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Abstract 

A survey was conducted to document the silicon (Si) content of soils from 27 (selected) 

agrarian parishes of Louisiana using different extraction procedures. For 0.01 M calcium 

chloride (CaCl2) extraction procedure, all surveyed soils (n=212) fell below 56 mg Si kg
-1

. For 

five of the procedures, about 50% of surveyed soils in Louisiana had Si level below the critical 

Si level that thus far established in other regions. Calcium silicate slag and wollastonite were 

compared through chemical extractions after laboratory incubation with six different soil types, 

and then an assessment of quantity of monosilicic acid (H4SiO4) sorbed and the quantity in 

solution was made. It was concluded that the addition of large quantities of slag or any Si rich 

fertilizer with high rate of dissolution will lead to the greater polymerization of the H4SiO4. A 

greenhouse study was also conducted with six soil series of Louisiana with distinct physico-

chemical properties, to evaluate different soil test methods and estimate the critical soil Si level 

for rice. At harvest, dry matter yield and Si uptake by straw and panicles, and soil Si levels using 

seven different extractants were evaluated. The soil Si extracted by 0.5 M acetic acid (24 hours 

rest, 2 hours shaking) and 0.01 M CaCl2 showed maximum linear positive correlation (r
2
>0.45) 

with shoot biomass yield, and Si uptake. The soil Si critical level determined using quadratic 

regression model (P<0.03) for Sharkey clay soil was 110 mg kg
-1

 but for Crowley silt loam and 

Commerce silt loam were 37 and 43 mg kg
-1

 . It is very likely that certain regions in Louisiana 

would benefit from Si fertilization in rice and sugarcane production. Also, there is a need to 

establish the soil or site specific extraction procedure because it is unlikely that there is a single 

universal extraction procedure for all soils.
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Chapter 1. Introduction   

Crops grown in the field are subjected to a large number of stresses. The significance of 

silicon (Si) is most clearly apparent in plants that are under some environmental stress, whether 

biotic or abiotic (Epstein 2005). These stressful features include diseases and pests, gravity (the 

cause of lodging of cereals), and excessively high or low temperatures, metal toxicities, salinity, 

and others.  

Moreover, rapid progress is needed in agriculture. The world population is now 6.3 

billion and will reach about 8.3 or 10.9 billion by 2050 (UN 2013). More food will have to be 

grown. Most good land is already farmed, so that higher yields have to be wrung from existing 

crop land, and marginal land will have to be pressed into service. Additional challenges will 

come from global climate change, pollution, salinization, and still other adversities. Therefore 

the plant world, which is our life support system, will increasingly come under stress, and as 

stated above, it is plants under stress that respond most markedly to Si (Epstein 2005).  

Silicon is not an essential nutrient because most plants can complete their reproductive 

cycle when grown in nutrient solutions lacking Si in their formulation. This conclusion may not 

be valid because of the ubiquity of Si as a contaminant (Epstein 1994). Nutrient culture studies 

show that plants accumulate some Si even in carefully controlled studies to exclude its presence 

in growth solutions (Epstein 1994). Of all the “non-essential” elements assimilated by plants, Si 

alone is consistently present at concentrations similar to those of the macro- and secondary 

nutrients. Silicon concentrations range from 0.1% (similar to that of phosphorus, P and sulphur, 

S) to more than 10% of whole plant dry matter (Epstein 1999). Silicon has been considered to be 

a ‘‘quasi-essential element for plant growth’’ (Epstein and Bloom 2005). In February 2012, Si 

was approved by The Association of American Plant Food Control Officials (AAPFCO) as a 
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“Plant Beneficial Substance” (AAPFCO, 2012). Numerous laboratory, greenhouse and field 

experiments have shown the benefits of Si fertilizers for agricultural crops and the importance of 

Si fertilizers as a component in sustainable agriculture (Matichenkov and Calvert 1999). 

Different effects on plants due to Si fertilizers may be classified as direct influences on 

the plants or indirect influences through soil fertility. 

1.1 Direct influence on the plants 

The benefits of Si on plants include (Ma et al. 2006 and Savant et al. 1999) increased 

growth and fruit yields in some species, biotic stress resistance (e.g., insects and pest infection), 

abiotic stress resistance (e.g., frost, drought and salinity, toxicity by aluminum (Al), manganese 

(Mn) and other heavy metals) and resistance to physical stress (e.g., lodging). 

1.1.1 Increased growth and yields 

It has been reported that Si has many positive effects on the growth and yield as well as 

physiology and metabolism of different crops. Gong et al. (2003) observed that Si increased 

plant height, leaf area and dry mass of wheat (Triticum aestivum) even under drought. Ma et al. 

(2002) reported that more than 80% of total Si in the barley (Hordeum vulgare L.) grain was 

localized in the hull. High Si concentration of  barley hull have beneficial effect on high barley 

yield as percentage of ripening panicles markedly increased with addition of silicic acid. This 

can be attributed to Si accumulating on the hull, may prevent excessive water loss from the 

grains. 

Interaction between Si and nitrogen (N) was positive and had significant effect in 

obtaining higher grain and straw yield, reduced percent blank spikelet and incidence of pest and 

diseases (Deren et al. 1994). Increased growth was reported in crops including cotton 

(Gossypium hirsutum), Boston fern (Nephrolepis exaltata), pumpkin (Cucurbita pepo), barley, 

https://en.wikipedia.org/wiki/Cucurbita_pepo
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rye (Secale cereal), oats (Avena sativa), and watermelon (Citrullus lanatus) by Datnoff et al. 

(2001). Increase in sugar yield in sugarcane (Saccharum officinarum) was reported by Berthelsen 

et al. (2001). Field and greenhouse experiments conducted in Florida, Hawaii and Mauritius 

demonstrated that application of Si fertilizers increased productivity from 17 to 30% and the 

production of sugar rose from 23 to 58% (Matichenkov and Calvert 2002). Economic analysis of 

the use of calcium silicate in Florida indicates that grower revenues can be increased if applied at 

3 t ha
-1

 to soils with insufficient soluble Si (less than 10 ug g
-1

 Si) (Morgan et al. 2009). Histosol 

soils in Florida amended with 5 t ha
-1

 of silicate slag resulted in a 73-86% and 58-75% reduction 

in blast (Pyricularia grisea) and brown spot (Helminthosporium oryzae) in rice with concurrent 

yield increases between 56-88% (Datnoff and Snyder 2001). 

Abro et al. (2009) tested different levels of silicic acid in a pot experiment to assess their 

effects on improvement of growth and yield in wheat. The silicic acid concentrations affected 

crop positively as well as negatively as all the varieties produced highest plant growth and yield 

at 0.25% and 0.50% silicic acid application while the lowest plant growth and yield was found 

under 0.75% silicic acid. 

Mali and Aery (2009) studied the effect of different levels of Si on growth performance, 

biochemical constituents, and nutritional status of cowpea (Vigna unguiculata (L.) Walp). Lower 

applications of Si resulted in an enhancement in relative yield, leaf area, chlorophyll, and iron 

(Fe) contents and a reduction in proline contents. A significant dependence of tissue Si 

concentration on soil Si concentration was observed. The results indicate a beneficial effect of Si 

on cowpea plants. 
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1.1.2 Biotic stress resistance 

1.1.2.a. Plant diseases 

Application of N fertilizers is an important practice for increasing yield. But excess N 

causes succulence, lodging, mutual shading and susceptibility to pest and diseases (Berry et al. 

2000; Slaton 2003). The occurrence of blast disease is significantly inhibited by Si application in 

the field, especially when N application is heavy (Ma 2004). There are numerous reports of Si 

suppressing plant disease and pest, such as blast and sheath blight (Rhizoctonia solani) in rice 

(Datnoff et al. 1997; Seebold et al. 2001), powdery mildew (Podosphaera xanthii) in cucumber 

(Cucumis sativus), Arabidopsis (Arabidopsis thaliana), and wheat (Fauteux et al. 2005) and rust 

(Phakopsora pachyrhizi) in cowpea (Heath and Stumpf 1986). There are several hypotheses 

concerning the role of Si in imparting resistance in plants to fungal diseases such as blast, blight, 

powdery mildews, and root rots. The Si-treated host plants had a greater resistance to pathogen 

penetration of host tissue due to the specific accumulation and polymerization of monosilicic 

acid [Si(OH)4] in cell walls (Heath and Stumpf 1986; Kim et al. 2002). Recent work, however, 

contended that Si may act by stimulating the natural defense mechanisms of the plant (Bélanger 

et al. 1995). 

Cherif et al. (1994) reported a marked stimulation of chitinase activity and intense and 

rapid activation of peroxidases and polyphenoloxidases in cucumber plants amended with 

soluble Si after the infection with Pythium spp. Increased β- glucosidase activity was detected in 

protein extracts of infected Si amended plants. Studies have shown that plants treated with Si 

produce increased amounts of phytoalexins in the form of inactive glycosylated precursors (Fawe 

et al. 1998). Silicon is involved in the increased resistance of cucumber to powdery mildew by 

enhancing the antifungal activity of infected leaves. This antifungal activity was attributable to 
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the presence of low-molecular-weight metabolites. One of these metabolites, described here as a 

phytoalexin, was identified as a flavonol aglycone rhamnetin. Subsequent infection of these Si 

pre-treated plants by powdery mildew then caused these compounds to be activated, thereby 

inducing fungal cell death (Currie and Perry 2007). 

Experiments performed on cucumber leaves following fungal infection showed that 

further resistance to infection is acquired by expression of a proline-rich protein together with the 

presence of silica at the site of attempted penetration. The C-terminus of this protein contained a 

high density of lysine and arginine residues proposed to catalyze the localized deposition of 

silica at the site of vulnerability (Kauss et al. 2003). These results associated with Si with 

specific plant defense reactions appear to be multi- component, and resistance is contingent on 

the activation of a cascade of associated biochemical changes (Currie and Perry 2007).  Further 

investigation of these defense mechanisms by Bélanger et al. (2003) and Rodrigues et al. (2003), 

studying wheat and rice blast, respectively, indicated that these species were also capable of 

inducing similar biologically active defense agents, including increased production of 

glycosylated phenolics and antimicrobial products such as diterpenoid phytoalexins in the 

presence of silica. 

1.1.2.b. Agricultural pests 

The application of Si to crops is a viable component of an integrated management 

program for insect pests and diseases because it leaves no pesticide residue in food or the 

environment, is relatively cheap and could easily be integrated with other pest  management 

practices (Laing et al. 2006). It has been reported that Si suppresses insect pests such as stem-

borers (Chilo auricilius), brown plant-hopper (Nilaparvata lugens), green leaf-hopper (Cicadella 

viridis), white-backed plant- hopper (Sogatella furcifera), and non-insect pests such as spider 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759229/#MCM247C1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759229/#MCM247C42
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mites (Tetranychidae) (Savant et al. 1997, Ma and Takahashi 2002). Improved Si nutrition in 

sugarcane has been shown to increase resistance to stem borer (Diatracea saccharalis F.) 

(Anderson and Sosa 2001), and increase resistance to stalkborer (E.saccharina) (Elawad et al. 

1982; Keeping and Meyer 2003). 

Laing et al. (2006) reported that Si controls red spider mite on dicotyledonous crops such 

as green beans (Phaseolus vulgaris), brinjal (Solanum melongena), tomato (Solanum 

lycopersicum) and cucumber. Furthermore, Si deposits in plant organs were reported in most 

crops, including the mono and dicotyledonous families (Jones and Handreck 1967; Nishimura et 

al. 1989). This implies that Si plays a role in pest resistance in most, if not all, cultivated crops. 

Several mechanisms have been proposed to explain the tolerance and resistance of plants to 

insect pests. According to Bernays and Barbehenn (1987) most of the plant Si occurs in the 

epidermis, which might dislodge young larvae before they can establish in the stem. Various 

studies have demonstrated that Si increases the hardness of plant tissue, which negatively 

impacts insect larval boring and feeding ability. Djamin and Pathak (1967) showed that increased 

Si content in rice plants resulted in mandibular teeth loss of stem borer larvae. Recently, a 

parallel mechanism as that seen in the resistance of plants to diseases via an activation of the 

plant’s own defense mechanisms by soluble Si has been observed for insect pests. Sieburth et al. 

(1990) reported such a mode of action against insects such as the noctuid (Trichoplusia ni), the 

coccinellid (Epilachna varivestis), the aphid (Acyrthosiphon pisum), and the cockroach 

(Periplaneta americana). Similarly, Keeping and Meyer (2005) reported the resistance of 

sugarcane to E.saccharina. 
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1.1.3 Abiotic stress resistance  

1.1.3.a. Silicon remediation of heavy metal toxicity in soil and plants 

Silicon can improve plant growth and tolerance to biotic and abiotic stresses (Epstein 

1999; Liang et al. 2007; Newmann 2001). In the case of heavy-metal stress, the presence of Si in 

the growth medium is helpful for reducing uptake and accumulation of heavy metals like 

cadmium (Cd) in rice (Oryza sativa) (Shi et al. 2005), wheat (Nowakowski et al. 1997), and 

maize (Zea mays) (Liang et al. 2005) seedlings.  

             When exposed to Al no differences in pH values of the bulk nutrient solution were 

detectable in Si- treated plants over Si- untreated plants. Therefore, it seems likely that apoplastic 

Si buffers the H
+
 concentration so that Si- treated plants may have higher pH values at the root 

surface and in the apoplast of the outer cortex. This leads to the precipitation and lower uptake of 

Al. Another possibility would be the formation of insoluble aluminium phosphate at the root 

surface. Also, the roots of Si- treated plants had considerably higher P concentrations than those 

of Si- untreated plants (Corrales et al. 1997).  

Song et al. (2011) concluded that Si mediated alleviation of zinc (Zn) toxicity in plants is 

mainly attributed to Si-mediated antioxidant defense capacity, membrane integrity and the 

reduction of root-to-shoot translocation of Zn. He conducted a study in which the rice plants 

treated with Si presented not only biomass increase but also lower Zn toxicity. The lower lipid 

peroxidation and higher antioxidant defense activity in roots of both cultivars were also observed 

as a result of Si application. 

The role of Si application in reducing Cd accumulation in edible plant parts has been well 

documented (Liang et al. 2005, Chen et al. 2000). Increasing amount of evidence has shown that 

Si significantly interferes with root uptake and translocation of Cd from roots to shoots in plants. 
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The relationship between Si application and reduced Cd uptake has been extensively studied. As 

stated by Liang et al. (2007) and Wang et al. (2000), the possible mechanisms responsible for 

low Cd accumulation in edible parts of plants are: (1) lower mobility of Cd towards roots due to 

silicate induced pH rise in soils; (2) Si induced co-precipitation of Cd and Si in soil; (3) co-

precipitation of Si and Cd at root surfaces; (4) decreased transport of Cd from roots to xylem; (5) 

reduced translocation of Cd from roots to shoots due to decreased evapotranspiration associated 

with Si deposition in cell walls, and as a double layer of polymerized Si in the cuticle; and (6) 

increased uptake of calcium (Ca) with the application of Si, which decreased Cd uptake due to 

competition for uptake. 

1.1.3.b. Silicon and salt tolerance 

Silicon has been reported to reduce the shoot and leaf Ca content in rice and alfalfa 

(Medicago sativa L.) plants under salt stress, which suggests that Si resulted in a low 

transpiration rate (Ma and Takahashi 1993). Gunes et al. (2007) investigated the effect of Si on 

the growth, uptake of sodium (Na), chloride (Cl), and boron (B) in spinach (Spinacia oleracea) 

and tomato grown in sodic- B toxic soil. Silicon applied to the sodic- B toxic soil at 2.5 and 5.0 

mM concentrations significantly increased the Si concentration in the plant species and 

counteracted the deleterious effects of high concentrations of Na, Cl and B on root and shoot 

growth by lowering the accumulation of these elements in the plants. He deduced that Si 

alleviates sodicity and B toxicity by preventing both oxidative membrane damage and also 

translocation of Na, Cl and B from root to shoots and/or soil to plant, and lowering the 

phytotoxic effects of Na, Cl and B within plant tissues.  

Liang and Ding (2002) investigated the micro- distribution of ions in roots as affected by 

Si with respect to salt tolerance. The results showed that Si depressed the uptake of Na but 
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enhanced the uptake of potassium (K) by salt-stressed barley. The addition of Si significantly 

enhanced leaf photosynthesis and stimulated the uptake of K but depressed the uptake of Na by 

plants, thereby increasing the selectivity ratio (K: Na). The likely mechanism involved was the 

increased H
+
-ATPase activity in salt-stressed plants in the presence of Si. However, no 

significant difference was observed in P content between the salt treatment with and without 

added Si. 

1.1.4 Physical stress resistance 

Silicon is accumulated primarily in the epidermal tissues of both roots and leaves in the 

form of a silica-gel (phytoliths). This thickened epidermal Si-cellulose layer supports the 

mechanical stability of plants, thereby resisting lodging and also a greater retention of seed, 

especially in grasses (Savant et al. 1999). The increased mechanical strength also increases the 

light receiving posture of the plant. Leaves were reported to be darker green, stiffer and slower to 

senesce, increasing their potential for photosynthesis and growth (Epstein 1994). The deposition 

of Si in the culms, leaves and hulls also decreases transpiration from the cuticle and this 

increases resistance to lodging, low and high temperature, radiation, UV and drought stress (Ma 

and Yamaji 2006). 

1.2 Indirect influence through soil fertility 

1.2.1 Effect of Si on the uptake of other nutrients  

The presence of Si in nutrient solutions affects the absorption and translocation of several 

macro and micro-nutrients (Epstein 1994). Increased Si fertilization increases Zn uptake if 

deficient, especially if P is excessive (Marschner et al. 1990). Silicon fertilization retards the 

toxic uptake of P by roots, such as in cucumbers (Marschner 1990), while promoting its 

translocation to grain in rice and wheat (Lewin and Reimann 1969). Cultivated plants can use 
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only about 30% of applied phosphate fertilizer, if leaching is low. The mixture of active Si with 

P fertilizer can increase the efficiency of P fertilization by 40-60% (Matichenkov et al. 1997). 

Importantly, Si-rich amendments are recommended for the reduction in leaching of N, P and K 

based fertilizers (Matichenkov and Bocharnikova 2010). 

1.2.2 Silicon and soil physicochemical properties 

In the soil solution, or liquid phase, Si is present as H4SiO4 [Si(OH)4], referred to as 

plant-available Si and polysilicic acid (the polymer of plant-available Si) as well as complexes 

with organic and inorganic compounds such as Al oxides and hydroxides (Berthelsen et al. 

2003). While it is the plant-available Si that is taken up by the plants and has a direct influence 

on crop growth, the polysilicic acid and inorganic and organic complexes are important 

sources/sinks that replenish the plant-available Si following crop use. They also have an 

important and significant effect on the soil properties such as improving soil aggregation and 

increasing soil water holding capacity as well as increasing the exchange and buffering capacity 

of the soil (Berthelsen et al. 2003). Silicon controls the chemical and biological properties of soil 

with the benefits like reduced leaching of P and K (Sadgrove 2006), reduced Al, iron (Fe), Mn 

and heavy metal mobility (Matichenkov  and Calvert 2002), increased stability of soil organic 

matter (Matichenkov and Calvert  2002), improved microbial activity (Matichenkov and Calvert 

2002), soil texture (Sadgrove 2006), water holding capacity (Sadgrove 2006), increased stability 

against soil erosion (Sadgrove 2006), and cationic exchange capacity (CEC) (Camberato 2001). 

Therefore even if a plant is a low Si-accumulator, it will benefit from the improved soil 

properties resulting from the application of Si. 
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1.3 Silicon accumulation in plants 

 Silicon is taken up in the form of an uncharged molecule, silicic acid. Recent reviews 

reported that Si accumulation is, in general, higher in monocot than in non-monocot species 

(Epstein 1999; Richmond and Sussman 2003).The difference in Si accumulation has been 

attributed to the ability of the roots to take up Si.Three different modes of Si uptake have been 

proposed for plants having different degrees of Si accumulation, that is, active, passive, and 

rejective uptake. Plants with an active mode of uptake take up Si faster than water, resulting in a 

depletion of Si in the uptake solution. Plants with a passive mode of uptake take up Si at a rate 

that is similar to the uptake rate of water; thus, no significant changes in the concentration of Si 

in the uptake solution are observed. By contrast, plants with a rejective mode of uptake tend to 

exclude Si, which is demonstrated by the increasing concentration of Si in the uptake solution 

(Takahashi et al. 1990).  

Liang et al. (2006) characterized Si uptake and xylem loading in rice, maize, sunflower 

(Helianthus annuus) and ash gourd (Benincase hispida) in a series of hydroponic experiments. 

Both active and passive Si-uptake components co-exist in all the plants tested. The active 

component is the major mechanism responsible for Si uptake in rice and maize. By contrast, 

passive uptake prevails in sunflower and ash gourd at a higher external Si concentration (0.85 

mM), while the active component constantly exists and contributes to the total Si uptake, 

especially at a lower external Si concentration (0.085 mM). Silicon accumulation into various 

plant organs varies among rice genotypes (Winslow et al. 1997). Different parts of the same 

plant can show large differences in Si accumulation. In  rice, this variation can be seen  from 0.5 

g kg
-1

 in polished rice, 50 g kg
-1

 in rice bran, 130 g kg
-1

 in rice straw, 230 g kg
-1

 in rice hulls to 

350 g kg
-1

 in rice joints (found at the base of the grain) (Van Hoest 2006).  
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Maize shows a high accumulation of Si. Mitani et al. (2009) isolated two genes (ZmLsi1 

and ZmLsi6) in maize which are homologous to rice Si transporter. Immuno staining showed that 

ZmLsi1 was localized on the plasma membrane of the distal side of root epidermal and 

hypodermal cells in the seminal and crown roots, and also in cortex cells in lateral roots. ZmLsi6 

was found in the xylem parenchyma cells that are adjacent to the vessels in both leaf sheaths and 

leaf blades. 

Hodson and Sangster (1988) observed that in the case of wheat, Si compounds 

predominantly deposited in the epidermal cells of the abaxial side of the leaves, while in older 

leaves incorporated Si compounds are on the adaxial side as well. Mecfel et al. (2007) reported 

that significant Si contents in the cell walls suggesting that the enrichment with Si compounds is 

due to an accumulation of Si within regions that are rich in matrix materials like hemicelluloses 

and pectins. 

Despite an abundance of studies on the site and shape of silica depositions within plants, 

no molecular mechanism for this deposition has been characterized. Depositions of opal occur 

throughout the plant in cell walls, cell lumens, tricombs, intracellular spaces, roots, leaves, and 

reproductive organs. Silica depositions primarily occur through evapotranspiration (Motomura 

2002), a hypothesis based on the fact that the common locations of opal coincide with major 

evapotranspiration sites. There is, however, some evidence that plant macromolecules participate 

in forming an organic matrix for silica deposition (Inanaga et al. 1995). Such molecules have 

already been identified in other organisms that deposit silica (Kroger et al. 2002). 

Neumann and Figueiredo (2002) studied the components of some silica deposits which 

showed to be precipitates of Si and Zn, or Si and Al. It is thought that this co-precipitation of 

heavy metals and Si is part of the mechanism that allows plants to ameliorate heavy metal 
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toxicity. Silicon may have additional roles in increasing tolerance of Al. Silicon-treated maize 

plants release fifteen times more phenolics than untreated maize plants (Kidd et al. 2001). These 

flavonoid- phenolics (i.e. catechin and quercetin) have a strong Al-chelating ability and may 

provide heavy-metal tolerance in plants. 

Phytoliths are silica deposits that retain genus or species specific morphological 

characteristics in higher plants. Recently, phytoliths have received increased attention because of 

the application of phytolith analysis in archeological research. Unique and specific deposits have 

been noted in Equisitaceae (horsetails), Coniferophyta (gymnosperms), and Magnoliophyta 

(angiosperms; including monocots and dicots) (Sangster et al. 2001).  

Work by Piperno et al. (2002) and Dorweiler and Doebley (1997) examined the genetic 

basis of silica deposition. In the dicot Cucurbita, phytolith deposition was correlated with the 

presence of a mutant locus called Hard rind (Hr); whereas in the monocot maize, phytolith 

deposition appeared to be linked to the teosinte glume architecture1 (tga1) locus. In both plant 

species, silification appeared to be linked to loci that are involved in lignification. However, 

silicic acid has a strong affinity to the organic polyhydroxyl compounds, which participate in the 

synthesis of lignin. 

1.3.1 Benefits of Si in rice  

When accumulated Si typically represents more than 1% of dry mass, a species is 

considered a Si-accumulator (Epstein 1994). Many species of wetland grasses, notably rice, 

accumulate 5% Si or more in their leaf tissue. Singh et al. (2006) suggested an increased dry 

matter and yield in rice with Si application. In rice, about 66% of the Si in the whole plant and 

70-75% in the leaf blades were absorbed during the reproductive stage and 75% Si in the panicle 

was absorbed during ripening stage. During vegetative phase about 50% of absorbed Si was 
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present in leaf blades. The application of Si, hardly influenced the 1000- grain weight, but there 

was an increase in filled spikelets and grain yield. Dry weight of straw increased about 30-200% 

when Si was applied at reproductive stage (Ma et al. 1989). 

In upland rice of humid tropics, where the soil is low in available Si, an increase in grain 

yield was observed by an average of 34% by the application of Si and magnesium (Mg). 

Application of Mg improved the uptake of Si and increased the Si content in rice plants. Silicon 

increased the percentage of filled spikelet and 1000- grain weight and markedly reduced panicle 

damage and grain discoloration (Yamauchi and Winslow 1989). 

In rice, Si has been demonstrated to be necessary for the growth and production. Islam 

and Saha (1969) reported that Si application to the nutrient solution promoted the uptake of P, Ca 

and Mg and decreased the uptake of K by rice plants. A retarding effect on the uptake of P was 

also reported by Okuda and Takahashi (1965). By means of Electron probe micro-

analyzer (EPMA), Soni et al. (1972) examined the effect of the accumulation of Si on the 

accumulation of various elements in silica cells of rice leaves. They reported that smaller or no 

amount of K and P was detected in silica cells in the adaxial epidermis of leaf blade compared 

with the adjoining cells, while the amount of Mg was slightly greater in silica cells than the 

abaxial surface of leaf sheath. 

Ma and Takahashi (1990) conducted an experiment to measure the effect of Si on P 

uptake and on the growth of rice plant at different P levels. Shoot dry weight increased with 

increased application of P when Si was applied suggesting Si application raised the optimum P 

level in rice. The beneficial effect of Si on the growth of rice was clearly shown when P was low 

or high. This effect may have resulted from decreased Mn and Fe uptake. 
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Gong et al. (2006) carried out research using sodium Chloride salt (50 mM NaCl) that 

reduced the growth of shoots and roots; and after adding silicate (3 mM) to the saline culture 

solution he reported improved growth of the shoots, but not roots. The improvement of shoot 

growth in the presence of silicate was correlated with reduced sodium concentration in the shoot. 

The net transport rate of Na from the root to shoot was also decreased by added silicate. There 

was, however, no effect of silicate on the net transport of K. The K: Na in the shoot was greater 

in silicate treated seedlings than plants grown without additional Si. From these results, he 

suggested that Si deposition in the exodermis and endodermis reduced Na uptake in rice 

seedlings under NaCl stress through a reduction in apoplastic transport across the root. 

Savant et al. (1997) reviewed the accumulated Si in the cuticle. Silicon double layer of 

the rice plant tissues helps the plant to maintain erect leaves, increase mechanical strength 

against fungal disease and minimize transpiration. To control rice blast effectively at the nursery 

stage, the absolute SiO2 (silicon dioxide) content necessary for rice plants to resist blast disease 

was investigated using various rice cultivars and soils (Hayasaka et al. 2005). In all the rice 

cultivars studied, the number of lesions was significantly reduced when SiO2 content increased in 

the rice seedling; lesions were reduced to 5% – 20% when the seedling SiO2 content reached 5%. 

These results suggest that SiO2 content of at least 5% in the rice plant can control this disease at 

the nursery stage under any conditions. Rodrigues et al. (2001) measured levels of sheath blight, 

caused by Rhizoctonia solani in six rice cultivars grown with and without Si. The treatment with 

Si increased the concentration of Si in plant tissue by 80%. Overall Si treatment, significantly 

reduced the severity of sheath blight, and the total area under the vertical lesion in moderately 

susceptible and susceptible cultivars compared to those cultivars high in partial resistance 

without Si. In the absence of disease, Si enhanced dry matter accumulation by 15% over the 
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control, whereas Si application, more than doubled the mean dry matter accumulation in infected 

plants. Rodrigues et al. (2003) indicated that rice cultivars were capable of inducing similar 

biologically active defense agents, including increased production of glycosylated phenolics and 

antimicrobial products such as diterpenoid phytoalexins in the presence of silica. 

Voleti et al. (2008), investigated promoter or carrier-induced Si transportation into rice in 

relation to blast disease resistance. The results showed simple amino acids, such as histidine, 

imidazole, glutamic acid, glycine and glutamine significantly enhanced the levels of H4SiO4 in 

the stem and 14-18% Si transport into the leaf surface. The work identified a novel class of bio-

compatible molecules, which exhibit remarkable resistance to blast infections and generate 

higher dry matter and increased yields. 

1.3.2 Silicon accumulation and uptake in rice  

The uptake of Si by rice and other plants is not well understood, but appears to be 

influenced by a number of soil and climatic factors. Growth chamber studies comparing the 

effects of low (4°C) and high (25°C) temperatures showed that low temperatures substantially 

suppressed assimilation of Si by rice and corn as did chemical inhibitors of metabolism (Liang et 

al. 2006). They also observed that increasing solution concentrations of Si, however, increased Si 

uptake even at low temperatures, suggesting that uptake is a combination of both metabolic rate 

and Si availability. 

The uptake system of Si was investigated by Mitani and Ma (2005) in terms of the radial 

transport from the external solution to the root cortical cells and the release of Si from the 

cortical cells to the xylem in rice, cucumber, and tomato, which differ greatly in shoot Si 

concentration. The concentrations of Si in the root-cell symplast in rice were 3 and 5 fold higher 

than that in cucumber and tomato, respectively. These results indicate that a higher density of 
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transporter for radial transport and the presence of a transporter for xylem loading are 

responsible for the high Si accumulation in rice. 

Recently, three transporters Lsi1, Lsi2 and Lsi6 responsible for the high capacity of rice 

for Si uptake have been identified. Lsi1 is an influx transporter of silicic acid, while Lsi2 is an 

active efflux transporter of silicic acid. Lsi6 is the transporter responsible for the transport of Si 

out of the xylem and subsequently affects the distribution of Si in the leaf. Lsi2 actively 

transports Si into the stele and thereby maintains a low Si concentration in exodermis and 

endodermis cells. The resulting concentration gradient between endodermis and exodermis on 

the one hand and cortex and soil solution on the other hand drives Si influx through Lsi1, which 

is involved in the distribution of Si in the shoots (Ma et al. 2006, 2007a, 2007 b; Yamaji et al. 

2007). The translocation and deposition of Si in rice are closely related to cuticular transpiration, 

and Si is localized along the transpiration stream. Silicon is predominantly deposited in the 

epidermis of all tissues of rice. In rice leaves, Si is deposited in the epidermis, vascular bundles 

plus bundle sheath, and sclerenchyma. The Si layer forms in epidermal cell walls beneath the 

cuticle, which has been referred to as the cuticle-silica double layer (Yoshida et al. 1962). 

1.4 Source and status of Si in soil    

Although Si is the second most abundant element after oxygen in the earth’s crust, certain 

soils tend to be low in plant-available Si (Datnoff et al. 1997). Low-Si soils are typically highly 

weathered, leached, acidic, and low in base saturation. Thus Oxisols and Ultisols can be quite 

low in soluble Si (Foy 1992). Histosols with an organic matter content greater than 80%, and 

thus low in mineral content, are also deficient in plant-available Si (Snyder et al. 1986). Soils 

comprised mainly of quartz sand (SiO2), such as sandy Entisols, are also very low in plant-

available Si (Datnoff et al. 1997). Repeated cropping of rice can also reduce the level of plant-
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available Si to the point that supplemental Si application is required for maximum production 

(Elawad and Green 1979). These soils may be found in some golf courses, athletic fields, and 

home lawns where perennial ryegrass is cultivated. In addition, repeated cropping of perennial 

ryegrass and removal of grass clippings may reduce the level of plant-available Si in these soils.     

Mineral soils develop from rocks or sediments and are mainly composed of primary 

crystalline silicates such as quartz, feldspars, mica and secondary silicates, especially clay 

minerals (Iler 1979). Moreover, they contain Si of biogenic origin (Jones and Hendreck 1969) 

and pedogenic amorphous silica (Drees et al. 1989). Silicon also occurs in soil as complexes with 

Fe, Al, heavy metals and organic matter (Farmer et al. 2005).  Silicic acid dissolved in soil 

solution has some part of it adsorbed to soil minerals, particularly oxides and hydroxides of Fe 

and Al (Hansen et al. 1994; Dietzel 2002). Dissolved silicic acid in soil solutions primarily 

occurs as monomeric or oligomeric silicic acid (Iler 1979). Knight and Kinrade (2001) reported 

that monomeric silicic acid (Si(OH)4) dissociates into H
+
 + H3SiO4

 -
 above pH 9 and into 2H

+
 + 

H2SiO4
2-

 above pH 11. Oligomeric silicic acid is only stable at high concentration of silicic acid 

at pH > 9. In most of soils and natural waters only undissociated monomeric silicic acid occurs 

(Dietzel 2000).  

 Silicon compounds in the soils are classified into soil solution and adsorbed Si forms 

(monosilicic and polysilicic acids), amorphous forms (phytoliths and silica nodules), poorly 

crystalline and microcrystalline forms (allophane, immogolite and secondary quartz), and 

crystalline forms (primary silicates: quartz, feldspars, secondary silicates: clay minerals) (Saur et 

al. 2006; Cornelis et al. 2011). Wang et al. (2004) also suggested that the seven extractants used 

in their study characterized different pools of Si-supplying capacity of the soil: extractable by 

water, extractable by any of HCl, citric acid, acetic acid, acetate buffer, and NH4OAc, and 
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extractable by Mehlich-3.  The dissolution of Si in paddy soils is influenced by soil temperature, 

soil redox potential, soil pH and Si concentration in soil solution (Sumida 1991). Plant-available 

Si is only present in solution at less than pH 9 and has a solubility of 65 mg L
-1

, which is 

constant between pH 2 to 8.5 (Jones and Handreck 1967). There is a polymerization of plant-

available Si to form a silica‐gel if it exceeds a concentration of 65 mg L
-1

 or if there is 

dehydration of the soil, which is reversible on dilution (Savant et al. 1999). Silicon can be added 

via irrigation water and fertilization but it is lost through plant absorption and leaching. 

Therefore solubility of Si in the soil is affected by a number of factors occurring in the soil 

including the particle size of the Si fertilizer, the soil pH, organic complexes, presence of Al, Fe 

and phosphate ions, temperature, exchangeable or dissolution reactions and soil moisture 

(Berthelsen et al. 2003).  

1.5 Soils of Louisiana 

The high concentrations of soluble silicate in soil water and large reserves of silicate 

minerals might be the reasons to dismiss silica deficiency in most mineral soils, especially in 

soils containing appreciable amounts of 2:1 clay minerals such as those that occupy much of 

Louisiana’s landscape. Sufficient reports of improved crop yields and other benefits to Si 

applications have been documented in the scientific literature to suggest that Si fertilization 

merits consideration in all regions used for commercial production of rice, sugarcane, wheat and 

other crops that accumulate high amounts Si in their tissues and harvested components (Savant et 

al. 1999; Berthelsen et al. 2001; Datnoff et al. 2001). 

The benefits of Si fertilization on crop yields and quality has been studied extensively in 

Asia, Africa, South America and most other regions where rice, sugarcane and other Si-

accumulating crops are commercially grown (Snyder et al. 1986). The most common form of 
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silicate fertilizer applied to soils is slag, a by-product of steel manufacturing. In addition to 

calcium silicate, slag typically contains calcium hydroxide and calcium oxide as well as calcium 

carbonate and numerous micronutrients. Because slag application causes an increase in soil pH 

and exchangeable Ca, it may be considered an alternative to Ag-lime (calcium carbonate) 

application for soils rendered acidic by cropping and fertilization.  

Recent investigations into the cause of localized decline (Breitenbeck et al. 2006), a 

malady of unknown cause affecting flooded rice in southwestern Louisiana; suggest that Si 

deficiency may be a contributor, if not a primary cause of this disorder. Tissue analyses have 

confirmed that toxic levels of Fe and Al in young rice plants are a diagnostic characteristic of 

this disorder even though soil pH and other soil properties in afflicted fields are not consistent 

with Fe and Al toxicity. This inconsistency prompted a study that confirmed the possibility of 

silica deficiency contributing to the onset of localized decline. Numerous studies have shown 

that Si uptake mitigates Al and Fe toxicity as well as a range of other abiotic and biotic stresses 

in rice and other crops (Ma and Takahashi 2002; Epstein 1999). The specific mechanisms 

responsible for benefits of silica are not completely understood, but it is clear that Si influences 

the solubility of Fe and Al in flooded soils, the uptake of these potentially toxic metals by roots, 

and the ability of plants to tolerate elevated tissue concentrations (Ma and Takahashi 2002).  

After their review of extensive field studies in Asia, Lian (1976) concluded no significant 

increase in yield occurred when mature straw contained greater than 61 g Si kg
-1 

(Japan and 

Korea) and 51 g Si kg
-1 

(Taiwan). Indian rice varieties growing in tropical regions of Sri Lanka 

and India appear to respond to Si fertilization at straw concentrations less than 37 g Si kg
-1

. This 

latter value is similar to value of 34 g Si kg
-1

 established by Korndorfer et al. (2001) as the 

economic response to Si fertilization in the Everglades Agricultural Area of Florida. Studies to 
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establish early or late season critical Si values for other rice growing regions of the US have not 

been reported.  

Compared to the impacts of other nutrients on rice production, the economic importance 

of Si is poorly understood in the south central US. While a number of soil test have been 

proposed to assess Si availability, none of these tests has found widespread acceptance. A more 

complete understanding of the Si status of agricultural soils in the south Central US is needed to 

characterize the potential for Si deficiency and the merits of additional Si research in our region. 

1.6 Silicon fertilization in soil 

Silicon deficiency in crops has been recognized since the 1970s. The optimization of Si 

nutrition has been shown to have positive effects on plants. In particular, substantial research on 

rice and sugarcane has shown that Si application can significantly enhance insect pest and 

disease resistance with consequent yield increases. Plants differ in their ability to accumulate Si 

(Ma and Yamaji 2006) but in order for any plant to benefit from Si it must be able to acquire this 

element in high concentrations. The concentration of plant-available Si in the soil is dynamic and 

influenced by soil pH, temperature, composition of the soil and moisture, amongst others. Silicon 

fertilizer is necessary to improve soils deficient in Si and replace Si removed by cropping and 

leaching. The composition of soils in terms of the level of Si is an important parameter to 

measure in order to determine its Si-deficiency. For example, Queensland sugarcane soils are 

considered deficient in Si if the concentration is less than 10-15 mg Si kg
-1

 dry soil following 

extraction with 0.01 M CaCl2 (Muir et al. 2001). Berthelsen et al. (2003) analyzed three different 

Australian soils: Bundaberg (Hydrosol soil), Mossman (Tennosol) and Innisfail (Ferrosol). These 

soils varied in their levels of plant-available Si in the order: Hydrosol > Tennesol > Ferrosol. 

Areas of high rainfall and temperature undergo significant weathering where important nutrients 



22 

 

(Ca
2+

, Mg
2+

, K
+
 and Na

+
) are stripped from the soil resulting in acidification of the soil, which in 

turn dissolves aluminosilicate clay minerals with the concomitant leaching of Si. Matichenkov 

and Calvert (2002) report that 210-224 million tons of plant-available Si is removed from arable 

soils globally on an annual basis, assuming 700-800 kg ha
-1

 of plant-available silica is removed 

with the harvesting of crops. Harvesting cultivated plants usually results in Si being removed 

from the soil. In most cases much more Si is removed than other macronutrients (Savant et al. 

1997). In continuous cropping with high Si-accumulator species such as sugarcane and rice, the 

removal of plant-available Si can be greater than the supply via natural processes releasing it into 

the soil unless fertilized with Si (Savant et al. 1997).    

While other plant-available elements are restored by standard fertilization, Si is not. The 

Green Revolution experienced since the 1960’s was borne of high-yielding rice varieties in 

irrigated areas with high fertilizer and insecticide usage. This intensive rice production was also 

supported by reducing the crop fallow periods, which would have been insufficient to allow 

regeneration of plant-available Si (Savant et al. 1997). With the likely removal of large amounts 

of plant nutrients, including Si, from the soil, attempts were made to replace these nutrients using 

conventional fertilizers (Savant et al. 1997). However, the potential beneficial role of Si was 

overlooked. Silicon-depleted soils have been associated with lower resistance to insect pests and 

fungal diseases as well as crop lodging (Savant et al. 1997; Flinn and DeDatta 1984). Japanese 

rice farmers have sustained high yields under intensive cultivation due probably in part by the 

application of silicate slag (Savant et al. 1997). 

1.7 Rationale for Research  

Silicon has become widely accepted as an important element in considering soil condition 

and plant nutrient programs. Over the past few decades a significant body of knowledge has 
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developed regarding the role of Si in soil health and increased crop yield and productivity. 

Studies from the rice industry in Japan to the sugar cane industry in North America have shown 

the importance of Si as an element in the nutrition programs of key economic crops and beyond 

that the ability of Si to enhance the efficacy of delivering other elements in broader fertilization 

programs. This is of particular importance for the agricultural soils of Louisiana subjected to 

repeated cropping and heavy rainfall throughout the year.  

There is a need for a systematic approach for determining soil Si status that can become 

the basis of soil analysis and fertilizer recommendations. Thus this research consisted of three 

major objectives; 1) to document the plant available Si status using different extraction 

procedures in agricultural soils of Louisiana; 2) to study the sorption and changes in 

concentration of plant-available Si in solutions of six different soils with two different Si 

fertilizers, and 3) to evaluate the soil test methods to determine the soil critical level of plant 

available Si based on different soil test methods, by assessing the effect of soil Si concentrations 

on Si uptake and biomass yield in rice.  
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Chapter 2. Survey of the plant-available silicon status of agricultural soils in 

Louisiana 
 

2.1 Introduction 

Today, it is universally acknowledged that silicon (Si) is crucial to the healthy growth of 

many crops, especially Si-accumulators such as rice (Meyer and Keeping 2001; Savant et al. 

1997, 1999). The main role of Si in rice has been its role against plant disease (Miyake and 

Takahashi 1983). Six states now account for over 99% of all rice (Oryza sativa) grown in the 

US. These are Arkansas, California, Louisiana, Mississippi, Missouri and Texas. In 2013/14, US 

rice crop was projected, by at 185.1 million cwt (hundredweight, rough basis), 7% below with 

previous year and 24 percent below the record 2010/11 crop (USDA, NASS 2013). Maintaining 

sufficient level of nitrogen (N), phosphorus (P) and potassium (K) without considering other 

nutrients such as Si and micro elements can result in an imbalance in plant nutrition. Moreover, 

rice cultivation (generally 2-3 times a year) without sufficient nutrient replenishment could also 

be responsible for the degradation in soil productivity. Uptake of Si in rice plants ranges from 

230 to 470 kg Si ha
-1

, which is two times higher than N uptake (Savant et al. 1997). While Si 

fertilization is routine in many countries, it is not widely practiced in the United States. The 

Everglades Agricultural Area (EAA) of south Florida is a notable exception. As the organic 

mucks and sandy soils offer very low Si availability, many rice and sugarcane (Saccharum 

officinarum) fields are treated with slag to increase Si availability (Snyder 2003). Silicon 

fertilization has largely been overlooked in Louisiana and other rice growing regions of the US 

where most soils contain appreciable amounts of 2:1 layered silicate clay minerals, and therefore 

are presumed to supply adequate amounts of silicates to crops (Kraska and Breitenbeck 2010). 

There is little evidence, however, to support the assumption that these mineral soils supply 
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sufficient Si to meet fully, the needs of rice, sugarcane and other Si accumulating crops. A 

preliminary survey of Louisiana rice at mid-tiller showed that plants affected  with a mysterious 

early season disorder labeled “localized decline” also contained low levels of Si (12-36 mg kg
-1

), 

suggesting that Si deficiency may be a contributing factor to localized decline (Breitenbeck et al. 

2006). 

A study conducted by Narayanaswamy and Prakash (2009) showed that the application of 

calcium silicate resulted in significant increase in Si content of rice plants as compared to the 

control plants. In a study conducted by Jaspreet et al. (2013) in Louisiana, soil Si amendment led 

to lower relative growth rates and helped in significantly reducing the intensity of stem borer 

(Diatraea saccharalis) larvae that plague the sugarcane plants vis-a-vis control plants. Further, 

these results suggest that soil Si amendment has the potential to fit into the IPM (Integrated Pest 

Management) program for stem borers as it is feasible, environment friendly and compatible 

with other control tactics. 

Soils of Louisiana vary significantly. One reason for this high variation is the deposition 

process associated with many Louisiana soils. The fluvial process of soil deposition, where 

sediment originated from various weathered parent materials across the upper portion of the 

Mississippi River drainage basin, brings about highly diverse soils that can be deposited in a very 

small area. This high variability can influence many physicochemical properties, which include 

texture, soil pH, and essential plant nutrients (Hodges 1997; Stanturf and Schoenholtz 1998). The 

climate of Louisiana is humid and subtropical, with average annual temperatures from 17°C in 

the northern part of the state to 22°C in coastal areas. Average annual rainfall ranges from 119 

cm in the northwestern part of the state to 180 cm in isolated southeastern areas (Soil Survey 

Staff 2012). A major consequence of the chemical weathering of primary silicate minerals is 
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desilication. The severe and frequent soil erosion and sediment transportation in these areas 

owing to high rainfall and coarse texture of soil could lead to desilication and relatively low soil 

Si (White 1995). Weathering releases highly mobile basic cations (Ca
2+

, Mg
2+

, K
+
, and Na

+
), 

moderately mobile monosilicic acid [Si(OH)4], and relatively immobile Al and Fe into soil 

solution (White 1995; Karathanasis 2006). Part of the Si released from the mineral structure 

reacts with Al (and to a lesser extent Fe and Mg) to form secondary clay minerals, while the 

remainder is subjected to leaching. As a consequence, most soils experience a loss of Si and 

basic cations during weathering (White 1995). Desilication is most pronounced in humid tropical 

environments and occurs to a lesser extent in temperate regions (Karathanasis 2006).   

Silicon can exist both as monosilicic acid [Si(OH)4] and polysilicic acid [Si(OH)4]x  in 

soil solutions and soil extracts. The plant available form is [Si(OH)4], and the molybdenum blue 

colorimetry (MBC) procedure reacts only with [Si(OH)4]. Therefore, does not determine Si in 

the [Si(OH)4]x form. Atomic absorption spectroscopy and Inductively Couple Plasma (ICP) 

measure total Si, including [Si(OH)4], [Si(OH)4]x, and soluble organosilicon compounds (Snyder, 

2001). Thus, in this study evaluation of different procedures for estimating plant-available Si was 

done by measuring the [Si(OH)4] brought into solution using the MBC. 

 The main objectives of this study were to: 1) survey the extractable Si in the agricultural 

soils of different parishes of Louisiana, 2) relate extractable Si with soil texture and pH, and 3) 

categorize soil Si levels in Louisiana based on established critical levels.  

2.2 Materials and Methods  

2.2.1 Survey strategy 

 With the help of LSU AgCenter Extension Agents, 212 representative agricultural fields 

of 27 parishes of Louisiana were included in the survey. Sampling sites included agricultural 
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fields in different parishes presently under the cultivation of different crops to represent the 

principal cropping systems and soils in Louisiana. The survey was conducted from 2012 to 2015. 

2.2.2 Sampling 

 A uniform area within a production field that had not received any prior Si amendments 

was sampled. Soil samples were obtained from 27 parishes (Figure 2.1). Each field sample 

represents a composite of 20 separate cores. On receipt, the soils were oven dried and stored until 

the analysis was started. Soils were uniformly ground and sieved through a 2-mm stainless-steel 

mesh. Sampling locations were geo-located using the global positioning system (GPS) receiver.  

2.2.3 Soil silicon analysis 

 Silicon was extracted from soils using seven extractants as outlined by different 

researchers (Table 2.1).  Silicon concentration in soil extracts was determined using 

Molybdenum Blue Colorimetry (Korndorfer et al. 2001). A known volume of filtrate was 

transferred into a plastic centrifuge tube and then 10 mL of deionized water, plus 0.5 mL of 1:1 

hydrochloric acid (HCl), and 1 mL of 10% ammonium molybdate [(NH4)6Mo7O2] solution (pH 

7.5) was added. After 5 minutes, 1 mL of 20% tartaric acid solution was added and after two 

minutes, 1 mL of the reducing agent amino napthol n-sulphonic acid (ANSA) was added. After 

five, but not later than 30 minutes following addition of the reducing agent, absorbance was 

measured at 630 nm using UV visible spectrophotometer (Hach DR 5000). Simultaneously, Si 

standards (0.2, 0.4, 0.8 and 1.2 mg L
−1

) prepared in the same matrix were also measured using 

UV visible spectrophotometer. 
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Figure 2.1 The different parishes of Louisiana with major crops grown surveyed for determining 

soil silicon status 
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Table 2.1 Different extractants and procedures used for evaluating available Si in different soils 

 

Extractants 
Soil: 

solution 
ratio 

Procedures Reference 

0.5 M Acetic Acid-1 
 
 

1:10 1hr Korndorfer et al. 1999 

0.01 M Calcium Chloride 
(CaCl2) 

 
1:10 1hr Korndorfer et al. 1999 

1 M Sodium Acetate 
(NaOAc) 

 
1:10 1hr Fox et al. 1967 

Deionized water 
 
 

1:10 1hr Korndorfer et al. 1999 

0.5 M Ammonium Acetate 
(NH4OAc) 

 
1:10 1hr Korndorfer et al. 1999 

0.1 M Citric Acid 
 
 

1:50 2 hrs; 24hrs rest; 1hr 
Acquaye and Tinsley  1965 

 

0.5 M Acetic Acid-2 
 
 

1:2.5 24hrs rest; 2hr Snyder  2001 

2.2.4 Determining Soil pH, extractable P, K, Ca, Mg, S, Cu and Zn 

2.2.4.a. Soil pH (1:1 water) 

 Ten (10) grams soil sample was weighed and added with 10 mL distilled water. Samples 

were shaken for 1 hour in a reciprocal shaker and set undisturbed for 1 hour. The soil pH was 

measured using pH electrode meter.  

2.2.4.b. Soil texture 

  Soil textural class was determined by the Feel method (Thien 1979). For each soil 

textural class, the average soil Si was determined using different extraction procedures. 

2.2.4.c. Statistical Analysis 

  The relationship between soil pH, Mehlich-3 extractable nutrients and extractable soil Si 

based on different procedures was evaluated using regression analysis using PROC REG in SAS 
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9.4 (SAS Institute, 2012). PROC REG was also used to find the correlation between soil Si 

extracted by different procedures. The coefficient of determination (r
2
) and P-value was used as 

a criterion to determine the significance of their relationship. 

2.2.4.d. Extractable Nutrients by Mehlich-3 Procedure (Mehlich 1984) 

 A two (2) gram soil sample was weighed out into 100 mL plastic bottles followed by the 

addition of 20 mL of Mehlich-3 solution (dilute acid-fluoride-EDTA solution, pH 2.5). The 

samples were shaken on a reciprocal shaker set at high speed for 5 minutes and then filtered 

using Whatman No. 42 filter paper. The extract was then analyzed using ICP– Optical Emission 

Spectroscopy (OEM) for P, K, Ca, Mg, S, Cu and Zn.  

2.3 Results and Discussion 

The Si extracted by different extractants viz., 0.5 M acetic acid-1, 0.5 M acetic acid-2, 

0.01 M CaCl2, deionized water, 0.5 M NH4OAc, 1 M NaOAc and 0.1 M citric acid ranged from 

10 to 562 ug g
−1

, 3 to 208 ug g
−1

, 0 to 56 ug g
−1

, 0.51 to 66 ug g
−1

, 3 to 208 ug g
−1

, 11 to 241 ug 

g
−1

 and 63 to 3323 ug g
−1

, respectively (Table 2.2). The average Si extracted by various 

extractants used for the study was in the order of high to low: 0.1 M citric acid > 0.5 M acetic 

acid-2 > 0.5 M acetic acid-1 > 1 M NaOAc > 0.5 M NH4Oac > deionized water> 0.01 M CaCl2. 

This trend observed was in agreement with the results of Narayanswamy and Prakash (2009) and 

Wang et al. (2004). Narayanswamy and Prakash (2009) attributed this variation to dissolution of 

soluble, exchangeable, and specifically adsorbed Si; dissolution of some unavailable forms of Si 

present in the soils such as polymerized and precipitated Si; kind and nature of the extractant 

used; soil to solution ratio; pH of the extractant used; and shaking period. Wang et al. (2004) also 

suggested that the seven extractants used in their study characterized different pools of Si-

supplying capacity of the soil: extractable by water, extractable by any of HCl, citric acid, acetic 
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acid, acetate buffer, and NH4OAc, and extractable by Mehlich-3.  Nayar et al. (1977) reported 

similar extracting power for Si among different extractants as 0.2 N HCl > 0.025 M citric acid 

>1 N acetate buffer > water. 

The measured pH in the pure extractants used in this study followed the order 

0.1 M citric acid (2.2) < 0.5 M acetic acid (2.6) < 1.0 M NaOAc (4.0) < 0.5 M NH4OAc (4.8) < 

deionized water (6.8, unbuffered) < 0.01 M CaCl2 (7.2). All the acidic extractants extracted 

greater quantity of Si when compared with CaCl2 and deionized water. Fox et al. (1967) also 

noticed a greater extraction potential of Si from soils with acetic acid, sulfuric acid (H2SO4) and 

calcium dihydrogen phosphates than with water and CaCl2. The NH4OAc , acetic acid, and 

phosphate buffer extracted 1, 1.5, and 3 times more Si from sugarcane soils of South Africa than 

distilled water and CaCl2 (Berthelsen et al. 2001). They suggested that CaCl2 and distilled water 

extracted more easily soluble Si while NaOAc, acetic acid, and phosphate buffer dissolved some 

exchangeable Si also, while citric acid and H2SO4 provided an estimate of the potential pool of 

Si by measuring soluble, exchangeable and specifically adsorbed Si. According to Brown and 

Mahler (1987), acidity and anions could additively impact Si release from soils. Wang et al. 

(2004) also pointed out that the combined effect of acidity and anions may explain the quantity 

of Si extracted by different procedures. Fluoride ions increased the solubility of silicate minerals 

substantially, especially under acid conditions (Iler, 1979). Citrate, along with phosphate, 

replaced strongly adsorbed Si through ligand exchange reactions (Brown and Mahler, 1987).  

Therefore, the maximum quantity of Si extracted by 0.1 M citric acid could be attributed not only 

to the low pH of this extractant but also to the fact that the citrate ions can bring even the 

strongly adsorbed forms of Si into solution.  

https://mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=1a067f7369&view=att&th=1454695ddfbd1f86&attid=0.1&disp=inline&realattid=f_htsmnowc0&safe=1&zw&saddbat=ANGjdJ-_6oISRfzSBYli9ESZNG_LElkLb5hRRaFqrCxRHs5y7vT_QMU8bkqxnmXam69caZrOMUt5Ym8ldunKoOWlP2AjEyhecq8M5aRf2UrJ74LvDxjUFxBnaMmuk6dDRJDwnLXL08QdMRDNAQKqkZYo8NVWyCLKuuQynAt67BBUydXQ-UbRN8c_n8TQwyc69JZEbUhlzF9tFt8NiZWe4t7yxzAVxTxd53DCW66RCodxuN74M45pCued5jlkQpiudyCEE_VSYrCBa6auIAmzJYXVFrrdIu0zQzBfiQfzF-6yhdFCrbOqpYBfjLXUtuTl3VU21rTPCpEi22PUka18T6oJ69_2P1GLleKD-8-Tsbr9tb0ZSdtnAcGz5HizChRryRfmHEc8WmdL4gUEMBbsAmlJrXBv9MN-Y27EI_tMC1Qj19J9RozTssTNczZSFBGTyNktd_6P4ZzM_EM9L1xcGJDPNvKyq1C_fs8uipJYmbfyNGPWe99qc4oxL-YbsHm_ZRcSBoF2ZxO6o2-JQic6-pH74odZ4k3lKmfWXNSeIe9g5XOTWELEodhy0hrdyIWxLrjTeSo2NJbrmPwhiltIWDhMCEVHwWexp1hH6BSGkEqDxhomvwSYFfaXNFjNbho#0.1_44
https://mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=1a067f7369&view=att&th=1454695ddfbd1f86&attid=0.1&disp=inline&realattid=f_htsmnowc0&safe=1&zw&saddbat=ANGjdJ-_6oISRfzSBYli9ESZNG_LElkLb5hRRaFqrCxRHs5y7vT_QMU8bkqxnmXam69caZrOMUt5Ym8ldunKoOWlP2AjEyhecq8M5aRf2UrJ74LvDxjUFxBnaMmuk6dDRJDwnLXL08QdMRDNAQKqkZYo8NVWyCLKuuQynAt67BBUydXQ-UbRN8c_n8TQwyc69JZEbUhlzF9tFt8NiZWe4t7yxzAVxTxd53DCW66RCodxuN74M45pCued5jlkQpiudyCEE_VSYrCBa6auIAmzJYXVFrrdIu0zQzBfiQfzF-6yhdFCrbOqpYBfjLXUtuTl3VU21rTPCpEi22PUka18T6oJ69_2P1GLleKD-8-Tsbr9tb0ZSdtnAcGz5HizChRryRfmHEc8WmdL4gUEMBbsAmlJrXBv9MN-Y27EI_tMC1Qj19J9RozTssTNczZSFBGTyNktd_6P4ZzM_EM9L1xcGJDPNvKyq1C_fs8uipJYmbfyNGPWe99qc4oxL-YbsHm_ZRcSBoF2ZxO6o2-JQic6-pH74odZ4k3lKmfWXNSeIe9g5XOTWELEodhy0hrdyIWxLrjTeSo2NJbrmPwhiltIWDhMCEVHwWexp1hH6BSGkEqDxhomvwSYFfaXNFjNbho#0.1_44
https://mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=1a067f7369&view=att&th=1454695ddfbd1f86&attid=0.1&disp=inline&realattid=f_htsmnowc0&safe=1&zw&saddbat=ANGjdJ-_6oISRfzSBYli9ESZNG_LElkLb5hRRaFqrCxRHs5y7vT_QMU8bkqxnmXam69caZrOMUt5Ym8ldunKoOWlP2AjEyhecq8M5aRf2UrJ74LvDxjUFxBnaMmuk6dDRJDwnLXL08QdMRDNAQKqkZYo8NVWyCLKuuQynAt67BBUydXQ-UbRN8c_n8TQwyc69JZEbUhlzF9tFt8NiZWe4t7yxzAVxTxd53DCW66RCodxuN74M45pCued5jlkQpiudyCEE_VSYrCBa6auIAmzJYXVFrrdIu0zQzBfiQfzF-6yhdFCrbOqpYBfjLXUtuTl3VU21rTPCpEi22PUka18T6oJ69_2P1GLleKD-8-Tsbr9tb0ZSdtnAcGz5HizChRryRfmHEc8WmdL4gUEMBbsAmlJrXBv9MN-Y27EI_tMC1Qj19J9RozTssTNczZSFBGTyNktd_6P4ZzM_EM9L1xcGJDPNvKyq1C_fs8uipJYmbfyNGPWe99qc4oxL-YbsHm_ZRcSBoF2ZxO6o2-JQic6-pH74odZ4k3lKmfWXNSeIe9g5XOTWELEodhy0hrdyIWxLrjTeSo2NJbrmPwhiltIWDhMCEVHwWexp1hH6BSGkEqDxhomvwSYFfaXNFjNbho#0.1_51
https://mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=1a067f7369&view=att&th=1454695ddfbd1f86&attid=0.1&disp=inline&realattid=f_htsmnowc0&safe=1&zw&saddbat=ANGjdJ-_6oISRfzSBYli9ESZNG_LElkLb5hRRaFqrCxRHs5y7vT_QMU8bkqxnmXam69caZrOMUt5Ym8ldunKoOWlP2AjEyhecq8M5aRf2UrJ74LvDxjUFxBnaMmuk6dDRJDwnLXL08QdMRDNAQKqkZYo8NVWyCLKuuQynAt67BBUydXQ-UbRN8c_n8TQwyc69JZEbUhlzF9tFt8NiZWe4t7yxzAVxTxd53DCW66RCodxuN74M45pCued5jlkQpiudyCEE_VSYrCBa6auIAmzJYXVFrrdIu0zQzBfiQfzF-6yhdFCrbOqpYBfjLXUtuTl3VU21rTPCpEi22PUka18T6oJ69_2P1GLleKD-8-Tsbr9tb0ZSdtnAcGz5HizChRryRfmHEc8WmdL4gUEMBbsAmlJrXBv9MN-Y27EI_tMC1Qj19J9RozTssTNczZSFBGTyNktd_6P4ZzM_EM9L1xcGJDPNvKyq1C_fs8uipJYmbfyNGPWe99qc4oxL-YbsHm_ZRcSBoF2ZxO6o2-JQic6-pH74odZ4k3lKmfWXNSeIe9g5XOTWELEodhy0hrdyIWxLrjTeSo2NJbrmPwhiltIWDhMCEVHwWexp1hH6BSGkEqDxhomvwSYFfaXNFjNbho#0.1_44
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Evidently, citric acid and acetic acid-2 extracted highest extractable Si among all 

extractants irrespective of the soils tested in this study. This could also be due to the fact that 

these two extractants, besides being acidic in nature, were also the two extractants that were in 

contact with the soil samples for the longest period of time. Also, when 0.5 M acetic acid-1 was 

compared with 0.5 M acetic acid -2, the former extracted lower quantities of Si.  These results 

were in agreement with Hurney (1973) who also stated that the longer the contact times of the 

soil in the extractant, the higher the recovery of extractable Si. This happens because, with a 

continuous shaking of 16 hrs, silicate clay minerals are affected both chemically and 

mechanically, and thereby resulting in an overestimation of available Si by citric acid and acetic 

acid-2 (Hurney 1973).   

The soils with high clay content showed the highest range of Si removed by all 

extractants, whereas the remaining light textured soil showed the least quantity removed (Figure 

2.2). In a survey of the Si status of soils in the South African Sugar industry, the 0.01 M H2SO4 + 

(NH4)2SO4 extractant was considered by Meyer and Keeping (2000) as the best Si extraction 

method for plant available Si because it was better correlated with the soil clay content. In the 

present study, the Si concentrations removed by all extractants were seen to be increasing with 

clay content which was very evident in 0.5 M acetic acid-1 as shown in Figure 2.2.  This result 

was in agreement with the findings of Meyer (2001) who reported that extractable Si values 

increased with soil clay contents which could be attributed to the dissolution of high content of 

native Si present in the clay soils. Gontijo (2000) studied soils from different locations and with 

different textures, and observed that soil Si values decreased as sand values increased. Most of 

these soils of Louisiana having high Si content were present along the Mississippi river flood 

line where there is high deposition of silt and organic matter.  
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    Table 2.2 Number of fields in each parish and range of soil-test silicon content based on different extraction methods 

 

 

 

 

 

 

 

  

Parish† 

 

Total 

Area†

† (ha) 

0.5  M 

Acetic 

Acid -

1††† 

0.01 M 

Calcium 

Chloride 

1 M 

Sodium 

Acetate 

Deionized 

Water 

0.5 M 

Ammonium 

Acetate 

0.1 M Citric 

Acid 

0.5 M 

Acetic 

Acid-

2†††† 

  …………………………………………………ug g
-1

………………………………………… 

Acadia(10) 950 34-158 9-24 29-108 14-34 13-64 256-735 57-151 

Ascension(11) 840 10-125 5-42 13-104 5-47 6-53 351-1474 40-165 

Assumption(12) 200 41-338 16-49 45-233 14-55 13-118 682-2352 78-240 

Avoyelles(7) 400 16-252 3-32 33-206 7-28 5-96 188-1837 21-224 

Bienville(10)  600 22-90 2-4 12-31 3-16 7-13 61-158 12-29 

Bossier(8) 450 16-61 4-29 19-68 7-35 6-31 154-587 36-175 

Calcasieu(14) 850 15-78 2-26 19-72 10-21 3-36 102-562 16-141 

Cameron(10) 530 22-44 4-15 19-57 9-20 6-23 189-510 27-64 

Concordia(10)  500 45-204 16-51 19-172 20-59 17-103 490-1746 69-216 

East Carroll(6) 450 84-319 20-39 64-224 37-52 37-130 957-2173 124-228 

Evangeline(11) 600 16-43 6-16 19-51 12-26 9-19 233-546 48-80 

Franklin(2) 100 81-96 14-21 79-106 30-31 19-38 338-365 128-132 

Iberia(2) 100 50-92 22-26 19-57 24-32 21-32 730-760 103-165 

Iberville(1)  40 72 22 19 27 26 1030 102 

Jefferson Davis(10) 600 14-54 4-20 21-69 12-23 10-25 226-77 36-82 

†Values in parentheses are number of fields surveyed. †† Combined area of all fields surveyed †††1 hour shaking. ††††24 

hours shaking and 2 hours rest. 
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  (Table 2.2 continued) 

†Values in parentheses are number of fields surveyed. †† Combined area of all fields surveyed †††1 hour shaking. ††††24 hours 

shaking and 2 hours rest. 

 

 

 

 

 

 

 

Parish† 

 

Total 

Area†† 

(ha) 

0.5  M 

Acetic 

Acid -

1††† 

0.01 M 

Calcium 

Chloride 

1 M 

Sodium 

Acetate 

Deionized 

Water 

0.5 M 

Ammonium 

Acetate 

0.1 M Citric 

Acid 

0.5 M Acetic 

Acid-2†††† 

 …………………………………………………ug g
-1

……………………………………………… 

Lafourche(10) 580 44-177 12-37 19-155 21-58 11-92 319-1726 58-201 

Madison(6) 450 53-231 25-52 55-186 20-50 27-91 837-1726 107-221 

Natchitoches(6) 500 29-87 5-17 19-65 10-21 8-27 242-701 29-132 

Ouachita(10)  800 10-229 0-50 15-185 7-47 3-97 190-1542 20-202 

Pointe Coupee(10) 950 25-184 11-34 19-119 14-37 10-48 655-2118 53-232 

Rapides(1) 40 16 24 19 0.5 32 610 100 

Red River(10) 845 12-173- 5-36 21-156 10-26 3-83 295-1479 36-231 

Richland(7) 920 20-109 9-34 19-84 12-42 11-44 258-946 46-147 

St Martin(12) 520 28-171 12-41 41-157 15-47 15-95 397-1447 60-174 

St. Charles(8) 725 57-563 10-56 32-241 13-66 13-208 503-3323 51-159 

St. Mary(2) 50 134-138 23-24 90-122 28-29 60-77 1014-1034 148-181 

Tensas(6) 300 18-77 0-22 20-94 11-28 8-32 390-1014 42-126 

Range 10-200 10-563 0-56 11-241 0.51-66 3-208 63-3323 12-240 

Average  77 19 64 23 33 734 97 
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Figure 2.2 Average soil silicon within different soil textural classes using different extraction 

procedures in Louisiana soils (Number of soil samples with very fine silty loam, fine silty loam, 

silty loam and clay loam were 27, 7, 113 and 65, respectively) 
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These high concentrations of Si in these soils with high clay and organic matter might not 

be sufficient with plant available Si because soluble Si is adsorbed by clay and organic matter 

and is not available in soil solution for plant uptake.  

The soil pH and Si concentrations in these soils showed a weak relationship ( r
2
< 0.31, 

P<0.0001) using different extraction procedures (Figure 2.3) Where a large group of soils in a 

region of a country is surveyed, there is generally a positive relationship between pH and Si 

solubility or extractability (Fox et al. 1967; Cheong et al. 1968; Oya and Kina 1989; Oya et al. 

1989; Miles et al. 2014). Oliveira et al. (2007), Korndörfer et al. (2005) and de Camargo et al. 

(2007) further explained that the concentration of available soil Si (whether native Si or added as 

an amendment) decreases with increasing soil acidity due to the decrease in dissolution of Si in 

soil (Korndörfer et al. 2005). According to Oliveira (2004) increases in soil pH from 4.5 to 6.0 

promoted the release of colloid-adsorbed Si to the soil solution and there was an increase in 

available Si. There are also studies reporting that a high concentration of H
+
 dissolved 

aluminosilicates and released Si into solution (Beckwith and Reeve 1964; Lindsay 1979; Brown 

and Mahler 1987). However, such a relationship was not very evident in this study. This could be 

because the solubility of crystalline or amorphous Si was essentially constant at solution pH 2-

8.5 (Iler, 1979). The pH of the soils used in this study also fell in this range of constant 

solubility.  

Calcium chloride and deionized water extracted the least amount of Si from all soils 

ranging from 0 to 56 and 0.51 to 66 ug g
-1

, respectively. However deionized water was poorly 

(r
2
=0.35, P<0.0001) correlated with 0.5 M acetic acid-1 extraction method while 0.01 M CaCl2 

extractable Si values were fairly correlated (r
2
=0.56, P<0.0001) to the same (Appendix A, Table 

A.1). It is possible that the Si form extracted by deionized water and CaCl2 extractants is 

http://aobpla.oxfordjournals.org/content/7/plu080.full#ref-56
http://aobpla.oxfordjournals.org/content/7/plu080.full#ref-38
http://aobpla.oxfordjournals.org/content/7/plu080.full#ref-13
http://aobpla.oxfordjournals.org/content/7/plu080.full#ref-13
http://aobpla.oxfordjournals.org/content/7/plu080.full#ref-38
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different from that extracted by acetic acid. Whereas, a good correlation (r
2
=0.52, P<0.0001) 

was observed between deionized water and the 0.01 M CaCl2 extracted Si values as shown in the 

figure 2.4. Wang et al. (2004) reported that the correlations between deionized water and other 

extractants were low (r
2
 <= 0.430) and that the, unbuffered deionized water extraction, reflects 

primarily a transient pool of soluble Si for a specific soil condition. They also suggested that the 

Si removed by different extractants could basically be classified into three categories: (i) water-

extractable, (ii) extractable by HCl, citric acid, acetic acid, acetate buffer, and NH4OAc, and (iii) 

Mehlich-3 extractable Si.   

Also, extracting with water dilutes the ionic strength of the soil solution greatly so that 

the amounts extracted will differ from those present in soil solution. Silicon adsorption onto 

metal hydrous oxides increases with decreasing ionic strength of the extractant. In addition, the 

low ionic strength results in dispersion of soil particles (Berthelsen and Korndorfer 2005) 

meaning that the extracted solution may require filtering through a micropore filter (after 

centrifugation) prior to analysis. Therefore, unbuffered salt solutions such as 0.01 M CaCl2 are 

favored (Berthelsen et al. 2003; Hohn et al. 2008; Miles et al. 2014) since they have an ionic 

strength similar to that of the soil solution and the dominant cation is Ca
2+

 as is the case in most 

soil solutions. Their ionic strength also prevents dispersion and facilitates easy extraction and 

analysis. Deionized water has been used by some workers to estimate readily soluble Si (Fox et 

al. 1967; Elawad et al. 1982). This extraction, especially on a moist sample basis, has been used 

by some to characterize mobile forms of Si, with Si(OH)4 being the dominant form along with 

[Si(OH)4 ]x and inorganic and organic Si complexes (Matichenkov et al. 2000; Ma and 

Takahashi 2002).
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Figure 2.3 Relationship between soil silicon extracted using different procedures and soil pH in 

Louisiana soils (P<0.0001) 
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Figure 2.4 Relationship of soil silicon levels determined by deionized water and calcium chloride 

extraction procedures across all soil samples 
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amorphous aluminosilicates and any highly soluble crystalline aluminosilicates material, while 

the presence of the acetate anion might also favor desorption of adsorbed silicate. The Si values 

from both NH4OAc and NaOAc extractants had very good correlation with near equal values 

(r
2
=0.78 and 0.72 respectively with P<0.0001) with acetic acid-1 (Appendix A, Table A.2) 

method suggesting that these extractants may remove the same form of Si from soil. Earlier 

reports suggest that these extractants removes Si that is either mobile or loosely bound and some 

fractions of amorphous forms (Matichenkov et al. 2000; Wang et al. 2004). 

Citric acid has been used by other researchers (Acquaye and Tinsley 1965), and the 

modes of extraction are likely to include solubilization of Al and Fe hydrous oxides and 

aluminosilicates, displacement of adsorbed silicate by citrate and complexation of Fe and Al by 

citrate, thus, preventing formation of Al and Fe complexes with Si during extraction (Sauer et al. 

2006). In general, acids such as H4SO4 and citric acid extract more Si than the Na- and NH4-

acetate-based extractants, which in turn extract more Si than water and CaCl2 (Fox et al. 1967; 

Berthelsen et al. 2003; Barbosa Filho et al. 2004; Wang et al. 2004; Kanamugire et al. 2006; 

Haynes et al. 2013). This was observed in this study as well, with citric acid extracting up to 

3323 ug Si g
-1

 soil. Although acetic acid-1 and acetic acid-2 method used the same reagent, the 

correlation between them was only fair with r
2
=0.46 with P<0.0001 (Appendix A, Table A.3).  

Interestingly, a good correlation with near equal values was observed between citric acid 

extractable Si values and that of acetic acid-2 extractable Si values with r
2
=0.72 (P<0.0001) as 

shown in Figure 2.5. This suggests that the form of Si extracted by citric acid and acetic acid-2 

extraction method are possibly the same. Therefore the same reagent when used in two different 

extraction procedures (acetic acid-1 and acetic acid -2), extracted different forms of Si from soil. 

This is further proof of the fact that contact time and dilution also decides the form of soil Si 
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extracted although the reagent used might be the same as pointed out by Narayanswamy and 

Prakash (2009).  Wang et al. (2004) also reported relatively large amounts of citric acid 

extractable Si than acetic acid-1, NH4Oac, and acetate buffer and noted significant 

correlations between citric acid and HCl suggesting that citric acid and HCl extractions reflect a 

certain fraction of slowly releasable Si, a capacity factor that is proportional to the soluble Si of 

soil. Wang et al (2004) further suggested that any one of these extractants except for deionized 

water is likely to predict a similar pool of labile Si for plant uptake even though citric acid might 

be predicting a portion of capacity factor as well as intensity factor of soil Si status. They also 

attributed the low concentration of Si extracted by deionized water to be the measure of (readily 

available) a transient status of soil Si which did not account for the polymerization-

depolymerization and adsorption-desorption happening with the changes in temperature and 

moisture content in soil during a growing season. Poor correlations between 0.01 M CaCl2, 

deionized water, citric acid, acetic acid-2 with other extractants suggest that acetic acid-2 like 

citric acid may extract a certain fraction of capacity factor (slowly releasable Si) that is 

proportional to the soluble Si of soil, unlike the other five extractants. Also, the unbuffered 0.01 

M CaCl2 may reflect only a transient status of soil soluble Si, similar to deionized water 

extraction. All of the seven extractants used in this study have been found to correlate with plant 

uptake of Si at various locations. The greenhouse study discussed in Chapter 4 showed the best 

correlation of soil Si extracted and plant response variables to be in 0.01 M CaCl2 and acetic 

acid-2 procedures. 

From these results, it is possible that no single measure is adequate to determine plant 

available Si. However, it is clear that a number of extractants can be successfully used to 

estimate soil Si. The choice of extractant will often be based on its ease of adoption for a 
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particular laboratory and its suitability for specific soil characteristics, which will in turn be 

reflected in its ability to correlate with plant uptake of Si. As 0.01 M CaCl2 extractable Si 

represents the Si readily plant available in the soil solution and this fact was evident with its 

good correlation with plant uptake.  But its near equal values with deionized water suggests that 

it could reflect only a transient status of soil soluble Si. However, 0.5 M acetic acid-2 may reflect 

the net effects of the sorption/desorption reactions by extracting the readily as well as the slowly 

releasable Si (a capacity factor that is proportional to the soluble Si of soil) that control 

solubility, thus giving a true measure of current availability. Additionally, it also showed good 

correlation with plant uptake in different soils as discussed in Chapter 4. Therefore, it might be 

suggested that these two extraction procedures (0.01 M CaCl2 and 0.5 M acetic acid-2 ) may be 

used either together or as a single measure of plant available Si.   

Besides trying to find the best extractant for determining the plant available soil Si status, 

the distribution of Si-deficient soils by parish was also of interest in this study, since all soil 

samples represent native soils under agricultural production with no prior history of Si 

fertilization.  The Si status of Louisiana soils distributed into three ranges (low, medium and 

high) based on the critical levels of soil Si established previously by scientists like Snyder 

(1991), Korndorfer et al. (2001), Narayanaswamy and Prakash (2009), Liang et al. (1994), and 

Xu et al. (2001) are depicted in maps as shown in Figures 2.6. The critical level determined in 

Louisiana soils in the greenhouse studies conducted during the years 2014 and 2015 as discussed 

in Chapter 4 was also taken as a basis for the categorization of the surveyed soils into high, 

medium and low Si soils. None of the soils deemed as low in Si were above the critical levels 

established in other parts of the world as well as that determined in Louisiana irrespective of the 

extractant used. 
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Figure 2.5 Comparison of soil silicon levels based on acetic acid-2 and citric acid extraction 

procedures for all soil samples 
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identified to be well below the critical level of Si established using the same extractant across 

different soils, was set to the data generated, numerous soils low in Si were identified in this 

survey, as shown in Figure 2.6. 

The critical value of available Si identified by Imaizumi and Yoshida (1958) and Lian 

(1976) utilizing the sodium acetate buffer method was 60 mg kg
-1

 soil and by this standard, 58% 

of the soils evaluated in this study are low in Si. Coincidentally, almost the same percent (60%) 

of these soils are low in Si t using the critical limit (32 mg kg 
-1

) for ammonium acetate 

determined by Narayanaswamy and Prakash (2009). 

 
a. 

Figure 2.6 Average soil silicon distribution using 0.5 M acetic acid-2 (a), 0.01 Calcium chloride 

(b), 0.01 M Citric acid (c), 0.5 M ammonium acetate (d), 1 M Sodium acetate (e), 0.5 M acetic 

acid-1 (f), and deionized water (g) extraction procedures in Louisiana soils. € ND =Non-

detectable levels 

 

0.5 M Acetic acid-2 

extractable Si, ug g
-1

 

 12 - 50 

 51 - 100 

 101 - 240 
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b. 

 
c. 

(Figure 2.6 continued) 

 

0.1M Citric acid 

extractable Si, ug g
-1

 

 60 - 247 

 248 - 497 

 498 - 3323 

0.01 M Calcium 

chloride extractable 

Si, ug g
-1 

 ND - 11 

 12 - 21 

 22 - 55 
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d. 

 

 

 
e. 

(Figure 2.6 continued) 

1 M Sodium acetate 

extractable Si, ug g
-1

 

 11 - 41 

 42 - 101 

 102 - 709 

0.5 M Ammonium 

acetate extractable Si, 

ug g
-1

 

  2 - 13 

 14 - 26 

 27 - 207 
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f. 

 

 
g. 

(Figure 2.6 continued) 

0.5 M Acetic acid-1 

extractable Si, ug g
-1

 

 10 - 41 

 42 - 81 

 82 - 563 

Deionized water 

extractable Si, ug g
-1

 

 0.51 - 11 

 12 - 20 

 21 - 65 
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When the Si values generated in this study were further compared with the published 

critical soil-test Si values of 24 and 54 mg kg 
-1 

with 0.5 M acetic acid-1 determined by 

Korndorfer (2001) and Narayanaswamy and Prakash (2009) respectively, about 13 and 50% of 

these soils were low in Si for rice and sugarcane production.  The 0.5 M acetic acid-2 method 

could produce up to 48% of the investigated soils of the current study in the region of low soil Si 

when compared with an established critical value of 87 mg kg
-1

 for Si in rice generated by 

Narayanaswamy and Prakash 2009. However, the citric acid method could categorize only 7.6% 

of these soils as low in Si as per the established critical level of 185 mg kg
-1 

by Narayanaswamy 

and Prakash (2009).   

2.4 Conclusions 

Soils which have Si values equal to or below the critical soil-test value for each 

respective extraction procedure would likely require Si fertilization. Comparison of Si 

concentrations measured in this survey with critical values established for other rice and 

sugarcane growing areas indicate that soil Si might not be adequate in most agricultural fields of 

Louisiana. On the basis of these data, it is very likely that certain regions in Louisiana would 

benefit from Si fertilization in rice and sugarcane production. This study suggests that any one of 

the tested extractants is likely to predict a pool of readily available and labile Si for plant uptake. 

Poor correlations between deionized water, 0.01 M CaCl2, and other extractants suggest that the 

unbuffered 0.01 M CaCl2 extraction may reflect only a transient status of soil soluble Si similar 

to deionized water extraction procedure.  There is a need to test and develop either a single or a 

combination of these extraction procedures. It is unlikely that there is a single universal 

extraction procedure for Si for all types of soil. 
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Chapter 3. Release and adsorption pattern of monosilicic acid in different 

soils of Louisiana treated with silicon fertilizer: A laboratory incubation study 
 

3.1 Introduction  

Due to the increasing demand for food as a, consequence of exponential growth in 

population, crop productivity has increased with liberal scientific inputs, and little increase in the 

available cultivable land area. Subsequently, the plant world, which is our life support system, 

has been subjected to marked stress and it is plants under stress that respond most positively to 

silicon (Si) (Epstein 2005). Silicon is a beneficial element best known for its significant role in 

alleviating biotic and abiotic stress in various crops during the formative period (Epstein 2005; 

Datnoff et al. 2001). There is a large body of evidence from scientists around the world about the 

utility of this element in improving yields of crops like rice (Oryza sativa), sugarcane 

(Saccharum officinarum), wheat (Triticum aestivum), sorghum (Sorghum bicolor), corn (Zea 

mays) and millets (e.g.,Eleusine coracana) especially when subjected to stressful growing 

conditions like drought, salinity, pests and diseases (Datnoff et al. 2001). Today, Si fertilization 

has become an agronomic practice in the Histosols of Florida (USA) and the Oxisols of Brazil 

(Datnoff et al. 2001, 1997). Silicon absorption by plants occurs as monosilicic acid (H4SiO4), 

being proportional to the Si concentration in soil solution (Jones and Handreck 1967; Fox et al. 

1967). Most H4SiO4 in the soil is weakly adsorbed (Matichenkov 1990). Monosilicic acid 

migrates very slowly in the soil profile (Khalid Silva 1980) and forms complexes with heavy 

metals and organic compounds in soil solution (Datnoff et al. 2001). Monosilicic acid will 

remain in solution in the monomeric state in neutral and weakly acidic solutions. However, an 

analytically important fact is that at the appropriate pH and concentration, H4SiO4 released from 

these fertilizers, such as slag and wollastonite, will in course of time polymerize (Berthelson and 
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Korndorfer 2005). The total Si content of soils has an insignificant relationship to the 

concentration of soluble Si in soils, which is the component vital for plant growth. In other 

words, the concentration of soluble Si in soils is dynamic. Therefore, the exact value of the total 

H4SiO4 concentration available for plant uptake with time, from these fertilizers cannot be 

obtained directly from the Molybdenum blue Colorimetry (MBC) or spectrophotometric 

methods.  

Given the paucity of information and procedures to compare the sources of Si (slag and 

wollastonite) used today with respect to solubility, soil property interferences, H4SiO4 released 

for plant uptake, further research is imperative to evaluate their potential as fertilizers. Even 

today, we are yet to determine the best source and also the rate of distributive application of 

these fertilizers in different soils of Louisiana. Often times, there is a decrease in biomass yield 

when these fertilizers are applied at a higher rate. Haynes et al. (2013) observed a similar 

scenario and reported that this growth reduction is attributable to the combined effect of the very 

high pH (possibly also inducing deficiencies of Zn and Mn for steel slag) and electrical 

conductivity (EC) (and high Na for processing mud) in soils from these treatments at the high Si 

rate. This decline could also be attributed to a decrease in H4SiO4 due to polymerization (Iller 

1979).  The purpose of this study was to document the potential release of H4SiO4 from Si 

fertilizers and its relationship with properties including clay content, organic matter content and 

pH of soils from six different soil series. This study was undertaken based on the hypothesis that 

the concentration of H4SiO4 in soil solution after the addition of high quantities of Si fertilizers in 

soil is influenced by polymerization and adsorption (a process controlled by the soil physico-

chemical properties including presence of metal oxides and hydroxides, clay and organic matter 

content and soil pH). For the purpose of this study, the term sorption is defined as transfer of ions 
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from the solution phase to the solid phase via various mechanisms such as physical and chemical 

adsorption, surface precipitation and absorption (fixation) as given by Apak (2002). The 

objectives were to: 1) quantify the adsorbed fraction of added H4SiO4 in soil solution with time; 

2) document the effect of addition of wollastonite and slag on the concentration of H4SiO4 in soil 

solution within a 200-day period; and 3) evaluate the relationship between quantity of sorbed 

H4SiO4 and polymerized H4SiO4 with the addition of wollastonite and slag in different Louisiana 

soils. 

3.2 Materials and Methods 

Monosilicic acid sorption was investigated using six soil series of Louisiana (Figure 3.1). 

Total clay percent, acetic acid extractable Si, organic matter content, oxyhydroxides of iron (Fe) 

and aluminum (Al); and pH of different soil series are provided in Table 3.1.  

3.2.1 Silicon analysis 

 Silicon concentration in soil extracts was determined using Molybdenum Blue 

Colorimetry (Korndorfer et al. 2001). Known volume of filtrate was transferred into a plastic 

centrifuge tube and then 10 mL of deionized water, plus 0.5 mL of 1:1 hydrochloric acid (HCl), 

and 1 mL of 10% ammonium molybdate [(NH4)6Mo7O2] solution (pH 7.5) were added. After 5 

minutes, 1 mL of 20% tartaric acid solution was added and after two minutes, 1 mL of the 

reducing agent amino napthol n-sulphonic acid (ANSA) was added. After five, but not later than 

30 minutes following addition of the reducing agent, absorbance was measured at 630 nm using 

UV visible spectrophotometer (Hach DR 5000). Simultaneously, Si standards (0.2, 0.4, 0.8 and 

1.2 mg L
−1

) prepared in the same matrix were also measured using UV visible 

spectrophotometer. 
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Figure 3.1 Major land resource areas and locations in Louisiana where the bulk soil samples 

were collected for the greenhouse studies conducted during the years 2014 and 2015. 

 

Table 3.1 Selected properties of the six different soil series used in the study 

 

Soil type 

pH 

(1:1 soil : 

water) 

Si* 

(ug g
-1

) 

Fe** 

(ug g
-1

) 

Al** 

(ug g
-1

) 

Total clay*** 

(%) 

Organic 

matter**** 

(%) 

Caushatta silt loam 7.8 77 634 51 18 3.41 

Clovelly muck 5.6 53 515 390 26 8.08 

Sharkey clay 5.7 82 645 90 32 2.24 

Perry clay 5.3 41 1373 128 32 2.71 

Crowley silt loam 5.0 8 829 76 4 1.26 

Commerce silt loam 5.6 32 444 49 7 1.79 

* Si determined by 0.5 M acetic acid extraction and Molybdenum Blue Colorimetry. **The 

dithionite–citrate–bicarbonate (DCB) extraction was applied to quantify crystalline and non-

crystalline Fe and Al oxyhydroxides (Mehra and Jackson 1960).  ***X-Ray 

Diffraction***Walkley and Black (1934). 
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3.2.2 Sorption study of H4SiO4 

A standard solution of H4SiO4 was prepared by passing an aqueous solution of sodium 

orthosilicate (0.5 g in 1 L of deionized water) through a column of strongly acidic cation 

exchange resin at the rate of 1 L in 30 minutes through a column packed with 10 g resin 

(Wickramasinghe and Rowell 2005). The resulting solution was checked for the concentration of 

H4SiO4 and diluted to obtain the required standard solutions with concentrations up to 50 ug Si 

ml
−1

 in 0.1 M sodium chloride (NaCl). These solutions were used for the sorption experiments. 

According to Obihara and Russell (1972) and McKeague and Cline (1963) sorption isotherm for 

silicate was the same whether the supporting electrolyte was 0.1 M NaCl or 0.01 M or 0.02 M 

CaCl2. Additionally, results from our preliminary experiments showed that polymerization was 

minimal or absent when the concentration was below 50 ug ml
-1

 and when prepared in 0.1 M 

NaCl, which was also in agreement with results reported by Wickramasinghe and Rowell (2005).  

Samples of soil (1 g) were weighed into 50 mL polypropylene centrifuge tubes and 

equilibrated with 25 mL of a 0.1 M NaCl solution for  4, 7 and 30 days on an orbital shaker. The 

0.1 M NaCl solutions consisted of 0, 10, 20, 40 and 50 ug ml
-1

 Si added as H4SiO4. The soils 

were shaken at 50 rpm in an orbital shaker at 25°C in the presence of few drops of toluene to 

inhibit microbial growth. After the equilibration period, the samples were centrifuged; aliquots of 

the supernatant were removed, analyzed for pH and for Si concentrations using UV- VIS 

Spectrophotometer (Hach DR 5000) according to the method given by Korndorfer et al. (2001). 

The equilibrium period (the duration after which there was no change in adsorbed quantity) was 

estimated by plotting sorbed quantity against time. The sorption isotherms were then plotted 

(solution Si concentration against Si sorbed).At equilibrium period, the concentration of Al, Fe, 

manganese (Mn) and magnesium (Mg) ions in the supernatant solutions of all six soils with no 
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added Si was determined using ICP-OEM (Inductively Coupled Plasma- Optical Emission 

Spectroscopy).  The pH of the supernatant solution was also measured at the end of 4, 7 and 30 

days of incubation. 

3.2.3 Effect of time on H4SiO4 release from Si fertilizer  

Incubation experiments were carried out on all six soils to investigate Si dissolution from 

soils and fertilizers. One gram of soil in duplicate was shaken gently with 25 mL of 0.1 M NaCl 

at 25°C in polypropylene bottles. The following treatments were imposed on each of the soil 

series: soil alone, soil +100 mg of wollastonite (equivalent to 23 mg Si), and soil +135 mg of 

slag (equivalent to 23 mg Si). Also, wollastonite and slag were incubated with no soil added 

during the same time period. The solution mixtures were homogenized and incubated at 25°C. 

This procedure was done by maintaining samples separately for each time interval. The bottles 

were kept standing at 25°C and were shaken by hand daily for 30 seconds. Subsamples were 

removed at fixed intervals within the 200 days incubation period (after 10 and 30 minutes, 4 and 

24 hours, 7
 th

, 15
 th

, 30
th
, 60

th
, 90

th
, 120

th
, 150

th
, 180

th
 and 200

th
 day). Before each sampling, the 

bottles were shaken continuously for 2 hours in an orbital shaker at 25°C.  They were then 

centrifuged at 1500 rpm for 20 minutes and then filtered using Whatman 42 filter paper. The 

concentration of H4SiO4 in the supernatant solution was measured using UV- VIS 

Spectrophotometer (Hach DR 5000) according to the method given by Korndorfer et al. (2001). 

Altering the pH of the soils was not attempted, but rather pH values in 0.1 M NaCl solution at 

the end of every incubation period were measured.  

3.2.4 Effect of Si concentration on release of H4SiO4 from Si fertilizer 

Soil samples (1 g) were added to 50-mL polypropylene centrifuge tubes and equilibrated 

with 25 mL of a 0.1 M NaCl solution for 7 days. The soil samples consisted of 0, 4.25, 8.5, 17 
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and 34 mg of slag and 0, 3.12, 6.25, 12.5 and 25 mg of wollastonite.. The soils were maintained 

at 25°C in the presence of few drops of toluene to inhibit microbial growth. After the 

equilibration period, the samples were shaken at 50 rpm in an orbital shaker at 25°C, centrifuged; 

aliquots of the supernatant removed, and analyzed for pH and Si concentrations using UV- VIS 

Spectrophotometer according to the method given by Korndorfer et al. (2001). Another set 

consisted of 4.25, 8.5, 17 and 34 mg of slag and 3.12, 6.25, 12.5 and 25 mg of wollastonite in 0.1 

M NaCl solution with no added soil. The concentrations of H4SiO4 in the supernatant solution 

were plotted against the increasing concentration of Si added (with increasing increments of slag 

and wollastonite). Analysis of variance (ANOVA) was performed using PROC MIXED in SAS 

9.4 (SAS Institute, 2012) to determine significant effects of treatments on soil. For understanding 

the treatment effect (P<0.05), mean comparison was done by contrast and the best model 

describing the data was identified as quadratic. Quadratic regression (Microsoft® Excel 2013) 

was performed to determine the trend of change in concentration of H4SiO4 in supernatant 

solution with increasing concentration of Si added. The metal cations in the supernatant solution 

at the end of 7 days of incubation were  determined using ICP-OEM.  Analysis of variance 

(ANOVA) was performed using PROC MIXED in SAS 9.4 (SAS Institute, 2012) to determine 

significant effects of treatments. For significant treatment effect (P<0.05), mean separation was 

done by Tukey–Kramer post-hoc test to identify treatment differences and this data is presented 

in Table 3.3. 

3.2.5 Estimation of polymerized and sorbed quantity of H4SiO4 in different soils of Louisiana 

treated with slag and wollastonite 

Acetic acid (0.5 M) extraction procedure after 0.1 M NaCl incubation and extraction was 

used to estimate the concentration of H4SiO4 polymerized, sorbed and that remaining in solution. 

Analysis of variance (ANOVA) was performed using PROC MIXED in SAS 9.4 (SAS Institute, 
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2012) to determine significant effects of treatments on quantities of Si released into 0.5 M acetic 

acid in different soils at the end of 200 days of incubation in 0.1 M NaCl. For significant 

treatment effect (P<0.05), mean separation was done by Tukey–Kramer post-hoc test to identify 

treatment differences and this data is presented in Figure 3.8. 

Dilute salt solutions like 0.1 M NaCl provided a measure of the readily available Si 

present in the soil solution, while results obtained using 0.5 M acetic acid gave an account of 

total silicon by solubilizing polymerized forms of Si. After analyzing for the concentration of 

H4SiO4 in 0.1 M NaCl solution on the 200
th

 day, ten mL of 0.5 M acetic acid was used to replace 

the 0.1 M NaCl solution in all treatments (six replicates) and shaken for 1 hour at 50 rpm in an 

orbital shaker at 25°C before centrifuging and filtering using Whatman No. 42 filter paper. The 

acetic acid extraction procedure brought the polymerized (heavy molecules formed and settled at 

the soil surface during the 200 days of incubation) forms of Si back into solution as H4SiO4.  

Thus, the total Si, T1 (H4SiO4 + polysilicic acid) released from the fertilizer sources into the 

solution (0.5 M acetic acid and that in 0.1 M NaCl) at the end of 200 days of incubation period 

was calculated as the sum of concentration of H4SiO4 in 0.5 M acetic acid and that in 0.1 M NaCl 

with only added fertilizers (without soil sorption). The total Si, T2 (H4SiO4 + polysilicic acid) 

released from fertilizer + soil mixtures into the supernatant solutions of different soils was 

calculated as the sum of H4SiO4 released from fertilizers with added soil in 0.5 M acetic acid and 

in 0.1 M NaCl solution. The sorbed quantity of H4SiO4 on different soils was calculated as the 

difference between the concentration of H4SiO4 in solutions (0.5 M acetic acid and 0.1 M NaCl) 

from fertilizer materials (slag or wollastonite) without and with soils (sorption surface) which is 

equal to S1 (T1-T2). Finally, the polymerized quantity in each soil was estimated as T2- S1. The 
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relationship between the quantities that was polymerized, sorbed, and remained in solution was 

shown graphically among the six soils with slag and wollastonite.     

In a different experiment, centrifuge tubes with slag or wollastonite added at a rate 

equivalent to 23 mg Si were shaken in an end to end shaker with 10 ml of 0.5 M acetic acid 

(allowing no polymerization) to determine the total Si released from the fertilizers into an acidic 

solution at fixed time intervals without the effect of polymerization. Total concentration of 

H4SiO4 in the filtered solution was determined after 10 minutes, 30 minutes, 1 hours and 2 hours 

using UV- VIS Spectrophotometer according to the method given by Korndorfer et al. (2001). 

The X-Ray diffraction (XRD) patterns of slag and wollastonite were obtained using picker 

powder diffractometer with a graphite crystal in which diffracted beam monochrometer was used 

to run the X-ray diffraction scans. The percent clay content was also determined in the 6 

different soils using the XRD patterns of the soils (Cook et al. 1975). Digital images were taken 

of two fertilizers (slag and wollastonite) and elemental composition was determined using a 

SEM equipped with EDX capabilities (FEI Quanta 3D FEG FIB/SEM with EDAX TEAM™ 

PEGASUS EDS) to look into the differences in the elemental composition of these fertilizers.  

3.3 Results and Discussion 

3.3.1 Sorption study of H4SiO4 

3.3.1.a. Effect of H4SiO4 concentration on sorption 

The sorbed quantity increased with increasing equilibrium concentration of H4SiO4 for all of 

the tested soil samples (Figure 3.2). The net sorption was zero when no H4SiO4 was added to the 

soil. There were only small increases at lower levels of equilibrium concentration in all soils with 

greater sorption taking place at higher levels of equilibrium concentration. However, at the two 

highest levels of equilibrium concentrations, all soils tend to attain a saturation point in sorption with 
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little or no increases observed.  Therefore, the shape of these sorption isotherms fell into the S—type 

isotherms (Evangelou 1998; Huang et al. 2006).  Huang et al. (2006) explained the initial slow 

increase in sorbed silicate was probably due to the strong competition of other anions with the added 

silicate ion for the available sorption sites in the soils. They further stated that, after the equilibrium 

concentration reached a certain level the rapid increase in sorption indicated that the silicate ion 

replaced some of the exchangeable anions with an increase in soluble silicate concentration. After 

this the increase in sorption slowed down again as equilibrium concentration  reached higher levels, 

which could be attributed to the added silicate approaching saturation of anion exchange sites. 

Sorbed quantity of H4SiO4 in the selected soils followed the order Caushatta silt loam > Clovelly 

muck> Sharkey clay > Perry clay > Crowley silt loam > Commerce silt loam. Yu and Li (1999) also 

found similar results and stated that silicate sorption increased rapidly with increasing equilibrium 

concentration at low levels and slowly at the high levels, resulting in curves that were concave 

downwards. In contrast, Gao et al. (1998) found silicate sorption increased slowly at low levels, and 

rapidly at the high levels, resulting in curves that were concave upwards.  Differences among the 

results of these groups might be due to different physicochemical properties of the soils, different 

reaction times, water: soil ratios or initial silicate concentrations.  Further studies should be 

undertaken to address the relative importance of the possible reasons for the differences in isotherm 

shapes that different researchers reported. Caushatta silt loam had an initial soil pH of 7.8, which 

went up to 8.2 after 7 days of incubation in 0.1 M NaCl. Whereas the soil pH of the other 5 soils 

used in this study was below 7.5 (Appendix B).The quantity of sorbed H4SiO4 was maximum in 

Caushatta silt loam. This could be attributed to the fact that there is an increase in concentration 

of silicate ions when the soil pH reaches as high as 8 (Sheikholeslami and Tan 1999). Iller (1978) 

stated that at pH 7 and higher, there is an increasing degree of ionization of H4SiO4 to silicate 

ions, and these are adsorbed and can form a silicate-type bond with a variety of hydroxides that 
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are in a highly dispersed state in the soil solution. The data obtained showed that a pH-dependent 

sorption reaction is involved in controlling the concentration of silica in soil solutions as has 

been proven in a study conducted by McKeague and Cline (1963). 

 

Figure 3.2 Amount of H4SiO4 sorption in six different soils after seven days of incubation in 0.1 

M NaCl with varying concentrations of monosilicic acid 

As shown in Figure 3.2, although the total sorbed quantity of H4SiO4 in Clovelly muck, 

which is the soil with highest organic matter content, was lower than Caushatta silt loam, this 

soil had a sorbed quantity of 14 ug g
-1

 of H4SiO4, which was greater than the two clay soils used 

in this study. The dithionate-citrate-bicarbonate (DCB) extraction measured 390 and 515 ug g
-1

 

of Al and Fe oxyhydroxides respectively in this soil. In a previous study conducted by Harder 

(1965), silica was adsorbed and precipitated by hydroxides of Al, Fe, manganese (Mn), and 

magnesium (Mg) .Sesquioxides and phyllosilicates are a significant component of most soil 

systems, and many investigators believe that these minerals play a major role in determining the 

concentration of silica in soils (McKeague and Cline 1963; Beckwith and Reeve 1963, 1964; 
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Jones and Handreck 1963). Additionally, the highest quantity (390 ug g
-1

) of Al oxyhydroxides 

was measured in Clovelly muck among all the other soils used in the study. Both Fe and Al 

oxides adsorb H4SiO4 but among oxides of similar crystallinity, Al oxide is more effective than 

ferric oxide (Jones and Handreck 1965). This was also evident in the clay soils (Sharkey clay and 

Perry clay) and organic soil (Clovelly muck) recording the highest quantity of sorbed H4SiO4 

among the soils with near neutral pH having the highest quantity of Al-oxyhydroxides in the 

current study (Table 3.1).  

It was also observed that organic matter content magnified the sorption more than the 

total clay content (Figure 3.2).  This could be ascribed to three main reasons. First one being that 

the Mg
2+

 ions brought into the solution from the organic soil was 175 ug g
-1

 compared with 81 

and 45 ug g
-1

 from Perry clay and Sharkey clay soils, respectively (Table 3.3). These Mg
2+

 ions 

could have directly or indirectly reduced the H4SiO4 in solution by co-precipitation or sorption of 

H4SiO4 on freshly formed metal hydroxides. Negatively charged surfaces are not receptive to the 

sorption of H4SiO4 but can be made so by the well-known methods used for preparing surfaces 

for the deposition of metals such as treatment with polybasic metal salts of Fe or Al which are 

known to reverse the charge on negative surfaces (Iller 1978). As shown in Table 3.3 the 

reduction of Fe and Al in the soils under anaerobic condition  brought free Fe
2+

, Mn
2+

 and most 

importantly Mg
2+

ions into solution and made them available to reverse the surface charges on 

mineral surfaces and H4SiO4 could have been sorbed on these surfaces forming the siloxane 

bridges described by Chadwik et al. (1987). Also, H4SiO4 can react with Al, Fe, and Mn, forming 

slightly soluble silicate substances in solution (Horigushi, 1988; Lumsdon and Farmer, 1995). 

Bien et al. (1958) showed that sorption on suspended particles in the presence of electrolytes is 

also effective in removing dissolved silica from very dilute solutions. Iller (1978) also brought 
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into light the fact that silica, both soluble and colloidal can be removed from water to varying 

low levels in neutral or slightly alkaline solution by co-precipitation with insoluble metal 

hydroxides in situ or by sorption upon freshly formed hydroxides added to the water. Wohlberg 

and Bucholz (1975) reviewed the literature on the reduced solubility of silica in the presence of 

metal salts and hydroxides. The second reason for the greater quantity of sorption in Clovelly 

muck would be that, the higher organic matter content in this soil, increased the total surface area 

available for sorption reactions. The relationship between surface area of solid and removal of 

H4SiO4 from solution is consistent with the results of McKeague and Cline (1962) who proved 

that a sorption reaction involving H4SiO4 increases with surface area of the substrate. Likewise, 

minimum sorption of H4SiO4 was recorded in the soils with soils of comparatively lower surface 

area (due to the textural difference), namely Crowley silt loam and Commerce silt loam soils and 

also with minimum free Mg
2+

 ions in solution after 7 days of submergence. The third reason, as 

discussed earlier, the presence of Al and Fe oxyhydroxides decreased the H4SiO4 in solution with 

Al having greater effect (Jones and Handreck 1965).  

Further, an increase in the sorbed quantity of H4SiO4 with an increase in its solution 

concentration was observed. This was in agreement with the results discussed by Iller (1978) 

who concluded that silica will be deposited from supersaturated solution onto a solid surface at a 

rate that increases with degree of supersaturation. In this study, we observed that although Perry 

clay had the highest quantity of Fe and Al oxyhydroxides, the quantity sorbed was highest in 

Sharkey clay irrespective of added concentration of H4SiO4. This difference between the two 

clay soils could be attributed to the initial Si content in these soils with Sharkey clay having 82 

ug g
-1

 Si which was greater than Perry clay with 41 ug g
-1

 Si 
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Table 3.2 Mean concentration of metal ions in the supernatant solution of different soils studied 

analyzed in ICP-OEM 

Soil type 

1
Al Fe Mn Mg 

………..…………………ug ml
-1

…………………………… 

Clovelly muck 
2
ND 0.006 1.73 175 

Caushatta silt loam ND 0.086 0.39 19 

Sharkey clay ND 0.141 6.64 45 

Perry clay ND 0.270 3.90 81 

Commerce silt loam 0.024 0.023 2.21 12 

Crowley silt loam ND 0.230 4.30 7 
1
concentration of Al, Fe, Mn and Mg detected in the supernatant solution of 0.1 M NaCl. 

2
ND = 

non-detectable concentrations 

3.3.1.b. Effect of incubation time on sorption 

There was no net sorption of H4SiO4 before 24 hours of incubation. Clovelly muck had 

the highest sorption within 7 days of incubation, followed by the clay soils with sorption greater 

than silt loam soils (Figure 3.3a, 3.3b, 3.3c, 3.3d, 3.3e and 3.3f). All soils showed an increase in 

sorption with time up to 7 days during the 30 days of incubation period. There was no further 

increase in sorption after 7 days in this study. Therefore, the estimated equilibration time for 

these soils was around 7 days after incubation. The change in total sorption recorded between 4 

and 7 days of incubation, in the high pH soil (Caushatta silt loam) was lower than clay soils 

(Sharkey clay and Perry clay) and organic soil (Clovelly muck) and similar to what was observed 

in silt loam soils (Commerce silt loam and Crowley silt loam).  

From these results, one can infer that, in a soil with near neutral pH, combined effects of 

organic matter content, oxyhydroxides of metal cations and clay content would have more 

influence on total sorption of H4SiO4 from solution than the sole effect of soil pH. Also, among 

the soils with acidic to near neutral pH, soils with particles of greater surface area determined by 

the total clay content and organic matter content (Table 3.1), continued to show greater sorption 
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during the entire duration of incubation over the others. Similar relationship between sorption 

and the particle size (specific surface area) was established by McKeague and Cline (1962).  

Results of studies of the removal of H4SiO4 from solution in the presence of soils support the 

hypothesis, suggested by studies of the dissolution of silica from soils, that sorption of dissolved 

silica on soil particle surfaces plays a significant role in controlling the concentration of H4SiO4 

in soil solutions (McKeague and Cline 1963) although leaching of silica from the soil and 

quantity taken up by crops are also important in determining silica concentrations in soils 

(Kittrick 1969). 

 
a. 

Figure 3.3 Amount of H4SiO4 sorbed in Caushatta silt loam soil (a), Clovelly muck (b), Crowley 

silt loam (c), Sharkey clay (d), Commerce silt loam (e) and Perry clay (f) after 4, 7 and 30 days 

of incubation in 0.1 M NaCl with varying concentrations of monosilicic acid 
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b. 

 

 
c. 

(Figure 3.3 continued) 
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d. 

 

 
e. 

(Figure 3.3 continued) 
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f. 

(Figure 3.3 continued) 

3.3.2 Effect of time on H4SiO4 release from Si fertilizer 

An increase in the concentration of H4SiO4 in the supernatant solution of all the soils was 

recorded, when the source of Si added was wollastonite (Figure 3.4). Interestingly, on the other 

hand, there was no detectable concentration of H4SiO4 in the supernatant solutions of all soils 

when slag was the source of added Si. This trend of decreasing concentration of H4SiO4, 

monitored throughout the incubation period of 200 days was gradual in the case of wollastonite 

whereas there was a sudden decline to below detection levels within 7 days of incubation, in the 

case of slag. This reduction in concentration was much greater than the sorbed quantities of 

H4SiO4 measured in different soils (Table 3.3). Therefore, this reduction of H4SiO4 from solution 

could not be attributed to soil sorption alone, but also could be attributed to the phenomenon of 

polymerization of H4SiO4 at high concentrations. The decrease in concentration of molybdate-

reactive silica was monitored over time by Icopini et al. (2005) to determine the extent of 
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oligomerization. They found this decrease in concentration of molybdate-reactive silica is 

accompanied by the appearance of a transient population of nanocolloidal particles with diameter 

3 nm, as determined by atomic force microscopy (AFM). This could have been the polymerized 

species of Si. Monosilicic acid will remain in solution in the monomeric state in neutral and 

weakly acid solutions. However, rapid polymerization occurs at high solution concentrations, 

with increasing soil pH and in the presence of oxides and hydroxides of Al and Fe (Berthelsen 

and Korndorfer 2005). This could be a reason for the rice and wheat yield depression observed at 

higher rates of slag applications (Haynes et al. 2013; Abro et al. 2009) concurrent with the 

decline in 0.01 M Calcium chloride extractable Si in soils.  

 

 
a. 

Figure 3.4 Concentration of H4SiO4 in solution of  sharkey clay (a), Caushatta silt loam (b), 

Clovelly muck (c), Perry clay (d), Crowley silt loam (e) and Commerce silt loam (f) soils treated 

with 23 mg Si g
-1   

as wollastonite and slag within a period of 200 days. 
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b. 

 

 
c. 

 

(Figure 3.4 continued) 
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(Figure 3.4 continued) 
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f. 

(Figure 3.4 continued) 

The concentration of H4SiO4 in 0.1 M NaCl solution with wollastonite (without soil) 

(Figure 3.5), increased from 10 to 35 ug ml
-1

, within the 200 day incubation time. However, no 

detectable concentration of H4SiO4 was present in the 0.1 M NaCl with slag. This confirmed that 

the difference observed between the treatments with slag and wollastonite in different soil 

suspensions was to a great extend due to the differences in chemical and physical properties of 

these two sources of Si (wollastonite and slag)  than the influence of soil properties alone. The 

major questions arrived at, after this experiment was if there was any release of H4SiO4 from slag 

in the soil suspensions. Also, it was important to know if there was any influence of soil property 

on the release of Si from these fertilizers. The influence of the chemical and physical properties 

of two Si fertilizers and the soils is discussed further in the following sections.  
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Figure 3.5 Concentration of H4SiO4 in 0.1 M NaCl solution with 23 mg Si g
-1

as wollastonite and 

slag within a period of 200 days. 
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concentration of H4SiO4 in the supernatant solution with increase in quantity of added slag, this 

experiment confirmed that the release of H4SiO4 from slag was not zero and this released 

concentration of H4SiO4 was being negatively affected by the quantity of added slag. The 

increase in quantity of wollastonite did not decrease the solution concentration of H4SiO4 as 

much as slag. An interesting difference in the concentration of Al
3+

 ions was discovered, when 

the solution concentration of free metal ions with different increments of slag and wollastonite 

was measured. With increasing added slag, the concentration of Al
3+

 ions rose from 9 to 44 ug 

ml
-1

 in solution. On the contrary, there was no change detected in solution concentration of Al
3+

 

ions when wollastonite was the source of Si added (Table 3.3). This finding further explained the 

difference in supernatant concentration of H4SiO4 between two Si sources. Clearly, there is an 

indirect relationship between the concentration of Al
3+ 

ions and the quantity of H4SiO4 in the 

solution. As shown by Willey (1975) and by Iler (1973) the presence of traces of Al reduces the 

equilibrium solubility of silica because alumina can also be co-deposited with silica as 

aluminosilicate ions in a silica matrix. As stated by Wohlberg and Bucholz (1975) that the 

presence of metal salts and hydroxides reduced solubility of silica and it was concluded by them 

that alumina is the best adsorbent. Over a long period of time monomeric silica, or Si(OH)4 

reacts with Al
3+

 ion at 25°C to form colloidal Al silicate of the halloysite composition. 

Monomeric silica is strongly sorbed onto the surface of hydrous Al oxides (Iller, 1978). 

It was noticed that the organic and clay soils had higher concentration of H4SiO4 in the 

solution in all soils at all treatments than the silt loam soils (Figure 3.6 and 3.7). This means 

when there was a substrate with higher sorption capacity (organic and clay soils), proportional to 

the rate of dissolution of Si from a fertilizer source, resulted, in a higher concentration of H4SiO4 

maintained in the solution. Clearly, sorption capacity of soils showed a positive relationship with 
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concentration of H4SiO4 maintained in solution. Therefore sorption could not be concluded as the 

sole reason for such a drastic decline of the concentration of H4SiO4 observed in this experiment 

due to two main reasons. Firstly, the maximum adsorbed quantity observed in all soils tested 

could not account for the total reductions in H4SiO4. Secondly, as discussed above, the soils with 

higher sorption capacity including the organic and clay soils had higher concentration of H4SiO4 

maintained in solution. 

       Table 3.3 Mean concentration of metal ions (P< 0.05) in the supernatant solution of two    

       different silicon fertilizers studied with increasing quantities of added fertilizers 

 

Fertilizer 
Rate of Si 

added. 
Al Fe Mn Mg 

 …………………………..ug ml
-1

…………………………….. 

Slag 

0.7 9d 0.1a 0.02a 0.46a 

1.4 18c 0.11a 0.02a 0.43b 

2.8 33b 0.11a 0.02a 0.43b 

5.8 44a 0.11a 0.02a 0.39c 

Wollastonite 

0.7 0.16a 0.11a 0.02b 0.50a 

1.4 0.16a 0.11a 0.03a 0.53b 

2.8 0.16a 0.11a 0.03a 0.45c 

5.8 0.13b 0.09b 0.02b 0.41d 

 

The next main possibility that could decrease the concentration of H4SiO4 in solution is 

polymerization of H4SiO4 to form polysilicic acid. Sorbed H4SiO4 may constitute a part of soil 

coatings; it may go into solution when water is added to soil or it may react with other 

constituents of such coatings to form secondary substances. Sorption of H4SiO4 as the soil 

solution is concentrated by evaporation may be one of the steps involved in the accretion of 

amorphous coatings at mineral particle surfaces in soil. (McKeague and Cline 1962). 
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a. 

 
b. 

Figure 3.6 Concentration of H4 SiO4 in Caushatta silt loam, commerce silt loam and Crowley silt 

loam (a) and Perry clay, Clovelly muck and Sharkey clay (b) soils after 7 days of incubation in 

0.1 M NaCl treated with varying rates of Si as slag.  
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a. 

 

 
b. 

Figure 3.7 Concentration of H4 SiO4 in Perry clay, Sharkey clay and Clovelly muck (a) and 

Caushatta silt loam, commerce silt loam and Crowley silt loam (b) soils after 7 days of 

incubation in 0.1 M NaCl treated with varying rates of Si as wollastonite.  
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Similarly, one may postulate that as the concentration of H4SiO4 increases in soil 

solution, there is an accumulation of the same in the solution unless the rate of sorption of 

H4SiO4 is slightly greater or equal to the rate of dissolution of Si from fertilizer material.  If there 

is a decline in the rate of sorption and an overall increase in the rate of dissolution, 

polymerization of H4SiO4 occurs to form polysilicic acid molecules in the solution. Iller (1978) 

explained this phenomenon in detail and quoted that when silicic acid/silicate ions condense and 

polymerize, they form a plethora of structural motifs, including rings of various sizes, cross-

linked polymeric chains of different molecular weights, oligomeric structures, etc. The resulting 

polymeric Si is a complex and amorphous product (colloidal silica)—a complicated mixture of 

the above components.  

3.3.4 Estimation of polymerized and sorbed quantity of H4SiO4 in different soils of Louisiana 

treated with slag and wollastonite 

At the end of 200 days of incubation, the 0.1 M NaCl solution was replaced with 0.5 M 

acetic acid (10 ml) in all the treatments with six replicates to dissolve or depolymerize the 

polysilicic acid into H4SiO4 and to bring them back into supernatant solution. This when added to 

what was released into 0.1 M NaCl gave a measure of the total quantity of Si released from the 

soil + fertilizer mixtures. The H4SiO4  measured in 0.5 M acetic acid + 0.1 M NaCl  solution of 

fertilizers with no soil (therefore; no sorption on soils) added was taken as the total quantity 

(polysilicic acid +  H4SiO4 ) released from these fertilizers. The total Si in 0.1 M NaCl alone 

before adding acetic acid will not take into account the polymerized and sorbed Si that has 

settled at the bottom on the solid phases. Dilute salt solutions like 0.1 M NaCl provided a 

measure of the readily available Si present in the soil solution, while results obtained using 

ammonium acetate (NH4OAc) and acetic acid indicated that the Si solubilized was likely to be 

the more simple  polymers (Berthelsen and Korndorfer 2005). Once in solution, H4SiO4 can be 
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measured by the silicomolybdate blue colour method (Iler, 1979). Kraut (1931) prepared H4SiO4 

by dissolving sodium metasilicate hexahydrate in various acidic solutions at low temperature. He 

reported that H4SiO4 is most stable at around pH 2-3. Weitz et al. (1950) also demonstrated that 

when Na2SiO3·9H2O was reacted with acetic acid it liberated H4SiO4. There was significant 

difference in the quantities of Si released into 0.5 M acetic acid all between treatments (soil 

alone, soil+slag and soil+wollastonite) irrespective of the soil series (P < 0.0001). The 

differences in the quantities of Si released at the end of 200 days into 0.5 M acetic acid were also 

present within different soil series treated with slag or wollastonite (P < 0.0001). Quantification 

and evaluation of polymerized, sorbed and that present in solution as H4SiO4  in different soils 

with slag or wollastonite as added fertilizers enabled further analysis of the observed differences. 

The polymerized quantities of H4SiO4 in all soils treated with slag were considerably higher than 

when treated with wollastonite (P < 0.0001) as shown in Figure 3.8.  

This greater concentration of polysilicic acid in the soil solutions with slag as the added 

source of Si was seen concomitant with a drastic reduction of H4SiO4 in solution (Figure 3.9). 

Baumann (1959) found that the polymerization rate increased rapidly with increasing dissolved 

silica concentration, and also that it increased with increasing pH. Savant et al. (1999) also 

reported that there is polymerization of plant-available Si to form a silica‐gel if it exceeds a 

concentration of 65 mg L
-1

 or if there is dehydration of the soil, which is reversible on dilution. 

The minimum concentration of  Si released into 0.5 M acetic acid (P < 0.0001) and thereafter, 

the minimum calculated polysilicic acid was in the supernatant solution of the organic soil 

(Clovelly muck) with wollastonite as the source of Si (Figure 3.8 and 3.9). Among the different 

soils, the silt loam soils with minimum clay content of  9% (Crowley silt loam,) had the 

maximum concentration of Si released into 0.5 M acetic acid (P < 0.0001) which in turn 
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measured the maximum polysilicic acid in solution. This could be due to the fact that there was 

minimum sorption in this soil (also observed in the sorption experiment). 

 

Figure 3.8 Silicon measured as H4SiO4 in 0.5 M acetic acid solution on six different soils, with 

slag and wollastonite as the source of Si after 200 days of incubation in 0.1 M NaCl solution. 

Bars with the same lower case letter represent H4SiO4 values measured from soil+slag and slag 

alone that are not statistically different. Bars with same upper case letters represent H4SiO4 

values measured from soil+wollastonite and wollastonite alone that are not statistically different. 

Bars with roman numerals represent H4SiO4 values measured from soil alone. ND= Not detected. 
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a. 

 
b. 

 

Figure 3.9 Quantity of H4SiO4, adsorbed, polymerized and that present in solutions of six 

different soils treated with 23 mg Si g
-1

 as wollastonite (a) and slag (b) after 200 days of 

incubation in 0.1 M NaCl solution.* H4SiO4  in ug g
-1

 for percent adsorbed, ug ml
-1

 for percent 

polymerized and in solution 
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The rate of polymerization increases when the rate of dissolution is greater than the rate 

of sorption because polymerization takes place when the concentration of H4SiO4 is high. This 

was studied and explained by Iller (1978) who stated that H4SiO4 is soluble and stable in water at 

25°C for long periods of time if the concentration is less than about 100 ug ml
-1

 as SiO2 but when 

a solution of monomer, Si(OH)4., is formed at a concentration greater than about 100-200 ug ml
-1

 

as SiO2, and in the absence of solid phase on which the soluble silica might be deposited, then 

the monomer polymerizes by condensation to form dimer and higher molecular weight species of 

silicic acid.  

Clays in the soil may adsorb excess silica, thus inhibiting the formation of silica 

polymorph from soluble silica (Williams and Crerar, 1985). A similar scenario was perceived in 

this study as well. Evidently, with an increase in sorption, there was a decrease in polymerized 

quantity of H4SiO4 (Figure 3.9). The greatest adsorbed quantity of H4SiO4 was found in Clovelly 

muck which also had the minimum polymerized quantity of H4SiO4 at the end of 200 days of 

incubation. The adsorbed quantity was minimum in the case of silt loam soils wherein a greater 

polymerization of H4SiO4 was also recorded. The process of sorption of H4SiO4 on the solid 

phases decreases its concentration in the solution. When there was a decrease in the available 

surface area for sorption on the solid phases, there was a marked increase in the quantity of 

polymerized Si in solution. A greater quantity of polysilicic acid in the supernatant solutions of 

slag was observed compared with wollastonite supporting the findings about the role of Al
3+

 ions 

released from slag into solution in accelerating the process of polymerization and decreasing the 

concentration of H4SiO4 to almost zero with an increase in quantity of slag added.  
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Figure 3.10 Total silicon from 23 mg g 
-1

 Si added as slag and wollastonite measured as H4SiO4 

concentration in 0.5 M acetic acid within 10, 30, 60, and 120 minutes of incubation 

The laboratory experiment conducted between 10 minutes to 120 minutes of incubation 

in 0.5 M acetic acid (depolymerizing reagent) proved that there existed a great difference 

between the dissolution rates of Si from slag and wollastonite. The total concentration of H4SiO4  

(including the H4SiO4  from depolymerization of polysilicic acid) with Slag added was 143 ug 

ml
-1

 but with wollastonite, the concentration reached only 21.44 ug ml
-1

 within 10 minutes of 

incubation in 0.5 M Acetic acid (Figure 3.10). This faster dissolution rate of Si from slag is yet 

another reason for the accumulation of H4SiO4 in solution leading to an increased rate of 

polymerization in neutral solutions like 0.1 M NaCl, when slag is added as the Si source. This 

could be a direct effect of the physical structure of the slag particles. 
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Figure 3.11 Pattern of X-Ray diffraction analyses for slag (a) and wollastonite (b) 
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     a. 

 
     b. 

Figure 3.12 Scanning electron microscopy images of wollastonite (a) and slag (b) 
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Figure 3.13 Elemental compositions of slag (a) and wollastonite (b) from Electron Dispersive X-

ray analyses 
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The XRD patterns were obtained to further confirm the difference observed between the 

rates of dissolution of H4SiO4 from slag and wollastonite. The XRD patterns show more intense 

and narrow peaks with increasing crystallinity (Lee 2007). A distinguished pure crystalline 

pattern was seen for wollastonite, which differed from the XRD pattern of slag confirming its 

polycrystalline nature with more amorphous phases (Figure 3.11). The amorphous nature of slag 

would make it a fertilizer material with greater rate of dissolution than the crystalline 

wollastonite because polycrystalline substance is always more soluble than crystalline substance 

due to their amplified surface energy which in turn is a direct result of their less-ordered 

structures. Freshly ground or agitated suspensions of quartz commonly show abnormally high 

solubility levels (37 mg Si L
-1

, Morey et al. 1962). This has been attributed to the formation of a 

disrupted surface layer, which is believed to be amorphous (Nagelschmidt et al. 1952; Liberti 

and Devito Francesco 1963; Siffert 1967; Ribault 1971) or microcrystalline (Lidstrom 1968; 

Moore and Rose 1975). Slag is a material that is a byproduct of iron and steel industry and 

therefore a slag material has been relatively newly formed compared with the wollastonite which 

is a pure mineral. Thus the surface layers of this slag material will surely have a far less 

crystalline nature. Since the solubility of the disrupted surface layer, whether amorphous or 

polycrystalline is considerably greater than that of wollastonite, the apparently high solubility of 

slag that has been observed in this study may, in fact, reflect the solubility of the disrupted 

surface layer. Secondly, EDX-SEM images showed the presence of Al
3+

 ions on slag particles at 

a concentration greater than that on wollastonite (Figure 3.11). These ions act as catalysts and 

accelerate the process of polymerization. Certain impurities such as Al
3+

  in minute amounts not 

only reduce the rate of dissolution of silica, but by chemisorption on the surface of silica, even in 

amounts less than a monomolecular layer reduce the solubility of silica at equilibrium.(Iller 
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1978). In particular, Okamoto et al. (1957) have shown that A1
3+

 has a strong effect on the 

solubility of silica. Therefore the second reason would be that a relatively low content of Al ion 

greatly reduces the concentration of monosilicic acid, thus explaining why slag had a greater 

decline in H4SiO4 concentration due to greater polymerization. This observation emphasizes the 

point that, it may be very difficult to obtain an accurate measure of solubility unless traces of Al 

and other metals forming insoluble silicates are rigidly excluded from the system. 

3.4 Conclusions 

 

Rate of polymerization has a negative effect on the concentration of H4SiO4 in solution. 

The lower the soil sorption capacity, the higher will be the quantity polymerized. Higher rate of 

dissolution of fertilizer material and concentration of ions like Al and Mg in the fertilizer 

material as well as in the soil solution can also increase the rate of polymerization. If the soil 

characteristically has low silica concentration value, large additions of silica from other sources 

might not result in favorable results since the H4SiO4 released from these fertilizers will not 

remain long in solution in simple forms due to greater sorption and polymerization losses. 

Greater polymerization of the H4SiO4 released from these fertilizers could be a possible 

explanation in addition to losses due to sorption mechanisms (sorption, precipitation and 

absorption/fixation) that can make Si unavailable in soil solution.. The Si deficient soils high in 

organic matter and clay content might respond to greater quantity of Si fertilizers since these 

soils were shown to have maximum sorption capacity and, therefore minimum polymerization. 

The absence of alumina is undoubtedly of critical importance because Al
3+

 ions can accelerate 

the process of polymerization and reduce the availability of H4SiO4 from fertilizer materials 

especially when applied in large quantities on light textured soils. Changes in moisture content 

related to alternating wetting-drying cycles in the soil may influence the silica concentration in 
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solution more readily than the other processes. Of greater significance may be the 

microenvironment surrounding individual fertilizer particles, and the specific chemical 

environment at particle to particle contacts of these fertilizers when applied in soil. The chemical 

equilibrium and kinetic reactions at fertilizer particle contacts may not be reflected in bulk 

solution chemistry, but may be part of the driving force determining reaction rates.  
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Chapter 4. Establishing soil silicon test procedure and critical silicon level for 

rice in Louisiana soils 
 

4.1 Introduction 

Silicon (Si) is absorbed by plants as monosilicic acid (H4SiO4) (Jones and Handreck, 

1967). Silicon can be supplied to rice (Oryza sativa) in the form of calcium silicate (wollastonite 

and slag) which is incorporated into the soil before planting. Rice is a Si accumulator (Yamaji 

and Ma 2007). Depletion of plant-available Si in soils where rice is grown could be a possible 

limiting factor contributing to declining or stagnating yields in many rice growing countries 

(Savant et al. 1997). During the past decade, in a study conducted by Breitenbeck et al. (2006) 

documented numerous rice fields in southwestern Louisiana have begun to display symptoms 

similar to the devastating nutritional disorder 'Akagare' that occasionally occurs in Japanese rice 

fields. Symptoms of “localized decline” are invariably associated with uptake of excessive levels 

of iron (Fe) and aluminum (Al) by young rice plants. Affected plants are often low in zinc and 

potassium, but applications of these nutrients has failed to offset the onset of this disorder. A 

preliminary survey of Louisiana rice at mid-tillering stage showed that affected plants also 

contained low levels of Si (12-36 mg kg
-1

), suggesting that Si deficiency may be a contributing 

factor to “localized decline”. Several studies in the past few years suggest that increasing Si 

uptake mitigates Al and Fe toxicity as well as a range of other abiotic stresses in rice and other 

crops (Ma and Takahashi 2002). Silicon fertilization increases the number of tillers and grains 

(Liang et al. 1994). Snyder et al. (1986) demonstrated that application of calcium silicate 

increased rice yields in Histosols mainly due to the supply of available Si and not due to supply 

of other nutrients. The effect of Si on reducing diseases unquestionably contributes to increased 

yields, but Si has also been shown to increase yield in the absence of disease (Datnoff et al. 
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1992). Before a fertilizer recommendation is made, the critical limits for a particular nutrient in 

the soil for plant growth and development must be determined. The information obtained will 

indicate the degree of nutrient deficiency and the amount of nutrient to be applied as a fertilizer 

to correct the deficiency (Korndorfer et al. 2001). 

Identifying the most appropriate extraction method is another essential aspect to be 

considered when recommending fertilizers. To develop recommendations for field applications 

of silicate materials, knowledge of soil Si status and availability of Si in the amendment is 

essential. Predicting crop responses to application of Si requires calibration of soil Si status and 

plant uptake. The challenge for routine testing of soils and amendment materials is the 

development of a simple, dependable, and robust method that correlates well with changes in soil 

Si status and corresponding plant tissue levels. A number of chemical extraction procedures have 

been developed to determine the plant-available soil Si status, and have been compared on 

various soil types (Elliott and Snyder 1991; Matichenkov et al. 2000; Korndörfer et al. 2001; Ma 

and Takahashi 2002; Pereira et al. 2003; Wang et al. 2004; Berthelsen and Korndörfer 2005). 

The relationships between different extraction methods have not been well documented (Savant 

et al. 1999; Ma and Takahashi 2002).  

Although critical limits for many nutrient elements are available for Louisiana soils, there 

is no information with respect to Si for Louisiana rice soils. The pH of the extractant is also 

fundamental for H4SiO4 solubility, just as soil pH is important for soil solution concentration and 

Si absorption by plants. Not enough silicate and lime comparative studies are available to prove 

if just the pH increase is able to provide this element to rice growing in soils with low Si 

concentration, causing doubts about the effectiveness of silicate fertilizations. This study was 

conducted with the following objectives: 1) to determine the effect of Si fertilization on Si tissue 
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concentrations, plant biomass, and yield; 2) to evaluate the relationship between plant Si uptake 

and soil Si based on different extraction procedures; and 3) to establish a critical Si level for soil 

using different extraction procedures. 

4.2 Materials and methods 

4.2.1 Bulk sampling and green house study 

Six bulk soil samples: Perry Clay, Sharkey Clay, Commerce silt loam, Crowley Silt 

Loam, Coushatta Silt Loam and Mowata silt loam from the locations viz., Ouachita, Tensas, 

Evangeline, Rapides and Calcasieu parish were collected from 0 to 6
+
 cm depths. A greenhouse 

pot culture study was conducted with 4 graded levels of Si (0, 170, 340, and 680 kg ha
-1

) applied 

as slag (Plant Tuff®) and wollastonite (Table 4.1) with five replications. Each plastic pot was 

filled with 7 kg of soil and a calculated quantity of slag or wollastonite was applied, mixed 

properly, before sowing seeds of rice. Seeds of rice variety, CL 111 were sown at the rate of 6 

seeds per pot. Thinning was performed ten days after germination, leaving two plants per pot and 

nitrogen (N), potassium (K) and phosphorus (P) in the form of urea, muriate of potash and Triple 

super phosphate were applied at the rate of 134: 90: 90 (NPK) kg ha
-1

. One third of nitrogen and 

potassium was applied 45 days after planting and the rest was applied before planting. The pots 

were maintained under flooded condition after 20 days of germination until 7 days before 

harvest. Regular plant protection practices were used throughout the crop growing period. The 

details of the bulk samples collected and initial soil properties are presented in Table 4.2. At 

maturity, panicles were separated from tillers. All tillers from each pot were cut as close to the 

soil surface. The panicles and straw samples were oven dried at 65°C for 72 hours. The grain and 

straw yield was then calculated as dry weight (g) per pot.  Silicon uptake by rice and availability 

in soil in each pot were recorded at harvest using different extraction procedures (Table 4.3). 
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4.2.2 Extraction and estimation of Si in soil and plants 

4.2.2.a. Soil Si analysis 

 Silicon was extracted from soils using seven extractants as outlined by different 

researchers (Table 4.3). The Si in the extracting solution was determined by Molybdenum Blue 

Colorimetry (Korndorfer et al. 2001). Fixed quantity of filtrate was transferred into a plastic 

centrifuge tube and then 10 mL of deionized water, plus 0.5 mL of 1:1 hydrochloric acid (HCl), 

and 1 mL of 10% ammonium molybdate [(NH4)6Mo7O2] solution (pH 7.5) were added. After 5 

minutes, 1 mL of 20% tartaric acid solution was added and after two minutes, 1 mL of the 

reducing agent Amino napthol n-sulphonic acid (ANSA) was added. After five, but not later than 

30, minutes following addition of the reducing agent, absorbance was measured at 630 nm using 

UV visible spectrophotometer (Hach DR 5000). Simultaneously, Si standards (0.2, 0.4, 0.8, 1.2, 

1.6 and 2.0 mg L
−1

) prepared in the same matrix were also measured using UV visible 

spectrophotometer. 

4.2.2.b. Plant Si analysis 

Plant Si content was determined using Oven-induced Digestion Procedure (Kraska and 

Breitenbeck 2010).  Dry, ground tissue samples (100 mg) were weighed into 50-mL 

polyethylene screw-cap centrifuge tubes. To reduce foaming, 5 drops of octyl-alcohol were 

added prior to adding H2O2 and NaOH. Samples were wetted with 2 mL of 30% H2O2, washing 

the sides of the tube free of sample. The tube was tightly capped and placed in a convection oven 

at 95°C. After 30 min, the tubes were removed and 4 mL of 50% NaOH added to the hot 

samples. The sample tubes were then gently vortexed, capped loosely, and returned to the oven 

(95°C) every 15 minutes. After 4 hours, samples were removed and 1 mL of 5 mM NH4F was 
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added to facilitate the formation of H4SiO4 prior to the final dilution to make up the volume to 

50-mL with deionized water.  

The Si in the digested solution was determined by Molybdenum Blue Colorimetry 

(Hallmark et al. 1982). A 2-mL aliquot of digested sample solution was added to a 50 mL 

polyethylene screw-cap centrifuge tube. Ten mL of 20% acetic acid was then added to each tube, 

followed by 2 mL of 0.3 M ammonium molybdate. After 5 minutes, 2 mL of 20% tartaric acid 

solution was added and after two minutes, 2 mL of the reducing agent Amino napthol n-

sulphonic acid (ANSA) was added. The samples were diluted to a final volume of 30 mL with 

20% acetic acid, capped and shaken. After 30 minutes, tubes were shaken vigorously to mix 

prior to determining absorbance using a spectrophotometer (Hach DR 5000) calibrated at 630 

nm. Simultaneously, Si standards (0.4, 0.8, 1.6, 3.2, 4.8 and 6.4 mg L
−1

) were prepared in the 

same matrix were also measured using UV visible spectrophotometer. 

4.2.2.c. Correlation analysis 

The relationship between extractable soil Si based on different procedures and different 

plant response variables was evaluated using regression analysis with PROC REG in SAS 9.4 

(SAS Institute, 2012).  The relationship between extractable soil Si based on different procedures 

and soil Si rates was also evaluated using regression analysis with PROC REG.  The coefficient 

of determination (r
2
) and P-value were used as criteria to determine the significance of their 

relationship.  

4.2.3 Calibration of Si in soils 

 The critical limits of soil for relative maximum yields were estimated using three 

methods, namely graphical Cate and Nelson method, quadratic regression and linear plateau 

model. The critical limit of Si in soil may be defined as optimum Si concentration in soil beyond 
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which a positive response in terms of yield is highly unlikely and below which the plant fail to 

attain the maximum potential yield. The graphical method of Cate and Nelson entails plotting the 

plant available soil Si extracted by different extractants on X-axis and relative yield on the Y-

axis. A transparent overlay with a vertical line and an intersecting horizontal line maximized the 

number of points in the first and third quadrants. Afterwards, the soil test value corresponding to 

the intersection was taken as the critical value for Si (Cate and Nelson 1965; 1971).  

The optimum Si concentration which is equal to the minimum Si concentration in soil 

that corresponded to the maximum yield (Waugh et al. 1973) was also determined using 

quadratic model.  Quadratic model was used with parameter estimates derived separately for 

each soil type by plotting relative biomass yield to soil nutrient level with the REG procedure in 

SAS (version 9.4, SAS Institute, 2012). The critical level for Si response was the value 

associated with highest yield level (peak) of the projected yield, which was calculated using the 

quadratic formula.  

Bouqet et al. (2009) stated that the linear-plateau model asserts that yield beyond an 

optimum nutrient concentration, the joint of the linear and plateau regions, remains constant. The 

plateau region corresponds to maximum yield. Yield data points anywhere in the plateau region 

are statistically the same. And the response to added fertilizers is highly unlikely after this point 

of soil concentration from where the plateau begins. Also, there are high chances of yield decline 

below the maximum potential yield below this level of soil Si concentration in soil and the 

likelihood of response to added Si fertilizers is significantly higher below this estimated critical 

concentration of Si in soil.
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        Table 4.1 The elemental composition of the two sources of Si 

 

 

Table 4.2 Properties of soil series used in greenhouse study during the summer of 2014 and 2015 
 

1
Extractable nutrients determined by Mehlich- 3 extraction procedure followed by ICP analysis. 

2
 Si determined by 0.5 M acetic acid 

extraction procedure and Molybdenum Blue Colorimetry. 
3
 Organic matter determined by Walkley and Black method, 

colorimetrically (Walkley and Black 1934).  

Elements Si Al Ca Fe Mg S B Cu Zn 

 .…………..……………………..%..................................... 

Wollastonite 23 5.3 31 14 13.9 0 0 0 0 

Slag (Plant Tuff®) 17 4.8 23 14 7 1.71 0.01 0.0004 1.09 

Soil series with taxonomic class 
3
OM 

 % 

 

pH  

1:1 

Water
 

2
Si 

1
P

 1
 K 

1
 Ca 

1
 Mg

 1
 S 

1
 Zn 

------------------------- mg kg
−1 

---------------------
 

Crowley silt loam  

(Fine, smectitic, thermic Typic Albaqualfs ) 
1.6 5.0 53 11 73 669 101 12 1.4 

Sharkey clay  

(Very-fine, smectitic, thermic Chromic Epiaquerts) 
3.0 5.7 83 65 466 3,112 565 42 4.0 

Perry Clay 

(Very-fine, smectitic, thermic Chromic Epiaquerts) 
3.6 5.3 79 17 236 1,731 628 33 3.8 

Commerce silt loam (Fine-silty, mixed, superactive, nonacid, 

thermic Fluvaquentic Endoaquepts ) 
1.9 6.0 25 16 198 1,158 203 18 2.4 

Caushatta silt loam ( Fine-silty, mixed, superactive, thermic 

Fluventic Eutrudepts ) 
2.1 8.0 98 22 206 3,702 416 43 2.9 

Mowata silt loam (Fine, smectitic, thermic Typic Glossaqualfs) 2.5 7.4 47 81 257 2,064 104 33 1.4 
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   Table 4.3 Different extractants and procedures used for evaluating plant available silicon in select Louisiana soils 

 

   Table 4.4 Initial soil silicon extracted from different soils before planting using different extraction procedures

Extracting solution 
Soil: solution 

ratio 
Shaking period Reference 

0.5 M Acetic acid-1 1:10 Continuous shaking for 1 hour Korndorfer et al. (1999) 

0.01M Calcium chloride (CaCl2) 1:10 Continuous shaking for 1  hour Korndorfer et al. (1999) 

1 M Sodium acetate (NaOAc) 1:10 Continuous shaking for 1  hour Korndorfer et al. (1999) 

Deionized water 1:10 Continuous shaking for 1  hour Korndorfer et al. (1999) 

0.5 M Ammonium acetate 

(NH4OAc) 
1:10 Continuous shaking for 1  hour Fox et al. (1967) 

0.1M Citric acid 0.5:25 
Shaking for 2  hours, resting for 24 hours and 

then shaking for 1 hour 

Acquaye and Tinsley 

(1965) 

0.5 M Acetic acid-2 4:10 
24  hours rest and then continuous 

shaking for 2  hours 
Snyder (2001) 

Soil type 

0.5M 

Acetic 

acid-1 

1 M 

NaOAc 

0.01 M 

CaCl2 

0.5 M 

NH4OAc 

Deionized 

water 

0.1 M 

Citric 

acid 

0.5 M 

Acetic 

acid-2 

Mean 

 ……………………………..….ug g
-1

……………………………………………… 

Crowley silt loam 53 24 25 24 31 144 67 53 

Sharkey clay 83 67 22 65 22 1309 240 258 

Perry Clay 79 37 37 37 40 404 137 110 

Commerce silt loam 25 17 17 22 25 349 82 77 

Caushatta silt loam 98 62 30 63 50 492 144 134 

Mowata silt loam 47 30 22 47 47 414 132 112 
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 The optimal Si concentration estimated by the linear plateau model thus does not only 

consider the Si concentration that results in the highest yield, it identifies the point (optimum Si 

concentration) at which further increases in soil Si concentration would not result in significant 

increases in relative biomass yield. Statistical analysis of Si data using linear-plateau regression 

of soil Si concentration on rice relative biomass yield was done with the NLIN procedure 

available in SAS. The lower limit of the plateau portion of the function was considered to be the 

critical level (Cate and Nelson 1971). If there was no projected critical level within the range of 

our data, linear plateau model (NLIN procedure) was not used to determine a critical level. All 

regression models were statistically evaluated using the coefficient of determination (r
2
) and p-

value.  

 Analysis of variance (ANOVA) was performed using PROC MIXED in SAS 9.4 (SAS 

Institute, 2012) to determine significant effects of treatments on soil and plant Si level and 

biomass yield. For any significant treatment effect (P<0.05), mean separation was done by 

Tukey–Kramer post-hoc test to identify treatment differences. 

4.3 Results and Discussions 

4.3.1 Plant available Si determined by different extractants 

A significant difference was observed between the soils, when the initial Si content was 

analyzed using different extractants.  The mean Si level, over the range of seven extractants in 

Sharkey clay soil was the greatest with 258 ug g
-1

 and the minimum was noted in Crowley silt 

loam with 53 ug g
-1 

(Table 4.4). 
 
The clay soils had higher soil Si than the silt loam soils. A 

positive correlation existed between soil pH and mean soil Si among the soils with same texture. 

Caushatta silt loam had the maximum mean soil Si of 135 ug g
-1

 and a pH of 8 among the light 
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textured soils and in the case of heavy textured soils, Sharkey clay had higher Si content and pH 

than Perry clay.   

The results from the composite Si-treated soil samples analyzed after the harvest of rice 

by different extractants clearly showed changes in Si availability in relation to the rates of Si 

sources across the six soil series investigated (Table 4.5). The amount of Si extracted by all 

extractants was not always proportional to the rate of Si applied. However, the acid extractants 

extracted greater Si from soil than CaCl2 and deionized water. The available Si extracted by 

different extractants viz., 0.5 M acetic acid-1, 0.5 M acetic acid-2, 0.01 M CaCl2, deionized 

water, 0.5 M NH4OAc, 1 N NaOAc and 0.1 M citric acid ranged from 42 to 383 ug g
−1

, 72 to 

470 ug g
−1

, 6 to 107 ug g
−1

, 8 to 130 ug g
−1

, 14 to 181 ug g
−1

, 21 to 334 ug g
−1 

and 306 to 2154 

ug g
−1

 respectively (Table 4.5). The available Si extracted by various extractants irrespective of 

the soils used for the study was in the order of high to low:  0.1 M citric acid >0.5 M acetic acid-

2 >0.5 M acetic acid-1 > 1 M NaOAc-1 > 0.5 M NH4OAc > deionized water > 0.01 M CaCl2.  

In general it can be stated that 0.1 M citric acid, 0.5 M acetic acid, 0.5 M NH4OAc and 1 

M NaOAc extracted more Si than 0.01 M CaCl2, and deionized water. Similar results were 

reported by scientists who interpreted that extraction solutions containing sulfuric acid, sulfurous 

acid, sulfate, citric acid, and citrate, extract adsorbed Si, with the different extractants desorbing 

various amounts of the specifically adsorbed Si fraction (Fox et al. 1967; Korndorfer et al. 1999; 

Berthelsen et al. 2000). The acetic acid is able to extract non available Si present in some 

materials such as Ca and Mg silicate, but it is not true for wollastonite (Pereira et al. 2004). Xu et 

al. (2001) attributed to calcium silicate dissolution the high Si extracted with acid extracting 

solution (pH 4) in calcareous soils.  
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According to Brown and Mahler (1987), acidity and anions could additively impact Si release 

from soils, as showed by Wang et al. (2004). This was in agreement with the data from the 

second chapter.  

The soluble Si concentration extracted by 0.01 M CaCl2 increased in soils treated with 

wollastonite. Slag did not increase Si concentration extracted by 0.01 M CaCl2 in the soil (Figure 

4.1). This trend also existed with deionized water extractable soil Si (Figure 4.2) but with an 

increased Si concentration in soil which could be attributed to greater solubility of fertilizer slag 

in deionized water than the 0.01 M CaCl2. However, the 0.5 M acetic acid, 0.1 M citric acid and 

acetate (1 M NaOAc-1 and 0.5 M NH4OAc) extractable Si in all soils increased with increasing 

rates of wollastonite and slag (Figure 4.3 to 4.7). This was expected as the acid extractants 

dissolve slag material better than wollastonite which is insoluble in weak acids. It has also been 

pointed out by Haynes et al. (2013) that acid extractants can remove very large amounts of Si 

from soils treated with slags since these materials are acid-soluble. Some of the Si extracted 

originates from residual unreacted slag present in the soil. Similar observations have been made 

regarding the Na-acetate buffer (pH 4.0) method (Imaizumi and Yoshida 1958) by both Sumida 

(2002) and Wang et al. (2001). These strongly acidic extractants should therefore be avoided on 

Si-fertilized soils.  

Also, the Si source content coupled with its solubility was likely to influence yield 

response and plant Si uptake. Wollastonite with Si content higher than slag, is often added in 

lesser quantities than slag to meet the same Si requirements in soil. These larger quantities of 

slag coupled with its fast dissolution than wollastonite might lead to the conversion of 

monosilicic acid released into the soil into unavailable forms due to the processes of 

polymerization and adsorption.
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Table 4.5 The soil silicon extracted from different soils with different extraction procedures after harvest 
 

     (P < 0.05= significant; NS=Non-significant). † - application rate was 1 ton material ha
-1

 

 

  

Source 

Rate 

kg Si 

ha
-1

 

0.5M 

Acetic  

acid-1 

1M 

NaOAc 

0.01M 

CaCl2 

0.5M 

NH4OAc 

Deionized 

 water 

0.1M 

Citric acid 

0.5M 

Acetic 

acid-2 

  ………………………..Caushatta silt loam,  ug g
-1

………………………………………………. 

Control - 132d 70 28b 66d 15c 929ab 120d 

Check lime † 134d 137 22b 68cd 19c 809b 140d 

 170 170cd 219 33b 66d 25c 1076ab 202bc 

Wollastonite 340 203 c 50 49ab 91bc 62ab 1206a 222ab 

 680 362a 80 76a 86bcd 81a 1239a 244a 

 170 188c 83 29b 78bcd 34c 885ab 177c 

Slag 340 273b 128 21b 101b 38bc 1004ab 198bc 

 680 320ab 174 24b 130a 21c 1110ab 213b 

P-value  <0.0001      (NS) <0.0001 <0.0001 <0.0001 0.0052 <0.0001 

  ……………………….Commerce silt loam,  ug g
-1

……………………………………………… 

Control - 78e 26c   6d 29d 15c 401c 99de 

Check lime † 79e 27c 16cd 40cd 20c 478c 71e 

 170 125de 36bc 24bc 50bc 25c 740b 198b 

Wollastonite 340 174d 81b 43a 59b 51b 755b 228ab 

 680 229c 69bc 52a 58bc 75a 1090a 259a 

 170 169d 46bc 30b 39cd 22c 570bc 125d 

Slag 340 304b 155a 15cd 50bc 13c 529bc 160c 

 680 383a 171a 13d 123a 18c 654bc 209b 

P-value  <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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       (Table 4.5 continued) 

       (P < 0.05= significant; NS=Non-significant). †- application rate was 1 ton material ha
-1

Source 

Rate 

kg Si 

ha
-1

 

0.5M 

Acetic  

acid-1 

1M 

NaOAc 

0.01M 

CaCl2 

0.5M 

NH4OAc 

Deionized 

 water 

0.1M 

Citric acid 

0.5M 

Acetic acid-2 

  ………………………….Crowley silt loam,  ug g
-1

…………………………………………. 

Control - 42b 21f 16d 14e 14c 315e 94e 

Check lime † 45b 40ef 18d 25d 19c 339e 110e 

 170 61b 37ef 25bc 30cd 20c 353de 157d 

Wollastonite 340 124ab 65cd 30b 39c 26b 540b 205bc 

 680 205a 103b 55a 62b 39a 826a 335a 

 170 86b 52de 20cd 34cd 18c 405d 175cd 

Slag 340 83b 79c 21cd 54b 17c 469c 218b 

 680 206a 125a 19d 96a 19c 575b 362a 

P-value  <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

  ……………………….Mowata silt loam,  ug g
-1

……………………………………………….. 

Control - 53d 26c 16c 33c 22 abc 306c 112ef 

Check lime † 145c 52c 13c 37c   8c 367c 82f 

 170 219b 36c 19bc 44c 24ab 545bc 148de 

Wollastonite 340 358a 65bc 30ab 56bc 29a 766ab 267ab 

 680 221b 59bc 38a 78ab 37a 938a 294a 

 170 188bc 61bc 19c 56bc   9bc 532bc 190cd 

Slag 340 237b 129ab 17c 73ab 24ab 553bc 195cd 

 680 330a 146a 16c 96a 21abc 516bc 236bc 

P-value  <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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      (Table 4.5 continued) 

       (P < 0.05= significant; NS=Non-significant). † - application rate was 1 ton material ha
-1

Source 

Rate 

kg Si 

ha
-1

 

0.5M 

Acetic  

acid-1 

1M 

NaOAc 

0.01M 

CaCl2 

0.5M 

NH4OAc 

Deionized 

 water 

0.1M 

Citric acid 

0.5M 

Acetic acid-2 

  ……………………………….Perry clay, ug g
-1

………………………………………………… 

Control - 215c 162d 50bc 93c 60a 1366bc 328b 

Check lime † 230bc 188cd 37cd 105bc 20e 1376bc 310b 

 170 260bc 187cd 52cd 112bc 50bc 1372bc 380ab 

Wollastonite 340 329a 227b 60b 129ab 48ab 1734ab 439a 

 680 331a 231b 68b 146a 48ab 1972a 443a 

 170 256bc 196c 45c 104bc 45abc 1325bc 352ab 

Slag 340 287ab 198c 37c 128ab 26de 1407bc 378ab 

 680 329a 280a 32a 147a 30cde 1465bc 376ab 

P-value  <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0026 

  ……………………………….Sharkey clay, ug g
-1

………………………………………………. 

Control - 156d 113e 52d 81e 72cd 1371f 333e 

Check lime † 205cd 166d 53d 109d 77c 1407f 334e 

 170 206cd 165d 64c 109d 81bc 1576e 392cd 

Wollastonite 340 256bc 179cd 92b 113cd 93b 1812c 437ab 

 680 284ab 203bc 107a 143b 130a 2154a 470a 

 170 239bc 167d 58cd 112cd 58de 1661d 363de 

Slag 340 308a 226b 58cd 129bc 76bc 1837c 423bc 

 680 313a 334a 51d 181a 45e 2004b 467a 

P-value  <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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Figure 4.1 The CaCl2 extractable soil silicon with different rates of silicon applied in soil in the 

form of wollastonite and silicate slag (each point is an average of 30 observations) 

 

 

 

 

Figure 4.2 The deionized water extractable soil silicon with different rates of silicon applied in 

soil in the form of wollastonite and silicate slag 
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Figure 4.3 Acetic acid-2 (0.5 M) extractable soil silicon with different rates of silicon applied in 

soil in the form of wollastonite and silicate slag 

 

 

 

 
 

Figure 4.4 Acetic acid-1 (0.5 M) extractable soil silicon with different rates of silicon applied in 

soil in the form of wollastonite and silicate slag 
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Figure 4.5 Citric acid (0.1 M) extractable soil silicon with different rates of silicon applied in soil 

in the form of wollastonite and silicate slag 

 

 

 

 
 

Figure 4.6 Sodium acetate (1 M) extractable soil silicon with different rates of silicon  

applied in soil in the form of wollastonite and silicate slag 
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Figure 4.7 Ammonium acetate (0.5 M) extractable soil silicon with different rates of silicon 

applied in soil in the form of wollastonite and silicate slag 

4.3.2 Effect of Si application on the rice dry matter yield  

 

Relative biomass yield (%) is often used effectively in soil testing calibration to eliminate 

the experiment site influences (Evans 1987). The relative biomass yield (RBY) used in the 

present experiments was defined as the percentage of total yield (grain and straw) of rice without 

Si to that with Si application. The relative yield in this study ranged from 57 to 94% (Table 4.6).  

The addition of Si has increased the relative yield in all soils (with the exception of Perry clay) at 

some level although it was very pronounced in the case of Commerce silt loam soil (P<0.05). It 

was interesting to note that Commerce silt loam and Perry clay were the soils with lowest and 

highest extractable Si, respectively when 0.01 M CaCl2 was used to determine the native Si 

concentration (Table 4.4). These varied responses of soil to applied Si may be attributed to 

variation in native plant available Si content of these soils.  Narayanaswamy and Prakash (2009) 

reported that soils having low to medium in available Si responded to applied Si fertilizers to 
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greater extent than the soils having higher levels of available Si. Similar results were also 

observed for organic soils of Florida (Korndorfer et al. 2001). The addition of lime was not 

sufficient to meet the maximum relative yield attained in all soils. This further supports that Si is 

essential for rice growth (Epstein 1999). It also seems likely that the wollastonite was more 

effective on all types of soil with the higher relative biomass yield as presented in the Table 4.6. 

Also, the scenario of yield depression at the higher Si rates appears in all soils except for clay 

soils. This becomes very evident in Caushatta silt loam (P<0.0001) where slag showed an 

increased relative yield (compared to control and check lime treatments) of 80% at 170 kg Si ha
-1

 

and thereby decreased to 57% at 680 kg Si ha
-1

. Similar trend was observed in Commerce silt 

loam as well (P<0.0001). Therefore, it is likely that the slag, with a high Si content, coupled with 

its high rate of release, leading to increase in polymerized form of Si, seemed to have caused a 

nutrient imbalance especially at the higher Si rates. However, it was interesting to note that this 

scenario of yield depression was not documented in the case of clay soils. The adsorption 

capacity of clay soils could have prevented this and made Si more available for plant uptake. 

Williams and Crerar (1985) stated that clays in the soil may adsorb excess silica, thus inhibiting 

the formation of silica polymorph from soluble silica.      

Grain yields increased with the application of Si in all soils with the exception of Mowata 

silt loam (Table 4.7). No significant yield increases were observed with the application of lime 

(CaCO3) and most were similar to the control (Table 4.7). The highest grain yield was observed 

in soils treated with wollastonite. The decline in yield at higher rates of Si was noted in most of 

the soils studied, with the exception of Sharkey clay. Haynes et al. (2013) observed a similar 

scenario and reported that this growth depression is attributable to the combined effect of the 

very high pH (possibly also inducing deficiencies of Zn and Mn for steel slag) and EC (and high 
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Na for processing mud) in soils from these treatments at the high Si rate. The high pH, of silicate 

slag is exacerbated by the fact that it has relatively low Si contents (12-17%) and therefore has to 

be applied at a higher rate than wollastonite to give the same rate of Si application. 

Among all soils, grain yield increased up to 16.5% at 680 kg Si ha
-1

 as wollastonite in 

Sharkey clay. An increase in rice yield under flooded conditions was also noticed with Si 

fertilization in Sri Lanka (Takijima et al. 1970) and India (Singh et al. 2006). Snyder et al. (1986) 

showed that the application of calcium silicate increased rice yields in Histosols, mainly due to 

the supply of plant-available Si and not of any other nutrients. The effect of Si on decreasing 

disease incidence unquestionably contributes to increased yields, but Si has also been shown 

to increase yield in the absence of a disease (Datnoff et al. 1992). The increase in grain yield 

might be due to more efficient use of solar radiation, moisture, and nutrients since Si makes the 

rice plant more erect (Rani et al. 1997).With the application of Si as wollastonite and slag, an 

increase in straw yield was observed only at 170 kg Si ha
–1

 as slag and as wollastonite in 

Commerce silt loam and at 340 kg Si ha
–1 

Si as wollastonite in Caushatta silt loam. The total 

biomass yield increased in all soils with the application of Si as wollastonite. Total yield 

increased up to 22%, with application of slag in Caushatta silt loam and Commerce silt loam at 

the lowest rate of 170 kg Si ha
–1

. This increase in total yield with the application of slag was 

evident only in these two soils. The greater rate of slag application has not shown any favorable 

responses in these soils. Slag is a recently formed polycrystalline material as opposed to 

wollastonite a naturally formed pure crystalline mineral. Therefore, slag release monosilicic acid 

at faster rates and higher concentrations when compared to wollastonite and this leads to the 

conversion of soluble Si released by slag into adsorbed forms which are unavailable for plant 

uptake.
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    Table 4.6 Relative biomass yield in different soils with different rates of silicon as wollastonite and slag 

 

 

 

 

 

 

 

  

Treatments 
Rate 

kg Si ha
-1

 

Caushatta silt 

loam 

Commerce silt 

loam 

Crowley silt 

loam 

Mowata silt 

loam 
Perry clay Sharkey clay 

  ……………………………….%……………………………………………………………… 

Control - 62bc 63c 76b 84bc 57 73b 

Check lime † 62bc 66c 77b 85abc 60 82ab 

 170 75ab 93a 82ab 94a 69 81ab 

Wollastonite 340 88a 82b 87a 81c 73 87a 

 680 76ab 82b 79ab 82c 70 88a 

 170 80a 81b 83ab 93ab 64 84ab 

Slag 340 79ab 70c 81ab 77c 66 82ab 

 680 57c 64c 80ab 79c 67 79ab 

P-value  <0.0001 <0.0001 0.0399 <0.0001 (NS) 0.0402 

Mean  72.4 75.2 80.5 84.1 65.6 82.0 
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The yield depression observed could be due to high pH, which in turn induces 

deficiencies of Zn and Mn with slag addition as noted by Haynes et al. (2013). This could also be 

attributed to the greater release of Si from slag and low soil adsorption capacity in light textured 

soils which in turn makes the Si unavailable for plant uptake.  This was studied and explained by 

Iller (1979) who stated that H4SiO4 is soluble and stable in water at 25°C for long periods of time 

if the concentration is less than about 100 ug g
-1 

 as SiO2 but when a solution of monomer, 

Si(OH)4, is formed at a concentration greater than about 100-200 ug g
-1 

as SiO2, and in the 

absence of solid phase on which the soluble silica might be deposited, then the monomer 

polymerizes by condensation to form dimer and higher molecular weight species of silicic acid.   

 Further, there was no increase in total yield with increased rates of Si in clay soils, 

these soils did not show total yield depression at higher levels. The clay soils with a greater solid 

surface area also showed higher availability of soil Si than silt loam soils at all treatment levels 

(Table 4.5). This could be due to lower rate of polymerization as explained by Iller (1979) in 

these soils than the silt loam soils and therefore, higher availability of Si for plant uptake creating 

no negative if not, a positive impact on total yield. These studies demonstrate the importance of 

Si in maximizing the yield potential of rice. Agarie et al. (1992) also reported that maintenance 

of photosynthetic activity due to Si fertilization could be one of the reasons for increased dry 

matter production. Overall, addition of Si resulted in a significant increase in total yield over the 

control treatment (NPK only) and over treatments that applied CaCO3 in these soils of Louisiana. 

This would mean that lime alone was not sufficient to maintain the maximum potential yield in 

these soils. Silicon fertilization showed a positive effect on maintaining greater yield stability in 

rice. 
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    Table 4.7 The dry matter yield of rice at harvest in different soils with two sources of Si applied at different rates 

 

Source 

Rate 

kg Si 

ha
-1

 

Caushatta silt 

loam 

Commerce silt 

loam 

Crowley silt 

loam 

Mowata silt 

loam 
Perry clay 

Sharkey 

clay 

 ……….……………………..Straw Yield (g pot
-1

)……………………………. 

Control - 29bc 22d 35 26bc 30 48 

Check lime † 29bc 23cd 35 26abc 33 54 

 170 34abc 34a 36 30a 46 54 

Wollastonite 340 40a 28b 42 27abc 39 56 

 680 31bc 28b 37 27abc 36 57 

 170 36abc 32ab 38 29ab 35 54 

Slag 340 35abc 28b 39 25c 37 54 

 680 27c 28bc 39 25bc 38 52 

P-value  0.0002 <0.0001 NS 0.0014 NS NS 

 …………..………………………..Grain Yield (g pot
-1

)…………………… 

Control - 32bc 22cd 40 41ab 36b 54b 

Check lime † 33bc 23c 41 42ab 37b 59ab 

 170 41ab 32a 45 45a 55a 59ab 

Wollastonite 340 47a 29ab 44 38b 47ab 65ab 

 680 45a 29ab 41 39b 46ab 65a 

 170 44ab 24bc 44 46a 40ab 62ab 

Slag 340 43ab 21cd 41 37b 40ab 60ab 

 680 29c 17d 40 39b 41ab 58ab 

P-value  <0.0001 <0.0001 NS <0.0001 0.0098 0.0397 
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    Table 4.8 The total yield and silicon uptake of rice grown on different soil series 

 

Source 

Rate 

kg Si 

ha
-1

 

Caushatta silt 

loam 

Commerce silt 

loam 

Crowley silt 

loam 

Mowata silt 

loam 

Perry 

clay 

Sharkey 

clay 

 ……………………………………………..Total Yield (g pot
-1

)…………………………………………. 

Control - 62bc 44c 75b 67bc 67b 102b 

Check lime † 62bc 46c 76b 68abc 70ab 113ab 

 170 75ab 65a 81ab 75a 81ab 113ab 

Wollastonite 340 88a 57b 86a 65c 86a 121a 

 680 76ab 57b 78ab 66c 82ab 122a 

 170 80a 57b 82ab 75ab 75ab 116ab 

Slag 340 78ab 49c 80ab 62c 77ab 114ab 

 680 56c 45c 79ab 64c 79ab 110ab 

*P-value  <0.0001 <0.0001 0.0399 <0.0001 0.0514 0.0402 

 ……………………………………………..Total uptake (g pot
-1

)…………………………………………. 

Control - 1.20e 0.52e 1.96d 1.66bc 2.03 2.90b 

Check lime † 1.37de 0.53e 2.12cd 1.58bc 2.21 3.61ab 

 170 2.09bc 1.50b 2.65abc 2.55a 2.60 3.97a 

Wollastonite 340 3.07a 1.67ab 2.83a 2.34a 2.95 4.14a 

 680 2.23b 1.78a 2.71ab 2.55a 3.09 4.27a 

 170 1.80bcd 0.91c 2.21bcd 1.88b 2.68 3.89a 

Slag 340 1.68ede 0.82cd 2.46abcd 1.64bc 2.97 3.66ab 

 680 1.21e 0.59de 2.25bcd 1.39c 2.48 3.70ab 

P-value  <0.0001 <0.0001 <0.0001 <0.0001 NS 0.0008 
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4.3.3 Effect of Si application on Si content and uptake by rice plants  

The greater effectiveness of the Si treatments might be associated, as stated by Meyer and 

Keeping (2000), with an increase of Si concentration in the plant. Detailed uptake data by rice 

plants in terms of the respective; Si source, application rates and soil types are given in Table 

4.9. It was observed that increasing rates of Si applied to the soil as wollastonite had a direct 

effect on rice Si content in all the soil types (P<0.05) with the exception of Crowley silt loam as 

indicated by the concentration of Si (%) in the rice straw. Averaged across all the soil types, 

plant Si levels in treatments receiving Si as wollastonite were generally more than those in plants 

from untreated pots (Table 4.8). However, the straw content of Si did not increase with addition 

of slag.  

The panicle content of Si was also seen to increase in three (Caushatta silt loam, 

Commerce silt loam and Mowata silt loam) out of the six soils tested. Again this increase was 

evident only when wollastonite was the source of Si. Also, Si uptake in rice straw and grain was 

significant (P<0.05) when wollastonite was the source of Si in five out of the six soils studied.  

With regard to total Si uptake, wollastonite-treated rice showed maximum increases (Table 4.9). 

The difference in efficacy of the two Si sources might be due to their differences in silicon 

content and solubility (Haynes et al. 2013). When the efficiency of the slag with regard to total 

Si uptake was considered in comparison to the standard wollastonite, slag showed almost 

equivalent rates of uptake in Sharkey clay, Crowley silt loam, and Caushatta silt loam as the 

standard wollastonite at their lowest rates of application (P<0.001). Plant Si uptake (Table 4.9) 

was increased by both sources in Caushatta silt loam, Commerce silt loam and Sharkey clay 

when compared with control (P<0.001). 
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     Table 4.9 The silicon content and uptake in rice panicle and straw with different rates of silicon in different soils 

 

Source 

Rate 

kg Si 

ha
-1

 

Caushatta 

silt loam 

Commerce silt 

loam 

Crowley 

silt loam 

Mowata 

silt loam 
Perry clay 

Sharkey 

clay 
Mean 

  ……………………………Straw Content (%)…………………………… 

Control - 2.97c 1.54c 3.74b 4.29b 4.37c 4.22b 3.52 

Check lime † 3.42c 1.54c 4.17b 3.77b 4.49c 4.63ab 3.67 

 170 4.70b 2.91b 4.87ab 5.96a 4.92bc 5.27a 4.77 

Wollastonite 340 4.96ab 4.28a 4.78ab 6.15a 5.21abc 5.06ab 5.08 

 680 5.44a 4.83a 5.28a 6.42a 5.94a 5.01ab 5.49 

 170 3.47c 1.85c 3.80b 3.97b 5.30abc 5.05ab 3.91 

Slag 340 3.50c 1.85c 4.50ab 4.33b 5.63ab 4.89ab 4.13 

 680 3.43c 1.68c 3.98b 4.26b 4.51c 5.23a 3.85 

P-value  <0.0001 <0.0001 NS <0.0001 <0.0001 0.0356  

 ………………………………………………Panicle Content (%)………………………………….......... 

Control - 1.03b 0.82b 1.64 1.33d 1.91 1.67 1.40 

Check lime † 1.16b 0.77b 1.66 1.40cd 1.91 1.86 1.46 

 170 1.22b 1.66a 1.96 1.64bc 2.20 1.92 1.77 

Wollastonite 340 2.25a 1.59a 1.95 1.83ab 1.99 1.98 1.93 

 680 1.28b 1.53a 1.96 2.07a 2.03 2.21 1.85 

 170 1.29b 1.31a 1.75 1.61bcd 2.08 1.82 1.64 

Slag 340 1.05b 1.41a 1.70 1.54bcd 2.21 1.72 1.61 

 680 0.97b 0.74b 1.77 0.83e 1.92 1.79 1.34 

P-value  <0.0001 <0.0001 NS <0.0001 NS NS  
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     (Table 4.9 continued)

Source 

Rate 

kg Si 

ha
-1

 

Caushatta 

silt loam 

Commerce silt 

loam 

Crowley 

silt loam 

Mowata 

silt loam 
Perry clay 

Sharkey 

clay 
Mean 

 …………………………………………...Straw Uptake (g pot
-1

)……………………………………… 

Control - 0.87d 0.34d 1.31c 1.11b 1.34 2.00b 1.16 

Check lime † 0.99d 0.35d 1.44bc 1.00b 1.49 2.51ab 1.30 

 170 1.58bc 0.97b 1.77abc 1.81a 2.31 2.85a 1.88 

Wollastonite 340 2.00a 1.21a 1.97a 1.65a 2.01 2.85a 1.95 

 680 1.65ab 1.33a 1.92ab 1.76a 2.16 2.83a 1.94 

 170 1.24cd 0.60c 1.44bc 1.15b 1.86 2.75ab 1.51 

Slag 340 1.23cd 0.52cd 1.76abc 1.07b 2.09 2.62ab 1.55 

 680 0.93d 0.46cd 1.55abc 1.07b 1.70 2.66ab 1.40 

P-value  <0.0001 <0.0001 0.009 <0.0001 NS 0.0207  

 ……………………………………………Panicle Uptake (g pot
-1

)……………………………………. 

Control - 0.33cd 0.18c 0.65b 0.55b 0.69b 0.90b 0.55 

Check lime † 0.38bcd 0.18c 0.68ab 0.59b 0.72b 1.10ab 0.61 

 170 0.51bc 0.52a 0.88a 0.74a 1.22a 1.12ab 0.83 

Wollastonite 340 1.06a 0.46a 0.86a 0.69ab 0.93ab 1.29ab 0.88 

 680 0.58b 0.45a 0.79ab 0.80ab 0.93ab 1.44a 0.83 

 170 0.56b 0.32b 0.77ab 0.74ab 0.82ab 1.14ab 0.72 

Slag 340 0.45bcd 0.29b 0.70ab 0.57b 0.88ab 1.03ab 0.65 

 680 0.29d 0.13c 0.70ab 0.32c 0.78b 1.04ab 0.54 

P-value  <0.0001 <0.0001 0.0083 <0.0001 0.0026 0.0084  
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At harvest, with the exception of two clay soils, total Si uptake was substantially lowered for 

both these sources applied at the rates higher than 170 kg Si ha
-1

. This could be due to lower 

plant available Si (monomeric form) concentration in soil at higher rates of fertilizer application 

as a result of higher dissolution of the fertilizer materials in silt loam soils having low adsorption 

capacity that leads polymerization as shown by Iller (1979).  

4.3.4 Correlation of soil available Si with plant Si and yield response to Si fertilization 

 In the present study, the amount of soil Si extracted by all extractants was linearly 

correlated with both the Si content and uptake in panicle and straw and with total Si uptake by 

rice (above ground biomass) (Table 4.9). In general, soil test method for evaluating nutrient 

availability must be correlated with crop response to the fertilizer application (Allen et al. 1994). 

The common statistical techniques used to predict yield responses are the linear plateau model 

and Cate and Nelson (graphical) method. The RBY was not linear proportional to the soil 

available Si level in this study, to fit the linear equation. However, the RBY data showed a good 

fit with quadratic equation (Appendix C, Table C.1- C.6). Therefore, besides the linear plateau 

model and Cate and Nelson method to determine the critical level, quadratic regression model 

was also used. The significant test of linear fit between the plant Si (content and uptake) and soil 

Si extracted respectively by the seven procedures showed greater positive correlations with four 

extraction methods (0.01 M CaCl2, Deionized water, 0.1 M Citric acid and 0.5 M Acetic acid-2) 

out of the seven and could be suggested as being the most suitable for evaluating the soil Si 

availability (Table 4.10). However, the extracted soil solution by the deionized water has deeper 

color of soil organic and other pigments. Repeated filtering is needed to clear the extracting 

solution which complicates the routine molybdenum blue colorimetric process (Xu et al. 1996). 

Furthermore, the CaCl2 extraction method has been widely used as the conventional method for 
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evaluating available Si status in acid and neutral soils (Savant et al. 1997).  As already discussed, 

highest yields were recorded for wollastonite at the lower rate of Si addition. Nevertheless, for 

both materials, yields were depressed at the higher Si rate. Also, because of the low measured 

extractability of wollastonite in soils, the higher acid extractability of slag and the yield 

depressions induced by the high rates of slag, correlations between extractable soil Si and RBY 

were very poor and generally not significant when all the experimental data was used. Generally, 

the 0.01 M CaCl2 and 0.5 M acetic acid-2 extractants gave the highest correlations (Table 4.10) 

with both yield and total Si uptake and therefore seemed most appropriate for use. Such 

conclusions are similar to those of others. Berthelsen et al. (2001) considered that if a single 

measure is required for available Si, then 0.01 M CaCl2 is the most suitable. 

4.3.5 Critical limits of plant available soil silicon as determined by different extraction 

procedures 

 The critical level (level below which response to the added Si fertilizer is expected) 

for Si in the soil calculated as given by Cate and Nelson (1965; 1971) procedure varied by 

different extractants. The critical limits for soil Si as extracted by seven extractants in six soils 

are presented in Appendix C in Tables C.1 to C.6.  In general, improved r
2 
values were obtained 

for individual soils than for all soils combined. Table 4.2 summarizes the properties of the six 

soils. As can be seen, texture, organic matter content, and pH varied at wide ranges. On average, 

the soils were light-textured to heavy textured, moderately acidic to moderately basic, and 

relatively moderate to high in organic carbon. The wide range in initial Si concentration could be 

a result of differences in soil texture and parent material. Many studies have shown that soils 

with light or sandy texture are usually deficient in available Si and thus have low Si-supplying 

power, while those with heavy or clayey texture are Si sufficient (Kawaguchi and Kyuma 1977; 

He 1993; Liang et al. 1994; Zhang et al. 1996, 2003). Soil-available Si content is positively 
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correlated with clay content in soils (Wan et al. 1993; Zhang et al. 1996; Dai et al. 2004) as soil 

clay minerals with high specific surface have a high capacity to adsorb silicates. Also, there is an 

increase in release of colloid - adsorbed silicon into soil solution when soil pH rises from 4 to 6 

(Oliveira 2004). Therefore the soils differed considerably in Si sorption and buffering capacity as 

a result of differences in clay content and pH. The highest critical limit was observed for 0.1 M 

Citric acid and 0.5 M Acetic acid-2 and the least was noticed in 0.01 M CaCl2 and deionized 

water. This trend was also observed by Narayanswamy and Prakash (2009) among the seven 

extractants. There was wide variation in critical levels of soil Si determined by different 

extractants and this variation was probably due to the extracting power of extractants, pH of the 

extracting solution, shaking period, soil to solution ratio as well as nature of different extractants 

used as reported by Narayanswamy and Prakash (2009). Similar results were also noticed for 

organic soils of Florida by Korndorfer et al. (2001). Fox et al. (1967) also reported greater 

extracting power for extractants such as calcium phosphate, acetic acid and sulphuric acid 

extractants than neutral extractants. The extractant measuring the readily available or soluble 

forms of Si were the neutral extractants and estimating the critical levels using these neutral 

extractants might give only the estimate of plant available Si required for a certain growth stage 

of a crop. Whereas, the extractant measuring the exchangeable and adsorbed forms of Si (acidic 

extractants) in addition to soluble forms of Si might give the plant available Si required for the 

entire crop growth period. Therefore, either a combination of neutral and acidic extraction 

procedures can be used to determine the critical level of soil Si or the 0.5 M acetic acid-2 

procedure which gave the highest correlation (Table 4.10) between soil Si and plant response 

variables may be used to determine the soil critical level of Si.
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Table 4.10 Coefficient of determination (r
2
) between extractable soil silicon based on different extraction procedures and different 

plant response variables 

 

Plant response 

Variables 

 ………………………………………Soil Si Extraction Procedures…………………………………………… 

0.5M 

Acetic acid-1 

1M Sodium 

acetate 

0.01M 

Calcium 

chloride 

0.5M 

Ammonium 

acetate 

Deionized 

water 

0.1M 

Citric acid 

0.5M 

Acetic acid-2 

        

Straw content 0.095** 0.084** 0.304*** 0.121*** 0.193*** 0.232*** 0.363*** 

Straw uptake 0.074** 0.251*** 0.592*** 0.304*** 0.490*** 0.540*** 0.638*** 

Grain content 0.012
ns

 0.074** 0.312*** 0.087*** 0.186*** 0.233*** 0.415*** 

Grain uptake 0.026** 0.157*** 0.528*** 0.209*** 0.427*** 0.433*** 0.541*** 

Total uptake 0.054** 0.216*** 0.584*** 0.272*** 0.485*** 0.514*** 0.608*** 

Total Yield 0.020* 0.189*** 0.492*** 0.235*** 0.473*** 0.449*** 0.458*** 

Straw yield 0.022* 0.241*** 0.479*** 0.270*** 0.464*** 0.472*** 0.494*** 

Grain yield 0.019* 0.145*** 0.449*** 0.194*** 0.418*** 0.387*** 0.401*** 

*P < 0.05, ** P < 0.001, ***P < 0.0001 and ns = non-significant
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 When correlations are done with potted plant studies, the overall relative yields are 

usually lower (greater response) than those measured in field trials. Logically, then, the 

horizontal split on relative yield may not be so much a separation between soils which give large 

response vs. those which give little or no response, but rather a distinction between degrees of 

responsiveness. Since potted plant studies are not designed to provide economic interpretation of 

response, the exact position of the horizontal line should not be counted as having much 

importance in correlation work (Cate and Nelson, 1971).   

The critical limit of 0.1 M NaoAc extractable soil Si in Sharkey clay was estimated as 

150 ug g
-1

 (P =0.012) using the linear plateau model (Figure 4.8). The critical limit of 0.5 M 

acetic acid-1 extractable soil Si was estimated as 272 ug g
-1

 (P<0.001) in Perry clay with linear 

plateau model (Figure 4.9). The only other soils for which the model gave a good fit was 

commerce silt loam and Caushatta silt loam as 156 (P =0.007) and 174 ug g
-1

 (P =0.02) 

respectively using 0.5 M acetic acid-2 extraction procedure as shown in Figures 4.10 and 4.11. 

Perhaps more study sites should be selected with soil test Si levels less than 25 ug g
-1

. The 

critical levels estimated by this model are much higher than the established critical levels in other 

parts of the world by different scientists. This could be because of high native Si in clay soils and 

also due to the extended time of (24 hours) soaking of soil in the procedure with 0.5 M Acetic 

acid-2. But these high Si critical values cannot be ignored because in spite of higher Si content 

(71–181ug g
-1

) in calcareous soils of China, as extracted by sodium acetate buffer, rice yields 

continued to respond to applications of Si fertilizers (Liang et al. 1994). Although the model 

gave a good fit with CaCl2 and deionized water extractable soil Si in Commerce silt loam, and 

deionized water extractable Si in Caushatta silt loam, the values were not considered to be 

significant because it was outside the range of data collected.   
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Figure 4.8 The linear plateau model fitting to determine the soil critical level of Si in Sharkey 

clay 

 

 
 

Figure 4.9 The linear plateau model fitting to determine the soil critical level of Si in Perry clay 

Relative Yield = 0.2721*4(Si) + 42.45, Si<149.5 
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Figure 4.10 The linear plateau model fitting to determine the soil critical level of Si in 

Commerce silt loam 

 

 

 

 
 

Figure 4.11 The linear plateau model fitting to determine the soil critical level of Si in Caushatta 

silt loam

Relative Yield= 0.1783(Si) + 51.6, if Si<156 
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Although, the quadratic regression model was able to produce a critical level for Perry 

clay as 296 ug g
-1 

as shown in Figure 4.12 (P <0.001), this was considerably higher than critical 

levels established previously. The quadratic regression model gave significant values for critical 

levels in Commerce silt loam across all extractants. Whereas in other soils, this model was able 

to produce critical values using only one or few of the extractants.  Traditionally, fertilization 

recommendations are devised from calibration of relative yield with soil test or tissue analysis, 

and fertilizer applied. However, the Si soil test and tissue can be unrelated to yield due to the 

influence of soil type.  

 

Figure 4.12 The quadratic model fitting on Perry clay to determine the critical level of soil Si 
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Figure 4.13 The quadratic model fitting on Commerce silt loam to determine the critical level of 

soil Si 

The critical value for Commerce silt loam (Figure 4.12) and Crowley silt loam (Figure 

4.13), using 0.01 M CaCl2 method was 43 ug g
-1 

(P <0.001) and 37 ug g
-1  

(P =0.009). This value was in good agreement with the value (43 ug g
-1

) generated by 

Narayanswamy and Prakash (2009) in rice soils of south India. Pereira and Cabral (2005) 

considered that for BF slag amended soils, 0.01 M CaCl2 was the most suitable extractant 

followed by 0.5 M NH4OAc. Our estimates of critical Si levels are compared with published 

levels reported from earlier studies. In the Caushatta silt loam, critical soil Si level estimated by 

quadratic regression was 250 (r
2
=0.19, P=0.019), was much higher than the value of 87 mg kg

-1
 

y = -0.0143x2 + 1.3322x + 54.148 

r² = 0.4583, P<0.001 

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

R
el

a
ti

v
e 

Y
ie

ld
. 

%
 

0.01 M Calcium chloride extractable Si, ug g-1 



139 

 

(using 0.5 M acetic acid-2) reported by Narayanaswamy and Prakash(2009). A critical level of 

928 ug g
-1

(r
2
=0.43,P <0.001) was estimated using 0.1 M citric acid in Commerce silt loam 

which was also considerably higher than the value reported by Narayanaswamy and Prakash 

(2009).  

 

Figure 4.14 The quadratic model fitting on Crowley silt loam to determine the critical level of 

soil Si 

 

The Cate-Nelson correlation method was performed on data from all soils to evaluate the 

visual indication of a soil test critical level for Si utilizing different soil test extraction procedures 

(Appendix C, Table C.1- C.6). The critical limits for all soil types could be derived from Cate 

and Nelson method. This shows an advantage that the visual Cate-Nelson approach has to linear-
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plateau models. However it also can be potentially miss-used to imply significance when the 

trends may be due to random error.  

 

 
 

Figure 4.15 Critical level of soil Si determined by Cate and Nelsons’ graphical method in Perry 

clay 

 

Data collected from this study, using seven extractants show Cate-Nelson,  linear– 

plateau and quadratic regression derived critical Si values around 3 to 1352, 149 to 272 and 37 to 

928 ug g
-1 

(Appendix C, Table C.1- C.6), respectively.  This wide range may be attributed to the 

initial soil Si variability observed from the sites. The critical value observed from the historic 

data and current data suggest that some soils have very high critical values. The confidence 

interval also stresses that the critical value is not an exact number and may change depending on 

factors described by Fixen and Grove (1990) of soil nutrient mineralization, and rainfall. It is 
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important to note that any appropriate mathematical model may be used to estimate the critical 

value. Dodd and Mallarino (2005) examined Cate-Nelson, linear-plateau, quadratic, and 

exponential models, each with different results in a P calibration study. The Cate-Nelson and 

linear plateau models were used in this study because Dodd and Mallarino (2005) found the 

Cate-Nelson to be most economical and the linear plateau to give the lowest critical value of the 

other mathematical models. The use of a mathematical method takes out user bias as compared 

to the Cate-Nelson, and also prevents critical levels being established that may be due to random 

error. Quadratic models giving higher Si critical value estimations are not preferred from an 

economical and environmental perspective. To be profitable one wants to apply the least amount 

of fertilizer needed to obtain an economically optimum yield. Applications of Si when they are 

not needed may increase Si polymerization and unavailability to plant uptake. 

No significant linear relationship between relative yield and Si fertilizer applied was 

found using the response data. However, a significant linear relationship between total yield and 

Si applied was found on the current data. Reasons for why a statistically significant critical level 

could not be found using the entire range of data across the soil types may be due to the wide 

variations among the soil types studied. This data was from six soil types which could be 

identified as six major groups of soils in a calibration study. Usually the calibration studies are 

comprised of replications of similar soil types, and for more than two years, which may help to 

tease out environmental differences in blocks such as moisture availability. Another reason for 

this poor response in these soils may be because they are inherently sufficient Si. The Si fertilizer 

studies are in their infancy and lack of data for critical soil Si level makes it difficult to set a 

benchmark for defining soils inherently low in Si. Additionally, sometimes, soils high in initial 

Si respond to Si fertilization which makes this process all the more challenging. Thus, there is a 
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need, to look beyond the initial Si level in soil for establishing critical levels specific to soil type. 

Therefore at this point, conducting more number of these calibration studies, for a number of 

years, across different soil types is crucial. The scarcity of published calibration data for Si, in 

peer reviewed papers, research reports or extension bulletins, makes comparison of these results 

to other studies also difficult.   

4.4 Conclusions 

In general, it was observed that not only soils low to medium in available Si have a high 

response to applied Si in achieving higher grain yields, but also soils containing higher levels of 

Si responding moderately to Si applications. Among the soils studied, Sharkey clay and Perry 

clay soils have a high response to applications, with higher total yield followed by Commerce silt 

loam and Caushatta silt loam. Compared with other extractants, the soil Si extracted by 0.5 M 

acetic acid-2 and 0.01 M CaCl2 had relatively higher positive correlation (r
2
>0.45) with shoot 

biomass yield, straw and grain Si uptake and increasing rates of applied Si. The soil Si critical 

level determined with the respective best extractant and quadratic regression model (P<0.05) for 

Caushatta silt loam, Crowley silt loam, Commerce silt loam, Sharkey clay, Perry clay, and 

Mowata vidrine silt loam were 71 with deionized water, 37, 43, 110 with 0.01 M calcium 

chloride , 272 and 221 ug g
-1 

with 0.5 M acetic acid-1, respectively. 

 This correlation study suggests that the soil Si critical level in Louisiana may be well 

above 50 mg kg
-1

. The lack of a response on soils may be due to high initial Si content. Fertilizer 

applications to rice were rarely observed to be responsive in this study. It is important to 

understand that while it may not be profitable to apply fertilizer to rice, they do remove Si at 

harvest, which if not replaced will lower a soil’s Si content. Thus this presents opportunities to 

focus Si fertilizer applications to more responsive crops in the rotation, and to make multi-year 
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applications to these responsive crops, contrary to current recommendations and dogma. 

However, ignoring the Si removing effect of producing rice would result in declines in Si levels 

over time, eventually dropping Si levels and triggering a response to direct fertilization of Si. 
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Chapter 5. Conclusions 

For five of the procedures about 50% of surveyed soils in Louisiana had Si level below 

the critical Si level that thus far established in other regions. For 0.01 M calcium chloride 

(CaCl2) extraction procedure, all surveyed soils (n=212) fell below 56 mg Si kg
-1

. Also, it was 

seen that high rate of polymerization has a negative effect on the concentration of H4SiO4 in 

solution. The lower the soil sorption capacity, the higher will be the quantity polymerized. 

Higher rate of dissolution of fertilizer material and concentration of ions like aluminum and 

magnesium in the fertilizer material as well as in the soil solution will also increase the rate of 

polymerization. The 0.01 M CaCl2, extractable Si increased in the soil only with wollastonite. 

Silicon absorption by the above-ground part of the rice plants was highly correlated with rates of 

wollastonite, and fairly to that of by silicate slag. The effect of soil pH increase with lime 

application did not prove to be equivalent to application of Si fertilizers. The soil Si extracted by 

0.5 M acetic acid-2 and 0.01 M CaCl2 was significantly correlated with shoot biomass yield, 

straw and grain Si uptake and increasing rates of applied Si (r
2 
>0.45). The soil Si critical level 

determined using quadratic regression model (P<0.03) for Sharkey clay soil was 110 mg kg
-1

 but 

for Crowley silt loam and Commerce silt loam were 37 and 43 mg kg
-1

 and was in good 

agreement with established critical level for rice in Ultisols. It is very likely that certain regions 

in Louisiana would benefit from Si fertilization in rice and sugarcane production. Also, there is a 

need to evaluate and establish the soil or site specific extraction procedure because it is unlikely 

that there is a single universal extraction procedure for all soils. 
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        Appendix A. Soil silicon concentration based on different extractants 

 

 
 

Figure A.1 The correlation between the 0.5 M acetic acid-1 extractable Si with 0.01 M calcium 

chloride and deionized water extractable Si 
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Figure A.2 The correlation between the 0.5 M Ammonium acetate and1 M Sodium acetate 

extractable Si with 0.5 M acetic acid-1 extractable Si 
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 Figure A.3 The correlation between the 0.5 M Acetic acid-1 extractable Si with 0.5 M Acetic 

acid-2 extractable Si 
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       Appendix B The change in pH 

         Table B The average soil pH after 7 days of incubation in 0.1 M NaCl  

Monosilicic 

acid, ug ml
-1

 

Caushatta silt 

loam 

Commerce silt 

loam 

Crowley silt 

loam 
Clovelly muck Perry clay 

Sharkey 

clay 

0 8.2 6.5 6.2 6.8 6.5 6.5 

10 7.8 6.6 6.3 7.0 6.4 6.8 

20 7.8 6.2 6.5 7.0 6.2 6.6 

40 7.8 6.2 6.3 7.1 6.3 6.8 

50 8.0 6.3 6.4 7.1 6.3 6.7 

Initial pH 7.8 5.6 5.0 5.6 5.3 5.7 
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        Appendix C The critical level of silicon in soil estimated by different methods in Louisiana soils 

        Table C.1 The critical level estimated by different methods in Caushatta silt loam 

 

Extraction Procedure 

Linear Plateau Quadratic Regression 
Cate and 

Nelson 

Critical Limit r
2
 P-value Critical Limit r

2
 P-value Critical Limit 

       

0.5M Acetic acid-1 185 0.14 0.063 † 0.11 0.108 96 

1M Sodium acetate 

 
† 0.03 0.544 † 0.06 0.327 32 

0.01M Calcium chloride † 0.03 0.582 † 0.045 0.419 17 

 

0.5M Ammonium acetate 

 

† 0.02 0.712 † 0.11 0.104 51 

Deionized water 200 0.22 0.009 71 0.31 0.001 5 

0.1M Citric acid 

 
† <0.001 1 † 0.01 0.798 734 

0.5M Acetic acid-2 174 0.19 0.018 250 0.19 0.019 108 

        † The model was not able to estimate a critical level. 
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       Table C.2 The critical level estimated by different methods in Crowley silt loam 

 

Extraction Procedure 

Linear Plateau Quadratic Regression 
Cate and 

Nelson 

Critical Limit r
2
 P-value Critical Limit r

2
 P-value Critical Limit 

0.5M Acetic acid-1 † 0.03 0.540 † 0.04 0.475 38 

1M Sodium acetate 

 
† 0.01 0.860 † 0.09 0.166 15 

0.01M Calcium chloride † 0.01 0.814 37 0.22 0.009 13 

 

0.5M Ammonium acetate 

 

† 0.001 0.969 † 0.05 0.380 11 

Deionized water † 0.010 0.826 † 0.06 0.300 11 

0.1M Citric acid 

 
† <0.001 1 596 0.14 0.058 293 

0.5M Acetic acid-2 140 0.14 0.067 250 0.16 0.037 79 

       † The model was not able to estimate a critical level. 
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        Table C.3 The critical level estimated by different methods in Commerce silt loam 

 

Extraction Procedure 

Linear Plateau Quadratic Regression 
Cate and 

Nelson 

Critical Limit r
2
 P-value Critical Limit r

2
 P-value 

Critical 

Limit 

       

0.5M Acetic acid-1 † 0.003 1 202 0.25 0.005 64 

1M Sodium acetate 

 
† 0.035 0.526 92 0.13 0.082 17 

0.01M Calcium chloride 200 0.32 <0.001 43 0.45 <0.001 4 

 

0.5M Ammonium acetate 

 

† 0.013 0.789 75 0.34 0.006 26 

Deionized water † 0.175 0.031 63 0.20 0.020 3 

0.1M Citric acid 

 
† <0.001 1 928 0.43 <0.001 323 

0.5M Acetic acid-2 156 0.24 0.007 256 0.25 0.006 54 

       † The model was not able to estimate a critical level. 
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      Table C.4 The critical level estimated by different methods in Sharkey clay 

 

Extraction Procedure 

Linear Plateau Quadratic Regression 
Cate and 

Nelson 

Critical Limit r
2
 P-value Critical Limit r

2
 P-value Critical Limit 

0.5M Acetic acid-1 † 0.12 0.101 † 0.11 0.121 98 

1M Sodium acetate 

 
149 0.21 0.011 258 0.13 0.070 101 

0.01M Calcium chloride 200 0.18 0.03 110 0.18 0.026 44 

 

0.5M Ammonium acetate 

 

† 0.02 0.659 † 0.10 0.133 69 

Deionized water † 0.10 0.155 † 0.12 0.081 33 

0.1M Citric acid 

 
† <0.001 1 † 0.14 0.062 1352 

0.5M Acetic acid-2 † <0.001 1 † 0.07 0.274 305 

      † The model was not able to estimate a critical level. 
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      Table C.5 The critical level estimated by different methods in Perry clay 

 

Extraction Procedure 

Linear Plateau Quadratic Regression 
Cate and 

Nelson 

Critical Limit r
2
 P-value Critical Limit r

2
 P-value Critical Limit 

       

0.5M Acetic acid-1 272 0.34 <0.001 296 0.34 <0.001 265 

1M Sodium acetate 

 
223 0.20 0.024 223 0.17 0.040 151 

0.01M Calcium chloride † 0.003 0.95 † 0.005 0.919 28 

 

0.5M Ammonium acetate 

 

200 0.16 0.073 150 0.25 0.012 78 

Deionized water † 0.003 0.994 37 0.26 0.99 18 

0.1M Citric acid 

 
† <0.001 1 † 0.036 0.20 1078 

0.5M Acetic acid-2 † <0.001 1 † <0.001 1 303 

       † The model was not able to estimate a critical level. 
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       Table C.6 The critical level estimated by different methods in Mowata silt loam 

 

 

Extraction Procedure 

Linear Plateau Quadratic Regression 
Cate and 

Nelson 

   

Critical Limit r
2
 P-value Critical Limit r

2
 P-value 

Critical 

Limit 

0.5M Acetic acid-1 † 0.005 0.90 221 0.16 0.043 27 

1M Sodium acetate 

 
† 0.09 0.163 † 0.098 0.147 17 

0.01M Calcium chloride † 0.02 0.687 † 0.099 0.144 10 

 

0.5M Ammonium acetate 

 

200 0.14 0.061 † 0.16 0.042 23 

Deionized water 200 0.14 0.061 † 0.15 0.054 21 

0.1M Citric acid 

 
† <0.001 1 † 0.01 0.830 230 

0.5M Acetic acid-2 † <0.001 1 † 0.10 0.131 74 

       † The model was not able to estimate a critical level.  
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