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ABSTRACT 

Quantitative and qualitative evaluation of compost is necessary in order to provide consumers 

with basic knowledge about the product’s composition, and to protect public health and the 

environment by preventing the spread of contaminated material. Current methods for analysis of 

basic compost properties give accurate results but are time consuming and require numerous 

laboratory procedures. This study evaluated the use of visible near-infrared diffuse reflectance 

spectroscopy (VisNIR DRS) for organic matter (OM) determination and field portable X-ray 

fluorescence (PXRF) spectroscopy for determination of elemental composition of composted 

materials.  These technologies were evaluated as alternatives to standard laboratory methods for 

their use in rapid in situ analysis. Thirty-six compost samples from a wide range of feedstocks 

were gathered and tested with VisNIR DRS and PXRF. For VisNIR DRS, the influence of 

sample moisture on scanning results was evaluated and the use of raw reflectance, first-

derivatives, and second-derivatives of the reflectance spectra were compared. Partial least 

squares regression (PLS) and principal component regression (PCR) were used to build 

regression models of VisNIR DRS scans and lab measured OM. For PXRF, the influences of 

sample moisture, particle size, inter-elemental interactions, and OM on PXRF scanning results 

were investigated. Results from the VisNIR DRS study produced a promising r
2
 value of 0.82 

and residual prediction deviation (RPD) value of 1.72 for the oven–dried first-derivative PLS 

model. Results indicate that VisNIR DRS shows great promise as a technique for analysis of OM 

content of dried compost samples, however further investigation with a larger sample set is 

necessary before VisNIR DRS can replace laboratory methods. Results of PXRF for elemental 

analysis were most promising for dried samples and for determining the elements Ca, Cr, Cu, Fe, 

K, Mn, P, and Zn. Arsenic detection was found to be greatly limited due to the influence of 

elevated Pb concentrations in the samples. Additionally, sample moisture, particle size, and  



 viii  
 

OM was found to have varying influences on PXRF scan results for different elements. Compost 

elemental screening and definitive quantification of certain elements via PXRF is recommended 

by this study. 
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CHAPTER 1: INTRODUCTION 

Compost is an organic substance which results from the decomposition of previously 

living matter (e.g. grass, leaves, wood, manure, animal carcasses). Compost is often utilized as a 

mulch, soil amendment, or soil conditioner. Moisture, aeration, temperature, carbon to nitrogen 

ratio, and material inputs are all managed in order to control the speed of the decomposition, and 

ultimately the attributes of the final product (Martin and Gershuny 1992).  

The managed aerobic decomposition process involves physical, chemical, and biological 

processes, including a succession of different organism’s consumption and degradation of 

complex biodegradable material, into simpler and more stable molecular compounds (Martin and 

Gershuny 1992, Berg and McClaugherty 2008). Different organisms are responsible for the 

decomposition of different fractions of the organic matter (OM), and are classed into physical 

and chemical decomposers. Physical decomposers include earthworms, mites, centipedes, 

springtails, and beetles, while chemical decomposers are bacteria, protozoa, fungi, and 

actinomycetes (Martin and Gershuny 1992). The physical aspects of the original material that 

influence the decomposition process are particle size, temperature, and structure which directly 

influence aeration. The chemical aspects germane to decomposition include pH, moisture, and 

C:N ratio which impact biological organisms and the speed of decomposition (Rynk 1992). The 

resulting end product, humus, is comprised of stable organic compounds and serves as a reserve 

of nutrients for plants and soil organisms (Berg and McClaugherty 2008).  

When the decomposition process is well regulated and inputs are carefully monitored, the 

resulting material is a safe and effective product that can be used to improve soil texture and 

structure, buffer soil pH, neutralize toxins, and add OM and plant essential elements to the soil 

(Martin and Gershuny 1992). The source materials used to construct compost are collectively 

known as feedstocks, and they influence the finished compost’s elemental composition, pH, 
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structure, and biological content. As such, the use of industrial or municipal sludges (biosolids) 

as feedstocks risks contributing heavy metals or biological pathogens to the end product (Rynk 

1992). If these materials are not properly managed, there is the potential to spread contamination 

to agricultural fields or home gardens when the compost is applied.  To mitigate this risk, 

national standards that limit contaminants and defined test methods used to evaluate the material 

have been established (Brinton 2000). These standards help to qualify composted products prior 

to sale, ensure the material’s safety, and promote the marketability of the material by providing 

basic information about the attributes of the product (Weindorf et al. 2011a). This is important 

for consumers due to the large range of materials used in commercial composting operations and 

the intrinsic heterogeneity of the material (Brinton 2000).  

Many countries, including the United States, have regulatory testing for basic parameters 

and possible contaminants in composted products before they can be sold (Brinton 2000). The 

current standards for compost analysis in the United States are outlined in Test Methods for the 

Examination of Composting and Compost (TMECC), which was released in 2001 by the US 

Department of Agriculture (USDA) and the Composting Council Research and Education 

Foundation (CCREF) (USDA-USCC 2002). The document outlines the procedures to assess the 

chemical, physical, and biological properties of finished and in-process compost for the 

composting industry. It was shaped using the environmental protection agency’s (EPA) Test 

Methods for Evaluating Solid Waste, Physical/Chemical Methods as a guide (USDA-USCC 

2002). The EPA regulates compost application to land and its elemental contaminant limits under 

“Title 40: Protection of environment, Part 503.13, Standards for the use or disposal of sewage 

sludge,” (USEPA 2012).  Some states have local regulations that are stricter than national 

standards, and may vary based on the feedstocks used and their pollutant concentrations (Rynk 

1992).  
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The TMECC outlines methods and procedures for analyzing the physical, chemical, 

biological, organic, synthetic organic compounds, and pathogenic properties of compost.  Some 

of the specific tests include screening for anthropogenic inerts, biological stability, OM content, 

pH, soluble salt content, water-holding capacity, bulk density, particle size, porosity, moisture 

content, and elemental concentration (including plant essential elements) (USDA-USCC 2002). 

The tests germane to this study are OM and elemental concentration. The test for OM is 

important as “test determinations will correspond to compost’s stability status and aid in defining 

the commercial value of compost relative to its organic matter content” (USDA-USCC 2002). 

Elemental determination of secondary and micro-nutrient content is important as “compost 

provides essential nutrients for plant growth,” and is vital to awareness of  heavy metals 

concentrations which, “are potential environmental pollutants at certain concentrations and as 

such are of regulatory concern relative to compost feedstocks and finished compost uses” 

(USDA-USCC 2002).  

1.1 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 

The current TMECC recommended method for determination of the elemental 

composition of composted products is with inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) (USDA-USCC 2002). The basis of ICP-AES is the excitation of 

digested, liquefied samples at high temperatures and measurement of the resulting wavelengths 

of light which are characteristic of the elements present and their relative concentrations (Fassel 

and Kniseley 1974; Warra and Jimoh 2011). The basic science and processes of the ICP-AES is 

applicable to several of the instruments that follow. As such, a detailed description of the 

technique follows.  

In order to prepare solid samples for analysis via ICP-AES digestions must be performed 

because solid samples can clog the nebulizer and liquid samples are thus required (Warra and 
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Jimoh 2011). Acid digestion is utilized to bring elements present in a sample into solution 

(USDA-USCC 2002).  Open and closed vessel digestion methods provide different levels of 

detection. Open vessel techniques do not require sample milling and provide less precision, 

while closed vessel methods do require milling and offer better accuracy (USDA-USCC 2002). 

Digestion may be conducted via a variety of different reagents, usually strong acids, including 

H2SO4-HNO3, HNO3-HClO4 or others depending on the material to be analyzed and the elements 

of interest (Westerman 1990; USDA-USCC 2002). Digestion with nitric acid adequately digests 

most samples, is commonly utilized for biosolids and composts, and it is approved for use in 

determining most metals regulated under USEPA CFR 40 (USDA-USCC 2002). Nitric acid 

digestion results in the loss of volatile elements and does not dissolve elements bound by silicate 

structure, and if a “total” digest is warranted hydrofluoric acid must be utilized (USEPA 1996).  

Excitation of a sample is the result of its exposure to an energy source that causes the 

outer-shell electrons in the sample to shift to higher energy orbits around the nucleus 

(Westerman 1990). Once the energy source is removed, the valence electrons return to their 

ground state in a stepwise manner and emit wavelengths of light. Multiple wavelengths are 

emitted due to the incremental release of electromagnetic energy (Westerman 1990). The 

relationship between energy and wavelength is defined by equation 1.1: 

     E= hv = hc/λ      Equation 1.1 

Where E= energy, λ= wavelength, h= Planck’s constant (6.626 × 10
-34

 J) v= frequency and c= 

velocity of the electromagnetic radiation (Sparks 1996).  

The energy source for excitation in ICP-AES is plasma created by argon gas. Argon is 

used due to its low reactivity and low chance of creating chemical interferences during analysis 

(Westerman 1990). The ICP-AES instrument consists of two parts: the inductively coupled 

plasma torch where the sample is introduced and subjected to excitation and the atomic emission 
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spectrometer where the wavelengths resulting from sample excitation are processed and recorded 

(Figure 1.1).  

 

Figure 1.1 Diagram of inductively coupled plasma atomic emission spectroscopy 

 

The plasma is generated by a quartz torch located inside of a copper coil which is 

connected to a radio frequency generator. The flow of electricity through the coil creates 

oscillating magnetic fields which vary in strength and direction over time and which create 

further electron and ion acceleration as they flow through the torch (Fassel and Kniseley 1974; 

Westerman 1990). Argon gas atoms collide with these electrons and ions, causing the gas to 

become ionized and form plasma. As the accelerated electrons and ions in the plasma collide 

they further ionize and cause ohmic heating at temperatures in the range of 6,000 to 10,000°K 

(Warra and Jimoh 2011). The sample is then introduced into the plasma via a stream of argon gas 

through a nebulizer which creates an aerosol or suspension of liquid particles in the gas 

(Westerman 1990; Warra and Jimoh 2011). Upon entrance into the hot plasma, thermal 

excitation of outer-shell electrons of the atoms occur, and upon returning to their ground states 
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they emit photons of light at wavelengths characteristic of the elements present in the sample 

(Fassel and Kniseley, 1974; Westerman 1990; Warra and Jimoh 2011). A mirror in the ICP-AES 

reflects the resulting light through a slit in the spectrometer where the individual elemental 

wavelengths are separated onto detectors and are recorded along with their corresponding 

intensities by a computer system (Westerman 1990; Warra and Jimoh 2011).  A spectrometer 

used for quantitative analysis functions based on the Beer- Lambert law. Changes in 

spectrometer response are related to changes in the concentration of the analyte material in the 

digested sample. Often the relationship is assumed to be linear, however this is not always the 

case (Workman and Springsteen 1998). The measured intensity of the energy at each wavelength 

is compared to a standard sample with known elemental concentrations. Each element has many 

characteristic lines (wavelengths) and expertise is required to select the best line for 

computations (Westerman 1990; Warra and Jimoh 2011).  

Since the 1970’s the use of ICP-AES has been wide-spread due to its capacity to analyze 

many elements at very low concentrations across many sample types, including saline and dilute 

acid samples (Westerman 1990; Warra and Jimoh 2011). There are several advantages to ICP-

AES, including its ability to analyze all elements except for argon, its ability to detect trace 

levels of elements (1-100g/L), its low level of chemical interference, and its ability to detect 

many elements simultaneously (Westerman 1990). However, there are also several 

considerations, including the need for special facilities for handling radioactive fumes from the 

plasma when certain elements are determined, the lack of portability, a recurring expense for 

argon gas purchase, and necessity of experienced technician for interpretation of the wavelengths 

and for equipment maintenance (Westerman 1990; Warra and Jimoh 2011). Furthermore, the 

acid digest procedure is dangerous and requires the use of hydrofluoric and perchloric (HF + 

HClO4) or aqua-regia (HNO3 + HCl) acids which are extremely caustic (USDA-USCC 2002). 
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There is also the possibility of spectral interferences from a variety of sources. However, there 

are many techniques employed to address these challenges in modern instruments (Westerman 

1990). 

1.2 Loss on Ignition (LOI) 

The method of OM determination outlined by the TMECC is the dry ashing procedure 

known as loss on ignition (LOI). The method uses a muffle furnace to induce high temperature 

oxidation of the OM in a sample of known weight. After ignition, a simple calculation of the 

remaining mineral fraction allows determination of the OM fraction which is assumed to be the 

material lost (Sparks 1996, Westerman 1990). The method determines only the quantity of OM 

present, and does not distinguish between plant and animal organic compounds from which OM 

is comprised (Sparks 1996). The method is used widely in soil and plant analysis, with the 

ignition temperature varying across discipline and application (Sparks 1996).  LOI is subject to 

inaccuracies if the incorrect ignition temperature is used, if the temperature is too quickly 

increased and flaming of the material occurs, or incomplete oxidation occurs due to overloading 

of the furnace resulting in deficient O2 presence for full oxidation (Westerman 1990).  

1.3 Test Method Development 

The standard method used for elemental determination of composts and soils has 

progressed from colorimetric procedures, to emission or adsorption spectroscopy and now to 

plasma spectroscopy which is capable of determining most elements in a sample in around 60 

seconds (Westerman 1990). While this method is well established and reliable when conducted 

by an experienced technician, it is not portable and must be conducted in a laboratory due to the 

sample digestion and instrumentation required (Westerman 1990). While LOI testing requires a 

lesser amount of laboratory preparation, it similarly requires laboratory work as a muffle furnace 

for incineration of the material is required (USDA-USCC 2002). As field quantification of these 
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properties would aid producers and testing laboratories, analytical methods that lend themselves 

to rapid in situ or field examination are sought.  Field determinations of elemental concentrations 

of compost would most notably benefit producers who could then monitor incoming feedstocks 

and overall compost mixes for heavy metals and nutrient contents. Furthermore, OM content 

determined in situ would aid producers in monitoring the rate at which the material is 

decomposing and thereby the overall maturity of the product (Brinton 2010).  

As in situ analysis of these qualities of compost would benefit producers or speed 

laboratory analysis, an investigation into the use of field-portable spectroscopy for rapid compost 

analysis is warranted. Portable spectroscopy is of interest due to its portability, speed, rapid 

replicate sampling, and capacity for non-destructive sampling (Potts and West 2008).  As such 

the focus of this study involves the application of visible near-infrared diffuse reflectance 

spectroscopy (VisNIR DRS) and portable X-ray reflectance spectroscopy (PXRF) to compost for 

rapid, in situ analysis of OM and elemental composition, respectively. 

1.4 Visible Near-infrared Diffuse Reflectance Spectroscopy (VisNIR DRS) 

  The basis of VisNIR DRS is the measurement of diffusely reflected spectra from the 

sample after it has been exposed to visible and near-infrared radiation (350-2500nm) (Sparks 

1996; Workman and Springsteen 1998).  The spectrometer is comprised of an energy source, a 

dispersive element, which enables the intensity at different wavelengths to be recorded and a 

detector (Workman and Springsteen 1998). With diffuse reflectance spectroscopy (DRS) the 

resulting spectrum does not produce a directly proportional relationship between wavelength 

intensity and analyte concentration. Corrections and statistical analysis therefore must be used to 

interpret the resulting data and will be discussed in a following section. The method of DRS 

however is ideal for application to samples of rough light-diffusing surfaces, like compost, and is 

not limited by optical effects occurring near to the sample surface as experienced with mid-
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infrared spectroscopy (Workman and Springsteen 1998). Of consideration to VisNIR DRS are 

the influences of sample moisture and particle size on spectral reflectance.  Moisture content of 

samples is of particular interest as moisture interference in spectral readings has been noted in 

many studies (Morgan et al. 2009; Stevens et al. 2006; Van der Meer and De Jong 2000). 

However, it has also been shown that the influence of moisture on soil reflectance was stronger 

in the shortwave-infrared (SWIR) (1100–2500 nm) region than the VisNIR region (400–1100 

nm) (Zhu et al. 2010). Other studies have indicated that air-drying of samples increases the 

accuracy of the prediction model as drying reduces the intensity of bands related to water signals 

and therefore does not mask other physicochemical properties (Waiser et al. 2007).  The 

interaction between assessment of sample parameters and sample moisture in compost warrants 

further study.  Particle size can influence VisNIR DRS’s final spectra, and grinding of samples 

has been recommended (Workman and Springsteen 1998). 

The identification of organic compounds and many signature band locations for 

compounds present in organic matter can be determined with VisNIR DRS (Workman and 

Springteen 1998). However to date, VisNIR DRS has not been widely applied to compost 

analysis. A few studies have shown its ability to assess microbial populations, nitrogen content, 

carbon content, pH, and compost salinity (Ben-Dor et al. 1997; Malley et al. 2005; Sharma et al. 

2005). Promising results for correlation (r² values of 0.852) between predicted and measured 

values of percent ash were obtained by Sharma et al. and point to the promise of the technology 

for OM analysis. However a significant limitation of all of these studies has been the limited 

range of feedstocks tested, and in only investigating milled and dried samples (Ben-Dor et al. 

1997; Malley et al. 2005; Sharma et al. 2005). All groups have indicated the need for studying a 

more diverse sample set. The use of VisNIR DRS has been more extensive in fields related to 

compost: agriculture and waste management. The technology has been shown in these fields to 
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identify organic and inorganic soil carbon for soil characterization (Brown et al. 2006; Morgan et 

al. 2009), soil water (Zhu et al. 2010), clay mineralogy (Waiser et al. 2007), and to assess soil 

contaminants (Chakraborty et al. 2010; Chakraborty et al. 2012).  

1.5 Portable X-ray Fluorescence Spectrometry (PXRF) 

 Portable X-ray fluorescence spectrometry (PXRF) is based on the measurement of 

fluorescence emitted from a sample after exposure to X-ray radiation. On the electromagnetic 

spectrum, X-rays are found between 0.01 to 10 nanometers (Sparks 1996).  In the study, of 

PXRF an X-ray tube was used to generate X-rays which excite the target sample resulting in 

ejection of electrons from the K or L orbitals. The resulting instability forces electrons from 

outer orbitals, L or M, to fall down into the vacancies left in the inner K or L orbital. In doing so, 

secondary X-ray photons (fluorescence) are emitted and are characteristic of the atoms present in 

the sample (Figure 1.2) (Innov-X Systems 2010; Potts and West 2008; Westerman 1990).  

 

 

 

 

 

 

Figure 1.2 Diagram of the basis of portable X-ray fluorescence spectrometry (PXRF) with the 

sample’s electron orbitals (K, L, M) and major processes outlined. 

 

The element’s presence is defined by its characteristic X-ray emission wavelength (λ) and 

the amount present is determined by measuring the intensity of the emission (Innov-X Systems 

2010). Not all elements are detectable by PXRF under normal conditions as there is an 

 

http://en.wikipedia.org/wiki/Nanometer
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attenuation, or gradual loss in intensity, of the low energy fluorescence X-rays as they pass 

through air.  As a result, elements below Si (atomic number 14) cannot be adequately detected by 

PXRF (Potts and West 2008). Elements from the K-line series orbitals with adsorption edges just 

below the energy of the characteristic emission lines from the X-ray tube are best detected by 

PXRF, while elements larger than the given energy generally cannot be detected as they are not 

excited or detected to an adequate sensitivity (Potts and West 2008).  Compton normalization 

calibration is often utilized to account for differences among samples matrices and the ensuing 

effects. The method is similar to the utilization of internal standards (Innov-X Systems 2010).   

There are various factors that may influence PXRF results including particle size (related 

to heterogeneity of the matrix), the chemical matrix, and sample moisture (Potts and West 2008). 

Operational errors may result from inconsistent positioning of samples or poor instrument 

resolution; however these factors can be accounted for and controlled by the operator (Potts and 

West 2008). Sample moisture has been shown to create a dilution effect on PXRF (Argyraki et 

al. 1997).  Moisture correction factors or sample drying have been implemented to account for 

such an influence (Innov-X Systems 2010; Weindorf et al. 2011b). In a previous study involving 

soil, particle size was not found to have a significant influence on PXRF analyzers, however this 

study was based on using sieved (<2 mm) samples (Kilbride et al. 2006). Additionally the 

influence of OM content on PXRF performance has been reported in soils and should be 

investigated considering the inherently higher OM concentrations of compost (Kilbride et al. 

2006). The critical penetration depth of the X-ray photons is the depth below the surface beyond 

which 99% of the X-ray emission line of an element is absorbed and not available for detection 

(Potts and West 2008). Penetration depth varies for different elements; low atomic number 

elements have lower ranges (μm range) and higher elements have higher ranges (1-10mm) (Potts 

and West 2008). Absorption correction factors are available to correct for the discontinuities in 
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the absorption properties for the analyzed materials in order to obtain an average for the scanned 

area (Innov-X Systems 2010; Potts and West 2008). 

The use of PXRF has been applied to many materials for elemental characterization 

(Stallard et al. 1995; Lawryk et al. 2009; Palmer et al. 2009; Radu and Diamond 2009). Recent 

applications include identification of heavy metal concentrations in pollution monitoring for 

environmental assessment and soil and solid waste classification (Weindorf et al. 2011b; Zhu et 

al. 2011; Weindorf et al. 2012). The environmental protection agency (EPA) has certified a 

method for the use of PXRF in soil characterization as outlined in Method 6200: “Determination 

of Elemental Concentrations in Soil and Sediment” (USEPA 1998a). Current advances in PXRF 

technology have reduced the costs of the technology, improved correlations to laboratory based 

assessment and attained lower limits of detection (LOD) (Hettipathirana 2004; Potts and West 

2008). For a given instrument, the LOD is defined as the smallest measurement that can be 

determined with reasonable certainty by the technique (IUPAC 1997).  These improvements are 

due to the development of multiple beam instruments over single beam instruments and the 

advent of Si drift detectors that provide detection at much higher count rates, improving scanning 

speed and energy resolution (Innov-X Systems 2010; Potts and West 2008; Workman and 

Springsteen 1998). 

Currently the use of PXRF in compost characterization has not been widely studied. The 

only investigation of note is Weindorf et al. (2008). The study investigated PXRF for elemental 

quantification in composted dairy manure using an alpha series PXRF (single X-ray beam 

instrument) (Innov-X Systems, Woburn, MA). An investigation of PXRF as applied to a wide 

range of feedstocks, the influence of moisture, particle size and OM on PXRF analysis and a 

consideration of advancements in the technology are detailed in chapter two of this document.  
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1.6 Statistical Analysis Techniques 

While spectral reflectance can often be correlated linearly to elemental concentrations, in 

the case of VisNIR DRS there is a need for statistical analysis to interpret the resulting spectra 

and to build models. Multivariate regression techniques are often used for this application 

(Workman and Springsteen 1998).  In Chapter 2, principle component regression (PCR) and 

partial least squares regression (PLS) are compared.  The basis of PCR and PLS is not a direct 

regression of a single or selected group of wavelengths to known quantities of a given 

characteristic, but instead involves the creation of eigenvectors for regression model building. 

These new variables are formed via transformation of correlated response variables into a 

smaller group of uncorrelated response variables (Johnson 1998). The use of eigenvectors helps 

to account for variation between sample mixtures, inter-constituent interactions in the individual 

samples, instrument variation, and differences in sample variation by defining a finite number of 

interactions in the spectral data and by extracting underlying variables (Johnson 1998; Workman 

and Springsteen 1998). In theory these “variation spectra”, eigenvectors or principal components, 

represent all possible changes in spectra across every wavelength (Workman and Springsteen 

1998).   Additionally, these spectra are used with scaling constants, called scores, which help to 

account for different constituent concentrations of each component. The difference between PCR 

and PLS is in how the principal components are calculated (Workman and Springsteen 1998). 

The principal components are based on changes in the absorbance or reflectance data and not on 

the absolute value of the absorbance or reflectance. The PC’s are calculated using an algorithm 

that selects independent variation characteristics from each sample for removal with the motive 

of leaving only the changes in absorbance common to all. The components are calculated after 

being mean centered in order to remove changes in spectral data common to all the spectra 

(Workman and Springsteen 1998).  Similarly PLS is calculated by decomposing the spectral 
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matrix into PCs and then by regressing them against known concentration data to build the 

model, the difference being that the known concentrations of the variable of interest are taken 

into account when decomposing the spectra (Workman and Springsteen 1998). This allows 

constituents of higher concentration to be more influential than those of low concentration, when 

building the model. The result is two sets of vectors and two sets of scores.  The benefit of 

combining regression and decomposition into one step is that the eigenvectors are directly 

related to the variable concentration. Cross-validation is necessary for model fitting for both 

techniques and involves using the training set data to imitate testing unknown data (Workman 

and Springsteen 1998). In general PLS has been shown to outperform PCR, however in certain 

instances PCR has been more accurate (Workman and Springsteen 1998). For this reason both 

PCR and PLS regression was utilized for VisNIR DRS analysis of OM in compost. The science 

and processes behind these calculations are briefly presented for consideration.  

There are also many techniques applied to spectra prior to processing. Uniform light 

scatterings in reflectance measurements due to the surface of the material or the spectrometer 

result in a baseline shift, tilt, or curvature and have standard corrections (Workman and 

Springsteen 1998). Additionally, techniques like averaging replicate spectra, using a white 

reference Spectralon panel with 99% reflectance to compensate for drift in the spectrometer, and 

the application of spectral smoothing techniques for improved signal to noise ratios are often 

implemented prior to statistical processing (Workman and Springsteen 1998). 

  One technique commonly employed to handle baseline shifts is the use of derivative 

spectra; commonly 1
st
 and 2

nd
 derivatives are used (Workman and Springsteen 1998). First 

derivatives are simply a measure of the slope of the spectral curve at each point, and 2
nd

 

derivatives are a measure of the change in slope of the curve. These calculations are not 

influenced by baseline offsets or any linear tilt and thus effectively remove these influences from 
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calculations where the derivatives are used. A significant disadvantage of using derivatives is 

that the resulting spectra may be difficult to interpret visually, and the identification of spectral 

impurities impossible (Workman and Springsteen 1998).  

In the case of PXRF, spectral reflectance can be correlated linearly to elemental 

concentrations. For PXRF (Chapter 3), simple linear regression was used to relate PXRF 

determined elemental concentrations directly to ICP-AES determined elemental concentrations 

of compost using statistical analysis software (SAS) program (SAS Institute 2011). Simple linear 

regression was utilized in order to create predictor models, and to test the regression of PXRF to 

ICP-AES data. The program SAS includes many different procedures for data analysis with 

simple linear regression, including PROC REG and PROC UNIVARIATE. The basic procedure 

PROC REG is a general use procedure for regression, based on the method of least squares, that 

is capable of tests of linear hypothesis, producing collinearity diagnostics, residuals, and 

predicted values among other potential output statistics (Cody and Smith 2006; SAS Institute 

2011). In order to obtain more descriptive statistics, PROC UNIVARIATE is used to compute 

the mean, standard deviation, variance, range and coefficients of variation in addition to many 

others (Cody and Smith 2006).  

Ideally when using simple linear regression, the determined model equations will not 

differ significantly from values of 1.0 for slope and 0.0 for the y-intercept and if the equation 

varies greatly from these values it is indicative of a less accurate PXRF analyzer (USEPA 

1998b). However there are also rules for model evaluation that analyze r
2
 and relative standard 

deviation (RSD) in addition to the slope and intercept (USEPA 1998b). Other statistics can also 

be used to evaluate model or regression performance, including those provided by PROC 

UNIVARITATE (Cody and Smith 2006). 
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With the goal of investigating the use of portable spectrometers and their application to in 

situ conditions, two studies were conducted on a diverse range of collected compost samples. 

The objectives of the research were to evaluate the effectiveness of: 1) VisNIR DRS for 

quantifying OM in compost, and 2) PXRF for elemental quantification in compost. The 

following two chapters expand on methods employed, results obtained, and recommendations set 

forth.  
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CHAPTER 2: VISIBLE NEAR-INFRARED DIFFUSE REFLECTANCE 

SPECTROSCOPY (VISNIR DRS) FOR RAPID MEASUREMENT OF ORGANIC 

MATTER IN COMPOST 

2.1 Introduction 

Visible near-infrared (VisNIR) diffuse reflectance (DRS) spectroscopy is a rapid, proximal 

sensing technology which has shown promise in a variety of agronomic and waste management 

applications, including quantification of multiple soil properties, waste products, and 

environmental hazards (Weindorf et al. 2011).  The interests of this study lie in the technology’s 

ability to assess the organic matter (OM) content of finished composted materials for quality 

control purposes. Compost is an inherently variable product hewn from a wide variety of organic 

source materials known as feedstocks, and world-wide serves as a means of recycling many 

types of organic wastes for use as soil-amendments and agricultural fertilizers. However, there 

are inherent risks of using certain types of waste products for feedstock material in compost 

production, and the potential for contamination of commercial compost is of concern (Tomati et 

al. 2002; Plaha et al. 2002). For this reason, in the United States and many countries across 

Europe, compost must be tested for basic parameters and possible contaminants before it can be 

sold (Brinton 2000). Standards and protocols vary across national borders, though most all have 

certifying agencies and requirements. The current United States standard is Test Methods for the 

Examination of Composting and Compost (TMECC) which provides the procedures and methods 
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for compost analysis at certified labs as defined by the US Compostin
1
g Council (USDA-USCC 

2002). In the United States, compost quality is regulated as a biosolid or fertilizer and regulations 

vary by state (Brinton 2000). These established testing methods often require extensive 

laboratory preparation and analysis, which can interrupt or delay the abilities of compost 

producers to manage their product. As such, a means to quickly test a basic and important 

parameter of compost, such as OM, with little or no laboratory preparation, or ideally in situ 

could enable compost producers to more efficiently measure this aspect of their product in order 

to ready it for sale. 

The majority of current knowledge concerning spectroscopy for compost analysis has 

utilized near-infrared spectroscopy (NIRS), which focuses on a narrower range of the 

electromagnetic spectrum (800-2500 nm), than VisNIR DRS (350-2500 nm). However because 

the two technologies share a spectral range of interest, promising results involving NIRS are 

relevant to the use of VisNIR DRS for compost analysis. Near-infrared (NIR) spectroscopy has 

shown promising results in assessing organic matter, total organic carbon, nitrogen 

concentrations, physicochemical qualities (Vergnoux et al. 2009), nutrient metal content (Huang 

et al. 2008), and overall compost quality (Galvez-Sola et al. 2010). Sludges and compost-sludge 

mixtures have also been assessed with NIRS technology as to their carbon and nitrogen contents 

(Albrecht et al. 2008), heavy metal contents (Moral et al. 2007; Galvez-Sola et al. 2009), and 

humic acid contents (Polak et al. 2005). 

Studies utilizing VisNIR DRS in the fields of agriculture or waste management have 

shown the technology’s ability to identify organic and inorganic soil carbon for soil 

characterization (Brown et al. 2006; Morgan et al. 2009), clay mineralogical composition 

(Waiser et al. 2007), and in quantifying soil environmental contaminants such as hydrocarbon 

                                                           
1
 Reprinted by permission of “Waste Management and Research” 
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(Chakraborty et al. 2010). The history of the technology with compost analysis however is more 

limited, though studies have proven its applicability in assessing microbial population, nitrogen 

content, carbon content, pH, and compost salinity (Ben-Dor et al. 1997; Malley et al. 2005; 

Sharma et al. 2005). Sharma et al. (2005) obtained r² values of 0.852 for correlation between 

predicted and measured values for quantification of percent ash. 

While these studies indicate the potential of the technology, they have been limited by 

various factors. Ben-Dor et al. (1997) focused on monitoring the material’s composition and 

spectral changes throughout the composting process, instead of analyzing the material once it 

had reached a finished state. Malley et al. (2005) obtained useful calibration data for total C, 

organic C, total N, C:N, S, K, and pH and Sharma et al. (2005) for pH, salinity and ash percent. 

However, their studies were confined by studying only milled and dried samples from specific 

feedstocks and composting methods. Both groups noted the need for further study involving 

more varied sample sets and samples at variable moisture contents.  

Moisture content of samples is of particular interest as moisture interference in spectral 

readings has been noted in many studies (Morgan et al. 2009; Stevens et al. 2006; Van der Meer 

and De Jong 2000). However, it has also been shown that the influence of moisture on soil 

reflectance was stronger in the shortwave-infrared (SWIR) (1100–2500 nm) region than the 

VisNIR region (400–1100 nm) (Zhu et al. 2010). Other studies (Waiser et al. 2007) have 

indicated that air-drying of samples increases the accuracy of the prediction model because air 

drying reduces the intensity of bands that are related to water so that signals associated with 

other physicochemical properties are not masked.  The interaction between sample moisture and 

assessment of sample parameters in compost warrants further study. 

In order to build on previous results that indicate a potential use of VisNIR DRS as a 

viable tool in the rapid assessment of OM in finished composted materials, the objectives of this 
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study were to: 1) determine the capacity of VisNIR DRS to quickly and accurately quantify OM 

in finished composted products; 2) test un-ground samples at variable moisture contents to 

further assess the applicability of the technology for in situ analysis; and 3) to compare the 

accuracies of partial least squares (PLS) regression and principal component regression (PCR) in 

predicting OM in composts. If VisNIR DRS proves a reliable method for the quantification of 

OM in compost, it could replace more time consuming laboratory (loss on ignition) analysis and 

aid in compost product assessment.  

2.2 Materials and Methods 

2.2.1 Samples 

Thirty six compost samples of diverse origin, feedstock, and composting method, were 

collected from across the United States in the spring of 2011 (Table 2.1), including one sample 

from Canada. Compost samples were tested according to standard TMECC (USDA-USCC 2002) 

laboratory procedures and later analyzed with VisNIR DRS. Diversity of sample type and 

composting method was ensured to test the applicability of the technology on a range of 

composted materials. Of the 36 samples, three were from a certified testing lab and were used to 

validate the accuracy of our laboratory results. Our results fell within the 95% confidence 

intervals set by the certified lab for most parameters. The 36 samples were divided into replicates 

and stored in plastic bags at 4°C upon receipt.  Each replicate was tested independently and the 

resulting data were averaged to obtain a single data set for each parameter.  

2.2.2 Standard Laboratory Testing 

The TMECC standard method for loss-on-ignition (LOI) (Method 05.07-A) (USDA-

USCC 2002) was used to analyze the 36 samples for organic matter percentage in a muffle 

furnace using a one gram sample (Fisher Scientific Isotemp Programmable Forced-Draft Muffle 

Furnace) (Thermo Scientific Barnstead, Dubuque IA). An Orion 2-Star pH meter (Thermo 

Scientific, Waltham, MA) was used to asses pH (Method 04.11-A 1:5 Slurry) (USDA-USCC 
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2002). Electrical conductivity (EC) was tested via the same method on a model 4063CC digital 

salinity bridge (Traceable Calibration Control Company, Friendswood, TX). Moisture 

percentage was assessed via Method 03.09-A (USDA-USCC 2002).  Particle size divisions 

(Method 02.02-B) (USDA-USCC 2002) were determined using a sieve shaker with nested sieves 

(Model B Ro-Tap® Sieve Shaker) (W.S. Tyler, Pleasant Prairie, WI). Particle size, EC, pH, and 

moisture percentages were determined in order to evaluate the diversity of samples and thus to 

establish the applicability of the technology to all types of compost. 

Table 2.1 Composting method, feedstock, origin, pH, OM, salinity, and moisture content data 

for 36 compost samples used in this study from various locations in the United States and 

Canada. 

 Compost 

Method 

Feedstock Origin pH OM EC Moisture Particle 

Size † 

  -% (If number given)-   -%- dS -%- -%- 

1 Windrow Grass, chicken litter, woodchip LA 7.1 64.1 0.7 45.8 49.3 

2 Windrow Paper manufacturing sludge, pine 

sludge 

LA 6.6 36.2 1.1 65.8 51.4 

3 Windrow 40 paper sludge, bark woodchip LA 7.7 30.8 0.8 48.9 68.5 

4 Pile Poultry litter LA 8.6 71.2 21.9 29.1 65.6 

5 Pile Bagasse crop residue LA 6.4 86.0 0.1 61.5 90.4 

6 Pile Woodchip, bark mix LA 6.8 82.8 0.1 64.7 45.3 

7 Windrow Grass, chicken litter woodchip, 

cooking oil 

LA 7.3 51.1 2.1 44.4 67.2 

8 Windrow Bark, stall sludge LA 12.3 22.8 7.7 44.6 89.1 

9 Windrow Leaf, woodchip, glycerin, chicken 

litter,  

LA 7.8 54.0 2.2 42.4 73.1 

10 Unknown Unknown Pacific 

Northwest 

6.7 81.7 1.9 75.7 51.8 

11 Unknown Unknown VA 6.9 54.5 4.1 46.0 62.9 

12 Unknown 95 Green waste, 4 bio solids, 1 wood CA 7.8 45.2 3.0 40.11 85.1 
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13 Unknown Unknown CA 8.2 53.6 3.7 44.4 84.3 

14 Unknown Unknown CA 8.0 51.3 2.2 49.8 79.9 

15 Unknown Grape pumice CA 5.8 36.1 8.8 41.2 99.7 

16 Unknown Unknown CA 7.0 27.7 5.7 24.5 87.5 

17 Unknown Spent mushroom compost CA 8.1 55.1 8.9 59.0 57.8 

18 Unknown Unknown CA 7.6 61.3 1.9 31.8 85.6 

19 Aerated static 

pile 

40 Biosolids, 60 Hulls Southern 

USA 

5.6 65.4 3.8 38.6 75.8 

20 Windrow Green Wastes / Food waste CA 7.8 55.8 3.6 47.9 88.8 

21 Windrow 100 Yard waste Pacific 

Northwest 

7.8 60.7 4.2 43.9 84.8 

22 Unknown Unknown Pacific 

Northwest 

7.4 58.6 2.2 55.0 59.5 

23 Unknown Unknown Pacific 

Northwest 

7.4 42.1 2.2 35.5 81.8 

24 Unknown Unknown CA 8.4 32.0 5.1 19.9 88.7 

25 None Sawdust LA 4.9 96.6 0.4 8.7 100.0 

26 Unknown Cow manure FL 7.8 24.8 0.5 38.7 89.6 

27 Unknown Spent mushroom FL 7.4 58.8 3.9 58.1 84.9 

28 Unknown Certified Compost CO 9.0 22.3 5.1 29.3 87.3 

29 Unknown Certified Compost Canada 7.8 35.2 0.2 54.1 23.3 

30 Unknown Certified Compost CO 8.7 42.4 4.0 35.3 90.3 

31 Pile Dairy cow manure (grass fed) TX 9.2 37.2 5.8 17.9 91.4 

32 Pile Turkey manure and bedding TX 6.9 35.8 5.0 31.5 88.2 

33 Pile Mix:5 composts, granite, humate TX 8.4 42.8 2.6 32.2 86.9 

34 Unknown Cattle manure, cotton burr TX 8.4 57.6 6.4 59.5 63.8 

† Percent passing <5mm sieve size 

Compost OM was calculated using Equation 2.1:  

OM = (OM = (1 – AshW÷ dw) × 100   Equation 2.1 

Table 2.1 continued 
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Where, OM is LOI organic matter in percent, AshW is sample net weight (g) after ignition at 

550°C, and dw is sample net weight (g) after drying according to Method 03.09-A before 

ignition (USDA-USCC 2002). The analysis was run twice to obtain an average for each sample. 

2.2.3 VisNIR Scanning 

In the laboratory, the 36 compost samples were scanned using a field portable AgriSpec 

VisNIR spectroradiometer (Analytical Spectral Devices (ASD), CO, USA) with a spectral range 

of 350 to 2500 nm (ultraviolet/VisNIR [350–965 nm], short-wave infrared 1 [966–1755 nm], and 

short-wave infrared 2 [1756–2500 nm]) as given by ASD. The spectroradiometer had a 2-nm 

sampling interval and a spectral resolution of 3- and 10-nm wavelengths from 350 to1000 nm 

and 1000 to 2500 nm, respectively. Before scanning, each sample was equally divided into two 

parts (weight basis). The first part was left intact to preserve the moist condition (as received) 

while the second part was oven dried at 70°C for 24 hours (Method 5.07-A) (USDA-USCC 

2002). Both moist and oven-dried samples were allowed to assume room temperature and then 

were scanned with a contact probe, having a 2-cm-diameter circular viewing area and built-in 

halogen light source (Analytical Spectral Devices, CO, USA). The contact probe was inserted 

into the plastic bag that held the sample and full contact with the sample was ensured to avoid 

outside interference. Each sample was scanned three times with a 90° rotation between 

successive scans to obtain an average spectral curve. A spectralon panel with 99% reflectance 

served as the standard white reference material, and was scanned every five samples to 

compensate for drift in spectrometer and source. 

2.2.4 Pre-treatment of Spectral Data 

For this study, derivative spectroscopy was used to preprocess compost spectra prior to 

analysis. Derivative spectra have the capability to improve the quantification accuracy by 

removing the baseline shift arising from detector inconsistencies, albedo, and sample handling 
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(Demetriades-Shah et al. 1990). Raw reflectance spectra were processed via a statistical analysis 

software package, R version 2.11.0 (R Development Core Team, 2008) using custom ‘R’ 

routines (Brown et al. 2006). These routines involved (i) a parabolic splice to correct for “gaps” 

between detectors, (ii) averaging replicate spectra, (iii) fitting a weighted (inverse measurement 

variance) smoothing spline to each spectra with direct extraction of smoothed reflectance, (iv) 

first derivatives at 10-nm intervals, and subsequently, (v) second derivatives at 10-nm intervals.  

The zero, first, and second order derivative spectra were calculated using spectra expressed as 

reflectance, R, as a function of wavelength, λ, using equations 2.2-2.4: 

Zero order, R=f(λ)        Equation 2.2  

First order, dR/dλ= f’(λ)       Equation 2.3 

Second order, d
2
R/dλ

2
=f’’(λ)        Equation 2.4 

The resulting 10-nm average reflectance, first-derivative, and second-derivative spectra were 

extracted and individually combined with the laboratory measured OM. These processed data 

were used to build partial least squares (PLS) regression and principal component regression 

(PCR) prediction models. Reflectance data was chosen over absorbance spectra due to the 

advantages of the former for analyzing dark samples, and avoiding the over-expression of weak 

features.  

2.2.5 Multivariate Modeling   

 Both PLS and PCR models were employed to help in predicting OM using the 10 nm 

average reflectance, first-derivative, and second-derivative spectra of the 36 samples. 

Quantitative PLS modeling is a powerful multivariate statistical tool that has been successfully 

applied to VisNIR data (Waiser et al. 2007; Morgan et al. 2009; Vasques et al. 2009; 

Chakraborty et al. 2010). The full spectrum multivariate tool PLS combines the signal averaging 

advantages of principal component analysis and classical least squares (Haaland and Thomas 
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1988). In the present study, to detect the effect of moisture on VisNIR DRS prediction of OM in 

compost, a total of 12 models (six models each for PLS and PCR) were made using Unscrambler 

9.0 (CAMO Software, Woodbridge, NJ). The whole dataset (36 samples) was used for training 

with leave-one-out-cross-validation and in selecting PLS latent factors. Models with as many as 

nine factors were considered, and the optimal model was determined by selecting the number of 

latent factors with the first local minimum in root mean squared error of cross-validation 

(RMSEcv). The coefficient of determination (r2), and ratio of standard deviation to root mean 

square error (RMSE) were used as measures in evaluating the quality of models in real-world 

situations. The significant wavelengths in the first-derivative PLS model for both moist and 

oven-dry pretreatments were plotted to identify what portions of the spectra were important for 

organic matter predictions. The significant wavelengths (p<0.05) were selected by ‘R’ based on 

Tukey’s jackknife variance estimate. 

Principal component regression provides a means of addressing ill-conditioned matrices. 

Instead of regressing with the reflectance, first-derivatives, and second-derivative on the 

response variable (OM) directly, the principal components (PCs) for each spectra of the whole 

dataset (36 samples) were used. Choosing the optimum number of PCs was based on leave-one-

out-cross-validation. Since the principal scores for each spectra are orthogonal; the PCR is just a 

sum of univariate regressions and is used to address the problem of multicollinearity. 

2.3. Results and Discussion  

 Thirty six compost samples were first analyzed and subsequently PLS and PCR 

prediction models were created. The OM contents were widely and normally (Shapiro-Wilk test 

statistic: 0.93 at p=0.05) distributed from 22.3 to 96.6% which reflect different feedstocks, 

composting methods, and origins. Among other measured properties, compost pH varied from 

4.8 to 12.3 (Table 2.1). The highest salinity (21.9 dS m
-1

) (sample 4) was identified in a sample 
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where poultry litter was the main feedstock. Considerable variability was also observed for 

moisture content (8.7 to 75.7 %). Particle sizes also demonstrated considerable variability with 

percent of a sample that passed a 5mm sieve ranging from 45.3 to 100.0 (Table 2.1). While OM 

was better correlated to pH (correlation coefficient, ρ=0.48) than moisture % (ρ=0.21), no 

correlation was found between OM and EC (ρ=0.06). No correlation between particle size and 

scanning results was investigated as the study was focused on general applicability of the 

technology to a wide range of samples and not on a comparison of milled versus un-milled 

samples.  

An average of the reflectance spectra, first-derivative, and second-derivative with respect 

to the reflectance for all pre-treatments is shown in Figure 2.1. Though fundamental vibration of 

organic molecules can be found in the mid-infrared region, their overtones and combination 

bands due to the stretching and bending of N-H, C-H, and C-O groups mostly occurred in the 

VisNIR region. In the reflectance, first-derivative, and second derivative plots the specific 

spectral signals for water (1400 and 1900 nm) were quite apparent. Any significant difference in 

overall reflectance (except 550-1050 nm and 1350-1550 nm) and first-derivative reflectance 

between moist and oven-dried compost could not be recognized. Perhaps the oven drying of 

compost samples was responsible for increasing the averaged reflectance at ~1400 nm which 

corresponds to water absorption. 

Accuracy and stability of both PLS and PCR models were evaluated according to the 

RPD-based guidelines by Chang et al. (2001). For spectroscopic modeling, a satisfactory 

prediction model is characterized by a RPD of >2.0 with r
2
 of ~0.80-1.00, fair models with 

potential for prediction improvement consist of RPD values from 1.4-2.0, while erratic models 

have RPD values of <1.40. It must be noted that for ideal application of these RPD values an 

independent validation is recommended. However, with leave-one-out cross validation these 
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values are still suitable indicators for describing the potential of the technology, especially when 

considered with r
2
 and additional error statistics like RMSEcv and bias (Table 2.2). For moist 

sample scans, the first-derivative PLS model performed slightly better (r
2
=0.82) than reflectance 

(r
2
=0.75) and second derivative (r

2
=0.77) models (Table 2.2) (Figure 2.2). Despite continuous 

reduction of PLS latent factors (rotation of principal components for a different optimization 

criterion) between the reflectance, first-derivative and second-derivative based models (Table 

2.2), RPD values were less than 1.40 for all three cases. Oven-dried model results were 

promising as the use of first-derivative reflectance spectra outperformed reflectance and the 

second-derivative based model in terms of r
2 

(0.82), RMSE (10.1%), and RPD (1.72). 

Figure 2.1 Averages of a) reflectance, b) first-derivative, and c) second-derivative with respect 

to reflectance for moist and oven-dried compost samples analyzed with VisNIR spectroscopy. 
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The trend of improvement of first-derivative models is consistent with other works using 

VisNIR, which also reported similar improvements (Reeves et al. 1999; Reeves and McCarty 

2001; Brown et al. 2006; Chakraborty et al. 2010). Notably, in moist models a reduction of PLS 

latent factors was observed with increasing degree of higher derivative spectra as was apparent in 

oven-dried models. It is possible that the use of a higher degree of spectrally processed data 

helped to reduce the latent factors by removing viewing-geometry effects as reported by 

Demetriades-Shah et al. (1990). According to the law of parsimony, in chemometric analysis, it 

is logical to choose a simpler model (smaller latent factors) assuming no substantial decrease in 

predictive performance. Plots of actual versus PLS predicted OM and fitted regression 

coefficient curves on the spectrum are presented in Figure 2.2.
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Table 2.2 Partial least squares and principal component regression results of 36 compost samples from across the USA evaluated for 

organic matter using visible near-infrared diffuse reflectance spectroscopy. 

 

Partial Least Squares Regression      Principal Component Regression  

 Latent 

factors 

r
2
 

RMSEcv † 

(%) 

RPD  ‡ 

Bias  

(10
-15

% ) 

Principal 

components 

r
2
 

RMSEcv† 

(%) 

RPD ‡ 

Bias 

(10
-16

% ) 

 Moist  Moist   Moist 

Reflectance 7 0.75 14.1 1.29 1.9 8 0.74 25.5 0.71 2.2 

1
st
-derivative 6 0.82 14.4 1.26 1.0 8 0.74 25.7 0.71 2.86 

2
nd

-derivative 4 0.77 13.7 1.33 1.7 6 0.58 18.7 0.98 2.93 

 Oven-dried  Oven-dried   Oven-dried 

Reflectance 5 0.71 12.3 1.48 8.0 7 0.66 14.3 1.27 3.4 

1
st
-derivative 4 0.82 10.1 1.72 -2.2 4 0.69 11.2 1.62 6.8 

2
nd

-derivative 2 0.74 12.0 1.49 3.7 1 0.42 22.5 0.81 4.5 

                            †RMSEcv: root mean square error of cross-validation 

                            ‡RPD: residual prediction deviation 
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In the oven-dried first-derivative model, predictions of OM more closely approximated the 1:1 

line and had negligible bias (-2.2× 10
-15

%) (Table 2.2). The fair RPD (1.72) indicated that there 

is sufficient possibility for model enhancement. We believe that although the RPD was not as 

high as obtained for other constituents of soils (Malley 1998), the results are encouraging 

considering the complex and variable composition of compost. 

For PCR, plots of actual versus predicted OM in compost samples and fitted regression 

coefficient curve on the spectrum are presented in Figure 2.3. Model statistics for the PCR 

models, summarized in Table 2.2, showed higher RMSEcv compared to PLS models. Moreover, 

in most cases PCR exhibited lower factors than PLS which were also reported by Yeniay and 

Goktas (2002). Ignoring the variability of OM content while calculating the PCs may have some 

effects on decreasing predictability of PCR as compared to PLS (Martens and Naes 1989). 

However, in terms of r
2 

(0.69), RMSEcv (11.2%), and RPD (1.62) the first-derivative of the 

oven-dried model somewhat confirmed the PLS trend. Hence considering both PLS and PCR 

model statistics, the first-derivative oven-dried model seemed to perform most satisfactorily. 

To investigate the rationale of the oven-dried first-derivative model’s better performance 

over the moist first-derivative model, the significant regression coefficients (based on Tukey’s 

jackknife variance estimate, p < 0.05) of the first derivative PLS model from each pretreatment 

were plotted in Figure 2.4. Markedly, both the number and intensity of significant wavelengths 

changed from moist to oven-dried models. We found more significant wavelengths for dried 

samples, which is the opposite of findings by Sakirkin et al. (2010, 2011) for manure. The 

change in numbers and intensities were apparent, specifically in the ~300-700, 1700, 1930, 

2000-2100, 2200, and 2400 nm regions which could contain the spectral signatures of minerals 

(electronic transitions), alkyl asymmetric-symmetric doublets, carboxylic acids, amides, 

aliphatics, and carbohydrates; respectively as previously defined by Viscarra Rossel and Behrens 
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(2010). This masking effect from water was somewhat expected, and indeed has been well 

documented in soils. Stevens et al. (2006) noted an increase of 0.93 g organic C kg
-1

 of soil in 

the standard error of prediction between field moist and dry sample states when analyzing 

organic soil C. Van der Meer and De Jong (2000) recognized the problem of quantifying organic 

soil carbon with VisNIR due to the difficulty of isolating the reflectance of organic carbon from 

reflectance from water in a sample, as they share some significant wavelengths and due to their 

effect on reflectance. 

Additionally, it has been observed that energy absorption by the water present in the 

sample can decrease the reflectance across the NIR range, and that at high moisture levels the 

position of maximum reflectance may shift to shorter wavelengths (Bishop et al. 1994). Harris 

(1996) noted that the polarity of the water molecule can affect the re-distribution of electrons 

during excitations, due to alterations in energy differences between the ground and excited states 

of the molecules which affects the wavelength of the sample’s absorbance or fluorescence. While 

a decrease in predictability in terms of RPD
 
and RMSEcv was noted for the moist-first-derivative 

PLS model as compared to the oven-dried first-derivative PLS model, in terms of r
2 

they did not 

perform significantly differently. Thus, while dry samples do permit a higher degree of accuracy, 

the convenience of using as received (moist) samples may, depending on the application, 

outweigh the slight loss in accuracy. Considering the heterogeneous nature and volatility of OM 

in composts combined with the difficulty of replicating a given calculation, most especially for 

OM, our results show promise for the use of VisNIR DRS for the quantification of OM in 

composts. While our results indicate drying of samples may still be required, the method of 

VisNIR DRS would still require less sample handling, and thus less chance of sample distortion 

than current standard methods like loss on ignition.   
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 Fig 2.2 Predicted vs. measured organic matter (%). For a) moist reflectance, b) moist  first-

derivative, c) moist second-derivative, d) oven-dried reflectance, e) oven-dried first-derivative, 

and f) oven-dried second-derivative partial least squares regression models for 36 compost 

samples. The solid line is the regression line, and the dashed line is a 1:1 line. 
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Fig 2.3 Predicted vs. measured organic matter (%) for a) moist reflectance, b) moist first-

derivative, c) moist second-derivative, d) oven-dried reflectance, e) oven-dried first-derivative, 

and f) oven-dried second-derivative principal component regression models for 36 compost 

samples. The solid line is the regression line, and the dashed line is a 1:1 line. 
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Figure 2.4 Regression coefficients (black) of the first-derivative partial least squares model of a) 

moist first-derivative and b) oven-dried first-derivative model of compost samples. The 

magnitude of the regression coefficient at each wavelength is proportional to the height of the 

bar. Significant wavebands (p < 0.05) as indicated by Tukey’s jackknife variance estimate 

procedure are shown as thick, red bars. All plots are on the same x axis. 

 

It has been noted that drying or other pre-treatments to samples to ready them for carbon 

analyses can result in “loss of volatile organic compounds or the decomposition and loss of other 

organic compounds present in the sample,” (Schumacher 2002). Indeed, LOI while the least 

caustic method for organic carbon analysis, is also often considered the least accurate method of 

total organic carbon determination. In soils, studies done by the US Environmental Protection 

Agency (EPA) indicate the percent coefficient of variation for LOI among replicate samples 

ranged from 2.7% to 5.6% (Schumacher 2002). The borrowing of analytical methods from soils 

for analysis of compost and manures is common, and the same principles apply to either material 

(Karam 1993; Matthiessen 2005; Schumacher  2002). In our experiment, OM results from LOI 

fluctuated on average 8.1% among replicated samples. Thus, the advantages of VisNIR DRS for 

OM analysis are threefold; 1) speed of analysis and instantaneous obtainment of results, 2) less 

sample handling required as samples need not be weighed or further subjected to heat after initial 

drying, and 3) most importantly, the ability to take replicate scans and obtain an average for the 
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sample. Thus VisNIR DRS shows promise as an addition to the TMECC certified methods for 

compost analysis. 

The authors acknowledge that the limited number of samples (36) somewhat constrain 

the global applicability of the dataset. However, this pilot research was intended to investigate 

the viability of VisNIR DRS spectroscopy to quantify compost OM content under varying 

sample moisture states and to further ascertain which spectral processing and moisture contents 

show the most promise for future investigations. Testing the chemical heterogeneity of the 

compost was beyond the scope of this project and requires intensive studies before drawing 

stronger conclusions. More improvement could be achieved by increasing sample number and 

building a spectral library targeting an even wider range of compost samples.  That 

notwithstanding, these results are especially encouraging given the wide and dynamic range of 

organic matter levels and other variables in the samples tested.  

2.4 Conclusions 

VisNIR DRS has shown the capacity to rapidly, reasonably and non-destructively 

quantify the OM of composted materials. Given the field portability of the VisNIR 

spectroradiometer, and our findings concerning the technology’s accuracy with moist samples, 

further testing is warranted concerning the possibilities of its use in situ. When comparing PLS 

and PCR model statistics, first-derivative oven-dried models performed most satisfactorily for 

both model types, with PLS performing the best. Our results show promise for improving the 

speed of performing laboratory analysis and obtaining results almost instantly. We thus 

recommend the VisNIR DRS method, using dried samples, for further investigation concerning 

its possible inclusion among TMECC official testing methods and as a supplement to current 

time consuming laboratory methods. The goal for future research should be to develop a general 
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model which can lead to reliable OM predictions under even more divergent compost matrix 

conditions. 
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CHAPTER 3: RAPID ANALYSIS OF ELEMENTAL CONCENTRATIONS IN 

COMPOST VIA PORTABLE X-RAY FLUORESCENCE SPECTROMETRY 

3.1 Introduction 

Compost is a variable group of organic soil amendments used to enhance soil fertility. 

Effective sale and marketing of the material is dependent upon accurate characterization of the 

material’s physicochemical properties (Weindorf et al.  2011a). To ensure that compost is safe 

for use, it must be tested for biological pathogens, heavy metals, salts, and other deleterious 

properties in order to certify the material for sale. One of the most time consuming analyses 

concerns elemental and heavy metal characterization via inductively coupled plasma atomic 

emission spectroscopy (ICP-AES). The analysis requires caustic acid digestion, expensive 

instrumentation, and an experienced technician. Even under optimal lab conditions, the acid 

digest procedure is dangerous and requires the use of hydrofluoric and perchloric (HF + HClO4) 

or aqua-regia (HNO3 + HCl) acids (USDA-USCC 2002). A method for rapid elemental analysis 

of composted products would speed laboratory analysis, remove the need for toxic and 

dangerous digests, and offer opportunities for in situ analysis.   

Portable X-ray fluorescence spectrometry (PXRF) has a long history of use in 

characterizing the elemental composition of many types of materials (Stallard et al. 1995; 

Lawryk et al. 2009; Palmer et al. 2009; Radu and Diamond 2009). Current applications of the 

technique include environmental assessment and identification of heavy metal concentrations for 

pollution monitoring and characterization of soils or solid wastes (Weindorf et al. 2011b; Zhu et 

al. 2011; Weindorf et al. 2012). The US Environmental Protection Agency (EPA) has outlined 

the use of PXRF for soil characterization in Method 6200: “Determination of Elemental 

Concentrations in Soil and Sediment” (USEPA 1998a).   

However, little research has been done using the technology to characterize compost. 

Weindorf et al. (2008) is the only investigation of note and focused on using PXRF for elemental 
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identification of a single compost feedstock of composted dairy manure. The study compared 

elemental determination of compost via ICP-AES with that of PXRF. The correlation of 

elemental concentrations via the two methods produced noteworthy r
2
 values for Cu (0.95), As 

(0.84), and Zn (0.81), and less substantial values for Mn (0.67), Fe (0.67), Ca (0.51) and poor 

values for K (0.14) using an Alpha Series (Innov-X, Woburn, Massachusetts) handheld XRF. 

Scanning took 5 minutes, and the study concluded that PXRF technology showed promise as an 

evaluation tool for Ni, Cu, Zn, Se, Mo, and Pb. However, the instrument used was not sensitive 

enough for evaluation of As and Cd due to inadequate limits of detection (LOD)(Weindorf et al. 

2008). While this study is significant, recent advances in PXRF technology and further study 

with samples from a wide range of feedstocks warrant additional investigation.  

The potential of PXRF to replace traditional laboratory analysis shows great promise 

given its speed, portability, cost, and requirements for little or no sample preparation. Recent 

technological advances have made PXRF less expensive, applicable for use in situ, and have 

greatly improved LOD (Hettipathirana 2004; Potts and West 2008). In situ analysis would 

benefit compost producers who import raw compost feedstock from municipal, industrial, or 

sludge materials where close monitoring is required to ensure compost is devoid of heavy metals 

in the finished product. In fact, the only obvious limitation of the technology is its uneven 

detection limits for certain elements (Kalnicky and Singhvi 2001; Migliori et al. 2011). 

Traditionally, PXRF has been shown to best identify elements of atomic weight greater than 19 

(K), with lighter elements below atomic weight 14 (Si) being nearly non-detectable (Innov-X 

Systems 2010c; Miglirori et al. 2011). LODs also vary along similar trends; P, S, and Cl, have 

LODs in the 100’s of mg km
-1

, while K and Ca have LODs of ~20-40 mg km
-1

, and heavier 

elements like Fe, Cu, and Zn have LODs as low as 3 mg km
-1

 (Innov-X Systems 2010b). 

Potential sources of error in using PXRF include heterogeneity in the sample matrix (influenced 
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by particle size), moisture, inconsistent positioning of samples, instrument resolution, and 

chemical matrix effects (Potts and West 2008). However, many of these can be accounted for 

and controlled by the operator. Sample moisture has been shown to create a dilution effect on 

PXRF scans, yet this can often be offset with moisture correction coefficients, or has been 

described as a non-significant effect (Innov-X Systems 2010a; Weindorf et al. 2011b). Further 

investigation into the influence of moisture and particle size are warranted as they are physical 

properties that can be manipulated by the operator, and organic matter deserves further review as 

to its possible influence on PXRF analysis of compost (Argyraki et al. 1997).  

 With regard to compost, there are 14 elements commonly of interest that are quantified 

by both ICP-AES and PXRF. The elements As, Cd, Cu, Ni, Pb and Zn are of interest because of 

limits set for their concentrations by the EPA for sewage sludge (USEPA 2012). Information for 

Cr was also reported though it is no longer regulated by the EPA for sewage sludge (USEPA 

2012).The remaining elements of interest in this study were P, Mn, K, Fe, and Ca; all of which 

are essential plant nutrients and influence crop production when compost is applied as a soil 

amendment. Additionally, Mo, Se, and Hg are of interest as they are regulated by the EPA 

however values were not determinable by ICP-AES in this study due to the reference solution 

used for ICP-AES standardization and potential interferences their inclusion in the standard may 

have caused. 

Recent advances in PXRF technology include multiple beam devices which offer 

improvements over single beam machines, and Si drift detectors that provide increased 

sensitivity, speed and much improved LODs (Innov-X Systems. 2010a). As a result the objective 

of this study is to build upon previous research concerning PXRF and compost analysis as a 

potential alternative method of compost elemental analysis. Specifically the objectives of this 

study were to: 1) investigate the advancements in PXRF technology on elemental quantification 
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sensitivity utilizing a wide range of compost types and feedstocks; 2) relate our findings to EPA 

mandated limits for regulated metals and quantify plant essential elements; and 3) investigate the 

influence of moisture, particle size and organic matter on relationships between PXRF and ICP-

AES reported elemental concentrations. If PXRF proves a reliable method for the quantification 

of important elemental species in composted products, it could replace more time consuming and 

caustic laboratory analyses, thereby aiding producers by facilitating in situ compost 

characterization.  

3.2 Materials and Methods 

3.2.1 Sample Collection and Preparation 

Thirty six compost samples were collected from various sources in order to represent a 

wide range of feedstocks, origins, and composting methods and thereby assess the applicability 

of PXRF under a range of circumstances.  Feedstocks included manure, food and yard wastes, 

bio-solids, woodchips, industrial sludge, and spent mushroom compost, among others. Samples 

originated from 8 states across the United States of America and one source in Canada. Samples 

were left un-ground and were refrigerated upon receipt. A sub-sample from every sample was 

dried at 70° C for 24 hours to determine moisture percentage (Method 03.09-A)(USDA-USCC 

2002). A replicate from each of the original 36 samples was made and moist and dried sub-units 

were separately analyzed for both the original and replicate. 

3.2.2 PXRF Scanning 

A Delta Premium DP-4000 (Olympus Innov-X, Woburn, MA, USA) PXRF was used for 

scanning. The instrument was operated in a proprietary three beam configuration known as ‘soil 

mode’. The battery operated device is comprised of a Ta/Au X-ray tube, operated at ~15-40 

KeV, and a silicon drift detector (<165 eV) for fluorescence quantification. Compton 

normalization was used to correct for surface irregularities and matrix effects (Innov-X Systems 

2010a). Calibration checks were conducted by scanning a stainless steel ‘316’ alloy clip after 
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every 20 scans. A silica standard was also run, and corrections to the results were made 

accordingly. Dried and “as received” moist aliquots from each sample were scanned through a 

plastic bag containing each sample per Innov-X Systems (2010a). Samples were scanned three 

times for 90 seconds each and an average was determined. The instrument was repositioned 

between each consecutive scan in order to account for the material’s intrinsic heterogeneity as 

well as to replicate taking multiple scans from one compost pile in situ. Care was taken to insure 

that ≥2 cm of sample thickness was placed beneath the instrument aperture, as scanning rays may 

penetrate to a depth of 1−2 cm in a sample (Palmer et al. 2009). When calculating averages for 

PXRF data, any reported negative values were changed to 0, and then the average was obtained 

for use in regression. 

3.2.3 ICP Digestion 

Digestions were done in duplicate for each sample to obtain an average and were 

facilitated via nitric acid (Method 04.12-B) prior to quantification with ICP-AES (USDA-USCC 

2002). A Ciros model ICP-AES (Spectro Analytical Instruments, Marlboro, MA, USA) was used 

to quantify elemental concentrations of the compost samples. To ensure data quality, 15% of 

samples were digested a second time to test replicability. 

3.2.4 Statistical Analysis 

For statistical analysis, SAS software (SAS Version 9.3) was used with PROC REG to 

run linear regression of PXRF results to predict ICP-AES lab determined results in order to 

obtain predictor models for both moist and dry sample sets (SAS Institute Inc. 2011). In addition 

to the formation of predictor models for the elements of interest, PROC REG and PROC 

UNIVARIATE were used to obtain model performance statistics. To further investigate the 

influence of moisture, particle size, and organic matter on PXRF analysis, samples were 

designated into distinct moisture, particle size, and organic matter classes for each property. The 
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individual classes were regressed with ICP-AES results and class results were compared. 

Moisture classes consisted of 0-29.9%, 30-49.9% and 50-100% moisture. The lowest division 

was established based on previous recommendations that samples with >20% moisture should be 

dried prior to analysis (Kalnicky and Singhvi 2001; Potts and West 2008).  However, samples 

with up to 29% were included in the “low moisture group” in order to enhance the size of the 

sample set.  Two particle size classes were established as medium (50-89% of sample passes a 

5mm sieve) and fine (90-100% of sample passes a 5mm sieve). These classes were established 

based on clear differences in our sample set that distinguished sample texture into these two 

categories.  Two organic matter (OM) classes were established as low (0-49.9% OM), and high 

(50-100% OM).   

3.3 Results and Discussion 

3.3.1 Regression Models 

Regression results between ICP-AES and PXRF for the 36 compost samples revealed 

dissimilar relationships for all elements. Model parameters (intercept and slope), coefficients of 

determination (r
2
) and root mean square errors (RMSE) are presented in Table 3.1. Per EPA 

standards that provide criteria for characterizing data quality for PXRF, elements with an r
2
 of 

0.85 to1.00 and relative standard deviation (RSD) of ≤0.10 are definitive; r
2
 of 0.70 to 0.84 and 

RSD <0.2 are qualitative; while r
2
 <0.70 and RSD >0.2 are suitable for qualitative evaluation 

(USEPAa 1998). In terms of r
2
 Zn, Cu, K, Ca, Mn, Fe, P, and Cr for dry sample scans were 

definitive according to these standards, Pb and Ni were qualitative, and As and Cd performed 

poorly for dry samples and could only be used for field evaluation (Table 3.1, Table 3.2). None 

of the samples met standards for RSD, and thus our model cannot fully explain the variation 

observed. For moist sample scans, Zn, Cu, Ca and K performed the best in terms of r
2
 and fell in 

the definitive class for r
2
. There were noticeable drops in r

2
 for Cr, Fe, Mn, and Ni. The moist 

regression model for Cd was not significant, and results were not presented. 
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Table 3.1 Coefficients of determination (r
2
), root mean square error (RMSE), intercept, and 

slope for dry and moist sample regressions of inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) and portable X-ray fluorescence spectrometry (PXRF) determined 

elemental concentrations. 

Moisture State Element r
2 RMSE Intercept Slope

Dry Samples As 0.38 14.20 15.32 2.55

Ca 0.88 16,178.00 8,864.77 0.74

Cd   0.17 3.49 -0.79 0.28

Cr 0.78 41.23 -6.73 1.62

Cu 0.91 31.02 12.42 0.79

Fe  0.81 4,900.28 1,894.44 1.14

K 0.89 3,445.08 -1,372.30 0.78

Mn 0.84 273.89 -195.28 1.54

Ni  0.70 23.23 27.32 2.34

P 0.78 3,181.61 4,008.18 4.13

Pb 0.64 20.92 23.08 1.14

Zn 0.92 58.26 6.49 0.88

Moist Samples As 0.19 16.31 20.67 2.84

Ca 0.71 25,388.00 5,828.31 1.61

Cd   § § § §

Cr 0.56 57.81 -22.94 3.74

Cu 0.86 39.11 41.76 1.21

Fe  0.61 6,938.49 3,345.71 1.72

K 0.71 5,530.17 2,441.14 1.01

Mn 0.65 410.02 -165.69 2.47

Ni  0.47 30.87 32.64 7.63

P 0.61 4,172.90 4,687.75 8.98

Pb 0.63 21.36 16.38 1.98

Zn 0.89 70.93 49.04 1.23

§ Model not significant (<0.05), data not reported
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Table 3.2 Comparison of ranges and distribution statistics of elemental concentrations (mg kg
-1

) determined via inductively coupled 

plasma atomic emission spectroscopy (ICP-AES) and portable X-ray fluorescence spectrometry (PXRF) dry and moist scans for 36 

compost samples from the USA and Canada.  Means, minimums, maximums, standard deviations, and relative standard deviations 

(RSD) of the 36 sample populations were compared. 

 

Method Statistic As Ca Cd Cr Cu Fe K Mn Ni P Pb Zn

ICP-AES Mean 25.19 44,070.00 1.08 51.05 105.22 14,765.00 12,131.00 583.05 42.43 5,928.00 50.75 227.36

Minimum 0.00 668.27 0.00 0.00 7.15 18.45 115.41 70.59 0.11 31.65 0.00 15.20

Maximum 74.39 183,536.00 17.94 359.91 542.36 48,261.00 39,420.00 3,713.00 217.94 29,967.00 152.45 1,116.00

Standard Deviation 17.83 46,129.00 3.78 86.36 102.08 11,006.00 10,055.00 682.77 41.74 6,620.00 34.38 206.89

RSD 0.70 1.03 3.46 1.56 1.67 0.74 0.82 1.15 0.97 1.10 0.67 0.90

PXRF (Dry) Mean 3.86 47,516.00 6.60 35.56 117.81 11,259.00 17,319.00 506.61 6.45 465.20 24.38 250.63

Minimum 0.00 456.00 0.00 2.05 17.67 34.83 293.33 86.17 0.00 0.00 3.77 17.32

Maximum 17.12 290,340.00 22.83 269.30 580.17 42,913.00 45,934.00 2,111.00 72.83 6,634.00 120.03 1,160.00

Standard Deviation 4.33 58,422.00 5.57 46.90 123.62 8,652.00 12,139.00 408.19 14.91 1,413.00 24.24 225.54

RSD 1.10 1.21 0.83 0.75 1.30 0.76 0.69 0.79 2.28 2.99 0.98 0.89

PXRF (Moist) Mean 1.59 23,690.00 3.03 19.78 52.60 6,626.00 9,619.00 303.63 1.28 138.15 17.39 145.50

Minimum 0.00 408.50 0.00 0.00 0.00 0.00 271.50 40.07 0.00 0.00 4.43 5.47

Maximum 10.58 106,386.00 10.33 94.90 377.83 23,385.00 32,792.00 921.17 17.50 2,544.00 78.65 807.57

Standard Deviation 2.72 24,007.00 3.54 17.35 78.33 5,005.00 8,388.00 223.17 3.74 577.86 13.75 158.88

RSD 1.68 1.00 1.15 0.79 0.86 0.74 0.86 0.72 2.88 4.12 0.78 1.08
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Overall when comparing means, minimums, maximums, and standard deviations, PXRF 

moist scans produced overall lower means, except in the case of Cd, than both ICP-AES and 

PXRF dry data (Table 3.2). PXRF dry scans did not consistently predict lower or higher 

concentrations than ICP-AES, and instead varied between elements. Moist scan PXRF scans 

produced the lowest standard deviations of all three. For all three methods, Ca, Fe, and K, 

produced very large ranges and therefore larger standard deviations, while As, Cd, Ni, and Pb 

demonstrated relatively small ranges and standard deviations (Table 3.2). The wide range 

between minimums and maximums for all elements was a good representation of our diverse 

sample set, and certainly contributed to variation observed in the models and their respective 

RSDs. 

3.3.2 Moisture Influence 

To investigate the influence of sample moisture on PXRF, dry and moist scan results 

were regressed with ICP-AES determined elemental concentrations and then compared.  Slight 

(<5%) to pronounced (>20%) decreases in r
2
 were observed for all moist models when compared 

with the corresponding dry dataset (Table 3.1). Copper, Pb, and Zn showed slight to no change 

between moist and dry scans, while As, Ca, Fe, K, and P showed a moderate decrease in 

predictive ability between dry and moist scans, whereas Cr and Ni showed pronounced decreases 

in predictability. Cadmium’s moist scans showed no significant relationship to ICP-AES data. A 

comparison of the coefficients of determination illustrates the superiority of dry PXRF scans 

overall (Figure 3.1, Table 3.1).   

The influence of moisture was further investigated by separating the sample set into 

moisture classes based on moisture percentages of low (0-29%), medium (30-49%) and high (50-

100%). Regressions of ICP-AES and PXRF moist scans when partitioned into separate moisture 

classes showed differences in r
2 

between the groups. However, the same trends were found when  
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Figure 3.1 Regression plots of elemental concentration (mg kg

-1
) via inductively coupled plasma 

atomic emission spectroscopy (ICP-AES) and portable X-ray fluorescence spectrometry (PXRF) 

for 36 dry and moist compost samples from the USA and Canada. The model, coefficients of 

determination (r
2
),

 
and

 
coefficients of variation (CV) are reported. 



 
 

the procedure was replicated using the same sample groups but for the PXRF dry data. Thus, 

there was an underlying difference among the groups that resulted in an improved r
2
 that was not 

related to their moisture status. Increases in PXRF precision cannot be linearly correlated to 

decreases in sample moisture, and were thus not presented here.  

Overall, PXRF would be most suitable for analyzing Cu, Pb, and Zn concentrations of 

compost samples in situ as sample moisture showed little influence on predictability. The need 

for more precise quantification of other elements may require drying of the sample prior to 

scanning or application of a correction factor to account for moisture’s effect and the fact that 

elemental concentrations are reported on a dry weight basis (Innov-X Systems 2010a). While this 

would forego in situ application, it still offers considerable speed and sample preparation 

advantages over traditional ICP-AES digestion and quantification 

3.3.3 Limits of Detection 

When comparing the study done by Weindorf et al. (2008) and with our investigation, 

vast improvements in technology were clearly seen as demonstrated in Table 3.3. In our study, 

LOD improved for all elements concerned, most notably for Cd where the lowest limit of the 

LOD range dropped by a factor of 10 and now falls well below the EPA mandated limit.  

Improvements in predictability were also observed for nearly all elements. Notably for As we 

saw a decrease in predictability in comparison to the previous study. Possible factors will be 

discussed in the following section. The most notable improvements, increase in r
2
 >0.20, were 

observed for Ca and K.  The elements Cd, Cr, Ni, P and Pb cannot be compared to the previous 

study as no r
2
 was reported by Weindorf et al. (2008). The previous study reported LOD’s for Ni 

and Pb were sufficiently low in order to recommend the technology as a field evaluation tool for 

these elements.  However, the LOD for Cd was not low enough to recommend the technology for 

use as an evaluation tool in Weindorf et al. (2008). Chromium and P were not considered in the 
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previous study. In terms of percent recovery of determined concentrations of PXRF for ICP-

AES, recovery rates varied widely across all elements. For dry scans, only 11% of As determined 

by ICP-AES was recovered by PXRF. More reasonable values were found for Cu, Fe, and Zn 

which had recoveries of 116, 88, and 112%, respectively.   

 

Table 3.3 Comparison of coefficients of determination (r
2
) for regressions of inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) and portable X-ray fluorescence 

spectrometry (PXRF) and  limits of detection (LOD) for the 36 compost samples from the 

present study and the 70 dried samples of Weindorf et al. (2008) utilizing PXRF for compost 

analysis.  Environmental Protection Agency (EPA) mandated elemental limits are reported. 

Values for r
2 

were not reported for several elements by Weindorf et al. (2008). 

 

 

3.3.4 Inter-elemental Interactions 

Elemental quantification via PXRF is known to be influenced by certain inter-elemental 

interactions. For example, high concentrations of Pb can influence the detection of low levels of 

As, and high Fe may inhibit detection of low levels of Cr (Hettipathirana 2004; Innov-X Systems 

2003). The reason for the interference between As and Pb is their shared spectral peak, both at 

Element  r
2 
Weindorf † EPA Limit‡

Dry Moist Weindorf † PXRF

mg kg 
-1

mg kg 
-1

mg kg 
-1

As 0.84 0.38 0.19   < 41 4-19 1-3

Ca 0.51 0.88 0.71 ─ ─ 20-30

Cd ─ 0.17 §  < 39 64-95 6-8

Cr ─ 0.78 0.56 ─ ─ 5-10

Cu 0.95 0.91 0.86  < 1,500 13-52 5-7

Fe 0.67 0.81 0.61 ─ ─ 5

K 0.14 0.89 0.71 ─ ─ 30-50

Mn 0.67 0.84 0.65 ─ ─ 3-5

Ni ─ 0.70 0.47 < 420 29-96 10-20

P ─ 0.78 0.61 ─ ─ 500-700

Pb ─ 0.64 0.63  < 300 5-18 2-4

Zn 0.81 0.92 0.89  < 2,800 6-30 3-5

† Weindorf et al. 2008

‡ USEPA. 2012

§ Not Significant

 r
2  

PXRF LOD
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10.5 keV (Innov-X Systems 2003). Such overlaps cannot be resolved, even by the best detector 

as they are inherent elemental properties associated with secondary fluorescent radiation. The 

Innov-X Delta PXRF automatically corrects the As data for the Pb interference and displays 

corrected results. However the interference is still present and detection levels and precisions are 

affected when Pb is present. The presence of Pb in a sample can produce elevated As detection 

levels, and decrease precision during the same testing time for a sample that contains no Pb 

(Innov-X Systems 2003). For example, in samples with <15 mg km
-1

  Pb the LOD for As is 7 mg 

km
-1

, while for a sample of 100 mg km
-1

 Pb the LOD for As increases to 15mg km
-1

 and then 

further increases to a As LOD of 31 for a sample containing 1,000 mg km
-1

 Pb (Innov-X Systems 

2003).  In our sample set, there were several samples with concentrations >100 mg km
-1

 Pb and 

only three samples with concentrations of <15mg km
-1

 Pb (Figure 3.2).  Per Innov-X Systems 

(2003), Equation 3.1 can be applied to determine the detection limit of As based on the 

concentration of Pb:  

     As Pb = As No Pb + b √Pb    Equation 3.1 

Where; As Pb = Detection limit of As with Pb present in the sample, As No Pb = Detection limit of 

As without Pb present in the sample,  b = 0.76 (fitting coefficient), Pb=Pb concentration in 

sample (mg km
-1

). 

For our sample set using Equation 3.1 and assuming 3 mg km
-1

 as the LOD for a sample 

without Pb present, the calculated As LOD’s for our samples varied from 3 to 12.3 mg km
-1

 

(Innov-X Systems 2010a). By contrast, ICP-AES generally has high µg kg 
-1

 to low mg km
-1

 

LOD (Palmer et al. 2009). This may have contributed to the weak relationship we found between 

ICP-AES and PXRF. Other studies have found much more robust r
2
 values. For instance, 

Weindorf et al. (2008) obtained a value of 0.84 for As in regression of PXRF and ICP-AES. 

PXRF normally returns strong data (r
2
 >0.90) for As in soil sampling (Kilbride et al. 2006; 
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USEPAb 1998). A major contributing factor in our study was that any negative values returned 

by PXRF were changed to zero for modeling purposes. Therefore, if samples with ICP-AES 

determined Pb:As ratios of >10 (there were four samples) were removed from the regression, the 

PXRF to ICP-AES r
2
 improved to 0.48; a distinct improvement, yet still lower than previous 

studies. 

3.3.5 Particle size Analysis 

To study particle size’s influence on PXRF, samples of different particle size grades were 

separated into two classes and individually regressed with ICP-AES. The results of this 

investigation demonstrated that the influence of particle size on detectability is different for each 

element (Table 3.4). In terms of r
2
, Zn, K, Ca, and Cu showed little change between particle size 

classes.  

However, As detection was clearly influenced by particle size.  For As, the dry model 

was non-significant for the coarser particle size class but had an r
2
 of 0.68 for the finer particle 

size class. Most notably, Ni dropped from an r
2 

of 0.82 for the course textured samples to 0.31 

for the finer dry samples. Changes in standard deviations and RMSEs followed similar trends as 

coefficients of determination between coarser and finer textures. Previous studies found that 

particle size of soils had no significant effect for As, Cu, Pb and Zn and had insufficient data for 

other elements (Kilbride et al. 2006). However their sample set was air-dried and consisted of 

<2mm soil fractions. Our study indicates that there are significant influences of particle size on 

elemental determinations in compost using PXRF. These changes are likely dually related to the 

inherent elemental differences of different particle size fractions, as finer fractions have been  

shown to accumulate heavy metals and to an interaction of PXRF with the sample matrices 

affects, namely particle size (Lopez et al. 2002; Potts and West 2008).  



 
 

 

 

 

 
 

Figure 3.2 Arsenic and Pb concentrations of 36 compost samples from the USA and Canada as determined by inductively coupled 

plasma atomic emission spectroscopy (ICP-AES). 

 



 
 

Table 3.4 Comparison of  coefficients of determination (r
2
), root mean square errors (RMSE), 

model equations and standard deviations for regressions of inductively coupled plasma atomic 

emission spectroscopy (ICP-AES) and portable X-ray fluorescence spectrometry (PXRF) of 

different particle size classes based on the percent of the sample that passes a 5mm sieve. Moist 

and dry populations are compared.

 
 

3.3.6 Influence of Organic Matter  

In order to briefly investigate organic matter’s (OM) possible influence on PXRF, data 

from the dried samples was divided into two OM classes and regressed with ICP-AES. Overall 

there were differences in model predictability for dried samples between samples placed into low 

Sample (%) Passing 5mm Sieve

r
2 RMSE Intercept Slope Std deviation r

2 RMSE Intercept Slope Std deviation

As § §

Ca 0.90 18,067.00 14,497.00 0.68 17,493.12 0.75 27,980.00 11,569.00 1.82 27,091.46

Cd 0.26 4.73 -1.11 0.44 4.58 §

Cr 0.77 57.61 9.96 1.56 55.78 0.64 72.29 -2.21 3.96 69.99

Cu 0.93 34.41 10.84 0.84 33.32 0.90 43.16 52.07 1.36 41.79

Fe 0.79 6,301.71 3,030.65 1.09 6,101.60 0.61 8,557.13 4,708.19 1.90 8,285.41

K 0.90 3,867.83 -2,319.55 0.87 3,745.01 0.73 6,295.47 2,107.03 1.23 6,095.56

Mn 0.81 399.19 -232.27 1.59 386.52 0.63 560.12 -116.19 2.64 542.34

Ni 0.82 24.85 29.96 2.70 24.06 0.56 38.39 37.50 9.28 37.18

P 0.90 3,867.83 -2,319.55 0.87 3,745.01 0.55 5,528.01 5,710.50 9.54 5,352.48

Pb 0.58 18.58 16.90 1.53 17.99 0.53 19.56 8.12 2.60 18.94

Zn 0.92 75.63 8.39 0.90 73.23 0.91 81.04 65.30 1.29 78.46

r
2 RMSE Intercept Slope Std deviation r

2 RMSE Intercept Slope Std deviation

As 0.68 11.37 10.98 3.34 11.05 0.47 14.59 17.00 4.29 14.18

Ca 0.89 12,442.00 -185.98 0.93 12,091.33 0.77 18,448.00 1,398.05 1.41 17,928.41

Cd § §

Cr 0.81 8.11 -8.37 1.18 7.88 0.39 14.49 -1.30 1.20 14.08

Cu 0.89 24.59 20.57 0.67 23.90 0.92 20.46 37.73 1.00 19.89

Fe 0.85 3,435.94 456.73 1.24 3,339.13 0.76 4,367.66 2,070.84 1.59 4,244.60

K 0.90 2,696.54 -201.34 0.69 2,620.56 0.76 4,236.78 2,596.25 0.88 4,117.41

Mn 0.94 62.24 -82.36 1.20 60.49 0.89 84.10 -27.69 1.47 81.73

Ni 0.31 14.37 27.32 0.92 13.96 0.23 15.12 28.82 2.81 14.69

P 0.81 2,297.60 3,785.02 5.35 2,232.87 0.81 2,297.60 3,785.02 8.30 2,232.87

Pb 0.66 23.20 24.63 1.07 22.54 0.66 23.44 18.65 1.86 22.78

Zn 0.93 39.55 13.06 0.83 38.44 0.88 50.88 47.50 1.08 49.45

§ model not significant (p>0.05)

Dry

Dry

50-89%

90-100%

Moist

Moist
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and high OM classes, these differences were most noticeable for Ca, Cr, Cu, Ni, P, Pb, and Zn 

(Table 3.5).  Only Pb and Fe had better model results with samples in the high OM class, all 

other elements had improved r
2
 with samples of lower OM. Generally RMSEs were steady 

between OM class and improved RMSE values generally followed improvements in r
2
.  The 

improvements in model fit point to an influence by organic matter on PXRF’s predictability of 

certain elements.  However, due to the complexities of the OM fraction in compost, and it’s 

variability due to many other factors and properties, including particle size, a clear relationship 

between OM and PXRF determinations cannot be drawn (Lopez et al. 2002). However, 

considering the inherent high percentages of OM in compost, the influence and contributions in 

terms of bound metals and elements should be considered. Our observations of increased PXRF 

precision with samples of low OM may be related to increased OM mineralization (Lopez et al. 

2002). However, as this trend was not observed with Pb or Fe, the relationship cannot be clearly 

defined and is thus presented here in brief. 

3.3.7 Overall Comparison of PXRF and ICP-AES 

In comparing ICP-AES and PXRF, the amount of the overall sample matrix that is 

analyzed by each technology must be considered. Most especially when considering  that ICP-

AES is able to analyze only a relatively small aliquot (around 1-2 grams) of the total sample, 

while PXRF produces X-ray excitation over 3 cm
2
 and to a depth of 2.5 cm, which is equivalent 

to a sample volume of approximately 7.5 cm
3
 (Innov-X Systems 2010a). Depending on sample 

density, PXRF has the capacity to analyze a greater portion of the sample, especially when 

combined with replicate scans, than ICP-AES. This may contribute to differences observed 

between ICP-AES and PXRF considering the extremely heterogeneous nature of compost, and 

potential errors that may be associated with analysis of small sample size.  
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Table 3.5 Influence of sample’s organic matter content on regression of portable X-ray 

fluorescence spectrometry (PXRF) and inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) for prediction of elemental concentrations in dried compost samples. 

Coefficient of determinations (r
2
) and root mean square errors are compared (RMSE).  

 

 

The absolute accuracy of ICP-AES must also be considered as it and the digestions necessary for 

sample preparations also have certain limitations. Nitric acid digestion has been indicated to give 

lower values than other digestion methods, however it is often used as it is less caustic (Baize 

2000). However, the power of ICP-AES in terms of LOD, far out reaches PXRF, as the former is 

able to determine many elements to the µg kg
-1

 level (Palmer et al. 2009). In terms of 

applicability, such rigorous determinations are often un-necessary as the lowest limit for EPA 

mandated elemental concentration is 39 mg kg
-1

 for Cd. When considering the time consuming 

digestions, caustic chemicals, and expensive machinery required by ICP-AES, the portability, 

speed and lack of need for digestion are the obvious benefits of PXRF. Thus in scenarios where 

such precise determinations are un-warranted, PXRF may be able to replace ICP-AES for 

evaluation and monitoring of certain elements, especially for dried samples. 

r
2 RMSE r

2 RMSE

As 0.36 3.85 0.27 3.19

Ca 0.91 25,125.91 0.88 8,032.21

Cd 0.39 5.36 0.06 4.18

Cr 0.86 25.78 0.61 11.42

Cu 0.93 40.45 0.83 37.31

Fe 0.69 4,048.99 0.84 3,862.37

K 0.88 4,228.06 0.90 4,159.61

Mn 0.87 181.57 0.78 147.66

Ni 0.78 10.07 0.28 4.72

P 0.91 576.24 0.49 700.82

Pb 0.64 19.19 0.75 9.18

Zn 0.97 47.20 0.81 74.79

50-100% Organic Matter0-49% Organic Matter
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3.4 Conclusions 

Analyzing compost for nutrient and heavy metal content is vital not only to the product’s 

marketability, but also to its safe use by farmers, homeowners, and businesses. The limitations 

presented by current testing methods, namely lack of portability and slow processing times 

hinder producers and testing facilities abilities to monitor and quickly certify the material for 

sale. The dramatic improvements in PXRF’s LOD between an older, single beam PXRF utilized 

by Weindorf et al. (2008) versus the newer, three beam PXRF utilized in the present study and 

our ability to demonstrate its applicability to a diverse range of compost feedstocks using un-

ground samples displays the potential for its larger use for elemental determinations in compost.  

PXRF in this study was able to acceptably quantify the elements Ca, Cr, Cu, Fe, K, Mn, P, and 

Zn in dry samples and the elements Ca, Cu, K, and Zn in moist samples. The elements Ca, Cu, K 

and Zn showed widespread predictive stability across various tests of interference. However for 

other elements, most notably As, we were unable to clearly associate PXRF determinations to 

ICP-AES. Factors such a moisture, particle size, organic matter, and inter-elemental 

interferences were shown to influence the ability of PXRF to varying degrees. Moisture and 

particle size may be controlled by the operator, while the chemical matrix cannot. These 

limitations notwithstanding, this study has shown that PXRF can be useful for quantifying many 

elements, and its lower cost, speed, and portability may out-weigh slight losses in accuracy, 

especially where field evaluation of composted materials is a primary goal.  
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CHAPTER 4: CONCLUSIONS 

As a part of ongoing research and development, the TMECC has a goal of “removing 

antiquated methods,” and “soliciting for and adding missing test methods,” (USDA-USCC 

2002). This research was conducted with the intent of investigating new methods for possible 

inclusion in the TMECC, with a focus on portable spectroscopic methods that can be applied in 

situ. The advantages of spectroscopy are the sample is not destroyed, analysis requires little to no 

sample preparation, and results are nearly instantaneous (Innov-X Systems 2010). For this 

reason, investigations into VisNIR DRS for OM determinations and PXRF for elemental 

quantification were carried out with un-milled and moist samples to reflect in situ conditions and 

as alternatives to current methods. Current lab methods consume the sample during analysis, 

require considerable sample preparation which slows sample processing, and are restricted to a 

laboratory setting. The technologies used in this investigation are distinguished by their 

portability (beyond that of a mobile laboratory), where they are operated from a backpack 

(VisNIR DRS) or are handheld (PXRF) (Westerman 1990, Potts and West, 2008).  

The application of VisNIR DRS and PXRF to 36 compost samples, of diverse origin, 

feedstock and composting method was done to test the global applicability of these technologies 

to all compost types. While 36 samples cannot realistically fully represent the entire range of 

materials and methods used in composting globally, the sample set was extremely diverse and 

represented a wide range of OM, pH, salinity, moisture content, and particle size.  

With regard to VisNIR DRS scanning for OM quantification, first-derivative PLS models 

built using dry sample spectra produced the best r
2
 and best RPDs.  However, given the 

relatively small sample set and inherent variability of organic compounds comprising compost, 

the models did not meet the criteria for definitive spectroscopic modeling as outlined by Chang 

et al. (2001). Additionally, the results do point to the potential of the technology for rapid, 
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portable, and non-destructive compost analysis for a wide range of compost samples and 

provides direction for a larger study to follow up the results of this study.   

The models produced by simple linear regression for PXRF vs. ICP-AES for compost 

elemental analysis gave definitive results for r
2
 values of Zn, Cu, K, Ca, Mn, Fe, P, and Cr for 

dry sample scans and qualitative results for Pb and Ni. Models of As and Cd performed poorly 

overall. For all models, RSDs were not met, and thus the models do not fully explain the 

relationship between PXRF and ICP-AES determined elemental composition. For As and Cd, 

PXRF cannot be recommended as an alternative analytical tool. The influence of high Pb levels 

in some samples likely influenced the predictability of As by PXRF due to overlapping 

wavebands. Similar variation in predictability of elemental concentrations was noted between 

particle-size classes. For Zn, K, Ca, and Cu, little change was observed between particle size 

classes. However, marked changes were observed for As detection where the dry model was 

non-significant for the coarser particle size class but had an r
2
 of 0.68 for the finer particle size 

class. The influence of OM on dry scan model performance was also noted for Ca, Cr, Cu, Ni, P, 

Pb, and Zn. All regressions were stronger in samples containing low OM, with the exception of 

Pb and Fe. Again, this relationship cannot be easily explained due to the complexity of OM and 

the interaction of other physical factors like particle size.  If LODs in the µg kg
-1

 range are 

desired, PXRF cannot be used and ICP-AES is required. However, in most instances such low 

LOD are not required and PXRF can sufficiently detect most elements regulated for compost.  

One limitation to the application of spectroscopy to in situ analysis is the accuracy of 

these technologies with moist samples. A comparison of moist and dry samples generally 

showed the latter to be preferable. While no obvious differences in overall average spectral 

reflectance between moist and dry samples was observed for VisNIR DRS scans, there were 

observed differences between moist and dry prediction models. The dry models generally 
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slightly outperformed moist models, perhaps due to the identification of a greater number of 

significant wavelengths in dry spectra. Additionally, the accuracy and stability of PLS and PCR 

models varied in their performance in relating VisNIR DRS determined OM to laboratory based 

LOI determined OM.  

Differences between moist and dry model performance for PXRF were observed for Cr, 

Fe, Mn, and Ni, while smaller or no change was observed for Zn, Cu, Ca, and K. However, in 

general dry sample scan models out performed moist models. The reasons for these differences 

are not explained by a linear relationship of increasing moisture to a corresponding decrease in 

predictability. 

Overall, both technologies had promising performance with dried samples. While using 

dried samples does exclude the use of these technologies for definitive in situ analysis, they still 

offer considerable speed and sample preparation advantages over traditional laboratory methods. 

As analytical methods progress and develop, technology that allows on site, instantaneous results 

are sought to replace existing testing labs, or at the very least, allow for field screening. This is 

especially important to the field of compost, where feedstocks have the potential to contain high 

concentrations of heavy and toxic metals, and the resulting material is often used in agricultural 

and residential settings where it comes in close contact to food and humans. While neither 

VisNIR-DRS nor PXRF can currently be recommended as a definitive replacement to current 

laboratory methods, their advantages of lower cost, speed, and portability may out-weigh slight 

losses in accuracy, especially where field evaluation of composted materials is the primary goal.  

Further investigation into improved prediction model development and their application to 

compost analysis is warranted and supported by the preliminary findings of these studies. 
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APPENDIX A: BASIC COMPOST ANALYSIS RESULTS 

                              

Sample 

# 

Rep Moisture 

% 

EC   pH LOI % Particle Size Fractions                                                                                   

(% of each fraction) 

      unit   Rep 1 Rep 2 
 

50mm 
25mm 16mm  9.5mm   6.4mm   5mm  <5mm 

1 A 43.04 716.00 u 7.01 67.80 64.10 0.00 0.00 1.82 13.45 17.34 12.22 55.27 

  B 48.48 724.00 u 7.17 56.84 76.47 0.00 0.00 12.97 20.47 12.42 11.06 43.41 

2 A 63.22 478.00 u 6.71 33.24 27.64 0.00 0.00 0.00 0.92 2.08 34.46 60.92 

  B 68.28 1,726.00 u 6.45 38.52 51.05 0.00 0.00 0.00 0.00 31.42 25.82 41.95 

3 A 48.68 850.00 u 7.65 25.89 41.02 0.00 0.00 3.29 10.24 6.97 10.54 69.39 

  B 49.14 791.00 u 7.68 28.17 33.35 0.00 0.00 2.46 8.98 12.12 8.49 67.59 

4 A 30.39 22.10 m 8.71 62.44 68.91 0.00 0.00 4.21 14.37 7.64 9.44 64.35 

  B 27.80 21.60 m 8.51 63.84 99.52 0.00 0.00 8.53 9.39 6.82 8.50 66.75 

5 A 59.50 90.50 u 6.38 86.07 92.46 0.00 0.00 0.00 0.66 1.80 6.52 91.08 

  B 63.49 88.30 u 6.36 87.75 89.20 0.00 0.00 0.00 4.47 0.70 5.35 89.63 

6 A 64.95 82.80 u 6.54 91.79 66.96 0.00 0.00 0.00 11.32 17.98 22.37 47.91 

  B 64.53 71.60 u 6.96 91.67 91.90 0.00 0.00 16.58 11.78 11.32 17.48 42.63 

7 A 46.07 2.08 m 7.33 46.99 55.47 0.00 0.00 0.00 12.46 13.81 14.41 59.10 

  B 42.81 2.21 m 7.33 46.56 62.93 0.00 0.00 5.16 4.14 7.99 8.26 75.23 

8 A 45.78 7.56 m 12.34 19.55 20.42 0.00 0.00 0.00 1.79 2.85 7.86 87.27 

  B 43.38 7.77 m 12.25 18.59 36.84 0.00 0.00 0.00 0.00 0.97 7.68 90.85 

9 A 42.28 1,936.00 u 7.75 53.40 64.65 0.00 0.00 5.84 3.97 14.27 10.05 66.28 

  B 42.49 2.52 m 7.91 50.83 55.03 0.00 0.00 0.00 2.25 7.99 10.65 79.94 

10 A 76.44 1,621.00 u 6.79 81.55 87.19 0.00 0.00 8.53 9.78 11.32 13.54 57.62 

  B 74.87 2.23 m 6.70 80.87 88.26 0.00 0.00 11.24 16.09 16.20 11.46 45.95 

11 A 47.18 4.62 m 7.02 54.16 61.34 0.00 0.00 0.00 5.07 11.29 13.97 69.49 

  B 44.89 3.63 m 6.74 49.77 60.69 0.00 0.00 2.71 10.61 16.28 13.42 56.26 

12 A 38.47 3.14 m 7.59 43.01 55.04 0.00 0.00 0.00 4.08 3.79 7.15 84.93 

  B 41.76 2.89 m 8.01 40.80 48.57 0.00 0.00 0.00 1.82 4.01 8.55 85.28 
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13 A 40.95 4.06 m 7.68 43.76 53.23 0.00 0.00 0.00 0.79 5.76 8.62 84.91 

  B 47.86 3.41 m 8.62 57.41 67.83 0.00 0.00 0.00 0.00 6.23 11.21 83.70 

14 A 48.98 1,958.00 u 7.76 50.38 50.67 0.00 0.00 0.00 0.69 4.37 10.54 84.68 

  B 50.69 2.40 m 7.82 52.74 58.96 0.00 0.00 0.00 4.25 8.12 12.23 75.14 

15 A 41.29 8.96 m 5.90 39.06 40.72 0.00 0.00 0.00 0.00 0.00 0.00 99.93 

  B 41.12 8.54 m 5.75 37.99 32.21 0.00 0.00 0.00 0.00 0.00 0.39 99.53 

16 A 24.43 5.72 m 7.05 27.76 34.82 0.00 0.00 0.00 2.86 2.90 3.88 90.19 

  B 24.57 5.63 m 6.88 26.07 26.67 0.00 0.00 11.56 0.00 0.45 3.16 84.84 

17 A 64.06 10.32 m 8.10 55.23 55.80 0.00 0.00 3.00 14.32 6.06 16.34 60.52 

  B 53.99 7.54 m 8.12 58.47 58.69 0.00 0.00 13.87 12.58 7.76 10.48 55.13 

18 A 29.80 1,960.00 u 7.35 61.12 62.25 0.00 0.00 0.00 0.00 5.97 8.70 85.13 

  B 33.78 1,878.00 u 7.79 63.48 67.12 0.00 0.00 0.00 0.83 2.59 10.63 86.00 

19 A 37.26 3.70 m 5.82 65.75 66.09 0.00 0.00 0.00 0.32 8.14 13.84 77.43 

  B 39.84 3.93 m 5.35 65.64 73.13 0.00 0.00 0.00 0.84 8.40 16.21 74.11 

20 A 50.16 3.09 m 7.79 56.02 55.45 0.00 0.00 0.00 0.00 2.79 11.05 86.93 

  B 45.57 4.09 m 7.89 49.21 70.48 0.00 0.00 0.00 0.00 0.00 9.06 90.71 

21 A 43.51 3.99 m 8.06 61.04 74.43 0.00 0.00 0.00 1.69 6.51 4.63 87.31 

  B 44.30 4.44 m 7.53 54.79 61.17 0.00 0.00 0.00 4.13 5.98 7.30 82.21 

22 A 55.49 1,963.00 u 7.47 57.11 63.75 0.00 0.00 0.00 6.84 5.29 10.20 78.05 

  B 54.45 2.35 m 7.27 55.88 65.81 0.00 0.00 6.90 17.13 14.68 19.73 40.99 

23 A 35.36 2.32 m 7.44 40.01 46.67 0.00 0.00 0.00 0.00 7.94 13.26 78.97 

  B 35.58 2.07 m 7.41 39.60 48.50 0.00 0.00 0.00 0.00 6.15 9.25 84.63 

24 A 20.53 5.36 m 8.03 31.99 40.33 0.00 0.00 0.00 5.74 3.47 3.89 86.94 

  B 19.30 4.77 m 8.69 29.31 31.65 0.00 0.00 0.00 2.21 2.81 4.48 90.52 

30 A 8.93 701.10 u 4.38 99.70 99.73 0.00 0.00 0.00 0.00 0.00 0.15 100.45 

  B 8.50 26.30 u 5.39 99.80 99.78 0.00 0.00 0.00 0.00 0.00 0.07 99.84 

31 A 40.78 936.00 u 7.72 25.74 26.18 0.00 0.00 0.00 1.07 0.92 4.09 94.06 

  B 36.62 2.32 u 7.85 24.44 27.00 0.00 0.00 0.00 3.00 4.85 7.06 85.19 

32 A 58.34 3.33 m 7.40 57.76 62.44 0.00 0.00 0.00 1.50 5.39 8.91 84.53 

  B 57.87 4.41 m 7.32 55.62 67.64 0.00 0.00 0.00 0.00 4.90 10.52 85.32 
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33 A 29.39 4.83 m 8.99 21.71 27.89 0.00 0.00 0.00 4.37 5.17 6.33 84.06 

  B 29.11 5.36 m 9.04 20.97 22.81 0.00 0.00 0.00 1.18 1.39 6.69 90.55 

34 A 52.84 170.40 u 8.15 37.55 40.81 0.00 0.00 5.91 32.02 23.64 14.39 23.52 

  B 55.27 193.30 u 7.53 38.04 30.10 0.00 0.00 17.48 27.29 19.60 12.03 23.02 

35 A 40.95 3.81 m 8.64 36.51 57.53 0.00 0.00 0.00 0.00 0.00 9.37 90.54 

  B 29.64 4.22 m 8.83 35.83 46.14 0.00 0.00 0.00 0.00 2.46 7.55 90.06 

37 A 17.70 5.91 m 9.21 32.68 47.97 0.00 0.00 0.00 0.00 1.55 6.36 92.05 

  B 18.05 5.68 m 9.24 32.89 40.93 0.00 0.00 0.00 0.00 0.92 8.48 90.66 

38 A 32.03 4.72 m 6.79 37.58 37.15 0.00 0.00 0.00 0.00 2.65 6.39 90.99 

  B 30.95 5.28 m 7.01 37.95 36.32 0.00 0.00 0.00 3.57 4.59 6.43 85.39 

39 A 30.49 2.53 m 8.36 42.81 56.48 0.00 0.00 0.00 1.96 5.68 8.45 84.05 

  B 33.95 2.75 m 8.39 40.59 37.86 0.00 0.00 0.00 0.78 2.19 7.26 89.68 

40 A 59.86 6.07 m 8.42 52.39 66.48 0.00 0.00 14.23 2.18 6.16 12.24 64.87 

  B 59.19 6.74 m 8.32 53.15 66.46 0.00 0.00 0.00 11.36 13.92 11.86 62.78 

41 A 28.58 7.60 u 8.31 51.86 71.06 0.00 0.00 0.00 2.36 9.85 12.93 74.54 

  B 28.82 6.65 u 8.30 50.61 73.49 0.00 0.00 0.00 0.82 4.46 8.97 86.12 

42 A 28.78 8.99 m 8.72 58.16 66.20 0.00 0.00 0.00 0.00 5.28 11.61 83.20 

  B 29.52 9.96 m 8.69 62.43 68.10 0.00 0.00 0.00 0.26 3.24 8.91 87.54 
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APPENDIX B: COMPARISION AND VALIDATION OF CERTIFIED TESTING LAB RESULTS 

    

McWhirt et al. 2012 Results   
CAP Proficiency Results                                                   

(Median and 95% CI given) 

Sample 

Number 
  33 34 35   33 34 35 

Replicate   A B A B A B         

Moisture 

%   29.39 29.11 52.84 55.27 40.95 29.64   29.5 ± 1.83 54.4 ± 2.50 40.4 ± 8.99 

EC   4.83 5.36 170.40 193.30 3.81 4.22   5.9 ± 1.8 0.3 ± 0.11 4.3 ± 1.1 

unit   dS/ m  dS/ m  dS/ u dS/ u dS/ m  dS/ m    dS/m dS/m dS/m 

pH   8.99 9.04 8.15 7.53 8.64 8.83   8.80 ± 0.64 7.97 ± 0.67 8.68 ± 0.48 

LOI%- 1 21.71 20.97 37.55 38.04 36.51 35.83   19.4 ± 4.3 35.4 ± 10.1 38.5 ± 4.9 

LOI%- 2 27.89 22.81 40.81 30.10 57.53 46.14   

Particle Size 

                    

 % >50 

mm   0.00 0.00 0.00 0.00 0.00 0.00         

% >25 

mm   0.00 0.00 0.00 0.00 0.00 0.00         

% >16 

mm   0.00 0.00 5.91 17.48 0.00 0.00         

% >9.5 

mm   4.37 1.18 32.02 27.29 0.00 0.00   2.8 ± 4.4 25.1 ± 43.4 0.0 ± 7.11 

% >6.4 

mm   5.17 1.39 23.64 19.60 0.00 2.46   
(Total % >9.5 mm) 
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% >5 mm   6.33 6.69 14.39 12.03 9.37 7.55         

% < 5 mm   84.06 90.55 23.52 23.02 90.54 90.06         

Elemental    
 ppm 

    
ppm 

  

As   25.93 33.51 39.71 34.41 31.65 27.72   2.62±0.42 2.80 ±0.45 2.89 ±0.48 

Ba   99.59 112.64 222.04 208.03 133.85 126.43   74.0 ±21.9 182 ±35.0 93.5 ±23.2 

Ca   29,858.75 38,796.86 13,807.81 12,150.03 37,596.57 40,053.31   2.78 ±0.54 1.28 ±0.35 3.43 ±0.63 

Cd   0.00 0.00 0.00 0.00 0.00 0.00   0.41± 0.34 0.41 ±0.43 0.42 ±0.38 

Cr   13.77 14.65 19.31 19.87 15.69 13.21   10.0± 12.7 15.0 ±13.0 10.9 ±9.6 

Cu   155.91 200.70 45.52 99.63 103.70 94.00   131± 26 13.4 ±5.8 69.0 ±19.2 

Fe   12,718.28 11,883.17 28,913.95 16,914.95 11,793.73 11,319.41   8,094± 2693 13,332 ±3062 7,512 ±2260 

K   13,248.70 16,678.29 2,972.90 3,559.43 14,064.97 13,496.22   1.32 ±0.36 0.17 ±0.07 1.42 ±0.39 

Mn   220.87 267.83 758.15 604.33 352.04 337.36   204 ±52 663 ±169 298 ±70 

Ni   21.26 27.63 39.58 33.65 46.82 42.93   7.0 ±2.7 11.4 ±4.1 26.0 ±7.0 

P   3,426.90 4,585.88 889.88 816.69 10,108.91 9,640.16   0.32 ±0.03 0.090 ±0.026 0.81 ±0.13 

Pb   37.01 44.90 54.68 52.82 44.50 40.31   7.0 ±1.7 9.8 ±3.5 8.7 ±3.9 

Zn   134.69 172.62 100.55 100.16 257.19 233.85   113 ±26 81 ±26 212 ±55 
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APPENDIX C: PREDICTED VS MEASURED ORGANIC MATTER PCR 

COMPARISION 
 

 

Predicted vs. measured organic matter (%) for a) moist reflectance, b) moist first-derivative, c) 

moist second -derivative, d) oven-dried reflectance, e) oven-dried first-derivative, and f) oven-

dried second-derivative principal component regression models for 36 compost samples. The 

solid line is the regression line, and the dashed line is a 1:1 line 
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APPENDIX D: PCR SPECTRAL COMPARISION 
 

 

Fitted principal component regression coefficient curve on the spectrum for a) moist reflectance, 

b) moist  first-derivative, c) moist second -derivative, d) oven-dried reflectance, e) oven-dried 

first-derivative, and f) oven-dried second-derivative partial least squares regression models for 

36 compost samples. 
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APPENDIX E: SAS CODE FOR PXRF AND ICP-AES REGRESSION 

(Example given for comparison of Cu for PXRF dry scans) 

 

dm 'log; clear; output; clear';  

options nodate nocenter pageno = 1 ls=78 ps=53;  

title1 'XRF v ICP- Cu';  

data elemental; 

title 'Regression of XRF and ICP data for CU'; 

input Asnitric Banitric Canitric Cdnitric Conitric Crnitric Cunitric Fenitric Knitric Mnnitric 

Ninitric Pnitric Pbnitric Znnitric Asxrfdry Baxrfdry Caxrfdry Cdxrfdry Coxrfdry Crxrfdry 

Cuxrfdry Fexrfdry Kxrfdry Mnxrfdry Nixrfdry Pxrfdry Pbxrfdry Znxrfdry Asxrfwet Baxrfwet 

Caxrfwet Cdxrfwet Coxrfwet Crxrfwet Cuxrfwet Fexrfwet Kxrfwet Mnxrfwet Nixrfwet Pxrfwet 

Pbxrfwet Znxrfwet;  

cards; 

<INFILE READ HERE> 

ODS RTF file= 'D on SPESS-S301-08:\Cu1.RTF'; 

run; 

Proc Print data=elemental;   

Run;   

Proc plot data=elemental;  

title2 'Scatter plot of Nitric versus XRF-Dry;  

plot Cunitric*Cuxrfdry;  

run; 

Proc reg data=elemental;  

title2 'Simple Linear Regression between xrfdry and ICP';  

Model Cuxrfdry=Cunitric /p clb cli clm all influence collin partial; 

OUTPUT out=outdata p=Predicted r=resid cookd=cooksd dffits=diffits H=hat  

       STUDENT=student rstudent=rstudent lclm=lclm uclm=uclm lcl=ccl ucl=ucl;  

run;  
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Proc print data=outdata;  

title2 'Listing of Observation Diagnostics';  

Var Cuxrfdry predicted resid student rstudent;  

run;  

Proc plot data=outdata;  

Title3 ‘Residual plot’;  

Plot Cunitric*Cuxrfdry;  

Run;         

Proc Univariate  data=outdata normal plot;  

Title3 ‘Residual Analysis’;  

Var Resid;  

Run;  

quit; 
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APPENDIX F: LABORATORY ANALYSIS SCHEME 

 

Sample Received 

(Divided into Replicates) 

     A             B 

 

Aliquot Dried  Moist Aliquot    Aliquot Dried   Moist Aliquot   

   Refrigerated        Refrigerated 

 

TMECC Analysis:     TMECC Analysis: 

LOI       LOI 

EC       EC 

pH       pH 

Particle Size      Particle Size     

Nitric acid digest     Nitric acid digest 

(ICP-AES)        (ICP-AES)   

 

 

VisNIR DRS Scan   VisNIR DRS Scan  VisNIR DRS Scan      VisNIR DRS Scan 

PXRF Scan       PXRF Scan   PXRF Scan        PXRF Scan 

         Moist Average 

  Dry Average   

     

Statistical Analysis 
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APPENDIX G: PERMISSION TO REPRINT 
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