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ABSTRACT 

Virus diseases are a major constraint to sweetpotato production in East Africa. The most 

important is the Sweet potato virus disease (SPVD), a result of co-infection of Sweet potato 

chlorotic stunt virus (SPCSV) and Sweet potato feathery mottle virus (SPFMV). Studies were 

done on different aspects of resistance to SPVD, and to determine the presence of Sweet potato 

virus G (SPVG), Sweet potato virus 2 (SPV2), and Sweet potato leaf curl virus (SPLCV), viruses 

that have not been reported infecting sweetpotato in Kenya. None of the samples reacted to 

antisera for either SPVG or SPV-2. SPLCV was detected infecting sweetpotato in Kenya for the 

first time. Some sweetpotato genotypes have irregular distribution or low virus titers, or recover 

from SPVD. The possibility of using this resistance to obtain virus free cuttings from field-

grown sweetpotato vines for propagation was studied. Vines were cut into three pieces (15 cm, 

15-30 cm, and >30 cm from the apex) and tested for SPCSV, SPFMV and Sweet potato mild 

mottle virus (SPMMV), the most common viruses in Kenyan fields. The viruses were equally 

present in all sections of infected vines and no section was any more likely to be virus free. 

Accumulation patterns of SPCSV and SPFMV in mixed infections were compared in SPVD-

susceptible cultivars, ‘Beauregard’ and ‘Namaswakhe’, and resistant cultivars, ‘Naspot I’ and 

‘Mar Ooko’. Virus titers were estimated using real-time quantitative PCR. Resistance in ‘Naspot 

I’ and ‘Mar Ooko’ was associated with reduced SPCSV and SPFMV multiplication, respectively. 

Titers of both viruses increase to certain thresholds after which symptoms appear, indicating that 

both viruses are important in SPVD development. To determine if SPVD resistant genotypes 

could be identified using molecular markers, sweetpotato genotypes were selected and classified 

as resistant or susceptible and amplified fragment length polymorphism (AFLP) marker profiles 

used in association studies. Analysis of molecular variance found significant (P<0.002) 

 x



 xi

differences between the two groups. Discriminant and logistic regression analysis were used to 

select informative markers, and to develop models to classify the two groups. Four markers, 

which gave 94% correct classification of a test population, were selected by both statistical 

methods. 

 



CHAPTER 1: INTRODUCTION 

Results presented in this study relate to different aspects of resistance of sweetpotato 

[Ipomoea batatas (L.) Lam] to infection by the causal agents of sweet potato virus disease 

(SPVD), the main disease limiting sweetpotato production in the sub-Saharan region of Africa 

and other parts of the world, and to a survey done in Kenya to determine the presence of three 

viruses that have been reported infecting sweetpotato in other parts of the world but not in East 

Africa.   

Sweetpotato is a dicotyledonous plant, which belongs to the family Convolvulaceae 

(Morning glory) and is usually considered the only species of Ipomoea of major economic 

importance (Hall and Phatak, 1993). It is a highly heterozygous hexaploid (2n=6x=90) with 

extensive variation within the species (Jones, 1986). Sweetpotato is ranked 7th among the most 

important food crops in the world after wheat, rice, maize, potato, barley, and cassava and the 

third most economically important root crop after potatoes and cassava (FAO, 2005). More than 

95% of the global sweetpotato crop is grown in developing countries. In 2005, approximately 

130 million metric tons were produced worldwide, of which ~82% was produced in China (FAO, 

2005).  

In Africa, sweetpotato is the second most important root crop after cassava. Production is 

concentrated in East Africa, particularly around Lake Victoria (Gibson et al., 1997). Uganda is 

the largest African producer followed by Tanzania and Rwanda, while Kenya is seventh (FAO, 

2005). The main sweetpotato producing regions of Kenya are western, areas around Lake 

Victoria, eastern region, central and coastal areas (Matin, 1999). In East Africa, the crop is nearly 

always grown by small – holder farmers with limited land, labor and capital. The crop is grown 

in a continuous cycle with one season overlapping another. Piecemeal harvesting of storage roots 

 1



commonly extends the cropping season (Bashaasha et al., 1995; Kapinga et al., 1995). The crop 

grows well on soils with limited fertility, is relatively drought tolerant, provides good ground 

cover, and is usually cultivated without fertilizer or pesticides. The crop is therefore often 

planted in more marginal fields – poorer soils with limited water supply, making the cost of 

production minimal. Farmers use only vine cuttings from production fields rather than seed and 

thus the cost of propagating material is also minimal (Karyeija et al., 1998a). Despite these 

conditions, sweetpotato produces remarkable amounts of biomass, often producing more edible 

energy than any other major food crop (CIP, 1996). 

1.1 Sweetpotato Viruses in East Africa 

Productivity of sweetpotato is greatly constrained by diseases and pests, the most 

important diseases being caused by viruses (Ngeve, 1990; Geddes, 1990; Gibson et al., 1997; 

Clark et al., 1997; Fuglie, 2007). Over 50% loss in production is attributed to viruses (Hahn, 

1979; Gibson et al., 1997; Gutierrez et al., 2003). In East Africa, over 90% yield reductions have 

been associated with viruses (Gibson et al., 1997). Being a vegetatively propagated crop, the 

viruses are spread from mother plants to new plants during the propagation cycle (Clark et al., 

1997). 

The first report of a suspected virus disease of sweetpotato in Eastern Africa was in 

Democratic Republic of Congo in the late 1930s and then in Uganda in the early 1940s 

(Hansford, 1944). Later, viral diseases in sweetpotato were reported in Kenya, Tanzania 

Rwanda, Burundi, Malawi, and South Africa (Sheffield, 1957). Initial studies indicated the 

occurrence of two viruses, virus A and virus B, which were aphid- and whitefly-transmitted 

respectively (Sheffield, 1957).  Currently, four sweetpotato viruses have been identified and 

confirmed to be widely distributed in East Africa (Mukasa et al., 2003; Ateka et al., 2004b; Tairo 
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et al., 2004). The four viruses include two that belong to family Potyviridae: the potyvirus Sweet 

potato feathery mottle virus (SPFMV) and the ipomovirus Sweet potato mild mottle virus 

(SPMMV); one belongs to the family Closteroviridae: Sweet potato chlorotic stunt virus 

(SPCSV) and Sweet potato chlorotic fleck virus (SPCFV) for which the genus Carlavirus has 

been proposed (Aritua et al., 2003). Aritua et al. (2006) reported the occurrence of Sweet potato 

caulimo-like virus (SPCaLV) in one sample collected in Uganda. 

Surveys done in the East African region for virus assessment have mainly used 

serological techniques, especially nitro-cellulose membrane enzyme-linked immunosorbent 

assays (NCM-ELISA) using kits supplied by the International Potato Centre (CIP), Lima, Peru 

(Gibson et al., 1997; Aritua et al., 1998a; IsHak, 2003; Mukasa et al., 2003; Ateka et al., 2004b). 

The virus assays have also been done directly from the tip cuttings of sweetpotato plants, more 

often ignoring the older vine parts (Gibson et al., 1997; Mukasa et al., 2003). Kits from CIP 

contain antisera to detect up to 10 of the over 20 viruses that have been reported infecting 

sweetpotato in different parts of the world (Valverde et al., 2007). The surveys therefore do not 

include viruses for which antiserum is not available. Surveys done in Uganda (Mukasa et al., 

2003) and Kenya (Ateka et al., 2004b) found sweetpotato plants with symptoms resembling 

those caused by viruses, but which did not react with any of the antisera used. Such plants could 

be infected with viruses that have been described but were not tested for in the studies and/or 

viruses that have not yet been described in sweetpotato. Serological assays are known to be 

somewhat insensitive in detecting some viruses, especially when done directly from sweetpotato 

as the plant contains unusually large but variable concentrations of a number of substances such 

as latex, polyphenols, and polysaccharides that interfere with the assays (Esbenshade and Moyer, 

1982; Abad and Moyer, 1992). Also, cuttings from older vine parts may harbor viruses not 
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present in the apical portion. These reasons may partly explain why some viruses are not 

documented as existing in East Africa, making it difficult to discern if absence of detection truly 

reflects absence of the viruses.  

Some of the viruses that have not been included in previous surveys in the region include 

Sweet potato leaf curl virus (SPLCV, genus Begomovirus), Sweet potato virus G (SPVG, genus 

Potyvirus) and Sweet potato virus-2 (SPV-2, genus Potyvirus) (Rossel and Thottappilly, 1988; 

Lotrakul et al., 1998; Souto et al., 2003). SPLCV has been reported in the United States, South 

America; the Middle East, and South East Asia (Chung et al., 1985; Lotrakul et al., 1998; Banks 

et al., 1999; Fuentes and Salazar, 2003; Briddon et al., 2006; Luan et al., 2006), indicating that 

the virus has a world-wide distribution. SPLCV has not been reported in Africa, though Rossel 

(1981) described symptoms similar to those of SPLCV in I. aquatica. SPLCV on its own can 

significantly impact yield (Clark and Hoy, 2006) and can be confused with other viruses 

particularly in stressed plants (Lotrakul et al., 1998). SPLCV titers increased in the presence of a 

potyvirus (Kokkinos, 2006) which may result in easier acquisition and spread by whiteflies, the 

insect vectors of SPLCV. SPVG has been reported in different parts of the world including 

China, USA, Egypt, and South Africa (Colinet et al., 1996; Souto et al., 2003; IsHak et al., 2003; 

Ateka et al., 2007), while SPV-2 (also referred to as Ipomoea vein mosaic virus, IVMV; or 

Sweet potato virus Y, SPVY) has been reported in Taiwan (Rossel and Thottappilly, 1988; Ateka 

et al., 2004a), USA (Souto et al., 2003) and probably in Zimbabwe (Chavi et al., 1997). The 

titers of the two potyviruses are greatly enhanced in the presence SPCSV, resulting in severe 

symptom development (Kokkinos and Clark, 2006b). Despite SPV-2 and SPVG or their isolates 

being reported in different parts of the world including some parts of Africa, the two viruses 
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have not been detected in East Africa. This study included a survey (Chapter 2) to ascertain 

whether the two potyviruses and the begomovirus are present in Kenya.  

Except for SPCSV and SPLCV, most single infections cause mild or no symptoms 

(Esbenshade and Moyer, 1982; Di Feo et al., 2000; Mukasa et al., 2006; Untiveros et al., 2007) 

from which plants usually recover and contain very low virus titers (Esbenshade and Moyer, 

1982; Abad and Moyer, 1992), and consequently, no significant yield reduction is observed. The 

most severe symptoms and yield losses are caused by co-infection with viruses from different 

genera. Invariably, most of these interactions seem to involve SPCSV, which has been observed 

to have synergistic interactions with SPFMV, SPMMV, Cucumber mosaic virus (CMV, genus 

Cucumovirus), Sweet potato mild speckling virus (SPMSV, genus Potyvirus), Sweet potato latent 

virus (SPLV, genus Potyvirus), SPVG, SPV-2 and SPCFV (Cohen & Loebenstein, 1991; Di Feo 

et al., 2000; Kokkinos, 2006; Mukasa et al., 2006; Untiveros et al., 2007). Sweet potato virus 

disease (SPVD), caused by simultaneous infection with SPFMV and SPCSV, is the main disease 

affecting sweetpotato production worldwide, probably because of the wide distribution of the 

two viruses (Mukiibi, 1977; Geddes, 1990; Gibson et al., 1997; 1998; Karyeija et al. 2000a). The 

disease is characterized by chlorosis, small deformed leaves, and severe stunting, and can reduce 

yields of infected plants by up to 90% (Mukiibi, 1977; Hahn, 1979; Gibson et al., 1998; 

Gutierrez et al., 2003). SPVD is the most serious disease of sweetpotato in East Africa (Geddes, 

1990) and a lot of resources are directed towards its management. 

1.2 Sweet Potato Feathery Mottle Virus (SPFMV) 

SPFMV is the most common sweetpotato virus, occurring virtually everywhere 

sweetpotato is grown (Brunt et al., 1996; Salazer and Fuentes, 2001). The virus was first 

described in 1945 in the United States (Doolittle and Harter, 1945). It was first reported in East 
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Africa in 1957 under the name Sweet potato virus A (Shefield, 1957) and in West Africa under 

the name sweet potato vein clearing virus (Schaefers and Terry, 1976). The genus potyvirus and 

the family Potyviridae, of which the SPFMV is a member, are the largest genus and family of 

plant viruses, respectively. SPFMV has flexuous filamentous particles between 830-850 nm in 

length. They contain a single-stranded positive sense RNA genome of about 10.6 kb (Sakai et al., 

1997). SPFMV is transmitted by several aphid species (Aphis gossypii, A. craccivora, Lipaphis 

erysimi, Myzus persicae) in a non-persistent manner (Stubbs and McLean, 1958; Moyer and 

Kennedy, 1978). These aphids do not normally colonize sweetpotato and therefore itinerate alate 

aphids are presumed to be the means of transmission (Kantack et al., 1960; Aritua et al., 1998b). 

The host range of SPFMV is narrow and mostly limited to plants from the family 

Convolvulaceae, and especially the genus Ipomoea, although some strains have been reported to 

infect Nicotiana benthamiana and Chenopodium spp. (Campbell et al., 1974; Moyer and 

Kennedy, 1978; Moyer et al., 1980; Nakashima et al., 1993). Symptoms, host range, serology 

and nucleotide sequences have been used to assign SPFMV to the Common (C), Russet Crack 

(RC), Ordinary (O) and East African (EA) strain groups (Moyer and Kennedy, 1978; Moyer et 

al., 1980; Cali and Moyer, 1981; Kreuze et al., 2000). Strains C, O and EA have been detected in 

East Africa, but the RC strain has not been detected (Krueze et al., 2000; Abubakar et al., 2003; 

IsHak et al., 2003; Ateka, 2004). The existence of different strains of SPFMV in different 

regions is important in so far as resistance to the virus is concerned. Karyeija et al., (2000a) 

reported that a sweetpotato cultivar that was resistant to Peruvian strains of SPFMV and 

SPFMV-C was not resistant to East African strain of SPFMV. This makes breeding for 

resistance to the virus (and to SPVD) difficult and resistant materials may need to be developed 

for particular regions of the world where particular strains are found.  
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Leaf symptoms caused by SPFMV are mostly mild but may include vein clearing, 

irregular chlorotic patterns (feathering) along the leaf mid-rib and chlorotic spots which may 

have purple pigmented borders especially in the older leaves. Depending on sweetpotato cultivar, 

the storage roots of infected plants may show external necrosis if infected with the RC strain 

(Moyer and Kennedy, 1978; Campbell et al., 1974; Cali and Moyer, 1981; Moyer and Cali, 

1985; Clark and Moyer, 1988). When infecting alone, effects of SPFMV are not conspicuous 

since its movement and/or replication is restricted (Gibson et al., 1998; Karyeija et al., 2000b). It 

is difficult to detect the virus in plants artificially infected with SPFMV alone, and aphids do not 

readily acquire the virus from such plants (Aritua et al., 1998b). This may indicate that there are 

sweetpotato genotypes that are highly susceptible to SPFMV alone or that there are other viruses 

that enhance the virus titers in the field that have not been detected (Valverde et al., 2007). 

However, certain strains can cause qualitative damage due to internal cork or cracking of the 

tubers (Mori et al., 1995; Ryu et al., 1998). Quantitative losses due to reduced plant vigor 

associated with chronic infection with SPFMV have been experienced (Esbenshade and Moyer, 

1982; Gibson et al., 1997; Njeru et al., 2004). The real importance of SPFMV lies in being a 

component of a complex with SPCSV, where its titers increase drastically (Karyeija et al., 

2000b; Kokkinos and Clark, 2006b). Surveys carried out in East Africa have reported SPFMV as 

the most predominant virus infecting sweetpotato, with over 50% of the plants showing virus 

symptoms being reported to have single infections with the virus (Mukasa et al., 2003; Ateka et 

al., 2004b; Tairo et al., 2004; Aritua et al., 2006). 

1.3 Sweet Potato Chlorotic Stunt Virus (SPCSV) 

SPCSV is the second most predominant sweetpotato virus in Kenya and in East Africa 

(Mukasa et al., 2003; Ateka et al., 2004b; Tairo et al., 2004; Aritua et al., 2006), and is also 
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widespread in different sweetpotato growing regions of the world (Gibson et al., 1998). The 

virus belongs to the genus Crinivirus within the family Closteroviridae (Van Regenmortel et al., 

2000). The particles of SPCSV are 850 to 950 nm in length and 12 nm in diameter. The size of 

the major coat protein is 33 kDa, which is similar to other criniviruses (Cohen et al., 1992; Van 

Regenmortel et al., 2000). The complete genome of SPCSV was sequenced by Kreuze et al., 

(2002) and consists of two RNA molecules. With a total length of 17630 nucleotides, SPCSV is 

the second largest single-stranded positive-sense RNA virus infecting plants after Citrus tristeza 

virus (CTV, genus Closterovirus). RNA1 has a total length of 9407 nucleotides and contains five 

putative open reading frames (ORFs). RNA2 contains 8223 nucleotides and has seven putative 

ORFs. SPCSV is transmitted by whiteflies (e.g. Bemisia tabaci and Trialeurodes abutilonea) in a 

semi-persistent, non-circulative manner (Cohen et al., 1992). The host range of SPCSV is limited 

mainly to family Convolvulaceae and the genus Ipomoea, although Nicotiana spp. and 

Amaranthus palmeri are reportedly susceptible (Cohen et al., 1992). SPCSV has also been 

reported in Lisianthus (Eustoma grandiflorum; Cohen et al., 2001). SPCSV can be serologically 

divided in two major serotypes, one (designated serotype East Africa) occurs only in East Africa 

and Peru, while the other serotype is found in United States, South America, West Africa and 

Egypt (Hoyer et al., 1996; Kreuze et al., 2002; IsHak et al., 2003; Gutierez et al., 2003; Abad et 

al., 2007). The two serotypes are sufficiently distinct phylogenetically to suggest that they may 

correspond to two distinct criniviruses (Kreuze et al., 2002; Abad et al., 2007). Abad et al. (2007) 

further differentiated the East African serotype into two subpopulations (Peru and East Africa) 

and the West African serotype into three subpopulations (Argentina-Brazil, USA and West 

Africa). As with SPFMV, the existence of different strains and serotypes of SPCSV has a 

significant implication in breeding for resistance to SPVD in different regions of the world as it 
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may require that resistant materials be developed for particular regions of the world where 

particular strains and/or serotypes are found. Despite the presence of the virus and the vector in 

the fields of East Africa, and the high incidence of SPFMV, SPCSV is not as common as 

SPFMV. This suggests that the spread of SPCSV is not as efficient as that of SPFMV. 

The symptoms caused by SPCSV alone have been confused with nutritional deficiencies 

and include such mild symptoms as slight stunting and purpling of older leaves and mild 

chlorotic mottle in the intermediate aged leaves (Gibson et al., 1998). Although SPCSV can 

cause yield losses on its own (Gutierrez et al., 2003), its real importance lies in the ability to 

synergize with different unrelated viruses (Cohen & Loebenstein, 1991; Di Feo et al., 2000; 

Kokkinos and Clark, 2006b; Mukasa et al., 2006; Untiveros et al., 2007). Understanding how a 

naturally resistant sweetpotato plant responds to infection by SPCSV will provide fundamental 

information on the process of virus infection in the plant, paving way for development of 

varieties with more durable resistance. 

1.4 Management of Sweet Potato Virus Disease (SPVD) 

Attempts to control SPVD are through the use of host plant resistance or pathogen-tested 

plants (Valverde et al., 2007). However, use of pathogen tested plants is not considered 

economically feasible in developing countries, and especially in sub-Saharan Africa where the 

crop is grown by small-holder farmers with limited land, labor and capital. Developing resistant 

varieties backed up by farmers selecting disease-free planting stock (apparently free of known 

viruses) is therefore given the highest priority in the tropics by both international and national 

institutions. Hundreds of sweetpotato cultivars (landraces) are grown in East Africa, many of 

which show some resistance to SPVD (Gichuki et al., 2003; Aritua et al., 1998b), and the impact 

of SPVD is normally mitigated. Since SPVD induces dramatic symptoms, it is possible to readily 
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identify affected plants in the field. In a field trial in Uganda, Mwanga et al. (2002b) observed 

that some genotypes tested negative to both SPFMV and SPCSV, showing that they were either 

difficult to infect, were able to suppress the rapid multiplication of the virus, or had a mechanism 

of lowering titer during progress of SPVD. Recovery of such plants from virus-induced 

symptoms is reported to be a consequence of RNA silencing, an antiviral defence mechanism 

(Jovel et al., 2007). Some severely infected genotypes are also reported to localize the 

distribution of SPCSV and SPFMV (Aritua et al., 1998b; Gibson et al., 1998; Mwanga et al., 

2002b), indicating that SPVD may not be fully systemic, and that a proportion of uninfected 

cuttings may be obtained from previously infected plants.  

The fact that some genotypes have the ability to recover from SPVD implies that the 

lowering of the titre during progress of SPVD is an important mechanism in resistance to SPVD. 

While low titer and irregular distribution are problematic in virus detection (Esbenshade and 

Moyer, 1982; Abad and Moyer, 1992), sweetpotato genotypes with such qualities are expected to 

show more rapid recovery compared to plants with fully systemic and high virus titres. Indeed, 

farmers in East Africa are reported to reduce losses by utilizing a 30-cm apical portion of 

symptomless vines (Gibson et al., 1997). However, no studies have been done to determine if the 

absence of the virus(es) was limited to the apical portion, or whether any other section of the 

vine could as well be used for propagation purposes. A part of this study (Chapter 3) was to 

investigate if there is a scientific basis to decide that the apical portion of the vine has a higher 

chance of being virus free compared to other portions of the vine, and therefore form a strong 

base to advise farmers to use such a section for propagation purposes.  

Prior efforts at managing SPVD were focused on developing cultivars with resistance to 

SPFMV given its universal distribution. However, many sweetpotato cultivars are naturally 
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resistant to SPFMV, showing no or only mild initial symptoms, from which they usually recover, 

and containing very low virus titers (Esbenshade and Moyer, 1982; Green et al., 1988; Abad and 

Moyer, 1992; Gibson et al. 1998; Mwanga et al. 2002b; Dje and Diallo, 2005; Kokkinos and 

Clark, 2006b). Resistance is lost when the varieties are co-infected with SPCSV (Karyeija et al. 

1998a; Mwanga et al., 2002b). As pointed out previously, SPCSV on its own can cause 

significant yield losses (Gutierrez et al., 2003), and efforts should therefore be directed towards 

developing varieties resistant to SPCSV (Kreuze, 2002). However, the safest way seems to 

develop resistance to both viruses simultaneously (Kreuze, 2002). Recent efforts to develop 

genetically modified sweetpotato to control the disease are yet to attain the anticipated potential. 

1.5 Reaction of Sweetpotato Genotypes to SPVD and Infection by SPFMV and SPCSV  

Genotypes have been described as resistant to SPFMV, SPCSV, or SPVD if they fail to 

develop symptoms under natural inoculum pressure or following graft inoculation. However, 

these two approaches may measure different aspects of resistance. Historically, resistance to 

diseases of plants has generally been divided into two major categories: non-host resistance and 

host resistance (Fraser, 1990). Non-host resistance (also referred to as immunity) encompasses 

the case where all genotypes within a plant species show resistance or fail to be infected by a 

particular virus. Most plant species are therefore resistant to most plant viruses and susceptibility 

is the exception to the more general condition of resistance or failure to infect. As viruses are 

completely dependent on host factors for their replication, incompatibility between viral and host 

proteins probably accounts for non-host resistance to viruses. Such type of resistance confers 

immunity and is not expected in sweetpotato resistant to SPVD since many genotypes are 

susceptible. 
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Host resistance (also termed as specific resistance, genotypic resistance, or cultivar 

resistance) occurs when genetic differences in susceptibility are observed within a plant taxon, 

i.e., some genotypes show heritable resistance to a particular virus whereas other genotypes in 

the same taxon are susceptible. The resistance may be conferred by a single gene (monogenic 

resistance) or by a combination of several genes (oligogenic or multigenic resistance). 

Monogenic resistance genes usually confer strong resistance, but often only against a limited 

number of pathogen strains or races. Multigenic resistance is mediated through combined effects 

of many genes that each by themselves may confer only a rather insignificant resistance effect 

towards the pathogen in question. Multigenic resistance is generally not as strong as monogenic 

resistance, but it has equivalent effectiveness against all strains or races of the pathogen (Agrios, 

2005). In resistant individuals, the virus multiplication may be reduced or inhibited to some 

extent, or the spread of the pathogen through the plant is demonstrably restricted relative to 

susceptible hosts, and disease symptoms are highly localized or not evident. It is also important 

to distinguish between resistance to a disease (tolerance) and resistance to a pathogen. In case of 

resistance to disease symptoms or tolerance to the disease, the virus may move through the host 

in a manner that is indistinguishable from that in susceptible host, but disease symptoms are not 

observed. Kang et al. (2005) noted that resistance to a pathogen typically leads to resistance to 

the disease. There is therefore a need to differentiate the type of resistance exhibited by different 

sweetpotato genotypes described as resistant to SPVD, i.e., whether true resistance or tolerance.  

Previous studies have shown that plants infected with SPFMV and SPCSV contain higher 

titers of SPFMV, more severe symptoms, and are a better source of aphid acquisition than plants 

infected with SPFMV alone (Schaefers and Terry, 1976; Rossel and Thottappilly, 1988; 

Kokkinos and Clark, 2006b; Mukasa et al., 2006). Karyeija et al. (2000b) studied the aetiology of 
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SPVD using nucleic acid hybridization, bioassays, tissue printing and thin section 

immunohistochemistry in the sweetpotato cultivar ‘Tanzania’ and found that resistance to 

SPFMV was due to inhibition of virus replication rather than movement and resistance was 

suppressed by infection with SPCSV, resulting in a ca. 600-fold increase in titers of SPFMV. 

Karyeija et al. (2000b) also reported that SPCSV was limited to the phloem tissues while 

SPFMV was not limited to any particular tissue. Similar increase in titer levels of SPFMV in the 

presence of SPCSV has been confirmed by other workers using real-time quantitative 

polymerase chain reaction (PCR) (Kokkinos and Clark, 2006a; 2006b; Mukasa et al., 2006). The 

mechanism(s) by which SPCSV synergizes SPFMV is not yet known, but have been associated 

with suppression of RNA silencing of plants by SPCSV (Kreuze et al., 2005). However, titres of 

the phloem-limited SPCSV remain the same or slightly decrease in the SPVD-affected plants as 

compared to plants infected with SPCSV alone (Gibson et al., 1998; Karyeija et al., 2000b; 

Kokkinos and Clark, 2006b).  

In plants inoculated with both SPCSV and SPFMV, the symptoms of SPVD first develop 

in the newly emerging leaves (Karyeija et al., 2000b). Karyeija et al. (2000b) hypothesized that 

the phloem of the youngest leaves provide only limited support for SPCSV replication and/or 

movement, in contrast to the mature phloem in the veins of the more developed leaves. 

Consequently, viral RNA accumulation at earlier and later phases of infection could be compared 

by assaying the extracts of leaves harvested at different developmental stages. Karyeija et al. 

(2000b) suggested that efficient genome replication of SPCSV requires mature phloem cells 

present in the leaf veins of the well-developed leaves. Karyeija et al. (2000b) concluded that 

because the titers of SPCSV were not significantly increased in doubly infected plants, and 

because the plants infected with SPCSV alone were mostly symptomless or displayed symptoms 
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different from SPCSV, the symptoms of SPVD are presumably caused solely or largely by 

SPFMV. This was supported by the low undetectable titres of SPCSV in the young leaves with 

severe symptoms and by the correlation of the SPFMV titers with the severity of the symptoms. 

The symptoms caused by SPVD also resemble those of potyviruses (Shukla et al., 1994). Kreuze 

(2002) observed that the viral RNA amounts determined by Karyeija et al. (2000b) were done 

using RNA probes spanning the coat protein (CP) gene, or antibodies detecting the CP. The sub-

genomic RNAs (sgRNAs) corresponding to the genes encoded by SPCSV RNA2, including the 

CP gene, have been found to accumulate later in infection than sgRNAs of SPCSV RNA1 in I. 

setosa (Kreuze at al., 2002). The RNA1 sgRNA were reported to be present even in the youngest 

leaves of I. setosa, implying that the same may apply to sweetpotato (Kreuze, 2002). The early 

accumulation of RNA1 sgRNA is important in SPVD development in that it contains the genes 

encoding RNase III and another protein (P22) both of which are important in RNA-silencing 

suppression activity of SPCSV (Kreuze et al., 2005). Studies involving interactions of SPFMV 

and SPCSV were done using SPVD-susceptible hosts. No studies have been carried out to 

compare the behaviour of the two viruses in genotypes showing differential reaction to SPVD. 

To determine if delayed or mild symptom development observed in SPVD-resistant genotypes is 

due to resistance or tolerance, the distribution and multiplication of SPFMV and SPCSV in 

resistant and susceptible genotypes were quantified in a time course experiment using real-time 

quantitative PCR (Chapter 4).  

1.6 Real-time Quantitative PCR 

Since its invention, the polymerase chain reaction (PCR) technique has greatly influenced 

applied sciences especially disease diagnostics (Schaad and Frederick, 2002). It has made it 

possible to detect, amplify and analyze even trace elements of nucleic acids faster and easier. 
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The introduction of real-time quantitative PCR made the detection even easier as it allowed 

direct monitoring of a PCR reaction as it occurs, thus allowing for the detection of PCR 

amplification during the early phases of the reaction (Zubritsky, 1999). This is a distinct 

advantage over traditional PCR detection, which is done at the end of the reaction using agarose 

gels. All real-time PCR systems rely upon the detection and quantification of a fluorescent 

reporter, the signal which increases in direct proportion to the amount of PCR product in a 

reaction (AppliedBiosystems, Foster City, CA.). In the simplest and most economical format, 

that reporter is the double-strand DNA specific dye SYBR® Green. This format has a 

disadvantage in that SYBR® Green will bind to any double stranded DNA in the reaction, 

including primer-dimers and other non-specific reaction products, which results in an 

overestimation of the target concentration (Schaad and Frederick, 2002). The two most popular 

alternatives are the Taqman® and molecular beacons, both of which are hybridization probes 

relying on fluorescent resonance energy transfer (FRET) for quantification (Schaad and 

Frederick, 2002). In all cases, the amount of fluorescence is monitored during each amplification 

cycle and is proportional to the amount of PCR product generated. By plotting the increase in 

fluorescence, versus the PCR cycle number, the system produces plots that provide a more 

complete picture of the PCR process (Bulletin #2, AppliedBiosystems, Foster City, CA). The 

higher the starting copy number of the nucleic acid target, the sooner a significant increase in 

fluorescence is observed. The use of a pre-designed internal positive control reagent (a 

‘household’ gene such as 18S rRNA) in parallel reactions to the target reactions allows the 

normalization of DNA/RNA extraction variations between samples (Schaad and Frederick, 

2002). 
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Real-time PCR has many important advantages over classical PCR in that it eliminates 

the need to do a Southern blot to confirm identification of a PCR product, it is a more contained 

system and less prone to cross contamination, less labor is required, it is more user friendly, it 

provides data useful for selecting primers, optimization of PCR protocol is quicker, and it can be 

used for multiplex PCR. Using TaqMan real time PCR and the ABI 7700 detection system 

(AppliedBiosystems, Foster City, CA.), the most robust primers and probes can be quickly 

selected. Also, since the results are quantitative, the concentration of the target can be 

determined (Bulletin #2, AppliedBiosystems, Foster City, CA).  

Real-time quantitative PCR has been used in studying various causal agents of plant 

diseases including bacteria, fungi, and viruses (Schoen et al., 1996; Schaad et al., 1999; Weller et 

al., 2000; Frederic et al., 2000; Weller and stead, 2002; Kokkinos and Clark, 2006a; 2006b). 

Kokkinos and Clark (2006a; 2006b) were the first to use real-time quantitative PCR to quantify 

different viruses infecting sweetpotato. They utilized the TaqMan® Chemistry to develop assays 

for the detection and quantification of three potyviruses (SPFMV, SPVG, SPV-2), the crinivirus 

SPCSV and the begomovirus SPLCV. In the Taqman® system, an oligonucleotide probe 

sequence of approximately 25-30 nucleotides in length is labeled at the 5’ end with a fluorescent 

dye, usually a 6-carboxyfluorescein (6-FAM) and a quencher dye, usually 6-carboxytetramethyl-

rhodamine (TAMRA), at the 3’ end (Schaad and Frederick, 2002). The Taqman® probe is 

degraded by the 5-3’ exonuclease activity of the Taq polymerase as it extends the primer during 

each PCR amplification cycle and the fluorescent dye is released. The protocol by Kokkinos and 

Clark (2006a) was used to study the virus multiplication and movement in various sweetpotato 

genotypes used in this study. 
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1.7 Trait-linked Molecular Markers 

Although many sweetpotato cultivars and landraces resistant to SPVD exist in East 

Africa, resistance has been associated with relatively late maturing, low-yielding genotypes 

(Aritua et al. 1998b), and there is need to incorporate resistance to high yielding, early maturing, 

β-carotene rich cultivars. Selection for resistance to SPVD is based on symptom development 

after field exposure in disease prone areas and by graft-inoculations (Hahn et al. 1981; 

Mihovilovich et al., 2000; Mwanga et al., 2002b), processes requiring considerable time and 

resources. Recent advances in molecular techniques are offering novel techniques that may 

greatly reduce costs and time. Attention is focused on molecular markers to accelerate breeding 

through early selection. DNA markers such as randomly amplified polymorphic DNA (RAPD), 

restriction fragment length polymorphism (RFLP), microsatellites or simple sequence length 

polymorphism (SSLP), and amplified fragment length polymorphism (AFLP) have been 

associated with simply inherited and complex traits (quantitative trait loci, QTL) in different 

crops (Pongam et al., 1998; Brandshaw et al., 1998; Jin et al., 1998). Mwanga et al. (2002a) 

found an AFLP marker (spcsv1) which explained 70% of the variation in resistance to SPCSV 

and one RAPD marker (spfmv1) which explained 72% of the variation in SPFMV resistance in 

sweetpotato. However, Mwanga et al. (2002a) did not find markers associated with resistance to 

SPVD. Mcharo (2005) used AFLP and various multivariate statistical techniques to analyze for 

morphological, quantitative and molecular marker variation in sweetpotato and in the ornamental 

liriopogon. This study used the AFLP technique together with discriminant analysis and logistic 

regression to link molecular markers with resistance to SPVD in order to identify markers of 

interest from a population of unrelated genotypes selected mainly from a Kenyan germplasm 
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collection. The AFLP technique (Vos et al., 1995) was chosen because it provides highly 

polymorphic markers combining both RFLP and PCR strategies.  

1.8 Use of Statistical Techniques to Identify Important Trait-linked Molecular Markers 

Multivariate statistics have been used to mine through molecular marker information to 

identify any underlying relationships between various phenotypic groups and DNA markers. 

Mcharo (2005) noted that there are two approaches to integrating molecular markers and 

phenotypic traits, namely i) Analysis of Variance using molecular data to test difference among 

groups defined according to phenotypic data using analysis of molecular variance (AMOVA) 

based algorithm, and ii) selection of informative markers and computation of a classification 

model for the phenotypic group membership using discriminant and logistic regression. 

AMOVA is used to detect statistical differences among pre-defined groups (Excoiffer et al., 

1992). Groups that are significantly different are subsequently analyzed using discriminant 

analysis to determine which markers discriminate between phenotypic groups using molecular 

marker information. Application of discriminant analysis to a molecular marker data set enables 

one to determine which markers contribute most to discriminate between groups and then use the 

information to predict group membership. The identified markers can then be used to test the 

validity of groups based on actual data, to test groups that have been created, or to assign lines 

into groups. Phenotypic grouping for subsequent AMOVA, QTL, discriminant and logistic 

regression analysis may be based on morphological observations or statistical techniques such as 

cluster analysis (Mcharo 2005). In our study, we used symptom development after graft 

inoculations to identify two groups consisting of genotypes resistant and susceptible to SPVD. 

Discriminant analysis and logistic regression represent novel approaches in marker-

assisted selection (Cruz-Castillo et al. 1994; Ebdon et al., 1998; Capdevielle et al. 2000; Fahima 
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et al. 2002; Aluko 2003; Mcharo 2005). Discriminant analysis is a multivariate statistical 

technique that can identify differences among groups of individuals (or treatments) and improve 

the understanding of relationships among the variables measured within those groups (Cruz-

Castillo et al., 1994). The technique determines how best to separate or discriminate two or more 

groups of individuals, given quantitative measurements of several individuals, through 

simultaneous analysis of several variables (Rencher, 1992). Discriminant analysis is used to find 

linear functions of variables that maximally separate two or more groups of individuals while 

keeping variation within groups as small as possible. Discriminant analysis may be used when it 

is important to separate known groups or a priori groupings, and to identify major sources of 

difference between groups. Genotypes possessing trait extremes, e.g., highly resistant versus 

highly susceptible are used exclusively, and those with intermediate reactions ignored. Logistic 

regression is a specialized form of regression that is formulated to predict and explain a binary 

(two-group) categorical variable rather than a metric dependent measure (Hair et al., 1998). The 

method analyzes proportions based on the binary event and the proportions are then transformed 

into odds ratios (Mcharo, 2005). Odds is the ratio of a probability of an event occurring to a 

probability of the event not occurring while odds ratio is a ratio of two odds. The event may 

group into either one or the other phenotypic group. During the analysis the odds undergo a logit 

transformation to obtain log odds for a given variable such as a DNA marker. The log odds for 

each variable selected by logistic regression are then included in the group classification model. 

The result of logistic regression analysis is the probability of inclusion into a phenotypic group. 

Discriminant and logistic regression analysis are especially useful in dealing with populations of 

unrelated clones such as landrace genotypes since quantitative trait loci (QTL) analysis is not 
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suited for such populations with no progeny-parent combinations (Mcharo, 2005). These 

methods were used to identify molecular markers associated with SPVD resistance (Chapter 5). 

1.9 Objectives 

The objectives of this study were: 

1. To survey for SPVG, SPV-2, and begomoviruses infecting sweetpotato in Kenya and 

determine their relationship with others characterized from different parts of the world.  

2. To document the prevalence of three common viruses (SPFMV, SPMMV, and SPCSV) 

in field-grown sweetpotato genotypes with varying degrees of observable virus 

symptoms, and to determine if there are significant differences in virus presence between 

different vine sections. 

3. Determine the response of sweetpotato genotypes to dual infection by SPFMV and 

SPCSV by studying the distribution and multiplication of the two viruses in resistant and 

susceptible genotypes using real-time quantitative PCR. 

4. Identify and classify unrelated sweetpotato genotypes selected from East African 

germplasm collections into phenotypic groups as resistant and susceptible to SPVD, and 

to identify the most important AFLP markers contributing to variation among the 

phenotypic groups using discriminant and logistic regression analysis. 
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CHAPTER 2: SURVEYING FOR TWO POTYVIRUSES AND A BEGOMOVIRUS 
INFECTING SWEETPOTATO IN KENYA* 

2.1 Introduction 

Sweetpotato is an important subsistence food crop grown in almost all agroecological 

zones of Kenya. Different studies have been carried out to determine the viruses infecting the 

crop in the country (Wambugu, 1991; Ateka et al., 2004). Wambugu (1991) reported the 

presence of seven viruses infecting sweetpotato in Kenya and Uganda using serology. However, 

only four viruses have been identified and confirmed to be widely distributed in the region 

(Mukasa et al., 2003; Ateka et al., 2004b; Tairo et al., 2004), of which two belong to family 

Potyviridae: the potyvirus Sweet potato feathery mottle virus (SPFMV) and the ipomovirus 

Sweet potato mild mottle virus (SPMMV); one belongs to the family Closteroviridae: the 

crinivirus Sweet potato chlorotic stunt virus (SPCSV) as well as Sweet potato chlorotic fleck 

virus (SPCFV) for which the genus Carlavirus has been proposed (Aritua et al., 2003). Aritua et 

al. (2006) reported on the occurrence of Sweet potato caulimo-like virus (SPCaLV) in Uganda, 

though the incidence was extremely low (one sample from 1473 samples). There have been 

reports of viruslike symptoms for which the causal virus(es) was not known (Mukasa et al., 

2003; Ateka et al., 2004b; Tairo et al., 2004; Aritua et al., 2006), indicating the likely presence of 

unknown viruses. Many more viruses have been reported to infect sweetpotato in different parts 

of the world (Clark and Moyer, 1988; Salazar and Fuentes, 2001). Three such viruses are Sweet 

potato virus G (SPVG) and Sweet potato virus 2 (SPV-2) (Souto et al., 2003), and Sweet potato 

leaf curl virus (SPLCV) (Lotrakul et al., 1998). 

SPVG has been reported in different parts of the world including China, USA, Egypt, and  

South Africa (Colinet et al., 1994; Souto et al., 2003; IsHak et al., 2003; Ateka, 2004b). SPV-2  

*Part of this work was published in Plant Disease 90: 832 

 30



was first reported in Taiwan (Rossel and Thottappilly, 1988) and named as SPV-2. It was later 

found in the US (Souto et al., 2003). Ateka et al. (2004a) characterized the isolate from Taiwan 

and renamed it Sweet potato virus Y (SPVY). The unique strain of SPFMV found in Zimbabwe 

(Chavi et al., 1997), may also represent SPV-2. Valverde et al. (2007) concluded that the name 

Sweet potato virus 2 takes precedence and should be used for the viruses previously referred to 

as IVMV or SPVY. Although SPV-2 and SPVG have been reported in different parts of Africa, 

they have not been detected in East Africa.   

Different geminiviruses, including Sweet potato leaf curl virus (SPLCV), Ipomoea 

crinkle leaf curl virus (ICLCV), and Sweet potato leaf curl Georgia Virus (SPLCGV, previously 

called Ipomoea leaf curl virus, ILCV) have been reported to infect sweetpotato (Chung et al., 

1985; Cohen et al., 1997; Lotrakul et al., 1998). Ipomoea yellow vein virus (IYVV) has also been 

isolated from I. indica (Banks et al., 1999). The viruses are currently placed in the Begomovirus 

genus of the family Geminiviridae. Even though the viruses have been reported in different parts 

of the world, previous surveys for viruses in sweetpotatoes in Africa did not assay for the 

presence of geminiviruses. 

The objective of this study was to survey for SPVG, SPV-2, and begomoviruses infecting 

sweetpotato in Kenya and determine their relationship with others that have been characterized 

from different parts of the world. 

2.2 Materials and Methods 

2.2.1 Survey for SPVG and SPV-2  

A survey was conducted in sweetpotato fields in Nyanza, Western, Central, Coast and 

Eastern provinces of Kenya to determine the presence of SPVG and SPV-2. Sweetpotato cuttings 

with virus disease symptoms similar to those exhibited by potyviruses (including chlorotic spots, 
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vein clearing, vein banding, purple spots, mottling and mosaic) were collected. Each cutting was 

grafted to a one-month-old I. setosa test plant. The grafts were assessed for 3 weeks for graft 

establishment and also monitored for symptom development. Different symptoms observed on 

the I. setosa were recorded for a period of 2 months.  Symptomatic leaves from the I. setosa test 

plants were then assayed for the presence of specific viruses.  

Presence of SPVG and SPV-2 were assayed using nitro-cellulose membrane enzyme-

linked immunosorbent assay (NCM-ELISA) as described by Gutierrez et al. (2003) using 

polyclonal antibodies supplied in kits provided by International Potato Center (CIP), Lima, Peru 

and/or from C. Clark’s lab (Department of Plant Pathology and Crop Physiology, Louisiana State 

University).  NCM strips spotted with sap from virus-positive control plants provided by C. 

Clark were included as positive controls.  

Two leaf disks (about 1cm in diameter) were taken from two leaves (symptomatic leaves 

when available) of each I. setosa, placed in a plastic bag, and homogenized in 2 ml of Tris-

buffered saline (TBS) pH 7.5 containing 0.2% of sodium sulfite (Na2SO3). The tissue was 

completely ground using a test tube, and then the plastic bag was allowed to stand for 20-30 min 

at room temperature. The clarified sap extract (15µl) was blotted onto a TBS buffer-saturated 

nitrocellulose membrane and air-dried for 20-30 min. All the incubations and washings were 

done at room temperature in a shaker with gentle agitation (50 rpm for incubations and 100 for 

washings). The membranes were blocked with TBS containing 2% powdered milk and 2% 

Triton X-100 and incubated for one hour. The blocking solution was discarded and the 

membranes rinsed with TBS. The first antibody (polyclonal specific to SPVG or SPV-2), diluted 

in TBS containing 2% powdered milk, was added to the membranes and incubated overnight.  



The membranes were washed in T-TBS (TBS containing 0.05% Tween 20) four times for 

3 min each. The second antibody (goat anti-rabbit) conjugated with alkaline phosphatase and 

diluted in TBS containing 2% powdered milk, was added to the membranes and incubated for 

one hour. The membranes were washed as before and the presence of bound antibody was 

visualized by the addition of substrate: BCIP/NBT color development solution. The color 

reaction was stopped after 10-20 min using deionized water. Positive reactions were determined 

by visual assessment, and purple color reaction was recorded as positive.  

2.2.2 Survey for SPLCV 

Symptomatic sweetpotato plants with leaf curling, leaf rolling, and/or vein clearing 

symptoms similar to those observed in SPLCV-infected sweetpotato plants (Lotrakul et al., 

1998), were collected for further assay. The collected sweetpotato plants were grafted onto I. 

setosa, and symptoms observed for 2 months after grafting. Total DNA was isolated from 100 

mg of foliar tissue obtained from grafted I. setosa using the GenEluteTM plant Genomic DNA Kit 

(Sigma-Aldrich Inc., St. Louis, Mo.).  

 Sweetpotato cuttings from 38 clones, which had been selected from the Kenyan 

germplasm collection plots for their resistance or susceptibility to sweetpotato virus disease 

(SPVD), were sent to the Plant Germplasm Quarantine Office of USDA-ARS for virus indexing 

and therapy. Though the plants were not being collected for virus detection, and they did not 

have obvious symptoms associated with geminiviruses, the viruses were assayed as a routine. 

The cuttings were planted in a greenhouse and total DNA extracted from sweetpotato leaves one 

month later using a cetyltrimethylammoniumbromide (CTAB) extraction method (Li et al., 

2004). The extracted DNA was used to assay for the presence of geminiviruses using PCR. 
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2.2.3 Polymerase Chain Reaction (PCR) for Geminiviruses  

Degenerate primers SPG1/SPG2 described by Li et al. (2004) to anneal to regions of open 

reading frame (ORF) AC2 and ORF AC1 were used. The two regions are highly conserved in 

geminiviruses infecting sweetpotato and other begomoviruses. PCR was performed using a 

Genius thermocycler (Techne, Cambridge, UK). The amplification was performed in 50µl 

reaction volumes containing 1µl of DNA extract, 1µl of primer SPG1/SPG2 (10µM), 4µl of 2.5 

mM dNTP mix, 5µl 10x Taq DNA polymerase reaction buffer, 2.5µl of 50 mM MgCl2, 0.5µl (5 

U) of Taq DNA polymerase (Sigma-AldrichTM) and 35µl water. The amplification conditions 

were 1 cycle at 94°C  for 90 s; 35 cycles of 94°C  for 40 s, 56°C  for 40 s, 72°C  for 90 s; and 

72°C  for 10 min. PCR products were assessed by electrophoresis in 1.2 % agarose gels in TBE 

buffer, stained with ethidium bromide, and viewed under ultraviolet light. 

SPLCV-specific primers PW285-1/PW285-2 described by Lotrakul and Valverde (1999) 

were used to amplify a 512 bp fragment of the conserved sequences within ORF AC1. The 

reaction volumes were as described above. The amplification conditions were 1 cycle at 94°C  

for 60 s; 45 cycles of 94°C  for 60 s, 55°C  for 60 s, 72°C for 3 min; and 72°C  for 10 min. PCR 

products were assessed as above.  

2.2.4 Cloning and Sequencing 

Bands amplified using primers PW285-1/PW285-2 were excised from agarose gels and 

purified using MinEluteTM Gel Extraction kit (QIAGEN Inc., Valencia, CA). The purified PCR 

products were ligated into pGEM-T Easy vector (Promega Corp., Madison, WI) according to 

manufacturer’s directions. A ligation mix containing 1µl of the cloning vector, 1µl of the T4 

DNA ligase and 1µl of deionized water were made in 5µl of 2X rapid ligation buffer. Two µl of 
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the PCR product was added into the ligation mix and mixed by pipetting. The ligation mix was 

incubated at 4ºC overnight.  

The ligation reactions were briefly centrifuged to collect the contents at the bottom of the 

tube. Two µl of the ligation reaction was put into a sterile 1.5 ml microcentrifuge tube on ice. A 

tube containing Escherichia coli strain JM 109 High efficiency Competent cells (Promega 

CorpTM) were transferred from -70ºC into an ice bath until just thawed (ca. 5 min). Competent 

cells (50µl) were carefully transferred into the tube containing ligation reactions and gently 

flicked to mix the contents. The tubes were incubated on ice for 20 min. The cells were heat-

shocked for 45-50 s in a water bath at exactly 42ºC and the tubes immediately placed on ice for 2 

min. LB medium (950µl) was added to the tubes containing transformed cells. The tubes were 

incubated for 1.5 h at 37ºC with shaking (150 rpm). 100µl of each transformation culture was 

plated onto duplicate LB/ampicillin/PTG/X-Gal plates. The plates were incubated overnight at 

37ºC. Colonies with inserts were identified by blue/white screening. Single white colonies were 

picked, suspended in 3 ml of LB broth media containing 6µl ampicillin and incubated overnight 

at 37ºC with shaking at 150 rpm.  

Recombinant plasmids were recovered from 1.5 ml of the overnight culture of competent 

cells using FlexiprepTM kit (Pharmacia Biotech Inc., Piscataway, NJ), according to the 

manufacturer’s directions. To establish if the insert of interest was cloned, restriction enzyme 

EcoRI was used to digest the recovered plasmids. The restriction reaction was performed in 20µl 

reaction volumes containing 4µl of plasmid DNA, 2μl of the appropriate 10X digestion buffer, 1 

unit of EcoRI restriction enzyme, and 13μl water. The reaction mixture was incubated at 37ºC 

for 60 min. Five μl of bromophenol/glycerol mix was added to each sample, and the reaction 

products assessed by electrophoresis in 1.2% agarose gel in TBE buffer, stained with ethidium 
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bromide, and viewed under ultraviolet light.  Plasmid minipreps containing the correct size of 

DNA fragment were selected for sequence analysis. 

Nucleotide sequences were determined commercially by automated sequence analysis at 

Genomic Technology Support Facility of Michigan State University, East Lansing using a Perkin 

Elmer/Applied Biosystems 3100 capillary sequencer (Perkin Elmer, Foster City, CA). The 

sequences obtained comprising a 512 nucleotide fragment from ORF AC1 were compared with 

corresponding sequences of other geminiviruses infecting sweetpotato. 

Relationships between the Kenyan begomovirus isolates and other begomoviruses 

reported infecting sweetpotato from other parts of the world were analyzed based on a 457 

nucleotide fragment from ORF AC1 nucleotide sequences and derived amino acid sequences 

from the same region. The sequences and their accession numbers are listed in Table 2.1. Percent 

nucleotide and amino acid identities were determined using pairwise global alignment. The 

alignments were used to determine the percent nucleotide sequence identity using ClustalX 

version 1.83 procedure (Jeanmougin et al., 1998). Multiple sequence alignments and 

phylogenetic analysis using neighbor-joining and bootstrap option (1000 replicates) were carried 

out using version 1.83 of ClustalX program (Jeanmougin et al., 1998).  

2.3 Results 

2.3.1 Survey for Viruses  

A total of 146 samples with virus disease symptoms similar to those exhibited by 

potyviruses were collected. The samples analyzed included 55 samples from Western, 22 from 

Nyanza, 20 from Central, 31 from Coast and 18 from Eastern Provinces of Kenya.  Although all 

the 146 samples induced symptoms in I. setosa test plants, none of the samples was positive to 

SPVG or SPV-2 using NCM-ELISA.  
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Ten symptomatic sweetpotato plants with leaf curling, leaf rolling, and vein clearing 

symptoms (Figure 2. 1A, B), were collected from a germplasm collection plot at Kakamega 

Research Station in Western Kenya during February 2005. Whiteflies, the vectors for 

begomoviruses, were observed in the same plots. When I. setosa test plants were graft-inoculated  

 
Table 2. 1. Designation, geographic origin, and GenBank accession numbers of sweetpotato 
begomovirus isolates used for phylogenetic analysis.  
 
Virus isolate Origin GenBank accession number 
Sequenced in this study   
Kenya-4 Kenya DQ361004 
Kenya-43 Kenya DQ361005 
Kenya-46 Kenya Not submitted 
Kenya-79 Kenya Not submitted 
Kenya-80 Kenya Not submitted 
Kenya-84 Kenya Not submitted 
Obtained from GenBank   
SPLCV-USx USA AF104036 
SPLCGVy USA AF326775 
IYVVz Spain AJ586885 
Korea USA AY679765 
W-361 USA DQ361003 
Puerto Rico I  (P Rico I) USA AY679766 
Puerto Rico II  (P Rico II) USA AY679767 
Alabama USA AY769766 
China Isolate  (China) China DQ512731 

xUS isolate of Sweet potato leaf curl virus, ySweet potato leaf curl Georgia virus, zIpomoea 
yellow vein virus 
 

    C A B

 
Figure 2. 1. Leaf curling (A), leaf rolling (B), and vein mottle (C) symptoms observed on 
sweetpotato in Kenyan fields. 
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with scions from the symptomatic sweetpotato plants, some test plants developed symptoms of 

leaf curling, leaf rolling, interveinal chlorosis and stunting, similar to those caused by infection 

with SPLCV or SPLCV with SPFMV.  

2.3.2 PCR 

Degenerate primers SPG1/SPG2 amplified a 912 bp DNA fragment from three out of ten 

total DNA extracts from I. setosa (Figure 2.2), and five out of 39 sweetpotato samples sent to 

USDA. This is the expected size for sweetpotato geminiviruses (Li et al., 2004).  

 SPLCV-specific primers PW285-1/PW285-2 amplified the expected 512 bp DNA 

fragment from 7 of 8 samples that were positive to geminiviruses using degenerate primers 

(Figure 2.3). However, one of the 7 amplified samples had a very weak band and was not 

successfully sequenced. One sample, which had amplified with the degenerate primers, was not 

amplified with the specific primers, suggesting that this might be a different strain or isolate. 

2.3.3 Comparison of the Nucleotide and Amino Acid Sequences of the Partial ORF AC1 

To test for variation between the Kenyan isolates and geographically diverse 

begomovirus isolates infecting sweetpotato, the nucleotide and derived amino acid sequences of 

the partial ORF AC1 from the 6 Kenyan isolates were compared within themselves and with 

others from different countries (7 from US, 1 from Spain and 1 from China). Pairwise 

comparisons of nucleotide and amino acid sequences from the 6 Kenyan isolates gave identities 

ranging from 92 to 100% and 96 to 100%, respectively (Table 2.2), indicating that they are 

isolates of the same virus. Comparisons with nucleotide and amino acid sequences from other 

parts of the world gave 82 to 100% and 79 to 100%, respectively. The Kenyan isolates were 

most closely related to SPLCV-US, with over 94% nucleotide sequence identity and over 97% 
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Figure 2. 2. Detection of sweetpotato geminivirus isolates from Kenya by PCR using degenerate 
primers SPG1/SPG2. Agarose gel (1.2%) containing DNA from: Lane 1 and 10, 1-kb DNA 
ladder; lanes 2 – 7, DNA extracts from I. setosa grafted with Kenyan sweetpotato suspected to be 
infected with geminiviruses; lane 8, SPLCV-US isolate (positive control); lane 9, DNA from 
healthy I. setosa (control); lane 11, water. The primers amplified a 912-bp product from infected 
plants (lanes 2, 5 and 7). 
 
 

 
 
Figure 2. 3. Detection of the Kenyan sweetpotato isolates of geminiviruses by PCR using 
specific primers PW285-1/PW285-2.  Agarose gel (1.2%) containg DNA from: Lane 1, 1-kb 
DNA ladder; lanes 2 – 9, DNA extracts from Kenyan sweetpotato samples detected to be 
infected with geminiviruses using degenerate primers; lane 10, US isolate of Sweet potato leaf 
curl virus (SPLCV-US, positive control); lane 11, DNA from uninoculated I. setosa (healthy 
control); lane 12, water. The primers amplified a 512-bp product from infected plants (lanes 2, 3, 
5-9).  
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Table 2. 2. Pairwise percent nucleotide sequence identity (upper diagonal) and amino acid 
sequence identity (lower diagonal) among the partial ORF AC1 of begomovirus isolates as 
determined using ClustalX software. 
 
Virus Isolate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1. Kenya-4  93 94 92 92 93 94 87 92 93 89 89 88 88 82 
2. Kenya-43 96  97 96 96 96 96 85 94 94 86 88 86 86 81 
3. Kenya-46 97 97  96 96 97 96 85 94 95 87 89 87 87 83 
4. Kenya-79 97 96 98  100 96 96 86 93 94 87 88 86 86 82 
5. Kenya-80 97 96 98 100  96 96 86 93 94 87 88 86 86 82 
6. Kenya-84 96 97 98 98 98  96 84 93 94 86 88 86 86 82 
7. SPLCV-USx 98 97 98 99 99 98  87 96 96 88 90 87 87 83 
8. SPLCGVy 94 92 94 93 93 92 94  85 86 92 89 90 91 85 
9. IYVVz 86 85 88 88 88 86 88 83  95 86 89 86 86 83 
10. Korea 95 94 96 96 96 95 96 92 87  87 90 87 87 83 
11. W-361 94 93 95 94 94 94 94 96 84 92  91 98 99 87 
12. Porto Rico I   94 92 94 94 94 93 94 94 84 94 94  90 91 86 
13. Porto Rico II   92 91 93 92 92 92 92 94 82 90 97 92  98 85 
14. Alabama 94 92 94 93 93 93 94 95 83 92 99 94 96  87 
15. China Isolate   81 79 82 80 80 80 81 80 88 79 84 82 81 83  
xUS isolate of Sweet potato leaf curl virus, ySweet potato leaf curl Georgia virus, zIpomoea 
yellow vein virus 
 

amino acid sequence similarity. Phylogenetic analysis using nucleotide sequences (Fig. 2.4), 

resulted in three groups of isolates being visually distinguished: (a) a single isolate from China; 

(b) four isolates from US which included SPLCGV; and (c) a large clade consisting of all 

isolates from Kenya, one isolate from Spain and 3 isolates from US including SPLCV-US. These 

three groupings were confirmed when amino acid sequences were used (Fig. 2.5). Here, 

however, IYVV (isolate from Spain) diverged and formed its own group, mainly because IYVV 

sequence from the GenBank had 20 nucleotides missing.  

2.4 Discussion 

SPVG and SPV-2 were not detected in any of the samples collected. An earlier survey did not 

detect SPV-2 (also referred to as SPVY; Ateka et al., 2004a) in Kenya (Ateka et al., 2004b) and 

Uganda (Aritua et al. 2006), despite being detected in South Africa. SPVG has been detected in 

Egypt (IsHak et al., 2003). As previously noted by Ateka et al. (2007), it is not clear why SPVG 
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Figure 2. 4. Unrooted neighbor-joining tree obtained from the alignment of the partial ORF AC1 
nucleotide sequences of begomovirus isolates infecting sweetpotato. AC1 nucleotide sequences 
from the Arusha isolate of Tomato leaf curl virus (GenBank accession no. EF194760) and of 
Tomato yellow leaf curl virus (isolate from Egypt, GenBank accession no. AY594174) were used 
as outgroup sequences. Trees were constructed with ClustalX v1.83 and drawn with Tree View 
v1.66.  
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Figure 2. 5. Unrooted neighbor-joining tree obtained from the alignment of the partial ORF AC1 
amino acid sequences of begomovirus isolates infecting sweetpotato. AC1 amino acid sequences 
from the Arusha isolate of Tomato leaf curl virus (GenBank accession no. EF194760) and of 
Tomato yellow leaf curl virus (isolate from Egypt, GenBank accession no. AY594174) were used 
as outgroup sequences. Trees were constructed with ClustalX v1.83 and drawn with Tree View 
v1.66.  
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 and SPV-2 are not detected in Kenya and Uganda but are found in South Africa and Egypt. 

However, it would be important to be careful when exchanging germplasm from these and other 

parts of the world to ensure that the viruses are not introduced in East Africa.  

 As part of this study, the occurrence of a begomovirus infecting sweetpotato in Kenya 

was reported for the first time (Miano et al., 2006). Previous studies in the region and in Africa 

did not specifically survey for geminiviruses in sweetpotato. However, there have been 

indications that more viruses may be present in the region than previously reported especially 

from the symptoms that could not be associated with any of the viruses already detected (Mukasa 

et al., 2003; Ateka et al., 2004b; Aritua et al., 2006). When cuttings from these apparently virus-

free plants were propagated in a greenhouse, some had upward curling of leaves (Aritua et al., 

2006), similar to those induced by SPLCV, although no geminivirus was detected with the 

primers used. Together with reports from other parts of the world including US, China, Spain, 

Japan and Peru (Lotrakul et al., 1998; Banks et al. 1999; Fuentes and Salazar, 2003; Briddon et 

al. 2006; Luan et al. 2006), it is now evident that begomoviruses are associated with sweetpotato 

in almost all geographic regions where sweetpotatoes are grown.  

 Three out of 10 (30%) plants collected with characteristic leaf curl symptoms from the 

germplasm collection plots tested positive for the begomovirus using degenerate primers. Of the 

38 sweetpotato clones that were sent to the Plant Germplasm Quarantine Office of USDA-ARS 

for virus indexing and therapy, 5 (~13%) tested positive for the begomovirus. The 38 genotypes 

had been selected from the Kenyan germplasm collection plots for their resistance or 

susceptibility to sweetpotato virus disease (SPVD), and were therefore not necessarily being 

collected for detection of begomoviruses. The percent of plants infected with a begomovirus is 
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therefore quite high and efforts should be made to evaluate the economic importance of the virus 

in the region.  

 When the eight samples that were positive to begomoviruses using degenerate primers 

were tested using primers specific to sweetpotato begomoviruses, one isolate was not amplified, 

which suggests that a different specie or strain of the virus could be present. Also, in one of the 

field visits, sweetpotato plants with yellow vein mottle symptoms (Figure 1c) similar to those 

observed in I. aquatica infected with SPLCV (Lotrakul et al., 1998) were observed, though DNA 

was not extracted from these plants. Such symptoms are not common in sweetpotato, and there is 

need to determine if these symptoms are actually caused by begomoviruses. This may indicate 

that there might be a number of distinct isolates present in the region, or that different 

sweetpotato genotypes react differently to begomovirus infection.  

 The partial ORF AC1 sequences were used to compare the relationship between the 

begomovirus isolates used in this study and others from different parts of the world. The AC1 

region has a high percentage of similarity among geminiviruses, and has previously been used to 

analyze relationships between different geminiviruses (Lotrakul and Valverde, 1999; Lotrakul et 

al., 2002; Lotrakul et al., 2003). Pairwise alignments revealed that the Kenyan isolates were 

highly similar and closely related to SPLCV-US. The phylogenetic analysis clustered the viruses 

into different groups, of which the two main groups consisted of a) four isolates from USA 

including SPLCGV, and b) a group in which all isolates from Kenya belonged and which 

included SPLCV-US. The isolate from China did not cluster with the other isolates, while IYVV 

clustered away from the Kenyan group only when amino acid sequences were considered, 

mainly because the sequences in the GenBank were less by 20 nucleotides, may be due to a 

possible deletion. SPLCGV (previously called ILCV) has been classified as a different species 
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apart from SPLCV-US (Lotrakul et al., 2003). These results indicated that all six of the isolates 

from Kenya were more closely related to each other and to SPLCV-US, than to SPLCGV. 

Lotrakul and Valverde (1999) proposed that SPLCV-US may have originated from the old world 

(though named US), and it seems the Kenyan isolates used in this study have a similar origin.  

Although the sequences from isolates used for comparisons come from four continents 

(Africa, America, Asia and Europe), it is important to note that only one isolate from Europe and 

one isolate from China were used, and are therefore not a true representation of the diversity in 

these regions. Further, the Kenyan isolates were from a collection plot located in the Western 

region of Kenya. The germplasm consisted of genotypes from different parts of Kenya, and 

included some genotypes from neighbouring East African countries as well as others from other 

parts of the world.  If it were known that the infections originated in the countries of origin of the 

accessions, it would provide a good representation of the regions from where the germplasm was 

collected. However, it is not known if the materials were brought in when infected or if they 

became infected at the site by whitefly transmission from one or few infected accessions. Also, 

there was a surprising absence of sequences from the GenBank of isolates from Japan, Taiwan, 

Israel and isolates recently reported from Peru. The prevalence, distribution and diversity of the 

viruses in these regions need to be studied, and a comprehensive phylogenetic relationship 

developed.  

 Virus diseases are the major disease constraints affecting sweet potato production in the 

East Africa region. The major disease is the Sweet potato virus disease (SPVD) caused by the 

dual infection of SPFMV and SPCSV. Efforts are being made to develop and/or select for 

resistance to this disease. Selecting symptomless vine cuttings for propagation from resistant 

genotypes have been an effective means of managing SPVD (Gibson et al. 1997). The presence 
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of a geminivirus infecting sweetpotato in the region complicates the efforts to develop 

sweetpotato resistant to viruses in that the begomoviruses may cause significant yield reductions 

without inducing symptoms. Clark and Hoy (2006) reported that yields of ‘Beauregard’ infected 

with SPLCV alone were reduced by 25-30% even when no symptoms were observed on the 

plants. SPLCV may also interact with other viruses synergistically. Experiments with single and 

mixed infections with russet crack strain of SPFMV and SPLCV indicated that SPLCV DNA 

titer increased in mixed infections, while that of SPFMV remained the same (Kokkinos and 

Clark, 2006), but the plants remained asymptomatic. However, preliminary results on I. setosa 

indicate that mixed infections of SPFMV and SPLCV cause more severe symptoms than either 

alone (Kokkinos and Clark, 2006). Higher virus titers mean that whiteflies, the vectors of 

SPLCV, will more readily acquire and spread the virus to uninfected plants. Potyviruses 

infecting sweetpotato are widespread in East Africa (Ateka et al., 2004b; Aritua et al. 2006). The 

fact that SPLCV may not show symptoms, even when the virus titers are increased by the 

presence of other viruses poses a challenge to the dissemination of planting materials in the 

region, now that farmers use symptoms to select for virus free planting materials. There is 

therefore a need to incorporate specific begomovirus test procedures into sweetpotato virus 

indexing protocols.  
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CHAPTER 3: IRREGULAR DISTRIBUTION OF VIRUSES IN FIELD-GROWN 
SWEETPOTATO AND ITS SIGNIFICANCE IN PROPAGATION BY SMALL-HOLDER 
FARMERS IN KENYA  
 
3.1 Introduction 

 Viruses cause the most important diseases of sweetpotato crops in the field in East Africa 

(Ngeve, 1990; Geddes, 1990; Gibson et al., 1997). Major sweetpotato viruses reported in the 

region include the aphid transmitted Sweet potato feathery mottle virus (SPFMV, genus 

Potyvirus, family Potyviridae), the whitefly transmitted Sweet potato chlorotic stunt virus 

(SPCSV, genus Crinivirus, family Closteroviridae), the possibly whitefly transmitted Sweet 

potato mild mottle virus (SPMMV, genus Ipomovirus, family Potyviridae), Sweet potato caulimo 

- like virus (SPCaLV), and Sweet potato chlorotic fleck virus (SPCFV), (Mukiibi, 1977; Geddes, 

1990; Gibson et al, 1998; Mukasa et al., 2003; Ateka et al., 2004; Aritua et al., 2006). The most 

severe symptoms are caused by co-infection with SPCSV and SPFMV, which result in the 

synergistic sweet potato virus disease (SPVD) (Mukiibi, 1977; Geddes, 1990; Gibson et al., 

1998; Karyeija et al. 2000). The disease is characterized by chlorosis, small deformed leaves and 

severe stunting (Mukiibi, 1977), leading to production losses of over 90% (Gibson et al., 1998; 

Karyeija et al., 1998). SPMMV has also been reported to synergize with SPCSV resulting in 

sweetpotato severe mosaic disease (SPSMD), with associated 80% yield loss (Mukasa et al., 

2006).  

Despite the continuous presence of the viruses, their vectors and favorable environment 

for disease development, the farmers in the region have continued to successfully grow 

sweetpotatoes, though the yields are normally low. The fact that the crop continues to be grown 

has been attributed to a number of factors. Farmers in the region grow different sweetpotato 

varieties and/or landraces in the same plots. The genotypes have large differences in 
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susceptibility to virus diseases, and good sources of resistance are present in local germplasm 

(Aritua et al. 1998a). In an attempt to control the virus diseases, the farmers select for 

symptomless apical cuttings of approximately 30 cm long for propagation (Aritua et al., 1998a; 

Karyeija et al., 1998; Mukasa et al., 2003). Gibson et al. (1997), using nitro-cellulose membrane 

enzyme-linked immunosorbent assay (NCM-ELISA) and grafting to indicator plants, observed 

an apparent absence of viruses in most symptomless sweetpotato cuttings obtained from farmers’ 

fields in Uganda and suggested that the use of such cuttings has helped the farmers minimize 

yield losses from virus infections. However, Gibson et al. (1997) did not test the different vine 

section to confirm if absence of viruses was limited to a particular section.  

Various studies have shown that the distribution of SPFMV along the length of 

sweetpotato vines is irregular particularly in terms of titers or presence or absence in different 

parts (Nielson and Pope, 1960; Green et al., 1988; Abad and Moyer, 1992; Gibb and Padovan, 

1993; Aritua et al., 1998b). Some local East African sweetpotato genotypes showing field 

resistance to SPVD have also been reported to recover from virus infections, have the ability to 

localize the distribution of SPVD-causing viruses, or some branches within a plant may show no 

symptoms (Aritua et al., 1998a; Gibson et al., 1998; Mwanga et al., 2002). These observations 

have led to the suggestions that uninfected cuttings may be obtained from previously infected 

plants (Mwanga et al., 2002), and that the gains made by farmers in managing SPVD in East 

Africa was due to the use of such cuttings (Gibson et al., 1997). This study was done to 

document the prevalence of three common viruses (SPFMV, SPMMV, and SPCSV) in field-

grown genotypes with varying degrees of observable virus symptoms, and to determine if there 

are significant differences in virus presence between different sections. The ultimate aim was to 
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establish if this variability can be a basis to advise farmers on which section to use for 

propagation. 

3.2 Materials and Methods 

3.2.1 Plant Material 

 Twenty-three accessions (Table 3.1) were selected from a Kenyan germplasm collection 

of sweetpotatoes located at the University of Nairobi, Kabete Field Station Farm in Central 

Kenya. Selection was based on the reaction of the plants to natural virus infections in the field 

plots, and genotypes with different types of symptoms were selected. One vine from each of the 

23 accessions was taken and divided into three sections; the growing shoot-tip (about 15 cm 

long), the mid-section (15 - 30 cm) and greater than 30 cm from the apex. The 3 vine sections of 

each accession were planted in the screenhouse and allowed to grow for about 2 weeks. The 

sweetpotato vines were then grafted to one-month old Brazilian morning glory (I. setosa), a 

nearly universal indicator plant for sweetpotato viruses (Schaefers and Terry, 1976). Two grafts, 

an apical and a side graft, were done on each I. setosa. Graft establishment was assessed and 

only those on which a scion survived for at least 3 weeks were included in the study.  Symptom 

development was observed for 2 months. Symptomatic leaves were used to assay for three 

viruses (SPFMV, SPCSV and SPMMV) that have been reported to be the most common in the 

region (Mukasa et al., 2003; Ateka et al., 2004; Aritua et al., 2006). 

Nine accessions were selected out of the 23 for replicated tests based on the presence or 

absence of either or all of the three viruses in the three sections. Ten cuttings from different 

plants in the same plot were taken twice over a period of two months (five cuttings per time) 

from each of the nine accessions in the field and divided into three pieces as described above.  
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Table 3. 1. Distribution of viruses in three sections of 23 sweetpotato genotypes from field plots 
in Kenya (preliminary test). 
 
 
Accessionx 

Symptoms observed in 
the field 

Plant sectiony 
15 cm 15-30 cm >30 cm 

K/KA/2002/10 Ps SPFMV SPFMV - 
K/KA/2002/12z Cs - SPFMV SPFMV 
K/KA/2002/64z Vc, Cs, Ps, Mt, Gc, Ld SPFMV, 

SPCSV 
SPFMV, 
SPCSV 

SPFMV, 
SPCSV 

K/KA/2002/70 Vc, Cs SPFMV, 
SPCSV 

SPFMV SPFMV 

K/KA/2002/80 Ps - SPFMV SPFMV 
K/KA/2002/82 z  - - - - 
K/KA/2002/88 Ps, Vc SPFMV - SPFMV 
K/KA/2002/90 - SPFMV SPFMV, 

SPMMV 
SPFMV, 
SPMMV 

K/KA/2002/91 z  - SPFMV - SPFMV, 
SPMMV 

K/KA/2002/95 Ps SPFMV SPFMV SPFMV 
K/KA/2002/96 z  - - - - 
K/KA/2002/99 z  - - SPFMV SPFMV 
K/KA/2002/100 - SPFMV SPFMV SPFMV 
K/KA/2002/101 Vc, Ps SPFMV, 

SPCSV 
SPFMV, 
SPCSV 

Plant died 

K/KA/2002/110 Ps SPFMV SPFMV SPFMV 
K/KA/2002/122 - SPFMV SPFMV - 
K/KA/2002/149 - SPFMV, 

SPMMV 
SPFMV, 
SPMMV 

SPFMV, 
SPMMV 

K/KA/2002/150 Ps SPFMV SPFMV SPFMV 
K/KA/2002/154 z  - SPFMV SPFMV - 
K/KA/2002/174 Ps SPFMV SPFMV SPFMV 
K/KA/2002/180 z  Ps - - SPFMV 
K/KA/2002/195 Ps, Cs, Vc SPMMV SPFMV, 

SPCSV, 
SPMMV 

SPFMV, 
SPCSV, 
SPMMV 

K/KA/2002/207 z - - - - 
xDifferent genotypes as coded during germplasm collection. 
yCuttings in each genotype were divided into 3 sections (15 cm, 15-30 cm, and greater than 30 
cm from the apex). The cuttings were grafted onto I. setosa and leaves from I. setosa tested for 
Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV) and 
Sweet potato mild mottle virus (SPMMV) 2 months later. 
 z The genotypes were selected for further, replicated tests 
Cs=chlorotic spots, Gc=general chlorosis, Ld=leaf distortion, Ps=purple spots, Vc=Vein 
clearing, - = no symptoms observed. 
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The cuttings were grown in the screenhouse for about 2 weeks before grafting on to one-month-

old I. setosa, as described. Assays were again done on I. setosa.  

3.2.2 Virus Detection  

 Presence of SPFMV and SPMMV were assayed using nitro-cellulose membrane enzyme-

linked immunosorbent assay (NCM-ELISA) as described by Gutierrez et al. (2003) using kits 

and antisera provided by the International Potato Center (CIP), Lima, Peru. The kit contains 

polyclonal antibodies for different sweetpotato viruses and NCM strips spotted with sap from 

virus-positive and noninfected control plants. The kit also contains alkaline phophatase-labelled 

goat anti-rabbit (GAR-AP) IgG and the substrate (NBT/BCIP) nitro blue tetrazolium Chloride / 

5-bromo-4-chloro-indolyl phosphate, toluidine salt.  

Presence of SPCSV was assayed by NCM-ELISA using a monoclonal antibody (Mix 1) 

provided by E. M. Ateka of KARI Biotechnology Centre (the antibody mix originated from J. H. 

Vetten of Federal Biological Research Centre for Agriculture and Forestry, Braunscheig, 

Germany) and alkaline phophatase-labelled goat anti-mouse (GAM) IgG supplied by Kirkegaard 

and Perry Laboratories Inc. (Gaithersburg, MD, US). NCM strips spotted with SPCSV-positive 

and a noninfected control from the CIP kit were included as controls.  

Two leaf disks (about 1cm in diameter) were taken from each of two leaves (preferably 

with symptoms) of each I. setosa, placed in a plastic bag, and homogenized in 2ml of Tris-

buffered saline (TBS) pH 7.5 containing 0.2% of sodium sulfite (Na2SO3). The tissue was 

completely ground using a test tube, and the plastic bag was let to stand for 20-30 min at room 

temperature. The clarified sap extract (15µl) was blotted onto a TBS buffer-saturated nitro-

cellulose membrane and air-dried for 20-30 min. All the incubations and washings were done at 

room temperature in a shaker with gentle agitation (50 rpm for incubations and 100 for 

 54



washings)  The membranes were blocked with TBS containing 2% powdered milk and 2% 

Triton X-100 and incubated for one hour. The blocking solution was discarded and the 

membranes rinsed with TBS. The first antibody (polyclonal specific to SPFMV and SPMMV, 

monoclonal specific to SPCSV), diluted in TBS containing 2% powdered milk, was added to the 

membranes and incubated overnight. The membranes were then washed in T-TBS (TBS 

containing 0.05% Tween 20) four times for 3 min each. The second antibody (goat anti-rabbit for 

SPFMV and SPMMV, goat anti-mouse for SPCSV) conjugated with alkaline phosphatase and 

diluted in TBS containing 2% powdered milk, was added to the membranes and incubated for 

one hour. The membranes were washed as before and the presence of bound antibody was 

visualized by the addition of a substrate: BCIP/NBT color development solution. The color 

reaction was stopped after 10-20 min using deionized water. Positive reactions were determined 

by visual assessment, and purple color reaction was recorded as positive.  

3.2.3 Data Analysis 

Data were analyzed in SAS (2001) using analysis of variance procedure and least 

significant difference tests used for mean comparisons.  

3.3 Results 

 The 23 initial genotypes were selected based on wide ranging virus symptoms on plants 

growing in the field, which included chlorotic spots on leaves, general leaf chlorosis, leaf 

distortion, purple spots, vein clearing, and some with no observable symptoms (Table 3.1). 

NCM-ELISA results showed 10 out of 23 had one or all of the viruses assayed (SPFMV, SPCSV 

and SPMMV) in all three sections. No viruses were detected in any section of the genotypes 

K/KA/2002/82, K/KA/2002/96 and K/KA/2002/207. Virus was detected in the other genotypes 

except  on the oldest vine section (over 30 cm from apex) in K/KA/2002/12, K/KA/2002/80, 
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K/KA/2002/99 and K/KA/2002/180; or in the youngest vine sections (15 cm from apex) of 

K/KA/2002/10, K/KA/2002/122 and K/KA/2002/154; or in the middle section of two genotypes, 

K/KA/2002/88 and K/KA/2002/. Based on the distribution pattern observed using the 23 

genotypes, 9 genotypes were selected for further tests (Table 3.1).  

 From the 9 genotypes, 10 cuttings were taken from different plants in the same plot (not 

necessarily including the plant on which the previous cutting was taken) during a two month 

period, and assays carried out for the 3 viruses. Significant differences (P<0.0001) were observed 

among genotypes but no differences existed within vine sections for all the 3 viruses (Table 3.2).  

 Out of the 9 accessions studied, 8 were infected with SPFMV in at least 1 out of the 10 

cuttings (Table 3.3). K/KA/2002/64 was highly susceptible to SPVD and all cuttings had severe 

symptoms both in the field and in the screenhouse and SPFMV was detected in all three sections 

of each of the ten vines. K/KA/2002/207 had no symptoms in the field or in the screenhouse, and 

no virus was detected in any of the three sections in any of the 10 vines. All the other genotypes 

had at least one out of the 10 vines showing variable distribution of SPFMV. Accession 

K/KA/2002/82 had developed severe symptoms in the initial 3 weeks after planting the cuttings 

in the screenhouse, but the symptoms disappeared thereafter. However, only SPFMV was 

detected in this genotype. Accession K/KA/2002/91 showed purple chlorotic spots in the field 

but no symptoms in the screenhouse. Almost all the 10 vines had SPFMV detected but not 

SPCSV. In a few cases, no virus was detected in the mid-section (15-30cm) of the vine, but at 

least one of the viruses was detected in the top and the lower region of the vine.  

 SPCSV was only detected in 2 genotypes, K/KA/2002/64 and K/KA/2002/154 (Table 

3.4). Accession K/KA/2002/64 had all the vines infected with SPCSV. In K/KA/2002/154, 

SPSCV was detected in 2 vines, one of which had the virus only at the basal part. Again there  

 56



Table 3. 2. Analysis of variance table of vine sections and genotypes infected with Sweet potato 
feathery mottle virus virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV) and Sweet 
potato mild mottle virus (SPMMV). 
 
Virus Source of 

variation 
DF MS F Value Pr>F 

SPFMV Section 2    0.037   0.04   0.9564 
 Genotype 8  36.204 43.69 <0.0001 
      
SPCSV Section 2     0.0000   0.000   1.000 
 Genotype 8 154.667 19.33 <0.0001 
      
SPMMV Section 2    0.778   2.15   0.1485 
 Genotype 8    8.417 23.31 <0.0001 
 
 
Table 3. 3. Number of sweetpotato vine sections from different genotypes infected with Sweet 
potato feathery mottle virus (SPFMV). 
 
  Vine sectiony   

Accessionx 15 cm 15-30 cm >30cm Means 
K/KA/2002/12 3  4 2    3.0 cd 
K/KA/2002/64 10 10 10 10.0 a 
K/KA/2002/82 5 6 6    5.7 b 
K/KA/2002/91 10 9 8    9.0 a 
K/KA/2002/96 3 2 5    3.3 c 
K/KA/2002/99 3 1 1      1.7 de 
K/KA/2002/154 2 2 3        2.3 cde 
K/KA/2002/180 1 2 1     1.3 ef 
K/KA/2002/207 0 0 0   0.0 f 

Means 4.1 a 4.0 a 4.0 a  
xDifferent genotypes as coded during germplasm collection.  
yA total of 10 cuttings in each genotype were divided into 3 sections (15 cm, 15-30 cm, and 
greater than 30 cm from the apex) and tested for SPFMV. 
Column means (or row means) followed by same letter(s) are not significantly different 
according to least significant difference procedure (SAS Institute) at P=0.005.
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Table 3. 4. Number of sweetpotato vine sections from different genotypes infected with Sweet 
potato chlorotic stunt virus (SPCSV). 
 
    Vine sectiony   

Accessionx 15 cm 15-30 cm >30cm Means 
K/KA/2002/12 0 0 0 0.0 c 
K/KA/2002/64 8 8 7 7.7 a 
K/KA/2002/82 0 0 0 0.0 c 
K/KA/2002/91 0 0 0 0.0 c 
K/KA/2002/96 0 0 0 0.0 c 
K/KA/2002/99 0 0 0 0.0 c 
K/KA/2002/154 1 1 2 1.3 b 
K/KA/2002/180 0 0 0 0.0 c 
K/KA/2002/207 0 0 0 0.0 c 

Means 1.0a 1.0a 1.0a  
xDifferent genotypes as coded during germplasm collection.  
yA total of 10 cuttings in each genotype were divided into 3 sections (15 cm, 15-30 cm, and 
greater than 30 cm from the apex) and tested for SPCSV. 
Column means (or row means) followed by same letter(s) are not significantly different 
according to least significant difference procedure (SAS Institute) at P=0.005. 
 
 
were no significant differences within sections infected with SPCSV.  

 SPMMV was found in 4 out of the 9 genotypes, with significant differences (P<0.0001) 

only being observed among genotypes but not within the sections (Table 3.5). The number of 

vines in each section infected with at least one virus is recorded in Table 3.6. Again, significant 

differences were only found among genotypes and not within sections.  

3.4 Discussion  

 The lower-than-expected incidence of viral diseases in the East African sweetpotato 

farms has been associated with use of resistant landraces, use of symptomless 30 cm-long 

cuttings for planting and the uneven distribution of viruses in sweetpotato vines. We investigated 

if there are differences in levels of detection of three of the most common viruses detected in the 

East African fields. Though farmers normally use 30-cm long cuttings, we used a 15 cm-long 

cutting to determine if a smaller cutting (but long enough for routine field propagation) would  
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Table 3. 5. Number of sweetpotato vine sections from different genotypes infected with Sweet 
potato mild mottle virus (SPMMV). 
 
  Vine sectiony   

Accessionx 15 cm 15-30 cm >30cm Means 
K/KA/2002/12 0 0 1   0.3 bc 
K/KA/2002/64 2 2 1 1.7 b 
K/KA/2002/82 0 0 0 0.0 c 
K/KA/2002/91 5 3 4 4.0 a 
K/KA/2002/96 0 0 0 0.0 c 
K/KA/2002/99 2 0 1   1.0 bc 
K/KA/2002/154 5 4 3 4.0 a 
K/KA/2002/180 0 0 0 0.0 c 
K/KA/2002/207 0 0 0 0.0 c 

Means 1.6 a 1.0 a 1.1 a  
xDifferent genotypes as coded during germplasm collection. 
yA total of 10 cuttings in each genotype were divided into 3 sections (15 cm, 15-30 cm, and 
greater than 30 cm from the apex) and tested for SPMMV. 
Column means (or row means) followed by same letter(s) are not significantly different 
according to least significant difference procedure (SAS Institute) at P=0.005. 
 
 
Table 3. 6. Number of sweetpotato vine sections from different genotypes infected with at least 
one of the three viruses (SPFMV, SPCSV and/or SPMMV).  
 
  Vine sectiony   

Accessionx 15 cm 30 cm >30cm Means 
K/KA/2002/12 3 4 2     3.0 de 
K/KA/2002/64 10 10 10 10.0 a 
K/KA/2002/82 5 6 7   6.0 b 
K/KA/2002/91 10 9 9   9.3 a 
K/KA/2002/96 3 2 5     3.3 cd 
K/KA/2002/99 4 1 1     2.0 de 
K/KA/2002/154 5 5 5     5.0 bc 
K/KA/2002/180 1 2 1    1.3 ef 
K/KA/2002/207 0 0 0  0.0 f 

Means 4.6 a 4.3 a 4.4 a  
xDifferent genotypes as coded during germplasm collection.  
yA total of 10 cuttings in each genotype were divided into 3 sections (15 cm, 15-30 cm, and 
greater than 30 cm from the apex) and tested for Sweet potato feathery mottle virus (SPFMV), 
Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato mild mottle virus (SPMMV). 
Column means (or row means) followed by same letter(s) are not significantly different 
according to least significant difference procedure (SAS Institute) at P=0.005. 
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increase the number of healthy cuttings obtained from the fields. No significant differences were 

observed when the different sections within the vines were compared, indicating that the 

probability of obtaining a cutting apparently free from virus infection from an already infected 

vine is very low. More cuttings were infected with SPFMV than with either SPCSV or SPMMV. 

SPFMV is more common than both SPCSV and SPMMV in Kenya (Ateka et al., 2004) and is 

detected even in plants showing mild or no symptoms (Green et al., 1988). Different accessions 

used in this study had different numbers of vines infected with at least one of the viruses, 

possibly indicating differences in susceptibility and/or resistance to the viruses.  

 Detection of SPFMV and SPMMV directly from sweetpotato infected with either virus 

alone is not reliable, especially using serology (Esbenshade and Moyer, 1982; Abad and Moyer, 

1992; Mukasa et al., 2006). The rate of detection is increased when infected sweetpotato plants 

are grafted on to I. setosa, a host in which most viruses, including SPFMV, SPCSV, and 

SPMMV induce symptoms and attain a sufficient titer to be detected serologically (Kokkinos 

and Clark, 2006; Schaefers and Terry, 1976). SPFMV has uneven distribution in infected 

sweetpotato plants both in terms of titer levels and in terms of its presence and absence (Nielsen 

and Pope, 1960; Frison and Ng, 1981; Green et al., 1988; Abad and Moyer, 1992; Gibb and 

Padova, 1993; Aritual et al., 1998b; Gibson et al., 1998; Mwanga et al., 2002; Dje and Diallo, 

2005). Aritua et al. (1998b) observed that plants initially infected with SPFMV alone recover 

with time, that the uneven distribution of SPFMV in infected plants can lead to an absence of 

SPFMV in an increasing proportion of new shoots, and that the proportion of new shoots in 

which SPFMV was not detected increased more rapidly in the more resistant variety. SPVD-

resistant sweetpotato plants graft-inoculated with SPFMV and subsequently planted in a field in 

Uganda all became virus free over time (Aritua et al., 1998b). However, even in such cases 
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where recovery from symptom development was observed, grafting of the plants to I. setosa 

often resulted in infections, showing that the virus may at times be present in the plant, though in 

low titers. The virus titers of both SPFMV and SPMMV increase drastically in the presence of 

SPCSV, and detection is much more reliable from mixed infections (Kokkinos and Clark, 2006; 

Mukasa et al., 2006). Some sweetpotato genotypes have also been reported to localize the 

distribution of SPVD, meaning that the disease may not be fully systemic in resistant genotypes, 

or some branches within a plant may show no symptoms (Gibson et al., 1998). Gibson et al. 

(1997) and Aritua et al. (1998b) compared this phenomena to the recovery observed in cassava 

infected with Cassava mosaic virus (CMV). In this study, we investigated whether this 

variability may be useful to farmers by looking for a section of the vine that is continually free 

from virus infection. We expected the cuttings from older vine parts to have more viruses present 

than in the terminal portion. We report that though the distribution was variable in some vines, 

the three viruses were equally present in the three sections. This is supported by the fact that it is 

generally not easy to clean sweetpotatoes from virus infections even when using meristem tip 

cultures. Aritua et al. (1998b) also noted that the likelihood of SPFMV being absent was similar 

for all portions of sweet potato stem. Dje and Diallo (2005) observed that SPFMV was present in 

all the leaves sampled from susceptible plants, even in the youngest growing leaves, indicating 

that the virus might only be absent in the emerging leaf. Green et al. (1988) observed that no 

obvious spatial pattern of virus distribution was evident in leaves sampled from an individual 

plant. It is therefore improbable that a healthy cutting long enough for propagation can be 

obtained from an already infected vine.   

 An interesting observation was noted where the midsection of some vines had no 

virus(es) while the basal- and tip-sections were infected. Dje and Diallo (2005) explain that 
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SPFMV colonizes a zone before moving to a higher zone. However, they did not indicate if a 

section within the plant could remain uninfected for sometime before the virus spreads to the 

other regions. Dje and Diallo (2005) also noted that the leaves located between the grafting point 

and the apex had the highest virus concentrations both in susceptible and tolerant clones. Green 

et al. (1988) reported that a few SPFMV-infected leaves were interspersed with non-infected 

leaves, but also observed that such a situation may not be the same for all virus-infected 

cultivars. An explanation for such an occurrence is needed.  

 We conclude that it may not be easy for the farmers to predict the section of the vine that 

is not infected with viruses. However, an important aspect that should be included in further 

studies in this area (that was not included in this study) is the comparison of the field-derived 

symptomless cuttings with pathogen-tested cuttings of the same genotypes. Previous research 

implied that unique environmental conditions may aid recovery, though no data exists to support 

the hypothesis. Such environmental and/or climatic conditions favoring recovery of previously 

virus infected sweetpotato genotypes should be investigated. If identified, particular localities 

and periods of the year when such conditions occur can be utilized to generate cuttings for 

propagation.  
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CHAPTER 4: RESPONSE OF SWEETPOTATO TO INFECTION BY CAUSAL 
AGENTS OF SWEET POTATO VIRUS DISEASE 

4.1 Introduction 

The most important diseases affecting sweetpotato production in the world are caused by 

viruses (Carey et al., 1999; Fuglie, 2007). Currently, more than 20 viruses infect sweetpotato 

(Valverde et al., 2007). With the exception of a few viruses like Sweet potato leaf curl virus 

(SPLCV, genus Begomovirus) and Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus), 

most single infections cause mild or no symptoms, and consequently, no significant yield 

reduction is observed (Clark and Hoy, 2006). In nature, co-infection of two or more viruses in 

sweetpotato is common (Gutierrez et al., 2003; Mukasa et al., 2003; Ateka et al., 2004; Mukasa 

2006; Untiveros et al., 2007), resulting in enhanced symptom development and significant yield 

reductions. Novel synergistic interactions have been reported involving SPCSV with viruses 

belonging to different genera, including Sweet potato feathery mottle virus (SPFMV), Sweet 

potato virus G (SPVG), Sweet potato virus 2 (SPV 2), Sweet potato mild speckling virus 

(SPMSV) (each in the genus Potyvirus), Sweet potato mild mottle virus (SPMMV, genus 

Ipomovirus), Cucumber mosaic virus (CMV, genus Cucumovirus), Sweetpotato chlorotic fleck 

virus (SPCFV, a putative Carlavirus), and C-6 (also a putative Carlavirus) (Cohen and 

Loebenstein, 1991; Di Feo et al., 2000; Mukasa et al., 2006; Kokkinos and Clark, 2006b; 

Untiveros et al., 2007).  

Sweet potato virus disease (SPVD), a result of dual infection by SPFMV and SPCSV, is 

the main disease limiting sweetpotato production worldwide (Geddes, 1990; Gibson et al., 1997; 

Carey et al., 1999; Karyeija et al., 2000; Gutierrez et al., 2003), especially because of the broad 

geographic distribution of the two viruses. Since over 90% of the world sweetpotato production 

is concentrated in the developing countries where most farmers have limited resources (Fuglie, 
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2007), the most viable method of SPVD control has been the use of resistant cultivars. Selection 

and breeding for resistance to SPVD is therefore a priority in different sweetpotato breeding 

programs all over the world.  Selection for SPVD resistance has mainly been based on the 

absence (or attenuation) of symptoms after field exposure in disease prone areas, by graft-

inoculations and by use of serology (Hahn et al., 1981; Mihovilovich et al., 2000; Mwanga et al., 

2002b). However, none of these methods is effective in giving relative virus concentrations in 

different sweetpotato genotypes, and therefore, cannot differentiate whether the plants are 

tolerant (i.e., lack of, or reduced symptom development) or resistant (i.e., reduction in or a lack 

of virus accumulation) to SPCSV and/or SPFMV. Also, no studies have been done to compare 

how resistant and susceptible sweetpotato genotypes react to infection by the two viruses. 

Kokkinos and Clark (2006a) developed the use of real-time quantitative PCR assays for 

detection and relative quantification of different potyviruses (including SPFMV), SPCSV and 

Sweet potato leaf curl virus (SPLCV, genus Begomovirus) in sweetpotato. The technique can be 

used to differentiate tolerant genotypes from resistant ones in that concentration levels of viruses 

between different genotypes are determined, therefore providing a better understanding of virus 

titer characteristics associated with resistance.   

In a previous study (Miano et al., 2007), we identified a group of genotypes as resistant to 

SPVD using mild or delayed symptom development after natural and/or graft inoculation with 

SPFMV and the East African strain of SPCSV.  However, it was not determined if the delayed or 

mild symptom development was related to resistance to symptom expression or resistance to 

SPFMV and/or SPCSV multiplication and/or spread in the plant. The work presented in this 

report was aimed at understanding this aspect and analyzing the mechanism of disease resistance 
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or tolerance of sweetpotato to SPVD by studying the distribution and multiplication of SPFMV 

and SPCSV in resistant and susceptible genotypes using real-time quantitative PCR. 

4.2 Materials and Methods 

4.2.1 Plant Materials 

The four sweetpotato genotypes used in this study were ‘Beauregard’, ‘Naspot I’, ‘Mar 

Ooko’ and ‘Namaswakhe’. ‘Beauregard’ is the main cultivar grown in the United States. This 

cultivar was developed by the Louisiana Agricultural Experiment Station to combine resistance 

to diseases and insects of local importance with good horticultural and culinary characteristics. 

Though high yielding and rich in β-carotene, the cultivar is highly susceptible to SPVD. The 

characteristics of the cultivar are described by Rolston et al. (1987). ‘Naspot I’, ‘Mar Ooko’ and 

‘Namaswakhe’ were obtained from the Kenya Agricultural Research Institute (KARI, Nairobi, 

Kenya) germplasm collection, and were among a group of 38 selected genotypes that were sent 

to Plant Germplasm Quarantine office of USDA-ARS, Beltsville, MD for virus indexing and 

therapy (Miano et al., 2007). ‘Naspot I’ was originally released in Uganda and has been 

described as resistance to SPVD (Mwanga et al., 2003; Miano et al., 2007). When infected with 

the US strains of SPVD-causing viruses, the genotype only showed mild mottling, and was thus 

considered resistant for this study.  ‘Mar Ooko’, a popular landrace with western Kenya farmers, 

has not been described. However, when inoculated with the US strains of SPVD-causing viruses, 

‘Mar Ooko’ only showed transient chlorotic spots, and was thus considered resistant. 

‘Namaswakhe’ is a popular variety grown mainly in western Kenya (Njuguna, 2005), and is 

being evaluated in the national yield performance trials by breeders. The genotype showed 

severe SPVD symptoms both in Kenya and in the greenhouse in USA. It was included as a 

susceptible genotype in this study. 



4.2.2 Virus Inoculation and Quantification 

Sweetpotato cv. ‘Beauregard’ that was previously graft inoculated with SPFMV (russet 

crack strain of SPFMV, isolate 95-2) and SPCSV (isolate BWFT-3 from USA) were used to 

generate the scions to graft-inoculate virus tested, clonally propagated ‘Beauregard’, ‘Naspot I’, 

‘Mar Ooko’ and ‘Namaswakhe’. Apical cuttings from each genotype were grown under standard 

greenhouse conditions in 17-cm-diameter ITML Elite Azalea pots (ITLM Horticultural Products 

Inc., Brantford, ON, Canada) containing autoclaved soil mix consisting of 1 part river silt, 1 part 

sand, 1 part Red-earth® Plug and Seedling Mix Series (Sun Gro Horticulture Distribution Inc., 

Bellevue, WA) and 3.5g per pot of Osmocote® 14-14-14 (Scotts-Sierra Horticultural Products 

Company, Marysille, OH). The plants were graft-inoculated 10 days after planting. One wedge 

graft was made per plant by inserting a scion from the source plant into a slit on the side and near 

the base of the stock plant. Only those plants on which the scion survived for 3 weeks were used. 

Each treatment was replicated four times. A weekly insecticide spray program was applied to 

control aphids and whiteflies. Lateral branches were removed to allow only one vine to grow. 

Three 1-cm-diameter disks were cut from different parts of the same leaves every 5 days post 

inoculation (DPI) for a period of 25 days. Leaves were selected for sampling beginning with the 

first leaf above the graft and progressing up the plant as the plant grew. The leaf above the point 

of inoculation was considered leaf number 1 and leaves were numbered sequentially from base to 

growing tip. The plants were cut back twice (at 26 and 48 DPI), each time the plants were 

allowed to regrow from axillary buds and a composite sample taken three weeks after cut back. 

The samples were immediately frozen in liquid nitrogen and stored at -80 ºC until extraction. 

4.2.3 Total RNA Extraction 

Frozen leaf tissue was ground to a fine powder in liquid nitrogen using a mortar and 

pestle and total RNA extracted from about 50 mg of the finely ground leaf tissue using Qiagen’s 
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RNeasy Plant Mini Kit® (Qiagen Inc, Valencia, CA). To eliminate possible residual DNA 

contamination, the RNA samples were treated on-column with DNase I using RNase –Free 

DNase Set (Qiagen IncTM) as an optional step during the RNA extraction. The RNA was then 

eluted from the column using RNase-free water. Total RNA was then quantified using a 

NanoDrop® ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies Inc, Wilmington, 

DE) to establish the concentration and purity of the extracted RNA. RNA concentrations were 

then diluted to approximately 15 ng/µl. 

4.2.4 Real-time Quantitative PCR 

The relative quantification, at transcriptional level, of the target virus (SPCSV or 

SPFMV) was performed using the ABI PRISM® 7000 Sequence Detection System 

(AppliedBiosystems, Foster City, CA). For the amplification and relative quantification of the 

target, a set of primers (including a forward and a reverse primer) and a fluorogenic probe (MGB 

Taqman® probe) described by Kokkinos and Clark (2006a) were used.  

Real-time quantitative PCR was performed in 25µl reaction mixtures with 2.5µl template, 

450nM of each primer, 100nM of the Taqman® probe, 12.5µl of the 2x Master Mix, and 0.625µl 

of the 40x MultiScribeTM and RNase inhibitor mix (AppliedBiosystemsTM). The 2x and 40x 

mixes were the components of the Taqman® One Step PCR Master Mix Reagent kit 

(AppliedBiosystemsTM). The following real-time quantitative PCR thermal cycler conditions 

were used: 48ºC for 30 min (cDNA synthesis), 95ºC for 10 min (AmpliTaq Gold® activation), 

followed by 40 cycles of denaturation at 95ºC for 15 s and annealing/extension at 60ºC for 1 min. 

These thermal cycling parameters were optimized for use with the Taqman® One Step PCR 

Master Mix Reagent kit (AppliedBiosystemsTM). All reactions were performed in MicroAmp® 

optical 96-well reaction plates that were sealed with Optical® Caps and placed on a MicroAmp® 

96-well tray/retainer set (AppliedBiosystemsTM). To minimize any errors due to pipetting 
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differences between samples, duplicates of each sample were performed on each plate, and the 

CT (threshold cycle) values obtained were averaged during data analysis. A standard curve was 

generated to establish if the target RNA and the endogenous control were transcribed with the 

same efficiency. Virus quantifications were then calculated using the ∆∆ct method (User Bulletin 

#2, AppliedBiosystems, Foster, CA). 

To normalize for possible variations in extraction efficiency, the samples assayed for the 

target virus were also used in reactions for an endogenous RNA on the same plate using a pre-

developed Taqman® primer/probe internal positive control. Eukaryotic 18S rRNA endogenous 

control in the form of 20x primer/probe mix (AppliedBiosystemsTM) was used as an endogenous 

control for the normalization process. The same protocol as described above was used for the 

endogenous control reactions, except for the substitution of the primers and probe designed for 

the target with 1.25µl of the 18S rRNA pre-developed primer/probe mix. Every plate also 

included a non-template water control (NTC), negative control (total RNA from virus-tested 

[healthy] plants) as well as positive control (total RNA from virus infected source plant). The 

same extract of the positive control was used in all plates in order to compare the results between 

different plates. The ∆∆ct method, which eliminates the use of standard curves on every plate, 

was implemented for the normalization of samples. 

4.2.5 Data Analysis 

Data were analyzed in SAS (2003) using the General Linear Model and MIXED 

procedures and least significant difference tests used for mean comparisons.  

4.3 Results 

The kinetics of SPFMV and SPCSV accumulation in the four graft-inoculated 

sweetpotato genotypes was studied in a time course experiment. The pattern of accumulation and 



distribution of SPCSV and SPFMV in different leaves along vines of the different genotypes are 

presented in Figures 4.2 to 4.5, and are described below.  

Beauregard: Mottling, vein banding and clearing, and chlorotic spots symptoms were apparent 

in ‘Beauregard’ 8-12 DPI, and most evident in the young leaves (Figure 4.1a,b). The symptoms 

later developed into mosaics, fan leaf and leaf deformations, ultimately resulting in reduced plant 

growth compared to uninfected controls. Virus titers of SPCSV and SPFMV in leaves sampled at 

different positions in a vine are shown in Figure 4.2. SPCSV was detected at 5 DPI in some 

leaves, though the titer levels were extremely low. The virus was easily detected 10 DPI, and the 

titers continued to accumulate up to 25 DPI, the last day of sampling before the plants were cut 

back. The virus was not detected in the leaf immediately above the point of graft inoculation, and 

the youngest leaf had very low titer levels. Otherwise, the virus was evenly distributed in leaves 

along the vine, with high titers being recorded in the leaves located in the middle of the vine.  

SPFMV was detected 10 DPI, and titers continued to accumulate 25 DPI. The virus was 

not detected in the leaf immediately above the point of inoculation. However, unlike SPSCV 

titers which were high throughout the plant, SPFMV titers were greater in the upper portion of 

the plant, particularly the youngest leaves. The region where SPFMV titers were highest 

corresponded to the region with severe symptoms, indicating the symptoms observed were 

closely associated with SPFMV. 

Naspot I: Only mild mottling symptoms and chlorotic spots in the older leaves were observed on 

‘Naspot I’, as early as 10 DPI in some plants (Figure 4.1c). The symptoms observed in the old 

leaves later developed into mosaics, but no observable symptoms were recorded in the young 

leaves. Relative virus titers of SPCSV and SPFMV in different leaves along the vines of ‘Naspot 
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Figure 4. 1. Symptoms observed in different sweetpotato genotypes graft inoculated with Sweet 
potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). (a) Sweet 
potato virus disease (SPVD) symptoms in ‘Beauregard’ 15 DPI. Symptoms were more severe in 
younger leaves. (b) SPVD symptoms in ‘Beauregard’ leaves 46 DPI (top row) compared to 
leaves from a healthy plant (bottom). (c) Chlorotic spots in the older leaf (right) of ‘Naspot I’ 25 
DPI compared to a healthy leaf (left). (d) Leaf deformation in ‘Naspot I’ 70 DPI. (e) ‘Mar Ooko’ 
plant graft inoculated with a SPVD-infected scion. No symptoms were observed 20 DPI. (f) 
Purpling of older leaves and (g) leaf deformation observed in ‘Mar Ooko’ 70 DPI. (h) Mild vein 
banding symptoms in ‘Namaswakhe’ 15 DPI. (i) Severe SPVD symptoms (top) observed in 
‘Namaswakhe’ 46 DPI compared to leaves from a healthy plant (bottom). (j)Vein clearing and 
banding and reduced plant growth in ‘Namaswakhe’ after plants were cut back (46 DPI).  
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Figure 4. 2. The pattern of accumulation and distribution of Sweet potato chlorotic stunt virus 
(SPCSV) and Sweet potato feathery mottle virus (SPFMV) in sweetpotato cultivar ‘Beauregard’. 
Numbers in the horizontal axis represent the relative position of the leaf sampled with respect to 
the point of inoculation (the leaf above the point of inoculation was considered leaf number 1 
and leaves were numbered sequentially from base to growing tip). The virus titers (represented in 
the vertical axis) are relative quantities estimated using real time quantitative PCR and calculated 
using ∆∆ct method (User Bulletin #2, AppliedBiosystems, Foster City, CA). Each value 
corresponds to the average titer content of leaf samples from 4 independent plants. Bars equal the 
standard error for each mean. The vertical axis scale for SPCSV is different from that of 
SPFMV. Day 5 to Day 25 represent days of sampling post inoculation. 
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 I’ are shown in Figure 4.3. SPCSV was detected at very low levels in some leaves 5 DPI, and 

most were positive 10 DPI, though the titer levels remained low. At 25 DPI, a peak was observed 

in leaf position 7 above the point of inoculation. The virus was detected both in young and 

mature leaves throughout the plant, except leaf number one.  

SPFMV was detected in ‘Naspot I’ 10 DPI. The virus titers reached a peak 20 DPI and 

declined at 25 DPI. There was a continuous increase in SPFMV titers in different leaves sampled 

until day 25 of sampling when extremely low or no SPFMV was detected in leaf number 19 and 

above.   

Mar Ooko: Mild mottling and chlorotic spots were observed in one plant of cultivar 

‘Mar Ooko’ 20 DPI. Purple spots were also observed in the mature leaves near the base of the 

plant. Relative virus titers of SPCSV and SPFMV in leaves of ‘Mar Ooko’ located in different 

positions are shown in Figure 4.4. SPCSV was detected in one plant 5 DPI and in all the plants 

10 DPI. However, a unique feature was observed at 15, 20 and 25 DPI in leaf number 7 in all 

replicates when a sudden and significant increase in SPCSV titers occurred. Though the virus 

was detected in the other leaves (except leaf number 1), the titer levels were generally low 

throughout the plant.  

SPFMV in ‘Mar Ooko’ was detected in only one plant 10 DPI, two plants at 15 DPI and 

in all the plants 20 DPI. The titers continued to increase even at 25 DPI, though there were 

fluctuations between different sampling times. One notable observation was lack of virus 

detection in some leaves located in the middle section of the plant even though being detected in 

leaves located in the upper and lower sections of the plant.  

Namaswakhe: Mild vein clearing and banding was observed in ‘Namaswakhe’ 9-15 DPI (Figure 

4.1h). However, the symptoms did not become severe and the plants seemed to recover 
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Figure 4. 3. The pattern of accumulation and distribution of Sweet potato chlorotic stunt virus 
(SPCSV) and Sweet potato feathery mottle virus (SPFMV) in sweetpotato cultivar ‘Naspot I’. 
Numbers in the horizontal axis represent the relative position of the leaf sampled with respect to 
the point of inoculation (the leaf above the point of inoculation was considered leaf number 1 
and leaves were numbered sequentially from base to growing tip). The virus titers (represented in 
the vertical axis) are relative quantities estimated using real time quantitative PCR and calculated 
using ∆∆ct method (User Bulletin #2, AppliedBiosystems, Foster City, CA). Each value 
corresponds to the average titer content of leaf samples from 4 independent plants. Bars equal the 
standard error for each mean. The vertical axis scale for SPCSV is different from that of 
SPFMV. Day 5 to Day 25 represent days of sampling post inoculation. 
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Figure 4. 4. The pattern of accumulation and distribution of Sweet potato chlorotic stunt virus 
(SPCSV) and Sweet potato feathery mottle virus (SPFMV) in sweetpotato cultivar ‘Mar Ooko’. 
Numbers in the horizontal axis represent the relative position of the leaf sampled with respect to 
the point of inoculation (the leaf above the point of inoculation was considered leaf number 1 
and leaves were numbered sequentially from base to growing tip). The virus titers (represented in 
the vertical axis) are relative quantities estimated using real time quantitative PCR and calculated 
using ∆∆ct method (User Bulletin #2, AppliedBiosystems, Foster City, CA). Each value 
corresponds to the average titer content of leaf samples from 4 independent plants. Bars equal the 
standard error for each mean. The vertical axis scale for SPCSV is different from that of 
SPFMV. Day 5 to Day 25 represent days of sampling post inoculation.     
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thereafter. The pattern of distribution of SPCSV and SPFMV in ‘Namaswakhe’ leaves is shown 

in Figure 4.5. SPCSV was detected 5 DPI and peaked 20-25 DPI. The virus was detected in all 

leaves except leaf number 1.  

SPFMV was also detected 5 DPI and peaked after 15 DPI in most of the leaves except 

leaf number 7 where titers declined by 25 DPI.  Except for leaf number 1, the virus was detected 

in all other leaves. 

4.3.1 Comparison of the Four Genotypes 

In order to observe and compare the differences in reaction of the four genotypes to the 

dual infection of SPFMV and SPCSV, the virus titers of the four genotypes were analyzed 

together, and graphed using similar scales for each virus. The overall pattern of accumulation of 

SPCSV and SPFMV are shown in figure 4.6. The titers of SPCSV differed among the 4 

genotypes (P=0.0011), among leaf positions (P<0.0001) and sampling times (P<0.0001). Titer 

levels of SPCSV had differences of up to 500-fold among the genotypes during the observation 

period. For example, ‘Beauregard’ and ‘Mar Ooko’ had maximum relative SPCSV titers 25 DPI 

at around 0.326 and 0.422, respectively, whereas ‘Naspot I’ had maximum SPCSV titers at the 

same time at 0.00056. Though SPCSV was detected in different leaves along the vines of  

‘Naspot I’, the titer levels were very low compared to ‘Beauregard’, and were at the threshold of 

detection, while ‘Namaswakhe’ had SPCSV titers being significantly lower than in ‘Beauregard’ 

and ‘Mar Ooko’, but higher than in ‘Naspot I’.  

The relative titers of SPFMV differed among the 4 genotypes (P=0.0001), among leaf 

positions (P<0.0001), and sampling times (P<0.004). ‘Beauregard’ had significantly higher titers 

of SPFMV than the other three genotypes. ‘Mar Ooko’ had the lowest SPFMV titers among the 

four genotypes with a peak of 0.00019 at 25 DPI, this being over three times lower than in
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Figure 4. 5. The pattern of accumulation and distribution of Sweet potato chlorotic stunt virus 
(SPCSV) and Sweet potato feathery mottle virus (SPFMV) in sweetpotato cultivar 
‘Namaswakhe’. Numbers in the horizontal axis represent the relative position of the leaf sampled 
with respect to the point of inoculation (the leaf above the point of inoculation was considered 
leaf number 1 and leaves were numbered sequentially from base to growing tip). The virus titers 
(represented in the vertical axis) are relative quantities estimated using real time quantitative 
PCR and calculated using ∆∆ct method (User Bulletin #2, AppliedBiosystems, Foster City, CA). 
Each value corresponds to the average titer content of leaf samples from 4 independent plants. 
Bars equal the standard error for each mean. The vertical axis scale for SPCSV is different from 
that of SPFMV. Day 5 to Day 25 represent days of sampling post inoculation.
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Figure 4. 6. Accumulation of Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato 
feathery mottle virus (SPFMV) in different sweetpotato genotypes. Numbers in the horizontal 
axis represent the relative position of the leaf sampled with respect to the point of inoculation 
(the leaf above the point of inoculation was considered leaf number 1 and leaves were numbered 
sequentially from base to growing tip). The virus titers (represented in the vertical axis) are 
relative quantities estimated using real time quantitative PCR and calculated using ∆∆ct method 
(User Bulletin #2, AppliedBiosystems, Foster City, CA). Each value corresponds to the average 
titer content of leaf samples from 4 independent plants. Bars equal the standard error for each 
mean. The vertical axis scale for SPCSV is different from that of SPFMV. Day 5 to Day 25 
represent days of sampling post inoculation. 
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 ‘Naspot I’ (0.00061) and ‘Namaswakhe’ (0.000691), and over 40 times lower than in 

‘Beauregard’ (0.0081).  

As expected, there was a general increase in titer levels of both viruses in most of the 

leaves sampled in all genotypes. However, a few leaves had virus titers decline after sometime as 

is shown in Figure 4.7 where titer of SPFMV in ‘Naspot I’ declined after 20 DPI. 

4.3.2 Virus Titer after Cut Back  

To determine whether there were differences in symptom development and virus titers 

later in the growing stages of the plant, the plants were allowed to grow up to 70 DPI (with cut 

backs at 26 and 48 DPI), and sampled at 47 and 70 DPI. ‘Beauregard’ continued to show severe 

SPVD symptoms until the end of the experiment. ‘Namaswakhe’ developed severe symptoms on 

the shoots on the branches that emerged after the first cut back (Figure 4.1i,j). However, ‘Naspot 

I’ and ‘Mar Ooko’ developed SPVD symptoms only after the plants were cut back for the second 

time (Figure 4.1d,f.g).  By 70 DPI, all the genotypes had clear SPVD symptoms, indicating that 

resistance to the disease had broken down even in the initially resistant ‘Naspot I’ and ‘Mar 

Ooko’. Titer levels of SPCSV in ‘Beauregard’ were ranked highest among the four genotypes 47 

DPI, though the differences were not significant (0.516) (Figure 4.8). The titer levels of SPCSV 

in ‘Naspot I’ was specifically noted to have drastically increased compared to titer levels in the 

same genotype at 25 DPI. Titer levels of SPCSV in ‘Naspot I’, ‘Mar Ooko’ and ‘Namaswakhe’ 

increased significantly (P<0.017) between 47 DPI and 70 DPI, but not in ‘Beauregard’. At 70 

DPI, SPCSV titers in ‘Naspot I’, ‘Mar Ooko’ and ‘Namaswakhe’ were ranked higher than in 

‘Beauregard’, though the difference was not significant.  

Titer levels of SPFMV were significantly greater (P<0.001) in ‘Beauregard’ and 

‘Namaswakhe’ in comparison to ‘Naspot I’ at 47 DPI. There was a general but insignificant 
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Figure 4. 7. The pattern of accumulation and distribution of Sweet potato chlorotic stunt virus 
(SPCSV) and Sweet potato feathery mottle virus (SPFMV) in sweetpotato cultivar ‘Naspot I’. 
Numbers in the horizontal axis represent days after inoculation (DPI) when samples were taken. 
The virus titers (represented in the vertical axis) are relative quantities estimated using real time 
quantitative PCR and calculated using ∆∆ct method (User Bulletin #2, AppliedBiosystems, 
Foster City, CA). Each value corresponds to the average titer content of leaf samples from 4 
independent plants. Bars equal the standard error for each mean. The vertical axis scale for 
SPCSV is different from that of SPFMV. 
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Figure 4. 8. Relative titers of Sweet potato chlorotic stunt virus (SPCSV, top) and Sweet potato 
feathery mottle virus (SPFMV, bottom) in sweetpotato cultivars ‘Beauregard’ (Bx), ‘Naspot I’ 
(Nsp), ‘Mar Ooko’ (MO) and ‘Namaswakhe’ (Nm) at 47 DPI and 70 DPI. The plants were cut 
back at 26 and 48 DPI, and each time allowed to re-grow for 3 weeks before samples were taken. 
The virus titers (represented in the vertical axis) are relative quantities estimated using real time 
quantitative PCR and calculated using ∆∆ct method (User Bulletin #2, AppliedBiosystems, 
Foster City, CA). Each value corresponds to the average titer content of leaf samples from 4 
independent plants. Bars equal the standard error for each value. 
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 increase in SPFMV titers between 47 DPI and 70 DPI in all genotypes except ‘Beauregard’, 

until titer levels of SPFMV in ‘Mar Ooko’ and ‘Namaswakhe’ surpassed that of ‘Beauregard’ at 

70 DPI.  

4.4 Discussion 

This study reports on the differences in reaction of resistant and susceptible genotypes to 

the dual infection of SPFMV and SPCSV. Previous studies identified genotypes resistant to 

SPVD using symptom observation. However, those results could not explain if delayed or mild 

symptom development were related to resistance to symptom expression (i.e., tolerance) or 

resistance to SPFMV and/or SPCSV multiplication and/or spread in the plant. To analyze this we 

used real-time quantitative PCR to determine the pattern and magnitude of accumulation of the 

two viruses in genotypes that were either susceptible or that had delayed or mild symptom 

development. 

The highest titers of SPCSV were recorded in ‘Beauregard’ and ‘Mar Ooko’. However, 

while SPCSV titers in ‘Beauregard’ were high in almost all leaves sampled, titer levels in ‘Mar 

Ooko’ were significantly lower in the leaves located in the upper portion of the plant. Though 

SPCSV was detected in different leaves along the vines of ‘Naspot I’, titer levels were very low 

compared to ‘Beauregard’ and could barely be detected, indicating limited virus multiplication 

within the genotype. The results showed that ‘Naspot I’ was resistant to SPCSV accumulation. 

However, the fact that the virus was detected in different sections of the plant indicates that there 

was virus movement within the plant, but multiplication was limited. These results suggest that 

SPCSV could systematically colonize graft inoculated ‘Naspot I’ but less efficiently than in 

susceptible ‘Beauregard’, at least early on. The higher levels of SPCSV observed in lower 

sections of ‘Mar Ooko’ could indicate a different type of resistance mechanism, where cells of 
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lower (more mature) leaves were more susceptible. This suggests that phloem cells of young 

leaves of ‘Mar Ooko’ do not support replication or movement of SPCSV as has been reported in 

other closteroviruses (Monis and Bestwick, 1996; Kreuze et al., 2002; Marco et al., 2003). 

‘Namaswakhe’ had SPCSV titers significantly lower than in ‘Beauregard’ and the lower portion 

of ‘Mar Ooko’, but higher than in ‘Naspot I’. However, as in ‘Beauregard’, the distribution was 

fairly even, and the virus could easily be detected in leaves located in almost all sections of the 

plant. ‘Naspot I’ was therefore categorized as more resistant to SPCSV than all the other 

genotypes, ‘Namaswakhe’ was moderately resistant, ‘Beauregard’ was susceptible while 

younger leaves of ‘Mar Ooko’ were more resistant than older leaves. We could not detect 

SPCSV in the leaves immediately above the point of inoculation in all the four genotypes. This 

may be due to the fact that the leaves were mature at the time of inoculation and were therefore 

able to resist infection, or that the mature leaves were not metabolic sinks and therefore 

translocation carried the virus past them to younger leaves that were metabolic sinks.  

The highest titer levels of SPFMV were recorded in ‘Beauregard’, and were significantly 

higher than in the other three genotypes. ‘Mar Ooko’ recorded the lowest levels, being at the 

threshold of detection. In ‘Beauregard’, SPFMV titers were higher in leaves in the upper half of 

the vine, unlike in single infections with SPFMV where the distribution is uneven or more 

readily detectable in the older leaves. Younger leaves of different plants susceptible to different 

viruses have been noted to have higher virus titers early after inoculation (Hull, 2002). In 

contrast to ‘Beauregard’, SPFMV titers were higher in the older leaves in ‘Naspot I’ at 25 DAI. 

‘Mar Ooko’ was therefore highly resistant to SPFMV, ‘Naspot I’ and ‘Namaswakhe’ moderately 

resistant, while ‘Beauregard’ was highly susceptible. However, these results may only be true 

when the two viruses co-infect the plant, and the situation may change in single infections. 
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The 4 genotypes reacted very differently to infection by the two viruses. ‘Beauregard’ 

was susceptible to both viruses and severe SPVD symptoms developed soon after inoculation; 

‘Namaswakhe’ was also susceptible to both viruses but the rate of multiplication was slower than 

in ‘Beauregard’. SPVD symptoms in ‘Namaswakhe’ were observed only after the plants were cut 

back; ‘Mar Ooko’ resisted SPFMV multiplication before being cut back, but allowed rapid 

multiplication of SPCSV in the older leaves. The genotype also had delayed symptom 

development; ‘Naspot I’ resisted SPCSV multiplication before being cut back, and had limited 

multiplication of SPFMV. ‘Naspot I’ also had delayed symptom development. However, when 

all the genotypes were allowed to grow for a period of 10 weeks post inoculation, and were cut 

back twice, the virus titers increased and SPVD symptoms developed even in the resistant 

genotypes until there were no significant differences in titer levels in the four genotypes for the 

two viruses.  

In resistant individuals, the virus multiplication may be reduced or inhibited to some 

extent, or the spread of the virus through the plant is demonstrably restricted relative to 

susceptible hosts, and disease symptoms are localized or not evident (Fraser, 1990; Kang et al., 

2005). In some cases, the plant may not develop severe symptoms (tolerant to the disease) even 

though the virus may multiply and move through the host in a manner that is indistinguishable 

from that in a susceptible host. In ‘Naspot I’ and ‘Mar Ooko’, SPVD symptoms became evident 

when the virus titers increased. The lack of symptom expression was therefore accompanied by 

reduced levels of virus multiplication. It may be that the observed low levels of SPCSV and/or 

SPFMV are not enough to trigger the cascade of events associated with symptom induction 

(Maule et al., 2000), but the situation changes when titers of both viruses increase beyond a 

certain threshold where they synergize to cause symptoms. The genotypes can therefore be 
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classified as resistant to the viruses but not to the disease, at least before the plants are cut back, 

but the resistance may not be durable. Mwanga et al. (2002a) reported that resistance to SPCSV 

and SPFMV were mediated by two major (but separate) recessive genes. It is possible that the 

resistance to the two viruses observed in ‘Naspot I’ and ‘Mar Ooko’ are controlled by the same 

genes, and is associated with molecular markers identified by Miano et al. (2007).  

Symptoms were more severe and relative titer levels higher in the leaves that grew after 

the plants were cut back; indicating that cutting the plant affected its physiology in some way, 

allowing the two viruses to somehow synergize or resulting in breakdown of resistance. This 

information is important in so far as propagation of sweetpotato in developing countries is 

concerned. In tropical environments where some sweetpotato plants can be kept in the field year-

round, crop multiplication is done almost exclusively with vine cuttings (Gibson et al., 1997; 

Carey et al., 1999; Fuglie, 2007). Usually, more than one harvest of cuttings may be obtained 

from the same field. Any subsequent cuttings obtained after an initial one could have high virus 

titers, resulting in significant yield reductions. 

We used grafting to inoculate the sweetpotatoes with the viruses because SPCSV is not 

mechanically transmitted. However, when a virus is transmitted by an insect, resistance may be 

expressed at the insect-plant interface (Vidavsky and Czosnek, 1998) during the short time the 

insect is feeding, unlike in grafting where the virus is directly delivered in to the vascular system 

continually for as long as the scion remains viable. Once the virus is in the vascular system, 

resistance may be lost (Kheyr-Pour et al., 1994). Also important to note is the fact that the graft 

scion is usually derived from a susceptible host, which provides a reservoir on the inoculated 

plant in which virus replication might continue regardless of the resistance of the test plant stock. 

Such conditions do not normally exist in the field especially if insects transmit the viruses, and 
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success of infection would depend on successful replication and translocation of the few virus 

particles. ‘Naspot I’ is reported to be resistant to SPVD in the field in Uganda (Mwanga et al., 

2003), where both viruses are transmitted by insects, but resistance breaks down when the plants 

are graft inoculated with the East African strains of SPVD-causing viruses. Resistance in ‘Naspot 

I’ may therefore have been broken down due to the method of inoculation. While insect 

transmission might give a more natural inoculation, graft inoculation has the advantage that it is 

less time consuming and the survival of the scion may be used as an indicator of successful 

inoculation. However, it might be advisable to remove the scion after successful inoculation to 

reduce the potential virus multiplication in this susceptible tissue. Despite the advantages of 

using graft inoculation, we recommend that insect transmissions be included in evaluations of 

genotypes for resistance to viruses that are mainly transmitted by insects such as SPCSV, so that 

resistant genotypes are not discarded. Regardless of the strong challenge imposed on the 

genotypes by graft inoculation, we were able to show how the different genotypes react to SPVD 

and to the causal agents of the disease. 

We did not include plants inoculated singly with SPCSV and SPFMV. Previous studies 

have shown that most sweetpotato genotypes are resistant to SPFMV infection alone with virus 

levels being very low or below the detection limits (Esbenshade and Moyer, 1982; Abad and 

Moyer, 1992; Clark and Hoy, 2006; Kokkinos and Clark, 2006b), and that the problem arises 

when SPFMV synergizes with SPCSV. Similar resistance to SPFMV has been reported in 

‘Beauregard’ (Kokkinos and Clark, 2006b), the most susceptible of the four genotypes used in 

this study. Single inoculations with SPCSV can cause economic yield losses (Hahn, 1979; Ngeve 

and Bouwkamp, 1991; Gibson et al., 1998; Gutierrez et al., 2003) and virus titers are often high 

(Kokkinos and Clark, 2006b). Titers of SPCSV have also been noted to decline or remain 
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unaffected in the presence of SPFMV (Karyeija et al., 2000; Kokkinos and Clark, 2006b). 

Karyeija et al. (2000) concluded that since the titers of SPCSV were not significantly increased 

in doubly infected plants, and because the plants infected with SPCSV alone were mostly 

symptomless or displayed symptoms different from SPVD, the SPVD symptoms observed are 

presumably caused largely by SPFMV. However, their studies were carried out using genotypes 

that were susceptible to SPVD. In our study, the titers of both viruses increased with time, at 

least in ‘Naspot I’, ‘Mar Ooko’ and ‘Namaswakhe’, especially after cutback. Also, no symptoms 

were observed in the different genotypes until there was a significant increase in the titer levels 

of the two viruses. We therefore conclude that increase in both viruses play an important role in 

symptom development.  

US strains of SPFMV-RC and SPCSV were used in this study. SPFMV-RC has not been 

detected in East Africa (Kreuze et al., 2000; Ateka, 2004), and the SPCSV isolate used in this 

study is distinguishable from but most similar to the West African serotype (Vetten et al., 1996; 

Abad et al., 2007). Even though SPFMV-RC is closely related to the Ordinary and East African 

strains of SPFMV (SPFMV-O and SPFMV-EA, Ateka, 2004), both of which also synergize with 

either of the two SPCSV serotypes to cause SPVD (unlike the SPFMV-C which causes mild or 

no symptoms even in presence of SPCSV), the East African strains may induce different 

responses from the US strains. Future work should therefore compare how different strains react 

in genotypes showing resistant and susceptible reaction to SPVD. However, ‘Naspot I’ has been 

shown to be resistant to SPVD in East Africa and now in the United States, indicating that it is 

possible to have cultivars that are resistant to different virus strains and/or serotypes. 

In our study, we used SPVD resistant and susceptible genotypes, with sampling being 

done soon after inoculation and at 5-day intervals. This strategy enabled us to observe the 
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differences in response of different genotypes to infection by the two viruses with time. Unlike in 

the previous studies where SPCSV titers remained the same or declined with time, we observed 

that multiplication of either or both of the viruses was inhibited, and that virus titer increased 

with time in resistant genotypes. We conclude that mild and/or delayed symptom development 

observed in resistant genotypes was due to suppression of virus multiplication, that increase in 

both viruses is important in symptom expression, and that virus titers correlate with symptom 

development. Further studies should be done to determine the genetic control of the resistance. 
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CHAPTER 5: IDENTIFICATION OF MOLECULAR MARKERS ASSOCIATED WITH 
SWEETPOTATO RESISTANCE TO SWEET POTATO VIRUS DISEASE IN KENYA* 

5.1 Introduction 

Sweet potato virus disease (SPVD), a result of co-infection of whitefly-transmitted Sweet 

potato chlorotic stunt virus (SPCSV, genus Crinivirus, family Closteroviridae) and the aphid-

transmitted Sweet potato feathery mottle virus (SPFMV, genus Potyvirus, family Potyviridae), is 

the most destructive disease of sweet potato world-wide and especially in East Africa (Geddes, 

1990; Gibson et al., 1997; Carey et al., 1999; Karyeija et al., 2000; Gutierrez et al., 2003). The 

disease is characterized by chlorosis, small, deformed leaves, and severe stunting and can reduce 

yields of infected plants by over 90% (Gibson et al., 1998; Gutierrez et al., 2003). 

 Attempts to controlling SPVD are through host-plant resistance backed up by farmers 

selecting disease-free planting stock (apparently free of known viruses). Studies in Uganda 

indicate no benefit of using pathogen-tested plants when compared with farm-derived plants of 

the same cultivars in the region (Gibson et al., 1997; Carey et al., 1999). Thus, plant resistance is 

important to SPVD control (Karyeija et al., 1998b; Carey et al., 1999). Hundreds of sweetpotato 

cultivars (landraces) are grown in the region (Gichuki et al., 2003), which have been shared by 

farmers through generations. The landraces have large differences in susceptibility to SPVD, and 

good sources of resistance are present in local germplasm (Aritua et al., 1998a). The impact of 

SPVD has been reduced by the use of resistant cultivars and landraces (Aritua et al., 1998b; 

Karyeija et al., 1998a). However, resistance has been associated with relatively late maturing, 

low yielding genotypes (Aritua et al., 1998b). Despite the short comings, unintended gains in the  

*Reprinted with permission from Euphytica Journal. 

 

 93



development of virus resistance has occurred as farmers and breeders have both selected for high  

yield, and / or mild symptoms in plantings that were exposed to natural virus infection.   

 Prior efforts of virus resistance breeding were focused on control of SPFMV given its 

universal distribution. However, many sweetpotato cultivars are naturally resistant to SPFMV, 

showing no or only mild initial symptoms, from which they usually recover, and containing very 

low virus titers (Esbenshade and Moyer, 1982; Abad and Moyer, 1992; Kokkinos and Clark, 

2006b). Many East African sweetpotato cultivars are resistant to SPFMV (Gibson et al., 1998; 

Mwanga et al., 2002b). Resistance is broken when the varieties are co-infected with SPCSV 

(Karyeija et al., 1998a; Mwanga et al., 2002b). There have been efforts towards developing a 

transgenic sweetpotato resistant to SPVD through resistance to SPFMV both in Kenya and other 

parts of the world (Okada et al., 2001; Wambugu, 2003). However, it is becoming increasingly 

clear that the problem is not SPFMV but SPCSV which synergizes with different unrelated 

viruses (Cohen and Loebenstein, 1991; Di Feo et al., 2000; Kokkinos and Clark, 2006b; Mukasa 

et al., 2006), and resistance to SPFMV may not hold in the presence of SPCSV. Although 

SPCSV can cause yield losses on its own, little effort seems to be directed towards developing 

varieties resistant to SPCSV. Selection for resistance to SPVD is based on symptom 

development after field exposure in disease prone areas and by graft-inoculations (Hahn et al., 

1981; Mihovilovich et al., 2000; Mwanga et al., 2002b), processes requiring considerable time 

and resources.  Attention is focused on DNA markers to accelerate breeding through early 

selection. While studying inheritance of resistance to SPCSV, SPFMV and SPVD in 

sweetpotato, Mwanga et al. (2002a) constructed a preliminary linkage map of sweet potato, and 

identified markers linked to SPCSV and SPFMV resistance. They found an AFLP marker 

(spcsv1) which explained 70% of the variation in resistance to SPCSV and one RAPD marker 
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(spfmv1) which explained 72% of the variation in SPFMV resistance. Mwanga et al. (2002a) 

could not determine if the two genes present in a common background would suppress SPVD 

effectively. 

 Discriminant analysis and logistic regression represent novel approaches in marker-

assisted selection (Cruz-Castillo et al., 1994; Ebdon et al., 1998; Capdevielle et al., 2000; Fahima 

et al., 2002; Aluko, 2003; Mcharo, 2005). Genotypes possessing trait extremes, e.g. highly 

resistant vs. highly susceptible are used exclusively, and those with intermediate reactions 

ignored.  Discriminant and logistic regression analysis are especially useful in dealing with 

populations of unrelated clones such as landrace genotypes since quantitative trait loci (QTL) 

analysis is not suited for such populations with no progeny-parent combinations (Mcharo, 2005).  

 The objective of this study was to identify and classify unrelated sweetpotato genotypes 

selected from East African germplasm collections into phenotypic groups as resistant and 

susceptible to SPVD, and to identify the most important AFLP markers contributing to variation 

among the phenotypic groups using discriminant and logistic regression analysis.  

5.2 Materials and Methods 

5.2.1 Selection of SPVD-resistant and Susceptible Sweetpotato Genotypes 

The germplasm pool surveyed consisted of over 400 genotypes collected from the main 

sweetpotato growing regions of Kenya (Western, South-western, Eastern and Central Provinces), 

neighboring and non-contiguous countries and maintained in situ.  The collections are located at 

the University of Nairobi, Kabete Field Station Farm in Central Kenya and at the Kakamega 

Research Station in Western Kenya. The plants were assessed for symptoms caused by virus 

diseases twice in a period of two years.  SPVD severity in each genotype was assessed using a 

subjective 5-point severity rating scale where: 1 = no symptoms observed; 2 = mild symptoms 



consisting mainly of chlorotic and /or purple spots; 3 = moderate symptoms which included 

chlorotic spots, vein clearing, interveinal chlorosis, mottling, and mosaics; 4 = plants were not 

stunted, but had severe symptoms of vein clearing, interveinal chlorosis, chlorotic spots, 

mottling, mosaics, and general chlorosis; and 5 = very severe symptoms, which included severe 

chlorosis, small-deformed leaves (shoestring), and severe plant stunting.   

 A total of 92 genotypes with SPVD severity rating of 1 or 2 were selected as resistant and 

used for challenge inoculations. Two apical cuttings from each genotype were planted in a 

screenhouse in Kenya and allowed to grow for two weeks. The plants were then graft-inoculated 

with a scion from a sweet potato plant (cultivar ‘Marera I’) from a Kenyan field, which had 

previously been confirmed to be infected with both SPFMV and SPCSV (East African serotype) 

using nitrocellulose membrane enzyme linked immunosorbent assay (NCM-ELISA) (CIP, 2001). 

The scions were multiplied and maintained in the screenhouse. Three susceptible cultivars from 

tissue culture, which had tested negative to different viruses using NCM-ELISA were also 

grafted with Marera I to ensure it induced SPVD. Inoculated plants were monitored for symptom 

development for two months. Genotypes were again selected as resistant or susceptible based on 

symptom severity and time (in days) to symptom development. A total of 28 genotypes were 

selected as resistant to SPVD.  

 Twenty out of the 92 SPVD graft inoculated clones were randomly selected and used to 

determine efficiency of inoculation by confirming the presence of SPFMV and SPCSV. The 

genotypes were grafted onto I. setosa indicator plants and NCM ELISA done as described in the 

text.  

 Nineteen other genotypes with severe SPVD symptoms in the germplasm collection plots 

(rated at a scale of 4 or 5) were selected as susceptible, giving a total of 47 genotypes (Table 

5.1). Cuttings from 38 of the selected genotypes were sent to Plant Germplasm Quarantine
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Table 5. 1 Sweetpotato clones used for marker selection and country of origin.   
 
No. Clone SPVD 

reaction 
groupw 

Country 
of origin 

No. Clone SPVD 
reaction 
groupw 

Country of 
Origin 

a) Training group 
1 Nyathi 

Odiewa 
Resistant Kenya 16 Beauregard Susceptible USA 

2 Osombo 
Nyuol 

Resistant Kenya 17 Bungoma Susceptible Kenya 

3 Unknown-1 Resistant Kenya 18 Mar Ooko Susceptible Kenya 
4 Unknown-2 Resistant Kenya 19 Namaswakhe Susceptible Kenya 
5 Agriculture Resistant Kenya 20 Spoungi Susceptible Tanzania 
6 Nyar Busia Resistant Kenya 21 K37 Susceptible Kenya 
7 Mwavuli Resistant Kenya 22 K46 Susceptible Kenya 
8 Maria Angola Resistant Peru 23 K207 Susceptible Kenya 
9 Nyar Koyugi 

Mumbo 
Resistant Kenya 24 SPK 013 Susceptible Kenya 

10 Butso Butso I Resistant Kenya 25 Cheglina 
Mowar 

Susceptible Kenya 

11 Tanzaniax Resistant Uganda 26 Marera Ix Susceptible Kenya 
12 Unknown-3      Resistant Kenya 27 Nyaboro Susceptible Kenya 
13 Ondieki Chilo Resistant Kenya 28 Kemb 10 Susceptible Kenya 
14 Nyandere          Resistant Kenya 29 Salyboro Susceptible Peru/CIPy 
15 Jayalo               Resistant Kenya 30 W220 Susceptible USA 
b) Validation (test) group 
31 K118  Resistant Kenya 41 Nemanete Susceptible Peru 
32 Polista Resistant Tanzania 42 Mugandex Susceptible Rwanda 
33 NASPOT I  Resistant Uganda 43 Merenge Susceptible PNGz 
34 Rateng              Resistant Kenya 44 Naveto Susceptible PNGz 
35 Ondijo              Resistant Kenya 45 Webuye Resistant Kenya 
36 Mary Oketch Resistant Kenya 46 Nduma Resistant Kenya 
37 Nyanduwo Resistant Kenya 47 Nyar Buhola Resistant Kenya 
38 Nyandege         Resistant Kenya     
39 Tur Ninde Resistant Kenya     
40 Unknown -4 Resistant Kenya     
 wGenotypes were grouped as resistant or susceptible based on disease severity or days to 
symptom development in plants following graft inoculation using scions infected with SPFMV 
and SPCSV (resulting in SPVD) obtained from a Kenyan field. 
xCultivar ‘Marera I’ was classified as resistant when 2 or 3 markers selected using STEPDISC 
procedure or logistic regression (SAS, 2001) were used during cross-validation, while cultivar 
‘Tanzania’ was classified as susceptible when a 2-marker model was used. ‘Mugande’ was 
misclassified using the 4-marker model. 
 yInternational Potato Center  
 zPapua New Guinea 
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Office of USDA-ARS, Beltsville, MD for virus indexing and therapy. The remaining 9 

genotypes were obtained from the USDA/ARS repository, Griffin, GA.  

5.2.2 DNA Extraction 

DNA extraction out of the 9 clones obtained from the USDA/ARS repository was done 

using the GeneElute Plant Genomic DNA Kit (Sigma-Aldrich Inc., St. Louis, Mo) as described 

by Mcharo et al. (2004). The 38 clones sent to the Plant Germplasm Quarantine Office of 

USDA-ARS were planted in a greenhouse and total DNA extracted from leaves one month later 

using a cetyltrimethylammoniumbromide (CTAB) extraction method (Li et al., 2004). DNA was 

further purified using GeneElute DNA binding columns (Sigma-Aldrich Inc., St. Louis, Mo). 

5.2.3 AFLP Analysis 

AFLP analysis was conducted as previously described (Mcharo et al., 2005). The DNA 

samples were amplified in a three-step process using GeneAmp PCR system 9600 thermocycler 

(Perkin Elmer, Fulerton, CA). Reagents for AFLPTM were obtained from InvitrogenTM (AFLP 

starter primer kit, Cat No. 10483-014) and LI-COR Inc. (Lincoln, NE, Cat. No. 420032). About 

100 ng/µl of total genomic DNA was digested using an EcoRI/MseI restricted enzyme mix in 5X 

reaction buffer at 37ºC for 3 h. The enzymes were inactivated by incubating the mix at 70ºC for 

10 min. Double stranded adaptors were then ligated to the restricted DNA fragments resulting in 

template DNA which was used for pre-amplification.  

 Diluted template DNA (1.5 µl) was added to 10 µl pre-amp primer mix, 1.25 units Taq 

DNA polymerase and 1.25 µl RedTaqTM PCR reaction buffer 10X with MgCl2 (Sigma-

AldrichTM) to make a 13 µl reaction volume. The pre-amplification conditions were 20 cycles 

each of 94ºC for 30 s, 56ºC for 60 s, 72ºC for 60s and a final hold at 4ºC for 2 h.  
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 The reaction volume for selective amplification consisted of 3.5 µl pre-amplified diluted 

DNA, 0.4 µl of EcoRI (fluorescently labeled) primer (AAG), 4.4 µl of MseI (unlabelled) primer, 

2.0 µl RedTaqTM PCR reaction buffer 10X with MgCl2 (Sigma-AldrichTM), 1.4 µl MgCl2 

(Sigma-AldrichTM), 1 unit Taq DNA polymerase (InvitrogenTM), dNTPs (200 uM), and 6.38 µl 

double distilled or AFLP grade water. Four selective primer pairs identified by Fajardo et al. 

(2002) and also used by Mcharo (2005) were used for selective amplification (CAG, CTA, CTG, 

CTT). Blue stop solution (5.0 µl) (LI-COR, Lincoln, NE) was added onto each amplified DNA 

sample. The amplified DNA sample was denatured at 94ºC for 4 min, covered in aluminium foil 

and placed in a freezer at -20ºC for 10 min to prevent annealing of complementary fragments, 

before loading 0.8 µl of the DNA sample onto a 25-cm acrylamide gel. PCR amplification 

fragments were separated by 6.5% acrylamide gel electrophoresis using LI-COR Global IR2 

sequencer (LI-COR, Lincoln, NE) for 2 h 45 min. The AFLP fragments were automatically 

detected and recorded during electrophoresis using the LI-COR SAGAMX v 3.1.0 software. The 

markers were named starting with the three letters coding for the primer followed by the 

molecular weight of the marker in base pairs. 

5.2.4 Statistical Analysis 

Analysis of molecular variance (AMOVA) on the genotypes with the AFLP marker 

profiles was used to test genotypic variability based on molecular marker information using 

WINAMOVA 1.55 software (Excoffier et al., 1992; Huff et al., 1993). Genetic distances for the 

AMOVA analysis were estimated using the Euclidean metric distance of Excoffier et al. (1992).  

 Discriminant analysis as previously described by Mcharo et al. (2004) was used to select 

informative markers that are linked to SPVD resistance in the two populations. The 47 clones 

were divided into two populations, the first one consisting of 28 clones classified as resistant to 
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SPVD and another 19 clones classified as susceptible to SPVD. A training sample consisting of 

15 resistant and 15 susceptible clones from the original 47 was used for the development of a 

phenotypic group prediction model. The training sample proportions were equal (15 resistant and 

15 susceptible) for both the susceptible and resistant group, making the prior probabilities of 

group membership equal at 0.5. A second group consisting of the remaining 4 susceptible and 13 

resistant clones was used as a test population to validate the model. 

 From the original array of AFLP generated molecular markers, the most informative 

markers were selected using STEPDISC procedure, and logistic regression using PROC 

LOGISTIC procedure (SAS, 2001).  The forward selection option of STEPDISC was used to 

select markers to be used in the classification model. The forward selection process commences 

with no markers in the model. Entry-significance levels of P≤0.01 of the chi-square score for 

entering an effect or marker into the model to achieve at least 95% prediction accuracy was 

imposed to choose the most discriminating markers (SAS 1999). The selected markers were then 

used in a nonparametric discriminant analysis (k=1), DISCRIM option (SAS, 2001), to construct 

and validate a class prediction function and to predict membership, resistant or susceptible, of the 

test. A nonparametric method; the k-nearest neighbor method (Rosenblatt, 1956) was used to 

estimate the group-specific densities that produce a classification criterion because the data was 

categorical in nature and could not allow assumption of normal distribution. The genotypes 

comprising the training and test groups were mostly from Kenya, but included genotypes from 7 

other countries. We assume that genotypes used in the present study consisted of unrelated 

clones (mainly landraces) and therefore did not have any population structure. The performance 

of the discriminant criterion was evaluated by posterior probability error rate and group-specific 

error count estimates during cross-validation. The error estimator gives the proportion of 
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misclassified observations in each group. Total error, from which the percent correct 

classification is derived, is the weighted mean error estimates of the two phenotypic groups.  

 PROC LOGISTIC (SAS, 2001) was used to perform logistic regression to select markers 

that accounted for the phenotype variation, with the forward selection option used for marker 

selection. The phenotype was a binary outcome as either resistant or susceptible to SPVD. 

Significance level to include a marker was set at P = 0.01. The Akaike Information Criterion 

(AIC) model fit statistics for logistic regression were computed as described in SAS (1999) and 

by Mcharo (2005), and used to compare models with different variables. The model with the 

lowest AIC value achieves the best fit. 

5.3 Results 

5.3.1 Germplasm Screening 

All 92 sweetpotato genotypes which initially had mild or no symptoms in the collection 

plots developed a range of symptoms at different times when inoculated with scions infected 

with SPVD. Symptoms observed included vein clearing, interveinal chlorosis, chlorotic spots, 

mottling, mosaics, general chlorosis, rugosity and stunting. Some genotypes developed typical 

SPVD symptoms consisting of vein clearing, interveinal chlorosis, chlorotic spots, mottling, and 

/ or general chlorosis within one week, others took as long as one month, while some genotypes 

did not develop the typical severe symptoms characteristic of SPVD. The 20 clones taken from 

the 92 and grafted on to I. setosa were confirmed to be infected with both SPFMV and SPCSV 

using NCM-ELISA, validating the protocol used. Resistant genotypes were selected as those that 

showed mild chlorotic spots and/or flecks, mild vein clearing, or those that took longer to show 

SPVD symptoms. A total of 28 genotypes were grouped as resistant and 19 as susceptible (Table 

5.1).  
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5.3.2 AMOVA, Discriminant and Logistic Regression Analysis 

A high level of polymorphism was observed using AFLP markers. A total of 350 markers 

were generated using the four primer combinations, 206 of which were polymorphic. The 

number of polymorphic markers generated from each primer combination ranged from 45 to 61 

with an average of 51 markers. The analysis of two groups (resistant and susceptible) using 

AMOVA and all 206 polymorphic markers showed a significant (P<0.002) variation between the 

two phenotypic groups of the 47-clone population  

 The STEPDISC procedure identified 9 markers that met the entry-significance level 

(P≤0.01) to achieve at least 95% prediction accuracy (Table 5.2). The Wilks’ lambda and 

Pr<lambda were used to determine how powerful the selected markers are. No more markers 

could be selected even when the entry significance levels were changed to P≤0.05. During 

evaluation by cross-validation to test the predictive power of the selected markers or model, only 

4 markers selected by STEPDISC procedure were required to achieve 100% correct 

classification of the 30 genotypes in the training set. Three markers achieved a 96.7% correct 

classification rate. Genotype ‘Marera I’ was misclassified as resistant when 2 or 3 markers 

selected by STEPDISC procedure were used.  When only two markers were included in the 

classification model, cultivar ‘Tanzania’ which was initially grouped as resistant, was classified 

as susceptible, reducing the classification accuracy to 93.3% using two predictor markers.   

 Four markers, identical to those selected by the STEPDISC procedure, were also selected 

by logistic regression (Table 5.3). However, the order of importance of marker selection differed 

between the two procedures. The four markers also gave 100% correct classification of the 

training population. Increasing the number of markers increased the AIC value, indicating that a 

model with the four markers could be the most desirable. The rate of correct classification of  

 102



Table 5. 2. STEPDISC selection for AFLP DNA markers in sweetpotato associated with 
resistance to SPVD.  
 

Marker1 Entry step Partial R-square2 Wilks’ Lambda3 Pr<lambda 
Cag202 1 0.55 0.45 <.0001 
Cta110 2 0.33 0.31 <.0001 
Cta168 3 0.36 0.19 <.0001 
Cta334 4 0.33 0.13 <.0001 
Cta136 5 0.43 0.07 <.0001 
Ctg621 6 0.33 0.05 <.0001 
Cta195 7 0.29 0.04 <.0001 
Cta076 8 0.63 0.01 <.0001 
Cag246 9 1.00 0.00 <.0001 

1Markers are named starting with the three letters coding for the primer followed by the 
molecular weight of the marker in base pairs. 
2Partial R-square is the marginal variability accounted for by a variable when all others are 
already included in the model. 
3Wilks’ lambda is the likelihood ratio measure of a marker’s contribution to the discriminatory 
power of the model. 
 
 
 
Table 5. 3. Logistic regression selection for AFLP DNA markers associated with SPVD 
resistance in sweetpotato.  
 
Marker entry step Marker1 Estimate (β) χ2 score Pr> χ2 
0 Intercept 10.02   
1 Cag202 -17.76 16.43 <.0001 
2 Cta168 -18.04 13.00 0.0003 
3 Cta110 -17.30 10.58 0.0011 
4 Cta334 16.95 15.00 0.0001 
1Markers are named starting with the three letters coding for the primer followed by the 
molecular weight of the marker in base pairs. 
2χ2 score is the largest significant score for marker not in model to be included in the model. 
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genotypes into resistant and susceptible groups achieved by the various models using logistic 

regression is shown in Table 5.4. 

 One test clone (Mugande) could not be classified correctly out of the 17 genotypes when 

four markers were used, giving a 94.12% correct classification efficiency.  Increasing the marker 

number above four could not classify the misclassified clone correctly. 

5.4 Discussion 

In this study, we report on the first systematic effort to evaluate sweetpotato genotypes 

grown in Kenya for their reaction to SPVD and identify a core collection of resistant and 

susceptible genotypes. Using discriminant and logistic regression analysis, we were able to select 

molecular markers associated with SPVD resistance that could be useful to sweetpotato breeders.  

 When the 92 symptomless, field-grown sweetpotato genotypes were graft-inoculated, 

over half of the genotypes developed severe symptoms indicating that field resistance was not 

durable and could have been due to escape, resistance to insect vectors or that the susceptible 

scion provided a continuous source of virus that overcame resistance. Graft inoculation 

represents the most potent, high dosage, continuous supply of virus inoculum to a plant (Wroth 

and Jones, 1992; Njeru et al., 1995). Resistance is therefore overcome by graft inoculations even 

in sweetpotato genotypes showing high field resistance to SPVD (Mwanga et al., 2003; Mwanga 

et al., 2002b). Despite the strong challenge imposed on the genotypes by graft inoculation, 28 

genotypes showed mild chlorotic spots and/or flecks, mild vein clearing, or delayed symptom 

development, and were thus selected as resistant. Delayed symptom development can be an 

important part of resistance (Dasgupta et al., 2003), especially if it is associated with reduced 

virus replication and translocation. Reduction in yields may be moderate in such genotypes. It 

would be desirable to know the titer of viruses in the genotypes with varying levels of SPVD  
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Table 5. 4. Rate of correct classification of 30 training clones of sweetpotato into SPVD resistant 
(or tolerant) and susceptible groups and the AIC model fit statistic for logistic regression.  
 
Number of 
predictor 
markers 

Probability 
level entry 

Resistant 
group error 
rate 

Susceptible 
group error 
rate 

Total error 
rate 

Akaike 
Information 
Criterion 

1 <0.01 0.07 0.20 0.13 26.90 
2 <0.01 0 0.20 0.10 21.84 
3 <0.01 0 0.07 0.03 15.35 
4 <0.01 0 0 0 10.01 
5 0.95 0 0 0 12.01 
6 0.95 0 0 0 14.01 
7 0.95 0 0 0 16.01 
 

resistance. Standard ELISA assays are not reliable for this purpose because sweetpotato contains 

large, variable quantities of interfering substances such as phenols, latex, and polysaccharides 

(Esbenshade and Moyer, 1982; Abad and Moyer, 1992). The use of real-time quantitative PCR 

(Kokkinos and Clark, 2006a) will be helpful in determining the concentration levels of viruses 

between different genotypes and provide a better understanding of virus titer characteristics 

associated with resistance.  

 The genotypes were graft inoculated with scions infected with SPFMV and SPCSV (East 

African serotype) from a Kenyan field. However, there are different strains of SPFMV (Cali and 

Moyer, 1981; Kreuze et al., 2000) and different serotypes of SPCSV (Alicai et al., 1999; Hoyer 

et al., 1996; Vetten et al., 1996) in different regions of the world. The different strains and 

serotypes have biological significance in as much as resistance to SPVD is concerned. Genotypes 

described as resistant to SPFMV in Peru were susceptible in East Africa (Gibson et al., 1998; 

Karyeija et al., 1998b). Genotypes resistant to SPVD in Nigeria where the West African serotype 

of SPCSV predominates were susceptible to SPVD in Uganda where the East African serotype is 

predominant (Alicai et al., 1999). The reaction of genotypes used in this study may therefore be 

limited to strains and serotypes common in East Africa.   
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 The aim of our study was to identify a combination of molecular markers that could be 

used to assign individuals to resistant and susceptible groups, and to verify the predictive power 

of the selected markers or model. The analysis of molecular variance was significant, indicating 

statistical differences between the two pre-defined phenotypic groups, and thus we could 

determine which markers discriminate between the two groups. Application of discriminant and 

logistic regression analysis to a molecular marker data set enables one to determine which 

markers discriminate between groups and then use the information to predict group membership. 

Four markers, which gave 100% correct classification of the two groups in the training 

population, were identified by both discriminant and logistic regression. While comparing 

discriminant analysis and logistic regression, Mcharo (2005) reported that the marker variables 

selected by the two techniques differed, and that logistic regression was more accurate. In our 

case, the two methods selected the same four critical markers, suggesting that the markers 

selected have a strong association with the phenotypic traits. There is a likelihood that the 

markers identified in this study are linked to the genes responsible for resistance and 

susceptibility to SPVD. Capdevielle (2001), while investigating the linkage between marker 

assisted classification and differential response to rice sheath blight disease, noted that identified 

markers are associated with QTLs responsible for expression of this trait. Accuracy was slightly 

compromised when classification models were based on two or three markers. These results are 

consistent with previous studies (Mcharo, 2005).     

In the present study, 17 genotypes were assigned a resistance/susceptibility rating based 

on a 4-marker model. Only one genotype (Mugande), which was initially grouped as susceptible 

was not classified correctly and was instead grouped as resistant. It is possible that the 

classification criteria may misclassify genotypes at low frequency. Second, the nature of the 
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resistance is yet to be established, i.e., whether it is due to tolerance or true resistance, due to the 

effect of different strains of viruses, or the presence of other viruses. Previous reports showed 

Sweet potato mild mottle virus (SPMMV), Cucumber mosaic virus (CMV), and Sweet potato 

mild speckling virus (SPMSV) may enhance symptom development of other viruses (Cohen and 

Loebenstein, 1991; Di Feo et al., 2000; Mukasa et al., 2006). The presence of other viruses could 

result in reduced or delayed symptom development and remission (C. Clark, unpublished data). 

Any combination of these factors may result in phenotypic misclassification. Still our 

classification method was 94% accurate.   

 Mwanga et al. (2002a) reported that resistance to SPCSV and SPFMV was mediated by 

two major (but separate) recessive genes. These results were based on QTL analysis of progeny 

derived from a cross between two SPVD resistant genotypes.  They further observed that some 

QTL might be associated with resistance to both viruses; however, no genes were identified for 

SPVD resistance given the paucity of SPVD resistant progeny in the population. Mcharo et al. 

(2004) noted that the power of discriminant and logistic regression analysis is that one doesn’t 

need a parent-progeny population, unlike using QTL analysis, which needs closely related 

individuals. However, the genes controlling resistance to SPVD associated with markers 

identified in this study may be working in a similar manner to those identified by Mwanga et al. 

(2002a). 

 The fact that only one genotype from the test group could not be correctly classified 

when using the 4-marker model means that the identified markers are strongly associated with 

the phenotypic traits and have potential in selection of putative SPVD resistant genotypes in East 

Africa. Our understanding of host-plant resistance can also be furthered by understanding the 

behavior of the two viruses in core collection genotypes.  
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

Sweetpotato has emerged as one of the most important subsistence crops in many parts of 

the African continent, especially in the countries surrounding Lake Victoria. The crop is mainly 

grown by female farmers on poor, marginal soil and harvested peace-meal to meet the daily food 

needs of the household. Sweetpotato is considered an important crop for poverty alleviation in 

the region and any effort towards improving its production will have a direct effect on hunger, 

malnutrition, disease, and any other dimension of under-development facing poor and small-

scale farmers. Virus diseases are ranked among the greatest challenges to sweetpotato 

production, and methods to manage the diseases are ranked among the most important crop 

management needs in East Africa. The research and results described in this study relate to 

different aspects of resistance to the causal agents of sweet potato virus disease (SPVD) and to a 

survey carried out in Kenya to detect the presence of three sweetpotato viruses that were not 

detected before in the region. These have a direct bearing on the control of sweetpotato virus 

diseases in the region. 

An important aspect to the management of virus diseases is detection and identification 

of viruses endemic in a particular region, and understanding how the complex of viruses interacts 

with the plant host. Discussions at the International Workshop of Sweetpotato Cultivar Decline 

in Mijakonojo, Japan in 2002 noted that three major groups of viruses infecting sweetpotato 

should be given detailed attention. These viruses include the Potyviridae family, the 

Closteroviridae family, and the Geminiviridae family. Despite the recommendations, previous 

surveys in Africa did not include geminiviruses in their studies. The geminiviruses reported 

infecting sweetpotato in different parts of the world belong to the genus begomovirus and are 

transmitted by whiteflies. Recent changes in whitefly populations and the importance of 
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whitefly-transmitted viruses in different crops require that begomoviruses be given more 

attention. Also, surveys carried out in East Africa report on sweetpotato plants with typical virus 

symptoms but with no virus identified, an indication that more viruses may be infecting 

sweetpotato in the region. A systematic study was therefore needed. One objective was to survey 

for Sweet potato virus G (SPVG), Sweet potato virus 2 (SPV-2) and Sweet potato leaf curl virus 

(SPLCV), two potyviruses and a begomovirus reportedly infecting sweetpotato in other parts of 

the world but not reported in East Africa. An important finding from this study is the report of 

SPLCV infecting sweetpotato in the region, and that SPV-2 and SPVG have so far not been 

detected in the East African region. The presence of a geminivirus infecting sweetpotato 

complicates the efforts to develop sweetpotato resistant to viruses in that the begomoviruses may 

cause significant yield reductions without inducing symptoms. Considering the number of 

samples that were collected from the field, the percentage of plants infected with SPLCV was 

noted to be fairly high. I recommend that efforts be made to evaluate the economic importance of 

the virus in the region, that specific begomovirus test procedures be incorporated into 

sweetpotato virus indexing protocols, and that quarantine regulations be followed to avoid the 

introduction of SPVG and SPV-2 to the East African region. 

Different viruses infecting sweetpotato interact resulting in disease complexes that are 

more severe than when infecting alone. The most severe disease is SPVD, caused by a 

combination of Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato feathery mottle 

virus (SPFMV). Some sweetpotato genotypes are reported to localize the distribution of viruses, 

have low virus titers, or to recover from infection by SPFMV or by SPVD. Recovery refers to a 

situation where a plant is initially susceptible to a virus and is systematically infected showing 

typical symptoms, but the new leaves, which develop later, are symptomless, and may contain 
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low virus titers or are virus free. Farmers in East Africa routinely select the youngest shoots and 

may avoid transplanting infected cuttings. It was necessary to establish if this phenomenon can 

be used as a basis to advise farmers on which section to use for propagation. From my studies, no 

significant differences were observed between vine sections, and I concluded that the differences 

may be due to variation in resistance between different genotypes rather than to differences 

between sections. My data does not support the hypothesis that one can reliably escape virus 

infection by selecting young, symptomless shoots. However, more studies should be done to 

compare the symptomless cuttings from the field with pathogen-tested plants. Previous research 

has implied that unique environmental conditions aided recovery and quick growth of shoots. 

However, no data substantiates this hypothesis. More should be done to study the behavior of 

viruses in genotypes showing recovery. One such genotype that I recommend for such studies 

from the genotypes screened from the Kenyan germplasm is ‘Nyandere’, a local landrace. 

Previous studies used symptom development and serology to identify resistant and 

susceptible genotypes. These methods could not differentiate if resistance was associated with 

resistance to symptom development or to reduced virus multiplication. The use of real-time 

quantitative PCR was helpful in studying the accumulation and distribution of viruses in 

sweetpotato, making it possible to characterize the response of different genotypes to dual 

infection by SPCSV and SPFMV. Previous studies have indicated the role of SPCSV as 

primarily inducing synergism with SPFMV, with the titer levels of SPCSV remaining constant or 

decreasing with time. The results from this study indicate that multiplication of both viruses is 

important in disease development, and that resistant genotypes inhibit the multiplication of either 

or both of the viruses. When both viruses reach a certain threshold, they synergize and symptoms 

begin to appear even in the previously resistant genotypes. To compliment the results from real-
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time PCR, there is a need to study the replication of viruses in individual cells. Green fluorescent 

protein (GFP) has been used successfully to monitor viral infection in different genomes. 

Tagging a virus with a reporter gene such as GFP is particularly useful in understanding resistant 

mechanisms, virus replication, and cell-to-cell and systemic movements of viruses. GFP-tagged 

recombinants of SPFMV and SPCSV should therefore be developed to assist in further studies 

involving cellular mechanisms of resistance in sweetpotato. 

Considering the economic status of the people involved in sweetpotato production in sub-

Saharan Africa, use of resistant genotypes in the management of virus diseases will remain the 

most viable strategy. There is a high diversity of sweetpotato genotypes grown in the East 

African region, many of which show different levels of susceptibility to virus diseases. Farmers 

select for resistant genotypes and thus mitigate the yield losses due to the virus infections. There 

is need to characterize, conserve and utilize this diversity to improve resistance. Such efforts can 

be greatly enhanced by marker assisted selection. Previous work identified two different 

molecular markers associated with SPFMV and SPCSV, respectively. However, synergistic 

interaction of the two viruses to induce SPVD is the problem, and not single virus infections. 

Identifying sufficient numbers of SPVD-resistant genotypes from a segregating population is 

difficult, but necessary using traditional genetic map making approaches. There was therefore a 

need to identify genotypes resistant to SPVD and their associated molecular markers. A 

germplasm collection maintained by the Kenya Agricultural Research Institute (KARI), was 

utilized to identify resistant genotypes. Using discriminant and logistic regression analysis, I was 

able to select four molecular markers associated with SPVD resistance that could be useful to 

sweetpotato breeders. I recommend that molecular markers identified in this study be developed 
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into primers that can be used in quick and easy PCR assays to identify genotypes resistant to 

SPVD. 

The research carried out in this dissertation used grafting to inoculate different genotypes 

with viruses. The method is less time consuming and it is easy to know when an inoculation is 

successful through the survival of the graft. However, the challenge to the grafted plant is greater 

than what occurs in the field, which may result in genotypes with usable field resistance being 

discarded. Studies should be done to compare insect transmissions with graft inoculations during 

challenge trials. Also, there has not been a unified way of using graft inoculations in virus studies 

in sweetpotato, and different people and/or institutions use very different approaches. Some use a 

side graft; others use a top graft, while some use both. The assumption has been that the 

movement of different viruses towards the growing shoot or towards the base is the same. There 

is a possibility that this may not be the case, and a study should be carried out to establish if this 

is so. Inoculations with different viruses to induce diseases such as SPVD also vary. From our 

studies, it seems that disease development is dependent on the titers of viruses synchronizing at a 

certain threshold, and the sequence of infection is therefore an important factor that should be 

studied further. 

Propagation of sweetpotato in sub-Saharan Africa relies on cuttings from previous crops. 

This system of production has its challenges in that pathogens are transmitted from one crop to 

another, resulting in great losses. In periods of drought or flooding, the crops in the fields may be 

lost, meaning that there will be no plant source of propagation material. Findings from my 

studies indicate that disease symptoms and virus titers increased when plants were cut back. This 

may be due to changes in the physiology of the plant. The findings are important in the tropics 

since more than one cutting per crop may be obtained in a field for propagation. One possible 
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alternative is the use of root beddings to generate cuttings for propagation, a method that is 

common in the United States and other parts of the world but not in tropical regions. Together 

with being a good source of propagation material, there is a possibility that the roots may have 

low virus infections, or that the shoots from roots may ‘outgrow’ the virus and produce clean 

planting materials, especially when using genotypes showing resistance or irregular virus 

distribution. The significance of using roots from SPVD-infected roots compared to vine cuttings 

in the management of SPVD has not been investigated. Also, the effect of cutting back the plants 

on the virus multiplication and on symptom development should be further studied.  

A recent effort towards managing SPVD is the use of biotechnology to develop a 

transgenic sweetpotato. Initial work concentrated on resistance to SPFMV though attention is 

now being directed towards developing genotypes conferring resistance to SPCSV since it is the 

virus that synergizes with other viruses. Though a promising strategy, resistance by the local 

communities to the use of genetically modified crops is still high. Genetic resistance will 

therefore continue to play an important role in virus disease management. From the results 

reported in this study, and work carried out by other scientists, it is clear that the high diversity of 

sweetpotato genotypes in East Africa is useful in understanding and developing genotypes with 

natural resistance to virus diseases and especially SPVD.  

The following are specific recommendations for future research based on results obtained 

from this study: 

1. Further studies should be carried out in East Africa to determine the diversity, 

distribution and economic significance of begomoviruses infecting sweetpotato in the 

region. 
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2. Previous characterization of sweetpotato genotypes for resistance to SPVD was not done 

systematically, and our characterization is in no way comprehensive. As an effort to 

utilize the diversity in sweetpotato genotypes, a comprehensive characterization and 

conservation for virus resistance should be initiated. The molecular markers identified in 

this study should be developed into PCR primers that can be used in rapidly screening 

germplasm for resistance to SPVD in the early stages of selection. 

3. The possibility of tagging SPFMV and SPCSV with reporter genes such as the GFP gene 

should be explored. The use of such recombinants would greatly complement other 

techniques such as real-time quantitative PCR and marker assisted selection in screening 

for resistant genotypes.  

4. Environmental and/or climatic conditions favoring recovery of previously virus infected 

sweetpotato genotypes should be investigated. If identified, particular localities and 

periods of the year when such conditions occur can be utilized to generate cuttings for 

propagation. 

5. Since farmers in tropical regions use cuttings for propagation, the effect of cutting back 

the plants on the virus multiplication and on symptom development on different 

sweetpotato genotypes should be investigated. 

6. The value of storage roots from virus resistant genotypes in virus disease management 

and in generating high quality cuttings should be investigated. 

7. Grafting as a method of inoculation should be standardized and compared to more natural 

means of infection. 
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APPENDIX 1: DATA ANALYSIS PROTOCOLS 
 
A) Analysis for field data on virus distribution (Chapter 3) 
 
dm'log;clear;output;clear'; 
TITLE ‘Total of sections with at least one virus'; 
Data one; 
Input Genotype $ Section Y @@; 
cards; 
1  1 3   
1 2 4  
1 3 2 
2 1 10  
. 
. 
.  
8 3 1 
9 1 0   
9 2 0  
9 3 0 
; 
 
proc GLM; class Genotype Section; 
model Y=Section Genotype; 
random Genotype Section; 
lsmeans Genotype/stderr pdiff; 
lsmeans Section/stderr pdiff; 
means Genotype/ tukey bon lsd;  
means Section/ tukey bon lsd;  
run; 
 
B) Analysis for virus response data (Chapter 4) 
 
dm "output;clear;log;clear"; 
Title1 "Virus Response data Analysis"; 
Data Virus; 
Input Number $ Rep $ Genotype $ Time $ Position $ CSV FMV @@; 
Datalines; 
1 1 Bx 1 1 0.0000000000 0.000000000 
2 1 Bx 1 7 0.000046739 0.000000000 
3 1 Bx 1 13 . . 
4 1 Bx 1 19 . . 
5 1 Bx 1 28 . . 
6 2 Bx 1 1 0.000000000 0.000000000 
7 2 Bx 1 7 0.000002284 0.000000065 
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8 2 Bx 1 13 . . 
9 2 Bx 1 19 . . 
10 2 Bx 1 28 . . 
11 3 Bx 1 1 0.000000000 0.000000000 
. 
. 
. 
399 4 Nm 5 19 0.034915223 0.000080258 
400 4 Nm 5 28 0.001094889 0.000282395 
; 
Run; 
/*Proc print data=virus; 
run;*/ 
 
proc GLM data=virus; 
class Genotype Time Position; 
model CSV = Genotype Position Time Genotype*Position Genotype*Time Position*Time 
Genotype*Position*Time; 
means Genotype*Position*Time; 
run; 
 
proc Mixed data=virus; 
class Genotype Time Position; 
model CSV = Genotype Position Time Genotype*Position Genotype*Time Position*Time 
Genotype*Position*Time; 
random Genotype; 
lsmeans Genotype*Position*Time; 
run; 
 
Proc GLM data=virus; 
Class Genotype Time Position; 
Model FMV = Genotype Position Time Genotype*Position Genotype*Time Position*Time 
Genotype*Position*Time; 
Means Genotype*Position*Time; 
run; 
 
proc Mixed data=virus; 
class Genotype Time Position; 
model FMV = Genotype Position Time Genotype*Position Genotype*Time Position*Time 
Genotype*Position*Time; 
random Genotype; 
lsmeans Genotype*Position*Time; 
run; 
 
proc univariate data=virus normal plot; 
var CSV; 
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run; 
 
proc univariate data=virus normal plot; 
var FMV; 
run; 
quit; 
 
Analysis on cutback data 
 
dm "output;clear;log;clear"; 
Title1 "Cutback data Analysis"; 
Data Cutback; 
 Input Number $ Rep $ Genotype $ Cutback $ CSV FMV @; 
 Datalines; 
1 1 Bx 1 0.038024469 0.025648175 
2 2 Bx 1 0.005699298 0.004910208 
3 3 Bx 1 0.008257953 0.002282768 
. 
. 
. 
30 2 Nm 2 0.049893665 0.003012131 
31 3 Nm 2 0.045062523 0.061853541 
32 4 Nm 2 0.018262145 0.002991324 
; 
Run; 
Proc print data=cutback; 
run; 
 
proc GLM data=cutback; 
class Genotype Cutback; 
model CSV = Cutback Genotype Genotype*Cutback; 
means Cutback Genotype Genotype*Cutback; 
run; 
 
proc GLM data=cutback; 
class Genotype Cutback; 
model FMV = Cutback Genotype Genotype*Cutback; 
means Cutback Genotype Genotype*Cutback; 
run; 
 
proc Mixed data=cutback; 
class Rep Genotype Cutback; 
model CSV = Cutback Genotype Genotype*Cutback ; 
Random Rep Cutback*Rep; 
Lsmeans Cutback Genotype Cutback*Genotype; 
run; 
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proc Mixed data=cutback; 
class Rep Genotype Cutback; 
model FMV = Cutback Genotype Genotype*Cutback ; 
Random Rep Cutback*Rep; 
Lsmeans Cutback Genotype Cutback*Genotype; 
run; 
 
Proc univariate data=cutback normal plot; 
var CSV; 
run; 
 
Proc univariate data=cutback normal plot; 
var FMV; 
run; 
quit; 
 
C) Analysis for Molecular markers data (Chapter 5) 
 
AMOVA Protocol 
 
1. For analysis of dominant marker data generated by techniques such as AFLPs and RAPDs, 
AMOVA-PREP and WINAMOVA programs are used. 
 
2. AMOVA-PREP prepares input files for Analysis of Molecular Variance (AMOVA) using 
WINAMOVA. Use of AMOVA-PREP program is a four step process 
 
a) Load or enter a dominant marker data set into AMOVA-PREP’s text editor.  

In cases where a large data set is being analyzed, it may be easier to initially enter the 
data into a spread sheet program and export the data as ASCII text file that can subsequently be 
loaded into AMOVA-PREP. 
 
b) From the ‘Make Files’ menu of the text editor, select either ‘Two-level’ or ‘Three-level’, 
depending on the nature of the data set.  

For example, in a two level data set like the one used in our analysis of molecular 
markers (analysis of individuals within populations), data for each observation/individual in the 
data set is placed in a single line, with the first character of each line being a number that 
identifies the population from which the individual was sampled, as shown below 
 
47 93 
  1 0 
1, 1,1,1,1,1,1,1……. 
1, 0,1,1,0,0,1,0……. 
2, 1,0,0,0,1,0,0……. 
2, 0,0,0,0,1,1,1…….. 
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The first line includes information on the number of rows (observations) and the number of 
columns (number of markers) in the data set. The second line of the data set gives information on 
the codes for the presence or absence of a marker. 
 
c) A new window will appear. From within this window, decide on the distance coefficient to be 
calculated. Three different distance coefficients are supported by AMOVA-PREP: the Euclidean 
metric, the non-Euclidean metric, or a distance based on the simple matching coefficient. 
 
d) From within the same window, specify the names of the output files that AMOVA-PREP will 
generate. Provide a name for the distance file (*.dis), the group file (*.grp), and a generic 
population file name. The files created by program can then be analyzed by WINAMOVA.  
 
3. From WINAMOVA program,  
a) Select the files prepared by AMOVA-PREP through a dialogue window activated by the 
File/Select Input files menu. 
 
b) Modify the AMOVA settings according to your need (for more details on what settings to 
use, see the help function of WINAMOVA). 
c) Run an analysis by activating the Go! menu. Analysis may be interrupted by pressing on the 
Stop! Menu. 
 
d) When the analysis is over, the results appear in a result window. The content of this window 
may be saved by activating the menu File/Save as….. 
 
Discriminant and logistic regeression analysis 
 
dm'log;clear;output;clear'; 
data SPVDresis; 
input Clone $ cag057 ... ctt706 Group; 
cards;  
bx  1 0 ...  0 
k43 0 1 ... 0 
. 
. 
maria 0 1 ... 1 
run; 
 
Title1 ‘Stepwise discriminant analysis on SPVD markers’; 
proc stepdisc data=SPVDresis method=forward slentry=0.01; 
class Group; 
var  cag057 cag076 … ctt706; 
run; 
 
Title2 ‘Discriminant analysis on SPVD markers’; 
proc discrim data=SPVDresis testdata=SPVDresis method=npar k=1 crossvalidate testlist; 
testid clone; 
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class Group; 
var ... selected markers ... ; 
run; 
 
Title1 'SPVD resistance in sweetpotatoes'; 
Proc logistic data=SPVDresis descending outest=SPVDresisone; 
class clone; 
model Group=cag057 cag076 . . . ctt653 ctt706/ selection=forward slentry=0.01 lackfit 
clparm=wald; 
output out=SPVDresistwo predprobs=(individual crossvalidate); 
run; 
quit; 
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From: "Joseph Nyachiro" <Joseph.Nyachiro@gov.ab.ca> 
To: "Douglas Miano" <dmiano1@lsu.edu> 
CC:  
Subject: Re: Permission to use published paper 
Date: Monday, December 10, 2007 9:47:01 PM  
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Is this paper published yet? If so, then go ahead and cite per standard operating procedure. If the 
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Alberta Agriculture and Food  
Field Crop Development Centre 
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Phone  (403) 782-8692,   Fax  (403) 782-5514 
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“If you have less than 1 year to invest, plant barley. If you have 10 to 25 years to invest, build a 
house.  
If you have more than 25 years to invest, invest in your children"  - Anonymous.  
 
 
Dear Dr Nyachiro 
I wish to request for permission to use the publication cited below as part of my dissertation. I 
am a Ph.D student in Louisiana State University and i am the senior author of the paper.  
 
Miano DW, LaBonte DR, Clark CA (2007) Identification of molecular markers associated with 
sweet potato resistance to sweet potato virus disease in Kenya. Euphytica: DOI 10.1007/s10681-
007-9495-2 
 
Euphtica will be cited. 
Thank you very much. 
 
Douglas Miano  
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