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ABSTRACT 

Heat stress is one of the greatest challenges affecting growth and development of bedding 

plants during greenhouse production and in the landscape. Inducing an acquired stress tolerance 

during production may greatly improve postproduction marketability and survival in the 

landscape when exposed to heat stress. Few researches have investigated the morphological 

effects of bedding plants during heat shock or enduring heat stress preconditioning in the 

greenhouse and subsequent landscape performance. The present objectives were to quantify 

morphological and physiological responses to heat stress and use this information to develop a 

greenhouse protocol for inducing acquired thermotolerance for improved landscape survivability 

using Petunia x hybrida. 

Preliminary studies revealed petunia Dreams ‘Midnight’ grown at 35/25 or 40/30ºC 

caused desirable traits such as compact growth for improved landscape performance but also 

decreased flowering during production resulting in poor marketable quality. Heat shock at 35 or 

40ºC for 2 h every 7 d did not significantly effect petunia growth and development. 

Determination of optimum heat shock temperature and duration for development of 

acquired thermotolerance revealed that heat shock every 3 d or enduring heat stress was most 

effective at 45ºC. However, the critical duration or frequency of exposure necessary for 

promotion of a heat tolerant marketable plant at 45ºC was not fully elucidated within the 

treatments investigated. Chlorophyll fluorescence (maximum quantum efficiency of PSII - 

Fv/Fm) was measured in young and mature leaves to investigate stress response and 

photosynthetic performance of petunia pre and post acquired thermotolerance test. Fv/Fm ratios 

indicated the heat shock or enduring heat stress treatments did not cause permanent damage to 

photosynthetic apparatus. 
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Nineteen previously evaluated petunia cultivars from three plant classes were heat 

shocked at 45ºC for 4 h every 3 d during greenhouse production followed by landscape 

evaluation. Greenhouse and field results indicated the heat shock treatment did not significantly 

promote heat tolerance compared to control.  

The critical temperatures used in this study were effective for promoting heat tolerance in 

petunia, but specific durations or frequency of exposure at 45ºC should be further investigated in 

order to define an effective acquired thermotolerance protocol to improve landscape survivability.      
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CHAPTER 1. INTRODUCTION 

Floriculture in the United States is a billion dollar industry that is comprised of a variety 

of flowering and foliage plants. Within the industry, bedding plants represent herbaceous annual 

or perennial flowering plants typically used for color in maintained landscapes. According to the 

USDA 2007 Floriculture Crops Summary, the wholesale value in sales of bedding plants was 

$1.26 billion and accounted for the largest percent of wholesale sales of all floriculture crops 

(U.S. Department of Agriculture, 2008). Bedding plant production is greatest in early spring and 

late summer to early fall depending on species and climate. Because of their potential for year 

round production and generally short production time, bedding plants are widely grown for their 

high economic yield and efficiency. With high demand from consumers in retail nurseries and 

landscape contractors, bedding plants remain the primary crop for growers within the industry. 

This high demand can also be reflected in the numerous breeding programs focused on 

development of new and ‘improved’ cultivars.  

Bedding plants are typically propagated by seed or vegetative cutting and produced as 

plugs for greenhouse production (Styer and Koranski, 1997). Plugs are grown in trays consisting 

of numerous cells ranging in soil volume from 21.74 to 3.5 cm3, with the most common sizes 

being 288 and 512 cells per tray (Hamrick, 1989). Bedding plant plugs are commonly 

transplanted into larger cell packs or containers during production which will then be sold to the 

consumer.  

Achieving optimum plant quality during greenhouse production and in the landscape is a 

shared goal for plant breeders, growers and landscape contractors. However, as with any crop, 

efficient growth and stability of bedding plants during production and postproduction can be 

problematic due to unpredictable and sometimes uncontrollable growing environments. The 

growth and development of a plant includes highly sensitive morphological and physiological 
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processes within the plant (Pollock et al., 1993). There are many abiotic factors that may limit 

optimum growth and development of a plant, some of which include nutrient availability, light 

quality and quantity, drought stress and heat stress (Alscher and Cumming, 1990; Hall, 2001). 

Advances in technology and proper management practices have helped to alleviate many of these 

stresses during production. However, due to increasing air temperatures and energy costs, heat 

stress in particular continues to be one of the greatest challenges during greenhouse production 

of bedding plants and also during postproduction in the landscape. Prolonged exposure to heat 

stress can cause permanent damage to the growth and development of the plant (Hall, 2001). 

Symptoms of heat stress are described as extreme wilt, yellowing or senescence of leaves, leaf 

curl, stunted growth and underdeveloped flowers or fruit (Dole and Wilkins, 2004; Kuroyanagi 

and Paulsen, 1988; Larcher, 1995; Lohar and Peat, 1998). Research by Natarajan (2005) found 

that exposure of Salvia splendens F. Sellow ex Roem & Schult.‘Sizzler Red’ to short duration 

temperature stress of 35°C for 3h every 3d resulted in marginal leaf burning and necrosis of the 

leaves while exposure to 40°C  caused reduction in plant height, shoot and root dry weight. With 

such constant demand for quality plants, addressing the issue of heat stress has been a priority for 

research within the industry. Currently, much of the research concerning high temperature stress 

focuses on many horticultural and agronomic crops but not bedding plants (Adedipe et al., 1971; 

Knight and Ackerly, 2003; Liu and Huang, 2002; Valladares and Pearcy, 1997; Wright et al., 

2001). Research conducted on bedding plants pertains more to breeding programs using 

inefficient field trials and selections based primarily on aesthetics. While strong aesthetic quality 

of bedding plants is an important goal, there are many physiological and morphological traits 

equally important to consider when breeding a ‘heat tolerant’ plant. Because of this indiscretion, 

many of the bedding plants marketed for such heat tolerance are not truly ‘tolerant’ and 

inevitably become a disappointment in postproduction (Natarajan, 2005).  
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A plant’s ability to acclimate and perform necessary metabolic processes during heat 

stress is important for assigning heat tolerance and is crucial for survivability in stressful 

environments (Hale and Orcutt, 1997; Lichtenthaler, 1996). A plant’s natural tolerance to heat 

has much to do with its native climate and optimal growing temperature. In nature, the 

geographical distribution of plants is strongly linked to their adaptability to a particular climate 

(Mahan et al., 1997). However, mass production of non-native plants occurs in areas where the 

growing environment is considered to be undesirable. This is especially true in the southern 

United States where many cool-seasoned plants are being produced under much higher 

temperatures and oftentimes at the expense of plant quality or landscape longevity. For example, 

petunia is a very popular bedding plant and has an optimum growing temperature of 

approximately 24°C (Ball Horticultural Company, West Chicago, IL). Production is ideal for 

temperate climates; however, petunia is also commonly produced in subtropical regions for late 

summer and early fall planting, but can be very challenging due to temperatures that can easily 

approach 40°C in the greenhouse and in the landscape. In addition, most growing 

recommendations do not include guidelines for production under heat stress conditions 

(Hancheck and Cameron, 1995). Under these circumstances, promoting acquired 

thermotolerance during production would be beneficial to the plant as well as the grower and 

landscaper.  

Acquired thermotolerance may be obtained through temperature preconditioning using 

supraoptimal temperatures for specific durations (Natarajan, 2005).  Growers would be able to 

use high temperatures to their advantage during production and induce thermotolerance in plants 

resulting in a marketable plant in the greenhouse and improved landscape survivability. Using an 

acquired thermotolerance protocol in the greenhouse would also promote more sustainable 

production practices and help alleviate energy costs used to cool the greenhouse. There is little 
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research on the morphological and physiological effects of acquired thermotolerance on bedding 

plants during production and their resulting landscape performance. Therefore, the objectives of 

this research were to quantify morphological and physiological responses to heat stress and use 

this information to develop a greenhouse protocol for inducing acquired thermotolerance for 

improved landscape survivability. This was achieved through the following studies using Petunia 

x hybrida: 1) determine the effect of enduring high temperature stress and short duration heat 

shock (preconditioning) on growth and development; 2) determine optimum heat shock 

temperature and duration for development of acquired thermotolerance and to test 

thermotolerance through subsequent heat stress; 3) use determined heat shock temperature and 

duration for induction of acquired thermotolerance of several petunia plant classes and evaluate 

subsequent landscape performance.  
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CHAPTER 2. LITERATURE REVIEW 

The effect of temperature on plants can be divided into three categories: air, leaf, and soil 

temperature. These temperatures are not always consistent with each other and may differ under 

certain environmental conditions (i.e. humidity, light intensity, and air circulation). Air 

temperature is more readily monitored therefore growing recommendations usually refer to day 

and night air temperatures (Dole and Wilkins, 2004). Temperature can affect a plant in many 

ways and growers have been manipulating temperatures for many years in order to achieve 

certain characteristics. In order to regulate height in some plant species, growers sometimes use a 

concept known as DIF (Myster and Moe, 1995). This term refers to the difference between day 

and night temperatures (day – night = DIF), where higher day temperatures (+DIF) promote stem 

elongation and higher night temperatures reduce stem elongation (Erwin et al., 1989; Warner and 

Erwin, 2001).  

Temperature may not always be easily manipulated or controlled, especially during the 

summer months or in hotter climates. When plants are exposed to higher temperatures than their 

optimum range, there may be damaging effects to plant function resulting in reduced growth, 

development and yield (Gusta et al., 1997; Harding et al., 1989). The term heat stress is defined 

as when exposure of plants to high temperatures for a specific length of time will cause 

irreversible damage to plant metabolism and overall development (Hall, 2001). Metabolic 

processes tend to be highly sensitive to temperature. Fluctuations in temperature may affect not 

only the type of protein being synthesized, but also the amount being produced or cause 

inactivation and denaturation of enzymes and proteins (Pollock et al., 1993; Nakamoto and 

Hiyama, 1999). A temperature that is considered to cause heat stress in a plant is related to a 

species optimum temperature and may also differ depending on the stage of growth or 

development at which the plant is exposed (Burke, 1990).    
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2.1 EFFECTS OF HEAT STRESS ON PLANT REPRODUCTIVE TISSUE 

Heat stress can be a major challenge for production of fruits, vegetables and floriculture 

crops. Reproductive stages of a plant can be highly sensitive and can affect the development of 

reproductive organs in many different ways. Flower response to heat stress is dependent on the 

species and even some cultivars within a species may differ in flower characteristics when 

exposed to high temperatures. Past research has indicated that the response of flower number in 

tomato (Lycopersicon esculentum Mill.) to heat stress differs greatly among cultivars, even those 

labeled as ‘heat tolerant’ (Abdul-Baki, 1991; Charles and Harris, 1972). However, some 

characteristics like association of total flower bud and flower production may be a more 

acceptable standard when selecting for heat tolerance (Lohar and Peat, 1998). According to a 

study by Bjorkman and Pearson (1998), broccoli (Brassica oleracea var. italica L.) was exposed 

to heat stress at different developmental stages to study the effect on broccoli inflorescence. The 

exposure to heat stress resulted in variation of flower bud size. The ‘Galaxy’ cultivar of broccoli 

at different developmental stages were exposed to 35/22°C day/night for one week in a growth 

chamber. Results indicated a stronger response to heat stress during reproductive stage. The 

authors concluded that the uneven size in flower buds was due to a delay in bud development 

rather than a direct inhibition of bud initiation.  

There have been many studies that have investigated the effect of heat stress on tomato 

(Lycopersicon esculentum Mill.) which is in the same family as Petunia x hybrida hort. Vilm.-

Andr., Solanaceae. Lohar and Peat, (1998) studied floral characteristics of known heat-sensitive 

and heat-tolerant cultivars of tomato (Lycopersicon esculentum Mill.) when exposed to 15/10, 

22/17, 28/23, and 35/30°C day/night air temperatures. Results showed that the heat tolerant 

cultivar, when exposed to 35/30°C, displayed earlier flowering. The heat tolerant cultivar also 

produced more flower buds than the heat sensitive cultivar when exposed to the three warmer 
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temperature treatments. Anthesis at 35/30°C in the heat-sensitive cultivar was greatly reduced 

but may be due to elevated night temperature (30°C) rather than the higher day temperature 

(35°C). This is consistent with other reports where heat stress is applied at night as well as during 

the day as seen in pea (Pisum sativum L.) (Guilioni et al., 1997). Research by Lohar and Peat 

(1998) also found that morphology of the flower was also greatly affected by heat stress in both 

cultivars. Heat sensitive cultivar at 35/30°C had only a calyx and no petals while flowers of the 

heat tolerant cultivar were not aborted but displayed “underdeveloped inner whorls restricted 

within the calyx” (Lohar and Peat, 1998).  Stigma exertion is also a characteristic of heat stressed 

flowers but does not greatly affect pollination and should not always be seriously considered 

when selecting for heat tolerance of a cultivar (El Ahmadi and Stevens, 1979). Other reports 

indicate that the sequence of flowering or the presence of older reproductive structures on a plant 

can affect the development of future flowers or fruit when exposed to heat stress (Aloni et al., 

1991; Guilioni et al., 1997; Sato et al., 2001).  

As mentioned earlier, some research has indicated that elevated night temperatures or 

mean day/night temperature can have a greater affect on flowering than high day temperature 

alone. However, the flowering response may differ depending on species, photoperiod 

requirements, duration and time of heat stress exposure. Some reports using cowpea (Vigna 

unguiculata (L.) Walp.) showed that moderate heat stress of at least 20°C at night can be more 

damaging to reproductive development than when the plants were exposed to 40°C day 

temperature (Warrag and Hall, 1984a, b). A study by Cockshull and Kofranek (1993) indicated 

that flower bud initiation in chrysanthemum (Chrysanthemum x grandiflorum L.) was delayed 

when exposed to elevated night temperature (32°C) for a short period of time at the beginning of 

(SD) while bud formation was delayed when exposed for longer durations. The authors also 

noted that high night temperatures (32°C) caused leaves to become chlorotic and delay in stem 
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elongation. Willits and Bailey (2000), studied exposure of high night (20 to 26°C) and mean 

diurnal temperatures (22 to 27°C) over a 4 yr period to heat-sensitive and heat-tolerant cultivars 

of chrysanthemum (Chrysanthemum x grandiflorum L.) and found that heat-sensitive cultivars 

showed a greater difference in the inflorescence diameter compared to more heat-tolerant 

cultivars.  

2.2 VEGETATIVE AND OTHER PHYSIOLOGICAL RESPONSES 

Plant exposure to heat stress may result in foliar chlorosis, necrosis and underdeveloped 

growth of a plant and flowers (Dole and Wilkins, 2004; Hall, 2001; Larcher, 1995). However, 

these characteristics are often an indirect result due to increased transpiration and water stress 

associated with high temperatures (Burke, 1990). When exposed to high temperatures, the 

symptoms expressed in shoot and leaf tissue may be directly associated with damage to the root 

system, photosynthetic apparatus, and inhibition of water and nutrient uptake (Ashraf and Hafeez, 

2004; Berry and Bjorkman, 1980; Aldous and Kaufmann, 1979; Gur and Shulman, 1979). A 

study by Huang and Xu (2000) investigated the effects of high air and soil temperatures on 

creeping bentgrass (Agrostis palustris Huds.). The study revealed that a combination of high soil 

and air temperatures (35/35°C) caused greater damage to root growth, photosynthetic activity 

and turf quality than either stressful temperature alone. The study also showed that higher soil 

temperatures (20/35°C) compared to higher air temperatures (35/20°C) caused a significant 

decrease in not only root growth but photosynthetic activity and shoot growth as well. The effect 

of heat stress temperatures of 23, 29, or 32ºC exposed to perennial grass, Lolium perenne (Trin.) 

Tzvel., was investigated by measuring photosynthetic gas exchange, the maximal efficiency of 

PSII photochemistry determined by leaf chlorophyll fluorescence measurements, nitrogen level, 

and lipid peroxidation. Results indicated that high temperature decreased plant biomass, 

inhibited nutrient uptake, and had detrimental effect on plant qualities (Xu and Zhou 2006). 
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Other studies have indicated that distribution of photoassimilates can be inhibited at high 

temperatures (Ewing, 1981; Jiao and Grodzinski, 1996).  Also, membrane fluidity is considered 

to be a factor in a plant’s ability to sense changes in temperature (Sung et al., 2003). Membrane 

stability at high temperatures is crucial for normal plant function and survivability (Raison et al., 

1980). There have been numerous studies on the effects of heat stress and membrane stability 

where results indicate a strong connection between tolerance to high temperatures with increased 

membrane stability as seen with kentucky bluegrass (Poa pratensis L.) (Marcum, 1998); wheat 

(Triticum aestivum L.) ( Ibrahim and Quick, 2001); soybeans (Glycine max (L.) Merr.) 

(Martineau, 1979); and tomato (Lycopersicon esculentum Mill.) (Chen et al., 1982). 

Photosynthesis is a very heat-sensitive process that can have reversible effects on rate 

when exposed to temperatures ranging from 10°C to 35°C, but may cause permanent damage to 

the photosynthetic apparatus at temperatures below or above this range (Berry and Bjorkman, 

1980; Burke, 1990). Heat stress causes changes in membrane structures and interferes with 

protein-lipid relations within the chloroplast (Gounaris et al., 1983). Results from Smillie et al. 

(1978) indicated that chloroplast biogenesis was inhibited when barley (Hordeum L.) plants were 

grown at temperatures greater than 32°C. Photosynthetic yield and efficiency is dependent on 

thermostable interactions between light harvesting pigments and photosystem reaction centers 

(Armond et al., 1978). Photosystem II is considered the most heat-sensitive mechanism of 

photosynthesis (Berry and Bjorkman, 1980; Havaux, 1993). Stidham et al., (1982) used 

wheatgrass (Triticum aestivum L.) to show that the effects of heat stress on light reactions were 

significantly correlated to the duration of pre-exposure to temperatures greater than 35°C. Burke 

(1990) studied acclimation of the photosynthetic electron transport chain at PSII in wheat 

(Triticum aestivum L.) by monitoring changes in chlorophyll fluorescence. Results showed a 

reduction in Fv/Fo ratio of seedlings grown at control (22°C) after subsequent heat stress 
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treatment at 42°C, while the ratio remained steady in wheat seedlings with previous heat shock 

treatment of 40°C before exposure to 42°C heat stress, indicating an acquired thermotolerance of 

PSII. When using chlorophyll fluorescence to study the effects of environmental stresses on the 

photochemical efficiency of PSII or underlying damage to the photosynthetic apparatus, the most 

common measurement used in research is the maximum quantum efficiency of PSII (Fv/Fm) 

determined by the ratio of variable fluorescence (Fv) to maximal fluorescence (Fm) in dark-

adapted leaves (Maxwell and Johnson, 2000).  

2.3 ACQUIRED THERMOTOLERANCE 

Plants have the capacity to cope with environmental stresses using various morphological 

and physiological mechanisms (Hall, 2001). These mechanisms have been the interest of many 

researches and plant breeders over the past few decades in an effort to promote higher 

performing crops in variable environments (Maestri et al., 2002; Queitsch et al., 2000; Ismail and 

Hall, 1999). A plant’s ability to acquire tolerance to a particular stress depends on the genotype, 

level of susceptibility and optimum growing environment (Jones and Jones, 1989; Ketring, 1984). 

For tolerance of high temperature stress, this process can be performed through long term pre-

exposure, commonly known as acclimation or ‘heat-hardening’, or through acute short duration 

exposure known as heat shock. The latter process is more definitive of an acquired 

thermotolerance, where pre-exposure to supraoptimal temperatures for a relatively short period 

of time triggers internal mechanisms that enable a plant to survive during lethal temperatures 

(Sung et al., 2003).  

A study by Wu and Wallner (1984), focused on using heat shock (38°C for 20 min) and 

elevated growing temperature (30°C) on suspension-cultured pear (Pyrus communis (L.) cv 

Bartlett) cells to induce heat tolerance. Following pretreatment, treated cells were exposed to 

43°C for 20 min heat stress and returned to 22°C control temperature for 10 d before taking % 
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viability tests. Regrowth (culture growth 10 d after heat stress), electrolyte leakage, and TTC 

(triphenyltetrazolium chloride) reduction measurements were taken to determine % viability and 

subsequent heat tolerance. The results indicated that heat shock at 38°C for 20 min had the 

highest % heat tolerance when pear cells were exposed to 43°C heat stress after heat shock 

treatment and regrown at control (22°C) for 10 d. In addition cells grown in control temperature 

showed less than 15% viability when exposed to same heat stress of 43°C for 20 min. Over the 

ten day period, it was also noted that the heat tolerance declined after about 3 d which seemed to 

be consistent with studies that show a decrease in heat shock protein synthesis upon return to a 

more optimal temperature (Key et al., 1981).  This study also looked at inducing heat tolerance 

by growing in a supraoptimal temperature of 30°C, a temperature considered stressful but is less 

than the temperature used for heat shock. These results showed that heat tolerance was induced 

after 3 d and declined after 6 d. The treated cells also had a higher % viability (60-65%) when 

compared to the control but were significantly less when compared to % viability of heat 

shocked cells (90-95%). However, the decline in heat tolerance did not occur the same way in 

both treatments; those acclimated at 30°C lost tolerance in the first two days while those heat 

shocked retained it for the initial 2 d. Also, this study compared cells grown at 30°C to cells 

grown at 30°C with an additional heat shock before exposure to heat stress. These results indicate 

that after 24 h, cells grown at only 30°C had a significantly less survival % than those with the 

additional heat shock. It was also noted that viability tests for heat shocked cells at 38°C for 20 

min and those hardened at 30°C were significantly different when compared to control cells. 

While the hardened cells %viability increased in all three tests (TTC reduction, electrolyte 

leakage, and regrowth potential), cells that were heat shocked also increased in % viability but 

had lower TTC and EC than hardened cells. However, heat shocked cell regrowth potential was 

significantly higher than the cells grown at 30°C. Thus, both treatments provide some type of 
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heat tolerance but seem to induce tolerance differently from each other. It may be that heat shock 

and heat injury are dependent on a temperature and duration interaction (Levitt, 1980). Research 

by Ortiz and Cardemil (2001) studied two leguminous plants with known acquired 

thermotolerance.  These plants were evaluated at the seedling and mature plant stages. Seeds 

from Prosopis chilensis (Mol.) Stuntz and Glycine max (L.) Merr. were germinated at 25 or 35°C 

and were subjected to heat shock treatments in a growth chamber at 25, 30, 35, 40, 45, 50°C or 

35, 40, 45, 50°C respectively, for 2 h. The response to relative growth of embryo axis’ length 

between species was evaluated and results indicated that P. chilensis (Mol.) Stuntz germinated at 

25°C increased relative growth at 30, 35, and 40°C but decreased at 45°C when compared to 

control. Seedling growth temperature was found to be lethal at 50°C. Glycine max (L.) Merr. 

seeds germinated at 25°C (control) increased relative growth at 30 and 35°C but decreased at 40 

and 45°C and 50°C was lethal. However, when seedling were germinated at 35°C, both species 

were able to survive at 50°C and P. chilensis (Mol.) Stuntz increased relative growth rate (RGR) 

at 35, 40 and 45°C compared to the control while RGR of Glycine max ( L.) Merr. decreased at 

all higher temperatures compared to control at 25°C. Natarajan and Kuehny (2008) exposed heat 

sensitive and tolerant cultivars of Salvia splendens F. Sellow ex Roem & Schult. to heat shock 

treatments of 35°C every three days until flowering. Significant differences were observed 

between heat sensitive and heat tolerant cultivars for leaf size and thickness as well as gas 

exchange and transpiration. 

One physiological mechanism strongly linked to plant thermotolerance is the induction of 

specific proteins known as heat-shock proteins (HSPs) (Vierling, 1991). These special proteins 

are initiated rapidly during short duration pre-exposure to supraoptimal temperatures when 

normal protein synthesis is inhibited. HSPs have been associated with stabilizing proteins, 

chaperone function, protein folding and transport, as well as keeping steady membrane state 
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(Balogi, 2003; Hassane et al., 2002; Ellis, 1987).  The temperature that provokes synthesis of 

HSPs is species dependent but is generally induced at temperatures that are 10°C higher than the 

optimal temperature of that species (Pollock et al., 1993; Parsel and Lindquist, 1993). Acquired 

thermotolerance associated with HSPs exists only when plants are re-exposed to optimal 

temperatures after heat shock exposure. During this time, the heat-shock initiated HSPs genes are 

fully synthesized resulting in thermotolerance (Howarth, 1991). It should also be noted that the 

rate, time and amount of HSPs synthesis is species dependent and not necessarily a permanent 

response that can be prolonged through longer heat shock treatments (Pollock et al., 1993; 

Kimpel et al., 1990; Necchi et al., 1987). Natarajan (2005) investigated acquired thermotolerance 

and synthesis of heat shock proteins for two cultivars of Salvia splendens F. Sellow ex Roem & 

Schult., heat tolerant ‘Vista’ and heat sensitive ‘Sizzler’. Both cultibars were either grown at 

25/18°C (control) or preconditioned at 35°C for 3 h every 3 d before exposure to 30/23°C or 

35/28°C. Results indicated that synthesis of heat shock proteins increased in heat tolerant ‘Vista’ 

in both control and preconditioned plants resulting in better plant performance. However, sHSP 

in ‘Sizzler’ control plants were not affected and were increased in preconditioned plants but the 

increased synthesis of sHSP showed no direct relation to plant performance.  

2.4 CHLOROPHYLL FLUORESCENCE 

Heat tolerance has also been strongly associated with increased thermotolerance of the 

photosynthetic apparatus and PSII (Berry and Bjorkman, 1980). A very effective and non-

invasive approach to estimating photochemical efficiency and investigating stress to the 

photosynthetic apparatus is by measuring chlorophyll fluorescence. When leaf chlorophyll 

molecules absorb light, the excited electron may return to the ground state using one of three 

mechanisms. Energy may relax and be given off as heat, be reemitted as light (fluorescence), or 

most importantly used for photochemical reactions to drive photosynthesis (Buchanan et al., 
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2000). These mechanisms for relaxation compete with one another so that an increase in 

efficiency of one mechanism can be observed as decreases in yields for the other mechanisms 

(Maxwell and Johnson, 2000). When PSII absorbs light, a series of electron transfers occur 

through photochemical reactions within the reaction center. A reaction center is referred to as 

‘closed’ when an electron has already been accepted and has yet to be transferred to another 

carrier. The reaction center is unable to accept another electron until this transfer occurs resulting 

in decreased photochemical efficiency and an increase in chlorophyll fluorescence (Maxwell and 

Johnson, 2000; Rohacek and Bartak, 1999). Therefore, a sustained reduction of photochemical 

efficiency as reflected by changes in chlorophyll fluorescence yields can be inferred as injury or 

stress to the photosynthetic apparatus (Bilger et al., 1995).  

Although there has been vast research on chlorophyll fluorescence for over 50 years, the 

applied science, instrumentation, methodology and standardized nomenclature were lacking until  

recently (van Kooten and Snel, 1990; Weis and Berry, 1987). This progress has led to a greater 

availability and efficiency of measuring photosynthesis in the lab and under field conditions 

resulting in a very effective means for investigating the effects of environmental stress on 

photosynthetic activity (Havaux and Tardy, 1999; Elhani et al., 2000). Chlorophyll fluorescence 

is sometimes considered to be a more appropriate measurement of photosynthesis under heat 

stress compared to CO2 exchange; which can be altered by stomata closure provoked by many 

environmental conditions and not just heat (Larcher, 1994). When studying stress tolerance or 

damage to photosynthetic apparatus, measurements should be taken in dark-adapted and light-

adapted states to estimate the extent or lack of damage (Maxwell and Johnson, 2000). The data 

collected from fluorescence measurements can be relative and inferred differently depending on 

the particular mechanism being investigated. These data are currently standardized fluorescence 

terminology used to identify specific chlorophyll fluorescence measurements or combination of 
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measurements (van Kooten and Snel, 1990). The term Fs is the steady state of fluorescence in 

the light. The term Fo represents the minimal fluorescence and is measured in the dark when the 

photosynthetic membrane is in a non-energized state and all PSII reaction centers are open. The 

term Fm represents maximum fluorescence yield which measures the fluorescence intensity 

when all PSII reaction centers are closed in the dark adapted state and non-photochemical 

quenching is low. The term Fv is the difference between the non-energized or open state of PSII 

(Fo) and the highly energized or closed state (Fm). The maximum quantum efficiency of PSII is 

expressed as the ratio Fv/Fm, or (Fm – Fo)/Fm, and is taken when the plant is in the dark-

adapted state. Efficiency of heat dissipation is measured as changes in non-photochemical 

quenching (NPQ). The term NPQ or (Fm – F’m)/F’m, refers to non-photochemical quenching in 

the light where F’m represents the light adapted fluorescence maximum and is relative to the 

dark-adapted value of Fm. To investigate heat stress, Gamon and Pearcy (1989) studied dark-

adapted Fv/Fm and increased Fo to measure injury. Other chlorophyll fluorescence 

measurements like NPQ, quantum efficiency, and electron-transport rates are also useful 

estimates of photoinhibitory damage to PSII (Bilger et al., 1995). Ortiz and Cardemil (2001), 

who studied the acquired thermotolerance of P. chilensis (Mol.) Stuntz and Glycine max (L.) 

Merr. also evaluated chlorophyll fluorescence between these species. When measuring the 

maximum photochemical efficiency (Fv/Fm) of Photosystem II, leaves from both species were 

dark adapted for 30 min and then measured fluorescence followed by heat shock for 2 h at 35°C 

and then dark adapted at 25°C and measured fluorescence after 1, 2, 3 or 5 h. Results indicated a 

decrease in Fv/Fm for both species between 40 and 45°C but was reversed after dark adaption at 

25°C for 3 h. Law and Crafts-Bradner (1999) studied inhibition and acclimation of 

photosynthesis to heat stress associated with activation state of Rubisco in intact cotton 

(Gossypium hirsutum L.) and wheat (Triticum aestivum L.). The study investigated non-
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photochemical chlorophyll fluorescence quenching (qN) and maximum quantum efficiency of 

PSII (Fv/Fm) when cotton and wheat plants were rapidly heat stressed at a rate of 1°C min-1 to 

45°C or gradually heat stressed by increasing temperature in 2.5°C increments (at rate of 1°C 

min-1) and remained for 1 h at each temperature. Results showed increased qN at leaf 

temperatures of 30°C for wheat and 35°C for cotton for both rapid and gradual stress treatments 

resulting in inhibition of CO2-exchange rate, but qN levels were less in plants gradually stressed. 

For maximum quantum efficiency, results indicated steady Fv/Fm ratio until 40°C in cotton and 

wheat that were gradually heat stressed, while decreases in Fv/Fm occurred around 35°C for 

plants rapidly heat stressed, indicating an acquired thermotolerance of PSII can be achieved 

through gradual acclimation. Similar reports of acquired thermotolerance of PSII have been 

found by measuring chlorophyll fluorescence in potato leaves (Solanum tuberosum L.) (Havaux, 

1993). 

2.5 PETUNIA X HYBRIDA 

Petunia x hybrida hort. Vilm.-Andr. is a hybrid cross between P. axillaris (Lam.) and P. 

integrifolia (Hook.). Native to Argentina and Brazil, petunia is also a member of the Solanaceae 

family and includes over 35 species within its genus (Dole and Wilkins, 2004). Petunias are 

considered an annual bedding plant but may perennialize in warmer climates (Armitage, 1985; 

Bailey and Bailey, 1976). Petunia x hybrida is grouped by several classifications which include: 

grandiflora, multiflora, floribunda, milliflora and spreading (Dole and Wilkins, 2004; Kelly et al., 

2007). Propagation of hybrid petunia is typically by seed (8,600 to 10,000 seeds/g) with an 

optimum germination and growing temperature of 20 to 26°C (Dole and Wilkins, 2004; Holcomb 

and Mastalerz, 1985). However, there are other hybrid cultivars like ‘Supertunia’, which produce 

little seed and are vegetatively propagated by cuttings (Weidner, 1994). Petunia vegetative and 

reproductive stages are greatly affected by photoperiod and temperature (Adams et al., 1998; 
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Piringer and Cathey, 1960). Petunias will flower under different photoperiods; longer 

photoperiods (critical night length of 10 to 13 h), higher light intensities and warmer 

temperatures will cause flowering to occur earlier and more rapidly (Karlsson, 1996; Piringer 

and Cathey, 1960; Wilkins and Pemberton, 1981). Also, research has shown that petunias under 

LD will have more upright growth while SD results in more compact growth with more 

branching (Adams et al., 1998; Merritt and Kohl, 1982; Piringer and Cathey, 1960). Similar 

results of petunia growth habit were found with warmer and cooler temperatures (10 to 30°C), 

where plant height increased and the number of lateral shoots decreased as day temperature 

increased (Kaczperski et al., 1991). 

Petunia x hybrida is considered to be an acceptable model system for comparative 

research, mainly due to its diversity and genetic transferability among different species (Gerats 

and Vandenbussche, 2005). Being a member of the Solanaceae family, it is closely related to 

other genome mapped species including tomato (Lycopersicon esculentum Mill.), potato 

(Solanum tuberosum L.), tobacco and nicotiana (Nicotiana spp. L.) (Dole and Wilkins, 2004). 

Information regarding growth and development of these species may also be helpful for petunia 

research. Petunia is one of the most popular bedding plants today and also proves to have staying 

power in the market since it is thought to be one of the original cultivated bedding plants (Gerats 

and Vandenbussche, 2005).  Along with petunia marketability, petunia is a beneficial model for 

bedding plant research due to its leaf tissue quality for biochemical analysis, efficient tissue 

culture, and macromolecule purification (Ausubel et al., 1980). Over the last 50 years, research 

using petunia as a model system has resulted in useful information regarding flavonoid synthesis, 

genetic behavior and other molecular interactions, and more recently floral development (Gerats 

and Vandenbussche, 2005). This information has benefitted plant breeding research leading to 

great advancements in the bedding plant industry (Kelly et al., 2007; Craig, 2003). The genetics 
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of petunia are also being studied by University of Florida (Clevenger et al., 2004) and Ohio State 

University (Jones et al., 2005) particularly with petunia sensitivity or insensitivity to ethylene. 

Petunia cultivars are very diverse considering the multiple classes, forms and colors 

available. Plant breeding programs use field trials for evaluating new cultivars, but results may 

be ambiguous considering there has been no class standard cultivar used as comparison and also 

due to climate specific field trials (Kelly et al., 2007). Recently, the University of Florida 

evaluated 125 petunia cultivars in multiple field trials to establish petunia class standards that 

have been lacking in the industry. Cultivars were grouped by plant class, plant height, and flower 

color and pattern and were then evaluated and compared within these groups (Kelly et al., 2007). 

The authors chose a cultivar as a class standard using results of overall landscape performance 

ratings (>5.5 using scale 1 – 7), based on combination of foliage, flower, insect and disease 

symptom ratings. (Foliage ratings: 7=all plants in a plot had full uniform foliage, plants were free 

of arthropod and disease symptoms and abnormalities or weaknesses such as lodging; 4=average 

foliage density, minimal lodging, or some insect damage but foliage was still acceptable; 

1=foliage sparse, stem lodging, or unacceptable pest damage making plants undesirable. Flower 

ratings: 7=flowers numerous, uniformly distributed overall plants, flowers were free from 

arthropod and disease symptoms; 4=average floral display, may have some pest damage but not 

severe enough to cause flowers to be unacceptable; 1=unacceptable flower number or display, or 

pest damage severe resulting in unattractive flowers) (Kelly et al., 2007). Results from this 

research will be helpful for future studies when choosing cultivars that are relevant and 

beneficial to the bedding plant industry.   
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CHAPTER 3. EFFECT OF HIGH TEMPERATURE STRESS AND HEAT HARDENING 
(PRECONDITIONING) ON GROWTH AND DEVELOPMENT OF PETUNIA  

3.1 INTRODUCTION 

Bedding plants continue to have great economic value in the Floriculture industry. The 

ability to have multi-seasonal production throughout the year is a profitable investment for 

growers and retailers. However, production times and availability differs greatly among bedding 

plant species and is greatly influenced by the location and climate of growers (Mahan et al., 

1997). Species with unique growing recommendations and temperature requirements may be 

problematic for some producers. High temperature stress is one of the greatest challenges 

negatively affecting production of bedding plants (Natarajan, 2005). Plant growth, development 

and yield can be greatly reduced due to exposure from heat stress (Gusta et al., 1997; Harding et 

al., 1990). Heat stress has been a hindrance to many producers where proper growing 

recommendations are sometimes unachievable. This is especially true during the late summer 

months and for nursery producers and greenhouse growers in the southern United States 

(Wehner and Watschke, 1987). Markets in these regions have evolved to produce bedding plants 

best suited to their environment or at least limiting production to cooler months of the year. 

However, spring and early fall continue to be the seasons with the highest demand for plant 

material and therefore, the highest profit potential. Heat stress is a primary factor during 

production in most all regions during late summer  but growers must still produce plants for the 

landscape that have cooler optimum growing temperatures for fall planting. However, production 

quality of these plants and ultimate landscape performance is usually decreased in these 

circumstances. Effects of heat stress and plant tolerance is vital for survivability in stressful 

environments (Lichtenthaler, 1996). There are few research based recommendations on 

beneficial production practices where environmental stresses are an issue (Hancheck and 

Cameron, 1995). Acquired thermotolerance for bedding plants would be most useful in regions 
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where high temperatures negatively affect greenhouse production and landscape performance. 

From a consumer standpoint, acquired thermotolerance would not only improve landscape 

performance but also plant survivability during prolonged heat stress. Production practices that 

induce acquired thermotolerance would be beneficial by decreasing cooling costs and allow 

growers to take advantage of the ‘stressful’ growing environment. Using resources that are 

naturally available would also promote a more sustainable approach in greenhouse production.   

There has been little research in quantifying physiological and morphological responses 

to heat stress on bedding plants. Research by Natarajan (2005) found whole plant responses in 

Salvia splendens F. Sellow ex Roem & Schult. of adaptable morphological and physiological 

characteristics associated with heat tolerance. However, this information has not been 

investigated for other bedding plants in a greenhouse or landscape setting. Evaluating responses 

of bedding plants to prolonged or short duration heat stress during greenhouse production is 

crucial before attempting a protocol for inducing acquired thermotolerance. Understanding and 

quantifying these responses will determine which morphological traits are most sensitive and if 

they are beneficial or deleterious to marketability and survivability of a plant. Petunia x hybrida 

‘Midnight’ from the Dreams series was chosen as the model bedding plant for this research. 

Petunia is a popular bedding plant that has had more genome mapping than any other bedding 

plant and information may be essential to geneticist and easily transferred between related 

important horticultural species (Gerats and Vandenbussche, 2005). The objective of these 

experiments was to determine the effect of enduring high temperature stress and short duration 

heat shock (preconditioning) on growth and development of Petunia x hybrida. 
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3.2 MATERIALS AND METHODS  

3.2.1 Plant Material 

Petunia x hybrida was chosen as a model for the following experiments. Plugs (288 cell 

tray) (4.9 cm3) of the petunia variety DreamsTM ‘Midnight’ (Ball Plug Network, Ball 

Horticultural Company, West Chicago, IL) were obtained for the use of this study. Petunia 

DreamsTM ‘Midnight’ (Ball Horticultural Company, West Chicago, IL) is a grandiflora class 

petunia with large dark purple flowers that bloom spring to fall and has a mounding growth habit. 

The average mature height and width is 25-38 cm and 30-45 cm respectively. This variety of 

petunia has an optimum growing temperature range of 22-26°C (d) and full sun requirement 

(PanAmerican Seed Company, West Chicago, IL). Upon arrival, plug trays were immediately 

removed from packaging and maintained in a greenhouse for 5 d at 26°C day/night before 

transplanting. 

3.2.2 Greenhouse Establishment Prior to Treatments 

Greenhouses used for this study were located at Campus Greenhouses 440-7 and 440-8 at 

Louisiana State University, 30° N 91° W Baton Rouge, Louisiana. A total of three polycarbonate 

covered greenhouses with 40% shade cloth (1000 µmol m-2 s-1) were used for each temperature 

treatment. Each greenhouse has respective automated heating and cooling systems using 

Wadsworth STEP© Control 50A (Wadsworth Control Systems Incorporated, Arvada, CO) with 

day/night 12 h temperature settings. Prior to transplanting, the day/night temperatures of control 

greenhouse was recorded for temperature consistency for one week using HOBO® Pro SeriesTM 

data logger (Onset Computer Corporation, Bourne, MA) (Figure 3.1) and also daily visual 

recordings of minimum and maximum thermometer temperatures. On 15 August 2007, petunia 

Dreams ‘Midnight’ plugs  were transplanted into (650 cm3) plastic pots using a middleweight 

media Fafard™4M Mix (Conrad Fafard, Incorporated, Agawam, MA) media. One plant was 
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transplanted into each pot and was placed on greenhouse benches. Broad spectrum fungicide was 

applied as a drench to each pot after one week transplant at a rate of 19.5 ml/L (Banrot® 8G, a.i. 

3% Etridiazole, a.i. 5% Thiophanate-methyl, Scotts-Sierra, Marysville, OH). Petunias were 

grown at 30/20°C and fertigated using Hozon™ Brass Siphon Mixer (1:16) (Phytotronics, 

Incorporated, Earth City, MO) with 200 ppm N 15N-2.2P-12.4K (15-5-15 Cal Mg, Scotts-Sierra, 

Marysville, OH) daily for two weeks to allow for root growth and proper establishment within 

the pot.  
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Figure 3.1 Average day/night temperatures of control greenhouse (30/25°C) for one week prior 
to transplanting petunia.  

3.2.3 Enduring High Temperature Stress 

Enduring heat stress treatments were applied to petunia after two weeks growth at 

30/25°C in the greenhouse. Petunia optimum growing temperature is 26°C; however, due to 

difficulty to maintain consistent cool temperatures in greenhouse with seasonal Louisiana heat, 

the average day/night control temperature was 30/25°C. This temperature was the closest 

consistent temperature to optimum growing temperature and was an ideal representative growing 
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temperature for greenhouse growers in the southern United States at this time of year. Heat stress 

challenging temperatures were chosen in 5°C increments increasing from the control temperature, 

30/25°C. Heat stress treatment includes control temperature 30/25°C day/night or enduring heat 

stress at 35/25 or 40/30°C day/night for 5 weeks. A total of 252 petunias were exposed to each 

heat stress treatment where 36 of these plants were transplanted after 5 weeks exposure into the 

field for observation. The other set of 212 plants were divided into weekly harvests to determine 

growth and development for a total 5 week exposure period in the greenhouse. Temperature 

treatments were applied in respective greenhouses and recorded using HOBO® Pro SeriesTM data 

logger (Onset Computer Corporation, Bourne, MA) (Figure 3.2 A, B & C). Weather records, 

including temperature (°C) and natural irradiance   (µmol m-2 s-1 PPFD), were also taken daily for 

the duration of the experiments (Louisiana Agriclimatic Information Systems, LSUAgCenter, 

BAE) (Figure 3.3 A & B).  

3.2.4 Short Duration Heat Shock (Preconditioning) 

Petunias were grown for 2 weeks after transplant at 30/25°C prior to exposure to heat 

shock treatments. Petunias are kept in 25 cm x 50 cm plastic trays with 4 pots per tray for 

treatment efficiency. Plants in trays were manually moved between greenhouse sections that 

were set to a constant specific heat shock treatment temperature. Heat shock treatment includes 

petunia grown at 30/25°C where plants in trays were removed and exposed to 35 or 40°C for 2 h 

every 7 d for 5 weeks. After 2 h heat shock duration, plants were returned to 30/25°C and 

remained until following weekly exposure. A total of 252 petunias were exposed to each heat 

stress treatment where 36 of these plants were transplanted after 5 weeks exposure into the field 

for observation. The other set of 212 plants were divided into weekly harvests to determine 

growth and development for a total 5 week exposure period in the greenhouse. During the 

continuous heat stress treatments and prior to heat shock exposure, plants were irrigated to 
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minimize water stress during treatment. Plants were destructively harvested weekly 3 d after heat 

shock for data collection. 
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Figure 3.2 Average day/night temperatures (°C) recorded in greenhouses for each temperature 
treatment over 5 week course of experiment. A) Control 30/25°C B) 35/25°C C) 40/30°C    
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Figure 3.3 Average daily weather reports for Baton Rouge, Louisiana during enduring heat stress 
and heat shock experiments. A) minimum and maximum daily temperatures (°C) and B) natural 
irradiance (µ mol m-2 s-1 PPFD).   

3.2.5 Measurement of Growth and Development in the Greenhouse 

For both studies described above a set of plants from each study were destructively 

harvested every 7 d for 5 weeks. Petunia growth and development was quantified by measuring 

number of flowers per plant, average flower size (cm) per plant and shoot dry weight (g). Fully 

expanded flowers were visually counted and recorded weekly. Flower size was determined by 

A 
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using a handheld metric ruler and measuring the diameter (cm) of one flower visually estimated 

to be average for that respective plant. After flower measurements were taken, petunia shoots 

were cut at the soil line in the pot and placed in labeled paper bag. Labeled samples were oven 

dried at 80°C for 24 h before obtaining dry weights.  

3.2.6 Field Study Establishment 

Postproduction was evaluated by transplanting heat stressed or heat shocked plants in 

field trial landscape beds. A broad spectrum fungicide (Banrot® 8G, a.i. 3% Etridiazole, a.i. 5% 

Thiophanate-methyl, Scotts-Sierra, Marysville, OH) was applied in the greenhouse 3 d prior to 

field transplant. Petunias were transplanted immediately after greenhouse treatments on 1 

October 2007. The field trial was located at LSU AgCenter Burden Center, 30° N 91° W Baton 

Rouge, Louisiana. The landscape trial was implemented in raised beds (1.5 m wide by 43 m long) 

which consisted of an Olivier silt loam soil amended with composted pine bark. Petunia were 

planted using 30 x 30 cm spacing. Irrigation was used around the edges of the raised bed where 

spray nozzles were spaced 1 m apart. Plants were irrigated as needed. Weather records were 

taken daily from the Burden Center weather station for the duration of the field trial (Louisiana 

Agriclimatic Information Systems, LSUAgCenter, BAE) (Figure 3.4 A & B). Petunias were 

allowed to establish one week before data measurements were taken.  

3.2.7 Field Data Collection 

Growth and development and landscape performance of treated petunias were evaluated 

over a 3 week period where measurements were taken weekly. Data collected included number 

of flowers per plant, average flower size (cm), cross-sectional diameter of whole plant, and 

quality ratings. Quality rating scale ranged from 1 to 5, where 1=dead and 5= optimum 

performance. Quality is based on a combination of plant flowering, leaf color and compactness  
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Figure 3.4 Average daily weather reports for Burden Center, Baton Rouge, Louisiana during 
field evaluation of heat stressed and heat shocked Petunia x hybrida Dreams ‘Midnight’. A) 
minimum and maximum daily temperatures (°C) and B) natural irradiance (µ mol m-2 s-1 PPFD).   

of plant. Quality scores; 5 to 4.5 = excellent plants with healthy green leaves, compact uniform 

growth and good inflorescence, 4.5 to 3.5 = green healthy foliage with moderate flowers, 3.5 to 

2.5 = plants with chlorotic leaves and poor inflorescence, 2.5 to 1.5 = plants with necrotic or 

A 

B 



 

35  

dried leaves with terminal bud damage and poor flower set, <1.5 = dead. Due to problems with 

the trial beds for those plants treated with heat shock, field data was collected on only the heat 

stressed plants. 

3.2.8 Experimental Design and Statistical Analysis 

Petunia plants grown for greenhouse experiments were arranged in a complete 

randomized block design on benches. Four blocks were used each consisting of six replicate 

plants. Plants exposed to heat shock treatment were arranged randomly within trays that were 

also completely randomized on the benches. Statistical analysis was performed using SAS 

ProcMixed Procedure (Statistical Analysis Software, version 9.1, Cary, NC).   

3.3 RESULTS 

3.3.1 Effect of Enduring High Temperature Stress on Growth and Development of Petunia 
during Greenhouse Production  

 

Flowers per Plant 

Petunia Dreams ‘Midnight’ grown at 30/25, 35/25 or 40/30°C showed significant 

differences in flower count over a 5 week period (Fig 3.5). Flower count increased at all 

temperatures after the first week. However, petunias grown at 30/25°C had significantly more 

flowers per plant for all weeks. After the first week, there was no difference in flower count in 

petunias grown at 35/25 and 40/30°C. After two weeks of heat stress exposure, differences in 

flower count appeared at the higher temperatures. Flower count of petunias grown at 35/25°C 

increased at weeks 3 and 4 while those grown at 40/30°C decreased. Flower count at control 

temperature (30/25°C) remained significantly higher than 35/25 and 40/30°C during this time. 

After week 4, there was a significant decrease in flower counts for petunias grown at 30/25 and 

35/25°C while flower count at 40/30°C remained unchanged. At 5 weeks, continuous exposure to 

30/25°C had significantly higher flower counts than the higher temperatures; however counts 

decreased and resembled flower numbers recorded at week 3. At 5 weeks, flower counts of 
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35/25°C grown petunias significantly decreased and showed no difference between flowers 

counts of petunias grown at 40/30°C. 

 
Average Flower Size  

Temperature had a significant effect on the average flower size of petunia Dreams ‘Midnight’. 

After 5 weeks exposure to enduring temperatures of 30/25, 35/25 or 40/30°C, petunias grown at 

30/25°C had a significantly larger flower size compared to petunias grown at higher temperatures 

(Fig. 3.6). Similar to flower count results, flower size was not significantly different between 

petunia grown at 35/25 and 40/30°C. Petunia Dreams ‘Midnight’ also displayed underdeveloped, 

misshaped and longer corolla tubes in some flowers grown at 40/30°C with some flowers 

showing bleaching of dark purple petal pigmentation (Fig. 3.7 A and B). 
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Figure 3.5. The effect of enduring high temperature stress on flower production during 
greenhouse production of Petunia x hybrida Dreams ‘Midnight’. Petunias were exposed to 30/25, 
35/25 or 40/30°C day/night for a 5 week duration. Error bars represent mean of six 
measurements ± standard error. 
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Figure 3.6. Average flower size (cm) of Petunia x hybrida Dreams ‘Midnight’ when exposed to 
30/25, 35/25 or 40/30°C day/night for 5 weeks in the greenhouse. Means with different letters are 
significantly different at P<0.05 (Tukey’s Test).  

  

Figure 3.7. Effect of heat stress on flower development in Petunia x hybrida Dreams ‘Midnight’ 
after 5 weeks of exposure. A) Elongated corolla tube with smaller petal width observed in 
petunia grown at 40/30°C, B) Asymmetric and non-fully expanded petals accompanied by 
bleaching and striations of petal pigmentation in petunia grown at 40/30°C, C) Flower of petunia 
grown at 30/25°C.    
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Shoot Dry Weight 

Petunia Dreams ‘Midnight’ showed an increase in shoot dry weight (g) over the 5 week 

duration (Fig.3.8). Petunias grown at 30/25 and 35/25°C displayed similar trends but showed no 

significant difference in shoot dry weight.  Petunias grown at 40/30°C also shared a similar trend 

to 30/25 and 35/25°C during the first 4 weeks, but significantly decreased shoot dry weight at the 

end of 5 weeks. Although shoot dry weight did not show a significant difference until the last 

week, petunias grown at 35/25 and 40/30°C appeared much smaller in biomass with shortened 

internodes and smaller leaves (personal observation).  

3.3.2 Short Duration Heat Shock (Preconditioning) 

Results from petunias grown at 30/25°C and heat shocked at 35 or 40°C for 2 h every 7 d 

showed few differences among growth parameters measured (Table 3.1). All flower counts 

increased over the first 4 weeks and decreased at week 5 (Table 3.2). However, petunias heat 

shocked at 35 or 40°C showed no difference in number of flowers per plant when compared to 

control temperature. Similar results were found for average flower size of heat shocked plants. 

Results indicated no significant difference between flower size of plants grown at 30/25°C and 

plants heat shocked at 35 or 40°C. Shoot dry weight increased over the 5 week period for all 

plants, but no significant difference was observed between the three temperature treatments 

(Table 3.2). 

Table 3.1. The effect of heat shock treatment on Petunia x hybrida Dreams ‘Midnight’ flower 
count, flower size and shoot dry weight as indicated by significance of fixed effects and 
interactions. 

Effect

 

Temperature

 

Week

 

Temperature*Week

 

Flower Count

 

0.2667 NS

 

0.0135 *

 

0.1364 NS

 

Flower Size 0.5619 NS NS NS 
Shoot Dry Weight 0.3556 NS <0.0001* 0.8698 NS 

Values significant (*) or not significant (NS) at the 5% level by the lsmean procedure in SAS 
with Tukey’s correction. 
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Figure 3.8. Effect of enduring high temperature on shoot dry weight (g) of Petunia x hybrida 
Dreams ‘Midnight’ when exposed to 30/25, 35/25 or 40/30°C day/night for 5 weeks in the 
greenhouse. Error bars represent mean of six measurements ± standard error.      

Table 3.2. The effect of heat shock treatment on Petunia x hybrida Dreams ‘Midnight’ flower 
count and shoot dry weight (g) at each week of production in the greenhouse. 

Week Flowers per Plant Shoot Dry Weight (g) 

1 Y0.99 dX

 

0.89 d 
2 10.10 bc 2.56 c 
3 11.40 b 3.95 c 
4 16.00 a 5.16 b 
5 14.13 b 8.03 a 

(Heat shock treatment included growth at 30/25°C (control) and heat shock at 35 or 40°C for 2 h 
every 7 d for 5 weeks). 
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=18). 
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3.3.3 Field Study 

 
Flowers per Plant 

Petunias Dreams ‘Midnight’ exposed to enduring high temperatures in the greenhouse 

showed differences in the number of flowers per plant after 3 weeks observation in the landscape. 

Flowers counts of petunias grown at 40/30°C in the greenhouse significantly decreased in the 

field (Fig. 3.9). At the end of the field trial, petunias grown at 30/25 and 35/25°C had 

significantly greater flower counts compared to petunias grown at 40/30°C. However, no 

difference in the number of flowers per plant was indicated between plants grown at 30/25 and 

35/25°C.  

No field measurements were taken on petunias exposed to short duration heat shock due 

to poor field establishment. 

 

Average Flower Size (cm) 

Petunias exposed to heat stress during greenhouse production displayed an increase in 

average flower size during the first two weeks in the field followed by a decrease in size at the 

third week for all temperature treatments. After 3 weeks observation in the field, overall average 

flower size was not significant between petunias grown at enduring 30/25, 35/25 or 40/30°C in 

the greenhouse (Table 3.3).  

Table 3.3. The effect of enduring heat stress during greenhouse production on average flower 
size after 3 weeks in the landscape. 

Week Temperature (°C)

 

30/25°C 35/25°C 40/30°C 
1

 

Y7.00 aX

 

6.66 abc

 

6.91 ab

 

2 6.55 abc 6.66 abc 7.00 a 
3 6.33 abc 5.66 bc 5.41 c 

XMean values followed by different letters indicate significant difference at P<0.05 using 
Tukey’s Test. 
YValues in table are averages (n=6). 
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Cross-Sectional Diameter of Whole Plant 

Cross-sectional diameter of petunias increased during the 3 weeks in the field for all 

temperature treatments. Petunia cross-sectional diameter at week 1 was significantly less than 

petunias after 3 weeks for all temperature treatments (Table 3.4). Cross-sectional diameter was 

not significant between temperatures within each week measured. However, petunias grown at 

30/25°C appeared to show a more rapid increase in size after week 1 then slowed after week 2, 

while petunias grown at 35/25°C slowed after week 1 then increased more rapidly after week 2 

(Table 3.5). Petunias grown at 40/30°C in the greenhouse did not vary as greatly in cross-

sectional diameter in the landscape as the other temperatures.  
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Figure 3.9.  The effect of enduring high temperatures (30/25, 35/25 or 40/30°C) during 
greenhouse production on flower count of field transplanted Petunia x hybrida Dreams 
‘Midnight’. Flower counts from field petunias exposed to respective greenhouse temperatures 
were taken over a 3 week period. Means with different letters are significantly different at 
P<0.05 (Tukey’s Test).    
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Table 3.4. Cross-sectional diameter (cm) for all temperature treatments of Petunia x hybrida 
Dreams ‘Midnight’ after 3 weeks in the landscape. 

Week

 
Cross-sectional diameter

 
1

 
Y19.55 bX

 
2 21.69 ab 
3 22.52 a 

XMean values followed by different letters within columns are significantly different at P<0.05 
using Tukey’s Test. 
YValues in table are averages (n=18).     

Table 3.5. The effect of enduring heat stress during greenhouse production on Petunia x hybrida 
Dreams ‘Midnight’ cross-sectional diameter over 3 weeks in the landscape. 

Week Temperature (°C)

 

30/25°C 35/25°C 40/30°C 
1

 

Y19.00 bX

 

20.50 ab

 

19.16 b

 

2 23.25 ab 21.08 ab 20.75 ab 
3 23.33 ab 24.58 a 19.66 ab 

XMean values followed by different letters are significantly different at P<0.05 using Tukey’s 
Test. 
YValues in table are averages (n=6).  

 

Field Quality Ratings 

Petunias exposed to enduring high temperatures in the greenhouse showed differences in 

quality after transplant in the field. Petunias grown at 30/25 and 35/25°C exhibited significantly 

higher quality ratings in the field than plants grown at constant 40/30°C (Fig. 3.10). Quality 

ratings were also significant from week to week between temperatures, with week 1 showing the 

greatest effect of enduring heat stress (Table 3.6). Petunia grown at 30/25°C had significantly 

increased quality at week 1, decreased at week 2 and was not significant at the third week. 

Petunia grown at 35/25°C showed no difference in quality at each week. Similarly, plant quality 

of petunia grown at 40/30°C was not affected between weeks but displayed significantly 

decreased quality at week one compared to petunia grown at control (30/25°C). 
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Table 3.6. The effect of enduring heat stress during greenhouse production on plant quality at 
each week in the landscape. 

Week Temperature (°C)

 
30/25°C 35/25°C 40/30°C 

1

 

Y3.75 aX

 

3.16 ab

 

2.33 b

 

2 2.50 b 3.25 ab 2.50 b 
3 3.25 ab 2.83 ab 2.83 ab 

XMean values followed by different letters within columns are significantly different at P<0.05 
using Tukey’s Test. 
YValues in table are averages (n=6).       

A A
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A A
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Figure 3.10. Effect of greenhouse temperature on plant quality after 3 weeks in the field. Quality 
ratings 1 – 5 where 1=dead and 5=optimum field performance. Means with different letters are 
significantly different at P<0.05 (Tukey’s Test). 
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Figure 3.11. Pictorial representation of the effect of heat stress on petunia after 5 weeks 
treatment in the greenhouse and after 3 weeks transplanted in the landscape. Top and middle side 
views of petunia grown at 30/25, 35/25 and 40/30°C respectively, for 5 weeks in the greenhouse. 
Bottom pictures represent greenhouse grown (30/25, 35/25 and 40/30°C) petunias after 3 weeks 
transplant in the landscape.  

 

Greenhouse Production vs. Landscape Performance  

Temperature treatments of 30/25, 35/25, or 40/30°C had a significant effect on growth 

and development of petunia Dreams ‘Midnight’ over 5 weeks in the greenhouse but had a 

different effect in the landscape (Fig. 3.11). Petunias grown at 30/25°C performed best in the 

greenhouse with significantly more flowers per plant and larger average flower size. In the 

landscape, petunia grown at 30/25 and 35/25°C showed no significant difference in flower count 

or quality while there was no significant difference in average flower size for all temperature 

treatments 

3.4 DISCUSSION  

Enduring temperature stress during greenhouse production had significant morphological 

effects on petunia Dreams ‘Midnight’. Results indicated that petunia growing at 30/25°C had the 

30/25°C

  

35/25

 

°C

 

40/30

 

°C
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greatest number of flowers per plant while flower counts of petunias at the 40/30°C were 

severely reduced. These results are consistent with Guilioni et al. (1997) who found an increase 

in bud and flower abortion in peas (Pisum sativum L.) when exposed to heat stress (moderate 

stress: 31°C for 6 h during day and 13°C at night for 4 d or severe stress: 33/30°C day/night for 2 

d followed by 4 d of moderate stress treatment). Interestingly, the study by Guilioni et al. (1997) 

found that severe stress treatment with 30°C night temperatures caused rapid flower abortion 

while moderate stress treatment did not directly cause flowers to abort, but rather accelerated the 

natural termination of the flowering process in plants. Petunias grown at 40/30°C day/night had 

consistently fewer flowers over the 5 weeks which may indicate a more direct interruption of 

flowering due to heat stress (Figure 3.5). However, petunias grown at 35/25°C and 30/25°C did 

increase in flower count but decreased abruptly after the fourth week. This may be due to an 

increased speed in flowering termination associated with heat stress. Flower abortion before 

anthesis has also been described as being caused by competition for assimilates between 

previous initiated inflorescence and vegetative apex (Bertin, 1995). 

Underdeveloped or smaller flowers observed in petunias grown at 35/25 and 40/30°C in 

the greenhouse may also be due to water deficiency within flower buds. Tsukaguchi e al. (2003) 

studied water status and high temperature (32/26°C d/n) in flower buds of heat-sensitive and 

tolerant snap beans (Phaseolus vulgaris L.) under non-drought conditions and concluded that the 

heat-tolerant cultivar displayed a higher water conductance and less water stress in flower buds 

under heat stress, resulting in less damage to pollen compared to heat-sensitive cultivar.   

Some flowers of petunia Dreams ‘Midnight’ grown at 40/30°C also displayed bleaching 

or striations in petal pigmentation (Fig. 3.7, B). Petunia Dreams ‘Midnight’ is a dark purple 

flower whose color is influenced by anthocyanin content within the petal tissue. Anthocyanin 

synthesis is strongly affected by temperature where higher temperatures greatly reduce 
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anthocyanin concentration (Zhong and Yoshida, 1993). Dela et al. (2003) showed that exposure 

of roses (Rosa x hybrida Schleich.) to 39°C for 3 d resulted in decreased anthocyanin levels in 

flowers. The study also revealed that the reduction in anthocyanin concentration was directly 

related to heat stress of the flower buds and not a response from whole plant stress where flower 

buds were initially removed. Dela et al. (2003) also indicated that when roses were removed 

from heat stress, anthocyanin synthesis recovered and eventually increased in concentration, 

which would explain the recovery of petunia Dreams ‘Midnight’ pigmentation after transplant in 

the field. 

A review of flower development in petunia by van der Krol and Chua (1993) discusses 

specific floral homeotic and nonhomeotic genes and their function in petunia floral organ 

identity. According to the authors, environmental and physiological factors can affect gene 

function and alter organ differentiation resulting in variations of floral development. Although, 

the present study does not investigate gene expression or function, some deformed or severely 

reduced flower size observed under heat stress (Fig. 3.7, A) may have been due to alterations in 

the activity of enzymes at high temperatures that influence the expression of the floral homeotic 

genes as described in the review by van der Krol and Chua (1993). 

Shoot dry weight of petunia Dreams ‘Midnight’ was significantly reduced in plants 

grown at 40/30°C for 5 weeks (Fig. 3.8). Ashraf and Hafeez (2004) found similar results when 

studying growth and nutrient relations related to thermotolerance of maize (Zea mays L.) and 

pearl millet (Pennisetum glaucum (L.) R. Br.). Shoot dry weight was found to be reduced in 

maize grown at 38°C, but was unaffected in pearl millet. Furthermore, the authors also indicate 

reduced net-assimilation rate in maize compared to an increase in relative growth and net-

assimilation rates in pearl millet when grown at 38°C. The authors conclude that the reduced 

biomass and net-assimilation rates found in the maize studied is associated with a decreased 
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thermotolerance compared to the pearl millet. Research by Natarajan (2005), where two cultivars 

of Salvia splendens F. Sellow ex Roem & Schult. were exposed to heat shock every 3 days for 3 

hours at 30, 35, 40 and 45°C, also resulted in decreased root and shoot dry weight as temperature 

increased. Reduced biomass of petunia Dreams ‘Midnight’ may be due to increased transpiration 

and respiration rates and decreased net photosynthesis at higher temperatures as was found in 

redbud (Cercis canadensis L.) (Griffin et al., 2004), spinach (Spinacia oleracea L.) (Brooks and 

Farquhar, 1985), and Salvia splendens F. Sellow ex Roem & Schult. (Jiao and Grodzinski, 1996). 

The results from the present heat shock experiments showed no significant difference 

between any of the temperature treatments for all growth measurements. This may be due to the 

duration and frequency chosen for heat shock rather than the temperatures used. Morphological 

effects of whole plant petunia Dreams ‘Midnight’ may be limited to longer and/or more frequent 

durations at these temperatures rather than the 2 h duration once per week heat shock used in this 

experiment.  Lin et al. (1984) studied acquired thermotolrance in soybean (Glycine max L. Merr.) 

seedlings and found differences in seedling length of control (28°C) and heat shocked plants at 

40°C for 2h before subsequent heat stress of 45°C for 2 h. The authors also found that 

thermotolerance could be achieved in seedlings heat shocked for only 15 min at 40°C followed 

by recovery period of 2 to 4 h at 28°C before heat stress exposure to 45°C. Similar temperature 

and duration heat shock treatment were used in the present study; however, the species and age 

of plant at time of heat shock are different and sensitivity of these plants may vary accordingly. 

Natarajan (2005), showed differences in growth of Salvia splendens F. Sellow ex Roem & Schult. 

another popular bedding plant, when heat shocked every 3 d for 3 h at 30, 35, 40 and 45°C 

indicating an increase in duration time and frequency for the present study may result in more 

profound differences in petunia growth. 
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After heat stress treatments in the greenhouse, petunia Dreams ‘Midnight’ showed 

dramatic morphological differences between temperatures (Figure 3.11). Petunias grown at 

30/25°C displayed more characteristics of a desirable plant including higher flower count, flower 

size and larger biomass compared to plants grown at 35/25 and 40/30°C which showed 

significant reductions in these measurements. However, once transplanted into the field, petunias 

grown at 35/25°C displayed similar growth and flowering habits as petunias grown at 30/25°C. 

Average flower size was unaffected in the landscape between all temperatures while the flower 

size was severely reduced at 35/25 and 40/30°C in the greenhouse. These results indicate that 

reproductive tissue may be acutely affected by heat stress but do not have permanent effects on 

future floral development once removed from sustained heat stress.  

Although plants grown at 35/25°C are less marketable after greenhouse production, they 

are capable of recovering in overall quality in the landscape. This is also demonstrated by the 

more compact and uniform growth and darker leaves in the landscape of petunias grown at this 

temperature (personal observation) (Fig.3.11). These characteristics are similar to other reports 

describing morphology of heat tolerant species such as shorter or compact growth, thicker stems, 

and smaller, darker, and thicker leaves (Beadle, 1981; Natarajan, 2005). The compact growth of 

petunia Dreams ‘Midnight’ grown at 35/25 and 40/30°C is considered to be a desirable trait for 

heat tolerance as was discovered in cowpea (Vigna unguiculata (L.) Walp.), where plants with 

longer internodes were found to be more heat-susceptible (Ismail et al., 2000). 

After 3 weeks in the landscape, petunias grown at 30/25 and 35/25°C showed no 

difference in quality ratings (Fig. 3.10). Petunia grown at 30/25°C did decrease in quality at 2 

weeks in the landscape while plants grown at 35/25 and 40/30°C slightly increased, though the 

difference was not significant. Differences between the temperature treatments may be more 

pronounced in the landscape over a longer period of time than 3 weeks. 
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In conclusion, petunia Dreams ‘Midnight’ were significantly affected by enduring heat 

stress of 35/25 and 40/30°C in the greenhouse but appeared to adapt to these excessive 

temperatures. However, heat shock treatments of 35 and 40°C for 2 h once per week proved 

insignificant for inducing similar morphological effects in petunia during greenhouse production. 

Although, enduring stress of 35/25 and 40/30°C caused desirable traits such as compact 

vegetative growth for improved landscape performance, these temperatures also caused 

detrimental effects to petunia flowering habit during greenhouse production. Poor flowering or 

damaged flower tissue is not ideal for marketing bedding plants. Therefore, 35/25 and 40/30°C 

would not be a recommended growing regime for petunia Dreams ‘Midnight’ intended for 

market. The morphological characteristics displayed under enduring heat stress experiments 

should be considered if less extreme flowering and growth effects could be achieved. Further 

heat shock treatments including a higher range in temperature, durations and frequency should be 

investigated for similar but less extreme morphological characteristics that would produce a 

marketable plant and induce thermotolerance for improved landscape survivability.  
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CHAPTER 4. DETERMINING OPTIMUM CHALLENGING TEMPERATURES AND 
DURATIONS FOR INDUCING ACQUIRED THERMOTOLERANCE IN PETUNIA X 

HYBRIDA  

4.1 INTRODUCTION 

Heat stress is a major challenge in bedding plant production, primarily during the late 

spring and summer months and for growers in the southern United States (Koh, 2002; Mahan et 

al., 1997). Plant growth and development is greatly affected by high temperature stress and may 

cause irreversible damage depending on the plant species, temperature and duration of exposure 

(Hall, 2001; Burke, 1990). High temperature stress is reported to be one of the greatest causes for 

bedding plant loss during postproduction (Armitage, 1989), where plants can face inconsistent 

environments and stressful conditions.  

A plant’s ability to acclimate and maintain physiological functions under stressful 

conditions is crucial to plant survival when exposed to extreme high temperature (Hale and 

Orcutt, 1997; Lichtenthaler, 1996). Plant acquired thermotolerance may be achieved through heat 

shock or short exposure to supraoptimal temperatures (Sung et al., 2003). Plant adaptive 

responses to heat stress associated with acquired thermotolerance can vary by species; however, 

research has indicated that development of smaller and thicker leaves, thicker stems, and 

shortened internodes (Beadle, 1981; Natarajan, 2005; Ismail et al., 2000), as well as increased 

membrane thermostability (Yeh and Hsu, 2004), and increased synthesis of heat shock proteins 

(Park et al., 1996; Vierling, 1991) are characteristics that improve heat tolerance.  

Photosynthesis is a heat-sensitive process that can result in negative whole plant 

responses depending on the extent of damage to the photosynthetic apparatus (Berry and 

Bjorkman, 1980; Larcher, 1994). PSII is considered to be one of the most heat-labile 

mechanisms of photosynthesis (Berry and Bjorkman, 1980; Heckathorn et al., 1998; Weis and 

Berry, 1987).  Measuring chlorophyll fluorescence in the light and dark is an effective and non-
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destructive means to determine quantum efficiencies of PSII, which can be inferred as tolerance 

or damage to the photosynthetic apparatus (Bilger et al., 1995; Maxwell and Johnson, 2000). 

Havaux (1993) used chlorophyll fluorescence measurements on leaf discs taken from mature 

potato leaves (Solanum tuberosum L.) to study photosynthetic adaptation to heat stress when 

grown at 25°C (control) or pre-heated at 35°C. The study determined that potato pre-exposed to 

35°C for 2 h resulted in increased tolerance of PSII when the temperature was increased at a rate 

of 1°C min-1 to 40°C for 40 min compared to potato grown at control temperature (25°C).  

Standard greenhouse production protocol may provide for alleviating heat stress if 

closely monitored. However, inducing acquired thermotolerance of bedding plants during 

greenhouse production may greatly improve heat tolerance postproduction. There has been little 

research on critical temperatures and durations for inducing acquired thermotolerance during 

greenhouse production of bedding plants and achieving adaptive characteristics while still 

maintaining marketability. Further investigation of whole plant adaptive characteristics related to 

photochemical efficiency could be an effective tool for determining the ability of bedding plants 

to develop acquired thermotolerance in the greenhouse. Therefore, the objective of this study 

was to determine optimum heat shock temperature and duration for development of acquired 

stress tolerance of Petunia x hybrida Dreams ‘Midnight’ and to test for thermotolerance through 

subsequent heat stress and measurement of fluorescence. 

4.2 MATERIALS AND METHODS 

4.2.1 Plant Material 

Petunia x hybrida Hort. Ex Vilm. variety DreamsTM ‘Midnight’ (Ball Horticultural 

Company, West Chicago, IL) was chosen as a model for the following experiments. Petunia 

seeds were planted 25 March  2008 into 288 (4.9 cm3) plug tray using lightweight media 

Fafard™2M Mix (Conrad Fafard, Incorporated, Agawam, MA) and germinated in a growth 
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chamber (EGC, Chagrin Falls, OH) maintained at 80% RH with a 12-h photoperiod of 3-4 

umoles-1m-2s-1 from very high output fluorescent, light bulbs (OERAM Sylvania, Danvers, MA). 

Seedlings were grown in the growth chamber for six weeks before transplant into the greenhouse. 

4.2.2 Greenhouse Establishment Prior to Treatments 

The greenhouses were located at the LSU AgCenter Campus Greenhouses numbers 440-

7 and 440-8 at Louisiana State University, 30° N 91° W Baton Rouge, Louisiana. A total of three 

polycarbonate covered greenhouses with 40% shade cloth (1000 µmol m-2 s-1) were used to 

complete each temperature treatment. Each greenhouse had respective automated heating and 

cooling systems using Wadsworth STEP© Control 50A (Wadsworth Control Systems 

Incorporated, Arvada, CO) with day/night 12-h temperature settings. On 5 May 2008, petunia 

Dreams ‘Midnight’ plugs were transplanted into plastic pots (650 cm3) using a middleweight 

media Fafard™4M Mix (Conrad Fafard, Incorporated, Agawam, MA). One plant was 

transplanted into each pot and was placed in trays on greenhouse benches. Broad spectrum 

fungicide was applied as a drench to each pot after one week transplant at a rate of 19.5 ml/L 

(Banrot® 8G, a.i. 3% Etridiazole, a.i. 5% Thiophanate-methyl, Scotts-Sierra, Marysville, OH). 

Petunias were grown at 30/25°C day/night and fertigated using a Hozon™ Brass Siphon Mixer 

(1:16) (Phytotronics, Incorporated, Earth City, MO) with 200 ppm N 15N-2.2P-12.4K (15-5-15 

Cal Mg, Scotts-Sierra, Marysville, OH) daily for two weeks before beginning heat shock 

treatments to allow for root growth and proper establishment within the pot.  

4.2.3 Heat Shock/Stress Treatments 

Heat shock/stress treatments were applied to petunia after two weeks growth at 30/25°C 

in the greenhouse. Challenging temperatures were chosen in 5°C increments increasing from the 

control temperature, 30°C. Heat shock treatments included short duration heat shock at 35, 40 or 
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45°C for 2, 4 or 6 h every 3 d for 4 weeks.  Enduring heat stress treatments included 24-h 

duration continuous exposure to 35/25, 40/30 or 45/35°C day/night for 4 weeks (Table 4.1).  

Table 4.1 Heat shock/stress treatments of given temperature and duration. 

Temperature (°C)

 
Duration (hours)

 
30/25°C

 
24 h

 

35/30°C 2, 4, 6, 24 h 
40/35°C 2, 4, 6, 24 h 
45/40°C 2, 4, 6, 24 h 

 

For heat shock treatments, petunias were grown at 30/25°C day/night and kept in 25 cm x 

50 cm plastic trays with 4 pots per tray for treatment efficiency. Plants in trays were manually 

moved every 3 d between greenhouse sections that were set to a constant specific heat shock 

treatment temperature (35, 40 or 45°C) which remained for the respective duration time (2, 4 or  

6 h) and returned to 30/25°C until the following heat shock exposure (staring at 1000 HR and 

removed at 1200, 1400 and 1600 HR, respectively). For heat stress treatments, petunia were 

exposed for 24 h duration and remained in respective temperature treatments for the 4 week 

period. Prior to heat shock exposure and during heat stress, plants were irrigated to maximum 

water holding capacity to minimize water stress during treatment. Temperature treatments were 

applied in respective greenhouses and recorded using HOBO® Pro SeriesTM data logger (Onset 

Computer Corporation, Bourne, MA)(Figure 4.1. A, B, C, D). Weather records for Baton Rouge, 

Louisiana, including temperature (°C) and irradiance (µ mol m-2 s-1 PPFD), were recorded daily 

for the duration of the experiments (Louisiana Agriclimatic Information Systems, LSUAgCenter, 

BAE) (Figure 4.3. A & B). A total of 360 petunias were exposed to heat shock/stress treatments 

where 282 plants were divided into weekly destructive harvests to determine growth and 

development over a 3 week period and 78 plants were kept for subsequent acquired 

thermotolerance test.  
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Figure 4.1 Average day/night temperatures (°C) A) Control 30/25°C B) 35/25°C C) 40/30°C D) 
45/35°C recorded in greenhouses for each temperature treatment over a 4 week course of 
experiment.  

4.2.4 Acquired Thermotolerance Test 

Following a 4 week exposure to heat shock/stress treatments, all treated Petunia x 

hybrida Dreams ‘Midnight’ were exposed to subsequent heat stress of 45/35°C day/night for one 

week in the greenhouse. Temperature in the greenhouse was recorded using HOBO® Pro 

SeriesTM data logger (Onset Computer Corporation, Bourne, MA) (Figure 4.2). Chlorophyll 

fluorescence measurements were recorded after 4 weeks of heat shock/stress treatments, 3 and 7 

A B 

C D 
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d after the acquired thermotolerance test. Quality ratings (1 to 5) were also taken on treated 

petunias before and after acquired thermotolerance test followed by destructive harvest for data 

collection. Overall marketable quality of plants was assessed based on 1 to 5 scale with 5 being 

the best and 1 being the worst. Marketable quality scores; 5 to 4.5 = excellent plants with healthy 

green leaves, compact uniform growth and good inflorescence, 4.5 to 3.5 = green healthy foliage 

with moderate flowers, 3.5 to 2.5 = plants with chlorotic leaves and poor inflorescence, 2.5 to 1.5 

= plants with necrotic or dried leaves with terminal bud damage and poor flower set, <1.5S = 

dead. 
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Figure 4.2 Average day/night temperatures (45/35°C) in greenhouse during one week acquired 
thermotolerance test.  

4.2.5 Measurement of Growth and Development in the Greenhouse 

Treated plants were destructively harvested for data collection every 7 d for 3 weeks 

followed by a fourth harvest after acquired thermotolerance test. Petunia x hybrida growth and 

development was quantified by measuring number of flowers per plant, average flower size (cm) 

per plant, chlorophyll concentration, average internode length (cm), total leaf area per plant 
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(mm2), and shoot dry weight (g). Fully expanded flowers were visually counted and recorded 

weekly. Flower size was determined by using a handheld metric ruler and measuring the 

diameter (cm) of one flower visually estimated to be average for that respective plant. Average 

chlorophyll content was determined by taking two measurements per plant using Minolta SPAD-

502 chlorophyll meter (Spectrum Technologies, Inc., Plainfield, IL). Average internode length 

was determined by measuring lengths of first 3 internodes from newest true leaves on one branch 

per plant.  Total leaf area per plant was measured using LI-3100C leaf area meter (LICOR 

Biosciences, Lincoln, NE). Shoot dry weights (g) were obtained after oven drying at 80°C for 24 

h. 

4.2.6 Chlorophyll Fluorescence Measurements 

Chlorophyll fluorescence was measured using the FMS2 field-fluorescence monitoring 

system (Hansatech Instruments Ltd., England) on dark adapted leaves after four weeks of heat 

shock/stress and 3 and 7 d after plants were subjected to acquired thermotolerance test (45/35°C 

for one week). The FMS2 uses a modulating beam (<0.05 µmol m-2 s-1) and short duration light 

pulses (1.6 sec) to determine leaf fluorescence characteristics. Maximum quantum efficiency of 

PSII was calculated using the following formula: (Fm - Fo/Fm) or (Fv/Fm) where Fm = 

maximum fluorescence yield, Fo = fluorescence yield after dark-adaptation when all reaction 

centers are “opened”, and Fv calculated as the difference between Fo and Fm known as variable 

fluorescence. Dark adapted light measurements were taken on fully expanded young and mature 

leaves for each plant after a 12 h dark period.  The intensity and duration of the saturating light 

pulse used to determine Fm was based on preliminary experiments (data not shown).   

4.2.7 Experimental Design and Statistical Analysis 

Heat shock treatments were arranged as a strip-split plot design in the greenhouse. Six 

replicate plants were used for each temperature/duration treatment for each of the 4 harvests. 
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Plants exposed to heat shock treatment were arranged in trays according to temperature and 

duration with 4 harvests per tray. Statistical analysis was performed using SAS ProcMixed 

Procedure (Statistical Analysis Software, version 9.1, Cary, NC).    
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Figure 4.3 Average daily weather reports A) natural irradiance (µ mol m-2 s-1 PPFD), B) 
minimum and maximum daily temperature (°C) for Baton Rouge, Louisiana during heat 
shock/stress treatments and acquired thermotolerance test.  
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4.3 RESULTS 

4.3.1 Effect of Heat Shock and Enduring Heat Stress 

 
Flowers per Plant  

Temperature, duration and week had a significant effect on the number of flowers per 

plant in Petunia x hybrida Dreams ‘Midnight’. Petunia heat shocked at 35°C for 6 h had 

significantly increased flower count compared to petunia exposed to enduring heat stress (24h) at 

40/30 and 45/35°C (Table 4.2). Petunia flower count increased for all temperatures and durations 

over the 3 week treatment period (Table 4.3). Heat shock/stress treatments did not significantly 

effect flower counts at week 1 (Table 4.4) while petunia heat shocked at 35°C for 6 h had higher 

flower counts than all other treatments except petunia heat shocked at 40°C for 4 or 6 h (Table 

4.5). At week 3, prior to acquired thermotolerance test, petunia exposed to enduring heat stress at 

45/35°C (24 h) had fewer flowers than all other treatments (Table 4.6). Petunia grown at 30/25°C 

or exposed to heat treatment at 35 or 40°C had a greater number of flowers compared to petunia 

exposed to 45°C after 3 weeks (Fig. 4.4 A). Also, petunia exposed to enduring heat stress (24 h 

duration) had significantly less flowers per plant compared to heat shock for 2, 4 or 6 h, 

regardless of temperature (Fig. 4.5 A). 

 

Average Flower Size  

Heat shock had the greatest effect on the average flower size of petunia after the first 

week (Table 4.3). At week 1, flower size was significantly smaller in petunia exposed to 

enduring heat stress at 35/25°C (24 h) compared to control or heat shock at 35°C  for 2, 4 or 6 h 

or 40°C for 4 or 6 h or 45°C for 6 h (Table 4.4). At week 2 petunia exposed to heat shock were 

significantly larger than petunia exposed to enduring heat stress (Table 4.5) while after 3 weeks 

of treatment only petunia grown at 45/35°C had significantly smaller flower size (Table 4.6). 

Average flower size in petunia grown at 30/25°C was significantly larger than petunia exposed to 
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40 or 45°C (Fig. 4.4 B). The effect of duration was similar to flower count results where petunia 

exposed to heat stress for 24 h had significantly decreased flower size (Fig.4.5 B).  

Table 4.2. The effect of combined heat shock every 3 d and enduring heat stress temperature and 
duration on growth and development of Petunia x hybrida Dreams ‘Midnight’ after three weeks 
in the greenhouse.  
Temperature 

(°C) 
Duration 
(hours) 

Effect

 

Flowers per Flower Size Shoot Dry Leaf Area Internode

 

Plant (cm) Weight (g) (mm2) Length 
30/25°C 24 h Y9.94 abcX

 

7.01 ab 3.80 ab 628.88 a 1.33 a 
35°C    

35/25°C 

2 h 10.83 ab 6.60 ab 3.92 ab 648.97 a 1.24 ab 
4 h 9.27 abc 6.77 ab 3.56 ab 581.62 ab 1.33 a 
6 h 12.94 a 6.76 ab 4.31 a 711.86 a 1.19 ab 

24 h 8.83 bc 4.46 cd 3.81 ab 726.56 a 1.23 ab 
40°C    

40/30°C 

2 h 9.33 abc 5.23 abcd 3.78 ab 610.17 a 1.22 ab 
4 h 11.11 ab 6.81 ab 3.85 ab 628.02 a 1.11 abc 
6 h 11.00 ab 7.20 a 4.23 a 714.68 a 1.17 ab 

24 h 6.00 cd 5.06 bcd 3.02 bc 494.37 ab 1.07 abc 
45°C    

45/35°C 

2 h 9.66 abc 6.16 abc 3.43 ab 570.33 ab 1.15 ab 
4 h

 

8.48 abc

 

5.79 abcd

 

3.31 abc

 

554.26 ab

 

1.28 a

 

6 h

 

10.68 ab

 

6.99 ab

 

3.57 ab

 

555.16 ab

 

0.98 bc

 

24 h

 

3.44 d

 

3.67 d

 

2.35 c

 

375.05 b

 

0.84 c

 

Temp. x Duration * * * * * 
Temp. x Dur. x Week * * NS NS * 

Temperature * * * * * 
Duration * * * NS * 

Week * * * * * 
Values significant (*) or not significant (NS) at the 5% level by the lsmean procedure in SAS 
with Tukey’s correction.  
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=18).  

 

Shoot Dry Weight  

Heat shock temperature and duration had a significant effect on shoot dry weight of 

petunia Dreams ‘Midnight’. Shoot dry weight increased for both heat shock and enduring heat 

stress treatments over the 3 week period (Table 4.3). However, at week 1 there was no 

significant difference in petunia shoot dry weights (Table 4.4) while petunia heat shocked at  
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35°C for 6 h had greater shoot dry weight compared to petunia grown at 40/30 or 45/35°C (24 h) 

or heat shocked at 45°C for 4 or 6 h at week 2 (Table 4.5). At week 3, petunia exposed to 

enduring heat stress at 45/35°C (24 h) weighed significantly less than petunia grown at 35/25°C 

(24 h) or heat shocked at 35°C for 2 h or 40°C for 4 or 6 h (Table 4.6). Shoot dry weight was 

significantly decreased in petunia exposed to 45°C compared to petunia exposed to 30 or 35°C 

(Fig. 4.4 C). Exposure of 24 h heat stress reduced shoot dry matter accumulation compared to 

heat shock for 2, 4 or 6 h over all temperatures (Fig. 4.5 C).  

Table 4.3. The effect of combined heat shock and enduring heat stress treatments on growth and 
development of Petunia x hybrida Dreams ‘Midnight’ at each week.  

 

Effect

 

Week 
Flowers 
per Plant 

Flower 
Size (cm) 

Shoot Dry 
Weight (g) 

Leaf Area 
(mm2) 

Internode 
Length (cm) 

1

 

Y2.05 cX

 

4.99 b

 

1.46 c

 

292.25 c

 

0 c

 

2 9.10 b 6.67 a 3.32 b 608.00 b 1.94 a 
3 17.22 a 7.01 a 6.16 a 915.99 a 1.65 b 

(Heat treatments included 30/25°C (control) and heat shock at 35, 40 or 45°C for 2, 4 or 6 h 
every 3 d or enduring heat stress at 35/25, 40/30 or 45/35°C.) 
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=78).  

 

Total Leaf Area  

Total leaf area of petunia Dreams ‘Midnight’ increased for all temperatures and durations 

over the 3 week period (Table 4.3). At week 1 there were no differences in petunia leaf areas 

(Table 4.4) but was significantly greater in petunia heat shocked at 35°C for 6 h compared to 

petunia heat shocked at 45°C for 4 h or enduring heat stress at 45/35°C at week 2 (Table 4.5). 

Week 3 results showed that petunia exposed to enduring heat stress at 35/25°C (24 h) had 

significantly increased leaf area compared to enduring heat stress at 45/35°C (Table 4.6).  
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Table 4.4. The effect of heat shock/stress temperatures and durations on growth and development 
of Petunia x hybrida Dreams ‘Midnight’ after one week of treatment in the greenhouse. 
Temperature 

(°C) 
Duration 
(hours) 

Week 1

 
Flowers Flower Shoot Dry Leaf Area Internode 
Per Plant Size (cm) Weight (g)

 
(mm2) Length (cm)

 
30/25°C 24 h Y2.50 aX

 
6.51 a 1.54 a 314.23 a N/A 

35°C    

35/25°C 

2 h 2.00 a 5.21 a 1.57 a 305.20 a N/A 
4 h 1.66 a 5.81 a 1.21 a 281.39 a N/A 
6 h 2.00 a 5.66 a 1.67 a 315.56 a N/A 

24 h 0.83 a 0.00 b 1.31 a 273.55 a N/A 
40°C    

40/30°C 

2 h 2.50 a 2.25 ab 1.82 a 322.01 a N/A 
4 h 2.50 a 6.25 a 1.40 a 294.13 a N/A 
6 h 2.50 a 6.81 a 1.89 a 382.01 a N/A 

24 h 1.16 a 3.38 ab 1.19 a 239.93 a N/A 
45°C    

45/35°C 

2 h 2.00 a 4.48 ab 1.16 a 228.34 a N/A 
4 h

 

1.90 a

 

3.07 ab

 

1.28 a

 

256.40 a

 

N/A

 

6 h

 

2.52 a

 

6.87 a

 

1.57 a

 

282.43 a

 

N/A

 

24 h

 

1.33 a

 

4.06 ab

 

1.23 a

 

235.44 a

 

N/A

 

X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=6). 

Treatment temperature had a significant effect on petunia leaf area where petunia exposed to 

45°C greatly reduced total leaf area compared to cooler temperatures (30, 35 or 40°C) (Fig.4.4 D). 

Leaf area was also significantly greater in petunia heat shocked for 6 h compared to petunia kept 

in enduring heat stress for 24 h duration (Fig. 4.5 D). 

 

Average Internode Length  

Temperature, duration and week had a significant effect on internode length of petunia 

Dreams ‘Midnight’ (Table 4.2). Internode length increased after week 1, and then decreased after 

week 3 for all heat shock and enduring heat stress treatments (Table 4.3). There was no 

measurable differences internode length at week 1 (Table 4.4). However, at week 2, petunia 

exposed to enduring heat stress at 40/30 or 45/35°C (24 h) had significantly shorter internodes 

compared to petunia heat shocked at 40°C for 4 h (Table 4.5). At week 3, petunia heat shocked at 

45°C for 4 h had significantly increased internode length compared to petunia exposed to  
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Table 4.5. The effect of heat shock/stress temperatures and durations on growth and development 
of Petunia x hybrida Dreams ‘Midnight’ after two weeks of treatment in the greenhouse. 
Temperature 

(°C) 
Duration 
(hours) 

Week 2

 
Flowers Flower Shoot Dry Leaf Area Internode 
Per Plant Size (cm) Weight (g)

 
(mm2) Length (cm)

 
30/25°C 24 h Y8.16 bcdX

 
6.91 a 3.37 abcd 586.24 abc 2.17 ab 

35°C    

35/25°C 

2 h 9.66 bcd 7.20 a 3.46 bcd 658.13 abc 1.85 abc 
4 h 8.16 bcd 7.25 a 3.07 bcd 558.38 abc 2.10 ab 
6 h 16.66 a 7.21 a 4.84 a 915.31 a 2.01 abc 

24 h 8.00 bcd 6.20 ab 3.34 bcd 643.29 abc 1.71 abc 
40°C    

40/30°C 

2 h 8.50 bcd 5.98 ab 3.46 abcd 605.48 abc 1.83 abc 
4 h 11.66 abc 6.93 a 3.42 abcd 631.85 abc 2.16 a 
6 h 13.50 ab 7.26 a 4.16 ab 795.49 ab 1.82 abc 

24 h 6.50 cd 5.70 ab 2.45 cd 501.00 abc 1.66 bc 
45°C    

45/35°C 

2 h 9.16 bcd 7.00 a 3.42 abc 687.26 abc 2.05 ab 
4 h

 

7.16 cd

 

6.73 a

 

2.90 bcd

 

497.75 bc

 

1.96 abc

 

6 h

 

9.66 bc

 

7.05 a

 

3.07 bcd

 

517.62 abc

 

1.66 abc

 

24 h

 

4.33 d

 

4.53 b

 

2.08 d

 

371.47 c

 

1.51 c

 

X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=6). 

Table 4.6. The effect of heat shock/stress temperatures and durations on growth and development 
of Petunia x hybrida Dreams ‘Midnight’ Pre-ATT (after 3 weeks of heat shock and enduring 
heat stress treatments and before exposure to acquired thermotolerance test). 
Temperature 

(°C) 
Duration 
(hours) 

Week 3 (Pre-ATT)

 

Flowers Flower Shoot Dry Leaf Area Internode 
Per Plant Size (cm) Weight (g)

 

(mm2) Length (cm)

 

30/25°C 24 h Y19.16 abX

 

7.60 a 6.51 ab 986.19 ab 1.81 abc 
35°C    

35/25°C 

2 h 20.83 a 7.38 a 6.73 a 983.59 ab 1.86 ab 
4 h 18.00 ab 7.26 a 6.41 ab 905.10 ab 1.89 ab 
6 h 20.16 ab 7.41 a 6.44 ab 904.70 ab 1.57 abcd 

24 h 17.66 ab 7.18 a 6.75 a 1262.84 a 1.99 a 
40°C    

40/30°C 

2 h 17.00 ab 7.46 a 6.07 ab 903.03 ab 1.85 ab 
4 h 19.16 a 7.25 a 6.75 a 958.09 ab 1.18 cd 
6 h 17.00 ab 7.51 a 6.66 a 966.55 ab 1.70 abc 

24 h 10.33 bc 6.11 a 5.42 ab 742.19 ab 1.55 abcd 
45°C    

45/35°C 

2 h 17.83 ab 7.00 a 5.71 ab 795.38 ab 1.42 abcd 
4 h

 

16.33 ab

 

7.58 a

 

5.72 ab

 

907.91 ab

 

1.88 a

 

6 h

 

20.00 ab

 

7.08 a

 

6.12 ab

 

863.42 ab

 

1.28

 

bcd

 

24 h

 

4.66 c

 

2.41 b

 

3.73 b

 

518.25 b

 

1.02 d

 

X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=6). 
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enduring heat stress at 35/25 or 45/35°C or heat shocked at 40 or 45°C for 4 or 6 h, respectively 

(Table 4.6). After 3 weeks of heat shock and heat stress, average internode length was 

significantly reduced in petunia exposed to 45°C compared to petunia exposed to 30 or 35°C (Fig. 

4.4 E). Internode length was also significantly reduced in petunia exposed to 24 h duration 

compared to 2 or 4 h durations (Fig. 4.5 E).  

4.3.2 Effect of Heat Shock 

Further investigation of the effect of heat shock temperature and duration alone on 

petunia Dreams ‘Midnight’ every 3 d for 3 weeks proved insignificant for most growth 

measurements (Table 4.7). However, heat shock treatments did have a significant effect on  

Table 4.7. The effect of heat shock temperature and duration on growth and development of 
Petunia x hybrida Dreams ‘Midnight’ over 3 weeks. 

Temperature 
(°C) 

Duration 
(hours) 

Effect

 

Flowers 
Per Plant

 

Flower 
Size

 

(cm)

 

Shoot Dry 
Weight (g)

 

Leaf Area 
(mm2)

 

Internode 
Length

 

(cm)

 

30/25°C (Control)

 

Y9.94 abX

 

7.45 a

 

3.80 a

 

628.88 a

 

1.99 a

 

35°C 
2 h

 

10.83 ab

 

6.95 a

 

3.92 a

 

648.97 a

 

1.86 ab

 

4 h 9.27 ab 7.16 a 3.56 a 581.62 a 2.00 a 
6 h 12.94 a 7.13 a 4.31 a 711.86 a 1.79 ab 

40°C 
2 h

 

9.33 ab

 

7.09 a

 

3.78 a

 

610.17 a

 

1.84 ab

 

4 h 11.11 ab 7.22 a 3.85 a 628.02 a 1.67 ab 
6 h 11.00 ab 7.20 a 4.23 a 714.68 a 1.76 ab 

45°C 
2 h

 

9.66 ab

 

6.91 a

 

3.43 a

 

570.33 a

 

1.73 ab

 

4 h 8.34 b 7.23 a 3.31 a 554.53 a 1.92 a 
6 h 10.70 ab 6.99 a 3.58 a 554.76 a 1.47 b 

Temp. x Duration

 

NS

 

NS

 

NS

 

NS

 

*

 

Temp. x Dur. x Week

 

NS

 

NS

 

NS

 

NS

 

*

 

Temp. x Week

 

NS

 

*

 

NS

 

NS

 

NS

 

Duration x Week

 

NS

 

NS

 

NS

 

NS

 

NS

 

Temperature

 

NS

 

NS

 

NS

 

NS

 

*

 

Duration

 

NS

 

NS

 

NS

 

NS

 

NS

 

Week

 

*

 

*

 

*

 

*

 

*

 

Values significant (*) or not significant (NS) at the 5% level by the lsmean procedure in SAS 
with Tukey’s correction.  
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=18). 
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Figure 4.4. The effect of heat shock and enduring heat stress temperatures (°C) on Petunia x 
hybrida Dreams ‘Midnight’ A) flowers per plant B) average flower size (cm) C) shoot dry 
weight (g) D) total leaf area (mm2) and E) average internode length (cm) after 3 weeks grown at 
30°C or heat shock every 3 d at 35, 40 or 45°C for all durations (2, 4, 6 or 24h). Means within 
each effect with different letters are significantly different at P<0.05 (Tukey’s Test).  
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Figure 4.5. The effect of duration (hours) (for heat shock and enduring heat stress treatments) on 
Petunia x hybrida Dreams ‘Midnight’ A) flowers per plant B) average flower size (cm) C) shoot 
dry weight (g) D) total leaf area (mm2) and E) average internode length (cm) after 3 weeks 
grown at 30°C or heat shock every 3 d for all temperatures (35, 40 or 45°C). Means within each 
effect with different letters are significantly different at P<0.05 (Tukey’s Test).   
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petunia average internode length. Petunia exposed to heat shock temperature of 45°C over 3 

weeks showed a significant decrease in internode length compared to petunia grown at control 

temperature (30/25°C), regardless of duration (Fig.4.6). Average internode length also decreased 

significantly after the second week for all heat shock treatments (Table 4.8). Petunia exposed to 

40°C for 4 h or 45°C for 2 h having the greatest decrease in internode length by 46 or 31%, 

respectively (Fig.4.7). Although overall heat shock temperature was insignificant for petunia 

flower size, there was a significant difference between temperatures for each week. Average 

flower size of petunia grown at 30/25°C (control) decreased significantly (40%) after week 1, 

while flower size was not significantly different for heat shock temperatures (35, 40, or 45°C) for 

all weeks (Fig 4.8).    
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Figure 4.6. The effect of heat shock temperature on average internode length of Petunia x 
hybrida Dreams ‘Midnight’ over 3 weeks of treatment. Error bars represent means of fifty-four 
observations ±SE.  
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Table 4.8. The effect of combined heat shock treatments on growth and development of Petunia 
x hybrida Dreams ‘Midnight’ for each week. 

Week 
Effect

 
Flowers

 
Flower

 
Shoot Dry

 
Leaf Area

 
Internode

 
per Plant

 
Size (cm)

 
Weight (g)

 
(mm2)

 
Length (cm)

 
1

 
Y2.25 cX

 
7.13 ab

 
1.51 c

 
301.04 c

 
0 c

 

2 9.85 b 7.04 b 3.49 b 635.50 b 2.00 a 
3 18.65 a 7.39 a 6.34 a 928.86 a 1.67 b 

(Heat shock treatments included 30/25°C (control) and heat shock at 35, 40 or 45°C for 2, 4 or 6 
h every 3 d). 
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=60).   
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Figure 4.7. The effect of heat shock temperature and duration on average internode length of 
Petunia x hybrida Dreams ‘Midnight’ from week 2 to week 3. Error bars represent means of six 
observations ±SE. 
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Figure 4.8. The effect of heat shock temperature on the average flower size of Petunia x hybrida 
Dreams ‘Midnight’ at each week. Error bars represent means of eighteen observations ±SE.  

4.3.3 Effect of Enduring Heat Stress  

Growth and development of petunia Dreams ‘Midnight’ was significantly affected by 

exposure to enduring heat stress for 3 weeks. Petunia grown at 35/25°C had the greatest effect on 

flower count after the first week while flower count of petunia grown at 40/30°C and 45/35°C 

were significantly reduced after 3 weeks of exposure (Table 4.9). These results are similar for 

average flower size of petunia exposed to enduring heat stress. Petunia grown at 35/25°C also 

had the greatest effect on flower size after week 1 and exposure to 45/35°C after week 2 (Table 

4.9). Shoot dry weight of petunia increased for all heat stress temperatures over the 3 weeks but 

was significantly reduced for petunia grown at 45/35°C after week 2 compared to cooler 

temperatures (30/25, 35/25, or 40/30°C) (Table 4.9). Enduring heat stress did not have a 

significant effect on leaf area of petunia Dreams ‘Midnight’ after 2 weeks exposure. However, 

after 3 weeks exposure, growth at 40/30 or 45/35°C significantly decreased total leaf area in  
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Table 4.9. The effect of enduring heat stress on growth and development of Petunia x hybrida 
Dreams ‘Midnight’ for each week of exposure in the greenhouse. 

Temperature 
(°C) 

Week 
Effect

 
Flowers

 
Flower

 
Shoot Dry

 
Leaf Area

 
Internode

 
Per Plant

 
Size (cm)

 
Weight (g)

 
(mm2)

 
Length (cm)

 

30/25°C 
1

 
Y2.50 cdX

 
6.51 abc

 
1.54 d

 
314.23 d

 
0 c

 

2 8.16 bc 6.91 ab 3.37 bc 586.2 bcd 2.17 a 
3 19.16 a 7.60 a 6.51 a 986.19 ab 1.81 ab 

 

35/25°C  
1 0 e 0 e 1.31 d 273.55 d 0 c 
2 8.00 bc 6.20 abc 3.34 bc 643.3 bcd 1.71 ab 
3 17.66 a 7.18 ab 6.75 a 1262.84 a 1.99 ab 

 

40/30°C  
1 1.16 d 3.38 cd 1.19 d 239.93 d 0 c 
2 6.50 bcd 5.70 abcd 2.45 bcd 501.00 cd 1.66 ab 
3 10.33 b 6.11 abc 5.42 a 742.19 bc 1.55 bc 

 

45/35°C 

 

1 1.33 d 4.06 bcd 1.23 d 235.44 d 0 c 
2

 

4.33 bcd

 

4.53 abcd

 

2.08 cd

 

371.47 cd

 

1.51 bc

 

3

 

4.66 bcd

 

2.41 de

 

3.73 b

 

518.25 cd

 

1.02 c

 

Temperature

 

*

 

*

 

*

 

*

 

*

 

Week

 

*

 

*

 

*

 

*

 

NS

 

Temperature x Week

 

*

 

*

 

*

 

*

 

*

 

Values significant (*) or not significant (NS) at the 5% level by the lsmean procedure in SAS 
with Tukey’s correction.  
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=18).   

Table 4.10. The effect of combined enduring heat stress treatments on growth and development 
of Petunia x hybrida Dreams ‘Midnight’ after 1, 2 or 3 weeks of exposure. 

Week Effect

 

Flowers

 

Flower

 

Shoot Dry

 

Leaf Area

 

Internode

 

per Plant

 

Size (cm)

 

Weight (g)

 

(mm2)

 

Length (cm)

 

1

 

Y1.45 cX

 

3.49 b

 

1.31 c

 

265.79 c

 

0 b

 

2 6.75 b 5.83 a 2.81 b 525.50 b 1.76 a 
3 12.95 a 5.82 a 5.60 a 877.37 a 1.59 a 

(Heat stress treatments included 30/25°C (control), 35/25, 40/30 or 45/35°C.) 
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=24).  
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Figure 4.9. The effect of enduring heat stress on Petunia x hybrida Dreams ‘Midnight’ A) 
flowers per plant B) average flower size (cm) C) shoot dry weight (g) D) total leaf area (mm2) 
and E) average internode length (cm) after 3 weeks grown at 30/25°C (control) or 35/25, 40/30 
or 45/35°C. Error bars represent means of eighteen observations ±SE. 
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petunia (Table 4.9). Average internode length was significantly reduced in petunia grown at 

45/35°C compared to control (30/25°C) at week 2 and 3, 35/25°C at week 3 and 40/30°C at week 

2 (Table 4.9).  

The effect of enduring heat stress temperature overall after 3 weeks exposure was also 

significant in petunia Dreams ‘Midnight’. Petunia grown at 40/30 or 45/35°C significantly 

reduced the number of flowers per plant by 40 and 66%, respectively, compared to control 

(30/25°C) (Fig.4.9 A). Average flower size was significantly larger for petunia grown at control 

temperature by an average of 62% compared to all other heat stress temperatures (Fig.4.9 B). 

Shoot dry weight was significantly reduced in petunia grown at 40/30 or 45/35°C by an average 

of 30% compared to 35/25°C or control (30/25°C) (Fig.4.9 C). Total leaf area was also 

significantly reduced in petunia grown at 45/35°C by an average of 45% compared to petunia 

grown at 35/25°C or control (30/25°C) (Fig.4.9 D). Petunia grown at 45/35°C had the greatest 

effect on average internode length by reducing lengths by 36% compared to control and 21% 

compared to petunia grown at 40/30°C. However, petunia grown at 40/30°C was also 

significantly reduced by 19% compared to control temperature (Fig.4.9 E). Overall growth and 

development of petunia for all temperatures did increase in flower count, flower size, shoot dry 

weight, and leaf area each week except average internode length which was not affected after 2 

or 3 weeks of exposure (Table 4.10).  

4.3.4 Acquired Thermotolerance Test (ATT)  

After 3 weeks of exposure to heat shock or heat stress treatments, petunia Dreams 

‘Midnight’ were subsequently exposed to 45/35°C for one week to test for acquired 

thermotolerance. Both heat shock and heat stress treatments had a significant effect on the 

growth and development of petunia after exposure to the ATT (Table 4.11). For combined 

treatments, petunia flower count, average flower size and average internode length significantly 
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decreased after exposure to ATT, while shoot dry weight increased and total leaf area was not 

significantly affected (Table 4.12). 

 
Flowers per Plant 

Petunia Dreams ‘Midnight’ grown at control temperature (30/25°C) or exposed to 35/25 

or 40/30°C for 2, 4, 6, or 24 h durations did not have as significant effect on the number of 

flowers per plant. However, petunia exposed to heat stress of 45/35°C (24h duration) did show a   

Table 4.11. The effect of heat stress/shock temperatures and durations on growth and 
development of Petunia x hybrida Dreams ‘Midnight’ after acquired thermotolerance test (ATT, 
exposure to 45/35°C for one week following heat treatments). 
Temperature 

(°C) 
Duration 
(hours) 

Effect

 

Flowers Flower Shoot Dry Leaf Area Internode 
Per Plant Size (cm) Weight (g) (mm2) Length (cm) 

30/25°C 24 h Y14.91 abX

 

6.35 a 7.84 a 980.68 a 1.21 ab 
35°C    

35/25°C 

2 h 15.00 ab 5.96 a 8.03 a 991.04 a 1.35 ab 
4 h 14.83 ab 6.10 a 7.36 a 900.92 ab 1.42 ab 
6 h 17.41 ab 6.35 a 8.27 a 953.37 ab 1.34 ab 

24 h 15.83 ab 6.18 a 8.79 a 1159.00 a 1.48 ab 
40°C    

40/30°C 

2 h 14.25 ab 6.18 a 7.63 a 986.32 a 1.41 ab 
4 h 15.25 ab 5.56 a 6.70 ab 848.84 ab 1.00 b 
6 h 15.08 ab 6.23 a 8.38 a 1035.50 a 1.21 ab 

24 h 11.16 ab 5.68 a 7.18 ab 899.55 ab 1.48 ab 
45°C    

45/35°C 

2 h 17.58 a 5.95 a 7.22 ab 834.13 ab 1.37 ab 
4 h

 

17.08 a

 

6.03 a

 

7.37 a

 

926.50 ab

 

1.56 a

 

6 h

 

17.16 a

 

5.91 a

 

8.16 a

 

978.48 a

 

1.25 ab

 

24 h

 

9.50 b

 

3.69 b

 

5.02 b

 

628.04 b

 

1.06 b

 

Temp. x Duration

 

*

 

*

 

*

 

*

 

*

 

Temp. x Dur. x ATT NS * NS NS * 
Temperature x ATT * * NS NS * 

Duration x ATT * * NS NS NS 
Temperature NS * * * NS 

Duration * * * NS NS 
ATT * * * NS * 

Values significant (*) or not significant (NS) at the 5% level by the lsmean procedure in SAS 
with Tukey’s correction.  
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=12). 
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significant decrease in flower count compared to petunia heat shocked at this temperature (Table 

4.11). Post-ATT, there was no significant difference in petunia flower counts for any heat 

shock/stress temperature and duration (Table 4.13). However, treatment temperature had a 

significant effect on petunia flower count post-ATT. There was no significant difference between  

Pre-ATT flower counts for all temperature treatments.  Flower counts of petunia pre-exposed to 

40 or 45°C were not affected by the ATT, while flower count of petunia pre-exposed to 30 or 

35°C decreased significantly by 46 or 36%, respectively (Table 4.14). Treatment duration also 

had a significant effect on petunia flower count. Flower count of petunia Dreams ‘Midnight’ 

exposed for enduring heat stress (24 h duration), regardless of temperature, did not significantly 

decrease after exposure to the ATT (Table 4.15). However, petunia exposed for 2, 4, or 6 h 

decreased flower counts by 35, 29, and 31%, respectively. 

 

Average Flower Size 

Petunia Dreams ‘Midnight’ grown at control temperature (30/25°C) or exposed to 35/25 or 

40/30°C for 2, 4, 6, or 24 h durations did not have as significant effect on the average flower size 

(cm) per plant (Table 4.11). However, petunia exposed to heat stress of 45/35°C (24 h duration) 

did show a significant decrease in average flower size compared to petunia exposed to all other 

temperatures and durations. These results are similar for the effect of combined heat shock 

/stress treatment on average flower size pre and post-ATT (Fig. 4.10 A). While petunia exposed 

to heat stress of 45/35°C (24 h) was the only temperature and duration to have significantly 

reduced flower size pre-ATT (Table 4.6), there was no significant difference in flower size for 

any temperature or duration post-ATT (Table 4.13). However, average flower size did 

significantly decrease post-ATT for all temperatures and durations by an average of 30%, except 

petunia pre-exposed to 40/30°C which was unaffected or 45/35°C for 24 h which significantly 

increased by 104% (Fig. 4.10 A).  
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Heat Shock/Stress Temperatures ( C ) and Durations (hours)
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Figure 4.10. The combined effect of heat shock and heat stress treatments on Petunia x hybrida 
Dreams ‘Midnight’ A) average flower size (cm) and B) average internode length, before one 
week exposure to 45/35°C, (Pre-ATT) and after exposure (Post-ATT). Error bars represent 
means of six observations ±SE.  
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Table 4.12. The effect of combined heat shock and heat stress treatments on growth and 
development of Petunia x hybrida Dreams ‘Midnight’ after 3 weeks treatment in the greenhouse 
(Pre-ATT) and post acquired thermotolerance test (ATT, after one week exposure to 45/35°C). 

Test 
Effect

 
Flowers

 
Flower

 
Shoot Dry

 
Leaf Area

 
Internode

 
per Plant

 
Size (cm)

 
Weight (g)

 
(mm2)

 
Length (cm)

 
Pre-ATT

 
Y17.22 aX

 
7.01 a

 
6.16 b

 
915.99 a

 
1.65 a

 

Post-ATT

 

12.75 b 4.90 b 9.03 a 967.06 a 0.94 b 
(Heat treatments included growth at 30/25°C (control) and heat shock at 35, 40 or 45°C for 2, 4 
or 6 h every 3d or heat stress of 35/25, 40/30 or 45/35°C). 
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=78). 

 

Figure 4.11. Pictorial representation of flower structures of Petunia x hybrida Dreams 
‘Midnight’after acquired thermotolerance test (45°C for one week) for A) petunia grown at 
30/25°C for 4 weeks, B) petunia heat shocked at 45°C for 4h every 3d for 4 weeks, and C) 
petunia grown at 45/40°C for 4 weeks.  

AA  BB  

CC  
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Treatment temperature, regardless of duration, also had a significant effect on petunia 

flower size pre-ATT, where petunia exposed to highest temperature, 45°C, had significantly 

reduced flower size. However, while flower size did decrease from pre-test to post-test, there 

was no difference among post-ATT for all temperature treatments (Table 4.14). These results are 

also similar to the effect of treatment duration on petunia flower size pre-ATT, where petunia 

exposed 24 h had significantly reduced flower size. Post-ATT, average flower size was 

unaffected at the 24 h duration while petunia pre-exposed to 2, 4 or 6 h decreased flower size by 

34, 38 or 38%, respectively (Table 4.15). A pictorial representation of the effects of heat 

shock/stress treatments on petunia grown at 30/25, 45/35°C or heat shocked at 45°C for 4 h post-

ATT are depicted in Figure 4.11, A, B & C. 

 

Shoot Dry Weight   

Compared to flower count and average flower size, heat shock/stress temperatures and 

duration had similar effects on shoot dry weight (g) of petunia Dreams ‘Midnight’ both pre and 

postATT. Averages from pre and postATT showed shoot dry weight significantly decreased at 

45°C for 24 h compared to the control and 35°C for 2, 4, 6 or 24 h, 40°C for 2 or 6 h, or 45°C for 

4 or 6 h (Table 4.11). Post-ATT shoot dry weight was less for petunia grown at enduring heat 

stress of 45/35°C (24 h) compared to enduring heat stress at 35/25°C (24 h) or heat shock at 35, 

40 or 45°C for 6 h (Table 4.13). For both pre and postATT, shoot dry weight was significantly 

reduced in petunia exposed to 45°C compared to 30 or 35°C, and also significantly decreased for 

petunia exposed for 24 h compared to 6 h duration (Table 4.16). 

 

Total Leaf Area 

Leaf area of petunia was significantly reduced when exposed to 45°C for 24 h compared to 

petunia grown at control (30/25°C) or exposed to 35°C for 2 or 24 h, 40°C for 2 or 6 h, or 45°C 

for 6 h for pre and post-ATT (Table 4.11). However, total leaf areas of petunia Dreams 
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Table 4.13. The effect of heat shock/stress temperatures and durations on growth and 
development of Petunia x hybrida Dreams ‘Midnight’ Post-ATT (preconditioned petunia after 
exposure to ATT, 45/35°C day/night for one week). 

Temperature 
(°C) 

Duration 
(hours) 

Post-ATT

 
Flowers Flower Shoot Dry Leaf Area Internode 
Per Plant Size (cm) Weight (g) (mm2) Length (cm)

 

30/25°C 24 h Y10.66 aX

 

5.10 a 9.18 abc 975.17 a 0.61 b 
35°C    

35/25°C 

2 h 9.16 a 4.55 a 9.33 abc 998.50 a 0.84 ab 
4 h 11.66 a 4.93 a 8.31 abc 896.73 a 0.96 ab 
6 h 14.66 a 5.30 a 10.09 ab 1002.04 a 1.10 ab 

24 h 14.00 a 5.18 a 10.82 a 1055.14 a 0.98 ab 
40°C    

40/30°C 

2 h 11.50 a 4.90 a 9.19 abc 1069.61 a 0.97 ab 
4 h 11.33 a 3.88 a 6.65 bc 739.59 a 0.82 ab 
6 h 13.16 a 4.95 a 10.10 a 1104.44 a 0.71 b 

24 h 12.00 a 5.25 a 8.93 abc 1056.91 a 1.40 a 
45°C    

45/35°C 

2 h 17.33 a 4.90 a 8.74 abc 872.88 a 1.32 ab 
4 h

 

17.83 a

 

4.48 a

 

9.02 abc

 

945.08 a

 

1.25 ab

 

6 h

 

14.33 a

 

4.75 a

 

10.21 ab

 

1093.53 a

 

1.22 ab

 

24 h

 

14.33 a

 

4.96 a

 

6.32 c

 

737.82 a

 

1.10 ab

 

X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=6).  

Table 4.14. The effect of combined heat shock/stress temperature on number of flowers per plant, 
average flower size, and average internode length of Petunia x hybrida Dreams ‘Midnight’ after 
3 weeks exposure to heat preconditioning (Pre-ATT) and after one week exposure to 45/35°C 
(Post-ATT). 

Temperature (°C) ATT 
Effect

 

Flowers per

 

Flower Size

 

Internode

 

Plant

 

(cm)

 

Length (cm)

 

30°C 

 

Pre-ATT

 

Y19.16 aX

 

7.60 a

 

1.81 a

 

(Control) Post-ATT 10.66 b 5.10 c 0.61 e 

35°C 
Pre-ATT

 

19.16 a

 

7.31 a

 

1.83 a

 

Post-ATT

 

12.37 b

 

4.99 c

 

0.97 d

 

40°C 
Pre-ATT

 

15.87 ab

 

7.08 a

 

1.57 ab

 

Post-ATT

 

12.00 b

 

4.74 c

 

0.98 d

 

45°C 
Pre-ATT

 

14.70 ab

 

6.02 b

 

1.40

 

bc

 

Post-ATT

 

15.95 ab

 

4.77 c

 

1.22 cd

 

X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=24). 
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‘Midnight’ were not significantly different post-ATT (Table 4.13) or between pre- and post-ATT 

for treatment temperatures, durations, or combination of temperatures and durations, respectively. 

However, petunia exposed to specific treatment temperature for both pre and post-ATT 

measurements did have a significant effect on total leaf area. Petunia exposed to 45°C showed 

significantly reduced leaf area compared to petunia exposed to 35°C (Fig. 4.12).    

Table 4.15. The effect of combined heat shock/stress durations on number of flowers per plant 
and average flower size of Petunia x hybrida Dreams ‘Midnight’ after 3 weeks exposure to heat 
preconditioning (Pre-ATT) and after one week exposure to 45/35°C (Post-ATT). 

Duration (hours) ATT 
Effect

 

Flowers per

 

Flower Size

 

Plant

 

(cm)

 

2h 
Pre-ATT

 

Y18.70 aX

 

7.36 a

 

Post-ATT

 

12.16 b

 

4.86 c

 

4h 
Pre-ATT

 

18.16 a

 

7.42 a

 

Post-ATT

 

12.87 b

 

4.6 c

 

6h 
Pre-ATT

 

19.08 a

 

7.40 a

 

Post-ATT

 

13.20 b

 

5.02 c

 

24h 
Pre-ATT

 

12.95 b

 

5.82 b

 

Post-ATT

 

12.75 b

 

5.12 bc

 

X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=24).    

Table 4.16. The effect of combined duration or temperature on Petunia x hybrida Dreams 
‘Midnight’ shoot dry weight (g) after acquired thermotolerance test (exposure to 45/35°C for one 
week following heat treatments). 

Effect 
Temperature(°C) Duration (hours) 

30°C 35°C 40°C 45°C 2 h 4 h 6 h 24 h 
Shoot Dry

 

Y7.84 aX

 

8.11 a 7.47 ab 6.94 b 7.68 ab 7.32 ab 8.16 a 7.21 b 
Weight 

X
Means within rows, for each effect, followed by the same letters are not significantly different 

at 5% by lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=48). 
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Figure 4.12. The effect of combined heat shock/stress temperature on total leaf area (mm2) of 
Petunia x hybrida Dreams ‘Midnight’ for both pre and post-acquired thermotolerance test. Error 
bars represent means of forty-eight observations ±SE.  

 

Average Internode Length   

The average internode length (cm) of petunia Dreams ‘Midnight’ was significantly 

reduced when exposed to 40°C for 4 h and 45°C for 24 h compared to petunia exposed to 45°C 

for 4 h for pre and post-ATT (Table 4.11). Post-ATT, petunia grown at control (30/25°C) or heat 

shocked at 40°C  for 6 h had significantly reduced internode length compared to enduring heat 

stress at 40/30°C (24 h) (Table 4.13). Average internode length was significantly reduced post-

ATT compared to internode length before the test for all heat treatments (Table 4.14). Petunia 

grown at 30/25°C (control), 35/25°C or heat shocked at 40°C for 2 or 6 h had the greatest effect 

on internode length by (-66, -50, -47 and -58%, respectively after ATT (Fig. 4.10 B).  

 

Relative Chlorophyll Content  

Heat shock/enduring heat stress treatments had a significant effect on the relative 

chlorophyll content of petunia Dreams ‘Midnight’ pre and post-ATT. Petunia grown at control 

b

 
ab

 
a

 
ab

 



 

82  

temperature 30/25°C or heat shocked at 35°C for 4 h or 45°C for 6 h had significantly lower 

chlorophyll content than petunia exposed to enduring heat stress at 35/25, 40/30 or 45/35°C 

which had significantly higher relative chlorophyll contents (Fig. 4.13). 
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Figure 4.13. The effect of heat shock treatment (35, 40 or 45°C for 2, 4 or 6 h every 3 d) and heat 
stress (35/25, 40/30 or 45/35°C, 24 h duration) on relative chlorophyll content of Petunia x 
hybrida Dreams ‘Midnight’ prior to (pre-ATT) and after (post-ATT) one week exposure to 45°C 
(ATT - acquired thermotolerance test). Error bars indicate means of six observations ± SE.   

 

Marketable Quality Pre and Post-Acquired Thermotolerance Test  

Heat shock and heat stress treatments had a significant effect on the marketable quality of 

petunia Dreams ‘Midnight’ pre- and post-ATT. Prior to the ATT, petunia grown at 35/25°C (24 h) 

had significantly higher quality ratings than petunia grown at 40/30 or 45/35°C (24 h) or heat 

shocked at 35°C for 2 or 4 h, 40°C for 4 h, or 45°C for 2 or 6 h (Fig. 4.14). Post-ATT there was 



 

83  

no significant difference in petunia quality among any of the heat treatments (heat shock or heat 

stress).   
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Figure 4.14. The effect of heat shock (35, 40 or 45°C for 2, 4 or 6 h every 3d) or heat stress 
(35/25, 40/30 or 45/35°C) on plant quality of Petunia x hybrida Dreams ‘Midnight’ after one 
week exposure to 45°C (acquired thermotolerance test - ATT). Error bars indicate means of six 
observations ± SE. 

4.3.5 Heat Shock Treatment and Acquired Thermotolerance Test  

Heat shock temperatures and durations imposed on petunia Dreams ‘Midnight’ did not 

have a significant effect on most of the growth measurements taken for pre and post- ATT 

(45/35°C for one week) (Table 4.17). For heat shock treatment, petunia flower count, average 

flower size and average internode length significantly decreased after exposure to ATT (-30, -33 

and - 44%,  respectively), while shoot dry weight increased 45 % and total leaf area was not 

significantly different (Table 4.18). 
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Heat shock temperatures did have a significant effect on thermotolerance of petunia 

flower count.  Flower count of petunia grown at control temperature (30/25°C) was significantly 

decreased by 45% after ATT, while flower count of petunia exposed to 35°C decreased by 40%. 

Flower counts of petunia exposed to 40 or 45°C were not significantly affected by subsequent 

exposure to ATT (Fig. 4.15). Heat shock temperature and duration also had a significant effect 

on thermotolerance of petunia Dreams ‘Midnight’ average internode length (cm). Average 

internode length of petunia exposed to 45°C was least affected by the ATT where internode   

Table 4.17. The effect of heat shock temperature and duration on growth and development of 
Petunia x hybrida Dreams ‘Midnight’ after ATT (ATT-acquired thermotolerance test - exposure 
to 45/35°C for one week following heat shock treatments every 3 d for 4 weeks). 

Temperature 
(°C) 

Duration 
(hours) 

Effect

 

Flowers 
Per Plant 

Flower 
Size (cm) 

Shoot Dry 
Weight (g) 

Leaf Area 
(mm2) 

Internode 
Length (cm)

 

30/25°C (Control)

 

Y14.91 aX

 

6.35 a

 

7.84 a

 

980.68 a

 

1.21 a

 

35°C 
2 h

 

15.00 a

 

5.96 a

 

8.03 a

 

991.04 a

 

1.35 a

 

4 h

 

14.83 a

 

6.10 a

 

7.36 a

 

900.92 a

 

1.42 a

 

6 h

 

17.41 a

 

6.35 a

 

8.27 a

 

953.37 a

 

1.34 a

 

40°C 
2 h

 

14.25 a

 

6.18 a

 

7.63 a

 

986.32 a

 

1.41 a

 

4 h

 

16.43 a

 

5.94 a

 

7.37 a

 

924.77 a

 

1.08 a

 

6 h

 

15.08 a

 

6.23 a

 

8.38 a

 

1035.49 a

 

1.21 a

 

45°C 
2 h

 

17.58 a

 

5.95 a

 

7.22 a

 

834.13 a

 

1.37 a

 

4 h

 

17.08 a

 

6.03 a

 

7.37 a

 

926.50 a

 

1.56 a

 

6 h

 

17.16 a

 

5.91 a

 

8.16 a

 

978.48 a

 

1.25 a

 

Temp. x Duration

 

NS

 

NS

 

NS

 

NS

 

NS

 

Temp. x Dur. x ATT

 

NS

 

NS

 

NS

 

NS

 

*

 

Temp. x ATT

 

*

 

NS

 

NS

 

NS

 

*

 

Duration x ATT

 

NS

 

NS

 

NS

 

NS

 

NS

 

Temperature

 

NS

 

NS

 

NS

 

NS

 

NS

 

Duration

 

NS

 

NS

 

NS

 

NS

 

NS

 

ZATT

 

*

 

*

 

*

 

NS

 

*

 

Values significant (*) or not significant (NS) at the 5% level by the lsmean procedure in SAS 
with Tukey’s correction.  
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=12). 
Z Represents growth measurements taken for pre- (acquired thermotolerance test – ATT) or post-
ATT. 
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Figure 4.15. The effect of heat shock temperature for all durations (35, 40 or 45°C for 2, 4 or 6 h 
every 3d) on flower count of Petunia x hybrida Dreams ‘Midnight’ after 3 weeks of heat shock 
treatment (pre-ATT) and post-ATT (following exposure to 45/35°C for one week). Error bars 
represent means of eighteen observations ±SE. 
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Figure 4.16. The effect of heat shock temperature and duration (35, 40 or 45°C for 2, 4 or 6 h 
every 3d) on average internode length (cm) of Petunia x hybrida Dreams ‘Midnight’ after 3 
weeks of heat shock treatment (pre-ATT) and following exposure to 45/35°C for one week (post-
ATT). Error bars represent means of six observations ±SE. 



 

86  

length was not significant by ATT at 2 and 6 h. Petunia internode length was severely affected 

by exposure to subsequent ATT for petunia grown at control temperature (30/25°C) (- 66%) or 

heat shocked at 35 or 40°C for 2 (- 54%) or 4 h (- 49%), or 2 (- 47%) or 6 h (- 58%), respectively 

(Fig.4.16). The reduction of internode growth observed in petunia grown at 30/25°C after one 

week heat stress at 45°C is depicted in Figure 4.17 A & B.  

Table 4.18. The effect of combined heat shock treatments (every 3d for 3 weeks ) on growth and 
development of Petunia x hybrida Dreams ‘Midnight’ (pre-ATT) and following exposure to 
45/35°C for one week (post-ATT). 

ATT 
Effect

 

Flowers

 

Flower

 

Shoot Dry

 

Leaf Area

 

Internode

 

per Plant

 

Size (cm)

 

Weight (g)

 

(mm2)

 

Length (cm)

 

Pre-ATT

 

Y18.65 aX

 

7.39 a

 

6.34 b

 

928.86 a

 

1.67 a

 

Post-ATT

 

12.94 b 4.89 b 9.21 a 983.31 a 0.93 b 
(Heat shock treatments included 30/25°C (control) and heat shock at 35, 40 or 45°C for 2, 4 or 6 
h every 3d). 
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=60).  

 

Figure 4.17. A pictorial representation of decreased internode length observed in Petunia x 
hybrida Dreams ‘Midinght’ grown at 30°C after one week exposure to 45°C (acquired 
thermotolerance test). A) Top view of petunia grown at 30°C after one week exposure to 45°C 
and B) Close-up view of decreased internode length. 

AA  BB  
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4.3.6 Enduring Heat Stress Acquired Thermotolerance 

Enduring heat stress treatments had a significant effect on acquired thermotolerance of 

petunia Dreams ‘Midnight’ (Table 4.19). Flower count of petunia was significantly reduced by 

55% at control temperature (30/25°C) and significantly increased by 207% at 45/35°C (Fig.4.18 

A). Before ATT, average flower size was significantly reduced by an average of 65% when 

grown at 45/35°C. However, there was no significant difference between flower sizes for all 

treatment temperatures after ATT. Results show that ATT significantly reduced average flower 

size by 33% of petunia grown at 30/25°C while average flower size increased over 200% in 

petunia grown at 45/35°C (Fig.4.18 B). Average internode length of petunia was significantly 

reduced after ATT grown at 30/25 and 35/25°C by 67% and 51%, respectively. However,   

Table 4.19. The effect of enduring heat stress on growth and development of Petunia x hybrida 
Dreams ‘Midnight’ after acquired thermotolerance test (ATT - exposure to 45/35°C for one week) 
following heat stress treatments for 4 weeks). 

Temperature 
(°C) 

ATT 
Effect

 

Flowers 

 

Flower

 

Shoot Dry

 

Leaf Area

 

Internode

 

per Plant

 

Size (cm)

 

Weight (g)

 

(mm2)

 

Length (cm)

 

30/25°C  Pre-ATT

 

Y19.16 aX

 

7.60 a

 

6.51 c

 

986.19 abc

 

1.81 ab

 

Post-ATT

 

8.66 bc 5.10 bc 9.18 a 975.17 abc 0.61 e 

35/25°C 
Pre-ATT

 

17.66 ab

 

7.18 ab

 

6.75 bc

 

1262.84 a

 

1.99 a

 

Post-ATT

 

14.00 abc

 

5.18 bc

 

10.82 a

 

1055.14 ab

 

0.98 de

 

40/30°C 
Pre-ATT

 

10.33 abc

 

6.11 abc

 

5.42 cd

 

742.19 abc

 

1.55 abc

 

Post-ATT

 

12.00 abc

 

5.25 bc

 

8.93 ab

 

1056.91 ab

 

1.40 bcd

 

45/35°C 
Pre-ATT

 

4.66 c

 

2.41 d

 

3.73 d

 

518.25 c

 

1.02 cde

 

Post-ATT

 

14.33 ab 4.96 c 6.32 c 737.82 bc 1.10 cde 
Temperature

 

*

 

*

 

*

 

*

 

*

 

ZATT

 

NS

 

NS

 

*

 

NS

 

*

 

Temperature x ATT

 

*

 

*

 

NS

 

NS

 

*

 

Values significant (*) or not significant (NS) at the 5% level by the lsmean procedure in SAS 
with Tukey’s correction.  
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=6). 
Z Represents growth measurements taken for pre- (acquired thermotolerance test – ATT) or post-
ATT.  
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Figure 4.18. The effect of enduring heat stress on Petunia x hybrida Dreams ‘Midnight’ A) 
flower count, B) average flower size (cm) and C) average internode length (cm) after enduring 
heat stress for 3 weeks (Pre-ATT) and following exposure to 45/35°C for one week (Post-ATT - 
acquired thermotolerance test). Error bars represent means of six observations ±SE.  

Table 4.20. The effect of enduring heat stress temperatures on overall growth and development 
of Petunia x hybrida Dreams ‘Midnight’ before (Pre-ATT) and Post-ATT (ATT - acquired 
thermotolerance test at 45/35°C for one week). 

Heat Stress

 

Effect

 

Temperature

 

Flowers

 

Flower

 

Shoot Dry

 

Leaf Area

 

Internode

 

(°C) per Plant Size (cm) Weight (g) (mm2) Length (cm) 
30/25°C

 

Y13.91 abX

 

6.35 a

 

7.84 ab

 

980.68 a

 

1.21 ab

 

35/25°C 15.83 a 6.18 a 8.79 a 1159.00 a 1.48 a 
40/30°C 11.16 ab 5.68 a 7.18 b 899.55 ab 1.48 a 
45/35°C 9.50 b 3.69 b 5.02 c 628.04 b 1.06 b 

(Heat stress treatments included 30/25°C (control), 35/25, 40/30 or 45/35°C.) 
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=12). 

A B 

C 
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Figure 4.19. Pictorial representation of the effect of one week heat stress at 45°C (acquired thermotolerance test) on non-heat shocked 
Petunia x hybrida Dreams ‘Midnight’ grown at 30°C. A) Side view of petunia grown at 30°C before exposure to 45°C, B) Top view of 
petunia grown at 30°C before exposure to 45°C, C) Side view of petunia grown at 30°C after one week exposure to 45°C and D) Top 
view of petunia grown at 30°C after one week exposure to 45°C. 
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exposure to ATT did not affect average internode length of petunia grown at 40/30 or 45/35°C 

(Fig.4.18 C).  

Overall heat stress temperatures for both pre and post-ATT measurements had a 

significant effect on all growth measurements. Results show that petunia grown at 45/35°C had 

significantly reduced flower count compared to 35/25°C, while average flower size (cm), shoot 

dry weight and total leaf area (mm2) were reduced at 45/35°C compared to control temperature 

(30/25°C) (Table 4.20). Average internode length significantly decreased in petunia grown at 

45/35°C compared to 35/25 and 40/30°C. The effect of subsequent acquired ATT on petunia 

grown at control temperature (30/25°C) is represented in Figure 4.19 A, B, C, & D.  

4.3.7 Chlorophyll Fluorescence 

 

Heat shock  

Heat shock treatment did not have a significant effect on the maximum quantum 

efficiency of PSII (Fv/Fm) for either young or mature leaves of petunia Dreams ‘Midnight’ 

(Table 4.21). However, heat shock temperature did have a significant effect on Fv/Fm of young 

leaves, where petunia grown at control temperature (30/25°C) had significantly decreased Fv/Fm 

of 0.857 compared to petunia heat shocked at higher temperatures (35, 40 or 45°C) (Table 4.22). 

However, there was no difference between heat shock treatments and chlorophyll fluorescence 

measurements in young leaves taken before ATT, and 3 or 7 d after ATT. The maximum 

quantum efficiency of PSII in mature leaves was unaffected by specific heat shock temperatures 

and durations, but was significantly decreased pre-ATT compared to 3 or 7 d post-ATT (Table 

4.21). 

 

Enduring Heat Stress  

Enduring heat stress had a significant effect on the maximum quantum efficiency of 

young and mature leaves of petunia Dreams ‘Midnight’. For young leaves, Fv/Fm measurements 
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were not significant between readings but were significantly lower in petunia grown at 30/25°C 

(Table 4.23).  For mature leaves, Fv/Fm was significantly lower for petunia grown at 30/25 and 

35/25°C, and was significantly lower in petunia before exposure to ATT (Table 4.23).     

Table 4.21. The effect of heat shock temperature and duration on the maximum quantum 
efficiency of PSII (Fv/Fm) using chlorophyll fluorescence measurements of dark-adapted young 
and mature leaves of Petunia x hybrida Dreams ‘Midnight’ before acquired thermotolerance test 
(Pre-ATT), and 3 or 7 d after acquired thermotolerance test (exposure to 45/35°C for one week).  

Temperature 
(°C) 

Duration 
(hours) 

Maximum Quantum Efficiency of PSII (Fv/Fm)

 

Young Leaf

 

Mature Leaf

 

Pre-ATT

 

3

 

d

 

7

 

d

 

Pre-ATT

 

3

 

d

 

7

 

d

 

30/25°C (Control)

 

0.85

 

bcX

 

0.85

 

bcY

 

0.86

 

abc

 

0.83

 

bcd

 

0.86

 

abc

 

0.86

 

ab

 

35°C 
2 h

 

0.86

 

abc

 

0.86

 

abc

 

0.86

 

abc

 

0.81 de

 

0.85

 

abc

 

0.86

 

ab

 

4 h

 

0.87

 

abc

 

0.86

 

abc

 

0.86

 

abc

 

0.84

 

bc

 

0.86

 

abc

 

0.87

 

a

 

6 h

 

0.86

 

abc

 

0.86

 

abc

 

0.86

 

abc

 

0.83

 

bcd

 

0.85

 

abc

 

0.86

 

ab

 

40°C 
2 h

 

0.86

 

abc

 

0.86

 

abc

 

0.86

 

abc

 

0.83

 

cd

 

0.85

 

abc

 

0.87

 

a

 

4 h

 

0.87

 

ab

 

0.86

 

abc

 

0.88

 

a

 

0.84 bc

 

0.85

 

abc

 

0.86

 

ab

 

6 h

 

0.87

 

abc

 

0.86

 

abc

 

0.87

 

abc

 

0.82

 

cd

 

0.86

 

abc

 

0.86

 

ab

 

45°C 
2 h

 

0.87

 

abc

 

0.86

 

abc

 

0.86

 

abc

 

0.82

 

cd

 

0.85

 

abc

 

0.86

 

ab

 

4 h

 

0.86

 

abc

 

0.86

 

abc

 

0.86

 

abc

 

0.83

 

bc

 

0.85

 

abc

 

0.86

 

ab

 

6 h

 

0.87

 

abc

 

0.86

 

abc

 

0.86

 

abc

 

0.83

 

bcd

 

0.86

 

abc

 

0.87

 

a

 

Temp. x Duration

  

NS

   

NS

  

Temp. x Dur. x ATT

  

NS

   

NS

  

Temp. x ATT

  

NS

   

NS

  

Duration x ATT

  

NS

   

NS

  

Temperature

  

*

   

NS

  

Duration

  

NS

   

NS

  

ZATT

   

NS

     

*

  

For young or mature leaves, values significant (*) or not significant (NS) at the 5% level by the 
lsmean procedure in SAS with Tukey’s correction. 
X
Means within columns and rows for young leaves or mature leaves followed by the same letters 

are not significantly different at 5% by lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=6).  
Z Represents Fv/Fm measurements taken for pre- (acquired thermotolerance test – ATT) or 3 or 7 
d after ATT.      
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Table 4.22. The effect of heat shock treatment temperatures on the maximum quantum efficiency 
of PSII (Fv/Fm) using chlorophyll fluorescence measurements of dark-adapted young leaves of 
Petunia x hybrida Dreams ‘Midnight’. 

Heat Shock

 
Maximum Quantum Efficiency

 
Temperature of PSII (Fv/Fm) in

 

(°C) Young Leaf

 

30/25°C (Control) Y0.857 bX

 

35/25°C 0.864 a 
40/30°C 0.870 a 
45/35°C 0.867 a 

(Heat shock treatments included 30/25°C (control) and heat shock at 35, 40 or 45°C for 2, 4 or 6 
h every 3 d). 
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=60).    

Table 4.23. The effect of enduring heat stress temperatures on the maximum quantum efficiency 
of PSII using chlorophyll fluorescence measurements of dark-adapted young and mature leaves 
of Petunia x hybrida Dreams ‘Midnight’ before acquired thermotolerance test (Pre-ATT), and 3 
and 7 d after acquired thermotolerance test (exposure to 45/35°C for one week).  

Heat Stress

 

Maximum Quantum Efficiency of PSII (Fv/Fm)

 

Temperature Young Leaf Mature Leaf 
(°C) Pre-ATT  3d  7d Pre-ATT  3d  7d 

30/25°C Y0.855 cX

 

0.855 c 0.861 bc 0.836 b 0.860 ab 0.865 ab 
35/25°C 0.878 ab 0.875 abc

 

0.865 abc 0.806 c 0.848 ab 0.868 a 
40/30°C 0.880 ab 0.875 abc

 

0.868 abc 0.866 a 0.875 a 0.875 a 
45/35°C 0.876 ab 0.883 a 0.873 abc 0.870 a 0.875 a 0.873 a 

Temperature

  

*

   

*

  

ZATT  NS   *  
Temp. x ATT  NS   *  

For young or mature Leaves, values significant (*) or not significant (NS) at the 5% level by the 
lsmean procedure in SAS with Tukey’s correction. 
X
Means within columns and rows for young leaves or mature leaves followed by the same letters 

are not significantly different at 5% by lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=6).  
Z Represents Fv/Fm measurements taken for pre- (acquired thermotolerance test – ATT) or 3 or 7 
d after ATT 
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4.4 DISCUSSION 

Heat preconditioning of petunia through short duration heat shock or enduring heat stress 

revealed differences in promoting acquired thermotolerance in marketable plants during 

greenhouse production. Acquired thermotolerance occurs when plants are pre-exposed to varying 

levels of nonlethal stress and subsequently develop the ability to survive extreme temperatures 

(Senthil et al., 2003). Certain adaptable characteristics have been associated with acquired 

thermotolerance in plants, such as smaller and thicker leaves, shortened internodes and increased 

stability of PSII (Beadle, 1981; Natarajan, 2005; Berry and Bjorkman, 1980). The heat shock and 

enduring stress treatments used in the present study provide some insight of the temperatures and 

durations critical to the induction of acquired thermotolerance in petunia, while still producing a 

marketable plant.  

Results indicated that heat shock and enduring heat stress temperature or duration, 

respectively, had a significant effect on the acquired thermotolerance of all the morphological 

traits studied. The average of 3 weeks exposure to heat shock or enduring heat stress revealed 

that the 45°C treatment temperature, regardless of duration, reduced petunia flower count (Fig. 

4.4. A). However, prior to the acquired thermotolerance test (ATT), there were no significant 

differences between petunia flower counts of any heat shock or enduring heat stress temperature, 

indicating that petunias are still able to maintain flower production after 3 weeks of exposure to 

temperatures as high as 45°C (Table 4.11). After exposure to ATT, flower count was reduced in 

petunia grown at control (30/25°C) or exposed to 35°C but was unaffected in petunia 

preconditioned at 40 or 45°C, revealing an increased heat tolerance when pre-exposed to these 

temperatures (Table 4.11). Similar results of known heat tolerant and heat sensitive cultivars of 

tomato (Lycopersicon esculentum Mill.) were reported when the heat tolerant cultivar produced a 

greater number of flower buds and displayed earlier flowering when exposed to enduring 
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35/30°C compared to heat sensitive cultivar (Lohar and Peat, 1998). The present study only uses 

one cultivar, Dreams ‘Midnight’, with no predetermined heat tolerance. However, Dreams 

‘Midnight’ clearly exhibits the ability to acquire thermotolerance to much higher temperatures 

similar to the known heat tolerant tomato cultivar used in the study by Lohar and Peat (1998). 

Enduring heat stress (24 h duration) compared to heat shock at 2, 4 or 6 h, regardless of 

temperature, significantly decreased the number of flowers per plant after three weeks of 

treatment and the flower count was unaffected by ATT (Table 4.12). However, flower count of 

petunia heat shocked for 2, 4, or 6 h decreased significantly post-ATT. These results indicated 

that petunia flower set is sensitive to continuous high temperatures of greater than 40°C but that 

exposure to this temperature for shorter durations of heat shock used in this study were not 

adequate for promoting acquired heat tolerance. Although petunia Dreams ‘Midnight’ proved to 

be tolerant of 45°C, the reduced flower counts caused by enduring heat stress pre-ATT would not 

be an ideal growing regime to produce a quality plant. Similar results were observed for petunia 

flower size, where the average flower size pre-ATT was significantly reduced at 45°C or for 24 h 

durations at any temperature (Tables 4.11 & 4.12). Post-ATT flower sizes decreased 

significantly from pre-ATT sizes for all heat shock temperatures but were not significantly 

different from each other. Petunia pre-exposed to 45°C did not decrease in flower size as much 

as petunias pre-exposed to lower temperatures indicating a greater tolerance when previously 

heat shocked or grown at 45°C.    

Results revealed that shoot dry weight and total leaf area of petunia exposed to 45°C was 

significantly less than petunia exposed to 30 or 35°C which may be directly related to inhibition 

of water and nutrient uptake due to decreased root growth at higher temperatures (Graves et al., 

1991). Similarly, shoot dry weight and leaf area decreased in wheat (Triticum aestivum L.) 

grown at 25/35 or 35/35°C shoot/root temperatures compared to regimes with cooler root 



 

95  

temperatures (25/25 or 35/25°C) (Kuroyanagi and Paulsen, 1988). Rivero et al. (2003) found 

similar results in tomato (Lycopersicon esculentum Mill.) grown at 10/10, 25/25 (optimal) or 

35/35°C day/night temperatures for 30 d, where tomato grown at 35/35°C had significantly 

reduced shoot biomass compared to plants grown at the optimal 25/25°C. However, shoot dry 

weight and leaf area increased for all treatments during the 3 weeks of heat shock or enduring 

heat stress treatments, and continued to increase in shoot dry weight following the acquired 

thermotolerance test.  This may have indicated that metabolism of petunia as related to growth 

was functional at day temperatures as high as 45°C or night temperatures as high as 35°C even 

after 4 weeks at this temperature. Compared to the present study, the critical temperature of 35°C 

found for tomato in the study by Rivero et al. (2003) did not result in significantly reduced shoot 

dry weight in petunia compared to the optimal temperature (30/25°C), suggesting that petunia 

Dreams ‘Midnight’ may be more stress tolerant than other species within the Solanaceae family.  

Heat shock and enduring heat stress treatments of 45°C also had the greatest effect on 

promoting heat tolerance related to petunia internode length pre-ATT and post-ATT (Table 4.11). 

Pre-exposure to 45°C, regardless of duration, resulted in petunia developing shortened internodes 

which has been described as an adaptable morphological characteristic associated with improved 

heat tolerance seen in salvia (Salvia splendens F. Sellow ex Roem & Schult.) (Natarajan, 2005) 

and cowpea (Vigna unguiculata (L.) Walp.) (Ismail et al., 2000). The decreased internode length 

observed over time also resulted in a more compact plant overall, which makes for a more 

marketable and efficient plant in the landscape.  These results were similar to research done on 

selections and evaluations of lisianthus (Eustoma grandiflorum Salisb.) cultivars based on 

resistance to heat-induced rosetting during development (Harbaugh and Scott, 1999). The 

authors concluded that the semi-dwarf cultivars ‘Florida Pink’ and ‘Florida Light Blue’ were 

considered more appropriate landscape plants due to their compact growth and diverse flower 
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color (Harbaugh and Scott, 1999). Post-ATT, petunia that had previously developed shortened 

internodes at higher temperatures and longer durations were unaffected by the subsequent heat 

stress while control petunia (30/25°C) displayed severely reduced internode growth (- 66%) (Fig. 

4.10. B) and resulted in very tight almost whorled appearance of the terminal portions of petunia 

branches (Fig. 4.17. B).   

The maximal quantum efficiency of PSII was investigated using chlorophyll fluorescence 

yields of leaves pre-ATT, and 3 and 7 d post-ATT that had been dark adapted for 12 h at room 

temperature. The averaged decreased Fv/Fm ratio observed in young leaves of control (30/25°C) 

petunias compared to heat shocked leaves at 35, 40 or 45°C (Table 4.21) may be related to the 

larger leaf area of control plants. Research by Knight and Ackerly (2003) found correlations 

between reduced specific leaf area and increased thermal tolerance of PSII where species 

(Atriplex hymenelytra, Encelia farinosa, Eriogonum latifolia and Salvia mohavensis) with 

smaller specific leaf areas could withstand higher temperatures (39 to 46°C) indicated by 

stability of Fv/Fm at a critical temperature before 50% reduction in the variable to maximal 

fluorescence ratio. The increased Fv/Fm observed in younger leaves may be associated with 

smaller leaf areas seen in petunia exposed to higher temperatures (Fig. 4.12). Increased Fv/Fm of 

mature leaves exposed 40/30 or 45/35°C pre-ATT may be the result of a protective mechanism in 

heat stressed plants to help dissipate excess excitation energy. Tang et al. (2007) found that 

spinach (Spinacia oleracea L.) leaves subjected to heat stress (25 to 50°C for 30 min) caused an 

aggregation of the light-harvesting complex of PSII (LHCII) and increased thermal energy 

dissipation in plants heat stressed above 35°C. The study also associated the LHCII aggregates 

with reduced susceptibility in heat stressed plants to solubilization of chlorophyll protein 

complex at high temperatures. The decreased susceptibility of solubilizaton is associated with 

conformational changes in the chloroplast that occur at temperatures lower than photosynthesis 
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inhibiting temperatures. This was also seen in temperature induced changes in bean (Phaseolus 

vulgaris L.) chloroplasts where the ratio of the quantum efficiencies of PSII and O2 evolution 

remained constant when plants were exposed to 20 to 35°C indicating that changes in chloroplast 

happened before photoinhibition at high temperatures (Pastenes and Horton, 1996). Although the 

present study does not investigate these protein analyses, increased relative chlorophyll content 

was found in petunia grown at enduring heat stress 35/25, 40/30 or 45/35°C compared to control 

and may be related to the LHCII protective mechanism mentioned by Tang et al. (2007). It is 

also important to note that all Fv/Fm ratios for any leaf are within what is considered to be a 

healthy range (>

 

0.83) (Bjorkman and Demmig, 1987) and this did not change in petunia 

previously exposed to any temperature which indicates that photosynthetic decline in petunia 

does not in occur up to at least 45°C. However, acute decreases in Fv/Fm may have been 

observed if fluorescence yields were measured during heat stress rather than after recovery at 

room temperature for 12 h. However, the results indicate that heat shock and enduring heat stress 

treatments do not cause permanent stress to PSII or irreversible damage to the photosynthetic 

apparatus.  

Investigation of various temperatures and durations to induce acquired heat tolerance 

revealed that higher temperatures of 45°C or longer durations of 24 h promoted the greatest 

tolerance. However, the marketable quality of plants grown at 40/30 or 45/35°C was severely 

reduced and would therefore not be recommended as preconditioning treatment for greenhouse 

production of petunia. At the same time, the control temperature (30/25°C) which is considered 

optimal for petunia did not have reduced quality pre-ATT, but had the least heat tolerance when 

exposed to ATT and should not be considered as an ideal growing temperature when promoting 

heat tolerance. Figure 4.20 represents petunia pre-exposed to 45°C for 2, 4, 6 or 24 h (A, B, C & 

D, respectively) and shows the unacceptable quality of petunia at 24 h duration. However, 
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petunia heat shocked at 45°C for 4 h appeared to have the best quality out of the durations used 

at this temperature due to its compact and uniform growth and acceptable flowering (Fig. 4.20. 

B), though this was not significantly reflected in the data collected pre or post-ATT. Further 

investigation using different durations and/or increased frequency of application (i.e. every day 

rather than every 3 d) at 45°C may produce a greater effect of acquired thermotolerance using a 

specific temperature and duration combination.  

 

Figure 4.20. Pictorial representation of the effect heat shock at 45°C every 3 d on Petunia x 
hybrida Dreams ‘Midnight’ for durations of A) 2 h, B) 4 h, C) 6 h or D) 24 h.  

4.5 LITERATURE CITED 

Armitage, A.M. 1985. Petunia, pp. 41-46 in Handbook of Flowering, vol. IV, A.H. Halevy, 
editor. CRC Press, Boca Raton, Florida. 

Beadle, N.C.W. 1981. The vegetation of Australia. Cambridge: Cambridge University Press. 

AA  BB  

CC  DD  



 

99  

Berry, J and O. Bjorkman.1980. Photosynthetic response and adaptation to temperature 
in higher plants. Ann Rev Plant Physiol. 31: 491-543. 

Bilger, W., U. Schreiber, M. Bock. 1995. Determination of the quantum efficiency of 
photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. 
Oecologia 102:425-432.  

Bjorkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence 
at 77k among vascular plants of diverse origins. Planta 170: 489-504.  

Burke, John J. 1990. High Temperature Stress and Adaptations in Crops, pp.295-307 in Stress 
Responses in Plants: Adaptation and Acclimation Mechanisms. R.G. Alscher and J.R. Cumming, 
editors. Wiley-Liss, Inc. New York. 

Genty, B., J-M Briantais and N.R. Baker. 1989. The relationship between quantum yield of 
photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica at 
Biophysica Acta. 990:87-92. 

Graves, W.R., R.J. Joly, and M.N. Dana. 1991. Water use and growth of honey locust and 
tree-of-heaven at high root-zone temperature. HortSci. 26: 1309–1312. 

Hale, M.G. and D.M. Orcutt. 1997. The physiology of plants under stress. Wiley New 
York.  

Hall, A.E. 2001. Crop Response to Environment. CRC Press LLC, Boca Raton, FL.  

Harbaugh, B and J.W. Scott. 1999. ‘Florida Pink’ and ‘Florida Light Blue’ – Semi-dwarf Heat-
tolerant Cultivars of Lisianthus. HortScience 34(2):364-365.   

Havaux, M. 1993. Characterization of thermal damage to the photosynthetic electron 
transport system in potato leaves. Plant Sci. 94: 19–33. 

Ismail, A. M, A. E. Hall and J.D. Ehlers. 2000. Delayed-leaf-senescence and heat tolerance traits 
mainly are independently expressed in cowpea. Crop Sci. 40: 1049-1055. 

Knight, C. and D. Ackerly. 2003. Evolution and plasticity of photosynthetic thermal tolerance, 
specific leaf area and leaf size: congeneric species from desert and coastal environments. New 
Phytologist 160:337-347.  

Koh Iba. 2002. Acclimative response to temperature stress in higher plants: Approaches 
of Gene Engineering for Temperature Tolerance. Annu Rev Plant Biol. 53: 225-245. 

Kuroyanagi, T., and G.M. Paulsen. 1988. Mediation of high-temperature injury by roots 
and shoots during reproductive growth of wheat. Plant Cell Environ. 11: 517–523. 

Larcher, W. 1994. Photosynthesis as a tool for indicating temperature stress events, pp.261-277. 
In, Ecophysiology of photosynthesis. Ecological studies 100. E.D. Schulze and M.M. Caldwell, 
editors. Springer-Verlag, Berlin. 



 

100  

Lichtenthaler, H.K., 1996. Vegetation stress: an introduction to the stress concept in plants. J 
Plant Physiol. 148, 4–14. 

Lohar, D.P. and W.E. Peat. 1998. Floral characteristics of heat-tolerant and heat-sensitive 
cultivars of tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Scientia 
Horticulturae 73:53-60.  

Mahan, J.R., B.L. Mc Michael, and D.F. Wanjura. 1997. Reduction of high temperature stress in 
plants, p. 137-150.In: A.S. Basra and R.K. Basra (eds). Mechanism of environmental stress 
resistance in plants. Harwood Academic Publishers, The Netherlands. 

Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence – a practical guide. Journal of 
Exp Botany, vol.51 345:659-668. 

Natarajan S. 2005. High temperatures stress responses of Salvia splendens and Viola x 
wittrockiana. Ph.D Diss.  

Park, S.Y., R.Shivaji, J.V.Krans and D.S.Luthe.1996. Heat-Shock response in heat 
tolerant and nontolerant variants of Agrostis palustris Huds. Plant Physiol. 111: 515-524.  

Pastenes, C. and P. Horton. 1996. Effect of High Temperature on Photosynthesis in Beans I. 
Oxygen Evolution and Chlorophyll Fluorescence. Plant Physiol. 112: 1245-1251.  

Rivero, R., E. Sánchez, J. M. Ruiz and L. Romero. 2003. Influence of temperature on biomass, 
iron metabolism and some related bioindicators in tomato and watermelon plants. J. Plant 
Physiol. 160: 1065–1071.  

Senthil, K.M, V. Srikanthbabu, B. Mohan Raju, N. Ganeshkumar, Shivaprakash and M. 
Udayakumar. 2003. Screening of inbred lines to develop a thermotolerant sunflower 
hybrid using the temperature inductionresponse (TIR) technique: a novel approach by 
exploitingresidual variability J Exper Bot. 54: 2569-2578. 

Sung, D., F. Kaplan, K. Lee and C. L. Guy. 2003. Acquired tolerance to temperature extremes. 
TRENDS in Plant Sci. vol.8 (4):179-187. 

Tang, Y., X. Wen, Q. Lu, Z. Yang, Z. Cheng and C. Lu. 2007. Heat stress induces an 
aggregation of the light-harvesting complex of Photosystem II in spinach plants. Plant 
Physiology 143:629-638.  

Vierling, E. 1991 The roles of heat-shock proteins in plants. Annu Rev Plant Physiol 
Plant Mol Biol. 42: 579-620. 

Weis E. and J.A. Berry. 1987. Quantum efficiency of photosystem II in relation to ‘energy’-
dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894: 198-208. 

Yeh, D.M and P.Y. Hsu. 2004. Heat tolerance in English ivy as measured by an 
electrolyte leakage technique. J Hortic Sci Biotech. 79: 298-302. 



 

101  

CHAPTER 5. INDUCTION OF ACQUIRED THERMOTOLERANCE IN DIFFERENT 
CULTIVARS OF PETUNIA X HYBRIDA AND EVALUATION OF SUBSEQUENT 

LANDSCAPE PERFORMANCE  

5.1 INTRODUCTION  

Bedding plants account for some of the largest percent of sales (wholesale) within the 

floriculture industry and were valued at $1.26 billion in wholesale value in 2007 (U.S. 

Department of Agriculture, 2008). Bedding plants have great potential profit with the greatest 

demand coming from the public in retail nurseries followed by an increasing demand by 

landscape contractors (Copes, 2000; Fossler, 1993). Providing quality plants that perform well in 

the greenhouse and that also perform well in the landscape is an important goal for plant breeders, 

growers, and landscape contractors. However, achieving optimum bedding plant quality is highly 

dependent upon the growing environment, which can have detrimental effects during undesirable 

conditions (Armitage, 1989).  

Heat stress is a major factor affecting bedding plant production, where prolonged 

exposure can result in irreversible damage to plant function (Hall, 2001) and ultimately 

decreased growth, development and yield (Gusta et al., 1997; Harding et al., 1990). Heat stress 

can have strong morphological effects on plants including decreased shoot and root growth, leaf 

chlorosis and necrosis, abnormal flower development, and increased flower abortion (El Ahmadi 

and Stevens, 1979; Guilioni et al., 1997; Pollock et al., 1993) as well as physiological effects 

such as decreased cell membrane stability, stomatal conductance, net photosynthesis, and 

transpiration (Medina and Cardemil, 1993; Ortiz and Cardemil, 2001; Natarajan and Kuehny, 

2008).  

Effects of heat stress and plant tolerance is vital for survivability in stressful 

environments (Lichtenthaler, 1996). Some plants have displayed adaptive responses to heat 

stress by developing smaller and thicker leaves, shortened internodes (Beadle, 1981; Natarajan, 
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2005; Ismail et al., 2000), increased membrane stability (Yeh and Hsu, 2004), and induction of 

heat shock proteins (Park et al., 1996; Vierling, 1991). This acquired thermotolerance in some 

plant species can be achieved by preconditioning by using supraoptimal temperatures for a 

specific duration of time, also known as heat shock (Natarajan, 2005; Sung et al., 2003). Effect 

of heat shock and subsequent heat tolerance varies by species and often between cultivars. There 

has been little research on inducing acquired thermotolerance during greenhouse production of 

bedding plants followed by quantitative evaluation of heat tolerance postproduction in the 

landscape. Therefore, the objective of the present study was to induce acquired thermotolerance 

in several classes of Petunia x hybrida during greenhouse production and to determine heat 

tolerance by evaluation of landscape performance. 

5.2 MATERIALS AND METHODS  

5.2.1 Plant Material 

Nineteen cultivars of Petunia x hybrida Hort. Ex Vilm. (Table 5.1) were used in the 

present study. Petunia x hybrida Dreams ‘Midnight’ (Ball Horticultural Company, West Chicago, 

IL) used in previous research (Chapter 3 and 4) was used in this experiment as the standard for 

comparison. Sixteen additional cultivars were selected based on their overall performance rating 

as evaluated by Kelly et al. (2007). Petunia cultivars were grouped into the following plant 

classes: floribunda, grandiflora, and spreading. These classes and cultivars can be further 

separated into eight different series of petunia: Madness, Dreams, Storm, Ultra, Easy Wave, 

Ramblin, Avalanche, and Wave (Ball Horticultural Company, West Chicago, IL). Within each 

series, two cultivars were chosen and labeled as either the best or worst rated for overall 

performance as evaluated by Kelly et al. (2007). Two additional cultivars, ‘Mitchell Diploid’ and 

‘44568’ were provided by the University of Florida. The ‘44568’ is transgenic ethylene-

insensitive petunia and ‘Mitchell Diploid’ is its wild type. The cultivars used in this study are 
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labeled by a specific number as indicated in Table 5.1, so that cultivars may be easily referenced 

in tables and figures. Petunia seeds were planted 5 August  2008 into 288 (4.9 cm3) plug tray 

using lightweight media Fafard™2M Mix (Conrad Fafard, Incorporated, Agawam, MA) and 

germinated at 26°C day/night under intermittent mist (every 2 h for six seconds) in a 

polycarbonate greenhouse for five weeks.  

Table 5.1 The class, number, series and cultivar, and overall performance of selected Petunia x 
hybrida as evaluated by Kelly et al. 2007.  

Class No. Selected Cultivars Overall 
Performance 

Floribunda 
1 ‘Madness Waterfall Mix’ Best 
2 ‘Madness Lavender Glow’ Worst 

Grandiflora

 

3 ‘Dreams Burgundy Picotee’ Best 
4 ‘Dreams Wild Rose Mix’ Worst 

19 ‘Dreams Midnight’ Unknown 

Grandiflora

 

5 ‘Storm Violet’ Best 
6 ‘Storm Red’ Worst 

Grandiflora

 

7 ‘Ultra Salmon’ Best 
8 ‘Ultra Red’ Worst 

Grandiflora

 

17 ‘Mitchell Diploid’* Unknown 
18 ‘44568’* Unknown 

Spreading 
9 ‘Easy Wave Shell Pink’ Best 

10 ‘Easy Wave Red’ Worst 

Spreading 
11 ‘Ramblin Lavender’ Best 
12 ‘Ramblin White’ Worst 

Spreading 
13 ‘Avalanche Lilac’ Best 
14 ‘Avalanche White’ Worst 

Spreading 
15 ‘Wave Pink’ Best 
16 ‘Wave Blue’ Worst 

*‘Mitchell Diploid’ and ‘44568’ were provided by Dr. David G. Clark from University of 
Florida (Gainesville, FL). Other seed was contributed by Ball Horticultural Company (West 
Chicago, IL). 

5.2.2 Greenhouse Establishment Prior to Treatments 

Greenhouses used in the present study are located at Campus Greenhouses 440-7 and 

440-8 at Louisiana State University, 30° N 91° W Baton Rouge, Louisiana. The present study 

was replicated simultaneously using two greenhouses for each experiment. A total of four 

polycarbonate covered greenhouses with 40% shade cloth (1000 µmol m-2 s-1) were used to 
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complete treatments. Each greenhouse has respective automated heating and cooling systems 

using Wadsworth STEP© Control 50A (Wadsworth Control Systems Incorporated, Arvada, CO) 

with day/night 12 h temperature settings. On 10 September 2008, petunia plugs were 

transplanted into (650 cm3) plastic pots using a middleweight media Fafard™4M Mix (Conrad 

Fafard, Incorporated, Agawam, MA) media. One plant was transplanted into each pot and was 

placed on greenhouse benches. Broad spectrum fungicide was applied as a drench to each pot 

after transplant at a rate of 19.5 ml/L (Banrot® 8G, a.i. 3% Etridiazole, a.i. 5% Thiophanate-

methyl, Scotts-Sierra, Marysville, OH). Petunias were grown at 30/20°C and fertigated using 

Hozon™ Brass Siphon Mixer (1:16) (Phytotronics, Incorporated, Earth City, MO) with 200 ppm 

N 15N-2.2P-12.4K (15-5-15 Cal Mg, Scotts-Sierra, Marysville, OH) daily for one week before 

starting heat shock treatment.  

5.2.3 Heat Shock Treatment 

Heat shock treatment was applied to all petunia cultivars after two weeks growth at 

30/25°C in the greenhouse. Heat shock treatment was chosen based on the optimum temperature 

and duration determined in Chapter 4. Treatments included continuous exposure to control 

temperature (30/25°C day/night) or heat shock at 45°C for 4 h every 3 d of plants grown at 

30/25°C day/night. Heat shock temperature was established in respective greenhouses by 

increasing temperature setting on the automated control system (Wadsworth STEP© Control 50A, 

Wadsworth Control Systems Incorporated, Arvada, CO) from 30 to 45°C at 1000 HR and 

decreased back to 30°C at 1400 HR every 3 d for 3 weeks. Prior to heat shock exposure, plants 

were irrigated to maximum water holding capacity to minimize water stress during treatment.  

Each heat shock experiment used two greenhouses for a total of two control greenhouses and two 

greenhouses where heat shock was applied. Temperatures in respective greenhouses were 

recorded using HOBO® Pro SeriesTM data logger (Onset Computer Corporation, Bourne, MA) 
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(Figure 5.1 A, B, C & D). Weather records for Baton Rouge, Louisiana, including temperature 

(°C) and irradiance (µ mol m-2 s-1 PPFD), were also taken daily for the duration of the 

experiments (Louisiana Agriclimatic Information Systems, LSUAgCenter, BAE) (Figure 5.2. A 

& B).  
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Figure 5.1. Average day/night temperatures (°C) A) Control 30/25°C, B) 30/25°C and heat shock 
at 45°C for 4h every 3d, C) Control 30/25°C, D) 30/25°C and heat shock at 45°C for 4 h every 3 
d recorded in greenhouses for each temperature treatment over a 4 week course of experiment.  
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Figure 5.2. Average daily weather reports A) natural irradiance (µ mol m-2 s-1 PPFD), B) 
minimum and maximum daily temperature (°C) for greenhouse experiment located at Louisiana 
State University, Baton Rouge, Louisiana.  

5.2.4 Measurement of Growth and Development in the Greenhouse 

Petunia cultivars were destructively harvested for data collection every 7 d for 4 weeks 

with first harvest taken after one week growth at 30/25°C for baseline comparative and the 

following 3 harvests every 7 d after heat shock treatment began. Petunia growth and 

B 

A 
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development was quantified by measuring number of flowers per plant, average flower size (cm) 

per plant, relative increase in growth of shoot dry weight (g) or average internode length (cm) 

expressed in terms of a rate of increase in weight or length per unit of weight or length, relative 

growth rate (RGR), providing for a more equitable comparison of dry weight where: 

RGR = (loge W2- loge W1) / (t2-t1) 

or internode growth analysis where:   

RGR = (loge L2- loge L1) / (t2-t1) 

That is the natural log of the mean weight (W) or length (L) over the interval of weeks (t) 

measured (Hunt, 1990). The total leaf area of a plant (mm2) (La) per plant shoot dry weight (W) 

was also recorded as the leaf area ratio (LAR) and was determined using the following formula 

(Hunt, 1990):  

LAR= ([La1/W1]) + [La2/W2])/2 

Fully expanded flowers were visually counted and recorded weekly. Flower size was 

determined by using a handheld metric ruler and measuring the diameter (cm) of one flower 

visually estimated to be average for that respective plant. Average internode length was 

determined by measuring lengths of first 3 internodes from newest true leaves on one branch per 

plant. Total leaf area per plant was measured using LI-3100C leaf area meter (LICOR 

Biosciences, Lincoln, NE). Shoot dry weights (g) were obtained after oven drying at 80°C for  

24 h. 

5.2.5 Field Study Establishment 

Postproduction was evaluated by transplanting heat shocked and control plants in field 

trial landscape beds. The transgenic cultivars ‘44568’ and ‘Mitchell Diploid’ were not evaluated 

in the field.  A broad spectrum fungicide (Banrot® 8G, a.i. 3% Etridiazole, a.i. 5% Thiophanate-

methyl, Scotts-Sierra, Marysville, OH) was applied in the greenhouse 3 d prior to field transplant. 
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Petunias were transplanted on 13 October 2008 into trial beds 3 d after the last heat shock 

treatment was applied in the greenhouse. The field trial was located at LSU AgCenter Burden 

Research Station, 30° N 91° W Baton Rouge, Louisiana.  The landscape trial was conducted in 

raised beds (1.5 m wide by 50 m long) and consisted of an Olivier silt loam soil amended with 

composted pine bark. Petunia were planted using 30 x 30 cm spacing and were irrigated as 

needed by drip tape placed in between two plants that continued for the entire length of the row. 

Weather records were taken daily from the Burden Center weather station for the duration of the 

field trial (Louisiana Agriclimatic Information Systems, LSUAgCenter, BAE) (Figure 5.3 A & 

B). Petunias were allowed to establish one week before data measurements were taken.  

5.2.6 Field Data Collection 

Growth and development and landscape performance of treated petunias were evaluated 

every two weeks after transplant. Data collected included number of flowers per plant, average 

flower size (cm), and quality ratings. Quality rating scale ranged from 1 to 5, where 1=dead and 

5= optimum performance. Quality is based on a combination of plant flowering, leaf color and 

compactness of plant. Quality scores; 4.5 to 5= excellent plants with healthy green leaves, 

compact uniform growth and good inflorescence, 3.5 to 4.5= green healthy foliage with moderate 

flowers, 2.5 and 3.5= plants with chlorotic leaves and poor inflorescence, 1.5 to 2.5= plants with 

necrotic or dried leaves with terminal bud damage and poor flower set, <1.5 = dead. After six 

weeks in the field, petunias were destructively harvested and data collected was: number of 

flowers per plant, average flower size (cm) per plant, average internode length (cm), total leaf 

area per plant (mm2), and shoot dry weight (g).  
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Figure 5.3. Average daily weather reports A) natural irradiance (µ mol m-2 s-1 PPFD), B) 
minimum and maximum daily temperature (°C) for field study located at Burden Center, Baton 
Rouge, Louisiana. 

5.2.7 Experimental Design and Statistical Analysis 

Heat shock treatments were arranged as randomized complete block design in the 

greenhouse. The greenhouse experiment was replicated once using three plants (sample units) 

per treatment for each cultivar and for each of the 4 harvests in the greenhouse and for transplant 

in the field. Statistical analysis was performed using SAS ProcMixed Procedure (Statistical 

Analysis Software, version 9.1, Cary, NC).   

A 
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5.3 RESULTS  

5.3.1 Effect of Heat Shock on Growth and Development of Different Petunia Cultivars  

Growth and development of several Petunia x hybrida plant classes (Floribunda, 

Grandiflora or Spreading) was not significantly affected by heat shock at 45°C for 4 h every 3 d 

compared to petunia grown at control temperature (30/25°C) (Fig. 5.4 A, B, C, D & E). However, 

there were significant differences in some growth measurements between plant types. After 3 

weeks of heat shock in the greenhouse, floribunda had a significantly greater flower count 

compared to spreading when grown at 30/25°C. However, there was no difference in the number 

of flowers per plant for petunia types that were exposed to heat shock treatment (Fig. 5.4 A). 

Floribunda and grandiflora plant types had significantly larger flower size than petunia spreading 

types in both control and heat shocked plants (Fig. 5.4 B). Relative growth rate (based on shoot 

dry weight) was not significantly different (Fig. 5.4 C) or leaf area ratio (Fig. 5.4 D) in heat 

shocked or control plants. Grandiflora petunias grown at 30/25°C had a significantly higher 

relative rate of internode growth compared to spreading exposed to heat shock at 45°C for 4 h 

every 3 d (Fig. 5.4 E).   

When investigating the effect of heat shock during greenhouse production on growth and 

development of all nineteen Petunia x hybrida cultivars, there was no significance between 

treatments for respective cultivars for flower count, average flower size or relative growth rate 

(Table 5.2). However, heat shock at 45°C for 4 h every 3 d had a significant effect on the relative 

rate of internode growth and leaf area ratio for the petunia cultivars ‘Ultra Red’ (8) and 

‘44568’(18), respectively, which had reduced growth compared to growth at 30/25°C.   

The effect of heat shock was also significant at certain times during treatment in the 

greenhouse. Heat shock (45°C for 4h every 3 d) did not have a significant effect on flower count 

after 3 weeks of exposure compared to petunia cultivars grown at 30/25°C day/night. However,  
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Figure 5.4. The effect of heat shock (45°C for 4 h every 3 d) (Control = 30/25°C day/night) on 
the A) number of flowers per plant, B) average flower size (cm), C) relative growth rate, D) leaf 
area ratio and E) relative internode length of nineteen cultivars of Petunia x hybrida after 4 
weeks in the greenhouse. Error bars represent means of observations ±SE (Floribunda n=48) 
(Grandiflora n=216) (Spreading n=192).
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Table 5.2. Growth and development of nineteen Petunia x hybrida cultivars grown at control 
(30/25°C day/night) or heat shock (45°C for 4 h every 3 d). 

Cultivar Treatment Flowers per 
Plant 

Flower Size 
(cm)  

RGR 
(g g-1 

week-1)  

LAR 
(mm2 

mg-1) 

Internode 
Length 

(cm.cm-1 

week-1)

  

1

 
Control 

 
Y1.83 abX

 
1.56 abcde

 
0.93 a

 
3.44 b

 
0.47 a

 

Heat Shock  1.16 abcd 1.74 abcde 0.91 a 3.44 b 0.39 a 

 

2

 

Control 

 

0.41 de

 

1.05 abcde

 

1.09 a

 

3.80 ab

 

0.43 a

 

Heat Shock  0.25 de 0.55 cde 0.98 a 3.31 b 0.32 a 

 

3

 

Control 

 

0.25 de

 

0.79 cde

 

0.97 a

 

3.96 ab

 

0.47 a

 

Heat Shock  0.041 de 0.22 de 1.01 a 3.72 ab 0.48 a 

 

4

 

Control 

 

1.16 abcd

 

1.98 abc

 

0.89 a

 

3.13 b

 

0.28 a

 

Heat Shock  1.04 abcde 1.52 abcde 0.74 a 3.37 b 0.38 a 

 

5

 

Control 

 

2.16 a

 

2.38 a

 

1.01 a

 

3.59 b

 

0.51 a

 

Heat Shock  1.58 abc 1.81 abc 1.01 a 3.28 b 0.46 a 

 

6

 

Control 

 

0 e

 

0 e

 

1.12 a

 

3.61

 

b

 

0.62 a

 

Heat Shock  0 e 0 e 0.88 a 3.21 b 0.30 a 

7 
Control 

 

0.95 bcde

 

2.37 ab

 

1.01 a

 

3.27 b

 

0.80 a

 

Heat Shock  0.41 de 1.80 abcd 1.10 a 3.50 b 0.35 a 

8 
Control 

 

0.41 de

 

1.05 abcde

 

1.05 a

 

3.17 b

 

0.78 a

 

Heat Shock  0.21 de 0.61 cde 0.98 a 3.52 b 0 b 

9 Control 

 

0.37 de

 

0.80 bcde

 

0.92 a

 

3.54 b

 

0.33 a

 

Heat Shock  0.75 bcde 1.22 abcde 1.06 a 3.55 b 0.30 a 

10 
Control 

 

0.05 de

 

0.20 de

 

0.86 a

 

3.16 b

 

0.21 a

 

Heat Shock  0.13 de 0.18 de 0.93 a 3.47 b 0.01 ab 

11 
Control 

 

0.25 de

 

0.22 de

 

0.90 a

 

3.26 b

 

0.02 ab

 

Heat Shock  0 e 0 e 0.92 a 3.18 b 0.02 ab 

12 Control 

 

0 e

 

0 e

 

0.90 a

 

2.94 b

 

0.38 a

 

Heat Shock  0 e 0 e 0.89 a 3.10 b 0.19 a 

13 
Control 

 

0.16 de

 

0.22 de

 

0.87 a

 

3.19 b

 

0.25 a

 

Heat Shock  0.08 de 0.21 de 1.04 a 3.44 b 0.17 a 

14 
Control 

 

0 e

 

0 e

 

0.91 a

 

2.94 b

 

0.09 ab

 

Heat Shock  0 e 0 e 0.97 a 2.84 b 0.01 ab 

15 Control 

 

0 e

 

0 e

 

0.84 a

 

3.66 b

 

0.15 a

 

Heat Shock  0 e 0 e 0.91 a 4.13 ab 0.03 ab 

16 
Control 

 

0 e

 

0 e

 

1.07 a

 

3.30 b

 

0 b

 

Heat Shock  0 e 0 e 1.12 a 3.66 b 0 b 

17 
Control 

 

0 e

 

0 e

 

0.97 a

 

3.36 b

 

0.13 a

 

Heat Shock  0 e 0 e 1.08 a 3.25 b 0.18 a 

18 Control 

 

0 e

 

0 e

 

1.02 a

 

5.50 a

 

0.26 a

 

Heat Shock  0 e 0 e 1.04 a 3.44 b 0.31 a 

19 
Control  

Heat Shock 

 

0.83 bcde

 

1.22 abcde

 

0.87 a

 

2.82 b

 

0.57 a

 

0.45 cde

 

0.83 abcde

 

1.02 a

 

2.96 b

 

0.47 a

 

X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=24)
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there was significantly higher flower count in both treatments after 4 weeks of exposure but 

control petunias (30/25°C) had greater number of flowers compared to petunia exposed to heat 

shock (Table 5.3). These results are similar to the effect on average flower size and relative 

growth rate, where heat shocked petunia had significantly decreased flower size and shoot dry 

weight compared to control after 3 weeks of heat shock exposure (Table 5.3). The leaf area ratio 

was not affected by heat shock after 4 weeks exposure in the greenhouse, while the internode 

RGR increased over the 4 weeks but was not significantly different between treatments (Table 

5.3). 

Table 5.3. The effect of heat shock (45°C for 4 h every 3 d) or control 30/25°C day/night) on 
growth and development of all cultivars of Petunia x hybrida for each week during greenhouse 
production. 

      

Internode 
Length 

(cm.cm-1 

week-1)

 

Week Treatment Flowers 
per

 

per

 

Flower 
Size (cm) 

RGR 
(g g-1 

week-1) 

 

LAR 
(mm2 

mg-1) 

 

per

 

Plant

 

1 
Control

 

Y0 cX

 

0 d

 

N/A

 

N/A

 

N/A

 

Heat Shock 0 c 0 d N/A N/A N/A 

2 
Control 0 c 0 d 1.15 a 3.33 a 0 c 

Heat Shock 0 c 0 d 1.29 a 3.25 a 0 c 

3 
Control 0.16 c 0.72 cd 1.11 a 3.56 a 0.25 b 

Heat Shock 0.31 c 0.95 c 1.24 a 3.32 a 0.29 b 

4 
Control 

Heat Shock 
2.33 a 2.71 a 0.64 b 3.58 a 0.95 a 
1.34 b

 

1.86 b

 

0.37 c

 

3.60 a

 

0.75 a

 

(N/A represents no measureable change). 
X
Means within columns followed by the same letters are not significantly different at 5% by 

lsmean procedure in SAS with Tukey’s correction.  
Y 

Values in the table are averages (n=144). 

5.3.2 Field Study  

Heat shock treatment of 45°C for 4 h every 3 d during greenhouse production did not 

have a significant effect on the number of flowers per plant within petunia cultivars after 6 weeks 

transplant in the field. However, there was a significant difference between several cultivars for 

respective treatments. For petunia cultivars grown at 30/25°C, ‘Madness Waterfall Mix’(1),  
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Figure 5.5. A pictorial representation of Floribunda cultivars of Petunia x hybrida after 3 weeks growth at 1) control (30/25°C) or 2) 
exposure to heat shock at 45°C for 4 h every 3 d or for A) ‘Madness Waterfall Mix’ and B) ‘Madness Lavender Glow’.  

 

Figure 5.6 A pictorial representation of transgenic grandiflora cultivars of Petunia x hybrida after 3 weeks growth at 1) control (30/25°C) 
or 2) exposure to heat shock at 45°C for 4 h every 3 d or for A) ‘Mitchell Diploid and B) ‘44568’. 

Floribunda Cultivars 

‘Madness Waterfall Mix’  ‘Madness Lavender Glow’  

Transgenic Grandiflora Cultivars 

‘Mitchell Diploid’  ‘44568’  

1 
2 

1 
2 

A B 

A B 

1 
2 

1 
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Figure 5.7 A pictorial representation of Grandiflora cultivars of Petunia x hybrida after 3 weeks growth at 1) control (30/25°C) or 2) 
exposure to heat shock at 45°C for 4 h every 3 d or for A) ‘Dreams Burgundy Picotee’, B) ‘Dreams Wild Rose Mix’, C) ‘Storm Violet’ 
and D) ‘Storm Red’.  

Grandiflora Cultivars 

‘Dreams Burgundy Picotee’ (3) ‘Dreams Wild Rose Mix’ (4) 

‘Storm Violet’ (5) ‘Storm Red’ (6) 
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Figure 5.8 A pictorial representation of Grandiflora cultivars of Petunia x hybrida after 3 weeks growth at 1) control (30/25°C) or 2) 
exposure to heat shock at 45°C for 4 h every 3 d or for A) ‘Ultra Salmon, B) ‘Ultra Red’ and C) ‘Dreams Midnight’.  

   

Figure 5.9. A pictorial representation of Spreading cultivars of Petunia x hybrida after 3 weeks growth at 1) control (30/25°C) or 2) 
exposure to heat shock at 45°C for 4 h every 3 d or for A) ‘Easy Wave Shell Pink’, B) ‘Easy Wave Red and C) ‘Ramblin Lavender’. 

‘Ultra Salmon’ (7) ‘Ultra Red’ (8) ‘Dreams Midnight’ (19) 

Grandiflora Cultivars (continued) 

Spreading Cultivars 

‘Easy Wave Shell Pink’ (9) ‘Easy Wave Red’ (10) ‘Ramblin Lavender’ (11) 
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A B C 
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Figure 5.10. A pictorial representation of Spreading cultivars of Petunia x hybrida after 3 weeks growth at 1) control (30/25°C) or 2) 
exposure to heat shock at 45°C for 4 h every 3 d or for A) ‘Ramblin White’, B) ‘Avalanche Lilac’, C) ‘Avalanche White’, D) ‘Wave 
Pink’ and E) ‘Wave Blue’.

Spreading Cultivars (continued) 
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‘Wave Pink’  ‘Wave Blue’  
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‘Avalanche Lilac’(13) and ‘Dreams Midnight’(19) had significantly greater flower counts in the 

field compared to cultivar ‘Wave Pink’(15) (Fig. 5.11). For cultivars exposed to heat shock at 

45°C for 4 h every 3 d, ‘Wave Pink’(15) had significantly decreased flower counts in the field 

compared to ‘Madness Waterfall Mix’(1), ‘Storm Violet’(5), ‘Storm Red’(6), ‘Easy Wave Shell 

Pink’(9), ‘Ramblin Lavender’(11), ‘Avalanche Lilac’(13) and ‘Avalanche White’(14). Petunia 

cultivar ‘Madness Waterfall Mix’ also had significantly more flowers per plant compared to 

‘Ultra Red’(8) and ‘Easy Wave Red’(10) (Fig. 5.11). 
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Figure 5.11. The effect of heat shock (45°C for 4h every 3 d) (Control = 30/25°C day/night) 
applied in the greenhouse on the number of flowers per plant of seventeen cultivars of Petunia x 
hybrida after 6 weeks in the field. Error bars represent means of eighteen observations ±SE.  

Results for the effects of heat shock on average flower size in transplanted petunias were 

very similar to flower count results. There was no significant difference in the average flower  
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size of heat shocked plant compared to plant grown at 30/25°C within a specific cultivar. 

However, cultivar had a significant effect on flower size in the landscape within each greenhouse 

treatment. For cultivars grown at 30/25°C day/night, ‘Wave Pink’(15) had a significantly smaller 

flower size compared to ‘Madness Waterfall Mix’(1), ‘Madness Lavender Glow’(2), ‘Dreams 

Wild Rose Mix’(4), ‘Storm Violet’(5), ‘Storm Red’(6), ‘Ultra Salmon’(7), ‘Ultra Red’(8), ‘Easy 

Wave Red’(10), ‘Ramblin Lavender’(11), ‘Avalanche Lilac’(13) and ‘Dreams Midnight’(19) 

(Fig. 5.12). For cultivars exposed to heat shock, ‘Wave Pink’(15) had a significantly smaller 

flower size compared to ‘Madness Waterfall Mix’(1), ‘Madness Lavender Glow’(2), ‘Dreams 

Wild Rose Mix’(4), ‘Storm Violet’(5), ‘Storm Red’(6), Ultra Red’(8), ‘Easy Wave Shell Pink’(9), 

‘Ramblin Lavender’(11), ‘Avalanche Lilac’(13) and ‘Avalanche White’(14) (Fig. 5.12).  
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Figure 5.12. The effect of heat shock (45°C for 4 h every 3 d) (Control = 30/25°C day/night 
applied in the greenhouse) on average flower size (cm) of seventeen cultivars of Petunia x 
hybrida after 6 weeks in the field. Error bars represent means of eighteen observations ±SE.  
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Heat shock treatment of 45°C for 4 h every 3 d during greenhouse production compared 

to control (30/25°C) did not have a significant effect on shoot dry weight within petunia cultivars 

after 6 weeks transplant in the field. However, there was a significant difference between several 

cultivars for respective treatments. Petunia cultivars ‘Madness Lavender Glow’ (2) and 

‘Avalanche Lilac’ (13) exposed to heat shock at 45°C for 4 h every 3 d or control (30/25°C) 

during greenhouse production had significantly increased shoot dry weights after  6 weeks 

transplant in the field compared to  heat shocked ‘Wave Blue’ (16) (Fig. 5.13).  

Results also indicated that for petunias grown at control temperature (30/25°C) in the 

greenhouse, total leaf area was significantly larger in ‘Avalanche Lilac’ (13) compared to control 

or heat shocked ‘Avalanche White’ (14) (Fig. 5.14).  
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Figure 5.13. The effect of heat shock (45°C for 4 h every 3 d) and Control (30/25°C day/night) 
applied in the greenhouse on shoot dry weight (g) of seventeen cultivars of Petunia x hybrida 
after 6 weeks in the field. Error bars represent means of eighteen observations ±SE. 
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Figure 5.14. The effect of heat shock (45°C for 4 h every 3 d) and Control (30/25°C day/night) 
applied in the greenhouse on total leaf area (mm2) of seventeen cultivars of Petunia x hybrida 
after 6 weeks in the field. Error bars represent means of eighteen observations ±SE.  

Heat shock at 45°C for 4 h every 3 d during greenhouse production did not have a 

significant effect on the average internode length (cm) for each cultivar after 6 weeks in the 

landscape. However, there were differences in internode length between several cultivars for 

respective treatments. For petunias grown at control (30/25°C), the cultivar ‘Madness Lavender 

Glow’ (2) had significantly increased internode length compared to ‘Easy Wave Shell Pink’ (9), 

‘Ramblin Lavender’ (11), ‘Ramblin White’ (12), ‘Avalanche White’ (14), ‘Wave Pink’ (15) and 

‘Wave Blue’ (16) (Fig. 5.15). ‘Madness Lavender Glow’ (2) was unaffected by heat shock but 

had significantly longer internode lengths compared to heat shocked cultivars ‘Easy Wave Red’ 
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(10), ‘Ramblin Lavender’ (11), ‘Avalanche White’ (14), ‘Wave Pink’ (15) or ‘Wave Blue’ (16) 

(Fig. 5.15). 
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Figure 5.15. The effect of heat shock (45°C for 4 h every 3 d) and Control (30/25°C day/night) 
applied in the greenhouse on average internode length (cm) of seventeen cultivars of Petunia x 
hybrida after 6 weeks in the field. Error bars represent means of eighteen observations ±SE.   

There were no significant differences in plant quality for control and heat shock treated 

plants after greenhouse production for all petunia cultivars. Petunia cultivars grown at 30/25°C, 

showed no significant difference in plant quality after 6 weeks in the landscape. However, 

cultivar had a significant effect on landscape quality of petunias exposed to heat shock (45°C for 

4h every 3 d). For heat shocked cultivars, ‘Storm Red’ (6) had significantly higher quality rating 

than ‘Easy Wave Red’ (10), ‘Ramblin White’ (12) or ‘Wave Pink’ (15) (Fig. 5.15). 
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Figure 5.16. The effect of heat shock (45°C for 4 h every 3 d) and Control (30/25°C day/night) 
applied in the greenhouse on landscape plant quality of seventeen cultivars of Petunia x hybrida 
after 6 weeks in the field. Error bars represent means of eighteen observations ±SE. 

5.4 DISCUSSION  

Heat shock treatment of 45°C for 4 h every 3 d during 3 weeks greenhouse production 

was not significant when investigating responses of three Petunia x hybrida plant classes 

(floribunda, grandiflora and spreading). Results indicated that floribunda cultivars displayed a 

higher flower count than spreading cultivars when grown at control temperature (30/25°C). 

However, there was no significant difference between plant classes exposed to heat shock, 

suggesting that there may be significant effects of heat shock for specific cultivars within a plant 

class. After further investigation of heat shock response of nineteen Petunia x hybrida cultivars 

from these petunia classes, heat shock resulted in reduced relative internode length in ‘Ultra Red’ 
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(8) cultivar and reduced leaf area ratio in ‘44568’ (18) compared to respective cultivars grown at 

control (30/25°C) (Table 5.2). The decreased relative internode length of heat shocked ‘Ultra 

Red’ (8) indicated that this cultivar may have a higher capability of withstanding heat stress by 

developing shorter internodes. Decreased internode length was observed in more heat tolerant 

cultivars of cow pea (Vigna unguiculata (L.) Walp.) (Ismail et al., 2000) and is also an adaptive 

response that can be developed through heat shock (Natarajan, 2005). The ‘44568’ cultivar is a 

transgenic ethylene-insensitive petunia that has been used in previous studies where ethylene 

insensitivity resulted in decreased adventitious root formation (Clark et al., 1999). Decreased 

root growth as a result of heat stress can strongly affect plant shoot growth and nutrient uptake as 

seen in wheat (Triticum aestivum L.) (Kuroyanagi and Paulsen, 1988) and creeping bentgrass 

(Agrostis palustris Huds. cv. Penncross) (Huang and Xu, 2000). A decrease in root growth 

caused by ethylene insensitivity may have further enhanced the effect heat shock at and could be 

responsible for the reduced LAR observed in ‘44568’. The number of flowers per plant, average 

flower size and relative growth rates were not affected by heat shock when averaged after 3 

weeks of exposure which indicated that heat shock at this temperature, duration and frequency is 

not severe enough to cause an immediate response that is sustained over the entire treatment 

period. Rather, heat shock at 45°C for 4 h every 3 d had an accumulated response, where 

decreased flower count, flower size and relative growth weights only occurred after being heat 

shocked for at least 3 weeks (Table 5.3) indicating that these traits are not directly sensitive to 

the higher temperature but rather the amount or frequency of heat shock exposures. Natarajan 

(2005) found that Salvia splendens F. Sellow ex Roem & Schult. exposed to heat shock every 3 

days for 3 hours at 30, 35, 40 and 45°C, resulted in decreased root and shoot dry weight as 

temperature increased.  
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Heat shock at 45°C for 4 h every 3 d during 3 weeks greenhouse production did not 

promote heat tolerance in the landscape. Petunia cultivars grown at control temperature (30/25°C) 

did not perform any different than the respective heat shocked cultivar for flower count, flower 

size, shoot dry weight, leaf area, internode length or quality in the landscape. However, results 

indicated differences between cultivars, irrespective of treatments. After investigating growth 

responses in the field, petunias in the ‘Wave’ series, ‘Wave Pink’ (15) and ‘Wave Blue’ (16), 

appeared to have limited overall growth or performance in the field. The flower count, size and 

quality of ‘Wave Pink” was the most significantly affected. These results contradict petunia 

evaluations by Kelly et al. (2007) who considered ‘Wave Pink’ to have the best overall landscape 

performance within spreading class. For some measurements, ‘Madness Lavender Glow’(1) and 

‘Avalanche Lilac’ (13) had increased growth effects compared to several other cultivars which 

does agree with previous landscape evaluations (Kelly et al., 2007; Liu, 2009). Cultivar ‘Ultra 

Red’ (8) was not significantly affected in the landscape even though it has been previously 

evaluated as having poor landscape performance. Decreased internode length observed in ‘Ultra 

Red’ (8) during greenhouse production has been considered an adaptive characteristic for heat 

tolerance and may have had an effect on the subsequent landscape performance.   

This study is the first to report on the effects of heat shock during bedding plant 

production to induce acquired thermotolerance and subsequent growth and development in the 

landscape. Although heat shock at 45°C for 4 h every 3 d had little effect on plant growth and 

development in the greenhouse and did not significantly promote heat tolerance in the landscape,  

an increase in frequency and/or duration of heat shock application may have a more significant 

effect. Based on the results of this study, further research investigating heat shock frequency and 

duration should be conducted to develop an effective heat shock protocol in the greenhouse to 

induce acquired thermotolerance and improve petunia landscape survivability. 
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CHAPTER 6. SUMMARY AND CONCLUSIONS  

Heat stress is one of the greatest challenges for growth and development of bedding 

plants during greenhouse production and postproduction in the landscape, particularly in the 

southern United States or during the summer months. Inducing acquired thermotolerance during 

production by exposing plants to supraoptimal temperatures for specific durations in the 

greenhouse would be most beneficial to growers in heat stressed environments. However, little 

research has been done to investigate the morphological effects of bedding plants during heat 

shock or enduring heat stress preconditioning in the greenhouse or the resulting performance in 

the landscape.  

Preliminary studies indicated that petunia grown at enduring heat stress 35/25 or 40/30ºC 

induced some desirable traits such as compact vegetative growth for improved shipping and 

landscape performance but also resulted in detrimental effects to petunia flowering habit during 

greenhouse production. Although petunia grown at these temperatures were able to adapt in the 

landscape, growing plants at enduring 35/25 or 40/30ºC in the greenhouse did not result in 

marketable plants and would therefore not be a recommended growth temperature to growers. 

Preliminary heat shock studies revealed that exposure to 35 or 40ºC for 2 h once per week did 

not have a significant effect on petunia growth and development.  

Further research of growth under enduring heat stress and heat shock treatments with 

increased temperatures, durations and frequency at every 3 d during production were attempted 

and investigated with subsequent acquired thermotolerance test. Results indicated that the effect 

of heat shock or enduring heat stress temperature for inducing acquired thermotolerance 

appeared to be most critical at 45ºC for petunia Dreams ‘Midnight’, although the critical duration 

and frequency necessary for a heat tolerant marketable plant at this temperature was not fully 

elucidated within the treatments used. Longer durations at critical temperatures (enduring heat 
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stress) appeared to promote better heat tolerance but did not result in a marketable plant. 

Therefore heat shock using shorter durations at higher frequencies than every 3 d during 

production should be considered for future research.  

The critical acquired thermotolerance temperature of 45ºC observed in petunia Dreams 

‘Midnight’, was further investigated on nineteen cultivars of petunia that were separated into 3 

different plant classes; floribunda, grandiflora and spreading. Heat shock at 45ºC for 4 h every  

3 d during greenhouse production did not have a significant effect on growth and development of 

petunia cultivars or classes compared to petunia grown at control temperature (30/25ºC). Petunia 

cultivars exposed to heat shock did not appear to have increased heat tolerance or better 

performance in the landscape. However, certain cultivars did perform differently in the 

greenhouse and the landscape indicating that cultivars may differ in heat tolerance or have 

different critical temperatures for inducing acquired thermotolerance. The study also revealed 

that the decreased overall landscape performance in cultivar ‘Wave Pink’ contradicted previous 

landscape evaluations where ‘Wave Pink’ was observed as having better performance. 

This research was the first to quantify morphological and physiological responses to heat 

shock and enduring heat stress during bedding plant production for developing a greenhouse 

protocol for inducing acquired thermotolerance for improved landscape survivability. While the 

critical temperatures used in this study are effective for promoting heat tolerance in petunia, 

specific exposure durations or frequency of exposure during production should be further 

investigated in order to define an effective acquired thermotolerance protocol to improve 

landscape survivability.    
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