
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2015

Identification of Quantitative Trait Loci (QTL) for
Resistance to Stripe Rust in Wheat Variety
TERRAL LA841
Alejandro Castro Aviles
Louisiana State University and Agricultural and Mechanical College, acastro@agcenter.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Castro Aviles, Alejandro, "Identification of Quantitative Trait Loci (QTL) for Resistance to Stripe Rust in Wheat Variety TERRAL
LA841" (2015). LSU Master's Theses. 824.
https://digitalcommons.lsu.edu/gradschool_theses/824

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/824?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


IDENTIFICATION OF QUANTITATIVE TRAIT LOCI (QTL) FOR 

RESISTANCE TO STRIPE RUST IN WHEAT VARIETY TERRAL LA841 

A Thesis 

Submitted to the Graduate Faculty of the 

Louisiana State University and  

Agricultural and Mechanical College  

in partial fulfillment of the  

requirements for the degree of  

Master of Science 

in

The Department of Plant, Environmental & Soil Sciences 

by

Alejandro Castro 

B.S., Zamorano Pan-American Agricultural University, 2010 

December 2015



ii 

Acknowledgments 

Throughout my time at LSU I’ve had the pleasure of meeting and working with a lot of 

people who have contributed with my research as well as professional and personal growth. 

First of all I would like to thank Dr. Stephen Harrison for giving me this amazing 

opportunity and letting me attend graduate school while working in his breeding program. 

Working in the program has been a great and very unique experience. The first-hand knowledge 

and lessons learned are invaluable. I really appreciate the chance I had to attend LSU. 

I would also like to thank my co-advisor Dr. Niranjan Baisakh for his patience, 

encouragement and critical guidance in the molecular genetics part of my thesis project. I am 

also very grateful for the support and willingness to help from the rest of my committee 

members, Dr. Boyd Padgett and Dr. Gerald Myers. 

I would also like to thank the members of the wheat and oat breeding program, especially 

Kelly for his help in the disease ratings and his continuous support and advice throughout my 

time in graduate school. I could not have completed my lab work without the help of Arnold, 

Nissar, Eduardo, Andres, and Carolina so I would like extend my appreciation for their help. 

I would never have gotten this far without my family, especially my parents. They have 

always severed as role models and examples that through hard work and effort anything can be 

achieved. Despite the distance they have always been a source of motivation. 

Finally I would like to thank the members of the Zamorano Agricultural Society for their 

friendship and always being there when I needed them. They have been a big part of my 

experience at LSU. 



iii 

Table of Contents 

Acknowledgments……………………………………………………………………………….ii 

List of Tables...……...……………………………………………………………………………iv 

List of Figures……………………………………………………………………………………..v 

Abstract ............................................................................................................................ ………..vi 

Chapter I: General Introduction .......................................................................................................1 

1.1 Wheat Background information .....................................................................................1 

1.2 Wheat Diseases ..............................................................................................................4 

1.3 Stripe Rust ....................................................................................................................10 

1.4 QTL Mapping ..............................................................................................................19 

1.5 Molecular Markers .......................................................................................................21 

1.6 Previous Work .............................................................................................................22 

1.7 Justification ..................................................................................................................23 

1.8 Objectives ....................................................................................................................23 

Chapter II: Materials and Methods ................................................................................................24 

2.1 Mapping Population .....................................................................................................24 

2.2 DNA Extraction ...........................................................................................................24 

2.3 Seed Collection ............................................................................................................25 

2.4 Genotyping ...................................................................................................................25 

2.4.1 Molecular Markers ....................................................................................................25 

2.4.2 Polymerase chain reaction (PCR)…………………………………………….…....28 

2.5 Disease Screening ........................................................................................................29 

2.6 Data Analysis ...............................................................................................................29 

2.7 Expected Outcome .......................................................................................................30 

Chapter III Results and Discussion  ...............................................................................................31 

3.1 Disease Ratings ............................................................................................................31 

3.2 DNA Polymorphism ....................................................................................................38 

3.3 Linkage Groups…………....…………………………………………………………38 

3.4 QTL Mapping ..............................................................................................................40 

3.5 Discussion……………………………………………………………………………42 

3.6 Conclusions….……….………………………………………………………………47 

References………………………………………………………………..……………………..49 

Vita……………………………………………………………………………………………...57 



iv 

List of Tables 

1. Table Yr resistance gene…..……………………………………..……………………………15

2. Table List of AFLP primer combinations…..……………………...……………….…...….....25

3. Table List of polymorphic SSR markers………………..………….………….……….……..26

4. Table Stripe rust ratings over three locations..………………………..…….……...…………31

5. Table ANOVA for Winnsboro ratings..………………………………..……..…...…………..37

6. Table ANOVA for Plains ratings………..…………………………..………….……………..37

7. Table 7 ANOVA for Fayetteville ratings..…………...……………………..…..……………..37



v 

List of Figures 

1. Figure Graphical representation of the 24 LG……..…...……………..……………………..39

2. Figure All QTL peaks…..……………………...……………..…………………….………..40

3. Figure QTL in chromosome 3B……...................……………………………………………41

4. Figure QTL in chromosome 2A………..…………….…………………………..…………..42

5. Figure Picture of wheat variety Terral LA841..……………………………………………...48



vi 
 

Abstract 

Wheat stripe rust, caused by Puccinia striiformis, is a common disease that was found primarily 

in the Pacific Northwest prior to 1990, with occasional minor outbreaks in the eastern wheat 

regions.  A physiological adaptation to higher temperatures that occurred around 1990 led to 

stripe rust becoming a major disease problem in the Gulf Coast.  Race (pathotype) changes have 

occurred several times since 2000, resulting in cultivars with previously effective resistance 

genes becoming susceptible.  The cultivar LA 841, developed by the LSU AgCenter, has 

remained resistant to all races of stripe rust in the area for over 15 years. It contains the gene 

cluster Lr37/Yr17/Sr38 with Yr17, conferring broad-spectrum stripe rust resistance until recent 

years, when new races of stripe rust became virulent on Yr17. LA841 has remained resistant after 

Yr17 has lost its effectiveness, which indicates that LA 841 contains alternate/additional stripe 

rust resistance genes. Our objective was to determine the genetics of the resistance in LA 841.  A 

mapping population consisting of 192 F2 progeny derived from a cross between the resistant line 

LA 841 and susceptible line NC06BGTAG12, was genotyped with 216 polymorphic SSR and 

AFLP markers. The F2:3 progeny was phenotyped for their reaction to stripe rust in replicated 

trials at three locations: Winnsboro, Louisiana; Plains, Georgia; and Fayetteville, Arkansas.  

Three QTL were identified - two on the short arm of chromosome 2A and one on chromosome 

3B which together explained 43.2% of the total variation for stripe rust resistance. The QTL on 

chromosome 3B was flanked by SSR markers Barc164 and Barc1044. One QTL on the 2A 

chromosome was flanked by SSR markers gwm 636 and gwm 359 while the other QTL on the 

same chromosome was flanked by gwm 359 and AFLP marker gcg 800-2. Yr17, located on the 

short arm of chromosome 2A, is most likely the QTL closest to marker gwm 636, which is 

linked to the gene. This QTL explained 8.6% of the variation but has a LOD value of 11.2, which 

is the highest of the three. The QTL with the largest effect was found in the short arm of 

chromosome 2A, which accounted for 22% of the variation and had an LOD value of 9.8. The 

QTL on chromosome 3B explained 13% of the variation and has a LOD value of 2.7, just over 

the threshold of 2.5.  Identification of new QTL linked to resistance genes is important in 

breeding programs for disease resistance due to the constant adaptation of pathogens which 

overcome previously effective resistance genes. 
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Chapter I 

 

1.1 Wheat History and Genetics 

Wheat (Triticum spp.) is an edible cereal crop consumed throughout the world. The 

harvest grain has been consumed by man for centuries and is also used as animal feed. Roughly 

95% of the wheat crop is common wheat (T. aestivum), used for making bread, cookies, and 

pastries.  The origins of wheat trace back to the fertile half crescent located in Western Asia 

(Belderok et al., 2000). Some of the earliest remains of the crop have been found in Syria, 

Jordan, and Turkey and date back almost 9,000 years. Common wheat originated from two 

independent polyploid crossing events. The first event occurred through the expansion of 

agriculture where an ancestor of wheat known as domesticated einkorn (T. urartu 2n = 2x = 14, 

genome AA) was spread across Asia, Europe and Africa and crossed with an unconfirmed 

species related to Aegilops speltoides (2n = 2x = 14, genome BB). This cross resulted in the 

cultivated species emmer wheat (T. turgidum ssp. dicoccum, 2n = 4x = 28, genomes AABB) 

(Yong et al., 2006). Later the domesticated emmer grown in northeast Turkey was crossed with 

another grass species known as Aegilops tauschii (genomes DD) giving way to emergence of the 

hexaploid common wheat (T. aestivum, 2n = 6x = 42 genomes AABBDD) with three similar 

genomes  (Dubcovsky and Dvorak, 2007). 

Wheat is one of the world’s most important food crops and a staple in dozens of 

country’s diets, especially in temperate zones. Wheat provides nearly 20% of calories consumed 

by people worldwide (Wiese 1987). The yearly world production for 2009 was around 

685,614,399 metric tons, for all crops after maize. In total area wheat was grown on more than 

any other crop in the world with over 225 million hectares (FAO stat 2010). One of the reasons 
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that wheat is grown on such a large acreage is its ability to thrive in adverse conditions and 

environments that are adverse to other major crops. Wheat is often cultivated in wind-swept 

environments with low rainfall and cold temperatures that tropical crops like rice and corn 

cannot withstand (Gibson and Benson, 2002). 

Bread wheat can be divided into two ecotypes; spring and winter. The ecotype and its 

growth habit mainly depend on the vernalization requirement. Vernalization is a period of low 

temperatures necessary to induce flowering in crops. Exposing winter wheat to temperatures near 

40°
 
F for several weeks is required for vernalization, although the exact temperature and duration 

varies according to the different genotypes. Wheat has genetic variability for genes that control 

flowering time, which imparts adaptability to a wide range of environments (McMaster, et al., 

2008). Vernalization is considered to be an adaptation to ensure seed is produced after the harsh 

winter climate. Spring wheat has little or no vernalization requirements so it can be grown over 

the spring and summer. It is usually planted in the spring in areas where the winter is too cold 

and severe for winter wheat, or as a fall planted crop where temperatures are very mild. Spring 

wheat is grown in the northwestern states of the country such as North Dakota, South Dakota, 

Montana, Idaho, Oregon and Washington (Baker 1968). Winter wheat is planted in the fall and 

requires exposure to certain periods of cold, depending on the variety, to initiate flowering 

(Malla, et al., 2011). It is grown in areas where the summer is too hot and/or dry for wheat to 

grow but the winter is suitable. Southeastern states primarily grow soft red winter wheat (Baker 

1968). Studies have shown that vernalization is controlled by 4 major genes; VrnA1, VrnB1, 

VrnD1, and VrnB3 located at the 5A, 5B, 5D, and 7B chromosomes respectively (Dubcovsky, et 

al., 1998). 
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Wheat used for baking is generally classified into two groups, hard or soft, depending on 

its texture. In the USA and most of the world, hard wheat is used for bread baking. Hard wheat 

flour has stronger gluten and higher protein content. These traits along with the higher amounts 

of fractured starch granules in the milling process give hard wheat flour a high value for yeast-

leavened products like bread (Campbell, et al., 1999). Soft wheat, on the other hand, is mostly 

used for cookies, crackers and pastry baking. Soft wheat flour is characterized by lower protein 

content, fine particles, and low water absorption. Soft wheat flour has a low gluten content which 

allows the products to crumble (Hoseney, et al., 1998). Breeders normally do not cross hard and 

soft wheat genotypes because of the difficulty in recovering specific desirable end-use traits 

(Campbell, et al., 1999).  

Wheat can also be categorized into groups according to the seed color. The two basic 

groups are red and white wheat. Each group has certain traits that differ from one another. One 

major difference is the occurrence of pre-harvest sprouting of the seed types. White wheat is far 

more susceptible to pre-harvest sprouting it than red wheat (Fofana, et al., 2008). Pre-harvest 

sprouting is a condition where the seed, while still in the head, starts to germinate. Differences 

have also been found in the taste of products derived from the different types of wheat, although 

these differences have not been very consistent throughout tests. One test indicates that white 

wheat is less bitter compared to red and it was found to be sweeter, enabling bakers to use less 

sweeteners in products with white wheat (Symns, Cogswell 1991). However other tests that 

evaluated several sensory properties concluded otherwise. Differences in the sensory evaluation 

did not indicate significant differences in red and white wheat varieties (Armbrister, 1995).  

In Louisiana and across the southeastern United States soft red winter wheat is a major 

crop, but total acreage fluctuates constantly due to market and weather conditions. It was 
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estimated that in 2008 the total area planted with wheat in Louisiana reached 162,000 hectares 

(400,000 acres) while in 2010 it was only 50,600 hectares (125,000 acres) (USDA-NASS 2010). 

The value of wheat in Louisiana for 2008 was estimated to reach over $120,000,000 and in 2010 

it dropped to $26,400,000 (USDA-NASS 2010). In Louisiana wheat is commonly used as a 

winter cover crop and in a double cropping system with soybean and cotton (Boquet and Paxton, 

2005).  

1.2 Wheat Diseases  

The high rainfall combined with the warm and moist climate of Louisiana provides an 

environment that is optimum for the development of fungal and bacterial diseases. Wheat is 

susceptible to more diseases than most grains (Gramene, 2006). Disease indence and severity in 

wheat is greater in wet climates like the one in Louisiana, so breeding for resistance in the LSU 

program is of great importance.  Some of the small grain diseases that thrive in warm, humid 

environments are Fusarium head blight (Fusarium graminearum), stripe rust (Puccinia 

striiformis), leaf rust (Puccinia triticina), stem rust (Puccinia graminis), Septoria glume blotch 

(Stagnospora nodorum), Septoria leaf blotch (Septoria tritici), tan spot (Pryenophora tritici-

repentis), barley yellow dwarf virus (Luteoviridae luteovirus) and bacterial steak (Xanthomonas 

campestris) (Schafer, 1987).  

The causual agent of Fusarium head blight (FHB), also known as scab, is the parasitic 

fungus Fusarium graminearum. This fungus is known to infect and cause damage on several 

small grain crops including wheat, durum wheat, triticale, and barley (McMullen et al., 2008). 

Typical symptoms included a white-bleach colored head and small pink-orange spore masses on 

the kernels. Fusarium head blight can cause severe reduction in yield and quality on susceptible 

cultivars (McMullen et al., 2008). In heavily infected fields yield losses may reach 80%. The 
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highest incidence and severity of the disease in the country occurred between 1993 and 2001 

where the total economic loss in wheat and barley due to yield loss and quality reduction was 

estimated to be around $7.67 billion (McMullen, et al., 2012). Apart from yield loss this disease 

can also produce toxins harmful to humans and animals. In Louisiana isolates of Fusarium that 

produce nivalenol (NIV) rather than deoxynivalenol (DON) predominate and occur at moderate 

frequency in Arkansas and other states (Sarver, 2011).  Populations of Fusarium in the U.S., 

specifically the Midwest, that infect wheat and barley produce the mycotoxin DON. Recent 

surveys found populations of Fusarium which produce the mycotoxin nivalenol in regions of 

southwest Louisiana. This population is found to be genetically different than the DON 

producing populations in the Midwest (Gale, et al., 2011). These genetically distinct, NIV 

producing populations made up a majority of the strains found in southern Louisiana. In an 

evaluation, 150 strains from four parishes in Louisiana were collected in 2002, 2003, and 2005. 

The strains consisted of 83% NIV producing strains, 13% 3ADON strains, and the remaining are 

15ADO strains (Gale, et al., 2005). 

Over the past 20 years FHB has become a significant threat to wheat in all major 

production areas around the world. To help deal with this issue the US Wheat and Barley Scab 

Initiative (USWBSI) was created. The purpose of the initiative is produce effective control 

measures and resistant varieties that reduce the threat of FHB as quickly as possible. This 

includes the reduction of mycotoxin exposure to producers, processors and consumers of wheat 

and barley. There are currently 86 scientists in 24 universities and the USDA working on a wide 

range of research projects aimed at solving this issue (USWBSI 2013).  The LSU AgCenter 

wheat breeding program conducts annual trials to screen varieties and breeding lines for reaction 

to FHB. 
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The fungal disease septoria glume blotch caused by Stagnospora nodorum, can be found 

in many wheat growing areas around the world and thrives in wet conditions with temperatures 

up to 28°C. This fungus affects all above ground parts of the plant and overwinters/oversummers 

on infected stubble. Typical symptoms include red-brown lesions with a yellow halo. These 

lesions later develop into grayish-brown necrotic spots. The pathogen can be spread by 

windborne spores as well as infected seeds. Yield loss depends on a combination of the 

susceptibility of the cultivar, climatic conditions, and source of inoculum and can reach up to 

30% (CIMMYT, 2009). The disease reduces yield by causing shriveled, light weight grains. If 

infected seeds are planted, low germination and seeding rate also reduce yield potential. 

According to Cowger and Murphy (2007) septoria occurs commonly, but with varying degrees 

of severity, in the southeastern U.S. soft red winter wheat region. Acceptable levels of partial 

resistance are available in soft red winter wheat lines, however many widely grown varieties are 

susceptible. Septoria leaf blotch is another fungal disease caused by a different species of 

Septoria (Septoria tritici). 

Bacterial streak caused by Xanthomonas campestris is one of the major bacterial diseases 

found in wheat. For infections to occur an opening or wound as well as free water are required. 

Infection usually occurs after wind-blown particles or freeze damage injures leaf tissue which 

allows the bacteria to enter the plant. Aphid feeding can also result in elevated levels of bacterial 

streak. Symptoms start off as translucent olive-green streaks on the leaves and develop into 

yellow-brown steaks of various lengths. This disease is primarily transmitted through infected 

seeds in drier regions with cold climate (Hershman and Bachi 2010). Water splash and aphids are 

other means for dispersing inoculum (Rashid, et al., 2013). Under ideal conditions yield loss can 

reach up to 40% (Tillman, et al., 1996). Currently there are no effective or practical bactericides 
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for managing this disease as attempts to control the disease with chemicals have been 

unsuccessful. Host plant disease resistance offers the best protection against yield loss so 

developing resistant varieties is important. A problem in breeding for resistance to bacterial 

streak is the relatively low heritability of the trait. A test using soft red winter wheat in three 

locations in Louisiana concluded that heritability ranged from 0.12 to 0.70 (average 0.31) 

(Tillman and Harrison, 1996). Only a limited number of resistant genotypes have been identified 

that can be used in regional breeding programs so efforts were made to find additional sources of 

resistance. In a test conducted in 1992, (Tillman, et al., 1996) 5,000 bread wheat ascensions were 

inoculated and evaluated for resistance to bacterial streak. Results from the test suggest 26 

resistant ascensions for use in breeding programs in the southern US.    

Of all the wheat diseases, the different rusts are probably the most damaging due to their 

incidence, severity, genetic variability and frequent changes in virulence combination that allows 

them to overcome resistance. Rusts are parasitic fungi that belong to the basidiomycete phylum 

and can infect several different types of grasses. The term, rust fungus, refers to the yellow- or 

rust-colored urediospores, which are the main dispersal units of the pathogen (Watkins, 2009).  

Rusts are usually spread by wind-borne spores, making them hard to control. A single infected 

suceptible plant can produce enormous numbers of spores that can be spread through the same 

host plant or for greater distances. Rust spores can travel for thousands of miles in the 

atmosphere because their spores have pigmentation to protect against UV radiation and are 

relatively robust with thick walls which allows the spores to remain viable while transported over 

long distance (Viljanen-Rollinson, et al., 2007). The distance the spores can travel is also related 

to the altitude they are carried to. Spores have been collected at altitudes over 3,000 meters 

(10,000 feet). The physical traits of the spores such as their shape, size, density and surface area 
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allow the energy in the turbulent atmosphere to lift large numbers of spores from the fruiting 

structure in the plant canopy and keep them airborne for long periods of time (Isard and Russo 

2012).   

 Leaf rust caused by Puccinia triticina infects the leaves of wheat and triticale, causing 

small pustules on the leaves and when severe epidemics occur they can be found on the leaf 

sheaths and glumes. The pustules can be orange to brown and circular in shape. Leaf rust can be 

found worldwide wherever wheat is grown (Watkins, 2009). Temperatures between 20-25°C 

during the day and 15°
 
C during the night along with the presence of dew on the plant tissue 

offer favorable conditions for disease development. Yield loss over large regions is normally 

light to moderate with losses normally ranging from 1-20%. However, individual fields can be 

completely destroyed if the disease is severe before flowering (USDA 2012). Having an accurate 

way of predicting disease severity can be useful. An experiment conducted in Argentina 

(Moschini and Perez 1999) used data collected from leaf rust epidemics between 1972 to 1990  

to create a model that could predict severity (R
2
= 0.88). The model uses heat accumulation, days 

with relative humidity >70% without precipitation, and a cultivar resistance index as prediction 

factors. Expected and observed severity levels were the same in trials conducted in 1994 and 

1996 in Pergamino Experiment Station, Argentina (Moschini and Perez 1999). 

Puccinia graminis, the causal agent of stem rust, is a fungus that usually infects, but is 

not confined to the stems of several small grain crops (wheat, barley, rye, triticale, oat). 

Symptoms include brownish to dark red pustules that rupture the epidermis tissue on plants. 

Stem rust develops at an optimum temperature higher than other rusts (18-29°C) (Watkins, 

2009). Stem rust is generally considered the most damaging of all the rusts on wheat partially 

because it can affect several parts of the plant including the head. Stem rust infections are likely 
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to cause lodging of the plants, complicating harvest and increasing yield loss even more. The 

greatest losses occur when plants are infected in the early stages of their development. In very 

susceptible lines, loss can range between 50-90% (Wolf, et al., 2011).  This disease is 

responsible for at least 8 major epidemics on wheat across the United States since 1916, which 

exemplifies the ever present threat of rust on domestic cultivars (Watkins 2009). Stem rust 

spores travel thousands of miles every growing season. Urediospores are wind blowne northward 

every spring from Mexico into the United States. The traveling ranges from southern Texas, 

throughout the Great Plains and into southern Canada. In the fall the spores are disseminated 

back south towards wheat growing regions where winter wheat is beginning to grow (Nagarajan 

and Singh 1990). Recent studies have found that barberry serves as an alternate host during the 

sexual stage of the disease cycle (Jin, et al., 2010). 

There are currently a number of useful resistance genes for both leaf and stem rust, and 

the widespread use of resistant varieties helps lower yield loss and economic impact. In trials 

across six locations in Louisiana during 2005 Terral LA 841 had a leaf rust rating of 0% and the 

highest grain yield (89.3 bu/acre), while susceptible varieties like McCormick had an average 

45% leaf rust rating and yielded only 38.4 bu/acre (Harrison et al., 2005). There are over 100 

leaf rust resistance genes identified in wheat, however many of them are race specific. This 

conveys a vertical resistance which can easily be overcome by new races. In order to obtain 

effective, durable resistance these race specific genes are being combined with slow rusting 

genes that offer protection from several races. Lr34 and Lr46 are two commonly used slow rusting 

genes for leaf rust (Soria, et al., 2010). The types of markers commonly used to identify the 

major resistance genes are SSR, SNP and DART (Vida, et al., 2009). 
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Genes for resistance to stem rust are widely used by breeders. These genes are found in 

wheat and have been introgressed from related species, such as rye. There have been over 50 

stem rust (Sr) resistance genes identified (Das, et al., 2006). Genes and quatitative trait loci 

(QTL) for resistance have been found in chromosomes 1A, 1D, 2B, 2D, 3B, 4A, 4B, 5A, 5B, 5D, 

6B, 7A and 7D (Singh, et al., 2013). Some of these are major, specific genes are Sr31, Sr35, Sr57 

and some provide general, slow rusting resistance like Sr2. The Sr2 gene was introduced into 

wheat through an inter-specific cross with tetraploid emmer wheat in the 1920s. Since then this 

gene has been used throughout many parts of the world. The gene confers adult plant resistance 

and remains effective to all known races of stem rust, including Ug99. Ug99 is a virulent race of 

stem rust which was discovered in Uganda in 1999. Ug99 is a cause for concern because no other 

stem rust race has overcome so many resistance genes, including the widely used gene Sr31 (FAO 

2010).  However under strong disease pressure Sr2 does not provide sufficient protection by itself 

as it only confers partial resistance (Mago, et al., 2011). To provide a more complete resistance 

this gene must be combined with other major resistance gene targeted for local stem rust races. 

Sr35 is a major resistance gene that is currently of high importance because of its effectiveness 

against stem rust race Ug99. Sr35 was prioritized because it confers “near-immunity” against 

Ug99. This gene is located in chromosome 3A and can be identified with EST markers SFGH 

and AK331487 (Saintenac, et al., 2013). 

1.3 Stripe Rust 

The causal agent for Stripe rust is Puccinia striiformis. This fungus, a basidiomycete, is 

an obligate parasite. It is primarily dispersed by windblown urediniospores. Urediniospores were 

considered the only source of inoculum, however recent studies have determined that different 

species of barberry serve as alternate host for this pathogen as well as stem rust (Jin, et al., 
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2010). Survival between crop seasons is by dormant mycelium and uredinia on infected 

volunteer wheat in most areas. The disease affects wheat, barley, triticale, and several wild grass 

species. Usual symptoms include stunting of the plants and parallel rows of yellowish orange 

colored pustules on the leaves or spikes of adult plants. Yield losses in wheat due to the disease 

can range from 40 to 100% (Chen, et al., 2004). 

Of all the rusts, stripe rust has the lowest optimal temperature, which ranges from 10
°
-15

° 

C. However new races have adapted to warmer climates. Continual moisture for more than six 

hours is required for spores to germinate and infect new plants. Dew is more effective than 

rainfall for promoting spore germination and infection. Urediniospores are a functional form of 

spore stage which are produced on living hosts and dispersed over long distances to new hosts. 

Urediniospores that cause the initial infections in the area probably come from the southwest 

(Milus and Carthwright 2006). 

Because stripe rust is considered to be a fungal disease adapted to cooler climates it 

historically has been the most frequently destructive disease in wheat in the Pacific Northwest 

U.S. (Chen, et al., 2004). It occurrs mostly in the U.S. northwest and was considered a minor and 

sporadic problem in wheat in the U.S. southeast region. However over the past 15 years stripe 

rust has become a major threat to soft red winter wheat in the southeast. It has been a yearly 

problem since 2000 when it was first reported (Chen, et al., 2004). That year the most wide 

spread and severe epidemic occurred in the United States, with reports of the disease in 20 states 

east of the Rocky Mountains (Sthapit, et al., 2012).  According to Sthapit et al., (2012) “Based 

on an amplified fragment length polymorphism (AFLP) phenotype, the races causing epidemics 

east of the Rocky Mountains since 2000 are genetically distinct from races found in the United 

States before 2000 and are most likely the result of an exotic introduction”. The pathogen seems 
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to have adapted to our warmer climates through a physiological change and has become more 

aggressive, making it a serious problem for wheat producers in the southeast (Milus et al., 2009). 

Before 2000 there were 59 races of stripe rust named in the United States but only 4 were 

detected east of the Rocky Mountains and in few cases (Chen et al., 2002).  In 2000, 21 new 

races of stripe rust were identified in the United States, several of which were east of the Rocky 

Mountains (Chen 2007). A total of 40 new races were discovered in the country between 2000 

and 2004.  “Since then, new and more aggressive races with a wider range of virulence factors 

than the races identified before 2000 have been identified” (Chen, et al., 2004). 

In production areas within the southeast region the total yield loss due to stripe rust 

ranged from 10-70% depending on the degree of susceptibility and environmental factors (Hao, 

et al., 2011). The total yield loss in the US in 2000, the year several new races appeared, was 

9,685,000 bushels. In Louisiana the total loss was 49,500 bushels for the same year (Chen et al., 

2002).  The total economic loss due to stripe rust for the US in 2003 was estimated at 88,920,480 

bushels ($267,000,000). In addition to the yield loss, millions of dollars were spent on fungicide 

applications each year (Chen, et al., 2004). In 2008 the total loss of wheat due to stripe rust in 

Louisiana was about 338,000 bushels (Long, 2009) indicating an increase in the presence and 

virulence of the disease in the state.  

There are several commercial fungicides available that help reduce stripe rust incidence 

and yield loss. An experiment (Reid and Sward 2004) conducted in north Texas tested 6 

commercial brands (Tilt
®
, Quilt

®
, Stratego

®
, Headline

®
, Quadris

®
, and Folicur

®
) labeled for use 

on stripe rust on a susceptible soft red winter wheat variety known as Agripro Patton. The 

fungicide treatments were equally effective and all of them helped increase grain production 

significantly when compared to the untreated check. Yield increases over the untreated plots 
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ranged from 34 to 41% (Reid and Sward 2004). The approximate cost for triazole fungicides 

(Bayleton
®
, Tilt

®
 and Folicur

®
) in a trial ranged from $3.00/ha to over $12.00/ha. The greatest 

economic return in the trial was $222/ha when wheat was treated with a combination of Jockey® 

and Bayleton® compared to the untreated susceptible variety (Duff, Hamblin et al., 2006). 

According to Milus (2008) “Resistant varieties are the most cost-effective means of 

managing stripe rust and leaf rust, but new races of the pathogens can overcome some types of 

resistance. Little is known about the genes for stripe rust and leaf rust resistance in contemporary 

soft red winter wheat cultivars.” Some of the genes that have conferred general but not race 

specific resistance are Yr17, Yr18, and Yr29 (Suenaga, et al., 2003). There are also a number of 

major, specific genes that provide race specific resistance. Durable resistance can be obtained 

through a combination or pyramiding of major resistance genes and non-specific genes.  

Currently there are 65 designated stripe rust resistance genes (Yr1-Yr65) and 

approximately 40 temporarily designated genes (Cheng, et al., 2014). Some of the permanently 

designated genes that confer adult plant resistance are  Yr11, Yr12, Yr13, Yr14, Yr16, Yr18, Yr29, Yr30, 

Yr34, Yr36, Yr39, Yr46, Yr48 and Yr52 (Xu, et al., 2013). These genes are not race specific so they 

can provide partial protection against several races of stripe rust and are more durable.  However 

most resistance genes are considered all stage or seedling stage resistance. This type of resistance 

is race specific and controlled by a single or few genes and is usually overcome by new races, 

providing a short effective life (Hao, et al., 2011).  A small number of slow rusting genes are 

also available for breeders to incorporate into their material and complement with race specific 

genes. Slow rust genes provide horizontal or partial resistance to a number of races and work by 

increasing latent period and by decreasing uredinial size, infection frequency and spore 

production. Two of the commonly used slow rust genes for stripe rust are Yr18 and Yr29 
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(Rosewarne, Singh et al., 2008). There are still a number of resistance genes that are 

undesignated and some of these are adult plant resistance (APR) genes which could be used to 

pyramid with the large number of all stage resistance genes. There is a need to elucidate these 

novel genes so they can be incorporated into new varieties. 

The new races discovered in 2000 in our region were of great concern because they 

appeared to be virulent to commonly used resistance genes Yr8 and Yr9. The new races were the 

first to be reported virulent on these genes in the United States. According to Chen (2002) “the 

most important discovery of the 2000 race survey was the detection of 13 new races virulent on 

Yr8, Yr9, or both, because all the races identified prior to 2000 were avirulent on Yr8 and Yr9.”  

These races were widely distributed east of the Rocky Mountains in 2000 and were found in 

Louisiana (Chen et al., 2002).  The gene Yr9 is considered one of the most widely used resistance 

sources for stripe rust in wheat breeding history (Hao, et al., 2011).  Yr9 is commonly found in 

soft red winter wheat varieties east of the Rocky Mountains because of its linkage to stem rust 

resitance gene Sr31 and leaf rust resistance gene Lr26 (Markell and Milus 2008). 

The LSU AgCenter developed a variety named Terral LA841 that has recorded high 

levels of resistance to all stripe rust races in the region since its release in 1995. Initially the 

resistance was considered to be due to the gene Yr17. This gene is not race-specific and provides 

general resistance. The Yr17 gene is derived from Aegilops ventricosa and is found on 

chromosome 2A, specifically in the short arm. It is part of the gene cluster Lr37/Yr17/Sr38 and is 

commonly found in varieties in Europe, Australia and the US. This cluster has been widely used 

in breeding programs in the US and has provided durable resistance to stripe rust for years (Hao, 

et al., 2011). However when new stripe rust races were discovered, lines with the gene Yr17 were 

no longer resistant to prevalent races, while Terral LA841 remained resistant. In 2010 the variety 
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Jagger, which contains Yr17, was heavily infected with stripe rust (Duncan, et al., 2010). 

Therefore other, non-identified, genes were responsible for the resistance in LA841 to the new 

races of stripe rust. Studies are needed to identify the sources and genes of resistance in this 

variety. 

Table 1 Yr Resistance Genes table found in paper by Maccaferri et al., 2015 

Loci chr. 
start 

(%) 

end 

(%) 
Reference 

Yr10 1B 0 1.7 Ma, J., R. Zhou, Y. Dong, L. Wang, X. Wang 

et al., 2001 Molecular mapping and detection 

of the yellow rust resistance gene Yr26 in 

wheat transferred from Triticum turgidum L. 

using microsatellite markers. Euphytica 120: 

219–226. 

Yr9 1B 1.7 9.3 Lukaszewski, A. J., 2000 Manipulation of the 

1RS.1BL translocation in wheat by induced 

homoeologous recombination. Crop Sci. 40: 

216-225. 

YrAlp 1B 24.8 34.6 Catalogue of Gene Symbols for Wheat 

Yr15 1B 30.1 32.1 Cheng, P., L. S. Xu, M. N. Wang, D. R. See, 

and X. M. Chen, 2014 Molecular mapping of 

genes Yr64 and Yr65 for stripe rust resistance 

in hexaploid derivatives of durum wheat 

accessions PI 331260 and PI 480016. Theor. 

Appl. Genet. 127: 2267–2277. 

YrH52 1B 30.9 32.7 Cheng, P., L. S. Xu, M. N. Wang, D. R. See, 

and X. M. Chen, 2014 Molecular mapping of 

genes Yr64 and Yr65 for stripe rust resistance 

in hexaploid derivatives of durum wheat 

accessions PI 331260 and PI 480016. Theor. 

Appl. Genet. 127: 2267–2277. 

 

Yr64 1B 32.7 34.5 Cheng, P., L. S. Xu, M. N. Wang, D. R. See, 

and X. M. Chen, 2014 Molecular mapping of 

genes Yr64 and Yr65 for stripe rust resistance 

in hexaploid derivatives of durum wheat 

accessions PI 331260 and PI 480016. Theor. 

Appl. Genet. 127: 2267–2277. 

 

Yr650 1B 37.4 39 Cheng, P., L. S. Xu, M. N. Wang, D. R. See, 

and X. M. Chen, 2014 Molecular mapping of 

genes Yr64 and Yr65 for stripe rust resistance 

in hexaploid derivatives of durum wheat 

accessions PI 331260. Theor. Appl. Genet.  
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Table 1 Yr Resistance genes table found in paper by Maccaferri et al., 2015 contd. 

Yr24/Yr26 1B 39 41.3 Cheng, P., L. S. Xu, M. N. Wang, D. R. See, 

and X. M. Chen, 2014 Molecular mapping of 

genes Yr64 and Yr65 for stripe rust resistance 

in hexaploid derivatives of durum wheat 

accessions PI 331260 and PI 480016. Theor. 

Appl. Genet. 127: 2267–2277. 

YrExp1 1B 70.8 75.2 Catalogue of Gene Symbols for Wheat 

Yr29/Lr46 1B 90 100 Lan, C., G. M. Rosewarne, R. P. Singh, S. A. 

Herrera-Foessel, J. Huerta-Espino et al., 2014 

QTL characterization of resistance to leaf rust 

and stripe rust in the spring wheat line 

Francolin#1. Mol. Breed. 34: 789–803. 

Yr17 (2NS -2AS 

translocation) 

2A 0 20 Helguera, M., I. A. Khan, J. Kolmer, D. 

Lijavetzky, L. Zhong-qi et al., 2003 PCR 

assays for the cluster of rust resistance genes 

and their use to develop isogenic hard red 

spring wheat lines. Crop Sci. 43: 1839–1847. 

Yr56 2A 2 6.3 Catalogue of Gene Symbols for Wheat 

Yrxy2 2A 33.3 41.4 Zhou, X. L., W. L. Wang, L. L. Wang, D. Y. 

Hou, J. X. Jing et al., 2011 Genetics and 

molecular mapping of genes for high-

temperature resistance to stripe rust in wheat 

cultivar Xiaoyan 54. Theor. Appl. Genet. 123: 

431–438. 

Yr32 2A 48.3 59.5 Eriksen, L., F. Afshari, M. J. Christiansen, R. 

A. McIntosh, A. Jahoor et al., 2004 Yr32 for 

resistance to stripe (yellow) rust present in the 

wheat cultivar Carstens V. Theor. Appl. 

Genet. 108: 567–575. 

Yr1 2A 75.9 83.2 Catalogue of Gene Symbols for Wheat 

YrP81b 2B 27.4 29.2 Catalogue of Gene Symbols for Wheat 

YrC51 2B 27.5 29.1 Zheng, J., Z. Yan, L. Zhao, S. Li, Z. Zhang et 

al., 2014 Molecular mapping of a stripe rust 

resistance gene in wheat line C51. J. Genet. 

93: 443–450. 

Yr41 2B 29.6 47.9 Catalogue of Gene Symbols for Wheat 

YrKK 2B 30.4 44.3 Catalogue of Gene Symbols for Wheat 

YrH9014 2B 32.3 33.5 

Ma, D., D. Y. Hou, M. Tang, H. Wang, Q. Li 

et al., 2013 Genetic analysis and molecular 

mapping of a stripe rust resistance gene 

YrH9014 in wheat line H9014-14-4-6-1. J. 

Integr. Agric. 12: 638–645. 

Yr27 2B 34.4 36.4 Catalogue of Gene Symbols for Wheat 
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Table 1 Yr Resistance genes table found in paper by Maccaferri et al., 2015 contd. 

YrH9014 2B 32.3 33.5 Ma, D., D. Y. Hou, M. Tang, H. Wang, Q. Li 

et al., 2013 Genetic analysis and molecular 

mapping of a stripe rust resistance gene 

YrH9014 in wheat line H9014-14-4-6-1. J. 

Integr. Agric. 12: 638–645. 

Yr5 2B 62.1 64.5 McGrann, G. R., P. H. Smith, C. Burt, G. R. 

Mateos, T. N. Chama et al., 2014 Genomic 

and genetic analysis of the wheat race-specific 

yellow rust resistance gene Yr5. J. Plant Sci. 

Mol. Breed. 3: 

http://dx.doi.org/10.7243/2050-2389-3-2. 

Yr44 2B 63.9 66.1 Xu, L. S., M. N. Wang, P. Cheng, Z. S. Kang, 

S. H. Hulbert et al., 2013 Molecular mapping 

of Yr53, a new gene for stripe rust resistance 

in durum wheat accession PI 480148 and its 

transfer to common wheat. Theor. Appl. 

Genet. 126: 523–533. 

Yr53 2B 66.1 78.1 Xu, L. S., M. N. Wang, P. Cheng, Z. S. Kang, 

S. H. Hulbert et al., 2013 Molecular mapping 

of Yr53, a new gene for stripe rust resistance 

in durum wheat accession PI 480148 and its 

transfer to common wheat. Theor. Appl. 

Genet. 126: 523–533. 

Yr43 2B 78.1 82.1 Xu, L. S., M. N. Wang, P. Cheng, Z. S. Kang, 

S. H. Hulbert et al., 2013 Molecular mapping 

of Yr53, a new gene for stripe rust resistance 

in durum wheat accession PI 480148 and its 

transfer to common wheat. Theor. Appl. 

Genet. 126: 523–533. 

Yr3 2B 86.8 90.7 Catalogue of Gene Symbols for Wheat 

Yr55 2D 67.1 74.5 Catalogue of Gene Symbols for Wheat 

Yr54 2D 70.7 80.3 Catalogue of Gene Symbols for Wheat 

Yr4 3B 0 1.8 Catalogue of Gene Symbols for Wheat 

Yr57 3B 0 10 Catalogue of Gene Symbols for Wheat 

Yr30 3B 2.3 6.9 Suenaga, K., R. P. Singh, J. Huerta-Espino, 

and H. M. William, 2003 Microsatellite 

markers for genes Lr34/Yr18 and other 

quantitative trait loci for leaf rust and stripe 

rust resistance in bread wheat. 

Phytopathology 93: 881–890. 

Yrns-B1 3B 14.9 16.5 Catalogue of Gene Symbols for Wheat 

Yr66 3D 0.4 2.4 Catalogue of Gene Symbols for Wheat 

Yr49 3D 7.1 8.6 Catalogue of Gene Symbols for Wheat 

Yr45 3D 60.2 72 Catalogue of Gene Symbols for Wheat 
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Table 1 Yr Resistance genes table found in paper by Maccaferri et al., 2015 contd. 

Yr51 4A 70.5 80.8 Randhawa, M., U. Bansal, M. Valárik, B. 

Klocová, J. Doležel et al., 2014 Molecular 

mapping of stripe rust resistance gene Yr51 in 

chromosome 4AL of wheat. Theor. Appl. 

Genet. 127: 317–324. 

Yr60 4A 83.3 85.7 Catalogue of Gene Symbols for Wheat 

Yr50 4B 39 68.6 Liu, J., Z. Chang, X. Zhang, Z. Yang, X. Li et 

al., 2013 Putative Thinopyrum intermedium-

derived stripe rust resistance gene Yr50 maps 

on wheat chromosome arm 4BL. Theor. Appl. 

Genet. 126: 265–274. 

Yr62 4B 52.1 58.1 Lu, Y., M. Wang, X. Chen, D. See, S. Chao et 

al., 2014 Mapping of Yr62 and a small-effect 

QTL for high-temperature adult-plant 

resistance to stripe rust in spring wheat PI 

192252. Theor. Appl. Genet. 127: 1449–1459. 

Yr28 4D 9.4 11.4 Catalogue of Gene Symbols for Wheat 

YrAS2388 4D 14 15.9 Catalogue of Gene Symbols for Wheat 

Yr46/Lr67 4D 49.5 50.8 Herrera-Foessel, S. A., E. S. Lagudah, J. 

Huerta-Espino, M. J. Hayden, H. S. Bariana et 

al., 2011 New slow-rusting leaf rust and stripe 

rust resistance genes Lr67 and Yr46 in wheat 

are pleiotropic or closely linked. Theor. Appl. 

Genet. 122: 239–249. 

Yr48 5A 86.8 100 Catalogue of Gene Symbols for Wheat 

Yr34 5A 89.9 100 Catalogue of Gene Symbols for Wheat 

Yr47 5B 3.3 10 Catalogue of Gene Symbols for Wheat 

YrExp2 5B 53.8 55.2 Catalogue of Gene Symbols for Wheat 

Yr40 5D 0 4 Catalogue of Gene Symbols for Wheat 

YrLM168 6A 56.9 67.3 Feng, J., G. Chen, Y. Wei, Y. Liu, Q. Jiang et 

al., 2014 Identification and genetic mapping 

of a recessive gene for resistance to stripe rust 

in wheat line LM168-1. Mol. Breed. 33: 601–

609. 

Yr35 6B 0 14.9 Catalogue of Gene Symbols for Wheat 

Yr36 6B 23.1 25.1 Uauy, C., J. C. Brevis, X. Chen, I. Khan, L. 

Jackson et al., 2005 High-temperature adult-

plant (HTAP) stripe rust resistance gene Yr36 

from Triticum turgidum ssp. dicoccoides is 

closely linked to the grain protein content 

locus Gpc-B1. Theor. Appl. Genet. 112: 97–

105. 

Yr61 7A 19.5 32.4 Catalogue of Gene Symbols for Wheat 
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Table 1 Yr Resistance genes table found in paper by Maccaferri et al., 2015 contd. 

Yrxy1 7A 42 49.3 Zhou, X. L., W. L. Wang, L. L. Wang, D. Y. 

Hou, J. X. Jing et al., 2011 Genetics and 

molecular mapping of genes for high-

temperature resistance to stripe rust in wheat 

cultivar Xiaoyan 54. Theor. Appl. Genet. 123: 

431–438. 

Yr63 7B 0 1 Catalogue of Gene Symbols for Wheat 

Yr39 7B 27.5 48.1 Lin, F., and X. M. Chen, 2007 Genetics and 

molecular mapping of genes for race-specific 

all-stage resistance and non-race-specific 

high-temperature adult-plant resistance to 

stripe rust in spring wheat cultivar Alpowa. 

Theor. Appl. Genet. 114: 1277–1287. 

Yr67 7B 75.5 77.5 Catalogue of Gene Symbols for Wheat 

YrZH84 7B 80.4 82.7 Catalogue of Gene Symbols for Wheat 

Yr59 7B 80.9 84.7 Catalogue of Gene Symbols for Wheat 

Yr52 7B 81.6 83.2 Catalogue of Gene Symbols for Wheat 

YrC591 7B 82.7 87.8 Catalogue of Gene Symbols for Wheat 

Yr18/Lr34 (csLV23) 7D 26.1 33.6 Yang, E.-N., G. M. Rosewarne, S. A. Herrera-

Foessel, J. Huerta-Espino, Z.-X. Tang et al., 

2013 QTL analysis of the spring wheat 

“Chapio” identifies stable stripe rust 

resistance despite inter-continental genotype 

× environment interactions. Theor. Appl. 

Genet. 126: 1721–1732. 

Yr33 7D 49.8 60.2 Catalogue of Gene Symbols for Wheat 

Genes are arranged by chromosomes. (Maccaferri et al., 2015) 

 

1.4 QTL Mapping 

QTL maps are a common method used to discover the location of genes for complex 

traits. “A QTL is a region of any genome that is responsible for variation in the quantitative trait 

of interest” (Doerge 2002). The quantitative trait of interest in our case is resistance to stripe rust 

in LA841. Durable disease resistance is a complex trait, controlled by several genes, and it can 

be quantified. Qualitative resistance, or single gene, is normally not durable or effective for 

controlling diseases over time (Rossi, et al., 2006). So the durable resistance found in LA841 

may be due to the presence of multiple resistance genes, making it a quantitative trait. 
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According to Cruzan (1998) one of the essential steps necessary to the determine the 

location of a disease resistance gene is to find DNA markers that are genetically linked with the 

resistance gene in order to identify its chromosomal location, a procedure known as genetic 

mapping. A genetic or linkage map is like a road map of an organism’s chromosome using 

molecular markers. These maps indicate the position and genetic distance between the markers in 

the different chromosomes (Patterson and Tanksley, 1991).  

DNA markers are used to locate QTL on maps based on the principle of genetic linkage. 

“The importance of genetic linkage is that DNA markers that are sufficiently close to the disease 

resistance gene will tend to  be inherited together with the disease gene in pedigrees—and the 

closer the markers, the stronger this association” (Paterson and Tanksley, 1991). So basically 

genes that are sufficiently close or tightly linked to markers will be inherited together from 

parent to progeny with a higher frequency than markers that are further apart. Since we know the 

location of the markers we can determine the location of the gene of interest by using the tightly 

linked marker. 

Markers that are different in the parents (polymorphic) are used to construct the linkage 

map. The genotypic information obtained from scoring these markers is compared to the 

phenotypic information obtained in field trials. Once these calculations are completed a test of 

likelihood is used to determine the linkage between a location on the linkage map and the QTL. 

More specifically the linkage is determined by calculating an odds ratio (odds of linkage versus 

no linkage). This ratio is expressed as a logarithm of ratio and is known as the logarithm of odds 

(LOD) value. The threshold LOD value to consider a QTL as linked to a location on a map is 

typically around 3. A LOD value of 3 states that linkage is 1,000 times more likely to occur than 
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no linkage (Collard, et al., 2005). So the position of a QTL can be determined with respect to the 

highest LOD value and the location of the flanking markers.  

1.5 Molecular Markers 

To develop a map, molecular markers known as Simple Sequence Repeats (SSR) and 

Amplified Fragment Length Polymorphism (AFLP) are often used. SSRs are among the most 

widely used for breeding and map development purposes (Cavalcanti and Wilkinson 2007). 

SSRs, or microsatellites, are PCR-based molecular markers used to indicate polymorphism in the 

DNA sequence between individuals and for genetic mapping (Liu, 1996). According to Liu 

(1996) SSRs are ideal markers for genetic mapping population studies for several reasons. Some 

of the most important reasons are their abundance, high level of polymorphism, wide dispersion 

in diverse genomes, ease of assay by the polymerase chain reaction (PCR) and ease of 

dissemination between laboratories. These markers work by detecting the number of copies of 

short DNA sequences that are repeated in order or in tandem. So SSRs may be different amongst 

individuals depending on the sequence, length of the unit and repeating tandem copies that occur 

in each individual’s genome (Kumar, 1999). 

AFLP markers are also PCR based however the methodology required for these markers 

is more complicated when compared to SSR markers (Collard, et al., 2005). Steps prior to the 

use of primers and PCR are required for these markers to function properly. Initially the genomic 

DNA is digested using restriction enzymes, typically Eco RI. This produces a large number of 

DNA fragments flanked on both sides by the nucleotides or sites that remain from the enzyme 

used to digest. Afterwards specific adapters that match the ends of the fragments are ligated 

using the enzyme DNA ligase. The adapted product is then pre-amplified. The remaining double 

stranded fragments are ready to be used in PCR with selective primers (Mitton 1994).  
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The major advantage of AFLP markers is the large number of polymorphic bands that 

can be obtained in an analysis. However this system only detects dominant markers, meaning it 

can’t distinguish heterozygous ones from the dominant. The complexity of the profiles produced 

by AFLPs makes it complicated to compare information from different laboratories and mapping 

populations. The use of SSR markers whose location are known and are locus specific helps 

overcome this problem by providing useful anchor points. These anchor points are used as a 

reference to associate different linkage groups produced in different mapping populations by 

different laboratories (Cavalcanti and Wilkinson 2007). 

 

1.6 Previous Work 

  Over 140 QTL for stripe rust resistance in wheat have been described in over 30 

publications. It is probable that many of these QTL contain identical genes which have been 

dispersed into different backgrounds and lines through breeding and germplasm exchange. These 

genes could have been selected by phenotypic evaluations in stripe rust infected locations. QTL 

have been found on every chromosome except for 5D (Rosewarne, et al., 2013). However little 

is known about the extent and variation of resistance in soft red winter lines in the southeast 

United States, mostly due to the relatively new presence of the disease in the local varieties 

(Christopher, et al., 2013). Two soft red winter wheat lines from the region which have been 

mapped for stipe rust resistance are Pioneer 26R61 and USG 3555. Both of these varieties have 

shown resistance to new stripe rust races prevalent in the southeast U.S.  The Pioneer variety was 

found to have a major QTL in chromosome 2A which explained 56% of the phenotypic variation 

and a minor QTL in chromosome 6A responsible for 6-7% of the phenotypic variation (Hao, et 

al., 2011). USG 3555 was found to have 3 QTL in chromosomes 1A, 4B and 7D (Christopher, et 

al., 2013). 
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1.7 Justification 

Rusts are cause by fungi that mutate and evolve very quickly so this causes problems 

with developing varieties with durable resistance (Yu, et al., 2011). This is the reason that many 

resistance genes have been overcome by new races. There is a pressing need for discovering new 

sources and genes for resistance to this disease so they can be incorporated into already existing 

varieties or for the development of new resistant ones. With the availability of several molecular 

markers for resistance genes we can implement a gene pyramiding strategy where we incorporate 

several sources of resistance into one variety. This is why a goal of this project is to discover the 

new unidentified genes and their location.  

1.8 Objectives 

1) Map QTL linked to stripe rust resistance genes in the wheat variety Terral LA841.  

2) Initialize work to identify the markers linked to gene or genes that confer resistance to stripe  

rust in the wheat variety Terral LA84.   
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Chapter II 

Materials and Methods 

2.1 Mapping Population 

 For this study, an F2 population derived from a cross between wheat breeding line 

NC06BGTAG12 and Terral LA841 was used with 190 individuals planted in the field at Ben 

Hur Farm in Baton Rouge, LA. The wheat breeding line NC06BGTAG12, the susceptible parent, 

was developed at North Carolina State University by Dr. Paul Murphy for resistance to powdery 

mildew. It had 60% stripe rust infection in previous trials. Terral LA841, which was developed 

by the LSU AgCenter, has remained resistant to different races of stripe rust over many 

environments and years. Resistance in this variety was believed to be due to of the gene Yr17, 

however, according to Milus (2009) this gene has become ineffective against new stripe rust 

races. Other varieties carrying this gene have become susceptible to new races of stripe rust, so 

this variety appears to contain additional/novel resistance genes. The objective is to identify 

genes that provide resistance to multiple races of stripe rust in this variety and develop molecular 

markers linked to the other genes for marker-assisted breeding.  

2.2 DNA Extraction 

The F2 population was planted in the field at Ben Hur in November of 2011 and thinned 

in early seedling stage so individual plants could be selected. Leaf tissue was collected from 190 

individual F2 plants and the two parents for genomic DNA extraction. The total genomic DNA 

was extracted using the C-TAB mini prep protocol modified after Doyle and Doyle (1987). The 

quantity and quality of the DNA was determined by using ND-100 spectrophotometer 

(NanoDrop Technologies Inc., Wilmington, DE). The total genomic DNA was diluted to a 

working concentration of 25ng/µl and stored at 4°
 
C. 
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2.3 Seed Collection 

 The 190 F2 plants were individually hand harvested and threshed. The F2:3 seed was 

stored in a freezer at 4°
 
C to prevent insect or fungal damage. 

2.4 Genotyping  

 2.4.1 Molecular markers 

 Polymorphism assay was performed on the parents of the mapping population with 501 

SSR and 128 AFLP primer combinations. SSR markers were selected from the Grain-Genes data 

base for wheat (http://wheat.pw.usda.gov/GG3/). A total of 64 SSR markers were polymorphic, 

while only 13 AFLP primer combinations produced high number of polymorphic bands (152 

total). All 216 polymorphic markers were selected to genotype the 190 F2 lines. 

Table 2. List of AFLP primer combinations used and number of polymorphic bands for each 
AFLP Combination Polymorphic 

Band 
Eco RI AAG700 X MSE I ACC 7 

Eco RI AGA800 X MSE I ACC 4 

Eco RI AAG700 X MSE I ACT  4 

Eco RI AGA800 X MSE I ACT  12 

Eco RI AAG700 X MSE I ATA  9 

Eco RI AGA800 X MSE I ATA  5 

Eco RI AAG700 X MSE I TCC  9 

Eco RI AGA800 X MSE I TCC 5 

Eco RI AAG700 X MSE I TCG  6 

Eco RI AGA800 X MSE I TCG 5 

Eco RI AAG700 X MSE I TGT 4 

Eco RI AGA800 X MSE I TGT 4 

Eco RI AAG700 X MSE I GCG  12 

Eco RI AGA800 X MSE I GCG  7 

Eco RI AAG700 X MSE I GGT  11 

Eco RI AGA800 X MSE I GGT 7 
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Table 2. List of AFLP primer combinations used and number of polymorphic bands for each 

contd. 
 

 

 

 

 

 

 

 

Table 3. List of polymorphic SSR markers used in study.                                                                 

SSR 

Marker Primer (Forward) Primer (Reverse) Chr 

BARC1020 5'  GGG GCA ATC GTC GAC GCG TCC TC   3' 5'  CCC GGC ACA AAA CCA CCATCG ACT   3' \N 

BARC120 5'   CCC CCT CTC TTC CTC AT  3' 5'   ATA TAG CTC CCC CAT TTC CT  3' 1A 

BARC17 5'  GCGCAACATATTCAGCTCAACA  3' 5'  TCCACATCTCGTCCCTCATAGTTTG  3' 1A 

BARC263 5'  GGAAGCGCGTCAGCACTAGGCAAC  3' 5'  GGCTTCTAGGTGCTGCGGCTTTTGTC  3' 1A 

BARC61 5'  TGCATACATTGATTCATAACTCTCT  3' 5'  TCTTCGAGCGTTATGATTGAT  3' 1B 

BARC86 5'    GCG CTT GCT TTA TTA GTA GGT AT   3' 5'    TCC CAC GAT AGT ATT TGA TGT T   3' 1D 

BARC99 5'  CGCATTCTTTCGCATTCTCTGTCATA  3' 5'  CGCATACTGTGTGTGTTCCTGGTTAGA  3' 1D 

wmc24 5' GTGAGCAATTTTGATTATACTG 3' 5' TACCCTGATGCTGTAATATGTG 3' 1A 

wmc336 5' GTCTTACCCCGCGATCTGC 3' 5'GTCTTACCCCGCGATCTGC 3' 1D 

wmc432 5' ATGACACCAGATCTAGCAC 3' 5' AATATTGGCATGATTACACA 3' 1D 

BARC35 5'  GCGGTGTGCATGCTTGTGTGTAGGAGT  3' 5'  GCGTAGTGTAGTATGTGGCCGATTATT  3' 2B 

BARC159 5'  CGCAATTTATTATCGGTTTTAGGAA  3' 5'  CGCCCGATAGTTTTTCTAATTTCTGA  3' 2D 

BARC219 5'  GCG ATC CCA CAA TGATG ACA ACT TC   3' 5'  GGA CGT CCG ATC GAA TTG GTT T   3' 2D 

BARC297 5'  GCG TAG GAG AGA C CCC AAA GGT T   3' 5'  GCG TGC GGA CTC TG AAT CAT TAC A   3' 2D 

Xgwm636 5' CGGTAGTTTTTAGCAAAGAG 3' 5' CCTTACAGTTCTTGGCAGAA 3' 2A 

wmc25 5' TCTGGCCAGGATCAATATTACT 3' 5' TAAGATACATAGATCCAACACC 3' 2B 

BARC1044 5'  GCG TAT GTA TGTTA TTT TCC TAT CT   3' 5'  CCC AAT TTT GCT AAG TTC ACT    3' 3A 

BARC310 5'  GGG CGG CGC ATG TGC ACC TA   3' 5'  GCG TGG AAG CGA CTA AAT CAA CT   3' 3A 

BARC45 5'  CCCAGATGCAATGAAACCACAAT  3' 5'  GCGTAGAACTGAAGCGTAAAATTA  3' 3A 

BARC57 5'  GCGACCACCTCAGCCAACTTATTATGT  3' 5'  GCGGGGAGGCACATTCATAGGAGT  3' 3A 

BARC1111 5'  CGC TTC TCA TCA GTA TGT ATC CAA T  3' 5'  CGC AAT CCC AATT CCA TT TCT ACT T  3' 3B 

BARC164 5'  TGCAAACTAATCACCAGCGTAA  3' 5'  CGCTTTCTAAACTGTTCGGATTTCTAA  3' 3B 

BARC187 5'  GTGGTATTTCAGGTGGAGTTGTTTTA  3' 5'  CGGAGGAGCAGTAAGGAAGG  3' 3B 

BARC71 5'  GCGCTTGTTCCTCACCTGCTCATA  3' 5'  GCGTATATTCTCTCGTCTCTTGTTGGTT  3' 3D 

wmc623 5' ACGATTGGCCACAGAGGAG 3' 5' CAGTGACCAATAGTGGAGGTCA 3' 3B 

Eco RI AAG700 X MSE I TCA   5 

Eco RI AGA800 X MSE I TCA 5 

Eco RI AGG700 X MSE I AGC  4 

Eco RI ACC800 X MSE I AGC 4 

Eco RI AGG700 X MSE I AAT  4 

Eco RI ACC800 X MSE I AAT  5 

Eco RI AGG700 X MSE I GTG  4 

Eco RI ACC800 X MSE I GTG  4 

Eco RI AGG700 X MSE I GTC  4 

Eco RI ACC800 X MSE I GTC 3 
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Table 3. List of polymorphic SSR markers used in study. contd. 

BARC106 5'  GCCCTCAAATAATTACGCCAATCCTATG  3' 5'  GCGTCAAGATCAGAAGGCTCATTATTG  3' 4A 

BARC153 5'  CGCGCCTTGCTTTATTAGTATTAGTATT  3' 5'  GCGGCATGCACATATAATTCTCTTGACT  3' 4A 

BARC170 5'  CGCTTGACTTTGAATGGCTGAACA  3' 5'  CGCCCACTTTTTACCTAATCCTTTTGAA  3' 4A 

BARC184 5'  TTCGGTGATATCTTTTCCCCTTGA  3' 5'  CCGAGTTGACTGTGTGGGCTTGCTG  3' 4A 

BARC190 5'  CCG TAT GCA AAT CTG ACA AAG TTA   3' 5'  GCG ATC GTT CTC TTC TCTC CTA CTC    3' 4A 

BARC236 5'  GCG AAA ATT GTC ACC CTT C CAG TA   3' 5'  CGT TCG TAC ACA CCA TG TCA CTT C   3' 4A 

BARC343 5'  GGC CTA ATT ACA AGT CCA AAA G  3' 5'  GCT CAA AGT AAA GTT CAC GAA TAT  3' 4A 

BARC78 5'  CTCCCCGGTCAAGTTTAATCTCT  3' 5'  GCGACATGGGAATTTCGAAGTGCCTAA  3' 4A 

BARC163 5'  GCGTGTTTTAAGGTATTTTCCATTTTCT  3' 5'  GCGCATCCTGTTCCTCCATTCATA  3' 4B 

BARC1118 5'  CGC AGT TGC CTC CCT TGTAG ATG TT   3' 5'  CGC TTA TTC CTT TCCAT TGG GTT TG   3' 4D 

wmc47 5' GAAACAGGGTTAACCATGCCAA 3' 5' ATGGTGCTGCCAACAACATACA 3' 4B 

Xgwm251 5' CAACTGGTTGCTACACAAGCA 3' 5' GGGATGTCTGTTCCATCTTAG 3' 4B 

BARC122 5'  CCCGTGTATATCCAGGAGTG  3' 5'  CAGCCCTTGTGATGTGATG  3' 5A 

BARC141 5'  GGCCCATGGATAATTTTTGAAATG  3' 5'  CAATTCGGCCAAAGAAGAAGTCA  3' 5A 

BARC151 5'  TGAGGAAAATGTCTCTATAGCATCC  3' 5'  CGCATAAACACCTTCGCTCTTCCACTC  3' 5A 

BARC301 5'  CGC AAC TAT CCA ACG CAG ACC A   3' 5'  CGG TGA TCG GCA AAT AAA TA   3' 5A 

BARC40 5'  GCCGCCTACCACAGAGTTGCAGCT  3' 5'  GCGGCATTGACAAGACCATAGC  3' 5A 

BARC142 5'  CCGGTGAGAGGACTAAAA  3' 5'  GGCCTGTCAATTATGAGC  3' 5B 

BARC4 5'  GCGTGTTTGTGTCTGCGTTCTA  3' 5'  CACCACACATGCCACCTTCTTT  3' 5B 

BARC59 5'  GCGTTGGCTAATCATCGTTCCTTC  3' 5'  AGCACCCTACCCAGCGTCAGTCAAT  3' 5B 

BARC143 5'  TTGTGCCAAATCAAGAACAT  3' 5'  GGTTGGGCTAGGATGAAAAT  3' 5D 

BARC161 5'  GCG AAA GGG  GCT AAG TAA CAC TAA  3' 5'  GCG CAG AAC ACA GGG TAT CGT C  3' 5D 

BARC177 5'  GCG ATC CTG TTG TTG AGC TGC ATA A  3' 5'  TCC CGT TTT CCC GTG TGT TAG TCT A  3' 5D 

BARC44 5'  CCCTACAAAATACGAACATGAAGTCAG  3' 5'  GGGTCCTACTCAGAAGTGACAGTCAAC  3' 5D 

wmc713 5' ACATAGCATCCCATACTGAGAGAGG 5' ATGCGGGGAATAGAGACACAC 3' 5A 

BARC118 5'   AGT TGC CGC TTC TTT TCA TTT TT  3' 5'  AGA GGT CCA TTT TTC GTC CTT TGA C   3' 6A 

BARC134 5'  CCGTGCTGCAAATGAACAC  3' 5'  AGTTGCCGGTTCCCATTGTCA  3' 6B 

BARC1121 5'  GCG AGC AAA CTG ATC CCA AAA AG   3' 5'  TAT CGG TGA GTA CGC CAA AAA CA   3' 6D 

BARC204 5'  CGCAGAAGAAAAACCTCGCAGAAAACC  3' 5'  CGCAGTGTATCCAAATGGGCAAGC  3' 6D 

BARC54 5'  GCGAACAGGAGGACAGAGCACGAGAG  3' 5'  GCGCTTTCCCACGTTCCATGTTTCT  3' 6D 

BARC96 5'  AAGCCTTGTTGTTCCGTATTATT  3' 5'  GCGGTTTATATTTTTGGTTGAGCATTTT  3' 6D 

wmc419 5' GTTTCGGATAAAACCGGAGTGC 3' 5' ACTACTTGTGGGTTATCACCAGCC 3' 6B 

cfd49 5' TGAGTTCTTCTGGTGAGGCA 3' 5' GAATCGGTTCACAAGGGAAA 3' 6D 

BARC108 5'  GCGGGTCGTTTCCTGGAAATTCATCTAA  3' 5'  GCGAAATGATTGGCGTTACACCTGTTG  3' 7A 

BARC22 5'    GCG ACA TCC GAT TTC TAC AAC A   3' 5'    CAC GCA TAACG AAC ACG CAT CTG    3' 7A 

BARC275 5'  GCG TTT GGT CAG AAT AG GAA GAT    3' 5'  GCG TAT GTT CGTT AGT GTGT TAT GC   3' 7A 

BARC255 5'  GTGGCGGCTTGCGGGTGGCTGAGTA  3' 5'  GGGTCGGCTAGCCTTCTTTTATGTT  3' 7B 

BARC172 5'  GCGAAATGTGATGGGGTTTATCTA  3' 5'  GCGATTTGATTTAACTTTAGCAGTGAG  3' 7D 

Xgwm350 5' ACCTCATCCACATGTTCTACG 3' 5' GCATGGATAGGACGCCC 3' 7A 

wmc479 5' GACCTAAGCCCAGTGTCATCAG 3' 5' AGACTCTTGGCTTTGGATACGG 3' 7A 
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 2.4.2 Polymerase chain reaction (PCR) 

 For the SSR markers, 100 ng of genomic DNA were used in a final volume of 25 µl for 

every reaction which contained 5 µl of 5X PCR buffer, 2.5 µl of 25 mM MgCl2, 2.5 µl of 2 mM 

dNTP mix, 1 µl of forward and reverse primer, 0.2 µl of 5U/µl Taq DNA polymerase (Promega, 

San Luis Obispo, CA) and 8.8 µl of ddH2O. Amplifications of DNA was performed in a 

Thermocycler (Biorad, Hercules, Ca) using a profile: (1) initial denaturation 95
° 
C, 4 min; (2) 35 

cycles of 95
° 
C, 45 sec; 52-55

° 
C, 45 sec; 72

° 
C, 1 min; and (3) final extension 72

° 
C, 7 min. The 

PCR product was resolved on a 4.5 % SFR agarose (Amresco, Solomon, OH) gel, already 

containing ethidium bromide, in 0.5 X TBE buffer for approximately 4 hours at 100 volts. The 

gel was photographed using a KODAK Gel Logic 200 Imaging system (Kodak, New Haven, 

CT). 

 For the AFLP marker analysis, 375 ng of genomic DNA were digested overnight at 37
° 
C 

using the restriction enzymes Mse I (5,000 units) and Eco RI (5,000 units). The digested 

fragments were ligated at room temperature for 5 hours with Eco RI and Mse I adapters using 20 

units of the enzyme ligase. The adapted fragments were pre-amplified using primers Eco RI + A 

oligo and Mse I + C oligo. The pre-amplification product was used for selective amplification. 

The final volume for each reaction of the selective amplification was 9.4 µl, which contained 1 

µl of pre-amplification product, 2 µl of 5X PCR buffer, 1.2 µl of 25 mM MgCl2, 1 µl of 5 mM 

dNTP mix, 0.165 µl of each primer with IR 700 dye, 0.335 of each primer with IR 800 dye, 0.2 

µl of Taq DNA polymerase and 3 µl of ddH2O. PCR was performed in a Thermocycler (Biorad) 

using a profile: (1) initial denaturation 94
° 

C, 2 min; (2) 12 cycles of 94
° 

C, 30 sec; 65
° 

C 

(decreasing by 0.7
° 
C every cycle), 30 sec; 72

° 
C, 1 min; (3) 23 cycles of 94

° 
C, 30 sec; 56

° 
C, 30 

sec; 72
° 

C, 1 min and (4) final extension 72
° 

C, 5 min. The selective amplification product was 
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loaded onto a 6% acrylamide gel placed and run in a Licor 4300 genetic analyzer for 

electrophoresis and image documentation of the gels. 

2.5 Disease Screening 

For the disease screening the F2:3 seed was grown in two replications of a randomized 

complete block design at three locations where stripe rust is commonly found. We planted a test 

on the Macon Ridge Research Station near Winnsboro, Louisiana in November of 2012. The 

remaining tests were conducted at the Coastal Plains Research Station in Plains, Georgia by Dr. 

Jerry Johnson; and in the Arkansas Agricultural Research and Extension Center in Fayetteville, 

Arkansas by Dr. Eugene Milus. The lines along with the susceptible variety NC06BGTAG12, 

used as disease spreaders, were planted in one-meter rows using a headrow magazine planters. 

Artificial inoculation of stripe rust was used at Winnsboro and Plains to help spread the disease 

uniformly. Spores collected from nearby fields with disease infested plants were suspended in 

Soltrol oil and sprayed throughout the field using a pressurized CO2 tank. Inoculation was 

conducted once in February, on an afternoon when night conditions were expected to be 

favorable for infection. 

Lines were rated once, at adult stage when disease symptoms were clearly visible on the 

plants. Ratings were conducted in late March in Louisiana, early May in Arkansas and early 

April in Winnsboro. The rating scale used was on a range from 0 to 9 where the most resistant 

lines were given a score of 0 and the most susceptible ones were given a 9. Lines with rating 

between 0 and 4 were considered resistant while lines with rating between 5 and 9 were 

susceptible. Lines segregating for resistance were given two different scores.  
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2.6 Data Analysis 

The amplified fragments from the AFLP and SSR primers on gels were scored and the 

data was merged in an Excel (Microsoft Corp., Redmond WA) worksheet for further analysis. 

JoinMap 3.0 (Kyazama Inc., Netherlands) software was used for development of linkage 

map. The complete set of polymorphic markers and scoring information from the Excel 

worksheet was converted into a text file in Word Pad. The Word Pad file containing the marker 

data was saved as a .loc file in JoinMap. The .loc file was uploaded as a new project into 

JoinMap to calculate the genotype and locus frequencies. After calculating the recombination 

frequencies, the Kosambi maping function was used to calculate the genetic distance between 

markers from the frequencies. Groups with LOD above 4 were chosen. The selected linkages 

groups were highlighted and the corresponding group maps were viewed using the “groups” tab.  

QTL Cartographer version 2.5 was used to develop the QTL map. The linkage groups 

along with the average disease rating of each line were used to locate the QTL regions. A new 

text file was created containing scoring data only from the markers found within the linkage 

groups along with the average disease rating for each line. The text file was uploaded into the 

software using the “source file” option. The CIM (composite interval mapping) option, was 

chosen for the analysis. A walking speed of 0.5 cM was selected, as opposed to the default 1 cM, 

to ensure a finer coverage. A significant difference was established at P = 0.05 with 1000 

iterations. The default LOD value of 2.5 for QTL was maintained.  

2.7 Expected Output 

 

 

QTL with a significant effect on stripe rust resistance would be found on specific linkage 

group(s) corresponding to a chromosome with LOD value over the threshold of 2.5. 
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Chapter III 

Results 

3.1 Disease Ratings 

The number of F2:3 lines in each location with different infection types or segregating for 

resistance is presented in Table 4. Based on phenotypic data obtained from rating the F2:3 lines, 

there were more resistant lines than susceptible ones, which indicates resistance genes were 

probably dominant. None of the non-segregating lines showed major differences in severity over 

different locations.  A total of 78 lines had ratings between 0-4 (resistant) averaged across 

locations while only 24 received ratings from 5-9 (susceptible) and 88 were segregating 

(heterozygous) for resistance within the line. This suggests the presence of more than one 

resistance gene in the resistant parent, LA841. We believe that LA841 contains resistance gene 

Yr17 and some other gene or genes that provide resistance to the new stripe rust races based on 

the reaction of LA841 to stripe rust in environments where other varieties with Yr17 showed a 

susceptible reaction type. This assumption agrees with the disease screening data obtained in the 

field trials. Data obtained from screening complex traits controlled by multiple genes would not 

necessarily follow a normal distribution as is the case with the rust resistance phenotypic data 

(Young 1996). The data is skewed towards having more resistant lines because of the multiple 

resistance genes in the resistant parent LA841. 

Table 4 Stripe rust ratings over three locations. 

ENT Line Arkansas Georgia Louisiana Mean Class 

  
 

REP1 REP2 REP1 REP2 REP1 REP2     

58 LA11242-60 0 1 0 1 1 1 0.67 Res 

114 LA11242-119 1 1 0 0 1 2 0.83 Res 

130 LA11242-136 1 1 1 0 1 1 0.83 Res 

11 LA11242-11 1 1 1 1 1 1 1.00 Res 
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Table 4  Stripe rust ratings over three locations. contd. 

46 LA11242-48 1 1 0 1 2 1 1.00 Res 

57 LA11242-59 1 1 1 1 1 1 1.00 Res 

66 LA11242-69 1 1 0 1 2 1 1.00 Res 

74 LA11242-77 1 1 1 1 1 1 1.00 Res 

125 LA11242-130 1 1 1 1 1 1 1.00 Res 

183 LA11242-194 1 1 1 1 1 1 1.00 Res 

8 LA11242-8 1 1 1 1 1 2 1.17 Res 

34 LA11242-35 1 1 1 1 1 2 1.17 Res 

89 LA11242-92 1 1 1 1 1 2 1.17 Res 

93 LA11242-96 1 1 1 1 2 1 1.17 Res 

95 LA11242-98 1 1 2 1 1 1 1.17 Res 

150 LA11242-159 1 1 1 1 1 2 1.17 Res 

153 LA11242-163 1 1 1 1 2 1 1.17 Res 

156 LA11242-167 1 1 1 1 1 2 1.17 Res 

158 LA11242-169 1 1 2 1 1 1 1.17 Res 

68 LA11242-71 1 1,4 1 1 1 1 1.25 Res 

37 LA11242-38 1 1 1 1 3 1 1.33 Res 

59 LA11242-61 1 1 1 2 2 1 1.33 Res 

63 LA11242-66 1 1 1 1 2 2 1.33 Res 

111 LA11242-116 1 1 1 1 2 2 1.33 Res 

136 LA11242-142 1 1 1 1 2 2 1.33 Res 

142 LA11242-150 1 1 2 1 1 2 1.33 Res 

146 LA11242-155 1 2 2 1 1 1 1.33 Res 

161 LA11242-172 1 1 2 1 1 2 1.33 Res 

179 LA11242-190 1 1 1 1 2 2 1.33 Res 

184 LA11242-195 1 1 1 2 1 2 1.33 Res 

189 LA11242-200 1 1 1 2 2 1 1.33 Res 

2 LA11242-2 1 1 1 2 1 3 1.50 Res 

26 LA11242-27 1 1 2 1 2 2 1.50 Res 

44 LA11242-46 1 2 1 1 2 2 1.50 Res 

51 LA11242-53 1 1 1 2 3 1 1.50 Res 

69 LA11242-72 1 1 2 1 2 2 1.50 Res 

84 LA11242-87 1 1 2 1 2 2 1.50 Res 

145 LA11242-153 1 1 3 1 2 1 1.50 Res 

151 LA11242-160 1 1 1 1 3 2 1.50 Res 

190 LA11242-201 1 1 2 2 2 1 1.50 Res 

10 LA11242-10 1 1 2 2 2 2 1.67 Res 

19 LA11242-20 3 1 1 2 1 2 1.67 Res 

50 LA11242-52 2 1 1 1 2 3 1.67 Res 

94 LA11242-97 1 1 1 1 3 3 1.67 Res 
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Table 4  Stripe rust ratings over three locations. contd. 

97 LA11242-100 2 1 1 3 1 2 1.67 Res 

105 LA11242-109 3 1 2 2 1 1 1.67 Res 

137 LA11242-143 1 2 1 2 3 1 1.67 Res 

31 LA11242-32 2 1 2 1 2 3 1.83 Res 

33 LA11242-34 1 2 2 1 3 2 1.83 Res 

54 LA11242-56 2 2 2 1 2 2 1.83 Res 

67 LA11242-70 2 1 1 1 4 2 1.83 Res 

71 LA11242-74 1 1 1 2 2 4 1.83 Res 

79 LA11242-82 1 1 4 2 1 2 1.83 Res 

91 LA11242-94 2 1 2 2 2 2 1.83 Res 

104 LA11242-108 1 1 3 2 2 2 1.83 Res 

118 LA11242-123 2 1 2 3 2 1 1.83 Res 

181 LA11242-192 2 1 2 2 2 2 1.83 Res 

6 LA11242-6 3 1 2 1 4 1 2.00 Res 

47 LA11242-49 2 1 2 3 3 2 2.17 Res 

72 LA11242-75 2 1 2 1 3 4 2.17 Res 

85 LA11242-88 2 2 2 3 2 2 2.17 Res 

88 LA11242-91 2 1 3 1 4 2 2.17 Res 

121 LA11242-126 1 1 3 3 2 3 2.17 Res 

173 LA11242-184 3 1 1 2 3 3 2.17 Res 

83 LA11242-86 3 2 2 0 4 3 2.33 Res 

186 LA11242-197 4 2 2 1 3 2 2.33 Res 

62 LA11242-64 1 3 3 3 2 3 2.50 Res 

82 LA11242-85 1 2 1 2 5 4 2.50 Res 

96 LA11242-99 3 2 2 2 2 4 2.50 Res 

64 LA11242-67 3 1 4 3 3 2 2.67 Res 

103 LA11242-107 1 3 1 3 3 5 2.67 Res 

169 LA11242-180 4 3 3 2 2 2 2.67 Res 

28 LA11242-29 1 2 3 2 4 5 2.83 Res 

70 LA11242-73 2 2 3 4 4 2 2.83 Res 

24 LA11242-25 3 2 2 3 5 3 3.00 Res 

109 LA11242-113 3 2 4 2 4 3 3.00 Res 

157 LA11242-168 4 2 3 3 4 4 3.33 Res 

102 LA11242-106 4 3 4 3 5 5 4.00 Res 

49 LA11242-51 5 4 6 6 6 4 5.17 Susc 

176 LA11242-187 5 4 4 7 3,7 6 5.20 Susc 

21 LA11242-22 4 5 7 5 7 5 5.50 Susc 

38 LA11242-39 6 4 4 6 7 6 5.50 Susc 

131 LA11242-137 6 5 6 4 7 5 5.50 Susc 

56 LA11242-58 4 4 8 6 5 7 5.67 Susc 
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Table 4  Stripe rust ratings over three locations. contd. 

36 LA11242-37 4 5 7 7 7 5 5.83 Susc 

92 LA11242-95 7 6 7 4 6 6 6.00 Susc 

124 LA11242-129 6 5 6 6 7 7 6.17 Susc 

165 LA11242-176 7 4 7 7 6 6 6.17 Susc 

175 LA11242-186 6 5 7 6 7 6 6.17 Susc 

12 LA11242-12 5 6 7 6 8 6 6.33 Susc 

162 LA11242-173 7 7 7 4 6 7 6.33 Susc 

45 LA11242-47 6 6 5 6 8 8 6.50 Susc 

52 LA11242-54 8 7 3 6 8 8 6.67 Susc 

170 LA11242-181 7 8 4 7 8 6 6.67 Susc 

187 LA11242-198 6 6 8 6 8 6 6.67 Susc 

53 LA11242-55 8 6 5 6 8 8 6.83 Susc 

43 LA11242-45 7 7 5 7 8 8 7.00 Susc 

20 LA11242-21 7 7 8 7 8 7 7.33 Susc 

110 LA11242-114 7 6 8 7 8 8 7.33 Susc 

128 LA11242-133 8 8 6 6 8 8 7.33 Susc 

55 LA11242-57 8 8 7 6 8 8 7.50 Susc 

60 LA11242-62 8 8 7 5 9 8 7.50 Susc 

1 LA11242-1 4 2,6 2,6 1,5 2,6 6 Het Het 

3 LA11242-3 3 2,6 1,5 1,4 6 6 Het Het 

4 LA11242-4 2,5 3 1,4 1,5 6 2,7 Het Het 

5 LA11242-5 3,7 2 6 1,5 2,6 5 Het Het 

7 LA11242-7 2,6 5 7 4 3,7 3,8 Het Het 

9 LA11242-9 1,5 1,5 4,8 3,7 2,6 2,7 Het Het 

13 LA11242-13 2,6 1,6 6 3 7 3,7 Het Het 

14 LA11242-14 1,5 2,5 2,7 5 2,7 1,5 Het Het 

15 LA11242-16 1,5 1,4 1,4 1,5 2,6 1,4 Het Het 

16 LA11242-17 2,5 2,5 6 2,6 6 2,7 Het Het 

17 LA11242-18 2 1,4 1,5 1,7 1,4 2,6 Het Het 

18 LA11242-19 5 2,6 6 6 2,7 1,5 Het Het 

22 LA11242-23 1,5 1,6 4 1,5 3,8 2,6 Het Het 

23 LA11242-24 3,7 2,8 5 6 2,7 1,7 Het Het 

25 LA11242-26 1,5 3 1,5 1,7 1,5 1,5 Het Het 

27 LA11242-28 1,5 6 6 6 2,7 3,7 Het Het 

29 LA11242-30 1,6 1 6 3 1,5 2,6 Het Het 

30 LA11242-31 1,4 1,5 3,8 4 2,6 3,7 Het Het 

32 LA11242-33 1,5 1,5 2 3 4 2,6 Het Het 

35 LA11242-36 3 2 7 6 3,7 4,8 Het Het 

39 LA11242-40 2,7 2,5 6 3 2,7 2,7 Het Het 

40 LA11242-41 3 1,4 1,5 2 2,7 1,6 Het Het 
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Table 4  Stripe rust ratings over three locations. contd. 

41 LA11242-42 3 1,4 5 2,5 2,5 2,6 Het Het 

42 LA11242-43 6 2 2 4 2,6 2,7 Het Het 

48 LA11242-50 4 2,7 1,5 1,5 2,5 6 Het Het 

61 LA11242-63 2,6 1,5 1,6 2,5 2,6 1,7 Het Het 

65 LA11242-68 1,4 2 1,5 4 2,6 5 Het Het 

73 LA11242-76 1,4 2,6 6 6 3 3,7 Het Het 

75 LA11242-78 3 2,5 2,6 2 7 1,5 Het Het 

76 LA11242-79 1,5 1,4 5 1,5 3 1,7 Het Het 

77 LA11242-80 4 2 1,6 4 7 7 Het Het 

78 LA11242-81 1,4 1,5 1,6 1,4 2,7 2,6 Het Het 

80 LA11242-83 2 2 1,4 2,5 2,6 2,6 Het Het 

81 LA11242-84 2 3 2 2,6 2,6 3,7 Het Het 

86 LA11242-89 2,6 1,5 2,7 2,6 1,7 5 Het Het 

87 LA11242-90 1 3 1,4 1,5 2,5 2,6 Het Het 

90 LA11242-93 3 2,6 2,7 1,5 1,4 2,6 Het Het 

98 LA11242-101 2 2 1,5 2,6 3,7 7 Het Het 

99 LA11242-103 1,5 1,6 4 4 1,6 6 Het Het 

100 LA11242-104 1,5 1,5 1,4 1,5 4 3,7 Het Het 

101 LA11242-105 4 2 2,7 1,4 7 2,6 Het Het 

106 LA11242-110 4 2,7 6 7 3,7 6 Het Het 

107 LA11242-111 1 1,6 1,4 1,5 2,7 2,6 Het Het 

108 LA11242-112 3 2,5 2,5 1,5 1,6 1,7 Het Het 

112 LA11242-117 2,5 2,5 6 3 6 3,7 Het Het 

113 LA11242-118 1,4 3 1,4 1,5 2,6 2,6 Het Het 

115 LA11242-120 3 2,5 6 2 6 2,7 Het Het 

116 LA11242-121 6 2,6 6 8 1,6 2,5 Het Het 

117 LA11242-122 1,4 1 2,5 2,5 2,5 1,4 Het Het 

119 LA11242-124 1,4 1,5 1,6 1,6 2,6 6 Het Het 

120 LA11242-125 1,5 3 2,5 1,4 2,7 2,6 Het Het 

122 LA11242-127 2,5 3,6 3 4 2,6 2,5 Het Het 

123 LA11242-128 1,5 1 1 2 2,6 1,5 Het Het 

126 LA11242-131 1,6 2,5 4 1,5 3,7 2,5 Het Het 

127 LA11242-132 4 2,6 1,5 5 2,7 2,6 Het Het 

129 LA11242-135 7 7 5 5 3,7 2,8 Het Het 

132 LA11242-138 2 1,6 1,5 2,6 2 3 Het Het 

133 LA11242-139 3 3,7 2 1 2,5 1,5 Het Het 

134 LA11242-140 1,5 2,7 3 2 1,5 2 Het Het 

135 LA11242-141 1,4 1,5 1,4 1,4 1,5 1,6 Het Het 

138 LA11242-144 1,4 4 6 6 3,7 3,6 Het Het 

139 LA11242-145 1,4 5 2,5 2,5 5 3,6 Het Het 
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Table 4  Stripe rust ratings over three locations. contd. 

140 LA11242-147 2,5 1,6 1,4 1,5 3 4,8 Het Het 

141 LA11242-148 2,6 5 2,6 1,4 3,7 3,7 Het Het 

143 LA11242-151 2,7 3,7 1 6 7 2,7 Het Het 

144 LA11242-152 3 2,6 6 2,6 4 2,7 Het Het 

147 LA11242-156 1 1 1,5 1,4 1,5 1,7 Het Het 

148 LA11242-157 2 1,5 2,7 3 1 2,7 Het Het 

149 LA11242-158 1,6 1,7 1,4 1,5 2,6 1,4 Het Het 

152 LA11242-162 2 1,5 1,6 1,4 2,7 2,6 Het Het 

154 LA11242-164 7 1,5 3,7 5 2,7 3,7 Het Het 

155 LA11242-166 3,8 2,5 1,5 6 3,7 3,7 Het Het 

159 LA11242-170 3,7 1,5 7 4 3,7 2,7 Het Het 

160 LA11242-171 1,5 2 1 1,4 2,7 3 Het Het 

163 LA11242-174 2,6 2 3 4 7 4,7 Het Het 

164 LA11242-175 1,5 2 1,4 1,4 1,5 1,6 Het Het 

166 LA11242-177 4 1 5 2,5 4 3,7 Het Het 

167 LA11242-178 3 1 1,4 3 1,5 2,5 Het Het 

168 LA11242-179 1,5 2,5 7 3,7 2,6 4 Het Het 

171 LA11242-182 2,6 2 5 3 2,6 5 Het Het 

172 LA11242-183 1,7 3 1,4 1,4 6 2,7 Het Het 

174 LA11242-185 1,5 2,6 2,6 2 3,7 2,6 Het Het 

177 LA11242-188 1,5 3 6 4 1,5 2,5 Het Het 

178 LA11242-189 2,5 2,6 2 1,5 2,6 3 Het Het 

180 LA11242-191 1,6 1 1,5 1 2 2,6 Het Het 

182 LA11242-193 3,6 3 7 2 3,7 2,6 Het Het 

185 LA11242-196 1 1 1,6 1,5 1,6 2 Het Het 

188 LA11242-199 2,6 2,7 8 3 3,8 2,5 Het Het 

Ratings  from a 0-9 scale: 0= Resistant, no symptoms; 9= highly susceptible.  

Ratings taken at adult stage when symptoms where clearly visible (between March and April 2012). 

Lines with two ratings per rep are segregating for stripe rust resistance. 

  Means stating 'Het' indicate entries segregating for stripe rust resistance. 

 

 

 

            Analysis of variance (ANOVA) test were performed, using the general linear model, for 

the disease rating obtained from each location. For the individual location analysis reps were 

treated as blocks and only lines which were not segregating (heterozygous) for resistance were 

used. A total of 101 entries were used in the analysis. The tables for the ANOVA are presented 

below. 
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Table 5 

 Table 6 

                   A N A L Y S I S   O F   V A R I A N C E 

                                         Plains 

                                             GA 

                            Variable: Stripe Rust rating 

    Source        df                SS                 MS               F-value         Pr> F 

  ______________________________________________________ 

Total           203            927.980 

     BLOC         1               0.961             0.961           1.35             0.2485 

  ENTRY      101           854.980         8.465           11.87           0.0000 

  Residual     101           72.039            0.713 

    ______________________________________________________ 

Grand mean = 2.657     C.V. = 31.79%     LSD for ENTRY = 1.4020 

 

Table 7 

                   A N A L Y S I S   O F   V A R I A N C E 

                                     Fayetteville  

                                             AR 

                            Variable: Stripe Rust rating 

    Source         df                 SS                 MS               F-value        Pr> F 

  ________________________________________________________ 

Total            203               980.602 

     BLOC          1                   3.982           3.982           9.77            0.0023 

  ENTRY       101               935.477       9.262           22.74          0.0000 

  Residual      101               41.143         0.407 

    ________________________________________________________ 

Grand mean = 2.527       C.V. = 25.26%     LSD for ENTRY = 1.0595 

                   A N A L Y S I S   O F   V A R I A N C E 

                                     Winnsboro 

                                             LA 

                           Variable: Stripe Rust rating 

    Source        df                 SS                 MS                F-value         Pr> F 
  _______________________________________________________ 

Total            203             1090.706 

     BLOC         1                  2.373             2.373          3.95              0.0495 

  ENTRY      101              1027.706       10.175        16.95            0.0000 

  Residual     101               60.627           0.600 

    _______________________________________________________  

Grand mean = 3.235      C.V. = 23.95%     LSD for ENTRY = 1.2862 

 



 

38 
 

 Based on results from the ANOVA tables, there was a highly significant difference in 

entries for all locations in the study. This indicates the population was segregating for stripe rust 

resistance. Also observed was a significant difference in block effect at Winnsboro and 

Arkansas, but not at Georgia. The highest mean rating for stripe rust incidence was found at 

Winnsboro and while the lowest was at Fayetteville. Coefficients of variation varied from 24 to 

32% which can be considered normal for visual ratings of a disease. 

3.2 DNA Polymorphism  

 A total of 216 polymorphic markers were obtained between the two parents with both 

SSR and AFLP primers. Polymorphism was low with the SSRs; only 63 of the 501 (12.5%) 

SSRs tested were polymorphic. Out of the 128 AFLP primer combinations tested, 13 

combinations showing high polymorphism between parents were selected for genotyping of the 

mapping population. A total of 153 polymorphic AFLP markers were scored. The number of 

polymorphic markers for each AFLP primer combination ranged from 3 to 12. 

3.3 Linkage Groups 

 A total of 24 linkage groups (LG) were obtained with the 216 polymorphic markers (SSR 

and AFLP) with a LOD threshold of 4 (Figure 1). The chromosomes represented in the LG were 

1A, 2A, 4A, 2B, 3B, 5B, 7B, and 3D. The remaining 16 LG were made up of only AFLP 

markers with unknown locations. The number of markers per LG ranged from two to eight. The 

largest LG had a size of 74 cM while the smallest was only 5 cM. 



 

39 
 

  

 

 

 

 

 

 

 

 

 

 

 

   

Figure 1. Graphical representation of the 24 LG and the chromosome it represents in parenthesis. 

Distance in cM.  

(2B) (3B) 

(3D) (1A) (5B) (2A) (4A) (7B) 
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3.4 QTL Mapping  

 Three QTL were found to control stripe rust resistance with a LOD value of 2.5 or greater 

(Figure 2). The three QTL were distributed over two LGs (chromosomes). Two QTL were found 

in Chr 2A (LG6) while Chr3 B (LG2) contained the third QTL. The rest of the LGs did not 

contain any QTL with a LOD values greater than or equal to 2.5. The three QTL together 

accounted for 43.2% of the total phenotypic variation in stripe rust resistance. 

 

 

 

 

 

 

 

Figure 2.Chart showing the three QTL peaks above the 2.5 threshold LOD. The numbers in 

parentheses correspond to linkage group, percentage of phenotypic variation explained, and LOD 

value.  

 

 One of the QTL (Yr841_3B.1) was found in LG 2, which corresponded to Chr3 B (Figure 

3). which was 35 cM long and contained 5 SSR markers (BARC164, BARC1044, BARC1111, 

BARC1103, BARC187). Yr841_3B.1 had a LOD value of 2.7 and explained 13.0% of the total 
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phenotypic variation for stripe rust resistance. The length of the QTL is 4 cM long, while the 

peak is 12 cM from the edge of the LG. 

 

Figure 3. Cartogram showing the Yr841 3B.1 peak in chromosome 3B. The numbers in 

parenthesis correspond to linkage group, percentage of phenotypic variation explained, and LOD 

value. 

 

 The other two QTL were found in LG 6 which corresponded to Chr2A. This linkage 

group was 30 cM long and contained two SSR markers and one AFLP marker (Xgwm636, 

Xgwm359, gtg800-2). The QTL peaks were 13 cM apart. The first of the two QTL (Yr841_2A.1) 

accounted for 8.6% of the total phenotypic variation for stripe rust resistance. The QTL had a 

LOD value of 11.2, which was the highest out of all three QTL identified. The QTL is 7 cM 

long. The second QTL (Yr841_2A.2) found in Chr 2A with a LOD of 9.8 accounted for 21.6% of 

the trait phenotypic variation, which was the highest of the three QTL in the present study. This 

QTL is 4 cM long. 
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Figure 4. Cartogram showing two QTL peaks (Yr841_2A.1 and Yr841_2A.2), found in Chr-2A 

(LG-6). The numbers in parenthesis correspond to linkage group, percentage of phenotypic 

variation explained, and LOD value. 

 

3.5 Discussion 

 QTL mapping is considered a highly effective approach for studying genetically complex 

traits such as plant disease resistance (Young, 1996). The role and influence of specific resistant 

loci can be determined with QTL mapping. QTL mapping is considered an initial step to 

developing specific markers, which can be used in breeding programs for selection and 

advancement of lines. QTL mapping also provides an opportunity for QTL-assisted breeding for 

complex disease resistance traits and positional cloning of partial resistance genes. Therefore, the 

success of QTL (marker)-assisted selection in breeding depends on adequate prediction models 

and sufficient number of markers for trait phenotypes (Cooper et al., 2009). 

Disease Rating 

 Traits expressed on a continuous scale are considered quantitative. This continuous 

variation of a trait is usually cause by the segregation of various genes which have an effect on 
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the gene. Quantitative resistance slows down the development of an epidemic, in several ways, 

which reduces the severity of the disease. Resistance from the host on the disease can be 

attributed to effects on latent period, infection efficiency, spore production, and other 

epidemiological traits (Geiger and Heum, 1989). Our trait of interest, stripe rust resistance, is 

considered a quantitative trait. 

 After reviewing our field ratings for the trait we noticed they did not behave in a typical 

Mendelian fashion. The lines did not segregate in the traditional 1:2:1 ratio expected in F2:3 lines. 

This is probably due to the presence of several genes for resistance. Young (1996) stated that 

“most complex resistance traits (i.e. resistance traits that cannot be fitted to simple Mendelian 

ratios) are controlled by multiple loci. These resistance phenotypes tend to be measured 

quantitatively”. We also found there were more resistant lines than susceptible ones. This could 

be explained by the multiple QTL that were found which increases the chances of having some 

level of resistance. 

 There are significant differences in stripe rust reaction among lines (Tables 5,6,7).  

Average stripe rust ratings over three locations (Table 4) of the lines ranged from 0.67 to 7.50.  

Stripe rust was present at high levels as shown by the number of high ratings (≥ 7) in each of the 

three environments.  There are seventy-eight lines with mean ratings of ≤ 4.0 and 24 lines with ≥ 

5.0.   Approximately ½ (88/190) of the lines were classified as heterozygous as F2:3 lines in the 

field.   

 The ratings of lines across environments were pretty consistent with a few exceptions. 

For example, line 82 (LA11242-85) has a mean of 1.5 in Arkansas and Georgia, but a mean of 

4.5 in Louisiana. Line 169 had a mean rating of 3.5 in Arkansas versus 2.0 in Louisiana. The 
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average rating in Louisiana for all non-heterozygous lines was 3.23 compared to 2.53 and 2.66 

for Arkansas and Georgia, which indicates that disease pressure was similar, so differences in 

ratings is probably a function of virulence differences across environments. 

 The classification of lines as resistant or susceptible is somewhat arbitrary.  The lines 

with consistent ratings of ‘1’ or ‘2’ probably have at least one major gene that is effective in that 

environment.  Those lines with ‘7’, ‘8’, and ‘9’ ratings probably do not have any effective major 

genes. Those lines with intermediate reactions probably have at least one gene present that 

provides partial resistance to the races present. 

DNA Polymorphism Discussion 

 Marker polymorphism in wheat is reportedly lower than in other major crops such as corn 

and soybean. Studies have shown that SSR marker polymorphism in corn (51.8%) and soybean 

(50.7%) is over 50% (Sa et al., 2012; Singh, et al., 2010), whereas it is around or even below 

40% in wheat (37.5%) (Cregan, 2012).  Common hexaploid wheat also has extremely low levels 

of polymorphism at DNA marker loci compared to its parent species, especially Aegilops. 

squarrosa (Nishikawa et al., 1980).  An average of 3.4 alleles was found in 20 RFLP loci in A. 

squarrosa while only 1.1 alleles on average were found for the same RFLP loci in a sample of 

common hexaploid wheat. The low polymorphism in wheat can be attributed to the findings that 

the worldwide gene pool of cultivated wheat comes from a small number of interspecific hybrids 

(Lubbers et al., 1991). 

 The number of polymorphic markers found in the cross between NC06BGTAG12 and 

LA 841 (12.5%) was lower than reported for wheat. This could be due to the fact that both 

varieties share common ancestors, such as Coker-68-15, Norin-10 and Brevor in their pedigree. 
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Linkage and QTL Mapping Discussion 

 The number of LGs (24) obtained in the present study is similar to the number produced 

in other wheat mapping experiments. Messmer et al., (1999) found 23 LGs using F5 recombinant 

inbred lines derived from a cross between Swiss winter wheat and Swiss winter spelt. 

 The QTL found in Chr 3B (Yr841_3B.1) was flanked by markers BARC164 and 

BARC1044. However the peak was almost directly aligned with the marker BARC1044 whose 

physical location according to GrainGene is 115.5 cM. When looking at the consensus map of 

stripe rust QTL (Rosewarne, et al., 2013) there is no QTL in this location so Yr841_3B.1 is 

potentially a new source of resistance. However there are other resistances QTL in this 

chromosome (Rosewarne, et al., 2013). Further fine mapping of the previously uncharacterized 

Yr841_3B.1 QTL must be conducted to confirm if it is not linked to other previously known 

markers. Other previously discovered BARC markers in this chromosome include Xbarc87, 133, 

and 147 (Rosewarne, et al., 2013). However none of these markers are close to Yr841_3B.1 

found in LA841. 

 In Chr 2A, two QTL were discovered. The QTL with a LOD value of 11.2 (Yr841_2A.1) 

was closely located to SSR marker Xgwm 636 whereas the QTL with an LOD value of 9.8 

(Yr841_2A.2) was closely flanked by SSR marker Xgwm 359. Both SSR markers were located 

in the short arm of Chr-2A. Both of these markers have been discovered to be linked to stripe 

rust resistance QTL in other varieties. 

 Yr841_2A.2 proximal to marker Xgwm 359 could possibly represent Yr61. Marker Xgwm 

359 was discovered to be flanking a previously discovered QTL known as Yr61 in Pioneer variety 

26R61. This locus, designated QYr.uga-2AS, was detected in the QYr.ufs-2A interval in variety 
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26R41 (Hao, et al., 2011). It explained 56 % of the phenotypic variation in 26R61 making it a 

major QTL. LOD values of up to 24.5 were detected for this QTL when 26R61 was tested in 

Plains, GA in 2009 (Hao, et al., 2011). Yr841_2A.2 with a LOD of 9.8 explained 21.6% of the 

phenotypic variation. Yr61 and Yr841_2A.2 in LA841 are both located in the same region of the 

short arm in Chr2A and flanked by the same marker (Xgwm359). Yr61 was assigned to the distal 

22% of the short arm of wheat Chr2A (Hao, et al., 2011). Both varieties (LA841 and 26R61) 

have common ancestors in their pedigree from soft red winter lines found in the southeast such 

as Coker-68-15, suggesting the similarities in their genetic background. 

 The SSR marker Xgwm359 has been validated for the region QYr.uga-2AS with 

preliminary test of two cultivars and two advanced lines. The test results indicated that the QTL 

was present in the material, and was consistent with stripe rust resistance responses found in the 

field. The present study and previous reports indicate that Xgwm359 could be used in marker 

assisted selection for stripe rust resistance (Hao, et al., 2011). 

 The other QTL (Yr841_2A.1) in Chr-2A short arm, closest to SSR marker Xgwm636 

with a LOD of 9.8, could represent the previously characterized stipe rust resistance gene Yr17. 

SSR marker Xgwm636 and Yr17 are found in the same region of the short arm in Chr-2A and 

have been declared linked (Jahier, et al., 2011). Yr17 is the only formally known Yr gene found in 

this specific chromosome region. Through previous screening, it is known that LA841 carries 

Yr17 gene, which provides resistance to some stripe rust races. So it is likely that Yr841_2A.1 in 

Chr2AS is Yr17. Yr17 is distinct from Yr61 found in 26R61, which is also located in the short arm 

of chromosome 2A. This is known because the variety 26R61has tested negative for Yr17 when 

screened with linked markers Xgwm636 and VENTRIUP/LN2 (Hao, et al., 2011; Agenbag, et 
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al., 2012). Further finer mapping is necessary to determine the exact position of these QTL and 

discover markers inside/flanking the region that could be used for marker assisted selection.  

3.6 Conclusions 

 Resistance to stripe rust in wheat is a complex quantitative trait, primarily controlled by 

many genes with major effects. 

 Yr17 (Yr841_2A.1) still provides resistance to some of the stripe rust races in the region. 

This QTL had the highest LOD value of all in the present mapping population. 

 The gene Yr61 previously discovered in 26R61 appears to be found in Terral LA841. 

Yr841_2A.1 was considered a major QTL in this case, explaining over 20% of the 

phenotypic variation, the highest of the three QTL found in the present study. 

 The QTL found in chromosome 3B (Yr841_3B.1) was not previously described in other 

varieties. It potentially presents a new source of resistance which can be pyramided with 

other previously identified genes in new varieties. 

 The three QTL identified accounted for 43.2% of the total phenotypic variation for stripe 

rust resistance. The results imply that there are additional QTL in LA841, which can 

further be fine mapped with a large number of markers to identify the markers tightly 

linked to the resistance gene. 
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Figure 5.  Picture of wheat variety Terral LA841 

http://www.terralseed.com/Portals/0/downloads/2012-Terral-proof-9-26.pdf 
 

 

 

 

 

 

 

 

 

 

 

http://www.terralseed.com/Portals/0/downloads/2012-Terral-proof-9-26.pdf
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