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Abstract 

 

Nitrogen (N) is one of the most important and limiting nutrients in crop 

production. The best management practices for N fertilization is always challenging due 

to its dynamic system in the nature. Remote sensing has emerged as one of the most 

useful technologies in modern agriculture for non-invasive monitoring of plant N status.  

The objectives of this research were to 1) determine the effect of water background 

turbidity and depth on red and red-edge reflectance based prediction models for biomass 

and grain yield in rice, 2) evaluate agronomic parameters of different sugar cane varieties 

in response to variable levels of nitrogen supply, and 3) determine the effect of sugarcane 

varieties on the relationships between spectral reflectance and agronomic parameters. 

Rice experiments were variety (CL152 and CL261) x N trial established in Crowley, LA 

in 2011 and 2012.  Sugarcane experiments were variety (L 99-226, L 01-283, and HoCP 

96-540) x N trial established in St. Gabriel and Jeanerette, LA from 2010 through 2012.  

Spectral reflectance and agronomic parameters were collected each week for three 

consecutive weeks beginning two weeks before panicle differentiation in rice and for four 

consecutive weeks beginning three weeks after N fertilization in sugarcane.   

There was no significant effect of water background (turbid or clear) on the 

spectral reflectance at panicle differentiation, one week after panicle differentiation, and 

at 50 % heading (p <0.05). Water depth slightly influenced the reflectance at red 

waveband but this effect was not carried over when vegetation indices were computed. 

Use of red-edge based vegetation indices improved the estimation of biomass and grain 

yield in rice. The effect of variety on the accuracy of the yield prediction model varied 
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depending on the transformation of reflectance within the red-edge and near infrared 

bands i.e., into normalized (NDVI) and simple ratio (SR) forms of vegetation indices.  

This result was associated with the behavior of near infrared wavebands on the 

geometrical structure of the plant canopy.   There were no significant effects of variety on 

grain yield prediction models using derivative based red-edge indices. Our findings 

showed that red-edge based NDVI and SR are better predictors of rice grain yield than 

red-based NDVI and SR. Red-edge based NDVI or SR indices both have potential to 

predict rice grain yield and rice responsiveness to N fertilization. In sugarcane, the 

measured agronomic variables at early growth stage, i.e. biomass, tiller number, N 

content, height and FAI of three sugarcane varieties and their responses to N fertilizer 

were highly variable across year.  The sugar yield response to N determined at harvest 

had stronger linear relationships with N response of biomass and N content at 4 to 5 

weeks after N fertilization compared with N response of height and FAI. There were no 

differences in leaf spectral reflectance among varieties. In canopy level-spectral 

reflectance, wavebands at 450-500, 650-700, and 780-830 nm showed high correlation 

coefficient with agronomic parameters. The vegetation indices which have the potential 

for predicting biomass N uptake were red and red-edge based simple ratio and 

normalized difference vegetation index. Varietal effect on the models for estimating 

biomass and N uptake was significant only when red-based vegetation indices were used 

(p<0.05). Addition of plant height in the model substantially improved biomass and N 

uptake estimation while diminishing the effect of variety. Remote sensing technology can 

be a potential tool to estimate biomass and N uptake in rice and sugarcane. The delivered 

information from this technology is useful to improve mid-season N management.  
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Chapter 1. Introduction 

 

1.1 Nitrogen in Crop Production 

Seventy-eight percent of the air we breathe consists of nitrogen (N) gas.  Due to 

its inert structure, N is not directly available for most of plants. Plant dry matter contains 

about 5% N, the largest among essential mineral nutrients. Nitrogen is essential for 

production of amino acid which is the basic source of protein for plant metabolism to 

produce hormones, enzymes and membranes. Nitrogen is the fundamental element in 

chlorophyll pigments which is responsible for photosynthesis that accounts for 90 % of 

plant dry weight production (Poorter et al., 1990). Apart from yield, N also influences 

grain quality and disease resistance in crop production. 

In the United States, the majority of N supply for crop production relies on 

chemical fertilizer; 40 to 60 % of grain yield productions are dependent on inorganic N 

fertilizer (Stewart, et al. 2005).  In 2008, the price of N fertilizer reached the highest since 

1960; the average cost of anhydrous ammonia fertilizer was $ 755 per ton which was 1.5 

times more than the previous year and 3 times more compared to ten years ago (Huang, 

2009). This rise in N fertilizer price was linked with the increase of fuel (natural gas) 

cost. The Haber Bosch process, which is the industrial method of fixing atmospheric N 

gas into ammonia, requires a large amount of fuel as energy source. Funderburg (2001) 

reported that 1 ton of anhydrous ammonia fertilizer requires about 9500 cubic meter of 

natural gas. An increase in the price of gas from $90 to $250 per cubic meter increased 

the cost for fertilizer by $136 per ton of fertilizer (Funderburg, 2001). Due to this rise in 

the cost associated with N fertilizer production, more than 55 % of N supplies in U.S. 
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was imported (USDA, 2011).  With today‘s high yielding varieties and new production 

technologies, consumption of inorganic N fertilizer would likely continue to rise. 

Producers need to improve utilization efficiency of applied N fertilizer to maximize 

profits. 

With the increase in industrial N fertilizer use, environmental quality is also put at 

risk. Global warming is an environmental issue that has been discussed on a daily basis. 

Nitrous oxide derived from microbial transformation of nitrate (denitrification) in 

agriculture, is one of the ‗greenhouse gases‘; while its concentration in the atmosphere is 

relatively lower than CO2, its  global warming potential is 296 times that of a unit of CO2 

(IPCC, 2001). In the United States, about 70% of the total nitrous oxide emission 

originates from agricultural soil management associated with synthetic N fertilizer 

(USEPA, 2011). Also another form of gas such as ammonia from synthetic N fertilizer 

has been reported as the leading cause of acid rain (Vitousek et al., 1997). The loss of N 

fertilizer from agricultural fields has caused a negative impact on water quality.  Nitrogen 

flux in rivers was reported to increase by 10 % and 27 % in northern America and 

developing countries, respectively, in recent decades due to N runoff from crop fields 

(Bouwman et al., 2005). This increase in N flux has resulted in eutrophication, a 

condition where oxygen level in large bodies of water is reduced ultimately affecting 

aquatic ecosystem. Several studies have also shown that N input in agricultural activities 

and nitrate contamination in the ground water were related (Burlart and Kolpin, 1993; 

Spalding and Exner, 1993; Zhang et al., 1996). The critical nitrate (NO3-N) level for 

drinking water is set at 10 mg L
-1

. The increase in ground water contamination by nitrate 

does reduce the accessibility for safe drinking water; consumption of nitrate 
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contaminated water has been associated with blue baby syndrome (Knobeloch et al., 

2000).   

By 2050, global population is estimated to be more than 9.3 billion (U.S. Census 

Bureau, 2001).  With this expanding world population, it is essential to maximize food 

production per unit of land as well as per unit of applied fertilizer. However, the 

estimated worldwide N use efficiency (NUE) is only 33 % in cereal production (Raun 

and Johnson, 1999). This low N fertilizer use efficiency is attributed to dynamic N cycle 

in the soil system. There are numerous pathways by which applied N fertilizer can be lost 

from the soil system. On the other hand, there are many sources of N including N from 

mineralization, decomposition of organic matter and rainfall. Accounting what is 

currently available for plant uptake while minimizing N lost constitutes an efficient N 

management system.   

In modern agriculture, efficient N management is a key component to sustain crop 

productivity and profitability (economics) while maintaining environmental quality. 

1.2 Nitrogen Management  

Nitrogen is dynamic in nature. Nitrogen transformation processes include 

aminization, ammonification, immobilization, nitrification, and mineralization which are 

dependent on soil temperature, texture, moisture, organic matter and biological activity 

including plant uptake. There are N loss pathways which sit between these transformation 

processes. For example, NH4
+
-N, a product of ammonification process, if not taken up by 

the plant can be lost via ammonia volatilization depending on the soil pH and moisture or 

can be fixed on clay exchange sites. Most agricultural soils are aerobic resulting in the 
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conversion of NH4
+
-N to nitrate through the nitrification process. Nitrate-N is subject to 

nitrate leaching and denitrification, the relative dominance of these two processes is 

dependent on moisture, temperature and soil physical properties. Vast amount of research 

have been conducted to establish the best N management practices. The cornerstone of 

the best N fertilizer management is the application of the right amount of N using the 

right source at the right timing in the right place (4 Rs). 

1.2.1 Nitrogen Rate 

Application of N fertilizer at the right rate is an integral part of crop production to 

maximize economical return as well as to minimize environmental risks. Historically, N 

rate recommendation has been determined based on crop response to N fertilizer in well-

replicated field trials which further adjusted by soil types (Voss 1969; Univ. of 

Kentuckey Coop.Ext. Serv., 2006). As environmental risk associated N fertilization 

increased, this system shifted into more field specific N management, i.e.  N rate 

recommendation was determined based on yield goal and soil testing. Yield goal is the 

average of recent five years yield plus 30 % and then N rate is estimated based on the 

total amount of N that would be removed with a given yield goal level (Johnson, 1991). 

Setting a representative yield goal is one of the challenging aspects in determining the 

right amount of N fertilizer. Meisinger et al. (2008) listed different interpretations of 

‗yield goal‘ and gave examples associated with this problem, for example, study 

conducted by Schepers et al. (1986) showed that farmers generally overestimated yield 

by 2 Mg ha
-1

 in corn production. Since yield goal generally does not consider the current 
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crop field conditions, they also noted the importance of adjusting yield goal based on 

plant growth and management zones.  

Soil testing was also incorporated to yield goal-based N rate recommendation by 

subtracting the amount of available mineral N (nitrate and ammonia) from the estimated 

total amount of N removed (Stanford and Hanway, 1955; Bundy and Andraski, 1995). 

Oregon State University provided variable N rates depending on soil-mineralizable N 

(plant available ammonium, and nitrate) in winter wheat (Hart et al., 2006).  However, 

some studies showed the challenge of soil test N to be unreliable in regions with high 

precipitation potential such as southern Louisiana. Breitenbeck (1990) reported the 

possibility of the low consistency in nitrate test in southern states since high humidity and 

precipitation enhanced the loss of mineralized N. Also it is difficult to determine the plant 

available N under the dynamic system of N in soil profile.  Research conducted by 

Schmitt and Randall (1994) showed low reliability of total amount of nitrate in pre-plant 

sampling because it does not account for mineralized N for the entire plant growth 

duration.  

The fundamental N management strategy has not been changed however, the 

improvement of technology and methods has provided tools to determine crop N-needs 

more precisely through monitoring plants and soils within-seasons. Pre-sidedress nitrate 

test (PSNT) measures soil surface nitrates concentration to help assess supplemental N 

that will be applied at mid-season. It is measured before rapid N uptake and when PSNT 

value is below the calibrated critical level certain amount of N is applied (Blackmeter et 

al., 1991; Bundy and Sturgul, 1994). Similar to this approach, monitoring plant N content 

has been widely studied since N deficiency can be easily detected when older leaves turn 
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yellow or light green due to descending chlorophyll formation. The visual symptom 

associated with N deficiency was the basis of developing leaf color chart (LCC) for 

monitoring real-time N status in rice and wheat. In the early 1990‘s, the first LCC was 

established in Japan (Furuya, 1987) and further improved by the International Rice 

Research Institute (IRRI) and University of California (Witt et al., 2005).  The youngest 

fully expanded leaf are monitored at specific interval (7-10 days in rice) and once the 

intensity of green color of leaves fell below the critical LCC score, additional N 

application is made (Singh et al., 2010). A similar concept was applied to corn, wheat and 

cotton by using chlorophyll meter (Bullock and Anderson, 1998; Singh, 2002; Wu et al., 

1998).  Leaf chlorophyll meter which emits lights at red and infrared bands, was 

developed to monitor N status by measuring relative chlorophyll content (SPAD 502 

chlorophyll meter, Minolta Camera Col. Osaka, Japan). With the aid of this instrument, N 

rate recommendation based on N sufficiency index was developed for corn, cotton, rice 

and wheat (Follett et al., 1992; Schepers et al. 1992; Wood et al., 1992; Cabangon et al., 

2011). This approach uses chlorophyll meter readings from non-N limiting reference strip 

and farmers practice to compute sufficiency index (SI): SI= (Average farmers practice 

reading/Average reference reading)*100 (Shapiro et al., 2006). When SI values are below 

95 %, additional N, at least 22 kg N ha
-1

 in corn, is recommended and the N rate and 

critical level has been adjusted based on variety, growth stage, and growing conditions 

(Shaprio et al., 2006). 

1.2.2 Nitrogen Timing 

Plant N uptake rates vary depending on crops, growth stage, variety, and growing 

conditions. The optimum time of N application should coincide with the time where 
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intensive plant N uptake is taking place. Also, the source of N affects the duration on 

which ammonium and nitrate remain in the soil.  

Generally, N is applied twice as pre-plant to supply vegetative growth and mid-

season to supply N for grain formation in crop production (Raun et al., 2002; Bond and 

Bollich, 2007). Dry regions such as those areas receiving annual precipitations of less 

than 480 mm recommends one time N application as pre-plant (Leggett, 1959b). When 

annual precipitation exceeds 650 mm, the split application of N at fall and spring was 

reported to increase NUE and grain yield in wheat (Mahler et al., 1994). It is simply 

because split application reduces the risk of loss by leaching and denitrification before 

plant uptake. Under warm climates where temperature is optimum for nitrification, the 

pre-plant application would enhance the potential of leaching hence in-season application 

as sidedress or topdress after seeding is recommended.  

In winter wheat, 80 % of total N uptake occurred by mid-season and 70% of its 

uptake is translocated to grain (Waldren and Flowerday, 1978). In corn, rapid N uptake 

occurred in the middle of vegetative growth stage, V8 to V12. The decrease of available 

N at this moment significantly decreased grain yield (Grima et al., 2010). Unlike corn 

and wheat, rice has unique growing condition wherein soil is flooded almost in its entire 

growth duration.  A single N application is more effective than split application in rice; 

however, split application is still a predominant method to achieve even distribution of 

fertilizer and reduce the risk of N fertilizer loss associated with levee breakage during the 

growing season (Harrell et al., 2011).  Other studies also mentioned the importance of 

timing in N application to prevent N loss and maximize yield as well as NUE (Bock and 

Hergret, 1991; Johnston and Fowler 1991.)  
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Another important aspect in terms of N timing is to improve grain quality. With 

mid-season fertilization, rice grain improved its protein content as well as yield. It is also 

reported that the increase of protein content in grain improved the resistance to damages 

from milling machine (Cagampang et al., 1996; Wopereis et al., 2002). Similar results 

have been reported in corn and wheat (Daniel and Triboi, 2000; Jaynes and Clovin, 2006). 

1.2.3 Nitrogen Source 

Urea, urea-ammonium nitrate (UAN), ammonium nitrate, and anhydrous 

ammonia are the major N fertilizers and these sources account for more than 75 % of 

total N fertilizer in the USA (USDA, 2011).  

Urea [CO(NH2)2] is a dry N fertilizer consisting of 46 % N . Its advantages 

include 1) high N concentration compared to other N fertilizer, 2) easy to handle being in 

the solid form, and 3) not expensive; therefore the use of urea is cost effective in terms of 

storage, transportation and applications. However, N fertilizer containing ammonia or 

ammonium such as urea and UAN, is subject to losses through ammonia volatilization. 

Applied urea undergoes hydrolysis in the presence urease enzyme and produces NH4
+
 

and HCO3
-
. Ammonium is further transformed to NH3 gas and can escape to the 

atmosphere through ammonia volatilization depending on soil temperature, moisture, and 

pH. High temperature and alkaline soil pH enhance ammonia volatilization since it 

increases the concentration of dissolved NH3 in the soil solution as well as enhances 

urease activity. Ammonia volatilization normally occurs when soil pH exceeds 7 but it 

can also occur at pH 6.5 when soil buffering capacity is low (Jones et al., 2007). The 

effect of placement, application timing and slow-release technology (e.g. the use sulfur-
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coated urea and urease inhibitors) on amount of N losses through volatilization has been 

intensively studied (Meyer et al., 1960; Walters and Mazer, 1990; Dawar et al., 2010).     

Urea-ammonium nitrate [CO(NH2)2+NH4NO3] is a liquid N fertilizer (UAN) 

which contains about 28-32 % of N and accounts for about 41 % of total N consumption 

in the USA (USDA, 2011). Uniform distribution of N compared to solid sources is one of 

the advantages of using UAN as an N source. It allows simultaneous applications with 

other mix nutrients as well as pesticides. Row crop production generally prefers UAN for 

sidedressing. It still has potential to volatilize; however, the potential to volatize is less 

compared to a single urea application since UAN contains lower % of ammonium N per 

unit of fertilizer (Cornell University Coop. Extension, 2009).   

Ammonium nitrate (NH4NO3) formed by anhydrous ammonia and nitric acid, 

contains 33 % of N. The advantage of using ammonium nitrate is less potential of losing 

N by ammonia volatilization since half of the N is in NO3
-
 form. Nitrate is mobile in the 

soil due to its negative charge and therefore it is immediately available for plant uptake. 

Two to 3 weeks after N fertilization, ammonia nitrate fertilizer recorded 4 to 5 times less 

amount of N volatized compared with urea (Whitehead and Raistric, 1990; Jones et al., 

2007). Due to explosion hazard with ammonium nitrate when combined with oxidizable 

C, there are government regulations that restricts its sale and transportation in many 

regions of the world (IPNI).  

Anhydrous ammonia (NH3) is generally managed as liquid under high pressure. It 

has the highest N content (82 %) among N fertilizers and therefore considered the 

cheapest N fertilizer source. Due to its hazardous form, extra care must be taken during 

handling and special equipment is required (Raun and Zhang, 2006). Since anhydrous 
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NH3 is a gas at normal pressure it needs to be injected into certain depth of soil to react 

with water and organic materials. Therefore, the benefits of applying anhydrous NH3 

would be minimized under light texture soils which contain less clay and organic matter 

(McDowell and Smith, 1958). Because loss is minimized once it is incorporated into soil, 

it can be applied long before planting. Fall application of anhydrous ammonia for corn 

for the following spring allows producers to reduce the amount of field operation during  

spring therefore allows them to finish all field operations such as planting on a timely 

manner (Kyveryga et al., 2004).         

1.2.4 Nitrogen Placement  

The placement of N fertilizer depends on the N source and application timing. At 

pre-planting, N fertilizer is usually applied by broadcast method in a uniform manner on 

the soil surface either as UAN and urea forms (Mahler, 2001). To minimize losses 

through volatilization, broadcasted N fertilizer should be incorporated into soil by 

plowing at 15 cm deep (Jones, 2007). Broadcasting N fertilizer is relatively easy and cost 

effective with no requirement for specialized equipment. On the other hand, broadcast N 

application requires extra amount of N fertilizer.  In addition, this type of application may 

support growth of weed and without incorporation with soil, there is high potential of 

losing N by ammonia volatilization (Randall, 1997).  

 Banding application which places the solid fertilizer close to seed at planting is 

not a common method of N application (Mahler, 2001).  However, under conservation 

tillage practice (no-tillage or minimum tillage practice) system banding N fertilizer is a 

preferred N placement method. Banded-N fertilizer showed remarkable benefits when 
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there are plant residues on the ground and in cold growing environment where root 

growth is slow (Hoeft and Ritchie, 1997). By placing fertilizer in band and close to roots, 

seedling roots can take nutrients efficiently. Total N application rate can be less than 

broadcast but the risk of leaching is higher and may require additional investment to 

modify equipment.  

 Unlike placing fertilizer on the ground, foliar N application using dilute N-

containing solutions to the leaves is mainly practiced to improve grain quality in crop 

production. Foliar application can alleviate moisture or diseases stress by enhancing 

quick N absorption from leaf pores (Mattson, 1980). Also, it reduces the potential loss by 

nitrate leaching or denitrification (Powlson et al., 1989; Poulton et al., 1990). Uptake of 

N from leaf surface can be independent from soil conditions or root growth; therefore, 

foliar N applications are beneficial in areas under saline or dry conditions (Seth and 

Mosluh, 1981; Seth and Prassad, 1965). The effectiveness of foliar N application in 

improving protein content has been reported in wheat (Finney et al., 1957; Endres and 

Schatz, 1993; Bly and Woodard, 2003).  Higher grain protein in barley was obtained 

using foliar-applied urea compared with broadcast NH4NO3 (Bulman and Smith, 1993). 

Since N demands are high during the entire plant growth, it is difficult to supply adequate 

amount of N without burning the leaves. Therefore, foliar N is normally taken only as a 

supplement. 

1.2.5 Nitrogen Management in Rice and Sugarcane in Louisiana  

In Louisiana, current N rate recommendation in rice is based on yield goal 

established from multi-year N response trials across sites in the southern United States, 
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with which further adjusted by soil type, cultural practice and variety (Norman et al., 

2000; Harrell et al., 2011). Generally, N application is made twice at preflood and mid-

season (Bond and Bollich, 2007).  Nitrogen fertilization rate ranges from 77 to 176 kg N 

ha
-1 

and two third of total N is applied at preflood and the rest of them is applied at mid-

season (Saichuk et al., 2012).   

Since nitrate-N can be lost under flooded condition due to denitrification, 

ammonium based N fertilizer such as urea, is generally applied. Under drained or aerated 

condition, ammonium-N is easily converted into nitrate or lost by ammonia volatilization, 

hence immediate flooding after N application is recommended. However, it is 

challenging to flood the entire field within a few days following N fertilizer application. 

Therefore use of urease inhibitor, ammonium sulfate, and nitrification inhibitor are 

recommended to prevent ammonia volatilization and denitrification. Agrotain is one of 

several urease inhibitors which contains 25% of NBPT (n-butyl thiophosphoric triamine). 

Incorporating NBPT with urea resulted in reduced ammonia volatilization by 15 to 20 % 

compared with conventional urea application (Dillon et al., 2012; Norman et al., 2004).  

Application of ammonium sulfate is an alternative way to reduce the loss but the 

relatively low concentration of N (21 %) compared to urea (46%) requires large amount 

of fertilizer application. Nitrification inhibitor (dicyandiamide, DCD), can slow down 

ammonia oxidization.  Kumar et al. (2000) compared the application of urea and 

ammonium sulfate with and without DCD. Their research obtained 11 to 26 % reduction 

of nitrous oxide emission when those N fertilizers were amended with DCD. The benefits 

of using these materials in N fertilization in rice have been reported (Carreres et al., 2002; 

Linquist et al., 2012).   
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Sugarcane is considered a semi-perennial crop, in which the initial crop planted 

around August to September is harvested approximately 14 months later (plant cane).  

Then sugarcane is harvested on an 11 month cycle for an additional 3 to 4 years (ratoon 

sugarcane). Nitrogen fertilizer is applied only once between early April to the beginning 

of May prior to intensive growth of sugarcane. The LSU AgCenter N rate 

recommendation is based on soil type and crop age (Legendre et al., 2000).  

Recommended N rate is between 67 to 110 kg N ha
-1

 for plant cane and it is between 88 

to 132 kg N ha
-1

 for ratoon cane (Legendre et al., 2000).  Higher N rate is applied in 

ratoon cane due to a higher response to applied N. Normally after the last ratoon cane is 

harvested; field is left fallow for a year or planted to soybean as cash crop or for N credit. 

During this period, plant available N may increase either due to mineralization turnover 

or N credit from growing soybeans.  

Sugarcane quality and yield are easily affected by N management. Wiedenfeld 

(1995) reported that the excess amount of N application decreased sugar yield, juice 

purity as well as recoverable sucrose. Similar result was reported by Chapman et al. 

(1994) and Borden (1942). This reduction of sugarcane quality at high N rate is 

associated with the higher mortality of primary stalks.  However, based on 5-years N 

response trial in Louisiana, Tubana (unpublished data) reported that 75% of site-year 

showed over-fertilization.  The timing of N application also influences sugarcane quality 

and yield. The decrease of cane and sugar yield were reported when the application was 

made at early or late of optimum timing (Wiedenfeld, 1997) therefore proper N 

management is essential for sugarcane production.  
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As listed above, numerous studies have been conducted to identify the best N 

management practices to satisfy different crops, tillage systems, and growing conditions. 

However, temporal and spatial variability in fields and crop response to N makes it 

difficult to archive maximum benefit from applied N.   

1.3 Temporal and Spatial Variability 

Temporal variability in soil N is mainly attributed to climatic factors such as 

precipitation and temperature which affect soil moisture and biological activity. On the 

other hand, spatial variability in soil N is generally explained by the distribution of soil 

types within a field; the inherent properties of different soil types are developed based on 

climate, topography, parent material and biological activity. Human activities (field 

operation, fertilization, management practices) are also considerable factors which 

influenced soil properties in a long-term. From an agronomic stand point, soil N is 

grouped into total N, inorganic N and organic N. Inorganic N, which constitutes nitrate-N 

and ammonium-N, is the plant-available N. Total N is relatively stable over time while 

inorganic N is highly variable over time and space. 

 The basic sources of inorganic N are atmospheric deposition, mineralization 

associated with ammonification and nitrification, and inorganic fertilization.  The total N 

deposition was estimated to be 10 kg N ha
-1 

yr
-1

 in the Unites States and Europe (Holland 

et al., 1999). The atmospheric deposition causes spatial and temporal variation at local 

scales depending on format of deposition (wet or dry), topography and canopy structure 

(Ollinger et al., 1993). Soil organic matter (SOM) and plant residue from previous year 

affect inorganic N availability through N mineralization. Soil organic matter is converted 
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to ammonium-N by bacteria and fungi through the process called ammonification.  In this 

process, pH, oxygen availability, and temperature are driving factors. When pH is more 

than 6, bacteria are the dominant microorganism driving ammonification process while it 

is fungi when soil pH is lower than 6. Myers (1974) showed the linear increase of 

ammonification rate from 20 
o
C to 50 

o
C.  Salvetti et al. (2006) also reported the impact 

of oxygen availability and temperature on ammonification process. Ammonium-N 

produced by ammonification is then transformed to nitrite-N and nitrate-N by 

nitrification. The study conducted by Cahn et al. (1994) showed spatial variability of 

mineral N was substantial and the pattern of variability was different across time. Due to 

its seasonal change, they address that timing of soil sampling may be critical to determine 

N fertilizer requirements. Due to high variability in fields, the Illinois Soil N Test 

determines corn N recommendation based on amino sugar-N fraction of SOM instead of 

using mineral N (Ruffo et al., 2005). Shahandeh et al. (2005) reported similar result that 

N mineralization and nitrate level were highly variable within field and across seasons in 

corn field. Excessive N application in previous year was reported to stimulate net N 

mineralization and enhance leaching of mineral N (Stevens et al., 2005). Limited or 

excessive moisture, disease stress, or insect damage at intensive plant growth may 

substantially decrease yield potential. Under such condition, the amount of required N 

would likely reduce. Therefore, it is also important to know that plant response to N 

fertilization changes depending on plant growing environment. Mamo et al. (2003) 

examined the spatial variability in economically optimum N rate for corn. Their research 

reported that reduction in N application rate and potential economic benefits were 

different between each crop terms suggesting that temporal variability can be attributed to 
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different climatic factors.  A long-term study conducted by Raun et al. (2011) from 1970 

to 2010 also showed that yield and N response of grain yield substantially varied. In 

addition there was no relationship observed between yield, N response, and year for both 

corn and wheat crops. 

Nitrogen cycle is dynamic in nature and addition and loss of N from soil profile as 

well as plant N response are highly variable within field and across seasons. Most of N 

management approach established many years ago do not account for these variability. 

An integrated N management approach using instruments that allow us to non-

destructively monitor in-season crop N health status combined with simple field 

procedure to perceive the amount of soil N available for the cropping season is essential 

to improve N use efficiency.  

1.4 Nitrogen Assessment Using Remote Sensing Technology  

In the early 1980‘s, precision agriculture, detecting and treating a spatial and 

temporal variability, emerged as component of modern agriculture in the United States. 

The technologies such as geographic positioning system (GPS), remote sensing using 

satellite or ground-based sensor and yield monitoring device, enable us to assess large 

area of crop and field conditions in short period of time without taking samples. Also, 

continuous numerical data collected from remote sensing technology amplify the 

potential analysis with different parameters. This section is focused on the use of remote 

sensing technologies to monitor crop N status and its application for better N 

management.  
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1.4.1 Plant and Spectral Reflectance 

 Remote sensing in crop production commonly utilizes visible and near infrared 

reflectance from plant canopies to diagnose plant health. Near infrared wavelength relates 

with cell and plant geometrical structure while visible wavelength shows unique 

signatures of plant pigments. 

 Near-infrared represents the wavelength between 750 to 1350 nm in 

electromagnetic spectrum which is related to characteristics of plant cell structure as well 

as canopy structure (Sims and Gamon, 2002). In terms of leaf-base analysis, the 

arrangement of mesophyll cell, intercellular air spaces, and the thickness of leaves have 

been known to alter the near-infrared reflectance (Gates, 1970; Delucia and Nelson, 1993; 

Slaton et al., 2001). On the other hand, at canopy level, ratio of soil and vegetation 

reflectance is importance for interpretation of near-infrared reflectance. Plant reflects 60 

to 80 % of near-infrared while soil reflects 20 to 30 % of incoming light depending on 

soil texture, organic matter and moisture contents (Arnold et al., 2002).  Decreasing in 

near-infrared reflectance indicates increase of soil exposure which is also interpreted as 

reduction of plant biomass on the ground. Since estimation of plant biomass is important 

for monitoring plant growth as well as for predicting yield, combining reflectance at near-

infrared with other spectral wavelengths has been studied (Raun et al., 2001; Harrell et al., 

2011).    

Visible wavelength is between 400 to 750 nm and it has a strong relationship with 

photosynthetic pigments. Plant pigments are generally classified into chlorophylls, 

carotenoids, and anthocyanins. Chlorophyll is the most abundant pigments which absorbs 

solar energy (sunlight) and converts it into chemical energy.  Strong spectral absorbance 



18 

 

by chlorophyll pigments was reported in the red and blue wavebands (Blackburn, 1998). 

The maximum absorbance occurs between 660 and 680 nm, however, these wavebands 

are not recommended for estimating chlorophyll content due to the saturation of 

absorption at low chlorophyll contents.  Since the light from the blue region is also 

absorbed by other pigments (e.g. anthocyanin), red-edge waveband (680 to 740 nm) has 

gained research attention (Blackburn, 1998). Red-edge point (REP) which is the 

maximum of the first derivative reflectance between red and near infrared region, has 

been reported as a good indicator of plant , 1994; 

Blackburn, 2007). Carotenoids are yellow, orange, and reddish pigments which are also 

called as ‗accessory‘ pigment because they absorb light at wavebands where chlorophyll 

does not. There are more than 700 carotenoids and major pigments are lutein, β-carotene, 

neoxanthin and violaxanthin (Johnson et al., 2008). Under low light intensity, 

violaxanthin functions as an antenna pigment and transfers solar energy into chlorophyll 

while under excess light, violaxanthis is converted into another form of carotenoids 

protecting plant metabolism by enhancing energy dissipation (Demmig-Adams and 

Adams III, 1996; Frank et al., 1997). Lutein and violaxanthin are yellow color pigments 

which absorb strong light at 410 to 430 nm (Cuttriss and Pogson, 2004). The overlap of 

light absorption between chlorophyll and carotenoids makes it difficult to estimate 

carotenoid content in leaf. Anthocyanin is not a pigment which takes a role during 

photosynthesis but takes a role in protecting plant from excess light or UV light (Gould et 

al., 1999; Mendez et al., 1999). It absorbs blue, some from green, and the longest 

wavelength among pigment (Schwinn and Davies, 2004; Merzlyak et al., 2003). Since the 

absorption is similar to chlorophyll, the estimation of anthocyanin is not easy; however, 
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low absorbance of blue light which is equivalent to high reflectance of blue light may 

indicate plant stress. The detection of plant stress is important to estimate plant growth 

which eventually influences yield and therefore N requirement.  

Vegetation index using multiple spectral reflectance has been developed to 

monitor plant stress and growth. Major vegetation indices are listed in Table 1.1. 

Normalized difference vegetative index (NDVI) and simple ratio (SR) are the most 

commonly used vegetation index to estimate plant biomass, leaf area index (LAI), N 

concentration and yield in several crops while the decrease of NDVI sensitivity was 

reported as plant coverage or biomass increased on the ground (Carlson and Ripley, 

1997; Blackburn, 1998; Gitelson et al., 2002; Hansen and Schjoerring, 2003). Soil 

adjusted vegetation index (SAVI) was developed as a modification of NDVI to reduce 

the impact of soil reflectance since texture; moisture and SOM can alter spectral 

reflectance. The implementation of soil reflectance in SAVI reduced interference at low 

plant coverage compared to NDVI (Qi et al., 1994). High accuracy of predicting N 

contents and biomass at dense plant canopy has been reported using REP (Meer and 

Jong, 2006). As mentioned earlier, REP is the point of red-edge bands and its position 

tends to be at longer wavelength when reflectance are coming from high chlorophyll 

contents canopy or healthy plant (Biewer et al., 2009). Elvidge and Chen (1995) also 

reported the reduction background effect using REP. 

1.4.2 Nitrogen Assessment Using Remote Sensing Technology 

Numerous studies have been conducted to relate interactions among plant 

pigments, canopy structure and light reflectance and use these relations to non-

destructively assess plant N status. Others have used this technique to treat yearly and
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Vegetation Index Acronym Formula Properties Reference 

Simple ratio SR R780/R650 biomass   Serrano et al., 2000  

Normalized 

difference 

vegetation index 

NDVI (R780-R650)/(R780+R650) biomass   Blackburn, 1998 

Red edge REP 

wavelength at the maximum point of 

first derivative reflectance between 700 

to 750 nm 

Chlorophyll content, N 

concentration, biomass 
  Meer and Jong, 2006 

Structural 

independent 

pigment index 

SIPI (R800−R445)/(R800−R680) Carotenoids   Peñuelas et al.,1996  

Soil adjusted 

vegetation index 
SAVI 

(R780-R650)/(R780+R650+L)*(1+L)  

    where the parameter L depends on 

the area of soil coverage  

Adjustment of NDVI to 

reduce the impact of soil 

reflectance 

Qi et al., 1994 

Water index WI R900/R970 water content   Peñuelas et al.,1997 

Table 1.1. Spectral vegetation indices and its properties. 
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destructively assess plant N status. Others have used this technique to treat yearly and 

within field variability with respect to N requirement. Success of monitoring leaf N status 

using canopy reflectance has been reported in many crops such as rice, wheat, and corn 

(Scharf and Lory, 2009; Takebe et al., 1990; Zhao et al., 2003; Xue et al., 2004). Scharf 

et al. (2009) reported that reflectance at blue and red bands is good to predict 

economically optimal N rate and measurements of visible and near-infrared bands may be 

useful to determine variable-rate N recommendations for side dressing in corn. Nitrogen 

response index (a measure of crop response to N fertilization), and yield potential were 

estimated using NDVI and this information were put into a working algorithm for 

determination of mid-season N rate in corn and wheat (Raun et al., 2002).  This approach 

has been reported to improve NUE (Raun et al., 2002; Tubana et al., 2011). Miao et al. 

(2009) evaluated conventional vs. optimized N fertilization based on sensor using N loss 

and net economical return in wheat as performance measures. The outcome of this study 

showed that sensor based N rate recommendation reduced N loss by about 100 kg ha
-1

 

and increased net economical return by about $100 ha
-1

 compared to conventional N 

fertilization 

Determination of SOM and water content using remote sensing was also 

conducted to determine N fertilizer need. Generally, soil containing high organic matter 

or water, absorbs more light; therefore, decrease spectral reflectance (Zheng and Schreier, 

1988). Using this concept, Chen et al. (2000) estimated SOM using remotely sensed data 

on soil surface. Determining SOM can provide estimation of soil total N and therefore 

plant available N however; Scharf et al. (2002) indicated that this approach would require 

to account for N mineralization.   
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 Precision N management using remote sensing technology has been shown to 

improve NUE, economical return, and environmental quality in crops like wheat and corn. 

Accounting for both spatial and temporal variability has the potential to improve N 

management in rice and sugarcane. Remote sensing technology is a useful tool that could 

be used to understand and establish the quantitative relationships of N-related agronomic 

parameters and spectral reflectance characteristics of rice and sugarcane with varying 

amount of N supply.  
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Chapter 2. Effect of Water Background Turbidity and Depth on Red 

and Red-Edge Reflectance Based Prediction Models for Biomass and 

Grain Yield in Rice 
 

2.1 Introduction 

Water and nitrogen (N) are the most limiting inputs in crop production. Since rice 

is grown in a flooded environment, N is often considered the most important input 

limiting grain yield. Currently in the mid-southern United States, rice N rate 

recommendations are variety dependent and are determined from multi-site N response 

trials across sites in the southern Unites States, which further adjusted depending on soil 

type, cultural practice, and variety (Norman et al., 2000; Harrell et al., 2011). Generally, 

two N fertilizer applications are done seasonally in drill-seeded delayed flood rice.  The 

first is made just before permanent flood establishment and the second is applied mid-

season.  Fertilizer N recommendations made in this manner can potentially over- or 

under-estimate N rate due to the lack of consideration for spatial and temporal variability. 

Remote sensor technology is one method which has recently been investigated as a tool 

to help predict optimum mid-season N application rates and address the spatial and 

temporal variability that exists (Harrell et al., 2011; Tubana et al., 2011).   

Remote sensor-based N management has been studied in many crops including 

corn, wheat, and cotton (Raun et al., 1999; Tubana et al., 2008). Wells et al. (1989) found 

that biomass production is closely related with rice grain yield. Harrell et al. (2011) 

successfully predicted rice grain yield by estimating above ground biomass using 

normalized difference vegetation index (NDVI).  They showed that 42% of the total 

variability in grain yield can be explained by NDVI collected at panicle differentiation 

(PD). Calculated NDVI from second derivative analysis also showed a high potential for 



35 

 

predicting rice grain yield (Shibayama and Akiyama, 1991). Along with predicting grain 

yield at mid-season, many researchers have also monitored plant N status using spectral 

reflectance (Sims and Gamon, 2002; Xue et al., 2004; Zhang et al., 2006; Stroppiana et 

al., 2009).  

The N rate recommendation derived from spectral indices has been tested and 

shown promise to increase nitrogen use efficiency (NUE).  Sensor-based N fertilization 

algorithm reduced the traditional N rate by 33% while maintaining a similar rice grain 

yield (Xue and Yang, 2008). Dobermann et al. (2002) conducted site-specific N 

management in 179 fields based on SPAD chlorophyll meter reading. Their approach was 

to modify N rate depending on the critical value of SPAD meter at specific growing stage 

and variety. It resulted in an increase in NUE by 30-40 %.  A similar approach was tested 

based on index using NDVI readings from non-limited N fertilizer field and NDVI 

reading from farmers practice (Xue and Yang, 2008). According to these studies, 

determining optimum mid-season N rates using remote sensing technology is highly 

feasible.  

Unlike corn, wheat or other crops, the water background in rice is a unique feature 

which may require additional consideration when using sensor technology.  A water-

compared to a soil-background may affect the spectral reflectance and vegetation indices 

values. Normally, water transmits most of incident radiation in the visible wavelength, 

which results in small reflection of light. Contrary to pure water, water in paddy rice may 

be turbid due to suspended soil sediments resulting from walking in the paddy and using 

a hand held sensor. In turn, the turbidity may alter the absorption and reflection of light. 

Water absorbs near-infrared wavebands, thus the reflectance in that region decreases as 
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the area of exposed surface water increases in rice fields.  There is also a potential 

interference on spectral reflectance readings especially with low rice biomass observed 

during early growth stages. Under low plant biomass, red wavelength was not a reliable 

estimate of Leaf Area Index (LAI) due to the presence of algae (Vaesen et al., 2000).  

Hoshi et al. (1984) showed the increase in water depth reduced the spectral reflectance 

due to increased radiant absorption in the water. The findings of these studies warrant 

further research of similar scope to explore the possibilities of increasing the accuracy 

and precision of rice grain yield predictive models established from canopy reflectance 

readings. Understanding and addressing the effect of the water background and depth on 

spectral reflectance readings in rice production can improve the use and application of 

this technology for midseason N applications.  

The most commonly used and tested vegetation index, NDVI, has raised concern 

when biomass, and LAI are high or when crop reached complete canopy closure. The 

sensitivity of NDVI decreased as plant canopy ground coverage increased (Gitelson et al., 

2002). In fact, the use of current rice yield prediction model using NDVI in Louisiana is 

limited when grain yield exceeds 8000 kg ha
-1 

(Harrell et al., 2011). This phenomenon 

was also detected in a variety of crops including corn and cotton (Jackson and Pinter, 

1986; Galvao et al., 2005).  To overcome the problem, an alternative spectra regions 

called red-edge has gained attention. Red-edge is the wave bands between red and NIR 

and approximately refers to 680 nm to 740 nm. In these regions, scientists are focusing 

on the red-edge point (REP), defined as the maximum of the first derivative reflectance 

between red and NIR regions. Meer and Jong (2006) showed that REP has strong 

correlation in N concentration at dense plant canopy ground coverage. The vegetation 
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index associated with red-edge could be one of the potential bands to determine 

physiological status.  

Varietal differences in yield and physiological N response can be involved in 

adjusting N rate recommendation. Abundant varieties have been available in each 

southern state and N rate recommendations are slightly different depending on variety 

(Walker and Street, 2003; Roberts and Wilson, 2012; Saichuk et al., 2012). Regarding to 

the sensor based application, it is important to know the effect of variety on the spectral 

reflectance.  Differences in geometrical canopy structure and foliar chemical 

compositions give a unique signature on spectral reflectance. Darvishesefat et al. (2011) 

showed the differences in spectral signatures among varieties in rice. Jackson and Pinter 

(1986) obtained 20 % higher reflectance values in wheat with planophile canopies (non-

erect) as compared w

(2005).  

It is essential to investigate the effect of the water background, depth, and variety 

on predicting rice yield at differing physiological status of development using red edge 

spectral reflectance. Comparing prediction models by different variety and vegetation 

index is also required to diagnose the feasibility and applicability of this technology. The 

findings from this study are essential to refine the rice yield potential model as well as 

developing a working algorithm for N rate recommendations.  

2.2 Materials and Methods  

2.2.1 Location and Experimental Design 

A study was established at the LSU AgCenter‘s Rice Research Station located in 

Crowley, Louisiana. Experimental plots were established under conventional tillage on a 



38 

 

Crowley silt loam (fine, smectic, thermic TypicAlbaqualfs).  The experiment consisted of 

7 preflood N rates (0, 34, 68, 101, 135, 168, and 202 kg ha
-1

) with four replications 

arranged in a randomized complete block design. For each replication, one unplanted plot 

was added as a reference.  Two varieties, CL152 (an early maturing, semidwarf long-

grain) and CL261 (an early maturing, short stature medium grain), were tested. The 

CL152 is generally taller than the CL261. Rice was drill-seeded on March 16
th

 in 2011 

and on March 19
th

 in 2012 at a depth of 4 cm a seeding rate of 300 seeds m
-2

 using a 

small-plot grain drill. Each plot was 1.38 by 4.8 m
2
. Once rice seedling reached 4 to 5-

leaf stage, N fertilizer in the form of urea (46 % N) was broadcasted and permanent flood 

was established one day later.   

2.2.2 Sampling Area and Data Collection 

After the rice seedlings reached the 3 leaf-stage 1 m x 1 m x 0.3 m (1 x w x h) 

galvanized borders were carefully pressed onto the ground around each plot to a depth of 

2.5 cm creating a 1 m
2
 sampling area. The borders protected the sampling area from 

disturbance while taking measurements (reflectance readings, digital picture and depth of 

water) under a clear, non-turbid water background. Reflectance readings were then re-

measured with a turbid water background. To make the water turbid, water inside the 1 

m
2 

sampling area was carefully mixed with a meter stick. Whole plant samples were 

taken for biomass yield, and total C and N determination at each sampling period. 

Reflectance and biomass measurements were taken each week for three consecutive 

weeks beginning two weeks before PD (about 1500 cumulative growing degree days, 

GDD). At maturity, whole plots were harvested using a small plot combine to determine 

grain yield. Detailed field activities were listed on the Table 2.1.  
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2011 2012 

 

Date DFP* CGDD** Date DFP* CGDD** 

Planting 16-Mar 0 0 19-Mar 0 0 

N  fertilization 20-Apr 36 385 23-Apr 40 441 

Panicle 

Differentiation 
23-May 76 927 25-May 64 851 

Panicle 

Differentiation+1wk 
6-Jun 82 1044 30-May 73 936 

50% Heading 13-Jun 89 1169 6-Jun 79 1035 

Harvest 5-Aug 143 2166 1-Aug 136 2028 

 

Canopy reflectance measurements were taken using the Ocean Optics Jaz 

spectrometer (Ocean Optics, Dunedin, FL), which detects continuous wavebands from 

300- to 1100-nm with an optical resolution of 1.5 nm. Incident light (downwelling 

irradiance) and the outgoing light (upwelling) from a 1m
2 

white steel plate coated with 

barium sulfate was determined and used to correct environmental noise interference 

before plant canopy measurement was done. Dark readings were measured by covering 

the sensor with a cap and fabric material. The distance between the fiber optic sensor and 

target (white plate or rice canopy) was determined to make sure that the field of view 

covered a 1 m
2
 area (sampling area size). The distance between the rice canopy and fiber 

optic sensor was calculated based on the lens‘ field of view using trigonometry functions. 

The cosine corrector and Gershun tube with 28 degree field of view was attached to the 

fiber optic sensor. Since the field of view was 28 degree, the height required to cover 1 

m
2
 was computed by multiplying Tangent 14

o 
with the length of the adjacent side.  

Table 2.1. Agronomic practices and growing conditions established at Crowley, LA in 

2011 and 2012. 
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Digital pictures taken from sampling area were analyzed using Integrated Land 

and Water Information System (ILWIS) software (The Faculty of Geo-Information 

Science and Earth Observation of the University of Twente, Netherlands) to compute the 

percentage of ground coverage by plant. A digital camera was attached to the hand held 

self-telescopic stand stick and height was maintained at 1.5 m to take a top-view shot of 

the plots.  

Biomass samples (three 1-m long rows) were cut at the soil level at each sampling 

date. Biomass samples were then oven-dried at 60
o
C for 48 hours, weighed, ground, and 

analyzed for total C and N analysis using the dry combustion method (Elementar 

Americans Inc., Mount Laurel, NJ).  Grains sub-samples were also processed and 

analyzed for total C and N.       

2.2.3 Spectra Reflectance and Indices 

Simple ratio (SR) based on red [(1.1) SRred] and red-edge [(1.2) SRred-edge], and 

NDVI based on red [(1.3) NDVIred] and red edge [(1.4) NDVIred-edge] were computed 

using the following formulas:   

 670

780

red
ρ

 ρ
SR

  (1.1) 

670

780

edgered
ρ

 ρ
SR

 (1.2) 

670780

670780

red
ρρ

ρ- ρ
NDVI

 (1.3) 

730780

730780

edgered
ρρ

ρ- ρ
NDVI

 (1.4) 
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With the concept of derivative analysis, red-edge points (REP) were also 

determined by using: maximum first derivative analysis by polynomial fitting technique 

[(1.5) REPDF], Linear interpolation technique [(1.6) REPLI], Linear extrapolation 

technique [(1.8) REPLE] and the Lagrangian technique [(1.7) REPLAG].  

5
th

 order polynomial fitting technique 

Polynomial function was fit to spectra reflectance between red to near infrared (670 to 

780 nm) using TableCurve 2D v5.01 software. The maximum first derivative reflectance 

was computed as DFREP  . 

 

5

1i

i

i0 λaaρ(λ)

 (Skidmore, 2006)

 (1.5) 

where   (wavelength) is from 670 to 780 nm. 

Linear interpolation technique 

The linear interpolation method was used to estimate REP by employing reflectance at 

four different wavebands (Cho and Skidmore, 2006; Guyot, 1988). The benefit of this 

method is that it does not require continuous wavebands for derivative analysis. The 

reflectance between red and near infrared is assumed to be simple straight line and REP 

is determined by the linear method (Meer and Jong, 2006). 

)ρ- (ρ

)ρ- (ρ
*40700REP

700740

700REP

LI

 (1.6)

 

where  
2

ρ ρ
ρ 780670

REP
 (1.6a) 

Linear extrapolation technique 

The linear extrapolation technique was developed by Cho and Skidmore (2006). This 

method eliminates the problem from the double-peak which can be observed in high N 
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treated plant or when chlorophyll concentration is high using the first derivative analysis. 

The two straight lines, one from near infrared and other from red points, were computed 

based on the first derivative reflectance and the intersection of those straight lines was 

considered as REP.  

   
)a(a

)b(b
REP

21

21

LE

 (1.7) 

where near infrared line:  1
st
  derivative reflectance 11)( ba  

                          red line:   1
st
 derivative reflectance 22)( ba

 

 

To determine the near infrared lines, 725 and 750 nm bands were selected while 

680 and 700 nm bands were selected for red line. 

The Lagrangian technique 

C)B2(A

)λC(λ)λB(λ)λA(λ
REP i1i1i1i1ii

LAG

 (1.8) 

where 
)ρ)(ρρ(ρ

ereflectanc Derivative
A

1i1ii1i

1)(i

 (1.8a) 

          )ρ)(ρρ(ρ

ereflectanc Derivative
B

1ii1ii

(i)

 (1.8b) 

          
)ρ)(ρρ(ρ

ereflectanc Derivative
C

1i1i1i1i

1)(i

   (1.8c) 

For this study, 1iρ 710 nm, iρ 730 nm, 1iρ 750nm were selected. 

2.2.4 Data Analysis 

Statistical analysis was performed using SAS 9.3. (SAS Institute, 2009) and R 

(Comprehensive R Archive Network, 2008). The regression analysis model was built to 
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identify the impact of water background (1.9) and depth (1.10) on the reflectance using R 

at each wavelength with the following equations:   

Yi=b0+b1X1+b2X2 (1.9) 

 where b1= coefficient of water background 

            b2 = coefficient of plant biomass 

            X1= 0 if water is clear, =1 if water is turbid 

            X2=dry plant biomass kg ha
-1 

           Yi =spectral reflectance at each wavelength 

Yi=b0+d1W1+d2W2 (1.10)  

 where d1 = coefficient of water depth 

            d2 = coefficient of plant biomass 

                      W1 = depth of water 

           W2 = dry plant biomass kg ha
-1 

           Yi = spectral reflectance at each wavelength 

The analysis of variance (ANOVA) and analysis of covariance (ANCOVA) was 

performed with PROC MIXED procedure.  First the effect of variety on the yield, 

biomass and plant coverage was determined using ANOVA. The effects of variety on the 

relationship between spectral indices and agronomic parameters at different growth stage 

were also investigated by ANCOVA with the following equation: 

Yi=b0+b1I+b2V+b3 I*V (1.11) 

where b1 =  coefficient of vegetation indices based on red-edge reflectance 

            b2 = coefficient of variety 

            b3 = coefficient of variety*vegetation indices 
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                       I = vegetation indices based on red-edge reflectance 

   V = 0 if variety is CL261, V=1 if variety is CL152           

   Yi  = grain yield kg ha
-1 

 If Y-intercepts (b2) are significantly different, this indicates that at the same vegetation 

index value, grain yield of variety CL152 is significantly different from CL261. If slopes 

(b3) of the regression lines are significantly different, this indicates that the increase of 

yield per unit increase of vegetation is different between CL152 and CL261.   

2.3 Results and Discussion 

2.3.1 The Effect of Water Background and Depth on the Spectral Reflectance 

During the sampling period, from PD to 50 % HD, canopy coverage from planted 

plots ranged from 35 to 100 % (Figure 2.1).  During this period there was no significant 

effect of the water background (turbid or clear) on the spectral reflectance (p> 0.05; 

Figure 2.2). The graph on Figure 2.3 shows the coefficient of water background on the 

linear regression. Since the upper and lower 95 % confidence interval of the coefficient 

includes zero across all wavelength, it can be concluded that water background had no 

effect on spectral reflectance measured from 400 to 900 nm.  The study conducted by 

Vaesen et al. (2000) showed a similar result. Their study examined the effect of water 

turbidity only on vegetation indices, not each wavelength; the relationship between LAI 

and NDVIred or SRred was not influenced by the water background. 
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Figure 2.1. The near-infrared (NIR), red (RED) spectral reflectance , normalized difference vegetation index (NDVIred), and 

red-edge position (REPDF)  based on polynomial technique under clear and turbid water at different plant coverage.
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Since LAI and biomass accumulation is positively related, their results support the 

finding of our study, i.e. there was no effect of water turbidity on the relationship 

between spectral reflectance and rice biomass.  

 

 

 

No significant effect of water depth on the spectral reflectance was observed 

except at red wavelength (p> 0.05; Figure 2.3). Theoretically, an increase in water depth 

should decrease reflectance due to the increased radiant absorption in the water (Hoshi et 

al., 1984). However, our results indicate otherwise, the water depth increase enhanced red 

reflectance. One of the potential reasons relies on the relationship between water depth 

and growth of algae and weeds. For both cropping years, growth of ducksalad 
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Figure 2.2. The effect of water background on the spectral reflectance from 400 to 900 

nm. 
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(Heteranthera limosa ) on water surface was evident at the research sites. According to 

Sen et al. (2002), the water depth can affect the population or growth of certain weed 

species; the increase in water depth subsides weed growth. This implies an increase in red 

reflectance since weed or algae interference increases absorbance of red. Further, even 

the coefficients of near infrared and green regions were not significant; this assumption 

can explain the slight negative coefficient values of the present study.  Since the 

population of algae or weed was not carefully studied nor counted as the above- ground 

biomass accumulates, further research is required to understand this behavior of red 

reflectance associated with water depth. The slight impact of water depth on the spectral 

reflectance between 650 to 700 nm can be affected to NDVIred or SRred vegetation 

indices. To clarify this, the statistical regression model with the following equation was 

performed at each sampling time. 

Yi=b0+d11W1+d22W2 (1.12) 

 where d11 = coefficient of water depth 

            d22= coefficient of plant biomass 

                      W1= depth of water 

           W2=dry plant biomass kg ha
-1 

           Yi =NDVI red or SR red 

According to the model, water depth had no significant effect on NDVIred (p 

=0.11, 0.97 and 0.09 at PD, PD+1wk and 50% HD, respectively) and SRred (p=0.73, 0.33 

and 0.06 at PD, PD+1wk and 50% HD, respectively).  This may have resulted from the 

relative small shifts of red reflectance as the plant biomass or coverage increased. As  
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shown in Figure 2.1., the change of red reflectance associated with plant coverage which 

ranged from 35 to 100 was extremely small compared with NIR reflectance. This 

behavior of red reflectance is related to its saturation point at relatively low chlorophyll 

contents (Smis and Gamon, 2002).  Therefore, if the red band is used as a single red 

wavelength, the effect of water depth would be significant on the spectral reflectance 

readings but when expressed as a vegetation index in combination with other bands, the 

effect of water on the spectral reflectance can be negligible, especially at mature plant 

growth stages. From a practical stand point, substantial plant coverage is achieved at PD, 

the growth stage where N fertilization is commonly done in the mid-southern United 

States rice production systems and the optimal time for sensing to estimate in-season 
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Figure 2.3. The effect of water depth on the spectral reflectance from 400 to 900 nm. 
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yield and N response index according to Harrell et al. (2011) and Tubana et al. (2011), 

respectively. Therefore, the problem associated with water depth is expected to be 

minimal.  

2.3.2 The Relationship Between Vegetation Indices and Agronomic Parameters 

 

There were significant differences on dry biomass, N uptake, plant coverage, and 

grain yield between the two varieties in 2011 but not in 2012 (Table 2.2, 2.3, 2.4, and 

2.5). The variety CL261 had higher biomass, N uptake and plant coverage at PD in 2011. 

The effect of variety on biomass as well as % of plant coverage was significant at PD and 

PD+1wk (p> 0.05; Table 2.3 and 2.5). In terms of N uptake, the significance difference 

was only observed at PD (Table 2.4).  Therefore, the varietal effect on those agronomic 

parameters were more evident until PD+1wk but once plant growth stage reached 50% 

HD, the effect was not observed.  In 2012, blast disease caused by the fungal pathogen 

(Pyricularia oryzae) substantially decreased plant vigor which ultimately reduced 

biomass production and N uptake.  This was especially true for CL261 which is classified 

as very susceptible to blast (Table 2.3 and 2.4). This reduction in mid-season biomass 

production directly affected the grain yield. Grain yields were decreased by about 3000 

kg ha
-1

 for each N rate in 2012 (Table 2.2). The effect of Variety x N rate was only 

observed in 2012, which can be attributed to the different level of resistance of the two 

varieties to blast disease.  The high yield associated with high biomass at mid-season 

supports the concept of estimating above ground biomass at mid-season to predict yield. 

However, in addition to this fact, Harrell et al. (2011) discussed about the implementation 

of additional elements 
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NS Not significant at α=0.05 level. 

*** Significant at α<0.001 level. 
† 

Same letter within column indicate no significant differences between the treatment 

means based on the Turkey‘s post-hoc analysis.   

§ Significant at Variety x N level; therefore means are listed by variety at each N rate.  

 

 

 in predicting yield since biomass is not only one parameter which always carried over at 

harvest. For example, they mentioned the risk of decreasing in yield due to lodging and 

disease infection with increasing biomass production.  

The red-edge based vegetation indices had better relationship with biomass, N 

uptake, and grain yield compared with red-based indices (Table 2.6). At PD, the r values 

of the linear relationships of biomass was 0.74 and 0.79 for SRred and NDVIred while it 

improved to 0.84 when SRred-edge and NDVIred-edge were used. With regards to biomass, 

the degree of improvement using red-edge based indices declined as the rice grew. The 

 

2011 

 

2012 

Treatment Grain Yield kg ha
-1

 

     Variety 

    CL152 
† 

8911b 

 

§ 

CL261 9373a 

 

§ 

     Nitrogen Rate kg ha
-1

 

 

CL152 CL261 

0 6404d 

 

3611d 3851e 

44 8111c 

 

5832c 5114d 

88 9747b 

 

7354b 6727c 

132 10380ab 

 

8454a 7383b 

176 11067a 

 

8794a 8002a 

     Variety x N Level NS   *** 

Table 2.2. Analysis of variance for the effect of variety and N rate on rice grain yield 

at Crowley, LA in 2011 and 2012. 
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  2011 2012 

Treatment Biomass kg ha
-1

 

  PD PD+1wk 50%HD PD PD+1wk 50%HD 

Variety 
      

CL152 3743b 5024b 10837a 3181a 3565a 3284a 

CL261 4913a 6574a 12090a 3350a 3671a 3181a 

 
      

Nitrogen Rate kg ha
-1

  
    

0 2345c 3233b 6605c 1315d 1727c 1312d 

44 3850b 4892b 10486bc 2445c 3335b 2445c 

88 4853ab 7137a 12863ab 3453b 4000ab 3453bc 

132 5007a 6813a 12886ab 4148ab 4421a 4148ab 

176 5586a 6921a 14476a 4968a 4609a 4804a 

 
      

Variety x N Level NS NS NS NS NS NS 

NS Not significant at α=0.05 level. 
† 

Same letter within column indicate no significant differences between the treatment means based on the Turkey‘s post-hoc analysis.   

 

Table 2.3.  Analysis of variance for the effect of variety and N rate on biomass at panicle differentiation (PD), panicle differentiation 

+ 1 week (PD+1wk), and 50 % heading (50%HD) in rice at Crowley, LA in 2011 and 2012. 
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NS Not significant at α=0.05 level. 

* Significant at α<0.05 level. 
† 

Same letter within column indicate no significant differences between the treatment means based on the Turkey‘s post-hoc analysis.   

§ Significant at Variety x N level; therefore means are listed by variety at each N rate.

  2011 2012 

Treatment N uptake kg ha
-1

 

  PD PD+1wk 50%HD PD PD+1wk 50%HD 

Variety 
      

CL152 § 91a
†
 176a 76a 72a 53a 

CL261 § 107a 189a 79a 73a 54a 

 
      

Nitrogen Rate kg ha
-1

 CL261 CL152 
     

0 29c 33c 40b 78c 18d 22c 13d 

44 50c 63bc 65b 138bc 43cd 50bc 29d 

88 92b 87b 116a 191ab 74bc 80ab 52c 

132 96ab 132a 126a 238a 117ab 94a 73b 

176 118a 160a 148a 269a 135a 116a 100a 

 
       

Variety x N Level * NS NS NS NS NS 

Table 2.4. Analysis of variance for the effect of variety and N rate on N uptake (kg ha
-1

)  at panicle differentiation (PD), panicle 

differentiation + 1 week (PD+1wk), and 50 % heading (50%HD) in rice at Crowley, LA in 2011 and 2012. 
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NS Not significant at α=0.05 level. 

* Significant at α<0.05 level. 
† 

Same letter within column indicate no significant differences between the treatment means based on the Turkey‘s post-hoc analysis.   

§ Significant at Variety x N level; therefore means are listed by variety at each N rate. 

 

 

  2011 2012 

Treatment Plant Coverage % 

  PD PD+1wk 50%HD PD PD+1wk 50%HD 

Variety 
      

CL152 § 81b
†
 85a 83a 84a 86a 

CL261 § 84a 83a 81a 82a 85a 

 
      

Nitrogen Rate kg ha-1 CL261 CL152 
     

0 39d 39c 41c 44c 29c 32d 42 

44 67c 76b 78b 78b 88b 76c 87b 

88 84b 96a 95a 100a 93ab 95b 99a 

132 93a 97a 100a 100a 99a 100a 100a 

176 99a 100a 100a 100a 100a 100a 100a 

 
       

Variety x N Level * NS NS NS NS NS 

Table 2.5. Analysis of variance for the effect of variety and N rate on plant coverage (kg ha
-1

)  at panicle differentiation (PD), panicle 

differentiation + 1 week, and 50 % heading (HD) in rice at Crowley, LA in 2011 and 2012. 
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SR – simple ratio 

NDVI – normalized difference vegetation index 

REP – red-edge position 

DF-5
th

 order polynomial fitting technique 

LI-linear extrapolation technique 

LAG-lagrangian technique 

LE-linear extrapolation technique

  Biomass   N Uptake   Yield 

Vegetation 

Index PD PD+1wk 50% HD 

 

PD PD+1wk 50% HD 

 

PD PD+1wk 50% HD 

SRred 0.72 0.77 0.66   0.56 0.76 0.75   0.72 0.83 0.83 

SRrededge 0.84 0.83 0.70 

 

0.83 0.84 0.75 

 

0.82 0.85 0.89 

NDVIred 0.79 0.76 0.61 

 

0.67 0.75 0.64 

 

0.82 0.86 0.84 

NDVIrededge 0.84 0.79 0.64 

 

0.83 0.84 0.73 

 

0.85 0.88 0.90 

REPDF 0.75 0.69 0.57 

 

0.78 0.76 0.62 

 

0.71 0.81 0.85 

REPLI 0.81 0.69 0.61 

 

0.85 0.82 0.72 

 

0.78 0.78 0.84 

REPLAG 0.44 0.29 0.39 

 

0.45 0.32 0.41 

 

0.43 0.38 0.62 

REPLE 0.75 0.76 0.58   0.75 0.84 0.62   0.72 0.88 0.85 

Table 2.6. The coefficient of correlation (r) between vegetation indices and each agronomic variable at panicle differentiation (PD), 

panicle differentiation +1 week, and 50 % heading (HD). 
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improvement of predicting N uptake and grain yield using red-edge based indices was 

more evident. Across sampling periods, about 50 % of total variability in N uptake was 

explained by red based vegetation indices such as NDVIred and SRred while red-edge 

based vegetation indices explained about 69% of total variability in N uptake (Table 2.6). 

Similar results were observed between vegetation indices and grain yield. Red-based 

spectral indices can explain 49 to 72 % of total variability in grain yield while the range 

improved to 64 to 90 % using red-edge based vegetation indices.     

The relationships of NDVIred-edge or SRred-edge with measured parameters (biomass, 

N uptake and grain yield) had the highest r values across sampling periods in biomass, N 

uptake and grain yield.  The red-edge position reflectance readings (REPDF , REPLI , 

REPLAG and REPLE)  computed from derivative analysis were also closely related to  those 

agronomic parameters. The advantage of red-edge reflectance has been reported in many 

studies (Curran et al., 1990; Mutanga and Skidmore, 2004; Cho et al., 2008).  One of its 

advantages over red-based indices such as NDVIred is increased sensitivity of detecting 

plant physiological status at high plant biomass or coverage. The poor estimation using 

NDVI is associated with the absorption of red light approaching saturation at full plant 

canopy coverage (Thenkabail et al., 2000; Smis and Gamon, 2002).  As shown in Figure 

2.4, the NDVIred reached plateau at lower biomass level, approximately 5000 kg ha
-1

, 

compared with REP. This indicates that the amount of biomass beyond 5000 kg ha
-1

 is 

not a function of NDVIred. On the other hand, red-edge based index remained a function 

(quadratic) of biomass even when biomass weighed more than 10,000 kg ha
-1

. This result 

demonstrated the improvement of estimating plant physiological condition using red-

edge position waveband at mid-season in rice. 
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In general, derivative-based red-edge indices are considered better predictors of 

biomass, however, in our study the degree of their relationships with biomass varied 

across sampling times. For example, the low r values in REPLAG at PD demonstrate the 

several outliers which are potentially associated with the complex computation of red-

edge position with the use of multiple wavebands. Several studies also noted the 

relatively higher complexity of computing REPLAG compared with REPDF, REPLI  or 

REPLEP  (Cho and Skidmore, 2006; Shafri et al., 2006).  Also Curran et al. (1990) 

summarized the importance of holding light assumptions, such as illuminations should be 

independent from the leaf reflectance, when red-edge positions were measured. Under 

dynamic environment systems, those assumptions might be violated and eventually affect 

the readings at red-edge positions. 

The red-edge vegetation indices expressed in normalized and ratio forms SRred-edge 

and NDVIrede-dge, had no derivative analysis involved, and yielded constant r values 

across sampling periods (Table 2.6).  In addition to reducing background variation, the 

feasibility in data comparison due to the standardization is the advantage of using those 

normalized or ratio-based vegetation indices (Daughtry et al., 2000; Malingreau, 1989). 

Unlike REP computation which involves continues or multiple wavebands, SRred-edge and 

NDVIred-edge simply require only two wavebands. With respect to the fact that applying 

remote sensing technology in nutrient management is still considered cost-inhibitive, the 

use of fewer bands would facilitate in developing affordable remote sensor system in 

crop production.  
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2.3.3 The Effect of Rice Variety on the Yield Prediction Model Using Red-Edge 

Reflectance 

 

The coefficient table for linear regression to determine the effect of variety on the 

relationship between red-edge based spectral indices and grain yields were summarized 

in Table 2.7. Differences in variety were more evident when grain yield was predicted 

using red-edge normalized or ratio-based vegetation indices. For example, the suggested 

models for predicting yield using SRred-edge at PD were   

Predicted grain yield = -5712+8055*SRred-edge for variety CL152 

Predicted grain yield = -3092+6005*SRred-edge for variety CL261. 

Figure 2.4. The comparison of normalized difference vegetaion index (NDVI) and red-

edge position (REPDF) based on polynomial fitting technique for the relationship with 

biomass. 
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This formula indicates that the 0.1 unit increase of SRred-edge corresponds to a predicted 

grain yield increase of 806 kg ha
-1

 in variety CL152 but it was 600 kg ha
-1

 in variety 

CL261. Also when SRred-edge is assumed to be one, the base line of grain yield is 2324 kg 

ha
-1

 for variety CL152 and 2913 kg ha
-1

 for variety CL261.  This implies that the 

corresponding increase in grain yield by one unit increase in SRred-edge would be different 

depending of variety. This interpretation can apply not only PD stage but across sampling 

periods when grain yield prediction model is established using SRred-edge.  This result 

raises the discussion of spectral resolution predicting grain yield. When the detection 

limit of SRred-edge is assumed to be 0.1 then the minimum unit that SRred-edge can 

differentiate grain yield is 806 kg ha
-1

 for CL152 and 600 kg ha
-1

 for CL261. One unit 

increase of SRred-edge corresponds to large range of yield increase in variety CL152, 

therefore a higher resolution of spectral reflectance would be required compared with 

variety CL261 in terms of estimating certain unit increase in grain yield. For example, to 

detect 1000 kg ha
-1

 difference in grain yield, SRred-edge need to show at least 0.1 

differences for variety CL152 as compared to 0.2 for variety CL261.  That difference 

caused by variety would be challenging when remote sensing technology is carried over 

to practical application in nutrient management. Accounting the varietal effect when 

establishing the grain yield prediction model using SRred-edge improved R
2
 value from 0.67 

to 0.73, 0.72 to 0.74, and 0.79 to 0.83 compared with simple regression model at PD, 

PD+1wk, and 50% HD,  respectively. This result showed that the effect of variety on the 

relationship between SRred-edge and grain yield changed with plant growth stage. The 

addition of individual variety parameters improved the model allowing to explain 5 % 

more in total variation in grain yield.  Although there was a significant effect of variety 
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on the grain yield prediction model using SRred-edge the improvement in predicting yield 

was not evident. Therefore, one simple model can be sufficient to predict yield based on 

SRred-edge.  

When NDVIred-edge was used, there was no effect of I*V indicating that there was 

no corresponding differences in predicted grain yield per unit increase of NDVIred-edge 

between varieties (Table 2.7). However, there are still effects of variety on the prediction 

model as shown by different intercept. As shown in Table 2.7, when grain yield was 

regressed by red-edge position (REPDF, REPLI, REPLG, and REPLE) coefficients, b2 and 

b3, were not significant. It indicated there was no effect of variety or interaction of variety 

and vegetation index on the yield prediction model. Therefore, contrary to normalized or 

ratio-based indices, all of REP indices which defined as the point of red-edge waveband 

did not require the separated model based on varieties.   

The influence of variety on the relationship between grain yield and spectral 

reflectance readings and their vegetation indices can be explained by the inherent 

differences in physical and physiological attributes among varieties. Generally, 

reflectance at the near infrared band is associated with the plant geometrical structures 

while reflectance within the visible wavelength, especially red and blue, is highly related 

to absorption of major two pigments, chlorophyll a and b. Reflectance at red-edge 

position, which is the waveband from  pigment absorption to reflective region, is reported 

to be a good indicator of biomass, N content, and chlorophyll content (Elvidge and Chen , 

1995; Meer and Jong, 2006; Cho et al., 2008). As Jackson and Pinter (1986) observed 

differences between planophile (non-erect) and erectrophile (erect) canopies in wheat.
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*Yi = b0+b1I+b2V+b3 I*V  

where  

b1= coefficient of vegetation indices based on red-edge reflectance  

b2=coefficient of variety             

b3=coefficient of variety*vegetation indices  

I=vegetation indices based on red-edge reflectance 

V=0  if variety is CL261, =1 if variety is CL152  

Yi =grain yield kg ha
-1

. 

- effect (I , V or I*V) is not significant at α=0.05 level 

SR – simple ratio 

NDVI – normalized difference vegetation index 

REP – red-edge position 

DF-5
th

 order polynomial fitting technique 

LI-linear extrapolation technique 

LAG-lagrangian technique 

LE-linear extrapolation technique 

Indices Growth Stage R
2 P value 

Coefficients 
b0 b1 b2 b3 

SRred-edge 
PD 0.73 <0.001 -3092 6005 -2620 2050 

PD+1wk 0.74 <0.001 -5310 7154 608 - 
50%HD 0.83 <0.001 -4238 6432 -3058 1999 

   
 

    

NDVIred-edge 

PD 0.73 <0.001 596 25639 890 - 

PD+1wk 0.76 <0.001 -117 27617 573 - 
50%HD 0.82 <0.001 -648 28587 508 - 

   
 

    

REPDF 

PD 0.51 <0.001 -124104 182 - - 

PD+1wk 0.64 <0.001 -175646 252 - - 
50%HD 0.72 <0.001 -185746 266 - - 

   
 

    

REPLI 

PD 0.63 <0.001 -401254 798 563 - 

PD+1wk 0.6 <0.001 -394877 544 - - 
50%HD 0.71 <0.001 -371885 522 - - 

   
 

    

REPLG 

PD 0.18 <0.001 -54026 84.9 - - 

PD+1wk 0.15 <0.001 -23469 43 - - 
50%HD 0.38 <0.001 -83653 125 - - 

   
 

    

REPLE 

PD 0.52 <0.001 -100169 149 - - 

PD+1wk 0.78 <0.001 -149918 216 - - 
50%HD 0.72 <0.001 -137077 199 - - 

Table 2.7. The coefficient table for linear regression to determine the effect of variety 

on the relationship between red-edge based spectral indices and grain yields at panicle 

differentiation (PD), panicle differentiation +1 week, and 50 % heading (HD) at  

Crowley LA, in 2011 and 2012. 
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 (2005) also reported the varietal effect on infrared spectral reflectance in 

sugarcane. Based on their study, distinct differences were observed in the green (550 nm) 

and near infrared (NIR) (800 nm~) bands. Therefore, in our study, the distinct differences 

of biomass accumulation in varieties affected the reflectance reading at the near infrared 

region and then carried-over to both NDVIred-edge and SRred-edge vegetation indices 

computation; this was not the case for REP. It is important to note as well that the 

regression lines describing the relationship of SRred-edge and grain yield for each variety 

had different slopes, but not when NDVIred-edge was used as a predictor. This difference 

can be explained by analyzing the mathematical expression of these two forms of 

vegetation indices. The weighted impact of near-infrared and red-edge reflectance 

readings when expressed in normalized form (as in NDVI) is eliminated. This explains 

why the distribution of NDVI readings was narrow even if there was a wide range in 

reflectance readings at near infrared than the red-edge position. Unlike NDVI, SR is 

simply a ratio which utilized reflectance readings within the near infrared and red-edge 

position without normalizing the values. This tends to result in a wide distribution of SR 

values. The distinct behavior of these two vegetation indices was reported by several 

researchers (Tubana et al. 2011; Chang et al., 2005).  

2.4 Conclusions 

Water background (turbid or clear) did not significantly alter spectral reflectance 

at PD, PD+1 weeks, and 50% HD. Water depth slightly influenced the behavior of red 

reflectance but this effect was not carried over when vegetation indices, SRred or NDVIred 

were computed.   The red-edge based vegetation indices had better relationships with 
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measured agronomic parameters as compared with red based indices.  Vegetation indices 

expressed in normalized or ratio forms computed from derivative spectral analysis 

(REPDF, REPLI, REPLAG and REPLE), resulted in consistent r values across sampling 

periods. 

The effect of variety on the accuracy of the yield prediction model varied 

depending on the transformation of reflectance within the red-edge and near infrared 

bands i.e., into normalized (NDVI) and ratio (SR) forms of vegetation indices.  This 

result was associated with the behavior of near infrared wavebands on the geometrical 

structure of the plant canopy. There were no significant effects of variety on grain yield 

prediction models using derivative based red-edge indices. Our findings showed that red-

edge based NDVI and SR are better predictors of rice grain yield than red-based NDVI 

and SR. Red-edge based NDVI or SR indices both have potential to predict rice grain 

yield and rice responsiveness to N fertilization.    
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Chapter 3. Agronomic Parameters of Different Sugarcane (Saccharum 

spp.hybrids) Varieties in Response to Variable Levels of Nitrogen Supply 
 

3.1 Introduction 

In Louisiana, sugarcane is one of the most valuable row-crops. It is grown in 22 out of 64 

parishes and contributes $2.2 billion to Louisiana economy (Legendre, 2000; the American 

Sugar Cane League, 2012). The cost of sugarcane production has increased dramatically in the 

last decade due to gas and fertilizer costs.  In 2004, the average cost of N fertilizer and total 

sugarcane production was only $ 0.62 kg
-1

 and $ 488 ha
-1

, respectively (Salassi and Deliberto, 

2009). In 2010, the estimated sugarcane production costs increased to $685 ha
-1

due to high fuel 

($ 0.72 L
-1

) and N fertilizer ($1.12 kg
-1

) price (Salassi and Deliberto, 2010). Therefore in less 

than ten years, the production costs have increased by about 40 %, with the cost of N fertilizer 

contributed the most impact.  With these large increases in production costs paired with minimal 

increase of sugar price, producers need to maximize the agronomic benefits for every unit of N 

fertilizer applied. With increasing public concern on environmental quality, high production 

costs, and low N fertilizer use efficiency in crop production, it is essential to improve N 

management in sugarcane production.  

Nitrogen fertilizer is applied only once between early April until the beginning of May 

for Louisiana sugarcane production systems. Sugarcane is considered a semi-perennial crop, in 

which the initial crop planted around August to September is called plant cane and is harvested 

approximately 14 months later. Then sugarcane which is harvested on 9 to11 month cycle for an 

additional 3 to 4 years, is called ratoon sugarcane. Older ratoons are generally harvested 1
st
 close 

to a 9 month growing season. Currently, LSU Ag-Center N rate recommendation is based on soil 

type and crop age.  Plant sugarcane N recommendations are between 67 to 110 kg N ha
-1

 and are 

between 88 to 132 kg N ha
-1

 for ratoon sugarcane crop. (Legendre et al., 2000).  However, 
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temporal and spatial variability can make N rate requirement highly variable for maximum 

sugarcane production. Based on a 5-year N response trial, Tubana  (unpublished data) reported 

that 75% of site-year showed over-fertilization, 38% of the 75 % fields showed no response to 

applied N. Several researchers have shown plant sugarcane does not typically respond to N 

fertilization due to the adequate mineralized N during the fallow period (Wiedenfeld, 1995; 

Muchovej, 2004). 

 Inappropriate N rate and timing has the potential to adversely affect sugarcane yield and 

quality. Wiedenfeld (1995) reported that the increase of N application decreased sugar yield, 

juice purity as well as recoverable sucrose. The reduction of sugarcane quality at high N rate 

may be associated with the higher mortality of primary stalks. Borden (1945) reported that high 

N rate application resulted in production of dense stalk population, which eventually led to 

higher mortality of primary stalks.  Excess plant-available N was one of the potential reasons for 

the increased number of immature stalks (suckers) at later growth stages of sugarcane (Salter and 

Bonnett, 2000). This increased number of immature stalks at harvest can dilute cane sugar which 

ultimately can result in decreased sucrose content and economic value. On the other hand, 

inadequate N at tillering (rapid stalk production) eventually reduced the overall sugarcane 

biomass production. This is simply due to decreased plant growth early in the season can directly 

impact biomass accumulation, canopy photosynthesis, as well as sustained growth later in the 

season.  Additionally, since sugar yield is directly related to biomass production, decreased 

biomass production can result in decrease sugar yield.  Due to inappropriate timing of N 

application, reduction of sugar yield has been also reported (Wiendenfeld, 1997; Lofton et al., 

2012).  

Mismanagement of N fertilizer does not only affect sugarcane production but is also 

considered as one of the major factors contributing to degraded environmental conditions. The 
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majority of sugarcane production is located within central and southwestern Louisiana where 12 

major drainage basins in Louisiana are located (Southwick et al., 2002).  The analysis of water 

samples collected from canal, bayou and river around sugarcane fields showed an increase of 

nitrate level one month after the N application (Southwick et al., 2002). The increased N added 

to waterways could be a source of eutrophication (Rabalais, 2002) as well as increased level of 

nitrate in drinking waters which is associated with human blood disorder called 

methylhemoglobinemia (blue baby syndrome) (Knobeloch et al., 2000). Therefore it is essential 

to have proper N management to increase sugarcane yield and quality while sustaining the 

quality of our environment.  

 Several researchers have demonstrated the use of plant N response to refine their method 

of projecting crop N requirement (Peterson et al., 1993; Varvel et al., 1997; Raun et al., 2010). 

One method that has shown promising results is called a response index (RI) defined by Johnson 

and Raun (2003) as the yield ratio of the highest yielding N fertilized plot and a check plots 

which received no N. Mullen et al. (2003) elaborated stating that yield RI of corn can be 

predicted using normalized difference vegetative index (NDVI) when readings collected at V8 

leaf growth stage. Furthermore, Harrell et al. (2011) and Tubana et al. (2011) showed that NDVI 

reading within three weeks after panicle initiation in rice can estimate yield and RI. Similar to 

corn and rice, Lofton et al. (2012) found that NDVI taken during late tillering could be used to 

estimate sugarcane N response for both cane and sugar yields. Given the varietal diversity and 

the recognized distinct

al., 2005; Laborde et al., 2008; Johnson et al., 2008).  The recent study by Lofton et al. (2012) 

did not investigate the effects of varieties on mid-season plant agronomic N response and its 

relationship with cane and sugar yield. While many researchers have recognized these distinct 
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differences among sugarcane varieties, there is no documentation on the pattern of cane varieties 

response to N nor how these variables measured early in the season relates to sugar yield 

response to N. Therefore, the objective of this study was to evaluate and relate the N response of 

select agronomic parameters of three cane varieties to N response of measured sugarcane yield.  

3.2 Materials and Methods 

3.2.1. Experimental Design 

Data were collected from a study established at the LSU AgCenter Sugar Research 

Station located in St. Gabriel (30°15‘13‖N 91°06‘05‖W), Louisiana. The soil associated with the 

experiment was Canciene silty clay loam (Fine-silty, mixed, superactive, nonacid, hyperthermic 

Fluvaquentic Epiaquept).  The experiment consisted of a complete factorial treatment structure 

between three varieties and four N rates in a randomized complete block design and each 

treatment was replicated four times.  

The three varieties consisted of a variety that has an erectophile canopy structure, 

HoCP96-540, a planophile canopy (poor erectness), L 99-226, and one intermediate variety, L 

01-283. The four N application rates were 0, 45, 90, and 135 kg ha
-1

. The plot size was 12 m by 

5.4 m containing three bedded rows. Bedded rows were opened wherein three whole cane stalks 

were placed side by side for each run; each run (three cane stalk)  were overlapped with the next 

run of three stalks by 8 cm or including at least two mature internodes. In the middle of April, 

liquid urea-ammonium nitrate (UAN; 32-0-0) was knifed-in near the shoulder of each bed at 15 

cm depth. For weed management, metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methyltio-1,2,4-

triazin-5-one) and atrizine (4-amino-6-tert-butyl-4,5-dihydro-3-methyltio-1,2,4-triazin-5-one) were 

applied in early spring based on LSU Ag-Center recommendations.   
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3.2.2. Sampling Methods and Data Management 

Data was collected every week for four consecutive weeks from three weeks after N 

fertilization (WKN). For each sampling time, the following data were collected from a 1 m 

section of the two outside rows: plant biomass, number of stalks, N concentration in plant 

biomass, plant height, total length of leaf, and opening length of leaf (length from bottom of leaf 

to where it bent). For plant biomass sampling, a 1-m long sampling area within a row was 

selected for each plot. All sugarcane plants in the sampling area were cut at the base. Biomass 

samples were oven-dried at 60
o
C for 48 hours, weighed, ground and analyzed for total C and N 

using dry combustion method (LECO Corp., St. Joseph, MI). Length of leaf and opening length 

were collected to discriminate the geometry of plant canopy within variety. Using these 

information, foliar angle index (FAI) was established based on the equation (3.1); 

             FAI= Leaf opening length (cm) / Total leaf length (cm) (3.1) 

High FAI value indicates erectophile canopy structure while low value indicates planophile 

canopy structure.  

At harvest, sugarcane stalks were cut from each plot using a Case IH 8800 Series 

sugarcane harvester (Case IH Agriculture, Racine, WI).  Prior to harvest, ten whole stalk sub-

sampled were randomly selected from the middle row of each plot then shredded and analyzed 

for sugar quality parameters using Spectracane Near Infrared System (Bruker Coporation, 

Billerica, Massachusetts) to determine theoretical recoverable sugars (TRS).  Following this 

analysis shredded stalks were dried at 60°C for 48 hours, ground to pass a 2-mm sieve, and 

analyzed for total N using dry combustion method.   

The dates of planting, fertilization, sampling and harvest are summarized in Table 3.1. 

From those collected agronomic parameters, response index (RI) was computed using the 

following equations (3.2).  
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RI45= Agronomic parameter at 45 kg N ha
-1

 plot/check plot  (3.2a) 

RI90= Agronomic parameter at 90 kg N ha
-1

 plot/check plot  (3.2b) 

RI135= Agronomic parameter at 135 kg N ha
-1

 plot/check plot  (3.2c) 

where agronomic parameters are sugar yield, dry biomass, number of tillers, %N, height  

            and FAI 

check plot = 0 kg N ha
-1

 

3.2.3. Data Analysis 

Statistical analysis was performed using SAS 9.3. (SAS Institute, 2009).   Analysis of 

variance (ANOVA) was performed to determine the effect of variety, on agronomic variables for 

each sampling periods.  Simple regression analysis was performed with PROC REG procedure to 

see the relationship between response index computed from agronomic parameters.  

 

 

2010 2011 2012 

 

Plant Cane (PC) 1
st
 Ratoon (1R) 2

nd
 Ratoon (2R) 

N  fertilization 22-Apr 13-Apr 16-Apr 

1st sampling 11-May 9-May 1-May 

2nd sampling 29-May 16-May 7-May 

3rd sampling 3-Jun 23-May 14-May 

4th sampling 10-Jun 31-May 21-May 

Harvest 22-Nov 3-Nov 11-Nov 

3.3 Results and Discussions  

3.3.1. Climatic Conditions 

Climatic conditions were highly variables across three years (Figure 3.1).  The 2011 was 

generally dry year; cumulative precipitation at the time of N fertilization was about 200 mm 

which was only half of what was received in 2012. Throughout at the sampling period in 2010  

Table 3.1. Dates of field activities at St. Gabriel, LA from 2010 to 2012.  
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and 2012, small amounts of precipitation were recorded and by the end of 6 WKN, accumulated 

rainfall reached about 600 mm. This was not the case in 2011 where no precipitations were 

recorded during the entire sampling period. In 2010, low temperatures from January to May 

resulted in low cumulative growing degree days (CGDD) at the scheduled time of N fertilization.  

However, a drastic increase in temperature was recorded at 3 WKN. At 4 WKN, CGDD in 2010 

surpassed what was accumulated in 2011 and 2012. 

3.3.2. Sugar Yield and Its Response Index to N 

Within year variation in temperatures and precipitations affected sugar yield. The average 

sugar yield in 2011 was 6.7 Mg ha
-1

 which was more than two times lower than (15.6 Mg ha
-1

) in 

2010 (Table 3.2).  Generally, sugar yields declines with crop age. However, the substantial 

decrease in sugar yield in 2011is probably associated with the lack of moisture during vegetative 

growth; the sugar yield dropped by more than 50 % in 2011 and had the lowest yield across the 

harvest years. Additionally, the cooler weather at early growth stage may inhibited plant growth 

and decreased sugar yield. There was a significant interactive effect (N rates x Variety) on sugar 

yield (p<0.05). This indicates that the effect of N level on sugar yield was not consistent across 

varieties. Response index values for the 45, 90 and 135 kg N ha
-1

 application rates showed the 

varying magnitudes of sugar yield increases of different varieties due to N (Figure 3.2). For 

example in 2010, variety L 99-226 increased RI with N rate while variety HoCP 96-540 tended 

to decrease RI with increase N rate. Variations in pattern of RI with N rate were also evident 

across varieties in 2011. The RI values were similar across different N rates in variety HoCP 96-

540 but increased in variety L01- 283.
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Figure 3.1. Cummulative precipitation and cumulated growing degree days from beginning of year at N fertilization and 

during sampling periods at St. Gabriel, LA 2010-2012. 

 

CGDD- cumulative growing degree days from beginning of year computed by (maximum daily temperature + minimum 

daily temperature)/2)-18 
o
C 

WKN- weeks after N fertilization 
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†
Same letter within column and year indicate no significant differences between the treatment means based on the Turkey‘s post-

hoc analysis   

 

 

  

   

      Sugar Mg ha
-1

 

      L 99-226 L 01-283 HoCP 96-540 

 
N kg ha

-1
 

    
2010 

(PC) 

0 

 
13.13c

†
 13.29b 13.12b 

45 

 
15.16b 16.09a 17.04a 

90 

 
15.24b 17.18a 16.83a 

135   17.82a 17.16a 15.55a 

 
     

2011 

(1R) 

0 

 
5.03d 4.60c 4.86b 

45 

 
6.26c 6.23b 7.25a 

90 

 
8.19a 8.08a 7.31a 

135   7.35b 8.30a 7.50a 

 
     

2012 

(2R) 

0 

 
5.37d 5.17d 5.11d 

45 

 
6.22b 7.52c 6.88c 

90 

 
8.38a 8.46b 8.01b 

135   7.44b 9.54a 8.81a 

Table 3.2. Analysis of variance for the effect of variety and N rate on sugar yield of cane at St. Gabriel, LA 2010-

2012.  
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All sugarcane varieties in all years showed a response to applied N (Figure 3.2). In 2010, 

plant cane-sugar yield response to applied N ranged from 10 to 50%, while sugar yield response 

to applied N for ratoon cane (2011 and 2012) ranged from 25 to 80 % (Figure 3.2). This low to 

non-responsiveness to applied N of plant cane is typically due to large amount of plant-available 

N from mineralization during the fallow period (Wood, 1964; Wiedenfeld 1995; Muchovej and 

Newman, 2004). In 2010, sugar yield obtained was higher than in 2011 or 2012 while sugar yield 

in 2011 and 2012 was more responsive to applied N. Our findings suggest that high sugar yield is 

not always associated with higher N supply or N responsiveness and vice versa.  The higher 

yield with lower response to N in 2010 while the reverse outcome was obtained in 2011 and 

2012 supports the concept that yield and RI being two independent components required for 

prediction of crop N requirement (Raun et al., 2010).  

3.3.3. Mid-Season Agronomic Variables and Its Response Index to N 

The agronomic variables measured and their responses to N levels were highly variable 

across year. Tables 3.3 to 3.7 showed the analysis of variance for each measured agronomic 

parameters and Figure 3.3 to 3.7 showed the agronomic response to N for each variety at each 

sampling time. The significant effect of varietal differences was found for biomass, height and 

FAI (p<0.05). The effect of N rates was not evident in most of agronomic parameters in 2010. As 

mentioned previously, the plant cane crop does not typically respond to applied N due to 

available N from organic matter mineralization during the fallow period. On the other hand no 

response of biomass and height to N rates in 2011 could be explained by lack of moisture due to 

the extremely low precipitation during the sampling periods.  
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Biomass 

In 2010 (plant cane), significant varietal differences in biomass were only observed at 5 

and 6 WKN (p<0.05; Table 3.3). The following growing season (ratoon crops), variety L01-283 

consistently had the highest biomass produced across sampling time. In 2011 (1
st
 ratoon), variety 

L 99-226 produced similar biomass as L 01-283, which was significantly higher than HoCP 96-

540 (p<0.05).   

Even though there was no significant interactive effect (Variety x N rate) on the dry 

biomass across sampling times and years (p>0.05; Table 3.3), response of dry biomass to each N 

rate where 0 kg N ha
-1

 as base level (Response Index-RIBIOM) was dependent on varieties (Figure 

3.3). For example, variety L 99-226 resulted in the highest RIBIOM value of 1.71 with 45 kg N ha
-

1
 at 5 WKN in 2010. However, the highest RIBIOM value was 1.70 for L 01-283 with 135 kg N ha

-

1
 at 6 WKN and for HoCP 96-540, it was 1.40 with 135 kg N ha

-1
 at 5 WKN. This indicated that 

only 45 kg N ha
-1

 was required to increase 70 % of biomass for L 99-226 but it required 135 kg 

N ha
-1

 to achieve similar increases for L 01-283. Furthermore, while HoCP 96-540 required 

similar N as L 01-283, the yield increase associated with applied N was only 40%.  The majority 

of maximum RIBIOM  were detected between 5 to 6 WKN for each variety across years. Similar 

results about varietal effects on N response and biomass accumulation were reported by Gascho 

et al. (1986).  

Height and Foliar Angle Index 

Varieties had a significant (p<0.05) effect on both height and FAI in both 2011 and 2012 

(Table 3.4 and 3.5). The sugarcane varieties used in the current study were described as erect 

(HoCP 96-540), intermediate (L01-283), and planophile (L99-226) canopy structure.  It can be 

inferred from Table 3.4 that among these varieties, L01-283 has the tallest structure while L 99-

226 being the shortest. The highest FAI was observed in L 01-283 followed by HoCP 96-540 
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and L 99-226 (Table 3.5). Since greater value of FAI indicates erectrophile canopy, the order 

toward erectness of the canopy structure was L 01-283> HoCP 96-540 > L 99-226. In addition, 

the results presented in Table 3.5 show that FAI tended to increase with plant growth i.e. the 

plant canopy structure of cane became more erectrophile as it grows. The change in canopy 

structure at later sampling time was more evident with HoCP 96-540 since the maximum range 

of FAI values during 3 WKN to 6 WKN was 0.19 while it was 0.15 for variety L 01-283 and 

0.09 for variety L 99-226. This outcome is different from the current sugarcane variety 

classification reported by Jackson (2010). The high FAI and height in L 01-283 can assume that 

the biomass accumulation is toward vertical direction. On the other hand, variety L 99-226 which 

recorded the low FAI and height has more horizontal biomass accumulation.  

Based on the effect of N on FAI and height (Tables 3.4 and 3.5), their RI values would 

not largely deviate from RI value of 1 (Figure 3.4 and 3.5). The range of RIHEIG value was from 

0.75 to 1.44 while RIFAI was from 0.77 to 1.38.  The RIHHEIG values of L 99-226, which is 

classified as having a droopy canopy structure, were mostly lower than 1. It indicates that the 

increase in biomass associated with applied N rate (Table 3.3) enhanced the non-erectness of the 

canopy structure.  On the other hand, more erectrophile varieties, their RIHEIG values were 

generally >1. It indicates that plant become taller with N fertilization.  

The RIFAI values of L 99-226 being less than 1 supports the assumption made on the 

effect of N fertilization on RIHEIG. Since lower FAI values indicate a wider opening of canopy 

structure, N fertilization enhanced the droopiness of this variety. For variety L 01-283 which is 

classified as having electrophile canopy in our study, the RIFAI values were close to 1 across N 

rates, sampling periods, and cropping year indicating that the erect structure of L 01-283 is 

relatively stable than L 99-226 and HoCP96-540 regardless of N supply, size of biomass, and 

crop age.  
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Tiller Number 

The number of tillers was similar across varieties and N levels (Table 3.6). In 2010, the 

highest tiller number was at 4 WKN for L 99-226, while highest tiller number was achieved at 6 

WKN and 5 WKN for L 01-283 and HoCP 96-540, respectively.  Bezuidenhout et al. (2003) 

discussed that decreased tiller number is often associated increase stalk senescence due to light 

competition.  This observation was similar with our findings, where variety L 99-226 (planophile 

canopy) achieved canopy closure earlier than L 01-283 and HoCP 96-540 which led to the light 

competition at earlier stage. Therefore, the peak of tiller number was observed generally at 

earlier week in L 99-226.  However, this observation was not detected in 2011 and 2012. Low 

amount of precipitation more likely restricted the active growth of tillering at vegetative stage in 

2011. On the other hand, intensive accumulation of biomass due to optimum condition for 

sugarcane growth may result in early canopy closure with L 01-283 which induced the decrease 

in tiller number at 1 week earlier than other varieties in 2012.   

 There was no significant interaction effect (variety x N rate) on tiller number (p>0.05; 

Table 3.6) while the range of RITILL values was from 0.68 to 1.64 and the number of WKN to 

attain maximum N response was highly variable across variety and cropping year (Figure 3.6).  

In 2010, the highest RITILL was observed as early as 3 WKN for HoCP96-540 but at 6 WKN for 

both L 99-226 and L 01-283. Different observations were noted in 2012; maximum RITILL was 

archived at 6WKN for L 99-226, at 5 WKN for L 99-283, and 4 WKN for HoCP 96-540. The 

study conducted by Inman-Bamber (1984) also reported this inconsistent response of tiller 

numbers to N in sugarcane varieties. This indicates the challenge of using RITILL as a tool for 

early-season evaluation of cane yield response to N response. 
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Nitrogen Content 

The %N was similar across varieties and N levels but tended to decline as the plant grew 

except in 2012 (Table 3.7). The highest %N (ranged from 1.33 to 1.73) was observed at 3 WKN 

and the lowest %N (ranged from 0.59 to 1.43) was at 6 WKN across varieties and N levels in 

2010 and 2011. Generally plant N content is highest at the early growth stage and decrease due 

to a dilution effect caused by growth through cell differentiation (Mistele and Schmidhalter, 

2008). Since rapid change in N content is associated with plant growth, it is important to 

consider the relationship of N content with biomass accumulation. For example, if two plant 

have the same N content but have different amount in biomass it does not mean the same amount 

of N to be fertilized. With the greater biomass production of variety L 01-283 and HoCP 96-540 

(Table 3.3), it is possible to assume that these varieties have greater N uptake.  

The RIN% value ranged from 0.86 to 1.78 (Figure. 3.7). In 2010, %N in biomass of N 

fertilized cane did not show large separation from the check plots resulting in RI%N close to 1. It 

is simply because the fallow period in cane production allows substantial amount of N turnover 

from mineralization thus plant cane does not commonly require large amount of N fertilizer 

when compared with ratoon crop (Wood, 1964; Wiedenfeld 1995; Muchovej and Newman, 

2004). In the first (2011) and the second (2012) ratoon crops, increases in RIN% were more 

evident especially for variety L 99-226 and L 01-283. Unlike the other variables measured in this 

study, RIN% showed an increasing trend over time (WKN). Similar to RIBIOM, in most cases the 

highest RIN% was observed at 5 or 6 WKN. 

Over all, the dynamic of RI across variety, N treatment and sampling time was detected 

in biomass, tiller number and N% but not in height and FAI. Generally, the maximum RI was 

observed at 5 to 6 WKN in biomass and N% which suggests that this could be the optimum 
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NS Not significant at α=0.05 level 

WKN-number of weeks after N fertilization 
† 

Same letter within column indicate no significant differences between the treatment means based on the Turkey‘s post-hoc analysis   

*Significant at α = 0.05 level 

 

  
Dry biomass kg ha

-1
 

 

2010 

 

2011 

 

2012 

Treatment 
3WKN 5WKN 5WKN 7WKN 

 
3WKN 4WKN 5WKN 6WKN 

 
3WKN 4WKN 5WKN 6WKN 

               Variety 

              L 99-226 823a
† 
 2317a 2313b 3866b 

 

1033ab 1156ab 1688ab 2156a 

 

3085b 4204b 5713b 7988b 

L 01-283 919a 2834a 3061ab 6024a 

 

1194a 1430a 1900a 2333a 

 

5181a 7798a 8411a 13524a 

HoCP 96-540 845a 2381a 3188a 5945a 

 

840b 850b 1255b 1438b 

 

2816b 3951b 5077b 8341b 

               N Rate kg ha
-1 

    
 

    
 

    

0 
834a 2298a 2316a 4651a 

 

965a 998a 1254a 1727a 

 

2723b 4467a 4711b 6628b 

45 
816a 2782a 2992a 5272a 

 

980a 1088a 1571a 2078a 

 

3285b 4524a 5160b 8685ab 

90 
790a 2582a 2933a 4961a 

 

1029a 1195a 1789a 2028a 

 

3858ab 5691a 7782a 12238a 

135 
1009a 2381a 3174a 6228a 

 

1116a 1301a 1842a 2070a 

 

4910a 6589a 8550a 12253a 

 
    

 
    

 
    

Variety x N Rate 
NS NS NS NS   NS NS NS NS 

  
NS NS NS NS 

Table 3.3. Analysis of variance for the effect of variety and N rate on dry biomass (kg ha
-1

) of cane at St. Gabriel, LA 2010-2012. 

.  



83 

 

 

 

Figure 3.3. Response of biomass to each N rate where 0 kg N ha
-1

 as base level (Response Index-RIBIOM) for 3 different varieties in 

St. Gabriel, LA from 2010 to 2012. 

.  



84 

 

 

 

 

 

 

 

 

 

 

 

NS Not significant at α=0.05 level 

WKN-number of weeks after N fertilization 
† 

Same letter within column indicate no significant differences between the treatment means based on the Turkey‘s post-hoc analysis   

*Significant at α = 0.05 level 

  Height cm 

 
2011 

 
2012 

Treatment 3 WKN 4 WKN 5 WKN 6 WKN   3 WKN 4 WKN 5 WKN 6 WKN 

          Variety 
         L 99-226 59c

†
 65b 74b 89b 

 

61b 62c 80c 92 

L 01-283 78a 93a 101a 111a 

 

92a 105a 125a 144 

HoCP 96-540 67b 65b 79b 88a 

 

70b 80b 99b 119 

          N Rate kg ha
-1 

    
 

    
0 68a 73a 85a 95a 

 

68b 82a 94b 109 

45 68a 71a 81a 92a 

 

69b 78a 97ab 112 

90 68a 80 90a 101a 

 

76ab 82a 103ab 129 

135 67a 74a 84a 92a 

 

84a 87a 111a 123 

 
    

 
    

Variety x N Rate NS NS NS NS   NS NS NS * 

Table 3.4. Analysis of variance for the effect of variety and N rate on height (cm) of cane at St. Gabriel, LA 2010-2012. 

.  
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Figure 3.4. Response of plant height to each N rate where 0 kg N ha
-1

 as base level (Response Index-RIHEIG) for 3 different varieties 

in St. Gabriel, LA in 2011 and 2012.  
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NS Not significant at α=0.05 level 

WKN-number of weeks after N fertilization 
† 

Same letter within column indicate no significant differences between the treatment means based on the Turkey‘s post-hoc analysis   

*Significant at α = 0.05 level 

 

 

  Foliar Angle Index 

 
2011 

 
2012 

Treatment 3 WKN 4 WKN 5 WKN 6 WKN   3 WKN 4 WKN 5 WKN 6 WKN 

          Variety 
         L99-226 0.31c 0.43c 0.36c 0.40c 

 

0.51c 0.45c 0.45c 0.53c 

L01-283 0.63a 0.72a 0.76a 0.78a 

 

0.76a 0.83a 0.81a 0.86a 

HoCP96-540 0.46b 0.56b 0.55b 0.65b 

 

0.65b 0.63b 0.69b 0.75b 

          N Rate kg ha
-1 

    
 

    
0 0.54a 0.57a 0.59a 0.67a 

 

0.62a 0.63a 0.66a 0.73a 

45 0.36a 0.57a 0.51a 0.59ab 

 

0.65a 0.68a 0.66a 0.67a 

90 0.46a 0.57a 0.55a 0.63ab 

 

0.63a 0.62a 0.64a 0.74a 

135 0.46a 0.57a 0.58a 0.55b 

 

0.64a 0.62a 0.65a 0.69a 

 
    

 
    

Variety x N Rate NS NS NS NS   NS NS NS * 

Table 3.5. Analysis of variance for the effect of variety and N rate on foliar angle index (FAI) of cane at St. Gabriel, LA 2011-

2012. 

.  
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Figure 3.5. Response of foliar angle index (FAI) to each N rate where 0 kg N ha
-1

 as base level (Response Index-RIFAI) for 3 

different varieties in St. Gabriel, LA in 2011 and 2012..  
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NS Not significant at α=0.05 level 

WKN-number of weeks after N fertilization 
† 

Same letter within column indicate no significant differences between the treatment means based on the Turkey‘s post-hoc analysis   

*Significant at α = 0.05 level 

 

  1000 tiller number ha
-1

 

 
2010 

 
2011 

 
2012 

Treatment 3WKN 4WKN 5WKN 6WKN   3WKN 4WKN 5WKN 6WKN   3WKN 4WKN 5WKN 6WKN 

               Variety 
              L 99-226 114b

†
 206a 160b 189a 

 

161a 202a 223a 216a 

 

240a 308a 348a 368a 

L 01-283 159a 175a 179ab 187a 

 

166a 180ab 209a 182a 

 

287a 319a 282b 290b 

HoCP 96-540 140ab 163a 203a 192a 

 

144a 152b 197a 182a 

 

248a 283a 281b 309ab 

               N Rate kg ha
-1 

    
 

    
  

   
0 140a 175a 147b 178a 

 

143a 160b 116b 171a 

 

247a 256b 271a 270b 

45 127a 207a 203a 193a 

 

159a 162b 220ab 195a 

 

234a 289ab 278a 323ab 

90 128a 179a 177ab 194a 

 

159a 167ab 215ab 198a 

 

264a 344a 341a 353a 

135 156a 164a 197a 192a 

 

167a 225a 238a 212a 

 

289a 327ab 325a 343ab 

 
    

 
    

 
    

Variety x N Rate NS NS NS NS   NS NS NS NS   NS NS NS NS 

Table 3.6. Analysis of variance table for the effect of variety and N rate on number of tillers (1000 numbers ha
-1

) of cane at St. 

Gabriel, LA 2010-2012.  
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Figure 3.6. Response of tiller number to each N rate where 0 kg N ha
-1

 as base level (Response Index-RITILL) for 3 different 

varieties in St. Gabriel, LA from 2010 to 2012. 

 

.  
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NS Not significant at α=0.05 level 

WKN-number of weeks after N fertilization 
† 

Same letter within column indicate no significant differences between the treatment means based on the Turkey‘s post-hoc analysis   

*Significant at α = 0.05 level 

  N% 

 
2010 

 
2011 

 
2012 

Treatment 3WKN 4WKN 5WKN 6WKN   3WKN 4WKN 5WKN 6WKN   3WKN 4WKN 5WKN 6WKN 

               Variety 
              L 99-226 1.56b

†
 1.37b 1.49a 1.39a 

 

1.49b 1.44a 1.29a 1.07 

 

1.38a 1.52 1.77a 1.61a 

L 01-283 1.72ab 1.54a 1.54a 1.32a 

 

1.59ab 1.57a 1.48a 1.24 

 

1.33a 1.47 1.51a 1.41a 

HoCP 96-540 1.76a 1.48a 1.52a 1.34a 

 

1.66a 1.56a 1.41a 1.28 

 

1.51a 1.68 1.70a 1.62a 

               N Rate kg ha
-1 

    
 

    
 

    
0 1.72a 1.34b 1.51a 1.14b 

 

1.33b 1.33b 1.05b 0.89 

 

1.23b 1.19 1.44b 1.13b 

45 1.73a 1.49ab 1.43a 1.41ab 

 

1.66a 1.52ab 1.57a 1.23 

 

1.39ab 1.67 1.89a 1.58a 

90 1.58a 1.43ab 1.52a 1.43a 

 

1.61a 1.56a 1.46a 1.26 

 

1.46a 1.63 1.59ab 1.73a 

135 1.67a 1.60a 1.63a 1.43a 

 

1.71a 1.66a 1.49a 1.41 

 

1.52a 1.73 1.71ab 1.75a 

 
    

 
    

 
    

Variety x N Rate NS NS NS NS   NS NS NS *   NS * NS NS 

Table 3.7. Analysis of variance table for the effect of variety and N rate on N content (%) of cane at St. Gabriel, LA 2010-2012.  
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Figure 3.7. Response of N content (%) to each N rate where 0 kg N ha
-1

 as base level (Response Index-RI%N) for 3 different varieties in 

St. Gabriel, LA from 2010 to 2012. 

 

.  
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timing of conducting early-season prediction of actual cane yield response to applied N. There 

was inconsistent pattern of N response across year and variety in tiller number, and low response 

of height and FAI to N may make difficult to use those parameters for detecting plant N response 

in the practical field. Nevertheless, this does not infer that these parameters are less useful to 

estimate actual increases in sugar yield due to N fertilization. The objective of this study was to 

estimate RISUGAR   using mid season RI based on agronomic parameters. Therefore, simple 

regression analysis was performed to identify the best model (parameters) to predict RISUGAR .  

3.3.4. Relationship Between RI-Sugar Yield and Agronomic Parameters 

The Table 3.8 showed the correlation coefficient table for linear regression analysis to 

determine the relationship between RISUGAR and RI of agronomic parameters. The RISUGAR had 

the strongest relationship with RIN% ; 51 and 58 % of total variation in RISUGAR were explained 

by RIN% at 3 and 6 WKN, respectively. The RIBIOM also showed good relationships with RISUGAR  

at 4 and 5 WKN ( r =0.62 and 0.68. respectively). Similarity, RITILL had the best relationship 

with RISUGAR at 4 and 5 WKN. These findings are similar to the outcome of a study conducted 

by Lofton et al. (2012) which showed that response of normalized difference vegetation index 

(NDVI) to N measured using handheld remote sensor at 4 to 5 WKN had a strong correlation 

with the RI of sugar and cane yield.  

 There was a weak relationship between RIHEIG and RISUGAR while RIFAI had no 

relationship with RISUGAR at all. This made sense since neither height nor FAI showed 

remarkable response to N compared with other agronomical parameters such as biomass and N 

content. These results suggest that N response of biomass and %N measured at 4 to 5 WKN can 

be used to estimate N response of sugar yield at harvest.  
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Table 3.8. Summary of simple linear regression analysis between response of sugar yield to N 

and response of mid-season agronomic parameters to N at St. Gabriel, LA 2010- 2012. 

 

 

NS Not significant at α=0.05 level 

* Significant at α = 0.05 level  

** Significant at α = 0.01 level 

*** Significant at α = 0.001 level 

WKN- number of weeks after N fertilization 

 

3.4. Conclusions 

 In sugarcane production in Louisiana, N fertilizer rate recommendation is established 

from multiple response trials then further refined base on soil texture and crop age. Earlier works 

introduced the concept of using early-season sensor readings to estimate cane yield potential and 

probability of response to N fertilizer as major steps in an attempt to improve N recommendation 

in sugarcane. The sensor reading expressed in the form of NDVI is related to plant variables such 

Response Index  Time Number Mean 

Correlation 

Coefficient Significance 

RIBIOM 

3WKN 36 1.15 0.50 *** 

4 WKN 36 1.14 0.62 *** 

5 WKN 36 1.39 0.68 *** 

6 WKN 36 1.27 0.51 *** 

RITILL 

3WKN 36 1.06 0.14 NS 

4 WKN 36 1.12 0.58 *** 

5 WKN 36 1.21 0.57 ** 

6 WKN 36 1.14 0.40 *** 

RIN% 

3WKN 36 1.11 0.71 *** 

4 WKN 36 1.18 0.62 *** 

5 WKN 36 1.17 0.54 *** 

6 WKN 36 1.30 0.76 *** 

RIHEIG 

3WKN 24 0.39 0.39 NS 

4 WKN 24 0.42 0.42 * 

5 WKN 24 0.41 0.41 * 

6 WKN 24 0.40 0.40 * 

RIFAI 

3WKN 24 -0.14 -0.14 NS 

4 WKN 24 0.09 0.09 NS 

5 WKN 24 -0.01 -0.01 NS 

6 WKN 24 -0.10 -0.10 NS 
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as biomass and N content. Our study showed that there was significant interaction (N rates x 

Variety) effect on sugar yield for three years and it indicates the effect of N level on the sugar 

yield was not consistent across varieties. Also response of sugar yield to N is highly variable and 

the high N supply does not necessarily lead to high sugar yield and vice versa. The measured 

agronomic variables at early growth stage, i.e. biomass, tiller number, N content, height, and FAI 

of three cane varieties and their responses to N fertilizer were also highly variable across years.  

The N response was evident in biomass, tiller number and %N but not in height and FAI. The 

maximum N response was observed at 5 to 6 WKN in biomass and %N however the maximum 

N response in tiller number varied with year and variety. The sugar yield response to N 

determined at harvest had stronger linear relationships with N response of biomass and N content 

at 4 to 5 WKN. The findings of this study suggest that variables like biomass and N content can 

be used to estimate sugar yield N response at harvest and support the previous findings that 

NDVI can be used to non-destructively acquire biomass N status of cane. 
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Chapter 4. Effect of Sugarcane (Saccharum spp.hybrid) Varieties on the Relationships 

Between Spectral Reflectance and Agronomic Parameters 

 

4.1 Introduction 

Nitrogen (N) is one of the most important inputs in sugarcane production. In Louisiana, 

generally a single N application is made in March or April and N rate recommendations ranged 

from 67 to 135 kg N ha
-1

 depending on crop age and soil type (Wiedenfeld, 1997; Legendre, 2001; 

Johnson et al., 2008). However, crop responses to additional N are spatially and temporally 

variable. Remote sensing technique which has the ability to rapidly examine a large area in the 

absence of physical contact has a great potential to monitor variable crop status for better N 

management in sugarcane. The use of this technology in crop N management has been 

extensively studied in the past few decades for many grain crops while research related to 

sugarcane is still limited (Raun et al., 1999; Scharf et al., 2002; ., 2005; Tubana et 

al., 2011).     

Although many researchers reported that crop yield is a function of mid-season biomass 

and biomass is a function of N content, using N content as a guideline for N management 

remains questionable because N content is highly variable depending on plant growth stage, age 

of leaf, and variety (Lemaire and Gastal, 1997; Wells et al., 1989; Gastal and Lemaire, 2002; 

Farruggia et al., 2004; Wang and Daun, 2004; Harrell et al., 2011). Mistele and Schmidhalter 

(2008) pointed out that N content is dependent on the amount of plant biomass and suggesting 

that N content alone does not reflect the overall health status of a crop. Other studies reported 

that estimating the total N uptake is the key therefore both N content and biomass amount are 

important information (Lukina et al., 2001; Gastal and Lemaire, 2002; Raun et al., 2002). 

However, most of spectral studies have focused on estimating plant N or chlorophyll content 



99 

 

(Filella et al, 1995; Gitelson et al., 2002; Xue et al., 2012). Therefore, it is essential to evaluate 

spectral reflectance over N uptake which is associated with biomass and N accumulation. 

The use of normalized difference vegetation index (NDVI) to estimate N concentration, 

leaf area index, and biomass has been evaluated for many crops (Blackburn, 1998; Carlson and 

Ripley, 1997; Gitelson et al., 2003). Simple ratio (SR) computed from first derivative reflectance 

yielded a high r
2
 with leaf N concentratio - -

. (2005) reported that correlation coefficient of linear 

relationship between NDVI and sugarcane yield was 0.84. Satellite-based remote sensing 

technology can also be used

., 2010). However, a long period of growing season and high biomass production in 

sugarcane limit satellite-based assessment in obtaining detailed information of cane canopy to 

associate them with certain spectral signatures. Recent study by Lofton et al. (2012a) showed 

that NDVI measured three weeks after N fertilization can project the actual increases in cane and 

sugar yield due to N fertilizer. Moreover, a good relationship was established between sugarcane 

yield (both cane and sugar yields) and NDVI readings collected between 601-750 cumulative 

growing degree days (GDD) (Lofton et al., 2012b). The outcomes of these studies also 

highlighted the possible limitations of remote sensing in sugarcane, i.e., a narrow window of 

time for sensing and problems associated with NDVI saturation especially for cane varieties with 

planophile canopies (drooping).    

The distinct difference in geometrical structure among sugarcane variety is one of the 

challenging aspects in identifying spectral signature. Canopy structure may alter the intensity of 

spectral reflectance due to different sunlight penetration. More than 10 commercial cane varieties 

are available from LSU Ag-Center and varietal differences exist with respect to yield potential, 

disease resistance, weed management program, and tillering. Variety HoCP 96-540 shows good 
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erectness (erectophile canopy) and moderate shading while L99-226 has poor erectness 

(planophile canopy) and very good shading (Tew et al., 2003; Bischoff et al., 2009). Jackson and 

Pinter (1986) obtained 20 % of higher reflectance in wheat with planophile canopies (non-erect) 

where distinct differences  arising from the reflectance readings at the green (550 nm)

(2005) reported similar result in sugarcane. Johnson et 

al. (2008) utilized leaf spectral reflectance to discriminate sugarcane varieties associated with 

plant pigments. With their research, NDVI and weighte

- . (2005) successfully classified 5 sugarcane varieties with 

overall classification accuracy at 87.5 %.  

 The influence of different canopy structure on the relationship of spectral reflectance 

readings with plant biomass accumulation and N uptake is understudied. In addition, although 

NDVI has been reported to be useful for non-invasive characterization of sugarcane canopy N 

health status, the saturation problem associated with canopy closure limits its application and use 

at the later growth stage of sugarcane. These underscore the need to identify other spectral 

vegetation indices and parameters to more effectively characterize sugarcane N status. The 

objectives of our study were 1) to identify the wavebands from which the spectral reflectance 

readings and vegetation indices should be derived for biomass and N uptake estimation in 

sugarcane, 2) to determine the window of time where there is high association among N uptake, 

biomass and spectral reflectance readings and vegetation indices, and 3) to evaluate the effect of 

different canopy structure on the relationship of spectral reflectance and vegetation index with 

measured agronomic parameters.  
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4.2 Materials and Methods 

4.2.1 Experimental Design 

Data were collected from two Variety x N  trials established at the LSU AgCenter Sugar 

Research Station located in St. Gabriel (30°15‘13‖N 91°06‘05‖W) and New Iberia Research 

Station in Jeanerette .(29°54‘59‖N 91°40‘21‖W), Louisiana. Soils associated with each 

experiment were as follows: Canciene silty clay loam (Fine-silty, mixed, superactive, nonacid, 

hyperthermic Fluvaquentic Epiaquept) in St. Gabriel and Baldwin silty clay loam (Fine, 

smectitic, hyperthermic, Chromic Vertic Epiaqualf) in Jeanerette. The experiment consisted of a 

complete factorial treatment structure between three varieties and four N rates in a randomized 

complete block design where each treatment was replicated four times. The three varieties 

consisted of a variety that has an erect-leaf canopy structure, HoCP96-540 (Tew et al., 2003), a 

variety with a droopy-leaf canopy, L 99-226 (Biscoff et al., 2009), and one intermediate variety, 

L 01-283 (Gravois et al., 2010). The four N application rates were 0, 45, 90, and 135 kg N ha
-1

. 

The plot size was 12 m by 5.4 m containing three rows in St. Gabriel, and 7.2 by 5.4 m in 

Jeanerette. Bedded rows were opened wherein three whole cane stalks were placed side by side 

for each run; each run (three cane stalk)  were overlapped with the next run of three stalks by 8 

cm or including at least two mature internodes. In mid- April, liquid urea-ammonium nitrate 

(UAN; 32-0-0) was knifed-in near the shoulder of each bed at 15 cm depth. For weed 

management, metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methyltio-1,2,4-triazin-5-one) and 

atrizine (4-amino-6-tert-butyl-4,5-dihydro-3-methyltio-1,2,4-triazin-5-one) were applied in early 

spring based on LSU AgCenter recommendations. The dates of N fertilization and sampling are 

summarized in Table 4.1 
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4.2.2 Sampling Area and Data Collection 

The following data were collected from a 1 m section row for each sampling time: 

spectrometer reflectance, plant biomass, N concentration in biomass and plant height (only at 

St.Gabrietl site). Collections of these data were made every week for four consecutive weeks 

from three weeks after N fertilization (WKN).  

The Ocean Optics Jaz spectrometer detects continues wavebands from 300 nm to 1100 

nm with optical resolution at 1.5 nm full width half maximum. Reflectance was measured both at 

plant canopy and leaf levels.  Before plant canopy measurement was done, both incident light 

(downwelling irradiance) and the outgoing light (upwelling) were determined from a 1 m
2  

white 

steel plate coated with barium sulfate for correcting environmental noise interference. The 

distance between the fiber optic sensor and target (white plate or sugarcane canopy) was 

determine to make sure that the field of view covered a 1 m
2
 area (sampling area size). The 

distance between the sugarcane canopy and fiber optic sensor was calculated based on the lens‘ 

field of view by using trigonometry function. The cosine corrector and Gershun tube with 28 

degree field of view was attached to the fiber optic sensor (Ocean Optics, Dunedin, FL). Since 

the field of view was 28 degree, the height required to cover 1 m
2
 was computed by multiplying 

  2010 
 

2011 
 

2012 

 

Plant Cane 
 

1st Ratoon 
 

2nd Ratton 

 

St. Gabriel Jeanerette 
 

St.Gabriel Jeanerette 
 

St.Gabriel Jeanerette 

N  fertilization 22-Apr 23-Apr 
 

13-Apr 12-Apr 
 

16-Apr 10-Apr 

1st sampling 11-May 13-May 
 

9-May 10-May 
 

1-May 3-May 

2nd sampling 29-May 28-May 
 

16-May 18-May 
 

7-May 10-May 

3rd sampling  3-Jun 11-Jun 
 

23-May 25-May 
 

14-May 17-May 

4th sampling 10-Jun 17-Jun 
 

31-May 1-Jun 
 

21-May 24-May 

Table 4.1. Schedule of collecting agronomic variables and spectral reflectance at St. Gabriel and 

Jeanerette in LA from 2010 to 2012.  
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Tangent 14
o 
with length of the adjacent side.  Leaf spectral reflectance reading was collected in 

2011 and 2012 from St. Gabriel site. The youngest fully expanded leaf was selected from each 

sub-plot. Several reflectance readings were taken from middle of leaf and then averaged.  The 

light source was a tungsten- halogen lamp and reference reading was done using a diffuse 

reflectance standard. Dark readings were measured by covering the sensor with a cap and fabric 

material.  

A 1 m long row of sugarcane plants were cut at the base for biomass sampling. Biomass 

samples were oven-dried at 60
o
C for 48 hours, weighed, ground and analyzed for total Carbon 

and N using dry combustion method (LECO Corp., St. Joseph, MI). Then total N uptake (kg/ha) 

was determined with multiplying the total biomass (kg/ha) by determined N concentration (%).    

4.2.3 Spectral Reflectance and Its Indices 

Four bands were selected for basic spectra reflectance. Reflectance of 20 nm width was 

averaged and used as a point value of reflectance. 

565nm545ρgreen  

685nm665ρ red  

735nm715ρ edge-red  

795nm775ρ infrared-near  

The following vegetation indices were computed; green simple ratio (SRgreen), red simple 

ratio (SRred), red edge simple ratio (SRrededge), normalized difference vegetation index (NDVIgreen, 

NDVIred, NDVIrededge),  perpendicular vegetation index (PVIred, PVIred-edge).   

 

green

infrared-near
greem

ρ

 ρ
SR  (4.1) 
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red

infrared-near

red
ρ

 ρ
SR  (4.2) 

edge-red

infrared-near
edge-red

ρ

 ρ
SR  (4.3) 

greeninfrared-near

greeninfrared-near

green
ρρ

ρ- ρ
NDVI  (4.4) 

redinfrared-near

redinfrared-near

red
ρρ

ρ- ρ
NDVI  (4.5) 

edge-redinfrared-near

edge-redinfrared-near

rededge
ρρ

ρ- ρ
NDVI  (4.6) 

2

780NIRsoil

2

670REDsoilred )ρ- (ρ)ρ- (ρPVI
  (4.7)

 

2

780NIRsoil

2

730REDsoilrededge )ρ- (ρ)ρ- (ρPVI  (4.8) 

 

With the concept of derivative analysis, red-edge points (REP) were also determined by 

using linear extrapolation technique. The linear extrapolation technique was developed by Cho 

and Skidmore (2006). This method eliminates the problem from the double-peak which can be 

observed in high N treated plant or when chlorophyll concentration is high using the first 

derivative analysis. The two straight lines, one from near infrared and other from red points, 

were computed based on the first derivative reflectance and the intersection of those straight 

lines was considered as REP.  

   
)a(a

)b(b
REP

21

21

LE
 (4.9) 

where  near infrared line:  1
st
  derivative reflectance 11 bλaλ  

                        red line:      1
st
 derivative reflectance 22 bλaλ
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Table 4.2. The mean of biomass and N uptake (kg ha
-1

) at St Gabriel and Jeanerete in LA 

from 2010 to 2012.  

 

To determine the near infrared lines, 725 and 750 nm were selected while lines 680 and 

700 nm were selected for red line.  

4.2.4 Data Analysis 

Statistical analysis was performed using SAS 9.2. (SAS Institute, 2009) and R (R 

Developing Core Team, 2008). Principal component analysis was performed to identify varietal 

differences in leaf spectral reflectance. Analysis of covariance (ANCOVA) and regression 

analysis were performed with PROC REG procedure at each sampling period. The regression 

analysis was performed to determine the relationship between spectra indices and agronomic 

variables; biomass, N uptake and plant height.  

4.3 Results 

 

 

4.3.1 Climatic Conditions 

The cumulative precipitation and CGDD from 2010 to 2012 are summarized in Figure 

4.1.  In all three years, CGDD was higher in Jeanerette than in St. Gabriel. At 6 WKN which was 

the last sampling period, there was 50 to 100 units‘ difference in CGDD between Jeanerette and 

St. Gabriel and differences was evident in 2010 and 2012 but not in 2011. It was only 2012 

where CGDD exceeded 200 at the week of N fertilization. The high CGDD could potentially 

produce more biomass. In fact, the mean biomass production across sampling periods in 

Jeanerette tended to be higher than in St. Gabriel (Table 4.2). Total precipitation was higher in 

 
Biomass (kg ha

-1
) 

 
N uptake (kg ha

-1
) 

Year St. Gabriel Jeanerette 
 

St. Gabriel Jeanerette 

2010 (PC) 2879 1841 
 

41.23 35.45 

2011 (1R) 1435 3032 
 

19.77 35.46 

2012 (2R) 6341 7281 
 

82.5 98.61 
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St. Gabriel compared to Jeanerette for all three years. The 2011 cropping was generally dry and 

little to no rain was received between 3WKN to 6WKN at both sites. This limited amount of 

precipitation reduced biomass accumulation and N uptake in St. Gabriel (Table 4.2). 

4.3.2 Varietal Differences on Leaf Spectral Reflectance 

Multivariate analysis is a useful technique to evaluate the effect of variables on numerous 

response variables of interest. Principal component analysis (PCA) is one of multivariate 

analysis and its goal is to reduce the dimension of data by forming principal components (PC) 

which in this case is a linear combination of spectral reflectance for each observation in the 

study. These PC are orthogonal (uncorrelated) to each other and first PC accounts for the largest 

variability. Absolute value of eigenvectors for each wavelength can indicate the relative weight 

of linear combination to establish PC. By using this technique, it is important to investigate 

whether there is a different behavior of leaf spectral reflectance among varieties.   

In this study, only PC1 and PC2 were evaluated since these two components accounted 

for more than 95 % of total variability in all measurements.  Figure 4.2 and 4.3 show the results 

of PCA in 2011 and 2012.  There was no clear cluster by varieties observed; the principal 

components were similar at 3 WKN in 2011 and across all sampling periods in 2012. This result 

indicates that there were no differences in leaf spectral reflectance among varieties. On the other 

hand, slight differences were observed at 4, 5, and 6 WKN in 2011 (Figures 4.2. b, c, and d). 

Variety L01-283 and HoCP 96-540 tended to have low PC2 scores compared with L 99-226 at 4 

WKN.  The high absolute score of eigenvectors at 550 and 700-750 nm explains their influences 

on PC2; which further implies that reflectance at green and red-edge bands is different
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Figure 4.1. Cumulative precipitation and cumulative growing degree days (CGDD) from the 

beginning of year to nitrogen fertilization (FN), 3 , 4, 5 and 6 weeks after N fertilization (WKN) 

in St. Gabriel and Jeanerette in LA from 2010 (a) to 2012(c).  
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among varieties (Figure 4.4 a).  These visible wavebands are related with chlorophyll contents 

and highly dependent on plant N status and leaf chemical compositions of different sugarcane 

varieties (Carter and Spiering, 2002; Johnson et al., 2008; Zhao et al., 2012). At 5 WKN, variety 

L 99-226 had lower PC1 and higher PC2 compared with the other two varieties (Figure 4.2).  

Since the absolute value of eigenvector was high between 700 to 900 nm in PC1, the varietal 

difference can be associated with red and near-infrared bands (Figure 4.4 a). Generally near-

infrared is associated with leaf structures such as mesophyll layer or pore spaces (Gitelson et al., 

2002).     

The distinct varietal differences were not observed from leaf spectral reflectance based on 

PCA in our study while some studies showed the success of discriminating varieties using leaf 

spectral reflectance. Johnson et al. (2008) reported spectral reflectance from 560 to 720 nm were 

useful to discriminate 7 varieties; using discriminant analysis, 95-100 % correct classification 

was obtained. Study conducted by Zhao et al. (2012) reported that significant differences of leaf 

reflectance among varieties were observed from May to October. Similar to our result, their 

study showed that green and red-edge wavebands had strong association with high genotypic 

variation in leaf spectral reflectance.  In the present study, PCA was performed to reduce spectral 

data dimension to explain maximum variability among varieties in response to different level of 

N supply but not to select wavebands to discriminate varieties. In addition, the influence of N 

supply on chlorophyll content and leaf elements was probably stronger than varietal effect thus 

unlike the outcomes of earlier studies, clear differences in leaf spectral reflectance among 

varieties were not observable in this study.  
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Figure 4.2. Principal component (PC) score for variety L 99-226, L 01-283, and HoCP 96-540 computed from 

leaf spectral reflectance at 3, 4, 5 and 6 weeks after N fertilization (WKN) at St. Gabriel in LA in 2011.   
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Figure 4.3. Principal component (PC) score for variety L 99-226, L 01-283, and HoCP 96-540 computed from 

leaf spectral reflectance at 3, 4, 5 and 6 weeks after N fertilization (WKN) at St. Gabriel, LA in 2012.   
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Figure 4.4. Eigenvectors of principal component (PC) 1 and 2 at 3, 4, 5, and 6 weeks after N 

fertilization (WKN) in 2011 (a) and 2012 (b).                                                                                                                                                                                                                                                                                                      
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4.3.3 Effect of Variety on the Relationship Between Agronomic Parameters (Biomass and N 

Concentrations) and Spectral Reflectance 

 

Figure 4.5, 4.7, 4.9, 4.11, 4.13, and 4.15 show correlation coefficients determined by 

linear regression between spectral reflectance and agronomic parameters (biomass and N uptake) 

from 2010 to 2012 for each sampling period. Figure 4.6, 4.8, 4.10, 4.12, 4.14, and 4.16 show the 

coefficients of variety on the relationship between spectral reflectance and agronomic 

parameters. The middle red line indicates coefficients of variety on the relationship between 

spectral reflectance and agronomic parameters. The upper and bottom blue lines show the 95 % 

confidence interval for the coefficients. If the 95 % confidence interval includes 0 line (straight 

solid line), it means that there is no significant effect of variety on a relationship between 

spectral reflectance and agronomic parameters.  

Biomass  

Within visible wavebands,  spectral reflectance at between 450 to 500 nm and between 

650 to 700, showed higher negative correlation coefficient across sampling periods (Figure 4.5, 

4.7, and 4.9). The relationships between biomass and spectral reflectance at these wavebands 

tended to decrease as the cane grew. At 3WKN, correlation coefficients ranged from -0.5 to -0.6 

at the blue waveband and from -0.4 to -0.6 at the red band but at the later sampling time (6 

WKN), correlation coefficients ranged from -0.2 to 0 and from -0.2 to -0.4 at the blue and red 

bands, respectively. These results are consistent with the findings of Sims and Gamon (2002). 

According to these authors, visible wavebands which has high association with plant pigments 

saturates at relatively low chlorophyll contents. In the present study, perhaps chlorophyll content 

did not substantially change during the sampling periods but the amount of accumulated biomass 

was high enough to absorb most of the light at the red band which ultimately decreased the 

sensitivity of the reflectance to estimate biomass. The effect of varieties on the relationship 
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between biomass and spectral reflectance within the visible wavelength (400 to 700 nm) were 

observed in 2011 but not in 2010 and 2012 (Figure 4.6, 4.8 and 4.10). At early sampling, there 

were only specific bands i.e., purple (400 to 450 nm), between blue and green (500-550 nm), and 

red-edge position (720-750 nm), that were affected by variety. However at later sampling time 

the varietal effect was not selective on specific bands.  In other words, the coefficients of variety 

on the relationship between spectral reflectance and biomass were constant within the visible 

wavelength at 6 WKN (Figure 4.8. c and d). Although it was not significant, the results from 

2012 suggest that variety has potential effect on the relationship between spectral reflectance and 

biomass (Figure 4.10).  

It is suspected that the effect of variety was significant only in 2011 because of the drier 

than normal growing condition. At this given condition, the significant differences on the 

relationship between spectral reflectance and biomass among varieties may have come from their 

differences to withstand stress due to lack of moisture. Based on Jackson (2010), L01-283 is 

variety that performs better in heavy-textured soil while L99-226 and HoCP 96-540 prefers light-

textured soil type. Based on this fact, it can be assumed that L99-226 and HoCP 96-540 had 

better resistance for moisture stress since it can grow at light-textured soil. Data presented the in 

Chapter 3 Figure 3.3 shows that HoCP 96-540 had substantially high biomass responses to N in 

2011 compared with the other two varieties. Also data presented in the Chapter 3 Table 2.5. 

shows varietal difference in foliar angle index (FAI). The FAI is a good parameter to 

discriminate plant canopy structure among varieties. The difference in FAI values among 

varieties was more evident in 2011 than in the other two years. Those differences in canopy 

structure and N response can result in significant varietal differences on spectral reflectance 

readings.  
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 Reflectance at near-infrared wavebands had positive relationship with biomass across 

years and sampling periods (Figure 4.6, 4.8, and 4.10). Normally, near-infrared refers to a wide 

range of wavelength, 750 to 2500 nm, but band between 780 to 830 has shown to have a good 

relationship with biomass (Dorigo et al., 2007; Hansen and Schioerring, 2003). Similar result 

was obtained in our study; 750 to 800 nm showed better relation with biomass compared with 

other near infrared wavebands. Unlike visible wavelength, a relatively constant relationship 

between biomass and reflectance at near-infrared was observed across sampling periods; the 

correlation coefficients ranged between 0.2 to 0.4 at 3, 4, and 5 WKN, and the highest 

correlation coefficients ranged from 0.5 to 0.6 at 6 WKN.  Clear effect of variety on the 

relationship between reflectance at near-infrared band and biomass was only observed at 3 and 5 

WKN in 2011 (Figure 4.14. c).  

Nitrogen Uptake 

 Reflectance at visible wavebands had strong negative relationship with N uptake across 

sampling periods (Figure 4.11, 4.13, and 4.15).  The correlation coefficients ranged from -0.2 to -

0.6 and most of the time, its value remained at -0.6. The N uptake showed constant correlation 

coefficients with reflectance readings at purple (400 nm), blue (450 nm), red (700 nm), and red-

edge (700 to 750 nm) wavebands across sampling periods. Varietal effects on the relationships 

between N uptake and reflectance at visible wavebands were similar to biomass; it was only 

significant in 2011 at purple, blue, and red-edge bands (Figure 4.12, 4.14, and 4.16) but became 

more evident as the cane grew (4.14.d).  

Reflectance at near-infrared band had a weak positive relationship with N uptake (Figure 

4.11, 4.13, and 4.15). Except at 4 WKN in 2012, correlation coefficients were less than 0.6; it 

only ranged between 0.2 and 0.4 for the majority of sampling periods. This result is expected 

since the majority of N in leaf is incorporated in chlorophyll which is responsible for providing 
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the unique signatures in the visual wavebands (400 to 700 nm) but not in the near-infrared (>750 

nm) (Yoder and 
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Figure 4.5. Correlation coefficients for the linear relationship between spectral reflectance and 

biomass at 5 (a) and 6 (b) week after N fertilization (WKN) in 2010. 

Figure 4.6. Coefficients of variety on the linear relationship between spectral reflectance and 

biomass at 5 (a) and 6 (b) week after N fertilization (WKN) in 2010. 
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Figure 4.7. Correlation coefficients for the linear relationship between spectral reflectance and 

biomass at 3 (a), 4 (b), 5 (c), and 6 (d) week after N fertilization (WKN) in 2011. 
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Figure 4.8. Coefficients of variety on the linear relationship between spectral reflectance and 

biomass at 3 (a), 4 (b), 5 (c), and 6 (d) week after N fertilization (WKN) in 2011. 
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Figure 4.9. Correlation coefficients for the linear relationship between spectral reflectance and 

biomass at 3 (a), 4 (b), 5 (c), and 6 (d) week after N fertilization (WKN) in 2012. 
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Figure 4.10. Coefficients of variety on the linear relationship between spectral reflectance and 

biomass at 3 (a), 4 (b), 5 (c), and 6 (d) week after N fertilization (WKN) in 2012. 
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Figure 4.11. Correlation coefficients for the linear relationship between spectral reflectance 

and N uptake at 5 (a) and 6 (b) week after N fertilization (WKN) in 2010. 

Figure 4.12 Coefficients of variety on the linear relationship between spectral reflectance and 

N uptaket 5 (a) and 6 (b) week after N fertilization (WKN) in 2010. 
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Figure 4.13. Correlation coefficients for the linear relationship between spectral reflectance and N 

uptake at 3 (a), 4 (b), 5 (c), and 6 (d) week after N fertilization (WKN) in 2011 
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Figure 4.14. Coefficients of variety on the linear relationship between spectral reflectance and N 

uptake at 3 (a), 4 (b), 5 (c), and 6 (d) week after N fertilization (WKN) in 2011. 
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Figure 4.15. Correlation coefficients for the linear relationship between spectral reflectance and N 

uptake at 3 (a), 4 (b), 5 (c), and 6 (d) week after N fertilization (WKN) in 2012. 
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Figure 4.16. Coefficients of variety on the linear relationship between spectral reflectance and N 

uptake at 3 (a), 4 (b), 5 (c), and 6 (d) week after N fertilization (WKN) in 2012. 
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Pettigrew-Croby, 1995). Corresponding observations were reported in multiple crops (Daughtry 

et al., 2000; Sikuku et al., 2010; Huang et al., 2010). The effect of variety was only observed at 5 

WKN in 2011 (Figure 4.14 c) indicating that there should be concern on varietal effect when 

using reflectance readings at near-infrared band for cane N uptake estimation.   

4.3.4 Effect of Varieties on the Relationship Between Agronomic Parameters (Biomass and N 

Uptake) and Vegetation Indices 

 

 Simple linear regression  

 Table 4.3 lists the components of simple linear relationships between vegetation index 

and biomass for each sampling periods. Except for PVIred and REP, the highest coefficient of 

determination (r
2
>0.40) across sampling dates was consistently obtained at 3WKN. Only few of 

these vegetation indices maintained r
2
>0.40 until the later sampling dates; SRred until 5 WKN, 

and SRred-edge, NDVIred and NDVIred-edge until 4 WKN. This result suggests that biomass produced 

within 3 to 4 WKN can be non-destructively estimated using these vegetation indices. The linear 

relationship between biomass and vegetation indices tended to decrease with cane growth e.g.  r
2
 

values in SRred were 0.46, 0.41, 0.40 and 0.25 at 3, 4, 5, and 6 WKN, respectively. Only SRred, 

maintained relatively constant r
2
 values across sampling periods. The linear relationship between 

REP and measured biomass was weak (r
2
<0.15).  

         The components of simple linear relationships between vegetation index and N uptake for 

each sampling periods are listed on Table 4.4. Except for SRgreen, the highest coefficient of 

determination was observed at 4 WKN. Both SRred-edge and NDVIred-edge explained more than 50 

% of the total variability in N uptake from 4 to 6 WKN and maintained relative constant r
2
 

values across sampling periods. Red-based vegetation indices also accounted for high total 

variability in N uptake but it tended to decrease with cane growth e.g. r
2
 values in NDVIred were 

0.33, 0.55, 0.42, and 0.38 at 3, 4, 5, and 6 WKN, respectively. Only SRgreen had its highest 
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coefficient of determination at 6 WKN. A major difference of SRgreen from other vegetation 

indices is the utilization of reflectance reading at green waveband which high level of reflectance 

readings. This spectral aspect may alter the best timing of N uptake estimation using SRgreen. 

Gitelson et al. (1996) reported green-based NDVI had better sensitivity in detecting high 

chlorophyll content compared with red-based NDVI.  Further study conducted by Gitelson et al. 

(2003) showed that green-based vegetation index was not only a function of chlorophyll content 

but also LAI. At 6 WKN, N uptake associated biomass accumulation was relatively high and at 

this condition using SRgreen would be advantageous. Similar to biomass, REP maintained 

relatively weak relationships with N uptake across sampling periods. 

 Previous studies showed that REP has the potential to address the decreasing sensitivity 

of NDVI derived from red and near-infrared reflectance as plant approaches canopy closure 

(Mutanga and Skidmore; 2004; Cho and Skidomore; 2006). Based on our study in rice (Chapter 

2), the use of reflectance at REP also improved biomass and yield estimation compared to 

NDVIred or SRred. Computation of REP generally required continuous spectral reflectance 

reading due to the analysis of first derivative reflectance. Adams and Gillespie (2006) mentioned 

the advantages of ratios in spectroscopy since spectral ratio computation allows offsetting 

influences of the illumination source, the illumination geometry, and detector systems. Unlike 

the ratio of spectral reflectance such as NDVI or SR, REP cannot be normalized nor standardized 

because REP is the identification of one point on narrow spectral wavebands (700 to 740 nm). 

This perceptive character can make it difficult to compute accurate REP in sugarcane field. In 

addition, with the tall stature and loose canopy of sugarcane the presence of wind can easily 

trigger in-canopy turbulence causing leaves movement eventually disrupting the amount of REP 

captured by the sensor. Vanderibilt et al. (1988) reported the altering canopy geometry by wind 

caused a red edge shift and therefore, REP should be carefully examined.         



128 

 

Analysis of covariate to evaluate varietal effect 

 Analysis of covariance (ANCOV) is a useful technique to evaluate the effect of 

categorical variables on a linear relationship of continuous variables. In this study, the following 

formula was evaluated; 

 Y= b0+ b1V283+b2V540+ b3VI +b4 (VIxV283) + b5 (VIxV540)+є 

where   Y= measured agronomic parameter 

V283=1 when variety is L 01-283, 0 otherwise  

V540=1 when variety is HoCP 96-540, 0 otherwise  

VI=vegetation index 

b=coefficients. 

The sampling periods where the highest correlation between vegetation indices (SRred, 

SRred-edge, NDVIred, and NDVIred-edge) and biomass was obtained, were selected for ANCOVA to 

determine the effect of variety on biomass estimation. The same set of vegetation indices for all 

sampling periods was selected to evaluate varietal effect on N uptake estimation. There were 4 

different models generated: (1) Model 1 having the same intercepts and slopes for all varieties, 

had no effect of variety on the relationship between vegetation index and measured agronomic 

parameter (Figure 4.17 a);  (2) Model 2 required different intercept for cane variety L 01-283 

while variety L 99-226 and HoCP 96-540 were explained by the same model (Figure 4.17 b); (3) 

Model 3 required different intercept for each variety  which indicated that there was varietal 

effect on the relationship between vegetation index and agronomic parameter (Figure 4.18 a); 

and (4) Model 4 had different components for each variety, i.e. both slopes and intercepts (Figure 

4.18 b).  

The effect of variety was evident on the relationship between biomass and vegetation 

index computed from the reflectance at the red and near-infrared bands, i.e. SRred and NDVIred 
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(Table 4.5). Compared to simple linear regression, the addition of varietal parameters into linear 

regression model improved the correlation of determination from 0.46 to 0.51 and 0.41 to 0.46 at 

3 and 4 WKN using SRred, respectively. This means that about 50 % of total variability in 

biomass was associated with variety. The intercept coefficient for variety L 01-283 was higher 

than other varieties. This is consistent with the report presented in Chapter 2 where L 01-283 

produced significantly higher biomass across sampling periods. The study conducted by Lofton 

et al. (2012b) also suggested using different models for variety with different canopy structure to 

estimate sugar yield using NDVI. Contrary to vegetation index derived from reflectance at red 

band, inclusion of variable variety into the model did not improve biomass relationship with red-

edge based vegetation index.  

The relationship of red-based vegetation index (SRred and NDVIred ) with N uptake 

improved when data was separated by variety (Table 4.6). With plant growth, larger separation 

on the intercept and slope values among the models were observed (Figure 4.17 and 4.18). The 

improvement in r
2
 was small when varietal effect was considered at 3 and 4 WKN. On the other 

hand, at 5 and 6 WKN,  r
2
 was improved from 0.46 to 0.64 and from 0.40 to 0.64, respectively 

using SRred.  Similar improvement was obtained for NDVIred where r
2
 values were increased from 

0.42 to 0.59 and from 0.38 to 0.55 at 5 and 6, respectively. Except at 6 WKN, variety had no 

effect on the relationship of N uptake and vegetation index derived from red-edge reflectance 

(SRred-edge, and NDVIred-edge) across sampling dates. Compared to red-based vegetation indices, 

red-edge based vegetation indices had markedly higher r
2
 value across sampling periods (Table 

4.4). The r
2
 values after incorporating varietal effect using red-based vegetation indices and its 

values of simple regression in red-edge based index were similar (Table 4.4 and 4.6).  
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SRgreen 

 

SRred 

 

SRred-edge 

 

intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

3WKN -4381 3544 0.49 <0.01 

 

-1377 1988 0.46 <0.01 

 

-17594 17636 0.44 <0.01 

4WKN -2100 3174 0.13 <0.01 

 

-4472 3570 0.41 <0.01 

 

-29399 25794 0.42 <0.01 

5WKN -5031 4760 0.13 <0.01 

 

-6087 4512 0.4 <0.01 

 

-16079 18585 0.12 <0.01 

6WKN -5535 5449 0.28 <0.01 

 

-1450 3032 0.25 <0.01 

 

-18678 20835 0.17 <0.01 

               

 

NDVIgreen 

 

NDVIred 

 

NDVIred-edge 

 

intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

3WKN -3145 18273 0.43 <0.01 

 

-1607 12885 0.41 <0.01 

 

-408 43835 0.46 <0.01 

4WKN -2325 19280 0.1 <0.01 

 

-6814 26737 0.43 <0.01 

 

-5751 76497 0.47 <0.01 

5WKN -3719 24684 0.14 <0.01 

 

-4948 24264 0.35 <0.01 

 

2273 43764 0.13 <0.01 

6WKN -5220 31686 0.26 <0.01 

 

-4400 24888 0.25 <0.01 

 

1620 52358 0.16 <0.01 

               

 

PVIred 

 

PVIred-edge 

 

REP 

 

intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

3WKN 2867 -244 0.15 <0.01 

 

-1936 343 0.49 <0.01 

 

-386049 539 0.15 <0.01 

4WKN 3381 321 0.18 <0.01 

 

-993 336 0.38 <0.01 

 

-574251 801 0.11 <0.01 

5WKN -39 5586 0 NS 

 

-1058 410 0.26 <0.01 

 

-110565 160 0.1 NS 

6WKN 6524 205 0 NS 

 

844 357 0.1 <0.01 

 

-255015 363 0.03 NS 

WKN - week after nitrogen fertilization 

SR - simple ratio 

NDVI - normalized difference vegetation index 

PVI - perpendicular vegetation index 

REP - red edge position 

NS- the linear model was not significant at a 0.05 level. 

Table 4.3. Summary of the linear regression analysis between biomass and vegetation index at St. Gabriel and Jeanerette in LA from 

2010 to 2012. 
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  SRgreen 

 

SRred 

 

SRred-edge 

  intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

3WKN -47 43 0.42 <0.01 

 

-8.79 23.38 0.37 <0.01 

 

-213 219 0.39 <0.01 

4WKN -90.64 70 0.24 <0.01 

 

-69 51 0.53 <0.01 

 

-434 376 0.54 <0.01 

5WKN -62 54 0.25 <0.01 

 

-44 39 0.46 <0.01 

 

-216 236 0.53 <0.01 

6WKN -264 142 0.66 <0.01 

 

-96 63 0.4 <0.01 

 

-791 688 0.55 <0.01 

  

                NDVIgreen 

 

NDVIred 

 

NDVIred-edge 

  intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

3WKN -33 223 0.37 <0.01 

 

-12 151 0.33 <0.01 

 

-0.25 544 0.41 <0.01 

4WKN -87 404 0.24 <0.01 

 

-102 385 0.55 <0.01 

 

-95 1152 0.61 <0.01 

5WKN -45 275 0.25 <0.01 

 

-37 219 0.42 <0.01 

 

21 1354 0.51 <0.01 

6WKN -259 838 0.59 <0.01 

 

-148 500 0.38 <0.01 

 

-123 1759 0.54 <0.01 

  

                PVIred 

 

PVIred-edge 

 

REP 

  intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

 

intercept slope r
2
 P value 

3WKN 37 3.519 0.13 <0.01 

 

-17 4 0.44 <0.01 

 

-5635 7.8 0.19 <0.01 

4WKN 42 4.82 0.24 <0.01 

 

-9.63 4.27 0.38 <0.01 

 

-9372 13.05 0.17 <0.01 

5WKN 55 0.37 0 NS 

 

-11 2.87 0.18 <0.01 

 

-4477 6.28 0.11 <0.01 

6WKN 67 5.78 0 NS 

 

-15 6.1 0.1 <0.01 

 

-22329 30 0.39 <0.01 

Table 4.4. Summary of the linear regression analysis between N uptake and vegetation index at St. Gabriel and Jeanerette in LA from 

2010 to 2012. 

. 

WKN - week after nitrogen fertilization 

SR - simple ratio 

NDVI - normalized difference vegetation index 

PVI - perpendicular vegetation index 

REP - red edge position 

NS- the linear model was not significant at a 0.05 level. 
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Figure 4.17. Analysis of covariance Model 1 (a) and Model 2 (b). 
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Figure 4.18. Analysis of covariance Model 3 (a) and Model 4 (b). 
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Effects 

r
2
 

 
Coefficient 

Model† 

 

Time VI Variety VI*Variety 
 

VI L 99-226 L 01-238 
HoCP 

96-540 

SRred 

3WKN <0.01 <0.01 NS 0.51 
 

1899 -1496 1064 -1496 2 

4WKN <0.01 0.02 NS 0.46 
 

3424 -4504 1309 -4504 2 

SRred-edge 

3WKN <0.01 NS NS 
      

1 

4WKN <0.01 NS NS 
      

1 

NDVIred 

3WKN <0.01 0.0019 NS 0.47 
 

12217 -1673 1052 -1673 2 

4WKN <0.01 <0.01 NS 0.51 
 

26464 -7136 1448 -7136 2 

NDVIred-edge 

3WKN <0.01 NS NS 
      

1 

4WKN <0.01 NS NS 
      

1 

Table 4.5. The summary of analysis of covariance to evaluate the effect of variety on the relationship between vegetation index and 

biomass at St. Gabriel and Jeanerette in LA from 2010 to 2012. 

.  

†If model is ‗1‘ the equation is same as Table 4.3, hence no r
2
, slope and intercept are listed. 

WKN - week after nitrogen fertilization 

SR - simple ratio 

NDVI - normalized difference vegetation index 

VI-vegetation index 

NS- the effect was not significant for linear model at a 0.05 level. 
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Effects 

r
2
 

 
Coefficient 

Model† 

 
Time VI Variety VI*Variety 

 
VI L 99-226 L 01-238 

HoCP 

96-540 

SRred 

3WKN <0.01 <0.01 NS 0.42 
 

22 -10 12 -10 2 

4WKN <0.01 <0.01 NS 0.57 
 

51 -81 20 14 3 

5WKN <0.01 <0.01 0.02 0.64 
 

21,  25, 34Δ -10 -43 -68 4 

6WKN <0.01 <0.01 0.03 0.64 
 

56, 49, 38 -116 -55 -58 4 

SRred-edge 

3WKN <0.01 NS NS 
      

1 

4WKN <0.01 NS NS 
      

1 

5WKN <0.01 NS NS 
      

1 

6WKN <0.01 <0.01 NS 0.6 
 

698 -825 37 -825 2 

NDVIred 

3WKN <0.01 <0.01 NS 0.37 
 

143 -12 12 -12 2 

4WKN <0.01 <0.01 NS 0.61 
 

390 -118 24 16 3 

5WKN <0.01 <0.01 NS 0.59 
 

256 -69 27 22 3 

6WKN <0.01 <0.01 NS 0.55 
 

637 -265 81 66 3 

NDVIred-

edge 

3WKN <0.01 NS NS 
      

1 

4WKN <0.01 NS NS 
      

1 

5WKN <0.01 NS NS 
      

1 

6WKN <0.01 <0.01 NS 0.58 
 

1781 -148 38 -148 2 

Table 4.6. The summary of analysis of covariance to evaluate the effect of variety on the relationship between vegetation index and N 

uptake at St. Gabriel and Jeanerette in LA from 2010 to 2012. 

. 

 

†If model is ‗1‘ the equation is same as Table 4.4, hence no r
2
, slope and intercept are listed. 

WKN - week after nitrogen fertilization 

SR - simple ratio 

NDVI - normalized difference vegetation index 

VI-vegetation index 

NS-the effect was not significant for the linear model at a 0.05 level. 
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These results suggest that red-edge based vegetation index can estimate N uptake without 

including varietal effect in the model and can explain similar level of variability in N uptake 

when red based indices was used with varietal effect in the model.  

The influence of variety on the relationship of biomass and N uptake with vegetation 

index may have resulted from the differences on their canopy structures. Variety L 01-283 has an 

erectrophile canopy structure while variety L 99-226 has a planophile canopy structure (Chapter 

3). Canopy closure is attained at an earlier stage of growth for variety with a planophile canopy 

structure; in such case decrease in sensitivity of vegetation index to estimate agronomic 

parameters has always been a limitation due to saturation absorption at near-infrared and visual 

o et al., 2005; Jackson and Pinter; 1986). Second, the rate of biomass accumulation 

per unit area was different among the varieties; L 01-283 produced the highest biomass 

compared with the other varieties. Finally, timing and degree of plant N response are highly 

variable among varieties (Chapter 3). These are the factors which separate these varieties from 

one another eventually affecting the relationship of biomass and N uptake to vegetation indices. 

In the present study, the most affected (by variety) vegetation indices are those derived from the 

reflectance readings at the red spectral band. The large difference between red and red-edge 

bands arise from the amount the proportion of absorbed and reflected light. Pigments in leaves 

absorb red light; therefore spectral reflectance is smaller for plants with more leaves or biomass. 

Clear varietal effect on the amount of reflected light within the red waveband was reported due 

to different pigment compositions (Johnson et al., 2008). On the other hand, reflectance at red-

edge waveband is a transition between the light absorbed by pigments and light reflected by leaf 

internal scattering at near infrared wavebands (Dawson and Curran, 1998). The study conducted 

o et al. (2005) showed that the best visible spectral bands to discriminate sugarcane 

variety were green and red wavebands; red was slightly better than red-edge band.  Based on 
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these results, it is more likely that reflectance at the red waveband can be affected by variety 

more than the reflectance at the red-edge band.    

4.3.5 Improvement of Biomass Estimation Using Height and Vegetation Indices 

The use of NDVI as predictor of biomass, N concentration or N uptake becomes limited 

once plant canopy completely covers the ground (Hobbs, 1995; Gao et al., 2000; Thenkabail et 

al., 2000; Mutanga and Skidmore, 2004). Reflectance at the REP was reported to more be 

sensitive than NDVI (Mutanga and Skidmore, 2004). However, our study did not show any 

advantage of using reflectance at REP for estimating biomass or N uptake over red-based 

vegetation index. As mentioned in the previous section, it is likely due to the tall stature and 

loose canopy of sugarcane making it difficult to maintain a stable and homogeneous canopy. 

Therefore, an addition of plant height into biomass or N uptake estimation model was evaluated.  

The variability in biomass and N uptake can be explained better if both vegetative indices 

and height were introduced in the model (Table 4.7 and 4.8).  The r
2 

values increased and the 

effect of height was significant at all sampling data for both biomass and N uptake. All 

vegetation indices combined with height measured at 4WKN obtained the highest association 

with biomass with r
2
 values of 0.78, 0.74, 0.77 and 0.74 for SRred, SRred-edge, NDVIred, and 

NDVIred-edge, respectively. Similar results were obtained in N uptake. Across the sampling 

periods, r
2
 values for both biomass and N uptake were >0.55 and >0.47, respectively; these r

2
 

values are higher than what was obtained from using vegetative index alone. This implies that, 

between 3 to 6 weeks after N application, both biomass and N uptake can be non-destructively 

quantified using spectral reflectance vegetation indices and height. It is important to note that 

conditional index of SRred-edge was more than 30  for both biomass and N uptake at all sampling 

periods; therefore even though height effect was significant at α=0.05 level, it might not be the 
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Effect 

r
2
 

Conditional 

index 

 
Coefficient 

Model 

   
VI Height Variety 

 
VI Height L 99-226 L 01-238 

HoCP 

96-540 

SRred 

3WKN <0.01 <0.01 NS 0.61 16.07 
 

681 20 -1170 -1170 -1170 1 

4WKN <0.01 <0.01 NS 0.78 16.92 
 

995 32 -2621 -2621 -2621 1 

5WKN <0.01 <0.01 NS 0.73 14.36 
 

1392 36 -3664 -3664 -3664 1 

6WKN <0.01 <0.01 NS 0.59 15.98 
 

1098 34 -2837 -2837 -2837 1 

SRred-edge 

3WKN <0.01 <0.01 <.001 0.64 62.21 
 

2927 18 -3138 -300 -3138 2 

4WKN <0.01 <0.01 NS 0.74 42.33 
 

5450 27 -7007 -7007 -7007 1 

5WKN <0.01 <0.01 NS 0.72 34.85 
 

7999 27 -9870 -9870 -9870 1 

6WKN <0.01 <0.01 NS 0.55 37.72 
 

4606 24 -4957 -878 -4957 1 

NDVIred 

3WKN <0.01 <0.01 NS 0.61 15.77 
 

4038 19 -1129 -1129 -1129 1 

4WKN <0.01 <0.01 NS 0.77 15.38 
 

5304 31 -2343 -2343 -2343 1 

5WKN <0.01 <0.01 NS 0.71 13.97 
 

7940 35 -3362 -3362 -3362 1 

6WKN <0.01 <0.01 NS 0.57 16.15 
 

7562 33 -3178 -3178 -3178 1 

NDVIred-edge 

3WKN <0.01 <0.01 <0.01 0.63 16.34 
 

7745 18 -350 -300 -150 3 

4WKN <0.01 <0.01 NS 0.74 13.75 
 

14186 27 -1768 -1768 -1768 1 

5WKN <0.01 <0.01 NS 0.72 12.55 
 

21053 27 -2212 -2212 -2212 1 

6WKN <0.01 <0.01 <0.01 0.55 18.13 
 

13055 24 -686 -885 -686 2 

WKN - week after nitrogen fertilization 

SR - simpler ratio 

NDVI - normalized difference vegetation index 

VI-vegetation index 

NS- the effect was not significant for the linear model at a 0.05 level. 

 

Table 4.7. The summary of multiple regression to improve biomass estimation using plant height at St. Gabriel in LA from 2011 to 

2012. 

.  
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Table 4.8. The summary of multiple regression to improve N uptake estimation using plant height at St. Gabriel in LA from 2011 to 

2012. 

 

 

 

Effect 
r
2
 

Conditional 

index 

 
Coefficient 

Model 

 

 

VI Height Variety 
 

VI Height L 99-226 L 01-238 
HoCP 

96-540 

SRred 

3WKN <0.01 <0.01 NS 0.47 16.08 

 

9.22 0.35 -16.96 -16.96 -16.96 1 

4WKN <0.01 <0.01 NS 0.7 16.92 

 

14.84 0.52 -41.88 -41.88 -41.88 1 

5WKN <0.01 <0.01 NS 0.71 14.36 

 

17.15 0.55 -48.35 -48.35 -48.35 1 

6WKN <0.01 <0.01 <0.01 0.62 19.53 

 

15 0.62 -60.49 1.56 -60.49 2 

SRred-edge 

3WKN <0.01 <0.01 NS 0.58 47.12 

 

77 0.22 -87 -87 -87 1 

4WKN <0.01 <0.01 NS 0.74 45.83 

 

102.39 0.42 -132.41 -132.41 -132.41 1 

5WKN <0.01 <0.01 NS 0.71 36.22 

 

126 0.39 -157 -157 -157 1 

6WKN <0.01 <0.01 NS 0.69 37.11 

 

114.99 0.47 -164.76 -164.76 -164.76 1 

NDVIred 

3WKN <0.01 <0.01 NS 0.56 14.26 

 

74.88 0.28 -20.19 -20.19 -20.19 1 

4WKN <0.01 <0.01 NS 0.7 15.38 

 

78.68 0.52 -37.58 -37.58 -37.58 1 

5WKN <0.01 <0.01 NS 0.56 16.65 

 

118.74 0.49 -51 -51 -51 1 

6WKN <0.01 <0.01 <0.01 0.67 25.12 

 

154.07 0.21 -59.03 18.91 10.04 3 

NDVIred-edge 

3WKN <0.01 <0.01 NS 0.57 14.68 

 

205.11 0.23 -14.39 -14.39 -14.39 1 

4WKN <0.01 <0.01 NS 0.74 13.75 

 

265.96 0.42 -33.95 -33.95 -33.95 1 

5WKN <0.01 <0.01 NS 0.71 15.62 

 

334.07 0.4 -36.61 -36.61 -36.61 1 

6WKN <0.01 <0.01 NS 0.68 15.92 

 

325.13 0.48 -58.31 -58.31 -58.31 1 

WKN - week after nitrogen fertilization 

SR - simpler ratio 

NDVI - normalized difference vegetation index 

VI-vegetation index 

NS-the effect was not significant for the linear model at a 0.05 level. 
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best model due to the potential of multicollinarity problem. Other than this index, there 

was no violation due to multicollinarity in establishing these models.  

Substantial improvement by introducing height into the model relating agronomic 

parameters and vegetation index can be because of increasing data dimension by adding 

vertical reading (height). Remote sensing provides more likely surface evaluation of plant 

canopy and leaf elements (horizontal information) thus maintaining soil background 

scene component in the sensor field of view is essential for effective spectral reflectance 

discrimination. However, the inclusion of height (plant vertical information) in the 

models added another dimension, expanding both the area and perspective for evaluation 

of plant N status. In addition, the lack of varietal effect when using both vegetation index 

and height as predictive variables for almost all the sampling period, is an added value 

(Table 4.7 and 4.8). Since there are numerous sugarcane varieties in Louisiana and 

practically it is difficult to calibrate spectral reflectance data for each of these varieties. If 

varietal effect is insignificant, it is possible to use generalized biomass and N uptake 

predictive models for all cane varieties.  Freeman et al. (2007) reported that the NDVI 

combined with plant height had higher correlation with corn grain yield than using NDVI 

alone. Turner et al. (2008) tested indirect measurements of plant height using sonar 

sensor in corn, cotton, sorghum, and wheat. The outcome of the study showed the 

potential use of sonar sensor for rapid plant height measurement. Therefore, there is a 

possibility for concurrent measurement of spectral reflectance and sonar readings 

allowing us to monitor cane N health status on-the-go. 
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4.4 Conclusions 

At the leaf-level, there was no distinct varietal differences in spectral reflectance 

at both visible and near-infrared wavebands while at the canopy level, wavebands at blue 

(450 to 500 nm), red (650 to 700 nm) and near infrared (780-830 nm) obtained high 

correlation coefficient with agronomic parameters across sampling periods. The varietal 

effect on the relationship between spectral reflectance and agronomic parameters were 

observed only in 2011 at purple (400 to 450 nm), between blue and green (550 nm), and 

red-edge position (720-750 nm). Vegetation indices that can be potentially used for 

predicting biomass and N uptake were identified: SRred, SRred-edge, NDVIred and NDVIred-

edge. The highest coefficient of determination values of the linear relationship between 

agronomic parameters and vegetation indices were observed at 3 and 4 WKN.  Varietal 

effect on the model was significant only when red-based vegetation indices were used.  

As cane grows, different intercepts and slopes had to be used for each variety to maintain 

the linear relationship between vegetation indices and measured agronomic variables. 

Using plant height and vegetation indices, better linear relationships were established 

with biomass and N uptake estimation while diminishing the effect of variety. The 

findings of this study suggest that SR and NDVI measured at 3 to 4 WKN can be used to 

estimate biomass and N uptake in sugarcane.  
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Chapter 5. Conclusions 

 Improvement of N management based on remote sensing technology by 

monitoring mid-season plant N status has been shown in several crops such as wheat and 

corn. Having water background component in the sensor field of view is a unique feature 

of the use and application of remote sensing in rice. Previous study conducted in 

Louisiana in predicting rice biomass and yield did not examine this effect. Also, 

commonly used vegetation index, normalized difference vegetation index (NDVI), has 

reported to decrease its sensitivity at dense plant canopy. Therefore effect of water 

background on spectral reflectance and alternative vegetation indices using red edge 

bands were examined to predict biomass and rice grain yield. Based on our study, water 

background did not alter spectral reflectance at panicle differentiation (PD), one week 

after panicle differentiation (PD+1wk) and 50 % heading (50% HD).  Water depth 

slightly influenced reflectance at red wavebands but this effect was not carried over when 

reflectance readings were transformed to vegetation indices.  The use of red-edge based 

vegetation indices improved biomass and grain yield predictions as compared with red-

based indices. There was a varietal impact on the relationships between yield and 

vegetation indices (NDVI and simple ratio -SR) derived from reflectance readings at near 

infrared bands but none on derivative red-edge based indices (REP). The difference 

caused by variety may be challenging when this technology is implemented into practical 

fields since one need to consider which variety is evaluated. However, the model with or 

without including varietal effect had similar level of variability to explain grain yield. 

Therefore, one generalized model can be sufficient to build N algorithm for mid-season N 

fertilization. 
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Earlier works introduced the concept of using early-season readings to estimate 

cane yield potential and probability of response to N fertilizer in sugarcane. However, 

there has no documentation on the pattern of cane varieties response to N nor how 

agronomic variables i.e. biomass, tiller number, N content, foliar angle index (FAI) and 

plant height, measured early in the season relate to sugar yield response to N. Our study 

showed that measured agronomic variables‘ responses to N fertilizer were highly variable 

across year and variety. The high variability in sugarcane response to N suggests N 

management based on N response which is evaluated in growing season. The high N 

responsiveness in biomass and %N showed good linear relationships with sugar yield 

response to N at 4 to 5 WKN. These findings suggest that biomass and N content can be 

used to estimate sugar yield N response and therefore suggest N application only when a 

sugar yield gets benefit from additional N fertilizer. 

However, it is time consuming and labor intensive to collect those agronomic 

variables from fields. Therefore, the study to estimate these variables using spectral 

reflectance was also conducted. The influence of distinct difference in geometrical 

structure among sugarcane variety was also important component in this study to evaluate 

the relationship between spectral reflectance and agronomic variables. At leaf-level, there 

was no distinct varietal difference at both visible and near-infrared wavebands while at 

canopy level, wavebands at blue (450 to 500 nm), red (650 to 700 nm) and near infrared 

(780-830 nm) showed high correlation coefficient with agronomic parameters across 

sampling periods. The varietal effect on the relationship between spectral reflectance and 

agronomic parameters were observed only in 2011 at purple (400 to 450 nm), between 

blue and green (550 nm), and at red-edge position (720-750 nm). Potential vegetation 
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indices for predicting biomass and N uptake were SRred, SRred-edge, NDVIred and NDVIred-

edge which were measured at 3 and 4 WKN. Varietal effect on the model was only 

observed when red-based vegetation indices were used. This resulted from decrease in 

red reflectance sensitivity associated with difference in canopy structures among 

varieties.  The use of both vegetation indices and plant height improved in the precision 

of the biomass and N uptake predictive models without varietal effect. Therefore, 

measurement of both spectral reflectance and plant height using sonar readings can be 

another approach for monitoring mid-season agronomic variables to evaluate N crop 

requirement. 

In summary, this quick non-destructive monitoring method is promising tool to 

monitor biomass and yield accounting for spatial and temporal visibilities and to improve 

N management in rice and sugarcane.           
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Appendix A: SAS Code  

A1. Rice  

dm 'log; clear; output; clear'; 

option pageno=1 

 nodate 

 rightmargin=.5in 

 leftmargin=.5in 

 topmargin=1in 

 bottommargin=.5in; 

title1 'Rice'; 

 

libname rice 'C:\Documents and Settings\ykanke1\Desktop\Rice 

Manuscript\Rice.xlsx'; 

ods rtf file='C:\Documents and Settings\ykanke1\Desktop\Rice 

Manuscript\Rice.rtf'; 

ods graphics on; 

 

data work.yield; 

 set rice.'r2011$'n; 

 Where samplingT=2; 

 if VAR='No' then delete; 

 if VAR='CL152' then VAR1=1; 

 if Var='CL261' then VAR1=0; 

 if trt=7 then trt=1; 

 else if trt=8 then trt=2; 

 else if trt=9 then trt=3; 

 else if trt=10 then trt=4; 

 else if trt=11 then trt=5; 

 int=Var1*REPLE; 

run; 

 

 

proc mixed data=work.yield;  

 class Var; 

 model Yield=SR1e Var Var*SR1e  /htype=1 3 solution ; 

run; 

 

proc reg data=work.yield; 

 model Yield=VAR1 SR1e; 

run; 

 

proc mixed data=work.yield; 

 class REP Nrate; 

 model Biomass=Nrate; 

 random REP; 

 lsmeans Nrate/ adjust=tukey; 

 ods output diffs=ppp lsmeans=mmm; 

 ods listing exclude diffs lsmeans; 

run; 

 

 

proc mixed data=work.yield; 

 class REP Var Nrate; 

 model Nuptake=Var Nrate Var*Nrate; 

 random REP; 

 lsmeans Var Nrate / adjust=tukey; 

 ods output diffs=ppp lsmeans=mmm; 
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 ods listing exclude diffs lsmeans; 

run; 

%include 'C:\Documents and Settings\ykanke1\Desktop\Research 

2011\Rice\pdmix800.sas'; 

%pdmix800(ppp,mmm,alpha=.05,sort=yes); 

run;  

 

 

ods csv close; 

 

ods graphics off; 

ods rtf close; 

libname rice clear; 

 

A2. Sugarcane  

dm 'log; clear; output; clear'; 

option pageno=1 

 nodate 

 rightmargin=.5in 

 leftmargin=.5in 

 topmargin=1in 

 bottommargin=.5in; 

 

libname sugar 'C:\Documents and Settings\ykanke1\Desktop\Sugarcane 

Manuscript\Sugarcene1\Sugar1.xlsx'; 

ods rtf file='C:\Documents and Settings\ykanke1\Desktop\Sugarcane 

Manuscript\Sugarcene1\Sugar1.RI.rtf'; 

ods csv file='C:\Documents and Settings\ykanke1\Desktop\Sugarcane 

Manuscript\Sugarcene1\Sugar1.RI.csv'; 

ods graphics on; 

 

data work.sugar1; 

 set sugar.'RIML$'n; 

 where year = 2011 and 2012; 

run; 

 

 

data work.sugar1; 

 set sugar.'all$'n; 

 where year =2012 and var=540; 

run; 

 

proc mixed data=work.sugar1; 

 class REP TRT ; 

 model  SugarMh= trt; 

 random REP; 

 lsmeans trt / adjust=tukey; 

 ods output diffs=ppp lsmeans=mmm; 

 ods listing exclude diffs lsmeans; 

run; 

 

proc reg data=work.sugar1; 

 model RIy=RIb; 

run; 

%include 'C:\Documents and Settings\ykanke1\Desktop\Research 

2011\Rice\pdmix800.sas'; 
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%pdmix800(ppp,mmm,alpha=.05,sort=yes); 

run;  

ods csv close; 

ods graphics off; 

ods rtf close; 

libname sugar clear; 
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Appendix B: R Code  

B1: Rice 

#Import data and data cleaning 

loc <- "C:/Documents and Settings/ykanke1/Desktop/Research 

2012/Rice/Rice.Water.Depth.3rd.txt" 

tmp <- read.table(loc,header=T,sep="\t") 

dim(tmp) #dimension of the data 

 

biomass <- tmp[1453,-1] 

mode(biomass) <- "numeric" 

biomass <- as.vector(biomass) 

 

wback <-tmp[1452,-1] 

mode(wback) <- "numeric" 

wback <- as.vector(wback) 

 

data <- as.matrix(tmp[1:1451,-1]) #spectrum 

wl   <- as.vector(tmp[1:1451,1])  #wavelength 

mode(wl) <- "numeric" 

 

#linear regression (biomass + wback) 

p <- nrow(data) #number of wavelengths 

n <- ncol(data) #sample size 

beta.w <- matrix(0,p,2) #beta for water depth 

beta.b <- matrix(0,p,2)    #beta for biomass 

for (j in 1:p){ 

  fit <- lm(data[j,]~wback+biomass) 

  beta.w[j,1] <- summary(fit)$coef[2,1] 

  beta.w[j,2] <- summary(fit)$coef[2,2] 

  beta.b[j,1] <- summary(fit)$coef[3,1] 

  beta.b[j,2] <- summary(fit)$coef[3,2] 

} 

 

#36 is the df for error 

qt(df=75,0.975) #1.992 

 

#Lower and upper limit of beta 

ul <- beta.w[,1]+1.992*beta.w[,2] 

ll <- beta.w[,1]-1.992*beta.w[,2] 

 

 

 

#CI plot 

loc<-"C:/Documents and Settings/ykanke1/Desktop/Research 

2012/Rice/Ricebackdepth3rd.pdf" 

pdf(loc,height=4, width=8) 

par(mar=c(4,5,2,4),cex.lab=1.4, cex.axis=1.2, cex.main=1.5) 

 

plot(wl,beta.w[,1],xlab="wave length",ylab="Coefficient", 

     ylim=range(c(ul,ll)),type="l",lwd=1) 

lines(wl,ul,col="red",lty=2) 

lines(wl,ll,col="red",lty=2) 

lines(range(wl),rep(0,2),col="blue") 

 

dev.off() 
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#output the results 

out <- cbind(wl,ul,ll,beta.w) 

dimnames(out)[[2]]<-c("Wavelength","upper","lower","beta.w") 

write.table(out,file="C:/Documents and Settings/ykanke1/Desktop/Research 

2012/Rice/outputwaterdepth1st.txt", 

            sep="\t",row.names =F)#Import data and data cleaning 

loc <- "C:/Documents and Settings/ykanke1/Desktop/Research 

2012/Rice/Rice.waterdepth70%.txt" 

tmp <- read.table(loc,header=T,sep="\t") 

dim(tmp) #dimension of the data 

 

biomass <- tmp[1452,-1] 

mode(biomass) <- "numeric" 

 

 

B2: Sugarcane ‗Principal Component Analysis‘ 

loc <- "C:/Documents and Settings/ykanke1/Desktop/Sugarcane 

Manuscript/Sugarcane2/R/Leaf/2012.4.2.txt" 

tmp <- read.table(loc,header=T,sep="\t") 

biomass <- tmp[,2] 

variety <- tmp[,3] 

wavebands <- as.matrix(tmp[,4:1454]) 

tmp1 <- dimnames(tmp)[[2]][4:1454] 

wavelength <- rep(0,length(tmp1)) 

for (i in 1:length(tmp1)){ 

  wavelength[i] <- as.numeric(substr(tmp1[i],2,nchar(tmp1[i]))) 

} 

   

########### PCA ############### 

 

pca <- prcomp(wavebands, retx=T, center=T, scale.=F) 

 

summary(pca) #The first two PCs contains about 94% of the total variation 

pca$ro 

 

#Importance of components: 

#                            PC1      PC2      PC3      PC4      PC5      PC6 

#Standard deviation     671.1708 92.00056 65.67717 56.60381 35.55033 33.26432 

#Proportion of Variance   0.9216  0.01732  0.00883  0.00656  0.00259  0.00226 

#Cumulative Proportion    0.9216  0.93894  0.94776  0.95432  0.95690  0.95917 

 

#output the results 

out <- cbind(pca$ro) 

write.table(out,file="C:/Documents and Settings/ykanke1/Desktop/Sugarcane 

Manuscript/Sugarcane2/R/Leaf/r2012.4.2.txt", 

            sep="\t",row.names =F) 

 

pc1 <- as.vector(wavebands%*%pca$ro[,1]) 

pc2 <- as.vector(wavebands%*%pca$ro[,2]) 

 

pdf("C:/Documents and Settings/ykanke1/Desktop/Sugarcane 

Manuscript/Sugarcane2/R/Leaf/r2012.4.2.pdf", 

    height=6, width=7) 

par(mar=c(4,5,2,2), cex.lab=1.5, cex.axis=1.3, cex.main=1.5) 

plot(pc1,pc2,xlab="PC1",ylab="PC2",type="n") 

cx <- 1.5 

points(pc1[variety==226],pc2[variety==226],col="red",pch=2,cex=cx) 

points(pc1[variety==283],pc2[variety==283],col="blue",pch=3,cex=cx) 

points(pc1[variety==540],pc2[variety==540],col="darkgreen",pch=5,cex=cx) 
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legend(500,-1030,legend=c("226","283","540"),pch=c(2,3,5), 

       col=c("red","blue","darkgreen"),cex=1.3) 

dev.off() 

 

 

B3: Sugarcane ‗Effect of Variety on the Relationship Between Spectral Reflectance and 

Agronomic Variables‘ 

 
"C:/Documents and Settings/ykanke1/Desktop/Sugarcane 

Manuscript/Sugarcane2/R/bio1.txt" 

tmp <- read.table(loc,header=T,sep="\t") 

biomass <- tmp[,2] 

variety <- tmp[,3] 

wavebands <- as.matrix(tmp[,4:1454]) 

tmp1 <- dimnames(tmp)[[2]][4:1454] 

wavelength <- rep(0,length(tmp1)) 

for (i in 1:length(tmp1)){ 

  wavelength[i] <- as.numeric(substr(tmp1[i],2,nchar(tmp1[i]))) 

} 

   

 

FUN1 <- function(x){ 

  cor(x,biomass) 

} 

 

#corr.coef is the vector of correlation coefficients 

corr.coef <- apply(wavebands,2,FUN1) 

plot(wavelength,corr.coef,type="l",xlab="Wave length", 

     ylab="Correlation coefficient") 

lines(range(wavelength),rep(0,2)) 

 

 

 

FUN2 <- function(x){ 

  fit <- lm(biomass~variety+x) 

  c(fit$coef[2],confint(fit,"variety")) 

} 

 

#try contains 3 rows and 1780 columns 

#1st row is the coefficient for variety, 

#2nd and 3rd rows are the Confidence interval (CI) 

#for the coefficient for variety 

try <- apply(wavebands,2,FUN2) 

 

#Since the CI holds zero, it indicates the effect of variety  

#is not significant 

plot(wavelength,try[1,],ylim=range(try),xlab="Wave length", 

     ylab="Coefficient for VARIETY",type="l",col="red") 

lines(wavelength,try[2,],col="blue",lty=2) 

lines(wavelength,try[3,],col="blue",lty=2) 

lines(range(wavelength),rep(0,2)) 

 

#Combine two plots into one figure 

pdf("C:/Documents and Settings/ykanke1/Desktop/Sugarcane 

Manuscript/Sugarcane2/R/bio1.pdf", 

    height=6, width=9) 

par(mfrow=c(2,1),mar=c(4,5,2,2), cex.lab=1.2, cex.axis=1.1, cex.main=1.5) 

plot(wavelength,corr.coef,type="l",xlab="Wave length", 

     ylab="Correlation coefficient") 

lines(range(wavelength),rep(0,2)) 
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plot(wavelength,try[1,],ylim=range(try),xlab="Wave length", 

     ylab="Coefficient for VARIETY",type="l",col="red") 

lines(wavelength,try[2,],col="blue",lty=2) 

lines(wavelength,try[3,],col="blue",lty=2) 

lines(range(wavelength),rep(0,2)) 

dev.off() 
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