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ABSTRACT 

Genetic diversity/similarity (GS) was estimated among nine sugarcane parental 

genotypes using target region amplification polymorphism (TRAP), amplified fragment 

length polymorphism (AFLP) markers and coefficient of parentage (f).  Its relationship to 

progeny performance was assessed among five bi-parental crosses involving the nine 

parents. Phenotypic data for stalk-height, -count, -diameter, cane yield and theoretical 

recoverable sugars (TRS) were collected from which genetic parameters (family means, 

genetic variances, average mid parental heterosis, percent heterotic clones and mid 

parental values) were calculated. For TRS, families with higher means and variances had 

a greater proportion of heterotic clones.  AFLP-GS was found to be a good predictor of 

genetic parameters for most of the traits and TRAP-GS (and f-GS) could be used as a 

good predictor for TRS.   

Framework linkage maps of Saccharum officinarum ‘Louisiana Striped’ and S. 

spontaneum ‘SES 147B’ were constructed using AFLP, sequence related amplified 

polymorphism (SRAP) and TRAP markers: the S. officinarum map comprised of 146 

linked markers spanning 49 linkage groups (LG) and the S. spontaneum map comprised 

of 121 linked markers spanning 45 LG.  Compared to AFLP, SRAP and TRAP markers 

appear less efficient for linkage mapping in sugarcane, a complex polyploid.  The 

Saccharum interspecific F1 mapping population was evaluated for Brix(B), pol(P) and 

sucrose(S) at the early(E) and late(L) plant growing seasons in two years, 2004(04) and 

2005(05).  Conventional quantitative trait loci (QTL) analysis identified markers 

associated with these traits.  In S. officinarum, 50 QTLs were identified with LOD scores 

ranging from 2.51 to 7.64, explaining from 15.9% (04LP) to 47.8% (04EB) of phenotypic 

variation.  In S. spontaneum, 26 QTLs were identified with LOD scores ranging from 

 xiii



2.69 to 7.51, explaining from 6.5% (04LP) to 43.5% (04LB) of phenotypic variation.  

Thirty-four digenic interactions were observed in S. officinarum and four in S. 

spontaneum.  Several SRAP and TRAP markers were found to be associated with traits 

indicating their potential usefulness in QTL tagging. A non-parametric approach, 

discriminant analysis (DA), also identified several markers which were either similar or 

localized to the same genomic regions as identified by QTL analysis validating DA as a 

viable option to identify marker-trait associations. Markers identified in this study in both 

parents would serve in marker assisted introgression breeding for sugarcane 

improvement.  

 xiv



CHAPTER 1 GENERAL INTRODUCTION 

Sugarcane (2n = 128 – 140) belongs to the genus Saccharum of the Poaceae 

family. The genus Saccharum is comprised of six species, namely S. officinarum L., S. 

barberi Jesw., S. sinense Roxb., S. spontaneum L., S. robustum Brandes and Jeswiet ex 

Grassl, and S. edule Hassk. (Brandes, 1958).  Before the 19th century, S. officinarum (2n 

= 80) represented the cultivated sugarcane and is characterised by high sugar content, 

thick stalks, low fiber and low disease resistance.  In the early 19th century, after 

witnessing the devastating effects of sereh disease, interspecific hybridizations were 

initiated between the cultivated S. officinarum and the wild S. spontaneum.  The S. 

spontaneum species (2n = 64 to 128) is characterised by low sugar content, thin stalks, 

high fiber, high ratooning ability and high resistance to biotic and abiotic stresses.  

Therefore, to minimize the negative effects of S. spontaneum and to retain the high 

sucrose producing ability of S. officinarum, a series of backcrosses were made between 

the interspecific hybrids and the S. officinarum parent.  This process was termed as 

‘nobilization’ (Sreenivasan et al., 1987) and provided a major breakthrough in sugarcane 

improvement programs in the form of improved productivity, high disease resistance and 

high ratooning ability.   

Although nobilization was highly successful, limited progress has been made to 

improve sugar content in the past few decades in most sugarcane breeding programs.  

The major reason attributed for the limited progress is the narrow genetic base of 

sugarcane cultivars (Deren, 1995; Arro, 2005).  Very few clones were used in the initial 

interspecific hybridizations (Arcenueaux, 1965) and most of the modern day sugarcane 

cultivars trace back to those few parents used during nobilization.  Currently, most 

sugarcane improvement programs follow a similar trend of making crosses among the 
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related parental genotypes followed by clonal selections.  Therefore, the chances of 

creating new genetic variation are very meager.  In addition, the long selection cycle of 

12 – 15 years and clonal propagation of sugarcane indicate that the development of 

sugarcane cultivars has not involved many meiotic events.   Hence, there is a growing 

concern among the sugarcane breeders regarding the narrow genetic diversity among the 

sugarcane cultivars. 

A thorough understanding of the genetic diversity among the sugarcane genotypes 

will facilitate the development of improved cultivars.  The information on the genetic 

relationships would be useful in utilizing and managing the sugarcane genotypes and the 

gene pool in breeding programs.  Based on the genetic diversity knowledge, crosses 

could be designed among the divergent parents to maximize heterosis and resources 

could be allocated to the most promising crosses.  As the sugarcane improvement 

programs thrived on few crosses followed by recurrent selections, a plateau could have 

been reached for improving sugar content.  Currently, the genome of modern sugarcane 

cultivars is comprised mainly of S. officinarum (up to 80%) genome (D’Hont et al., 1996) 

with S. spontaneum accounting for most of the diversity within cultivars (Jannoo et al., 

1999).  This may suggest that most of the favourable alleles for sugar content have 

already been accumulated in cultivars.  Therefore, exploring wild germplasm for novel 

sources of genes could be useful in sugarcane breeding programs.  The newly identified 

genes/alleles from wild germplasm would help in widening the genetic base via 

introgression breeding. 

An advance in molecular biology through the development of molecular marker 

technology has been pivotal in deducing inferences about genetic diversity and inter-

relationships among the sugarcane genotypes at the DNA level (D’Hont et al., 1996; 
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Jannoo et al., 1999; Lima et al., 2002; Cordeiro et al., 2003).  In addition, molecular 

markers have played a vital role in tracking favorable alleles from wild species as well as 

ascertaining their introgression into the cultivated background (Edmé et al., 2006).  In 

sugarcane, several molecular marker based genetic linkage maps have also been 

constructed in the progenitor species such as S. officinarum and S. spontaneum (da Silva 

et al., 1993; Al-Janabi et al., 1993; Mudge et al., 1996; Ming et al., 1998; Edmé et al., 

2006) and in commercial cultivars (Hoarau et al., 2001; Aitken et al., 2005; Reffay et al., 

2005).   

Although, the current molecular marker tools, such as RFLP, RAPD, AFLP, 

gSSR have been very useful in studying the patterns of genetic diversity and dissecting 

the genome, the polymorphisms generated by these marker techniques are randomly 

distributed across the genome.  In addition, the marker-QTL associations are mostly 

distal linkages and the transferability of QTLs between populations still remains a major 

problem.  Therefore, the polymorphisms which are directly associated with the 

genes/QTLs would be of immediate interest to the breeder.  With the advent of modern 

bioinformatic tools and increasing access to vast numbers of EST sequences, it is now 

possible to explore new opportunities in sugarcane molecular marker research.   

Recently, two new PCR-based markers namely, SRAP (sequence related 

amplified polymorphism) and TRAP (target region amplification polymorphism) which 

amplify intragenic polymorphism have been reported.  In the SRAP technique, the 

primers are arbitrarily designed with an AT- and GC-rich motif to anneal to intron and 

exons, respectively (Li and Quiros, 2001), whereas in the TRAP technique, the forward 

or fixed primer is designed using gene/EST sequence information and the reverse primer 

is similar to a SRAP primer (Hu and Vick, 2003).  The amplifications generated by these 
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two marker techniques supposedly reflect the polymorphisms within functional genes.  

The objectives of this research were 

1. To predict the cross progeny performance based on TRAP-, AFLP- and 

coefficient of parentage (f) estimated genetic similarity among 

sugarcane genotypes 

a. To evaluate the potential of TRAP markers to assess the genetic 

diversity among sugarcane germplasm collections 

b. To compare TRAP marker based genetic similarity with AFLP- and f- 

based genetic similarity among nine elite sugarcane  parental 

genotypes 

c. To predict the progeny performance of five bi-parental crosses 

involving nine parents based on molecular marker and f-based genetic 

relationships. 

2. To dissect the genome of progenitor species of sugarcane namely S. 

officinarum and S. spontaneum in order to identify novel alleles for 

introgression breeding 

a. Genetic linkage mapping of S. officinarum ‘Louisiana Striped’ and S. 

spontaneum ‘SES 147B’ using AFLP, TRAP and SRAP markers 

b. Identification of molecular markers associated with sugar related traits 

in a Saccharum interspecific cross using conventional quantitative trait 

loci (QTL) analysis. 
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CHAPTER 2 TARGET REGION AMPLIFICATION POLYMORPHISM (TRAP) 
FOR ASSESSING GENETIC DIVERSITY IN SUGARCANE GERMPLASM 

COLLECTIONS 
 

2.1 Introduction 

The genus Saccharum is composed of six species, namely  S. officinarum L., S. 

barberi Jesw., S. sinense Roxb., S. spontaneum L., S. robustum Brandes and Jeswiet ex 

Grassl, and S. edule Hassk. (Brandes, 1958).  The modern Saccharum spp (cultivated 

sugarcane) is believed to have originated from complex hybridization events (termed 

‘nobilization’) between Saccharum officinarum,  S. barberi, S. sinense and the wild 

related species S. spontaneum (Sreenivasan et al., 1987).  Until the end of the 19th 

century, cultivated sugarcane comprised mainly of the vegetatively propagated S. 

officinarum (the main sugar producing cane) together with S. barberi and S. sinense 

(Jannoo et al., 1999).  Saccharum officinarum, however, is believed to have evolved 

through hybridization of species such as Erianthus arundinaceus, S. spontaneum and S. 

robustum (Daniels et al., 1975) whereas S. barberi and S. sinense are believed to be  

natural hybrids between S. officinarum and S. spontaneum (Daniels and Roach, 1987).  

Mukherjee (1957) coined the term Saccharum complex to encompass four closely related 

interbreeding genera viz., Saccharum, Erianthus (=sect. Ripidium), Narenga and 

Sclerostachya, all of which are supposedly implicated in the origin of sugarcane.  Daniels 

et al. (1975) revised this grouping to include Miscanthus sect. Diandra Keng but the 

phylogenetic relationship between members of the group remains unclear (Irvine, 1999).  

A better understanding of the genetic diversity and inter-relationships among 

members of the Saccharum complex will facilitate exploitation of this germplasm in 

improving sugarcane.  Traditional methods which combined agronomic and 

morphological characteristics have been useful in identifying and describing differences 
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between members of the Saccharum complex (Artschwager and Brandes, 1958; Skinner, 

1972; Skinner et al. 1987). However, members of the Saccharum complex are 

predominantly outcrossing and are maintained by vegetative propagation.  As such, they 

are highly heterozygous and display enormous plasticity in the phenotypic expression of 

traits. Although morphological traits can be used to identify and classify clones, most of 

the traits are influenced by the environment under which the clones are grown or 

selected.  Variability caused by genotype x environment interactions and inadvertent 

mislabeling of clones can adversely influence data derived from phenotypic evaluation 

and clonal records.   

With the advent of molecular markers it is now possible to make direct inferences 

about genetic diversity and inter-relationships among organisms at the DNA level 

without the confounding effects of the environment and/or faulty pedigree  records.  

Indeed, a vast number of molecular marker techniques such as isoenzymes (Glaszmann et 

al., 1989), RFLP (D’Hont et al., 1994; Jannoo et al., 1999; Coto et al., 2002), ribosomal 

DNA (Glaszmann et al., 1990 ; Pan et al., 2000), microsatellites (Piperidis et al., 2001; 

Cordeiro et al., 2003), AFLP (Besse et al., 1998; Lima et al., 2002) and molecular 

cytogenetics (D’Hont et al., 1996) have been instrumental in explaining genetic diversity 

and inter relationships among accessions in sugarcane germplasm collections.       

The underlying goal for studying genetic diversity and inter-relationships among 

germplasm collections is to eventually use that information to facilitate the development 

of better  performing  varieties of the cultivated species.  The results from genetic 

diversity studies may, therefore, be more useful if the segments of the genome sampled or 

measured correspond to segments bearing genes of interest to the breeding program.    

Current molecular marker tools, such as RFLP, RAPD, AFLP, gSSR (SSRs derived from 
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genomic as opposed to EST sequences), have unarguably been very useful in dissecting 

the level and pattern of genetic diversity in sugarcane germplasm collections.  However, 

the polymorphism generated by these marker techniques are randomly distributed across 

the genome and only those that can be  associated with traits through QTL studies would 

be of immediate interest to the breeder.  Even when QTL analysis is performed, the 

underlying association is often based on relatively large linkage blocks.  Transferability 

of QTLs between populations remains a looming question in the minds of many plant 

breeders.   

Sugarcane remains a complex and recalcitrant crop to study and improve using 

genetics approaches owing to the large genome size, high ploidy level and complicated 

genome organization.  However, recent access to increasing numbers of sugarcane EST 

sequences obtained from diverse cDNA libraries coupled with freely available 

bioinformatics tools now allow us to explore new opportunities in sugarcane molecular 

marker research.  The Target Region Amplification Polymorphism (TRAP) is a simple 

PCR-based marker technique which uses EST or gene information to generate 

polymorphism (Hu and Vick, 2003).  A fixed primer of about 18 nucleotides is designed 

from EST sequences or genes of interest and an arbitrary primer of about the same length 

is designed with either an AT- or GC-rich motif to anneal with an intron or exon, 

respectively (Li and Quiros, 2001; Hu and Vick, 2003).  TRAP markers have not 

previously been used to genotype sugarcane.  Therefore, the objective of this study was to 

evaluate the potential of TRAP markers for assessing genetic diversity in sugarcane 

germplasm collections.    
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2.2 Materials and Methods 

2.2.1 Plant Material and DNA Extraction 

Thirty genotypes, representing three genera namely Saccharum, Miscanthus and 

Erianthus were used in the study (Table 2.1). Representing Saccharum species were S. 

officinarum, S. barberi, S. sinense, S. spontaneum, S. robustum as well as cultivars, 

cultivar-derived mutants and interspecific hybrids.  The genotypes DW1 and DW2 are 

cultivar-derived genetic mutants from the cultivar LCP81-137 (Burner, 1999).  The 

genotypes 16 Low and 40 High are first generation interspecific hybrids from a cross 

between LA Stripe (S. officinarum) x SES 147b (S. spontaneum) and are being retained 

in the collection because of their low and high sucrose content, respectively.  These 

genotypes form part of the germplasm collection maintained at the USDA Sugarcane 

Research Unit at Houma, Louisiana.   

Young leaves were collected from each genotype, frozen immediately in liquid 

nitrogen and stored at -80 C.  The leaves were later ground to a powder in liquid nitrogen. 

Genomic DNA was extracted using the Plant DNeasy Mini Kit (Qiagen, Valencia, CA) 

following the manufacturer’s protocol. Concentrations of extracted DNA were estimated 

by known concentration of lambda DNA in 1% agarose gel. 

2.2.2 TRAP Markers 

2.2.2.1 Primer Design 

The design of fixed primers was based on the method reported by Hu and Vick (2003). 

The nucleotide sequences of six genes of interest were obtained from the GenBank 

database at NCBI. Of the six selected genes, five are believed to be involved in 

carbohydrate (sucrose) metabolism while the remaining one is believed to play an 

important role in cold tolerance. The primers were designed using the Primer3 software 
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(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) (Rozen and Skaletsky, 2000), 

out of which only the forward primer was used as a fixed primer.  The primer optimum 

Table 2. 1.  Description of the 30 genotypes used for TRAP marker analysis 

Number Clone name Code Genera or species 
1 Kalingpong Erianthus Er 
2 Dwarf 1 Saccharum species hybrid (Cultivar-derived 

mutant) 
DW1 

3 Dwarf 2 Saccharum species hybrid (Cultivar-derived 
mutant) 

DW2 

4 16 Low Saccharum species hybrid (F1 between S. 
officinarum and S. spontaneum) 

Hy1 

5 40 High Saccharum species hybrid (F1 between S. 
officinarum and S. spontaneum) 

Hy2 

6 POJ2878 Saccharum species hybrid (Cultivar) Cu1 
7 LCP 85-384 Saccharum species hybrid (Cultivar) Cu2 
8 CP 77-310 Saccharum species hybrid (Cultivar) Cu3 
9 CP 77-407 Saccharum species hybrid (Cultivar) Cu4 
10 LCP 85-845 Saccharum species hybrid (Cultivar) Cu5 
11 Miscanthus Miscanthus Mi 
12 Ganapathy S. barberi Sb1 

S. barberi 13 Chin Sb2 
S. officinarum 14 La Stripe So1 

15 La Purple S. officinarum So2 
16 Cuba S. officinarum So3 
17 IN84-068A S. officinarum So4 
18 NG 57-54 S. robustum Sr1 
19 NG 57-159 S. robustum Sr2 
20 Molokai 5573 S. robustum Sr3 
21 IMP72-232 S. robustum Sr4 
22 NG77-218 S. robustum Sr5 
23 Chukche S. sinense Ssi 
24 SES 147b S. spontaneum Ssp1 
25 Coimbatore S. spontaneum Ssp2 
26 MPTH97-213 S. spontaneum Ssp3 
27 MPTH97-200 S. spontaneum Ssp4 
28 MPTH97-107 S. spontaneum Ssp5 
29 PIN84-1B S. spontaneum Ssp6 
30 Molokai1032B S. spontaneum Ssp7 

 The original sugarcane cultivars were derived from crossing mainly between S. 
officinarum and S. spontaneum followed by several generations of backcrosses to S. 
officinarum.  Present day cultivars are selections from cultivar x cultivar crosses. 
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size, maximum size and minimum size were set to 18 nt. The optimum Tm, maximum Tm 

and minimum Tm were set to 53oC, 55oC and 50oC respectively. The genes, GenBank 

accession numbers and designed primer sequences used in this study are given in Table 2. 

2. 

Table 2. 2. Sequences of fixed and arbitrary primers used for TRAP markers. 
  

Gene 
 
Sequence (5’  3’) 

GenBank 
accession 
number 

Sucrose Synthase 
(SuSy) 

GGAGGAGCTGAGTGTTTC AF263384Fixed 
primers 

Sucrose Phosphate 
Synthase (SuPS) 

CGACAACTGGATCAACAG AB001338

Pyruvate 
Orthophosphate 
DiKinase (PODK) 

CGTAAAGATTGCTGTGGA AF194026

Soluble Acid Invertase 
(SAI) 

AGGACGAGACCACACTCT AF062735

Calcium Dependent 
Protein Kinase 
(CDPK) 

ACAGAACCACCAAAGGAG CF572977

Starch Synthase (StSy) GGCAAGAAGAAGTTCGAG 
 

AF446084

Arbi 1 GACTGCGTACGAATTAAT 
 

 Arbitrary 
primers 

Arbi 2 GACTGCGTACGAATTGAC  
 

Arbi 3 GACTGCGTACGAATTTGA  
 

 

Arbitrary reverse primer sequences were obtained from Li and Quiros (2001). 

These primers comprise three selective nucleotides at the 3’ end, 4 nucleotides of AT- or 

GC-rich content in the core region and 11 nucleotides as filler sequences at the 5’ end. In 

addition, the basic rules of primer design such as self-complementarity and maintenance 

of 40-60% GC content were upheld (Table 2. 2).  The AT- and GC-rich primers 

supposedly target introns and exons, respectively (Li and Quiros, 2001).  
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2.2.2.2 PCR Protocol 

TRAP reactions were performed based on the protocol of Hu and Vick (2003). 

Fixed primers were combined with each of three arbitrary primers for a total of 18 primer 

combinations.  Each reaction was carried out in a total volume of 20µL containing 2µL of 

10x PCR buffer, 1.0µL of 25mM MgCl2, 1.0µL each of 10µM fixed and arbitrary 

primers, 1.0µL of 10mM dNTPs (Promega, Madison, WI), 0.35µL of 5U Taq polymerase 

(Promega, Madison, WI) and 1.0µL of 50-80ng genomic DNA. The conditions for PCR 

were as follows: an initial denaturing step was performed at 94oC for 4 min followed by 5 

cycles at 94oC for 45 s, 35oC for 45 s and 72oC for 1 min, followed by 35 cycles at 94oC 

for 45 s, 53oC for 45 s and 72oC for 1 min with a final extension step at 72oC for 7 min. 

All the PCR reactions were performed on an i-cycler (BioRad Labs, Hercules, CA). After 

PCR, the amplified products were run on 7% polyacrylamide denaturing gel for 2.0 hrs at 

110 W. Silver staining procedure was employed to develop the gel and to detect the 

bands. 

2.2.3 Statistical Analysis 

Bands from the TRAP gel were scored, as '1' for presence and '0' for absence, in 

all genotypes.  Only readable bands were scored while ambiguous bands were ignored 

and excluded from the analysis.  Allelic diversity at a given locus can be measured by 

Polymorphism Information Content (PIC) wherein a marker can distinguish two alleles 

taken at random from a population and it was calculated as follows:  

PIC = 1- Σ fi
2

 

where, fi is the frequency of the ith allele (Weir 1990). Considering the number of alleles 

at a locus along with their relative frequencies in a given population, an estimate of the 
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discriminatory power of a marker can be obtained by calculating the PIC (Vuylsteke et al 

2000). Jaccard-similarity coefficient (1908) was used to calculate the estimate of genetic 

similarity (GS) among pairs of genotypes as follows: GSij = a/(a+b+c) where GSij is the 

genetic similarity measurement between individuals i and j, the number of matching 

bands in both individuals is represented by a whereas b and c are the number of bands 

present in individual i and j respectively but not in their counterparts. The GS matrix was 

used to perform cluster analysis using the Unweighted Pair Group Method with 

Arithmetic mean (UPGMA) algorithm (Sneath and Sokal, 1973) following the Sequential 

Agglomerative Hierarchical Nested (SAHN) cluster analysis. The co-phenetic values 

were calculated to test the goodness of fit between the clusters in the dendrograms and 

the similarity index matrix.  In addition, Principal Coordinate Analysis (PCoA) was 

performed to supplement the findings obtained from cluster analysis. All the above 

analyses were performed employing different modules of NTSYS-PC software, version 

2.11L (Rohlf, 2000).  For the purpose of comparison between clusters and also to 

determine the robustness of the cluster, bootstrap analysis was done with 10,000 

replications using the PAUP version 4.0b10 software (Sinauer Associates Inc., MA) 

which employs Nei and Li (1979) method for cluster development.   

2.3 Results and Discussion 

2.3.1 TRAP Marker Polymorphism and PIC Values  

The summary of TRAP markers produced by the 18 primer combinations (six fixed 

forward primers in combination with three arbitrary reverse primers) across all 30 

genotypes is given in Table 2. 3.  The 18 primer combinations generated a total of 600 

unambiguous bands of which 529 (88%) were polymorphic.  The bands ranged in size 

from 100 to 700 bp.  The number of bands detected by individual primer combinations 
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ranged from 15 (SuSy + Arbi1) to 58 (CDPK + Arbi 3) with an average of 33.  These two 

primer combinations were also responsible for the least (14 in SuSy + Arbi1) and the 

most (48 in CDPK + Arbi 3) number of polymorphic bands produced for an average of 

29 polymorphic bands per primer combination.  Polymorphism was generally high (> 

Table 2. 3.  Total number of bands, number of polymorphic bands, percent polymorphism 
and Polymorphism Information Content (PIC) for each of 18 TRAP primer combinations.   

Primer combination Bands 
observed 

Polymorphic 
bands 

Percent 
Polymorphism 

PIC value 

SuSy + Arbi 1 20 20 100.00 0.32 

SuSy + Arbi 2 32 32 100.00 0.28 

SuSy + Arbi 3 15 14 93.33  0.20 

SuPS + Arbi 1 19 17 89.47 0.33 

SuPS + Arbi 2 48 47 97.91 0.24 

SuPS + Arbi 3 29 21 72.42 0.14 

SAI + Arbi 1 39 34 94.87 0.26 

SAI + Arbi 2 28 28 100.00 0.22 

SAI + Arbi 3 46 40 86.95 0.21 

StSy + Arbi 1 41 31 75.60 0.20 

StSy + Arbi 2 50 41 82.00 0.24 

StSy + Arbi 3 28 28 100.00 0.21 

PODK + Arbi 1 36 31 86.11 0.27 

PODK + Arbi 2 29 22 75.86 0.36 

PODK + Arbi 3 32 27 84.37 0.29 

CDPK + Arbi 1 29 29 100.00 0.11 

CDPK + Arbi 2 21 19 90.47 0.25 

CDPK + Arbi 3 58 48 82.75 0.23 

Total 600 529   

Average 33.33 29.38 88.14 0.24 
 

50%), ranging from 72 to 100%.  The high level polymorphism could be attributed to the 

complex genetic structure of sugarcane with high levels of polyploidy and 
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heterozygosity. Similar high levels of polymorphism have been reported in Saccharum 

species by Besse et al (1998) and Lima et al (2002) using AFLP markers.  The 

Polymorphism Information Content (PIC), which measures information content as a 

function of a marker system’s ability to distinguish between genotypes (Weir, 1990), 

varied among the primer combinations ranging from 0.11 in CDPK + Arbi 1 to 0.36 in 

PODK + Arbi2 with an average of 0.24.  The PIC values indicate a good discriminatory 

power of the dominant TRAP marker system. Comparable PIC values have been reported 

using dominant markers like RAPD and AFLP in African plantain (Ude et al., 2003) and 

AFLP in wheat (Bohn et al., 1999). 

For the 18 TRAP primer combinations, the Jaccard’s GS estimates ranged from 

0.33 (Kalingpong and Miscanthus) to 0.94 (Dwarf 1 and Dwarf 2) with a mean of 0.68. A 

dendrogram with a co-phenetic value of 0.96 was generated (Fig. 2.1) based on 435 pair-

wise GS estimates.  A co-phenetic value of > 0.80 is said to indicate a strong goodness of 

fit for dendrograms (Rohlf, 2000). Bootstrap, based on 10,000 re-samplings of the data 

set, and cluster analyses following the Nei and Li (1979) method produced a similar 

dendrogram (data not shown).  This further confirmed the robustness of the dendrogram 

obtained by the UPGMA method based on Jaccard’s similarity coefficient (Fig 2.1).     

2.3.2 Genetic Diversity and Relationships among Genotypes 

Genetic diversity and relationships among the genotypes in this study were 

depicted by both cluster and PCoA (Figs. 2.1 and 2. 2).  A separate analysis was 

performed for the three cold tolerance-related primer combinations (i.e. CDPK/ Arbi1, 2 

and 3).  As the results did not differ from the one derived from using the 15 sucrose-

related primer combinations, the data were merged and used for one combined analysis.  

The dendrogram from cluster analysis revealed two distinct groups among the Saccharum 
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species.  Group I comprised the genotypes representing S. officinarum, S. sinense, S. 

barberi, S. robustum along with cultivars, cultivar-derived mutants and hybrids while 

Group II comprised all the S. spontaneum genotypes. The single Erianthus  

 

Group I 

97

89

100 79

100 Group II 

Figure 2.1.  Grouping among 30 genotypes from a sugarcane germplasm collection based 
on 18 TRAP primer combinations using the UPGMA method.  Numbers represent values 
from boostrap analysis.  Abbreviations: Mi, Miscanthus; Er, Erianthus; Cu, Cultivar; Ssp, 
Saccharum spontaneum; So, S. officinarum; Sr, S. robustum; Sb, S. barberi; Ssi, S. 
sinense; Hy, Hybrid; Dw, Dwarf. 
 

(Kalingpong) and Miscanthus genotypes were each placed distinctly in the dendrogram 

supporting the taxonomic evidence which assigned each of them to a separate genus 
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(Daniels et al., 1975).  Remarkably similar results were obtained from the PCoA (Fig. 2. 

2).  The first three axes in the PCoA explained a cumulative variation of 42.23 percent.  

As with the cluster analysis, all the S. spontaneum genotypes formed a well 

individualized group while the rest of the Saccharum species along with the cultivars, 

cultivar-derived mutants and hybrids clustered together as one interrelated group.  

Miscanthus and Erianthus (Kalingpong) were placed distinctly, again lending credence to 

the claim that they are separate genera.  

 

Figure 2. 2.  Association among 30 genotypes from a sugarcane germplasm collection as 
revealed by PCoA of genetic distances based on 18 TRAP primer combinations.  
Abbreviations: Mi, Miscanthus; Er, Erianthus; Cu, Cultivar; Ssp, Saccharum 
spontaneum; So, S. officinarum; Sr, S. robustum; Sb, S. barberi; Ssi, S. sinense; Hy, 
Hybrid; Dw, Dwarf.  Numbers were used to uniquely identify a genotype (for example 
Ssp6) when there was more than one genotype representing a species or group.   
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The strong differentiation between Erianthus and Saccharum genera as revealed 

by TRAP markers was previously demonstrated using rDNA spacers (Al-Janabi et al., 

1994), RFLP (Burnquist et al., 1992), AFLP (Besse et al., 1998), 5S RNA intergenic 

spacers (Pan et al., 2000), and sugarcane- (Cordeiro et al., 2003) as well as maize- (Selvi 

et al., 2003) derived microsatelite markers.  Similarly, evidence from microsatellite 

markers (Cordeiro et al., 2003) and 5S RNA intergenic spacers (Pan et al., 2000) had 

previously been used to document the distinction between Miscanthus and Saccharum 

species.   

Although no distinct sub-groups were found within Group I, the clustering of 

genotypes in this group seems to be in accordance with the ancestral relationships among 

these species (Fig 2. 1).  Saccharum robustum is believed to be one of the progenitors of 

S. officinarum (Brandes, 1958; Daniels and Roach, 1987).  Significant similarities have 

been reported between S. robustum and S. officinarum with regards to morphology, 

cytology and physiology, however they differed in fiber and sugar content (Irvine, 1999). 

The high degree of similarity between S. robustum and S. officinarum has also been 

revealed using RAPD (Nair et al., 1999) and microsatellite markers derived from maize 

(Selvi et al., 2003).   

Saccharum barberi and S. sinense genotypes were found within the same sub-

group albeit along with a S. robustum genotype.  Saccharum barberi and S. sinense might 

differ enough to be distinct (Glaszmann et al., 1990) but Whalen (1991) contends that 

those minor differences are not enough to classify them as two separate species.  

Moreover, these two species are thought to be interspecific hybrids between S. 

officinarum and S. spontaneum (Brandes, 1958; Daniels and Roach, 1987) and this has 

been substantiated using evidence from RFLP (Lu et al., 1994), RAPD (Nair et al., 1999), 
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maize-derived microsatellite markers (Selvi et al., 2003) and GISH analyses (D’Hont, 

1993).  

It was also not surprising that cultivars were found in Group I, indicating their 

closer relationship with S. officinarum compared to S. spontaneum.    Most of the 

cultivars bred after the turn of the 20th century are interspecific hybrids between S. 

officinarum and S. spontaneum.  However, cultivars inherited a greater proportion of the 

S. officinarum genome as ‘nobilization’ involved several backcrosses to the S. 

officinarum parent during which this parent transmitted the somatic chromosome number 

to its progeny (Bhat and Gill, 1985; Bremer, 1961; Sreenivasan et al., 1987; D’Hont et 

al., 1996).   

The closest relationship in the dendrogram was found between the two cultivar-

derived dwarf mutants which, is in agreement with the origin of these genotypes.  Except 

for the legendary cultivar POJ2878, all the contemporary cultivars were found in the 

same sub-group albeit with a S. officinarum genotype.  This is hardly surprising since 

these contemporary cultivars are more closely related relative to POJ2878.  However, it 

was interesting to note that within this sub-group, LCP85-384 clustered closer to 

HoCP85-845 than it did to either of its parents, namely CP77-310 (female) and CP77-407 

(male).  LCP85-384 and HoCP85-845 share a common heritage in that their grand 

parents are full siblings.  But the closer association between these genotypes, relative to 

that between LCP85-384 and its parents, is possibly due to the effects of breeding and 

selection which is not accounted for by pedigree history.  Furthermore, the primers 

employed in this study were designed to preferentially amplify a small segment of the 

genome, that is, segments associated with sucrose content and cold tolerance.  The effect 

of selection, especially for sucrose related genes, coupled with the fact that only a small 
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portion of the genome was being assayed could perhaps explain why the genotypes in 

Group I failed to form distinct subgroups and clustered instead as one interrelated group.  

In a study using maize-derived microsatellite markers, S. barberi and S. sinense 

genotypes grouped together but the group was placed in between the S. officinarum and S 

spontaneum clusters (Selvi et al., 2003).  The authors used this as evidence to suggest that 

both S. officinarum and S spontaneum were involved in the ancestry of these two species.   

 

Table 2. 4.  Mean genetic similarity (GS) within and between Saccharum species  

S. officinarum S. spontaneum S. robustum  Cultivars 
S. officinarum    0.71
S. spontaneum 0.62 0.68   
S. robustum 0.74 0.63 0.76  
Cultivars 0.74 0.66 0.73 0.80 

 The numbers in the diagonal are for ‘within’ GS estimates 
 

The average GS within and among groups of genotypes or species was computed 

as an additional measure to assess genetic diversity (Table 2. 4).  Only groups or species 

represented by at least four genotypes were considered.  The estimates showed that the 

least amount of similarity existed among the S. spontaneum genotypes (0.68) indicating 

the relatively higher level of heterozygosity and polymorphism that exist within this 

species.  Saccharum spontaneum is generally accepted as the most diverse of the 

Saccharum species in terms of geographical distribution, chromosome number (2n = 40-

128) and morphology (Daniels and Roach, 1987).  Saccharum spontaneum is considered 

an untapped resource for sugarcane germplasm improvement in Louisiana.  The major 

focus has been on traits such as disease resistance, cold tolerance and ratooning ability 

although recent evidence using molecular markers suggest that wild relatives such as S. 

spontaneum (with relatively low sucrose content) cannot be discounted as potential 
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contributors of novel genes for traits such as sucrose content (Tanksley and McCouch, 

1996; Reffay, 2005).  TRAP markers could potentially be useful for identifying novel 

variation and for introgression breeding.  

Compared to S. spontaneum, genetic similarity was higher among S. officinarum 

< S. robustum < cultivars. Genetic diversity has generally been reported as being very 

low among cultivated sugarcane as very few progenitor clones were involved in 

the initial ‘nobilization’ event and the products from ‘nobilization’ became the 

foundation clones for most breeding programs.   

The highest genetic similarity among groups was obtained between cultivars and 

S. officinarum (0.74) followed by S. robustum and S. officinarum (0.74). These results 

provide additional support that, S. robustum is a likely progenitor of S. officinarum 

(Sreenivasan et al., 1987) and that cultivars inherited most of their sucrose related genes 

from S. officinarum.  The least amount of similarity was observed between S. officinarum 

and S. spontaneum (0.62) reflecting the distinctness of these two species.   

2.3.3 Genus and/or Species Specific Markers 

 Generally, very few bands were discrete across species or genus.  The main types 

of uniqueness found were situations where a band was either present or absent among all 

genotypes of a species, but, the same band was polymorphic among the other species or 

genotypes.  For example, whereas a Susy + Arbi 2 (500-600bp) fragment was 

polymorphic among S. spontaneum and cultivars, this fragment was uniquely absent in all 

the S. officinarum, S.  robustum, S. barberi, S. sinense, S. officinarum x S. spontaneum 

hybrids, cultivar-derived dwarf genotypes and present in the two Erianthus and 

Miscanthus genotypes.  Fragment Susy + Arbi 3 (350-400bp) was absent in all S. 

spontaneum, Erianthus and Miscanthus genotypes and present among the rest of the 
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genotypes except among cultivars where it was present in three of the five genotypes.  

But the most significant fragment was SuPS + Arbi1 (600-700bp) which was present in 

the two Erianthus and Miscanthus genotypes but more importantly in all the cultivars and 

S. officinarum genotypes and absent in all S. spontaneum genotypes. Fragments which 

are unique to either S. officinarum or S. spontaneum are of significance to the Louisiana 

introgression breeding program because S. officinarum and S. spontaneum are being used 

as sources of genes to increase sucrose content and stress tolerance.  Another interesting 

fragment was produced by SAI + Arbi 2 (600-700bp) which was absent among all the 

Saccharum species and present in the two Erianthus and Miscanthus genotypes.  Such a 

fragment could be useful in distinguishing Saccharum from other genera.   

2.3.4 Sequencing of Amplified Products 

 TRAP amplicons were sequenced in an effort to verify if indeed the TRAP 

marker binding sites correspond to candidate genes.  The bands were excised from a 

PAGE gel, re-amplified and sequenced directly.  We sequenced bands from SES 147b a 

S. spontaneum genotype.  A fragment of 535 bp from S. spontaneum, amplified by the 

StSy + Arbi3 primer combination, showed homology (E = 5.7) with an EST (Accession # 

AF079258) of a Sorghum bicolor granule-bound starch synthase gene.  A similar level of 

homology (E = 5.7) was found with the ESTs of the granule-bound starch synthase genes 

of Cymbopogon pospischilii (Accession # AF079248), Heteropogon contortus 

(Accession # AF079253) and Coelorachis selloana (Accession # AY062271.1).  Much 

higher levels of homology were found with the mRNA sequence of Zea mays endosperm 

transcriptome (E = 6e-37; Accession # BT018673.1) and a cDNA clone corresponding to 

chromosome 3 of Oryza sativa (E= 2e-15; Accession # AK105342.1).    
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 We undertook further analyses of the sorghum EST sequence as sorghum is 

considered a relative of sugarcane based on comparative mapping studies (Paterson et al., 

1995; Ming et al., 1998; Ming et al. 2002).  The sorghum EST sequence showed a 100 % 

match with a segment of the 535 bp sequence from S. spontaneum.  A BLASTn search 

using the sorghum sequence pulled up, among other sequences, the same EST of 

Saccharum officinarum (Accession # AF446084) from which the ‘StSy’ fixed primer was 

designed. 

 Another fragment of 295 bp from S. spontaneum, amplified by the CDPK + 

Arbi2 primer combination showed homology (E = 0.19) with a segment of mRNA 

corresponding to a putative receptor-like protein kinase gene of Oryza sativa.  In addition 

it showed homology (E = 0.19) with a segment of a clone from chromosome 5 of Oryza 

sativa containing a putative receptor-like protein kinase gene.  The need is obvious for 

further sequencing analyses, using more than one genotype to demonstrate that similar-

sized TRAP bands are allelic.      

2.4 Conclusions 

 Our results provide support for the utility of TRAP markers for assessing genetic 

diversity in sugarcane germplasm collections.  TRAP primers are designed from ESTs or 

gene sequences; thus, the potential to generate polymorphism around targeted gene 

sequences is an attractive feature of TRAP markers.  Although the TRAP markers 

reported here have yet to be mapped in sugarcane, results from sequencing and BLASTn 

analyses of TRAP amplicons lend some support to the proposal that TRAP primers may 

be targeting gene regions.  This was further substantiated by the aggregation of genotypes 

in the study which seemed to reflect the fact that the TRAP primers were designed from 

sucrose- and cold tolerance-related gene/EST sequences.  Genotypes of the relatively low 
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sucrose and cold tolerant species, S. spontaneum, formed one distinct group.  Whereas, in 

contrast to previous studies, genotypes of the high sucrose and cold sensitive Saccharum 

species including S. officinarum, S. barberi, S. sinense, and S. robustum, formed one  

inter-related cluster with no distinct sub-groups.  TRAP markers could potentially be 

useful in the characterization and management of domesticated and wild germplasm 

where the aim is to enhance the germplasm for specific traits.  Genetic diversity could be 

evaluated using TRAP markers for the trait(s) of interest and genotypes or species 

displaying unique diversity selected for germplasm enhancement.  We are currently 

employing TRAP markers in a QTL mapping study in an effort to further authenticate 

their potential to target gene regions.     
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CHAPTER 3 TRAP, A NEW TOOL FOR SUGARCANE BREEDING: 
COMPARISON WITH AFLP AND COEFFICIENT OF PARENTAGE 

 
3.1 Introduction 

Sugarcane breeding efforts have contributed substantially to the sugar industries 

worldwide.  In central Queensland, Australia, for example, the cultivar Q50 was 

nicknamed ‘mortgage buster’ soon after its release because of the wealth it brought to 

that sugar industry.  In Louisiana, the popular cultivar, LCP85-384, increased cane yield 

by 20-25% and contributed to unprecedented boosts in sugar production.  LCP85-384, 

like most dominant cultivars, has enjoyed widespread adoption in the Louisiana sugar 

industry albeit to the exclusion of other cultivars.  It is well known that the over reliance 

on a single cultivar can result in severe consequences especially in a clonally propagated 

crop, such as sugarcane.  Therefore, tremendous effort is being made to release new 

cultivars that equal or surpass the performance of LCP85-384 to Louisiana growers.        

The long duration of a sugarcane selection cycle is one factor limiting the rapid 

development of improved sugarcane cultivars.  It takes about 12 to 15 years after crossing 

to complete a selection cycle.  Because sugarcane is clonally propagated, during this 12- 

to 15-year period, no new opportunities exist for sexual recombination or the creation of 

new genetic variation that the breeder can capitalize on.  The breeder has to rely on the 

initial variation created during hybridization, and no amount of selection can produce a 

good cultivar out of a poor cross.  The choice of parents to use in crossing is, therefore, 

one of the most crucial decisions the breeder has to make.   

The complicated genome of cultivated sugarcane (high (aneu) ploidy levels, and 

multiple alleles at a locus) is another factor limiting progress in sugarcane breeding 

programs.  Cultivated sugarcane was derived by mainly crossing between two species, 
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namely S. officinarum (2n = 80) and S. spontaneum (2n = 40 to 128), followed by 

backcrosses to S. officinarum.  Saccharum officinarum was reported to transmit the 

somatic chromosome number to its F1 progeny (Bhat and Gill, 1985; Bremer, 1961).  

Consequently, cultivated sugarcane harbors two genomes with about 80 % S. officinarum 

and 20 % S. spontaneum composition (D’Hont et al., 1996).  Furthermore, chromosome 

numbers within cultivated sugarcane can vary (generally from about 100 to130) even 

among full sib progenies.        

Molecular markers are valuable tools that can be used to help understand and 

manipulate a genome as complicated as that of sugarcane.  Molecular markers can be 

used to tag genes for traits of economic importance such that selection for these traits (via 

marker-assisted selection) could occur earlier in the breeding program.  Molecular 

markers also can be used to facilitate decisions made during crossing, as using these 

markers can help gain a better understanding of the genetic diversity in the parental 

clones.  That information could then play a vital role in the utilization and management of 

the genotypes and indeed genes in the breeding gene pool.  For example, crosses could be 

planned between parents from divergent backgrounds to maximize heterosis while 

increasing genetic diversity in the cultivated gene pool.      

In sugarcane breeding programs, experimental clones are often nominated as 

parents based upon performance in advanced stage selection trials.  Ultimately, most 

crosses are made among parents with phenotypic superiority in one or more key attributes 

with the goal of combining all key attributes in the hybrid.  It is believed that the 

probability of recovering superior progeny is higher when both parents are themselves 

superior.  Therefore, one would like to detect genetic diversity among phenotypically 

superior parents.  This can be a very difficult task when relying solely on pedigree 

 30



records because superior phenotypic characteristics might have been obtained at the 

expense of genetic diversity at specific loci that have undergone selection. Pedigree-

based estimates of genetic diversity may not account for allele frequency changes 

resulting from selection and genetic drift.  By relying on pedigree records to estimate 

genetic diversity, one assumes that all genotypes are unrelated, which may be misleading 

in cultivated sugarcane where only a handful of clones were used in the original 

synthesis.  Molecular markers on the other hand offer a direct comparison of genetic 

diversity at the DNA level without the simplifying assumptions inherent with the 

pedigree-based method. 

When used for genetic diversity studies, molecular marker techniques, such as 

RFLP, RAPD, AFLP, and gSSR, customarily amplify random portions of the genome 

leading to competent estimates of genetic diversity.  However, breeders may be more 

interested in results from genetic diversity studies when markers that co-segregate with 

traits of interest are used.  However, even after quantitative trait loci (QTLs) for traits of 

interest have been identified, it has been argued that the underlying QTL-trait association 

is based on relatively large linkage blocks and could easily be lost with recombination.  

In addition, transferability of QTLs between populations remains a question in the minds 

of many plant breeders.  The results from genetic diversity studies may, therefore, be 

more useful if the segments of the genome sampled or measured correspond to segments 

bearing the genes of interest to the breeder.  This may be more important in sugarcane 

with its large genome size (estimated to be about 6 pg, approximately six times larger 

than that of rice) most of which may be duplicated and redundant (Ma et al., 2004).   

Access to increasing numbers of sugarcane gene and expressed sequence tag 

(EST) sequences obtained from diverse cDNA libraries coupled with available 
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bioinformatics tools offer new opportunities for achieving a candidate gene approach to 

molecular markers in sugarcane.  Target region amplification polymorphism (TRAP) is a 

relatively new marker technique which uses gene/EST sequence information to generate 

polymorphic bands around targeted/putative candidate gene regions.  We previously 

sequenced TRAP amplicons from sugarcane and showed, using Blastx analysis, that the 

TRAP primers successfully amplified the anticipated candidate gene regions (Alwala et 

al., 2006).   

Our objectives were to compare TRAP, AFLP, and pedigree-based coefficient of 

parentage (COP) in their ability to elucidate genetic diversity and relationships among 

nine sugarcane genotypes frequently used as parents in the Louisiana breeding program.   

3.2 Materials and Methods 
 
3.2.1 Plant Material and DNA Extraction 
 

The nine sugarcane parents used in the study are described in Table 3. 1.  These 

genotypes are experimental clones and cultivars adapted to Louisiana’s unique 

subtropical climate.  TucCP77-42, a major cultivar in northern Argentina, was bred also 

in Houma, LA using Louisiana adapted clones as the recurrent parents.  This group of 

genotypes serves as an important parental pool for sugarcane crossing in Louisiana. 

Young leaves were collected from each genotype, frozen immediately and stored 

at -80 oC.  Later, the leaves were ground in liquid nitrogen. Genomic DNA was extracted 

using the Plant DNeasy Mini Kit (Qiagen, Valencia, CA). DNA concentrations were 

estimated by known concentration of lambda DNA in 1% agarose gel. 
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3.2.2 TRAP Markers  

TRAP is a simple, 2-primer polymerase chain reaction (PCR) technique (Hu and 

Vick, 2003).  The forward (fixed) primer was designed from genes or EST sequences and 

the accompanied reverse (arbitrary) primer was designed to target introns or exons.  Both 

primers are usually about 18 bp long.   

Table 3. 1. Description of the nine sugarcane genotypes used in the genetic similarity 
study. 

Genotype Female parent Male parent 
 
Comments/Agronomic characteristics 

L99-238 CP79-318 LCP85-384 High sucrose parent 

HoCP91-552 LCP81-10 CP72-356 High tonnage; high fiber 

LCP86-454 CP77-310 CP69-380 Commercial; early high sucrose content 

Ho95-988 

 

CP86-941 

 

US89-12 

 

Commercial; high sugar yields and good 
ratooning ability 

LCP85-384 
 
 
 
 

CP77-310 
 
 
 
 

CP77-407 
 
 
 
 

Commercial; leading commercial 
cultivar in Louisiana from 1998 to 
present; high sugar yield, good 
ratooning ability and recently showing 
susceptibility to rust disease 

HoCP96-540 

 

 

LCP86-454 

 

 

LCP85-384 

 

 

Commercial; released in 2003; high 
sugar and cane yields; good disease 
resistance 

HoCP95-951 
 

CP85-866 
 

CP85-830 
 

BC5 of US60-8-3; high cane yield and 
fiber content 

TucCP77-42 

 

CP71-321 

 

US72-19 

 

Commercial cultivar in Argentina; high 
cane yield and average sucrose content 

HoCP92-624 CP81-325 CP71-1038 High sugar and cane yield; dropped due 
to excessive lodging; used extensively 
in crossing programs. 

   
   

  
In this study, the fixed primers were designed from four genes associated with 

sucrose metabolism, namely sucrose synthase (SuSy), sucrose phosphate synthase 

(SuPS), pyruvate orthophosphate dikinase (PODK), and soluble acid invertase (SAI).  

The primers were designed using the Primer3 software (http://frodo.wi.mit.edu/cgi-
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bin/primer3/primer3_www.cgi) (Rozen and Skaletsky, 2000).  The primer optimum size, 

maximum size and minimum size were set to 18 nt.  The optimum Tm, maximum Tm and 

minimum Tm were set to 53oC, 55oC, and 50oC respectively.  The GenBank accession 

number and designed primer sequence for each gene is given in Table 2. 2 of Chapter 2. 

Arbitrary reverse primer sequences were obtained from Li and Quiros (2001). The 

basic structure of this primer included three selective nucleotides at the 3’ end, four 

nucleotides of AT- or GC-rich content in the core region, and 11 nucleotides as filler 

sequences at the 5’ end. The AT and GC sequences are believed to target introns and 

exons, respectively.  In addition, the basic rules of primer design, such as self-

complementarity and maintenance of 40-60 % GC content were upheld in designing both 

primers (Table 2. 2 of Chapter 2).  The TRAP protocol was performed on an i-cycler 

(BioRad Labs, Hercules, CA) as described in Alwala et al. (2006).  After PCR, the 

amplified products were run on a 7 % polyacrylamide denaturing gel for 1.5 hrs at 110 

W.  The gel was developed and visualized using the silver staining technique.  A total of 

12 TRAP primer combinations were used to screen the nine parents. 

3.2.3 AFLP Markers  

The AFLP techinque was chosen for comparison because it has been widely used 

for genetic diversity studies in sugarcane (Besse et al., 1998; Lima et al., 2002) and other 

crops, such as beans (Bhat et al., 2005), wheat (Tian et al., 2005) and squash (Ferriol et 

al., 2004).  Also, the power of AFLP supposedly lies in its ability to simultaneously 

amplify large numbers of marker loci throughout the genome (Vuylsteke et al., 2000). 

Thus, it was of interest to compare it to TRAP which tends to target specified regions of 

the genome.  AFLP analysis was performed based on the protocol described by Vos et al. 

(1995). Two hundred nanograms of DNA were double digested with EcoRI and MseI and 
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linked to specific adaptors.  Primers carrying one selective nucleotide were designed, 

based on adaptor sequence, for pre- selective amplification.  EcoRI and MseI primers 

with three selective nucleotides were used for selective amplifications. All the PCR 

amplifications were carried out on an i-cycler (BioRad Labs, Hercules, CA). The 

amplified products were mixed with equal amount of dye (composition) and 5 µl of each 

sample was separated by electrophoresis on a 6 % polyacrylamide denaturing gel for 2 hr 

at 110 W.  The gels were documented using the silver staining technique.  A total of 28 

EcoRI /MseI AFLP primer combinations were used to screen the nine parents.   

3.2.4 Estimation of TRAP- and AFLP-derived Genetic Diversity and Polymorphic 

Information Content 

The bands from TRAP- and AFLP-derived gels were scored as ‘1’ for presence 

and ‘0’ for absence.   Jaccard-similarity coefficient (1908) was used to estimate genetic 

diversity (GS) between pairs of genotypes as follows: GSij = a/(a+b+c), where GSij is 

the genetic similarity measurement between individuals i and j, a represents the number 

of matching bands present in both individuals whereas b and c are the number of bands 

present in individual i and j, respectively, but not in their counterparts.  The bands absent 

in pairs of individuals were excluded from the calculation.  

Allelic diversity at a given locus can be measured by polymorphism information 

content (PIC) wherein a marker can distinguish two alleles taken at random from a 

population and it was calculated as follows: 

PIC = 1- Σ fi
2

 

where,  fi is the frequency of the ith allele (Weir 1990).  Considering the number of alleles 

at a locus along with their relative frequencies in a given population, an estimate of the 
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discriminatory power of a marker can be obtained by calculating the PIC value 

(Vuylsteke et al., 2000).   

3.2.5 Coefficient of Parentage  

The coefficient of parentage (COP), which corresponds to the probability that alleles at a 

locus in two individuals are identical by descent, was calculated to represent the 

pedigree-based measure of genetic diversity.  The COP was calculated based on 

Kempthorne (1957) using the PROC INBREEDING procedure in SAS (SAS Inc., 2002).  

The COP value between remotely related parents was assumed to be 0, and each 

genotype was assumed to receive half of their genome from each of its parent.  All of the 

ancestors were assumed to be heterozygous, since sugarcane is a highly heterozygous 

crop, and in addition, the COP of a genotype with itself was assumed to be 0.5 rather 1.0 

as for homozygous inbreds like rice (Kempthorne, 1957; Chiang and Lo, 1993; Deren, 

1995). 

3.2.6 Cluster and Principal Coordinate Analyses 

For ease of interpretation, the genetic similarity (GS) values for TRAP, AFLP, 

and COP between pairs of genotypes were subjected to both cluster (CA) and principal 

coordinate (PCoA) analyses to obtain graphical representations of the relationships 

between the nine genotypes.  The goodness of fit of the dendrograms formed from the GS 

matrix was evaluated by means of the cophenetic coefficient of correlation.  A minimum-

length spanning tree (MST) was superimposed on the PCoA plot to help detect local 

distortion because pairs of points which look close together in a plot may actually be far 

apart if other dimensions are taken into account.   These analyses were performed using 

the NTSYS-PC ver 2.2 (CA; Rohlf, 2000) and PAST (PCoA; Hammer et al., 2001) 

software packages.  Bootstrap analysis with 1000 replications with a 50 % consensus rule 
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was performed using the PAUP ver 4.0 software (Sinauer Associates, Inc., MA), and the 

boostrap values were superimposed on the CA dendrogram as a measure of the 

robustness of branches on the dendrogram.   

3.2.7 Correlation between COP, TRAP and AFLP-derived GS  

The correlation among pairs of the three genetic diversity measures was compared 

using two methods.  The first method employed the MAXCOMP routine of NTSYS-PC 

software, in which two GS matrices are compared by estimating the normalized Mantel 

Z-statistic (Mantel, 1967). The second method estimated the simple or Pearson’s 

correlation coefficient (r) between the measures.   

3.2.8 Bootstrap Analysis 

 Bootstrap analysis (Efron, 1982) was carried out to investigate if the number of 

markers used to generate GS were sufficient to provide precise estimates among the 

genotypes.  Subsamples, consisting of different number of polymorphic bands, were 

generated by re-sampling 1000 times, with replacement, to estimate GS between every 

two pairs of genotypes for each subsample.  The average coefficient of variation was 

estimated across subsamples for a given number of polymorphic bands.  The analysis was 

performed using the Dboot software, kindly provided by Dr. A. S. G. Coelho 

(Universidade Federal de Goias/Goiana-GO).  

3.3. Results 

3.3.1 TRAP Markers  
 
3.3.1.1 Percent Polymorphism and PIC Values 

All 12 TRAP primer combinations produced multiple PCR fragments (bands) in 

each of the nine cultivars which ranged in size from 300 to 700 bp (Fig. 3. 1).  A total of 

444 unambiguous bands were scored, of which 242 (55 %) were polymorphic (Table 3. 
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2).  The total number of bands amplified by individual primer combinations ranged from 

19 (SuPS + Arbi 3) to 69 (SuSy + Arbi 1) with an average of 37 bands per primer 

combination.  These two primer combinations were also responsible for the least (10) and 

most (41) number of polymorphic bands produced with an average of 20 polymorphic 

bands per primer combination.  The PIC values, averaged over all polymorphic loci for 

individual primer combinations, varied from 0.32 to 0.40 with an overall mean of 0.36 ± 

0.12.  From the polymorphism produced, it was possible to distinguish each of the nine 

genotypes. Sometimes only one of the primer combinations was needed to distinguish all 

nine genotypes.  Bands were found to be uniquely present or absent in some genotypes.  

TRAP fragments were found to be highly reproducible (Fig. 3. 1). 

  3.3.1.2 Genetic Diversity and Relationship among Genotypes 

The TRAP-GS mean estimate, averaged across all pair-wise combinations of 

genotypes, was generally high (0.75 ± 0.04) as expected based on the shared ancestry 

among these genotypes (Table 3. 1, Fig. 3. 2).  The GS values ranged from 0.67 (between 

HoCP91-552 and HoCP92-624) to 0.87 (between LCP85-384 and HoCP96-540) (Table 

3. 4, Fig. 3. 3A).  Data from the GS matrix were visualized using two methods, CA and 

PCoA. 

The CA yielded a dendrogram (Fig. 3. 3A) with a cophenetic coefficient of 

correlation value of 0.81, which is above the 0.80 generally regarded as a good fit (Rohlf 

and Sokal, 1981).  No distinct clusters were found. However, a subgroup was apparent 

between LCP85-384, HoCP96-540, and LCP86-454 (Fig. 3, 3A), which is in agreement 

with the close relationship known among these genotypes (Table 3. 3).  Missing from this 

subgroup, however, was L99-238, a progeny of LCP85-384.  The average GS between 

members of the group containing LCP85-384, HoCP96-540 and LCP86-454 vs. Ho95-
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988 is 0.78 while for L99-238 it is 0.77. This might explain why using the clustering 

technique placed Ho95-988 closer to the group compared with L99-238.  

1    2   3    4    5    6   7   8   9 1    2   3   4    5   6  7    8   9  SoSs

Genotypes

PCR run on 06/03/04

Genotypes

PCR run on 02/28/04

 
Figure 3. 1.  Reproducibility of TRAP markers depicted here by segments from two 
silver-stained polyacrylamide gels with polymorphic TRAP fragments generated using 
SuSy + Arbi 3 (see Table 3. 1).  Genotypes 1 to 9 are similar on the two gels with the 
reactions and gels run on different dates.  Genotypes: 1= L99-238; 2 = HoCP91-552;  
3 = LCP86-454; 4 = Ho95-988; 5 = LCP85-384; 6 = HoCP96-540; 7 = HoCP95-951;  
8 = TucCP77-42; 9 = HoCP92-624; So = La Stripe; Ss = SES 147 B.  Arrows show 
identical banding patterns between the two gels.  
 
 

The bi-plot from PCoA superimposed with the MST portrayed a slightly different 

sub-grouping which was composed of LCP85-384 and its two progeny, L99-238 and 

HoCP96-540 (Fig. 3. 3B, Table 3. 4).  Considering the first principal coordinate, LCP86-

454, a sibling of LCP85-384, was placed outside of the subgroup (Fig. 3. 3B) although 
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the MST clearly illustrates the relationship between the two genotypes.  Both the CA and 

PCoA portrayed HoCP91-552 as the genotype most distant from the rest of the group 

(Figs. 3. 3A and 3. 3B).  In the dendrogram (Fig. 3. 3A), the split of HoCP91-552 from  

Table 3. 2. Percent polymorphism and PIC values of TRAP markers used in genotyping 
nine sugarcane parents from the Louisiana breeding program.   

 Primer 
combinations 

No. bands 
observed 

No. polymorphic 
bands 

Percent 
polymorphism 

 

PIC† 

1 SuSy + Arbi 1 69 41 59.42 0.33 

2 SuSy + Arbi 2 60 19 31.66 0.38 

3 SuSy + Arbi 3 54 38 70.37 0.35 

4 SuPS + Arbi 1 25 15 60.00 0.39 

5 SuPS + Arbi 2 45 24 53.33 0.38 

6 SuPS + Arbi 3 19 10 52.63 0.40 

7 PODK + Arbi 1 31 14 45.16 0.32 

8 PODK + Arbi 2 28 18 64.28 0.40 

9 PODK + Arbi 3 34 15 44.11 0.35 

10 SAI + Arbi 1 35 21 60.00 0.36 

11 SAI + Arbi 2 20 13 65.00 0.32 

12 SAI + Arbi 3 24 14 58.33 0.34 

Total 444 242   

Average 37 20 55 0.36 
† Polymorphism information content 
 
the rest of the genotypes was only one of two branches supported by a bootstrap value 

greater than 50%. 

 

3.3.1.3 Bootstrap Analysis 
 

 As expected, the precision (CV %) with which one can distinguish among 

the nine genotypes increased with increasing numbers of polymorphic TRAP bands (Fig. 

3. 4).  Using all 242 polymorphic TRAP bands, the CV for distinguishing among the nine 
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genotypes in the study was 8.1 % (Fig. 3. 4), which seems to be reliable considering some 

authors recommend a CV of 10 % (Lima et al., 2002).  About 160 polymorphic TRAP 

bands would be necessary to measure GS among the nine genotypes with 10 % precision.   
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Figure 3. 2.  Frequency distribution of genetic similarity estimates based on pedigree 
(COP), TRAP, and AFLP data. Note:  The theoretical range of genetic similarity (GS) 
values for molecular markers is 0 to 1, whereas COP values in a heterozygous crops, e.g. 
sugarcane, range from 0 to 0.5.  To facilitate comparison among the different GS 
estimates, the COP values were multiplied by 2.    
 
3.3.2 AFLP Markers 
 
3.3.2.1 Percent Polymorphism and PIC Values 
 

A total of 40 AFLP primer combinations were tested of which 28 primer 

combinations were adequate to study genetic relationships within this set of sugarcane  
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Figure 3. 3. Jaccard’s genetic similarity pattern among nine sugarcane genotypes based 
on TRAP polymorphism and depicted by cluster analysis (A) and principal coordinate 
analysis (B).  The numbers on the dendrogram (A) represent 50 % majority rule 
bootstrapped values.  
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genotypes. The 28 primer combinations produced a total of 1325 bands of which 686 

(53%) were polymorphic (Table 3. 4). The unambiguous bands ranged in size from 250 

to 600bp.  The total number of bands per primer combination ranged from 23 (E-

AAC+M- CTC) to 81 (E-ACA+M-CTC) with an average of 47 bands per primer 

combination. These two primer combinations were also responsible for the least (8; E- 

 
Table 3. 3. Pairwise genetic similarity (GS) estimates using TRAP and AFLP markers 
compared with coeeficient of parentage (COP) on nine parents. 

 

AAC+M-CTC) and the most (44; E-ACA+M-CTC) number of polymorphic bands 

produced, with an average of 24 polymorphic bands per primer combination.  The PIC 
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value, averaged over all polymorphic loci for individual primer combinations, varied 

from 0.27 (E-ACA+M-CAC) to 0.45 (E-ACA+M-CAG) with an overall mean 0.35 ± 

0.12.  As with TRAP markers, it was possible to distinguish each one of the nine 

genotypes. Sometimes just one AFLP primer combination was sufficient to distinguish all 

the genotypes.  Also, bands were found to be uniquely present or absent in some 

genotypes. 

3.3.2.2 Genetic Diversity and Relationship among Genotypes 

The AFLP-GS estimates between pairs of genotypes ranged from 0.72 (between 

HoCP92-624 and Ho95-988) to 0.84 (between HoCP92-624 and LCP85-384) with a 

mean value of 0.76 ± 0.03 (Table 3. 3, Fig. 3. 2).  Cluster analysis produced a 

dendrogram with a cophenetic coefficient of correlation value of 0.75 (Fig. 3. 5A).  The 

dendrogram had two distinct clusters although the bifurcation had only marginal (45 %) 

bootstrap support.  LCP85-384 was placed in a cluster with both of its progenies, L99-

238 and HoCP96-540, but not with its half sibling LCP86-454 (Fig. 3. 5A; Table 3. 1).  

Surprisingly, the closest and most robust (100 % bootstrap support) relationship was 

found between LCP85-384 and HoCP92-624, a genotype with which it seemingly does 

not share a recent lineage (Table 3. 1).  Similar results were depicted by the PCoA with 

the same two groups of genotypes apparent in the first principal coordinate (Fig. 3. 5B).   

3.3.2.3 Bootstrap Analysis 

A total of 1325 polymorphic bands were revealed by AFLP markers.  However, 

for comparison with the 242 polymorphic bands revealed by TRAP markers, each of 10 

subsamples (with replacement) of 250 polymorphic AFLP bands was subjected to 

bootstrap analysis.  Based on the 250 polymorphic AFLP bands, GS was measured 

among the nine genotypes with 8.3 % precision (Fig. 3. 4).  About 160 polymorphic 
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AFLP bands would be necessary to measure GS among the nine genotypes with 10 % 

precision.  

3.3.3 COP 

3.3.3.1 Genetic Diversity and Relationship among Genotypes 

Since sugarcane is highly heterozygous, the COP-GS estimate of a genotype with 

itself was assumed to be 0.5 and 0 between remotely related parents. Therefore, unlike in 

rice for example, the COP estimates in sugarcane range from 0 to 0.5 rather than from 0 

to 1. The COP-GS estimates among the nine genotypes varied from 0.03 (between 

TucCP77-42 and Ho95-988 and Ho95-988 and LCP86-454) to 0.36 (between HoCP96- 
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Figure 3. 4. Number of polymorphic TRAP and AFLP bands necessary to estimate 
genetic similarity among nine sugarcane genotypes with a given level of precision (CV 
%) as estimated using bootstrap analysis.    
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540 and LCP85-384) with a mean of 0.12 ± 0.09 (Table 3. 3; Fig. 3. 2). Cluster analysis 

of the pair-wise COP matrix resulted in a dendrogram with a cophenetic coefficient of 

correlation value of 0.92 (Fig. 3. 6A).  The COP-derived dendrogram revealed no distinct 

pattern of diversity.   For example, although one could still trace the relationship among  

 
Table 3. 4. AFLP primer combinations and the number of total and polymorphic bands 
observed in a set of nine sugarcane genotypes. 

 Primer combination Bands 
observed 

Polymorphic 
bands 

Percent 
polymorphism 

 
PIC† 

1 E-ACT+M-CAT 64 28 43.75 0.33 
2 E-ACT+M-CAA 37 15 40.54 0.33 
3 E-ACT+M-CTC 36 35 97.22 0.38 
4 E-ACT+M-CTG 53 29 54.71 0.38 
5 E-AAC+M-CAA 64 21 32.81 0.35 
6 E-AAC+M-CTA 44 26 59.09 0.37 
7 E-AAC+M-CTC 23  8 34.78 0.36 
8 E-AAC+M-CTG 66 30 45.45 0.39 
9 E-ACC+M-CAA 53 17 32.07 0.37 
10 E-ACC+M-CTA 55 23 41.81 0.32 
11 E-ACC+M-CTC 50 19 38.00 0.33 
12 E-ACC+M-CTG 53 22 41.51 0.33 
13 E-ACA+M-CAA 39 22 56.41 0.37 
14 E-ACA+M-CTA 40 31 77.50 0.29 
15 E-ACA+M-CTC 81 44 54.32 0.35 
16 E-ACA+M-CTG 68 23 33.82 0.35 
17 E-AGC+M-CAT 25 20 80.00 0.35 
18 E-AGC+M-CAA 53 18 33.96 0.35 
19 E-AGC+M-CTG 46 22 47.82 0.32 
20 E-ACG+M-CAT 40 24 60.00 0.39 
21 E-ACG+M-CAA 44 27 61.36 0.35 
22 E-AAC+M-CAC 45 25 55.55 0.35 
23 E-ACC+M-CAC 49 26 53.06 0.39 
24 E-ACA+M-CAC 37 26 70.27 0.27 
25 E-AGC+M-CAC 40 23 57.50 0.37 
26 E-ACC+M-CAG 44 29 65.90 0.36 
27 E-ACA+M-CAG 35 21 60.00 0.45 
28 E-AGC+M-CAG 41 32 78.04 0.37 
 Total 1325 686   
 Average 47 24 53 0.35 
† Polymorphism information content 
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genotypes, such as LCP85-384, HoCP96-540, L99-238 and LCP86-454, which are 

known to share a common lineage (Table 3. 1), CA displayed no dichotomy between this 

group (related) and the non-related genotypes in the study.  This dichotomy was clearly 

revealed by the PCoA-derived bi-plot (Fig. 3. 6B). 

3.3.4 Associations between Pedigree, TRAP, and AFLP-derived GS Estimates  

 Similar levels of association, as estimated with both the normalized Mantel Z-

statistic and Pearson correlation coefficient (Table 3. 5), were found between COP-GS 

with TRAP-GS and between COP-GS with AFLP-GS.  Although the correlation values 

were significant (P < 0.05; N = 36) they were moderate (0.40).  Both methods (Mantel 

and Pearson) also calculated a similar level of correlation between the two (TRAP and 

AFLP) molecular marker-derived GS estimates.  The correlation between TRAP and 

AFLP-GS estimates was much lower (0.14) compared with their respective correlations 

with the COP-GS (0.40).  

3.4 Discussion 

3.4.1 Comparing Characteristics of TRAP and AFLP Markers  

The values of percent polymorphism and PIC reported in this study are typical for 

sugarcane.  Using 21 AFLP primer combinations, Lima et al. (2002) detected an average 

of 50 % polymorphism among 79 Brazilian sugarcane cultivars, whereas Selvi et al. 

(2005) reported an average of 52 % among 28 cultivars from India using 12 primer 

combinations.  Selvi et al. (2005) reported PIC values for AFLP that ranged from 0.31 to 

0.41.  TRAP analysis based upon 24 primer combinations among 61 sugarcane genotypes 

from Canal Point, Florida detected 58 % polymorphism and a PIC value of 0.32 (Edme, 

personal communication).  The complex polymorphism profile displayed in sugarcane for 

AFLP (Besse et al., 1998; Lima et al., 2002; Selvi et al., 2005; this study) and TRAP 
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(Arro, 2004; Edme, personal communication; this study) markers can be attributed to its 

large genome size, high levels of heterozygosity and aneuploidy, which is perpetuated via 

vegetative propagation.  No two of the nine genotypes presented an identical profile, 

indicating that TRAP markers, besides AFLP, can be useful for sugarcane fingerprinting.        

 The utility of a DNA marker technique can be defined by its multiplex 

ratio (number of markers that can be generated in one single reaction) and the PIC 

(effective number of alleles that can be detected per marker in a set of individuals, i.e., 

the discriminatory power of the marker) (Powell et al., 1996; Vuylsteke et al., 2000).  The 

ability of the AFLP technique to simultaneously amplify a large number of marker loci 

throughout the genome has been cited as a major advantage of AFLPs over other marker 

systems (Vuylsteke et al., 2000).  In this study, AFLP was only marginally superior to 

TRAP with regards to the total number of bands amplified per primer combination.  

However, similar PIC values were found between the two marker systems.  In addition, 

similar numbers of polymorphic bands were necessary to distinguish among the nine 

genotypes with 10 % precision.  The overall percent polymorphism was somewhat higher 

for TRAP (55 %) than for AFLP (53 %).  Thus, on the basis of these data, a similar level 

of polymorphism detection efficiency is to be expected from these two dominant 

markers.    

Experience in our lab has shown, however, that the relative polymorphism 

detection efficiency between AFLP and TRAP may be dependent upon the genetic 

structure of the population under study. For example, different results were obtained 

when the same set of TRAP and AFLP markers were used to genotype 100 individuals 

from an interspecific (Saccharum officinarum ‘La Stripe’ x S. spontaneum ‘SES 147B’) 

mapping population.  The total number of bands amplified and percent polymorphism  
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Figure 3. 5.  Jaccard’s genetic similarity pattern among nine sugarcane genotypes based 
on AFLP polymorphism and depicted by cluster analysis (A) and principal coordinate 
analysis (B).  The numbers on the dendrogram (A) represent 50 % majority rule 
bootstrapped values.  
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Figure 3. 6.  Genetic similarity pattern among nine sugarcane genotypes based on the 
coefficient of parentage and depicted by cluster analysis (A) and principal coordinate 
analysis (B).   
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Table 3. 5. The Mantel’s Z-statistic and Pearson correlation coefficient for pair-wise 
comparisons between the COP, TRAP and AFLP-derived estimates of genetic similarity 
(GS). 
 Normalized Pearson correlation 

Mantel Z statistic R coefficient (r) 
AFLP vs COP 0.41 0.42 
TRAP vs COP 0.40 0.41 
AFLP vs TRAP 0.14 0.14 
 
 
revealed by AFLP surpassed that of TRAP by about three to four fold (unpublished data) 

in the La Stripe x SES 147B population.  Because TRAP primers are designed to target 

only a small and specified portion of the genome (Hu and Vick, 2003; Alwala et 

al.,2006), AFLP markers may be more robust for detecting polymorphism among closely 

related genotypes, as they are more likely to sample different segments throughout the 

genome.  In soybean, Powell et al. (1996) found good correlations between AFLP and 

other markers (RFLP, RAPD and SSR) at the interspecies level,which disappeared at the 

intraspecies level, with AFLP giving the best resolution among genotypes.  It is best to 

allow research objectives to guide the decision of choosing the appropriate DNA marker 

technique(s).   

3.4.2 Comparing GS Estimates  

The mean, range, and distribution values for TRAP-GS and AFLP-GS were 

similar, but both were distinct from COP-GS (Table 3. 4; Fig. 3. 2).  The mean values 

from TRAP-GS and AFLP-GS highlight the narrow genetic base reported for cultivated 

sugarcane (Mangelsdorf, 1983; Deren, 1995; Lima et al., 2002; Arro, 2005). However,   

judging from the COP-GS, it would appear that substantial amounts of genetic diversity 

exist in sugarcane.  Up to 55 % (20/36) of the COP-GS were below 0.1, suggesting that 

only about 45 % of the genetic material segregating in the ancestral population was 

identical by descent between any two genotypes in this study (Table 3. 4).  In calculating 
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TRAP-GS and AFLP-GS, only polymorphic bands were taken into consideration, yet 

lower levels of genetic diversity (high GS) were detected by these methods compared 

with the COP method.  Moreover, of the total bands amplified by TRAP and AFLP 

markers, 45 % and 47 %, respectively, were monomorphic and therefore identical in 

state.  This tendency of the COP method to overestimate genetic diversity compared to 

DNA-based methods has been reported by other authors (Cox et al., 1985; Barbosa-Neto 

et al., 1996; Kim and Ward, 1997). 

As with several previous studies (Cox et al., 1985; Graner, 1994; Barbosa-Neto et 

al., 1996; Kim and Ward, 1997; Sun et al., 2003) this study found moderate levels of 

association between the DNA- and COP-based estimates of GS.  In wheat, a low r value 

of 0.27 was observed by Cox et al. (1985) between isozyme-based GS and COP.  RFLP-

based GS with COP in barley generated a low correlation value of 0.27 for winter type 

and a moderate value of 0.42 for spring type (Graner et al., 1994).  Evaluating the 

correlation between RAPD-based GS with COP resulted in a low r value of 0.10 in 

potatoes (Sun et al., 2003).  This disparity stems from the fact that the assumptions 

inherent in calculating COP are unrealistic for most cultivated species, and sugarcane is 

no exception (Deren, 1995).  For example, the COP method assumes that both parents 

contribute equally (half of their alleles) to the offspring, essentially ignoring the effect of 

selection and genetic drift during cultivar development.  As evident from Table 3. 4, the 

relationship between LCP85-384 and its two progenies HoCP96540 and L99238 was not 

equal for TRAP-GS and AFLP-GS.  Furthermore, it is well known that chromosome 

numbers within cultivated sugarcane can vary (generally from about 100-130) even 

among full-sib progenies.  This can substantially affect DNA-based measurements of GS, 

but is yet unaccounted for by currently available models for estimating COP.     
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    Considering that only a handful of clones were used in the original nobilization 

event to derive modern sugarcane, the assumption that two clones in this study are 

unrelated (COP = 0) relative to the original ancestors would be unrealistic.  Thus, as 

opposed to the DNA-based methods, the COP method cannot account for alleles that are 

alike in state but not identical by descent resulting in a disproportionate downward bias of 

GS estimates.  Incomplete pedigree records or errors in annotating parents would help to 

over emphasize the downward bias of COP estimates.  Moreover, selfing could distort 

pedigree records and crossing with stray pollen could bias COP.  To minimize this bias, 

we recalculated the correlation coefficients after eliminating COP values < 0.1.  The 

correlation between COP-GS and TRAP-GS increased (r = 0.69; N = 16), that for COP-

GS with AFLP-GS decreased (r = 0.31; N = 16), while that between TRAP-GS and 

AFLP-GS remained unchanged (r = 0.16; N =16).  However, when values for the three 

closest known relatives were removed (i.e. COP = 0.35) the correlations decreased to 

0.06 (COP-TRAP), 0.22 (COP-AFLP, and 0.11 (TRAP-AFLP).  The lack of congruence 

and consistency among TRAP-GS, AFLP-GS, and COP-GS, throughout the range of 

diversity detected among the genotypes in this study, suggests that the three measures 

detect different aspects of relatedness.     

Several authors (Graner, 1994; Barbosa-Neto et al., 1996; Kim and Ward, 1997; 

Sun et al., 2003) have recommended molecular marker-based estimates of GS to be more 

reliable than COP.  This is largely because molecular markers such as TRAP and AFLP 

directly measure DNA sequence variations.  However, a drawback of markers, such as 

TRAP and AFLP, is that the utility of bands produced by these markers can be 

confounded by lack of locus specificity.  Without sequencing, it would be difficult to 

state unequivocally that bands or alleles that are identical in state (i.e. migrating to the 
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same position on a gel) are not co-migrating non-homologous bands.  Lack of adequate 

genome coverage is another factor that can limit the utility of DNA-based estimates of 

GS.  This can be resolved by using markers for which the genome location is known such 

that markers that span the entire genome are chosen.          

3.4.3 Comparing Genetic Diversity Patterns among Genotypes 

Following CA, the least distinct pattern was obtained from the COP dendrogram 

while AFLP gave the most distinct pattern. However, it was easier to explain the TRAP 

dendrogram based on pedigree records.  The genetic resolution and interpretation of the 

data was enhanced by including the PCoA bi-plots.  In general, when the dendrogram and 

bi-plot were considered together, the three measures seemed to depict a somewhat similar 

pattern of relationship among the genotypes, the major exception being the tight 

relationship (100 % bootstrap support) between LCP85-384 and HoCP92-624.  A closer 

examination of the pedigree tree revealed that the maternal grandparents of LCP85-384 

(CP52-068 x L65-69) were indeed the great grandparents of HoCP92-624 (CP52-068 x 

CP62-258) x (CP65-357 x L65-69).  One could speculate that AFLP markers may be 

detecting favorable alleles or blocks of genes from these ancestral parents that were 

preserved through independent selection for the same trait(s) in the two cultivars.  As for 

the TRAP markers, only sucrose related primers were exemplified in this study which 

may not be identical to the ones detected here by AFLP markers.  

3.5 Conclusions 

The results showed that TRAP markers have utility for sugarcane genetic 

diversity studies.  TRAP markers produced percent polymorphism and PIC values similar 

to that of AFLP markers and measured GS with the same level of precision as AFLP 

markers.  A similarly moderate level of association was found between TRAP-GS and 
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COP-GS estimates and between AFLP-GS and COP-GS estimates.  The association 

between TRAP-GS and AFLP-GS was low.  Violations of the assumptions used in 

calculating COP was partly responsible for the moderate level of association between 

COP and the two DNA-based estimates, as the COP method tends to underestimate GS.  

However, exclusion of subsets of data along the range of COP-GS estimates led to 

different levels of association between COP and TRAP, COP and AFLP and TRAP and 

AFLP suggesting that the three measures could be detecting different aspects of GS.  

Notwithstanding, with few exceptions, the dendrograms and bi-plots produced using the 

three measures depicted a somewhat similar pattern of diversity among the genotypes.  

Therefore, some combination of TRAP, AFLP and COP would likely be more useful in 

estimating GS, as this would compensate for the inaccuracies inherent within each of the 

methods.   

Estimates of GS could be incorporated as a tool to assist sugarcane breeders with 

selecting the most divergent parents to maximize heterosis and transgressive segregation 

in the progeny population.  The inexpensive COP could be used as a first step to 

assemble a large diverse group of potential parents. Molecular markers, such as TRAP 

and AFLP, could then be used to confirm the pedigrees. Moreover, molecular markers 

provide a more direct and precise estimate of allele frequency differences among the 

parents. Decisions could be made to decide the best crosses based on the GS values 

among the parents, thus allowing the breeder to focus attention and resources on the most 

promising crosses.  Only loci for which the parents carry different alleles are expected to 

contribute to genetic variance in the progeny population.  If such loci co-locate with 

genes governing the traits being measured, then it may be possible to predict hybrid 

performance based on GS among parents.     
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CHAPTER 4 PREDICTING CROSS PROGENY PERFORMANCE IN 
SUGARCANE FROM COEFFICIENT OF PARENTAGE, AFLP AND TRAP 

DERIVED PARENTAL GENETIC RELATIONSHIPS 
 

4.1 Introduction 

Cultivated sugarcane (Saccharum species hybrids, 2n = 128-140) is a highly 

heterozygous and clonally propagated crop.  The long duration of a sugarcane selection 

cycle (12-15 years) limits the rapid development of new cultivars.  In addition, because 

sugarcane is a clonally propagated crop, no new opportunities exist for sexual 

recombination following crossing; and therefore, breeders have to capitalize on the initial 

genetic variation created during hybridization.  Since, selection cannot salvage a good 

cultivar from a poor cross, the choice of parents is crucial as it predetermines the outcome 

of subsequent selections during the clonal selection stage.  

A thorough knowledge of the genetic relationships that exists in the available 

parental genotypes is fundamental to the success of a sugarcane (or any) breeding 

program.  Usually, in a typical sugarcane improvement program, a vast number of crosses 

are produced and a majority of them are discarded based on the per se performance of the 

progeny. This process involves substantial investments in time, labor and money.  

Therefore, the ability to predict the breeding potential of a cross based on the choice of 

parents would be of immense value to sugarcane breeders as it would help concentrate 

efforts on the most promising crosses or base populations.  

The breeding prospects of a base population could be assessed by the ‘usefulness’ 

criterion (Schnell, 1983).  ‘Usefulness’ is defined as the sum of base population mean and 

the selection intensity.  According to Falconer and Mackay (1996), the selection intensity 

is a function of genetic variance (σ2
g) and heritability of the trait with respect to a base 

population.  Therefore, the ‘usefulness’ accounts for the differences in both means 
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(superior progeny per se mean i.e., heterosis) and genetic variances of the base 

populations.  In an applied plant breeding program, base populations with high genetic 

variance are more desirable because transgressive segregants are more likely to be 

identified and subsequently selected.  It was opined that heterosis and genetic variance 

are the functions of genetic divergence (or genetic distance, GD) between the parents 

(Moll et al., 1965; Bohn et al., 1999).  

The relationship between GD among the parents and the genetic parameters (such 

as mean, heterosis and σ2
g of progeny) have been studied in a wide array of crops using 

either coefficient of parentage (f) (Cox et al., 1985; Souza and Sorrells, 1991; Manjarrez-

Sandoval et al., 1997) or molecular markers (RFLPs by Lee et al., 1989 and Smith et al., 

1990; RAPDs by Santos et al., 1994 and Lanza et al., 1997; AFLPs by Burkhamer et al., 

1998 and SSRs by Bohn et al., 1999).  In most cases, heterosis of cross has been 

predicted accurately based on the GD between the parents.  For example, a positive 

relationship has been observed between hybrid vigor and RAPD-GD in Ethiopian 

mustard (Tecklewood and Becker, 2006), hybrid vigor and SSR-GD in maize populations 

(Reif et al., 2003) and hybrid vigor and AFLP- and SSR-GD in Broccoli (Hale et al., 

2007).  Smith et al. (1990) observed that a combination of RFLP and pedigree knowledge 

could predict high yielding single-cross combinations in maize.  On the other hand in the 

case of σ2
g, the prediction was found to be inconsistent and remains unresolved 

(Melchinger, 1998).   

In most of the crops, the molecular marker based GS estimates were not able to 

accurately predict the σ2
g (Kisha et al., 1997; Manjarrez-Sandoval et al., 1997; Bohn et 

al., 1999).  In oats, for example, the best predictor of σ2
g was found to be f (Cowen and 

Frey, 1987) while RFLP-GS could not accurately predict the σ2
g (Moser and Lee, 1994).  
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Souza and Sorrells (1991) also observed similar results with f but pointed out that the 

relationship was trait dependent.  The unsatisfactory results from molecular markers to 

predict genetic variance could be attributed to the genome coverage of markers especially 

RFLPs, RAPDs and SSRs which yield a few polymorphic markers.  Although this 

shortcoming could be overcome by using AFLP markers, which produce a vast number 

of polymorphisms, in most cases even the AFLP-GS could not accurately predict the σ2
g.  

One proposition to accurately predict the genetic variance was to use markers tightly 

linked to quantitative trait loci (QTL) (Hayes et al 1997).  Recently, sequence related 

amplification polymorphism (SRAP) markers (Li and Quiros, 2001) and target region 

amplification polymorphism (TRAP) markers (Hu and Vick, 2003) have been reported to 

target either exons or introns or gene rich regions across the genome.  A positive 

relationship has also been observed between SRAP-GS and hybrid vigor in Broccoli 

(Hale et al., 2007).  However, thus far, similar studies using TRAP markers have not been 

reported in any crop although the TRAP markers have been used to study the genetic 

relationships in sugarcane (Arro, 2005; Alwala et al., 2006). 

Research associating GS with either family means or genetic variances are 

lacking in sugarcane.  The objectives of this study were to estimate (i) genetic similarities 

(GS) among nine elite sugarcane cultivars using coefficient of parentage (f) method and 

the AFLP and TRAP marker techniques and (ii) to study relationship of family means 

and σ2
g with various GS estimates in five crosses involving the nine parents. 

4.2 Materials and Methods  

4.2.1 Plant Material and Field Trial 

The nine sugarcane parents used in the study are described in Table 2. 1 of 

Chapter 2. These genotypes are either experimental clones or cultivars adapted to 
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Louisiana’s unique temperate climate (Table 4.1).  TucCP77-42, a major cultivar in 

northern Argentina, was bred also in Houma, LA using Louisiana adapted clones as the 

recurrent parents.  This group of genotypes serves as an important parental pool for 

sugarcane crossing in Louisiana. 

Five crosses were produced involving the nine parents and thirty clones were 

randomly chosen from each cross for further field trials.  The nine parents along with 

thirty clones per family were planted in the fall of 2003 at the Sugar Research Station 

farm, St. Gabriel, LA.  Two stalks per clone were planted in single-row plots (3 meters 

long with a spacing of 1.8 meters between rows) in a randomized complete block design 

with two replications.  Each replicate contained 30 sets of families with each set 

containing clones from all the five families.  Standard Louisiana sugarcane cultural 

practices were implemented to grow the crop (Legendre, 2001).   

Table 4. 1. Description of five crosses used in the study. 

Family Female parent Male parent 

A HoCP92-624 HoCP91-552 
B LCP86-454 LCP85-384 
C HoCP95-951 HoCP96-540 
D TucCP77-42 LCP85-384 
E HO95-988 L99-238 

 

Phenotypic data was recorded in late September to early October in the 2004 

(plant cane) and 2006 (second ratoon) crops.  Competent data were not recorded in 2005 

as the plots were damaged by hurricanes Katrina and Rita.   Stalk height (SH, cm) was 

measured as the length of the longest stalk (from base of the stalk to the first visible 

dewlap) and stalk diameter (SD, cm) was measured from the middle of the stalk with no 

reference to the bud groove.  The number of millable stalks per plot were counted (SC) 

and estimated to number of stalks per hectare.  Cane yield (CY, Mg ha-1) was estimated 
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as the product of stalk number and weight of stalks (Mg) per hectare.  Theoretical 

recoverable sugars (TRS) was estimated from pol and Brix values according to Gravois 

and Milligan (1992) assuming a fiber of 12.5%.  

Data was subjected to analysis of variance (combined across two crop-cycles) 

using Proc GLM of SAS ver 9.1 (SAS Inc., Cary, NC) using the linear model 

Yijkl = μ + Ci + Rj + CRij + Fk + CFik +RFjk +CRFijk + Sl(Fk) + CSil(Fk) + RSjl(Fk) + Eijkl 

where  

Yijkl is the observation l in crop-cycle i, replication j and family k; 

 μ is the overall mean; 

Ci is crop-cycle i; 

Rj is the replication j; 

CRij is replication j in crop-cycle i; 

Fk is family k; 

FCik is family k in crop-cycle i; 

RFjk is family k in replication j; 

CRFijk family k in crop-cycle i, in replication j; 

Sl(Fk) is the clone l within family k; 

CSil(Fk) is clone l within family k, in crop-cycle i; 

RSjl(Fk) is clone l within family k, in replication j; 

Eijkl is the residual. 

The family and clones within family were treated as fixed effects and the other 

sources of variation were treated as random effects.  The mean squares were tested for 

significance using the appropriate error terms.  Simple correlations were estimated among 

the traits using the Proc CORR procedure of SAS.  The genetic variance (σ2
g) for each 
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trait was calculated based on the family-wise analysis of variance estimates.  Mid parent 

heterosis (MPH) for each clone within a family was estimated as [(F1-MP)/MP] x100 

where MP [=(P1+P2)/2] is the mid-parental value for a particular trait and the average 

MPH (AMPH) was estimated as ΣMPH/30.  The number of positive heterotic clones 

within a family were counted and expressed as percentage (PHC). 

4.2.2 DNA Extraction and Molecular Marker Assays  

Young leaves were collected from each of the parental genotypes, frozen 

immediately and stored at -80 oC. Later, the leaves were ground in liquid nitrogen. 

Genomic DNA was extracted using the Plant DNeasy Mini Kit (Qiagen, Valencia, CA). 

DNA concentrations were estimated by known concentration of lambda DNA in 1 % 

agarose gel. 

4.2.3 Estimation of Genetic Similarities 

Three measures of genetic diversity estimation were employed: two molecular 

marker (AFLP and TRAP) techniques and one pedigree based method (Coefficient of 

parentage).  The AFLP technique generates a vast number of polymorphic loci across the 

whole genome from a single selective PCR amplification whereas the TRAP technique 

generates polymorphisms from the gene rich regions of the genome as the forward (fixed) 

primer was designed from genes or EST sequences and the accompanied reverse 

(arbitrary) primer was designed to target introns or exons (Hu and Vick, 2003).  The 

protocols for AFLP and TRAP technique have been described in Chapter 2.  The 

coefficient of parentage (f) was calculated as previously described (Kempthorne, 1957; 

Chiang and Lo, 1993; Deren, 1995), but for proper comparison with AFLP- and TRAP-

based GS estimates, the f values were multiplied by 2.  
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4.2.4 Estimation of Correlation Coefficients 

Simple correlations were performed among various GS estimates and between GS 

and progeny mean, GS and genetic variance, GS and AMPH and GS and PHC using the 

Proc CORR option of SAS ver 9.1. 

4.3 Results 

4.3.1 Field Trial and Genetic Parameters 

The results from combined analysis of variance (Table 4. 2) show that there were 

no significant differences (P > 0.05) for crop-year effects except for stalk diameter 

although the means were reduced from plant cane to second ratoon crop in all the traits.  

No significant differences (P > 0.05) were observed among the five families for all the 

five traits, however, significant differences (P < 0.01) were observed among the clones 

within families.  

Table 4. 2. Mean squares from analysis of variance for stalk height (SH), stalk count 
(SC), stalk diameter (SD), cane yield (CY) and total recoverable sugars (TRS) of five 
crosses tested in two years 2004 and 2006. 

 
Source of Variation 

 
df 

 
SH 

  
SD 

 
CY 

 
    TRS SC 

Crop     1 302739.26 2624.51 771.46* 2398.57 1020.65 
Rep     1     4757.64 2487.80     8.05   190.85   313.88 
Crop*Rep     1     5746.29**   340.26     3.96     33.91 2151.43* 
Fam     4       945.57   138.92   23.22     17.20   238.40 
Crop*Fam     4       973.11     18.41     3.67       8.92     22.88 
Rep*Fam     4       866.22   219.86   15.45      19.49   367.03 
Crop*Rep*Fam     4       339.48   128.60     5.22      10.78   301.65 
Clone (Fam) 145       788.89**   252.39*   33.91**      23.51*   892.97** 
Rep*Clone (Fam) 145       821.03**   259.09*   26.67**      25.04**   897.93** 
Year*Clone (Fam) 145       460.65   151.91   13.76      12.77   348.82 
Error 145       548.74   194.62   11.91      18.00   319.45 
Total 599      
*, ** represent significant levels at 0.05 and 0.01 probabilities, respectively. 
 

The correlation coefficients for SH were always significant and positive with the 

rest of the traits (Table 4. 3).  Cane yield was also significantly correlated with all the 

traits except TRS.  Positive correlations were observed for TRS with SH (r = 0.96**) and 
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with SC (r = 0.10*) whereas non-significant correlations were observed with SD (r = -

0.02) and CY (r = 0.03).  SD was negatively correlated with SC (r = -0.21*) 

Table 4. 3. Simple correlation coefficients among five traits stalk height (SH), stalk count 
(SC), stalk diameter (SD), cane yield (CY) and total recoverable sugars (TRS) combined 
across two years 2004 and 2006. 

 SC SD CY TRS 

SH 0.226**   0.206** 0.587**    0.962* 
SC  - 0.214** 0.578**    0.102* 
SD   0.249** -0.023 
CY      0.039 
*, ** represent significant levels at 0.05 and 0.01 probabilities, respectively. 

 

The means, genetic variances, average mid parental heterosis (AMPH), percent 

heterotic clones (PHC) and mid parental (MP) values within each family for all traits are 

presented in Table 4. 4.  No significant differences were observed for means among all 

the families. Positive genetic variances were found in the family B for most of the traits 

followed by family D and E. The other families had negative variances probably due to 

small population size.  The AMPH was found to be negative in all the families for the 

traits stalk height (SH) and cane yield (CY) whereas positive AMPH was observed for 

the stalk diameter (SD).   Negative AMPH was also observed in all the families except 

family B for the trait stalk count (SC) and families A and E for theoretical recoverable 

sugar (TRS).  With respect to PHC, in all the families positive heterotic progeny were 

observed for the traits SD and TRS and except in the family A for the traits SC and CY.  

For SH, only the families B and E had positive heterotic clones. 

4.3.2 Variation for Molecular Markers 

A total of 40 AFLP primer combinations (PC) were tested out of which 28 PC 

generated polymorphisms useful for screening the nine parents. A total of 1325 bands 
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Table 4. 4. Estimates of family means, standard errors (SE) of means, genetic variances 
(σ2

g), average mid parent heterosis (AMPH), percent heterotic clones per family (PHC) 
and mid parental (MP) values for the five agronomic traits 

 Genetic parameters Trait  A B C D E 

Family mean† SH 166.40a 165.39a 165.42a 171.08a 171.39a 
SE      2.87     3.16     3.36     3.36     3.19 
 SC   34.37a   34.37a   32.44a   34.83a   32.46a 
      1.17     1.30     1.50     1.42     1.42 
 SD   22.20a   21.74a   22.38a   23.05a   22.36a 
      0.47     0.43     0.49     0.39     0.37 
 CY     8.83a     8.64a     8.58a     9.60a     8.72a 
      0.86     0.96     1.05     1.18     1.07 
 TRS 230.31a 229.42a 228.20a 227.96a 232.04a 
      2.20     2.30     2.27     2.59     2.00 

σ2
g SH -38.79 133.79  58.79  -81.38  -5.88 

 SC -31.52     5.37 -40.00    68.17  42.00 
 SD    1.83     4.95   -1.07    -1.75    1.56 
 CY    7.86   51.16   49.67  267.84 106.95 
 TRS   -7.82   17.78 -63.00   25.29 -14.78 

AMPH SH -19.37 -11.14 -16.92 -18.35 -12.36 
 SC -24.72   12.80 -14.71 -24.59 -12.38 
 SD   10.83     7.60     9.78   17.70   10.41 
 CY -42.09 -10.46 -32.22 -38.09 -21.28 
 TRS    0.58   -5.27 -11.93   -2.83    2.85 

PHC SH     0.00   16.66     0.00     0.00     3.33 
 SC     0.00   70.00   20.00   10.00   30.00 
 SD   66.66   63.33   76.66   93.33   46.66 
 CY     0.00   23.33     3.33     3.33   16.66 
 TRS   53.33   23.33     3.33   43.33   40.00 

MP SH 206.76 185.81 199.19 208.75 195.56 
 SC   45.67   30.40   38.00   45.69   36.79 
 SD   20.03   20.25   20.41   19.53   20.21 
 CY   15.21     9.60   12.68   15.23   10.97 
 TRS 229.34 242.29 256.17 232.18 238.73 
† Estimates of means with same letter indicate that the means are non significant at 0.05 
levels of LSD. SH, stalk height; SC, stalk count; SD, stalk diameter; CY, cane yield; 
TRS, theoretical recoverable sugars 
 
were amplified out of which 686 (53%) were polymorphic bands (Table 4. 5). The 

average bands and average polymorphic bands per PC were found to be 47 and 24, 
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respectively.  The average polymorphic information content (PIC) value across all the 

polymorphic bands was found to be 0.35. 

All the 12 TRAP primer combinations produced polymorphic bands across the 

nine parents. A total of 444 bands were generated out of which 242 (55%) were 

polymorphic(Table 4. 5). The average bands and average polymorphic bands per PC were 

found to be 37 and 20, respectively.  The average polymorphic information content (PIC) 

value was found to be 0.36.  

Table 4. 5. Summary of markers produced from AFLP and TRAP techniques  
 Primer 

Combinations 
Total 
bands 

Polymorphic 
bands 

Total bands per 
PC†

Polymorphic 
bands per PC‡

 
PIC 

AFLP 28 1325 686 47 24 0.35 
TRAP 12 444 242 37 20 0.36 
†PC, primer combination; ‡PIC, polymorphic information content 
 
4.3.3 Estimates of Genetic Similarity (GS)  

A summary of TRAP-GS, AFLP-GS and f-GS estimates for each cross is 

presented in Table 4. 6. The TRAP-GS estimates between pairs of genotypes ranged from 

0.65 (HoCP92-624 x HoCP91-552 and) to 0.79 (LCP86-454 x LCP85-384) and the 

AFLP-GS estimates ranged from 0.73 (Ho95-988 x L99-238) to 0.77 (HoCP95-951 and 

HoCP96-540) indicating a high genetic similarity among the nine parental genotypes.  

The f-GS estimates among the nine genotypes varied from 0.10 (Ho95-988 x L99-238) to 

0.36 (LCP86-454 x LCP85-384) indicating a low genetic similarity among the genotypes.  

Reasons for this disparity were explained in Chapter 3. 

4.3.4 Correlations among Genetic Parameters  

The correlation coefficients among various genetic parameters are presented in 

Table 4. 7.  The correlations between family means and σ2
g estimates were negative (r ≤ -

0.68) for SH and SD whereas positive correlations were observed for the 
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Table 4. 6. The genetic similarity (GS) estimates between the parents of five crosses 
derived from AFLP, TRAP and coefficient of parentage (f) 

Family AFLP-GS TRAP-GS f-GS 

A 0.74 0.65 0.20 
B 0.74 0.79 0.36 
C 0.77 0.76 0.30 
D 0.75 0.78 0.14 
E 0.73 0.72 0.10 

 
 

Table 4. 7. Simple correlation coefficients among genetic parameters family means, 
genetic variances (σ2

g ), average mid parental heterosis (AMPH), percent heterotic clones 
per family (PHC) and mid parental (MP) values for the five traits under study. 

 
Genetic 

parameters  

 
 
Trait†

    
    

σ2
g AMPH PHC MP 

Family Mean SH -0.68   0.01 -0.35   0.35 
 SC   0.27 -0.03 -0.02   0.34 
 SD   -0.90*       0.94** 0.64  -0.73 
 CY    0.90* -0.48 -0.38   0.64 
 TRS   0.01   0.76 0.44  -0.29 

σ2
g  SH   0.70   0.79   -0.90* 

 SC  -0.07   0.07   0.11 
 SD  -0.73 -0.65   0.42 
 CY   -0.17  -0.08   0.32 
 TRS    0.49   0.61  -0.74 

AMPH SH   0.80    -0.93* 
 SC       0.98**      -0.94** 
 SD   0.70    -0.91* 
 CY       0.98**      -0.97** 
 TRS     0.89*  -0.81 

PHC SH       -0.88* 
 SC         -0.94** 
 SD           -0.62 
 CY       -0.92* 
 TRS         -0.97** 

*, ** represent significant levels at 0.05 and 0.01 probabilities, respectively. †SH, stalk 
height; SC, stalk count; SD, stalk diameter; CY, cane yield; TRS, theoretical recoverable 
sugars 
 
traits SC, CY and TRS (r = 0.01 to 0.90*).  High positive correlations were observed 

between family means and AMPH for the traits SD and TRS (r ≥ 0.76) and the rest of the 
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traits showed either negative or low correlations.  Negative correlations were observed 

between the mean and PHC, for the traits SH, SC and CY (r = -0.02 to -0.38) whereas 

positive correlations were observed for SD and TRS.  Positive correlations were observed 

between family means and MP for the traits SH, SC and CY (r ≥ 0.34) whereas negative 

correlations were observed for SD and TRS (r ≤ -0.29). 

The σ2
g component was highly correlated with AMPH for the traits SH and TRS 

(0.49 ≥ r ≤ 0.70) and negatively correlated for SC, SD and CY (r ≤ -0.07).  Between σ2
g 

and PHC, positive correlations (0.07 ≥ r ≤ 0.79) were observed for all the traits except 

SD and CY (r ≤ -0.08).  Negative correlations were observed between σ2
g and MP values 

for the traits SH and TRS (r ≤ -0.74) and positive correlations were observed for the rest 

of the traits (0.11≥ r ≤ 0.42). 

Average MPH was always positively correlated (in some cases significantly) with 

PHC (r = 0.70 to 0.98**) and always negatively correlated with MP values (r = -0.81 to -

0.97**). Negative correlations were consistently observed between PHC and MP values 

(r = -0.62 to -0.97**) for all the traits. 

4.3.5 Correlations between Genetic Parameters and GS 

The estimates of correlation coefficients between various genetic parameters and 

GS estimated by the three methods for all the traits are presented in Table 4. 8.  With the 

exception of mid-parental (MP) values, the correlation coefficients between AFLP-GS 

estimates and family mean, σ2
g , AMPH and PHC were negative and non significant 

(except AMPH of TRS) in most of the traits. 

 In the case of TRAP, the exact opposite was noticed where negative correlations 

were observed between TRAP-GS and MP for all of the traits except TRS.  With the rest 

of the genetic parameters, positive correlations were observed for most of the traits  
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Table 4. 8. Simple correlation coefficients between genetic parameters and genetic 
similarity (GS) estimates derived from AFLP, TRAP and coefficient of parentage (f) for 
the five traits under study 

Genetic parameters 
 
Trait† AFLP-GS 

 
f-GS TRAP-GS 

Family Mean SH -0.42 -0.02 -0.90* 
 SC -0.19  0.13 0.07 
 SD  0.27  0.09 -0.67 
 CY  0.00  0.21 -0.52 
 TRS -0.81 -0.61 -0.43 

σ2
g  SH  0.11  0.43 0.85 

 SC -0.42  0.36 -0.60 
 SD -0.49 -0.01   0.55 
 CY -0.04  0.46  -0.54 
 TRS -0.58  0.24 -0.17 

AMPH SH -0.44 0.39  0.26 
 SC -0.19 0.52  0.68 
 SD   0.12 0.12 -0.62 
 CY -0.34  0.49  0.42 
 TRS   -0.90* -0.57 -0.73 

PHC SH -0.34 0.48 0.61 
 SC -0.23 0.59 0.59 
 SD   0.65 0.42  0.08 
 CY -0.51 0.42  0.28 
 TRS -0.71 -0.57 -0.68 

MP SH 0.23 -0.40 -0.58 
 SC 0.12 -0.47 -0.59 
 SD 0.14 -0.09  0.54 
 CY 0.26 -0.39 -0.44 

†SH, stalk height; SC, stalk count; SD, stalk diameter; CY, cane yield; TRS, theoretical 
recoverable sugars 

 TRS 0.66   0.43  0.56 

 
barring some exceptions such as SH and TRS in family mean, SD in σ2

g, TRS in AMPH 

and PHC. 

In the case of coefficient of parentage (f), negative correlations were observed 

with mean (except SC), σ2
g (except SH and SD) and MP values (except SD and TRS) for 

most of the traits.  On the other hand, positive correlations were observed between f-GS 

and AMPH (except SD and TRS) and PHC (except TRS).  The correlations between 
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combined average GS from all the three techniques and all the genetic parameters were 

more a representative of correlations between f-GS and the genetic parameters.   

4.4 Discussion 

4.4.1 Correlation between Molecular Marker-GS and f –GS Estimates 

According to Melchinger et al. (1991), a correlation is expected between f-GS and 

marker-GS in related genotypes because of the linear relationship between the two 

measures.  However, due to the basic differences in the assumptions/concepts underlying 

both measures deviations are expected as observed by Cox et al., (1985) in wheat (r = 

0.27 between of f –GS and isozyme-GS) and Graner et al., 1994 in barley (r = 0.27 

between f –GS and RFLP-GS).  In this study, moderate (r = 0.42; refer to Chapter 3) 

correlation coefficients were observed between f –GS and marker-GS corroborating other 

previous reports in various crops using different molecular markers (Graner et al., 1994; 

Barbosa-Neto et al., 1996; Kim and Ward, 1997).  The coefficient of parentage (f) 

determines the GD among genotypes assuming that the original ancestors are unrelated 

and the two alleles chosen at random from each parent are ‘identical by descent’ 

(Kempthorne, 1957).  

In sugarcane, the assumptions of f may not hold true as very few parents were 

used in initial ‘nobilization’ and most of the parents for current cultivars are inherently 

related to each other.  In addition, the effects of selection and genetic drift are completely 

ignored in the f method while in reality they introduce a bias and increase the standard 

error of f, thus further reducing the correlation between f-GS and marker-GS.  

The molecular marker-GS estimates, on the contrary, are indicative of the 

proportion of bands shared by two genotypes and resemble DNA sequences across the 

whole genome (Nei, 1987).   Therefore, the marker based GS estimates reflect the 
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proportion of ‘genes alike in state’ irrespective of whether they are identical by descent or 

only identical in state (Bohn et al., 1999).  The marker-GS estimates are, however, 

estimated by assuming that all the co-migrating bands are identical in state but without 

sequencing it would be difficult to declare unequivocally that the bands or alleles that are 

supposedly identical in state are not co-migrating, non-homologous bands.  A reliable and 

accurate estimate of marker-GS could be achieved by using a large number of molecular 

markers. 

4.4.2 Relationship among the Genetic Parameters 

In sugarcane cultivar development, Schnell’s (1983) ‘usefulness’ concept is being 

adopted in a two stage selection process.  Firstly, depending upon the significant mean 

differences among the families and available genetic variance, superior families are 

selected and secondly, depending upon the genetic variance among the progeny within a 

selected family, desirable selections are made among clones within a family to have 

substantial amounts of selection gain.  The two genetic parameters (means and genetice 

variances) of Schnell’s (1983) ‘usefulness’ model are discussed below 

(i) Relationship between family means and other genetic parameters 

According to Falconer and Mackay (1996), the selection gain for a highly 

heritable trait is predictable based on the indirect selection for family means.  In 

sugarcane, Chang and Milligan (1992) observed that the family mean is a good indicator 

of the potential of a cross to produce elite progeny for a particular trait.  Several studies in 

wheat and maize (Busch et al., 1974; Utz et al., 2001) also indicated that the family 

means were good indicators of progeny performance and could be accurately predicted 

by the mid parental (MP) values.  However, Mather and Jinks (1982) stated that the 

family means prediction may not be accurate based on MP values if there is a prevalence 
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of either dominance or epistatic effects.  In this study, the family means were not 

predicted accurately from the MP values and moderate correlations were observed 

between the family means and MP values which seemed to be trait dependent.  These 

moderate correlations could be largely attributed to high degree of dominance or large 

epistatic effects which are more pronounced in a highly heterozygous polyploid crop like 

sugarcane.  Previously, Utz et al., (2001) observed similar moderate correlations in wheat 

and in their study, epistasis seem to be the major cause of observed differences between 

family means and parental means.   

Poor correlations between family means and σ2
g for a particular trait are also not 

unusual because the mean values are influenced by masking effects of several genes and 

σ2
g of a population is due to simultaneous segregation of several genes including those 

with masking effects.  In this study, the correlations between family means and σ2
g were 

either negative or low and when positive were non-significant. However, it is likely that 

the estimates of mean and σ2
g may not reflect true values of a population as only thirty 

clones per cross were studied.  Supporting our results were the observations from Kisha 

et al. (1997) (using a mean of top five yielding lines (M5TYL) in a population) and Utz et 

al. (2001) (using a mean of 22 individuals from a population) who could not draw reliable 

correlations between family means and σ2
g.  Hence in order to have accurate estimates of 

mean and σ2
g with reduced standard errors, large number of clones per cross have to be 

evaluated which is not feasible from a practical point of view while handling a large 

number of crosses.  Nevertheless, to achieve sizeable amounts of selection gains from a 

population, a combination of optimum levels of means and σ2
g is necessary. 

Interestingly, in this study, for TRS which is the economic trait of interest in 

sugarcane breeding, one promising observation was the relationship between family 
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means and AMPH and PHC.   The family means were positively correlated with AMPH 

or PHC, indicating that the greater the number of heterotic clones per family, the higher 

the family mean.  Although differences were not observed among family means in this 

study, in a breeding program where large number of clones per family are evaluated, the 

data suggests that heterotic clones could be selected from families with high means.   

(ii) Relationship between σ2
g and other genetic parameters 

According to Gumber et al. (1999) a high correlation between σ2
g and MP is 

expected only when all the QTL alleles are in coupling phase and have similar effect 

which might not hold true for sugarcane. They also stated that low correlations could also 

result (under extreme conditions) if the absolute difference between the parents (|P1-P2|) 

is zero (parents are highly genetically similar) and σ2
g is high in a P1 x P2 cross when all 

the QTL segregating for the trait are in the heterozygous condition.  In sugarcane since 

most of the QTL, if not all, are assumed to be in a heterozygous state, low correlations 

are to be expected between σ2
g and MP values as seen in this study for the traits SC, SD 

and CY.  In addition to the low correlations, negative correlations were also observed 

between σ2
g and MP values for the traits SH and TRS.  

 Interestingly, for the traits SH and TRS, a positive relationship was observed 

between σ2
g and AMPH and PHC.  According to Melchinger et al. (1998), in autogamous 

crops a high correlation is expected between σ2
g and MPH when the degree of dominance 

is always greater than zero (over dominance) at all the segregating QTL contributing to 

σ2
g.  Because sugarcane is highly heterozygous (or most of the segregating loci are highly 

heterozygous) a high degree of dominance is expected and consequently positive 

correlations were observed between σ2
g and heterosis.  However, Gumber et al. (1999) 

pointed out that a reduced correlation between σ2
g and AMPH and PHC can be possible 

 75



in two cases: (i) even though a high degree of dominance is observed in F1 hybrids, it is 

possible that most of the segregating QTL have only additive effects which mostly 

contribute to σ2
g and not to MPH and (ii) if the parental alleles do not differ for their 

additive effects, some of the QTL with dominance effects would contribute more to MPH 

than to σ2
g.  In this study, although a high degree of dominance is expected in F1 hybrids, 

it was not possible to study the QTL for its additive effects to verify the first case.  On the 

other hand, for the second case, it is highly probable that the parental alleles might not 

differ for additive effects as high marker-GS were observed among the parental 

genotypes and thus might lead to moderate correlations between σ2
g and AMPH and PHC 

for the traits SH and TRS.  On the whole, it can be said that the moderate positive 

relationships between σ2
g and heterosis (AMPH and PHC) are in accordance with the 

quantitative genetic theory as observed previously by Melchinger et al. (1998). 

4.4.3 Predicting Genetic Parameters from GS Estimates 

(i) AFLP based prediction 

Negative correlations were previously observed between SSR-GS and panmictic 

MPH in maize (Reif et al., 2003), σ2
g and RFLP-GS in soybean (Manjarrez-Sandoval et 

al., 1997; Kisha et al., 1997) and in oats (Moser and Lee, 1994) and σ2
g and SSR-GS and 

AFLP-GS in maize (Bohn et al., 1999).  One of the major reasons for these negative 

correlations is that in all the aforementioned molecular markers, the polymorphisms are 

generated from random portions of the genome with little knowledge on their linkage 

with QTL.  Since a comprehensive knowledge of markers linked to QTL is still unknown, 

AFLP markers were employed to estimate GS under the assertion that they cover the 

whole genome uniformly.  In this study, assuming an even genome coverage, 28 AFLP 

primer combinations were employed which generated 686/1325 polymorphic bands.  Yet, 
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non significant (except for AMPH of TRS) and negative correlations were predominantly 

observed for most of the traits between AFLP-GS and all the genetic parameters (except 

MP values) indicating that the greater the similarity between the parents, the lower were 

the genetic parameter estimates. 

It has been hypothesized that increasing the number and density of markers may 

not improve the association of GS and various predictors especially σ2
g unless the 

markers are identical or tightly linked to QTL affecting a particular trait.  In a study by 

Hayes et al. (1997), out of 322 AFLP markers, 12 markers which were highly 

discriminating among the barley genotypes were actually linked to QTL clusters.  On the 

basis of their findings, it can be said that only those markers which are linked to QTL 

would accurately divulge the trait-based genetic diversity/similarity among genotypes 

and thus show promise in correctly predicting the correlations between GS and various 

genetic parameters as observed in sorghum (Jordan et al., 2003).  Although the effects of 

mis-scorings and high standard errors among the GS estimates cannot be ruled out, from 

our results, the negative correlations between AFLP-GS and most genetic parameters 

indicate that crosses could be planned between the divergent parents to obtain superior 

progeny for most agronomic traits including TRS; however it remains to be seen if there 

is any linkage disequilibrium among the AFLP loci and genes affecting agronomic traits.  

(ii) TRAP based prediction 

With the development of modern bio-informatic tools and the availability of vast 

EST/gene sequences from various crop species, it may be possible to investigate Hayes et 

al. (1997) hypothesis.  Making the investigation easy is the known fact that markers 

generated from one species are cross-transferable to other species within a family of 

similar taxons.  Therefore, molecular markers could be developed potentially from within 
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genes affecting the traits from similar species and could be employed to study genetic 

diversity among genotypes.  In this study, a relatively new molecular marker technique 

named target region amplification polymorphism (TRAP) was employed which amplifies 

polymorphisms from specified target regions of the genome.  The primers used in this 

study were derived from EST/gene sequences of other grass species closely related to 

sugarcane. 

Most of the relationships observed between TRAP-GS and genetic parameters 

were mostly exactly opposite to those observed between AFLP-GS and genetic 

parameters. Positive correlations were primarily observed between TRAP-GS estimates 

and AMPH, PHC, σ2
g and family means for most of the traits (except TRS for family 

mean, AMPH and PHC).  Other negative correlations noticed in these genetic parameters 

were infinitesimal.  The TRAP-GS were based on only 242 polymorphic bands generated 

from only twelve TRAP primer combinations designed from EST/gene sequences 

specific for sucrose related genes.  Therefore, the positive relationship between TRAP-

GS and other genetic parameters for the traits SH, SD, SC and CY, cannot be wholly 

credited to the amplification nature of TRAP as the primer sequences were specific for 

sucrose related genes.  However, it is unknown that the QTL affecting these traits has any 

linkage or linkage disequilibrium with sucrose related genes.   

Specifically for the trait TRS, negative correlations were observed between 

TRAP-GS and AMPH or PHC indicating that the greater the similarity between parents 

at the sucrose loci, the lower the chance of producing heterotic clones.  This could be a 

typical case, as observed in most of the crops, where higher GS among parents often 

results in low heterosis in progeny and breeders usually opt for divergent crosses.  In 

sugarcane breeding, considering the trend of making crosses among the proven genotypes 
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for agronomic traits including sugar content, the high selection intensity for sucrose over 

the years might have resulted in accumulation of most loci affecting sucrose content.  

Therefore, since no new alleles exist affecting sucrose accumulation, high heterosis is not 

expected and introduction of new alleles from other untapped sources could be 

considered as an alternate option.  In a preliminary study conducted at USDA-ARS, 

Houma, Louisiana (Anna Hale, unpublished results), high heterosis and high σ2
g were 

observed for sucrose content when domesticated S. officinarum (high sucrose parent)  and 

wild S. spontaneum (low sucrose parent) were crossed.   

(iii) Coefficient of parentage (f) based prediction 

Melchinger (1993) stated that within a set of closely related parents, the marker 

based GS were negatively correlated with heterosis.  Therefore, the parents that are 

related by pedigree will have high marker based GS estimates and it is highly likely that 

progeny shows low estimates of heterosis.  However, in this study, positive correlations 

were observed between f-GS and AMPH and PHC for most agronomic traits barring 

TRS, the economic trait of interest.  These results were expected considering the trend in 

sugarcane breeding where a vast number of crosses are made among the phenotypically 

superior parental genotypes because the probability of recovering superior progeny is 

higher when both parents are themselves superior compared to when one parent is 

inferior as observed in Family B (derived from closely related parents LCP86-454  and 

LCP85-384).   

In alfalfa, Kidwell et al. (1994) observed that the lack of linkage disequilibrium 

among the parental genotypes lead to low correlations between hybrid performance and 

genetic diversity (GD).  In sugarcane, most of the current cultivars were developed from 

a narrow pool of parents.  Sugarcane breeders routinely include vintage elite parents 
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(selected based on past performance) and potential parents (largely based on their 

performance in advanced stage trials) which might not have undergone more than 10 

cycles of meiosis.  Therefore, linkage disequilibrium is expected among the 

contemporary sugarcane parental genotypes and a positive correlation between f-GS and 

either AMPH and/pr PHC is not surprising as observed in this study.  

However, one interesting aspect of this study is that the negative correlation 

between f-GS and genetic parameters for the trait TRS is similar to those observed 

between TRAP-GS and genetic parameters.  This similarity again emphasizes that for the 

trait TRS, divergent crosses have to be planned to promote maximum genetic gains from 

the progeny. 

4.5 Conclusions 

The overall genetic similarities among a small group of nine sugarcane genotypes 

were high.  This study indicated that family mean performance was a good indicator of 

the presence of elite progeny especially, for TRS.  In addition, the positive correlations 

between σ2
g and AMPH and/or PHC for the trait TRS indicates that progeny producing 

high sucrose levels could be selected from the range of genotypes present in elite crosses.  

For most agronomic traits, however, the means and σ2
g could not be correlated accurately 

with heterosis.   

By using two diverse types of molecular markers namely AFLP and TRAP, and 

pedigree based estimation of genetic similarity, we have drawn reliable information on 

genetic similarities/diversities among the genotypes.  AFLP-GS seem to be a fair 

predictor of genetic parameters for most agronomic traits including TRS; however, it 

remains to be seen in this study if there exists any linkage disequilibrium between the 

marker loci and genes affecting the traits.  As suggested by Hayes et al. (1997), QTL 
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linked AFLP markers could be a better option to accurately predict the genetic 

parameters in crops where saturated genetic linkage maps exist.   

The idea behind using TRAP markers arose from suggestions from various 

studies that the accurate relationships can be derived between genetic parameters and 

marker-GS, if the markers are either linked to QTL regions or in linkage disequilibrium 

with genes.  Indeed, for the trait TRS our results imply that there exists a relationship 

between genetic parameters and TRAP-GS which could however be functionally resolved 

either by sequencing the TRAP bands or by generating a TRAP based linkage map for 

QTL analysis.  The predictions of genetic parameters derived from the f-GS were mostly 

similar to those obtained by TRAP-GS.   

For all the three systems, there seem to be a negative correlation between GS and 

the genetic parameter estimates especially for TRS which signifies the option of a 

divergent cross between parents to maximize the family means, genetic variance and 

heterosis.  However, as Gumber et al. (1999) stated that GS or GD estimates alone cannot 

explain the differences in means or variances and therefore adaptability should also be 

considered as it affects the gene expression for a particular trait in a particular 

environment.  Souza and Sorrells (1991) proposed that breeders should concentrate more 

on the cross progeny derived from diverse and yet adapted parents so as to maximize the 

heterosis for agronomic traits  

Overall, since, each technique revealed an independent but similar relationship 

between genetic parameters and GS for TRS, a combination of two or more techniques is 

recommended to accurately describe relationships between GS estimates and genetic 

parameters in sugarcane breeding programs. 
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CHAPTER 5 LINKAGE MAPPING AND GENOME ANALYSIS IN A 
SACCHARUM INTERSPECIFIC CROSS USING AFLP, SRAP AND TRAP 

MARKERS 
 

5.1 Introduction 

Sugarcane belongs to the genus Saccharum of the grass family Poaceae.  Modern 

sugarcane cultivars (2n=100 -140) are highly heterozygous and complex aneuploids.  

They were derived from interspecific crosses between the domesticated species S. 

officinarum and it wild relative S. spontaneum.  The initial interspecific hybrids were 

repeatedly backcrossed to S. officinarum.  This process, termed as ‘nobilization’, retained 

the high sugar producing ability of S. officinarum and minimized the negative effects of 

S. spontaneum (Roach, 1972; Sreenivasan et al., 1987).  The nobilization process also 

resulted in improved cane yields, ratooning ability and increased resistance to biotic and 

abiotic stresses.  During nobilization the progeny inherited 2n gametes from the S. 

officinarum parent (Bhat and Gill, 1985; Bremer, 1961). Consequently, the genome 

composition of current sugarcane cultivars is approximately 80 % S. officinarum, 15 % S. 

spontaneum with 5% recombinant chromosomes (D’Hont et al., 1996).   

S. officinarum clones are characterized by their thick stalks, high sucrose and low 

fiber content.  Chromosome numbers have consistently been reported as 2n = 80 with x = 

10 as the basic chromosome number (Sreenivasan et al., 1987; Daniels and Roach, 1987; 

D’Hont et al., 1998).  S. spontaneum clones, on the other hand, are characterized by thin 

stalks, low sucrose, high fiber, profuse flowering, good ratooning ability, and high levels 

of disease and insect resistance.  Chromosome numbers have been reported to range from 

2n = 40 to 128 (Panje and Babu, 1960) with x = 8 as the basic chromosome number (Al-

Janabi et al., 1993; da Silva et al., 1993; D’Hont et al., 1998). 
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Limited progress has been made in improving sugar content in most sugarcane 

breeding programs especially in the last decade (Jackson, 2005). One reason that has 

been proposed for the lack of progress is the narrow genetic base of sugarcane cultivars. 

Most of the present day cultivars around the world can be traced back to a few 

progenitors used in the initial interspecific hybridizations during nobilization (Berding 

and Roach, 1987; Deren, 1995).  In most sugarcane breeding programs, crosses are made 

among existing improved clones followed by clonal selections.  Following the success of 

nobilization, only sporadic efforts were made by a few breeding programs to utilize new 

sources of wild germplasm for sugarcane improvement (Berding and Roach, 1987).  

There is renewed interest among sugarcane breeders to explore wild germplasm for novel 

sources of genes that could be useful in sugarcane breeding programs.  

Molecular markers can play a pivotal role in tracking favorable alleles from wild 

species as well as ascertaining their introgression into the cultivated background (Edmé et 

al., 2006). Genetic linkage maps generated from molecular markers have facilitated gene 

tagging, map based cloning and QTL mapping in many crops.  They have also been 

useful for studying genome architecture and evolution, especially in interspecific crosses 

(deVicente and Tanksley, 1993).  

The earliest molecular genetic linkage maps of the progenitors of modern 

sugarcane were developed in S. spontaneum using RFLP (da Silva et al., 1993; Ming et 

al., 1998) and RAPD markers (Al-Janabi et al., 1993) and in S. officinarum using RAPD 

(Mudge et al., 1996), and RFLP markers (Ming et al., 1998).  Recently, Edmé et al. 

(2006) developed a S. spontaneum and S. officinarum map using SSR markers.  AFLP 

markers have so far been used to construct genetic linkage maps of commercial 

sugarcane (Hoarau et al., 2001; Aitken et al., 2005; Reffay et al., 2005).   
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Molecular markers such as RFLP, RAPD, AFLP and SSR are ideal for genetic 

fingerprinting and construction of linkage maps.  However, they do not use prior gene 

sequence information and produce polymorphisms randomly across the genome.  Two 

new PCR-based markers namely, SRAP (sequence related amplified polymorphism) and 

TRAP (target region amplification polymorphism) which amplify intragenic 

polymorphism have been reported.  SRAP markers are arbitrarily designed with an AT- 

and GC-rich motif to anneal to intron and exons, respectively (Li and Quiros, 2001).  

Sequenced SRAP amplicons from Brassica (Li and Quiros, 2001) and Cucurbita (Ferriol 

et al., 2003) when used in BLAST searches revealed significant similarities to reported 

gene sequences found in Genebank databases.  With TRAP markers, a forward or fixed 

primer is designed using gene/EST sequence information, whereas the reverse primer is 

similar to a SRAP primer (Hu and Vick, 2003).  Using TRAP primers designed from 

resistance gene analogs, Miklas et al. (2006) reported that some of the polymorphisms 

produced on a preexisting common bean (Phaseolus vulgaris L.) mapping population 

mapped to the vicinity of resistance gene QTLs.  In sugarcane, BLAST searches using 

sequenced TRAP amplicons from a S. spontaneum clone revealed high homology with 

known gene sequences from other grass species.  Remarkably, the search also pulled up 

the S. officinarum GenBank accession from which the fixed TRAP primer was designed 

(Alwala et al., 2006a).  SRAP markers have been integrated into genetic linkage maps of 

brassica (Li and Quiros, 2001) and TRAP markers have been integrated into maps of  

wheat (Liu et al., 2005) and common bean (Miklas et al., 2006).  In sugarcane, SRAP and 

TRAP markers are being used to characterize parental and wild germplasm collections 

(Alwala et al., 2006a, 2006b; Suman and Kimbeng, 2007) but their potential for linkage 

and QTL mapping is yet to be ascertained.   
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The objective in this study was to construct molecular linkage maps of sugarcane 

using AFLP in conjunction with SRAP and TRAP markers.  The maps were based on an 

F1 cross between two progenitor species of modern sugarcane namely, S. officinarum 

‘Louisiana Striped’ and S. spontaneum ‘SES 147B’.  These framework linkage maps 

would foster our understanding of genome architecture and organization in the two 

species and lay the ground work for subsequent QTL studies.    

5.2 Material and Methods 

5.2.1 Plant Material and DNA Extraction 

The mapping population consisted of 100 clones derived from a S. officinarum 

(Louisiana Striped, 2n=80) X S. spontaneum (SES 147B, 2n=64) cross made at the 

Sugarcane Research Unit, USDA-ARS, Houma, Louisiana.  Leaf tissue from F1 seedlings 

was collected, immediately frozen and later ground to powder in liquid nitrogen. 

Genomic DNA was extracted using Plant DNeasy Mini Kit (Qiagen, Valencia, CA) 

following the manufacturer’s protocol. The concentration of DNA was estimated using 

known concentration of Lambda DNA in 1% (w/v) agarose gel.  

5.2.2 AFLP Protocol 

Genomic DNA (50 ng) was digested with EcoR I (6bp cutter) and Mse I (4bp 

cutter) restriction enzymes. Following the protocol of Vos et al. (1995), the digested 

DNA was ligated to EcoR I and Mse I adapters. Pre-amplifications were done using EcoR 

I + A and Mse I + C primers followed by selective amplifications using two selective 

nucleotides. Following a similar protocol, the AFLP procedure was also carried out using 

Pst I (6 bp cutter) and Mse I restriction enzymes. EcoR I and Pst I are methylation 

insensitive and sensitive, respectively. The PCR was carried out in a reaction volume of 

10 µL consisting of 1 µL of 10X reaction buffer, 1.5 µL of 25 mM MgCl2, 1 µL of 10 
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mM dNTPs, 1 µL of 1 µM of E-ANN (IR-Dye labeled) and 1 µL of 10 µM forward 

primer and 0.2 µL of 5U Taq polymerase (Promega, Madison, WI). The reactions were 

run on an i-cycler (BioRad Labs, Hercules, CA). The PCR conditions for selective 

amplifications were as follows: initial denaturing step at 94 oC for 3 min followed by 

initial 12 cycles at 94 oC for 30 s, 65 oC for 30 s (with 1 oC decrement every cycle) and 

72 oC for 1 min, then followed by 23 cycles at 94 oC for 30 s, 56 oC for 30 s, and 72 oC 

for 1 min with a final extension step at 72 oC for 7 min. A total of 20 EcoR I-Mse I and 

15 Pst I-Mse I selective amplification primer combinations were used. 

5.2.3 SRAP Protocol 

The sequences of the forward and reverse SRAP primers used in this study are 

given in Table 5. 1. The forward primers were unlabeled whereas the reverse primers 

were labeled with either IR-700 or IR-800 dyes. PCR amplifications were carried out in a 

10 µL reaction volume containing 1.5 µL of 10X PCR buffer, 1.0 µL of 25 mM MgCl2, 

1.0 µL each of 10 mM forward and IR-700 and IR-800 dye labeled reverse primers, 1.0 

µL of 10 mM dNTPs (Promega, Madison, WI), 0.2 µL of 5U Taq polymerase (Promega, 

Madison, WI) and 1.0 µL of 50 to 80 ng genomic DNA. The conditions for PCR were as 

follows: an initial denaturing step was performed at 94 oC for 4 min followed by 5 cycles 

at 94 oC for 45 s, 35 oC for 45 s and 72 oC for 1 min, followed by 35 cycles at 94 oC for 

45 s, 53 oC for 45 s, and 72 oC for 1 min with a final extension step at 72 oC for 7 min. 

All the PCR reactions were performed on an i-cycler (BioRad Labs, Hercules, CA). A 

total of 32 SRAP primer combinations were used.  

5.2.4 TRAP Protocol  

The TRAP, like SRAP, is also a two primer PCR marker technique. The design of  
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Table 5. 1. The primer sequences (5’ 3’) used in the SRAP PCR amplifications.   
 

Primer sequences 
 

Primer labeling †

Reverse primers 
GAC TGC GTA CGA ATT AAT IR-700 dye 

GAC TGC GTA CGA ATT TGC IR-700 dye 

GAC TGC GTA CGA ATT GAC IR-800 dye 

GAC TGC GTA CGA ATT TGA IR-800 dye 

GAC TGC GTA CGA ATT AAC IR-700 dye 

GAC TGC GTA CGA ATT GCA  IR-700 dye 

GAC TGC GTA CGA ATT CAA IR-800 dye 

GAC TGC GTA CGA ATT CAC IR-800 dye 

CGT AGC GCG TCA ATT ATG IR-700 dye 

GGA ACC AAA CAC ATG AAG A IR-800 dye 

Forward Primers 
TGA GTC CAA ACC GGA TA  - 
TGA GTC CTT TCC GGT AA - 
TGA GTC CTT TCC GGT CC - 
TGA GTC CAA ACC GGA CC - 
TGA GTC CAA ACC GGA AG - 
TGA GTC CTT TCC GGT TAA - 
† Only the reverse primers were labeled with either the IR-700 or IR-800 dye 
 to enable detection of amplified bands on the LI-COR DNA analyzer. 
 
 
Table 5. 2. The fixed/forward primer sequences (5’  3’) used in the TRAP PCR 
amplifications.  
 
Gene/EST 

 
Fixed primer sequence 
 

NCBI GenBank 
accession 
number†

Sucrose Synthase (SuSy) GGAGGAGCTGAGTGTTTC AF263384

Soluble Acid Invertase 
(SAI) 

AGGACGAGACCACACTCT AF062735

Calcium Dependent 
Protein Kinase (CDPK) 

ACAGAACCACCAAAGGAG CF572977

† The fixed primers were designed from gene/EST sequences obtained from the NCBI 
GeneBank. The reverse primers were similar to SRAP reverse primers listed in Table 5. 
1. 
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fixed/forward primers used in this study was previously described in Alwala et al. 

(2006a). In brief, three forward primers were designed using the gene/EST sequences of 

sucrose synthase (SuSy), soluble acid invertase (SAI) and calcium dependent protein 

kinase (CDPK). The genes SuSy and SAI are associated with sucrose metabolism 

whereas CDPK is believed to be associated with cold tolerance. The forward primer 

sequences are listed in Table 5. 2. The reverse primers employed were the same as the 

labeled SRAP primers (Table 5. 1).  PCR amplifications were performed as described by 

Alwala et al. (2006a). A total of 17 TRAP primer combinations were used.  

5.2.5 Marker Scoring 

The PCR amplified products were run on a LI-COR 4300 sequencer (LI-COR 

Inc., Lincoln, NE). The gels were saved onto a computer and scored manually and 

independently by two people.  Ambiguous data that could not be resolved between the 

two scorers were discarded.  A pseudo test cross strategy was followed to score the 

polymorphisms (Grattapaglia and Sederoff, 1994). The bands were scored for presence or 

absence when heterozygous in one parent, null in the other and segregating in the F1 

population. The bands were divided into two groups, as S. officinarum and S. spontaneum 

bands, based on their parental origin. The polymorphic bands were then tested for 1:1 

(single dose, SD) and 3.3:1 (double dose, DD) segregation ratios using χ2- analysis. [If 

Saccharum were a disomic polyploid, the double dose segregation would be 3:1. On the 

other hand, if it were a polysomic polyploid, the double dose ratio would be 7:2 for 

Saccharum officinarum (x=10) and 11:3 for S. spontaneum (x=8). To overcome this 

complexity, we used a segregation ratio of ≤3.3:1 (√3x3.6:1) as it gives equal χ2 value for 

3:1, 7:2 and 11:3 ratios (Mather, 1957)].  The markers which did not fit into either single 

or double dose ratios were treated as segregation distorted markers. In addition, bands 
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present in both parents and segregating in a 3:1 fashion (simple duplex) in the F1 

population were retained for consensus linkage map construction. 

5.2.6 Linkage Map Construction 

The mapping software JoinMap ver 3.0 (van Ooijen and Voorrips, 2001) was used 

for map construction.  Two genetic linkage maps, one for S. officinarum and one for S. 

spontaneum, were constructed at a LOD score of > 5.0.  The Kosambi mapping function 

was employed with a recombination fraction of 0.45 to form LG.  First, the maps were 

constructed using SD and DD markers.  Then, markers showing segregation distortion 

were included in the final map.  None of the distorted markers altered the final order of 

markers on the linkage group.  

5.2.7 Tests for Type of Ploidy  

Two tests, detection of repulsion phase linkages and χ2 segregation ratios, were 

used in an attempt to infer ploidy type (polysomic vs disomic polyploid) in the S. 

officinarum and S. spontaneum parents. 

To detect repulsion phase linkages, SD markers were inverted and combined with 

the original set of SD markers. Linkage maps were re-constructed using the new set of 

doubled SD markers. Presence of repulsion phase linkage is indicated by co-localization 

of the original SD marker with its corresponding inverted marker. The χ2 tests were 

performed using single dose and double dose markers to further confirm the ploidy 

behavior in the two parents as described by da Silva et al. (1993). 

5.2.8 Estimation of Genome Size and Genome Coverage 

For each parental species, the genome size was estimated based on Hulbert et al. 

(1987) and the genome coverage was estimated based on Bishop et al. (1983) methods. 
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5.3 Results 

5.3.1 Comparison among marker systems 

Combined across the two parental species, 35 AFLP primer combinations 

produced a total of 409 polymorphic bands out of which 318 (77%) were SD markers and 

50 (17%) were DD and 41 (6%) deviated from Mendelian ratios (i. e., distorted markers).  

The polymorphic AFLP bands varied from 4 to 29 with an average of 11.68 bands per 

primer combination (Table 5. 3). Among the AFLP primers, 20 EcoR I-Mse I primer 

combinations produced a total of 249 polymorphic bands out of which 198 (79%) were 

SD, 13 (5%) were DD and 38 (16%) were distorted markers. The 15 Pst I - Mse I primer 

combinations produced a total of 160 polymorphic bands out of which 120 (75%) were 

SD, 37 (23%) were DD markers and 3 (2%) were distorted markers (Table 5. 4). 

Table 5. 3.  Summary statistics of AFLP, SRAP and TRAP polymorphic markers 
segregating in the single dose (1:1) and double dose (3.3:1) ratios, and that deviated from 
these ratios (distorted markers) in the mapping population.†

 Polymorphic 
 markers 

Single dose  
markers 

Double dose  
markers 

Distorted  
markers 

35 AFLP primer combinations 
Total 409 318(78)  50(12) 41(10) 
Range 4-29 3-15 0-6 0-7 

Average 11.68 9.05 1.42 1.17 

32 SRAP primer combinations 

Total 160 92(58) 21(13) 47(29) 
Range 1-10 0-8 0-2 0-4 

Average 5 2.87 0.65 1.46 

17 TRAP primer combinations 

Total 81 59(73) 5(6) 17(21) 
Range 1-12 0-8 0-1 0-3 

Average 4.76 3.47 0.29 1.00 
† Values in parenthesis indicate percentages 
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Table 5. 4.  Summary of AFLP, SRAP and TRAP polymorphic markers segregating in the 
single dose (1:1) and double dose (3.3:1) ratios, and that deviated from these ratios 
(distorted markers) in the two Saccharum parental species. †

Polymorphic  Single dose Double dose  Distorted 

Marker type markers  markers markers   markers 

S. officinarum 

AFLP 233 183 (78) 20 (9) 30 (13) 

EcoR I-Mse I 155 122 (79) 5 (3) 28 (18) 

Pst I-Mse I   78   61 (78) 15 (19)   2 (3) 

SRAP   75   37 (49) 11 (15) 27 (36) 

TRAP   36   27 (74)   2 (6)   7 (20) 

Total 344 247 (72) 33 (9) 64 (19) 

 

S. spontaneum 

AFLP 176 135 (77) 30 (17) 11 (6) 

EcoR I-Mse I   94   76 (81)   8 (9) 10 (10) 

Pst I-Mse I   82   59 (72) 22 (27)   1 (1) 

SRAP   85   54 (64) 10 (12) 21 (25) 

TRAP   45   32 (71)   3 (7) 10 (22) 

Total 306 221 (72) 43 (14) 42 (14) 
† Values in parenthesis indicate percentages 
 

Combined across the two parents, the 32 SRAP primer combinations produced a 

total of 160 polymorphic bands out of which 92 (58%) were SD, 21 (13%) were DD and 

47 (29%) were distorted markers. The total number of polymorphic SRAP bands varied 

from 1 to 10 with an average of 5 bands per primer combination (Table 5. 3). 

Likewise, the 17 TRAP primer combinations produced a total of 81 polymorphic 

bands out of which 59 (71%) were SD and 5 (7%) were DD markers. Seventeen (22%) 

markers deviated from Mendelian segregation ratios. The total number of polymorphic 
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TRAP bands ranged from 1 to 12 with an average of 4.76 bands per primer combination 

(Table 5. 3). 

5.3.2 Marker Segregation  

Combined across the AFLP, SRAP and TRAP techniques, a total of 344 markers 

were heterozygous in S. officinarum ‘Louisiana Striped’ of which 247 (72%) were SD 

and 33 (10%) were DD markers. Sixty four (18%) markers deviated from Mendelian 

segregation ratios. In S. spontaneum ‘SES 147B’, 306 markers were heterozygous of 

which 221 (72%) were SD, 43 (14%) were DD and 42 (14%) were distorted markers.  In 

both parental species, segregation distortion was highest in the SRAP markers followed 

by the TRAP and lowest in the AFLP markers (Table 5. 4). 

5.3.3 Map Construction 

The female parent S. officinarum ‘Louisiana Striped’ map comprised of 146 

linked markers spread over 49 linkage groups (LG) (Fig 5. 1). The cumulative genome 

length covered was found to be 1732 cM. The LG length varied from 13 to 108 cM with 

an average of 12 cM between any two adjacent markers.  The number of loci forming 

LGs varied from 2-13 with the more dense LGs (L1, L3, L15) being formed almost 

exclusively by AFLP markers. A majority of the 146 linked markers were AFLP (74%) 

with only 20% of SRAP and 6% of TRAP markers. Among the 108 AFLP markers, 92 

were EcoR I –Mse I and 16 were Pst I- Mse I based markers.    

The male parent S. spontaneum ‘SES147B’ linkage map comprised of 121 linked 

markers spanning 45 LGs with a cumulative genome length of 1491 cM (Fig 5. 2). The 

length of the LGs varied from 2 to 85 cM with an average of 12 cM between any two 

adjacent markers. The number of loci forming LGs varied from 2-12 with the densest 

LGs (S1) being formed almost exclusively by AFLP markers. Of the 121 linked markers, 
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65% were AFLP, 25% were SRAP and 10% were TRAP markers. Among the AFLP 

markers, 55 were generated by the EcoR I –Mse I and 24 by the Pst I- Mse I primer 

combinations. 

5.3.4 Ploidy Type 

No repulsion phase linkages were detected in S. officinarum ‘Louisiana Striped’, 

suggesting that it could be an autopolyploid.  However, the χ2- test results could not 

confirm the autoploidy behavior as significant estimates were observed in both the 

autoploidy and alloploidy tests suggesting it is not a strict autopolyploid (Table 5. 5).  

On the other hand, for the S. spontaneum ‘SES 147B’, the non detection of 

repulsion phase linkages and the non significant χ2 estimates for autoploidy strongly 

suggest it to be an autopolyploid (Table 5. 5).  

Table 5. 5.  Results from χ2 tests to detect the type of ploidy in S. officinarum and S. 
spontaneum parents used in the study. 

  Expected  
Marker class Observed 

 Autoploid Alloploid  

S. officinarum 

Single dose markers 247 218 (0.78) 210 (0.75) 

Double dose markers 33    62 (0.22)    70 (0.25) 

Total 280 P< 0.00001* P< 0.000001* 

 

S. spontaneum 

Single dose markers 221 209 (0.79) 198 (0.75) 

Double dose markers 43   55 (0.21)    66 (0.25) 

Total 264 P< 0.068NS P< 0.001* 
*, NS Indicates significance and non-significance at P = 0.05, respectively.   

 

5.3.5 Genome Size and Genome Coverage  

Three estimates of genome size were calculated at 10, 20 and 30 cM intervals 
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(Hulbert et al., 1987). For S. officinarum, using 32 (10 cM), 97 (20 cM) and 161 (30 cM) 

paired markers, the weighted genome size estimate was found to be 4897 cM . Likewise, 

for S. spontaneum, using 16, 53 and 90 paired markers, the weighted genome size 

estimate was found to be 6464 cM. However, as no repulsion phase linkages were 

observed, the estimates were divided by 2 (da Silva et al., 1993) giving rise to 2487 cM 

and 3232 cM genome size for S. officinarum and S. spontaneum, respectively. The 

computations indicated that approximately 69 % (1732 / 2487) of the S. officinarum 

genome and 46% (1491 / 3232) of the S. spontaneum has been covered.   

From the Bishop et al. (1983) estimation, it was observed that there is 76% 

probability in S. officinarum and 63% in S. spontaneum to place a new marker (onto the 

constructed map) within a distance of 30 cM.  
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Figure 5. 1.  Molecular marker linkage map of S. officinarum ‘Louisiana Striped’. The 
map was constructed with a LOD score of > 5.0 and a recombination fraction of 0.45 
using AFLP, SRAP and TRAP markers. Only single dose (1:1), double dose (3.3:1) and 
distorted markers were used to construct the linkage map. The Kosambi map distances 
(cM) and marker names are indicated on the left and right sides, respectively, of each 
linkage group. AFLP markers are denoted by ‘AF’ or ‘PM’, SRAP markers are denoted 
by ‘sr’ and the rest of the markers are TRAP markers. The numbers in each marker name 
represent the code used in our lab for primer combination along with the size of the band. 
The marker names with an asterix (*) represent distorted markers. 

 

5.4 Discussion 

5.4.1 Comparison among Markers  

Two relatively new marker techniques, TRAP and SRAP, were used in 

conjunction with the AFLP marker technique for linkage mapping and analysis of an F1 

population derived from a cross between two progenitor species, S. officinarum 
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(Louisiana Striped, 2n=80) and S. spontaneum (SES 147B, 2n=64)), of modern 

sugarcane.  The polymorphic fragments amplified by all three techniques were s

dominant markers although Li and Quiros (2003) detected 20 % of codominant SRAP 

markers in a diploid brassica cross and Miklas et al. (2006) found 10 % of TRAP marke

in a diploid common bean cross to be co-dominant.  Due to the possibility of 2n + n 

transmission, F

cored as 

rs 

le 

6; 

hich 

t 70 % of polymorphic loci detected in 

sugarca

and TRAP 

 

ore 

ons 

1 hybrids from a S. officinarum x S. spontaneum cross can harbor doub

the copy of homologous chromosomes from S. officinarum and variable copies of 

homeologous chromosomes from S. spontaneum (Bremer, 1961; D’Hont et al., 199

Edmé et al., 2006).  The difficulty of distinguishing multiple alleles from homologous 

and homoeologous chromosomes impedes the ability to determine homozygosity or 

heterozygosity and to designate co-dominant markers at any one locus.  Therefore, 

methods for mapping in polyploid crops, such as sugarcane, have been developed w

employ SD markers that are present in the simplex condition and segregate 1:1 

irrespective of the ploidy level (Wu et al., 1992). 

Single dose markers usually make up abou

ne mapping studies (Wu et al., 1992; da Silva et al., 1993; Hoarau et al., 2001; 

Aitken et al., 2005; Edmé et al., 2006; Garcia et al., 2006).  These results are 

corroborated in this study by the frequency of SD markers reported for AFLP 

but not for SRAP markers, which amplified only 58 % SD markers.  Mapping in a 

complex polyploid, with large genome size such as sugarcane, requires substantially

more markers and progeny than it would for a diploid.  This makes SD markers the m

important.  Because of their relative abundance, SD markers facilitate mapping in 

polyploids by allowing the identification of alleles even in relatively small populati
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(Wu et al., 1992).  Deviations from the expected frequency of SD markers, especially in a 

small population, could seriously bias the outcome of linkage analysis.  However, 
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Figure 5. 2.  Molecular marker linkage map of S. spontaneum ‘SES 147B’. The map was 
constructed with a LOD score of > 0.5 and a recombination fraction of 0.45 using AFLP, 
SRAP and TRAP markers. Only single dose (1:1), double dose (3.3:1) and distorted 
markers were used to construct the linkage map. The Kosambi map distances (cM) and 
marker names are indicated on left and right sides, respectively of each linkage group. 
AFLP markers are denoted by ‘AF’ or ‘PM’, SRAP markers are denoted by ‘sr’ and the 
rest of the markers are TRAP markers. The numbers in each marker name represent the 
code used in our lab for primer combination along with size of the band. The marker 
names with an asterix (*) represent distorted markers. 
 
 
as pointed out by da Silva et al. (1993), the proportion of SD polymorphism detected is 

not a function of the source of DNA used to detect the locus but rather that of the 

segregation at each locus according to the dosage of alleles at the locus.  Therefore, it is 

less likely that SRAP markers possess an innate inability to amplify SD markers and 

rather coincidental that some of the SRAP primers used in this study did not align with 

SD loci in the population.   

  The TRAP and SRAP techniques target coding regions of the genome (Li and 

Quiros, 2003; Hu and Vick, 2003; Miklas et al., 2006) whereas, the AFLP technique 

amplifies a large number of random loci in a single assay (Vos et al., 1995).  Therefore, 

as expected, the AFLP was by far the most superior marker technique for linkage 

mapping and analysis in a genome as large and complicated as that of sugarcane.  The 

AFLP technique produced the most number of polymorphic bands and linked markers on 
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the map and the least number of distorted markers.  Similar to reports in other crop 

species (van Heusden et al., 2000; Young et al., 2004; Mignouna et al., 2005a, b), the 

methylation sensitive Pst I – Mse I proved to be less robust compared to its methylation 

insensitive counterpart, EcoR I – Mse I, in generating data for linkage mapping.  It has 

been suggested that DNA sequences are transcribed more readily from methylation 

sensitive regions of the genome (Cedar, 1988).  The TRAP, SRAP and Pst-I – Mse I 

markers were included in this study for their potential to be associated with gene rich 

regions of the genome (Li and Quiros, 2003; Hu and Vick, 2003; Miklas et al., 2006; 

Cedar, 1988) as a prelude to our future goal of mapping QTLs associated with agronomic 

traits in these progenitor species.  However, these markers have proved to be less 

efficient as tools for rapidly generating a large number of markers for linkage mapping, 

especially in genomes as large as that of sugarcane, because of the high throughput tools 

that would be needed to amplify numerous loci that are uniformly distributed across the 

genome.  Miklas et al. (2006) and Li and Quiros (2003) utilized TRAP and SRAP 

markers, respectively, for QTL mapping by placing them onto pre-existing core maps.  

Most of the TRAP markers for disease resistance placed on the core map by Miklas et al. 

(2006) mapped to the exact same location.  Liu et al. (2005) successfully used TRAP 

markers for linkage mapping in wheat only after lowering the initial annealing 

temperature.  The authors conceded that the reverse primer, acting as a random primer, 

may have amplified fragments from various other regions in conjunction with itself.  In 

preliminary trials, we found no tendency for TRAP primers to behave like RAPDs for the 

annealing temperature used in this study.   
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5.4.2 Map Construction 

The pseudo-test cross strategy, based on an F1 mapping population derived from 

crossing between two heterozygous parents, has been proposed for mapping outcrossing 

diploid and polyploid species for which inbred lines cannot be readily developed  

(Grattapaglia and Sederoff, 1994).  This strategy has been widely used along with SD 

markers for mapping in polyploid species including sugarcane (Wu et al., 1992; da Silva 

et al., 1993; Mudge et al., 1996; Hoarau et al., 2001; Garcia et al., 2006; Edmé et al., 

2006).  Single dose markers, as earlier mentioned, can be detected in high frequencies 

even in relatively small populations.  For example, irrespective of the ploidy level (i.e., 

2n = 4X, 6X, 8X and 10X), a population size of 75 individuals is considered large enough 

to detect SD loci at high confidence levels (Wu et al., 1992).  The appropriate frequency 

(> 70%) of SD markers was detected in this study using a progeny size of 100 

individuals.  Appropriate levels of SD markers have been reported in other sugarcane 

mapping studies using a progeny sizes of 84 (Mudge et al., 1996), 88 (da Silva et al., 

1993) and 100 (Guimaraes et al., 1999; Garcia et al., 2006) individuals.    

The pseudo-test cross strategy allows two sets of SD markers, each set specific 

only to one parent, to be identified resulting in two parental maps (Grattapaglia and 

Sederrof, 1994; Maliepaard et al., 1998).  Using this strategy, several female and male 

linkage maps have been constructed in Saccharum interspecific crosses (Ming et al., 

1998; Edmé et al., 2006).  Using RAPD markers, Mudge et al. (1996) published a map of 

S. officinarum with 51 LG spanning 1152 cM, that of Ming et al. (1998) using RFLPs 

included 72 LG spanning 2304 cM, whereas the map of Edmé et al. (2006) using SSRs 

had 25 LG covering 1180 cM.  All these studies involved interspecific crosses in which 

S. officinarum was used as the female parent.  Used as the male parent, the S. spontaneum 
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maps from a S. officinarum ‘Green German’ x S. spontaneum ‘IND81-146’cross 

published by Ming et al. (1998) and Edmé et al. (2006) contained 69 LG spanning 1303 

cM and 11 LG spanning 614 cM, respectively.  Comparable number of LG and map 

length were found in the female (S..officinarum ‘ Louisiana Striped’; 49 LG with 1732 

cM) and male (S. spontaneum ‘SES 147B’; 45 LG with 1491 cM) maps in our study.  In 

addition, to our knowledge, this is only the first attempt to use either or combination of 

AFLP, SRAP and TRAP markers for constructing linkage maps in these progenitor 

species of sugarcane.  
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Figure 5. 3.  An example of simple duplex markers mapping in Saccharum species.  
Simple duplex markers (common to both parents and segregate in 3:1 ratio in progeny) 
along with single dose (1:1), double dose (3.3:1) and distorted markers were used to 
construct the F1 consensus linkage map and parental maps. So and Ss are linkage groups 
from the Saccharum officinarum and S. spontaneum maps, respectively, whereas F1 is a 
linkage group from a consensus map of the two parents. The black lines represent the 
simple duplex markers common to both parents 
 
 

The two framework maps in this study are unsaturated and cover only about 69 % 

and 46 % of the female and male genomes, respectively.  This was quite evident from the 
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size of 

ut 15 

mall 

portion 

vels of 

 saturated, marker segregation in 

 useful to unravel the genomic constitution and 

chromo  

out 10 % 

some LG (2 markers) and the substantial amount (60 %) of unlinked markers.  

Similar percentage of unlinked markers were reported by Garcia et al., (2005) in a 

sugarcane mapping population containing 100 individuals in contrast to the maps of 

Hoarau et al. (2001), Aitken et al. (2005) and Reffay et al. (2005) who reported abo

% of unlinked markers using populations exceeding 200 individuals.  The relatively s

population size and stringent LOD score (> 5.0) used in our study were probably 

exacerbated by the complex genetic system inherent with interspecific crosses of 

sugarcane, leading to the high number of unlinked markers.  However, although 

unsaturated, the stringent LOD score (> 5.0) employed and the relatively high pro

of SD compared to non-SD markers we used in building the maps provide two le

confidence about the robustness of the maps, leaving little opportunity for  spurious 

linkages.  In fact, some of the small LG may actually be parts of larger groups which 

remained unconnected (Garcia et al., 2006).  Our mapping population is being 

reconstituted to include more individuals and markers in an effort to saturate these 

framework maps for future use in QTL discovery.   

5.4.3 Segregation Analyses  

Although the two framework maps are far from

the mapping population can be

somal behavior following hybridization of these two important progenitor species

of modern sugarcane.  For example, although not used for map construction, ab

of markers were simple duplex markers which are heterozygous in both parents and 

segregate 3:1 in the progeny.  Although less informative for mapping, this class of 

markers may actually represent the degree of relatedness between the two mapping 

parents and could be useful as a locus bridge to form homology groups (Fig 5. 3) 
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(Grattapaglia and Sederoff, 1994; Malliepaard et al., 1998).  This class of markers al

portends the possibility that pairing and recombination can occur between chromo

of the two species.  In fact, S. spontaneum has been implicated in the ancestry of S. 

officinarum (Daniels et al., 1975) and S. officinarum genomes have been observed to 

contain S. spontaneum segments (Jannoo et al., 1998; D’Hont et al., 1989).  Furtherm

using genomic in situ hybridization (GISH), Piperidis and D’Hont (2001) observed tha

between 5 to 17 % of the chromosomes in modern sugarcane cultivars had undergone 

recombination between the two progenitor species.      

However, disparities exist between the two genomes and this can be inferred fro

the high proportion of distorted markers (18 % in S. off

so 

somes 

ore, 

t 

m 

icinarum and 14% in S. 

spontan

en these 

en 

 

using inbreeding depression (Kuramoto et al., 

1997; B  

eum) observed in this study since segregation distortion is a reflection of species 

relatedness or divergence (Tanksley and Nelson, 1996).  Disparities exist betwe

two progenitor species in ploidy levels, chromosome numbers and genome size (Edmé et 

al., 2006; D’Hont et al., 1989).  The possibility of 2n + n transmission in the progeny 

only serves as an added layer of complication.  All of these factors can act independently 

or together to effect segregation distortion.  In our study, the level of distortion was 

similar for both parents whereas using a similar type of population, Edmé et al. (2006) 

reported twice as much distortion (22%) with the female parent (S. officinarum ‘Gre

German’) and Ming et al. (1998) reported twice as much distortion (26%) with the male

parent (S. spontaneum ‘IND81-146’). 

Distorted markers may have biological significance if they are linked to lethal 

genes or loci with high genetic load ca

arreneche et al., 1998).  Maping may help unravel genomic regions which have

high propensity for segregation distortion in sugarcane (Edmé et al., 2006).  In pine 
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(Kubisiak et al., 1995) and oak (Barreneche et al., 1998) tree maps, distorted markers 

tended to cluster in particular LG.  In sugarcane, Edmé et al. (2006) found evidence o

clustering only for one linkage group and since the distorted markers were mostly in hi

dosage (non-SD), they postulated a possible role for double reduction in influencing 

distortion in that region of the genome.  In this study, adding distorted markers onto the 

frame work maps, acquired one (L2) and two (S18 and S34) new LG in the S. officina

and S. spontaneum maps, respectively, which were formed exclusively from distorted 

markers.  Distorted markers also formed new LG with previously unlinked markers (L8, 

L 48, S2, S42, and S45) and a few of them mapped onto two preexisting LG (L1 and L

However, non-biological factors such as small population size and fragment-complexes 

consisting of non-allelic co-migrating fragments can also effect segregation distortion.  

At least 30 % of the distorted AFLP alleles in a conifer cross was said to have resulted 

from fragment-complexes (Nikaido et al., 2000).  More markers and possibly a larger 

population size would be necessary to accurately pin point, if present, loci harboring 

distorted markers and ascertain if such loci have biological significance in sugarcane.  

The results from segregation and linkage analyses strongly suggest that the ma

parent S. spontaneum ‘SES 147B’ is an autopolyploid with chromosomes undergoing 

f 

gh 

rum 

3).  

     

le 

random

é 

 

 pairing (polysomic segregation).  This hypothesis has held true in all the studies 

attempted with S. spontaneum so far (da Silva et al., 1993; Al-Janabi et. al., 1993; Edm

et al., 2006).  For the female parent, S. officinarum ‘Louisiana Striped’, linkage analysis 

failed to detect markers linked in repulsion phase but segregation analysis concluded that 

the genome was neither undergoing strict polysomic nor disomic segregation, thereby, 

concurring with previous evidence that S. officinarum could be an autoalloploid.  Several 

authors (Mudge et al., 1996; Al-Janabi et al., 1994; Guimaraes et al., 1999; Edmé et al.,
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2006) have found evidence of repulsion phase linkages in S officinarum, some using 

populations smaller than that used in this study. 

5.5 Summary 

Framework linkage maps of the two main progenitor species (S. officinarum and 

 of modern sugarcane were constructed using AFLP with SRAP and 

TRAP  

rkers 

te 

bject of 

h 

ture 

of 

 combination of AFLP and SSR 
markers provide extensive map coverage and identification of homo(eo)logous linkage 

ane cultivar. Theor. Appl. Genet. 110: 789-801 
 
Al-Janabi, S. M., R. J. Honeycutt, M. McClelland and B. W. S. Sobral. 1993. A genetic 
linkage map pf Saccharum spontaneum L. ‘SES 208’. Genetics 134: 1249-1260 

S. spontaneum)

markers.  This is the first report using either one or a combination of AFLP, SRAP

and TRAP markers to construct linkage maps in these species.  SRAP and TRAP ma

appeared less effective, compared to AFLP, as tools for rapidly generating a large 

number of markers for linkage mapping because of the high number of PCRs and high-

throughput tools that would be required to amplify numerous loci genome-wide. 

However, SRAP and TRAP markers are attractive because of their potential for candida

gene analysis of QTLs, although that remains to be seen in sugarcane and is the su

our subsequent study.  Although the maps were incomplete, allele segregation in the 

mapping population allowed us to decipher genomic constitution and chromosomal 

behavior following hybridization of these two gene rich progenitor species upon whic

genetic improvement in sugarcane depends.  Although the results revealed huge 

disparities in the two genomes, there seem to be sufficient similarity to support some 

level of pairing and recombination between chromosomes of the two species.  Fu

studies are planned to include more individuals and markers to ensure better coverage 

the genome in preparation for marker-assisted selection. 
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CHAPTER 6 QUANTITATIVE TRAIT LOCI (QTL) ANALYSIS FOR SUGAR
RELATED TRAITS IN A SACCHARUM INTERSPECIFIC CROSS

 
S 

6

 Cultivated sugarcane belongs to the genus Saccharum of the family Poaceae.  

The genus is clonally propagated and characterized by complex aneu-polyploidy and high 

heterozygosity.  Modern sugarcane cultivars (Saccharum spp. hybrids, 2n= 100-140) are 

essentially the derivatives of interspecific crosses involving S. officinarum and S. 

spontaneum (although minor contributions from S. barberi and S. sinense were also 

observed).  The interspecific hybridizations were initiated principally to transfer disease 

resistance genes from the wild S. spontaneum to the erstwhile domesticated S. 

officinarum.  The interspecific hybrids were subjected to a series of backcrosses to S. 

officinarum to recover its high sucrose producing ability.  This process termed as 

'nobilization' provided a major breakthrough in the world's sugar industry via improved 

yields, increased productivity and better adaptability and ratooning ability (Sreenivasn et 

al., 1987).   

 "Nobilization" in sugarcane is perhaps the best example of the amazing 

contribution of wild germplasm to genetic improvement of an economically important 

crop (Martin, 1996).  Unfortunately, very few parents were used in the initial 

hybridization event that occurred a century ago and, the derivatives from the event 

quickly became the genetic base for sugarcane breeding programs all over the world.  In 

breeding sugarcane, crosses are made among the existing improved clones followed by 

clonal selections which typically last for about 10 - 15 years.  Consequently, current 

sugarcane cultivars have undergone only about 10 cycles of recombination since 

nobilization.  The genetic base of modern sugarcane is thus very narrow and this has been 

mentioned as one of the factors responsible for the slow progress currently being 

.1 Introduction 
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experienced by some sugarcane improvement programs (Jackson, 2005).  Mindful of the 

narrow genetic base of cultivated sugarcane and of the tremendous gains that coul

achieved by tapping into novel alleles from the relatives of cultivated sugarcane, a basic 

breeding program was established by the USDA-ARS at Houma, Louisiana.  Two main

objectives of the program were: to broaden the genetic base of sugarcane and to identify 

and introgress useful genes from these wild relatives into the cultivated background.  The

release in 1996 of LCP 85-384 a widely adopted (> 85%) cultivar to the Louisiana 

industry is testament to the success of this program.  This cultivar increased cane yield by 

20-25% and contributed to substantial boosts in sugar production that was unpreced

in recent memory. 

 The basic breeding program was established in 1964 however, the first 

significant sugarcan

d be 

 

 

ented 

e cultivar from this program was not released until 30 years later.  

fforts to ne into 

  

ted 

 of 

s 

 

 i.e., large genome size, multiple alleles per locus from both 

homologous and homeologous chromosomes and the lack of diploid relatives with 

E  identify and introgress novel genes from these wild relatives of sugarca

the cultivated background can now be expedited through the use of molecular markers.

In other crop species including tomato (Tanksley et al., 1996; Lecomte et al., 2004; 

Bernacchi et al., 2004) and corn (Bouchez et al., 2002), it has been possible using 

markers to detect quantitative trait loci (QTL) that control the genetic variability of 

complex traits and to introgress more than one QTL at a time through marker-assis

selection.  Generally, marker-assisted introgression is expected to permit a gain time

about two to three backcross generations, compared to conventional backcross program

(Visscher et al., 1996). 

 Sugarcane has lagged behind other crops in utilizing molecular markers because

of its complex genetics,
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si enomes that could be exploited to unravel the genetics of sugarcane. However, 

genetic tools for sugarcane are now becoming adequate to quantify the effects of gen

regions for traits displaying simple (Daugrois et al., 1996; Asnaghi et al., 2004; Rab

al., 2006) as well as complex inheritance (Ming et al., 2001; Hoarau et al., 2002; Aitken 

et al., 2006; Al-Janabi et al., 2007) patterns. 

 Sugar yield is the most important trait in sugarcane improvement programs.  

Sugar yield is the function of cane yield and recoverable sucrose content from the 

harvested cane.  Maximizing the sucrose con

mpler g

omic 

oin et 

tent component of sugar yield would 

inimize on 

shing 

.  The 

nd 

al. 

e 

 

traits, recent evidence using molecular markers suggest that wild relatives such as S. 

m  harvesting, transporting and milling costs and lead to lucrative returns (Jacks

and Morgan, 2003; Aitken et al., 2005).  Sucrose content at the beginning of the cru

season (September in Louisiana) is typically low and increases as the cane matures

deployment of cultivars high in sucrose at the commencement of the crushing season is 

one strategy to increase profitability in the Louisiana sugar industry.  The 9-month 

growing season imposed by freezing temperatures in December, compared to 12-18 

months in more tropical environments, further compels the necessity for early maturing 

cane in Louisiana.  Research has shown that, for sucrose content, genetic variation a

predicted gains from selection is typically higher in the earlier compared to the later 

months of the growing season (Cox et al., 1990) and that, selection practiced on the 

immature crop (early season) would have minimal adverse effects on the relative 

rankings of the mature crop (Jackson and Morgan, 2003).  Breaux (1987) and Cox et 

(1994) further demonstrated that it was possible to breed high early sucrose sugarcan

varieties using recurrent selection. 

 Whereas S. officinarum is unarguably the best source of genes for sugar related
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spontaneum (with relatively low sucrose content) cannot be discounted as potential 

contributors of novel genes for such a trait (Tanksley and McCouch, 1997).  Reffay et al. 

d 

traits 

re 

ears.  The 

ed 

L 

ross 

 S. spontaneum (SES 147B, 2n=64).  

(2005) found several markers associated with positive effects for sucrose related traits 

that were inherited from S. spontaneum whereas Ming et al. (2001) found markers 

associated with negative effects that were inherited from S. officinarum.  Since both 

progenitor species can harbor alleles with both positive and negative effects, when 

selecting for say one major QTL, some knowledge about chromosomal segments or 

alleles outside the target QTL which may adversely impact the trait of interest woul

hasten selection during introgression and increase selection efficiency.   

 This study was undertaken to characterize QTLs controlling sugar related 

in these two progenitor species of modern sugarcane.  The study was based on an F1 cross 

between S.  officinarum 'Louisiana Striped' x S. spontaneum 'SES 147B'.  The traits we

measured in the early and late plant growing seasons and over two crop-y

objective was to detect QTLs controlling these traits and in particular to determine if 

different QTLs control these traits in the early and late part of the plant growing season 

and if QTLs stable across crop-years could be identified.  In addition, the potential of 

discriminant analysis (DA) to identify molecular markers associated with sugar relat

traits was also evaluated by comparing the results from DA with those identified in QT

analysis.  DA is a multivariate approach to genetic analysis which associates an 

individual with a descriptive class (Fisher, 1936).   

6.2 Material and Methods 

6.2.1 Plant Material and DNA Extraction 

The mapping population consisted of 100 F1 individuals derived from a c

between S. officinarum (Louisiana Striped, 2n=80) x
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Leaf tissue from seedlings was collected, immediately frozen and later ground to powder 

ted using Plant DNeasy Mini Kit (Qiagen, 

Valenc

 the 

.  The trial was planted in November 2003 in single-

row 3 b  

d 

 

e 

ate 

 

in liquid nitrogen.  Genomic DNA was extrac

ia, CA) following the manufacturer’s protocol.  The concentration of DNA was 

estimated using known concentration of Lambda DNA in 1% (w/v) agarose gel.  PCR 

protocols for AFLP, SRAP and TRAP where described elsewhere (Chapter 2). 

6.2.2 Field Trial and Phenotyping 

The F1 progeny, the S. officinarum parent and four checks were grown at the 

USDA Sugarcane Research Unit farm, Chacahoula, Louisiana.  The S. spontaneum 

parent could not be planted in the field as the USDA-APHIS rules do not permit

planting of weedy species in the field

y 1.8 square meter plots in a randomized complete block design (RCBD) with

three replications.  Standard sugarcane cultural practices for Louisiana were followe

(Legendre, 2001).  In 2004 and 2005, ten stalks from each plot were randomly chosen

and the juice extracted and used to estimate Brix (total soluble solids including sucrose in 

the juice sample), pol (estimate of sucrose in the juice sample) and sucrose content.  Th

samples were collected during the early (late August) and late (just prior to harvest in l

October) plant growing season.  Brix was recorded in the laboratory using a RFM 

refractometer (Bellingham and Stanley+ Co, England).  Pol readings of the clarified juice 

were obtained using an automated saccharimeter (Kernchen, Germany). Theoretical 

recoverable sucrose content (hereafter refered as sucrose in this chapter) was calculated 

from the Brix and pol data assuming 12.5% of fiber in all the clones (Gravois and 

Milligan, 1992).  In the 2004 plant cane crop only early season Brix (04EB) was 

measured whereas the late season data included Brix (04LB), pol (04LP) and sucrose

(04LS).  In the 2005 first ratoon crop the plots were inaccessible following the 
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devastation from hurricanes Katrina and Rita, thus, data were available only from t

early season for Brix (05EB), pol (05EP) and sucrose (05 ES).   

6.2.3 Genotyping and Linkage Map Construction 

Amplified fragment length polymorphism (AFLP), sequence related am

polymorphism (SRAP) and target region amplification polymorphism (TRAP) marker

techniques were employed to generate polymorphic bands. Two 

he 

plified 

 

genetic linkage maps 

uisiana Striped’ and the other for S. 

spontan d 

m 

nd the standard errors of Brix, pol and sucrose across the years 

ted from the complete unadjusted data.  The analysis of 

varianc

ribed 

 H2 

 

were constructed: one for Saccharum officinarum ‘Lo

eum ‘SES 147B’. A total of 344 markers were generated from S. officinarum an

a total of 306 markers from S. spontaneum. The framework S. officinarum map 

comprised of 146 linked markers spread over 49 linkage groups while the S. spontaneu

map comprised of 121 linked markers in 45 linkage groups.  A detailed mapping study is 

reported in Chapter 5.   

6.2.4 Statistical Analysis  

The phenotypic data was tested for normality using PROC UNIVARIATE option 

of SAS ver 9.1.3 (SAS Inc., Cary, NC) and all found to be normally distributed.  The 

means, range of means a

2004 and 2005 were calcula

e (ANOVA) was performed using PROC GLM of SAS using the model yij= 

μ+αi+βj+eij, where yij is the phenotypic mean of a particular trait with μ as the overall 

mean, αi as the genotype effect, βj as the block (replication) effect and eij as the error 

effect. All effects in the model were considered as random.  Estimates of variance 

components σ2
g (genotypic variance) and σ2

e (error variance) were calculated as desc

by Searle (1971).  Broad sense heritability estimates were calculated using the formula

= σ2
g/( σ2

g + σ2
e/r) where σ2

e is the error variance and r is the number of replications. 
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Phenotypic (rp) and genotypic (rg) correlation coefficients among the traits were 

calculated based on adjusted means using the PLABSTAT software (Utz, 2001).  

6.2.5 QTL Analysis 

The method of composite interval mapping (CIM) (Zeng, 1994; Jansen and Sta

1994) was employed to detect QTLs and to estimate their effects.  Cofactors were

selected using a stepwise regression method and the final model was selected wher

m, 

 

e the 

ation criterion) was minimized at penalty = 3.0.  The phenotypic 

variatio

t as 

IM-

 

ined 

variatio

e 

, 

ROC STEPDISC 

AIC (Akaike’s inform

n explained by each QTL was determined as the square of the partial correlation 

coefficient (partial R2), keeping the effects of all other QTLs for that particular trai

fixed.  The proportion of total phenotypic variation explained by all QTLs in the model 

was determined (adjusted R2) after making adjustments for number of terms in the 

multiple regression model.  The threshold LOD score for each trait was computed as 

described by (Churchill and Doerge, 1994) using 1000 permutations.  All the QTL 

analyses were performed using the PLABQTL software (Utz and Melchinger, 1996).   

To detect epistatic interactions, every single significant QTL detected from C

QTL mapping was tested for linear x linear digenic interactions by multiple regression

analysis using SAS ver 9.1.3 (SAS Inc., Cary, NC).  The phenotypic variation expla

by individual interacting QTLs was determined as partial R2 and total phenotypic 

n accounted by all interacting QTLs was determined as adjusted R2 of multiple 

regression.  All digenic interactions were detected at P < 0.05 level.  

6.2.6 Discriminant Analysis  

Discriminant analysis was performed according to Mcharo et al. (2004). Th

population was divided into three groups (high, intermediate and low) based on the Brix

sucrose and pol data using 2 standard deviation grouping. Using the P
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option of SAS, a forward method parametric discriminant analysis was performed with 

criteria

on 

e 

e 

ibs. 

 

 

4 and 2005 (Fig 6. 1; Table 6. 1).  In the year 2004 early Brix estimates 

 a mean of 7.90.  In the same year, late Brix estimates 

ranged 

n of 

ol 

ariation ranged from 0.39  

 set to default (SLENTRY = 0.15) to select the most informative markers that 

differentiates the individuals in the groups. Using PROC DISCRIM, a non-parametric 

discriminant analysis was performed employing the selected markers to construct and 

validate a class prediction function and to predict group membership.  The cross 

validation procedure tests for the efficiency of the selected marker derived classificati

model.  The classification error rates derived from the cross validation procedure provid

a measure of overall model efficiency. While performing the DA, we assumed that ther

is no population structure in the mapping population as all the progeny were full s

6.3 Results  

6.3.1 Phenotypic Evaluation 

The analysis of variance results indicated that there was a significant difference (P

< 0.01) among the genotypes in the F1 population for the traits Brix, sucrose and Pol in

the years 200

ranged from 3.75 to 11.73 with

from 6.52 to 11.46 with a mean of 9.24, late sucrose estimates ranged from 2.57 

to 9.92 with a mean of 5.89 and late Pol estimates ranged from 14.31 to 47.23 with a 

mean of 31.73.  In 2005, the early Brix estimates ranged from 5.56 to 8.98 with a mea

6.85, early sucrose estimates ranged from 1.02 to 5.00 with a mean of 2.17 and early P

estimates ranged from 6.50 to 20.62 with a mean of 11.12.   

The broad sense heritability estimates (H2) in 2004, for early Brix was 0.69 

whereas that of late Brix, late sucrose and late Pol were 0.86, 0.85 and 0.90, respectively.  

In 2005, the H2 estimates for early Brix, early sucrose and early Pol were 0.75, 0.71 and 

0.70, respectively (Table 6. 1). The genotypic coefficient of v

 122



Table 6
estimates for Brix (B), sucrose (S) and pol (P) traits at early (E) and late (L) seasons in 

p

e genot tion co ere ob d amo the tr der 

 6. 2). 

able 6. 2. Genotypic Correlation coefficient estimates for Brix (B), sucrose (S) and pol 
) estimated at early (E) and late (L) crop growth periods across the years 2004 (04) and 

. 1. The means± SE, ranges of means, ANOVA and broad sense heritability 

the years 2004 (04) and 2005 (05). 

** Significantly different at 0.01; † Genotypic coefficient of Variation 
 
 
(05EP) to 11.61 (04LS) and com

Trait Mean ± SE Range MS F value GCV†  H2

04EB 7.90±0.07 3.75-11.73 2.55 2.76** 8.88 0.69 

04LB 9.24±0.05 6.52-11.46 1.57 6.82** 5.64 

04LS 5.89±0.06 2.57-9.92 1.99 7.56

0.87 

8 

04LP 31.73±0.58 14.32-47.23 79.79 10.15** 0.93 0.90 

5  0  
**

17.63 

** 11.61 0.8

05EB 6.85±0.03 .56-8.98 0.53 4.11** 2.22 .77

05ES 2.17±0.03 

05EP 11.12±0.25 

1.02-5.00 

6.50-20.62 

0.60 3.50

3.93**

6.97 0.72 

0.39 0.74 

arable to those observed by Milligan et al. (1992).  

Positiv ypic correla efficients w serve ng all aits un study 

(Table

T
(P
2005 (05).  

 04EB 04LB 04LS 04LP 05EB 05ES 
04LB 0.74      **

04LS 0.79** 0.96**     
04LP 0.79**    0.90** 0.97**    

0.83 0.72 0.81 0.79 0.98 0.98

05EB 0.93** 0.64** 0.62** 0.62**   
05ES 0.90** 0.76** 0.83** 0.82** 0.81**  
05EP ** ** ** ** ** **

**Significan  lev

TL A is 

 Saccharum officinarum 

The  QTLs detected in icinarum is presented in Table 6. 3.  A total of 

bined across all traits with the LOD scores ranging from 

t at 0.01 el 
 

6.3.2 Q nalys

6.3.2.1

list of S. off

fifty QTLs were observed com
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2.51 to 7.64.  In the year 2004, eight QTLs were observed for 04EB on the linkage 

groups (LG) L6, L8, L15, L35, L40 and L49 explaining a total variation of 48.4%.  The 

variation explained by the individual QTL ranged from 1.2% (AF11715 on LG L15) to 

0
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2005 Early Pol 
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Figure 6. 1. The normal distribution of Brix, pol and 
sucrose data among the 100 progeny measured at 
early and late seasons of crop growth during the years 
2004 and 2005. The arrow indicates the 
measurements of Brix or sucrose for S. officinarum 
‘Louisiana Striped’. The S. spontaneum data was 
unavailable as USDA-APHIS regulations do not 
permit the planting of weedy species in field trials. 

 124



34.3% (AF1186 on LG L6).  F

total variation of 35.5%.  The v  

0.2% (AF11715 on LG L15) to

one each on LG L8 and L49 w e 

trait 04LS, fourteen QTLs wer  The 

variation accounted for by individual 04LS QTLs ranged from 0.1% (AF886 on LG L20) 

 22.7% (AF475 on LG L8).  Four QTLs were observed for 04LP on LGs L3, L4, L6 

dual 

 

composite interval mapping (CIM) QTL analysis in an interspecific S. officinarum x S. 

or 04LB, eight QTLs were observed which explained a 

ariation explained by individual 04LB QTLs ranged from

 27.2% (AF1186 on LG L6).  Two QTLs on LG L6 and 

ere commonly observed for both 04EB and 04LB.  For th

e detected accounting for a total variation of 28.8%. 

to

and L36 accounting for a total variation of 15.9%. The variation explained by indivi

QTL ranged from 7.3% (AF7710 on L3) to 12.5% (AF274 on L36).  The QTL on LG 

L20 and L49 was common for 04LB and 04LS whereas the QTLs on LG L8 and L15 

were common for 04EB, 04LB and 04LS traits. The negative effect QTL on LG L6 

(AF1186) was consistently present in all the traits measured in 2004. 

In 2005, eight QTLs (two on LG L6 and L15 and one each on LG L8, L35, L40 

and L49) were observed for 05EB explaining a variation of 47.4%.  The variation 

explained by individual 05EB QTLs ranged from 0.3% (AF11715 on LG L15) to 32.2% 

Table 6. 3. The markers identified in S. officinarum ‘Louisiana Striped’ based on 

spontaneum cross. 

Trait LG† Marker LOD score‡ partial R2§ Additive effect 

04EB L6 AF1286 4.62 21.2   0.109 
  AF1186 7.48 34.3 -0.168 

 L15 AF11714 4.56   3.0   0.053 
  AF11715 2.92   1.2   0.013 
 L35 AF287 2.92 15.1 -0.068 
 L40 AF486 4.60 17.4   0.092 

    Adj.R

 L8 AF475 4.42 11.3   0.058 

 L49 PM05810 4.56 15.9   0.088 
 

04LB L1 AF5811 2.77   0.5   0.114 
 L3 AF7717 4.32   9.8 -0.238 
 L6 AF1286 5.07   6.9   0.258 
  AF1186 7.05 27.2 -0.397 
 L8 AF475 3.11 12.1 -0.135 

2¶  = 48.4 
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Cont’d
 L15 AF11716 3.25   0.2   0.119 

0 
2 

2 

90 

AF1286 3.50 11.4   0.167 
  AF1186 7.36 21.9 -0.318 
 L8 AF47

 
 

Adj. 8.4 

4LP L3 
 L4 AF12811 3.44 7. 2.00 

 
Adj. 5.9 

5EB L6 
 

40 F486 3. 8 0. 5 
  

Adj. 7.4 

5ES L6 

  

 
Adj 7.8 

Avg. Ad   41.4  

.      

 L20 AF886 3.44   4.4   0.15
 L49 PM05810 2.76 15.1   0.15
    Adj.R = 35.5  

04LS L1 AF5814 4.84 14.3 -0.364 
  AF588 5.25   9.6   0.3
  AF5717 2.68   8.0   0.161 
 L5 AF4811 3.49   5.2 -0.196 
 L6 

5 4.14 22.7 -0.191 
 
 

L15 
L20

AF11716 
AF886 

2.56 
3.32 

  0.2 
  0.2 

  0.096 
  0.081 

 L25
L30

AF1377 2.97 10.2 -0.123 
  

L33 
sr329 3.14   0.2   0.144 

 sus41 2.61   2.8 -0.177 
 L37 

L41 
PM0882 3.80 10.3 -0.214 

 PM06714 2.51   4.4   0.150 
    R2 = 2  

0 AF7710 2. 3 7 7.3 
4 

-1  .8

 L6 AF1186 3.21 9.8 -2.08 
 L36 AF274 2.58 12.5 2.05 
    R2 = 1  

0 AF1286
F1186

 4.08 
6. 5 

21.6 
32 2 

0.114 
-0.173   A 3 .

 
 

L8 
L15 

AF475 
AF11714 

4.22 
4.37 

11.0 
  1.5 

-0.061 
0.061 

 
 

 
L35 

AF11715 
AF287 

3.66 
2.65 

  0.3 
1 .7 

0.022 
-0.049 6

19.8  L A 8 09
 L49 PM05810 2.98 14.4 0.077 
    R2 = 4  

0 AF1286 5.59 23.5 0.127 
 
 

 
L8 

AF1186 
AF475 

7.64 
3.22 

30.9 
12.0 

-0.175 
-0.055 

 
 

L15
 

AF1171
AF1171

4 4.87 
3.03 

  4.4 
  4.3 

0.057 
0.026 7 

 
 

L35 
L40 

AF287 
AF486 

3.24 
3.86 

17.5 
17.0 

-0.059 
0.090 

 
 

L49 
 

PM05
 

810 4.57 
 

15.9 
.R2= 4

0.092 
 

   j.R2 =
†The construction of linkage groups (LG) was described in Chapter 5. 

utation test and the  
 with 01 LOD ere deemed putative. 

Proportion of phenotypic variation explaine individual Q .  
xplained by all QT the final mod

fter adjusting for num er of terms in multiple egressio

‡The threshold LOD score was 3.01 as detected
TLs

 by 1000 run perm
Q
§

> 3.  score w
d by TL

¶Proportion of total phenotypic variation e L in el  
a b  r n. 
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(AF1186 on  L6).  S, the same QTLs were observed except for a different 

arker on L 15 (AF xplaining a ariation of %.  The vari

ccounted b ividu anged from  (AF11717  L15) to 30

86 on  L6).   were detected 05EP. 

Com ed acro  years, the QT LG L6 and ere consiste

etected for he trai s the QTL on L49 was observed for all but the 4LS. 

he QTL on  L40 w tently obser or 04EB, 05 nd 05LB.  M  the 

TLs had p sitive additive effect except for a few wh effects. 

able 6. 4.  A total of 

hree 

TLs were observed for 04EB on LG S5, S6 and S33 explaining a total phenotypic 

S21 

on 

on LG S21) to 15.1% (PM0983 

on LG n of 

tion 

 QTLs ranged from 2.9% (AF577 on LG S8) to 17.9% 

(AF575

 LG  For 05E

m G L 11717) e total v  47.8 ation 

a y ind al QTLs r 4.3% on LG .9% 

(AF11  LG No QTL  for 

bin ss both L on  L8 w ntly 

d  all t ts wherea  trait 0

T  LG as consis ved f EB a ost of

Q o ich had negative 

6.3.2.2 Saccharum spontaneum 

The list of QTLs detected in S. spontaneum is presented in T

26 QTL were observed with the LOD scores ranging from 2.56 to 7.59.   In 2004, t

Q

variation of 31.3%.  The variation explained by individual QTLs ranged from 0.2% 

(AF2711 on LG S6) to 7.0% (PM0972 on LG S5).  Five QTLs (on LG S5, S6, S12, 

and S36) were observed for 04LB explaining a total variation of 43.0%. The variati

accounted by individual QTLs ranged from 0.1% (sr424 

S5).  For the trait 04LP, three QTL were observed explaining a total variatio

6.5%. The variation explained by individual QTL ranged from 1.8% (cd55 on LG S4) to 

7.8% (AF1477 on S33).  For the trait 04LS, five QTLs (three on LG S8 and one each on 

LG S3 and S35) were observed explaining a total variation of 23.6%.  The varia

accounted for by individual 04LS

 on LG S8).  In 2004, the QTL (AF2711) on LG S6 was common for 04EB and 

04LB whereas the QTL on S33 (AF1477) was common for 04EB and 04LP. 
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Table 6. 4. The markers identified in S. spontaneum ‘SES 147B’ based on composite

cross. 

Trait LG

 
interval mapping (CIM) QTL analysis in an interspecific S. officinarum x S. spontaneum 

† Marker LOD score‡ partial R2§ Additive effect 

04EB S5 PM0972 3.56   7.0   0.122 
 S6 AF2711 3.57   0.2 -0.023 

    Adj.R
 S33 AF1477 3.77   4.8 -0.093 

 S12 sr416 2.62   8.1 -0.140 

2

  AF589 3.44 15.4   0.355 

    Adj.R =23.6  
1.8 
-2.0 

 S33 AF1477 2.61 7.6 -1.4 
    Adj.R2=6.5  

S5 PM0981 3.65   6.2 -0.125 
  7.59        25.6

 

Ad .0 

Avg. Ad 41.4  

2¶=31.3  

04LB S5 PM0983 3.97 15.1   0.308 
 S6 AF2711 3.30   0.3 -0.005 

 S21 sr424 2.88   0.1   0.048 
 S36 PM0781 2.96   3.8   0.115 
    Adj.R =43.0  

04LS S3 AF888 3.31 10.7   0.247 
 S8 AF575 5.87 17.9 -0.465 
  AF577 2.86   2.9 -0.187 

 S35 PM0886 2.56   9.0   0.225 
2

04LP S4 cd55 2.87 1.8 
 S21 sr424 3.07 6.4 

05EB S6 AF2711 3.31   0.1 -0.010 
 S33 AF1477 2.91   2.7 -0.073 
    Adj.R2=23.0  

05ES 
 
 

PM0983
AF2711 

 
  0.6 

  0.254 
-0.009 S6 3.47 

 S8 AF575 3.10   9.0 -0.129 
 S30 AF979 2.61   5.6 -0.103 
 S33 

38 
AF1477 

M0375 
3.62 
3.25 

10.5 
1  

-0.097 
  0.145  

 
S
 

P
 

1.0
Adj.R 2=43.5  

05EP S1 AF11720 3.19 9.0 -1.02 
    j.R2=7  

   j.R2 =  

†The construction of linkage groups (LG) was described in Chapter 5. 
The threshold LOD score was 2.90 as detected by 1000 run perm

 with 90 LOD were deemed putative. 
Proportion of phenotypic variation explaine ndividual . 

riation exp d by all QT  the final m ter 
djusting fo ber o n multiple regression. 

In 2005, two QTLs were observed for 05EB (on LG S6 and S33) whereas seven 

QTLs were observed for 05ES (two on LG S5 and one each on LG S6, S8, S30, S33 and 

‡ utation test and the  
QTLs > 2.  score 
§ d by i QTL
¶Proportion of total phenotypic va laine Ls in odel af
a r num f terms i
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S38).  The p otypic  explained by 05EB QTLs and 05ES QTLs was found to 

e 23.0% an  43.5%, r spectively.  The variati n explain idual 05EB TLs 

nged from .1% (AF LG S6) to 2.7 F147  S33) wherea f 

5ES QTLs ed fro  (AF2711 on L ) to 11% 375 on LG S

nly one Q as ob r 05EP on LG AF11720) aining a var f 

 The Q s on LG S33 were co ly observe r all the traits t for 

4LS.  Mos f the QT s had negative effects except for a few QTL which had positive 

 (iQTL) detected in S. officinarum 
s. 

QTL†

hen variation

b d e o ed by indiv Q

ra  0 2711 on % (A 7 on LG s that o

0  rang m 0.6% G S6 (PM0 38).   

O TL w served fo  S1 (  expl iation o

7.0%. TL  S6 and mmon d fo  excep

0 t o L

additive effects. 

Table 6. 5. The linear x linear digenic interacting QTL
‘Louisiana Striped’ and S. spontaneum ‘SES 147B’ parental specie
Trait Number of 

interacting 
Range of partial 
R2‡

Adjusted R2§ Range PP

values 
¶ 

S. officinarum 
04EB 

1 

04EB 1 4.6 4.6 0.05 

04LP 1 4.8 4.8 0.04 

Total 4    

1  2.4   2.4 0.01 
04LB 6 2.1 – 12.5 28.6 0.03 – 0.0008 
04LS 14 1.8 –  6.9 53.3 0.03 – 0.0001 
04LP 1 6.8 6.8 0.01 
05EB 8 1.4 –   8.0 38.5 0.02 – 0.0001 
05ES 4 2.5  -   8.0 23.2 0.03 – 0.000
Total 34    

S. spontaneum 

04LB 1 4.7 4.7 0.05 

05ES 1 4.9 4.9 0.03 

†Linear x Linear digenic interacting QTLs as observed from multiple regression analysis. 
Proportion of phenotypic variation explained by individual interacting QTL.  ‡

ting for number of terms in multiple regression. 
 significant at 0.05 level. 

The numbe  linear n S. of

ranged from 1 (in 04EB and 04LP) to 12 (in 04LS) with a total of 34 interacting QTLs 

§Proportion of total phenotypic variation explained by all interacting QTL in the final 
model after adjus
¶The P values are
 
6.3.2.3 Digenic Interactions  

ficinarum r of linear x  digenic interactions detected i
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(iQTL) (Table 6. 5).  The total phenotypic variation accounted by all iQTL within a trait 

 from 2.4% (04EB) to 53.3% (04LS).  Most of the 34 i  were d

xcept for two: iQT F11715/PM s detected B and 

F475/AF11714 w detected in 5ES.    Fo enic iQ

S. spontaneum e each in 04EB 04LB, 05ES and 04LP and none were 

d in 04ES and 05E  (Table 6. 5).  A e iQTLs involved either one of these two 

s: AF2711 on LG and AF1477 o  S33.  The total phenotypic variation 

ed by the iQTL was minimum in 04EB (4.6%) and max um in 05ES (4.9%). 

 

e (as all the genotypes originated from 

the sam

ose 

 

 

ranged QTLs etected only 

once e L A 05  wa810  i En 04 05EB and 

iQTL A as  05EB and 0 ur dig TL were 

detected in , on , 

observe B ll th

marker S6 n LG

explain im

6.3.3 Discriminant Analysis 

The genotypes in the population were divided into three groups based on Brix,

sucrose and/or pol data (low, medium and high) using a 2-standard deviation (2SD) 

differentiation.  Assuming no population structur

e cross), a minimum of 10 markers (for each trait) detected by the discriminant 

analysis procedure gave > 90% classification (< 10% error rate) of the genotypes with 

both S. officinarum and S. spontaneum data sets.  Over and above 10 markers, a 100% 

classification was consistently achieved for all the traits using the data sets from both 

parental species.  

Several of the DA-identified markers were found to be common to Brix, sucr

and pol in the early as well as in late plant growing seasons and across both crop-years.  

In S. officinarum, the marker sr546 was common to 04EB and 05ES, AF1182 was 

common to 04EB, 04LS and 04LP and the marker AF5819 was common to 04LS and

05EP.  Two markers sr2211 and AF1572 were consistently detected for 04EB and 05EB 

(Table 6. 6).   
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Table 6
discriminant analysis based on 2 standard deviation (SD) differentiation 

or 
DA identified markers 

. 6. The markers identified in S. officinarum ‘Louisiana Striped’ from 

Percent classification f 

 

 

   
Year-trait 

 

DA selected markers 

15 10 5 

04EB sr2211, sr572, sr546, sr124, AF5810, AF287, 
AF1182, AF1273, AF1572, cd23 

100 99.98 82.50 

04LB sr259, sr576, AF473, AF779, AF1186, 100 99.98 72.58 
AF1277, cd91, PM0171, PM0376, PM0383 

04LS sr622, sr632, sr612, sr132, AF5819, AF1182, 
AF1184, cd144, PM08811, PM08713 

100 99.97 75.4

04LP sr329

2 

, AF572, AF986, AF1182, AF12715, 
AF12720, AF13718, AF14811, cd143, 

100 99.35 80.06 

PM02817 

05EB sr2211, AF774, AF578, AF279, AF12716, 
AF1487, AF1572, cd59, cd141, sr624 

100 100 68.53 

05ES sr229,sr546, sr634, sr643,  AF5713, AF9713, 
AF1485, sus41, PM02712, PM03712 

99.99 99.98 6

05EP PM0374, AF1476, AF1575, AF1573, 

8.83 

AF1288, AF11718, AF988, AF7714, 
AF5819, AF588 

100 100 84.91 

†The markers which were repeatedly detected for any two traits are represented either in 
r underlined or combinations of these. 

 
ikewise, in S. spontaneum, three markers sr157 and cd54 were common to 04EB 

B.  Two 

arkers sr38 and PM0586 were detected for 04LB and 04LS

M0284 was detected for 04EB, 04LS and 05ES.  The marke n to 

nd 05E omm 5E

05EP and the m

6.4 Discussio

6.4.1 Marker

In a tr is, t ility t t Q

depends in part on the magnitude of QTL effects and on the structure of the mapping 

bold or italics o

L

and 05EB whereas the marker AF872 was common to in 04EB, 04LP and 05E

m 1  whereas the marker 

P r AF1272 was commo

04LS a B, cd54 was common to 04EB and 05EB, cd56

arker sus43 was common to 04LP and 05EB (Table 6. 7).  

 was c on to 0 S and 

n 

 Detection 

aditional quantitative trait loci (QTL) analys he ab o detec TLs 

 131



Table 6
analysi

. 7. Th  147 om discriminan
s base n. 

Percent classification for DA 
d  m

e markers identified in S. spontaneum ‘SES
d on 2 standard deviation (SD) differentiatio

 B’ fr t 

i entified arkers 
 

rait 
 
15

 
1

 
5

Year-t
 
DA selected markers†

 0  

04EB sr356, sr157, AF872, AF873, AF273
cd54, sai34, 

,  
0284PM , PM0384, 

100 99.98 82.50 

PM06711 

04LB sr344, sr381, AF975, AF1172, AF1173, 
sai24, PM0883, PM0678, PM0586, 
PM0372 

04LS sr333, sr341, sr532

100 99.98 72.58 

, sr556, sr641, sr381, 
AF1272, cd27, PM0586, PM0284

100 99.97 75.42 

04LP AF872, AF2712, AF14710, sus43, 
PM0176, PM0686, PM0586, cd53, 
PM03711, PM0577 

100 100 94

05EB sr325, sr157, sr126, 

.31 

AF872, AF11712, 
AF1272, AF1473, sus43, cd54, PM02714 

cd56

100 100 68.53 

05ES sr4210, sr566, AF771, AF282, cd21, 99.99 99.98
sus21, , PM0177, PM0684, PM0284

 68.83 

05EP sr442, sr646, sr661, sr532, AF2711, 
d56,AF1174, c  PM0972, PM0887, 

PM0276 

100 100 83.65 

†The m  
bold or italics or underlined or combinations of these. 

population.  In sugarcane, using relatively larger mapping populations (> 200) and 

t al. (2006) detected several 

gron ugar content with ind  ranging 

from 3 to 7% and 3 to 9%, respectively.  Hoarau et al. (2002) used a selfed population of 

ar R570 and Aitken et al. (2006) used a cultivar x S. inaru .  A  

the population sizes in these studies were comparatively large, the mapping populations 

were derived fr cing genotypes.  Due to high 

on press in orabl s ge

accumulated in ize genetic variation and the ability 

arkers which were repeatedly detected for any two traits are represented either in

 

number of linked markers, Hoarau et al. (2002) and Aitken e

QTLs for a omic traits including s ividual QTL effects

 offic m crossa cultiv lthough

om closely related, high sugar produ

selecti ure over several decades of recurrent breed

 the cultivars which potentially minim

g, fav e allele t 
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to distinguish t the QTL ected se stu

had minor effe

Our stu om rspec  

ontaneu ypical ulat d i

as created following the objectives prove

program which enes from the basic Saccharum 

S. officinarum

(PM0983 on S5 for 05ES) in S. spontaneum with positive additive effects.  In S. 

officinarum, most (65%) of the QTLs detected had a positive effect on sugar 

accumulation although a few (35%) QTLs having negative effects were detected.  

Conversely, most (65%) of the QTLs contributed by the S. spontaneum parent had a 

effect were detected.  In both species the QTL effects remained consistent for all the traits 

regardless of season (early vs. late) and crop-year (04 vs. 05).  Previous sugarcane studies 

have reported consistency of QTL effects for Brix and pol across seasons (Aitken et al., 

2006) and crop-years (Aitken et al., 2006; Hoarau et al., 2002).   

With a population size of 100 individuals, we could detect QTLs with large 

effects, but perhaps minor QTLs went undetected due to the relatively small population 

size and low m ap.  However, even with a relatively smaller 

population size of 44 F  individuals derived from a S. officinarum x S. robustum cross, 

Sills et al. (1995) detected several QTLs with relatively large (23-58 %) effects.  

However, unlike in the Sills et al. (1995) study where single factor ANOVA approach 

was used, we used the more reliable approach of composite interval mapping (CIM) QTL 

rait segregation.  Therefore, most of 

cts compared to our study. 

s det  in the dies 

ific (S. officinarumdy used a mapping population derived fr a inte

x S. sp m) cross.  This population, although at  of pop ions use n 

breeding, w of the Louisiana sugarcane im

 include identification of favorable g

ment 

germplasm.  The phenotypic variation explained by individual QTLs (partial R2) was 

found to be as high as 23.5% (AF1286 on L6 for 05ES) in  and 25.4% 

negative effect on sugar accumulation but remarkably, some QTLs having a positive 

arker density in the linkage m

1
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analysis (Zeng et al., 1994).  The results from CIM-QTL method are usually com

to those obtained from Mapmaker/QTL analysis (Al-Janabi et al., 2007).  Nev

much larger population size and dense map is necessary to better appreciate the num

of loci governing quantitative traits.   

  The sucrose and the traits from which it is estimated, Brix and pol, are all 

moderately to highly heritable traits (Kang et al., 1983; Milligan et al., 1990 and 1992; 

Hoarau et al., 2002; Aitken et al., 2006).  As such, one would expect these traits to be 

governed by one or a few major QTL or genes.  However, these heritability estimates are

based on the total genetic variance (broad sense heritability) wher

parable 

ertheless, a 

ber 

 

eas markers account for 

only ad

; 

suring for sucrose can serve as limiting factors.  In 

this stu and 

ditive but not non-additive effects (Sills et al., 1995).  Therefore, it is not 

surprising that in this and several previous studies (Ming et al., 2001; Hoarau et al., 2002

Aitken et al., 2006) minor QTLs were found to be associated with these traits.  Thus, 

although we found some QTLs with large effects the importance of QTLs with small 

effects cannot be undermined (Ming et al., 2001). 

Measurements of Brix and pol are needed to estimate sucrose content.  Brix is 

easier to measure (g solute per 100 g of solution) whereas pol (g sucrose/ 100g of juice) 

is harder, more expensive, less environmental friendly and time consuming.  As an 

indirect measure of sucrose content, Brix is especially important during the early stages 

of breeding program.  During this stage, breeders evaluate a prohibitively large number 

of clones and time and the cost of mea

dy significant (P < 0.01) positive correlations were found between Brix, pol 

their derived trait sucrose content (Table 6. 2).  Although several common QTLs were 

expected among these traits, surprisingly, few (AF1186 on LG L6; sr424 on LG S21 and 

AF1477 on LG S33) were found.  Also QTLs were found for sucrose content that could 
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neither be attributed to Brix nor pol.  This disparity might partially be due to the fact that 

fewer QTLs were found for pol compared to Brix.  The QTLs for Brix possibly in

other solutes including sucrose.  Moreover the correlations were based on total genetic 

variance whereas the QTLs measured only the additive portion of the variation.   

Early harvesting of sugarcane would have remarkable benefits for the sugar 

industry.  In Louisiana, initiating crushing earlier i

cluded 

n the season would help the crop 

escape er 

 

tation 

aits 

later in to 

d for 

cold temperatures that occur later in the season (November- December).  In ord

to initiate early harvesting, however, the genotype(s) should accumulate sucrose at levels

high enough for commercial exploitation.  For a successful and profitable implemen

of early harvesting, therefore, reliable information is required on absolute levels of 

sucrose at the early and at normal harvesting periods along with cane yield and ratoon 

performance (Cox, 1999).  Cox et al. (1990) asserted that there might be certain genes 

which are up-regulated only during early plant growing season and vice versa.  In this 

study, two positive effect markers/QTLs were unique to early season Brix/sucrose 

(AF486 on LG L40 and PM05810 on LG L49).  Such markers might potentially aid in 

selecting for high early sugar accumulating clones.    

Jackson and Morgan (2003) showed that it is possible to select early for the 

genotypes which prove to be competent with enough sucrose levels at the late season 

provided there is no genotype-season interaction.  They advocate selecting early for 

sucrose accumulation so that 1) attention and resources can be focused on other tr

 the season or 2) the clones can be replanted within the same growing season 

save a year of selection.  In this study, significant positive correlations were observe

early and late season within a crop-year (rg= 0.74 between 04EB and 04LB; rg= 0.79 

between 04EB and 04LS) and across crop-years (rg = 0.49 between 05EB and 04EB; rg = 
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0.55 between 05EB and 04ES; rg = 0.64 between 04LS and 05EB; rg = 0.82 between 

04LS and 05ES; rg = 0.64 between 04LB and 05EB and rg = 0.76 between 04LB and

05ES).  The positive correlations were supported further by the presence of common 

QTLs with positive effects for early as well as late season (AF1286 on LG L6 and 

PM05810 on LG L49 in S. officinarum) sucrose content.  It was also observed that ther

was no rank change in most of the clones for sugar content increase from early to la

season i.e., the high early sugar genotypes tended to be high late sugar genotypes.  The 

positive correlations and common markers for both ea

 

e 

te 

rly and late season observed in this 

study c ken 

.  

 S. 

rs 

ght 

ss 

ve 

 in 

orroborates the assertions from other studies (Jackson and Morgan, 2003; Ait

et al., 2006) stating that it is possible to select promising genotypes early in the season

6.4.2 Consistency of the Detected Markers 

The consistency of marker-QTL associations in different populations across 

different locations and years is the key to successful masker assisted selection (MAS) 

breeding.  In this study, four QTLs in S. officinarum (AF1286 on LG L6, AF11714 on 

LG L15, AF486 on LG L40 and PM05810 on LG L49 (AF475 on L8) and one QTL in

spontaneum (PM0983 on LG S5) were consistently observed in 2004 and 2005.  In 

addition, high significant correlations coupled with high heritabilities in both crop-yea

and between early and late season sugar accumulation indicate that common genes mi

be governing these traits.  However, the low numbers of common QTLs observed acro

crop-years could be due to genotype-year interactions as noticed for most quantitati

traits in sugarcane (Kang et al., 1987; Jackson and Hogarth, 1992; Gravois et al., 2002).  

Nevertheless, the effects of these common markers across crop-years were remarkably

the same direction.  The common crop-year markers with positive effects could be 

regarded as strong marker-QTL associations and could potentially be useful for MAS.  In 
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a clonally propagated crop like sugarcane once a strong marker-QTL association is 

detected in a progeny population, it has an immediate role in crop improvement via 

clonal selection as there is no further probability of cross-over between the marker and 

the QT

ed 

 

ions 

S, 7 

sus41 were mostly positive.  In S. spontaneum, out of three digenic interactions 

Mse I marker and other involved a SRAP marker.  All the 

TL e

L. 

6.4.3 Digenic Interactions 

 The digenic epistatic interactions (iQTL) explained significant amount of 

phenotypic variation for all of the traits in both Saccharum parental species.  However, 

the number of detected iQTLs were not consistent in both years as previously observ

(Hoarau et al. 2002; Aitken et al. 2006).  Since the epistatic interactions were tested only 

among the detected QTLs, one might assume that several other interactions between non-

QTLs went undetected.  Studies in other crops have detected interactions involving QTLs

and non-QTLs (Kulwal et al., 2004; Li et al., 1998).  The notable aspect of most of the 

digenic interactions observed in both parental species is that they involved either Pst I- 

Mse I or SRAP (in S. spontaneum) and/or TRAP (S. officinarum) markers consistent with 

the observation that these markers are amplified from actively transcribing genic reg

(which is discussed in the following part).  In S. officinarum, the detected iQTL mostly 

had Pst I – Mse I derived AFLP markers. Interestingly, out of 14 iQTL found in 04L

iQTL involved a TRAP derived marker (sus41).  As an independent main effect marker-

QTL, although sus41 surprisingly had negative effect on sucrose content, the iQTL 

involving 

detected one involved a Pst I – 

iQ ffects in S. spontaneum were found to be positive.  
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6.4.4 Comparison among Markers 

EcoR I – Mse I derived AFLP markers have been widely used in many crops for 

linkage mapping and QTL analysis including sugarcane (Hoarau et al., 2001; Aitken et 

al., 2005).   However, most of the EcoR I – Mse I derived polymorphisms are randomly

distributed across the genome and methylation insensitive EcoR-I enzyme cannot 

differentiate between genic and non-genic regions.  It was reported that the actively 

transcribing genic regions in the genome are generally hypomethylated (Barret and 

Kidwell, 1998) and therefore in this study, we have included a methylation sensitive Pst

enzyme along with an EcoR-I enzyme.  The two Pst I- Mse I derived QTLs in S. 

officinarum (PM06714 on LG L41 and PM05810 on LG L49) and four in S. spontaneum

(PM0983 on LG S5, PM0886 on LG S35, PM0781 on LG S36 and PM0375 on LG S

represent hypomethylated regions.  However, the assertion that these markers represent 

genes in the sucrose pathway genes can only be verified by sequencing the bands and 

BLASTing for homologous sequences. 

 

 I 

 

38) 

Several studies have previously documented that SRAP and TRAP techniques 

get genic regions of the genome to detect polymorphisms (Li and Quiros, 2001; Liu et 

 study, a few QTLs associated with SRAP (sr329 

on LG 

P 

arkers 

 be 

tar

al., 2005; Alwala et al., 2006).  In this

L30 in S. officinarum; sr424 on LG S21 in S. spontaneum) and TRAP markers 

(sus41 on LG L33 in S. officinarum) were detected.  Since, most of the single dose SRA

and TRAP markers were not linked, most of the other associated QTLs might have gone 

undetected.  In a crop like sugarcane with a large genome size, a large number of m

(such as those generated by AFLP) are required and SRAP and TRAP markers could

used to complement the already existing linkage maps since the accuracy of QTL 

detection is directly proportional to the map saturation. Nevertheless, the basic 

 138



advantages of using SRAP and TRAP technique is that they target genic regions o

genome (Li and Quiros, 2001; Alwala et al., 2006) and therefore, they pose immediate 

applications in MAS.  Although SRAP markers have been suggested to play a major role 

in marker assisted selection, their utility in detecting QTL has not been reported in many

crops including sugarcane. On the other hand, TRAP markers have been effectively 

employed to tag genes for important agr

f the 

 

onomic traits in wheat (Liu et al., 2005), disease 

resistan at 

ructure 

arcane 

 the 

ce traits in common bean (Miklas et al., 2006) and insect resistance trait in whe

(Wang et al., 2006).  This is the first report identifying the SRAP and TRAP marker 

based QTL and iQTL associated with sucrose genes in sugarcane.  

6.4.5 Implications in Introgression Breeding  

One of the potential reasons for the limited progress in sugarcane improvement is 

the genetic ‘bottleneck’ in the development of cultivars.  The current trend of making 

crosses between high sucrose producing parental cultivars/clones followed by selection of 

high sugar producing progeny has lead to further narrowing of the genetic base in 

sugarcane.  A study from our lab to assess the genetic variability and population st

among different clones/cultivars has documented that the genetic base of US sug

germplasm is narrow (Arro, 2005) corroborating a previous study (Deren, 1995).   The 

narrow genetic base coupled with high selection pressure could have lead to 

accumulation of most of the favorable alleles in current sugarcane cultivars, thus limiting 

the expansion of genetic variation.  Up to 80 % of the genome of sugarcane cultivars is 

made up of the high sugar producing species S. officinarum with 15 % represented by

wild S. spontaneum and 5 % by recombinant chromosomes (D’Hont et al., 1996).  Yet, 

most of the diversity found among sugarcane cutivars could be attributed to S. 
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spontaneum (Jannoo et al., 1999; Reffay et al. 2005).  Therefore, S. spontaneum is be

considered as a potential untapped source for novel alleles for sugar

ing 

cane improvement. 

that wild germplasms harbor a huge 

cache o

genes 

retracing 

 

ted across 

observe g 

d 

Tanksley and McCouch (1997) affirmed 

f agronomically important genes which could be exploited and introgressed into 

the cultivated background to further enhance the productivity of crop plants.  In their 

study, in tomato, when QTLs from wild species Lycopersicon hirsutum were transferred, 

the lines outperformed the elite varieties (Bernacchi et al., 2004).  Similarly, when 

from wild ancestor L. pimpinellifolium were introduced, the fruit size in the cultivated 

tomato was dramatically increased (Tanksley et al., 1996).  In sugarcane, therefore, it is 

highly probable that the presence of only 15% of S. spontaneum genome might have 

contributed some of the favorable sucrose alleles in the current cultivars.  By 

the movement of alleles from S. spontaneum through the breeding program, Reffay et al. 

(2005) successfully showed that alleles from this wild relative had contributed favorably

to sucrose content in cultivated sugarcane.  In our study, in addition to detecting several 

positive QTL from S. officinarum, a few positive QTLs were also detected from S. 

spontaneum.  Remarkably, the QTLs from S. spontaneum were repeatedly detec

seasons and across crop-years.  The positive marker-QTL associations (AF888 on S3, 

PM0983 on S5, AF589 on S8, sr424 on S21 and PM0375 on S38) from S. spontaneum 

d in this study could serve as a starting point for MAS in introgression breedin

in the Louisiana sugarcane improvement program. One of the S. spontaneum marker-

QTL (PM0983 on LG S5) which was consistently observed in early and late season an

in both crop-years has potential implications in introgression breeding.  Besides selecting 

the positive alleles, marker assisted selection also aids in the purging of negative alleles 

either from S. spontaneum or even from S. officinarum (AF1186 on LG L6) mainly to 
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facilitate accumulation of most of the favorable alleles and maximize the chances of 

developing improved sugarcane cultivars. Molecular breeding via marker assisted 

selection based introgression breeding provides a better approach to select parental clon

or elite clones with enhanced breeding values so as to break the plateau existing for 

sucrose content in current sugarcane breeding programs.  

6.4.6. Discriminant Analysis 

DA is an attractive multivariate statistical tool for plant breeders which can 

differentiate groups of individuals by screening for differences in the variables (or 

markers), given their quantitative measurements. DA simply finds the linear relationshi

of quantitative measurements with those of the variables or markers by keeping a 

minimal variation within the groups of individuals.  Although based on several statistical

assumptions such as normality of data and homogeneity of covariance matrices DA ha

proven to be robust with minor violations of these assumptions (Klecka, 1980; Zhang et 

al., 2005) especially when the marker profile used is categorical data.  Recently, using the 

DA approach, several microsatellite markers associated with agronomic traits were 

identified in rice (Capdevielle et al., 2002; Aluko, 2003; Zhang et al., 2005) and Alwal

et al. (2007) identified AFLP and TRAP markers associated with resistance to A. flav

maize. 

In the absence of saturated maps, as in the case of sugarcane, DA provides an 

attractive platform and a good complementation to QTL analysis to identify markers

associated with traits of agronomic interest.  Since, we hav

es 

ps 

 

s 

a 

us in 

 

e framework genetic linkage 

 S. spontaneum parents, the DA-identified markers were 

cross v  were 

maps for the S. officinarum and

alidated with those from QTL analysis.   A few of the DA-identified markers

also detected in the QTL analysis (AF1186 on LG L6 and AF287 on LG L35 in 
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Table 6. 8. The markers identified in discriminant analysis but not in QTL analysis from 

   
S. officinarum ‘Louisiana Striped’ and S. spontaneum ‘SES 147B’. 

Year-trait S. officinarum S. spontaneum 

 A† B‡ A† B‡

04EB sr546 (L24), AF1273, sr2211, 

AF1572, cd23 

AF872 (S29) sr356, sr157, 

sai34, PM0284, 

PM06711 

AF5810 ( L1)  sr572, sr124, AF273, cd54, 

PM0384, 

04LB AF473 (L9), 
PM0376 
(L38), 
PM0383 (L43) 

sr259, sr576, 
AF1277, cd91, 
PM0171 

sr344 (S24), 
AF1172 (S1), 
AF1173 (S1) 

sr381, AF975
sai24, PM058
PM0883, PM0678, 
PM0372 

04LS  sr622, sr612, sr333 (S40), sr341 sr532, sr556, 

, 
6, 

sr632, sr132, 
AF5819, cd144, 
PM08811, 

(S44) sr641, sr381, 
AF1272, cd27, 
PM0586, PM0284 

586, 

05ES sr546 (L24), sr229, sr643, 

M02712, 
2 

sr4210 (S31), sr566, AF771, 
 

PM0177, PM0684, 
PM0284 

5EP AF14 PM0374, sr442 (S44), sr661 
, 

PM0276 

sr646, sr532, cd56, 

PM08713 

04LP sr329 (L30), 
AF986 (L16), 
AF12715 (L4), 
AF13718??,  

AF572, 
AF12720, 
AF14811, 
cd143, PM02817 

AF872 (S29), 
PM0686 (S37), 
PM03711 (S4) 

AF2712, sus43, 
PM0176, PM0
PM0577, cd53 

05EB AF279 (L12), 
AF12716 (L4), 
AF1487 (17), 
cd59 (L26) 

sr2211, AF578, 
cd141, AF1572, 
sr624 

sr325 (S39), sr126 
(S25), AF872 
(S29), AF11712 
(S1), PM02714 
(22) 

sr157, AF1272, 
AF1473, sus43, 
cd54 

sr634 (L44), 
AF1485 (L18) 

AF5713, 
AF9713,  

AF282 (S28) cd21, sus21, cd56,

P
PM0371

0 76 (L17) 
AF1575, 
AF1573, AF988, 
AF7714, 
AF5819 

(S45), AF2711
AF1174, PM0972, 

PM0887 

† The markers identified in DA pointing to new regions on genetic link hich 
e

arkers identified in DA which were neither detected in QTL analysis nor located 
to any posit netic lin

 

age maps w
were not id ntified in QTL analysis.

ions on ge

 

kage map. 
‡The m
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S. officinaru ; Fig 6. 2). Seve ident o

vicinity of QTL-identified ma a rker AF774 is at 6 cM distance 

from AF7717 on LG L3; marker AF1182 at 20 cM distance from AF1

 AF1 dist  AF11715 on LG L15 and in S

marker AF8 o n LG S3; Fig 6. 2).  Addition  

ntifi  o  S d

regions, whi t ys om

which where neither linked in genetic linkage maps of  and in S. 

neum y Q ere y DA w 

loci in the g  t iven the unsaturated linkage m

high number of unlinked markers (~65% of the markers were unlinked), DA seems to be 

a fair approach in correctly id arke  eve  

linkage maps.   

tified even with large population sizes. 

 10 

5) 

e 

 smaller.  

m ral of the DA-

rkers (in S. officin

ified markers were l

rum ma

calized in the 

186 on LG L6; 

. spontaneum 

ally, some of the

marker 184 at 15 cM 

73 is at 43 cM fr

ance from

m AF888 o

ed markers in S.

ch were not iden

fficinarum and in

ified in QTL anal

. spontaneum pointe

is (Table 6. 8).   S

S. officinarum

DA-ide  to new genomic 

e of the markers 

sponta  nor detected b

enome affecting

TL analysis, w

he traits.  G

also identified b  representing ne

aps coupled with 

n without apriorientifying the m rs affecting traits

Statistical models based on large populations are always expected to be reliable. 

However, Cruz-Castillo et al. (1994) observed that in DA reliable information might not 

be extracted if too many markers were iden

Additionally, they also stated that for DA to be reliable, the population size should be

times larger than number of markers to be selected.   Using a population size of 

approximately 50 genotypes per phenotypic group in sweetpotatos, Mcharo et al. (200

previously identified five to seven markers associated with resistance to root knot 

nematode.  In this study, the population comprised of 100 progeny which were 

approximately evenly distributed (~33) in each of the three groups (low, medium and 

high) of genotypes.  The highest Wilk’s lambda estimate for any marker was found to b

0.79 regardless of trait across both the species and the rest of the estimates were
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Although, QTL analysis identified a few markers with large effects as affecting the trait, 

given the population size of 100 individuals and 10 markers identified by DA, we are 

confident that the DA-identified markers are reliable (supported by QTL analysis) and 

potentially useful in marker assisted selection. 

L1 L3   L6 L15

 
Figure 6. 2.  Linkage group locations of markers identified in discriminant analysis (DA) 
and by composite interval mapping QTL analysis. The DA identified marker are 
indicated as underlined, QTL identified marker names are represented in bold and the 
markers commonly identified in DA and QTL analyses are represented as bold 
underlined.  L3, L6, L15 and L35 are the linkage groups from S. officinarum whereas S
is from S. spontaneum. The asterix on S3 indicates a segregation distorted marker. 
 
6.5 Conclusions 

Molecular breeding via marker assis

3 

ted selection (MAS) is being used as 

complementary practice in traditional plant breeding methods where improvement of a 

quantitative trait has been difficult or inefficient (Morgante and Salamini, 2003).  In this 

study, we detected several marker-QTL associations for Brix, sucrose and pol using an 

interspecific S. officinarum x S. spontaneum cross.  The important aspect of this study is 
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consistency of QTL detected for Brix and sucrose across different seasons within a crop-

year and across different crop-years.  Such markers (or QTL) have a potential role in 

sugarcane breeding via marker assisted selection.  Another notable aspect of this research 

was the identification of QTLs having a positive effect on sucrose accumulation from the 

wild S. spontaneum and negative QTLs from S. officinarum.  The positive markers f

these Saccharum species would have immediate role in introgression breeding w

would ultimately lead to widening of the sugarcane genetic base.  The potential of

harvesting could only be achieved with the deployment of clones that accumulate 

economic levels of sugar early in the season.  Marker assisted selection can as

endeavor if markers unique to early season accumulation of sucrose were found.  This 

study uncovered a few markers that could serve as a primer for MAS for high, early 

rom 

hich 

 early 

sist in this 

 

lts 

 were either similar or in the vicinity of QTLs implying the potential of 

DA in MAS.  DA also identif

sucrose varieties.  Several SRAP and TRAP markers were also detected affecting the

sugar traits in sugarcane which may have direct application in MAS.  The DA resu

when compared with those from QTL analysis found that a good proportion of the DA-

identified markers

ied several markers that were not linked on the linkage map 

such that they could not be detected by the QTL analysis.  We are currently trying to 

increase the marker density of Saccharum species genetic linkage maps which would 

serve as anchor map for the Louisiana sugarcane breeding program.  
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CHAPTER 7 SUMMARY  

7.1 Evaluation of TRAP Markers 

ased 

olecular marker technique which uses gene-based information for primer design.  

m, Miscanthus, and Erianthus were used in 

sw., S. sinense Roxb., S. spontaneum L., S. robustum Brandes and Jeswiet ex Grassl, 

d 

.  Both the cluster and PCoA analyses placed the Erianthus spp. and 

iscanthus spp genotypes distinctly from each other and from the Saccharum species, 

 

crose and cold tolerant species, S. spontaneum, formed one distinct group while the rest 

f the Saccharum species formed one inter-related cluster with no distinct sub-groups.  

equence analysis of TRAP bands derived from a S. spontaneum genotype revealed 

omology with known gene sequences from other grass species including Sorghum.  A 

LASTn search using the homologous sequences from Sorghum matched with the S. 

fficinarum GenBank accession from which the fixed TRAP primer was designed.  These 

sults ratify TRAP as a potentially useful marker technique for genetic diversity studies 

 sugarcane.   

.2 Comparison of TRAP with AFLP and Coefficient of Parentage 

The choice of crossing par any crop improvement 

enetic diversity among the available parental 

genotyp d 

Target Region Amplification Polymorphism (TRAP) is a fairly new PCR-b

m

Thirty genotypes from the genera Saccharu

the study. Among the genus Saccharum were the species, S. officinarum L., S. barberi 

Je

cultivars, cultivar-derived mutants and interspecific hybrids between S. officinarum an

S. spontaneum

M

thus, supporting their taxonomic classification as separate genera.  Genotypes of the low

su

o

S

h

B

o

re

in

7

ents is the most crucial step in 

program. A better understanding of g

es could help the breeder to make better crosses.  In this study, TRAP, AFLP, an

pedigree data were used to estimate genetic similarity (GS) among nine sugarcane 
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genotypes often used as parents. Twelve TRAP primer combinations produced a total of

444 bands, out of which 242 (55 %) were polymorphic, whereas 28 AFLP primer 

combinations produced a total 1325 bands out of which 686 (53 %) were polymorphic. 

TRAP-based GS estimates ranged from 0.67 to 0.87 with a mean of 0.75, while AFLP-

based estimates ranged from 0.72 to 0.84 with a mean of 0.76. The COP-based GS 

estimates ranged from 0.03 to 0.36 with a mean of 0.12. The dendrograms were 

constructed using the unweighted pair-group method with arithmetic mean (UPGMA). 

Although no distinct pattern was observed in the COP dendrogram, the TRAP 

dendrogram was better explained by the pedigree records. The AFLP dendrogram 

showed some distinct cluster patterns. The associations between TRAP-COP (r = 0.4

and AFLP-COP (r = 0.42) were moderate, whereas the TRAP-AFLP (r = 0.14) 

association was low.  Our results indicate that all the three methods estimate different 

aspects of GS. Therefore, based on the objectives of the research, some combination of 

TRAP, AFLP and COP would be a better choice in making decisions of which parents to 

cross in a crop i

 

1) 

mprovement program.   

es in 

e 

 

s 

7.3 Predicting the Cross Progeny Performance 

Estimating genetic similarity or divergence among parental genotypes in a 

breeding program could not only aids in predicting genetic parameters but also guid

planning crosses for hybrid/cultivar development.  The experimental materials used in 

this study comprised of five families derived from bi-parental crosses involving nin

parents and each family consisted of thirty clones.  All the five families were evaluated in

the field during the years 2004 (plant cane crop) and 2006 (second ratoon crop).  

Phenotypic data for stalk height (SH), stalk count (SC), stalk diameter (SD), cane yield 

(CY) and theoretical recoverable sugars (TRS) were recorded in both years. No data wa
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recorded in 2005 due to hurricanes.  Family means, genetic variances (σ2
g), average

parental heterosis (AMPH), percent heterotic clones per family (PHC) and mid p

(MP) estimates were determined for all the traits combined across both years.  No 

significant differences were observed for family means (combined across two y

however, significant differences were observed for clones within each family.  The

family B (derived from genetically similar and adapted parents) produced high σ

 mid 

arental 

ears), 

 

netically 

 

rved between σ2
g and AMPH and PHC for TRS.  

d between AFLP-GS and most of the 

genetic ere 

, 

y 

2
g for 

most of the traits followed by family D (adapted x adapted cross derived from ge

divergent parents).   From this study, family means seems to be a fair indicator of 

breeding potential of cross as positive correlations were observed with AMPH and PHC

especially for TRS which is an economic trait of interest in sugarcane breeding.  

Likewise, positive correlations were obse

Negative correlations were predominantly observe

 parameters except MP values and on the other hand, positive correlations w

observed in the case of TRAP-GS.  The correlations between f-GS and genetic 

parameters were similar to those observed for TRAP-GS.  It appears each method of 

estimating GS gave reliable information independent of each other, therefore, we 

recommend a combination of two or more measures to accurately predict the genetic 

parameters or for use in designing the crosses. 

7.4 Genetic Linkage Mapping 

Framework genetic linkage maps of two progenitor species of cultivated 

sugarcane, Saccharum officinarum ‘Louisiana Striped’ (2n=80) and S. spontaneum ‘SES 

147B’ (2n=64) were constructed using amplified fragment length polymorphism (AFLP)

sequence related amplified polymorphism (SRAP) and target region amplification 

polymorphism (TRAP) markers.  The mapping population comprised of 100 F  progen1
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derived from the Saccharum interspecific cross.  A total of 344 polymorphic marker

were generated from the female (S. officinarum) parent out of which 247 (72%) were 

single dose (segregating in a 1:1 ratio) and 33 (10%) were double dose (segregating in a 

3.3:1 ratio) markers.  Sixty-four (18%) markers deviated from Mendelian segregat

ratios.  Likewise, in the S. spontaneum genome, out of a total of 306 markers, 221 (72%) 

were single dose and 43 (14%) were double dose markers whereas 42 markers (14

deviated from Mendelian segregation ratios. Linkage maps with Kosambi map distances 

were constructed using a LOD score of > 5.0 and a recombination threshold of 0.45. In 

Saccharum officinarum, 146 markers were linked to form 49 linkage groups (LG) 

spanning 1732 cM whereas in S. spontaneum, 121 markers were linked to form 45 LG 

spanning 1491 cM.  The estimated genome size of S. officinarum ‘Louisiana Striped’ 

2487 cM whereas that of S. spontaneum ‘SES 147B’ was 3232 cM. The genome c

was found to be 69% in S. officinarum and 46% in S. spontaneum.  The S. officinarum

parent ‘Louisiana Striped’ behaved like an auto

s 

ion 

%) 

was 

overed 

 

-allopolyploid whereas S. spontaneum 

utopolyploid.  Although a huge amount of disparity 

appear , which 

 

‘SES 147B’ behaved like a true a

to exist between the two genomes, the existence of simple duplex markers

are heterozygous in both parents and segregate 3:1 in the progeny, in the population tends

to affirm that pairing and recombination can occur between the two genomes.  The study 

also revealed that, compared to AFLP, the SRAP and TRAP markers appear less 

effective as tools for rapidly generating a large number of genome-wide markers for 

linkage mapping.   

7.5 Quantitative Trait Loci (QTL) Analysis  

In this study, we report identification of markers associated with sugar related 

QTLs using a F  population derived from a S. officinarum ‘Louisiana Striped’ x S. 1
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spontaneum ‘SES 147B’ cross. Genetic linkage maps of S. officinarum and S. 

spontaneum were produced using AFLP, SRAP and TRAP marker techniques.  The 

mapping population was evaluated for Brix (B), sucrose (S) and pol (P) at the early (E) 

and late (L) plant growing season in 2004 and 2005 (04EB, 04LB, 04LS, 04LP, 05EB, 

05ES and 05EP). Composite interval mapping (CIM) QTL analysis was performed

identify marker-trait associations for all the seven traits using the PLABQTL software. 

In S. officinarum, combined across all the traits a total of 50 QTLs were observed with 

LOD scores ranging from 2.51 to 7.64.  The phenotypic variation (adjusted R

 to 

 

 

Two 

d 

M0983 on LG S5) in S. spontaneum were repeatedly observed for 

ns and across both years.   The positive 

marker nt 

 the 

lso 

d 

2) explained 

by all QTLs per trait ranged from 15.9% (04LP) to 47.8% (04EB).  In S. spontaneum a 

total of 26 QTLs were observed with LOD scores ranging from 2.69 to 7.51 and the 

phenotypic variation ranging from 6.5% (04LP) to 43.5% (04LB).  Thirty four digenic

interactions (iQTL) were observed in S. officinarum whereas only four were observed in 

S. spontaneum.  Most of the QTLs observed in S. officinarum were positive as expected, 

although a few negative QTLs were also observed.   On the contrary in S. spontaneum, in 

addition to negative QTLs, interestingly several positive QTLs were also found.   

positive marker-QTLs (AF1286 on LG L6 and AF475 on LG L8) in S. officinarum an

one marker-QTL (P

Brix and sucrose both at the early and late seaso

s observed from S. officinarum and S. spontaneum would serve as a starting poi

in marker assisted selection (MAS) to be implemented in introgression breeding and

negative markers could be monitor to purge the deleterious alleles.  Our study a

indicates that SRAP and TRAP markers could potentially be used for QTL tagging an

could be integrated onto already existing linkage maps.  
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In this study we also evaluated the potential of discriminant analysis (DA) to 

identify markers associated with Brix, sucrose and pol in Saccharum species.  The 

mapping population was categorized into three groups (low, medium and high Brix, 

sucrose and pol).  Discriminant analysis (DA) was performed using PROC DISCRIM and 

STEPDISC options of SAS.  The DA-identified the markers associated with all traits 

under study with high levels of correct classification of the population.  A few of the 

identified markers were either similar to those identified by the traditional QTL analysis

or localized to the same genomic regions as identified by QTL analysis in both parents.  

In addition, several markers which were not identified by QTL analysis were identified 

by DA approach.  The results from our study indicate that DA could be used as viable 

approach to identify markers.  
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