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ABSTRACT 
 

Aflatoxin accumulation in corn continues to be a major problem in all southeastern corn 

growing states. Development of resistant inbreds and hybrids is a sustainable approach to reduce 

aflatoxin contamination. Mapping of quantitative trait loci (QTL) for resistance to Aspergillus 

flavus infection and aflatoxin accumulation in maize and developing markers associated with 

them can be helpful to speed up the breeding program. An F2:3 mapping population developed 

from the cross between Mp715 and B73 and a genetic linkage map was constructed using 136 

simple sequence repeat (SSR) markers spanning the whole genome. QTL for aflatoxin resistance 

were identified in both years and were located on chromosomes 3, 4, 5, 8, 9, and 10 with 

contribution ranging from <1.0 to 9.2% individually toward resistance phenotype. A highly 

significant correlation was observed between husk cover and aflatoxin content in both years. A 

few QTL responsible for close husk cover identified in both years overlapped with the QTL 

region for aflatoxin resistance. Therefore, it should be possible to use markers identified in this 

study for selection and improvement of both traits simultaneously through MAB. A suppression 

subtraction hybridization (SSH) library was constructed using tissues from Mp715 and B73 to 

identify the differentially expressed genes in response to Aspergillus flavus. Three hundred genes 

related to various functions were identified from the library. Thirty differentially expressed genes 

were selected to study their expression pattern in seven maize inbreds through RT-PCR and 

showed differential expression at different time points after fungus inoculation. Higher 

expression of pathogenesis related protein-4, leucine rich repeat family protein, RNA binding 

protein, and ubiquitin C-terminal hydrolase in resistant inbreds (Mp715, Mp719, Mp420, and 

Mp313E) was confirmed by real-time qPCR. These genes may be responsible for resistance in 

these resistant inbreds. They were integrated into the linkage map generated in this study through 



 xiii

in silico mapping. The gene encoding PR4, which was highly expressed in resistant germplasm 

was located in bin 4.02 where a QTL for aflatoxin resistance was identified. The genes found in 

the QTL regions and markers linked with them would be helpful to improve resistance to 

aflatoxin accumulation in corn. 
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CHAPTER 1 
INTRODUCTION 

 

Aspergillus flavus is an endemic fungus responsible for aflatoxin accumulation in corn in 

southern states of the USA (Payne 1992; Widstrom 1996; Windham and Williams 1998). 

Aflatoxins are the secondary metabolites produced after the fungal infection and are 

immunosuppressive, carcinogenic, and hepatotoxic to human and domestic animals (Castegnaro 

and McGreogor 1998). The health hazards due to aflatoxin contamination in food have been 

reported for more than 50 years (Burnside et al. 1957). Aflatoxin is also classified as group 1 

carcinogen by International Agency for Research on Cancer (IARC, 1993). Aflatoxin 

contamination has negative impact on the food and feed industries due to the need of more 

resources to ensure safety and quality of food and feed supply. Farmers suffer severe economic 

losses because the US Food and Drug Administration restrict interstate trade of feed grains 

containing more than 20ng/gm aflatoxin (Park and Liang 1993). Huge economic loss is 

associated with aflatoxin contamination in maize, peanut, and other crops which was nearly 500 

million dollars annually in USA (Vardon et al. 2003). Recent studies showed huge loss (163 

millon dollars) to maize farmers due to aflatoxin contamination (Wu 2006). Long term 

consumption of aflatoxin contaminated food has been found to be associated with liver cancer, 

stunted child growth, and depressed immune system (Eaton and Groopman 1993). Its occurrence 

is more prevalent in the tropical and sub-tropical regions and aflatoxin exposure is a health 

hazard worldwide (Strosnider et al. 2006). Human health is endangered by the long term 

exposure to aflatoxin in developing countries, where corn is the staple food (Williams et al. 

2005). Many natural sources of resistance have been identified to reduce the aflatoxin 
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accumulation in corn (Scott and Zummo 1992; Campbell and White 1995; Williams and 

Windham 2001; Robertson-Hoyt et al. 2007). 

Although the health and economic impacts of aflatoxin are well known and established, a 

sustainable and effective management to this problem is yet to be found. Recently, much 

emphasis has been given to the development and utilization of resistant genetic resources in 

breeding programs (Brown et al. 1999; Kang and Moreno 2002). Reducing the fungus infection 

and aflatoxin accumulation in grain could be an effective way to achieve resistance in corn. 

Aflatoxin accumulation begins after the colonization of the fungus in the developing kernels and 

continues till maturity (Thompson et al. 1983). Aflatoxin accumulated in the grain is stable and 

is extremely expensive to destroy during food processing. Thus, aflatoxin accumulation should 

be prevented at the pre-harvest stage. Weather and field conditions greatly influence Aspergillus 

flavus infection and toxin accumulation in corn. High temperature, drought, and low humidity, 

which is prevalent in southeastern United States, are favorable for the fungus infection and 

aflatoxin production (Diener et al. 1987; Payne 1998). Complex genetics and strong genotype-

environment interaction pose major challenges in developing commercial hybrids resistant to A. 

flavus infection (Campbell and White 1995; Hamblin and White 2000). Most of the commercial 

hybrids developed to date lack sufficient field resistance to aflatoxin accumulation (Windham 

and Williams 1999; Abbas et al. 2002). Aflatoxin contamination drastically reduces the value of 

grain not only as feed but also as an export commodity (Nichols 1983). 

 Aflatoxin contamination continues to be a prominent research issue. Multiple strategies 

have been suggested for the reduction of pre-harvest accumulation of aflatoxin. Suitable 

agronomic practices (irrigation, plating dates, and fungicides), bio-control (atoxigenic strains), 

and host plant resistance have been recommended to minimize this problem (Larson 1997; 
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Cleveland et al. 2004). Though cultural practices are effective for the management of aflatoxin 

accumulation, the combination of management strategies with host plant resistance would be the 

most sustainable, economic, and promising approach (Shan and Williams 2014). Breeding 

programs for the development of resistant inbreds was initiated by USDA-ARS at Mississippi 

State in the late 1970s (Williams 2006). Numerous germplasm and breeding lines have been 

developed and evaluated using artificial inoculation techniques for aflatoxin resistance in field 

conditions. These experiments have established the foundation for the development and release 

of new inbred lines with natural resistance to aflatoxin accumulation (Windham and Williams 

1998, 2002; Windham et al. 1999; Williams 2006). Resistant inbreds have been developed 

through consecutive selfing and selection against aflatoxin accumulation in wide range of 

environments. The first resistant inbred line Mp313E was released in1988 (Scott and Zummo 

1988). Subsequently, many corn inbreds (Mp420, Mp715, Mp717, Mp718, and Mp719) with low 

level of aflatoxin accumulation have been released (Williams and Windham 2001, 2006, 2012). 

 Due to low heritability and high G x E interaction, development of resistant inbreds and 

hybrids has been challenging. Artificial inoculation and repeated field evaluation are necessary 

to identify resistant breeding lines (Zummo and Scott 1989). The earlier studies using these 

resistant lines showed that the resistance was quantitative and inherited in an additive fashion in 

hybrids. Most of the resistant lines are agronomically inferior and are not suitable for the 

production of hybrids (Brown et al. 1999). Newer breeding lines with stable resistance to 

aflatoxin in various environments are needed for the development of commercial hybrids. 

However, the resistant inbreds developed to date have originated from tropical germplasm. These 

tropical germplasm are tall, later in maturity, lower yielding, and highly susceptible to lodging 

when grown in the temperate US Corn Belt, which makes them unsuitable for hybrid 
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development. Some of the newest inbreds such as Mp718 and Mp719 have suitable plant stature 

and high resistance to aflatoxin (Mayfield et al. 2012; Williams and Windham 2012). 

The availability of markers and advances in statistical procedures has aided construction 

of highly saturated linkage maps and QTL analysis. Genetic linkage mapping has become a 

regular procedure to study the quantitative traits (Zeng et al. 1999; Doerge 2002). In maize, 

many QTL studies have been conducted in last decades to identify QTL responsible for different 

morphological as well as yield attributes. Grain yield has been studied thoroughly in many 

mapping experiments and has identified a large number of QTL (Grohn et al. 1998; Khairallah et 

al. 1999; Cardinal et al .2001; Sibov et al. 2003; Lima et al. 2006; Li et al. 2007). Other 

morphological and yield related  traits such as plant height, ear height, days to silking ear length, 

ear diameter, number of rows/ear,  number of kernels/row, kernel weight were also studied (Liu 

et al. 2010; Park et al. 2014).  

 Although molecular mapping of QTL have been conducted, studies related to the 

biochemical and molecular basis of A. flavus resistance are limited. Due to the quantitative 

nature of resistance to A flavus, QTL with stable and large phenotypic effects are difficult to 

obtain in maize populations (Warburton et al. 2011). The suppression subtraction hybridization 

(SSH) is a powerful and popular technique to identify differentially expressed genes in closely 

related samples (Rebrikov et al. 2004). Many enzymes (chitinase, glucanase, and phenylanine 

ammonia lyase) are involved in response to R. solani infection in maize (Anuratha et al. 1996; 

Jedidah et al. 2000; Liu et al. 2009). Likewise, pathogenesis related (PR) proteins (e.g. PR10) are 

highly expressed in resistant corn lines in response to A. flavus infection (Chen et al. 2010). This 

indicates that genes involved in disease defense mechanisms are activated during the infection 

process and the differentially expressed genes in the resistant and susceptible varieties could be 
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detected. The identification of the genes and metabolic pathways involved in the resistance 

would be helpful to study the host parasite interaction and aid in development of new resistant 

inbreds and hybrids through marker assisted breeding. 

 Many efficient tools are available for the exact measurement of aflatoxin accumulation in 

corn kernels. Enzyme-linked immunosorbent assays (ELISA) and high performance liquid 

chromatography (HPLC) are most sensitive and expensive. The VICAM AflaTest is a sensitive 

and widely used test but it is expensive and time consuming. Conventional visual assessment 

methods like ear rot percentage are highly error prone. Recently a technique based on 

quantitative PCR ( qPCR) has been developed and used for the rapid quantification of fungal 

biomass in  grain (Mideros et al. 2009). A very strong correlation was observed between 

aflatoxin accumulation and fungal biomass measured by qPCR assay, which was similar to the 

studies using GFP-producing isolates in cotton (Rajasekaran et al. 2008). The qPCR assay was 

used to identify the fungus and to determine the fungal biomass and its correlation to toxins such 

as aflatoxin and deoxynivalenol (Nicolaisen et al. 2009; Demeke et al. 2010; Atoui et al. 2011; 

Horevaj et al. 2011). These newly developed qPCR techniques can provide an efficient method 

to quantify fungal biomass in breeding program for identification of resistant lines (Mideros et 

al. 2009). 

 Introgression of resistant quantitative trait loci (QTL) to susceptible, adapted, and 

agronomically superior lines through marker assisted breeding (MAB) is considered as a 

potentially effective method to improve resistance to aflatoxin accumulation. Mapping studies in 

corn (Paul et al. 2003; Brooks et al. 2005; Bello 2007; Warburton et al. 2009, 2011, 2015; 

Mayfield 2011) have identified many QTL in different chromosomal regions but no consistent 

QTL with large phenotypic effect (>20%) have been identified  to date. However, if QTL with 
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moderately large effect in different environments from different resistant sources could be 

identified, it would be helpful for pyramiding of these QTL through markers closely linked to the 

resistant QTL. It is assumed that the identified QTL from resistant donors will behave 

consistently in different genetic backgrounds. Recently, some stable QTL across multiple 

environments and genetic backgrounds have been identified (Willcox et al. 2013). However, the 

lack of molecular markers linked to resistant QTL in these genotypes is hindering incorporation 

of the resistance into lines with commercially acceptable genetic background. Therefore, this 

dissertation research project was undertaken to understand the genetics of resistance to aflatoxin 

accumulation in corn and the specific objectives are as follows:  

 To identify QTL for resistance to aflatoxin accumulation in maize inbreds. 

 To identify QTL for diverse morphological traits in an F2:3 mapping population of maize. 

 To identify differentially expressed genes in response to A. flavus infection in maize 

using suppression subtraction hybridization (SSH). 
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CHAPTER 2  
LITERATURE REVIEW 

2.1 Aspergillus flavus  
 
 The genus Aspergillus was first reported by P.A. Micheli, a priest and mycologist, in 

1729 AD. The name Aspergillus was given due to the resemblance of its conidiophore to an 

aspergillum, a device used to sprinkle holy water (Bennett and Klich 1992). Aspergillus is a 

diverse genus of fungi and contains more than 200 species (Samson 1992). It has been classified 

many times on the basis of its morphological characteristics. The species Aspergillus flavus was 

described  as an asexual species that produces only asexual spores (conidia) and overwintering 

fruiting bodies called sclerotia (Amaike and Keller 2011). Aspergillus flavus is a widely 

distributed soil borne opportunistic fungus, which spends most of the time as a saprophyte in the 

soil (Scheidegger and Payne 2003). It can cause diseases in maize, cotton, peanut, humans, and 

domestic animals. In maize, it is the cause of ear rot disease, which is most prevalent in warm 

and dry environments. It produces a polyketide-derived mutagenic and extremely carcinogenic 

secondary metabolite known as aflatoxin along with other compounds such as cyclopiazonic acid 

and aflatrem (Zhang et al. 2004; Georgianna et al. 2010). The first recorded outbreak of a disease 

due to A. flavus was Turkey X disease in poultry in England, which was due to the consumption 

of aflatoxin contaminated feed (Forgacs and Carll 1962). Inhalation and/or consumption of a 

high amount of aflatoxin for long periods of time cause aflatoxicosis in both humans and 

domestic animals. It is a serious health threat in the developing countries of Africa and Asia. 

Many people died in Kenya due to the consumption of aflatoxin contaminated corn (Lewis et al. 

2005; Yu et al. 2008). Aflatoxicosis also caused death in dogs in USA due to the contamination 

of dog food with A. flavus in 1998 and 2005-2006 (Garland and Reagor 2001; Stennske et al. 

2006). Aflatoxin is accumulated in the kernels of maize and aflatoxin B1 is the most potent 
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carcinogen found in nature. Long-term exposure to aflatoxin can cause liver cancer resulting in 

cirrhosis in humans. Aflatoxin accumulation has been a major problem in corn production in 

southeastern states and recently in mid-western states, when drought prevails during the grain 

filling stage (Anderson et al. 1975; Zuber et al. 1976). Hot and dry period at grain filling stage is 

conducive for high aflatoxin production and accumulation (Pyane 1992). Different species of 

Aspergillus attack many crops and they vary widely in their potential to infect and accumulate 

aflatoxin. A. flavus strain NRRL 3357 is widely used for field evaluation due to its ability to 

produce a high level of aflatoxin in maize grains (Windham and Williams 1998). 

2.1.1 Disease cycle and epidemiology 

 
 Aspergillus flavus is an opportunistic fungus, which attacks different agricultural crops 

like corn, peanut, tree nuts and cotton. The fungus resides in soil as conidia and sclerotia which 

germinate to form mycelia which grow saprophytically. Conidia are carried by wind or insects to 

host tissues where they germinate and infect (Amaike and Keller 2011). Although it is 

distributed over the diverse climatic zones, it is mainly concentrated in warm and dry region 

between the tropics (Klich 2007). The fungus produces sclerotia that can survive in extreme 

environmental condition in soil. This is the main reason for the higher population of this fungus 

in hot and drought conditions (Wicklow et al. 1993; Payne 1998). The conidia are dispersed 

through air and infect above-ground crops such as corn and tree nuts. Likewise, conidia cause 

infection in peanut and cotton seed (Horn and Pitt 1997; Cotty 2001). In corn, the fungus infects 

silk and kernels. Kernels are most susceptible during milk to dough stages. Infection and 

colonization of the fungus is higher not only in hot and dry weather but also in insect and bird 

damaged ears, which provides easy access for the fungus to infect host tissues. Increased 

infection in corn was observed due to the attack of corn borer and silk-feeding beetles (Horn and 
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Pitt 1997; Payne 1998). Although aflatoxin contamination starts in the field (pre-harvest), it is 

more problematic during post-harvest condition due to high moisture, improper storage 

condition, and insect attack (Cotty 1997). The outbreak of the disease in Kenya was primarily 

associated with the post-harvest contamination (Stenske et al. 2006).   

2.1.2 Genomics and regulation of secondary metabolism in Aspergillus flavus 

 
 The discovery and analysis of parasexual cycle in A. flavus provided the way for the 

identification of linkage groups, gene order, and centromere location (Scheidegger and Payne 

2003). Classical genetic studies identified more than 30 genes in 8 linkage groups and all the loci 

involved in aflatoxin biosynthesis were recessive except afl-1. The absence of crossing over 

between these loci suggested the clustering of aflatoxin synthesis genes in the genome 

(Scheideger and Payne 2003). The whole genome of A. flavus has been sequenced and released 

by the J. Craig Venter Institute (www.aspergillusflavus.org, NCBI). The genome size of A. 

flavus is about 37Mb with eight chromosomes and 12,000 functional genes (Chang et al. 2010; 

Payne et al. 2006).  

 Secondary metabolites are complex compounds biosynthetically derived from primary 

metabolites which are not essential for the normal growth, development, and reproduction of 

host plant. These compounds are diverse in nature having beneficial antibiotic as well as potent 

carcinogenic and immunosuppressant activities (Yu and Keller 2005). The secondary metabolite 

producing genes are generally clustered in the genome and many enzymatic genes and 

transcriptional factors are responsible for the production of single secondary metabolite synthesis 

(Hoffmeister and Keller 2007; Turner 2010). Aflatoxins are polyketide synthase-derived toxins 

synthesized in large gene cluster through complex metabolic process, which is located near the 

telomere of chromosome 3 of A. flavus (Amaike and Keller 2011). Around 21 genes were known 
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to encode biosynthetic enzymes such as fatty acid synthase, polyketide synthase, 

monooxygenease, reductase, dehydrogenase, methyltransferase, esterase, an oxidase, and an 

esterase. A binuclear zinc cluster, aflR, is found responsible for the regulation of the transcription 

of the aflatoxin biosynthetic genes. Overexpression of aflR increases the aflatoxin production 

and upregulates other genes in aflatoxin biosynthesis gene cluster. Bio-synthesis of secondary 

metabolites is responsive to external environmental conditions like carbon and nitrogen source, 

temperature, light, and pH (Yu and Keller 2005). They are regulated by Cys2 His2 zinc finger 

protein and gene expression on aflatoxin biosynthesis clusters are altered by this transcription 

factor, which is dependent on the medium /environment like carbon/nitrogen source.  

2.2 Factors affecting A. flavus infection and aflatoxin accumulation 
 
 Different biotic and abiotic factors influence A. flavus infection and subsequent 

accumulation of aflatoxin in corn. The infection of fungus and accumulation of the toxin is high 

in maize crops grown under dry conditions (Dienner et al. 1987; Payne 1998). The aflatoxin 

accumulation in preharvest grain is prevalent when the crop is exposed to disease development 

by heat, drought, insect damage, and other stresses. Drought tolerant varieties produce lower 

amount of aflatoxin compared to resistant control. In addition to this, gene expression studies in 

response to biotic and abiotic stresses revealed that disease resistance related genes are 

upregulated by stress and vice versa (Chen et al. 2004). Development of varieties and hybrids 

with resistance to disease, insects, and environmental stresses could be the most economical and 

sustainable means for minimizing the A. flavus infection and aflatoxin accumulation (Lillehoj et 

al. 1978; Jones and Duncan 1981; Widstorm 1996; Payne 1992). 

 Kernel (physical barrier, wax, and cutin layer) and endosperm (proteins) characteristics 

are also important for the resistance to A. flavus infection and aflatoxin production. Wax, cutin 
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layer, and different proteins inside the grain are important for resistance (Chen et al. 2002). 

Kernel pericarp wax in GT-MAS:gk was found to be associated with the resistance to A. flavus 

infection and aflatoxin production. It showed a unique band during chromatography analysis as 

compared with susceptible lines. The whole wax showed higher amount of phenol-like 

compounds in resistant genotypes that suppresses the in-vitro growth of A. flavus (Guo et al. 

1995; Gembeh et al. 2001). The differences in kernel proteins were found between resistant and 

susceptible germplasm. Two proteins of 28 kDa and 100 kDA found in resistant inbred Tex6 

inhibited the fungus growth and subsequent aflatoxin accumulation. Likewise, trypsin inhibitors 

were highly expressed in resistant germplasm and less expressed or absent in susceptible 

germplasm. These types of resistant proteins could be used as markers by plant breeders for the 

development of resistant inbreds through genetic engineering (Chen et al. 1998, 1999).  

 Insect damage to ear and silk facilitates the infection of fungus. Aflatoxin accumulation 

increased significantly when southwestern corn borer was applied in the ear of susceptible lines 

(Williams et al. 2002). High thrips population and dry condition after pollination showed 

increased fungal infection and aflatoxin accumulation (Munkvold 2003a; Battilani et al. 2008; 

Parson and Munkvold 2010). The silks and wounds caused by insects are the primary infection 

site for the airborne conidia where they colonize and infect the developing kernels (Munkvold 

2003a; Duncan and Howard 2010). Bt-hybrids showed low aflatoxin accumulation due to the 

resistance to borer. Early planting of the hybrids resistant to both borer and fungus can be useful 

to reduce aflatoxin accumulation in the region where it is endemic especially in southern states 

(Parson and Munkvold 2010).   
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2.3 Quantification of fungal biomass and toxins 
 
 The aflatoxin accumulated in the corn grain is generally used to measure the resistance of 

the germplasm. It is determined by immunocapture aflatoxin determination (VICAM AflaTest). 

This is very sensitive and widely used method for aflatoxin determination (Windham and 

Williams 1998). 

 qPCR assays have been developed to estimate fungal biomass in maize and other crops 

(Mideros et al. 2009; Nicolaisen et al. 2009; Horevaj et al. 2011). These assays are relatively 

fast, economical, and can be applied to large number of genotypes. The results showed high 

positive correlation between fungal biomass and aflatoxin concentration in the maize kernels. 

These studies suggested that fungal biomass estimated by qPCR can be used to infer the 

concentration of aflatoxin (Mideros et al. 2009). The real-time q-PCR assays were successfully 

used to quantify the fungal biomass (Fusarium and Aspergillus sp), which corresponded well to 

the mycotoxin data from the field in cereals (Nicolaisen et al. 2009; Demeke et al. 2010; Horevaj 

et al. 2011; Atoui et al. 2012). Near infrared reflectance spectroscopy (NIRS) was found to be 

highly accurate and faster in detecting the infection and identification of the fungus species in 

maize kernels (Tallada et al. 2011). 

2.4 Gene expression and proteomic studies 
 
 Several gene expression and proteomic studies have been conducted recently to study the 

differentially expressed genes in response to A. flavus infection. Several candidate genes and 

resistance proteins were identified on the basis of differential expression. These studies identified 

differentially expressed proteins in resistant versus susceptible germplasm (Guo et al. 1995; 

Huang et al. 1997; Chen et al. 2002; Kelly et al. 2009; Pechanova et al. 2011; Kelly et al. 2012). 
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 Validation of these identified proteins in resistant germplasm has been done on gene-by-

gene basis. Resistance related candidate genes like chloroplast precursor, trypsin inhibitor, and 

chitinase gene family have been validated (Warburton et al. 2012; Mylroie et al. 2013). 

Likewise, transgenic and mutant lines were also used for the study and validation of the genes 

like trypsin inhibitors, PR10, and lipoxygenase (Christensen et al. 2013). The higher expressions 

of some enzymes in infected corn kernels like aldolase reductase (Guo et al. 1995), pericarp wax 

component (Gembech et al. 2001), and peroxiredoxin (PER1) were associated with the lower 

aflatoxin accumulation (Chen et al. 2006). 

 Stress related genes were also found associated with aflatoxin accumulation. Study of 94 

resistant related genes in 9 different germplasm showed differential expression pattern of the 

genes (Jiang et al. 2011). The germplasm were clustered in two groups with resistant germplasm 

highly expressed stress related genes. In contrast, susceptible germplasm had lower expression 

but higher aflatoxin accumulation. Heat shock protein 21, protein kinase, mitogen activated 

protein kinase (MAP- kinase), gluatathione reductase, and leucine-rich repeat proteins (LRR-

protein), which are related to stress and disease resistance, were highly expressed in resistant 

germplasm (Jiang et al. 2011). The resistant inbred (MP313E) exhibited significantly higher 

expression of resistance genes, selected from microarray study and validated by qPCR, as 

compared to susceptible parent. Among these genes, seven were found in the QTL regions 

identified by various studies. RNA regulators, molecular chaperones, and detoxification proteins 

were highly expressed in the resistant parent (Kelly et al. 2012: Shan and Williams 2014). 

 Many proteomic studies showed higher expression of pathogenesis related proteins (PR 

protein) in resistant varieties compared to susceptible ones. Pathogenesis related protein (PR10) 

expressed five times higher 7-22 days after pollination (DAP) upon infection by A. flavus in 
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resistant varieties (Chen et al. 2006). Many proteins involved in cellular metabolism, 

transportation, and related to response were expressed in the developing cob in the resistant 

cultivars (Pechanova et al. 2010). Pathogenesis related proteins were generally expressed after 

biotic stress. Differential expression of many proteins during different growth periods showed 

that resistant inbreds depend on constitutive defenses and susceptible inbreds were dependent on 

inducible defenses (Pechanova et al. 2011). 

 Microarray study between resistant (Mp313E) and susceptible (Va35) inbreds (48 hrs 

after inoculation) revealed that 112 genes were up regulated in resistant lines (Kelly et al. 2009). 

These expressed genes can be useful for the development of molecular markers to understand 

this complex interaction and introgression of resistance to hybrids. Higher accumulation of the 

toxin in susceptible varieties was due to the early initiation of the aflatoxin and increased fungal 

activities after infection. The activities of fungus were reduced drastically in resistant lines 

(Mp313E) 7 days after inoculation. The gene expression study showed that aflatoxin production 

was initiated earlier in susceptible genotypes (Va35) compared to resistant genotypes (Ankala et 

al. 2011). Genome wide expression study involving the resistant and susceptible maize inbred 

lines with and without A. flavus inoculation revealed eight highly expressed genes that were 

mapped to previously identified QTL regions (Kelly et al. 2012). 

 The role of PR10 in aflatoxin resistance was shown by RNAi gene silencing technology 

(Chen et al. 2010). RNAi-silenced mature kernels produced significant increase in aflatoxin 

concentration compared to non-silenced control. Proteomic analysis showed significant reduction 

in PR10 protein in silenced kernel compared to control. The negative correlation between PR10 

and kernel aflatoxin indicated the major role of PR10 in aflatoxin resistance. 
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2.5 Fungus inoculation techniques and efficiency 
 
 Different artificial inoculation techniques have been developed and used to evaluate the 

maize germplasm for resistance to A. flavus (Windham and Williams 2012). Artificial 

inoculation is slow and expensive but widely used due to its reliability as compared to visual 

screening (percentage ear rot), which is easier but not highly correlated with toxin in the grain 

(Windham and Williams 1998). These can be broadly classified as non-wounding and wounding 

methods. Non-wounding methods are easier and similar to natural infection process and useful to 

identify the resistant germplasm due to tight husk cover, kernel characteristics like wax or thick 

pericarp. However, wounding techniques are more efficient and consistent in infection and 

subsequent accumulation of the toxin (Windham and Williams 2007). Field evaluation of hybrids 

developed from resistant and susceptible inbreds showed that wounding methods (side-needle 

and modified-pinbar) produced significantly higher levels of infection and aflatoxin 

accumulation in susceptible hybrids than non-wounding techniques (spray) in both years. 

Likewise, pathogenicity and virulence of A. niger was higher when conidia were applied inside 

the husk of the ears by wounding (Windham and Williams 2012). 

2.6 Genetic variation for resistance to aflatoxin accumulation 
 
 The amount of aflatoxin accumulated in the grain is the most common way to measure 

the resistance in corn (Windham and Williams 1998). Many resistant inbred lines such as 

Mp313E, and Mp717, with suitable agronomic characteristics have been released (Williams and 

Windham 2001, 2006). Their performance as inbred lines and in crosses showed higher level of 

resistance against aflatoxin accumulation and can be used in hybrid development. Mp716 

exhibited lower aflatoxin accumulation because of its resistance against southwestern corn borer 

(Williams et al. 2003). Tex6 is an unreleased line with considerable resistance to aflatoxin and 
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the resistance was associated with additive genetic effect in crosses with B73 and Mo17 

(Hamblin and White 2000). 

 Recently two resistant inbreds Mp718 and Mp719 were developed and released by 

USDA-ARS, Mississippi State (Williams and Windham 2012). Both lines are 2 week earlier than 

Mp715 in mid-silking and found similar with respect to aflatoxin accumulation. Aflatoxin 

accumulation was significantly lower in hybrids between these resistant and other susceptible 

lines (Williams and Windham 2012). Resistant inbred lines (Mp313E and Mo18) exhibited 

excellent general combining ability for reducing the aflatoxin accumulation when crossed with 

other inbreds. These results suggest that these resistant inbred lines can be useful for 

development of resistant hybrids (Gardner et al. 2007; Williams et al. 2011). 

2.7 QTL mapping for resistance to aflatoxin 
 
 The variations in phenotypes can be explained by combined action of many genes with 

small effects or polygenes, which are largely influenced by environmental factors. Therefore, the 

breeding for the quantitative traits is a difficult, time consuming and labor-intensive process (Xu 

2012). Molecular markers have revolutionized the modern breeding program in plants and 

animals. The detection of quantitative trait loci (QTL) for complex traits and their utility through 

marker-assisted selection is the major function of molecular markers. There are many 

developments and improvement in analysis and software package since the first article on QTL 

mapping was published. The effect and location of the genes responsible for the quantitative 

traits are determined by marker based genetic analysis (Xu 2012). 

 The basic concept was presented by Sax more than 70 years ago (Sax 1923). The QTL 

mapping became more interesting and important when the mapping studies in corn and tomato 

identified some markers with large phenotypic variance for the complex characters (Tanksley 
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1993). As a consequence of this, numerous studies have been conducted for mapping and 

identification of QTL for quantitative traits such as yield, starch and oil content, quality, 

maturity, resistance to biotic and abiotic stress in corn and many other crop species (Lee 1995). 

These identified QTL or chromosome regions can be utilized for the improvement of the 

characters of interest through marker assisted breeding. Marker assisted breeding (MAB) is very 

efficient in pyramiding of the genes and speeding up the variety development process. Different 

kinds of molecular markers (RFLP, RAPD, AFLP, and SSR) are available for mapping QTL in 

different crop species. The SSR markers are widely used for mapping the QTL for resistance to 

aflatoxin accumulation (Paul et al. 2003; Brooks et al. 2005; Warburton et al. 2009, 2011). QTL 

mapping or Linkage disequilibrium mapping has become a standard procedure to study the 

quantitative traits as it helps to identify QTL number, position, and genetic effect (Zeng et al. 

1999; Doerge 2002). 

 The QTL for complex quantitative characters like insect resistance were mapped in corn. 

Three QTL resistant to corn borer are found in chromosomes 1, 3, and 8 (bins 1.02, 3.05, and 

8.05, respectively) that explained more than 75% of the genotypic variance in an RIL mapping 

population (Ordas et al. 2010). Meta- analysis of QTL for the resistance to three major ear rot in 

corn showed 29 meta QTL in chromosome 1 to 8. Among them, six MQTLs located in 

chromosome 3 and 4 can be utilized for improving resistance through MAS. It revealed that 

resistance QTLs were clustered in same chromosome (Xiang et al. 2010). Mapping population 

developed from Mp313E and Va35 exhibited a major QTL resistant to aflatoxin on the long arm 

of chromosome 4 of Mp313E (Davis et al. 1999). Both parental sources contributed to lowering 

aflatoxin accumulation. Some QTL associated with the lower accumulation of the aflatoxin in 

corn were identified and mapped in a BC1S1 population [(Tex 6 x B73) x B73] and Tex6 x B73 
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F2:3 populations. Composite interval mapping with multiple regressions showed many markers 

associated with lower aflatoxin production and identified QTL on chromosome 5 in backcross 

population and on chromosomes 3, 4, and 10 in F2:3 populations (Paul et al. 2003). These 

independent studies indicated consistency in resistant QTL locations on the same location of the 

chromosome 4.  

 Mapping new sources resistance to the aflatoxin accumulation in corn was carried out in 

different mapping population in recent years. Till now no QTL with major effect (> 20%) has 

been identified. Same QTL were not identified in different years and locations within the same 

mapping population. Identification of QTL with large and consistent phenotypic effect has been 

a consistent challenge for corn breeders (Paul et al. 2003; Brooks et al. 2005; Robertson-Hoyt et 

al. 2007; Warburton et al. 2009, 2011). In F2:3 mapping population of Mp715x T173, QTL with 

large phenotypic effects were identified in different years on chromosomes 1, 3, 5, and 10 and 

QTL with minor effects were detected on chromosomes 4 and 9. The individual QTL with 

largest effect explained about 18.5% phenotypic variance and multiple QTL model explains up 

to 45.7% of the phenotypic variation. Some previously identified QTL (Paul et al. 2003; Brooks 

et al. 2005) were found on the same chromosome and location in this experiment (Warburton et 

al. 2011). Paul et al. (2003) found that marker bnlg1666 was associated with lower accumulation 

of aflatoxin. The mapping study involving Mp313E identified a QTL( alf3 ) associated with the 

marker bnlg371 located on chromosome 2, which contributed up to 18% of the phenotypic 

variation (Brooks et al. 2005) and the marker bnlg2291 linked with the locus alf5 explained 8 to 

18 % phenotypic variance. 

 Mapping population derived from Mp717 x NC300 identified many QTL on all 

chromosomes except 4, 6, and 9. Both parents contributed to resistance to aflatoxin accumulation 
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and no major QTL were detected. Mp717 could be a novel source of aflatoxin resistance because 

many loci were distinct from the previously mapped QTL (Warburton et al. 2009). Some QTLs 

are consistently identified using recombinant inbred lines (RILs) and near-isogenic lines (NILs). 

QTL in chromosome 4 (4.08 and 4.09), 8 (8.02 and 8.03) and 10 (10.06 and 10.07) were 

identified in RIL population developed from B73 x CML322. The resistance QTL in 

chromosome 4 (4.08) was confirmed using NILs. The QTL in chromosome 4 were also 

identified in different mapping experiments and largest QTL identified in 4.08 can be a good 

candidate for further study (Mideros et al. 2014). In addition to these chromosomal regions, a 

major QTL was identified on chromosome 5 and expressed stably in different environments 

using an RIL population. This QTL was identified in the narrow region of chromosome (59.7-

63.6 cM) in different locations and could be suitable for the further mapping and breeding 

purposes (Yin et al. 2014). The inconsistency and small phenotypic variance explained by the 

QTL for aflatoxin accumulation hinder their utilization in crop breeding program. It requires 

identification and utilization of multiple QTL identified for specific environment. But the marker 

assisted selection in combination with phenotypic selection should be more efficient and 

effective for improving the quantitative traits like aflatoxin accumulation and resistance 

(Warburton et al. 2011). 

 The identification of QTL with additive effects in different environments shows the 

possibility of the development of markers and pyramiding of these QTL for the introgression and 

development of stable resistant source (Willcox et al. 2013). Till now, mapping studies are 

conducted on different resistance sources with the assumption that these QTL behave similarly in 

different genetic backgrounds. So the study of resistance using same resistance source using 

different susceptible varieties are necessary to study the behavior of QTL in different genetic 
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backgrounds and stability. Recent study involving Mp313E with susceptible parent (Va35) and 

comparison of QTL with different susceptible parents identified QTL in the same chromosomal 

regions. Willcox et al. (2013) recently identified five QTL in same genetic locations using 

Mp313E as resistant source in different genetic backgrounds. This shows the stability of QTL 

from resistance sources in different backgrounds and the possibility of utilization of these QTL 

in future breeding programs through marker-assisted breeding. The identification of stable QTL 

in different environment and diverse genetic backgrounds are extremely useful for the 

improvement of the quantitative traits like aflatoxin accumulation. 

2.8 QTL mapping for other morphological traits 
 

Various studies has been conducted in recent decade to identify QTL responsible for 

different morphological as well as yield attributes in corn using diverse mapping populations. 

Large number of QTL has been identified for the grain yield (Grohn et al. 1998; Khairallah et al. 

1999; Cardinal et al .2001; Sibov et al. 2003; Lima et al. 2006; Li et al. 2007). Other 

morphological and yield related  traits such as plant height, ear height, days to silking, ear length, 

ear diameter, number of rows/ear,  number of kernels/row, kernel weight were also studied in 

above mentioned as well as in other recent studies (Liu et al. 2010; Park et al. 2014). The genetic 

correlation among these traits was also observed in these studies indicating clustering of QTL for 

various traits on some genomic regions.  

2.9 Climate change impacts on aflatoxin infection and contamination 
 
 The climatic condition during maturity and harvest highly determines the aflatoxin 

contamination in corn. Hot and dry spells during grains filling stage are favorable for A. flavus 

infection. The change in weather patterns may result to acute aflatoxicosis in hot and arid regions 

(Cotty and Jamie- Garcia 2007). Contamination with aflatoxin in corn occurs in both preharvest 
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(development phase) and post-harvest phase and the effect of weather on infection and toxin 

accumulation is different in these two phase (Cotty 2001). The growing crop is usually resistant 

to A. flavus infections unless the climatic condition favors fungus growth. The climatic condition 

affects the host conditions and crops can be highly contaminated (Cotty and Lee 1990; Doster 

and Michailides 1999). Crop damage due to hails and wounds by mammals, insects, and birds 

increases the chances of infection and aflatoxin contamination and specific crop/insect 

combination were found to have relationship to aflatoxin contamination. Corn borer in maize and 

pink bollworm in cotton are some example of this relationship and their survival between 

cropping season, dispersal, and crop infestation is largely dependent on climatic condition 

(Russel et al. 1976; Sommer et al. 1986; Williams et al. 2002). The changes in weather pattern 

influences the crop management, crop rotations, and harvesting. Heavy rainfall during harvesting 

and delaying in drying of grains provide favorable environment for fungus infection and toxin 

production. They are predominantly found in warm region and changes in climatic condition 

results in higher fluctuation in crop infection and toxin contamination (Shearer et al. 1992; Bock 

et al. 2004). The toxin producing capacity differs with geographical regions but A. flavus is very 

complex as different isolates from the same field can produce different amount of aflatoxin. As it 

is the most important causal agent in corn, it is very difficult to predict the effect of climate 

change on its ability of toxin production (Joffe 1969; Cotty 1997). The endemic occurrence of 

the fungus along with erratic weather pattern has further increases the possibility of higher 

infection and toxin contamination in crop and may restrict the corn growing area (Cotty and 

Jamie-Garcia 2007). The recent occurrence of lethal aflatoxicosis in Kenya is the example of the 

influence of climate change on aflatoxin infection and contamination (Lewis et al. 2005). As it is 

not possible to predict the climatic condition and its subsequent impact on aflatoxin production, 
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the use of adaptive, early maturing and resistant varieties, cultural practices, proper harvesting, 

storage, and changes in cropping patterns may be the suitable and sustainable way to cope with 

this perennial problems. 

2.10. Morphological traits indirectly associated with aflatoxin resistance  
 
 Many morphological traits related to ear were known to have some relationship with A. 

flavus infection and aflatoxin accumulation in grain. Air, rain, and insects are the main vectors 

for the dispersal of fungus spores to target host tissues. In corn, fungal spores are carried to silk 

and ears through air and insect vectors. So, insect resistance is considered as an alternative for 

reducing the infection and aflatoxin accumulation (Warburton and Williams 2014). Higher 

accumulation of aflatoxin occurs in insect damaged ears as it provides the entry point for the 

establishment and colonization of fungus (Widstrom 1979; McMillian et al. 1980; Setamou et al. 

1998; Windham and Williams 1999; Widstrom et al. 2003; Williams et al. 2005). These results 

showed the possibility of reducing the aflatoxin accumulation through development of insect 

resistant lines by conventional breeding methods (Warburton and Williams 2014). However, 

transgenic efforts to reduce aflatoxin accumulation through incorporation of Bt genes for insect 

resistance has not been very successful (Odvody and Chilcut 2002; Williams et al. 2002). Traits 

like husk tightness, kernel hardness, and non-upright ears are also linked to the reduction of 

aflatoxin resistance (Odvody et al. 1997; Betrán and Isakeit 2004). The tight husk prevents the 

easy entrance of fungus to the developing kernels through silk. Non-erect ears with tight husk not 

only restrict the fungus entry but also restrain the entry of rain in the maturing ears. It helps to 

keep the ears dry during growth and maturity period making it less conducible for fungus 

infection and colonization (Lillehoj et al. 1983; Barry et al. 1986). Germplasm with harder 

kernels and drought resistance also exhibited significantly lower amount of aflatoxin (Guo et al. 
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2008). Early maturity is also useful for reducing aflatoxin accumulation but it depends on the 

location and weather of the growing locations (Moreno and Kang 1999; Mideros et al. 2012). 

Resistance to insect and drought are highly effective for reducing the A. flavus infection than 

other traits. Manipulation of these morphological traits should be considered as auxillary 

approach for the development of sustainable resistance to aflatoxin contamination and 

accumulation (Warburton and Williams 2014). Flowering time was strongly correlated to 

aflatoxin accumulations; early flowering hybrids accumulated more aflatoxins because most of 

them are short and open husk types to ensure maturity in short time frame (Betrán et al. 2004). 

2.11 Management of aflatoxin accumulation 

2.11.1 Pre-harvest Management 

The cultural practices for the reduction of A. flavus infection and aflatoxin accumulation are 

related to the disease epidemiology and disease cycle. The efficient way to achieve this is to alter 

the production environment, which favors the crop growth and suppress the fungal infections. 

The most commonly used strategies are tillage, fertilizer application, plant population 

management, crop rotation, planting date, and irrigation. As sclerotia of the fungi survive on crop 

residues and soils, crop rotation and residue management has been investigated as strategies for 

the disease management. The tillage and crop residue management were shown to have positive 

effect on reducing the infection but the results are not consistent and convincing. 

 Aflatoxin contamination in corn depends on host susceptibility, environmental 

conditions, activity of vectors like corn borer, and aphid. Early planting in temperate areas can 

significantly reduce the risk of A. flavus infection. Early planting with adequate irrigation lowers 

infection and aflatoxin accumulation as drought stress is known to increase the incidence of 

disease (Munkvold 2003b). Nutrient and weed stresses are also found responsible for the 
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increased level of infection and application of higher amount of nitrogenous fertilizer 

significantly reduced the aflatoxin accumulation.  

2.11.2 Postharvest management   

 
 Although A. flavus infection starts in the field before harvesting, appropriate time of 

harvesting and postharvest activities are also equally important for the management of aflatoxin 

accumulation. Earlier harvesting reduced aflatoxin accumulation (Jones and Duncan 1981). 

Keeping the crops in the field for longer time increases the probability of fungus infection as it 

dry slowly and insect damage may occur in the field. Higher moisture along with insect damage 

favors the growth and development of fungus. Close monitoring of environmental/weather 

condition as well as field condition (insect damage and infection rate) are extremely important. If 

there is less infection and insect damage, then the crop can be allowed to dry in the field to 

reduce moisture level in desirable range. The physical damage during harvesting and 

transportation also result in infection and subsequent aflatoxin accumulation (Munkvold 2003b). 

 The reduction of moisture content in grain after harvesting can significantly reduce the 

infection by fungus. The process is highly successful and effective at 4o-15oC and low relative 

humidity. Highly infected crop with higher moisture content should be dried as quickly as 

possible to reduce the risk of infection and growth of fungus during storage (Wilcke and Morey 

1995). 

 Fungus development can take place during storage of the grains due to moisture 

variability inside the grains and outer environment. The storage and postharvest handling 

procedures are important for the management of fungus infection. Open structures are generally 

used for the storage of the grains in developing countries where moisture and temperature of the 

grains cannot be controlled. The fluctuation in grain moisture and insect attack during storage in 
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the developing countries due to improper storage conditions are the major cause for toxin 

accumulation (Hell et al. 2000). Cleaning of storage facility and structures are also equally 

important before grain storage. Storage temperature is the most important factor for the 

management of fungus infection. Storage of grains between 1-4oC is highly effective as the 

fungal activity is extremely low at this temperature. Close monitoring is necessary to reduce the 

infection during storage as moisture conditions inside the stored grains are unpredictable 

(Munkvold 2003a, b). 

2.11.3 Biological control of A. flavus infection 

 
 The utilization of nontoxigenic strain of A. flavus has been emerging as a means of 

sustainable management strategy to reduce aflatoxin accumulation. The competition, exclusion, 

or inhibition between the toxic and atoxigenic strains for nutrients is the main idea behind this 

approach (Amaike and Keller 2005). The successful application of these biocontrol agents has 

been demonstrated in corn, peanuts (Abbas et al. 2006; Dorner 2010), and cotton (Cotty and Lee 

1990). Since then, many experiments were conducted in large scale to demonstrate the 

commercial utilization of atoxigenic strain for the disease management (Cotty and Bayman 1993; 

Cotty and Bhatnagar 1994). Currently, two commercial biological control agents using 

atoxigenic strains are registered by US Environmental protection Agency. Afla-guard is 

recommended for the use in corn and peanuts and produced by Syngenta, whereas AF36 

(Arizona Cotton Research and Protection Council, Phonenix, AZ) is recommended for cotton 

(Dorner 2010). Both strains lack some genes in aflatoxin biosynthesis gene clusters so that they 

are not capable of producing aflatoxin after host infection.  
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CHAPTER 3 
MATERIALS AND METHODS 

 

3.1. Molecular mapping of QTLs for resistance to aflatoxin accumulation and agronomic 
traits 

3.1.1 Selection of parents 

 
Two genetically diverse parents, B73 and Mp715, were selected for the development of a 

mapping population. B73 is the most popular inbred used as parent for the production of 

commercial hybrids (Darrah and Zuber 1986). It has many desirable agronomic characteristics 

such as early maturity, short height, and wide adaptability. It has yellow kernels and red cobs. It 

is highly susceptible to A. flavus (Campbell et al. 1993; Campbell and White 1995; Naidoo et al. 

2002) and its genome sequence is publicly available (www.maizegdb.org). Mp715 is an aflatoxin 

resistant germplasm released by USDA-ARS and the Mississippi Agricultural and Forestry 

Experiment Station in 1999. It was developed from Tuxpan by continued selfing for eight 

generations and selecting for lower aflatoxin accumulation in ears with artificial inoculation 

techniques. It is tall and late in maturity compared to B73. It has yellow kernels and white cobs. 

The lodging problem caused by weak root system of this inbred, has limited its use in breeding 

program (Williams and Windham 2001). 

3.1.2 Development of mapping population 

 
An F2:3 population was used for the mapping of quantitative trait loci (QTL). Hybrids 

from the cross (B73 x MP715) were self -pollinated to produce F2 population. Each F2 plant was 

self-pollinated to produce enough F3 seeds for field evaluation. A total of 235 F2:3 families were 

used in the replicated field trials to evaluate A. flavus infection and aflatoxin accumulation. 

 The field experiment was conducted in Randomized Complete Block Design (RCBD) 

with three replications in the summer of 2013 and 2014 at the Louisiana State University 
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AgCenter Central Research Station in Baton Rouge, LA (30o20’51” N, 91o10’14” W). The 

plantings were done in the second week of April in both years. The parents and 235 F2:3 lines 

were planted in single row of 5.0 m long in each replication. The plant to plant distance was 

maintained at 25 cm after final thinning. Twenty plants/family were finally maintained. 

Individual lines were randomly distributed within the replication. Weeding was done regularly to 

keep the field clean and to reduce the weed-crop competition for nutrition and other inputs. 

Standard crop management practices were followed to maximize the growth and yield of the 

crop. Fertilization and frequent irrigation were provided depending on the requirement of the 

crop and weather conditions. 

3.1.3 Preparation of the fungus culture 

 
 Aspergillus flavus strain (NRRL 3357) was used for the field inoculation and evaluation 

because of its ability to produce high level of aflatoxin in corn kernel. This strain is widely used 

in field evaluation studies. Fungal inoculum, obtained from the ARS Culture Collection, 

Bacterial Foodborne Pathogens and Mycology Research Unit, USDA-ARS, Peoria, IL, was 

grown overnight in potato dextrose broth and then grown on the sterile corn-cob grits (size 2040, 

Grit-O-Cobs, The Andersons Co., Maumee, OH) in 500 ml flask. Each flask contained 100 ml 

sterilized distilled water, 50 gm grits, and incubated at 28o C for 3 weeks. Conidia from each 

flask was washed from the grits with 500 ml sterilized water containing 20 drops of Tween 

20/liter and filtered through four layers of cheese cloth. The concentration of conidia was 

measured with hemacytometer and stored at 4o C.  
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3.1.4 Field inoculation, sample preparation, and aflatoxin determination 

 
 Primary ear in each plant was inoculated with side needle technique 2-weeks after mid-

silk (silk emergence in 50% plants in each line). The fungal inoculum was diluted to the 

concentration of 3x108 conidia 
/ml and 3.4 mL of fungal suspension was injected into each ear 

through the husk. The primary ears from the standing plants were harvested at maturity 

[approximately 60 days after sliking (DS)]. Each inoculated ear was hand shelled and dried for 1 

week in oven (38oC) to reduce the moisture content of the grains. The grains from each F2:3 line 

from each replication were bulked and mixed properly. A representative sample of 50 g from 

each line along with parents and hybrids was taken and kept in a small plastic bag separately. 

Samples were ground with Romer mill (Romer Industries Inc., Union, MO). The VICAM 

AflaTest (VICAM, Watertown, MA) was used to determine the aflatoxin concentration in 50g 

ground sample from each plot. The aflatoxin concentration was measured as parts per billion 

(ppb). This test is highly efficient and effective to measure the smallest amount of toxin up to 1 

ppb. 

3.1.5 Selection of simple sequence repeat (SSR) primers 

 
 Simple sequence repeat (SSR) primers were used for the construction of linkage map and 

subsequently used for the mapping of quantitative trait loci for the resistance to aflatoxin 

accumulation. The SSR primers and their locations on maize genome are available on public data 

base. The maize genome is divided into 100 bins (10 chromosomes) and markers were selected 

from each bin from the maize genome database (www.maizegdb.org). A total of 562 SSR 

markers were selected with uniform distribution over the whole corn genome. The sequence and 

bin position of the SSR markers are provided in the Appendix 1.Other linkage maps were also 

surveyed for the selection of potential markers for our research.  
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3.1.6 Phenotyping 

 
The important morphological and yield traits were recorded at different growth and 

developmental stages of the crop. Tasseling days, silking days, plant height, ear height, maturity 

date, husk cover, ear length, ear circumference, number of rows/ear, number of grains/rows, 100-

kernel weight, and grain yield/plot were recorded. The measurements of these traits were done 

on five randomly selected plants from each family in each replication. All the primary ears were 

harvested after complete maturity and were kept separately for the measurement of other traits 

and aflatoxin quantification. The ear and yield related traits were measured from the harvested 

ears in the laboratory. The following morphological traits were measured. 

 Plant height (PH): Plant height (cm) was measured from the ground level up to the 

point where the branching of tassel starts. 

 Days to 50% tasseling (DT): Number of days from sowing to emergence of tassels in 

50% of the plants. 

 Days to 50% Silking (DS): Number of days from sowing to emergence of silks in 50% 

of the plants. 

 Days to 50% maturity (DM): Number of days from sowing to maturity in 50% plants. 

 Ear height (EH): Ear height (cm) was measured form ground level up to the primary 

ear.  

 Husk cover (HC): It was visually scored on a scale of 1-5 following CIMMYT 

protocol. Score 1 was for tightly closed ears and score of 5 was given for the ears with 

open husks.  

 Ear length (EL): Length (cm) of the harvested primary ear.  
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 Ear circumference (EC): Circumference (cm) was measured in the middle part of the 

each ear. 

 Number of row/ear (RN): Number of rows in each ear of the randomly selected plants. 

 Number of kernels/row (KN): Number of kernels per each row for the selected ears.  

 100-kernel weight (KW): weight (gm) of 100 kernels. 

 Grain yield/ plot (GY): Grain yield (gm) was measured for each family after shelling all 

harvested ears in each replication. 

3.1.7 Polymorphic survey and genotyping  

 
Leaf tissues were collected from each plant from each F2:3 family and stored at-80o C. The 

tissues from each F2:3 family was bulked (10 plants/family) and DNA was extracted using the 

CTAB method (Saghai-Maroof et al. 1984). The quality of DNA was checked by running an 

agarose gel and quantification was done using NanoDrop spectrophotomere (model ND-1000 

Thermo Fischer scientific, Wilmington, USA). The DNA was diluted to the desired 

concentration (50 ng/µl) for genotyping. The stock DNA was stored at -80oC to protect the DNA 

from degradation. All the primers were surveyed to identify polymorphism between parents. The 

polymorphic markers were used for genotyping the F2:3 population. The SSR markers were 

amplified by polymerase chain reaction (PCR) using the following thermal cycling parameters: 

95oC for 5 min; 95oC for 45 sec, 55oC for 45sec, 72oC for 1min, 35cycles; 72oC for 5 min. Each 

PCR reaction was conducted in 25µl volume with the following composition: water: 11.7 µl, 

10X buffer: 2.5 µl, 25mM magnesium chloride: 2.5 µl, forward primer (50 ng/µl): 1.25µl, 

reverse primer (50 ng/µl): 1.25 µl, dNTPs (2mM): 2.5 µl, Taq polymerase: 0.3 µl, and DNA (50 

ng/µl): 3 µl. The PCR products from both parents and lines for each marker were separated was 

separated on a 4.5 % W/V of super fine resolution (SFR) agarose (Amresco) gels and visualized 
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under ultraviolet light after ethidium bromide staining. The gels were run using 1X TAE buffer 

at 150V for 2-3 hours depending on the markers. Scoring was done according the SSR protocol 

of Maize Mapping Project (www. maizegdb.org).  

3.1.8 Statistical analysis 

 
 Phenotypic data for each trait were averaged for each family, parents, and hybrid in each 

replication for statistical analysis. Histograms and frequency distribution for the morphological 

traits were analyzed using Microsoft Excel. All the statistical analyses were performed using 

SAS 9.3 (SAS Institute Inc., Cary, NC, 2010). Analysis of variance (ANOVA) was performed to 

determine the significant difference among the families for these traits using mixed model 

(PROC MIXED). Descriptive statistics (mean, standard deviation, range, coefficient of variation, 

maximum and minimum value) were obtained using PROC MEANS. Aflatoxin data was natural 

log-transformed to reduce non-normality before analysis. The correlation between aflatoxin 

accumulation and different morphological traits was calculated using PROC CORR. Broad-sense 

heritability for each year was calculated using variance component from ANOVA (expected 

mean square) following Hallauer and Miranda (1981). The genotypes (families), replications, 

and years were considered as random. The heritability on the basis of family for each trait over 

years was estimated using the formula as below;  

Broad sense heritability (h2) = 
σ2

g

σ2
g + 

σ2
ge

n
 + σ2

e

(n × r)

 

Where,   

σ2
g =genetic variance, 

σ2
ge=genotype x environment variance 

σ2 = random error variance 
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n=number of years 

r=replications 

3.1.9 Linkage map and QTL analysis 

 
The lines with more missing data were removed from the analysis. Genotypic data from 

191 F2:3 lines and 136 SSR markers were finally used for constructing linkage map using 

MAPMAKER/EXP 3.0 (Lander et al. 1987). Map distances were calculated using Kosambi 

function (Kosambi 1941). The arrangement of markers on each linkage group (chromosome) was 

determined on the basis of LOD values.  

QTL analysis was done for individual year data as well as for the data pooled over both 

years. The means of each morphological trait of F2:3 families were used for QTL analysis using 

Win-QTL Cartographer v 2.5 (Wang et al. 2012a). Composite interval mapping (CIM) was 

performed using genome wide error (α) =0.05 and LOD threshold of 2.5. The highest LOD score 

was used to indicate QTLs in the linkage map of each chromosome. Backward regression 

method with standard model (model 6) and window size of 10 cM were used for QTL analysis. 

The marker interval, map position, additive and dominance component, LOD value and the 

phenotypic variance (R2) explained by each QTL were obtained from the CIM analysis. The 

QTLs were named using an abbreviated trait name and chromosome number. For example, QTL 

for aflatoxin accumulation located on chromosome 1 was indicated by qAFL1. 

3.2 Identification of differentially expressed genes in response to the infection of A. flavus 
through suppression subtractive hybridization (SSH) 

3.2.1 Inoculation and sampling 

 
Two varieties B73 (susceptible) and MP715 (Resistant) were used to identify the 

differentially expressed genes in response to A. flavus infection by suppression subtraction 
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hybridization (SSH). Previously described procedure was followed for the fungus inoculum 

preparation and inoculation. Inoculated and non-inoculated ears from both inbreds were collected 

at 2 different time points (2 and 3 weeks after inoculation). The harvested developing ears were 

immediately frozen in liquid nitrogen. The kernels around the point of inoculation (that were not 

wounded and free from fungus) are carefully separated and stored in -80o C for further use in the 

experiment.  

3.2.2 RNA isolation and SSH-cDNA library construction 

 
Total RNA from the inoculated ears of both parents were extracted from both inbred at 

two different times (2 weeks and 3 weeks after inoculation). Due to high starch in the developing 

maize kernels, it was extremely difficult to isolate RNA as the homogenate formed a sticky 

mixture and solidified. It could not be separated during centrifugation. To solve this problem, a 

modified SDS/Trizol RNA extraction was followed (Wang et al. 2012b). The solidification of 

the homogenate was prevented using the alkaline Tris buffer (pH 9.0) and β-mercaptoethanol. 

This step reduced the solidification due to the absence of detergent in the extraction buffer. Only 

after this step, highly concentrated (20%) SDS solution was added to the suspended mixture to 

facilitate cell lysis and dissolution of starch. RNA quality and integrity of total RNA was 

checked in 1.0 % SFR Agarose gel using 1X TAE buffer. RNA quantification was done by using 

Nano Drop spectrophotometer (Thermo Fisher Scientific, Wilmington, USA). The RNA was 

treated with DNaseI and stored at -80oC for future use. 

Messenger RNA was isolated using PolyTract mRNA isolation kit (Promega, Madison, 

USA) following the guidelines of the manufacturer. Two micrograms of poly (A+) mRNA was 

used for the synthesis of double stranded DNA. Suppression subtraction hybridization (SSH) was 

carried out using the cDNA subtraction kit (Clontech, Wisconsin, USA) following the instruction 



34  

of the manufacturer. Forward SSH library was prepared using inoculated cDNA (resistant line 

Mp715) as tester and inoculated cDNA (susceptible line B73) as driver. The subtracted cDNA 

fragments were cloned into pGEM-T Easy Vector (Promega, Madison, USA) and transformed to 

DH5α cells of E. coli. These transformed cells were grown on LB agar medium containing 

100mg/L ampicilin, 1mM IPTG and 80 mg/L X-gal in 37o C overnight. The positive colonies 

were selected and grown in LB medium containing ampicilin (50mg/L) in 96-well plate for 5 hr 

at 37o C and stored in -80o C with 30% glycerol  

3.2.3 Sequencing and classification of the differentially expressed clones 

 
Four hundred eighty clones were randomly selected and sequenced. Sequencing of these 

selected cDNAs was done using the vector specific primer (T7 and SP6) at the University of 

Washington High Throughput Genomics Unit. The blastx program in NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to identify the sequences in non-redundant 

database that are homologous to the sequences obtained from the SSH (Altschul et al. 1997). The 

E-value was examined to determine whether these matches are significant (E-value less than 10-

3). These genes were classified in different functional categories on the basis of their predicted 

functions. NCBI, gene ontology (http://geneontology.org/), UniProt (http://www.uniprot.org), 

and related literature were used as guidelines for the classification of these genes on different 

categories. 

3.2.4 Differential screening of subtracted cDNA library 

 
 The selected clones were grown overnight at 37o C with gentle stirring in LB medium for 

the isolation of cDNA inserts. The plasmid DNA was isolated following plasmid DNA isolation 

protocol adopted from Qiagen (Valencia, CA, USA. These cDNA clones were amplified using 
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vector specific primers (T7 and SP6) flanking both sides of the inserts. Each PCR reaction was 

conducted in volume of 25 µl with the following composition: nuclease free water: 11.8 µl, 10X 

buffer: 2.5 µl, magnesium chloride (25mM): 2.5 µl, dNTPs (2.0 mM): 2.5 µl, T7 and SP6 primer 

(50 ng/ µl): 1.25 µl each, Promega Taq (5U/ µl): 0.2 µl, template DNA (50 ng/µl): 3.0 µl. PCR 

was performed according to the following thermal cycling parameters: 95oC for 4 min; 95oC for 

45 sec, 55oC for 45 sec, 72oC for 1 min, 35 cycles; 72 oC for 5 min final extension. The PCR 

products were electrophoresed on 1.2% agarose gel to confirm the quality and size of inserts.  

 The PCR products containing cDNA inserts were concentrated using Speed Vac at 4oC 

for half hour. The concentrated products were denatured with 0.6M NaOH solution and used for 

blotting. Five microliters of concentrated PCR product of each clone were blotted in duplicate to 

Hybond-N+ (Amersham Biosciences Corp., Piscataway, NJ). Each blot consisted of 48 samples 

(46 clones, actin, and negative control). After blotting, the membranes were allowed to air dry at 

room temperature. The air dried membranes were neutralized with Tris-HCl (1.5M NaCl, 0.5M 

Tris-HCl, pH 8.0) for 5 min. The membranes were rinsed with SSC Tris-HCl solution (2x SSC, 

0.2 M Tris-HCl, pH8.0) for 30 sec with gentle shaking. Membranes are removed from the 

solution and allowed to drain the remaining solution. The membranes were carefully wrapped 

using plastic wrap and cross-linked with ultraviolet light. The blots were exposed to UV light for 

1 min (30 sec x 2). cDNA probes were prepared from the inoculated and uninoculated RNA 

using iScript cDNA synthesis kit (Bio-Rad, CA, USA). The procedure for probe labelling, 

prehybridization, hybridization, membrane washing, and detection were performed following the 

protocol of the manufacturer (Amersham ECL Direct Nucleic Acid Labelling And Detection 

Systems, Cat # RPN 3000, GE Healthcare, Bukinghamshire, UK). After overnight exposure, the 



36  

X-ray films were developed and air dried in dark room. The differentially expressed genes were 

selected on the basis of signal strength of the clones with different probes on the film.  

3.2.5 Validation of the differentially expressed genes in a set of germplasm with varying 
level of aflatoxin resistance 

 
 The maize germplasm with different degree of resistance and susceptibility were selected 

for the field experiment. Seven germplasm were used for this experiment. Out of seven, five 

(Mp715, Mp719, Mp420, Mp313E and Mo18W) are resistant and two (B73 and Va35) are 

susceptible to Aspergillus flavus (Williams 2006; Gardner et al. 2007).  

3.2.5.1 Field evaluation 

  
 The selected germplasm were planted in 2013 and 2014 at the Louisiana State University 

AgCenter Central Research Farm, Baton Rouge, in second week of April. The trial was 

conducted in randomized complete block (RCB) design with three replications. Plot size was 

maintained as 5 meter row with 20 plants for each germplasm. Plant-to-plant spacing was 

maintained at 25 cm after final thinning of plants. Irrigation was provided when necessary. All 

other agronomic practices like weeding, thinning, and fertilizer application were performed 

according to the recommended practices to obtain the maximum yield. The fungal inoculation 

was done after two weeks of mid-silking of the germplasm using side needle technique. The 

primary ears were inoculated with 3.4 ml fungus inoculum containing 3x108 conidia/ml. 

 Important morphological traits for these germplasm were measured and evaluated. 

Tasseling date, silking date, plant height, ear height, maturity date, husk cover, ear length, ear 

circumference, number of rows, numbers of grains/rows, 100-kernel weight, and grain yield/plot 

were measured in field and laboratory. After maturity, all ears were harvested and kept 

separately to avoid mixing. All ear and yield related traits were measured in laboratory. Five 
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randomly selected plants from each line in each replication were used for collection of data. 

After measuring all the traits, the ears were hand shelled and bulked for each replication 

separately for yield and 100-kernel weight measurement. Fifty gram sample was taken from the 

bulked grain for aflatoxin quantification.  

 The sample for each germplasm were ground and kept in plastic bags. The VICAM 

AflaTest (VICAM, Watertown, MA) was used to determine the aflatoxin concentration from 

each sample. The procedure for the determination of aflatoxin concentration was followed as per 

the guidelines provided by the VICAM (VICAM, Watertown, MA) and the aflatoxin content was 

measured as part per billion (ppb). 

3.2.5.2 Evaluation of the selected genes by semi-quantitative reverse transcriptase PCR 
(RT-PCR) 
 
 The tissues were collected from each germplasm from control and inoculated plants with 

fungus. To study the gene expression at different time points after inoculation, the developing 

ears from each germplasm were harvested 24 and 48 hours after inoculation along with control 

and kept in liquid nitrogen immediately. The developing kernels were then separated and kept in 

-80oC for RNA isolation and gene expression studies. The total RNA was isolated from twenty 

one samples from seven germplasm following the same procedure as described earlier. Two 

micrograms of total RNA from sample was used for first-strand cDNA synthesis using iScript 

cDNA synthesis kit (Bio-Rad, CA, USA). The reaction was performed in 20µl reaction using 4µl 

5X iScript reaction mix, 1µl reverse transcriptase, 7µl nuclease-free water, and 8µl RNA 

template. The complete reaction mix was incubated in thermal cycler using the following 

conditions: 5 min at 25oC, 30 min at 42oC, and 5 min for 85oC. The differentially expressed 

genes were selected from inoculated Mp715-B73 SSH library. Forty gene specific RT-PCR 

primers were designed according to their transcript sequences using Primer 3.0 software. Each 
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RT-PCR reaction was conducted in 25 µl volume [water: 9.6-11.3 µl; Promega Flexi green 

buffer: 5.0 µl, magnesium chloride (25 mM): 2.5-4.0 µl, Forward primer (50 ng/µl): 1.25 µl, 

Reverse primer (50 ng/µl): 1.25 µl, dNTPs (2 mM): 2.5 µl, Promega Taq (5U/µl): 0.2 µl and 

template cDNA: 1.0-1.2 µl]. The selected primers were amplified using the following thermal 

cycling parameters: 95oC for 5 min; 95oC for 45 sec; 55oC for 45 sec; 72oC for 1 min, 35-42 

cycles, and final extension at 72oC for 5 min. Actin1 gene was used as internal control for the 

normalization of gene expression. Equal amount of PCR reaction (20 µl) was loaded for gel 

electrophoresis. The PCR products were run in 2.0% agarose gel with ethidium bromide in 1X 

TAE buffer at 120 V for 1 hr. The gels were visualized using Kodak Gel Logic 200 Imaging 

system (Kodak Co., Rochester, NY, USA). 

3.2.5.3 Validation of the selected genes in germplasm by quantitative real-time PCR 
(qPCR) 
 

Total RNA isolated from different germplasm at different time point and control was 

used for real-time RT-PCR analysis. Based on the metabolic functions and the result of RT-PCR, 

six important genes were selected for qPCR analysis. The cDNA was synthesized using 2μg total 

RNA using iScript cDNA synthesis Kit (BioRAD, CA, USA) as described before. One microliter 

of cDNA was used for quantitative analysis of the gene expression. The reaction condition 

consisted following steps: 95o C for 3 min; 40 cycles of 95o C for 30 sec, 60o C for 30 followed 

by denaturation stage. The experiment was carried out in triplicate for each genes used for the 

quantitative expression study. Data acquisition for the amplification plot was performed at the 

extension step and final denaturation step continuously. Reactions were conducted in MyiQ 

BioRad Single color Real-time PCR Detection system. The quantitative expression data were 

collected and analyzed using associated software with the MyiQ BioRad Single color Real-time 
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PCR Detection system. Comparative CT method (2-∆∆CT) was used for gene expression analysis 

(Livak and Schmittgen, 2001). 

All the phenotypic and aflatoxin concentration data were averaged for each germplasm 

for each replication. Aflatoxin data was natural log-transformed before the analysis to reduce 

non-normality. The descriptive statistics, ANOVA, and correlations were computed using SAS 

9.3 (SAS Institute Inc., Cary, NC, 2010).  

3.3 In silico mapping and co-localization of differentially expressed genes in linkage map 
 

Differentially expressed gene sequences from SSH library were used for in silico 

mapping and co-localization of QTLs for aflatoxin accumulation on the linkage map. The gene 

sequences were submitted to Maize GDB Blast 

(http://maizegdb.org/popcorn/search/sequence_search/home.php?a=BLAST_UI) to search for 

the highest similarity against B73 Ref Gen v2. The bin position and physical location of these 

genes were obtained using the blast search on the database. The physical location of linked 

markers with QTLs was searched by using locus lookup tool against the reference genome in 

Maize GDB (Andorf et al. 2010). With the information of the physical location of genes and 

linked markers, the expressed genes were placed on the linkage map developed from the F2:3 

mapping population of the cross B73 x Mp715. Co-localization was inferred using the 

information about the location of expressed genes and QTLs in the linkage map. 
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CHAPTER 4 
RESULTS 

 
4.1. Phenotypic characterization of the F2:3 mapping population  

 Mean, range, coefficient of variation, and heritability values for twelve agronomic traits 

(PH, DT, DS, DM, EH, HC, EL, EC, RN, KN, KW, and GY) were estimated from the pooled 

data of both years (Table 4.1). Phenotypic values for each trait for individual year and analysis of 

variance (ANOVA) for these traits are provided in Appendices 2 and 3, respectively.  

Table 4.1 Descriptive statistics and heritability for the morphological traits estimated from the 
pooled data (2012 and 2013) of the parents and F2:3 mapping population derived from the B73 x 
Mp715 cross. 

 
Trait 

B73 Mp715 F2:3 

Mean Mean Mean Range CV# Heritability 

Plant height (cm)  160.3 188.8 190.9 88-222 6.3 0.69 

Days to 50% tasseling  62 73 71 55-131 3.4 0.68 

Days to 50 % silking 64 75 73 42-85 4.0 0.58 

Days to 50 % maturity  105 116 110 86-130 4.0 0.62 

Ear height (cm) 61.8 84.1 85.5 53-117 8.0 0.48 

Husk cover rating 3.0 1.3 1.9 1-5 46.2 0.34 

Ear length (cm) 12.6 17.7 14.6 7.3-20.0 12.8 0.66 

Ear circumference (cm) 11.7 12.4 11.9 7.0-17.3 7.1 0.23 

Number of rows/ear 13 13 14 9-20 7.9 0.45 

Number of kernels/row 16 23 28 6-46 16.5 0.23 

100-kernel weight (gm) 16.6 22.2 19.0 9.0-26.0 12.3 0.30 

Grain yield (gm/plot) 96.3 54.2 277.3 13-1006 40.1 0.28 

# CV, Coefficient of variation  
 
 The analysis of variance showed that genotype (G) x Year (Y) interaction was non-

significant for the traits, PH, DM, HC, EL, and RN, whereas it was significant for DT, DS, EH, 

EC, KN, KW, and KY. Genotype source was significant for 7 traits (DT, DS, DM, HC, EL, EC, 
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Table 4.4 Pearson’s correlation coefficients among phenotypic traits for F2:3 lines developed 
from B73 x Mp715 cross in 2012 (normal font) and 2013 (bold font). 

  AF HC EL EC GR RN GY KW 

AF 1  0.43**  0.15  0.24**  0.15  0.24**  0.16  0.20 

HC 0.41** 1  0.28  0.19  0.27  0.25  0.24  0.19 

EL 0.00 0.22 1  0.39**  0.53**  0.25**  0.42**  0.34** 

EC -0.09 0.14 0.53** 1  0.37**  0.53**  0.32**  0.45** 

GR -0.01 0.17 0.50 0.52** 1  0.22*  0.54**  0.20* 

RN -0.02 -0.02 0.10 0.36** 0.16* 1  0.22*  0.18* 

GY 0.003 0.11 0.12 0.38** 0.34** 0.087 1  0.18* 

KW -0.06 0.17 0.39 0.41** 0.19 0.02 0.05 1 

*Significant at the 0.05 probability level; **Significant at the 0.01 probability level  
AF, Aflatoxin concentration (natural log-transformed); HC, husk cover rating (1-5 scale); EL, 
Ear length; EC, Ear circumference; GR, Grains/rows; RN, Number of rows/ear; GY, Grain 
yield/plot); KW, 100 kernel weight. 

Ear circumference was significantly and positively correlated to ear length in both years. 

Ear length was positively correlated with number of grains/row, number of rows/ear, grain yield 

/plot and 100-kernel weight in 2013. Ear circumference was positively correlated with number of 

grains/row, number of row/ear, and grain yield/plot, and 100-kernel weight in both years. 

Number of grains/row was positively correlated with number of rows and grain yield in both 

years and 100-kernel weight only in 2013. Likewise, significant positive correlations were 

observed between number of rows/year with grain yield and 100-kernel weight in 2013. Grain 

yield was significantly correlated with 100- kernel weight in 2013.  

4.4 Genotyping and linkage map construction 
 

A total of 562 SSR markers distributed over the whole maize genome were selected from 

the publically available maize genome database (www.maizegdb.org). Polymorphic survey 
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A linkage map was constructed using 136 polymorphic markers, which are distributed 

along the 10 chromosomes (Table 4.6). The total map length was 2921.1 cM with average loci 

interval of 21.6 cM Markers in each chromosome were resolved in to single linkage group except 

linkage group 5. 

Table 4.6 Number of SSR markers mapped on each chromosome and chromosome length (cM) 
in the F2:3 mapping population.  

Chr No. No. of markers Chr. Length 
(cM) 

Marker interval 
(cM) 

1 17 371.2 21.8 

2 14 289.9 20.7 

3 16 290.8 18.2 

4 14 307.6 23.7 

5 14 274.7 19.6 

6 10 236.4 23.6 

7 18 366.6 20.4 

8 11 267.9 24.4 

9 10 245.3 24.5 

10 12 271.0 22.6 

Total 136 2921.1 21.6 

 

4.5 Mapping of QTL for resistance to aflatoxin accumulation 
 

Whole genome scan using composite interval mapping (CIM) revealed 4 and 8 QTL for 

aflatoxin content in 2012 and 2013, respectively (Table 4.7 and Figure 4.16). Four QTL 

identified in 2012 were on chromosomes 3 (bin 3.08), 4 (bin 4.01), 5 (bin 5.04), and 9 (bin 9.02). 

The phenotypic variances explained by these QTL were small to moderate with a range of 4 to 

9%. In case of the QTL on chromosome 3 and 4, aflatoxin reducing alleles were derived from the 

resistant parent Mp715, whereas B73 alleles were desirable for the QTL on chromosomes 5 and 

9. The QTL identified in 2013 were on chromosomes 4 (bins 4.02, 4.09), 8 (bins 8.05 and 8.09), 

9 (bin 9.06), and 10 (bins 10.03, 10.04, and 10.07). The range of phenotypic variances accounted 
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by each QTL ranged from <1 to 9 %. The Mp715 alleles were responsible for enhancing 

resistance in QTL identified in bins 9.06 and 10.07 whereas B73 contributed resistance alleles in 

rest of the QTL. 

Table 4.7 Quantitative trait loci for aflatoxin resistance detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr QTL Closest  Position/Bin LOD Gene effect Gene  R2 SDA
      marker A D action    
2012 3 qAFL3 bmc1536 240/3.08 2.50 0.37 -0.37 D  9.2 MP715
  4 qAFL4-1 umc2150 37.9/4.01 2.85 0.07 0.55  OD 3.6 MP715
  5 qAFL5 bmc1208 112.2/5.04 3.00 -0.58 -0.03  A 7.6 B73  
  9 qAFL9-1 bmc1626 33.0/9.02 2.55 -0.47 -0.18  PD 3.5 B73  
2013 4 qAFL4-2 umc1509 84.3/4.02 4.02 -0.08 -3.95  OD 3.8 B73 
 4 qAFL4-3 umc1503 289.8/4.09 3.02 -0.43 -1.08 OD <1.0 B73 
  8 qAFL8-1 bmc1782 101.2/8.05 3.92 -0.87 -0.91  D <1.0 B73  
  8 qAFL8-2 phi233376 264.5/8.09 2.75 -0.14 1.32  OD 2.9 B73  
  9 qAFL9-2 umc1733 107.0/9.06 2.53 0.72 -0.26  PD 4.8 MP715
  10 qAFL10- umc1381 108.0/10.03 2.64 -0.09 -1.82  OD 5.0 B73 
  10 qAFL10- umc1827 131.2/10.04 3.91 -1.30 0.29  A 8.8 B73 
  10 qAFL10- bmc1518 251.1/10.07 3.22 0.15 -1.27  OD 4.1 MP715
Average 1 qAFL1-1 dupssr26 118.3/1.04 3.92 0.76 0.10  A 5.2 MP715
 1 qAFL1-2 umc1689 136.3/1.05 2.67 -0.38 0.35  D 7.3 B73 
 1 qAFL1-3 umc2223 291.3/1.10 3.33 0.29 0.29 D <1.0 MP715
  2 qAFL2 bmc2277 63.2/2.02 2.51 -0.38 0.04  A 3.7 B73 
  4 qAFL4-1 umc2150 31.6/4.02 2.58 -0.39 0.45  D 8.7 B73 
  4 qAFL4-4 umc1088 126.2/4.05 4.72 0.69 -0.17  PD 10.0 MP715
 7 qAFL7-1 umc1799 338.2/7.06 3.33 0.42 0.40 D <1.0 MP715
 8 qAFL8-1 bmc1782 101.2/8.05 2.50 -0.30 -0.34 D <1.0 B73 
  10 qAFL10- bmc1074 172.2/10.05 6.44 -0.58 -0.21  PD 6.0 B73 
A, additive effect; D, dominance effect; OD, over dominance effect; SDA, Source of desirable 
allele; R2, percentage of phenotypic variation explained by QTL 
 

Combined analysis for aflatoxin (log-transformed) showed QTL on chromosomes 1 (bins 

1.04, 1.05, and 1.10), 2 (bin 2.02), 4 (bins 4.02 and 4.05), 7 (bin 7.06), 8 (bin 8.05), and 10 (bin 

10.05). Three QTL with small phenotypic effect were identified in chromosome 1, but were not 

detected in individual year analysis. Likewise, QTL on chromosomes 3 and 5 appeared only in  
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2012 and QTL on chromosome 8 appeared only in 2013. The QTL identified on chromosome 9 

were detected in both years but were in different genomic locations. A QTL with the largest 

phenotypic variance (10.0%) was identified on chromosome 4 (bin 4.05) in pooled analysis. The 

desirable alleles responsible for increasing aflatoxin resistance were from Mp715 in case of QTL 

on chromosome 1, 3, 4, and 7 in combined year analysis.   

Two different QTLs identified on chromosome 4 were located next to each other in bins 

4.01 and 4.02 in 2012 and 2013, respectively. QTL with moderate effect (7.6%) was identified 

on chromosome 5 (bin 5.04) in 2012. QTL with small effects were identified on chromosome 8 

(bins 8.05 and 8.09) in 2013. Three QTLs with moderate phenotypic effects were identified in 

the bin interval 10.0310.07 on chromosome 10 in 2013. Among them, Mp715 allele of the 

qAFL10-3 was responsible for increasing aflatoxin resistance. 

4.6 Mapping of QTLs for husk cover 
 

Composite interval mapping for husk cover rating revealed 10, 7, and 8 QTL in 2012, 

2013, and combined analysis, respectively (Table 4.8 and Figure 4.16). The phenotypic variance 

explained by these QTL in both years ranged from <1 to 13%.  

Four QTL were located on chromosome 4 (bins 4.01, 4.02, 4.08 and 4.09) in 2012. QTL 

with desirable alleles from Mp715 were located in bins 1.08, 4.01, 4.02, 5.03, and 8.02 whereas 

B73 alleles reduced husk cover rating in the rest. The QTL located in bins 4.09 and 8.02 

explained 13% and 9% of phenotypic variation but rests were with minor effects.  Seven QTL 

detected in 2013 were on chromosomes 3 (bin 3.05), 5 (bin 5.06), 6 (bins 6.03 and 6.05) and 10 

(bins 10.03, 10.04, and 10.05). The QTL on chromosome 6 (bin 6.05) was detected in both 2013 

and combined year analysis with 7.4 % and 5.5% phenotypic variance, respectively. These QTL 

were derived from resistant parent. Three QTL on chromosome 10 were identified in 2013 and in 
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combined analysis. The QTL (qHC10-1) with larger phenotypic effect in 2013 and combined 

analysis was located in chromosome 10 (10.03) and was derived from Mp715. Both husk cover 

QTL (qHC10-1, qHC10-2) overlapped with the QTL for reduced aflatoxin accumulation 

identified in 2013. Mp715 allele increased the aflatoxin content in case of both QTL whereas 

B73 and Mp715 alleles increased husk cover rating at the QTL located in bins 10.03 and 10.04, 

respectively. 

Table 4.8 Quantitative trait loci for husk cover detected in the F2:3 mapping population developed 
from the cross B73 x MP715.  

Year Chr    QTL Nearest 
 marker 

Position/Bin LOD Gene effect Gene  R
2
 SDA 

A D   

2012 1 qHC1-2 phi037 225.5/1.08 2.74 0.18 0.16  D <1.0 Mp715
  4 qHC4-1 phi072 8.0/4.01 3.11 0.06 0.35 OD <1.0 Mp715
  4 qHC4-2 umc1509 84.3/4.02 17.4 0.01 1.06  OD 2.7 Mp715
 4 qHC4-4 dupssr28 253.1/4.08 3.06 -0.07 0.28  OD 5.6 B73
  4 qHC4-5 umc1503 288.0/4.09 3.76 -0.18 0.28  D 13.4 B73
 5 qHC5-2 bmc1046 10.0/5.03 2.75 0.22 0.17 PD <1.0 Mp715
 7 qHC7 umc1154 304.8/7.05 3.39 -0.12 0.22 OD 7.3 B73
  8 qHC8-2 umc1872 71.9/8.02 3.25 0.23 -0.14  PD 9.4 Mp715
  8 qHC8-3 bmc1782 103.2/8.05 2.65 -0.07 0.27  OD 5.4 B73
  8 qHC8-4 umc1069 220.1/8.08 2.51 -0.02 0.26  OD 3.0 B73
2013 3 qHC3 mmc022 120.9/3.05 3.36 0.24 0.58 OD <1.0 Mp715
 5 qHC5-3 umc2198 4.0/5.06 4.01 0.37 0.63 OD <1.0 Mp715

6 qHC6-1 umc1257 35.0/6.03 2.55 -0.44 -0.37  A 2.9 B73
  6 qHC6-2 umc1020 143.1/6.05 2.78 0.56 -0.11  OD 7.4 Mp715
  10 qHC10-1 umc1381 115.0/10.03 3.99 0.57 -0.58  D 12.4 Mp715
  10 qHC10-2 umc1827 132.1/10.04 4.38 -0.87 -0.01  A 6.8 B73
  10 qHC10-3 bmc1185 236.2/10.05 2.91 -0.65 0.13  PD 9.2 B73
Average 2 qHC2 bmc1338 4.0/2.01 6.88 0.20 -0.58  OD 15.5 Mp715
  4 qHC4-3 umc2284 156.3/4.06 3.44 -0.20 -0.50  OD 1.6 B73
  5 qHC5-1 umc1240 9.0/5.00 2.50 0.31 0.08  PD 2.9 Mp715
  6 qHC6-2 umc1020 134.1/6.05 2.75 0.26 -0.10  PD 5.5 Mp715
  8 qHC8-1 umc1327 0.0/8.01 3.46 0.30 -0.03  A 5.8 Mp715
  10 qHC10-1 umc1381 114.0/10.03 3.78 0.33 -0.31  D 11.4 Mp715
  10 qHC10-2 umc1827 136.1/10.04 3.44 -0.47 -0.12  PD 4.6 B73
  10 qHC10-3 bmc1185 247.1/10.05 2.83 -0.31 0.11  PD 6.3 B73
A, additive effect; D, dominance effect; OD, over dominance effect; SDA, Source of desirable 
allele; R2, percentage of phenotypic variation explained by QTL 
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4.7 Mapping of QTL for Agronomic Traits 

4.7.1 Plant height 

 Two QTL for plant height with 14.2 % and 12.0% phenotypic variance were identified on 

chromosome 6 in 2012 (Table 4.9). In 2013, 5 QTL were identified on chromosomes 2, 4, 8, and 

10. The phenotypic variance explained by these individual QTL were less than 10%. The QTL 

with largest effect in this year was identified on chromosome 10. Combined analysis identified 3 

QTL on chromosomes 2, 4, and 6. Each QTL had phenotypic variance less than 5% and the 

largest with 3.2% on chromosome 4.  One QTL in chromosome 6 was identified in combined 

analysis, which was near by the QTL identified in 2012.  One QTL was flanked by markers 

umc2170-dupssr15 and other QTL was nearby umc1020 on chromosome 6.  

Table 4.9 Quantitative trait loci for plant height detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr Closest marker Position/Bin LOD Gene effect Gene action R2 DPE 

  A D       

2012 6 umc2170 165.1/6.06 2.68 5.49 -9.61 OD 14.2 MP715

  6 dupssr15 209.5/6.06 3.4 -6.62 10.54 OD 12.0 B73 

2013 2 zmRR1 49.0/2.00 82.77 95.44 94.47 D 3.6 MP715

  4 umc1503 290.1/4.09 2.76 4.29 -26.77 D 4.8 MP715

  4 umc2289 307.1/4.11 3.8 28.88 -3.82 A 7.7 MP715

  8 umc1069 220.1/8.08 2.87 -1.72 25.78 OD 3.1 B73 

  10 umc1827 131.2/10.04 7.53 -42.21 9.13 PD 16.7 B73 

Overall 2 bmc1335 224.7/2.08 3.30 -0.02 -6.59 OD 1.5 B73 

  4 phi072 0.0/4.01 4.64 3.93 2.55 PD 3.2 MP715

  6 umc1020 148/6.05 3.39 3.88 3.65 D 1.6 MP715
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 

4.7.2 Tasseling days 

 
Four QTL were identified on chromosomes 1, 4, 8, and 10 in 2012 (Table 4.10). QTLs on 

chromosome 1, 4, and 8 accounted for <10 % phenotypic variance and the QTL with large effect 
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(11.6%) was in bin10.03 between umc1381-umc1827. In 2013, six QTL were identified on 

chromosomes 5, 8, 9, and 10. Two QTLs were identified on chromosome 9 and 10.  The QTL 

with largest phenotypic variance (52.4%) was detected on chromosome 5 (5.02) and the smallest 

one on chromosome 8 (8.08). Other QTL with higher phenotypic variance (21.4%) was located 

on chromosome 10 (10.04). The QTL on chromosome 10 with large phenotypic effect was 

consistently found in both years.  Six QTL were identified on chromosomes 2, 4, 9, and 10 in 

combined analysis.  One QTL with similar phenotypic effect was found in the same genomic 

region on chromosome 10 (10.04) in 2013.  The QTL with large phenotypic effects were found 

consistently in bin10.04 in both 2012 and 2013 but not identified in combined analysis.  

Table 4.10 Quantitative trait loci for days to tasseling detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr Closest 
marker 

Position/BinLOD  Gene effect Gene action  R2 DPE 

  A D       

2012 1 umc1661 201.9/1.07 3.95 0.94 0.41 PD 3.3 MP715

  4 umc1509 59.9/4.02 2.58 0.64 -0.29 PD 6.2 MP715

  8 bmc1031 127.7/8.06 3.09 -0.34 0.75 OD 6.0 B73 

  10 umc1827 124.2/10.04 4.14 -0.38 1.40 OD 11.6 B73 

2013 5 bmc1046 22.5/5.02 3.39 -12.14 12.35 D 52.4 B73 

  8 umc1069 220.1/8.08 4.98 -0.80 12.93 OD 5.8 B73 

  9 dupssr19 53.2/9.02 3.67 10.59 -2.73 PD 7.6 MP715

  9 umc1714 190.8/9.08 109.42 -34.85 35.45 D 8.0 B73 

  10 umc1827 132.1/10.04 8.71 -15.89 5.82 PD 21.4 B73 

  10 bmc1074 170.1/10.05 4.18 11.39 2.18 A 5.4 MP715

Overall 2 bnlg1297 25.0/2.02 2.60 0.79 -0.78 D 9.7 MP715

  4 umc1940 289.3/4.09 4.51 1.46 0.22 A 5.3 MP715

  4 umc2289 316.7/4.11 3.03 -1.21 0.30 OD 11.1 B73 

  9 umc1277 213.9/9.08 2.53 0.41 -0.93 OD 5.4 MP715

  10 umc1381 121.2/10.03 4.41 -0.12 1.69 OD 8.1 B73 

  10 bmc1074 184.2/10.05 2.55 1.14 0.63 PD 3.0 MP715
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 
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4.7.3 Silking days 

 
Few QTL were identified for silking days in 2012 compared to 2013 (Table 4.11). In 

2012, only two QTLs were identified in bins 3.01 and 3.05, which accounted for 9.0% and 2.8% 

of phenotypic variance, respectively.  Altogether, six QTL were identified in 2013 on 

chromosomes 4 (4.11), 8 (8.08), 9 (9.02 and 9.08) and 10 (2 QTLs in 10.04). The QTL on 

chromosome 4, 8, 9, and 10 were with small effects explaining less than 10% phenotypic 

variance. One QTL in chromosome 9 (9.08) accounted for 58.3% of phenotypic variance. Other 

QTL on chromosome 10 linked with umc1827 accounted for higher phenotypic variance 

(17.2%). Combined analysis resulted in four QTL located on chromosomes 7, 8, and 10. In 2013 

and combined analysis, QTLs with larger effects were identified in a genomic region flanked by 

marker umc1827 and bmc1074 on chromosome 10. However, the phenotypic effects of these 

QTLs were smaller in combined analysis compared to 2013.  

Table 4.11 Quantitative trait loci for days to silking detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr Closest marker Positon/Bin LOD Gene effect Gene action R2 DPE 
     A D    

2012 3  umc1746 26.4/3.01 3.14 1.44 0.43 PD 9.0 MP715
  3 mmc022 110.4/3.05 2.78 0.90 0.65 PD 2.8 MP715
2013 4 umc2289 307.1/4.11 2.94 9.17 -0.74 A 5.3 MP715
  8 umc1069 220.1/8.08 3.65 0.17 11.13 OD 3.6 MP715
  9 dupssr19 53.2/9.02 2.66 8.12 -4.02 PD 6.0 MP715
  9 umc1714 190.8/9.08 96.31 -35.86 35.37 D 58.3 B73 
  10 umc1827 131.2/10.04 7.55 -14.91 4.71 PD 17.2 B73 
  10 umc1648 167.1/10.04 6.18 14.44 3.68 PD 7.9 MP715
  3 umc1729 104.4/3.03 6.04 2.89 2.84 D 3.2 MP715
Overall 7 umc1782 270.2/7.04 3.65 0.00 -4.64 A 4.7 MP715
  8 dupssr14 261.5/8.09 3.01 0.18 1.79 OD 2.1 MP715
  10 umc1827 144.1/10.04 2.84 0.30 2.20 OD 6.4 MP715
  10 bmc1074 190.2/10.05 4.41 1.75 1.54 D 4.4 MP715
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 
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4.7.4 Maturity days 

 
More QTL were detected in 2012 compared to 2013 (Table 4.12). Four of five QTLs 

identified on chromosomes 1, 3, 4, and 9 in 2012 were minor in nature with phenotypic variances 

<10 % with the exception of the QTL on chromosome 1. The major QTL located in 1.08 

explained 54.4% of phenotypic variance. In 2013, four QTLs were identified on chromosomes 4, 

5, and 10. QTL with large effect (60.3% of phenotypic variance) was identified on chromosome 

5. Small QTL were identified on chromosome four in both years but they were in different 

genomic locations. Other large QTL with 19.9% phenotypic variance was identified on 

chromosome 10 in 2013, but not in 2012 or combined analysis. Combined analysis revealed four 

QTL with small effects on chromosome 1, 3, 4, and 9. The marker umc1404 on chromosome 3  

Table 4.12 Quantitative trait loci for days to maturity detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr Closest 
marker 

Position/Bin LOD Gene effect Gene 
action  

R2 DPE 

  A D      

2012 1 phi037 218.9/1.08 2.93 1.65 -1.01 PD 54.4 MP715

 3 umc1404 197.6/3.07 2.85 -0.42 -1.36 OD 2.5 B73 

  4 phi072 2.0/4.01 3.1 -0.30 1.59 OD 3.5 B73 

  4 umc2039 113.1/4.03 3.14 -0.52 1.34 OD 6.9 B73 

  9 dupssr29 154.7/9.08 2.73 -1.11 -0.11 A 5.7 B73 

2013 4 umc2289 307.1/4.11 3.57 16.28 -1.49 A 7.1 MP715

  5 bmc1046 23.5/5.02 119.04 -54.62 55.48 D 60.3 B73 

  10 umc1827 131.2/10.04 8.68 -26.48 5.17 A 19.9 B73 

  10 bmc1074 172.1/10.05 3.3 23.42 3.63 A 4.0 MP715

Overall 1 umc1661 224.9/10.07 3.09 1.79 -0.03 A 5.9 MP715

  3 umc1404 195.6/3.07 3.73 -0.22 -1.58 OD 1.5 B73 

  4 dupssr28 245.4/4.08 2.99 -1.33 -0.38 PD 5.3 B73 

  9 dupssr29 142.5/9.07 2.87 -1.09 1.07 D 9.5 B73 
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 
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was linked with QTL in both 2012 and combined analysis. The largest QTL in chromosome 1 

was near phi0037 in both 2012 and combined analysis. Likewise, QTL region linked with 

dupssr29 on chromosome 9 was identified in 2013 and combined analysis.  

4.7.5 Ear height 

 
Composite interval mapping identified 2 and 7 QTL in 2012 and 2013, respectively 

(Table 4.13). All the QTLs identified were minor QTL, which accounted for less than 10% of the 

phenotypic variance. In 2012, the QTL with largest effect was located in bin7.04 and was very 

close to marker umc2332. It explained 7.7% of the phenotypic variance. In 2013, more QTL 

were identified. Two QTL were on chromosome 4. The QTL in bin 4.03 accounted for 9.4% 

phenotypic variance. 

Table 4.13 Quantitative trait loci for ear height detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr Closest marker Position/Bin LOD 
Gene effect 

Gene 
action  R2 

DPE 

  A D       

2012 7 umc2332 220.2/7.04 2.87 -4.95 0.99 A 7.7 B73 

  9 bmc1626 36.0/9.03 4.4 4.82 3.11 PD 2.4 MP715

2013 4 umc2039 109.1/4.03 3.94 13.65 -8.31 PD 9.4 MP715

  4 umc2284 139.2/4.06 2.53 0.09 17.59 OD 5.4 MP715

  7 umc2332 220.2/7.04 2.56 -18.65 -4.86 PD 1.3 B73 

  8 umc1005 202.5/8.08 3.84 -16.45 -5.68 PD 3.6 B73 

  8 umc1069 220.1/8.08 4.44 7.43 18.00 OD 1.6 MP715

  9 bmc1626 37.0/9.03 3.88 -15.48 8.69 PD 9.8 B73 

  9 dupssr19 53.2/9.02 5.68 20.99 -5.20 PD 11.7 MP715

Overall 2 umc1335 242.1/2.08 3.02 -3.60 -2.01 PD 4.3 B73 

  4 umc1276 18.6/4.01 3.02 2.89 -2.18 PD 8.2 MP715

  4 umc1509 60.3/4.02 2.75 -1.76 3.19 OD 6.2 B73 

  6 umc1257 42.9/6.03 2.92 -2.98 -1.78 PD 2.4 B73 
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 
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Other QTL with smaller effect were identified in bin4.06, bin7.04, and bin 8.08. One 

QTL with 11.7 % phenotypic variance was identified in chromosome 9. Combined analysis 

identified 4 QTL on chromosomes 2, 4, and 6 and the QTL with largest effect (8.2 %) was 

located on chromosome 4. The other QTL in bin 4.03 was linked to marker umc1509 and the 

same marker was also flanked by the QTL identified in 2012 and combined analysis. Some 

common genomic regions were identified using common markers flanking the QTL identified in 

both years as well as in combined analysis.   

4.7.6 Ear length  
Eight QTL for ear length were identified on chromosomes 1, 2, 4, 5, 6, 7, 9, and 10 in 2012 

(Table 4.14). The QTL with large phenotypic effects on chromosomes 1, 2, 4, and 5 accounted 

for 42.5%, 19.3%, 23.9%, and 39.3% phenotypic variance, respectively. The remaining QTLs 

were with small effects. Four QTL were detected on chromosomes 5, 8, and 10 in 2013 and on 

chromosomes 1, 4, and 7 in combined analysis. QTL identified in bin 4.07 and bin 7.04 

accounted for higher phenotypic variance (>10.0%) while the remaining two were with small 

effect. Same marker dupssr34 in bin 4.07 was linked with QTL in both 2012 and combined 

analysis but with different phenotypic effect.   
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Table 4.14 Quantitative trait loci for ear length detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr Closest 
marker 

Position/Bin LOD  Gene effect Gene action R2 DPE 

  A D       

2012  1 bmc1955 236.5/1.08 5.9 -1.41 1.81 OD 42.5 B73 

  2 bmc1267 191.3/2.07 3.51 -1.41 1.00 PD 19.3 B73 

  4 dupssr34 212.1/4.07 6.39 -1.59 1.54 D 23.9 B73 

  5 bmc1046 15.5/5.02 3.13 0.85 1.45 OD 39.3 MP715

  6 dupssr15 209.5/6.06 3.71 -0.57 1.52 OD 5.3 B73 

  7 umc1301 187.9/7.03 2.61 -0.32 1.24 OD 4.7 B73 

  9 bmc1571 0.0/9.04 3.19 -1.27 -0.04 A 5.5 B73 

  10 phi117  7.0/10.04 3.88 1.19 1.00 D 2.5 MP715

2013 5 bmc1046 23.5/5.02 48.65 -7.49 8.65 D 57.4 B73 

  8 umc1069 220.1/8.08 3.35 -0.33 2.42 OD 4.3 B73 

  10 umc1827 132.1/10.04 5.83 -2.99 0.76 PD 13.2 B73 

  10 bmc1074 166.1/10.05 4.27 2.76 0.24 A 7.3 MP715

Overall 1 phi037 225.5/1.08 2.64 -0.17 1.00 OD 3.9 B73 

  4 umc1276 21.6/4.01 3.68 -0.49 1.06 OD 7.5 B73 

  4 dupssr34 202.7/4.07 2.93 -0.57 1.06 OD 10.6 B73 

  7 umc2332 229.2/7.04 3.04 -0.90 0.41 PD 12.4 B73 
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 

4.7.7 Ear circumference 

 
Many QTL were identified for ear circumference in 2012 compared to 2013 (Table 4.15). 

They were located on each chromosome except 5 and 10. Two QTL were identified on 

chromosome 4 and the remaining chromosomes had one QTL with varying phenotypic effects. 

Larger QTLs (>10% phenotypic effect) were detected on chromosomes 1, 2, 4, 7, and 9. In 2013, 

QTLs were identified on chromosomes 1, 4, and 8 with one QTL each and three QTL on 

chromosome 10. All QTLs except the one on chromosome 10 were with small effects.  

Combined analysis identified 5 QTL on chromosomes 1, 2, 3, 4, and 7. Only one QTL on 

chromosome 7 accounted for higher phenotypic variance (18.7%) in 2012. The QTL identified in 
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bin 7.04 in the combined analysis was with similar phenotypic variance (18.6%). The marker 

dupssr34 was linked with QTL on chromosome 4 in both 2012 and combined analysis. Likewise, 

QTL were identified on chromosome 1 in 2012 (bin1.10), 2013 (bin1.12) and across the year 

(bin 1.08) analysis.  

Table 4.15 Quantitative trait loci for ear circumference detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

 

Year Chr Closest 
marker 

Position/Bin LOD  Gene effect Gene action R2 DPE 

  A D       

2012 1 bmc2223 287.7/1.10 3.91 -1.01 1.12 D 33.8 B73 
 2 bmc1267 191.3/2.07 3.2 -0.99 0.96 D 19.9 B73 

  3 mmc022 120.4/3.05 3.17 -0.29 1.03 OD 4.9 B73 

  4 dupssr34 188.7/4.07 56.78 -5.34 6.06 D 18.1 B73 

  4 umc1503 293.1/4.09 2.59 -0.19 1.08 OD 3.9 B73 

  7 umc1710 214.1/7.04 2.51 -1.07 0.68 PD 18.7 B73 

  8 umc1327 7.0/8.01 4.06 1.07 1.05 D 1.3 MP715

  9 bmc1571 8.0/9.04 2.94 -0.71 0.85 D 12.7 B73 

2013 1 umc2100 364.0/1.12 3.27 1.58 0.21 A 6.6 MP715

  4 umc2289 306.1/4.11 3.09 1.70 -0.46 PD 7.6 MP715

  8 umc1069 220.1/8.08 3.16 -0.12 1.85 OD 3.5 B73 

  10 umc1827 132.1/10.04 6.43 -2.42 0.65 PD 14.3 B73 

  10 bmc1074 171.1/10.05 5.09 2.24 0.22 A 7.4 MP715

  10 umc2122 189.2/10.06 75.38 6.33 6.49 D 4.1 MP715

Overall 1 phi037 228.5/1.08 2.63 0.02 0.74 OD 2.1 MP715

  2 bmc1520 272.1/2.09 3.18 0.65 0.43 PD 2.9 MP715

  3 bnlg1496 258.0/3.09 3.55 0.76 -0.30 PD 9.7 MP715

  4 dupssr34 208.1/4.07 2.99 -0.39 0.65 OD 8.6 B73 

  7 umc2332 229.2/7.04 4.36 -0.75 0.38 PD 18.6 B73 
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 

4.7.8 Number of rows/ear 

 
Only two QTL on chromosomes 7 and 10 were responsible for number of rows/ear in 

2012 (Table 4.16). Both QTL were smaller and accounted for 2.9% and 4.6% phenotypic 
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variance, respectively. In contrast, six QTL were identified in 2013 on chromosomes 4 (bin 

4.11), 5 (bin5.02), 8 (bin8.08), 9 (bin 9.02) and 10 (10.04 and 10.05). The QTL region linked 

with marker bmc1046 on chromosome 5 accounted for large phenotypic variance (51%), but was 

not identified either in 2012 or combined analysis. Another QTL with large phenotypic effect 

(15%) was identified on chromosome 10 (10.05). Combined analysis over the years identified 

only one minor QTL on chromosome 10 (10.05), which accounted 6% of the total phenotypic 

variance. One QTL linked with marker bmc1074 on chromosome 10 was identified in 2012, 

2013, and as well as in combined analysis but it was minor in nature. Another major QTL in 

chromosome 10 was identified in 2013 but not in 2013 and in combined analysis.  

Table 4.16 Quantitative trait loci for number of rows/ear detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr Closest 
marker 

Position/Bin LOD Gene effect Gene action R2 DPE 

  A D       

2012 7 umc1301 183.9/7.03 3.66 0.15 0.85 OD 2.9 MP715

  10 bmc1074 186.2/10.05 2.77 -0.66 -0.37 PD 4.6 B73 

2013 4 umc2289 307.1/4.11 2.69 1.78 -0.30 A 5.6 MP715

  5 bmc1046 23.5/5.02 2.6 -2.04 2.16 D 51.3 B73 

  8 umc1069 220.1/8.08 3.69 -0.26 2.19 OD 4.7 B73 

  9 dupssr19 53.2/9.02 2.58 1.85 -0.46 PD 5.3 MP715

  10 umc1827 132.1/10.04 6.42 -2.91 0.90 OD 14.8 B73 

Overall 10 bmc1074 172.2/10.05 2.56 -0.35 0.34 D 5.6 B73 
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 

4.7.9 Number of kernels/row 

 
Many QTL were identified for number of kernels/row in both years 2012, 2013, and 

combined analysis (Table 4.17). Five QTL were identified on 5 different chromosomes in 2012. 

QTLs located on chromosomes 3 (3.06), 4 (4.07) and 8 (8.09) accounted for > 10% of the 

phenotypic variance. The largest QTL was located in chromosome 8 (8.09) with 20.6% of the 
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phenotypic variance. Other two QTL on chromosomes 5 (5.07) and 7 (7.02) were smaller and 

each accounted for < 10% of the phenotypic variance.  

Six QTL were identified in 2013 on chromosome 4(4.06), 5 (5.06), 8 (8.08 and 8.09), 

and10 (10.04). QTL on chromosomes 4 and 10 linked to umc1827 were larger with larger 

phenotypic variance 58.5% and 15.0%, respectively. Rest of the QTL was with less than 5% 

phenotypic effect. Combined analysis over the years identified large number of QTL. One QTL 

with small effect was identified on chromosome 2 (2.03) but no QTL was identified on  

Table 4.17 Quantitative trait loci for number of kernels/row detected in the F2:3 mapping 
population developed from the cross B73 x MP715.  

Year Chr Closest 
marker 

Position/Bin LOD Gene effect Gene action R2 DPE 

  A D       

 2012 3 umc1798 147.9/3.06 2.58 -1.75 2.17 OD 11.5 B73 

  4 dupssr34 208.1/4.07 8.46 -2.19 3.33 OD 23.0 B73 

  5 bmc1118 21.5/5.07 2.63 -0.53 2.00 OD 4.6 B73 

  7 phi034 137.2/7.02 4.75 0.18 3.37 OD 6.8 MP715

  8 dupssr14 241.1/8.09 4.34 -2.34 2.06 D 20.6 B73 

 2013 4 mmc0371 181.7/4.06 19.08 -15.37 13.39 D 58.5 B73 

  5 umc2198 0.0/5.06 5.42 0.71 6.40 OD 2.5 MP715

  8 umc1069 220.1/8.08 4.39 0.36 5.86 OD 3.5 MP715

  8 phi233371 264.5/8.09 3.2 -0.71 5.69 OD 4.3 B73 

  10 umc1827 132.1/10.04 6.5 -6.90 2.00 PD 15.0 B73 

  10 umc1648 163.1/10.04 2.55 4.55 -0.09 A 4.9 MP715

Overall 2 umc1185 91.2/2.03 3.12 -0.54 1.57 OD 4.9 B73 

  4 dupssr34 208.1/4.07 7.45 -2.02 2.33 D 19.0 B73 

  5 bmc1416 8.0/5.00 4.03 -0.59 2.83 OD 5.7 B73 

  7 phi034 124.7/7.02 3.14 -0.23 2.16 OD 3.5 B73 

  8 dupssr14 246.5/8.09 8.89 -2.27 2.20 D 23.6 B73 

  10 umc1381 115.0/10.03 2.55 1.55 -0.54 PD 5.7 MP715

  10 umc1827 132.1/10.04 2.70 -1.72 0.39 PD 5.5 B73 
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 
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chromosome 2 in 2012 and 2013. QTL regions in chromosomes 5 and 8 were identified in 2012, 

2013 as well as in combined analysis. A minor QTL on chromosome 5 flanked by markers 

umc2198 and bmc1118 was identified in both years. One QTL on chromosome 8 appeared 

consistent in both years and in combined analysis. This QTL region was flanked by the same 

markers dupssr14 and phi233374. The effect was higher in 2012 (20.6%) and combined analysis 

(23.6%) but was very small in 2013 (4.3%). The genomic regions in chromosome 5, 8, and 10 

were consistently identified. Furthermore, one QTL in chromosome 8 appeared consistently over 

the years and in combined analysis. 

4.7.10 100-kernel weight  
More QTL were identified for 100-kernel weight in 2012 compared to 2013 (Table 4.18). 

They were located on chromosomes 1, 2, 6, and 10. The QTL in bins 10.05 and 2.03 accounted 

for higher phenotypic variance but was not identified in 2013 or combined analysis. The 

remaining  were minor QTL that accounted<10% of the total phenotypic variance. Only three 

QTL were detected on chromosomes 4, 9, and 10 in 2013. One small effect QTL was identified 

on chromosome 4 flanked by common markers umc1503-umc2289 in 2013 and in combined 

analysis.  Likewise, the QTL region on chromosome 10, flanked by markers umc1827 and 

umc1648, in 2012 and 2013 may be the same QTL. Combined analysis revealed large number of 

QTLs on chromosomes 1, 3, 4, 5, 6, 7, and 8. Two QTL on chromosome 1 were flanked by 

markers umc1082 and umc2223 in 2012 and combined analysis. QTL with large phenotypic 

effect (9.3% and 12.9% in 2012 and combined analysis, respectively) were located in the same 

genomic segment. Similarly, QTL region on chromosome 10, identified in 2012and 2013, was 

linked to markers umc1648 and umc1827, respectively. Since both markers were in the same bin 

of chromosome 10 and 25 cM apart from each other, the two QTLs may be the same. 
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Table 4.18 Quantitative trait loci for 100 kernel weight detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr Closest 
marker 

Position/Bin LOD Gene effect Gene action R2 DPE 

  A D       

2012 1 umc2223 282.7/1.10 2.62 -1.46 0.74 PD 9.3 B73 

  2 umc1185 96.4/2.03 2.73 -1.16 1.64 OD 18.2 B73 

  6 umc1257 61.9/6.03 5.15 1.72 1.55 D 6.2 MP715

  10 umc1648 165.1/10.04 2.83 -0.55 1.79 OD 6.5 B73 

  10 bmc1074 190.2/10.05 3.66 -2.02 1.89 D 54.0 B73 

2013 4 umc2289 305.1/4.11 3.13 3.01 0.33 A 5.6 MP715

  9 umc1714 187.8/9.08 2.68 -2.77 2.26 D 10.9 B73 

  10 umc1827 132.1/10.04 6.97 -3.92 1.47 PD 17.6 B73 

Overall 1 dupssr26 126.4/1.04 5.18 -1.36 1.09 D 32.9 B73 

  1 bmc1955 257.7/1.08 3.13 -1.09 0.69 PD 14.1 B73 

  1 umc1082 276.7/1.09 3.04 -1.06 0.74 PD 12.9 B73 

  3 umc1978 150.7/3.06 4.39 -0.90 1.46 OD 13.4 B73 

  4 umc1503 296.1/4.09 3.83 0.27 1.52 OD 3.9 MP715

  5 umc1155 211.8/5.05 2.70 -1.10 0.47 PD 10.7 B73 

  6 umc1887 78.7/6.03 5.11 0.89 0.63 PD 4.6 MP715

  7 mmc0171 64.6/7.00 2.88 -0.44 1.41 OD 9.6 B73 

  8 bmc1782 94.8/8.02 2.75 -0.47 1.04 OD 7.0 B73 
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 

4.7.11 Grain yield  
 Grain yield is the most important trait in every crop and large number of QTL were 

identified in 2012, 2013, and combined analysis (Table 4.19) and many of these QTL were 

consistent over years. Five QTL were identified on chromosome 5, 8, and 10 with small 

phenotypic effects in 2012. Two QTL on chromosome 5 between markers bmc1208 and 

umc1155 might be same as they were located in the same region. In 2013, six QTLs were 

identified and new QTL were identified on chromosomes 3, and 6 in addition to 5, 8, and 10. 

One QTL with large phenotypic effect (58.9%) was identified in chromosome 8 but was not 
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identified in 2012 and combined analysis. The QTL region identified on chromosome 10 in 2013 

was also identified in combined analysis and was linked to marker umc1827. The phenotypic 

variance explained by this QTL was higher in 2013 (14.2%) than combined analysis (7.8%).   

Table 4.19 Quantitative trait loci for grain yield detected in the F2:3 mapping population 
developed from the cross B73 x MP715.  

Year Chr Closest 
marker 

Position/Bin LOD  Gene effect Gene action R2 DPE 

  A D       

 GY12 5 bmc1208 130.9/5.04 2.56 -4.13 41.59 OD 4.2 MP715
 5 umc1155 214.8/5.05 2.7 -9.97 39.37 OD 7.3 MP715

  5 umc2198 1.0/5.06 3.11 -24.28 40.12 OD 8.8 MP715

  8 dupssr14 256.5/8.09 3.24 -1.97 59.32 OD 4.1 MP715

  10 phi117 0.0/10.00 2.95 -1.83 38.56 OD 3.2 MP715

 GY13 3 mmc022 123.9/3.05 3.8 -30.15 126.34 OD 7.4 MP715

  5 bmc1237 180.8/5.05 2.97 -67.25 -6.49 A 4.7 MP715

  6 umc1020 151.1/6.05 2.68 79.57 49.73 PD 4.1 B73 

  8 umc1069 234.1/8.08 5.56 -24.07 181.06 OD 58.9 MP715

  8 phi233371 260.5/8.09 7.61 -8.46 194.20 OD 7.6 MP715

  10 umc1827 132.1/10.04 3.97 -96.77 67.91 PD 14.2 MP715

Overall 3 mmc022 127.9/3.05 3.41 -14.70 83.72 OD 6.6 MP715

  5 bmc1416 1.0/5.00 2.91 -24.18 45.59 OD 7.3 MP715

  5 umc1155 200.8/5.05 2.78 -37.09 63.49 OD 18.7 MP715

  7 dupssr11 164.2/7.02 4.36 -24.76 75.63 OD 16.8 MP715

  8 dupssr14 237.1/8.08 3.99 -33.47 80.04 OD 55.0 MP715

  8 phi233376 260.5/8.09 6.88 -14.99 111.58 OD 10.3 MP715

  10 umc1827 132.1/10.04 3.14 -31.27 39.77 OD 7.8 MP715
A, additive effect; D, dominance effect; DPE, direction of phenotypic effect 
R2 indicates the percentage of phenotypic variation explained by the QTL. 
 

The QTL on chromosome 5 and 8 appeared consistently in 2012, 2013, and in combined 

analysis. The QTL on chromosome 5 was flanked by markers bmc1237 and umc1155. The 

phenotypic variance accounted by this QTL was 7.3%, 4.7%, and 18.7% in 2012, 2013, and in 

combined analysis, respectively. Likewise, a QTL on chromosome 8 flanked by markers 

dupssr14 and phi233376 was consistently identified in both years. The phenotypic effect 
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accounted by this QTL was small in 2012, 2013, but higher in combined analysis. Although there 

was variation in phenotypic effect in different years, these two QTL on chromosomes 5 and 8 

were consistent in both years. 

4.8 Identification of Differentially Expressed Genes Using SSH Technique 

4.8.1 Phenotypic characterization of maize germplasm 

 
Aflatoxin accumulation in maize germplasm was measured in both 2013 and 2014. 

Highly significant differences among these germplasm were observed (Table 4.20). Analysis of 

variance showed no difference for replication, and year for aflatoxin accumulation. 

 

Table 4.20 Mean aflatoxin (log transformed) and raw aflatoxin (ng g-1) accumulation in different 
maize germplasm in 2013, 2014, and across the years. 

Germplasm Aflatoxin ( log-transformed) Aflatoxin ( ng g-1) 

2013 2014 Across year  2013 2014 Across year  

B73 7.13
ab

 7.45
a
 7.29

a
1347

b
1780

a
1563

b
 

Mp715 4.15
c
 4.98

b
 4.57

c
 74

c
 162

c
 118

d
 

Mp313E 4.18
c
 4.72

b
 4.45

c
 67

c
 118

c
 93

d
 

Mo18W 6.35
b
 7.02

a
 6.69

b
 590

c
 1133

b
 862

c
 

Va35 7.85
a
 7.62

a
 7.73

a
 2633

a
 2067

a
 2350

a
 

Mp420 4.73
c
 4.82

b
 4.78

c
 135

c
 133

c
 134

d
 

Mp719 4.56
c
 4.16

b
 4.36

c
 113

c
 73

c
 93

d
 

Grand Mean 5.56 5.82 5.69 709 781 745 

SE 0.33 0.26 0.20 222 152 145 

CV (%) 25.8 27.2 24.8 109.2 137.2 121.4 

* Values with same letter in the column did not differ significantly at P=0.05. 
 

Va35 recorded the highest amount of aflatoxin in both years followed by B73. Both lines 

were highly susceptible to A. flavus infection. Resistant germplasm like Mp715 and Mp313E 

showed the least amount of aflatoxin accumulation in both years. Mp420 and Mp719 also 

showed lower aflatoxin accumulation. The resistant reaction of the line Mo18W was moderate 
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because it showed relatively higher aflatoxin accumulation compared with the resistant 

germplasm. 

Table 4.21 Sources of variation and their F values for aflatoxin (log-transformed) raw aflatoxin 
(ng g-1) and husk cover rating  among germplasm grown in 2013, 2014, and across years. 

Source Aflatoxin ( log-transformed) Aflatoxin ( ng g-1) Husk cover (1-5)  

2013 2014 Pooled 2013 2014 Pooled 2013 2014 Pooled 

Var 21.21** 30.43** 52.03** 18.97** 32.44** 38.36** 6.35** 18.73** 15.7** 
Rep   0.57NS   0.41NS 2.84NS   0.85NS   1.21NS   0.43NS 3.13*   1.64NS  1.30NS 
Year  - -  0.93NS  - -    1.29NS  - -   3.91* 
Var*Year  -  - 1.13NS  -  -   0.87NS  -  -  0.70NS 
 

Similarly, husk cover, which was positively correlated with aflatoxin accumulation, was 

found highly significant among germplasm in both years and across the year (Table 4.21). Mean 

husk cover rating of these germplasm in both years is presented in Table 4.22. The highly 

susceptible varieties like B73 and Va35 showed the highest husk cover rating in both years. 

Table 4.22 Mean husk cover rating (1-5 scale) in different maize germplasm in 2013, 2014, and 
across the years. 

Germplasm 2013 2014 Across year 

B73 4
a
 3

b
 3.3

b

Mp715 1
c
 1

d
 1.0

e

Mp313E 2
bc

 1
d
 1.3

de

Mo18W 3
ab

 2
cd

 2.3
c

Va35 4
a
 5

a
 4.7

a

Mp420 2
bc

 1
d
 1.3

de

Mp719 2
bc

 2
bc

 2.0
dc

Grand Mean 2.4 2.1 2.3 

SE 0.49 0.34 0.33 

CV (%) 63.5 59.0 69.6 
* Values with same letter in the column did not differ significantly at P=0.05.  
 

Resistant germplasm Mp715 showed lowest husk cover rating. The husk cover rating in 

other resistant germplasm such as Mp313E and Mp420 was also low. Mo18 showed intermediate 
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husk cover rating which was a moderately resistant germplasm as evidenced from the data on 

aflatoxin accumulation (Table 4.21). 

Significant difference was observed for all measured agronomical attributes among these 

germplasm in both years as well as across the year (Table 4.23; Appendices 4-6). Mean 

comparison for pooled analysis for these traits revealed that Mp715 took the maximum number 

of days for silking (82 DAS) followed by Mo18W. Va35 was the earliest among these 

germplasm.  

Table 4.23 Mean value of different morphological and yield attributes in different maize 
germplasm (Averaged across 2013 and 2014). 

Germplasm PH EH SD EL EC RN GR KW GY 

B73 167
c
 87

d
 67

d
 14.0

c
13.3

ab
12

ab
16

ab
17.5

d
 123.2

b

Mp715 206
ab

 118
a
 82

a
 15.3

bc
12.7

b
12

b
20

a
20.5

bc
 78.5

c

Mp313E 215
a
 113

a
 76

b
 15.9

bc
12.8

b
12

b
19

a
21.3

ab
 133.7

b

Mo18W 195
b
 98

c
 81

a
 21.0

a
14.0

a
12

ab
18

a
19.8

c
 225.7

a

Va35 116
d
 55

e
 64

e
 15.3

bc
13.0

ab
12

ab
13

b
21.8

a
 215.7

a

Mp420 197
ab

 106
b
 73

c
 16.2

bc
13.7

ab
13

ab
18

a
17.9

d
 132.5

b

Mp719 188
b
 89

d
 73

c
 16.3

b
13.4

ab
13

a
19

a
18.2

d
 128.2

b

G Mean 183 95 74 16.3 13.3 12 18 19.6 148.2 
SE 6.0 2.0 0.6 0.7 0.4 0.53 1.4 0.4 6.8 

CV (%) 19.4 21.3 9.0 16.2 7.2 9.9 23.0 9.4 35.0 
*Values with same letter in the column did not differ significantly at 0.05. 
PH, Plant height; EH, Ear height; SD; Silking days; EL, Ear length; EC, Ear circumference; RN, 
Number of rows/ear; GR, Grains/ rows; KW, 100 kernel weight; GY, Grain yield/plot. 

 

Ear length was the highest in Mo18W followed by Mp719 and Mp420. Highest number 

of grains/row was observed in Mp719 followed by Mp715 and Mp313E, which were statistically 

similar. Highest 100 kernel weight was observed in Va35 (21.8gm) followed by Mp313E and 

Mp715. Mo18W recorded the highest grain yield/plot (225.7 gm). 
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The relationship between morphological traits in corn germplasm was studied using 

Pearson’s correlation coefficients (Table 4.24). There was significant positive correlation 

between aflatoxin accumulation and husk cover rating in these germplasm. Germplasm with 

open husk like B73 and Va35 were highly susceptible to A. flavus and aflatoxin accumulation. 

Similar relationship was also observed for F2:3 mapping population in our field experiment in 

2012 and 2013. Highly significant negative correlations were observed between number of 

kernels/row with aflatoxin accumulation and husk cover in 2013 but not in 2014. Likewise, 

significant positive correlation between ear circumference and ear length was observed in 2014 

but not in 2013. 

Table 4.24 Pearson’s correlation coefficients among phenotypic traits in maize germplasm in 
2013 (normal font) and 2014 (bold font). 

  AF HC EL EC RN KR KW GY

AF 1 0.77* 0.04 0.04 0.27 -0.28 -0.04  0.69 

HC 0.96** 1 -0.37 -0.14 0.44 -0.51 0.12  0.67 

EL 0.09 0.04 1 0.86* 0.34 0.38 0.00  0.38 

EC 0.34 0.28 -0.30 1 0.66 -0.04 -0.30  0.47 

RN -0.39 -0.19 -0.51 0.17 1 -0.45 -0.23  0.61 

KR -0.91** -0.80* -0.10 -0.07 0.50 1 0.23  -0.24 

KW 0.17 0.08 0.26 -0.75 -0.52 -0.53 1 0.35 

GY 0.61 0.59 0.75 -0.09 -0.54 -0.53 0.26 1
*Significant at the 0.05 probability level; **Significant at the 0.01 probability level  
AF, Aflatoxin concentration (natural log-transformed); HC, husk cover rating (1-5 scale); EL, 
Ear length; EC, Ear circumference; RN, Number of rows/ear KR, Kernel number/row; KW, 100 
kernel weight;  GY, Grain yield/plot). 

4.8.2 SSH library construction, sequence assembly and EST annotation 

 
To identify the Aspergillus flavus induced genes in maize, SSH experiment was 

performed using A. flavus resistant Mp715 and susceptible B73 maize genotypes. Four hundred 

eighty clones were randomly selected from the SSH-cDNA library and used for Sanger 

sequencing. For further confirmation of the quality of inserts, these transformed cells were 
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genes involved in synthesis and hydrolysis of starch and mobilization of sugars. Genes having 

high similarity with UDP-sugar pyrophospharylase (P2C01), asparagine synthetase (P2H09), 

transaldolase (P2H11), trehalsoe-6-phosphate synthase (P2D07), fructose-6-phosphate P4G11), 

phosphoglyceromutase (P4H09), xylose isomerase (P1B06), fructose-1,6-bisphosphatase 

(P1E10), putative oxidoreductase (P4H12), phosphofructokinase (P5A06), glutamine-dependent  

NAD (+) synthetase (P4G06), ADP-glucose pyrophosphorylase embryo small subunit (P5H02), 

shikimate kinase (P5G04), acyl-thioesterase (P4D10) and beta-galactosidase (P4E08) were 

highly expressed in reverse Northern hybridization experiment when inoculated Mp715 was used 

as a probe.  

4.8.3.2 Genes associated with signal transduction pathway 
 

Large number of genes (7.3%) were highly expressed in response to A. flavus infection 

that was related to signal transduction. Genes involved in the signal transduction pathways are 

mainly plant receptor protein kinases (RPK) which are responsible for the perception of 

pathogen signal and accelerate inducible defense.  ESTs highly similar to protein kinase, mitogen 

activated protein kinase, CBL interacting proteins were highly expressed when probed with 

cDNA from inoculated resistant inbred. Transcripts highly similar to leukocyte receptor cluster 

membrane protein (P2E09), CBL-interacting protein kinase (P2B02), alcohol dehydrogenase 

(serine/threonine protein kinase (P3E11), flower specific gamma-thionin precursor (P3F04), 

mitogen activated protein kinase 7 (P1A08), plasma membrane associated protein (P1A01), 

protein tyrosine phosphatase (P3H12) were differentially expressed in SSH library. 

4.8.3.3 Transcription factors 
 

Transcription factors control the transcriptional regulation by suppressing or activating 

the expression of other downstream genes involved as a response of pathogen attack (Guo et al., 
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2011). Many genes involved in transcriptional activities were differentially expressed in SSH 

library. Genes such as elongation factor 1-delta (P2G01), eukaryotic translation initiation factor 3 

(P2F08), bZIP transcription factors (P2B01), zinc finger protein binding protein (P2G01), and 

zinc finger protein (P3C07) were some of the important transcription factors differentially 

expressed in our library. These were highly expressed in resistant inbred, Mp715, in reverse 

Northern hybridization experiment. 

4.8.3.4 Genes involved in stress response 
 

Many stress response genes were found to express in host-plant after pathogen attack 

(Cleveland et al., 2004; Lee et al., 2012).  Many genes which were previously identified to be 

involved in the stress response were differentially expressed in our SSH library. Late 

embryogenesis protein, phosphatase, wound-induced proteins were involved in stress response. 

ESTs similar to late embryogenesis abundant protein (P4H06),  Win1 precursor (P2B05), protein 

phosphatase 2C (P2B05), wound-induced protein WIN2 Precursor (P5H01), cysteine proteinase 

inhibitor (P3A03), Dnaj heat shock protein (P2F10), chaperone protein (P3C04), Bowman-Birk 

type wound induced proteinase inhibitor (P2A03), meloidogyne-induced giant cell protein 

(P2H09), and stromal ascorbate peroxidase (P5E06) were differentially expressed in our SSH 

library ( Supplementary Table  S1). The expressions of these genes were higher in resistant 

inbred Mp715 after the inoculation of the fungus which was confirmed by reverse Northern 

analysis.  

4.8.3.5 Genes associated with disease resistance 
 

Pathogenesis-related proteins were the mostly induced disease resistance genes in 

response to pathogen attack by host plant (van Loon et al., 2006; Luo et al., 2011). Large number 

of genes (8.0%) related to disease resistance were differentially expressed in our library. Several 
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genes annotated as PR-proteins, chitinase, and multidrug resistance were found in SSH library. 

ESTs highly similar to pathogenesis related protein such as PR10 (P2H04), PR1 (P1A05), PR4 

(P1B07), PR5 (P3H05) were identified in our SSH library. Reverse Northern analysis with 

inoculated probe of Mp715 showed higher expression for these genes. In addition to these PR 

proteins, other disease resistance genes such as chitinase (P1G01), multidrug resistance protein 

(P4G02), vacuolar defense protein (P5B09), leucine rich repeat family (LRR) family protein 

(P1B05), and Barperm1 (P3C09) were also found differentially expressed in our experiment.   

4.8.4 Gene expression analysis in different maize germplasm: Semi-quantitative RT-PCR 

 
 To validate the expression pattern of the genes from reverse northern analysis, semi-

quantitative RT-PCR was performed for the selected genes involved in important physiological 

pathway such as disease resistance. Altogether thirty highly expressed genes were analyzed for 

semi-quantitative RT-PCR analysis at three time points (0 hr, 24 hr, and 48 hr) after A. flavus 

inoculation (Figure 4.20 and Table 4.25). These genes were screened in seven maize inbreds 

with different level of resistance to A. flavus infection (Resistant: Mp715, Mp719, Mp420, 

Mp313E; Moderately resistant: Mo18W; Susceptible: B73, Va35). These genes showed 

differential expression pattern at different time points in different resistant and susceptible 

germplasm. All genes were highly expressed in Mp715 and Mp719 at each time point with the 

exception of P1A06, P1B05, P4A06, and P5G05. Genes associated with disease resistance such 

as PR4 (P1B07), leucine rich repeat family protein (P1B05), and PR5 (P3C05) was highly 

expressed in resistant inbreds. Higher expression in LRR family protein gene (P1B05) was 

observed at 24 and 48 HAI in resistant inbreds as compared to control. But its expression was 

reduced at 48 HAI in comparison to control in susceptible inbredVa35. The expression of PR4 

increased along with time in resistant inbreds but decreased in susceptible inbred, Va35. 
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selected for RT-PCR, our hypothesis was that the expression pattern on these germplasm should 

follow the similar expression pattern. The expression analysis shows the clear differences 

between resistant and susceptible inbreds for these selected genes. Overall, RT-PCR analysis 

showed the similar pattern of reverse Northern hybridization. As  the genes involved in disease 

resistance, stress response, and signal transduction were highly expressed all resistant inbreds as 

compared to susceptible, it shows the possibility of same mechanisms involved in the resistance 

to aflatoxin. And these genes should be the potential source for further evaluation and 

introgression through breeding program for the development of resistant inbreds.  

Table 4.25 List of the genes used for RT-PCR screening in maize germplasm. 

SN Clone ID Name of the gene Sequence (5'-3') 

1 P1A01 plasma membrane associated protein [Zea 
mays] 

F:TCTACGTGCTCATGCTCCAC 
R:TTGACACCACGACCTCATGT 

2 P1A03 Hypothetical protein  F:GGCATGGAATGGAACTCACT 
R:CAGGTGCAACATCACAGAGG 

3 P1A06 uncharacterized protein LOC100191593 
precursor [Zea mays]  

F:TGACAGTCGGCAATAAGCTG 
R:CGCAGTTGACGAACTGGTAG 

4 P1A12 trehalose-6-phosphate synthase [Zea mays] F:ACCTATGCAGCGGGTATGAC 
R:CTCCTTCATCGACACAAGCA 

5 P1B05 leucine Rich Repeat family protein  F:TGACGGACATATTGCTGCAT 
R:TTACCATTCGGCTTGAGGTC 

6 P1B06 xylose isomerase [Zea mays] F:ATAGCCAAGGAGCTGCTCAA 
R:CCAGGCTGTAGCCTCAGAAC 

7 P1B07 pathogenesis-related protein 4 F:TGACAGTCGGCAATAAGCTG 
R:CGCAGTTGACGAACTGGTAG 

8 P1D06 WD40 repeat-containing protein SMU1-like F:ACCTCCTTGTCCGCACATAC 
R:ATGCCAGCATTTCAGAATCC 

9 P1E12 metallothionein-like protein type 2  F:ACCACCACCCAGACTGTCAT 
R:AAGGCGATGGAGCAGATAGA 

10 P1G07 nucleoside diphosphate kinase 1 
[Zea mays]  

F:CATCATCAGTCGCTTCGAGA 
R:CATCCAAGCTCAACTGCTCA 

11 P2B09  BETL-9 protein precursor [Zea mays] F:TGCTGCTGAAACTGATTTGG 
R:CGAGTGGTGTTCTTGCTTGA 

12 P2C06 adenine nucleotide translocator [Zea mays] F:TTGTCGATGTCTACCGCAAG 
R:AGAGGATCTGGAGCTGGTCA 

13 P2C09 globulin-1 S allele precursor [Zea mays] F:TCGGGTTCTTCTTCTTCCAA 
R:TTCACCTGCCTGTAGCTCCT 

14 P2C12  eukaryotic translation initiation factor 3 
subunit 7 

F:AAGTCGCGGAACTTCTTCAA 
R:GCAACCAAGCTTGTCTCCTC 

15 P2D10 activator of 90 kDa heat shock protein 
ATPase 

F:GAACAGCTATCCTGCCCAAG 
R:CCAGGTGACTGAAGCTGTGA 

16 P2E04 putative 23S ribosomal RNA F:CGCCAACGTGTACCCTTACT 
R:GCTTGTTGCCGTAGAAGAGG 

17 P2E05 cp protein  F:AAGGTGGGGAGCTACTGGTT 
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SN Clone ID Name of the gene Sequence (5'-3') 

R:CCTGCAGTGAAATGGACCTT 

18 P2E09 Leukocyte receptor cluster member-like 
protein 

F:AAGGATGCGAAAAATGGTTG 
R:ACCCATGTTCCGACTGTAGC 

19 P3C05 basic pathogenesis-related protein PR5 F:CGCAAATGCAAAGTTCTCAA 
R:AACGATCACAGGGACTCCAC 

20 P3F03 S-adenosylmethionine synthetase 1 [Zea 
mays] 

F:CATGTTTGGGTATGCGACTG 
R:CACCGTAGGTGTCGATGATG 

21 P4A02 hsc70-interacting protein [Zea mays]  F:GTGATGCCAATGCTGCTCTA 
R:CTCTTGGCCTTGTCGTAAGC 

22 P4A06 metallothionein F:TCCACACAACACACAGCTCA 
R:CCGTCGTAGGAGGAGGAGTA 

23 P4E09 chaperonin [Zea mays] F:TCTTCGGCTTGGCTACAGTT 
R:AAACCCTGGACAAGTTCGTG 

24 P4F10  embryonic abundant protein 1 [Zea mays] F:CAGGTCAGGAAAGCAGGAAG 
R:ACTTGGACTCGTCGATGCTG 

25 P5A05 cation transport regulator-like protein 2 
isoform  

F:TTCGTTTCCACTCCAGATCC 
R:CAGACGATACAGCCTCACGA 

26 P5B07 60S ribosomal protein L7a [Zea mays] F:CGATCGAACTTGTTGTGTGG 
R:AGAAGCAAAGCTGCATGGAT 

27 P5C09  RNA-binding protein 25 [Zea mays] F:GACTATCCCATGGACCGAGA 
R:ACAGGTCTGTAACCGCCAAC 

28 P5D12 lipid transfer protein [Oryza sativa F:TTAGCACTCGCAGGTCACAG 
R:CGGATGTAGCTCCCGTAGTT 

29 P5F05 basic leucine zipper and W2 domain-
containing protein 

F:TCTGGTTGCCAAAGGGATAG 
R:CTCGTGCAAAAAGCATTCAA 

30 P5G05 ubiquitin C-terminal hydrolase F:GAGCAAGATTGTGTGGAGCA 
R: AAACAAATCAGCCGATGACC 

31 - Actin1 F:TGACCTCACCGACCACCTAA 

   R: CCAGGGACGTGATCTCCTTG 
 

4.8.5 Quantitative real-time RT-PCR (qPCR) for gene expression in germplasm 

 
 After the evaluation of expression pattern of selected genes through semi-quantitative 

RT-PCR, six important genes showing high expression and involvement in disease resistance 

pathway were selected for real-time qPCR to validate the expression at different point of 

inoculation (Table 4.26 and Figure 4.21). These selected genes were screened on the same set of 

inbreds. These genes showed differential quantitative expression and the change in expression 

(fold change) were compared with control (0 hr) in each germplasm at different time point. 

However, genes like PR4, LRR family protein, RNA binding protein and ubiquitin C-terminal 

hydrolase were highly expressed among resistant inbreds. PR4 was highly expressed (9.57 fold) 
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in susceptible inbred Va35 at 48 hours after inoculation (HAI) as compared with control, but 

extremely low in B73. In other resistant inbreds such as Mp719 and Mp420 its expression 

increased along with time and was 4.2 and 3.1 times higher as compared with their respective 

control. In contrast, PR4 exhibited highest expression in Mp715 and Mp313 at 24 HAI and 

decreased afterwards. Likewise, expression of gene for LRR family protein was slightly higher 

in B73 compared to Va35 at 48 HAI, but their expression was lower as compared with other 

resistant inbreds. 

Table 4.26 List of genes used for real-time RT-PCR study. 

Clone ID Name of the gene Sequence (5’-3’) Product 
size(bp) 

P1MP715-B73B07-
SP6 

pathogenesis-related protein 4  F:TGACAGTCGGCAATAAGCTG 
R:CTGCTGCGGGTTGTAGAAGT 

118 

P1MP715-B73B05-
SP6 

leucine Rich Repeat family 
protein  

F:GTACATTCGGTTGCGATGTG 
R:TCTGCCACCGGCTCTATACT 

121 

P3MP715-B73C05-
SP6 

basic pathogenesis-related 
protein PR5 

F:TTTGGAAGGACCCTGTCTTG 
R:CGCACACCAATAGAGAGCAA 

123 

P5MP715-B73A05-
SP6 

cation transport regulator-like 
protein 2  

F:TCGTGAGGCTGTATCGTCTG 
R:TCCTCCAAGTTCAAGGATCG 

104 

P5MP715-B73C09-
SP6 

RNA-binding protein 25 [Zea 
mays] 

F:GGCAACCGTATTGTTCGAGT 
R:TCATAGCTCCGTTCCCTGTC 

137 

P5MP715-B73G05-
SP6 

ubiquitin C-terminal hydrolase F:TCATTTGCCTTCTTGTCGTG 
R:TGAACCTTGCCCTATTCAGG 

91 

- Actin1 F:GAAACCTTCGAATGCCCAGC 105 
  R:CACACCATCACCGGAATCCA  

 

Expression pattern of gene for LRR family protein (P1B05) shows the similar pattern as PR4 

(P1B07) in Mp715, Mp719, and Mp420. PR4 (P1B07), PR5 (P3C05), and LRR repeat family 

protein gene (P1B05) responded quickly to fungus inoculation and their transcription reached to 

maximum at 24 HAI and decreased at 48 HAI in Mp715. But, their expression increased along 

with time in Mp719 and Mp420. Transcript accumulation of cation transport regulator-like 

protein increased along with time after fungal inoculation in resistant inbreds. Highest fold 

change (10.35) in expression was observed in Mp719 at 48 HAI as compared to control.  
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In contrast, its expression reduced in Va35 as time advances after inoculation. All six genes were 

highly expressed at 48 HAI in Mp719, and extremely higher change in their expression between 

24 and 48 HAI was observed. PR4 was highly expressed in Mp313E at 24 HAI, but almost 

similar in 24 and 48 HAI for rest of the genes. However, not much difference in expression was 

observed between 24 and 48 HAI for all selected genes in Mo18W. The expression pattern of 

selected genes in qPCR was in agreement with the result of RT-PCR.   

4.9 Mapping of differentially expressed genes found in and around QTL regions 
responsible for resistance to aflatoxin accumulation 
 

The expressed genes identified from suppression subtraction hybridization (SSH) library 

were mapped on to the maize linkage map generated in this study. The genes with various 

biological functions were located in and around different bins on the chromosomes where QTLs 

for aflatoxin resistance were identified in our mapping population (Table 4.27). Large numbers 

of differentially expressed genes were identified in QTL regions on different chromosomes 

(Figure 4.22). Many genes are found in the region between the marker umc2150-umc1509 in 

chromosome 4. These two markers were linked with QTLs responsible for aflatoxin resistance in 

our population. So, identification and localization of resistance genes in this region will be 

helpful to select the resistance genes in future. One EST, P1B07, was found in this region has 

higher similarity to pathogenesis-related protein 4 (PR4), which was associated with disease 

resistance. Genes related to stress like Win1 precursor (P2B05), Wheatwin-2 (P2HO4), wound 

induced protein WIN2 precursor, and defense related proteins like putative vacuolar defense 

protein (P5B09) were identified in this chromosomal region. As their function suggest they were 

involved in important physiological functions like biotic and abiotic stress and defense. These 

genes may be important in host-plant resistance mechanism because of their location in the QTL 

region. Important ESTs, which were highly similar to AAA-type ATPase family protein (P1H01) 
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and cation transport protein chaC (P5F01), were located between marker umc1171 and bmc1208 

where QTL was identified in 2012. Likewise, many differentially expressed genes identified 

from our library were located in chromosome 10 between the marker umc1381 and umc1827. 

Genes with high similarity to aspartic proteinase (P1A10) and S-adenosylmethionine synthetase1 

(P3F06) were found in this region. In addition, genes highly similar to chitinase (P1G01) and 

nucleic acid binding protein (P4F06) were located in chromosome 10 near the linked marker 

umc1827. 

Table 4.27 List of the expressed genes from SSH library located in and around QTLs responsible 
for aflatoxin resistance. 

SN Clone Protein Chr Bin 
Homology 
(%) 

E-value 

1 P4B09 
aldehyde dehydrogenase 
[Sorghum bicolor] 

1 1.03 99.0 1.302e-90  

2 P4G12 
pathogenesis-related protein 1 
[Zea mays] 

1 1.03 100.0 7.337e-93  

3 P4D02 
40S ribosomal protein S19-
like 

1 1.04 99.6 9.879e-112  

4 P5F10 
Bromodomain associated 
family protein 

1 1.05 99.7 0  

5 P2F08  
eukaryotic translation 
initiation factor 3 subunit B  

1 1.05 99.5 0  

6 P1C08 
peptidylprolyl isomerase, 
putative 

1 1.06 100.0 1.665e-133  

7 P5C02 
60S ribosomal protein L17 
[Zea mays]  

1 1.06 97.9 4.558e-115  

8 P5B08 
pathogenesis-related protein 5 
[Zea mays] 

1 1.06 98.0 1.014e-91  

9 P3A07 putative acyl-CoA synthetase 3 3.08 99.2 1.763e-54  

10 P2C12   
eukaryotic translation 
initiation factor 3 subunit  

3 3.08 98.8 0  

11 P1B04 
asparagine synthetase2 [Zea 
mays]  

3 3.09 98.6 3.894e-63  

12 P2E08 protein phosphatase 2C 3 3.09 98.8 0  

13 P1A06 
uncharacterized protein 
LOC100191593 precursor 

4 4.02 100.0 6.336e-110  

14 P1B07 pathogenesis-related protein 4 4 4.02 100.0 6.336e-110  
15 P2A08  barwin-like 4 4.02 100.0 6.916e-110  
16 P2B01  bZIP transcription factor 4 4.02 99.0 1.270e-100  
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SN Clone Protein Chr Bin 
Homology 
(%) 

E-value 

17 P2B05  win1 precursor [Zea mays] 4 4.02 100.0 1.651e-109  
18 P2H04   Wheatwin-2 4 4.02 100.0 1.609e-109  

19 P3A06 
prohevein [Hevea 
brasiliensis] 

4 4.02 100.0 1.611e-109  

20 P3A11 pi1 [Solanum lycopersicum] 4 4.02 100.0 1.542e-109  

21 P4C05 
pseudo-hevein [Hevea 
brasiliensis] 

4 4.02 100.0 1.662e-109  

22 P4G05 win2 precursor [Zea mays] 4 4.02 99.5 7.691e-108  

23 P5B09 
putative vacuolar defense 
protein  

4 4.02 100.0 1.606e-109  

24 P5H01 
Wound-induced protein 
WIN2 precursor 

4 4.02 100.0 7.318e-110  

25 P1A08 
mitogen activated protein 
kinase 7 

5 5.03 97.9 1.633e-156  

26 P1D01 
uncharacterized protein 
LOC100276217  

5 5.03 97.2  0  

27 P1E09 
catalase isozyme B [Zea 
mays]  

5 5.03 98.3 1.226e-81  

28 P2A01  
senescence-associated protein 
12 

5 5.03 100.0 2.177e-83  

29 P2E06 
T cytoplasm male sterility 
restorer factor 2 

5 5.03 100.0 7.833e-98  

30 P3C07 zinc finger protein-like 5 5.03 98.5 3.200e-95  

31 P3A10 
acetyl-coenzyme A 
carboxylase ACC1A 

5 5.03 100.0  8.895e-157  

32 P4D09 fibropellin III 5 5.03 99.2 1.758e-54  
33 P4H12 putative oxidoreductase  5 5.03 99.2 1.958e-123  
34 P5H04 putative MAPK [Zea mays] 5 5.03 97.9 3.262e-156  

35 P3F01 
meloidogyne-induced giant 
cell protein-like protein 

5 5.04 100.0 5.689e-114  

36 P3F11 
lysine ketoglutarate reductase 
trans-splicing related 1  

5 5.04 100.0 1.318e-55  

37 P2E03  
salt tolerant correlative 
protein  

5 5.04 98.8 6.279e-79  

38 P1C09 
conserved hypothetical 
protein  

5 5.04 96.1 2.595e-88  

39 P1H01 
AAA-type ATPase family 
protein  

5 5.04 98.2 1.106e-74  

40 P3H01 
Cation transport regulator-like 
protein 2 

5 5.04 100.0 5.537e-114  

41 P5A05 
cation transport regulator-like 
protein 2 isoform  

5 5.04 100.0 5.872e-114  

42 P5D10 putative cation transporter 5 5.04 100.0 5.800e-114  
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SN Clone Protein Chr Bin 
Homology 
(%) 

E-value 

[Potamogeton distinctus] 

43 P5F01 
cation transport protein chaC 
[Zea mays] 

5 5.04 100.0 3.082e-114  

44 P3B08 
vacuolar processing enzyme1 
precursor [Zea mays] 

5 5.05 100.0 1.285e-105  

45 P1E05 
Kinase-like protein 
[Medicago truncatula] 

5 5.05 97.4 1.052e-87  

46 P3D10 lammer-type protein kinase  5 5.05 100.0 9.802e-107  

47 P4E10 
eukaryotic translation 
initiation factor 2D-like 

5 5.05 100.0 5.504e-154  

48 P5E10 legumain 5 5.05 100.0 1.271e-105  
49 P5G10 cingulinW1 precursor  8 8.04 100.0 5.375e-159  

50 P2E09 
Leukocyte receptor cluster 
member-like protein 

8 8.04 100.0 2.000e-68  

51 P2B09  
BETL-9 protein precursor 
[Zea mays] 

8 8.08 96.7 3.804e-65  

52 P3C04 chaperone protein dnaj 8 8.08 92.2  8.122e-78  

53 P3H04 
cysteine proteinase inhibitor 
[Zea mays] 

8 8.08 100.0 1.152e-140  

54 P4F09 
cystatin-1 precursor [Zea 
mays] 

8 8.08 100.0 1.203e-140  

55 P5H10 cystatin 8 8.08 99.6 1.978e-138  

56 P3A09 
hemolysin family calcium-
binding region  

9 9.02 97.7 4.250e-145  

57 P3G03 
ATP-dependent Clp protease 
proteolytic subunit 2 

9 9.02 100.0 3.725e-66  

58 P2D11   
Cytochrome P450 family 
protein 

9 9.03 96.8 1.621e-84  

59 P3F12 60S ribosomal protein L11 9 9.03 98.1 2.601e-97  

60 P4G03 
elongation factor 1-alpha [Zea 
mays]  

9 9.03 99.3 0  

61 P5A10 protein vip1-like 9 9.03 100.0 0  

62 P2F06  
ubiquitin-conjugating enzyme 
E2 32-like  

9 9.05 99.4 6.928e-178  

63 P5A04 
serine/threonine-protein 
kinase AtPK2/AtPK19-like 

9 9.05 100.0 2.635e-127  

64 P5C04  XK-related protein 8  9 9.05 96.2 6.053e-104  
65 P4C07 histone H2A [Zea mays] 9 9.06 97.0 7.322e-138  
66 P2G01  YT521-B-like family protein 9 9.07 99.4 0  

67 P2G10  
OmpA/MotB domain-
containing protein 

9 9.07 99.7 0  

68 P3D08 
acidic ribosomal protein P40 
[Zea mays] 

9 9.07 99.5 4.662e-100  
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69 P3H10 
acidic ribosomal protein P40 
[Zea mays]  

9 9.07 99.5 4.511e-100  

70 P2A10  
diphosphonucleotide 
phosphatase1 [Zea mays] 

10 10.03 100.0 3.318e-111  

71 P2G12  
E3 ubiquitin protein ligase 
UPL1 

10 10.03 99.3 0  

72 P1A10 
aspartic proteinase [Oryza 
sativa] 

10 10.03 98.3 2.57E-84 

73 P3E08 
2-oxoisovalerate 
dehydrogenase alpha subunit 

10 10.03 100.0  1.739e-79  

74 P3F03 
S-adenosylmethionine 
synthetase 1 [Zea mays] 

10 10.03 94.7 1.222e-150  

75 P3F04 
flower-specific gamma-
thionin precursor [Zea mays] 

10 10.03 100.0 4.275e-120  

76 P4F06 
nucleic acid binding protein 
[Zea mays]  

10 10.04 99.6 7.689e-139  

77 P1F06 
RND family efflux transporter 
MFP subunit 

10 10.04 99.3 2.490e-62  

78 P1G01 chitinase [Zea mays] 10 10.04 93.9 1.357e-96  

79 P2B12  
ubiquinol-cytochrome C 
reductase iron-sulfur subunit 

10 10.04 98.9 2.425e-132  

80 P2H03 
putative mitochondrial Rieske 
protein 

10 10.04 98.9 2.598e-132  

81 P2H10  
cytochrome b-c1 complex 
subunit Rieske  

10 10.04 98.9 2.576e-132  

82 P3B06 putative 23S ribosomal RNA  10 10.04 99.3 1.065e-61  

83 P3D04 
cytochrome b-c1 complex 
subunit Rieske 

10 10.04 98.9 2.728e-132  

84 P4F02 
indole-3-glycerol phosphate 
synthase-like 

10 10.06 91.6 4.182e-170  
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CHAPTER 5 
DISCUSSION 

 

5.1 Genetic variation, heritability, and correlations 
 

Many growth and yield attributes were measured in an F2:3 mapping population evaluated 

in replicated field experiments for two years at the LSU AgCenter Central Research Farm, Baton 

Rouge. Analysis of variance showed significant difference within the mapping population for all 

morphological traits in both years with the exception of ear length, maturity days, tasseling days, 

and plant height in 2012. Pooled analysis for various traits showed the significant difference 

among mapping families for various traits except plant height, ear height, number of rows/ear, 

number of kernels/row, and grain yield. The difference in morphological traits showed the 

genetic variability present in the mapping population. Variation in morphological characteristics 

were also reported in previous experiment involving different types of mapping populations 

(Sibov et al. 2003; Li et al. 2007; Sabadin et al. 2008; Samayoa et al. 2014). Non-significant 

genotype (G) x year (Y) interaction for some traits like plant height, maturity days, husk cover, 

ear length, and number of rows, suggested less influence of environment and consistency in trait 

manifestation.  

Aflatoxin accumulation in grain after artificial inoculation of A. flavus was the main trait 

of interest in our study. Raw aflatoxin and log-transformed values were highly significant in both 

years as well as in combined analysis. All other source of variation such as replication, year, and 

genotype (G) x year (E) were highly significant. Similar results were obtained from previous 

mapping experiments for resistance to aflatoxin accumulation (Widstrom et al. 2003; Paul et al. 

2003; Busboom and White 2004; Brooks et al. 2005; Robertson. 2007; Bello 2007; Warburton et 

al. 2009, 2011; Mayfield 2011). Variability and inconsistent nature of this trait in different 
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experimental conditions such as high temperature and moisture stress during silking period are 

known to favor aflatoxin accumulation (Payne 1992). 

High heritability was observed for traits like plant height, tasseling, days to silking, 

maturity, and ear length. Intermediate heritability was observed for ear height and number of 

rows/ear. Higher heritability for plant height and ear height was reported by Sibov et al. (2003). 

Lower heritability was observed for husk cover, ear circumference, 100-kernel weight, and 

aflatoxin accumulation. The estimated heritability for aflatoxin accumulation in our experiment 

was low (0.35), which is in agreement with earlier reports (Betrán et al. 2002, 2006; Warburton 

et al. 2009, 2011; Willcox et al. 2013). Low heritability observed for this trait suggested that 

multi-location testing should be done for increasing selection response.  

The aflatoxin content was positively correlated with husk cover rating. Highly significant 

positive and consistent correlation was observed between aflatoxin accumulation and husk cover 

ratings in both years of field evaluation (Table 4.4). Aflatoxin accumulation was found to 

increase up to 200% when inoculated with southeastern corn borer (Williams et al. 2002). There 

were no concrete evidences to correlate the open husk characteristics with high accumulation of 

aflatoxin till now, but earlier study suggested the role of tight husk for the prevention of fungal 

spores to the ear (Barry et al. 1986). The open husk cover provides the easy access to rain water, 

moisture, and ear feeding insects. The insect damage of ears creates highly favorable 

environment for fungus establishment, growth, and infection leading to high accumulation of 

aflatoxin in grain. Further investigations and field evaluations are necessary to verify the 

relationship between open husk and aflatoxin so that it could provide an indirect means to reduce 

aflatoxin accumulation. Likewise, ear circumference and number of rows were positively 

correlated to aflatoxin accumulation but were highly significant only in 2013 (Table 4.4). Larger 
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ear circumference and rows number increases the ear size and ear surface area, which provides 

the higher surface area for the growth and development of fungus leading to more accumulation 

of aflatoxin. These traits with high correlation can be selected simultaneously during selection 

and could be used for the improving aflatoxin resistance. 

5.2 QTL mapping of aflatoxin content and husk cover 
 

High level of polymorphism observed between parents was helpful for construction of 

linkage map. The order and position of markers in our map was in correspondence with other 

maps from maize genome database and other published map (Lawrence et al. 2008; 

www.maizegdb.org). All chromosomes were resolved in to single linkage group except linkage 

group 5. There was some rearrangement on marker position in chromosome 9 which could be 

due to inversion or some genotyping errors. Warburton et al., (2011) also reported rearrangement 

of marker positions in chromosome 2 in a population derived from Mp715 x T173.  

Previous mapping studies on aflatoxin resistance using different mapping population 

identified several QTL all over the maize genome. Our mapping experiment identified QTL with 

varying phenotypic effects on all chromosomes. QTL alleles from both parents were responsible 

for reducing aflatoxin accumulation. QTL with moderate phenotypic variance (9%) was detected 

in chromosome 3 (bin 3.08) only in 2012. However, past experiments identified QTL in a nearby 

chromosome region (bins 3.05-3.07) from resistant parents (Paul et al. 2003; Brooks et al. 2005; 

Willcox et al. 2013). Combined analysis identified QTL in chromosome 1 (bin 1.04), which 

might be the same QTL with similar effect identified in bin 1.03 by Brooks et al. (2005). These 

genomic regions (1.03-1.04) may be important sources of resistance as favorable allele were 

from resistant parent.  
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QTL in bin 4.02 (qAFL4-2) was identified in 2013 and combined analysis whereas 

qAFL4-1 was identified only in 2012. Several previous studies identified QTL on chromosome 4 

using diverse mapping populations that were evaluated in different environments (Brooks et al. 

2005, Mayfield et al. 2011; Warburton et al. 2011; Willcox et al. 2013). The positions of 

previous QTL were different from our mapping study. The QTL with highest phenotypic 

variance (10%) was identified in 4.05 in combined analysis. The consistency of this QTL with 

earlier mapping studies suggests usefulness of this resistant QTL for corn improvement. One 

QTL with moderate effect was confirmed using near-isogenic lines in 4.08 recently (Mideros et 

al. 2014). This QTL was earlier identified by Paul et al. (2003). Similarly, QTL in bin 4.06 was 

reported in multiple mapping studies (Brooks et al. 2005; Warburton et al. 2011; Willcox et al. 

2013). The genomic location of QTL (bin 4.01) identified in our experiment is different from 

previous mapping study and thus may be new source of resistance. The QTL on chromosome 5 

identified by other researchers (Warburton et al. 2009, 2011; Yin et al. 2014) were in the nearby 

region of the chromosome (5.03 and 5.06) in the present study.  

Most of the reported QTL for resistance to aflatoxin accumulation were time, location, 

and genotype specific. Stable QTL with high phenotypic effects were not identified due to the 

complex genetics of this trait. We have identified a QTL qAFL8-1, which might correspond to 

QTL reported by Willcox et al. (2013) and Yin et al. (2014) in bin interval 8.02-8.04. The 

phenotypic effects were very small and the favorable allele was contributed by the susceptible 

parent, B73 like previous studies (Warburton et al. 2009, 2011; Willcox et al. 2013; Yin et al. 

2014). The QTL identified in bin 8.09 in our experiment may be novel source of resistance. The 

QTL located in bin 9.06 was reported by Warburton et al. (2011) in mapping population 
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involving Mp715. Although the phenotypic effect of these QTL was small, it still shows the 

importance of the donor line Mp715 as a resistance source.  

Although QTL were identified on chromosomes 4 and 9 in both years, their locations 

were not consistent. The QTL identified on chromosome 4 in the adjacent regions (4.01 and 4.02 

in 2012 and 2013, and combined analysis, respectively) were not reported in any of the previous 

studies. Fine mapping using large population can further confirm the presence of QTL in this 

region. The occurrence of QTL on different regions of chromosome 9 (bins 9.02 and 9.06) in 

both years indicated the presence of resistance genes in these regions. Significant QTL were 

identified on chromosome 9 in different mapping populations involving Mp313E (Willcox et al. 

2013). Mp313E and Mp715 are widely used source of resistance to reduce aflatoxin (Williams 

and Windham 2001). Therefore, the markers associated with the QTL consistently detected in 

different mapping populations can be used for the selection of resistant inbreds in marker 

assisted breeding program.  

Aflatoxin accumulation in corn can be reduced through indirect selection for 

morphological traits (Betrán and Isakeit 2004; Odvody et al. 1997). Bello (2007) reported that 

aflatoxin accumulation and secondary traits like grain texture, flowering time, and maturity were 

correlated. But the effect of open husk on the accumulation of aflatoxin in a genetic mapping 

population was not investigated. We observed highly positive significant and consistent 

correlation between aflatoxin concentration and husk cover rating in both years of field 

experiments (Table 4.5) suggesting the role of tight husk cover in lowering aflatoxin 

accumulation. The closed husk cover prevents easy access to moisture and ear feeding insects. 

The insect damage of ears creates highly favorable environment for fungus establishment, 

growth, and infection leading to high aflatoxin accumulation in grains. Williams et al. (2002) 
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reported 200% increase in aflatoxin accumulation when artificially infested with southeastern 

corn borer larvae. Thus, further field evaluations should be conducted to explore utilization of 

this morphological trait to reduce aflatoxin accumulation without compromising productivity in 

corn. 

Most QTL alleles for reducing husk cover (close husk) were derived from the aflatoxin 

resistant parent, Mp715. The QTL responsible for husk cover and resistance to aflatoxin 

accumulation co-localized on the same region of chromosomes 4, 8, and 10. Favorable QTL 

alleles for both traits were from resistant parent in chromosome 4 (bin 4.01-4.02) in 2012 with 

small phenotypic effect. QTL for aflatoxin (qAFL8-1) and husk cover (qHC8-3) were identified 

in the same genomic region (bin 8.05) in 2012 and 2013, respectively.  Previous mapping studies 

also found aflatoxin resistance QTL on chromosome 8 (Warburton et al. 2009; Yin et al. 2014) 

and the later study found 3 QTL in bin 8.03. Yin et al., (2014) reported three QTL responsible 

for aflatoxin resistance on chromosome 10 (bins 10.04 and 10.07) and largest QTL responsible 

for reducing husk cover (qHC10-1) was identified in bin 10.03 in 2013 and combined analysis. 

This observation provides evidence for presence of QTL responsible for both traits in the 

genomic region of chromosome 10 (bin interval 10.03-10.04). As these two traits were positively 

correlated, selection for closed husk cover offers opportunity to improve resistance to A. flavus 

infection. 

5.3 QTL mapping for other traits 
 

Several studies have been conducted to map QTL for various agronomically important 

traits in corn (Cardinal et al. 2001; Austin et al. 2001; Lima et al. 2006). In our study, many QTL 

responsible for different morphological and yield attributing traits were identified. These QTL 

were located all over the genome and QTL for many traits were clustered on many regions of the 
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genome. These genomic regions coincided with QTL identified in different mapping populations 

in earlier studies.  

Few QTL were identified on chromosomes 2, 4, 6, 8, and 10 for plant height. Previous 

mapping studies identified QTL on these chromosomes but in different bins (Lima et al. 2006; Li 

et al. 2007; Park et al. 2014; Samayoa et al. 2014). Many QTL for ear height were identified in 

2013 compared to 2012. One QTL in bin 9.03 was identified in both years. Other QTL were 

located in chromosomes 4, 7, 6, 8, and 9. Sibov et al. (2003) identified QTL in bins 9.03 and 

7.03-7.04.  

Large number of QTL responsible for days to tasseling were detected on chromosomes 1, 

4, 5, 9, and 10. Samayoa et al. (2014) reported QTL in bin 1.07, which is similar to our finding. 

QTL were identified in bins 8.06 and 8.08 in our experiment but Samayoa et al. (2014) identified 

QTL in 8.05. Similarly, QTL for days to silking were identified on chromosome 8 and 10 

(Samayoa et al. 2014). We identified QTL in these chromosomes but in different locations. In 

addition to this, QTL were identified on chromosomes 3, 9, and10 with large phenotypic effects. 

QTL on chromosome 10 were identified in 2013 as well as in combined analysis. These QTL 

may be new and can be further examined in different populations. QTL responsible for days to 

maturity were identified on many chromosomes. Large numbers of QTL with varying effects 

were identified on chromosomes 1, 3, 4, 5, 9, and 10 in both years as well as in combined 

analysis. The QTL for days to maturity in bin 1.07 was in similar location reported by Bello 

(2007). 

Few QTL were identified responsible for number of kernel rows. These were located on 

chromosomes 4, 5, 7, 8, 9, and 10. QTL in bin 10.05 was identified in 2012, 2013, and across the 

year. This is in consistent with the result of Sabadin et al. (2008). Likewise, many QTL for 
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number of kernels per row were identified on every chromosome except chromosome 1. QTL in 

bin10.04 were reported earlier (Sabadin et al. 2008).  

Higher number of QTL responsible to grain yield were identified in our population. They 

were located on chromosome 3, 5, 7, 8, and 10. Bello (2007) identified QTL in 3.06, which was 

nearby one QTL identified in our experiment. Samayoa et al. (2014) identified QTL for grain 

yield in bins 3.05 and 7.02, which was similar to our results. Sibov et al. (2003) identified QTLs 

on chromosome 7 and 8 but they were in different location compared to our QTL position. The 

stable QTL may be the strong candidate QTL for grain yield and these should be further studied 

in different environment and different genetic back ground for further validation of these QTL.  

5.4 Identification of genes in response to A. flavus infection in resistant and susceptible 
germplasm 
 

Suppression subtraction hybridization (SSH) library was constructed to study the 

differentially expressed genes after the inoculation of A. flavus in the developing corn kernels. 

Altogether 300 unique genes were identified from homology search. These sequences showed 

high similarities to the nucleotide sequences from maize and sorghum and represented the genes 

of different biological functions. The groups with the highest number of genes were related to 

metabolism (18.3%), protein regulation/function (12.3%), and protein synthesis (11.7%). Genes 

related to signal transduction (7.3%), stress response (7.3%) and resistance proteins (8%) were 

also present in the library (Figure 4.17).  

Genes involved in carbohydrate metabolisms were known to be involved in disease 

resistance. Phosphofructokinase, which is associated with sugar sensing in plants and involved in 

resistance, is highly expressed during pathogenesis (Granot et al. 2013). Hydrolyzing enzymes 

like chitinase are involved in the fungal cell wall degradation (Cleveland et al. 2004; Tohidfar et 

al. 2005; Wang et al. 2012c). Its lysozyme activity is highly efficient in inhibiting fungal growth 
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through the degradation of cell wall (Collinge and Slusarenko 1987). Higher expression of 

chitinase was reported in fungal infected corn kernels. Higher expression of chitinase may be 

responsible for the reduced growth of fungus through cell wall degradation and providing 

resistance against fungus in resistant inbreds. Likewise, Shikimate pathway is responsible for 

aromatic secondary metabolism and involved in the synthesis of aromatic amino acids 

phenylalanine, tryptophan and tyrosine. These amino acids are involved in the synthesis of 

phytoalexins and involved in the resistance mechanisms (Herrmann 1995). It also provided 

precursors for synthesis of lignin which is responsible for basal resistance to pathogens. Luo et 

al. (2011) observed higher expression of genes involved in lignin biosynthesis in resistant inbred 

Ey125. Concentration of lignin was also found to increase after A. flavus infection in peanut 

(Liang et al. 2006).  

Phytohormones are synthesized by plants which are responsible for various processes 

necessary for growth, reproduction, and survival. As A. flavus is a necrotrphic fungus, jasmonate 

and ethylene response pathways should be responsible for defense signaling (Glazebrook et al. 

2005; Derksen et al. 2013). Dolezal et al. (2014) reported increased expression of alcohol 

dehydrogenase encoding ts2 gene after infection in kernels and it was also found responsible for 

resistance to Northern Leaf Blight in maize (Delong et al. 1993; Wisser et al. 2011). It was 

involved in the jasmonate pathways in maize (Browse 2009) and its differential expression in our 

study further supports its role in defense signaling pathways. Under stress condition, alcohol 

dehydrogenase is down-regulated (Luo et al. 2010) and it suggests the susceptibility to A. flavus 

under stress condition. The increased level of Ca2+ in host plant in response to pathogen elicitors 

were responsible for increased resistance in plants through the activation of calcium dependent 

kinases, calcineurin B-like proteins (CBL) which induces downstream gene expression (Tena et 
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al. 2011; Asano et al. 2012). Differential expression of kinases, CBL-interacting protein in our 

SSH library indicated the increased level of Ca2+ in kernel after infection. Calcium mediated 

immunity has been recently reported on host-pathogen interaction through protein kinases and 

CBL-proteins (Tena et al. 2011) and Bedre et al. (2015) also reported differential expression of  

these transcripts in cotton.  

The role of various transcription factors in host plant resistance mechanisms has been 

established (Singh et al. 2002). The bZIP transcription factor was differentially expressed in our 

study and several bZIP transcription factors as well as zinc finger proteins were induced in 

cotton after the inoculation with A. flavus in seed (Bedre et al. 2015). Expression of zinc finger 

transcription factors were changed because of wounding in Arabidopsis thaliana (Cheong et al. 

2002). Wounding during inoculation of the kernels might be responsible for the differential 

expression of the zinc finger protein gene. The differential expression of bZIP and zinc finger 

proteins after fungus inoculation in various species (Cheong et al. 2002; Bedre et al. 2015) 

showed their involvement in host resistance response and further characterization of these 

transcription factors would be helpful to understand the mechanism and pathways involved in 

this process. 

Late embryogenesis abundant protein and heat shock protein were induced after 

inoculation in our library. Previous studies have also reported their expression after fungus 

inoculation in resistant maize inbred and cotton (Jiang et al. 2011; Lee et al. 2012; Bedre et al. 

2015). Heat shock proteins are important for the protection of plants from biotic and abiotic 

stress and induced after fungal infection and wounding (Cheong et al. 2002; Cleveland et al. 

2004). Another wound inducible gene, Bowman-Birk like proteinase inhibitor, which was 

differentially expressed in response to fungal inoculation in our experiment, was reported in 
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previous experiment (Rohrmeier and Lehle 1993). The higher expression of these stress response 

genes in our experiment shows their importance for resistance to aflatoxin accumulation.  

Genes for pathogenesis related protein-1 (PR1), PR4, PR5, and leucine rich repeat family 

protein known to be associated with aflatoxin resistance were identified. RT-PCR and qRT-PCR 

showed higher expression of these genes in resistant inbreds (Mp715 and Mp719) compared with 

B73. Jiang et al. (2011) studied the expression pattern of stress related genes in different maize 

inbred with different levels of resistance. Many antifungal defensive proteins, signal transduction 

genes, and stress response proteins were highly expressed in resistant germplasm, which were 

validated through qPCR. These genes were also represented in our SSH library and can be useful 

in future research for validation of its function towards aflatoxin resistance. Chen et al. (2006) 

reported high expression of PR10 in resistant germplasm GT-MAS: gk and susceptibility to A. 

flavus was increased by repression of maize PR10 gene by RNAi silencing (Chen et al. 2010). 

Kelly et al. (2012) reported the higher expression of resistance related genes in Mp313E.  

Six important genes (associated with disease resistance) were selected for real- time 

qPCR to validate the expression at different time points of inoculation in seven inbreds. The 

genes associated with resistance such as PR4, LRR repeat family protein were highly expressed 

in resistant germplasm. Higher expression of genes related to disease resistance, stress, and 

signal transduction pathways were observed in resistant germplasm (Kelly et al. 2012; Asters et 

al. 2014; Shan and Williams 2014). Aflatoxin accumulation was low in these resistant inbreds 

during field evaluation (Table 4.20). Artificial inoculation and wounding in corn kernels activate 

the recognition and defense-response system and induce the expression of the genes related to 

resistance mechanisms. The defense genes mainly PR genes were expressed in resistant 

genotypes after fungal inoculation in response to A. flavus infection (Luo et al. 2011). The 
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proteomic studies in maize rachis also revealed the similar expression pattern of the genes in 

response to fungal inoculation (Pechanova et al. 2011).  

The genes associated with disease resistance, stress response, and signal transduction 

were mapped near the QTL for aflatoxin resistance in our mapping population (Figure 4.17). 

Many differentially expressed genes (DEGs) were found in the region between the marker 

umc2150- umc1509 near a QTL on chromosome 4. A cDNA clone P1B07 with high similarity to 

PR4 mapped in this region. Stress related Win1 precursor (P2B05), Wheatwin-2, Wound induced 

protein WIN2 precursor, and defense related proteins like putative vacuolar defense protein 

(P5B09) were also localized in this chromosomal region. They were involved in important 

physiological functions like biotic and abiotic stress tolerance. Another EST (P1G01) encoding 

chitinase was identified on chromosome 10 in between QTL region (10.03-10.05). Warburton et 

al. (2012) identified the chitinase gene family in QTL and association mapping population. Our 

QTL mapping study identified some QTL on chromosomes 1 (1.04-1.05), 5 (5.05), and 9 (9.06), 

which were in agreement with the results of Kelly et al. (2012) in a population from Mp313E x 

B73. These were located either in the in same location or adjacent genomic region in our study.
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CHAPTER 6 
SUMMARY & FUTURE DIRECTIONS 

6.1 Summary 
 

As expected, the phenotypic responses for the traits in the F2:3 mapping population 

developed from the cross B73 x Mp715 differed from year to year. Heritability estimates for 

plant height, tasseling, silking, maturity, and ear length were high whereas it was low for 

aflatoxin accumulation and husk cover in our mapping population. We observed significant 

correlations among the traits. But the most notable observation was the highly significant 

positive correlation between aflatoxin concentration and husk cover in both years. Tight husk 

reduced aflatoxin accumulation and thus this correlated trait could provide another avenue to 

improve resistance to aflatoxin in corn.   

Since aflatoxin contamination is a major concern for corn growers in USA and other parts 

of the world, identification of stable and large effect QTL is needed to develop resistant inbreds 

and hybrids. Many QTL mapping studies have been conducted in multiple environments and 

multiple years (Paul et al. 2003; Brooks et al. 2005; Warburton et al. 2009, 2011) to identify 

stable QTL, but the QTL identified were highly inconsistent with respect to position and effect 

between different years, locations, and populations. This was not unexpected because several 

environmental factors influence the fungal infection and aflatoxin accumulation in field 

environment. For a highly environmentally influenced trait like aflatoxin accumulation, use of 

F2:3 or backcross population used in earlier studies with the exception of Yin et al. (2014) might 

be responsible for inaccurate phenotyping leading to identification of QTL with little stability 

over years or locations. Therefore, use of recombinant inbred line (RIL) and introgression line 

populations involving resistant inbred may be useful to identify stable QTL. Even though minor 

QTL are identified using introgression lines, it would provide opportunity to pyramid the minor 
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QTL to improve resistance to aflatoxin. Another reason for discrepancy between different studies 

could be due to low resolution of QTL locations in a crop with large genome. It is important to 

notice that many QTL identified in our study were placed to QTL located in nearby bins reported 

in earlier studies. This observation calls for use of high resolution linkage map for QTL 

mapping. Alternatively, fine mapping using introgression lines should be useful to locate the 

QTL with high resolution.  

Despite the difficulties in assessing consistency of QTL for aflatoxin resistance between 

various studies, we suggest that pyramiding of QTL with moderately high phenotypic effects 

derived from Mp715 should be attempted for improving resistance to aflatoxin. A significant 

finding from our study is that QTL for both aflatoxin accumulation and husk cover were 

clustered at three genomic regions on chromosome 4 (bins 4.01-4.02), 8 (8.05), and 10 (10.03-

10.04), where aflatoxin resistance QTL were reported in previous studies (Paul et al. 2003; 

Warburton et al. 2011; Mideros et al. 2014; Yin et al. 2014). Both traits can be easily pyramided 

using molecular markers linked to these QTL. However, relationship between these two traits 

should be further confirmed in other populations and environments before conducting marker-

assisted selection in breeding program. Near isogenic lines for the QTL with significant 

contribution toward aflatoxin resistance identified in this study should be developed in suitable 

genetic background for understanding the QTL x Environmental interaction as well as the 

molecular basis of host plant resistance through cloning of the QTL loci. 

Due to the lack of knowledge about host-resistance mechanisms and the molecular 

markers linked to aflatoxin resistance, use of molecular markers in breeding program has been 

difficult. Gene expression studies and their location in previously identified QTL regions will be 

helpful for the identification of probable candidate gene involved in the resistance. Genes 
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involved in stress response, signal transduction pathways, and disease resistance can be 

considered as important candidate genes for further validation and functional characterization. 

Reverse Northern hybridization using the clones obtained from a SSH library revealed the 

differential expression of several genes in Mp715 and B73 after inoculation with A. flavus. Some 

important genes represented in the library were genes associated with disease resistance (PR1, 

PR4, PR5, LRR family protein), stress (Win1precursor, protein phosphatase 2C), and signal 

transduction (MAPKS, serine/threonine protein kinase). Expression studies involving 30 selected 

genes related to important biochemical pathways in seven maize inbred lines revealed that most 

of the genes were highly expressed in response to fungus inoculation in resistant inbred lines 

compared to the susceptible inbreds. Further validation of 6 genes using qPCR in at different 

time point confirmed the pattern of expression. In general, disease resistance genes like PR4, 

PR5, and LRR family protein were highly expressed in resistant inbreds. The integration of these 

expressed genes obtained from the SSH library to our linkage map through in-silico mapping 

revealed that large number of expressed genes with various physiological functions were located 

in and around QTL responsible for resistance to aflatoxin. The gene PR4 , which showed higher 

expression in resistant inbred lines in qPCR analysis, was located nearqAFL4-1 with resistant 

allele derived from Mp715. This approach provides strong evidence for the locations of QTL for 

aflatoxin resistance. Moreover, it also provides a large number of candidate genes for future 

investigations to elucidate the host plant resistance mechanism associated with A. flavus 

infection. 

  



 107

6.2 Future directions 
 

Use of host plant resistance is an effective alternative approach to combat the aflatoxin 

problem using resistant inbreds and hybrids with adaptation to diverse climatic condition and 

desirable agronomic traits. Although many germplasm resistant to A. flavus have been identified 

and released in US, marker-assisted selection to accelerate development of aflatoxin resistant 

hybrids is not yet practiced by corn breeders. Following future investigations may be conducted 

to accelerate the use of molecular markers in breeding for aflatoxin resistance. 

1. Mapping experiment should be conducted in diverse mapping population and 

environments to identify the stable QTL.  

2. The PCR based markers linked to these stable QTL with large phenotypic effects should 

be developed for marker-assisted breeding (MAB).   

3. The expression, stability, and contribution of these QTL in reducing aflatoxin 

accumulation should be studied in hybrids developed in diverse genetic backgrounds. 

4. Near isogenic lines (NIL) should be developed and evaluated in diverse environmental 

condition for multiple years for validating the QTL identified in this study. 

5. Large number of differentially expressed genes identified from the SSH library were co-

localized in the QTL region for resistance to aflatoxin resistance. These potential 

candidate genes should be further studied for understanding the molecular mechanisms 

associated with aflatoxin resistance. 
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APPENDICES 
 
Appendix 1 List of polymorphic SSR markers used in the construction of the linkage map. 
 
Name of the oligo Sequence (5' to 3') Bin  
umc1354-F GATCAGCCCGTTCAGCAAGTT 1.00 
umc1354-R GAGTGGAGGCGGAGGATCTG 1.00 
bmc1124-F TCTTCATCTCTCTATCAAACTGACA 1.00 
bmc1124-R TGGCACATCCACAAGAACAT 1.00 
umc1071-F AGGAAGACACGAGAGACACCGTAG 1.01 
umc1071-R GTGGTTGTCGAGTTCGTCGTATT 1.01 
umc2225-F TCGGCTGACATAATAAAACCATAGC 1.02 
umc2225-R ATGCGAATTTTACCGGGTTTTT 1.02 
phi001-F TGACGGACGTGGATCGCTTCAC 1.03 
phi001-R AGCAGGCAGCAGGTCAGCAGCG 1.03 
dupssr26-F GTCGGAGCACTCCAAGAC 1.04 
dupssr26-R CTTCTCGCTCATCAGCTTAAA 1.04 
umc1689-F GAGGCGGAGGAGGAACACAG 1.05 
umc1689-R GAACGAGTAGGGCAGCGTCAG 1.05 
umc1703-F ATTTTCTTGCTCACGTTCACTTCC 1.05 
umc1703-R TAACGGCAGCATTACATTTCTTGA 1.05 
umc1508-F GGTTCTTGGTTTGGGCCTTAGTAT 1.06 
umc1508-R GAGGCCACTAGTTGACCTTTTTCA 1.06 
umc1661-F ACGAGACTCCCTCCTCTCCTCTC 1.07 
umc1661-R GGAGTAAACTGTTGAAAGGCCCAT 1.07 
phi037-F CCCAGCTCCTGTTGTCGGCTCAGAC 1.08 
phi037-R TCCAGATCCGCCGCACCTCACGTCA  1.08 
umc1955-F GCCAAGGTGGGTCTGGCTAT 1.08 
umc1955-R ACCACCTTGTCCGTATCCTTCAC 1.08 
umc1082-F CCGACCATGCATAAGGTCTAGG 1.09 
umc1082-R GCCTGCATAGAGAGGTGGTATGAT 1.09 
umc2223-R ACTTCTGCAGAGCGAGCAGG 1.10 
umc2223-F TTTTGGGACTGAAGAAGAAGATCG 1.10 
umc1553-F TGAATGGAAGAGAAGGGAAATCTG 1.11 
umc1553-R GCTCTGTACATCCTTAGCGACACA 1.11 
umc1064-F GTGGGTTTTGTCTGTAGGGTGGTA 1.11 
umc1064-R TCCATCCACTCGACTTAAGAGTCC 1.11 
umc2100-F AAAGGCATTATGCTCACGTTGATT  1.12 
umc2100-R TGACGTGCAAACAACCTTCATTAC  1.12 
bmc1338-F GTGCAGAATGCAGGCAATAG 2.01 
bmc1338-R GCAAATGTTTTCACACACACG 2.01 
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Name of the oligo Sequence (5' to 3') Bin  
bnlg1297-F TCTCGATCGCTCCGATCTAT 2.02 
bnlg1297-R GACTCAACTCCAAAAGGCGA 2.02 
ZmRR1-F CTGCGTGTGGTGCTATGTTAGG 2.00 
ZmRR1-R GACATTGACACCTGATGTTA 2.00 
bmc2277-F TTACGGTACCAATTCGCTCC 2.02 
bmc2277-R GACGACGCCATTTTCTGATT 2.02 
umc1185-F AGTAAAAGAGGCAAGGACTACGGC 2.03 
umc1185-R GCGGCGATATATACGAGGTTGT 2.03 
bnlg2248-F CCACCACATCCGTTACATCA 2.02 
bnlg2248-R ACTTTGACACCGGCGAATAC 2.02 
bnlg1064-F CTGGTCCGAGATGATGGC 2.03 
bnlg1064-R  TCCATTTCTGCATCTGCAAC 2.03 
bnlg1175-F ACTTGCACGGTCTCGCTTAT 2.03 
bnlg1175-R GCACTCCATCGCTATCTTCC 2.03 
bmc1018-F CGAGGTTAGCACCGACAAAT 2.04 
bmc1018-R CGAGTAAATGCTCTGTGCCA 2.04 
bmc1036-F GGGAGTATGGTAGGGAACCC 2.06 
bmc1036-R AAACCCTTGGAGCATACCCT 2.06 
bmc1267-F AAATCTGTGCTGTGCTGTGG 2.07 
bmc1267-R TGTCGAGTGGTCCTACGATG 2.07 
bmc1335-F GAAGGTTGCTCTTCCACTGG 2.08 
bmc1335-R TGGTTTGTGCAAGTGTCACC 2.08 
bmc1520-F TCCTCTTGCTCTCCATGTCC 2.09 
bmc1520-R ACAGCTGCGTAGCTTCTTCC 2.09 
umc2214-F ACCCCCTGATTCTCTCTTACGTTT 2.10 
umc2214-R CTGGATGAGGAGGAAGAATACGAG 2.10 
umc2103-F CCTATCCATGCTTGAGGTGTCG 3.00 
umc2103-R GTCCAGGAGGTTGTCGTCCA 3.00 
umc1746-F ACACGAGCATCCTACATCCTCCTA 3.01 
umc1746-R ACCTTGCCTGTCCTTCTTTCTCTT 3.01 
bnlg1325-F CTAAATGCGCAGCAGTAGCA 3.03 
bnlg1325-R TGCTCTGCAACAACTTGAGG 3.03 
bnlg1144-F TACTCGTCGTGTGGCGTTAG 3.03 
bnlg1144-R AGCCGAGGCTATCTAACGGT 3.03 
umc1729-F GTCGTACCACACCAGCCACA 3.03 
umc1729-R TTCACTTCCACTTGTTGAACTTGC 3.03 
mmc0022-F AGGTGTTGTTTTTGTTCGCT 3.05 
mmc0022-R TGCTTGTTTAAGCTCATTATT 3.05 
bmc1798-F AAGTTGGTGGTGCCAAGAAG 3.06 
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Name of the oligo Sequence (5' to 3') Bin  
bmc1798-R AAAAGGTCCACGTGAACAGG 3.06 
mmc071-F TTACGGACAAGACGCTACTAC 3.08 
mmc071-R ATACGTTTCGGCCAATCTCCT 3.08 
umc1404-F GTTGGCCTTCCTCTCTACCCC 3.07 
umc1404-R CCAGTTCATCAGGTCATCAACCTT 3.07 
bmc1605-F TCCTGCCCCCTTTGTTTTC 3.07 
bmc1605-R CACCTCTGAACCCCTGTGTT 3.07 
umc1844-F GGCATGGGTCTCTCATAAAGTCAT 3.08 
umc1844-R CGACGTATATGGCTGAGAACCCTA 3.08 
bmc1108-F GGATTCCTTTATGACGGGGT 3.08 
bmc1108-R AGTAACAACCAAGGCATCGG 3.08 
bnlg1536-F CAAAAAAAAAATATGTATACGGGG 3.09 
bnlg1536-R ATGCACGAGCTTTTGGAGTT 3.09 
bnlg1496-F CTGGGCAGACAGCAACAGTA 3.09 
bnlg1496-R AGCCAAAGACATGATGGTCC 3.09 
umc1639-F CTAGCCAGCCCCCATTCTTC 3.10 
umc1639-R GCAAGGAGTAGGGAGGACGTG 3.10 
umc1136-F CTCTCGTCTCATCACCTTTCCCT 3.10 
umc1136-R  CTGCATACAGACATCCAACCAAAG 3.10 
phi072-F ACCGTGCATGATTAATTTCTCCAGCCTT 4.01 
phi072-R GACAGCGCGCAAATGGATTGAACT 4.01 
umc1276-F ACGCAATTATTACTGCCACACGTC 4.01 
umc1276-R CTACCTTGTTCCTAGGGCCGTCTA 4.01 
umc2150-F GTTGTTCACTTTCCAAAACCCTTG 4.01 
umc2150-R GCCTTGTGCTTCTTGGAGTGTT 4.01 
umc1509-F CTTTCTGCAGATTCACCGTTTCTT 4.02 
umc1509-R TTGGTTCTTTTGACCATAGACAAGC 4.02 
umc2039-F CATCTCCTACCAGCTCACCCC 4.03 
umc2039-R GCTCGGGGTAGTAGTGTTCTCCTT 4.03 
umc1088-F TCATCCTCCTAGCTCCTCTACTCG 4.05 
umc1088-R AAAACAGTCAGCAGAACCCACTTT 4.05 
umc2284-F CGTTCTTCCTTTTTCCTCTTCGTC 4.06 
umc2284-R ATCTATAGGAGACGGTACGGGGAC 4.06 
mmc0371-F CCACGCACCTCTTGTAAC 4.06 
mmc0371-R GGGAACCTACAGCTTGGT 4.06 
dupssr34-F TCAGTGCTTTCATTGTAACGA 4.07 
dupssr34-R ATAAACATCTTGCCAGCAAA 4.07 
umc2038-F ACAGAAACCAATGCATGTGATGAG 4.07 
umc2038-R TGCATGGTTGCTTCAGCAGT 4.07 
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Name of the oligo Sequence (5' to 3') Bin  
dupssr28-F GAAGGAAGCCTTTGTTACAAGT 4.08 
dupssr28-R CTGGAGTGCTGGTCTTGTTAT 4.08 
umc1940-F AACAACAAATGGGATCTCCGTTAC 4.09 
umc1940-R CCATCTGCTGAGGGCTTATCTG 4.09 
umc1503-F TTCATGACACACAAACCACAGATG 4.09 
umc1503-R GCACCCTAGCAGACTACAACATCC 4.09 
umc2289-F GGCTCCGATTCACTTGATGC 4.11 
umc2289-R CAGCACCACCCAGTTAACCAC 4.11 
umc1416-F AGATGAATGTTGGGGTCAACAAGT 5.00 
umc1416-R CTTGTCAGCCACAGAAGTGCC 5.00 
umc1240-F GCAGCAGGTATTGGAAGTCGTAGT 5.00 
umc1240-R CTGGTCCCTCAGGAAATCCAT 5.00 
mmc0261-F TAGTAATGCTTAACGAAAGCAA 5.02 
mmc0262-R CGCTTACGCTTACTACTAGCTT 5.02 
bmc1046-F TGAGCCGAAGCTAACCTCTC 5.03 
bmc1046-R GATGCAAAGGAGGTTCAGGA  5.03 
umc2400-F TTTGGTGAAAGTGAAACCAAAGGT 5.02 
umc2400-R CTAGCTAGCTTCCTTCCTCCTCG 5.02 
umc1389-F AAAACACAACGCTGGACATCAAC 5.03 
umc1389-R GGTCGTTTTGCTTAGCCCATTTTA 5.03 
umc1171-F ACGTACTACAGATAATGGGCGACG 5.04 
umc1171-R CGCCGTACCCATGAGTATAATGTAA 5.04 
bmc1208-F GCTGTGATGGTGAGACGAGA 5.04 
bmc1208-R GCAGGCACTACTAAAACCGC 5.04 
bnlg1892-F ACGCCATCACTCTCGCTC 5.04 
bnlg1892-R TGGCATCCATCAATCCAAC 5.04 
bmc1237-F TGGCGCGATTTTCTTCATAT 5.05 
bmc1237-R AAAGAGCAACCTTCAACGGA 5.05 
umc1155F TCTTTTATTGTGCCCGTTGAGATT 5.05 
umc1155R CCTGAGGGTGATTTGTCTGTCTCT 5.05 
umc2198-F CTCTTCACTCGCTTCTCCCAGA 5.06 
umc2198-R AGCCCAGAGAAGGGAAGCAG 5.06 
bmc1118-F CAGAGTTGATGAACTGAAAAAGG 5.07 
bmc1118-R CTCTTGCTTCCCCCCTAATC 5.07 
umc1225-F CTAGCTCCGTGTGAGTGAGTGAGT 5.08 
umc1225-R TTCCTTCTTTCTTTCCTGTGCAAC 5.08 
phi075-F GGAGGAGCTCACCGGCGCATAA 6.00 
phi075-R AAAGGTTACTGGACAAATATGCGTAACTCA 6.00 
bmc1043-F TTTGCTCTAAGGTCCCCATG  6.00 
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Name of the oligo Sequence (5' to 3') Bin  
bmc1043-R CATACCCACATCCCGGATAA 6.00 
umc1257-F CAACGGAAGTGGCTGTAGAGTTTT 6.03 
umc1257-R ACAGAGCATGTCAGGTATTTGCAG 6.03 
umc1887-F CTTGCCATTTTAATTTGGACGTTT 6.03 
umc1887-R CGAAGTTGCCCAAATAGCTACAGT 6.03 
umc1014-F GAAAGTCGATCGAGAGACCCTG 6.04 
umc1014-R CCCTCTCTTCACCCCTTCCTT 6.04 
umc1020-F CCTGGAGAGCCACTACAAGGAA 6.05 
umc1020-R TCAGCCTGAGCTCACATCATCT 6.05 
umc2170-F CACTGCAAGCCTCTACAGACAATG 6.06 
umc2170-R GAGAGTTCTCCAGGCGAGGTG 6.06 
umc1063-F AGGCCACTGAGCAGGTGAAG 6.07 
umc1063-R GTGATGGTAGAGGAGTCCTTGGTG 6.07 
dupssr15-F GAAGTCGATCCATCCACC 6.06 
dupssr15-R GGGGTAGTGGAGATAACTAGTG 6.06 
phi089-F GAATTGGGAACCAGACCACCCAA 6.08 
phi089-R ATTTCCATGGACCATGCCTCGTG 6.08 
umc1546-F CTGGTCTTGGCCTTGGACTTCT 7.00 
umc1546-R GTCACAGCAAAGTCATCCTCCTCT 7.00 
umc1642-F CACTACAGCGCCTGTAACTGCC 7.00 
umc1642-R CATGAGCTAAGCAAGAGGGGTATG 7.00 
mmc0171-F AATCCTACTTGCTGCCAAAGC 7.00 
mmc0171-R CTTTGAGCTTTTTGTGTGGAC 7.00 
umc1066-F ATGGAGCACGTCATCTCAATGG 7.01 
umc1066-R AGCAGCAGCAACGTCTATGACACT 7.01 
bmc1200-F CGTCCTCGTTGTTATTCCGT  7.02 
bmc1200-R GTTCCCTCTCTCCCTCCCTC 7.02 
bmc1792-F CGGGAATGAATAAGCCAAGA  7.02 
bmc1792-R GCGCTCCTTCACCTTCTTTA  7.02 
phi034-F TAGCGACAGGATGGCCTCTTCT 7.02 
phi034-R GGGGAGCACGCCTTCGTTCT  7.02 
dupssr11-F AGGCAAGGCTTTCTTCATAC 7.02 
dupssr11-R CGGACGACGACTGTGTTC 7.02 
umc1301-F AACAGTCAAGCTCACTTTCCGC  7.03 
umc1301-R CATCCATAAGCTGAAGGAGTGAGG  7.03 
umc2331-F CGGTGAGTGAGTGAGTGAGTGAGT  7.04 
umc2331-R AAGAACTGCAAAAAGGTACCCACA 7.04 
umc1710-F ACTTTGCAACTACCGTACATGGGT 7.04 
umc1710-R TTCGACTGCACGTGAAAATCTATC 7.04 
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Name of the oligo Sequence (5' to 3') Bin  
umc2332-F GTCGGAGAAGGAGCTACTGAGCTA 7.04 
umc2332-R CACAGGTACGTCTGGATGCTGT 7.04 
umc1782-F CGTCAACTACCTGGCGAAGAA  7.04 
umc1782-R TCGCATACCATGATCACTAGCTTC 7.04 
umc1154-F CCACCACAAGACAAGACAAGAATG 7.05 
umc1154-R CCTGATCGATCTCATCGTCGT  7.05 
umc2197-F CGACCTCTTTGCTGTCTCATTTTT  7.05 
umc2197-R CAAGCAATTTCCCCATCTCATACT 7.05 
umc1799-F GTGATGAATAATGTCCCCAATTCC 7.06 
umc1799-R GGACAGATGTCTGGAGATTGCTTT  7.06 
phi116-F GCATACGGCCATGGATGGGA 7.06 
phi116-R TCCCTGCCGGGACTCCTG 7.06 
phi082-F CACAGCACAGGCAGTTCG  7.05 
phi082-R CGCGGCAAAAGATCTTGAACACCT 7.05 
umc1327-F AGGGTTTTGCTCTTGGAATCTCTC 8.01 
umc1327-R GAGGAAGGAGGAGGTCGTATCGT 8.01 
bmc1073-F TCGATCTAAGTATTGTAAACGTACG  8.01 
bmc1073-R  GTATTTGGAGGCGCCATAGA  8.01 
umc1872-F CTTTTGTGATGTCTGCAATATGCC 8.02 
umc1872-R TTAGTAGGTGCATTGGATGCTCAA 8.02 
bmc1782-F CGATGCTCCGCTAGGAATAG 8.05 
bmc1782-R TGTGTTGGAAATTGACCCAA 8.05 
bmc1031-F AATCGGTGAGGCTTCACAAC 8.06 
bmc1031-R ATGCCTACCTACCACCATGC 8.06 
umc1607-F ACTAATTTTCGGTAGTCGTGTGCG 8.07 
umc1607-R GGAAAGAGAGAGGCTGTAGGTGGT  8.07 
bmc1065-F TGATGCTCGTTGCTTACCTG  8.07 
bmc1065-R TTGCCTCTCGTCTTCCAACT 8.07 
umc1005-F TTTGATCACAGACTTATCCCTGTT 8.08 
umc1005-R CTAATGACGAACCCCTAAAAGGT 8.08 
umc1069-F AGAGAATCCCCAAGCAAACAAAC 8.08 
umc1069-R CTTCATCGGAGCCATGGTGT  8.08 
dupssr14-F AGCAGGTACCACAATGGAG  8.09 
dupssr14-R GTGTACATCAAGGTCCAGATTT  8.09 
phi233376-F CCGGCAGTCGATTACTCC  8.09 
phi233376-R CGAGACCAAGAGAACCCTCA 8.09 
umc1571-F GCACTTCATAACCTCTCTGCAGGT  9.04 
umc1571-R CACCGAGGAGCACGACAGTATTAT  9.04 
bmc1626-F TTAAATCCAGAGTGTCCCCG  9.03 
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Name of the oligo Sequence (5' to 3') Bin  
bmc1626-R TTCTGGATGGTTGCACACAT  9.03 
dupssr19-F GCTGAAGGACTAAAGAAACCG 9.02 
dupssr19-R CCTCCAAGGTTGGTACTGTC 9.02 
umc2345-F AAAAAGAGCAGCGGAACGTG 9.06 
umc2345-R GTCGTGCTGGCTACTCTGCTG 9.06 
umc1733-F ACACCCAACCTCCCACTGTAAAA 9.06 
umc1733-R GATTGGGATTGGGATTGGAAAT  9.06 
bnlg1525-F AGGAATTGCGAGTCTTCCAA 9.07 
bnlg1525-R CAACCCCCAAAATGAACAAA 9.07 
dupssr29-F CAGCGAATACTGAATAACGC 9.07 
dupssr29-R TGTTGGATGAGCACTGAAC 9.07 
umc1714-F CAAGGGCTCTTGCTCTTGAACTAA 9.08 
umc1714-R CGACGACCTTAATTGTGTTCCTTT 9.08 
umc1277-F TTTGAGAACGGAAGCAAGTACTCC 9.08 
umc1277-R ACCAACCAACCACTCCCTTTTTAG  9.08 
bmc1129-F GAGAGTATGCTACTCGCCGC 9.08 
bmc1129-R GACGAGTTTGGAGTGCCATT 9.08 
phi117-F ATCGGATCGGCTGCCGTCAAA 10.00 
phi117-R AGACACGACGGTGTGTCCATC  10.00 
umc1319-F TGAGAGCCACCTTCTTGAGCTACT  10.01 
umc1319-R TTCCTTGAAGGCGAAGGTAGGTAT 10.01 
bmc1451-F TGATCGATGGCTCAATCAGT 10.02 
bmc1451-R ATCTGGAACACCGTCGTCTC 10.02 
phi059-F AAGCTAATTAAGGCCGGTCATCCC 10.02 
phi059-R TCCGTGTACTCGGCGGACTC 10.02 
umc1381-F CTCTAGCTACGAGCCTACGAGCA 10.03 
umc1381-R CCGTCGAGTCAACTAGAGAAAGGA 10.03 
umc1827-F GCAAGTCAGGGAGTCCAAGAGAG  10.04 
umc1827-R CCACCTCACAGGTGTTCTACGAC  10.04 
umc1648-F CTGCAGTACGTGAGCCTGTACG  10.04 
umc1648-R GCTTGAGCTGTGAGGAAGTTTTG 10.04 
bmc1074-F CATGCTAATAGCCTACCGGG 10.05 
bmc1074-R TTTCCCCCTGATTCGTTATG  10.05 
umc2122-F TTGACAAGCTAGTGTGCAACTGTG 10.06 
umc2122-R TGAAAGCCCACTGGACAAACTAAT  10.06 
bmc1185-F  CGGTCCAGGCAGGTTAATTA 10.05 
bmc1185-R  GACTCGAGGACACCGATTTC 10.05 
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Appendix 2 Descriptive statistics for various morphological traits in parents and F2:3 lines derived from the cross B73 x Mp715. 
 

 2012 2013 
Trait B73 Mp715 F2:3 B73 Mp715 F2:3 
 Mean Mean Mean Range CV@ Mean Mean Mean Range CV@ 
Plant height (cm) 160.9 187.7 189.9 100-222 7.9 159.6 190.0 191.9 88-220 7.5 

Days to 50% tasseling 61 71 72 55-82 4.6 62 76 71 61-131 7.8 

Days to 50 % silking 64 74 74 55-85 4.9 65 76 72 42-80 5.8 

Days to 50 % maturity 107 115 110 86-130 5.2 103 116 111 92-125 4.2 

Ear height (cm) 63.8 85.0 85.09 55-117 13.1 59.8 83.2 86.0 53-116 12.6 

Husk cover rating 3.0 1.7 1.5 1-5 44.0 3.0 1.0 2.3 1-5 61.2 

Ear length (cm) 12.4 17.3 13.5 7.3-20.0 16.9 12.8 18.2 15.9 8.0-19.9 11.0 

Ear circumference (cm) 11.6 11.6 11.2 7.0-15.7 10.2 11.7 13.1 12.6 9.0-17.3 8.0 

Number of rows/ear 13 12 13 9-19 10.0 13 15 14 10-20 10.3 

Number of kernels/row 16 20 24 6-42 24.9 17 25 32 13-46 17.2 

100-kernel weight (gm) 17.9 23.1 13.43 9-19 10.0 15.3 21.3 18.7 12-26 12.4 

Grain yield (gm/plot) 101.7 47.3 163.7 13-549 58.2 91.0 61.0 390.4 28-1006 52.3 
@ CV, Coefficient of variation  
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Appendix 3 Sources of variation and F values for various morphological traits in F2:3 population 
derived from the cross B73 x Mp715. 
 
Source of variation 2012 2013 Across year

Plant height  
Replication 1.25* 2.01NS 3.49**

Genotype  1.26NS 5.55** 0.41NS

Year - - 7.91**

Genotype x Year  - - 1.14NS

Days to 50% tasseling  
Replication 96.2** 39.41** 4.62**

Genotype (F2:3 lines) 1.26NS 85.85** 40.1**

Year - - 59.03**

Genotype x Year - - 1.85**

 Days to 50% silking  
Replication 82.66** 25.87** 4.39**

Genotype (F2:3 lines) 1.22* 11.98** 27.62**

Year - - 65.5**

Genotype x Year - - 1.63**

Days to 50% maturity (DM)  
Replication 305.9** 11.74** 2.39**

Genotype (F2:3 lines) 1.14NS 7.57** 96.18**

Year - - 0.14NS

Genotype x Year  - - 0.9NS 

Ear height (EH)  
Replication 2.41NS 15.67** 6.26**

Genotype (F2:3 lines) 1.28** 90.03** 1.58NS

Year - - 4.37**

Genotype x Year  - - 1.37**

Husk cover rating  
Replication 11.75** 2.52NS 223.16**

Genotype (F2:3 lines)  1.44** 8.45**     3.82**

Year - -     7.11*

Genotype x Year  - -     2.32NS

Ear length  
Replication 80.6** 0.78NS     1.59**

Genotype (F2:3 lines) 1.18NS 2.61**   48.72**

Year - - 305.20**

Genotype x Year  - -   1.03NS
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Source of variation 2012 2013 Across year

Ear circumference  
Replication 25.92** 8.02**     3.43**

Genotype (F2:3 lines)  1.66** 3.21**   18.55**

Year - - 609.94**

Genotype x Year  - -     1.29*

    
Number of rows/ear (NRE)    
Replication 9.59** 0.001NS   3.91** 
Genotype (F2:3 lines) 2.07**  3.65**   2.30NS 
Year -  -  97.18** 
Genotype x Year  -  -   1.20NS 
    
Number of kernels/row (NKR)    
Replication 1.19NS 2.98NS    3.19** 
Genotype (F2:3 lines) 1.55** 4.50**     1.23NS 
Year -  -  717.09** 
Genotype x Year  -  -     1.49** 
    
100-kernel weight    
Replication 39.78** 28.15**  3.06** 
Genotype (F2:3 lines)   1.69**   8.03** 25.64** 
Year -  -  16.75** 
Genotype x Year  -  -    1.5** 
    
Grain yield/plot    
Replication 23.85** 1.75 NS     4.99** 
Genotype (F2:3 lines)   6.25** 4.00**     0.44NS 
Year -  -  975.07** 
Genotype x Year  -  -     2.73** 

*Significant at the 0.05 probability level; **Significant at the 0.01 probability level;  
          NS Nonsignificant  
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Appendix 4 Mean value of different morphological and yield attributing characters in different 
maize germplasm in 2013 and 2014. 
 
2013 
Germplasm PH EH SD EL EC RN KPR KW GY
B73 170d 86c 66e 13.7c 13.7a 13ab 16ab 17.8d 117.3b

Mp715 211ab 119a 83a 15.3bc 13.3a 12ab 19a 20.6bc 75.7c

Mp313E 218a 115a 77b 16.2bc 12.7a 13ab 20a 21.5ab 133.3b

Mo18W 200bc 95c 81a 20.3a 13.3a 11b 17ab 19.7c 230.0a

Va35 118e 59d 63f 16.7b 13.3a 12ab 11b 22.1a 205.0a

Mp420 217a 105b 74c 14.7bc 13.6a 13ab 21a 17.0d 137.0b

Mp719 189c 91c 72d 17.3b 13.5a 14a 21a 17.5d 131.7b

GM 189 96 74 16.3 13.4 12 18 19.4 147.1
SE 4 3 0.7 0.9 0.5 0.71 2.5 0.4 10.0
CV (%) 18.2 20.5 9.8 15.4 6.5 10.0 27.1 10.4 35.7
 
2014 
Germplasm  PH EH SD EL EC RN GR KW GY
B73 164b 87d 67d 14.3c 13.0bc 12ab 16abc 17.1f 129.0b

Mp715 200ab 117a 81a 15.3bc 12.0c 11ab 21a 20.4bc 81.3c

Mp313E 212a 111ab 76b 15.7bc 12.8bc 11ab 18abc 21.2ab 134.0b

Mo18W 190ab 100c 81a 21.7a 14.7a 13a 20ab 19.9cd 221.3a

Va35 113c 51e 64e 14.0c 12.6bc 13a 15c 21.5a 226.3a

Mp420 177ab 108b 73c 17.7b 13.9ab 13a 15bc 18.7e 128.0ab

Mp719 186ab 88d 74bc 15.3bc 13.3abc 13a 18abc 18.8de 124.7b

GM 177 95 74 16.3 13.2 12 18 19.7 149.2
SE 14 2 0.7 0.9 0.5 0.6 1.4 0.4 6.8
CV (%) 20.5 22.6 8.4 17.3 7.9 9.7 18.4 8.5 35.1
* values with same letter in the column did not differ significantly at P=0.05. 
PH, Plant height; EH, Ear height; SD; Silking days; EL, Ear length; EC, Ear circumference; RN, 
Number of rows/ear; GR, Grains/ rows; KW, 100 kernel weight; GY, Grain yield/plot. 
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Appendix 5 Sources of variation and F values for various morphological traits in maize 
germplasm 
 
Source of variation 2013 2014 Across years 
Plant height       

Var 85.78** 5.57** 28.72** 

Rep 2.72NS 0.94NS 6.07** 

Year     2.45NS 

Var*Year     1.51 
        
Ear height 
Var 49.86** 110.98** 145.47** 

Rep 0.77NS 0.55NS 0.74NS 

Year     0.17NS 

Var*Year     1.37NS 
        

Days to50% silking    

Var 76.47** 105.38** 139.32** 

Rep 2.48NS 1.69NS 0.1NS 

Year     3.22NS 

Var*Year     1.0NS 

Ear length       

Var 5.74** 8.11** 8.76** 

Rep 2.64NS 0.17NS 0.0NS 

Year     0.84NS 

Var*Year     0.88NS 
        
Ear circumference 
Var 0.33NS 3.59** 1.42* 

Rep 1.75NS 0.01NS 0.38NS 

Year     0.68NS 

Var*Year     0.41NS 
        
Number of Rows 
Var 1.37* 1.77* 1.22* 

Rep 0.12NS 1.2NS 0.88NS 

Year     0.17NS 

Var*Year     0.55NS 
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Source of variation 2013 2014 Across years 
Kernels /row 
Var 1.85* 2.29* 2.96* 

Rep 0.61NS 3.23** 0.1NS 

Year     2.5NS 

Var*Year     1.34 
        
100 kernel weight 
Var 25.39** 17.71** 22.46** 

Rep 1.28NS 10.32** 0.59NS 

Year     4.44* 

Var*Year     0.45NS 
        

Grain yield (gm/plot) 
 

Var 28.1** 62.48** 60.96** 

Rep 2.43NS 2.92NS 0.17NS 

Year     1.54NS 
Var*Year     0.69NS 
*Significant at the 0.05 probability level; **Significant at the 0.01 probability level;  
NS Nonsignificant; Var, variety; Rep, replication 
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Appendix 7 List of genes obtained from the suppression subtractive hybridization experiment. 
 
SN Clone 

ID 
Name of the protein Chr Bin Homology 

(%) 
e-value 

1 P1A01 
plasma membrane associated protein 
[Zea mays] 

7 7.02 100.0 
9.051e-
149  

2 P1A03 Hypothetical protein 1 1.08 98.6 
7.295e-
104  

3 P1A04 hypothetical protein [Zea mays] 1 1.08 98.6 
7.295e-
104  

4 P1A05 
pathogenesis-related protein 1 [Zea 
mays] 

1 1.03 98.0 2.449e-93  

5 P1A06 
uncharacterized protein 
LOC100191593  

4 4.02 100.0 
6.336e-
110  

6 P1A08 mitogen activated protein kinase 7 5 5.03 97.9 
1.633e-
156  

7 P1A10 aspartic proteinase [Oryza sativa] 10 10.03 98.3 2.57E-84 

8 P1A12 
trehalose-6-phosphate synthase [Zea 
mays] 

1 1.02 97.6 
4.157e-
137  

9 P1B02 
6-phosphogluconolactonase [Oryza 
brachyantha] 

2 2.08 98.7 0  

10 P1B03 
cytosolic aconitase [Triticum 
aestivum] 

2 2.07 100.0 
2.838e-
154  

11 P1B04 asparagine synthetase2 [Zea mays]  3 3.09 98.6 3.894e-63  

12 P1B05 leucine Rich Repeat family protein  1 1.07 98.8 
 4.829e-
121  

13 P1B06 xylose isomerase [Zea mays] 1 1.1 100.0 
1.097e-
150  

14 P1B07 
pathogenesis-related protein 4 
[Triticum monococcum] 

4 4.02 100.0 
6.336e-
110  

15 P1B08 
Probable non-specific lipid-transfer 
protein 2 

2 2.08 98.8 1.076e-81  

16 P1B10 
zein-alpha 19C2 precursor [Zea 
mays]  

7 7.02 100.0 
5.546e-
142  

17 P1C02 anamorsin homolog [Zea mays]  2 2.01 100.0 1.185e-79  

18 P1C05 
60S ribosomal protein L5-1 [Zea 
mays]  

8 8.06 100.0 1.212e-59  

19 P1C08 
peptidylprolyl isomerase putative 
[Ricinus communis]  

1 1.06 100.0 
1.665e-
133  

20 P1C09 conserved hypothetical protein  5 5.04 96.1 2.595e-88  

21 P1C12 cytochrome b5 [Zea mays]  8 8.05 100.0 2.255e-29  

22 P1D01 
uncharacterized protein 
LOC100276217 [Zea mays] 

5 5.03 97.2  0  

23 P1D06 WD40 repeat-containing protein 3 3.04 98.8 1.054e-



 138

SN Clone 
ID 

Name of the protein Chr Bin Homology 
(%) 

e-value 

SMU1-like 120  

24 P1D11 E3 ubiquitin protein ligase UPL1 3 3.04 100.0 
7.347e-
116  

25 P1D12 
glyceraldehyde-3-phosphate 
dehydrogenase 

6 6 98.0 3.761e-65  

26 P1E05 
Kinase-like protein [Medicago 
truncatula] 

5 5.05 97.4 1.052e-87  

27 P1E07 selenium-binding protein [Zea mays] 3 3.05 98.5 0  

28 P1E08 aconitase2 [Zea mays]  4 4.04 99.6 
5.454e-
126  

29 P1E09 catalase isozyme B [Zea mays]  5 5.03 98.3 1.226e-81  

30 P1E10 
fructose-16-bisphosphatase cytosolic 
[Zea mays]  

8 8.03 100.0 2.177e-42  

31 P1E12 
metallothionein-like protein type 2 
[Zea mays] 

3 3.04 92.7 
2.627e-
161  

32 P1F03 
lipid transfer protein [Oryza sativa 
Japonica Group] 

3 3.06 96.8 6.964e-81  

33 P1F06 
RND family efflux transporter MFP 
subunit 

10 10.04 99.3 2.490e-62  

34 P1F10 
uncharacterized protein 
LOC100276695 [Zea mays]  

3 3.06 97.9 5.967e-89  

35 
P1F11
  

putative methyltransferase PMT7 
[Arabidopsis thaliana]  

8 8.03 99.3 
1.934e-
152  

36 P1F12 monodehydroascorbate reductase 2 2.06 99.4 
1.575e-
156  

37 P1G01 chitinase [Zea mays] 10 10.4 93.9 1.357e-96  

38 P1G02 
endoplasmic oxidoreductin-1 [Zea 
mays] 

1 1.1 100.0 2.177e-87  

39 P1G05 
Histone H2A [Medicago 
truncatula]  

5 5.01 98.5 
1.243e-
162  

40 P1G06 Spermidine synthase 1 2 2.06 100.0 4.118e-99  

41 P1G07 
nucleoside diphosphate kinase 1 
[Oryza sativa Indica Group] 

7 7.03 100.0 
1.714e-
156  

42 P1G11 
putative xylanase inhibitor [Triticum 
aestivum] 

2 2.09 93.9 1.079e-97  

43 P1H01 
AAA-type ATPase family protein 
[Arabidopsis thaliana] 

5 5.04 98.2 1.106e-74  

44 P1H04 protein BRICK1 [Zea mays] 5 5.09 96.7 8.100e-79  

45 P1H09 VHS domain-containing protein  8 8.03 99.6 
4.299e-
139  

46 P1H10 
putative aminoacrylate hydrolase 
RutD-like 

6 6.07 95.5 2.992e-94  
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SN Clone 
ID 

Name of the protein Chr Bin Homology 
(%) 

e-value 

47 P1H11 actin [Zea mays] 8 8.03 98.8 
3.825e-
122  

48 P1H12 protein tyrosine phosphatase  1 1.09 100.0 1.048e-66  

49 P2A01  senescence-associated protein 12 5 5.03 100.0 2.177e-83  

50 P2A02  pathogen-related protein 10-1 1 1.03 98.4 7.741e-88  

51 P2A03  
Bowman-Birk type wound-induced 
proteinase inhibitor  

3 3.04 94.2 5.984e-89  

52 P2A08  barwin-like 4 4.02 100.0 
6.916e-
110  

53 P2A09  S-adenosylmethionine synthetase 8 8.05 100.0 
8.719e-
177  

54 P2A10  
diphosphonucleotide phosphatase1 
[Zea mays] 

10 10.03 100.0 
3.318e-
111  

55 P2A11  ATP-dependent endonuclease  3 3.05 96.4 5.079e-31  

56 P2A12 ubiquilin-1 [Zea mays] 1 1.05 100.0 
4.087e-
125  

57 P2B01  bZIP transcription factor 4 4.02 99.0 
1.270e-
100  

58 P2B02   CBL-interacting protein kinase 4 4.08 99.2 
1.242e-
115  

59 P2B03  B12D protein [Zea mays] 6 6.04 100.0 
5.764e-
129  

60 P2B04  permatin precursor 3 3.06 98.1 2.787e-97  

61 P2B05  win1 precursor [Zea mays] 4 4.02 100.0 
1.651e-
109  

62 P2B06  chorismate mutase  1 1.07 100.0 3.058e-56  

63 P2B07  transposase IS630 2 2.04 98.9 
6.503e-
135  

64 P2B09  
BETL-9 protein precursor [Zea 
mays] 

8 8.08 96.7 3.804e-65  

65 P2B10 
Cancer-related nucleoside-
triphosphatase homolog 

1 1.01 100.0 7.711e-78  

66 P2B12  
ubiquinol-cytochrome C reductase 
iron-sulfur subunit 

10 10.04 98.9 
2.425e-
132  

67 P2C01 UDP-sugar pyrophospharylase 6 6.02 99.6 
4.292e-
140  

68 P2C02  hydrolase  5 5 98.9 1.701e-84  

69 P2C04  ubiquitin [Oryza sativa]         

70 P2C05  unknown [Zea mays] 2 2.08 99.2 
2.712e-
122  

71 P2C06  adenine nucleotide translocator [Zea 5 5.06 97.9 3.670e-86  
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SN Clone 
ID 

Name of the protein Chr Bin Homology 
(%) 

e-value 

mays] 

72 P2C08  Polynucleotidyl transferase 1 1.01 100.0 2.177e-78  

73 P2C09  
globulin-1 S allele precursor [Zea 
mays] 

1 1.09 99.0 
7.855e-
144  

74 P2C10  40S ribosomal protein S21 5 5 93.8 2.852e-67  

75 P2C11    transmembrane protein 205-like 3 3.05 99.0 5.697e-99  

76 P2C12   
eukaryotic translation initiation 
factor 3 subunit 7 

3 3.08 98.8 0  

77 P2D01  
26S proteasome non-ATPase 
regulatory subunit 12-like 

5 5.09 99.4 3.643e-76  

78 P2D04  Cathepsin O 2 2.06 99.3 
5.840e-
134  

79 P2D05 
 PDIL2-2 - Zea mays protein 
disulfide isomerase 

3 3.04 99.5 
3.623e-
101  

80 P2D07  
trehalose-6-phosphate synthase [Zea 
mays] 

1 1.02 97.6 
9.536e-
137  

81 P2D09   non-specific lipid-transfer protein 2 2 2.08 98.8 3.642e-81  

82 P2D10  
activator of 90 kDa heat shock 
protein ATPase 

4 4.11 94.0 1.577e-99  

83 P2D11  Cytochrome P450 family protein 9 9.03 96.8 1.621e-84  

84 P2D12  putative Na+-dependent transporter 6 6.07 99.5 
2.538e-
107  

85 P2E01  
ATP-dependent zinc metalloprotease 
FTSH  

6 6.01 99.7 
6.983e-
153  

86 P2E03  salt tolerant correlative protein  5 5.04 98.8 6.279e-79  

87 P2E04   putative 23S ribosomal RNA 3 3.05 97.5 1.313e-70  

88 P2E05  cp protein [Celosia cristata] 6 6.05 99.5 1.315e-90  

89 P2E06  
T cytoplasm male sterility restorer 
factor 2 

5 5.03 100.0 7.833e-98  

90 P2E07  non-ribosomal peptide synthetase  7 7.02 100.0 6.256e-74  

91 P2E08 protein phosphatase 2C 3 3.09 98.8 0  

92 P2E09 
Leukocyte receptor cluster member-
like protein 

8 8.04 100.0 2.000e-68  

93 P2E10  
voltage-dependent anion channel 
protein1a [Zea mays] 

2 2.06 98.9  0  

94 P2E12  
peptidase M61 domain-containing 
protein 

6 6.05 100.0 
 5.128e-
164  

95 P2F03 
acyl-CoA-binding domain-
containing protein 6 

2 2 99.4 
2.591e-
157  

96 P2F05  
vicilin-like embryo storage protein 
[Zea mays] 

1 1.09 97.8 0  
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SN Clone 
ID 

Name of the protein Chr Bin Homology 
(%) 

e-value 

97 P2F06  
ubiquitin-conjugating enzyme E2 
32-like  

9 9.05 99.4 
6.928e-
178  

98 P2F07 60S ribosomal protein L12  4 4.06 98.5 7.856e-93  

99 P2F08  
eukaryotic translation initiation 
factor 3 subunit B-like  

1 1.05 99.5 0  

100 P2F09  Aminoacyl-tRNA synthetase 7 7.02 100.0 6.472e-77  

101 P2F10  DnaJ heat shock protein  1 
1.08-
1.09 

100.0 
 5.742e-
119  

102 P2F11   
12-dihydroxy-3-keto-5-
methylthiopentene dioxygenase 2  

1 1.02 99.2 7.832e-58  

103 P2G01  YT521-B-like family protein 9 9.07 99.4 0  

104 P2G02  
transmembrane receptor protein 
serine/threonine kinase  

4 4.09 100.0 
1.202e-
135  

105 P2G04 
elongation factor 1-delta 1 [Zea 
mays] 

7 7.04 97.7 1.380e-55  

106 P2G05  nodulin-like protein 2 2.04 99.3 
2.064e-
133  

107 P2G06  WD-repeat protein 57 [Zea mays] 9 9.04 99.3 
6.883e-
133  

108 P2G07  zinc finger protein binding protein 2 2.05 99.7 
1.213e-
145  

109 P2G08  NUDIX domain-containing protein 3 3.04 100.0 2.919e-67  

110 P2G09  
ACR255Cp [Ashbya gossypii ATCC 
10895] 

5 5 93.8 2.884e-67  

111 P2G10  
OmpA/MotB domain-containing 
protein 

9 9.07 99.7 0  

112 P2G12  E3 ubiquitin protein ligase UPL1 10 10.03 99.3 0  

113 P2H01  
BTB/POZ domain-containing 
protein At2g46260 

4 4.09 100.0 
8.427e-
177  

114 P2H03 
putative mitochondrial Rieske 
protein 

10 10.04 98.9 
2.598e-
132  

115 P2H04  Wheatwin-2 4 4.02 100.0 
1.609e-
109  

116 P2H05  
component of cytosolic 80S 
ribosome and 40S small subunit 

5 5 93.8 2.888e-67  

117 P2H07 dihydrodipicolinate synthetase 1 1.09 97.1 2.258e-58  

118 P2H08  
bromo adjacent homology domain-
containing 1 protein 

9 9.04 97.4 3.607e-86  

119 P2H09  asparagine synthetase2 [Zea mays] 5 5.04 100.0 
5.776e-
114  

120 P2H10  
cytochrome b-c1 complex subunit 
Rieske  

10 10.04 98.9 
2.576e-
132  
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121 P2H11  transaldolase 2 [Zea mays] 8 8.06 98.9 
5.476e-
134  

122 P3A01  
casein kinase II subunit beta-4 [Zea 
mays] 

7 7.03 100.0 
2.527e-
144  

123 P3A02 putative puroindoline b protein  1 1.1 96.8 7.887e-82  

124 P3A03 
splicing factor 3B subunit 1-like 
isoform 1 

4 4.1 98.3 
1.999e-
143  

125 P3A06 prohevein [Hevea brasiliensis] 4 4.02 100.0 
1.611e-
109  

126 P3A07 putative acyl-CoA synthetase 3 3.08 99.2 1.763e-54  

127 P3A08 
26S proteasome regulatory particle 
non-ATPase subunit5 

5 5.09 99.4 
 3.683e-
76  

128 P3A09 
hemolysin family calcium-binding 
region  

9 9.02 97.7 
4.250e-
145  

129 P3A10 
acetyl-coenzyme A carboxylase 
ACC1A 

5 5.03 100.0 
 8.895e-
157  

130 P3A11 pi1 [Solanum lycopersicum] 4 4.02 100.0 
1.542e-
109  

131 P3A12 
phospho-2-dehydro-3-
deoxyheptonate aldolase 1 [Zea 
mays] 

7 7.04 99.1 
1.759e-
178  

132 P3B02 
heparanase [Oryza sativa Indica 
Group] 

1 1.02 97.4 7.996e-68  

133 P3B04 
Acyl-protein thioesterase 2 [Zea 
mays]  

3 3.03 98.3 
3.264e-
171  

134 P3B05 putative 23S ribosomal RNA 1 1.02 99.4 1.333e-80  

135 P3B06 putative 23S ribosomal RNA  10 10.04 99.3 1.065e-61  

136 P3B07 heat shock protein 70 5 5.03 86.2 
2.608e-
142  

137 P3B08 
vacuolar processing enzyme1 
precursor [Zea mays] 

5 5.05 100.0 
1.285e-
105  

138 P3B09 
eukaryotic translation initiation 
factor 3 subunit like protein 

4 4.05 99.4 7.842e-73  

139 P3B11 
RNA binding protein [Arabidopsis 
lyrata subsp. lyrata] 

6 6.08 99.2 
3.300e-
126  

140 P3C01 
putative iron-sulfur cluster-binding 
protein 

3 3.05 99.5 
1.259e-
105  

141 P3C02 elongation factor 1 alpha 6 6.05 100.0 2.899e-72  

142 P3C03 
histidinol dehydrogenase 
chloroplastic-like 

1 1.11 98.4 
5.609e-
154  

143 P3C04 chaperone protein dnaj 8 8.08 92.2 
 8.122e-
78  
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144 P3C05 
basic pathogenesis-related protein 
PR5 

3 3.05 99.5 
1.294e-
105  

145 P3C06 
RNA recognition motif family 
protein 

1 1.11 100.0 8.104e-73  

146 P3C07 zinc finger protein-like 5 5.03 98.5 3.200e-95  

147 P3C08 elongation factor 1-beta [Zea mays] 7 7.05 100.0 1.539e-58  

148 P3C09 osmotin-like 3 3.06 97.3 1.661e-99  

149 P3C10 
putative Csa-19 [Oryza sativa 
Japonica Group] 

1 1.07 96.7 9.928e-97  

150 P3D02 
O-methyltransferase [Aspergillus 
fumigatus Af293] 

6 6.05 100.0 
5.419e-
164  

151 P3D04 
cytochrome b-c1 complex subunit 
Rieske 

10 10.04 98.9 
2.728e-
132  

152 P3D06 
eukaryotic translation initiation 
factor 5A [Zea mays] 

2 2.08 99.6 
 9.828e-
127  

153 P3D08 
acidic ribosomal protein P40 [Zea 
mays] 

9 9.07 99.5 
4.662e-
100  

154 P3D09 
developmentally-regulated GTP-
binding protein 2 

9 9.08 98.2 
1.273e-
105  

155 P3D10 lammer-type protein kinase  5 5.05 100.0 
9.802e-
107  

156 P3E01 
ribosomal protein L3 [Triticum 
aestivum] 

        

157 P3E02 F14N23.18 [Arabidopsis thaliana] 9 9.01 100.0 
2.121e-
113  

158 P3E03 
Cation transport regulator-like 
protein  

5 5.04 100.0 
6.007e-
114  

159 P3E05 monothiol glutaredoxin-S11-like  2 2.05 96.4 0  

160 P3E08 
2-oxoisovalerate dehydrogenase 
alpha subunit 

10 10.03 100.0 
 1.739e-
79  

161 P3E11 serine/threonine protein kinase  6 6.01 99.0 0  

162 P3E12 DNA-binding protein [Zea mays] 3 3.04 99.4 0  

163 P3F01 
meloidogyne-induced giant cell 
protein-like protein 

5 5.04 100.0 
5.689e-
114  

164 P3F03 
S-adenosylmethionine synthetase 1 
[Zea mays] 

10 10.03 94.7 
1.222e-
150  

165 P3F04 
flower-specific gamma-thionin 
precursor [Zea mays] 

10 10.03 100.0 
4.275e-
120  

166 P3F05 LOC100286358 [Zea mays] 6 6.04 99.2 
4.548e-
125  

167 P3F11 
lysine ketoglutarate reductase trans-
splicing related 1 [Zea mays]  

5 5.04 100.0 1.318e-55  
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168 P3F12 60S ribosomal protein L11 9 9.03 98.1 2.601e-97  

169 P3G02 
mitochondrial import receptor 
subunit TOM5 homolog 

1 1.08 98.4 
2.037e-
123  

170 P3G03 
ATP-dependent Clp protease 
proteolytic subunit 2 

9 9.02 100.0 3.725e-66  

171 P3G04 
nucleolar GTP-binding protein 
[Oryza sativa Japonica Group] 

9 9.01 100.0 
2.135e-
113  

172 P3G05 
putative nucleolar GTP-binding 
protein 

9 9.01 100.0 
2.126e-
113  

173 P3G09 
uncharacterized protein 
LOC100217111 [Zea mays]  

7 7.06 99.3 3.746e-66  

174 P3G12 
MerR-family transcriptional 
regulator 

1 1.10 98.4 9.531e-87  

175 P3H01 
Cation transport regulator-like 
protein 2 

5 5.04 100.0 
5.537e-
114  

176 P3H04 
cysteine proteinase inhibitor [Zea 
mays] 

8 8.08 100.0 
1.152e-
140  

177 P3H06 
S-adenosylmethionine 
decarboxylase proenzyme [Zea 
mays]  

2 2.04 99.3 0  

178 P3H07 Metabotropic glutamate receptor 1 1.06 92.5 2.346e-33  

179 P3H08 
poly-gamma-glutamate synthesis 
protein YwtB 

2 2.10 99.6 
7.211e-
143  

180 P3H09 
phosphotransferase system EIIC 
component 

4 4.08 99.2 
1.592e-
124  

181 P3H10 
acidic ribosomal protein P40 [Zea 
mays]  

9 9.07 99.5 
4.511e-
100  

182 P3H11 ATPP2-A13 [Zea mays] 7 7.03 98.2 
1.595e-
104  

183 P3H12 polyubiquitin-like protein 4 4.1 98.8 
1.101e-
165  

184 P4A01 selenium-binding protein [Zea mays] 3 3.05 99.5 0  

185 P4A02 
hsc70-interacting protein [Zea 
mays]  

4 1.11 99.7 0  

186 P4A03 reticulon [Zea mays] 6 6.05 94.2 0  

187 P4A06 metallothionein 2 2.03 90.4 
4.440e-
120  

188 P4A07 multidrug resistance protein 7 7.04 96.6 
2.582e-
147  

189 P4A08 
eukaryotic translation initiation 
factor 3 subunit C-like 

2 2.02 98.6  0  

190 P4A10 ferredoxin-3 chloroplastic precursor 1 1.11 98.2 0  
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[Zea mays]  

191 P4A12 
phosphatidylinositol transfer protein 
[Zea mays subsp. mays] 

7 7.02 100.0 9.442e-77  

192 P4B02 
ornithine--oxo-acid aminotransferase 
[Saccharum officinarum]  

1 1.09 95.7 
2.529e-
157  

193 P4B07 
ribosomal protein S7 [Triticum 
aestivum] 

1 1.03 99.0 1.302e-90  

194 P4B09 
aldehyde dehydrogenase [Sorghum 
bicolor] 

1 1.03 99.0 1.302e-90  

195 P4B10 
1-acyl-sn-glycerol-3-phosphate 
acyltransferase zeta precursor 

2 2.06 98.1 5.860e-99  

196 P4C03 methionyl aminopeptidase  4 4.08 98.3 
3.572e-
111  

197 P4C04 30S ribosomal protein S21e  5 5 93.8 2.959e-67  

198 P4C05 pseudo-hevein [Hevea brasiliensis] 4 4.02 100.0 
1.662e-
109  

199 P4C07 histone H2A [Zea mays] 9 9.06 97.0 
7.322e-
138  

200 P4C09 DNA binding protein putative 8 8.03 100.0 5.082e-40  

201 P4C10 
acyl-CoA dehydrogenase family 
member 10-like  

2 2.08 100.0 
3.848e-
101  

202 P4C11 
uncharacterized protein 
LOC100279794 [Zea mays]  

1 1.12 98.2 
4.063e-
160  

203 P4C12 
CBL-interacting serine/threonine-
protein kinase 11 [Zea mays] 

3 3.07 96.3 3.550e-56  

204 P4D01 
cysteine proteinase inhibitor 2 [Zea 
mays] 

6 6.06 100.0 5.643e-55  

205 P4D02 40S ribosomal protein S19-like 1 1.04 99.6 
9.879e-
112  

206 P4D04 chromate transport protein 2 2.07 98.0 
4.642e-
120  

207 P4D05 
eukaryotic translation initiation 
factor 5 [Zea mays] 

4 4.1 97.6 
2.061e-
138  

208 P4D06 
vesicle-associated membrane protein 
725 [Zea mays]  

1 1.11 99.3 
1.235e-
150  

209 P4D08 
translation initiation factor 4G 
[Triticum aestivum] 

2 2.08 100.0 0  

210 P4D09 fibropellin III 5 5.03 99.2 1.758e-54  

211 P4D10 
acyl-[acyl-carrier protein] 
thioesterase [Triticum aestivum] 

7 7.03 100.0 6.476e-39  

212 P4D11 
outer mitochondrial membrane 
protein porin [Zea mays] 

1 1.01 99.3 
7.033e-
133  
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213 P4E01 
lammer-type protein kinase 
[Sorghum bicolor] 

4 4.05 100.0 1.009e-76  

214 P4E07 putative phytosulfokine receptor 7 7 97.5 0  

215 P4E08 
beta-galactosidase-complementation 
protein 

        

216 P4E09 chaperonin [Zea mays] 2 2.06 99.4 6.021e-78  

217 P4E10 
eukaryotic translation initiation 
factor 2D-like 

5 5.05 100.0 
5.504e-
154  

218 P4F02 
indole-3-glycerol phosphate 
synthase-like 

10 10.06 91.6 
4.182e-
170  

219 P4F04 
ripening regulated protein 
DDTFR10 [Solanum lycopersicum]  

7 7.04 96.9 6.488e-54  

220 P4F06 
nucleic acid binding protein [Zea 
mays]  

10 10.04 99.6 
7.689e-
139  

221 P4F07 
elongation factor 1-delta 1 [Zea 
mays]  

7 7.04 97.7 1.391e-55  

222 P4F08 
inositol-tetrakisphosphate 1-kinase 3 
[Zea mays] 

1 1.1 98.5 3.331e-58  

223 P4F09 cystatin-1 precursor [Zea mays] 8 8.08 100.0 
1.203e-
140  

224 P4F10 
embryonic abundant protein 1 [Zea 
mays] 

6 6.05 93.6 1.633e-91  

225 P4F11 
small subunit ribosomal protein 
S21e [Arabidopsis thaliana]  

5 5 93.8 2.789e-67  

226 P4F12 IgGFc-binding protein-like  7 7.05 94.1 8.105e-89  

227 P4G02 
multi-drug resistance protein 
[Arabidopsis thaliana] 

        

228 P4G03 
elongation factor 1-alpha [Zea 
mays]  

9 9.03 99.3 0  

229 P4G05 win2 precursor [Zea mays] 4 4.02 99.5 
7.691e-
108  

230 P4G06 
glutamine-dependent NAD(+) 
synthetase-like 

2 2.06 99.0 6.571e-44  

231 P4G08 peptidylprolyl isomerase putative 1 1.06 100.0 
2.067e-
133  

232 P4G10 mitogen activated protein kinase 7 5 5.03 97.9 
 3.244e-
156  

233 P4G11 
pyrophosphate--fructose-6-
phosphate 1-phosphotransferase 

9 9 100.0 
4.404e-
110  

234 P4G12 
pathogenesis-related protein 1 [Zea 
mays] 

1 1.03 100.0 7.337e-93  

235 P4H01 40S ribosomal protein S21 [Zea 5 5 93.3 1.285e-65  
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mays]  

236 P4H05 
transglutaminase-like enzyme 
protein 

1 1.01 99.0 
3.570e-
101  

237 P4H06 
late embryogenesis abundant protein 
D-34 [Zea mays] 

1 1.10 97.9 4.698e-85  

238 P4H07 
G-rich sequence factor 1-like 
isoform 2 

6 6.08 100.0 
8.902e-
177  

239 P4H08 RNA binding protein 6 6.08 99.2 
3.413e-
126  

240 P4H09 phosphoglyceromutase  10 10.01 93.5 4.144e-55  

241 P4H11 
Dual specificity tyrosine-
phosphorylation-regulated kinase  

1 1.10 96.8 3.623e-66  

242 P4H12 putative oxidoreductase  5 5.03 99.2 
1.958e-
123  

243 P5A03 cysteine-type peptidase 2 2.07 100.0 2.896e-62  

244 P5A04 
serine/threonine-protein kinase 
AtPK2/AtPK19-like 

9 9.05 100.0 
2.635e-
127  

245 P5A05 
cation transport regulator-like 
protein 2 isoform  

5 5.04 100.0 
5.872e-
114  

246 P5A06 similarity to phosphofructokinases 9 9 100.0 
4.497e-
110  

247 P5A08 
60S ribosomal protein L19-3 [Zea 
mays]  

5 
  

100.0 
 9.922e-
69  

248 P5A09 
putative aminopeptidase 
[Saccharomonospora cyanea NA-
134] 

3 3.05 99.5 
1.252e-
105  

249 P5A10 protein vip1-like 9 9.03 100.0 0  

250 P5B03 
Transketolase [Medicago 
truncatula] 

2 2.05 99.4 0  

251 P5B07 
60S ribosomal protein L7a [Zea 
mays] 

7 7.03 95.1 
1.244e-
120  

252 P5B08 
pathogenesis-related protein 5 [Zea 
mays] 

1 1.06 98.0 1.014e-91  

253 P5B09 
putative vacuolar defense protein 
[Triticum aestivum] 

4 4.02 100.0 
1.606e-
109  

254 P5B11 probable serine incorporator-like  5 5.08 99.5 0  

255 P5C01 
keratinocyte-associated protein 2-
like 

3 3.04 98.7 
3.304e-
146  

256 P5C02 
60S ribosomal protein L17 [Zea 
mays]  

1 1.06 97.9 
4.558e-
115  

257 P5C03  
S-adenosylmethionine 
decarboxylase 3  

2 2.04 99.3 0  
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258 P5C04  XK-related protein 8 [Bos taurus] 9 9.05 96.2 
6.053e-
104  

259 P5C05 zeamatin-like 3 3.06 97.3 1.683e-99  

260 P5C09 RNA-binding protein 25 [Zea mays] 5 5.04 100.0 1.251e-45  

261 P5C10 
4-hydroxy-3-methylbut-2-enyl 
diphosphate reductase 

1 1.10 99.0 9.971e-92  

262 P5D01 
S-adenosylmethionine 
decarboxylase 3 [Sorghum bicolor]  

1 2.04 99.3 0  

263 P5D03 chordin [Homo sapiens] 4 4.09 99.2 
8.276e-
129  

264 P5D04 
C-1-tetrahydrofolate synthase 
cytoplasmic [Zea mays] 

8 8.05 99.3 2.312e-68  

265 P5D05 membrane protein [Zea mays]  7 7.04 99.4 2.271e-73  

266 P5D07 phosphoglyceromutase 10 10.01 93.5 4.988e-55  

267 P5D10 
putative cation transporter 
[Potamogeton distinctus] 

5 5.04 100.0 
5.800e-
114  

268 P5D11 alpha/beta hydrolase fold protein 7 7.05 94.7 7.422e-93  

269 P5D12 lipid transfer protein [Oryza sativa] 2 2.08 98.8 3.417e-81  

270 P5E03 
mps one binder kinase activator-like 
1A [Zea mays]  

10 10.03 100.0 1.414e-50  

271 P5E04 
glycyl-tRNA synthetase 1 
mitochondrial-like 

4 4.08 100.0 0  

272 P5E06 stromal ascorbate peroxidase 2 2.04 99.1 3.032e-47  

273 P5E08 ubiquitin-fold modifier 1 [Zea mays] 3 3.05 99.5 1.686e-99  

274 P5E09 
putative RNA-binding protein 
RBP37 [Oryza sativa Japonica 
Group] 

6 6 100.0 1.423e-30  

275 P5E10 legumain 5 5.05 100.0 
1.271e-
105  

276 P5E11 ataxin-3 [Zea mays] 3 3.06 100.0  0  

277 P5F01 
cation transport protein chaC [Zea 
mays] 

5 5.04 100.0 
3.082e-
114  

278 P5F02 aspartic proteinase 6 6.07 98.5 
5.717e-
129  

279 P5F05 
basic leucine zipper and W2 
domain-containing protein 

2 2.05 100.0 
6.019e-
121  

280 P5F08 L3 ribosomal protein partial 2 2.06 100.0 6.006e-99  

281 P5F10 
Bromodomain associated family 
protein expressed 

1 1.05 99.7 0  

282 P5F11 
60S ribosomal protein L36-2 [Zea 
mays] 

6 6.05 100.0 
9.533e-
102  
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283 P5F12 anoctamin-10-like 3 3.07 99.2 4.567e-60  

284 P5G04 shikimate kinase [Zea mays]  4 4.08 97.2 1.377e-60  

285 P5G05 ubiquitin C-terminal hydrolase 6 6.05 80.3 1.171e-37  

286 P5G06 Cytochrome c peroxidase 2 2.04 98.2 1.412e-45  

287 P5G07 transposase IS4 family         

288 P5G10 cingulinW1 precursor  8 8.04 100.0 
5.375e-
159  

289 P5G11 metalloprotease m41 ftsh 1 1.12 98.2 
4.097e-
160  

290 P5G12 
vacuolar protein sorting protein 25 
[Zea mays] 

8 8.06 96.4 6.052e-44  

291 P5H01 
Wound-induced protein WIN2 
precursor 

4 4.02 100.0 
7.318e-
110  

292 P5H02 
ADP-glucose pyrophosphorylase 
embryo small subunit [Zea mays]  

2 2.06 99.5 3.473e-91  

293 P5H04 putative MAPK [Zea mays] 5 5.03 97.9 
3.262e-
156  

294 P5H05 
hypothetical myo-inositol 
catabolismprotein iolB  

7 7.02 100.0 6.180e-74  

295 P5H06 
CCR4 associated factor 1-related 
protein [Medicago truncatula]  

2 2 96.7 2.787e-92  

296 P5H07 B12D protein [Ipomoea batatas] 6 6.04 100.0 
5.717e-
129  

297 P5H09 
60S ribosomal protein L13-2 [Zea 
mays] 

6 6.05 97.5 
 1.570e-
134  

298 P5H10 cystatin 8 8.08 99.6 
1.978e-
138  

299 P5H11 
Probable ubiquitin-conjugating 
enzyme E2 R521 

6 6.04 97.2 
1.189e-
130  

300 P5H12 
small subunit ribosomal protein 
S21e  

5 5 93.8 2.722e-67  
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