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Abstract 

Field research was conducted from 2006 to 2009 to study Texasweed 

[Caperonia palustris (L.) St. Hil.] interference and management in Cocodrie 

rice. Texasweed interference at 10 plants/m
2
 caused 24 to 31% rice yield 

reduction. The maximum possible yield loss was estimated to be 81%. Rice 

yield reduction was primarily due to a reduction in culms/m
2
 and filled grains 

per panicle. For maximum yield, Texasweed must be removed by two weeks after 

emergence and managed until permanent flood establishment. 

Shade had no effect on Texasweed emergence but significantly reduced 

growth and reproduction. At 100 days after emergence, 50, 70, and 90% shade 

reduced dry matter per plant by 31, 47, and 90%, respectively. Texasweed 

height increased with increasing shade up to 70% and then decreased. After 28 

DAI, Texasweed height in 70% shade increased 15 to 21% compared with 0% 

shade. Texasweed seemed to mitigate the adverse effect of shade on growth by 

increasing specific leaf area and leaf biomass.  

In a flood depth study, Texasweed plants were able to survive and 

produce seeds in flood depths up to 30 cm; however, growth and fruit 

production were reduced. A 76 and 41% reduction in total dry matter per plant 

was recorded for Texasweed flooded at two- to three-leaf and four- to five-

leaf stage, respectively.  Increasing flood depths resulted in an increase in 

plant height and greater biomass allocation to the stem. Texasweed plants 

produced adventitious roots and a thick spongy tissue, secondary aerenchyma, 

in the submerged roots and stem, which may play a role in its survival under 

flooded conditions.  

For Texasweed control, bensulfuron-methyl interacted synergistically 

with both penoxsulam and bispyribac-sodium. Bensulfuron-methyl, therefore, 

can be mixed with either penoxsulam or bispyribac-sodium to improve Texasweed 

control. V-10142 provided excellent PRE and EPOST activity on Texasweed. V-

10142 at 224 g ai/ha by itself, applied to four- to five- leaf Texasweed, was 
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not effective but improved Texasweed control when mixed with bispyribac-

sodium at 29 g ai/ha or penoxsulam at 40 g ai/ha.
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Chapter 1 

Introduction 

Rice (Oryza sativa L.) is one of the most important crops in the world. 

It is the predominant staple food for 17 countries in Asia and the Pacific, 

nine countries in North and South America and eight countries in Africa, and 

provides 20% of the world‟s dietary energy supply (Anonymous 2004). In 2009, 

worldwide rice acreage was approximately 158 million hectares, with a total 

production of about 670 million tons of rough rice (Anonymous 2010a). The 

United States produces about 10 million metric tons of rice every year, with 

Arkansas, California, Louisiana, Mississippi, Missouri and Texas as the major 

rice producing states. Besides meeting the domestic demand the United States 

also exports 40 to 50% of its rice to various rice consuming nations around 

the world. Total US rice exports were approximately 4.35 million metric tons 

in 2009. Among the rice growing states in the USA, Louisiana is ranked third 

in area planted and production. Louisiana produced 1.326 million tons of rice 

on 187.8 thousand hectares in 2009 (Anonymous 2010a) 

Almost all of the rice cultivated in the USA is planted by direct-

seeding method (Linscombe 1999; Slaton and Cartwright 2010). Direct-seeding 

of rice can be accomplished by broadcasting dry or pre-sprouted seed into 

shallow standing water, water-seeding, by broadcasting dry seed into a 

drained or dry field, dry broadcasting, or by drilling in rows spaced 18 to 

25 cm apart  into prepared seedbeds, drill-seeding (Linscombe 1999). Water-

seeding of rice is a management tool to manage red rice (Oryza sativa 

L.)(Avila et al. 2005), which is the primary reason for the popularity of 

this system in Louisiana (Linscombe et al. 1999). Drill-seeding provides 

better growing conditions for young rice plants; however, the same conditions 

are also favorable to many weeds which can be very competitive (Estorninos et 

al. 2005; Ottis et al. 2005; Ottis and Talbert 2007; Smith 1968; 1988). Early 
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season weed control is an important management problem on which the success 

of drill-seeded rice depends. 

Weed communities in rice are dominated by grassy weed species (Fischer 

et al. 2004). Holm et al. (1977) and Valverde et al. (2001) reported 

barnyardgrass [Echinochloa crus-galli (L.) Beauv.] and junglerice 

[Echinochloa colona (L.) Link.] as the most important weeds of rice 

worldwide. Echinochloa spp. are also the most common weeds in Louisiana rice 

(Webster 2004). Stauber et al. (1991) reported 301 and 257 kg/ha yield loss 

in Newbonnet and Lemont rice varieties, respectively, per barnyardgrass plant 

as density increased from one to 40 plants per square meter. Red rice, a wild 

relative of cultivated rice, is another important weed in the rice production 

systems in the United States. Red rice even at low densities can cause severe 

growth and yield reduction in rice. A yield loss of 178 and 272 kg/ha per 

unit increase in red rice density was reported in the older rice varieties 

„Newbonnet‟ and „Lemont‟, respectively (Estorninos et al. 2005; Ottis et al. 

2005). In newer rice varieties, „CL 161‟, „XL8‟, and „Cocodrie‟ rice grain 

yield was reduced between 100 and 755 kg/ha (Kwon et al. 1991; Ottis et al. 

2005). 

Broadleaf weeds and sedges can also cause yield loss in rice (Caton et 

al. 1997; Smith 1968, 1984; Zhang et al. 2004). Many broadleaf weeds like 

alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.], eclipta [Eclipta 

prostrata (L.) L.], hemp sesbania [Sesbania herbacea (Mill.) McVaugh], purple 

ammannia (Ammannia coccinea Rottb.), and spreading dayflower (Commelina 

diffusa Burm. f.) are common in the rice fields (Barret and Seaman 1980). 

Hemp sesbania and morningglory (Ipomoea spp.) can reduce rice yield and 

harvest efficiency, and impair crop quality (Turner et al. 1990). Zhang et 

al. (2004) reported 45% rice yield loss due to alligatorweed interference. 

Smith (1984) reported 18% yield loss in rice due to season long spreading 

dayflower interference at 22 plants/m
2
 per. Caton et al. (1997) reported 



3 

 

Ammannia spp. to be widespread and competitive in California rice fields. 

They also reported 39% rice yield reduction due to purple ammannia at 100 

plants per square meter in a glasshouse study.  

Texasweed [Caperonia palustris (L.) St. Hil.], also known as sacatrapo 

(USDA 2007) is an annual broadleaf plant belonging to the Euphorbiaceae 

family (USDA 2007). It has smooth cotyledons and coarsely pubescent stems and 

petioles. The leaves are 3 to 15 cm long, alternate, broadly lanceolate, and 

serrated on the margins (Bryson and DeFelice 2009). The seeds are dark brown, 

2.5 mm in diameter, and minutely pitted. The plant can attain a height of up 

to three meters.  Texasweed is often mistaken for Mexicanweed [Caperonia 

castenifolia (L.) St. Hil.], which is a perennial plant with glabrous stems. 

Texasweed is described as native to the United States in the invasive and 

noxious weeds list of the NRCS, USDA (USDA 2007). It has also been described 

as an invasive (Anonymous 2007), non-native naturalized (Gann et al. 2007) 

species in the southern United States, and native to warmer parts of South 

America south of Paraguay (Godfrey and Wooten 1981). Texasweed has existed in 

the Unites States as a wetland plant (Godfrey and Wooten 1981). It has not 

been a major problem in crop production, but in the present decade, it has 

become increasingly common in rice, cotton, and soybean fields in the states 

of Texas, Louisiana, Mississippi, and Arkansas (Koger et al. 2004; Poston et 

al. 2007).  

Gianessi et al. (2002) reported Texasweed as the most troublesome 

broadleaf weed in Texas and Louisiana rice production systems. Overall it was 

ranked 3rd and 5th most troublesome weed in the rice production systems of 

the two states, respectively. Bennett (2003) also reported Texasweed as an 

emerging problem in Arkansas rice fields. It is reported to reduce harvest 

efficiency of combine harvesters particularly in rice (Bennett 2003). Besides 

reducing the harvest efficiency, the dark brown or grey colored Texasweed 

seeds are also a great concern to the rice growers. The seeds can be an 
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important source of contamination in rice and result in a lower price (Bill 

Williams
1
, Personal communication). The problem of Texasweed seeds in rice 

seems similar to red rice, which if present in significant amount reduces the 

market value of rice (Smith 1979). 

Weed management programs in rice, like any other crop, involve a 

complex integration of various cultural, mechanical, biological, and chemical 

of weed control. Cultural practices like tillage, crop rotation, variety 

selection, rice seeding rate, and row spacing and orientation are generally 

based on agronomic considerations, but have a bearing on crop-weed 

interaction, and can be manipulated to tilt the crop-weed interaction in the 

favor of crops (Roa 2000). Moreover, herbicide resistance (Boerboom 1999; 

Chhokar and Sharma 2008; Roush et al. 1990) and increasing interest in 

organic agriculture calls for alternate methods of weed management. 

Successful utilization of alternate methods of weed control requires an 

understanding of the principles of weed biology and ecology (Maxwell and 

Donovan 2007). 

In many crops, early canopy closure achieved using competitive crop 

cultivars and/or management practices is used as a strategy to shade weeds 

and tilt the crop-weed interaction in the favor of crop. Crops, however, 

differ in their competitive ability; crops with rapid early season growth are 

more competitive than those with a long period of slow growth early in the 

season (Keely and Thullen 1978). The relative time of emergence and rate of 

canopy formation are the important factors in determining the competitiveness 

between the crop and weed. The time and rate of canopy closure depends on the 

crop and the row spacing (Caton et al. 2002; Murdock et al. 1986). Murdock et 

al. (1986) reported that regardless of row spacing and cultivar, 

photosynthetically active radiation (PAR) at soil surface near a soybean 

plant was reduced by 50, 70, and 90% at 23, 29, and 40 days after planting, 

respectively. The days required to reduce PAR by these percentages at a point 
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midway between two rows was dependent on the row spacing; the estimated 

values 90% PAR reduction in 61 cm and 91 cm row spacing were 53 and 63 days 

after planting, respectively. Thus row spacing affects the time to beginning 

of the canopy closure, i.e. the time when it starts to shade the middle of 

the rows. Once a canopy starts to close, regardless of the row spacing, the 

available PAR reduces from 50 to 90% in about 10 to 15 days.  

Dingkuhn et al. (1999) reported that 30 and 45 days after planting 

(DAP) „Bouke 189‟, a semi-dwarf indica type rice cultivar, caused 16 and 54% 

reduction in the diffused PAR reaching the soil surface. In comparision, the 

reduction in PAR by „Moroberekan‟, a tall japonica type cultivar, was 18 and 

56%, respectively. No rice cultivar intercepted more than 20% of the PAR at 

30 DAP, and PAR availability increased sharply towards the top of the canopy. 

At 64 DAP, the short-statured and erect leaved „Bouake 189‟ caused only 25% 

PAR reduction at a point 40 cm above the ground; the reduction caused by 

other cultivars ranged between 50 and 70%. 

The weed suppressing effect of a crop canopy is a result of shading, 

which can reduce weed emergence and growth (Caton et al. 1997; Caton et al. 

2001; Gibson et al. 2001; Jha and Norsworthy 2009). Plants differ in their 

photosynthetic efficiency and response to shade. Some plant species can 

escape the adverse effects of shade by increasing their height and shoot/root 

partitioning (Caton et al. 1997) and/or by increasing leaf area in proportion 

to the total plant tissue (Patterson 1979). 

Texasweed has been observed thriving under a thick hemp sesbania canopy 

in the rice paddies at Louisiana State University AgCenter Northeast Research 

Station near St. Joseph, Louisiana (Bill Williams
1
, personal communication). 

Hemp sesbania forms a very dense canopy and severely reduces the growth of 

rice crop and other plant species growing under it (Smith 1968). Texasweed‟s 

ability to grow and reproduce under low light conditions under can have 
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implications on its management in crops which rely on a crop canopy cover for 

mid- and late-season weed control. 

Establishment of permanent flood is an important cultural practice for 

weed management in rice culture (Bouman et al. 2007; Mortimer et al. 1999; 

Williams et al. 2001). Flooding can affect both weed emergence and growth. 

Smith and Fox (1973) reported significant reduction in emergence and growth 

of red rice, barnyardgrass, broadleaf signalgrass [Urochloa platyphylla 

(Munro ex C. Wright) R.D. Webster], northern jointvetch [Aeschynomene 

virginica (L.) Britton, Sterns & Poggenb.] and hemp sesbania under continuous 

soil submergence. Hirase and Molin (2002) reported no hemp sesbania emergence 

in 5 and 10 cm deep water; water depth of even 1 cm reduced the germination 

by 84%. Submergence of two leaf stage hemp sesbania plants in the same study 

caused significant growth reduction. Williams et al. (1990) reported strong 

suppression of barnyardgrass, early watergrass [Echinochloa oryzoides (Ard.) 

Fritsch] and variable flatsedge (Cyperus difformis L.) by deep flood, ≤ 20 

cm. Sahid and Hossain (1995) also reported complete control of seedling 

barnyardgrass by 15 cm deep flood. Benvenuti et al. (2004) reported complete 

inhibition of Chinese sprangletop [Leptochloa chinensis (L.) Nees] emergence 

in floods deeper than 6 cm. Seaman (1983) indentified grass weed suppression 

as the primary reason for popularization of water-seeding of rice in 

California in late 1920s and early 1930s. Red rice suppression in water 

seeding system is cited as the reason for popularity of this system in south 

Louisiana (Linscombe 1999).  

Flooding inhibits weed growth by reducing oxygen availability to the 

roots (Vartapetian and Jackson 1997). Weeds differ in their ability to 

tolerate anaerobic conditions (Stoecker et al. 1995) and many weeds like red 

rice, barnyardgrass, creeping rivergrass [Echinochloa polystachya (Kunth) 

Hitchc.], hemp sesbania, ludwigia [Ludwigia hyssopifolia (G. Don) Exell apud 

A.R. Fernandes], alligatorweed, palmleaf morningglory (Ipomoea wrightii A. 
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Gray); ducksalad [Heteranthera limosa (Sw.) Willd.], and purple ammannia are 

adapted to flooded conditions in the rice paddies (Bottoms 2009; Gealy 1998; 

Hirase and Molin 2002; Sahid and Hossain 1995; Smith and Fox 1973; Yu et al. 

2007). 

Plants can mitigate the adverse effects of waterlogging by adjusting 

dry matter partitioning between shoot and root (Nakayama et al.  2009) and/or 

by forming aerenchyma in submerged stems and roots (Evans 2004; Shimamura et 

al. 2007; Solaiman et al. 2007; Thomas et al. 2005). Monocot plants like rice 

(Kawai et al. 1998) and maize (Zea mays L.) (Lenochová et al. 2009) produce 

cortical aerenchyma in their roots, which provides low resistance pathway for 

oxygen transport. 

In dicot plants secondary aerenchyma, phellem, develop in the phellogen 

region derived from pericycle cells replaces the function of cortical 

aerenchyma as an effective stress avoidance system (Shiba and Daimon 2003; 

Shimamura et al. 2003; Stevens et al. 2002). Secondary aerenchyma forms as a 

white spongy tissue filled with gas spaces in stems, hypocotyls, tap roots, 

adventitious roots and root nodules of plants like soybean (Glycine spp.), 

purple loosestrife (Lathyrus salicaria L.), sesbania (Sesbania spp.) 

(Saraswati et al. 1992; Shiba and Daimon 2003; Shimamura et al. 2003; Stevens 

et al. 2002).   

Although weed management programs generally involve a complex 

integration of various cultural, mechanical, biological, chemical, and other 

methods of weed control. However, owing to its high benefit to cost ratio and 

tremendous increase in labor productivity, chemical weed control has evolved 

into a standard weed management approach in crop production systems around 

the world (Bastiaans et al. 2008; Hill 1982; McWhorter 1984). A number of 

preemergence (PRE) and postemergence (POST) herbicides are available in rice 

(Anonymous 2010b) and US rice producers rely primarily on herbicides for weed 
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control; 95% of the rice planted in the United States in 2006 received some 

type of herbicide application (USDA 2006).  

Clomazone [2-[(2-chlorophenyl) methyl]-4,4-dimethyl-3-isoxazolidinone] 

and quinclorac [3,7-dichloroquinoline -8-carboxylic acid] are the two major 

PRE herbicides used in rice in the USA (Anonymous 2010a; USDA 2006). 

Thiobencarb [S-((4-chlorophenyl) methyl)diethylcarbamothioate] and 

pendimethalin [3,4-Dimethyl-2,6-dinitro-N-pentan-3-yl-aniline] are also used, 

but to a lesser extent (USDA 2006). 

Clomazone belongs to the isoxazolidinone family and provides control of 

Echinochloa spp. (Mitchell and Hatfield 1996; Webster et al. 1999; Zhang et 

al. 2005). In 2006, 50% of the US rice acreage received clomazone application 

(USDA 2006). Although, clomazone provides grass control and has very good 

residual activity in rice (Mitchell and Gage 1999; Mitchell and Hatfield 

1996; Webster et al. 1999), it does not control several key broadleaf and 

sedge species when applied at recommended rates (Brommer et al. 2000; 

Williams et al. 2004). 

Quinclorac controls barnyadgrass (Baltazar and Smith 1994; Street and 

Muller 1993), hemp sesbania, pitted morningglory (Ipomoea lacunose L.), 

jointvetch (Aeschynomene spp.)(Grossmann 1998; Street and Mueller 1993). 

However, quinclorac has little to no activity on sprangletop (Leptochloa 

spp.)(Jordan 1997; Anonymous 2010a) and the development of quinclorac-

resistant barnyardgrass (Lopez-Martinez 1997; Lovelace 2007; Malik et al. 

2010) has limited its use in rice.  

Pendimethalin and thiobencarb are applied as delayed preemergence 

(DPRE), which is an application made after rice has imbibed water for 

germination but before emergence (Anonymous 2010a). Pendimethalin controls 

grasses and small-seeded broadleaf weeds (Byrd and York 1987) but is not 

effective against sedges and large seeded broadleaf weeds like spreading 

dayflower and Texasweed (Anonymous 2010a). Thiobencarb provides good control 
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of barnyardgrass, sprangletop, and annual sedges but has limited activity on 

broadleaf weeds; the period of residual control is also less than three weeks 

(Anonymous 2010a). 

In general, the available PRE herbicides in rice are very effective 

against grasses which are the dominant and most troublesome weeds in rice 

(Holm et al. 1977; Fischer et al. 2004; Valverde et al. 2001). The high 

degree of residual grass control by these herbicides allows the farmers to 

delay their POST applications up to 4 to 5 weeks after planting (Bill 

Williams
1
, personal communication). Many broadleaf weeds like Texasweed become 

very hardy and difficult to control by that time (Godara et al. 2007). Kurtz 

(2004) also reported reduced activity of POST herbicides on three- to four-

leaf Texasweed in soybean crop and emphasized the need for its control at an 

early stage. 

Although, the early season weed control achieved by POST herbicides 

lays the ground work for a healthy crop; POST weed management is often 

required to maximize the crop quality and yield (Ampong-Nyarko and DeDatta 

1991). Ever since the development of 2,4-D [(2,4-dichlorophenoxy)acetic acid] 

in 1940s efforts have constantly been made to provide better options of 

broad-spectrum and effective chemical weed control in rice. Propanil [N-(3,4-

Dichlorophenyl) propanamide] first registered in the United States in 1972 

(Anonymous 2010b) provides excellent control of grass and broadleaf weeds 

(Crawford and Jordan 1995; Jordan et al. 1997). However, long-term repeated 

use of propanil has led to the development of propanil-resistance in 

barnyardgrass (Baltazar and Smith 1994; Carey et al. 1995; Talbert 2007). 

Despite the development of propanil resistance in barnyrdgrass, it is still 

the most widely used POST herbicide in rice (USDA 2006). Other herbicides 

like quinclorac, triclopyr [[(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid], 

carfentrazone-ethyl [ethyl α,2-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-

methyl-5-oxo-1H-1,2,4-triazol-1-yl]-4-fluorobenzenepropanoate], and 



10 

 

acifluorfen [5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid] 

also provide postemergence broadleaf weed control in rice (Anonymous 2010a; 

Jordan 1997; Mitchell and Sims 1998; Rosser et al. 1988). However, the most 

recent entries in the list of herbicides registered for use in rice are the 

acetolactate synthase (ALS) (EC 4.1.3.18) inhibiting herbicides.  

ALS herbicides used in rice primarily include sulfonylureas and 

imidazolinones (Anonymous 2010a). Imazethapyr [2-[4,5-dihydro-4-methyl-4-(1-

methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid] is an 

imidazolinone herbicide registered for use in imidazolinone-resistant (IR) 

rice (Anonymous 2008a). Imazethapyr provides effective control of red rice, 

barnyardgrass, and broadleaf signalgrass in rice (Klingaman et al. 1992; 

Masson and Webster 2001; Masson et al. 2001). It has little activity on hemp 

sesbania, northern jointvetch, and Indian jointvetch (Klingaman et al. 1992; 

Masson and Webster 2001; Zhang et al. 2001). Mixture of imazethapyr with 

other herbicides like bispyribac-sodium, carfentrazone, or propanil improves 

overall weed control, especially hemp sesbania (Zhang et al. 2006). 

Bensulfuron-methyl [methyl 2-[[[[[(4,6-dimethoxy-2-pyrimidinyl) 

amino]carbonyl]amino]sulfonyl]methyl]benzoate] and halosulfuron-methyl 

[methyl 3-chloro-5-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl] 

amino]sulfonyl]-1-methyl-1H-pyrazole-4-carboxylate] are the two most popular 

sulfonylurea herbicides used in rice and were used on about 15% of the U.S. 

rice acreage in 2006 (USDA 2006). Bensulfuron-methyl provides very good 

control of broadleaf weeds such as hemp sesbania, eclipta and purple ammania 

but has limited to no activity on barnyardgrass (Jordan 1995).  Halosulfuron 

is very effective against sedges and has moderate activity on broadleaf weeds 

(Mudge et al. 2005; Murphy and Lindquist 2002; Zhang et al. 2006). 

Penoxsulam [2-(2,2-difluoroethoxy)-6-(trifluoromethyl-N-(5,8-

dimethoxy[1,2,4] triazolo[1,5-c]pyrimidin-2-yl))benzenesulfonamide], belongs 

to the trizolopyrimidine sulfonamide family. It has PRE and POST activity on 
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grass and broadleaf weeds (Johnson et al. 2009). Lassiter et al. (2006) 

reported that penoxsulam at 20 to 40 g ai/ha applied POST in dry-seeded rice 

controled alligatorweed, annual sedges (Cyperus spp.), annual and perennial 

Echinochloa species, ducksalad [Heteranthera limosa (Sw.) Willd.], hemp 

sesbania, northern jointvetch [Aeschynomene virginica (L.) Britton, Sterns & 

Poggenb.], spreading dayflower, Texas/Mexicanweed, smartweed (Polygonum 

spp.), and several other broadleaf weeds. Penoxsulam provides 2 to 4 weeks of 

residual weed control in dry-seeded rice. Strahan (2004) reported 83 and 85% 

Texasweed control 70 days after treatment (DAT) with penoxsulam at 40 and 51 

g/ha, respectively. Williams et al. (2004), however, reported only 40% hemp 

sesbania control two weeks after flooding with a PRE application of 

penoxsulam at 30 g/ha plus clomazone at 560 g ai/ha in drill-seeded rice. The 

control of barnyardgrass, Amazon sprangletop [Leptochloa panicoides (J. 

Presl) Hitchc.], and rice flatsedge (Cyperus iria L.) in the same treatment 

was 90, 70, and 86%, respectively. Penoxsulam had greater broadleaf activity 

when applied POST. 

Bispyribac-sodium [Sodium 2,6-bis[(4,6-dimethoxypyrimidin-2-

yl)oxy]benzoate], belongs to the pyrimidinyl thiobenzoates family and 

provides POST control of certain grass and broadleaf weeds in rice (Anonymous 

2008b). Bispyribac-sodium provides broad-spectrum weed control in rice but 

has no residual activity (Esqueda and Rogales 2004). Bispyribac-sodium at 20 

and 22 g ai/ha to four- to six-leaf rice controlled of barnyardgrass, hemp 

sesbania, and northern jointvetch (Schmidt et al. 1999). Williams (1999) 

reported 98 to 100% barnyardgrass and hemp sesbania control from MPOST and 

LPOST applications of bispyribac-sodium at 20 or 23 g/ha. 

Mixing of two or more herbicides is extensively practiced in modern 

crop production systems to reduce the cost of application and broaden the 

spectrum of weed control. Newly labeled herbicides are, therefore, evaluated 

in mixture with other herbicides recommended for the crop. These field level 
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trials are aimed at integrating new herbicides into already established weed 

management programs.  Mixing of herbicides is generally based on the 

assumption that herbicides in a mixture behave and act independently (Damalas 

2004). However, the interaction between component herbicides in a mixture can 

alter their chemical properties and can increase or decrease their activity 

compared to the component herbicides applied individually (Damalas 2004). An 

increase or decrease in weed control due to herbicide mixture implies 

synergism or antagonism, respectively; the effect is called additive if the 

mixture results in a weed control level equal to the sum of that obtained 

with each herbicide applied alone (Colby 1967; Green 1989; Hatzios and Penner 

1985). An optimum herbicide combination or mixture would be one that provides 

either additive or preferably synergistic effect on target weeds without any 

toxicity to the crop.  

The type and the magnitude of interaction between component herbicides 

in a mixture primarily depends on the herbicide properties including chemical 

family, absorption, translocation, mechanism of action, pathway of metabolism 

as well as on the weed or crop species involved (Damalas 2004). In an 

extensive summary of studies on herbicide-herbicide interactions Zhang et al. 

(1995) observed that regardless of the plant species or herbicides involved, 

antagonism occurs three times more often than synergism. Damalas (2004) 

concluded that in general, antagonism occurs more frequently in grass weeds 

than broadleaf weeds and also in mixtures where the component herbicides 

belong to different chemical families. Conversely synergism occurs more 

frequently in broadleaf weed species and in mixtures where the component 

herbicides belong to the same chemical family. Based on the concentration 

addition (CA) model Cedergreen et al. (2007) did not find any antagonistic 

interaction between herbicides with the same molecular site of action. 

However, herbicides with different site of action showed significant 

antagonism in 70% of the mixtures.  
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ALS inhibiting herbicides generally show antagonism with the herbicides 

having other modes of action; the interaction with other ALS inhibiting 

herbicides is mostly additive or synergistic (Cedergreen et al. 2007; Green 

1989; Nelson et al. 1998; Schuster et al. 2008; Zhang et al. 2005). 

Cedergreen et al. (2007) reported additive interaction between metsulfuron-

methyl [2-[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]-

oxomethyl]sulfamoyl]benzoic acid methyl ester] and triasulfuron [1-[2-(2-

chloroethoxy)phenyl]sulfonyl-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea]. 

Simpson and Stoller (1995 and 1996) reported synergistic interaction between 

thifensulfuron [3-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-

yl)amino]carbonyl]amino]sulfonyl]-2-thiophenecarboxylic acid] at 4.4 g ai/ha 

and imazethapyr [2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-

2-yl]-5-ethyl-3-pyridinecarboxylic acid] at 70 g ai/ha on sulfonylurea 

tolerant soybean (STS). Simpson and Stoller (1995) also reported 

significantly higher control of smooth pigweed (Amaranthus hybridus L.), 

common lambsquarters (Chenopodium album L.), velvetleaf (Abutilon theophrasti 

Medik.), common cocklebur (Xanthium strumarium L.), tall morningglory 

[Ipomoea purpurea (L.) Roth], and ivyleaf morningglory (Ipomoea hederacia 

Jacq.) with thifensulfuron at 4.4 g/ha plus imazethapyr at 70 g/ha as 

compared to these herbicides applied alone. Reducing the rate of one or both 

herbicides did not decrease smooth pigweed and common cocklebur control. 

Nelson et al. (1998) also reported greater common lambsquarter control with 

thifensulfuron at 2.2 g/ha plus imazethapyr at 70 g/ha compared with these 

herbicides applied alone. Damalas et al. (2008) reported higher efficacy of 

bispyribac-sodium plus azimsulfuron [N-[[(4,6-dimethoxy-2-

pyrimidinyl)amino]carbonyl]-1-methyl-4-(2-methyl-2H-tetrazol-5-yl)-1H-

pyrazole-5-sulfonamide] on early watergrass [Echinochloa oryzoides (Ard.) 

Fritsch] and late watergrass [Echinochloa phyllopogon (Stapf) Koso-Pol.] 

compared with bispyribac-sodium applied alone. The increased weed control was 
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dependent on bispyribac-sodium rate and weed stage at the time of herbicide 

application. Godara et al. (2007) reported higher broadleaf weed control in 

rice with mixtures of penoxsulam or bispyribac-sodium with bensulfuron-methyl 

compared with these herbicides applied alone; suggesting interaction between 

the component herbicides in the mixtures. 

V-10142, imazosulfuron, [2-chloro-N-[[(4,6-dimethoxy-2-

pyrimidinyl)amino]carbonyl]imidazo[1,2-a]pyridine-3-sulfonamide], an ALS 

inhibitor, is being developed by Valent Co. USA
2
 for weed control in drill- 

and water-seeded rice. It primarily controls broadleaf weeds and sedges but 

can suppresses annual grass weeds (Baron 2006). Boydston and Felix (2008) 

reported 91 to 98% yellow nutsedge (Cyperus esculentus L.) control with V-

10142. Henry and Slaeek (2008) reported 90 to 100% yellow nutsedge and up to 

90% purple nutsedge (Cyperus rotundus L.) control in bermudagrass [Cynodon 

dactylon (L.) Pers.] with two POST applications of V-10142 at 560 g ai/ha. 

Imazosulfuron may prove to be an effective PRE herbicide for broadleaf weed 

and sedge control in drill-seeded rice. The herbicide if compatible in 

mixture with bispyribac-sodium or penoxsulam also has potential to provide 

broad-spectrum POST weed control in drill-seeded rice. 

The research for this dissertation addressed the following objectives: 

1. To study Texasweed interference in drill-seeded rice. 

2. To study the effect of shade on Texasweed emergence, growth and 

reproduction. 

3. To study the effect of flood depth on Texasweed growth and 

reproduction. 

4. To study bensulfuron-methyl interaction with penoxsulam and 

bispyribac-sodium in mixture for Texasweed control in drill-seeded 

rice. 

5. To evaluate V-10142 for Texasweed control in drill-seeded rice. 
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End Notes 

1 
Billy J. Williams, Louisiana State University AgCenter Weed Management 

specialist, 212 Macon Ridge Road Bldg. B, Winnsboro, LA 71295. 

2 
Valent Corporation, Walnut Creek, CA 94596, USA. 
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Chapter 2 

Texasweed (Caperonia palustris) Interference in Drill-Seeded Rice 

Introduction 

Texasweed [Caperonia palustris (L.) St. Hil.], also known as sacatrapo 

(USDA 2007), is an annual broadleaf plant belonging to the Euphorbiaceae 

family (USDA 2007). It has smooth cotyledons and coarsely pubescent stems and 

petioles. Leaves are 3 to 15 cm long, alternate, broadly lanceolate, and 

serrated on the margins (Bryson and DeFelice 2009). Seed are dark brown, 2.5 

mm in diameter, and minutely pitted. The plant can attain a height of up to 

three meters.  Texasweed is often mistaken for Mexicanweed [Caperonia 

castenifolia (L.) St. Hil.], which is a perennial plant with a glabrous stem 

(Godfrey and Wooten 1981. 

The invasive and noxious weeds list of the NRCS, USDA describes 

Texasweed as native to the United States (USDA 2007).  However, it has also 

been described as an invasive (Anonymous 2007), non-native naturalized (Gann 

et al. 2007) species in the southern United States and native to warmer parts 

of South America south of Paraguay (Godfrey and Wooten 1981). Texasweed has 

existed in the Unites States as a wetland plant (Godfrey and Wooten 1981) but 

has not been a major problem in the crop areas. Lately, it has become 

increasingly more common in rice, cotton, and soybean fields in the states of 

Texas, Louisiana, Mississippi, and Arkansas (Koger et al. 2004; Poston et al. 

2007). 

Gianessi et al. (2002) reported Texasweed as the most troublesome 

broadleaf weed in Texas and Louisiana rice production systems. Overall it was 

ranked 3rd and 5th most troublesome weed in the rice production systems of 

the two states, respectively. Bennett (2003) also reported Texasweed as an 

emerging problem in Arkansas rice fields. Texasweed grows taller than the 

rice crop and forms a woody stem (Koger et al. 2004). It is reported to 

reduce harvest efficiency of combine harvesters particularly in rice (Bennett 
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2003). Red rice which grows taller than rice and accumulates a lot of 

vegetative biomass also reduces rice harvest efficiency (Dunand 1988; Smith 

1968). Besides reducing the harvest efficiency, the dark brown or grey 

colored Texasweed seeds are a great concern to the rice growers. The seeds 

can be an important source of contamination in rice and result in a lower 

price due to dockage (Bill Williams
1
, Personal communication). 

Little to no literature on Texasweed interference with rice or other 

crops exists. However, other broadleaf weeds can cause yield losses in rice 

(Smith 1968, 1984; Caton et al. 1997, Zhang et al. 2004). Smith (1968) 

reported that season long interference of hemp sesbania [Sesbania herbacea 

(Mill.) McVaugh] or northern jointvetch [Aeschynomene virginica (L.) Britton, 

Sterns & Poggenb.] at five plants/m
2
 reduced rice yield by 19 and 17%, 

respectively. Interference for four weeks, however, caused only 2% yield 

loss. Shading caused by these weeds at the time of rice grain filling was 

identified as the primary reason for the observed yield losses. 

Smith (1984) reported 18% yield loss in rice due to season long 

spreading dayflower (Commelina diffusa Burm. f.) interference at 22 plants/m
2
. 

Caton et al. (1997) reported 39% rice yield reduction due to purple ammannia 

(Ammannia coccinea Rottb.) at 100 plants per square meter in a glasshouse 

study. Zhang et al. (2004) reported 45% rice yield loss due to alligatorweed 

[Alternanthera philoxeroides (Mart.) Griseb.] interference. 

Rice is generally succeptible to broadleaf interference. However, in 

order to develop integrated management strategies, specific nature of crop-

weed interaction warrents investigation. Thus, considering the reports of 

Texasweed infestation in rice, research was conducted to evaluate Texasweed 

interference in drill-seeded rice. 

Materials and Methods 

General. Field studies were conducted in 2007, 2008, and 2009 to 

evaluate Texasweed interference with rice. In 2007 through 2009, the effect 
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of Texasweed density on rice yield was evaluated. In 2008 and 2009, the area 

of Texasweed influence and the critical period of Texasweed interference with 

rice were determined. Experiments were conducted at the Louisiana State 

University AgCenter‟s Northeast Research Station near St. Joseph, Louisiana 

on Sharkey clay soil (very fine, montmorillonitic, nonacid, Vertic 

Haplaquept) with pH 6.1 and 2.1% organic matter. 

Field preparation during each year consisted of a fall disking followed 

by a spring disking and two passes in opposite directions with a two-way bed 

conditioner equipped with rolling baskets and S-tine harrows set to operate 

15 cm deep. „Cocodrie‟ rice was drill-seeded at 100 kg/ha on May 22, April 

29, and June 02 in 2007, 2008, and 2009, respectively. Plots consisted of 

eight-19 cm spaced rows 4.5 m long. 

The study area was surface irrigated immediately after application of 

preemergence (PRE) herbicides and as needed. A 10 cm permanent flood was 

established 5 to 6 weeks after planting when rice reached the four to five 

leaf stage and was maintained until 2 weeks prior to harvest.  Nitrogen in 

the form of prilled urea (46-0-0) was applied at 126 kg/ha just before 

permanent flood.  At panicle initiation an additional 42 kg/ha of nitrogen 

was applied. 

Grasses were managed by a preemergence application of clomazone
2
 at 560 

g ai/ha and postemergence application of cyhalofop-ethyl
3
 at 313 g ai/ha or 

fenoxaprop-ethyl
4
 at 122 g ai/ha. Clomazone, cyhalofop-butyl and fenoxaprop-

ethyl have limited to no activity on Texasweed and other broadleaf weeds 

(Anonymous 2010). Hemp sesbania, the only other major broadleaf weed in the 

experimental area, was removed by hand weeding as needed. Herbicides were 

applied using a CO2 pressurized backpack sprayer calibrated to deliver 140 

L/ha at 276 kPa. 
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Texasweed Density Study. Treatments consisted of Texasweed densities 

ranging from 0 to 50 plants/m
2 
(Figure 2.1). Texasweed densities were 

established either by hand-weeding in experimental plots already having 

natural variation in Texasweed density or by by planting Texasweed seeds
5
. Two 

experiments were conducted with natural population and two with planted 

population. Texasweed plants emerged before or along with rice in the 

experiments involving natural 

Texasweed population; however, in 

experiments involving Texasweed seed 

planting there was a lag of about 7 

to 10 days between rice and Texasweed 

emergence. In all the experiments 

Texasweed was allowed to interfere 

with rice seasonlong. 

Texasweed density was recorded 

by counting the number of plants in 

one meter square area in the center 

of each plot 2-6 days prior to 

permanent flood establishment. Rice height, rough rice yield, yield 

components, and rice sample moisture data were recorded at the time of rice 

harvest. Rice height was obtained by measuring five rice plants per plot from 

the ground to the tip of the extended panicle. Other parameters were obtained 

from whole plant samples hand harvested from two meter row length from the 

two center rows in the middle of each plot. Filled grains from 10 panicles 

randomly selected from the harvested samples were used to calculate grains 

per panicle and 1000-grain weight. Rough rice yield and rice sample moisture 

data in 2007 and 2008 were obtained by harvesting the whole plot using a 

small plot combine. However, in 2009 small plot combine could not be used 

because of inclement weather at the time of harvest and rice yield data were 

Figure 2.1 Texasweed interference 

study (planted population 2009). 
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obtained by threshing the whole plant samples hand harvested from one meter 

square area in the middle of each plot. The rice harvest sample moisture data 

at harvest were not collected in 2009 because combine harvester was not used 

for harvesting. 

The rough rice yield data were converted to percent yield loss as 

compared with the weed-free. The average of the observations for weed-free 

was used to convert the data to percent yield loss. The percent yield loss 

and sample moisture data were subjected to regression analysis to model these 

response variables as a function of Texasweed density. A graphical 

examination of the data showed non-linear relationship of both percent yield 

loss and sample moisture with Texasweed density. Therefore, NLMIXED procedure 

of SAS (SAS 2003) was used to fit nonlinear models. Null-model likelihood 

ratio tests for nested models and Akaike's information criteria (AIC) values 

for unrelated models were used to compare different models and the criteria 

of better fit and parsimony was used to select a final model. For both 

percent yield loss and rice sample moisture data, the models with year as a 

random effect had a very poor fit and provided non-homogeneous variance for 

the residuals. A visual examination of scatter plots of response variables 

against Texasweed density also showed possible year effect. Therefore, year 

was used as a fixed effect. 

A path coefficient analysis was also carried out to study the direct 

and indirect effect of Texasweed density on yield components and rough rice 

yield. A path coefficient diagram is a priori model of cause-and-effect 

relationship between confounded variables (Donald and Khan 1996). Unlike 

multiple regression or correlation analysis, path coefficient analysis does 

not assume independence among predictor variables. In fact, changes in one 

predictor variable are assumed to cause changes in other predictor variables 

for a given data set, i.e. predictor variables are “confounded” and change in 

an interdependent compensatory way. Path analysis cannot be used to 
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demonstrate the causality, but it can be used to study the implications of 

assuming a particular model of causation between confounded variables (Donald 

and Khan 1996). In the path analysis used for this study, it was hypothesized 

that Texasweed density reduces rough rice yield through its effect on yield 

components. Thus, the effect of Texasweed density on rough rice yield was not 

assumed to be direct but mediated through its effect on culms per unit area, 

grains per panicle, and 1000-grain weight. The three yield components were 

assumed to have a compensatory relationship with each other, where each 

changes in response to change in others. Path analysis was carried out using 

the TCALLIS procedure of SAS (SAS 2008). 

Area of Influence Study. Five Texasweed seeds5 were planted in the 

center of each rice plot just after rice planting. The Texasweed plants were 

thinned to one plant per plot three days after emergence. The experimental 

plots (Figure 2.2a) were kept weeds-free other than the central Texasweed 

plant in each plot using PRE and postemergence POST herbicides and hand 

weeding. The central Texasweed plants in the experimental plots were shielded 

from herbicides by covering them with a plastic pot of 15 cm diameter at the 

time of herbicide application. The area just near the Texasweed plant was 

kept weed free by hand weeding. 

Rice was harvested from four 20 cm wide concentric circular bands 

around the central Texasweed plant in each experimental plot (Figure 2.1b). 

Rice from 8 and 10 plots was harvested in this manner in 2008 and 2009, 

respectively. The experimental design thus obtained was a repeated measure in 

distance. The individual plots were considered as subjects and distance from 

the central Texasweed plant was the repeated measure. The four repeated 

measures, thus, were the increasing distances of 20, 40, 60, and 80 cm from 

the single Texasweed plant in the center of each plot. The 20 cm band width 

was chosen because rice was drilled in rows spaced 19 cm apart; thus, each 

repeated measure included one rice row on each side of the Texasweed plant.  
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Rice height, yield, harvest index, culms/m
2
, grains per panicle, and 

1000-grain weight were recorded from the harvested samples. Rice height was 

obtained by measuring five rice plants per plot from the ground to the tip of 

the extended panicle. Culms/m
2
 were calculated by dividing total number of 

culms in the harvest sample by the area harvested. Total number of grains and 

filled grains in each harvest sample were counted using a seed counter
6
 and 

percentage of filled grains was calculated for each sample. Filled grains 

were used to calculate rough rice yield, grains per panicle and 1000-grain 

weight. Rough rice yield was calculated by dividing the total weight of 

filled grains by the respective area harvested for each sample. Harvest index 

was calculated by dividing the rough rice yield by the dry weight of the 

whole harvested sample. Grains per panicle were calculated by dividing the 

total number of filled grains by the number of culms in the harvested sample. 

Thousand-grain weight was obtained by dividing the weight of filled grains by 

the number of filled grains for each sample and multiplying by 1000.  

Data were analyzed for testing the effect of distance from the central 

Texasweed plant on rice growth, yield and yield components using MIXED 

Figure 2.2 Area of influence study (a) central Texasweed plant in a plot;(b) 

harvest scheme, 20 cm concentric bands. 
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procedure of SAS (SAS 2003). Year and plot within a year were considered 

random effects. Distance from the central Texasweed plant was considered a 

repeated measure with plot within year as subject. Tukey‟s test was used for 

mean separation. Letter groupings were generated using the PDMIX800 macro in 

SAS (Saxton 1998). Linear and quadratic contrasts were also constructed to 

study the response as a function of the distance from central Texasweed 

plant. 

Critical Period Study. The critical period of weed control (CPWC) is 

defined as the period after crop establishment during which the yield losses 

due to unmanaged weeds exceeds the acceptable yield loss (AYL) (Knezevic et 

al. 2002). AYL is the yield loss level at which the cost of the weed 

management practice is equal to the benefit from employing it. AYL is 

generally assumed to be 2 to 10% (Cousens 1988; Knezevic et al. 2002); 

however, it can vary depending on the benefit-cost ratio of the weed 

management practice (Knezevic et al. 2002). Critical periods are composed of 

two components, viz., the critical weed-free period (CWFP) required to obtain 

at least (100-AYL)% of the yield obtained under season long weed-free 

conditions and the critical period of weed removal (CPWR) which is the time 

after which unmanaged weeds cause a yield reduction greater than AYL 

(Knezevic et al. 2002). 

The experiments were laid out in randomized complete block (RCB) block 

design with three replications and were conducted using a natural population 

of Texasweed. The average density in 2008 and 2009 was approximately 40 and 

15 plants/m
2
.
 
Treatments included weed competition periods of 0, 1, 2, 3, 4, 

6, 8, and 12 weeks after emergence (WAE) and weed-free periods of 0, 1, 2, 3, 

4, 6, 8, and 12 WAE. Rice reached maturity at 16 WAE, therefore, season long 

weed-free plots were considered weed-free up to 16 WAE. Similarly, season 

long weedy plots were considered weedy up to 16 WAE. Various treatments were 

imposed using selective herbicides and/or hand-weeding. Weed interference 
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period treatments were imposed using bispyribac-sodium
7
 at 29 g ai/ha plus V-

10142
8
 at 224 g ai/ha. Bispyribac-sodium and V-10142 combination was used as 

it provided excellent season long Texasweed control in our earlier 

experiments. Weed-free period treatments were imposed using carfentrazone-

ethyl
9
 at 18 g ai/ha and hand weeding. Cafentrazone-ethyl controls Texasweed 

shorter than 10 cm (Anonymous 1998) and provided 100% control of cotyledon 

stage Texasweed in the experimental plots. Cafentrazone-ethyl has limited to 

no residual activity at the rates used (Anonymous 1998); therefore, did not 

affect Texasweed emergence after intended weed-free period.  

Rough rice yield data in 2008 were obtained by harvesting the whole 

plots using a small plot combine. In 2009 small plot combine could not be 

used because of inclement weather at the time of harvest and yield data were 

obtained by threshing the whole plant samples hand harvested from 1 m
2
 area in 

the middle of each plot. Rough rice yiled was adjusted to 12% moisture. Yield 

data were converted to relative yield, % of weed-free. 

The data were subjected to regression analysis to model the relative 

yield as a function of weed-free or weed-competition period. The average of 

the observations for weed-free control was used to convert the data to 

percent of control. Several non-linear growth curves as suggested in 

literature (Cousens 1988; Hall et al. 1992; Knezevic et al. 2002) were fitted 

to weed-competition period and weed-free period data. NLMIXED procedure of 

SAS (SAS 2003) as described by Knezevic et al. (2002) was used to fit various 

nonlinear models. A visual examination of the scatter plots of the response 

variables against weed-free period or weed-competition period showed possible 

year effect. Thus, models with year as a random or fixed effect were 

evaluated. Null-model likelihood ratio tests for nested models and Akaike's 

information criteria (AIC) values for unrelated models were used to compare 

different models and the criteria of better fit and parsimony was used to 
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select a final model. The AYL level used to predict the critical period of 

weed interference was set at 5%. 

Results and Discussion 

Texas Density Study. Texasweed density did not affect rice height (data 

not presented).  The response of rice yield to Texasweed density was 

significant. Percent yield loss data were best described using the 

rectangular hyperbolic model (Equation 2.1) (Cousins 1985). 

Y = aX/(1+aX/b)     [Equation 2.1] 

Where, Y is percent yield loss, X is Texasweed density, a is the 

percent yield lost to each additional weed when X approaches zero, and b is 

an asymptote corresponding to the maximum relative yield loss when X tends to 

infinity.  

There was no difference between experiments conducted in 2008(P), 

2008(N) and 2009(P). Yield reduction as a function of Texasweed density for 

these experiments could be modeled with the same set of parameters. The 

experiment conducted in 2007 (N), however, deviated significantly in terms of 

parameter „b‟. The maximum possible yield reduction in 2007 was 44% which was 

lower than 81% estimated for other experiments (Figure 2.3). The difference 

in „b‟ parameter between the two years was due to relatively lower rice yield 

in season-long Texasweed free plots in 2007. Barnyardgrass which was the 

dominant grass in the experimental area could not be controlled effectively 

in 2007 and reduced rice yield in Texasweed free plots also. 

There was no difference between the experiments for parameter „a‟ and 

it was estimated to be 5.1% (Figure 2.3) indicating that season long 

interference due to one Texasweed plant/m
2
 can reduce drill-seeded rice yields 

by 5.1%. Texasweed infestation at 50 plants/m
2
 was estimated to cause 61% 

yield loss. Even 10 plants/m
2
 caused 24 to 31% yield reduction. 
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The results of the path coefficient analysis carried out to study the 

cause-and-effect relationship between rough rice yield and yield components 

are presented in Figure 2.4 and Table 2.1. Double-headed arrows in the path 

diagram illustrate the assumption that change in two variables compensates 

for one another (Figure 2.4). Single-headed arrows illustrate that one 

variable is assumed to affect another without being influenced by it. In the 

path analysis, Texasweed was assumed to reduce rough rice yield by affecting 

yield components. The results (Figure 2.4) shows that an increase in 

Texasweed density caused a reduction in the number of culms (p=-0.47) and 

thus reduced rice yield (Table 2.1). Texasweed density did not affect 1000-

grain weight of rice, which is indicated by the non-significant path 

coefficient (Figure 2.4). Thousand-grain weight also had no direct effect on 

rough rice yield (Figure 2.4 and Table 2.1). Texasweed interference also 

reduced grains per panicle (p=-30.0), that ultimately reduced yield (Table 

2.1). Although both the number of culms per unit area and grains per panicle 

were adversely affected by the increasing Texasweed density, the significant 
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Figure 2.3 Effect of Texasweed density on rough rice yield. Equation 2.1, 

where y and x are the yield loss and Texasweed density, respectively. N and P 

in the legend stand for natural and planted populations, respectively. 

Parameter and standard errors (in parentheses) were a = 5.07(0.64), and b = 

81.20(10.62) for 2008 N, 2008 P and 2009 P; a = 5.07(0.64), and b = 

44.40(3.91) for 2007 N. 
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negative correlation (r=-0.44) between culms per square meter and grains per 

panicle indicated yield component compensation (Figure 2.4). The reduction in 

number of culms per unit area was compensated to some degree by an increase 

in number of grains per panicle. However, this effect was not strong enough 

to reverse the detrimental effect of reduced culms per unit area on rough 

rice yield. The results indicate that Texasweed reduces rough rice yield by 

affecting both culms per unit area and grains per panicle. This is in 

contrast to the findings of Smith (1968) on hemp sesbania and northern 

jointvetch and Smith (1984) and spreading dayflower interference in rice 

where reduction in rice yield was attributed to decreased grain filling due 

to shading. 

Figure 2.4 Diagrammatic representation of direct and indirect effect of yield 

components on rough rice yield in interference experiments conducted using 

planted densities. Single-arrowed lines represent direct influences measured 

by path coefficients (p), double-arrowed lines indicate correlation 

coefficients (r), and „e‟ represents residual error. Positive or negative 

values of the coefficient „p‟ implies an increase or decrease in affected 

variable, respectively, due to an increase in affecting variable. 

Coefficients marked with asterisks are significantly different from zero: *, 

P≤0.05; **, P≤0.01. 
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Table 2.1 Path of association between the response variable rough rice yield 

and the direct and indirect predictor variables culms per square meter, 

grains per panicle, 1000-grain weight, and Texasweed density; combined 

analysis of 2008(P) and 2009(P) data. 

  

 Path of association Calculations
a
 Value 

Culms per square meter → Rough rice yield   

Direct effect p25 0.51 

Indirect effect via grains per panicle r23*p35 -0.23 

Indirect effect via 1000-grain weight r24*p45 -0.03 

Total correlation r25 0.25 

Grains per panicle → Rough rice yield   

Direct effect p35 0.53 

Indirect effect via culms per square meter r23*p25 -0.22 

Indirect effect via 1000-grain weight r34*p45 0.07 

Total correlation r35 0.38 

1000-grain weight → Rough rice yield   

Direct effect p45 0.12 

Indirect effect via culms per square meter r24*p25 -0.14 

Indirect effect via grains per panicle r34*p35 0.29 

Total correlation r45 0.27 

Texasweed density → Rough rice yield   

Indirect effect via culms per square meter  p12*p25 -0.24 

Indirect effect via grains per panicle p13*p35 -0.16 

Indirect effect via 1000-grain weight p14*p45 -0.02 

a 
p=Path coefficient and r=correlation coefficient obtained from figure 2.4. 

Texasweed density also had a significant effect on the moisture content 

of the rice grain sample at harvest. The traditional VonBertalanffy model in 

Equation 2.2 was found to fit each year‟s data best.  

Y = Ymax(1-exp(-b(X-X0)))      [Equation 2.2] 

Where, Y is moisture percent, X is Texasweed density, Ymax is the 

moisture percent as X approaches infinity, X0 is the density point where Y is 

zero, and b is a rate coefficient. 
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Figure 2.5 Effect of Texasweed densities on moisture content of rice harvest 

sample. Equation 2.2, where Y and X are the moisture percent and Texasweed 

density, respectively. Parameter and standard errors (in parentheses) were 

Ymax=20.07(2.84), b=0.036(0.017), and X0=53.33(16.95) for year 2007; 

Ymax=29.29(3.32), b=0.036(0.017), and X0=27.12(8.72) for year 2008. 

Increasing Texasweed density increased moisture content of rice harvest 

sample (Figure 2.5). There was no difference between planted and natural 

Texasweed populations. The maximum sample moisture in 2007 was 20% which was 

lower than 29% estimated for 2008. Also the inflection point occurred at 54 

plants/m
2
 for year 2007 and at 27 plants/m

2
 for year 2008 (Figure 2.5). The 

higher moisture content of rice harvest samples was probably due to a 

contamination with Texasweed capsules which were still green at the time of 

harvest (Figure 2.6a, 2.6b). The difference between the two years could be 

due to difference in combine settings, which might have affected the amount 

of Texasweed capsules in the harvested sample. Despite the difference in the 

parameterization of the model for years 2007 and 2008 as discussed above, the 

results shows that increasing Texasweed densities increased the moisture 

content of rice harvest samples. The high moisture content of harvested rice 

can result in dockage if delivered to elevator or increasd cost if dried on 

farm. The harvest sample from plots having high Texasweed density also had 

higher contamination of Texasweed seeds (Figure 2.6c); however, no effort was 

made to quantify. 
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Figure 2.6 (a) a rice plot at the time of harvest; (b) Texasweed plant still 

green at the time of rice harvest; (c) rice sample from one of the weedy 

plots. 

Area of Influence Study. Rice height and 1000-grain weight were not 

affected by the distance from the central Texasweed plant (data not 

presented). The linear and quadratic contrasts for these responses were also 

not significant. The effect of distance from Texasweed plants was significant 

on rough rice yield, culms per square meter, harvest index, grains per 

panicle, and percent filled grains (Table 2.2). Rice yield within 20 cm of 

the Texasweed plant was lower than that observed beyond 20 cm. The 

differences between 40, 60, and 80 cm distances were not significant. The 

significant quadratic trend (Table 2.2) also showed decreasing influence of 

Texasweed interference with increasing distance from the Texasweed plant. 

Rice within 20 cm of the Texasweed plant produced fewer culms per meter 

square than the rice beyond 20 cm. The significant linear and quadratic 

contrasts also indicated an increase in culms per square meter with 

increasing distance from the Texasweed plant in each plot. Harvest index, 
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grains per panicle and percent filled grains also increased as a function of 

distance from the central Texasweed as indicated by the significant linear 

contrasts. ANOVA results, however, showed no difference for these characters 

between 40, 60 and 80 cm. 

Table 2.2 Effect of the distance from central Texasweed plant on rough rice 

yield and yield components, averaged over 2008 and 2009.
a 

 

Distance 

(cm) 

  Grain Yield 

(kg/ha) 

 Culms/m
2
  Harvest 

Index 

(%) 

 Seeds/ 

panicle 

 Filled 

grains 

(%) 

20   2608 b  263 b  35.7 b  72 b  45.4 b 

40   4432 a  316 a  41.8 ab  80 ab  54.4 a 

60   4719 a  305 a  43.6 a  85 a  54.0 a 

80   5010 a  321 a  43.8 a  85 a  53.5 ab 

Contrasts   ------------------------ p-value ----------------------- 

Linear   0.0002  0.0007  0.0095  0.0158  0.0100 

Quadratic   0.0423  0.0504  0.1225  0.1763  0.0117 

b Means within each column followed by a common letter are not significantly 

different at P = 0.05 using Tukey‟s test. 

Critical Period Study. A four parameter logistic model (Equation 2.3) 

with year as a fixed effect (separate sets of parameters for each year) 

provided best fit for both weed-free and weed-competition period data.  

Y = Ymax + [(Ymax-Y0)/(1+exp(-(X-X0)/b))]   [Equation 2.3] 

Where, Y is the rice yield relative to season-long weed-free treatment, 

and X is weeks after rice emergence (WAE), Ymax is the  upper asymptote, Y0 is 

the lower asymptote, X0 is the time at which inflection occurs, and b is the 

slope at the inflection point. 

The difference between the two years in terms of the maximum yield loss 

resulted in a better fit of the model with year as fixed effect and yielded a 

different set of parameters for each year. Season long weed interference 

caused 65 and 24% yield loss in 2008 and 2009, respectively (Figure 2.7, 

2.8). Rice planting in 2009 was delayed due to inclement weather conditions 

and a large number of Texasweed plants emerged in the experimental area 
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before rice planting. The emerged weeds were controlled using glyphosate
10
 and 

rice was planted with minimal soil disturbance; following which Texasweed 

population in the experimental area remained relatively low, 15 plants/m
2
, in 

2009 compared to 2008, 40 plant/m
2
. This difference in the average Texasweed 

density in the experimental area seems to be responsible for the different 

yield loss in the season long weedy plots of the two years. 

Although the statistical analysis provided a different model for each 

year, the results in terms of critical period of Texasweed interference were 

similar. Critical weed-free period (CWFP) was estimated to be between 5 and 6 

WAE in both the years (Figure 2.7, 2.8). Weed-free conditions maintained 

until 6 WAE provided yield similar to season long weed-free treatment. This 

may be attributed to the fact that Texasweed did not emerge after permanent 

flood establishment which was around 6 WAE. Weed-free periods of 2 and 4 WAE 

also provided higher yields than the season long weedy plots. The critical 

period of weed removal (CPWR) was estimated to be 0 and 2 WAE in 2008 and 

2009, respectively (Figure 2.7, 2.8). The difference in CPWR between the two 

years may be due to the difference in Texasweed density as discussed earlier. 

Martin et al. (2001) also emphasized the importance of weed density in 

determining critical period of interference.  

Texasweed interference for 4 WAE accounted for more than 50% of the 

yield loss caused by season long interference (Figure 2.7, 2.8). This is in 

contrast to the finding of Smith (1968, 1984) for other weeds like hemp 

sesbania, northern jointvetch and spreading dayflower. Smith (1968) reported 

that at 5 plants per square meter density, hemp sesbania and northern 

jointvetch interference for four weeks caused only 2% yield loss in drill-

seeded rice. Whereas, the yield loss due to season long interference of the 

two weeds was 19% and 17%, respectively. He also concluded that these weeds 

reduced rice yield primarily due to shading effect at the time of rice grain 

filling and were not competitive if removed before they were tall enough to 

shade the rice plants. Smith (1984) also reported similar finding with 

spreading dayflower; season long interference at 22 plants/m
2
 caused 18% rice 
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Figure 2.7 The effect of Texasweed interference and weed-free periods on 

relative rice yield in 2008. Equation 2.3, where Y and X are the relative 

rice yield and weeks after rice emergence (WAE), respectively. Parameter 

estimates and standard errors were Ymax=118.15(14.36), Y0=35.56(4.70), 

b=2.27(0.80), and X0=2.22(1.14) for weed interference period; 

Ymax=103.96(2.92), Y0=35.53(5.50), b=-0.7693(0.32), and X0=4.12(0.31) for 

weed-free period. 

Figure 2.8 The effect of Texasweed interference and weed-free periods on 

relative rice yield in 2009. Equation 2.3, where Y and X are the relative 

rice yield and weeks after rice emergence (WAE), respectively. Parameter 

estimates and standard errors were Ymax=118.15(14.36), Y0=76.52(4.42), b=2.27 

(0.80), and X0=2.22(1.14) for weed interference period; Ymax=103.96(2.92), 

Y0=79.34(4.00), b=-0.7693(0.32), and X0=4.12(0.31) for weed-free period. 
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yield loss; whereas, weed interference period of 20 to 80 days did not cause 

any yield reduction. The 18% yield reduction observed in season long weedy 

plots was attributed to adverse effect of shading from spreading dayflower on 

rice grain filling process. The weed plants in their studies did not emerge 

with the crop in the same field, but were grown in greenhouse and 

transplanted six to 11 days after rice emergence. The weeds in the above 

studies were also reported to grow taller and form a thick canopy above rice; 

however, the individual Texasweed plant did not form a thick and wide canopy 

in rice plots. The average canopy diameter at boot stage of rice was 22(±5) 

cm. 

Previous work by Smith (1968, 1984) showed that broadleaf weeds reduces 

rice yield primarily by shading rice plants and reducing grain filling. 

However, present research demonstrates that in the case of Texasweed 

interference, rice yield is reduced much earlier. Both the Texasweed density 

and area of influence studies show that Texasweed interference reduces rice 

yield by affecting number of culms per unit area. Culms per unit area are a 

function of tillering, which begins when rice is at four- to five-leaf stage. 

The results indicate that substantial yield losses can occur if Texasweed 

control is delayed beyond 2 WAE. In addition, rice should be kept free of 

Texasweed until 5 to 6 WAE or permanent flood establishment. 

End Notes 

1 
Billy J. Williams, Louisiana State University Agricultural Center Weed 

Management specialist, 212 Macon Ridge Road Bldg. B, Winnsboro, LA 71295. 

2 
Command® 3 ME herbicide label. FMC Corporation, Agricultural Products Group, 

1735 Market Street, Philadelphia, PA 19103. 

3 
Clincher® SF herbicide label. Dow AgroScience, Indianapolis, IN 46268. 

4 
Ricestar HT® herbicide label. Bayer CropScience, P.O. Box 12014, 2 T.W. 

Alexander Dr., Research Triangle Park, NC 27709. 

5 
Naturally dehisced seeds from mature Texasweed plants, cut and kept in shade 

at room temperature, were used in the experiment. 
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6 
Seed counter Model 850-3. International Marketing and Design Corporation, 

13802 Lookout Rd. Suite 200 San Antonio, TX 78233. 

7 
Regiment

TM
 herbicide label. Valent Corporation, Walnut Creek, CA 94596. 

8 
V-10142 experimental compound. Valent Corporation, Walnut Creek, CA 94596. 

9 
Aim EC herbicide label. FMC Corporation, Agricultural Products Group, 1735 

Market Street, Philadelphia, PA 19103. 

10 
Roundup WeatherMax® herbicide label. Monsanto Co., St. Louis, MO 63167. 
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Chapter 3 

Effect of Shade on Texasweed (Caperonia palustris) Emergence, Growth and 

Reproduction 

Introduction 

Texasweed is an annual broadleaved plant belonging to Euphorbiaceae 

family (USDA 2007). It has existed in the Unites States as a wetland plant 

(Godfrey and Wooten 1981) and has not been a major problem in crop 

production, but lately it has become increasingly more common in rice, 

cotton, and soybean fields in the states of Texas, Louisiana, Mississippi, 

and Arkansas (Koger et al. 2004; Poston et al. 2007). Gianessi et al. (2002) 

reported Texasweed as the most troublesome broadleaf weed in Texas and 

Louisiana rice fields. Overall it was ranked 3rd and 5th most troublesome 

weed in the two states, respectively. Bennett (2003) also identified 

Texasweed as an emerging problem in Arkansas rice fields. 

The shading effect of crop canopies is often an important component of 

integrated weed management systems (Keeley and Thullen 1978). Although 

response of Texasweed to shade has not been published, Texasweed can thrive 

under a thick hemp sesbania [Sesbania herbacea (Mill.) McVaugh] canopy in the 

rice paddies at Louisiana State University Agricultural Center Northeast 

Research Station near St. Joseph, Louisiana. Hemp sesbania forms a very dense 

canopy and severely reduces the growth of rice crop and other plant species 

underneath (Smith 1968). Thus, the ability of Texasweed to grow and reproduce 

under low light conditions found under a hemp sesbania canopy can have 

implications on its management in the crops that rely on crop canopy cover 

for mid- and late-season weed control. However, crops differ in the time and 

rate of canopy closure (Caton et al. 2002; Murdock et al. 1986). Crops with 

rapid early season growth are more competitive than those with a long period 

of slow growth early in the season (Keeley and Thullen 1978). The relative 
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time of emergence and rate of canopy formation are, thus, the important 

factors in determining the competitiveness between the crop and a weed.  

Murdock et al. (1986) reported that regardless of row spacing and 

cultivar, photosynthetically active radiation (PAR) at soil surface near a 

soybean plant was reduced by 50, 70, and 90% at 23, 29, and 40 days after 

planting, respectively. The days required to reduce PAR by these percentages 

at a point midway between two rows was dependent on the row spacing; the 

estimated values 90% PAR reduction in 61 cm and 91 cm row spacing were 53 and 

63 days after planting, respectively. Thus row spacing affects the time to 

beginning of the canopy closure, i.e. the time when it starts to shade the 

middle of the rows. Once a canopy starts to close, regardless of the row 

spacing, the available PAR reduces from 50 to 90% in about 10 to 15 days.  

Dingkuhn et al. (1999) reported that 30 and 45 days after planting 

(DAP) „Bouke 189‟, a semi-dwarf indica type rice cultivar, caused 16 and 54% 

reduction in the diffused PAR reaching the soil surface. In comparision, the 

reduction in PAR by „Moroberekan‟, a tall japonica type cultivar, was 18 and 

56%, respectively. No rice cultivar intercepted more than 20% of the PAR at 

30 DAP, and PAR availability increased sharply towards the top of the canopy. 

At 64 DAP, the short-statured and erect leaved „Bouake 189‟ caused only 25% 

PAR reduction at a point 40 cm above the ground; the reduction caused by 

other cultivars ranged between 50 and 70%. 

The weed suppressing effect of a crop canopy is a result of shading, 

which can reduce weed emergence and growth (Caton et al. 1997; Caton et al. 

2001; Gibson et al. 2001; Jha and Norsworthy 2009). Plants differ in their 

photosynthetic efficiency and response to shade. Some plant species can 

escape the adverse effects of shade by increasing their height and shoot/root 

partitioning (Caton et al. 1997) and/or by increasing leaf area in proportion 

to the total plant tissue (Patterson 1979). Therefore, the successful 
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utilization of crop characteristics for weed management requires an 

understanding of the response by the weeds to alterations in the environment.  

The knowledge of the Texasweed response to shade can be used in 

ecophysiological models developed for analyzing integrated weed management 

strategies in various crops. Therefore, experiments were planned to evaluate 

the effect of shade on Texasweed emergence, growth, and reproduction. A 

review of the literature on plant response to shade revealed that, in most of 

the experiments, the plants were kept under constant shade levels for the 

entire duration of the experiment (Boyd and Murray 1982; Jones and Griffin 

2010; Santos et al. 1997; Wiggans 1959). However, a constant shade level does 

not represent the shade conditions under a real crop canopy where PAR 

decreases gradually as the crop grows. Therefore, an attempt was made to 

simulate the shade conditions of gradually increasing shade under a crop 

canopy by exposing plants to increasing shade levels before reaching the 

desired final shade level. Thus, the objectives of the study were: 

1. To study the effect of shade on Texasweed emergence and growth.  

2. To compare effect of the shade establishment methods- gradual 

transfer and direct transfer of plants to a shade level.  

3. To develop a predictive model for Texasweed growth based on initial 

and final shade levels. 

Materials and Methods 

General. Research was conducted in 2007 and 2008 at the Louisiana State 

University Agricultural Center‟s Northeast Research Station near St. Joseph, 

Louisiana using Sharkey clay (very fine, montmorillonitic, nonacid, Vertic 

Haplaquept) with pH 6.1 and 2.1% organic matter. The soil was taken from a 

field with no Texasweed infestation history. The field was fallow for 

approximately 18 months before the soil was used in 2007 and no residual 

herbicide was applied to it during this period. Naturally dehisced seeds from 
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Texasweed plants, cut and kept in shade at room temperature, were used in the 

study. The seeds thus obtained were of varying size and color. The seed color 

varied from light grey to dark brown. In general, the light seed color was 

associated with smaller size and lighter weight. The actual cause of the 

color difference is not known; however, it could be due to maturity 

difference between the seeds at the time when Texasweed plants were cut for 

seed collection. The size difference was minimized by sieving
2
, which provided 

seeds of similar size. The seeds were then divided into two groups based on 

their color: dark brown and grey colored seeds (Figure 3.1a). 

Shade levels of 0, 30, 50, 70, and 90% were achieved using 1.8 m x 1.8 

m x 1.8 m tents (Figure 3.1b) built using one inch diameter PVC pipe and 

polypropylene fabric
1
, shade-cloth. Shade intensities inside the tents, 

expressed as percent of the PAR outside the tents, were confirmed within 

three percent using an AccuPAR Linear PAR Ceptometer
3
. Temperatures inside the 

shade enclosures were monitored on an hourly basis using WatchDog B-Series 

button logger
4
 and were found to be within ±2°C of the ambient air temperature 

outside (data not presented). 

Texasweed Emergence Study. The emergence study was conducted in 2007 

and 2008 under field conditions and involved planting of 75 Texasweed seeds 

in 3 L plastic pots filled with Sharky clay soil (Figure 3.1d). Koger et al. 

(2004) reported maximum Texasweed emergence from 1-cm depth; therefore, seeds 

were planted approximately 1 cm deep. Treatments consisted of five shade 

levels: 0, 30, 50, 70, and 90%, and two seed types, dark brown and grey 

colored seeds. The experiment was laid out as a split-plot in a completely 

randomized design with four replications. The whole plot treatments were the 

five shade levels and the sub-plot treatments were the two seed types: dark 

brown and grey colored seeds. Four pots per enclosures were used for each 
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Figure 3.1 (a) dark brown and grey colored Texasweed seeds used in the 

emergence experiments; (b) a 50% shade tent; (c) layout of the experiment; 

(d) pots used in the experiment. 

treatment combination. Maximum Texasweed emergence occurs when seeds are 

watered at 5 days interval (Koger et al. 2004); therefore, pots were watered 

with equal amount of water at the beginning of the experiment and at weekly 

intervals thereafter. Texasweed emergence was recorded weekly for one month 

and percent emergence was calculated by dividing total emergence count by the 

number of seeds planted. 

 Data were analyzed using MIXED procedure of SAS (SAS 2003) to test the 

effect of shade and seed type on Texasweed emergence. Year and year by shade 

interaction were considered random effects. LSMEANS were used for comparision 

and Tukey‟s test at P=0.05 was used for the mean separation. Letter groupings 

were generated using the PDMIX800 macro in SAS (Saxton 1998). 
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Texasweed Growth and Reproduction Study. The growth response study was 

conducted in 2007 and 2008 using potted plants under the field conditions 

(Figure 3.1c). Pots and the soil used for this study were same as previously 

described for emergence study. Five Texasweed seeds were planted per pot in 

2007. Three uniform sized plants were retained per pot at first thinning, 3 

days after emergence, which was considered 0 days after the study initiation 

(DAI). To get plants of greater size and vigor uniformity, 10 Texasweed seeds 

per pot were planted in 2010. To get the plants of a uniform age, Texasweed 

plants emerging after 0 DAI were removed from the pots. At 28 days of 

emergence when the Texasweed plants were two to three leaf stage, they were 

further thinned to one plant per pot. The pots were kept free of other 

unwanted plants by regular hand weeding.  

The study was a randomized complete block design with three 

replications. Treatments for the experiment were the different shade regimes 

obtained by transferring the potted plants to increasing shade levels every 

14 days (Table 3.1). For the treatments with same starting shade level (Table 

3.1), the pots were not assigned to individual treatments at the time of 

study initiation but were pooled together as a group. At the time of each 

transfer, some of the pots from each group were retained in the current shade 

level and others were transferred, as a group, to the next shade level. The 

pots were randomized and spaced at the time of each transfer to avoid close 

contact with other plants and plnat competition for light. The process was 

repeated every 14 days until 56 DAI. Thus, all treatments were not 

established until 56 DAI, which was the final transfer of pots. 

To distinguish the pots already present in a tent from those coming 

from the lower shade levels, the pots were marked using small plastic stakes 

(Figure 3.1d). Current shade level was added to the stakes at the time of 

each transfer. Once transferred to the highest shade level of the respective 

treatments, Texasweed grew undisturbed until 100 DAI.  
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Table 3.1 Treatments for the study on effect of shade on Texasweed growth and 

reproduction.
a
 

 Treatment 

(Shade regime) 

Starting shade 

level (%) 

Days after study initiation (DAI) Final shade 

level (%) 

  14 28 42 56 

  --shade level (%) transferred to--  

T1 0 * * * * 0 

T2 0 30 * * * 30 

T3 0 30 50 * * 50 

T4 0 30 50 70 * 70 

T5 0 30 50 70 90 90 

T6 30 * * * * 30 

T7 30 50 * * * 50 

T8 30 50 70 * * 70 

T9 30 50 70 90 * 90 

T10 50 * * * * 50 

T11 50 70 * * * 70 

T12 50 70 90 * * 90 

T13 70 * * * * 70 

T14 70 90 * * * 90 

T15 90 * * * * 90 
a 
Texasweed plants started growing in the starting shade level; every 14 days, 

some of the plants were transferred to the next higher shade level 

ultimately reaching the final shade level. 
* 
Final shade level already achieved, no transfer required. 

Destructive plant samples were collected at 14 day intervals i.e. just 

before each transfer event. This was achieved by randomly removing several 

plants from each transfer group in each shade tent. Data on plant height, 

above ground dry matter, and leaf area were recorded. Height was measured 

from base of the plant to the tip of the third leaf from the top. The third 

leaf from the top was largest leaf on the plant and provided maximum plant 

height. Plants were separated into leaves and stem and total leaf area per 

plant was measured using LICOR LI-3050A conveyer leaf area meter
5
. Leaves and 

stems were dried at 60ºC to a constant weight using a ventilated oven. Data 

on number of fruits i.e. capsules per plant were also recorded at the time of 

last observation (100 DAI). Total dry weight per plant was obtained as the 

sum of leaf and stem dry weights. Specific leaf area (SLA) was calculated by 
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dividing total leaf area by leaf dry weight and percent leaf biomass was 

calculated by dividing leaf dry weight by total dry weight.  

Growth and fruit production data were analyzed for treatment 

differences using ANOVA. Variance for height and total dry matter per plant 

data increased a function of mean; therefore, a square root (Y=√X) was 

performed to homogenize the variance. Data for SLA were subjected to log 

transformation (Y=log(X)) to normalize the residuals. The data were analyzed 

separately for each observation date (DAI) because number of treatments were 

not equal at all the observation dates, and also because the differences 

between treatments at each DAI were more important than changes over time. 

MIXED procedure of SAS (SAS 2003) was used to get Type III test for fixed 

effects. Year and replication within a year were considered random effects. 

LSMEANS were used for comparision and Tukey‟s test at P=0.05 was used for the 

mean separation. Letter groupings were generated using the PDMIX800 macro in 

SAS (Saxton 1998). Linear and quadratic contrasts were also constructed, 

wherever needed, to study the trend in the response.  

The total dry matter data were also subjected to regression analysis to 

model the response variable as a function of time (DAI), and the initial and 

current shade levels. Current shade level is the shade level at the time of 

data collection. To increase the applicability of the results across various 

environments, the total dry weight data were converted to percent of the 

total dry weight observed in 0% shade at 100 DAI. In the cases where 

treatments were not distinguishable from each other at a given DAI the common 

data collected for that group was used for each treatment. A graphical 

observation of the data showed sigmoid shaped trend. Therefore, NLMIXED 

procedure of SAS (SAS 2003) was used to fit nonlinear growth models to the 

data for each of the 15 treatments separately. The models with both year and 

replication within year as random effects failed to converge. The parameter 

estimate for replication random effect as obtained using MIXED procedure of 
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SAS for these variables was also approximately zero. Therefore, only year was 

used as a random effect. Null-model likelihood ratio tests for nested models 

and Akaike's information criteria (AIC) values for unrelated models were used 

to compare different models and the criteria of better fit and parsimony was 

used to select a final model. A three parameter logistic model (Equation 3.1) 

provided best fit for all the shade regimes.  

              Y = Ymax/(1+exp(-(X-X0)/b))    [Equation 3.1] 

Where, Y is the response, and X is days after study initiation (DAI), 

Ymax is the upper asymptote, X0 (inflection point) is the time at which Y is 

50% of the Ymax, and b is the slope at the inflection point.  

The parameters thus obtained for each of the treatments were again 

regressed against the starting and the current shade levels. Null-model 

likelihood ratio tests and AIC values were again used to compare different 

models and the criteria of better fit and parsimony was used to select a 

final model for each parameter. The empirical models for the parameters thus 

obtained were then incorporated into a composite model developed for 

predicting response as a function of time (DAI), starting shade level and 

current shade level. 

Results and Discussion 

Effect of Shade on Texasweed Emergence. Shade did not affect Texasweed 

emergence (data not shown). Seed type, however, had a significant effect on 

emergence. Averaged across the shade levels, Texasweed emergence was 60 and 

27% for the dark brown and grey seeds, respectively. The difference in 

emergence between dark brown and grey seeds indicates maturity difference 

between the two seed types. Laboratory studies under controlled conditions 

are required to study the viability and germination of the two seed types. 

Effect of Shade on Texasweed Growth. Texasweed height was affected by 

shade. Texasweed in 30 and 50% shade at 14 DAI, were smaller than those in 

full sun. Quadratic contrasts at 28 DAI and onwards also indicated that 
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Texasweed height, at a given DAI, increased with increasing shade level up to 

70% and then decreased. After 28 DAI, 70% shade resulted in taller plants; 

the height was increased 15 to 21% compared with 0% shade. 

Table 3.2 Effect of constant shade on Texasweed height and dry weight 

expressed as percent of control.
a
 

 

Shade level 

(%) 

Days after study initiation (DAI) 

14 28 42 56 70 100 

 --------------------------- Height
b,c,d

 ----------------------- 

0(Control) 100 a 100 b 100 b 100 b 100 b 100 b 

30 84 b 98 b 100 b 103 b 105 b 106 b 

50 86 b 102 b 101 b 104 b 106 b 106 b 

70 104 a 116 a 116 a 118 a 121 a 115 a 

90 84 b 97 b 94 b 96 b 90 c 89 c 

 ------------------------- P-values ---------------------- 

Linear 

contrast 
0.0156 0.0756 0.4386 0.3314 <0.3835 0.0091 

Quadratic 

contrast 
0.0516 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

  

 ----------------- Dry weight
b,c,e

 ------------------ 

0(Control) 100 a 100 a 100 a 100 a 100 a 100 a 

30 42 b 62 b 77 b 80 b 86 a 88 a 

50 53 b 58 b 81 b 74 bc 66 b 69 b 

70 44 b 51 b 68 b 61 c 53 c 53 c 

90 14 c 10 c 11 c 10 d 12 d 10 d 

 ------------------------- P-values ---------------------- 

Linear 

contrast 
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Quadratic 

contrast 
0.9273 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

a 
Texasweed plants (pots) were in the given shade levels for the entire 

duration of the experiment and were not transferred from any other shade 

level. 
b 
The values in each column are expressed as percent of control; however, mean 

separation was done using the Y= √X transformed data. 
c 
Means followed by a common letter within each column are not significantly 

different based on Tukey‟s test at P=0.05.  
d 
The actual values for height in control were 19.2, 23.6, 33.8, 41.5, 56.8 

and 67.1 cm at 14, 28, 42, 56, 70 and 100 DAI, respectively. 
e 
The actual values for dry weight per plant in control were 0.329, 1.106, 

2.277, 5.491, 9.816 and 11.739 g at 14, 28, 42, 56, 70 and 100 DAI, 

respectively. 

Contrasts analysis carried out to study the effect of starting shade 

level indicated an impact of starting shade on height (Table 3.3). For 50% 

shade, plant height decreased with an increase in starting shade level; 



55 

 

whereas, for 70 and 90% shade levels, height increased as the starting shade 

level increased. The above trends were observed up to 42 DAI for 30 and 50% 

shade levels, and up to 70 DAI for 70% shade level. The effect of starting 

shade level was most prominent on the plants in 90% shade. The Tukey‟s test 

and the linear contrasts show a decrease in plant height with increasing 

starting shade level at all observation dates. 

Data in Table 3.2 show dry matter reduction in shaded plants. The 

linear and quadratic contrasts indicated that dry matter production decreased 

as a function of increasing shade level. These differences appeared as early 

as 14 DAI. At the end of the experiment, 50, 70, and 90% shade caused 31, 47, 

and 90% reduction in dry matter per plants, respectively (Table 3.2). 

Contrast analysis indicated an effect of starting shade on Texasweed 

dry matter production (Table 3.4). At 28 and 42 DAI, plants coming from 0% 

shade produced higher biomass than those growing in 30% shade. These 

differences, however, decreased as time progressed. The differences between 

directly and gradually transferred plants appeared at 28, 70, and 70 DAI for 

90, 70, and 50% shades, respectively, and became more prominent with time.  

The magnitude of shade had a very strong effect on specific leaf area 

(SLA) (Table 3.5). Both Tukey‟s test and the contrast analysis suggested an 

increase in SLA due to increasing shade level; the increase was greater for 

shades above 50% at all the observation dates. The SLA in 70% shade was 

approximately twice that observed in no shade; the increase in case of 90% 

shade was more than double. A difference in SLA between plants transferred 

directly and gradually to a given shade level was observed (Table 3.6). SLA 

increased as the starting shade level increased. The differences remained 

conspicuous for only two weeks after the transfer events and started to 

disappear with time.  
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Table 3.3 Texasweed height (cm) as affected by direct and gradual transfer to 

a given shade level.
a
 

 

Starting shade 

level (%) 
Current shade level (%) 

  0 30 50 70 90 

  ------------------------- 28 DAI
b,c 

------------------------- 

0  23.4 27.3 a .  .  .  

30   22.7 b 23.6 a .  .  

50     24.5 a 27.9 a .  

70       31.5 a 31.1 a 

90         22.0 b 

Linear Contrast (P-value) <0.0001 0.4538 0.0058 <0.0001 

  ------------------------- 42 DAI
b,c 

------------------------- 

0  33.8 37.3 a 39.3 a .  .  

30   33.6 a 34.3 a 42.1 a .  

50     34.6 a 44.6 a 40.0 a 

70       45.3 a 38.3 a 

90         30.0 b 

Linear Contrast (P-value) 0.0500 0.0041 0.0843 <0.0001 

  ------------------------- 56 DAI
b,c
 ------------------------- 

0  41.5 46.8 a 47.8 a 55.7 a .  

30   44.5 a 45.0 a 61.8 a 57.1 a 

50     44.7 a 57.7 a 54.6 a 

70       57.6 a 51.0 a 

90         38.1 b 

Linear Contrast (P-value) 0.3292 0.2109 0.9527 <0.0001 

  ------------------------- 70 DAI
b,c
 ------------------------- 

0  56.7 64.7 a 66.3 a 75.9 a 74.0 a 

30   62.8 a 64.8 a 74.8 a 73.0 a 

50     63.7 a 80.7 a 66.6 ab 

70       82.4 a 57.4 b 

90         46.0 c 

Linear Contrast (P-value) 0.4838 0.3735 0.0074 <0.0001 

  ------------------------- 100 DAI
b,c 

------------------------- 

0  66.8 74.8 a 77.8 a 85.4 a 80.3 a 

30   75.5 a 75.9 a 85.7 a 79.4 a 

50     74.7 a 92.0 a 70.0 ab 

70       88.2 a 64.4 b 

90         53.5 c 

Linear Contrast (P-value) 0.8175 0.3066 0.0959 <0.0001 
a 
Texasweed plants started growing in the starting shade level; every 14 days, 

some of the plants were transferred to the next higher shade level 

ultimately reaching the final shade level. The current shade level is the 

shade level at the time of data collection i.e. just before the transfer. 
b 
For each response variable, the values in each column are retransformed 

values; mean separation was done using the Y= √X transformed data. 
c 
Means followed by a common letter within each column are not significantly 

different based on Tukey‟s test at P=0.05. 
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Table 3.4 Texasweed dry weight (g/plant) as affected by direct and gradual 

transfer to a given shade level.
a 

 

Starting shade 

level (%) 
Current shade level(%) 

  0 30 50 70 90 

  ------------------------- 28 DAI
b
 -------------------------- 

0 1.100  0.959 a .  .  .  

30   0.680 b 0.653 a .  .  

50     0.644 a 0.547 a .  

70       0.557 a 0.318 a 

90         0.111 b 

Linear Contrast 

(P-value) 
<0.0001 0.8376 0.8222 <0.0001 

  ------------------------- 42 DAI
b
 -------------------------- 

0 2.277  2.080 a 1.735 a .  .  

30   1.762 a 1.820 a 1.529 a .  

50     1.852 a 1.659 a 0.958 a 

70       1.558 a 0.687 b 

90         0.257 c 

Linear Contrast 

(P-value) 
0.0045 0.1895 0.7402 <0.0001 

  ------------------------- 56 DAI
b
 -------------------------- 

0 5.491  4.736 a 4.515 a 4.194 a .  

30   4.397 a 4.225 a 4.172 a 1.970 a 

50     4.063 a 3.640 a 1.760 a 

70       3.330 a 1.345 a 

90         0.566 b 

Linear Contrast 

 (P-value) 
0.2796 0.1219 0.6817 <0.0001 

  ------------------------- 70 DAI
b
 -------------------------- 

0 9.824  8.326 a 7.950 a 6.357 a 4.191 a 

30   8.403 a 7.479 a 6.190 a 3.364 a 

50     6.520 a 5.487 a 2.417 b 

70       5.179 a 2.008 b 

90         1.147 c 

Linear Contrast 

(P-value) 
0.8606 0.0008 0.0002 <0.0001 

  ------------------------- 100 DAI
b
 -------------------------- 

0 11.747  10.247 a 9.175 a 7.451 a 4.966 a 

30   10.394 a 8.841 a 7.069 ab 3.723 b 

50     8.082 a 6.646 ab 2.692 c 

70       6.244 b 2.166 c 

90         1.121 d 

Linear Contrast 

(P-value) 
0.7416 0.0065 0.0004 <0.0001 

a 
Texasweed plants started growing in the starting shade level; every 14 days, 

some of the plants were transferred to the next higher shade level 

ultimately reaching the final shade level. The current shade level is the 

shade level at the time of data collection i.e. just before the transfer. 
b 
Means followed by a common letter within each column are not significantly 

different based on Tukey‟s test at P=0.05. 
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Table 3.5 Effect of constant shade on specific leaf area (SLA) and percent 

leaf biomass of Texasweed plants.
a
 

 

Shade level 

(%) 

Days after study initiation (DAI) 

 

14 28 42 56 70 100 

 ------------------- Specific leaf area (cm
2
/g)

b,c
 ---------------- 

0 167 c 169 e 162 d 150 e 135 e 129 d 

30 190 b 206 d 188 c 174 d 163 d 158 c 

50 192 b 245 c 209 c 204 c 195 c 184 bc 

70 318 a 370 b 322 b 292 b 236 b 211 b 

90 348 a 515 a 498 a 397 a 332 a 286 a 

 ------------------------- P-values ---------------------- 

Linear 

contrast 
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Quadratic 

contrast 
0.0007 <0.0001 <0.0001 <0.0001 0.0157 0.1929 

 ------------------- Percent leaf biomass (%)
c
 ----------------- 

0 62 b 54 b 49 d 45 c 43 c 65 a 

30 67 a 62 a 56 b 52 b 45 bc 56 b 

50 69 a 69 a 58 b 53 b 47 bc 56 b 

70 70 a 68 a 60 ab 55 b 52 ab 51 bc 

90 68 a 65 a 63 a 63 a 58 a 47 c 

 ------------------------- P-values ---------------------- 

Linear 

contrast 
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Quadratic 

contrast 
<0.0001 <0.0001 0.0927 0.2813 0.0760 0.1184 

a 
Texasweed plants (pots) were in the given shade levels for the entire duration 

of the experiment and were not transferred from any other shade level. 
b 
Values in each column are the retransformed values; mean separation was done 

using the Y= log(X) transformed data. 
c 
Means followed by a common letter within each column are not significantly 

different based on Tukey‟s test at P=0.05. 

The results show that until 70 DAI, the shaded plants had a higher 

percent leaf biomass than those grown in full sun (Table 3.5). As determined 

by the Tukey‟s test, the differences among the shade levels were not 

significant until 42 DAI when plants in 90% shade had higher percent leaf 

biomass than those in 30 and 50% shade. The plants in 30, 50, and 70% shade 

did not differ at any observation date. Contrast analysis showed a gradual 

increase in percent leaf biomass due to increasing shade (Table 3.5). 

However, at 100 DAI, Texasweed in control treatment had the highest percent 

leaf biomass. Percent leaf biomass of the plants transferred gradually and 

directly to a shade level was not characteristically different. Significant 

differences were observed only in 90% shade at 100 DAI (Table 3.7). 
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Table 3.6 Texasweed specific leaf area (cm
2
/g) as affected by direct and 

gradual transfer to a given shade level.
a
 

 

Starting shade 

level (%) 
Current shade level (%) 

  0 30 50 70 90 

  ------------------------- 28 DAI
b,c 

-------------------------- 

0  169 191 a .  .  .  

30   206 a 230 a .  .  

50     245 a 334 a .  

70       370 a 489 a 

90         515 a 

Linear Contrast 

(P-value) 
0.0413 0.0764 0.0067 0.2369 

  ------------------------- 42 DAI
b,c 

-------------------------- 

0  162 178 a 213 a .  .  

30   188 a 208 a 280 b .  

50     209 a 314 ab 363 b 

70       322 a 456 a 

90         498 a 

Linear Contrast 

(P-value) 
0.1841 0.5899 0.0003 <0.0001 

  ------------------------- 56 DAI
b,c
 -------------------------- 

0  150 174 a 210 a 257 b .  

30   174 a 196 a 272 ab 313 b 

50     204 a 282 ab 367 a 

70       292 a 406 a 

90         397 a 

Linear Contrast 

(P-value) 
0.9734 0.3220 0.0002 <0.0001 

  ------------------------- 70 DAI
b,c
 -------------------------- 

0  135 156 a 202 a 232 a 260 b 

30   163 a 196 a 256 a 298 ab 

50     195 a 256 a 287 ab 

70       236 a 332 a 

90         332 a 

Linear Contrast 

(P-value) 
0.3909 0.5114 0.7356 <0.0001 

  ------------------------- 100 DAI
b,c
 -------------------------- 

0  129 160 a 192 a 214 a 242 b 

30   158 a 184 a 239 a 255 ab 

50     184 a 214 a 257 ab 

70       211 a 286 a 

90         286 a 

Linear Contrast 

(P-value) 
0.7245 0.3715 0.1735 <0.0001 

a 
Texasweed plants started growing in the starting shade level; every 14 days, 

some of the plants were transferred to the next higher shade level 

ultimately reaching the final shade level. The current shade level is the 

shade level at the time of data collection i.e. just before the transfer. 
b 
Values in each column are the retransformed values; mean separation was done 

using the Y=log(X) transformed data. 
c 
Means followed by a common letter within each column are not significantly 

different based on Tukey‟s test at P=0.05. 
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Table 3.7 Texasweed percent leaf biomass as affected by direct and gradual 

transfer to a given shade level.
a
 

 

Starting shade 

level (%) 
Current shade level (%) 

  0 30 50 70 90 

  ------------------------- 28 DAI
b
 -------------------------- 

0 54  58 a .  .  .  

30   62 a 66 a .  .  

50     69 a 67 a .  

70       68 a 67 a 

90         65 a 

Linear Contrast 

(P-value) 
<0.0063 0.0438 0.0058 <0.0001 

  ------------------------- 42 DAI
b
 -------------------------- 

0 49  55 a 56 a .  .  

30   56 a 58 a 63 a .  

50     58 a 60 a 64 a 

70       60 a 64 a 

90         63 a 

Linear Contrast 

(P-value) 
0.6341 0.0730 0.0083 0.9027 

  ------------------------- 56 DAI
b
 -------------------------- 

0 45  50 a 49 a 55 a .  

30   52 a 50 a 55 a 60 a 

50     53 a 54 a 60 a 

70       55 a 63 a 

90         63 a 

Linear Contrast 

(P-value) 
0.0813 0.0934 0.6317 0.0224 

  ------------------------- 70 DAI
b
 -------------------------- 

0 43  46 a 46 a 50 a 56 a 

30   45 a 47 a 54 a 57 a 

50     47 a 52 a 57 a 

70       52 a 58 a 

90         58 a 

Linear Contrast 

(P-value) 
0.8434 0.8132 0.8835 0.1197 

  ------------------------- 100 DAI
b
 ------------------------- 

0 65  54 a 59 a 50 a 44 b 

30   56 a 58 a 49 a 46 ab 

50     56 a 49 a 49 ab 

70       51 a 52 a 

90         47 ab 

Linear Contrast 

(P-value) 
0.3126 0.1365 0.5555 0.0008 

a 
Texasweed plants started growing in the starting shade level; every 14 days, 

some of the plants were transferred to the next higher shade level 

ultimately reaching the final shade level. The current shade level is the 

shade level at the time of data collection i.e. just before the transfer. 
b 
Means followed by a common letter within each column are not significantly 

different based on Tukey‟s test at P=0.05.
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Observations in terms of Texasweed SLA and percent leaf biomass are 

similar to those observed in other plant species. Ammannia spp. increased SLA 

and percent leaf biomass in response to a decrease in photosynthetic photon 

flux density (PPFD) (Gibson et al. 2001). Patterson (1979) also reported 

similar response to shade in many terrestrial and aquatic plants. Texasweed 

seems to mitigate the adverse effect of shade by increasing SLA and percent 

leaf biomass. These two responses appears to be a strategy for efficient 

allocation of fresh biomass for light capture and carbohydrate synthesis, 

which can be used for height increase until the plant rises above the crop 

canopy. 

The model developed for Texasweed dry matter reduction as a function of 

time, and starting and current shade levels (Equation 3.2) can be used in 

conjunction with the knowledge of rate and extent of canopy formation to make 

management decisions.  

Y = Ymax/(1+exp(-(X-X0)/b))         [Equation 3.2] 

Ymax = 97.58 – 0.07460*IS – 0.00207*IS
2
 + 0.05334*CS - 0.00818*CS

2
 

b = 9.99 

X0 = 56.42 

Where, Y is the response, and X is days after study initiation (DAI), 

Ymax is the upper asymptote, X0 (inflection point) is the time at which Y is 

50% of the Ymax, b is the slope at the inflection point, IS is the initial 

shade (%) and CS is the current shade (%). 

Regardless of the shade at the time of Texasweed emergence, if a crop canopy 

is able to cause more than 90% reduction in PAR within 70 days after 

planting, Texasweed dry matter production will be reduced by 65 to 90% 

(Figure 3.2). In crops like soybean where the shade in the middle of two rows 

increases to more than 90% in 50 to 60 days after planting (Murdock et al. 

1986), the dry matter production by Texasweed plants particularly those 

emerging late can be severely reduced. The model also suggests that in crop 

canopies that can only cause a maximum shade level of 50 or 70%, Texasweed 
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biomass reduction will be no more than 30 and 60%, respectively (Figure 3.2b 

and 3.2c). The findings of the present research can also be applied to 

Texasweed management in drill-seeded rice. Rice crop at 30 days after 

planting causes less than 20% reduction in the PAR reaching the ground; the 

reduction in PAR caused at 64 days after planting is 50 to 70% (Dingkuhn et 

al. 1999). The PAR availability also increases sharply near the top of the 

canopy. Thus, it can be expected that Texasweed plants emerging before 

permanent flood establishment in drill-seeded rice will experience no more 

than 50% shade at the soil surface. By the time of canopy closure, Texasweed 

plants emerging with the crop would be tall enough to avoid any growth 

reduction. As discussed earlier, a 15 to 20% height increase was observed in 

70% shade (Table 3.2). Even 90% shade was not able to cause more than 16% 

reduction in Texasweed height. Therefore, the Texasweed plants emerging late 

may also grow above the crop canopy, depending upon the crop height, and 

offset the reduction in dry matter production caused by shade early in the 

season. Caton et al. (1999) suggested that in dense crop-weed canopies 

relative plant height strongly affects competitive outcome. Caton et al. 

(1997) noted that increased height and shoot:root ratio of Ammannia spp. 

under shaded conditions might allow it to escape shading by rice crop. Gibson 

et al. (2001) also concluded that owing to purple ammannia‟s ability to 

withstand and recover from shade, its control in rice through light 

manipulation alone may not be possible. 

Effect of Shade on Texasweed Reproduction. Texasweed plants in all the 

shade levels were able to flower and set fruits. Fruit production was 

impacted by the final but not the starting shade level (Figure 3.3). Compared 

with shaded plants, the plants in full sun produced higher number of fruits 

per plant. Fruit production in 90% shade was reduced by approximately 90% as 

compared with the full sun. Texasweed fruit production in 30, 50 and 70% 

shade was similar.  
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Figure 3.2 Texasweed dry matter per plant (% of full sun at 100 DAI): (a) 30% final shade; (b) 50% final 

shade; (c) 70% final shade; (d) 90% final shade. Symbols represent the observed (O) values, lines represent 

the value predicted (P) by the final prediction model (Equation 3.2); the numbers 0, 30, 50, 70 and 90 in 

the legend entries represent the starting shade levels. 
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The results of this research indicated that Texasweed growth can be 

reduced by shade, but the reduction in PAR must occur early in the season and 

needs to be of 90% or higher magnitude to stop Texasweed from emerging above 

the crop canopy. However, owing to the partial shade of < 50% and a sharp 

increase in available PAR towards the canopy top (Dingkuhn et al. 1999), a 

rice canopy may never be able to severely affect Texasweed growth. Although, 

fruit production in shade is reduced, Texasweed has the ability to reproduce 

even in 90% shade, which can pose a challenge in subsequent crops. 

Growth differences between plants transferred directly and gradually to 

a given shade level suggest that weed growth under a real crop canopy, where 

shade increases gradually, will be different than under constant shade. Thus, 

studies where plants are gradually exposed to increasing shade levels are 

better at modeling weed growth under a crop canopy. 
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Figure 3.3 Effect of shade on fruit (capsule) production by Texasweed plants; 

values in each final shade level are averaged across the starting shade 

levels. Means followed by a common letter within each column are not 

significantly different based on Tukey‟s test at P=0.05. 
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End Notes 

1 
DeWitt Company, 905 S. Kings Highway, Sikeston, MO 63801. 

2 
Seive No C 1/12” Round (Commercial). Seedburo Equipment Company, 1022 W 

Jackson Blvd. Chicago, IL 60607. 

3 
Decagon Devices, Inc., 950 NE Nelson Court, Pullman, WA 99163. 

4 
Spectrum Technologies, Inc. 12360 South Industrial Dr. East - Plainfield, 

Illinois 60585. 

5 
LI-COR, Inc., 4421 Superior Street, P.O. Box 4425, Lincoln, Nebraska 68504. 
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Chapter 4 

Effect of Flood Depth on Texasweed (Caperonia palustris) Growth and 

Reproduction 

Introduction 

Texasweed [Caperonia palustris (L.) St. Hil.] is an annual broadleaved 

plant belonging to the Euphorbiaceae family (USDA 2007). It has existed in 

the Unites States as a wetland plant (Godfrey and Wooten 1981), but 

historically has not been a major problem in crop production. Lately it has 

become increasingly common in rice, cotton, and soybean fields in the states 

of Texas, Louisiana, Mississippi, and Arkansas (Koger et al. 2004; Poston et 

al. 2007). Gianessi et al. (2002) reported Texasweed as one of the most 

troublesome broadleaf weed in Texas and Louisiana rice production systems. 

Overall it was ranked 3rd and 5th most troublesome weed in the rice 

production systems of the two states, respectively. Bennett (2003) also 

identified Texasweed as an emerging problem in Arkansas rice fields.  

Cultural practices like tillage, crop rotation, variety selection, seed 

rate, row spacing and orientation are generally based on agronomic 

considerations but have a bearing on crop-weed interaction, and can be 

manipulated to tilt the crop-weed interaction in the favor of crops (Roa 

2000). Any adjustment or modification to the general management of a crop or 

cropping system that contributes to the regulation of the weed population, 

and reduces the negative impact of weeds on crop production is known as 

cultural weed control (Bastiaans et al. 2008). Cultural methods of weed 

control can form an important component of weed management programs in crop 

production systems (Buhler 1996; Mortensen et al. 2000; Rao 2000). Successful 

utilization of the cultural methods of weed control requires a deep 

understanding of the principles of weed biology and ecology (Maxwell and 

Donovan 2007). 
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Establishment of permanent flood is an important cultural practice for 

weed management in rice cultures (Mortimer et al. 1999; Williams et al. 2001; 

Bouman et al. 2007). Flooding can affect both weed emergence and growth. 

Smith and Fox (1973) reported reduced emergence and growth of barnyardgrass 

[Echinochloa crus-galli (L.) Beauv.], broadleaf signalgrass [Urochloa 

platyphylla (Munro ex C. Wright) R.D. Webster], hemp sesbania [Sesbania 

herbacea (Mill.) McVaugh], northern jointvetch [Aeschynomene virginica (L.) 

Britton, Sterns & Poggenb.] and red rice (Oryza sativa L.) under continuous 

soil submergence. Hirase and Molin (2002) reported no hemp sesbania emergence 

in 5 and 10 cm deep water; water depth of even 1 cm reduced the germination 

by 84%. Submergence of two leaf stage hemp sesbania plants in the same study 

caused significant growth reduction. Williams et al. (1990) reported strong 

suppression of barnyardgrass, early watergrass [Echinochloa oryzoides (Ard.) 

Fritsch] and variable flatsedge (Cyperus difformis L.) by deep flood, ≤ 20 

cm. Sahid and Hossain (1995) also reported complete control of seedling 

barnyardgrass by 15 cm deep flood. Benvenuti et al. (2004) reported complete 

inhibition of Chinese sprangletop [Leptochloa chinensis (L.) Nees] emergence 

in floods deeper than 6 cm. Seaman (1983) indentified grass weed suppression 

as the primary reason for popularization of water-seeding of rice in 

California in late 1920s and early 1930s. Red rice suppression in water 

seeding system is cited as the reason for popularity of this system in south 

Louisiana (Linscombe 1999). 

Flooding inhibits weed growth by reducing oxygen availability to the 

roots (Vartapetian and Jackson 1997). Weeds differ in their ability to 

tolerate anaerobic conditions (Stoecker et al. 1995) and many weeds like 

alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.], barnyardgrass, 

creeping rivergrass [Echinochloa polystachya (Kunth) Hitchc.], ducksalad 

[Heteranthera limosa (Sw.) Willd.], hemp sesbania, ludwigia [Ludwigia 
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hyssopifolia (G. Don) Exell apud A.R. Fernandes], palmleaf morningglory 

(Ipomoea wrightii A. Gray), purple ammannia (Ammannia coccinea Rothb.), red 

rice are adapted to flooded conditions in the rice paddies (Bottoms 2009; 

Gealy 1998; Hirase and Molin 2002; Sahid and Hossain 1995; Smith and Fox 

1973; Yu et al. 2007). 

Plants can mitigate the adverse effects of hypoxia and anoxia by 

adjusting dry matter partitioning between shoot and root (Nakayama et al.  

2009) and/or by forming aerenchyma in their submerged parts (Evans 2004; 

Shimamura et al. 2003; Solaiman et al. 2007; Thomas et al. 2005). Monocot 

plants like rice (Kawai et al. 1998) and maize (Zea mays L.) (Lenochová et 

al. 2009) produce cortical aerenchyma in their roots, which provides low 

resistance pathway for oxygen transport. 

In dicot plants secondary aerenchyma, phellem, developed in the 

phellogen region derived from pericycle cells replaces the function of 

cortical aerenchyma as an effective stress avoidance system (Shiba and Daimon 

2003; Shimamura et al. 2003; Stevens et al. 2002). Secondary aerenchyma forms 

as a white spongy tissue filled with gas spaces on stem, hypocotyls, tap 

root, adventitious roots and root nodules of plants like soybean (Glycine 

spp.), purple loosestrife (Lathyrus salicaria L.), and sesbania (Sesbania 

spp.) (Saraswati et al. 1992; Shiba and Daimon 2003; Shimamura et al. 2003; 

Stevens et al. 2002).   

Research has provided both direct and indirect evidence for the role of 

secondary aerenchyma in gas exchange and flood tolerance. Shimamura et al. 

(2003) reported a two fold increase in the porosity of flooded soybean 

hypocotyls having well developed secondary aerenchyma. Stevens et al. (1997) 

observed very low tissue density and high porosity of >60% in purple 

loosestrife stem bases having secondary aerenchyma. 
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Pasting of a barrier (Vaseline) on the hypocotyls above water level 

reduced gas exchange and consequently the growth of flooded soybean plants 

(Shimamura et al. 2003). Similar findings were reported by Stevens et al. 

(2002) in purple loosestrife. Thomas et al. (2005) discussed partial recovery 

of nitrogen metabolism in flooded soybean as an indirect measurement of 

increased oxygen availability due to secondary aerenchyma formation. 

 The overall objective of the current study was to evaluate the effect 

of flood depth on Texasweed growth and reproduction. The specific aim was to 

determine the flood depth needed for death of Texasweed in the absence of 

chemical weed control. 

Materials and Methods 

Research was conducted in 2007 and 2008 at the Louisiana State 

University Agricultural Center Northeast Research Station near St. Joseph, 

Louisiana using Sharkey clay soil (very fine, montmorillonitic, nonacid, 

Vertic Haplaquept) with pH 6.1 and 2.1% organic matter. Naturally dehisced 

seeds from mature Texasweed plants, cut and kept in shade at room 

temperature, were used in this research. The research was conducted under 

field conditions using 3 L capacity plastic pots. Pots were filled with a 

Sharkey clay soil taken from a fallow field and 15 Texasweed seeds were 

planted per pot. Plants were thinned to three plants per pot 3 days after 

emergence and to one plant per pot 10 days after emergence. 

Two stages of Texasweed plants, two to three leaf stage and four to 

five leaf stage were obtained at the time of flood establishment. The two 

stages were obtained at the same time by delayed planting. Enough pots were 

prepared to provide the required number of plants of the two stages. Flooding 

conditions were created by placing potted plants in 1.3 m x 0.7 m x 0.7 m 

stock tanks
1
. Flood depths of 10, 15, 20 and 30 cm were achieved by siphoning 

off the excess depth of water in the troughs using drainage pipes of 
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appropriate height (Figure 4.1). The potted plants were not provided with any 

supplemental nutrition. The study was a two-factor factorial experiment 

conducted in a completely randomized split-plot design with three 

replications. The four flood depths and a no-flood control were randomized to 

the water tanks (whole plot). The plants (pots) of the two Texasweed stages 

(sub-plot treatment) were then placed in each trough at the time of flood 

establishment. 

 Destructive samples were taken at 7, 14, and 28 days after treatment 

(DAT). One plant from each experimental unit was removed to record plant 

height, leaf area per plant, and plant dry weight. Plant height was measured 

from the base of the plant to the tip of the third leaf from the top. Plants 

were separated into leaves and stem, and dried at 60ºC to a constant weight. 

Figure 4.1 (a) layout of the experiment; (b) and (c) detailed view of the 

water tanks; (d) potted Texasweed plants used in the study. 
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Total leaf area per plant was measured using LICOR LI-3050A conveyer leaf 

area meter
2
. Total dry weight per plant was obtained as the sum of leaf and 

stem dry weight. Percent stem biomass was calculated by dividing stem dry 

weight by total dry weight. Data on number of fruits (capsules) per plant 

were also recorded at the time of last observation at 28 DAT. 

The data were analyzed using MIXED procedure of SAS to study the effect 

of flood depth and Texasweed stage on Texasweed growth and number of fruits 

per plant (SAS 2003). Year was considered a random effect. Tukey‟s test was 

used for mean separation and Letter groupings were generated using the 

PDMIX800 macro in SAS (Saxton 1998). Linear and quadratic contrasts were 

constructed to study the trend of plant height against flood depth. 

Leaf area per plant and total above ground dry matter data obtained at 

28 DAT were used to model these growth characters as a function of flood 

depth. The data were converted to percent of no-flood control before model 

fitting. The average of the observations for no-flood control was used to 

convert the data to percent of control. NLMIXED procedure of SAS (SAS 2003) 

was used to fit various nonlinear models. Year was considered a random 

effect. Null-model likelihood ratio tests for nested models and Akaike's 

information criteria (AIC) values for unrelated models were used to compare 

different models and the criteria of better fit and parsimony was used to 

select a final model for each growth character.  

Results and Discussion 

For Texasweed height, an interaction between flood depth and Texasweed 

growth stage was observed. For both the two- to three-leaf and four- to five-

leaf stages, the height differences between plants in different flood depths 

appeared as early as 7 days after flooding and the magnitude of these 

differences increased with time (Figure 4.2). 
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Figure 4.2 Effect of flood depth on Texasweed height: a) two to three-leaf 

stage, b) four to five-leaf stage. DAT=days after treatment. Means within 

each stage and DAT followed by a common letter are not different at P = 

0.05 using Tukey‟s test; P-value for contrasts constructed to study change 

in height with increasing flood depth:  

2-3 leaf stage, 7 DAT, linear = 0.0077, quadratic = 0.0013; 

2-3 leaf stage, 14 DAT, linear = 0.0467, quadratic = 0.0025; 

2-3 leaf stage, 28 DAT, linear = 0.0018, quadratic = 0.3608; 

4-5 leaf stage, 7 DAT, linear = 0.0001, quadratic = 0.4398; 

4-5 leaf stage, 14 DAT, linear = 0.0718, quadratic = 0.2901; 

4-5 leaf stage, 28 DAT, linear = 0.0001, quadratic = 0.1195. 
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For two- to three-leaf stage, a quadratic trend of plant height against flood 

depth was observed at 7 and 14 DAT; however, the trend became liner at 28 DAT 

with the tallest plants in 30-cm flood depth. After 7 days of flood 

establishment, four- to five-leaf stage Texasweed plants in 10- and 15-cm 

flood depths emerged above the water level; however, in case of two to three 

leaf stage plants, only the plants in 10-cm flood depth were able to emerge 

above the water (Figure 4.2a). By 14 DAT, two- to three-leaf stage plants in 

15-cm flood depths were also above the water; however, in case of four- to 

five-leaf Texasweed all but those in 30-cm flood depth were above the water. 

Here also, the plant height was 28.7 cm that was just below the water level 

(Figure 4.2 b). 

A logistic model, Y = Ymax/(1+(X/X0)^b), was found to best fit the leaf 

area per plant and total above ground biomass data recorded at 28 DAT. Here, 

Y is the dependent variable and X is flood depth. Parameters Ymax, X0 and b 

represent the maximum asymptotic response, flood depth for achieving 50% of 

„Ymax‟ and the instantaneous growth or decay rate at X0, respectively. 

For leaf area per plant, a model with different X0 values for the two 

Texasweed stages had a better fit (Figure 4.3). For both two- to three-leaf 

and four- to five-leaf stages, the fitted model showed gradual decrease in 

leaf area per plant with an increase in flood depth. The flood depth required 

for 50% leaf area reduction was estimated to be 12.2 cm and 17.5 cm for two- 

to three-leaf stage and four- to five-leaf stage, respectively (Table 4.1).  

For Texasweed above ground biomass, a model with different X0 parameter 

values for the two stages had a better fit than the model with equal X0 values 

(Figure 4.4). For both two- to three-leaf and four- to five-leaf stage, the 

above ground biomass decreased with an increase in flood depth. Table 4.1 

shows that the flood depth required for 50% reduction in above ground biomass 

was characteristically higher for four- to five-leaf stage (28.8 cm) than 

two- to three-leaf stage (15 cm).  
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Figure 4.3. Effect of flood depth and Texasweed stage on Texasweed leaf area, 

28 days after treatment. Actual leaf area in no-flood control was 227 and 261 

cm
2
/plant for 2-3 leaf stage and 4-5 leaf stage, respectively. 

 

 

Figure 4.4. Effect of flood depth and Texasweed stage on Texasweed above 

ground dry weight, 28 days after treatment. Actual dry weight in no-flood 

control was 2.068 and 3.588 g/plant for 2-3 leaf stage and 4-5 leaf stage, 

respectively. 
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Table 4.1 Regression parameters (and standard errors) for effect of flood 

depth on Texasweed growth 28 days after treatment (DAT). 

 

Response 

variable 

Texaswed 

stage 

 Parameters for log-logistic equation 

 Upper limit 

(a) 
 

GR50
a 

(X0) 
 

Slope 

(b) 

Leaf area 2-3 leaf  99.63 (6.66)  12.20 (2.08)  1.72 (0.33) 

 4-5 leaf  99.63 (6.66)  17.46 (2.21)  1.72 (0.33) 

Above 

ground dry 

weight 

2-3 leaf  98.40 (9.15)  15.82 (5.04)  1.62 (0.43) 

 4-5 leaf  98.40 (9.15)  28.87 (5.63)  1.62 (0.43) 

a 
GR50 refers to the flood depth (cm) at which the model predicts that the 

response is 50% of control. 

Dry matter partitioning was affected by both Texasweed stage and flood 

depth (Table 4.2). At 7 and 14 DAT, the four to five leaf stage Texasweed 

plants had higher percent stem biomass than the two to three leaf stage 

plants (Table 4.2). No difference was observed at 28 DAT. Although, total 

biomass decreased under flooded conditions (Figure 4.4), biomass partitioning 

to the stem increased (Table 4.2). The response was not similar across the 

observation dates (DAT) and an interaction between flood depth and DAT for 

percent stem biomass was observed. At 7 DAT, Texasweed plants allocated 45 to 

51% of their above ground biomass to stem (Table 4.2) but no effect of flood 

depths was observed. Differences appeared at 14 DAT when plants in 15-, 20-, 

and 30-cm flood depths had higher percent stem biomass than those in no 

flood. The differences among these three flood depths were, however, not 

significant at this time. At 28 DAT, plants in 30-cm flood depth further 

increased their biomass allocation to stem and stem constituted 74% of the 

total plant biomass. Increased biomass partitioning to stem seems to be the 

plant strategy to allow plant growth above the water level as soon as 

possible.  
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Table 4.2 Effect of flood depth and Texasweed stage at the time of flood 

establishment on percent stem biomass and Texasweed fruit production.
a
 

 

Factor Level  Percent stem biomass  Fruits/plant
b
 

   7 DAT 

--------- 

14 DAT 

--------- 

28 DAT 

--------- 

 

 

28 DAT 

---------- 

Flood depth 

(cm) 
0  45 a 49 c 45 c  5 (2.26) a 

 10  49 a 59 b 54 bc  3 (1.57) b 

 15  51 a 61 ab 59 b  2 (1.45) b 

 20  46 a 61 ab 62 b  1 (1.03) bc 

 30  48 a 66 a 74 a  1 (0.57) c 

            

Texaswed 

stage 
2-3 leaf  44 b 54 b 58 a  2 (1.14) b 

 4-5 leaf  52 a 62 a 60 a  3 (1.61) a 

a 
Means within each column followed by a common letter are not significantly 

different at P=0.05 using Tukey‟s test. 
b 
Values in parentheses are the Y=√(X+0.25) transformed values. 

Fruit production, at 28 DAT, by Texasweed plants was also affected by 

plant stage and flood depth (Table 4.2). Most of the plants were able to 

emerge above the water level and produce fruits (Figure 4.2). Averaged across 

the flood depths, the four to five leaf stage plants produced more fruits 

than the two to three leaf stage plants. Fruit production decreased with 

increasing flood depth (Table 4.2).   

Adventitious roots and a spongy tissue were produced on the submerged 

parts of the Texasweed plants (Figure 4.5). Similar tissue production under 

flooded conditions has been reported in soybean (Soybean max L.), purple 

loosestrife, sesbania (Sesbania spp.) (Saraswati et al. 1992; Shiba and 

Daimon 2002; Shimamura et al. 2003; Stevens et al. 2002). The tissue was 

described as secondary aerenchyma and was called phellem (Shimamura et al. 

2003). Research with other dicot plants has provided both direct and indirect 

evidence for the role of secondary aerenchyma in gas exchange and flood 

tolerance (Shimamura et al. 2003; Stevens et al. 2002; Thomas et al. 2005). 
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We suspect that the secondary aerenchyma formed on the submerged parts of 

Texasweed plants also plays a role in its flood tolerance. No attempt was, 

however, made to study this aspect.  

The recommended flood depth in the rice paddies are 5- to 10-cm 

(Bollich et al. 1999). In the current study, a 10-cm flood provided only 

about 30 and 15% growth reduction in two to three leaf and four to five leaf 

stage Texasweed plants, respectively (Figure 4.4).  Plants of both the stages 

emerged above the 10-cm water level within 7 days of flooding. The results of 

the current study, thus, suggest that flooding alone will not be a viable 

option for managing emerged Texasweed in drill-seeded rice. However, flooding 

has been reported to increase the 

effectiveness of chemical weed control 

in rice (Avila et al. 2005; Masson et 

al. 2001; Williams et al. 1990). 

Williams et al. (1990) reported that in 

the absence of chemical control at least 

20-cm deep flood was required for 

satisfactory barnyardgrass control; with 

herbicide application weed control 

improved in all water depths and even a 

5-cm flood provided 83% barnyardgrass 

control. Masson et al. (2001) also 

reported more than 80% barnyardgrass control under 5-, 10- and 20-cm flood 

depths when used in conjunction with imazethapyr at 140 g ai/ha applied 

preemergence or postemergence. Therefore, an integrated use of herbicides and 

flood management is a possibility for Texasweed management in rice and 

further research is required to study this aspect. 

  

Figure 4.5 Phellem and adventitious 

roots on the submerged stem of a 

Texasweed plant. 
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End Notes 

1 
Round End Poly Stock Tank (Granite Gray): Model No. 52112027S.  Behlen Mfg. 

Co., 4025 E. 23rd St., PO Box 569, Columbus, Nebraska-68602, USA.  

2 
LI-COR, Inc., 4421 Superior Street, P.O. Box 4425, Lincoln, Nebraska-68504, 

USA. 
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Chapter 5 

Bensulfuron-methyl Interaction with Penoxsulam and Bispyribac-sodium for 

Texasweed Control in Drill-Seeded Rice 

Introduction 

Weed management programs generally involve a complex integration of 

various cultural, mechanical, biological, chemical, and other methods of weed 

control. However, owing to its high benefit to cost ratio and tremendous 

increase in labor productivity, chemical weed control has evolved into a 

standard weed management approach in crop production systems around the globe 

(Bastiaans et al. 2008; Hill 1982; McWhorter 1984). A number of preemergence 

(PRE) and postemergence (POST) herbicides are also available in rice 

(Anonymous 2010) and US rice producers rely primarily on herbicides for weed 

control; 95% of the rice planted in the United States in 2006 received some 

type of herbicide treatment (USDA 2006).  

Mixing of two or more herbicides is extensively practiced in modern 

crop production systems to reduce the cost of application and broaden the 

spectrum of weed control. Newly labeled herbicides are, therefore, evaluated 

in mixtures with other herbicides recommended for the crop. These field level 

trials are aimed at integrating new herbicides into already established weed 

management programs. Mixing of herbicides is generally based on the 

assumption that herbicides in a mixture behave and act independently (Damalas 

2004). However, the interaction between component herbicides in a mixture can 

alter their chemical properties and can increase or decrease their activity 

compared to the component herbicides applied individually (Damalas 2004). An 

increase or decrease in weed control due to herbicide mixture implies 

synergism or antagonism, respectively; the effect is called additive if the 

mixture results in a weed control level equal to the sum of that obtained 

with each herbicide applied alone (Colby 1967; Green 1989; Hatzios and Penner 

1985). An optimum herbicide combination or mixture would be one that provides 
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either additive or preferably synergistic effect on target weeds without any 

toxicity to the crop.  

The type and the magnitude of interaction between component herbicides 

in a mixture primarily depends on the herbicide properties including chemical 

family, absorption, translocation, mechanism of action, pathway of metabolism 

as well as the weed or crop species involved (Damalas 2004). In an extensive 

summary of studies on herbicide-herbicide interactions, Zhang et al. (1995) 

observed that regardless of the plant species or herbicides involved, 

antagonism occurs three times more often than synergism. Damalas (2004) 

concluded that in general, antagonism occurs more frequently in grassy weeds 

than broadleaf weeds and also in mixtures where the component herbicides 

belong to different chemical families. Conversely synergism occurs more 

frequently in broadleaf weed species and in mixtures where the component 

herbicides belong to the same chemical family. Based on the concentration 

addition (CA) model Cedergreen et al. (2007) did not find any antagonistic 

interaction between herbicides with the same molecular site of action. 

However, herbicides with different site of action showed antagonism in 70% of 

the mixtures.  

Acetolactate synthase (ALS) (EC 4.1.3.18) inhibiting herbicides 

generally show antagonism with the herbicides having other modes of action; 

the interaction with other ALS inhibiting herbicides is mostly additive or 

synergistic (Cedergreen et al. 2007; Green 1989; Nelson et al. 1998; Schuster 

et al. 2008; Zhang et al. 2005). Cedergreen et al. (2007) reported additive 

interaction between metsulfuron-methyl [2-[[[(4-methoxy-6-methyl-1,3,5-

triazin-2-yl)amino]-oxomethyl]sulfamoyl]benzoic acid methyl ester] and 

triasulfuron [1-[2-(2-chloroethoxy)phenyl]sulfonyl-3-(4-methoxy-6-methyl-

1,3,5-triazin-2-yl)urea]. Simpson and Stoller (1995 and 1996) reported 

synergistic interaction between thifensulfuron [3-[[[[(4-methoxy-6-methyl-
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1,3,5-triazin-2-yl)amino]carbonyl]amino]sulfonyl]-2-thiophenecarboxylic acid] 

at 4.4 g ai/ha and imazethapyr [2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-

oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid] at 70 g ai/ha on 

sulfonylurea tolerant soybean (STS). Simpson and Stoller (1995) also reported 

higher control of smooth pigweed (Amaranthus hybridus L.), common 

lambsquarters (Chenopodium album L.), velvetleaf (Abutilon theophrasti 

Medik.), common cocklebur (Xanthium strumarium L.), tall morningglory 

[Ipomoea purpurea (L.) Roth], and ivyleaf morningglory (Ipomoea hederacia 

Jacq.) with thifensulfuron at 4.4 g/ha plus imazethapyr at 70 g/ha as 

compared to these herbicides applied alone. Reducing the rate of one or both 

herbicides did not decrease smooth pigweed and common cocklebur control. 

Nelson et al. (1998) also reported greater common lambsquarter control with 

thifensulfuron at 2.2 g/ha plus imazethapyr at 70 g/ha compared to these 

herbicides applied alone. Damalas et al. (2008) reported higher efficacy of 

bispyribac-sodium plus azimsulfuron [N-[[(4,6-dimethoxy-2-

pyrimidinyl)amino]carbonyl]-1-methyl-4-(2-methyl-2H-tetrazol-5-yl)-1H-

pyrazole-5-sulfonamide] on early watergrass [Echinochloa oryzoides (Ard.) 

Fritsch] and late watergrass [Echinochloa phyllopogon (Stapf) Koso-Pol.] as 

compared to bispyribac-sodium applied alone. The increased weed control was, 

however, dependent on bispyribac-sodium rate and weed stage at the time of 

herbicide application. Godara et al. (2007) reported higher broadleaf weed 

control in rice with mixtures of penoxsulam or bispyribac-sodium with 

bensulfuron-methyl compared with these herbicides applied alone; suggesting 

interaction between the component herbicides in the mixtures. 

The objective of this research was to study bensulfuron-methyl 

interaction with penoxsulam and bispyribac-sodium for control of lagre, five- 

to six-leaf, Texasweed in drill-seeded rice. The specific aim was to 
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determine optimum bensulfuron-methyl rate in mixture with penoxsulam or 

bispyribac-sodium. 

Materials and Methods 

Field experiments were conducted in 2006, 2007, and 2008 at the 

Louisiana State University Agricultural Center Northeast Research Station 

near St. Joseph, Louisiana on Sharkey clay soil (very fine, montmorillonitic, 

nonacid, Vertic Haplaquept) with a pH of 6.1 and 2.1% organic matter. Field 

preparation in each year consisted of a fall disking followed by a spring 

disking and two passes in opposite directions with a two-way bed conditioner 

equipped with rolling baskets and S-tine harrows set to operate 6 cm deep. 

„Cocodrie‟ rice was drill-seeded at 100 kg/ha on April 24, May 9, and May 1 

during 2006, 2007, and 2008, respectively, to plots measuring 2 by 4.5 m. 

A randomized complete block (RCB) design with two-factor factorial 

arrangement of treatments and three replications was used in both studies. 

Factor A for the penoxsulam and bensulfuron-methyl interaction study was 

penoxsulam
1
 applied at 0, 35, 40.3 g ai/ha, and for bispyribac-sodium and 

bensulfuron-methyl interaction study bispyribac-sodium
2
 applied at 0, 14.6, 

and 29.2 g ai/ha. Factor B for both the studies was bensulfuron-methyl
3
 

applied at 0, 11, 22, and 33 g ai/ha.  Crop oil concentrate
4
 at 2% v/v was 

used the study involving penoxsulam and a non-ionic spray adjuvent
5
 at 1.0% 

v/v was used in the study involving bispyribac-sodium. All the treatments in 

both studies were applied LPOST when Texasweed [Caperonia palustris (L.) St. 

Hil.] was 10 to 12 cm tall with five to six leaves. Application timings were 

on May 23, June 11, and June 2 in 2006, 2007, and 2008, respectively. 

The study area was surface irrigated immediately after the application 

of PRE herbicides and as needed until permanent floods were established. 

Permanent floods were established 5 to 6 weeks after planting when rice 

reached four to five leaf stage. Nitrogen in the form of prilled Urea (46-0-
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0) was applied at 126 kg/ha just before permanent flood.  An additional 42 

kg/ha of nitrogen was applied at the panicle initiation stage of rice. 

Grasses were managed by a PRE application of clomazone
6
 at 560 g ai/ha and 

POST application of fenoxaprop-ethyl
7
 at 122 g ai/ha. Clomazone and 

fenoxaprop-ethyl provide excellent grass control but at the rates used have 

limited to no activity on Texasweed (Anonymous 2010). Herbicide treatments 

were applied using a CO2 pressurized backpack sprayer calibrated to deliver 

140 L/ha at 276 kPa. 

Visual ratings for Texasweed control were recorded on a 0 to 100% scale 

where 0 = no control or injury and 100 = plant death. Rice injury, in the 

form of stunting and chlorosis, was visually estimated at 7 DAT using a 0 to 

100 scale where 0 = no injury and 100 = plant death.  

To study the effect of various treatments on Texasweed control, the 

data were analysed using MIXED procedure of SAS (SAS 2003). Year, replication 

(nested within year) and all interactions involving either of these effects 

were considered random effects. Type III statistics were used to test 

significance of fixed effects. Least square means were used and mean 

separation was carried out using Tukey‟s test at an overall P = 0.05. Letter 

groupings were generated using the PDMIX800 macro in SAS (Saxton 1998).  

Additionally, NLMIXED procedure of SAS (SAS 2003) as described by 

Blouin et al. (2004) was used for the analysis of interaction effect of 

herbicides. Expected percent weed control for various herbicide tank mixtures 

were calculated using the formula: Exp = X + Y – (XY/100), where „Exp‟ is the 

expected weed control, and X and Y are the observed percent weed control by 

herbicide A and B alone,respectively (Colby 1967). Expected and observed 

percent weed control of each herbicide mixture was then compared using 

NLMIXED T tests generated using the methodology described by Blouin et al. 

(2004). An increase or decrease in observed percent control as compared to 
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expected percent control was declared synergism or antagonism, respectively; 

the response was classified as additive when there was no difference between 

observed and expected percent weed control. Linear and quadratic contrasts as 

described by Blouin et al. (2004) were also constructed to study change in 

herbicide interaction over time and p-values thus obtained were compared to 

0.05 level to test the statistical significance of the change. Negative or 

positive values for linear effects indicated an increase or decrease, 

respectively, in synergism over time.  Negative or positive values for 

quadratic effects indicated a convex or concave change, respectively, in 

synergism over time.   

Results and Discussion 

Penoxsulam and Bensulfuron-methyl Combinations. The results in Table 

5.1 show that the maximum Texasweed control with bensulfuron-methyl was 58%, 

and was obtained with 33 g/ha rate at 14 DAT. Similarly, the maximum 

Texasweed control with penoxsulam was 63%, and was obtained with 40.3 g/ha 

rate at 42 DAT. At both 28 DAT and 42 DAT, Texasweed control with penoxsulam 

at 35 g/ha (27%) was 27%. Mixting bensulfuron-methyl with penoxsulam at 35 

g/ha or 40.3 g/ha increased Texasweed control. There was no difference in 

Texasweed control between the two penoxsulam rates in the presence of 

bensulfuron-methyl at 22 g/ha or higer rate. Bensulfuron-methyl at all rates 

when mixed with penoxsulam at 40.3 g/ha provided similar Texasweed control. 

Although, the data in Table 5.1 show that neither penoxsulam nor 

bensulfuron-methyl alone at any rate provided satisfactory Texasweed control, 

A significant interactions between penoxsulam and bensulfuron-methyl for 

Texasweed control was observed at all the three observation dates (Table 

5.2). As indicated by the significant increase in the observed control 

compared to the expected control (Table 5.2), the interaction was synergistic 

for most of the combinations. The combinations involving highest rates of 

either or both herbicides resulted in additive effect at 14 DAT. The 
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magnitude of synergistic effect was greater for the mixtures involving lower 

doses of the two herbicides than for those involving higher doses. As 

measured by the mostly negative value of the linear contrasts (Table 5.2). 

The synergistic effect of the combinations either increased or remained 

constant over time. Penoxsulam at 35 or 40.3 g/ha plus bensulfuron-methyl at 

33 g/ha combinations showed a quadratic trend for change in synergism with 

time. 

Bispyribac-sodium and Bensulfuron-methyl Combinations. In terms of 

percent control, bensulfuron-methyl at 33 g/ha and bispyribac-sodium at 14.6 

g/ha applied alone provided 60 to 67% and 50 to 59% Texasweed control, 

respectively (Table 5.3). At 28 and 42 DAT, bispyribac-sodium at 29.2 g/ha 

provided greater Texasweed control than at 14.6 g/ha rate. Bensulfuron-methyl 

when mixed with bispyribac-sodium, increased Texasweed control. There was no 

difference between bensulfuron-methyl rates in the presence of bispyribac-

sodium. Bispyribac-sodium at 14.6 or 29.2 g/ha plus bensulfuron-methyl at 11 

g/ha provided more than 85% Texasweed control.   

Table 5.1 Texasweed control with penoxsulam and bensulfuron-methyl alone and 

in combination at 14, 28, and 42 days after treatment (DAT), averaged over 

2007 and 2008.
a
  

 

  Texasweed control (%)  

penoxsulam 

(g ai/ha) 

bensulfuron-methyl 

(g ai/ha) 
14 DAT 28 DAT 42 DAT  

0 0 0 e 0 f 0 d  

 11 15 de 0 f 0 d  

 22 30 cd 0 f 0 d  

 33 58 b 48 de 32 c  

         

35 0 50 bc 27 e 27 c  

 11 75 ab 67 bcd 77 ab  

 22 83 a 84 ab 81 ab  

 33 80 a 92 a 88 a  

         

40.3 0 60 b 62 cd 63 b  

 11 75 ab 78 abc 79 ab  

 22 82 a 88 ab 83 ab  

 33 84 a 83 abc 87 a  
a
 Abbreviations: DAT, days after treatment 
b
 Means within each column followed by a common letter are not significantly 

different based on Tukey‟s test at P=0.05. 
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Table 5.2 Changes in activity of penoxsulam and bensulfuron-methyl 

combinations on Texasweed over time, averaged over 2007 and 2008.
a
  

 

  penoxsulam 

  35 g ai/ha  40.3 g ai/ha 

bensulfuron-

methyl 

(g ai/ha) 

DAT OBS-EXP
c
 P-value

b
  OBS-EXP P-value 

11 14 17 0.0039  8 0.1576 

 28 40 <0.0001  16 0.0088 

 42 49 <0.0001  15 0.0124 

 L -32 <0.0001  -7 0.2447 

 Q -7 0.2765  -5 0.4208 

22 14 18 0.0011  10 0.0641 

 28 56 <0.0001  26 <0.0001 

 42 53 <0.0001  20 0.0016 

 L -35 <0.0001  -10 0.1195 

 Q -21 0.0008  -12 0.0398 

33 14 2 0.7366  0 0.9195 

 28 29 <0.0001  3 0.5255 

 42 38 <0.0001  12 0.0290 

 L -36 <0.0001  -11 0.0453 

 Q -10 0.0643  3 0.5345 

a
 Abbreviations: DAT, days after treatment; OBS, observed; EXP, expected; L, 

linear contrast of the difference between the observed and the expected 

values within an herbicide combination; Q, linear contrast of the difference 

between the observed and the expected values within an herbicide 

combination.  
b
 P values are used to compare the differences between the observed and the 

expected value or to indicate the significance of linear and quadratic 

contrasts.   
c 
The observed values were obtained by visual observation while the expected 

values were calculated on the basis of Colby‟s formula. A negative or 

positive value indicates an antagonistic or synergistic response, 

respectively. Negative or positive values for linear contrast indicate an 

increase or decrease, respectively, in synergism over time.  Negative or 

positive values for quadratic contrast indicate a convex or concave change, 

respectively, in synergism over time. 
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Table 5.3 Texasweed control with bispyribac-sodium and bensulfuron-methyl 

alone and in combination at 14, 28, and 42 days after treatment (DAT), 

averaged over 2007 and 2008.
a
  

  Texasweed control (%)  

bispyribac-sodium  

(g ai/ha) 

bensulfuron-

methyl 

(g ai/ha) 

14 DAT 28 DAT 42 DAT  

0 0 7 d 7 e 18 d  

 11 13 d 19 d 23 d  

 22 30 cd 26 d 26 d  

 33 66 ab 67 c 60 c  

         

14.6 0 50 bc 59 c 50 c  

 11 74 ab 95 a 85 ab  

 22 84 a 99 a 98 a  

 33 81 a 93 a 94 a  

         

29.2 0 79 ab 79 b 78 b  

 11 78 ab 89 ab 88 ab  

 22 84 a 99 a 98 a  

 33 84 a 99 a 98 a  
a
 Abbreviations: DAT, days after treatment. 
b
 Means within each column followed by the same letter are not significantly 

different based on Tukey‟s test at P=0.05.   

 

The interaction between bispyribac-sodium and bensulfuron-methyl for 

Texasweed control was either additive or synergistic (Table 5.4). The 

combinations involving higher doses of either one or both herbicides: 

bispyribac-sodium at 29.2 g/ha and bensulfuron-methyl at 33 g/ha resulted in 

additive effect; whereas, the combinations involving reduced rates of both 

the herbicides resulted in synergistic effect. The non-significant linear and 

quadratic contrasts indicated no effect of rating time on the magnitude of 

interaction.  

Similar Texasweed control with bensulfuron-methyl mixture with reduced 

or full rates of either penoxsulam or bispyribac-sodium also suggested the 

possibility of reducing penoxsulam and bispyribac-sodium use rates without 

adversely affecting Texasweed control. Reduction in the penoxsulam or 

bispyribac-sodium rates; however, may not be desirable because of its 

possible adverse effect on grassy weed control. The effect of tank mixing 

bensulfuron-methyl with penoxsulam or bispyribac-sodium on grass weed control 

was not recorded. It can be concluded that for Texasweed control, 
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bensulfuron-methyl particularly at lower rates interacts synergistically with 

both penoxsulam and bispyribac-sodium. Bensulfuron-methyl can be mixed with 

either penoxsulam or bispyribac-sodium for increasing their activity on 

Texasweed; however, a minimum of 11 g/ha rate of bensulfuron-methyl will be 

required to provide a satisfactory control. 

Table 5.4 Changes in activity of bispyribac-sodium and bensulfuron-methyl 

combinations on Texasweed over time, averaged over 2007 and 2008.
a
 

 

  bispyribac-sodium 

  14.6 g ai/ha  29.2 g ai/ha 

bensulfuron-

methyl 

(g ai/ha) 

DAT OBS-EXP
c
 P-value

b
  OBS-EXP P-value 

11 14 16 0.0440  -5 0.5303 

 28 28 0.0017  5 0.5674 

 42 22 0.0148  4 0.0427 

 L -6 0.5664  -8 0.3973 

 Q -9 0.3119  -5 0.5565 

22 14 17 0.0212  -2 0.7418 

 28 28 0.0018  12 0.1452 

 42 32 0.0005  12 0.1399 

 L -15 0.1486  -14 0.1370 

 Q -3 0.7352  -7 0.4184 

33 14 -2 0.7691  -8 0.1934 

 28 0 0.9568  -1 0.9033 

 42 7 0.3309  0 0.9607 

 L -9 0.3036  -9 0.3086 

 Q 3 0.6853  -3 0.6700 

a
 Abbreviations: DAT, days after treatment; OBS, observed; EXP, expected; L, 

linear contrast of the difference between the observed and the expected 

values within an herbicide combination; Q, linear contrast of the difference 

between the observed and the expected values within an herbicide 

combination.  
b
 P values are used to compare the differences between the observed and the 

expected value or to indicate the significance of linear and quadratic 

contrasts.   
c 
The observed values were obtained by visual observation while the expected 

values were calculated on the basis of Colby‟s formula. A negative or 

positive value indicates an antagonistic or synergistic response, 

respectively. Negative or positive values for linear contrast indicate an 

increase or decrease, respectively, in synergism over time.  Negative or 

positive values for quadratic contrast indicate a convex or concave change, 

respectively, in synergism over time. 
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End Notes 

1 
Grasp® herbicide label. Dow AgroScience, Indianapolis, IN 46268, USA. 

2 
Regiment

TM
 herbicide label. Valent Corporation, Walnut Creek, CA 94596, USA. 

3 
Londax

TM
 herbicide label. United Phosphorus, Inc., 630 freedom Business 

Center, Suite 402 King of Prussia, PA 19406, USA. 

4
 Agri-dex®, Helena Chemical Co., 225 Schilling Boulevard, Suite 300, 

Collierville, TN 38017, USA. 

5 
Dyne-A-Pak, Helena Chemical Co., 225 Schilling Boulevard, Suite 300, 

Collierville, TN 38017, USA. 

6 
Command® 3 ME herbicide label. FMC Corporation, Agricultural Products Group, 

1735 Market Street, Philadelphia, PA 19103, USA. 

7 
Ricestar HT® herbicide label. Bayer CropScience, P.O. Box 12014, 2 T.W. 

Alexander Dr., Research Triangle Park, NC 27709, USA. 
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Chapter 6 

Evaluation of V-10142 for Texasweed Control in Drill-Seeded Rice 

Introduction 

In direct-seeded rice, weeds emerge with the crop; therefore, early 

season weed management is very important. A number of preemergence (PRE) 

herbicides are available for use in rice (Anonymous 2010a). Clomazone [2-[(2-

chlorophenyl) methyl]-4,4-dimethyl-3-isoxazolidinone] and quinclorac [3,7-

dichloroquinoline -8-carboxylic acid] are the two major PRE herbicides used 

in conventional (non-clearfield) rice production in the USA (Anonymous 2010a; 

USDA 2006). Thiobencarb [S-((4-chlorophenyl) methyl)diethylcarbamothioate] 

and pendimethalin [3,4-Dimethyl-2,6-dinitro-N-pentan-3-yl-aniline] are also 

used, but to a lesser extent (USDA 2006). 

Clomazone belongs to the isoxazolidinone family and provides excellent 

control of Echinochloa spp. (Mitchell and Hatfield 1996; Webster et al. 1999; 

Zhang et al. 2005). In 2006, 50% of the US rice acreage received clomazone 

application (USDA 2006). Although, clomazone provides control of grasses and 

has very good residual activity in rice (Mitchell and Gage 1999; Mitchell and 

Hatfield 1996; Webster et al. 1999), it does not control several key 

broadleaf and sedge species when applied at recommended rates (Brommer et al. 

2000; Williams et al. 2004). 

Quinclorac controls of barnyadgrass (Street and Muller 1993; Baltazar 

and Smith 1994), hemp sesbania, pitted morningglory (Ipomoea lacunose L.), 

jointvetch (Aeschynomene spp. L.)(Street and Mueller 1993; Grossmann 1998). 

However, quinclorac has little to no activity on sprangletop (Leptochloa spp. 

L.)(Jordan 1997; Anonymous 2010a) and the development of quinclorac-resistant 

barnyardgrass (Lopez-Martinez 1997; Lovelace et al. 2007; Malik et al. 2010) 

has limited its use in rice.  
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Pendimethalin and thiobencarb are applied as delayed preemergence 

(DPRE), which is an application made after rice has imbibed water for 

germination but before emergence (Anonymous 2010a). Pendimethalin controls 

grasses and small-seeded broadleaf weeds (Byrd and York 1987) but is not 

effective against sedges and large seeded broadleaf weeds like spreading 

dayflower and Texasweed (Anonymous 2010a). Thiobencarb provides good control 

of barnyardgrass, sprangletop, and annual sedges but has limited activity on 

broadleaf weeds; the period of residual control is also less than three weeks 

(Anonymous 2010a). 

In general, the available PRE herbicides in rice are very effective 

against grasses which are the dominant and most troublesome weeds in rice 

(Holm et al. 1977; Fischer et al. 2004; Valverde et al. 2001). The high 

degree of residual grass control provided by these herbicides allows the 

farmers to delay their POST applications up to four to five weeks after 

planting (Bill Williams
1
, personal communication). Many broadleaf weeds like 

Texasweed [Caperonia palustris (L.) St. Hil.] grow big and become difficult 

to control by that time (Godara et al. 2007). Kurtz (2004) also reported 

reduced activity of postemergence herbicides on three to four leaf Texasweed 

in soybean (Glycine max L.) crop and emphasized the need for its control at 

an early stage. 

Although, the early season weed control achieved by PRE herbicides lays 

the ground work for a healthy crop, postemergence weed management is often 

required to maximize the crop quality and yield (Ampong-Nyarko and DeDatta 

1991). Ever since the development of 2,4-D in 1940s efforts have constantly 

been made to provide better options of broad-spectrum and effective chemical 

weed control in rice. Propanil [N-(3,4-Dichlorophenyl) propanamide] first 

registered in the USA in 1972 (Anonymous 2010b) controls both grass and 

broadleaf weeds (Crawford and Jordan 1995; Jordan et al. 1997). However, 
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long-term repeated use of propanil has led to the development of propanil-

resistance in barnyardgrass (Baltazar and Smith 1994; Carey et al. 1995; 

Talbert 2007). Despite the development of propanil resistance in 

barnyrdgrass, it is still the most widely used postemergence herbicide in 

rice (USDA 2006). Other herbicides like quinclorac, triclopyr [[(3,5,6-

trichloro-2-pyridinyl)oxy]acetic acid], carfentrazone-ethyl [ethyl α,2-

dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-

yl]-4-fluorobenzenepropanoate], acifluorfen [5-[2-chloro-4-

(trifluoromethyl)phenoxy]-2-nitrobenzoic acid] also provide postemergence 

broadleaf weed control in rice (Anonymous 2010a; Jordan 1997; Mitchell and 

Sims 1998; Rosser et al. 1988). However, the most recent entries in the list 

of herbicides registered for use in rice are the acetolactate synthase (ALS) 

(EC 4.1.3.18) inhibiting herbicides.  

ALS herbicides used in rice primarily include sulfonylureas and 

imidazolinones (Anonymous 2010a). Imazethapyr [2-[4,5-dihydro-4-methyl-4-(1-

methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid] is an 

imidazolinone herbicide registered for use in imidazolinone resistant (IR) 

rice (Anonymous 2008a). Imazethapyr provides effective control of red rice, 

barnyardgrass, and broadleaf signalgrass in rice (Klingaman et al. 1992; 

Masson and Webster 2001; Masson et al. 2001). It is, however, weak on several 

broadleaf weeds such as hemp sesbania, northern jointvetch, and Indian 

jointvetch (Klingaman et al. 1992; Masson and Webster 2001; Zhang et al. 

2001). Mixture of imazethapyr with other herbicides like bispyribac-sodium, 

carfentrazone, or propanil improves overall weed control, especially hemp 

sesbania (Zhang et al. 2006). 

Bensulfuron-methyl [methyl 2-[[[[[(4,6-dimethoxy-2-pyrimidinyl) 

amino]carbonyl]amino]sulfonyl]methyl]benzoate] and halosulfuron-methyl 

[methyl 3-chloro-5-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl] 
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amino]sulfonyl]-1-methyl-1H-pyrazole-4-carboxylate] are the two most popular 

sulfonylurea herbicides in rice and were used on about 15% of the U.S. rice 

acreage in 2006 (USDA 2006). Bensulfuron-methyl controls broadleaf weeds such 

as eclipta, hemp sesbania, purple ammania, and can suppress barnyardgrass 

growth (Jordan 1995).  Halosulfuron is effective against sedges and supresses 

broadleaf weeds (Mudge et al. 2005; Murphy and Lindquist 2002; Zhang et al. 

2006). 

Penoxsulam [2-(2,2-difluoroethoxy)-6-(trifluoromethyl-N-(5,8-

dimethoxy[1,2,4] triazolo[1,5-c]pyrimidin-2-yl))benzenesulfonamide], belongs 

to the trizolopyrimidine sulfonamide family and was developed by Dow 

Agrosciences LLC
2
. It provides PRE and POST control of certain grassy and 

broadleaf weeds (Johnson et al. 2009). Lassiter et al. (2006) reported that 

penoxsulam at 20 to 40 g ai/ha applied postemergence in dry-seeded rice 

provided good to excellent control of annual and perennial Echinochloa 

species, hemp sesbania, northern jointvetch [Aeschynomene virginica (L.) 

Britton, Sterns & Poggenb.], spreading dayflower, ducksalad [Heteranthera 

limosa (Sw.) Willd.], alligatorweed, Texas/Mexicanweed, smartweed (Polygonum 

spp.), annual sedges (Cyperus spp.), and several other broadleaf weeds. They 

also reported 2 to 4 weeks residual weed control with penoxsulam in dry-

seeded rice. Strahan (2004) reported 83 and 85% Texasweed control 70 days 

after treatment (DAT) with penoxsulam at 40.3 and 50.5 g/ha, respectively. 

Williams et al. (2004) reported only 40% hemp sesbania control two weeks 

after flooding with a preemergence application of penoxsulam at 30 g/ha plus 

clomazone at 560 g ai/ha in drill-seeded rice. The control of barnyardgrass, 

Amazon sprangletop [Leptochloa panicoides (J. Presl) Hitchc.], and rice 

flatsedge (Cyperus iria L.) in the same treatment was 90, 70, and 86%, 

respectively. Penoxsulam showed greater broadleaf weeds activity when applied 

postemergence than preemergence. 
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Bispyribac-sodium [Sodium 2,6-bis[(4,6-dimethoxypyrimidin-2-

yl)oxy]benzoate], belongs to the pyrimidinyl thiobenzoates family and was 

developed by Valent Co. USA
3
 for postemergence control of certain grassy and 

broadleaf in rice (Anonymous 2008b). Bispyribac-sodium provides broad-

spectrum weed control in rice but has no residual activity (Esqueda and 

Rosales 2004). Single applications of 20 and 22 g/ha bispyribac-sodium to 

four to six leaf rice provided good control of barnyardgrass, hemp sesbania, 

and northern jointvetch. However, the control of broadleaf signalgrass, 

palmleaf morningglory (Ipomoea wrightii A. Gray), and bearded sprangletop 

[Leptochloa fusca (L.) Kunth ssp. fascicularis (Lam.) N. Snow] was inadequate 

(Schmidt et al. 1999). Williams (1999) also reported 98 to 100% barnyardgrass 

and hemp sesbania control from mid- to late-postemergence applications of 

bispyribac-sodium at 20 or 23 g/ha. 

V-10142 (imazosulfuron) [2-chloro-N-[[(4,6-dimethoxy-2-

pyrimidinyl)amino]carbonyl]imidazo[1,2-a]pyridine-3-sulfonamide], an ALS 

inhibitor, is being developed by Valent Co. USA
3
 for weed control in drill- 

and water-seeded rice. It primarily controls broadleaf weeds and sedges but 

can suppresses annual grasses (Baron 2006). Boydston and Felix (2008) 

reported 91 to 98% yellow nutsedge (Cyperus esculentus L.) control with V-

10142. Henry and Sladek (2008) reported 90 to 100% yellow nutsedge and up to 

90% purple nutsedge (Cyperus rotundus L.) control in bermudagrass [Cynodon 

dactylon (L.) Pers.] with two postemergence applications of V-10142 at 560 

g/ha. Imazosulfuron may prove to be an effective preemergence herbicide for 

broadleaf weed and sedge control in drill-seeded rice. The herbicide if 

compatible in tank mixture with bispyribac-sodium or penoxsulam also has a 

potential of providing excellent broad-spectrum postemergence weed control in 

drill-seeded rice. 
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The objective of this research was to evaluate V-10142 programs 

involving rate, application timings and combinations with other herbicides 

for PRE and POST Texasweed control in drill-seeded rice. 

Materials and Methods 

Field experiments were conducted in 2006, 2007, and 2008 at the 

Louisiana State University Agricultural Center Northeast Research Station 

near St. Joseph, Louisiana on Sharkey clay (very fine, montmorillonitic, 

nonacid, Vertic Haplaquept) with pH 6.1 and 2.1% organic matter. Field 

preparation during each year consisted of a fall disking followed by a spring 

disking and two passes in opposite directions with a two-way bed conditioner 

equipped with rolling baskets and S-tine harrows set to operate 6 cm deep. 

„Cocodrie‟ rice was drill-seeded on April 24, May 9, and April 29 in 2006, 

2007, and 2008 respectively, at 100 kg/ha to plots measuring 2 by 4.5 m. 

The study area was surface irrigated immediately after the application 

of preemergence herbicides and as needed until permanent floods were 

established. Permanent floods were established 5 to 6 weeks after planting 

when rice reached four- to five-leaf stage.  Nitrogen in the form of prilled 

Urea (46-0-0) was applied at 126 kg/ha just before permanent flood.  At 

panicle initiation an additional 42 kg/ha of nitrogen was applied. Herbicide 

treatments were applied using a CO2 pressurized backpack sprayer calibrated to 

deliver 140 L/ha at 276 kPa.   

For the preemergence study, a randomized complete block design with 

three replications was used in all the three years. The treatments consisted 

of different V-10142
4
 rates: 56, 112, 168, 224, 336, 450, 504, and 560 g 

ai/ha. Clomazone
5
 at 560 g/ha applied PRE and fenoxaprop-ethyl

6
 at 111 g ai/ha 

applied POST were used to control barnyardgrass in the experimental plots. In 

2007 and 2008, additional treatments of V-10142 rates (112, 168, and 224 
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g/ha) without clomazone were also included in the experiments to test any 

possible interaction between clomazone and V-10142. 

For the postemergence study, a randomized complete block (RCB) design 

with three replications was used in all the years. The treatments consisted 

of various combinations of herbicides, their rates and three application 

times (Table 6.1). The herbicides used were V-10142
4
, bispyribac-sodium

7
, 

penoxsulam
8
, halosulfuron-methyl

9
, and bensulfuron-methyl

10
. Crop oil 

concentrate
11
 at 1% or 1.75% v/v was used in the treatments involving V-10142 

alone and penoxsulam, respectively. A non-ionic spray adjuvent
12
 at 1.5% v/v 

was used in the treatments involving bispyribac-sodium. The three herbicide 

application times: EPOST (two- to three-leaf stage Texasweed), LPOST (four- 

to five-leaf stage Texasweed), and 3 DPF (3 days prior to flood) were on May 

9, May 27 and June 6, in 2006 and May 28, June 9 and June 11 in 2007, 

respectively. Fenoxaprop-ethyl
6
 at 111 g ai/ha was also applied 3 DPF to all 

experimental plots for grass control (Table 6.1).  

In all experiments, visual Texasweed control ratings were recorded on a 

0 to 100% scale where 0 = no control or injury and 100 = plant death. Rice 

injury, in the form of stunting and chlorosis, was visually estimated 7 days 

after treatment (DAT) using a 0 to 100% scale where 0 = no injury and 100 = 

plant death. Rough rice yield was obtained using a small-plot combine. Data 

were analysed using MIXED procedure of SAS (SAS 2003). Year, replication 

(nested within year) and all interactions involving either of these effects 

were considered random effects. Observation dates (DAT/DAP) were used as 

repeated measures to compare the weed control response over time. Type III 

statistics were used to test significance of fixed effects. Least square 

means were used and mean separation was carried out using Tukey‟s test at an 

overall P=0.05. Additionally for preemergecne study, the effect of clomazone 

on V-10142 was determined by contrasts analysis. ESTIMATE statements were 
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used to construct the contrasts for comparing treatments containing V-10142 

with clomozone at 560 g ai/ha (clomozone+) and without clomazone (clomozone-

). Letter groupings were generated using the PDMIX800 macro in SAS (Saxton 

1998). 

Table 6.1 Postemergence treatments involving herbicides, their combinations, 

rates, and application time.  

 

Treatment
a
 Rate (g ai/ha) Application time

b
 

Nontreated -- -- 

V-10142 224 EPOST 

bispyribac  17.6 EPOST 

bispyribac + V-10142 17.6 + 112 EPOST 

bispyribac + V-10142 17.6 + 168 EPOST 

bispyribac + V-10142 17.6 + 224 EPOST 

V-10142 224.0 LPOST 

bispyribac  17.6 LPOST 

bispyribac + V-10142 17.6 + 122 LPOST 

bispyribac + V-10142 17.6 + 168 LPOST 

bispyribac + V-10142 17.6 + 224 LPOST 

bispyribac  29.2 3 DPF 

penoxsulam  40.3 3 DPF 

bispyribac + V-10142 29.2 + 224 3 DPF 

penoxsulam + V-10142 40.3 + 224 3 DPF 

bispyribac + halosulfuron 29.2 + 27.4 3 DPF 

penoxsulam + bensulfuron 40.3 + 22.0 3 DPF 
a
 Clomazone at 560 g ai/ha as preemergence and fenoxaprop-ethyl at 111 g ai/ha 

as postemergence were applied in all the treatments for grass control; crop 

oil concentrate (COC)
7
 at 1% and 1.75% v/v was used in treatments involving 

V-10142 alone and penoxsulam, respectively; NIS
12
 at 1.5% v/v was used in 

treatments involving bispyribac-sodium.  
b
 EPOST=2-3 leaf Texasweed; LPOST=4-5 leaf Texasweed; 3 DPF=3 days prior to 

flood. 

Results and Discussion 

Preemergence Study. V-10142 demonstrated preemergence activity on 

Texasweed (Table 6.2). At 2 WAP, all V-10142 rates provided more than 90% 

Texasweed control and no difference was observed among the rates. Texasweed 

control with V-10142 at 56 g/ha decreased with time (Table 6.2). The results 

pointed towards reduced residual control <112 g/ha V-10142 rates. Texasweed 

control with V-10142 at 168 g/ha and higher rates remained more or less 
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constant over the entire duration of the experiment. At 12 WAP, V-10142 at 

168 g/ha provided 95% control, which was at par with all other higher rates.  

Table 6.2 Effect of various preemergence herbicide treatments on Texasweed 

control and rough rice yield. 

 

Treatment
a
 

(PRE) 

Rate 

(g/ha) 

Texasweed control (%)
b
 

 
Rough rice 

yield 

(%)
c
 2 WAP 4 WAP 8 WAP 12 WAP 

Nontreated - 0 h 0 h 0 h 0 h 100 c 

V-10142 + 

clomazone 

56 

560 
91 abcd 59 f 30 g 0 h 119 bc 

V-10142 + 

clomazone 

112 

560 
92 abcd 80 e 88 abcde 79 e 181 a 

V-10142 + 

clomazone 

168 

560 
94 abcd 84 cde 93 abcd 95 abcd 178 a 

V-10142 + 

clomazone 

224 

560 
93 abcd 86 bcde 93 abcd 88 abcde 179 a 

V-10142 + 

clomazone 

336 

560 
95 a 90 abcd 93 abcd 94 abc 176 a 

V-10142 + 

clomazone 

450 

560 
95 a 93 abcd 93 abcd 88 abcde 176 a 

V-10142 + 

clomazone 

504 

560 
96 ab 89 abcde 93 abcd 92 abcd 175 a 

V-10142 + 

clomazone 

560 

560 
95 ab 93 abc 93 abcd 95 ab 185 a 

V-10142 112 96 ab 83 cde 93 abcd 83 abcde 114 bc 

V-10142 168 91 abcd 83 de 93 abcd 95 abcd 117 bc 

V-10142 224 92 abcd 85 abcde 93 abcd 95 abcd 143 b 

a 
Fenoxaprop-ethyl at 111 g ai/ha was applied as postemergence in all the 

treatments for grass control.  
b 
Means followed by a common letter are not significantly different at P=0.05 

using Tukey‟s test 
c 
Percent of untreated; actual rough rice yield in nontreated was 3077 kg/ha. 

 

The effect of clomazone on V-10142 activity was only evident at 12 WAP 

(Table 6.3). As indicated by the negative values of the estimates, Texasweed 

control was lower in clomazone+ treatments as compared to clomazone- 

treatments. The observed results could either be due to interaction between 

the two herbicides or increased Texasweed growth in the clomazone+ treatments 

as a result of reduced barnyardgrass competition. A greater barnyardgrass 
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control in clomazone+ treatments as compared with clomazone- treatments is 

evident from the significant positive values of the contrast estimates for 

barnyardgrass control (Table 6.3).  

Table 6.3 Estimates and P-values for the contrasts constructed for comparing 

clomazone+ and clomazone- preemergence V-10142 treatments. 

 

Variable Estimate P-value
b
 

Texasweed control 2 WAP 0 0.9399 

Texasweed control 4 WAP -4 0.4545 

Texasweed control 8 WAP -5 0.0546 

Texasweed control 12 WAP -10 0.0356 

   

barnyadgrass control 2 WAP 35 <0.0001 

barnyadgrass control 4 WAP 38 0.0279 

   

Rough rice yield 5045 <0.0001 

a
 Estimates of the difference between clomazone+ and clomazone- treatments; 

+ve values indicate greater effect of clomazone+ treatments and vice-versa. 
b
 P-value for difference of estimated value from zero. 

 

No rice injury was observed in any of the treatments at 7 DAT (data not 

shown). Rough rice yield was affected by herbicide treatments (Table 6.2). 

Clomazone at 560 g/ha plus V-10142 at 56 g/ha did not increase rice yield 

over weedy check, which may be due to poor Texasweed control in this 

treatment. Other rates resulted in a 75 to 85% yield increase over the weedy 

check. The yield differences among the V-10142 rates above 56 g/ha were 

insignificant. The linear contrast of colomazone+ and colomazone- treatments 

(Table 6.3) showed clomazone effect on rough rice yield. The average yield of 

colomazone+ treatments was 5045 kg/ha more than the clomazone- treatments 

(Table 6.3). Although, grass weeds in the experimental area were selectively 

controlled with postemergence application of fenoxaprop-ethyl at 111 g/ha, 

the control was not 100%. The better grassy weed control in clomazone+ 

treatments compared to clomazone- treatments (Table 6.3) appears to be 

responsible for the observed yield differences between the two set of 

treatments. 
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Postemergence Study. Bispyribac-sodium at 17.6 g/ha applied EPOST 

provided 76% Texasweed control 4 WAP (Table 6.4). Percent control by 

bispyribac-sodium decreased with time; it provided 52% and 0% Texasweed 

control at 8 and 12 WAP, respectively. V-10142 on the other hand provided 

more than 90% Texasweed control on the same observation dates. The greater 

efficacy of V-10142, applied EPOST, compared to bispyribac-sodium may be due 

to good residual activity of V-10142 as observed in preemergence study above. 

Compared to bispyribac-sodium applied alone, bispyribac-sodium plus V-10142, 

applied EPOST, increased Texasweed control (Table 6.4). Even the mixture 

involving lower V-10142 rate (112 g/ha) provided more than 90% Texasweed 

control. However, V-10142 alone at 224 g/ha was as effective as its 

combinations with bispyribac-sodium.  

LPOST application of bispyribac-sodium at 17.6 g ai/ha provided 32% 

Texasweed control (Table 6.4).  Moreover, as the application timing changed 

from EPOST to LPOST, the Texasweed control at 12 WAP with 224 g/ha V-10142 

dropped from 90% to 15% (Table 6.4). The results suggest that V-10142 is more 

effective against two- to three-leaf Texasweed than four- to five-leaf 

Texasweed. Similar conclusions were drawn by Kurtz (2004) for Texasweed 

control with other herbicides in soybean crop. LPOST application of 

bispyribac-sodium plus V-10142 improved Texasweed control compared with these 

herbicides alone (Table 6.4). Texasweed control further increased as V-10142 

rate increased in the mixtures. At 12 WAP, bispyribac-sodium at 17.6 g/ha 

plus V-10142 at 112 g/ha applied LPOST provided 62% Texasweed control; 

whereas, the control with V-10142 at 224 g/ha in the mixture was 84%. Among 3 

DPF applications, both bispyribac-sodium at 29.2 g/ha and penoxsulam at 40.3 

g/ha controlled Texasweed less than 54% at all observation dates (Table 6.4). 

Texasweed control from mixture of V-10142 at 224 g/ha with bispyribac-sodium 

or penoxsulam was, however, more than 90%. The level of control obtained by 

these mixtures was similar to that obtained by bispyribac-sodium plus  
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Table 6.4 Texasweed control and rice grain yield in different postemergence treatments. 

Treatment
a
  

(POST) 

Rate  

(g/ha) 

Application 

time
b
 

Texasweed control Rough rice 

yield 

(kg/ha)
c
 

 4 WAP 8 WAP 12 WAP 

   ------------------% 
c 
--------------   

Nontreated -- -- 0 h 0 h 0 h --  

V-10142 224 EPOST 84 ab 93 a 90 ab 2715 h 

bispyribac  17.6 EPOST 77 abcd 52 ef 0 h 3801 gh 

bispyribac + V-10142 17.6 + 112 EPOST 88 ab 93 a 92 ab 5375 def 

bispyribac + V-10142 17.6 + 168 EPOST 88 ab 93 a 93 ab 6217 bcd 

bispyribac + V-10142 17.6 + 224 EPOST 88 ab 89 ab 87 ab 6000 bcde 

V-10142 224 LPOST -  60 de 15 h 2769 h 

bispyribac  17.6 LPOST -  52 ef 32 g 5619 cde 

bispyribac + V-10142 17.6 + 122 LPOST -  78 abc 62 cde 5212 def 

bispyribac + V-10142 17.6 + 168 LPOST -  93 ab 77 bc 4886 efg 

bispyribac + V-10142 17.6 + 224 LPOST -  88 ab 84 ab 5511 cde 

bispyribac  29.2 3 DPF -  54 e 32 g 6108 bcd 

penoxsulam  40.3 3 DPF -  37 fg 32 g 4208 fg 

bispyribac + V-10142 29.2 + 224 3 DPF -  90 ab 92 ab 8660 a 

penoxsulam + V-10142 40.3 + 224 3 DPF -  94 ab 91 ab 7326 ab 

bispyribac + halosulfuron 29.2 + 27.4 3 DPF -  90 ab 93 a 6597 bc 

penoxsulam + bensulfuron 40.3 + 22.0 3 DPF -  91 ab 93 ab 6585 bc 
a
 Clomazone at 560 g ai/ha as preemergence and fenoxaprop-ethyl at 111 g ai/ha as postemergence were applied 

in all the treatments for grass control; crop oil concentrate (COC)
7
 at 1% and 1.75% v/v was used in 

treatments involving V-10142 alone and penoxsulam, respectively; NIS
12
 at 1.5% v/v was used in treatments 

involving bispyribac-sodium.  
b
 EPOST=2-3 leaf Texasweed; LPOST=4-5 leaf Texasweed; 3 DPF=3 days prior to flood. 
c
 Means followed by a common letter are not significantly different at P=0.05 using Tukey‟s test. 
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halosulfuron-methyl or penoxsulam plus bensulfuron-methyl, which are very 

popular among the Louisiana rice growers for postemergence weed management in 

rice (Bill Williams
1
, personal communication). 

Among 3 DPF applications, both bispyribac-sodium at 29.2 g/ha and 

penoxsulam at 40.3 g/ha controlled Texasweed less than 54% at all observation 

dates (Table 6.4). Texasweed control from mixture of V-10142 at 224 g/ha with 

bispyribac-sodium or penoxsulam was, however, more than 90%. The level of 

control obtained by these mixtures was similar to that obtained by 

bispyribac-sodium plus halosulfuron-methyl or penoxsulam plus bensulfuron-

methyl, which are very popular among the Louisiana rice growers for 

postemergence weed management in rice (Bill Williams
1
, personal 

communication). 

Herbicide treatments applied 3 DPF provided higher grain yields 

compared to other timings (Table 6.4). Within the three application timings, 

herbicide combinations generally provided higher grain yields than the 

herbicides applied alone. EPOST applications of V-10142 at 224 g/ha provided 

the lowest rice yield (2715 kg/ha), which was not different than the 3801 

kg/ha obtained with bispyribac-sodium at 17.6 g/ha. However, LPOST 

application of 17.6 g/ha bispyribac-sodium provided almost twice the grain 

yield obtained with LPOST application of V-10142 at 224 g/ha. This difference 

could not be explained in terms of Texasweed control as the performance of 

both the treatments was similar and unsatisfactory in terms of Texasweed 

control (Table 6.4).  

Barnyardgrass was the dominant grass present in high densities in the 

experimental area. Barnyardgrass pressure was lowered with the postemergence 

application of fenoxaprop-ethyl at 111 g/ha. However, the fact that 

bispyribac-sodium has barnyardgrass activity (DeWitt et al. 1999; Schmidt 

1999; Williams 1999) may have caused differences in barnyardgrass infestation 
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between LPOST applications of V-10142 and bispyribac-sodium alone thus 

affecting rice yields. Barnyardgrass control data was, however, not 

collected. 

Visual rice injury was not observed in any of the treatments (data not 

shown). The lack of yield reduction in V-10142 tank mixtures compared to 

bensulfuron-methyl and bensulfuron-methyl tank mixtures (Table 6.4) also 

suggests no adverse effect of V-10142 on rice growth and yield.  

The results show that V-10142 has PRE activity against Texasweed. Weed 

control increased with increasing V-10142 rates, but 168 g ai/ha rate 

provided more than 90% control, which was statistically at par with all other 

higher rates.  V-10142 alone at 224 g/ha applied EPOST provided above 90% 

Texasweed control and was as effective as its combination with bispyribac-

sodium. V-10142, therefore, can be applied by itself at EPOST to manage 

Texasweed in rice. None of the herbicides applied alone at LPOST or 3 DPF 

timings provided satisfactory Texasweed control. V-10142 applied LPOST or 3 

DPF may not be useful by itself, but can be mixed at 224 g/ha with 

bispyribac-sodium at 29.2 g/ha or penoxsulam at 40.3 g/ha to improve 

Texasweed control in rice. 

End Notes 

1 
Billy J. Williams, Louisiana State University AgCenter Weed Management 

specialist, 212 Macon Ridge Road Bldg. B, Winnsboro, LA 71295, USA. 

2 
Dow AgroScience, Indianapolis, IN 46268, USA. 

3 
Valent Corporation, Walnut Creek, CA 94596, USA. 

4 
V-10142, experimental compound. Valent Corporation, Walnut Creek, CA 94596, 

USA. 

5 
Command® 3 ME herbicide label. FMC Corporation, Agricultural Products Group, 

1735 Market Street, Philadelphia, PA 19103, USA. 

6 
Ricestar HT® herbicide label. Bayer CropScience, P.O. Box 12014, 2 T.W. 

Alexander Dr., Research Triangle Park, NC 27709, USA. 

7 
Regiment

TM 
herbicide label. Valent Corporation, Walnut Creek, CA 94596, USA. 
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8 
Grasp

TM
 2 SC herbicide label. Dow AgroScience, Indianapolis, IN 46268, USA. 

9 
Permit

TM
 herbicide label. Gowan Company LLC. 370 Main Street, Yuma, AZ 85364, 

USA.
  

10 
Londax

TM
 herbicide label. United Phosphorus, Inc., 630 Freedom Business 

Center, Suite 402 King of Prussia, PA 19406, USA. 

11
 Agri-dex®, Helena Chemical Co., 225 Schilling Boulevard, Suite 300, 

Collierville, TN 38017, USA. 

12 
Dyne-A-Pak, Helena Chemical Co., 225 Schilling Boulevard, Suite 300, 

Collierville, TN 38017, USA. 
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Chapter 7 

Summary 

Texasweed [Caperonia palustris (L.) St. Hil.] is an annual broadleaved 

plant belonging to the Euphorbiaceae family (USDA 2007). Texasweed has been 

identified as a growing problem in rice and other crops in southern USA 

(Bennett 2003; Gianessi et al. 2002; Koger et al. 2004; Poston et al. 2007). 

The present research was conducted to study Texasweed interference and its 

management in drill-seeded rice. Results from this research can be used to 

design an integrated Texasweed management program in rice. 

Season long Texaswed interference at 1 plant/m
2
 was estimated to cause 

5.1% yield loss in drill-seeded rice. Yield loss due to 50 plants/m
2
 was 

approximately 61%. Even 10 plants/m
2
 reduced rice yield by 24-31%. The 

critical period of Texasweed interference was estimated to be between 0 and 6 

weeks after rice emergence.  Although, the critical period of interference 

varied between the two years of study, it underlines the importance of early 

season Texasweed management. The differences between the two years may be due 

to the differences in Texasweed density. 

Both the Texasweed density and area of influence studies demonstrated 

that the rice yield reduction due to Texasweed interference was associated 

with a reduction in the number of rice culms/m
2 
and grains per panicle. The 

1000-grain weight of rice was not affected by Texasweed interference. Path 

analysis indicated yield component compensation i.e. a reduction in the 

number of culms/m
2 
caused an increase in number of grains per panicle. 

However, this effect was not strong enough to reverse the detrimental effect 

of reduced culms/m
2 
on rice yield. These results differ from the work by Smith 

(1968 and 1984) that demonstrated that broadleaf weeds reduce rice yield by 

affecting grain filling process and that broadleaf weeds are not competitive 

if removed before they begin to shade rice. However, present research 
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demonstrates that in the case of Texasweed interference, rice yield is 

reduced much earlier. Both the Texasweed density and area of influence 

studies show that Texasweed interference reduces rice yield by affecting 

number of culms per unit area. Culms per unit area are a function of 

tillering, which begins when rice is at four- to five-leaf stage. The results 

indicate that substantial yield losses can occur if Texasweed control is 

delayed beyond 2 WAE. In addition, rice should be kept free of Texasweed 

until 5 to 6 WAE or permanent flood establishment. 

Shade had no effect on Texasweed emergence, but significantly reduced 

its growth. At 100 days after study initiation, 50, 70, and 90% shade caused 

31, 47, and 90% reduction in above ground dry matter production per plant, 

respectively. Texasweed height was affected by shade. Texasweed in 30 and 50% 

shade at 14 DAI, were smaller than those in full sun. Quadratic contrasts at 

28 DAI and onwards also indicated that Texasweed height, at a given DAI, 

increased with increasing shade level up to 70% and then decreased. After 28 

DAI, 70% shade resulted in taller plants; the height was increased 15 to 21% 

compared with 0% shade. Even 90% shade was not able to cause more than 16% 

reduction in Texasweed height. Although fruit production was significantly 

reduced due to shade, Texasweed was still able to set fruit in 90% shade. 

Texasweed seemed to mitigate the adverse effect of shade on growth by 

increasing its specific leaf area (SLA) and percent leaf biomass. The results 

of our study are similar to those observed in other plant species (Patterson 

1979; Gibson et al. 2001). Increasing SLA and percent leaf biomass, thus, 

appears to be a strategy for efficient allocation of fresh biomass for light 

capture and carbohydrate synthesis, which can be used for height increase 

until the plant rises above the crop canopy. Thus, Texasweed plants growing 

under shade, depending upon the crop height, may emerge above the crop canopy 

and offset any growth reduction caused by shade earlier. Patterson (1979) and 
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Gibson et al. (2001) in their research with Ammannia spp. also concluded that 

weed control through light manipulation alone is unlikely in a rice crop.  

Growth differences between plants transferred directly and gradually to 

a given shade level suggest that weed growth under a real crop canopy, where 

shade increases gradually, will be different than under constant shade. Thus, 

studies where plants are gradually exposed to increasing shade levels are 

better at modeling weed growth under a crop canopy. 

Texasweed plants were able to survive and produce fruits in all flood 

depths; however, growth and fruit production were significantly reduced due 

to flooding. A 30-cm flood depth caused 76% and 41% dry matter reduction 

reduction in two- to three-leaf and four- to five-leaf stage Texasweed, 

respectively. Increasing flood depths resulted in greater allocation of 

biomass to the stem. As a result of stem elongation, Texasweed plants under 

all flood depths were able to form a canopy above the water level. Texasweed 

plants produced adventitious roots and a thick spongy tissue (secondary 

aerenchyma) in the submerged plant parts, which possibly plays a role in 

Texasweed‟s survival under flooded conditions. The recommended flood depth 

for rice in Louisiana is 5- to 10-cm (Bollich et al. 1999). A 10-cm flood in 

our research caused only about 30 and 15% biomass reduction in two- to three-

leaf and four- to five-leaf stage Texasweed, respectively. Plants of both the 

stages emerged above the 10-cm flood within seven days of flooding. These 

results, thus, suggest that flooding alone may not be a viable option for 

Texasweed management in drill-seeded rice but can possibly be manipulated to 

enhance the effectiveness of postemergence herbicides, which is an aspect 

that needs further investigation. 

Bensulfuron-methyl interacted synergistically with both penoxsulam and 

bispyribac-sodium. None of the herbicides applied alone provided satisfactory 

control of five- to six-leaf Texasweed; however, mixture of bensulfuron-
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methyl with penoxsulam at 35.0 or 40.3 g ai/ha or bispyribac-sodium at 14.6 

or 29.2 g ai/ha improved control of large Texasweed. However, a minimum of 11 

g/ha rate of bensulfuron-methyl will be required to provide a satisfactory 

control. 

Similar Texasweed control with bensulfuron-methyl mixture with reduced 

or full rates of either penoxsulam or bispyribac-sodium also suggested the 

possibility of reducing penoxsulam and bispyribac-sodium use rates without 

adversely affecting Texasweed control. Reduction in the penoxsulam or 

bispyribac-sodium rates; however, may not be desirable because of its 

possible adverse effect on grass weed control. 

 V-10142 showed PRE activity against Texasweed. Texasweed control 

increased with increasing V-10142 rates, but 168 g ai/ha rate provided more 

than 90% Texasweed control, which was equal to that obtained with higher V-

10142 rates.  V-10142 at 224 g/ha applied EPOST provided above 90% Texasweed 

control and was as effective as when applied with bispyribac-sodium. None of 

the herbicides applied alone at LPOST or 3 DPF timings was effective on 

Texasweed. V-10142 may not be useful by itself at LPOST and 3 DPF 

applications, but can be mixed at 224 g/ha with bispyribac-sodium at 29.2 

g/ha or penoxsulam at 40.3 g/ha to provide satisfactory Texasweed control in 

rice. 

Results demonstrate that Texasweed in drill-seeded rice should be 

controlled within two weeks of rice emergence to avoid significant yield 

losses. Early permanent flood establishment and cultural practices that 

promote early shade development can help reduce Texasweed growth but will not 

provide a complete control. Penoxsulam at 40.3 g/ha or bispyribac-sodium at 

29.2 g/ha plus bensulfuron at 11 g/ha can be used to manage four- to five-

leaf Texasweed in rice. However, owing to residual activity, V-10142 appears 

to be the most promising herbicide for Texasweed control. Once available for 
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use in rice, V-10142 can be used in PRE and POST weed management programs in 

drill-seeded rice for Texasweed control. 
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