 
with 1%, 5%, and 10% organic carbon, respectively. 
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Fig. 20. Principal component (PC) plots for (a) PC1 vs. PC2, (b) PC1 vs. PC3, and (c) PC2 vs. PC3 using the first-derivative of 
VisNIR reflectance spectra. The circles, squares, and triangles represent soils with crude oil, diesel, and motor oil respectively. The 
blue, red, and green represent 1000, 10000, and 30000 oil concentrations (ppm or mg kg-1), respectively. 

(a) (b) (c) 
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Table 6. Results for classifying soil organic carbon levels and oil types using the Fisher’s Linear Discriminant Analysis (LDA). The 
first nine principal components (PC) scores of the first-derivative spectra were used as the explanatory variable. Control type was 
excluded from oil types analysis. The weighted kappa coefficients are 0.96 and 0.16 for organic carbon and oil types, respectively. 

.   
LDA-classified organic carbon  

  
      LDA-classified oil types  
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High 0 2 18 20 Motor oil 7 4 7 18 
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Fig 21. Principal component (PC) plots using the first-derivative of VisNIR reflectance spectra. 
The circles, squares, and triangles represent soil B with crude oil, diesel, and motor oil, 
respectively. All samples contain 5% organic carbon. 
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mask the oil type signatures due to the small sample size. However, the plots indicated some 

separation of three oil types (the motor oil & diesel are two ends and crude oil is in the middle) 

and implied that oil type signatures were not completely masked by soil type and organic carbon 

signatures. Nonetheless, no conclusion could be made unless comparing these results with more 

soil types with different organic carbon contents. To evaluate the prediction performance for the 

support vector machine, random forest, and wavelet-based support vector machine, the whole 

dataset was randomly split 50 times. For each split, a training set contained 48 samples and a test 

set contained 14 samples. The control (no petroleum contaminate added) samples were excluded. 

The models were trained on the training set, while the prediction was evaluated on the test set. 

The prediction performance of the support vector machine, random forest, and wavelet-based 

support vector machine was compared based on the percent misclassifications on the 50 test sets. 

The summary prediction performance on oil type, organic carbon level, and soil type is presented 

in Table 7. From the average misclassification rate (%) from 50 test sets, it was clear that the 

support vector machine, random forest, and wavelet-support vector machine had similar 

prediction performances. All methods separated the two soil types with little to no error. For 

organic carbon, the support vector machine performed slightly better (18%) than the random 

forest(18.5%), while the wavelet-support vector machine misclassified twice as often as the first 

two methods. For oil types, all three methods misclassified over 50% of the time.  The 

misclassification rates for a full leave-one out cross validation, using the entire dataset, were 

much smaller than the 48-sample training set misclassification rate (Table 7). Particularly, the 

misclassification rate for classing oil types went to 0 to 23 %. A misclassification rate between 

60 and 0 % is a large but realistic estimate of the ability for VisNIR spectroscopy to classify 

petroleum contamination type in soils. Clearly more samples in a training set and clearly defined  
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Table 7. Summary of classification performance on oil type, organic carbon content, and soil type for four classification methods. 

 Soil type Organic carbon content Oil type 

 Average 
MR†  

 

MR for whole 
data set 

(no split) 

Average 
MR 

 

MR for whole 
data set 

(no split) 

 

Average 
MR 

 

MR for whole 
data set 

(no split) 

 ------------------------------------------------------------%------------------------------------------------------ 

Support vector 

machine 

0 0 18 1.6 67 23 

Random forest 0 0 18.5 0 63 0 

Wavelet(1st)-SVM‡ 1.3 0 26 0 64 6.5 

Wavelets (r)-SVM§  0 0 30 1.6 65 23 

† MR, Misclassification rate. 
‡ Wavelet(1st)-SVM, Wavelet decomposition on first-derivative of reflectance followed by Support Vector Machine. 
§ Wavelets (r)-SVM, Wavelet decomposition on raw noise corrupted reflectance spectra followed by Support Vector Machine. 
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contamination types improves the probability of a correct classification. However these results 

are not encouraging especially if contamination types were mixed. 

4.4.2. Multivariate Modeling  

Three multivariate regression techniques were used to relate the VisNIR reflectance 

spectra to oil concentrations with leave-one-out cross validation. Accuracy and stability of 

different multivariate models were evaluated according to the RPD-based guidelines by Chang et 

al. (2001). The best prediction models are characterized by a RPD of >2.0 with r2 of ~0.80-1.00, 

fair models with potential for prediction improvement include RPD values of 1.4-2.0, while 

unreliable models have RPD values of <1.40.  These RPD values are most useful when the 

validation set is independent of the calibration set; however, with leave-on-out cross validation 

they are still useful indicators for describing the potential of the technology. 

A plot of actual versus PLSR predicted oil concentration in soil samples is presented in 

Fig. 22a. The PLSR plot showes that the prediction method was less accurate at larger 

concentrations. In linear regression modeling (which includes PLSR), one of the assumptions is 

homogeneity of variance, also known as homoscedasticity assumption. However, it was evident 

that the error variance was not constant in case of PLSR (i.e. variance increases with the actual 

oil concentration).   A trend in prediction residuals by soil type, organic carbon levels, and oil 

type was investigated (Fig. 23). Non apparent trends in the TPH prediction residuals were found 

by organic matter and soil type; however it does seem that overall motor oil residuals were 

higher than the residuals from the other oil types. The motor oil was used motor oil. Perhaps the 

PLSR model had difficulty with the spectral signatures of the impurities. The PLSR model used  
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Fig. 22. Actual versus predicted oil concentration (mg kg-1) using a) partial least squares 
regression (PLSR) and b) wavelet coefficients from the reflectance, and stepwise multiple linear 
regression (MLR). The solid line is the regression line, and the dashed line is a 1:1 line. 
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three latent factors. The number of latent factors in the present study was less than the values 

reported by other oil related research (Aske et al., 2001; Balabin and Safieva, 2007). Notably, the 

abovementioned oil related research used petroleum macromolecules in the model systems 

without the influence of heterogeneous soil matrix. 

Predictions of  oil concentration using wavelet-MLR more closely approximated the 1:1 

line and had less bias (33  mg kg-1 ) (Fig. 22b). The wavelet model, developed by using wavelet 

coefficients from the reflectance spectra with leave-one-out cross validated stepwise MLR 

performed the best of the three models. Most importantly the residuals from the wavelet-MLR 

model were homoscedastic, which lends more credibility to this model.  Prediction accuracy and 

model fit of the penalized splines method were better than the PLS, but had a lower RPD than 

wavelet-MLR (Fig. 24 and Table 8).  The fitted coefficient curve was smooth across the 

spectrum, indicating stability of the model. The grey-shaded band shows the 95% confidence 

interval for the coefficients and can be used to discover the region that has a coefficient 

significantly different from zero, and the impact of this region on the response. For example, the 

1300-1400nm and 1550-1700nm regions are both away from zero. However, the former 

contributes a positive effect on the oil concentration while the latter has a negative effect. 

 Among the multivariate methods tested, the wavelet-MLR and penalized spline 

regression models performed better than PLSR model. The wavelet-MLR yielded the highest 

predictability (RPD=3.97), with the lowest RMSEcv (3010 mg kg-1). Furthermore, the penalized 

spline model provided the highest coefficient of determination (0.98) along with a high RPD 

(3.32), indicating the robustness and accuracy of both wavelet-MLR and penalized spline 

models. Ge et al. (2007) concluded that the main advantage of dyadic discrete wavelet 

transformation over traditional PLSR and principal component regression based methods is the  
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Fig. 24. (a) Actual versus predicted oil concentration (mg kg-1) using penalized splines for soils 
from Louisiana, USA and (b) Fitted penalized splines coefficient curve with a grey-shaded area 
showing the 95% confidence interval at each waveband.  
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Table 8. Summary of oil contamination prediction performance using different multivariate 
models. 

Model r2 RMSEcv† 
(mg kg-1) 

RPD‡ 
 

Bias 
(mg kg-1) 

Partial least square regression 0.84 4791 2.50 68 
Wavelet-multiple linear regression 0.94 3010 3.97 33 
Penalized splines 0.98 3553 3.32 48 
† RMSEcv, Root mean square error of cross-validation. 
‡ RPD, residual prediction deviation. 
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use of fewer regressors, separated into different scales. Since in the present study, the 

neighboring channels were highly correlated, we believe that the effect of neighboring channels 

(through the regression coefficients) were also highly correlated (i.e. the regression coefficient 

curve is smooth.). It is noteworthy that the estimator from penalized spline was more stable than 

non-penalized method (PLSR) given that the neighboring regression coefficients were hand-in-

hand connected, which was not true of PLSR. The order of the channels was ignored by PLSR. 

Summarily, the wavelet-MLR and penalized spline models reasonably predicted petroleum 

concentration. 

4.4.3. VisNIR DRS as a Proximal Sensor for Petroleum Content  

A possible explanation for the high accuracy in separating soil types could be the fact that 

soil particle size (soil texture) affects the transmission of light and reflectance spectra, as 

indicated by Chang et al. (2001).  The possible reasons for the insensitivity of DRS in separating 

oil types in VisNIR range when contaminations were mixed could be 1) the heterogeneity and 

opacity of the soil matrix in addition to light scattering effects (Ko et al., 2010) and 2) crude oils 

contain mixtures of heavy asphaltic crudes to light crudes that are similar to a diesel fuel 

(Mattson et al., 1977).  

The study was intended for testing the capability of VisNIR viability instead of making a 

lab-grade predictive model. While working with crude oil and other petroleum products, 

researchers encounter a number of problems. The collection of a comprehensive range of refined 

products and crude oil with different compositions and quality indices is not an easy task 

(Balabin and Safieva, 2007). Moreover, standard chemical analyses (both HPLC and 
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gravimetric) are costly, and time-consuming. Therefore, construction of large set of artificial 

samples with actual oil and soil mixture is very challenging. 

Testing the heterogeneity within a range of soil physicochemical properties (more 

textures, organic carbon levels, and soil color) was beyond the scope of this project and requires 

intensive studies before drawing stronger conclusions. Auxiliary soil properties that can be 

measured quickly and easily may improve petroleum predictive models when used along with 

the soil spectra. More improvement could be achieved by increasing sample number and 

mapping the discrete wavelet transform regressors into a schematic, two-dimensional waveband-

scale tiling for a more systematic and straightforward representation of the wavelet-based model.   

4.5. Conclusion 

This exploratory study utilized 68 lab constructed samples for identifying the significant 

effects of soil texture and organic carbon on VisNIR reflectance patterns of petroleum 

contaminated soils. The variable moisture effect on VisNIR reflectance spectra was offset by 

maintaining uniform moisture to all samples. The first nine principal components elucidated 88% 

of the variance in the data and plots of sample scores were satisfactory to identify the clusters by 

soil types and organic carbon levels. However, PCA could not separate different oil types when 

contaminations were mixed. Visual interpretations from PC plots were quantitatively confirmed 

by LDA. Support vector machine performed slightly better than random forest for classifying 

organic carbon levels. Subtle separations for oil types were obtained from PC plots of soil B with 

5% organic carbon, indicating the need for future controlled research.  

This study also elucidated the need of a reliable spectral pre-treatment as an alternative to 

traditional methods. Among different preprocessing and multivariate models tested, wavelet 
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preprocessing performed best with the highest predictability (RPD=3.97). However, while 

dealing with first-derivative spectra, penalized spline regression performed better than PLSR 

model, considering the order of the regressors. Heteroscedasticity and systematic non-linearity of 

residuals worsened PLSR model predictions at higher oil concentrations. More intensive research 

is recommended considering other soil physicochemical variability and integrating wavelet-

penalized spline for VisNIR characterization of petroleum contaminated soils. Summarily, the 

cost-effectiveness, alacrity, and portability of this technique make it a promising tool that would 

give soil and/or environmental scientists the ability to characterize oil spills at a much larger 

scale and for a larger geographic area by utilizing a specialized spectral library focused on 

contaminant hydrocarbons. The goal for our future research should be to develop a general 

model which can lead to reliable hydrocarbon predictions under divergent soil matrix conditions. 
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CHAPTER 5 

CONCLUSION 

 This pilot research showed that visible near-infrared diffuse reflectance spectroscopy 

(VisNIR DRS) is capable of predicting soil TPH level without prior sample preparation. Variable 

soil moisture content and soil heterogeneity did not influence the prediction accuracies of the 

VisNIR DRS- based PLSR predictive model. Drying and grinding of soil samples were 

responsible for soil TPH loss, and resulted in low prediction accuracy of the PLSR model. 

However, sample number was clearly an issue and indicated the need for more sample for good 

generalizing capacity of the non-parametric BRT model. A fair RPD value of 1.70 indicated the 

scope for future model improvement. Also, this research recommended the combined use of 

VisNIR prediction and geostatistics to potentially to identify the spatial patterns of TPH 

contamination in soil quickly on site, reducing the need for expensive laboratory analyses. While 

utilizing TPH predictions from a penalized spline model in combination with ordinary block 

kriging, TPH distribution satisfactorily matched the topography of the study site.   

  Another exploratory study utilized lab constructed samples for identifying the significant 

effects of soil types and organic carbon on VisNIR reflectance patterns of petroleum 

contaminated soils. High accuracy in separating soil types was achieved for soil particle size 

(soil texture) effects. Heterogeneity, opacity, and light scattering of soil matrix were responsible 

for the insensitivity of DRS in separating oil types in the VisNIR range when contaminations 

were mixed. Subtle separations for oil types were obtained from PC plots for a specific soil type 

and specific organic carbon content, indicating the need for future controlled research. This study 

also elucidated the value of wavelet analysis (RPD=3.97) as an alternative to traditional spectral 
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preprocessing methods. However, while dealing with first-derivative spectra, penalized spline 

regression performed better than the non-parametric PLSR model. 

 Although, the full abilities of VisNIR spectroscopy have not been fully realized to date 

and its utilization in the oil spill research is remains novel, this present research identified the 

needs for: 

1. More intensive research with a larger sample set; 

2. Samples representing larger geographic ranges, with a wider assortment of soil 

properties; 

3. Integrating hybrid regression kriging for sound spatial variability mapping of soil TPH; 

4. Improvement of non-parametric modeling for handling small datasets; 

5. Integrating wavelet-penalized spline for VisNIR characterization of petroleum 

contaminated soils; and 

6. Labeling specific wavelengths associated to various petroleum signatures for future 

remote sensing applications of VisNIR DRS based sensors.  

Summarily, the cost-effectiveness, quickness, and transportability of this proximal sensor 

method make it an encouraging tool that could provide environmental scientists the capability to 

characterize inland oil spills at a much larger scale, with high spatial resolution, and for a larger 

geographic area by utilizing a specialized spectral library focused on contaminant hydrocarbons. 
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APPENDIX A 

LABORATORY SAMPLE CONSTRUCTION SCHEME 

 

Table 9. Laboratory sample construction scheme. 

Soil A 

Organic 

Carbon 

Diesel Crude oil Motor oil Control 

Ppm 

1000 10000 30000 1000 10000 30000 1000 10000 30000 

1 % 1 1 1 1 1 1 1 1 1 1 

5 % 1 1 1 1 1 1 1 1 1 1 

10 % 1 1 1 1 1 1 1 1 1 1 

Soil B 

Organic 

Carbon 

Diesel Crude oil Motor oil Control 

Ppm 

1000 10000 30000 1000 10000 30000 1000 10000 30000 

1 % 1 1 1 1 1 1 1 1 1 1 

5 % 1 1 1 11† 1 1 1 1 

10 % 1 1 1 1 1 1 1 1 1 1 

 
 † 2 samples (1000 and 30000 ppm) + 9 intermediate samples from (4000-28000 ppm at each 
3000 ppm interval). 
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APPENDIX B 

AVERAGE REFLECTANCE SPECTRA 

 

 

Fig 25. Average reflectance spectra are shown for Soil A from Louisiana, USA with 10% organic 
carbon and different types of oils (in 30,000 ppm or mg kg-1). 
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APPENDIX C 

PRINCIPAL COMPONENT REGRESSION 

 

Fig. 26. (a) The actual versus predicted oil concentration (mg kg-1) using principal component 
regression (PCR) for soils from Louisiana, USA. The solid line is the fitted linear regression, 
while the dashed line is the 1:1 line and (b) Regression coefficients for each 10-nm interval. 
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APPENDIX D 

PRINCIPAL COMPONENTS 

 

Fig. 27. (a) The cumulative proportion of variance explained by the first nine principal 
components of first-derivative of the reflectance spectra for the soils evaluated for petroleum 
contamination using visible and near infrared diffuse reflectance spectroscopy from Louisiana, 
USA, and (b) A scatter plot of the first two principal component score. Soil A is red; Soil B is 
blue and organic matter is 1, 5, and 0 for 1, 5, and 10%, respectively. 
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APPENDIX E 

PAIRWISE SCORE PLOTS FOR SOILS 

 

Fig. 28. Pairwise principal component (PC) plots for (a) PC1 vs. PC2, (b) PC2 vs. PC3, and (c) 
PC1 vs. PC3 of the first-derivative of spectral reflectance for soils evaluated for petroleum 
contamination using visible and near-infrared diffuse reflectance spectroscopy from Louisiana, 
USA. The solid diamonds and open circles represent soil A and soil B, respectively. 
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APPENDIX F 

PAIRWISE SCORE PLOTS FOR ORGANIC CARBON 

 

Fig. 29. Pairwise principal component (PC) plots for (a) PC1 vs. PC2, (b) PC2 vs. PC3, and (c) 
PC1 vs. PC3 using the first-derivative of soil  reflectance spectra and  evaluated for petroleum 
contamination using visible and near-infrared diffuse reflectance spectroscopy. The black, blue, 
and red diamonds represent soils with 1%, 5%, and 10% organic carbon, respectively. 
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