
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2009

Molecular, statistical and genetic analyses of
complex agronomic traits in rice
Samuel Agbayani Ordonez Jr.
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Ordonez Jr., Samuel Agbayani, "Molecular, statistical and genetic analyses of complex agronomic traits in rice" (2009). LSU Doctoral
Dissertations. 3381.
https://digitalcommons.lsu.edu/gradschool_dissertations/3381

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/3381?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3381&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 

 

 

MOLECULAR, STATISTICAL, A�D GE�ETIC A�ALYSES OF 

COMPLEX AGRO�OMIC TRAITS I� RICE 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 A Dissertation  

 
Submitted to the Graduate Faculty of the  

Louisiana State University and  
Agricultural and Mechanical College  

in partial fulfillment of the  
requirements for the degree of  

Doctor of Philosophy  
 

in 
 

The School of Plant, Environmental, and Soil Sciences  
 
 
 
 
 
 
 
 
 

by  
Samuel A. Ordonez Jr. 

B.S. Biology, Central Luzon State University, Philippines, (cum laude), 1997  
M.S. Plant Breeding, University of the Philippines Los Banos, 2003  

August, 2009  



ii 

 
 
 

 
 
 

 
 
 

To my loving wife Carol and sons –  
 

Samuel III and Ferdinand Amadeo 

 
 
 

This dissertation is humbly dedicated….



iii 

ACK�OWLEDGEME�TS 

 
First and foremost, I would like to acknowledge and thank my Professor, Dr. James H. 

Oard for my Ph.D. program. For the best mentoring I have had, for the knowledge, guidance and 

kind support he had provided me, instilling in me discipline, dedication and hard work as key to 

success; kind words are not enough to express and describe how thankful and grateful I am to 

have him as my major professor. 

To the members of my graduate committee, Dr. Don R. Labonte, Dr. Xueyan Sha, Dr. 

James P. Geaghan, Dr. Jing Wang, and Dean’s Representative, Dr. Michael J. Stout, I thank you 

all for the knowledge, guidance and help extended  to me, especially the very kind interactions 

and mentoring I have had with you.  

To the School of Plant, Environmental and Soil Sciences, headed by Dr. Freddie R. 

Martin, thank you for all the support and kind friendship I have had throughout my stay in the 

department. 

To fellow graduate students in the department - Marvelous, Suman, Ashok, Reddy, 

James, Wenting, Suresh, and Nengyi for the healthy discussions, friendships, and fun we have 

had as graduate students and classmates. Special mention goes to my friend, Marvelous, who 

shared with me the ideals of how it is to be a good Ph.D. student, and all his sincere help and 

assistance throughout my Ph.D. program. 

To the Filipino Community at LSU and Baton Rouge in general, for providing a family-

like atmosphere for me and my family to dwell on. For the friendship and fun, we are forever 

grateful. Special mention goes to Jenny for the assistance in editing and proofreading my 

dissertation, as well as the friendship and fun for my whole family, thank you. 



iv 

To my family, my wife Carol and children, Samuel III and Ferdinand Amadeo for the 

understanding, love, patience and sacrifices you have had as I embarked on furthering my 

studies. You have provided me the inspiration and love, and the strength and will to dream big 

for our future.  

To my parents, brother and sisters, who keep on believing in my capabilities and for 

wishing me the best of luck in this endeavor, I would forever be grateful to you all. 

And above all to God Almighty for allowing me to surpass all the struggles and 

hardships of a Ph.D. program. Thank you for providing me wisdom and knowledge. 



v 

TABLE OF CO�TE�TS 

DEDICATION ……………………………………………………………………….…..….. ii 

ACKNOWLEDGEMENTS ………………………………………………………….…...…. iii 

LIST OF TABLES ………………………………………………………………….….…..... viii 

LIST OF FIGURES …………………………………………………………………..….….. xi 

ABSTRACT ………………………………………………………………………….....….... xiii 

CHAPTER 1 GENERAL INTRODUCTION……………….………………………….....… 
1.1 Importance of Rice in Asia and the United States…..………………………....... 
1.2 Molecular Marker Tools to Study Complex Traits in Rice …………………....... 
1.3 Association Genetics ………………………………………………………......…
1.4 Statistical Methods for Association Mapping…...………………………….....… 
1.5 Support Vector Regression …………………………………………………….... 
1.6 SNP Marker Development for Marker-Assisted Breeding in Rice…...….…..….. 
1.7 Male Sterility and Its Importance to Rice Breeding and Genetics …...............…. 
1.8 Research Objectives ………………………………………………………....…...
1.9 References ………………………………………………………………....….….

1 
1 
2 
2 
3 
4 
5 
5 
7 
8 

 
CHAPTER 2 EVALUATION OF MIXED MODEL AND MULTIPLE REGRESSION 

APPROACHES FOR ASSOCIATION GENETICS IN RICE…………....…..
2.1 Introduction ………………………………………………………………......…..

2.1.1 Association Mapping Procedure in Plants …………………….….........
2.1.2 The Mixed Model Procedures in TASSEL …...………………….....….
2.1.3 Population Structure ………………………………………………..…..
2.1.4 The Multiple Regression Procedure ….……………………….......……
2.1.5 Significance of Epistatic Interactions ………………………...…..….... 

2.2 Materials and Methods ………………………………………………...…...…….
2.2.1 Plant Material and Phenotypic Data Collection and Analysis…….……
2.2.2 Molecular Marker Analyses …………………………………......……..
2.2.3 TASSEL Mixed Model …………………………………………..…….
2.2.4 Multiple Regression by GLMSelect Procedure ……………….......…...
2.2.5 Mixed Model (TASSEL)-Multiple Regression (GLMSelect) 

.Procedure ……………………………………………..………….…… 
2.3 Results and Discussion…………………………….………………………...…... 

2.3.1 Agronomic Trait Analysis within and Across Locations………..…...... 
2.3.2 Analysis of Population Structure and Kinship Relationships…..….…...
2.3.3 Marker-Trait Associations by Mixed Model (TASSEL)….……....……
2.3.4 GLMSelect Procedure for Association Mapping in Rice ……...…..….. 
2.3.5 GLMSelect Analysis for Each Location …………………………...…..
2.3.6 Marker-Trait Associations by Combined TASSEL-GLMSelect 

Procedure ………………………………………………………..…….. 
            2.4 References ……………………………………………………………..…...…….

 
12 
12 
12 
13 
13 
14 
14 
15 
15 
16 
17 
17 

 
18 
18 
18 
21 
22 
29  
39 

 
42 
49 

  



vi 

 
 
CHAPTER 3 EVALUATION OF SUPPORT VECTOR REGRESSION FOR 

ACCURACY AND POWER OF CANDIDATE MARKERS  
ASSOCIATED WITH COMPLEX TRAITS IN RICE……………..……...… 

3.1 Introduction …………………………………………………………...……...…..
3.1.1 Association Genetics in Plants ……………………………...…...…….. 
3.1.2 Support Vector Regression (SVR) ………………………..…....……… 
3.1.3 SVR Attributes and Model …………………………………...…...……
3.1.4 Power and Effect Size Estimation in SVR …………………......………

3.2 Materials and Methods ………………………………………………...…...…….
3.2.1 Plant Material and Phenotypic Data Collection …………...……...…....
3.2.2 Molecular Marker Analyses ……………………………...……...……..
3.2.3 SVR Procedure …………………………………………...……...……..
3.2.4 GLMSelect Procedure ……………………………………...…...……...

3.3 Results …………………………………………………………………......……..
3.3.1 Phenotypic Characterization of the Rice Population ………….....……. 
3.3.2 Accuracy and Precision of SVR and GLMSelect Procedures ….....…... 
3.3.3 Power Estimation in SVR ……………………………………..…...…..
3.3.4 Identification of Marker-Trait Associations …………………..…...….. 

3.4 Discussion ………………………………………………………………..…...….
3.5 References ………………………………………………………………......……

 
 
 
 

54 
54 
54 
54 
55 
58 
59 
59 
60 
60 
62 
63 
63 
64 
65 
66 
69 
71 

 
CHAPTER 4 EVALUATION OF DNA MARKERS TO FACILITATE BREEDING   FOR 

AROMA, AND COOKING QUALITY IN LOUISIANA RICE............. 
4.1 Introduction ……………………………………………………………...……….

4.1.1 Importance of Rice ……………………………………………...…...…
4.1.2 Rice Industry in the United States and Louisiana ……………...……....
4.1.3 Status of Specialty Rice Breeding and Demand Worldwide …….....…. 
4.1.4 Molecular Markers for Crop Improvement ………………………..….. 
4.1.5 Molecular Markers for Fragrance (Aroma), Amylose Content, and 

Gelatinization Temperature in Rice ………………………………..…..
4.1.6 SNP Marker Development for Marker-Assisted Breeding in Rice ….... 

4.2 Materials and Methods …………………………………………………...…...….
4.2.1 Plant Material …………………...………………………………...…....
4.2.2 Hybridization and Pyramiding of Quality Traits in Aromatic Rice 

Breeding Populations …………………………………………..…...….
4.2.3 Leaf Collection and Genomic DNA Extraction ……………….....…… 
4.2.4 Polymerase Chain Reaction (PCR), SNP Genotyping, and Scoring…... 
4.2.5 Field Experiment, Phenotypic Data Collection, and Analysis ……........

4.3 Results and Discussion .…………………………………………………….....… 
4.3.1 Molecular Profiles of Breeding Populations for Aromatic Rice…..…....
4.3.2 Descriptive Statistics and Correlation Analysis of Agronomic       

Traits of Different F1’s of Aromatic Breeding Lines…………….…..…
4.3.3 Marker and Phenotype Profiles of Selected Aromatic Lines …….…….

4.4 References ……………………………………………………………..……...….

 
 

73 
73 
73 
73 
74 
75 

 
75 
78 
78 
78 

 
79 
80 
81 
82 
83 
83 

 
88 
90 
95 



vii 

CHAPTER 5 GENETIC ANALYSIS OF POLLEN STERILITY IN LINES DERIVED 
FROM A NATURAL OUTCROSS BETWEEN A LOUISIANA RED   
RICE BIOTYPE AND COMMERCIAL RICE ………….………..………….

5.1 Introduction …………………………………………………………...…...……..
5.1.1 Red Rice ……………………………………………………....…..……
5.1.2 Male Sterility in Rice …………………………………………..………
5.1.3 Cytoplasmic Male Sterility in Rice ………………………...…..……....
5.1.4 Hybrid Rice in China, Asia, and the U.S.  ……………………...……...
5.1.5 Initial Characterization of Red Rice–Clearfield Hybrid ……….....……

5.2 Materials and Methods ……………………………………………………..…….
5.2.1 Characterization and Generation of F1 and F2 Populations…….....…… 
5.2.2 Genetic Analysis and Characterization of Pollen Sterility and 

Additional Agronomic Traits in F2 Populations ………………..…...… 
5.3 Results …………………………………………………………………......……..

5.3.1 Pollen Sterility of F2 Red Rice-Clearfield Outcross …..……...…..….... 
5.3.2 Phenotypic Characterization of F1 Hybrids Derived from Red Rice-

Clearfield 161 x Cocodrie or Trenasse ……………………………..…. 
5.3.3 Descriptive Statistics and Correlation Analysis of Agronomic       

Traits in F2 Population …………………………………………...……. 
5.3.4 Genetic Analysis of Pollen Sterility and Selected Agronomic Traits .....

5.4 Discussion …………………………………………………………...………..….
5.5 References………………………………………………………………..…...…..

 
 

99 
99 
99 
99 

100 
101 
103 
103 
103 

 
104 
106 
106 

 
106 

 
109 
111 
114 
116 

 
CHAPTER 6 SUMMARY AND CONCLUSIONS ………………………………..………. 

6.1 Mixed Model (TASSEL) and GLMSelect Procedures for Association   
Genetics …………………………………………………….…...………………

6.2 Support Vector Regression (SVR) ……………………………………..………. 
6.3 SNP Markers for Marker-Assisted Selection …………………………..…...…..
6.4 Genetic Analysis of Pollen Sterility from Natural Outcross of Weedy and 

Commercial Rice ……………………………………………………...………...
 

 
119 

 
119 
120 
120 

 
121 

 
APPENDIX R SOURCE CODE FOR THE SVR PROCEDURES…..………….…...…...…

VITA …………………………………………………………………………………..…......

122 
 

124 



viii 

LIST OF TABLES 

2.1  Mean, range and heritability estimates for amylose content (AC), heading date 
(HD), and head rice (HR) among 192 rice lines evaluated in AR, LA, MO, MS,   
TX, 2000……………………………………………………………………………… 

 
 
 

19 

2.2 ANOVA results of amylose content (AC), heading date (HD) and head rice (HR) 
based on fixed effects model………………………..………………………………… 

 
20 

2.3 SSR markers associated with amylose content (AC) for Arkansas (AR), Texas   
(TX), and across locations (AVG)…………………………….……...………………. 

 
23 

2.4 SSR markers identified by mixed model (TASSEL) associated with heading date 
(HD) for each of the five locations: Arkansas (AR), Louisiana (LA), Missouri  
(MO), Mississippi (MS), Texas (TX) and across locations (AVG)…… ……………. 

 
 

24 

2.5 SSR markers identified by mixed model (TASSEL) associated with head rice (HR) 
for each of the four locations: Arkansas (AR), Louisiana (LA), Mississippi (MS), 
Texas (TX) and across locations (AVG)……………………………...……………… 

 
 

26 

2.6 GLMSelect analysis with validation and epistasis in each location for Adjusted R2, 
Root Mean Square Error (MSE), Bayesian Information Criteria (BIC), Akaike 
Information Criteria (AIC), Average error sum of squares (ASE) and Predicted 
Residual Sum of Squares (PRESS) associated with amylose content, heading date, 
and head rice content………………………………………… ……….…………….... 

 
 
 
 

31 

2.7 Fit statistics of two selection methods (1-GLMSelect without interaction, 2-
GLMSelect with two-way interaction) for amylose content within and across 
locations……………………………………………………………..………………... 

 
 

39 

2.8 Fit statistics of two selection methods (1-GLMSelect without interaction, 2-

GLMSelect with two-way interaction) for heading date within and across 

locations……………………...……………………………………………..………… 

 
 

41 

2.9 Fit statistics of two model selection methods (1-GLMSelect without interaction, 2-

GLMSelect with two-way interaction) for head rice in each location and across 

locations………………………….………………………………………..………….. 

 
 

41 

2.10a TASSEL-GLMSelect analysis with validation and epistasis within and across 
locations for Adjusted R2, Root Mean Square Error (MSE), Bayesian Information 
Criteria (BIC), Akaike Information Criteria (AIC), Average error sum of squares 
(ASE) and Predicted Residual Sum of Squares (PRESS) associated with amylose 
content. ………………………………………………………………..……………… 

 
 
 
 

44 

2.10b TASSEL-GLMSelect analysis with validation and epistasis within and across 
locations for Adjusted R2, Root Mean Square Error (MSE), Bayesian Information 
Criteria (BIC), Akaike Information Criteria (AIC), Average error sum of squares 
(ASE) and Predicted Residual Sum of Squares (PRESS) associated with heading 
date ………………………………………………………………………………….... 

 
 
 
  
 45 



ix 

2.10c TASSEL-GLMSelect analysis with validation and epistasis within and across 
locations for Adjusted R2, Root Mean Square Error (MSE), Bayesian Information 
Criteria (BIC), Akaike Information Criteria (AIC), Average error sum of squares 
(ASE) and Predicted Residual Sum of Squares (PRESS) associated with head rice…. 

 
 
 

45 

2.11 SSR markers identified by TASSEL-GLMSelect associated with heading date (HD), 
head rice (HR) and amylose content (AC) in each locations: Arkansas (AR), 
Louisiana (LA), Missouri (MO), Mississippi (MS), and Texas (TX) and across 
locations (AVG)………………………………………………………………...…..… 

 
 
 

46 

3.1 MSE, R2 and RMSE values obtained by SVR (using linear, polynomial, sigmoid, 
and radial basis kernel functions) and multiple linear regression with epistasis for 
amylose content (AC), heading date (HD), and head rice (HR) across five locations 
in AR, LA, MO, MS, TX, 2000…………………………………………………..…... 

 
 
 

65 
 

4.1 Summary of plant materials genotyped for aroma, AC, and GT SNP alleles …...….. 81 

4.2 Molecular profiles of 65 selected rice plants from Batch 1 that contain desired  
alleles for aroma, AC, and GT …………………………………..……………….…... 

 
84 

4.3 Molecular profiles of 13 selected F2 rice plants from Batch 2 that contain alleles    
for aroma, AC, and GT …………………………………………………………..…... 

 
86 

4.4 Aroma, AC and GT allele-genotyping in one and two-gene combinations of the    
452 F1’s (Batch 5) evaluated at Rice Research Station, Crowley, LA, 2008…….…… 

 
87 

4.5 Descriptive statistics of six agronomic traits of 452 F1’s (Batch 5) evaluated at    
Rice Research Station, Crowley, LA, 2008 ………………………………………...... 

 
88 

4.6 Correlation analyses of six agronomic traits of 452 F1’s of aromatic rice breeding 
populations evaluated at Rice Research Station, Crowley, LA, 2008 …….……..…... 

 
91 

4.7 Molecular and phenotypic profiles of selected  F1’s (n=34) derived from selected 
backcrosses and advanced generation lines of aromatic rice breeding populations 
evaluated at Rice Research Station, Crowley, LA, 2008. …………………..…..……. 

 
 

92 

5.1 Descriptive statistics for seven agronomic traits of 33 selected F1’s derived from 
natural outcrosses between red rice-CL161 x Cocodrie or Trenasse, Baton Rouge 
greenhouse, 2007 ……………………………………..………………….………...… 

 
 

107 

5.2 Correlation analysis for seven agronomic traits of 33 selected F1’s derived from 
natural outcrosses between red rice-CL161x Cocodrie or Trenasse, greenhouse, 
Baton Rouge greenhouse, 2007 ………………………………………….….…..…… 
 

 
 

108 

5.3 Descriptive statistics of six agronomic traits in one F2 population derived from a   
red rice–CL161 x Cocodrie cross and the male parent Cocodrie, Rice Research 
Station, Crowley, LA, 2008. .……………………..…..…………………………….... 

 
 

110 



x 

5.4 Correlation analysis of the six quantitative traits in the F2 population of a red rice-
CL161 x Cocodrie cross, Rice Research Station, Crowley, LA, 2008 …….....……… 

 
113 

5.5 Segregation analyses of pubescence, spikelet fertility, and pollen sterility among 478 
F2 individuals derived from the Red Rice-CL161 x Cocodrie cross, Rice Research 
Station, Crowley, LA, 2008 ………………………………..……….………………... 

 
 

114 

  



xi 

LIST OF FIGURES 

2.1 Distribution of pairwise relative kinship estimates in the 192 elite rice lines 
representing a narrow genetic base. ………………………………………….………. 

 
22 

2.2 Observed and predicted values of amylose content (AC), heading date (HD) and 
head rice (HR) for Arkansas, (AR), Louisiana (LA) and Texas (TX). Predicted 
values were based on 194 bi-allelic markers from TASSEL-mixed model analysis…. 

 
 

28 

2.3a Standardized coefficients and adjusted R2 values as a function of when effects are 
selected and retained by GLM Select during development of “optimal” model for 
amylose content……………………………………………………………………….. 

 
 

33 

2.3b Standardized coefficients and adjusted R2 values as a function of when effects are 
selected and retained by GLM Select during development of “optimal” model for 
heading date. ………………………………………………………………………...... 

 
 

34 

2.3c Standardized coefficients and adjusted R2 values as a function of when effects are 
selected and retained by GLM Select during development of “optimal” model for 
head rice………………………………………………………………………….….... 

 
 

36 

2.4a Chromosomal locations (1-6) of SSR markers identified by multiple regression 
approach for amylose content (AC), heading date (HD), and head rice (HR). Solid 
and striped boxes inside the chromosomes represent QTL regions detected in 
previous QTL studies. SSR markers in green and bold with an “a” superscript are 
amylose content, and red with a “b” superscript are heading date markers, and italics 
and black with a “c” superscript are head rice markers. Markers labeled with ab, bc 
or ac superscript combinations are associated with two traits…………………...…… 

 
 
 
 
 
 

37 

2.4b Chromosomal locations (7-12) of SSR markers identified by multiple regression 
approach for amylose content (AC), heading date (HD), and head rice (HR). Solid 
and striped boxes inside the chromosomes represent QTL regions detected in 
previous QTL studies. SSR markers in green and bold with an “a” superscript are 
amylose content, and red with a “b” superscript are heading date markers, and italics 
and black with a “c” superscript are head rice markers. Markers labeled with ab, bc 
or ac superscript combinations are associated with two traits…………………...…… 

 
 
 
 
 
 

38 

3.1 Depiction of SVR analysis for training data prediction. The variable y is the 
continuous response variable, and x is the explanatory variable. Each data point 
represents a training sample i (i=1, …n) in the training data set with the observed 
values as ( , )i ix y ........……………………………………………………………..……. 

 
 
 

57 

3.2 Plot of power for optimized Support Vector Regression as a function of correlation 

coefficient ρ  for amylose content (AC) ...…………………………………….……... 

 
66 

3.3a Selected marker effects from optimized SVR models and corresponding sequential 
R2 values on the horizontal axis for amylose . The number of total selected variables 
is 25 and R2 = 0.90. …...…………………………………………………………..…... 

 
 

67 



xii 

3.3b Selected marker effects from optimized SVR models and corresponding sequential 
R2 values on the horizontal axis for heading date .The number of total selected 
variables is 25 and R2 = 0.90 ………………………………………………..…..……. 

 
 

68 

3.3c Selected marker effects from optimized SVR models and corresponding sequential 
R2 values on the horizontal axis for and head rice. The number of total selected 
variables is 27 and R2 = 0.89..………………………………….………….……..…… 

 
 

69 

4.1 Frequency distribution of six agronomic traits of  F1’s (n=452) of aromatic rice 
breeding populations evaluated at Rice Research Station, Crowley, LA, 2008…..….. 

 
90 

5.1 Frequency distribution of the six quantitative traits in the F2 population (n=478) of a 
red rice –Clearfield 161 x Cocodrie cross, evaluated at Rice Research Station, 
Crowley, LA, 2008. ..…………………………………………………….……..…….. 

 
 

112 

  



xiii 

ABSTRACT 

Novel molecular and statistical approaches are needed for identification of DNA markers 

associated with complex traits in rice. The first research objective was to evaluate mixed-model 

and multiple regression approaches for their ability to identify molecular markers associated with 

complex traits in rice. A combined mixed model and multiple regression approach was optimal 

for selecting the smallest number of DNA markers associated with relatively high R2 values and 

for consistency with previous mapping studies.  

Support Vector Regression (SVR) was evaluated in the second research objective for the 

ability to generate high levels of accuracy and power for markers associated with complex traits.  

High levels of prediction accuracy and power were observed for the selected markers. SVR 

produced greater model accuracy and ability to explain trait variation than multiple linear 

regression.  

Single nucleotide polymorphic (SNP) markers for aroma, amylose content and 

gelatinization temperature were evaluated in the third research objective for marker-assisted 

improvement of breeding lines. This strategy increased frequency of desired alleles by an 

average of 26 percent in only two generations. Genetic analysis of pollen sterility was conducted 

in the fourth research objective for an F2 population derived from an outcross between a weedy 

biotype and a commercial variety. Segregation analyses revealed that seed fertility was governed 

by two dominant genes, a result similar to the cytoplasmic male sterile (CMS)-WA system used 

to develop commercial hybrids. Pollen sterility was controlled by two recessive genes. The 

pollen sterility trait could be exploited as a new source of CMS for hybrid rice breeding.  

Additional research is needed to confirm if lines developed from this natural outcross represent a 

new source of CMS.  Overall results show that both standard and new data mining approaches 



xiv 

can be used to successfully identify candidate genes and DNA markers associated with complex 

agronomic traits.  In addition, the SNP markers were shown to rapidly enrich frequency of 

desired alleles associated with rice grain and cooking quality traits. All results demonstrated that 

a combination of molecular, statistical, and genetic approaches created an effective strategy to 

advance our understanding of factors that govern complex traits in rice.  
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CHAPTER 1 GE�ERAL I�TRODUCTIO� 

1.1 Importance of Rice in Asia and the U.S. 

Rice (Oryza sativa L.) is one of the most important food crops in the world, serving as 

the principal source of calories for more than half of the world's population (Singh and Khush, 

2000). Asia produces and consumes approximately 90% of the rice on earth and by 2025 nearly 

4 billion people, mostly poor, will consume rice as a basic food. Global production is projected 

at 417 million tons of milled rice in 2007, but global consumption continues to outpace 

production which is expected at 423.2 million tons of milled rice. (Grain: World Markets and 

Trade, May 2006).  

Rice production and marketing in the United States is a multibillion dollar industry.  At 

the farm level alone, rice generates more than $1.5 billion in revenues. In 2007,  rice was planted 

on more than 1.1 million hectares in the United States with production estimated at 8.6 M MT. 

U.S. rice production is a viable commercial industry in Arkansas, California, Louisiana, 

Mississippi, Missouri, and Texas. The U.S. produces high quality varieties of short, medium and 

long grain rice, as well as specialty rice including jasmine and basmati types. U.S. rice farmers 

produce two percent of the world's annual rice supply and represent the world's fourth largest 

rice exporting country.  Approximately half of the annual U.S. rice production is used 

domestically. Americans consume ~ 11 kg of rice per year which is substantially below world 

consumption levels of 85.9 kg per capita. Louisiana ranks third in terms of rice total production 

following Arkansas and California. The rice industry in Louisiana accounted for $235 M in 2006 

from 350,000 acres with average yields of 5,820 lbs/acre for a total of 20.1 M cwt (Louisiana 

Farm Reporter; http://www.lsuagcenter.com/agsummary/ progressreport. aspx). Louisiana rice 

planting for 2007 was 360,000 acres, up 3 percent from a year earlier, but still the lowest acreage 
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planted since 1914.  For 2008, the area planted was 464,000 acres with average yield of 5,830 

lbs.  

1.2 Molecular Marker Tools to Study Complex Traits in Rice 

The application of molecular markers as a tool for rice improvement has resulted in rapid 

development of new and improved elite rice lines in the last decade (Collard and Mackill, 2008). 

Molecular markers allow selection for particular characters or traits on the basis of a simple 

laboratory test on a small amount of leaf or grain tissue, rather than direct measurement of the 

character itself.  There are several types of molecular markers available for use. Among them are 

restricted fragment length polymorphisms (RFLP), random amplified polymorphic difference 

(RAPD), amplified fragment length polymorphisms (AFLP), simple sequence repeats (SSR) and 

single nucleotide polymorphism (SNP) that can detect a single nucleotide difference in the DNA 

sequence between two individuals. The utility of SNP markers has been reported in several crops 

with great success (Issiki et al., 1998; Bundock et al., 2004; Till et al., 2004), as well as its 

potential for plant genomic research (Feltus et al., 2004).  In rice, indica and japonica genomic 

sequences have been published and are publicly available (Feltus et al., 2004; Shen et al., 2004; 

Takashi M,  2005) that allow development of SNP markers for efficient marker- assisted 

breeding. 

1.3 Association Genetics 

Association genetics is an alternative strategy to standard Quantitative Trait Loci (QTL) 

mapping approaches that is routinely used in human studies (Baker, 2008) and is gaining support 

in the plant research community (Hayes and Szucs, 2006). The principal advantage of this 

method, generally referred to as “linkage disequilibrium” mapping, is based on the ability to 

rapidly query informative regions of the genome among unrelated individuals that have 

generated numerous meiotic events over multiple generations. Linkage disequilibrium studies 
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have been conducted for various marker-trait associations in maize (Belo et al., 2008; Weber et 

al., 2007), rice (Mather et al., 2007), potato (Simko et al., 2006), barley (Casa et al., 2008) and 

wheat (Breseghello and Sorrells, 2006). Methods for association genetics other than LD mapping 

have also been evaluated. For example, Zhang et al. (2005) investigated a discriminant analysis 

procedure for rice inbreds while the same procedure identified candidate loci associated with 

agronomic traits in sweetpotato (Ipomoea batatas) (Mcharo et al., 2004).  

1.4 Statistical Methods for Association Mapping 

The TASSEL software package is a popular strategy for association genetics to 

incorporate population structure (Q) and kinship (K) estimates into a mixed model framework 

for marker-trait evaluation of unrelated individuals (Yu et al., 2006).  Consideration of kinship 

relationships and population structure did improve power and reduce Type 1 error in association 

mapping (Yu et al., 2006). The TASSEL software has been used recently in association studies 

of complex agronomic traits in barley (Rostoks et al., 2006), potato (Simko et al., 2006), 

sorghum (Casa et al., 2008) and wheat (Breseghello and Sorrells, 2006). Parisseaux and 

Bernardo (2004) developed a mixed model for hybrid crops incorporating effects for general 

combining ability of markers associated with agronomic traits. Arbelbide et al. (2006) developed 

a mixed model for self-pollinating plants that accounted for multiple location effects and kinship 

based on pedigree records. Arbelbide and Bernardo (2006) applied single and multiple marker 

analyses in the mixed model format for candidate loci and genes associated with bread quality 

traits in wheat (Triticum aestivum L.).  

The multiple regression approach, based on information criteria such as Bayesian 

Information Criterion (BIC; Schwarz, 1978) and Akaike Information Criterion (AIC; Akaike, 

1974), has been investigated to address selection bias present in standard QTL mapping 

techniques (Bogdan et al., 2004; Bogdan and Doerge, 2005; Piepho and Gauch, 2001; Ball, 



4 

2001). The multiple regression strategy proposes to identify the fewest number of variables that 

minimize BIC or other information criteria as opposed to standard hypothesis testing (F test) to 

build the optimal predictive model. Multiple regression used with various selection criteria has 

been reported to be superior to Composite Interval Mapping in simulated studies (Broman and 

Speed, 2002). Software programs such as GLMSelect (SAS Institute) can readily implement 

multiple regression with multiple fixed effects and epistatic interactions based on standard F tests 

or different selection criteria.  

Although the mixed model procedure for association genetics has been successful in 

identifying individual QTLs in several crop plants, a genome-wide test for multiple effects and 

two-way interactions (epistasis) is not feasible in this method. Therefore, a two-step method was 

developed to identify epistatic interactions and to characterize allelic variation at the barren 

inflorescence2 (bif2) locus in maize (Pressoir et al., 2009). The mixed-model approach by Yu 

(2006) was used to identify associated effects and the SAS GLMSelect procedure was then used 

to identify QTL and conduct genome-wide scans for potential interactions with bif2. Similar 

methods were employed by Manicacci et al. (2009) to identify epistatic interactions between 

Opaque2 and CyPPDK1 loci for kernel quality traits in maize. 

1.5 Support Vector Regression 

The support vector regression (SVR) method was developed by Vapnik (1995) to 

increase model accuracy and power by approximating the unknown nonlinear relationship 

between the continuous response variables and corresponding predictors. SVR has gained broad 

popularity due to its robustness to noise, computational efficiency, and simplicity of the method. 

Implementation of SVR to study the relationship between maize hybrid and inbred lines has been 

previously investigated (Maenhout et al., 2007; De Baets et al., 2008).  
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1.6 S�P Marker Development for Marker-Assisted Breeding in Rice 

The demand for high quality or special purpose aromatic and basmati rices in the U.S. 

and elsewhere has increased during the past two decades (Cordeiro et al., 2000; Jin et al., 2003). 

In the U.S., ~ 12% of the total rice consumed is aromatic, primarily imported for the Asian-

American community (Sha, 2005). With increasing market demand at the U.S. and international 

level, breeding for special purpose aromatic rice is attractive as it creates the option of securing 

higher returns over conventional rice due to higher price (Jin et al., 2003). However, the 

traditional breeding method of crossing and selection is tedious and labor-intensive, particularly 

for recessive traits such as aroma that may be lost through selfing and subsequent segregation of 

desired allelic combinations. Moreover, grain evaluation through taste to determine aroma is 

often difficult, time-consuming and unreliable at times.  

Molecular markers that can differentiate rice lines for different quality traits are therefore 

desirable to expedite development of new aromatic rice varieties. Kadaru et al. (2006) developed 

a modified procedure based on standard Ecotilling (Comai et al., 2004) for rice SNP discovery 

and genotyping referred to as Alternative Ecotilling (AE). Four previously reported and 14 new 

SNPs in the alk and waxy genes among 57 rice accessions based on comparisons with 

sequencing results were characterized by AE for GT and AC, respectively. In addition, new SNP 

markers for haplotype-specific markers in exon 7 of the BAD2 gene for marker-assisted 

identification and introgression of the aroma gene in U.S. rice were developed in Dr. Oard’s 

laboratory. These SNPs can distinguish aromatic and non-aromatic phenotypes that were 

consistent with corresponding marker haplotypes for all progeny tested.  

1.7 Male Sterility and Its Importance to Rice Breeding and Genetics 

Male sterility is a characteristic found widely in plants (Zuo et al., 2008) with more  than 

100 different male sterile mutants reported in rice (Bruskiewich et al., 2003).  Male sterility 
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prevents self-fertilization, but represents tremendous value for basic research of plant 

reproduction and for commercial exploitation of heterosis (Zhang et al., 2008). Recently, several 

male sterile rice mutants from different sources (Zuo et al., 2008, Zhang et al., 2008) have been 

characterized and mapped. Inheritance studies of these different mutants showed that a single 

recessive nuclear gene (Zuo et al., 2008, Zhang et al., 2008) controlled expression of this trait. 

There are generally two categories of sterility recognized in rice: cytoplasmic male sterility 

(CMS) and nuclear male sterility (NMS) (Zhang et al., 2008). The CMS system is controlled by 

the interaction of cytoplasmic and nuclear genes (Virmani, 1994). The genetic factor(s) present 

in the cytoplasm has been reported to occur in mitochondrial DNA (Levings and Pring, 1976; 

Forde and Leaver, 1980; Kadowaki et al., 1986). This phenomenon in rice was first reported by 

Weeraratne in 1954 (Li et al., 2007). Shinjyo and Omura reported in 1966 the first CMS 

observed in elite rice cultivars. A CMS line was designated CMS-BT, being the product of an 

inter-subspecific cross between indica Chinsurah Boro II and japonica Taichung native 65 

(Shinjyo, 1975). In 1964, Yuan Long Ping discovered male sterility in the indica variety Dong-

Ting-Wan-Xian, but the breakthrough came in 1970 when he discovered a spontaneous-male-

sterile plant referred to as CMS-WA in a wild population in Hainan Island, China (Yuan, 1977). 

Four years later, the first hybrid rice combination, Nanyou-2, was released that produced higher 

yield potential as compared to inbred varieties. Since then, several CMS lines have been 

developed through inter-specific, inter-subspecific, and inter-varietal modes of hybridization (Li 

et al., 2007). 

There have been only a few studies that investigated the molecular basis of CMS in rice 

(Liu et al., 1989). CMS is presumably controlled by variation in mitochondrial (mt) DNA 

(Virmani, 1994; Mignouna et al., 1987; Wang et al., 1987). Huang et al. (2006) characterized the 

diversity of rice CMS cytoplasm and the mechanism of CMS using RFLP markers. They 
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analyzed the sterile (A) and maintainer lines (B) of nine CMS sources that have been widely 

used in commercial production in China. The results showed that mitochondrial differences were 

detected between A and B lines and within different A lines.  

CMS is broadly categorized into three types namely, CMS-WA, CMS-HL, and CMS-BT 

based on inheritance, morphology of abortive pollens and restoration-maintenance relationships 

(Li et al., 2007). However, commercial hybrid rice is almost exclusively based on CMS-WA, 

accounting for 90% of three-line hybrids in China (Yuan and Peng, 2005) and 100% outside 

China (Sattari et al., 2008). Moreover, the International Rice Research Institute in the Philippines 

relies heavily on CMS-WA in the development of rice hybrids. This scenario opens the 

vulnerability of the rice hybrids to narrowing genetic base due to one common CMS background.  

1.8 Research Objectives 

(1) Investigate the potential of mixed models as implemented in TASSEL and multiple 

regression as implemented in SAS GLMSelect to identify markers associated with 

complex traits and to identify new epistatic regions that play important role(s) in 

observed phenotypic variation. 

(2) Evaluate the non-linear SVR technique for ability to generate high accuracy and power 

for candidate markers associated with three agronomic traits in rice. 

(3) Evaluate potential of selected DNA markers to facilitate rapid introgression of aroma and 

cooking quality traits into elite Louisiana breeding lines with acceptable agronomic traits.  

(4) Conduct a genetic analysis of pollen sterility/male sterility in a single F2 population 

derived from a natural outcross of a red rice biotype with the commercial Louisiana 

variety Clearfield161. 
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CHAPTER 2 EVALUATIO� OF MIXED MODEL A�D MULTIPLE REGRESSIO� 

APPROACHES FOR ASSOCIATIO� GE�ETICS I� RICE  

2.1. Introduction  

Completion of the rice genome sequencing project (Takashi et al., 2005) will serve as a 

powerful springboard for functional characterization of rice genes by a variety of methods that 

include identity and validation of DNA markers associated with complex traits. Standard QTL 

mapping approaches such as Composite Interval Mapping (Zeng, 1994) require screening of 

potential parents for polymorphic markers and extensive periods of three to six years for 

development of segregating or recombinant inbred lines. However, power and precision may be 

compromised by limited recombination in segregating/recombinant inbred lines and by relatively 

small sample size of most mapping populations (Flint-Garcia et al., 2003; Beavis, 1998; Kearsey 

and Farquhar, 1998). Large intermating populations can be developed to enhance recombination 

rates, but time, labor, and financial investment limit this strategy, particularly when collecting 

phenotypic data for complex traits in replicated plots. Cross validation methods have been 

proposed to obtain unbiased estimates of QTL position and effect for marker-assisted selection 

(Beavis, 1994; Schon et al., 2004; Utz et al., 2000). 

2.1.1 Association Mapping Procedures in Plants 

Association genetics is an alternative strategy to standard QTL methods that is routinely 

used in human studies (Baker, 2008), and that is gaining support in the plant research community 

(Hayes and Szucs, 2006). The principal advantage of this approach, generally referred to as 

“linkage disequilibrium” mapping, is based on the ability to rapidly query informative regions of 

the genome among unrelated individuals that have generated numerous meiotic events over 

multiple generations. Linkage disequilibrium studies have been conducted for various marker-

trait associations in maize (Belo et al., 2008; Weber et al., 2007), rice (Mather et al., 2007; Wen 
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et al., 2009), potato (Simko et al., 2006), sorghum (Casa et al., 2008) and wheat (Breseghello and 

Sorrells, 2006). Methods for association genetics other than LD mapping have also been 

evaluated. For example, Zhang et al. (2005) investigated a discriminant analysis procedure for 

rice inbreds while the same procedure identified candidate loci associated with agronomic traits 

in sweetpotato (Ipomoea batatas) (Mcharo et al., 2004).  

2.1.2 The Mixed Model Procedure in TASSEL 

TASSEL is a popular software package used to analyze marker-trait associations in 

populations that incorporates population structure (K) and kinship (Q) estimates into a mixed 

model framework to increase power and reduce Type 1 and Type 2 errors (Yu et al., 2006).  

TASSEL was used recently in association studies of complex traits in barley (Rostoks et al., 

2006), potato (Simko et al., 2006), sorghum (Casa et al., 2008) and wheat (Breseghello and 

Sorrells, 2006).  

Mixed models using variance component approaches that account for kinship estimates 

have been exploited in animal research for over two decades (Henderson, 1984; George et al., 

2000). Nagamine and Haley (2001) extended the mixed model of Henderson to detect QTL by 

interval mapping in animal systems. Parisseaux and Bernardo (2004) developed a mixed model 

for hybrid crops incorporating effects for general combining ability of markers associated with 

agronomic traits. Arbelbide et al. (2006) developed a mixed model for self-pollinating plants that 

accounted for multiple location effects and kinship based on pedigree records. Arbelbide and 

Bernardo (2006) applied single and multiple marker analyses in the mixed model format for 

candidate loci and genes associated with bread quality traits in wheat (Triticum aestivum L.).  

2.1.3 Population Structure 

Spurious associations between genotype and phenotype caused by population 

stratification must be detected among unrelated individuals in association studies to reduce Type 
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I errors. Clustering techniques are one approach to identify stratified populations. For example, 

the model-based “Structure” software program identifies putative population structure and 

assigns individuals to subgroups or clusters based on genotype frequencies (Pritchard et al., 

2000). Other clustering approaches based on genetic distance include the weighted and 

unweighted pair-group methods (Sokal and Sneath, 1973). The Ward’s method (Ward, 1963) is 

distinct from all other clustering strategies in that it minimizes the Sum of Squares (SS) of any 

two hypothetical clusters that can be formed at each step.  

2.1.4 The Multiple Regression Procedure  

Multiple regression with variable selection based on Bayesian Information Criterion 

(BIC; Schwarz, 1978) and Akaike Information Criterion (AIC; Akaike, 1974), has been 

investigated to address selection bias present in standard QTL mapping techniques (Bogdan et 

al., 2004; Bogdan and Doerge, 2005; Piepho and Gauch, 2001; Ball, 2001). Multiple regression 

with BIC or other information criteria proposes to identify the fewest number of variables to 

build the optimal predictive model. Multiple regression with variable selection options has been 

reported to be superior to Composite Interval Mapping in simulated studies (Broman and Speed, 

2002). Software programs such as GLMSelect (SAS Institute) can readily implement multiple 

linear regression with fixed effects and epistatic interactions based on standard F tests or 

different selection criteria.  

2.1.5 Significance of Epistatic Interactions  

Epistatic interactions between alleles at different loci in rice have been reported to exert 

considerable influence on different characters such as hybrid vigor (Li et al., 2001; Goodnight, 

1999; Yu et al., 1997), cooking quality (Fan et al., 2005), plant height and heading date (Yu et 

al., 2002), panicle number (Liao et al., 2001) and other complex traits in rice (Cao et al., 2001; 

Mei et al., 2003). Standard QTL models have therefore been developed to account for epistasis in 
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rice and other species (Cui et al., 2006; Wan et al., 2006; Cui and Wu, 2005; Bogdan et al., 

2004). Recently, Dudley and Johnson (2009) fit a partial least square (PLS) with epistasis and 

found significant increase in predictive power for identification of DNA markers associated with 

oil, protein, starch and grain yield in corn.   

Although the mixed model procedure for association genetics has been successful in 

identifying individual QTLs in several crop plants, a genome-wide test for epistasis is not 

feasible in this method (Pressoir et al., 2009).  Therefore, a two-step method was proposed to 

model epistatic interactions and to characterize allelic variation at the barren 

inflorescence2(bif2) in maize (Pressoir et al., 2009).  In the step, a mixed model approach by Yu 

(2006) was used to identify associated effects. For the second step, SAS GLMSelect was used to 

identify QTL and conduct genome-wide scans for interaction with bif2. Similar methods were 

employed by Manicacci et al. (2009) to identify epistatic interactions between Opaque2 and 

CyPPDK1 on kernel quality traits in maize. 

The objective of our research was to investigate the potential of the mixed model as 

implemented in TASSEL and multiple regression as implemented in SAS GLMSelect to identify 

markers associated with complex traits and to identify new epistatic regions that play important 

role(s) in observed phenotypic variation. Results from our study showed that a combined mixed 

model-multiple regression procedure successfully identified markers within known QTL regions 

for three agronomic traits. New epistatic loci were also identified that helped explain a majority 

of the observed variation for the characters evaluated in this study.  

2.2 Materials and Methods 

2.2.1 Plant Material, Phenotypic Data Collection and Analysis 

A panel of 192 elite rice breeding lines and varieties representing a narrow germplasm 

base was evaluated in replicated field plot trials in 2000 in Crowley, Louisiana (LA); Beaumont, 
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Texas (TX); Stuttgart, Arkansas (AR), Stoneville, Mississippi (MS); and Cape Girardeau, 

Missouri (MO). The germplasm was composed of 52 lines from Arkansas, one from California, 

55 from Louisiana, 25 from Mississippi and 58 lines from Texas. Based on grain length, 162 

were long grain types, 24 were medium grain and 6 were short grain. All 192 inbred lines were 

planted from March to April, 2000 in each of the five states listed above in two to four replicated 

six-row plots, 2.0 m x 1.4 m, in a randomized complete block design. Standard agronomic 

practices at each location were carried out to minimize weed and insect damage for maximum 

grain yield. The center four rows of each plot were used to collect data for heading date (days 

from seedling emergence to panicle emergence from swollen stem or boot), and percent head 

rice (whole grains/whole grains + broken grains) x 100). Data for amylose content (percentage of 

starch in rice grain composed of the polysaccharide amylose) were collected from the Texas and 

Arkansas locations in 2000. Phenotypic data expressed as trait means across replications at each 

location were obtained from the University of Arkansas Rice Research and Extension Center, 

Stuttgart, AR. The agronomic data were averaged across replications within each location to 

compute mean and variances using PROC MIXED, SAS Institute, v. 9.0. ANOVA was 

performed to determine location and line differences. Least square (LS) means were used to 

compute significant location and line differences in SAS. Correlation analyses of each trait for 

all locations were done using PROC CORR in SAS. 

2.2.2 Molecular Marker Analyses 

Microsatellite (SSR) marker data for the 192 lines were obtained from Dr. Thomas Tai, 

USDA-ARS, UC-Davis, Davis, CA. A total of 97 SSR markers, evenly spaced over the 12 

chromosomes at ~ 20 cm intervals, generated a total of 579 alleles with an average of six 

alleles/locus.  Rare alleles at < 0.07 percent were removed from homozygous loci, but 

heterozygous loci were retained to provide 194 marker alleles at 97 bi-allelic loci for the final 
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analysis. PROC ALLELE, SAS Genetics, SAS Institute v. 9.1.4, was used to estimate 

polymorphism information content (PIC) and allelic diversity. Detection of potential population 

structure was carried out by the “Structure” software program, v. 2 (http://pritch.bsd. 

Uchicago.edu/ structure.html). Ward’s hierarchical clustering of the 192 lines with all 579 

marker alleles was performed in PROC CLUSTER, SAS Institute, v. 9.1.4.   

2.2.3 TASSEL Mixed Model 

Mixed model analysis as implemented in TASSEL was performed for three traits, 

(amylose content (AC), heading date (HD), and head rice (HR) using the 194 bi-alllelic SSR 

markers. Kinship (Q) was estimated in TASSEL and was incorporated into the mixed model 

analysis to account for errors associated with familial relatedness. Data for each trait were 

averaged across replications both within and across locations for a total of 14 different mixed 

model analyses. Marker-trait associations at P-value < 0.15 were selected. Correlations of 

observed and predicted values for of AC, HD, HR traits in each locations were computed in 

Microsoft Excel based on the predicted phenotype output from the Tassel-mixed model. 

Corresponding graphs were generated in Excel 2007.  Heritability estimates were obtained from 

the TASSEL program.  

2.2.4 Multiple Regression by GLMSelect Procedure 

Multiple regression in this study was carried out in GLMSelect in the following three 

steps: Step1.  Both forward and stepwise selection methods were used with all possible 

combinations of the CHOOSE, SELECT and STOP options with Bayesian Information Criterion 

(BIC), Coefficient of Variation (CV), Adjusted R2 (Adjusted R2), or SL (F test) selection 

criterion = 0.15 (default value), generating a total of 172 different models or combinations. 

Stepwise and forward multiple linear regression were performed on phenotypic values (y) of the 

inbred lines as dependent variables and SSR marker alleles X1, X2, ..., X194 as independent 
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variables. Those independent variables producing a test statistic estimate better than the selection 

criteria values were added to the model. Completion of Step 1 helped reduce dimension or 

complexity of the data sets because only significant marker trait associations based on selection 

criteria were included in the models for additional analyses. 

Step 2. To reduce Type I errors or false marker-trait associations, selected models from 

Step 1 were re-run to include a “leave-one-out” validation step (without epistasis) that was 

accomplished by the “PRESS” criterion in the “stop” option. The model that produced the 

highest Adjusted R2 value for a given trait with < 30 effects was considered “optimal” in step 2.  

Step 3. Selected models from Step 1 were further evaluated to include all possible two- 

way interaction effects (epistasis) in the model.  The models include a “leave-one-out” validation 

step that was accomplished by the “PRESS” criterion in the “stop” option. Those selected 

models that produced the highest adjusted R2 value with < 30 effects were considered “optimal” 

for a given trait.  

2.2.5 Mixed Model (TASSEL) - Multiple Regression (GLMSelect) Procedure 

The mixed model in TASSEL was used in this study to account for possible kinship 

relationships that may introduce errors in selection of markers effects. However, the mixed 

model assumes all effects are additive and so cannot model two-way or epistatic interaction 

effects (Pressoir et al., 2009). Therefore, the selected effects from the TASSEL output were used 

as a starting point in PROC GLMSelect for multiple regression analysis to identify both main 

and two-way marker effects associated with agronomic traits evaluated in this study.   

2.3 Results and Discussion 

2.3.1 Agronomic Trait Analysis within and Across Locations  

Large variations were observed among the rice lines evaluated for AC, HD, and HR in 

each location (Table 2.1). AC data was obtained from two locations; HD was collected in five 
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locations while HR data was obtained in four locations.  The AC traits showed that the maximum 

values were larger than the minimum values by 2 to 3-fold (Table 2.1). The mean values and 

ranges of AC were at near commercial levels for U.S. elite long and medium-medium grain 

varieties. Means for each location (AR, TX) and averages across locations were essentially 

identical. Correlation coefficients were 0.97** between AC in AR and TX. Heritability values 

were surprisingly low, but were similar within and across locations (0.45-0.46).  

Table 2.1 Mean, range and heritability estimates for amylose content (AC), heading date (HD), 
and head rice (HR) among 192 rice lines evaluated in AR, LA, MO, MS, TX, 2000. 

Trait Location N Mean ± SD** Range Heritability 

AC AR 187 19.26 ± 4.10 12.1 -26.6 0.48 

 TX 190 18.66 ± 4.32 9.8 – 25.9 0.49 

 AVG* 192 18.95 ± 4.17 11.0 -26.3 0.49 

HD AR 192 83.64 ± 4.39 70.0 – 98.0 0.36 

 LA 192 86.91 ± 3.93 72.0 -97.5 0.36 

 MO 192 91.37 ± 4.02 76.5 -105.5 0.35 

 MS 192 83.41 ± 3.94 68.5 -93.5 0.36 

 TX 192 80.09 ± 4.05 66.0 -95.0 0.36 

 AVG 192 85.08 ± 3.72 70.6 – 96.2 0.36 

HR AR 192 47.00 ± 10.99 14.1 – 66.9 0.30 

 LA 192 64.74 ± 5.23 25.3 -72.3 0.30 

 MS 192 48.74 ± 6.46 31.3 -63.1 0.31 

 TX 192 52.98 ± 5.70 26.5 -62.2 0.31 

 AVG 192 53.36 ± 5.15 39.3 -62.7 0.31 

 

*AVG-average across locations; ** SD-Standard deviation 
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For the HD trait, an average of 25 days was noted between the minimum and maximum 

values. The overall mean heading date of 85 was typical for elite lines of the southern U.S. Rice 

lines appeared to flower earlier in TX (mean=80) compared to other locations while in MO, rice 

lines flowered the latest (mean=91). Heritability values were essentially identical both within and 

across locations (0.35-0.36).  

Extensive variation for the important HR trait was observed especially for AR data. The 

maximum values were greater than minimum values by 2 to 4-fold.  Only the LA location 

produced mean HR values of 0.65 that reached the minimum commercial threshold of 0.60.  

Heritability values for this trait were low as expected and consistent across locations (0.30-0.31).  

Analysis of variance showed that rice lines and locations were significantly different for 

all three traits analyzed (Table 2.2). Least squared means were used to determine location 

differences in a pair-wise fashion. Results showed that AR and TX exhibited different mean 

values for AC. Nevertheless, correlation coefficients for this trait were high (0.97-0.99) between 

AR and TX, AR and AVG and TX and AVG. Additional data from different location-year 

combinations are needed to confirm initial observations from this study. 

Table 2.2 ANOVA results of amylose content (AC), heading date (HD) and head rice (HR) 
based on fixed effects model. 
 

Trait Effects df MS F value Pr (F) 

AC (%) Location 1 32.302249 58.19 <.0001 
Line 191 34.628950     62.38 <.0001 

HD (day) Location 4 3566.49375   1027.75   <.0001 
Line 191 69.19895     19.94   <.0001 

HR (%) Location 3 12236.76389 313.55   <.0001 
Line 191 106.70146      2.73   <.0001 

For the HD trait, all locations were different except for AR and MO (Pr> |t| 0.62). 

Correlation coefficients between locations were substantial ranging from 0.64-0.92. This shows a 

moderate effect of location on the time of flowering of rice lines. For HR, all locations were 
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found to be different ((Pr> |t| 0.03 – 0.0001) which is not surprising, given that HR is known to 

respond strongly to environmental conditions. Correlation coefficients of HR were poor (0.07-

0.81) indicating that head rice of rice lines grown in different locations tend to generate 

significantly different HR results. All these results show that relatively high levels of trait 

variation were present and normally distributed among the elite lines chosen for this study.  

The mean (0.37) and range (0.01-0.81) of polymorphism information content (PIC) 

values for the narrow U.S. germplasm in this study were smaller compared to a diverse 

collection of 95 Asian and African inbred lines (0.50, range 0.00-0.91) reported by Zhang et al. 

(2005). Nevertheless, the 192 lines from the current research produced greater PIC value than 

that of a second collection of 123 U.S. inbred lines (0.27) in the same study by Zhang et al. 

(2005). Mean allelic diversity of the inbred material in our study at 0.40 was considerably lower 

when compared to a previous study of hybrid rice with a corresponding mean of 0.52 reported by 

Xu et al. (2002).  

2.3.2 Analysis of Population Structure and Kinship Relationships 

When the model-based Structure program was used, no population stratification was 

detected in the narrow elite rice germplasm. This result is consistent with the known pedigrees of 

the 192 lines that consist almost exclusively of tropical japonica, one of the five major 

subpopulations previously identified in rice (Garris et al., 2005). Moreover, the Ward’s 

clustering results confirmed that the inbred lines chosen for this study represent a single genetic 

group or collection (results not shown). Because the Ward’s method is less computationally 

demanding than the Structure software, additional comparisons between the two methods for 

population stratification are warranted. Kinship relationships among lines were estimated using 

TASSEL. As expected due to narrow genetic base, the majority of lines (69%) exhibited high 
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kinship relationship, pair-wise relationships (similarity > 0.3) as shown in Figure 2.1.

 

Figure 2.1 Distribution of pairwise relative kinship estimates in the 192 elite rice lines 
representing a narrow genetic base.  

2.3.3 Marker-Trait Associations by Mixed Model (TASSEL) 

As stated previously, one of our main goals in this study was to evaluate the ability of 

TASSEL and GLMSelect to identify effects associated with complex traits and to provide 

genetic insights into factors that control these traits. We chose to study amylose content as a 

proof-of-concept because much is already known about the genetics and molecular biology of 

this trait. SSR markers selected by TASSEL to be associated with AC are summarized and 

presented in Table 2.3. In TX, 35 markers were found to be associated with AC with a total R2 of 

0.26, whereas for AR, 29 markers were associated with R2 of 0.23. Across locations, 30 markers 

were associated with R2 of 0.23. These results demonstrate that TASSEL was poor in selecting 

markers that explained overall variation observed for AC.  

0

5

10

15

20

25

0-0.09 0.1-0.19 0.2-0.29 0.3-0.39 0.4-0.49 0.5-0.59 0.6-0.69 0.7-0.79 0.8-0.89 0.9-0.99

P
er

ce
n

ta
g

e

Relative Kinship 



23 

Table 2.3 SSR markers identified by TASSEL mixed model associated with amylose content 
(AC) for Arkansas (AR), Texas (TX), and across locations (AVG). 

Location SSR Markers 

AR RM190_122, RM169_168, RM408_127, RM510_119, RM214_154, RM116_279, 

RM202_161, RM435_167, RM3431_150, RM317_161, RM409_091, RM21_157, 

RM1167_171, RM435_163, RM409_085, RM72_183, RM118_158, RM1189_180, 

RM420_186, RM5752_126, RM225_138, RM408_119, RM231_181, RM118_162, 

RM1167_175, RM190_126, RM169_166, RM234_135, RM433_223 

TX RM190_122, RM510_119, RM169_168, RM214_154, RM116_279, RM1167_171, 

RM408_127, RM190_126, RM21_157, RM409_091, RM3431_150, RM231_181, 

RM317_161, RM5752_126, RM118_158, RM118_162, RM1189_180, RM435_167, 

RM437_252, RM225_138, RM169_166, RM72_183, RM202_161, RM420_186, 

RM409_085, RM72_186, RM149_241, RM3430_211, RM120_184, RM161_181, 

RM422_389, RM482_192, RM435_163, RM1189_190, RM234_135 

AVG RM190_122, RM510_119, RM169_168, RM214_154, RM408_127, RM116_279, 

RM1167_171, RM3431_150, RM435_167, RM317_161, RM409_091, RM21_157, 

RM202_161, RM118_158, RM1189_180, RM231_181, RM5752_126, RM72_183, 

RM190_126, RM409_085, RM118_162, RM435_163, RM420_186, RM225_138, 

RM169_166, RM437_252, RM1167_175, RM408_119, RM234_135, RM161_181 

Several QTL for AC have been reported on almost all of the 12 rice chromosomes, but 

the majority occurs on chromosome 6. Interestingly, four markers identified both within and 

across locations by the TASSEL-mixed model on chromosome 6 (RM190, RM435, RM510, 

RM225) and RM1189 on chromosome 9 mapped to the same regions as previous QTL studies 

based on the Gramene website (www.gramene.org). These markers were also found by previous 

association mapping work using discriminant analysis (DA) in the same population (Kadaru, 

2006).  

Table 2.4 presents the summary of the SSR markers identified by TASSEL associated 

with HD in each location at P-value < 0.15. LA recorded the most number of significant markers 

associated with HD with 54 (R2=73%), followed TX at 46 (R2=71%), MS at 42 markers 

(R2=47%), and AR at 41 markers (R2=58%). MO recorded the least number of 24 significant 

markers and the lowest R2=0.29. Across locations, 44 markers were associated with HD with a 

cumulative R2 of 0.57.  
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Table 2.4 SSR markers identified by mixed model (TASSEL) associated with heading date (HD) 
for each of the five locations: Arkansas (AR), Louisiana (LA), Missouri (MO), Mississippi (MS), 
Texas (TX), and across locations (AVG). 

Location SSR Markers 

AR RM517_266, RM403_242, RM517_260, RM132_080, RM214_148, RM403_239, 

RM477_223, RM3912_195, RM132_083, RM279_164, RM271_086, RM468_266, 

RM317_161, RM271_098, RM184_215, RM3430_211, RM338_179, RM421_243, 

RM144_256, RM478_212, RM437_274, RM433_221, RM273_201, RM13_149, RM16_167, 

RM178_115, RM178_117, RM474_261, RM248_081, RM210_159, RM119_148, 

RM420_199, RM408_127, RM144_253, RM421_235, RM7_175, RM5_114, RM2_164, 

RM120_184, RM225_142, RM474_253, RM25_141 
LA RM184_215, RM517_266, RM403_242, RM420_199, RM248_081, RM273_201, 

RM3912_195, RM132_080, RM251_117, RM190_122, RM403_239, RM468_266, 

RM421_243, RM144_256, RM3430_211, RM478_212, RM408_127, RM171_328, 

RM214_148, RM510_119, RM271_086, RM271_098, RM421_235, RM202_176, 

RM420_186, RM13_149, RM178_115, RM178_117, RM5864_132, RM475_185, 

RM433_221, RM279_164, RM517_260, RM181_239, RM184_204, RM437_252, RM16_167, 

RM437_274, RM486_097, RM181_244, RM477_223, RM317_161, RM474_261, 

RM116_279, RM132_083, RM119_148, RM284_144, RM7_175, RM169_168, RM3431_150, 

RM229_125, RM348_130, RM413_077, RM112_123 
MO RM214_148, RM13_149, RM190_122, RM144_253, RM486_097, RM144_256, RM478_212, 

RM420_199, RM510_119, RM403_242, RM403_239, RM475_185, RM149_241, 

RM315_132, RM248_081, RM517_266, RM132_080, RM317_161, RM431_254, 

RM184_204, RM181_239, RM184_215, RM25_141, RM234_135 

MS RM184_215, RM403_242, RM420_199, RM3912_195, RM132_080, RM184_204, 

RM144_256, RM214_148, RM517_266, RM248_081, RM271_098, RM3430_211, 

RM517_260, RM437_274, RM3431_150, RM120_184, RM317_161, RM420_186, 

RM403_239, RM433_221, RM202_176, RM459_060, RM273_201, RM5_114, RM477_223, 

RM171_344, RM119_148, RM623_334, RM178_115, RM178_117, RM468_266, 

RM181_244, RM190_122, RM459_064, RM132_083, RM171_328, RM478_212, 

RM421_243, RM25_141, RM5864_129, RM13_149, RM271_086 
TX RM184_215, RM403_242, RM517_266, RM403_239, RM132_080, RM271_086, 

RM478_212, RM408_127, RM132_083, RM517_260, RM214_148, RM477_223, 

RM273_201, RM468_266, RM3430_211, RM178_115, RM178_117, RM271_098, 

RM421_243, RM437_274, RM210_159, RM16_167, RM317_161, RM3912_195, 

RM421_235, RM420_199, RM119_148, RM474_253, RM181_244, RM251_117, 

RM171_328, RM3431_150, RM248_081, RM413_079, RM433_221, RM13_149, 

RM5864_132, RM2_164, RM231_181, RM25_141, RM486_097, RM279_164, RM162_240, 

RM106_287, RM413_077, RM120_184 
AVG RM403_242, RM184_215, RM517_266, RM132_080, RM214_148, RM403_239, 

RM420_199, RM478_212, RM248_081, RM3912_195, RM517_260, RM477_223, 

RM271_086, RM271_098, RM144_256, RM3430_211, RM468_266, RM190_122, 

RM13_149, RM273_201, RM132_083, RM317_161, RM421_243, RM437_274, RM408_127, 

RM486_097, RM433_221, RM510_119, RM178_115, RM178_117, RM184_204, 

RM279_164, RM16_167, RM421_235, RM120_184, RM181_244, RM420_186, 

RM3431_150, RM171_328, RM5864_132, RM7_175, RM144_253, RM181_239, RM25_141 
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Six markers were common to all locations and are potential markers to differentiate populations 

based on HD. The common markers were RM214, RM478, RM420 on chromosome 7, RM437, 

RM13 on chromosome 5, and RM403 on chromosome 1. 

Based on known published QTL for HD at the Gramene website 

(http://www.gramene.org), all six markers mapped within QTL regions for this trait. RM214 on 

chromosome 7 was also found by DA in the same population (Kadaru, 2006). Individual R2 

values of these selected markers associated with HD were low (<5%). These results indicate the 

potential of mixed model to identify markers associated with this trait, although many markers 

were required to explain only a moderate level of observed variation.  

For head rice (HR), Table 2.5 summarizes the SSR markers associated with the trait in 

each location. The highest recorded number of marker-HR association was the TX location with 

47 (R2=59%) followed by LA with 42 markers (R2=0.58), MS with 30 markers (R2=0.36) and 

AR with 28 associated markers (R2=0.36). Across locations, 33 significant marker trait-

associations were found with cumulative R2 of 0.41. Seven SSR markers (RM5, RM104, 

RM106, RM112, RM481, RM171, and RM120) associated with HR from the TASSEL analyses 

were also reported for QTL regions at the Gramene website. In addition, five other markers were 

located near known QTL regions (RM279, RM171, RM228, RM348, and RM234) for head rice. 

Four of these markers (RM104, RM106, RM481, and RM279) were also identified by DA in the 

same population (Kadaru, 2006). Although these markers were significantly associated with HR 

and mapped to the same region as previous QTL, the low R2 values for individual markers may 

hamper their immediate use for marker-assisted breeding. 

Figure 2.2 summarized the results of plotting observed phenotype data for AC, HD and 

HR against predicted phenotype data obtained from mixed model output in TASSEL using 194 

bi-allelic markers. 



26 

Table 2.5 SSR markers identified by mixed model (TASSEL) associated with head rice (HR) for 

each of the four locations: Arkansas (AR), Louisiana (LA), Mississippi (MS), Texas (TX) and 

across locations (AVG). 

 

Location SSR Markers 

AR RM315_137, RM3431_150, RM315_132, RM498_211, RM181_244, RM210_159, 

RM119_148, RM2_164, RM2_148, RM171_328, RM418_283, RM408_127, 

RM482_192, RM341_142, RM3912_191, RM120_184, RM112_123, RM228_115, 

RM1359_162, RM104_238, RM338_179, RM333_165, OSR13_094, OSR13_098, 

RM234_135, RM162_240, RM341_136, RM250_177 

LA RM475_199, RM116_279, RM132_080, RM468_266, RM341_142, RM112_123, 

RM112_126, RM116_277, RM181_239, RM459_060, RM475_185, RM279_164, 

RM420_186, RM403_242, RM517_260, RM517_266, RM248_081, RM181_244, 

RM420_199, RM3912_191, RM474_261, RM277_114, RM5864_132, RM623_350, 

RM190_122, RM413_077, RM5_114, RM3430_211, RM284_144, RM118_162, 

RM421_235, RM437_274, RM16_167, RM225_142, RM16_183, RM271_098, 

RM477_223, RM273_199, RM2_148, RM413_079, RM279_158, RM202_176 

MS RM437_274, RM181_239, RM3912_191, RM231_191, RM3431_150, RM475_199, 

RM341_136, RM250_177, RM104_238, RM1359_162, RM475_185, RM403_239 

, RM481_156, RM120_182, RM104_222, RM106_293, RM251_119, RM181_244, 

RM341_142, RM418_283, RM72_186, RM5864_132, RM21_139, RM482_192, 

RM116_277, RM435_167, RM17_157, RM437_252, RM234_141, RM498_211 

TX RM474_261, RM437_274, RM206_131, RM408_127, RM1167_175, RM106_287, 

RM119_148, OSR13_094, OSR13_098, RM109_095, RM418_298, RM2_164, 

RM517_260, RM1189_190, RM16_183, RM296_119, RM413_077, RM481_156, 

RM277_114, RM420_199, RM623_334, RM475_199, RM181_239, RM142_237, 

RM149_241, RM316_196, RM116_279, RM5_114, RM437_252, RM348_139, 

RM316_212, RM112_123, RM116_277, RM21_139, RM296_125, RM413_079 

, RM149_240, RM162_240, RM408_119, RM279_164, RM287_103, RM482_186, 

RM433_223, RM106_293, RM273_201, RM341_142, RM104_222 

AVG RM475_199, RM341_142, RM437_274, RM181_239, RM3912_191, RM408_127, 

RM481_156, RM21_139, RM315_137, RM112_123, RM482_192, RM104_238, 

RM3431_150, RM171_328, RM225_142, RM116_279, RM1189_190, RM418_283, 

RM104_222, RM408_119, RM341_136, RM112_126, RM119_148, RM2_164, 

RM437_252, RM162_240, RM287_103, RM1359_162, RM315_132, RM316_212, 

RM475_185, RM234_135, RM474_261 
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Similar trends were observed for AC at both TX and AR where high correlation coefficients 

(r2=0.92) were observed, although extreme phenotypes tended to be both under- and 

overestimated. For both graphs, low AC phenotypes were overestimated while high AC 

phenotypes were underestimated.  The results suggest the potential of the selected SSR markers 

by TASSEL for predicting the amylose content at the TX and AR locations, although this 

outcome is contrasted to the adjusted R2 values obtained for the markers selected by TASSEL.  

Similar trends were also observed for HD (Figure 2.2). Correlation coefficients for AR 

and LA locations for the observed and predicted values were high (>0.83). Similar r2 values for 

MO, MS, and TX data were also obtained (data not shown). It was noted that few extreme 

phenotypes tend to have poor prediction compared to the majority of lines close to the mean. 

Markers tend to overestimate HD phenotypes for early maturity and tend to underestimate the 

late maturing lines. Overall the model showed relative good predictive ability, but the selected 

markers may not be useful for predicting extreme phenotypes. 

For the complex HR character, correlation coefficients were moderate (r2<0.80). The data 

presented in Figure 2.2 for LA and AR represents the overall trend for all locations. It is 

interesting to note the contrasting trend in the observed and predicted values for LA and AR. 

While the majority of LA data were detected on the upper section of the graph, AR data were 

more evenly distributed. It can be noted though that except for a few low HR phenotypes for LA 

which were poorly predicted, the majority were found near the ideal fitted line. In contrast, AR 

data showed that overestimation by the markers was evident on low HR phenotypes and 

underestimation of high HR phenotypes. These low and high HR phenotypes constitute the 

majority of the 192 lines evaluated resulting in poor prediction for this trait. Either more 

molecular markers are needed or replicated phenotype data to further improve prediction ability 

for this trait. 
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Figure 2.2 Observed and predicted values of amylose content (AC), heading date (HD) and head 
rice (HR) for Arkansas, (AR), Louisiana (LA) and Texas (TX). Predicted values were based on 
194 bi-allelic markers from TASSEL-mixed model analysis. 

The overall TASSEL results suggested that while the mixed model could identify 

individual candidate DNA markers associated with complex traits, the mixed model seemed 

inadequate to capture total observed phenotypic variation. This may occur because the mixed 

model only evaluates additive markers one at a time, and ignores multiple regression and two-
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way interaction options that may improve identification of markers associated with agronomic 

traits.  

2.3.4 GLMSelect Procedure for Association Mapping in Rice 

GLMSelect analyses with 172 different combinations of selection criteria, with and 

without a validation step or consideration of epistasis, revealed two general outcomes.  The first 

was that only moderate amounts of variation could be explained for any of the three traits 

(adjusted R2 ~ 0.50 to 0.70), no matter the number of selected effects, when validation and 

epistasis were ignored (results not shown). Second, all variation could be explained (Adjusted R2 

= 1.00) for all traits with validation and epistasis where selected effects ranged from 73 to 84, but 

the large number of effects was impractical for genomics and marker-assisted selection. We 

therefore considered “optimal models” to be those exhibiting the highest adjusted R2 values with 

< 30 selected effects.  

As shown in Table 2.6, a large proportion of variation in AC could be explained 

(Adjusted R2 = 0.91) by GLMSelect when validation and epistasis were ignored, but the number 

of selected effects at 34 was considered too high. When validation was performed and epistasis 

was ignored, only a moderate Adjusted R2 value of 0.70 could be generated with the maximum 

number of selected effects which was 13. A high adjusted R2 value of 0.94 with 23 effects was 

identified as the “optimum” model from GLMSelect when both validation and epistasis were 

combined with the model options of CHOOSE = Adjusted R2; SELECT = Adjusted R2; stop = 

PRESS. The smallest values for Root MSE, BIC, AIC, ASE, and PRESS were also obtained 

when a validation step and epistasis were considered. In contrast, the standard F test 

implemented in GLMSelect (CHOOSE = none; SELECT = SL (p = 0.15); STOP = none) 

produced only a moderate adjusted R2 value of 0.62 with a maximum of 16 effects selected.  
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Analysis of HD by GLMSelect showed that validation and epistasis provided only a 

small advantage in terms of variation explained and number of effects (Table 2.6). However, a 

consistent trend for smallest values of BIC and the other criteria was observed with consideration 

of validation and epistasis. All GLMSelect results with or without validation or epistasis were 

clearly superior to standard F tests that required 24 effects to explain only 58 % of the observed 

variation for this complex agronomic trait.  

When HR was evaluated, a large number of effects (34) were required to explain a 

moderate amount of variation (0.84) if validation and epistasis were ignored (Table 2.6). After a 

validation step was included, the number of selected effects dropped three-fold to 11, but the 

percent variation explained was poor at 53 %. When both validation and epistasis steps were 

implemented under selection options of CHOOSE = Adjusted R2, SELECT = Adjusted R2, 

STOP = PRESS, a high adjusted R2 value of 0.94 was obtained with 29 effects.  The same 

“optimal” model was identified when BIC was chosen for the SELECT option. Similar to results 

for amylose content and heading date, validation and epistasis steps produced the smallest values 

for the criteria Root MSE, BIC, AIC, ASE, and PRESS. As was the case for the other two traits, 

only a moderate amount of variation for HR was accounted for by the standard F test (0.64) that 

selected 21 effects.  

To examine the attributes of the GLMSelect procedure in more detail, coefficient values 

of selected effects as a function of when they entered the “optimal” regression models for the 

three traits are shown in Figures 2.3a, b, and c. In the case of AC, the first major finding was that 

all selected effects shown in Figure 2.3a were epistatic which has implications for the importance 

of gene interactions in complex traits. Such interactions should therefore not be ignored in 

association genetics or even standard mapping studies. 
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Table 2.6 GLMSelect analysis, with and without consideration of validation and epistasis, for Adjusted R2, Root Mean Square Error 

(MSE), Bayesian Information Criteria (BIC), Akaike Information Criteria (AIC), Average error sum of squares (ASE) and Predicted 

Residual Sum of Squares (PRESS) associated with amylose content, heading date, and head rice. 

 

Fit statistics 
Amylose content Heading date Head rice 

1a 2b 3c 4d 1 2 3 4 1 2 3 4 

Adjusted R2 0.91 0.70 0.94 0.62 0.72 0.73 0.77 0.58 0.84 0.53 0.94 0.64 

Root MSE 1.28 2.36 1.10 2.85 2.06 1.97 1.74 2.37 2.32 3.77 1.41 3.30 

BIC 0.68 210.42 -6.22 271.56 146.75 161.51 102.31 216.37 107.28 306.90 37.51  77.29 

AIC 70.68 197.04 41.78 319.23 194.23 158.84 144.31 284.56 177.28 298.01 97.51 336.30 

ASE 1.01 4.85 0.94 7.01 3.35 2.96 2.47 4.36 3.29 12.64 1.43 8.67 

PRESS ----e  864.53 165.10 ---- ---- 523.15 443.67 ---- ----  1689.96 276.65 ---- 

No. of  

Effects 34 13 23 16 18 23 20 24 34 11 29 21 
 

a No validation step, no interaction effects in the model, b Validation step performed, no interaction effects in the model, c Validation 

step performed, interaction effects in the model d Standard F test implemented in GLMSelect where select option = SL (p=0.15),e No 

data collected 
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The RM190*RM435 was the first effect identified by GLMSelect to be retained in the model 

that explained the greatest amount of variation (40 %) for amylose content. Given that RM190 

lies within the waxy gene considered to be the major factor contributing to amylose content (Bao 

et al., 2006), this result demonstrates that GLMSelect can successfully identify effects with a 

genetic and biological basis. The RM190*RM435 interaction also produced the smallest negative 

coefficients (-0.60 to-0.70) throughout development of the model that suggested a strong effect 

that would, in statistical terms, contribute to a reduction in amylose content. However, RM190 

produced a positive interaction with RM25 which in turn interacted in a negative manner with 

RM72 and RM433. These results indicate that genetic control of amylose content in rice is 

complex with multiple epistatic effects located not only at the waxy locus, but also at other 

chromosomal regions as reported here for the first time.  

When the standard F test with or without validation or epistasis was carried out in 

GLMSelect, the RM190 marker in the waxy gene was not identified among the top selected 

effects. Specifically, when forward and stepwise selection were implemented without validation 

or epistasis, RM190 was identified at the 10th and 19th selection steps, respectively, each with 

small Adjusted R2 values. When validation and epistasis were included during forward and 

stepwise selection, RM190 was identified as an epistatic component only in the 5th or 6th 

selection steps. We interpret these results to mean that the standard hypothesis testing completed 

in this study appears to be inferior to GLMSelect for ability to identify those effects most 

strongly associated with observed variation for AC.  

The relative contribution or “evolution” of coefficients during development of the 

optimal model for HD is shown in Figure 2.3b. Consistent with amylose content, all selected 

effects were epistatic except for RM214 and RM273 whose relative contributions to the overall 
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model were minimal. The RM190*RM296 interaction explained the greatest amount of 

phenotypic variation (20%) and showed a strong negative coefficient throughout development of 

the optimal model. Given the known association with amylose content, it is surprising that 

RM190 may also be associated with heading date, although the marker has been previously 

mapped within the published QTL QHd6a on chromosome 6 (accession AQEA240, 

www.gramene.org), and RM296 has been mapped within published QTL QHd9 on chromosome 

9 (accession AQEA279, www.gramene.org).  

 

Figure 2.3a Standardized coefficients and adjusted R2 values as a function of when effects are 

selected and retained by GLMSelect during development of “optimal” model for amylose 

content. 
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Figure 2.3b Standardized coefficients and adjusted R2 values as a function of when effects are 
selected and retained by GLMSelect during development of “optimal” model for heading date.  

We interpret these results to mean that these loci may lie within regions that interact with 

each other to affect heading date, but additional studies are needed for confirmation.  In addition 
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to RM190, markers RM25 and RM72 were identified for both heading date and amylose content 

which suggests that these loci may occur in regions that exhibit pleotrophic effects on these 

traits. All remaining markers for heading date, except RM21, RM112, RM317, and RM498, 

mapped within published QTLs that are presented in Figure2.4a and b. The results for HD 

illustrate the potential value of the GLMSelect procedure for marker-trait analysis where, in this 

case, a combination of both positive and negative effects contributes to the final predictive 

model. Selected effects and their relative importance to the optimal GLMSelect model for HR 

are shown in Figure 2.3c. All effects associated with this trait were epistatic which followed the 

general trend for the other two traits. These results underscore the need to account for epistatic 

effects when conducting association studies. The effect that explained the most variation (20%) 

was identified by GLMSelect as a positive interaction between RM106 and RM144.  RM106 on 

chromosome 2 mapped within 3 cM of a published QTL (accession AQEE014, 

www.grmene.org) for HR whereas RM144 on chromosome 11 was also detected  by the 

Discriminant Analysis procedure as outlined by Zhang et al. (2005; Oard, unpublished results). It 

is interesting that RM144 was also identified as epistatic for AC (Fig. 2.3a). The second most 

influential epistatic effect was composed of RM149 and RM408 that were both found associated 

with head rice among the 192 lines by the Discriminate Analysis procedure (Oard, unpublished 

results). RM5 and RM210 comprised the third selected epistatic effect. RM5 mapped within the 

published QTL hr1 on chromosome 1 that explained 18% phenotypic variation in a study by 

Aluko et al. (2004) which was consistent with results from the current study. Only 12 out of the 

29 selected loci mapped to regions previously cited for head rice, but this may be due to 

relatively few studies reported for this trait which is a challenge to measure accurately under 



36 

field conditions. The 17 remaining loci are therefore considered candidate markers associated 

with head rice which were not identified in previous studies.  

 

Figure 2.3c Standardized coefficients and adjusted R2 values as a function of when effects are 

selected and retained by GLMSelect during development of “optimal” model for head rice. 
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Figure 2.4a Chromosomal locations (1-6) of SSR markers identified by model selection approach 
for amylose content (AC), heading date (HD), and head rice (HR). Solid and striped boxes inside 
the chromosomes represent QTL regions detected in previous QTL studies. SSR markers in 
green and bold with an “a” superscript are amylose content, and red with a “b” superscript are 
heading date markers, and italics and black with a “c” superscript are head rice markers. Markers 
labeled with ab, bc or ac superscript combinations are associated with two traits.  
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Figure 2.4b Chromosomal locations (7-12) of SSR markers identified by model selection 
approach for amylose content (AC), heading date (HD), and head rice (HR). Solid and striped 
boxes inside the chromosomes represent QTL regions detected in previous QTL studies. SSR 
markers in green and bold with an “a” superscript are amylose content, and red with a “b” 
superscript are heading date markers, and italics and black with a “c” superscript are head rice 
markers. Markers labeled with ab, bc or ac superscript combinations are associated with two 
traits.  
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2.3.5 GLMSelect Analysis for Each Location 

Table 2.7 summarizes the results of individual locations for marker-trait association for 

AC with and without consideration of epistasis. As explained in previous sections on GLMSelect 

based on data across locations, the addition of an epistatic term in the model improved the ability 

of markers to explain phenotypic variation in the population. Adjusted R2 increased from 22%-

55% for AR data and 60%-94% for TX data. Although the number of selected markers increased 

from 3 to17, the numbers were still within the acceptable and manageable numbers for applied 

breeding purposes. Interestingly, the marker effect which is epistatic and found to be the number 

one marker significantly associated with AC was consistent within and across AR and TX.  

RM190_122*RM435_167, the best marker for AR accounts for 25% of total variation, while in 

TX, the same interaction effect accounts for 33%,  and across locations it accounts for 40% of 

total variation explained (Figure 2.3a). RM190 and RM435 are both located on chromosome 6, 

are known QTLs for AC by previous QTL reports. In addition, 98% of all significant effects in 

the model for AC were epistatic. These results suggest the potential of multiple regression with 

selection and validation options and epistasis to identify important QTLs in complex traits like 

AC.  

Table 2.7 Fit statistics of two selection methods (1-GLMSelect without interaction, 2-

GLMSelect with two-way interaction) for amylose content within and across locations. 

 

Fit Statistics/ 

Location 

Arkansas Texas 

1 2 1 2 

Adjusted R2 0.22 0.55 0.60 0.94 

Root MSE 3.89 2.97 2.88 1.09 

BIC 305.02 239.97 228.39 -0.97 

AIC 306.44 247.97 241.40 35.03 

ASE 14.88 8.52 7.62 0.99 

PRESS 1717.24 1026.13 1164.43 163.54 

# of Effects 1 3 8 17 
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HD was analyzed for marker association for AR, LA, MO, MS, and TX locations with 

and without consideration of epistasis. Table 2.8 presents the summary fit statistics of the 

analyses. The general trend observed for AC was also observed for HD, viz., adding the epistatic 

component increased the overall ability of the model to explain trait variation. Almost all 

associated effects were epistatic (99%) for locations. Adjusted R2 values were > 30% for 

multiple regression with epistasis compared to multiple regression without epistasis for most of 

the locations, although more markers were indentified to be associated with HD in all locations.  

Three selected markers were common across locations (RM214, RM437 and RM13) which were 

also reported as QTL by Gramene. In addition, RM478 marker was present in all locations 

except MO and this marker was also identified in Gramene as QTL for HD. Some location-

specific markers were also found. For example, RM420 was found only at the MO location, but 

this marker was also identified in previous work as QTL by Gramene.  

Statistics for multiple regression of HR with and without consideration of epistasis are 

summarized in Table 2.9.Without consideration of epistasis, even with 20 marker effects, 

adjusted R2 value was still low in AR (adjusted R2=0.57) while in LA no markers were found.  

Modeling epistatic terms increased overall ability to explain phenotypic variation by >20% with 

the same number of effects in most locations. It can be noted though that number of effects 

identified were inconsistent from location to location. For example, LA identified only 3 

epistatic effects while AR and MS produced a 10-fold increase and 5-fold more in TX. All 

effects identified for all locations were epistatic. RM5 was found for all locations except LA 

while RM481 were associated with HR in all locations except MS location. These two markers 

are known QTLs for HR based on published work (Aluko et al., 2004; www.gramene.org).   
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Table 2.8 Fit statistics of two selection methods (1-GLMSelect without interaction, 2-GLMSelect with two-way interaction) for heading 

date within and across locations. 

 

Fit 

Statistics/ 

Locations 

Arkansas Louisiana Missouri Mississippi Texas 
Average across 

locations 

1 2 1 2 1 2 1 2 1 2 1 2 

Adjusted R2 0.36 0.88 0.51 0.89 0.56 0.89 0.68 0.92 0.30 0.93 0.56 0.90 

Root MSE 3.60 1.69 2.68 1.30 2.73 1.36 2.22 1.13 3.35 1.06 2.47 1.18 

BIC 330.75 284.49 211.62 22.68 237.93 149.69 187.98 -7.05 269.49 -21.37 224.83 3.22 

AIC 331.43 157.84 227.04 82.68 261.09 99.72 199.43 52.95 272.29 38.63 227.72 63.22 

ASE 12.03 2.17 6.45 1.23 6.11 1.39 4.03 0.94 10.82 0.82 4.94 1.03 

PRESS 1754.51 471.29 860.81 191.17 1063.68 265.70 661.72 166.06 1369.31 144.89 854.62 191.86 

# of Effects 8 29 10 29 21 29 20 29 3 29 21 29 

 

 

Table 2.9 Fit statistics of two model selection methods (1-GLMSelect without interaction, 2-GLMSelect with two-way interaction) for 

head rice in each location and across locations. 

 

Fit Statistics/ 

Location 

Arkansas Louisiana Mississippi Texas 
Average across 

locations 

1 2 1 2 1 2 1 2 1 2 

Adjusted R2 0.57 0.91 0.00 0.56 0.54 0.93 0.55 0.75 0.47 0.88 

Root MSE 7.52 3.41 5.79 3.84 4.45 1.76 3.64 2.70 3.89 1.89 

BIC 431.07 224.97 394.29 297.08 339.75 90.07 323.81 218.79 363.33 122.46 

AIC 446.28 284.98 394.30 305.08 344.46 150.07 322.15 250.79 348.90 182.46 

ASE 45.33 8.35 33.20 14.19 17.31 2.25 11.45 6.29 13.15 2.71 

PRESS 7444.62 1502.63 3786.21 1639.20 2531.54 378.59 1809.29 1007.49 2183.87 439.67 

# of Effects 20 29 0 3 13 29 15 15 15 29 
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Other known QTLs were location specific. RM104 for example was only detected in LA data 

while RM171 were significantly associated with HR in MS only. RM120 was found to be 

associated with HR in MS and AR only, while RM106 and RM104 were not found on any 

location except when considering across locations. 

2.3.6 Marker Trait Associations by Combined TASSEL-GLMSelect Procedure  

Table 2.10a-c summarizes the common fit statistics of TASSEL-GLMSelect procedure 

for marker trait association in each location for AC, HD, and HR. The TASSEL-GLMSelect 

analysis for AC is shown in Table 2.10a. Overall, markers identified at each location could 

explain the majority of trait variation observed (Adjusted R2 > 0.90). More than 89% of 

associated effects were found to be epistatic, which highlights the importance of including 

epistasis in the model as reported by Dudley (2009) in recent maize studies. The list of main and 

epistatic marker effects is presented in Table 2.11. RM190, previously found to be located within 

the waxy locus and primarily responsible for AC (Bao et al., 2006), was also detected by 

TASSEL-GLMSelect for the trait in both locations.  Six epistatic interactions involving RM190 

were found for AR, five for TX and four for AVG. Also, RM435, RM225, and RM1189, 

identified by TASSEL-GLMSelect and confirmed to be located on known QTL regions by 

previous Gramene reports, were also found to be associated with the trait in TASSEL. These 

results indicate the potential of the TASSEL-GLMSelect procedure for association genetics of 

AC in rice.   

For HD, the LA and TX locations identified the greatest number of effects vs. other states 

(Table 2.10b). Adjusted R2 values for each state ranged from relatively low to moderate with LA 

and TX producing nearly identical values with an overall average for all states of 0.76. Most of 

the associated marker effects with HD were epistatic at each location accounting for 98% of total 

associated effects. Markers for HD found in TASSEL-GLMSelect (RM214, RM478, RM420, 
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RM537, RM13, and RM403) were also found to be associated with this trait by the TASSEL 

analysis.  RM214 was associated with HD at all locations except AR, while RM13 and RM478 

were associated at all locations except MO and MS. Finally, markers RM403 and RM437 were 

associated with HD in LA and TX.  

It is noteworthy that the combined TASSEL-GLMSelect approach for HD produced 

higher adjusted R2 values with fewer selected effects than the TASSEL method alone. For 

example, the analysis across locations with TASSEL-GLMSelect selected 24 effects to generate 

an adjusted R2 value of 0.76 for HD while TASSEL alone required nearly double the number of 

effects (44) to produce an adjusted R2 value of only 0.57. These results demonstrate the 

increased power and precision of the combined TASSEL-GLMSelect approach versus exclusive 

use of the mixed model implemented in TASSEL for marker-trait associations.  Results from the 

remaining statistics in Table 2.10a show the potential value of the combined analysis across 

locations, in spite of the location effect shown in the ANOVA (Table 2.1). For example, values 

for Root MSE, BIC, and the remaining statistics were the smallest when the data were analyzed 

across locations (AVG).  

Table 2.10c shows TASSEL-GLMSelect results for HR. Large differences were observed 

within states to explain observed variation with the fewest number of effects. For example, AR 

and MS required 2.0 to 2.5-fold greater number of effects to explain the same amount of 

phenotypic variation compared to LA. In addition, a strong division between TX and the other 

states was observed for ability of TASSEL-GLMSelect to identify associations between markers 

and HR. TX produced adjusted R2 values ~ 15% greater than the remaining states that may be 

due to the greater number of selected effects vs. the other states.  Moreover, values of the 

remaining statistics for TX were smaller than the other states, a trend that showed statistical 
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consistency for all measures of variation used in this study. In other words, the adjusted R2 

values were consistent with those of Root MSE and the other statistics.  

Table 2.10a TASSEL-GLMSelect analysis with validation and epistasis within and across 

locations for Adjusted R2, Root Mean Square Error (MSE), Bayesian Information Criteria (BIC), 

Akaike Information Criteria (AIC), Average error sum of squares (ASE) and Predicted Residual 

Sum of Squares (PRESS) associated with amylose content. 

 

a. Fit Statistics AR TX AVG 

Adjusted R2 0.91 0.92 0.92 

Root MSE 1.25 1.26 1.19 

BIC 98.87 90.06 82.09 

AIC 89.73 86.85 80.38 

ASE 1.30 1.37 1.14 

PRESS 269.48 291.55 247.12 

# of Effects 24 19 29 

AR-Arkansas, TX-Texas, and AVG-Average across locations 

Seven SSR markers (RM5, RM104, RM106, RM112, RM481, RM171, and RM120) 

identified by TASSEL-GLMSelect for HR were previously identified by TASSEL and were 

previously reported in previous QTL mapping studies (Table 2.11). In addition, four additional 

SSR markers that were located in the same QTL region for HR (RM279, RM171, RM348, and 

RM234) were identified by TASSEL-GLMSelect. Most of associated marker effects for HR 

were found to be epistatic (96%) (Table 2.11). Because few QTL regions have been reported for 

HR, results from this TASSEL-GLMSelect analysis should provide additional markers and loci 

worth validating in other populations to increase candidate QTL regions for this trait.  

As was shown with the HD results above, the TASSEL-GLMSelect analysis for HR 

produced greater adjusted R2 values with fewer effects than the TASSEL analysis alone. For 

example, the TASSEL-GLMSelect method selected 26 effects to produce an adjusted R2 of 0.71 

while TASSEL alone required more effects (33) to explain substantially less phenotypic 

variation (0.41). The HD and HR results demonstrate that while the TASSEL mixed model can 
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identify individual candidate makers, the approach is insufficient to explain observed overall 

phenotypic variation for the complex traits evaluated in this study.  

 

 

Table 2.10b TASSEL-GLMSelect analysis with validation and epistasis within and across 

locations for Adjusted R2, Root Mean Square Error (MSE), Bayesian Information Criteria (BIC), 

Akaike Information Criteria (AIC), Average error sum of squares (ASE) and Predicted Residual 

Sum of Squares (PRESS) associated with heading date. 

b. Fit Statistics AR LA MO MS TX AVG 

Adjusted R2 0.44 0.77 0.33 0.35 0.75 0.76 

Root MSE 3.35 1.79 3.29 3.13 1.90 1.76 

BIC 335.72 227.82 332.05 305.16 290.44 162.43 

AICC 3.49 2.42 3.44 3.35 2.60 2.42 

AIC 330.89 166.01 331.23 302.70 193.46 171.63 

ASE 10.64 2.63 10.43 9.36 2.88 2.51 

PRESS 1553.28 453.09 1573.56 1318.99 585.15 453.45 

# of Effects 6 21 4 5 26 24 

AR-Arkansas, LA-Louisiana, MO-Missouri, MS-Mississippi, TX-Texas, and AVG-Average 
across locations within and across locations   
 

 

 

 

Table 2.10c TASSEL-GLMSelect analysis with validation and epistasis within and across 

locations for Adjusted R2, Root Mean Square Error (MSE), Bayesian Information Criteria (BIC), 

Akaike Information Criteria (AIC), Average error sum of squares (ASE) and Predicted Residual 

Sum of Squares (PRESS) associated with head rice.  

c. Fit Statistics AR LA MS TX AVG 

Adjusted R2 0.63 0.65 0.68 0.71 0.71 

Root MSE 6.64 3.21 3.76 2.06 2.82 

BIC 610.71 332.59 428.39 306.22 312.84 

AIC 580.65 336.83 426.48 216.50 324.60 

ASE 35.97 9.48 12.30 3.27 6.46 

PRESS 7354.20 1583.30 2453.78 583.13 1295.89 

# of Effects 26 10 19 31 26 

AR-Arkansas, LA-Louisiana, MS-Mississippi, TX-Texas, and AVG-Average across locations 
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Table 2.11 SSR markers identified by TASSEL-GLMSelect associated with heading date (HD), 

head rice (HR) and amylose content (AC) in each locations: Arkansas (AR), Louisiana (LA), 

Missouri (MO), Mississippi (MS), and Texas (TX) and across locations (AVG). 

 

Trait 

# of 

effects Selected Markers/effect 

AC_AR 24  RM190_122*RM214_154 RM116_279 RM190_122*RM435_167 

RM169_168*RM317_161 RM214_154*RM409_091 RM21_157 

RM317_161*RM435_163 RM409_091*RM409_085 RM1167_171*RM72_183 

RM408_127*RM420_186 RM202_161*RM5752_126 RM317_161*RM225_138 

RM409_091*RM408_119 RM435_163*RM408_119 RM190_122*RM1167_175 

RM1167_17*RM1167_175 RM408_119*RM1167_175 RM435_167*RM190_126 

RM72_183*RM190_126 RM225_138*RM169_166 RM234_135 

RM435_167*RM234_135 RM190_126*RM234_135 RM225_138*RM433_223 

AC_TX 19  RM190_122*RM214_154 RM116_279 RM21_157 RM169_168*RM21_157 

RM214_154*RM409_091 RM3431_150*RM231_181 RM190_122*RM5752_126 

RM214_154*RM118_162 RM190_122*RM435_167 RM118_158*RM202_161 

RM420_186 RM225_138*RM149_241 RM116_279*RM161_181 

RM21_157*RM161_181 RM190_122*RM435_163 RM116_279*RM435_163 

RM1167_171*RM435_163 RM190_126*RM435_163 RM3431_150*RM435_163 

AC_AVG 29  RM190_122*RM435_167 RM169_168*RM317_161 RM214_154*RM409_091 

RM420_186*RM234_135 RM3431_150*RM231_181 RM190_122*RM5752_126 

RM409_091*RM408_119 RM408_119*RM234_135 RM408_127*RM21_157 

RM3431_150*RM435_163 RM435_163*RM1167_175 RM1189_180*RM435_163 

RM116_279 RM1167_171*RM231_181 RM408_127*RM161_181 

RM214_154*RM1167_175 RM1167_17*RM1167_175 RM408_127*RM118_158 

RM317_161*RM408_119 RM409_091*RM409_085 RM116_279*RM118_162 

RM409_085*RM118_162 RM317_161*RM234_135 RM408_119 

RM3431_150*RM225_138 RM409_091*RM231_181 RM169_168*RM409_091 

RM231_181*RM118_162 RM317_161*RM5752_126 

HD_AR 6  RM132_080*RM279_164 RM13_149*RM408_127 RM132_083*RM144_253 

RM210_159*RM7_175 RM478_212*RM120_184 RM317_161*RM474_253 

HD_LA 21  RM190_122*RM144_256 RM3912_195*RM478_212 RM420_199*RM171_328 

RM3912_195*RM214_148 RM408_127*RM510_119 RM132_080*RM271_098 

RM214_148*RM437_252 RM3912_195*RM437_274 RM13_149*RM486_097 

RM433_221*RM486_097 RM171_328*RM474_261 RM5864_132*RM116_279 

RM184_204*RM132_083 RM251_117*RM119_148 RM403_239*RM284_144 

RM202_176*RM7_175 RM251_117*RM229_125 RM3912_195*RM348_130 

RM437_252*RM348_130 RM181_244*RM348_130 RM468_266*RM112_123 

HD_MO 4  RM144_256*RM510_119 RM144_253*RM315_132 RM214_148*RM517_266 

RM144_253*RM317_161 

HD_MS 5  RM3912_195*RM214_148 RM517_260*RM3431_150 RM3430_211*RM120_184 

RM184_204*RM420_186 RM144_256*RM190_122 

HD_TX 26  RM184_215 RM403_239*RM517_260 RM478_212*RM214_148 

RM132_080*RM271_098 RM403_239*RM421_243 RM478_212*RM437_274 

RM478_212*RM3912_195 RM214_148*RM3912_195 RM132_083*RM119_148 

RM3430_211*RM119_148 RM437_274*RM474_253 RM132_083*RM181_244 

RM3912_195*RM181_244 RM478_212*RM171_328 RM408_127*RM13_149 

RM474_253*RM5864_132 RM171_328*RM231_181 RM273_201*RM25_141 

RM210_159*RM486_097 RM231_181*RM486_097 RM171_328*RM279_164 

RM210_159*RM162_240 RM474_253*RM162_240 RM433_221*RM106_287 

RM251_117*RM120_184 RM248_081*RM120_184 
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Table 2.11 (continued) 

HD_AVG 24  RM214_148*RM478_212 RM132_080*RM271_098 RM478_212*RM144_256 

RM214_148*RM3430_211 RM248_081*RM132_083 RM3430_211*RM408_127 

RM13_149*RM408_127 RM144_256*RM510_119 RM517_260*RM178_117 

RM184_204 RM420_199*RM279_164 RM271_098*RM279_164 

RM3912_195*RM120_184 RM317_161*RM181_244 RM3912_19*RM3431_150 

RM317_161*RM3431_150 RM420_199*RM171_328 RM433_221*RM171_328 

RM181_244*RM7_175 RM478_212*RM144_253 RM3912_195*RM144_253 

RM144_256*RM144_253 RM317_161*RM144_253 RM144_253*RM25_141 

HR_AR 26  RM3431_150 RM315_132*RM498_211 RM181_244*RM210_159 

RM181_244*RM119_148 RM181_244*RM418_283 RM315_132*RM482_192 

RM181_244*RM482_192 RM181_244*RM341_142 RM408_127*RM3912_191 

RM315_137*RM120_184 RM181_244*RM120_184 RM119_148*RM120_184 

RM418_283*RM112_123 RM120_184*RM1359_162 RM3431_150*RM104_238 

RM482_192*RM104_238 RM1359_162*RM104_238 RM315_132*RM333_165 

RM338_179*RM333_165 RM418_283*OSR13_094 RM408_127*RM234_135 

RM333_165*RM234_135 RM315_132*RM250_177 RM181_244*RM250_177 

RM341_142*RM250_177 RM120_184*RM250_177 

HR_LA 10  RM132_080*RM279_164 RM116_279*RM403_242 RM420_186*RM623_350 

RM341_142*RM190_122 RM277_114*RM190_122 RM3912_19*RM3430_211 

RM623_350*RM118_162 RM475_199*RM421_235 RM420_186*RM437_274 

RM16_167*RM477_223 

HR_MS 19  RM475_199*RM250_177 RM3431_15*RM1359_162 RM104_238*RM403_239 

RM181_239*RM481_156 RM437_274*RM104_222 RM1359_162*RM104_222 

RM341_136*RM106_293 RM341_136*RM251_119 RM481_156*RM341_142 

RM3431_150*RM418_283 RM181_244*RM418_283 RM341_142*RM418_283 

RM3431_150*RM72_186 RM1359_162*RM72_186 RM120_182*RM72_186 

RM418_283*RM72_186 RM418_283*RM482_192 RM475_199*RM435_167 

RM104_238*RM234_141 

HR_TX 29  RM403_242 RM271_086 RM403_239*RM478_212 RM403_239*RM517_260 
RM478_212*RM214_148 RM403_239*RM468_266 RM214_148*RM3430_211 
RM132_080*RM437_274 RM271_086*RM16_167 RM437_274*RM3912_195 
RM132_083*RM420_199 RM437_274*RM474_253 RM3912_195*RM181_244 
RM421_243*RM251_117 RM437_274*RM251_117 RM181_244*RM251_117 
RM119_148*RM171_328 RM132_080*RM413_079 RM3431_150*RM433_221 
RM408_127*RM13_149 RM317_161*RM13_149 RM271_086*RM5864_132 
RM171_328*RM231_181 RM273_201*RM25_141 RM420_199*RM279_164 
RM271_098*RM162_240 RM433_221*RM106_287 RM3912_195*RM120_184 
RM162_240*RM120_184 

HR_AVG 26  RM481_156*RM171_328 RM225_142 RM437_274*RM225_142 

RM3912_191*RM225_142 RM104_238*RM225_142 RM437_274*RM418_283 

RM482_192*RM418_283 RM171_328*RM104_222 RM341_142*RM408_119 

RM171_328*RM341_136 RM181_239*RM112_126 RM408_127*RM112_126 

RM181_239*RM119_148 RM104_238*RM119_148 RM171_328*RM119_148 

RM112_123*RM437_252 RM3431_150*RM437_252 RM437_252*RM162_240 

RM315_137*RM1359_162 RM181_239*RM315_132 RM104_238*RM315_132 

RM1189_190*RM316_212 RM112_123*RM234_135 RM3431_150*RM474_261 

RM1189_190*RM474_261 RM104_222*RM474_261 
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The overall results of our study suggest that a multiple linear regression approach such as 

that carried out in GLMSelect coupled with mixed model effect selection is an appropriate 

starting point for further research in association genetics of rice. The majority of selected effects 

mapped to previously published QTLs which increases confidence and value in the combined 

mixed model-multiple regression strategy. The remaining selected effects point to new candidate 

regions not detected by previous research. All results demonstrate that methods to detect epistatic 

interactions will be necessary to identify loci that play pivotal roles in complex agronomic traits 

in rice. Hypothesis testing by F tests is a common method to establish thresholds for significance 

in standard QTL mapping and association genetics studies. Our study provides strong evidence 

that use of selection criteria such as adjusted R2, BIC and AIC will identify fewer effects that 

explain greater phenotypic variation than standard F tests. 

It is now well established in association genetics that stratification must be accounted for 

if present in selected populations.  The model based approach of Pritchard (2000) is often used to 

detect subpopulations in association genetics studies, but this method assumes random mating 

that may not be appropriate for inbred species such as rice (Gao et al., 2007). We therefore tested 

for stratification in our narrow germplasm using both the Structure approach and the Ward’s 

clustering method based on genetic distance. No population stratification was detected either by 

the Structure or the Ward’s method. Future studies are needed to determine if genetic distance 

clustering techniques with less computational demands would be equally effective in detecting 

stratification in rice versus model-based strategies. 

Results from this study suggest that mixed model-multiple regression approaches that 

consider epistasis with a validation step may be effective in selecting loci for marker-assisted 

selection. However, the number of selected effects from this study was too large, and therefore 

too expensive, for practical breeding programs. Increasing the number of markers for analysis of 
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this population may increase power and precision to reduce selected markers and associated 

costs. An important question is which marker platform would be most effective in future 

association genetic studies in rice. Microsatellites are currently the most popular marker type in 

rice genetic and evolution studies. Our study showed that while allelic diversity of microsatellites 

was relatively low in this narrow germplasm, the frequency of rare alleles was very high. Rare 

alleles were removed from the analysis because they were considered non-informative and as 

such could only contribute to an increase in Type I errors. The use of bi-allelic SNP markers 

would help alleviate this problem because they are more prevalent than microsatellite markers, 

and are amenable to high throughput analysis. We conclude that high density SNP markers 

coupled with TASSEL-GLMSelect procedures such as those outlined in this study should be 

further explored for association genetics in rice.  
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CHAPTER 3 EVALUATIO� OF SUPPORT VECTOR REGRESSIO� FOR  

ACCURACY A�D POWER OF CA�DIDATE MARKERS  

ASSOCIATED WITH COMPLEX TRAITS I� RICE 

3.1 Introduction  

3.1.1 Association Genetics in Plants  

Association genetics has been reported recently as a powerful tool to dissect and identify 

markers and genes associated with agronomic traits of economic importance. Recent examples 

include markers associated with iron chlorosis in soybeans (Glycine max) that were validated in 

two separate inbred populations (Wang et al., 2008), and identification of a candidate gene for 

oleic acid content among maize inbreds corroborated in progeny from a separate biparental cross 

(Belo et al., 2008).  Additional studies have reported selection of candidate markers in 

association mapping of maize (Yu et al., 2006), Arabidopsis (Zhao et al., 2009), potato (Simko et 

al., 2006; Malosetti et al., 2007) and barley (Rostoks et al., 2006). The statistical basis for 

association genetic studies of complex traits in plants has been the general linear model (GLM) 

that assumes continuous response variables are linearly associated with one or more fixed 

categorical variables such as DNA marker alleles.  

3.1.2 Support Vector Regression (SVR)  

The general linear regression approach is known nevertheless to be sensitive to noisy 

data, leading to poor predictive accuracy of new information. The support vector regression 

(SVR) method was developed by Vapnik (1995) to increase model accuracy and power by 

approximating the unknown nonlinear relationship between the continuous response variables 

and corresponding predictors. SVR has gained broad popularity due to its robustness to noise, 

computational efficiency, and simplicity of the method.  Implementation of SVR to study the 

relationship between maize hybrid and inbred lines has been previously investigated (Maenhout 

et al., 2007; De Baets et al., 2008).  
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3.1.3 SVR Attributes and Model 

Because SVR is not commonly used in plant research, the main features of the model are 

briefly described. SVR is often referred to as the e-insensitive regression or ε -SVR that is used 

to find a fitting function that deviates at most ε from the quantitative response value y for each 

training sample ni ≤≤1 . For a given training data set, let 1( ,...... )kx x x====  with k predictors and y a 

continuous response.  SVR assumes, like multiple linear regression, that the relationship between 

the predictors and response variable is given by a deterministic function, denoted by f, plus the 

error (the difference between y and f); that is, y = f(x) + the error. The function f is referred to as 

the basis function. The task is to find a functional form for f, using training data to predict the 

response of new data.  The smaller the error, the more accurate is the prediction of y. The 

simplest form of f is the linear function ( ) 'y f x w x b= = += = += = += = + , where 'w stands for the transpose of the 

column vector w resulting in a row vector, and 'w x  is the sum of their cross-products.  The w 

coefficients are often referred to as weights. 

For a given training data set with one input x as shown in Figure 3.1, f is depicted as the 

dark straight line that fits the data, where w and b are the slope and the intercept, respectively. 

This line is referred to as the decision boundary.  SVR allows for errors less than ε , a small 

positive number. The upper dashed black line is defined as function '
i iy b ε+ ++ ++ ++ += w x  and the lower 

dashed line function is defined as '
i iy b ε+ −+ −+ −+ −= w x .  The two dashed lines have the same distance 

from the decision boundary.  The value of ε  is shown with the two double-headed vertical 

arrows. Errors within the space defined by the arrows can be tolerated and so are ignored.  All 

the points within the two dashed lines are not included in SVR analysis and only the points 

outside are considered. The two dashed lines define a buffer zone or fence for data analysis. The 

vector w is orthogonal to the decision boundary and the two dashed lines. The margin, defined as 



 

56 

the distance between the decision boundary and either of the two dashed lines, is equal to 

|| || 12

ε

w +
 and a positive function of

1

|| ||2w
, where 2 'ww====|| w ||  is the norm of the vector w. The total 

width of the buffer zone is shown in Figure 3.1 with the two double-headed arrows that are 

orthogonal to the decision boundary.  Because wider margins yield smaller generalization errors, 

the two dashed lines are anticipated to be as far apart as possible. The primary goal of SVR is to 

maximize the margins while allowing for deviations at most ε from the response value y for each 

training sample ni ≤≤1 . The idea of SVR can be formulized into the following mathematical 

optimization problem: Maximize 
1

|| ||2w
or minimize 2|| w || , subject to  

T

T

i i

i i

y b

b y

ε

ε

 − − ≤− − ≤− − ≤− − ≤


+ − ≥+ − ≥+ − ≥+ − ≥

w x

w x
, i=1,..n. 

Minimizing the norm is equivalent to minimizing values of the coefficients, which forces the 

margin to be as large as possible. Given a specified tolerable value of ε , optimizing the above 

functions results in optimum values of w and b corresponding to the largest margin.  

The above optimization method approximates y values with ε  precision.  However, in 

most practical situations, it is impossible to find a linear combination for each observation such 

that the prediction error is 0. In such cases, errors greater than ε  are tolerated. To cope with 

larger errors, we define a set of “slack” variables * * * *
1 1( ,..., ), ( ,..., ), , 0k k i iζ ζ ζ ζ ζ ζ ζ ζ= = ≥= = ≥= = ≥= = ≥  as a measure 

of prediction accuracy for the training examples. Hence, when iζ = 0 the training example is 

predicted with absolute accuracy. The slack variables lead to a revised setting in which the 

weights w are chosen so that C is maximized where C > 0 is the tuning parameter that determines 

the trade-off between the small values of w (flatness of f) and the magnitude of errors larger than 

ε that can be tolerated (Vapnik, 1995). In Figure 3.1 the values of ζ and *ζ  are shown with the 



 

two double-headed vertical arrows. The optimization problem then becomes:  
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2
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Figure 3.1 Depiction of SVR analysis for training data prediction. The

continuous response variable, and 

training sample i (i=1, …n) in the training data set with the observed values as 

training sample, the predicted value, 

value of y by some error; that is, 

boundary) is ( )y f x wx b= = += = += = += = + . The

data points within the two dashed lines has a distance from the decision boundary less than

that is, the resulting errors from these points can be tolerated and so 

distance between the decision boundary and either of the two dashed lines is 

2 'ww====|| w ||  is the norm of the vector 

slack variables to cope with errors larger than 
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headed vertical arrows. The optimization problem then becomes:  Minimizing 
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nalysis for training data prediction. The variable y

continuous response variable, and x is the explanatory variable. Each data point represents a 

) in the training data set with the observed values as ( , )x y

training sample, the predicted value, f, of the response variable y may deviate from the actual 

by some error; that is, y = f(x) + the error. This function for the solid line (decision 

. The coefficient w is the weight and b is the intercept. Each of the 

data points within the two dashed lines has a distance from the decision boundary less than

that is, the resulting errors from these points can be tolerated and so are ignored.  The margin or 

distance between the decision boundary and either of the two dashed lines is 
|| || 1w

is the norm of the vector w.   The variables * * * *
1 1( ,..., ), ( ,..., ), , 0k k i iζ ζ ζ ζ ζ ζ ζ ζ= = ≥= = ≥= = ≥= = ≥

es to cope with errors larger than ε .   
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Two primary characteristics of SVR are evident from the above optimization procedure. The first 

is that SVR is robust to statistical noise due to ignorance of errors less than ε . Second, SVR 

preserves prediction accuracy and flatness via minimizing weights w or maximizing the margin.  

The above optimization is derived when the basis function f is linear. When f is nonlinear, 

SVR uses specific algorithms referred to as kernel functions for efficient computation. Once the 

kernel function is specified then f is chosen. The kernel function f transforms predictors xi  to a 

higher dimensional space, called the feature space, and then solves the linear optimization 

problem in the feature space. Linear operation in the feature space, where ix are located, is 

equivalent to non-linear operation on ( )if x  in the input space. Three commonly used kernel 

functions are polynomial, radial basis, and sigmoid. Details of the optimization based on kernels 

are described by Vapnik (1998). 

3.1.4 Power and Effect Size Estimation in SVR 

The power of a statistical test is the probability that one will reject a false null hypothesis 

given that the null hypothesis is really false at the chosen significance level.  As the type 2 error 

rate is the probability of failing to reject a false null hypothesis, power also is defined as 1 minus 

the type 2 error rate.  

To compute power, one needs to decide on the effect size (ES), defined as the effect that 

would be considered to be significant.  In the general regression context, the inference about an 

individual predictor variable kx  centers around whether the corresponding slope kβ  is 0; that is, 

the null and alternative hypotheses are 0H : 0, H : 0k a kβ β= ≠= ≠= ≠= ≠ . The “effect” in this context refers 

to the deviation of kβ  from 0 (or the presence of linear association between y and kx ). Therefore, 

the ES measures how much kβ  deviates from 0.  The most convenient measure of ES for kx  is 

based on the correlation coefficient between y and kx denoted by ρ . Cohen (1988) considered a ρ  
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value of 0.1 to be a small, 0.3 medium, and 0.5 large effect size.  Given the significance level α  

(e.g. α =0.05) and the sample size, the greater the ES the larger the power of a hypothesis test.  In 

common practice, power of 0.80 is generally considered acceptable (Cohen, 1998).  We carried 

out our power analysis based on the ES of ρ . 

The objective of our research is to evaluate the non-linear SVR method for ability to 

generate high accuracy and power for candidate markers associated with three agronomic traits 

in rice. We found that SVR generated relatively high levels of accuracy and power that warrants 

further investigation for association genetics of complex traits in rice. Moreover, new algorithms 

for SVR were developed during this study to identify marker variables and epistatic interactions.  

Finally, validation of the SVR approach was inferred as judged by selected markers 

corresponding to genetic regions that were identified in previous QTL mapping studies. 

3.2 Materials and Methods 

3.2.1 Plant Material and Phenotypic Data Collection 

A total of 192 inbred rice lines were planted in 2000 by U.S. public rice breeders as part 

of the “Uniform Regional Rice Nursery” at Crowley, Louisiana; Beaumont, Texas; Stuttgart, 

Arkansas; Stoneville, Mississippi; and Cape Girardeau, Missouri. The inbred lines consisted of 

52 entries from Arkansas, one from California, 55 from Louisiana, 25 from Mississippi and 58 

from Texas. Based on grain length, 162 were long grain types, 24 were medium grain and 6 were 

short grain. The lines were planted from March to April, 2000 in each of the five states listed 

above in two to four replicated six-row plots, 2.0 m x 1.4 m, in a randomized complete block 

design. At each location standard agronomic practices were carried out for maximum grain yield 

and weed and insect control. The center four rows of each plot were used to collect data for 

heading date (HD = days from seedling emergence to panicle emergence from swollen stem or 

boot) and head rice (HR = whole grains/whole grains + broken grains) x 100). Amylose content 
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data (AC = percentage of starch in rice grain composed of the polysaccharide amylose) were 

collected in 2000 from the Texas and Arkansas locations. Trait means across replications at each 

location were obtained from the University of Arkansas Rice Research and Extension Center, 

Stuttgart, AR to compute variances, and correlations between traits using PROC MIXED, SAS 

Institute, v. 9.1.3. 

3.2.2 Molecular Marker Analyses 

Microsatellite (SSR) marker data for the 192 lines were obtained from Dr. Thomas Tai, 

USDA-ARS, UC-Davis, Davis, CA. A total of 97 SSR markers, evenly spaced over the 12 

chromosomes at ~ 20 cM intervals, generated a total of 579 alleles with an average of six 

alleles/locus.  Rare alleles at < 0.07 percent were removed from homozygous loci, but 

heterozygous loci were retained to provide 194 marker alleles at 97 bi-allelic loci for the final 

analysis. Detection of potential population structure was carried out by the “Structure” software 

program, v. 2 (http://pritch.bsd.uchicago.edu/structure.html). Heritability values for each marker 

variable were determined and averaged for each trait by the TASSEL software 

(http://www2.maizegenetics. net/index.php?page=bioinformatics /tassel/index.html).  

3.2.3 SVR Procedure   

The SVR procedure was carried out in the R software package using the e1071 library 

(http://cran.r-project.org/web/packages/e1071/index.html).  Optimized values of parameters C 

and ε were determined by trial and error.  To assess the generalization ability of SVR, we 

considered the m-fold cross-validation in which we divided training data into m subsets of equal 

size. Of the m subsets, a single subset was retained as the validation data for testing models, and 

the remaining m−1 subsets were used as training data. The cross-validation process was then 

repeated m times (the folds), with each of the m subsets used exactly once as the validation data. 

The m results, i.e. the m measurements of cross-validation accuracy, were then averaged to 
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produce a single estimation of cross-validation accuracy. We used four criteria to measure cross-

validation accuracy, viz. the mean squared error (MSE), R squared (R2), normalized root mean 

square error (NRMSE) and squared correlation coefficient (r2), computed as follows: 
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.  The larger the 2r , the greater is the prediction 

accuracy.  

The r2 values were automatically generated from the SVR package in R. When the m-fold 

cross-validation was specified in the SVR package in R, MSE values were produced to assess 

cross-validation accuracy on the training data. R2 and NRMSE values were computed by using 

other functions in the R software package. 

It is important to note that the SVR methods used for the previous maize studies 

(Maenhout et al., 2007; De Baets et al., 2008) did not allow for identification of individual 

predictor variables or selection of specific interaction terms that may be associated with complex 

traits. Therefore, we developed a variable selection procedure in SVR to select main and epistatic 

marker effects associated with continuous or complex traits (see Appendix 1).  The SVR variable 

selection procedure using R2 as the selection criteria is described as follows: (1) The SVR 
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procedure was carried out for each marker variable, using linear, radial basis nonlinear, 

polynomial, and sigmoid kernel functions separately. (2) A 10-fold cross validation procedure 

was conducted to assess cross-validation accuracy. The MSE and 2r  values were computed from 

this step. (3) The R2 value was computed for each individual marker variable in the R software 

package.  (4) Marker variables were ranked according to their R2 values. (5) Steps 1 to 4 were 

repeated for the combined individual marker variables and their pairwise interactions. (6) 

Forward variable selection was conducted on the combined selected marker variables from step 5 

as follows: First, the predictor variable with the largest R2 value was chosen as the candidate to 

enter the SVR model.  The outside variable with the largest R2 value was the next candidate for 

entry. The forward selection routine then fitted an SVR model with two marker variables, where 

the first candidate and the new marker variable were both in the model. The R2 value of the new 

model then was obtained. If the new R2 value exceeded the previous value by a threshold of 

0.0001 which was established to allow selection of up to 35 significant variables, then the second 

marker was added to the model. Otherwise, the second marker was dropped, and the program 

proceeded to test for the next marker variable. The forward selection process was terminated 

when no more predictor variables could be added. The variables selected in the final model were 

considered as candidate markers associated with the corresponding agronomic trait.  In a separate 

procedure, power calculations for SVR results were carried out using the pwr.r.test in the R 

package (http://cran.r-project.org/ web/ packages/ pwr/index.html). 

3.2.4 GLMSelect Procedure 

SAS PROC GLMSelect (SAS Institute) was used to identify candidate markers 

associated with amylose content, heading date, and head rice in a general linear framework. The 

following steps were carried out (1) All 194 bi-allelic markers were modeled as fixed effects 

with each agronomic trait considered as a continuous response variable in a multiple linear 



 

63 

regression.  We used the following options: selection=forward; choose=ADJRSQ (adjusted R2); 

select=ADJRSQ (adjusted R2); stop=30. These options identified the top 30 marker effects based 

on adjusted R2. (2) The selected variables in step 1 were again fitted in a multiple regression 

form in a forward selection that included main effects and pairwise interactions. The GLMSelect 

options were identical to those in step 1 except for the stop option that terminated selection at 33 

effects for amylose content, 25 effects for heading date and 27 effects for head rice. This action 

was carried out to establish the same number of selected effects for each trait in GLMSelect as in 

the SVR approach. 

3.3 Results 

3.3.1 Phenotypic Characterization of the Rice Population 

The three agronomic traits in our study produced means, variances, and a range of values 

that were typical for southern U.S. elite inbred lines. Specifically, mean amylose content values 

= 19.1%, variance = 13.8, range = 11.0 – 26.2%; heading date mean = 85.1, variance = 14.1, 

range = 71-96; head rice mean = 53.4, variance = 26.8, range = 39-63. Heading date was 

moderately associated with amylose content ( ρ̂  = 0.35, p < 0.001), where ρ̂  is the estimated 

correlation coefficient between heading date and amylose content. A small negative association 

was detected between amylose content and head rice ( ρ̂  = -0.21, p = 0.002) while no association 

was detected between heading date and head rice ( ρ̂   = -0.05, p = 0.224). Mean heritability 

values calculated by TASSEL across all selected markers were the highest for amylose content 

(0.48), intermediate for heading date (0.35) and the lowest for head rice (0.29). Population 

structure analysis using the Structure software revealed that the 192 tropical japonica breeding 

lines in our study belonged to a single group. This outcome was consistent with a previous 

structure analysis of rice that showed the japonica group was identified as one of five distinct 

subpopulations (Garris et al., 2005).  
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3.3.2 Accuracy and Precision of SVR and GLMSelect Procedures 

Accuracy of SVR in terms of MSE, R2 and NRMSE values with different kernel 

functions are presented in Table 3.1. The sigmoid kernel function produced the greatest model 

variation or lowest accuracy with MSE values for amylose content that were 1.3 to 3.3-fold 

greater than those of the remaining three functions. This trend of greater MSE values using the 

sigmoid function was also observed for heading date and head rice. The linear kernel produced 

the second largest MSE values for all three traits that were 2.5-fold greater than values generated 

by the polynomial or radial basis method. Considering all four SVR functions, the radial basis 

kernel produced the greatest accuracy with MSE for heading date and head rice while generating 

identical precision as the polynomial method for amylose content. Across all kernel functions, 

the largest MSE values were detected with head rice, and the smallest values were associated 

with amylose content which is consistent with heritability values computed in this study using 

the TASSEL software (see above). The three remaining measures of SVR model precision, 

namely R2, NRMSE, and r2 were also computed. The radial basis and polynomial kernels 

increased R2 values, consistent with MSE values, by a wide range of 29 to 66 percent across all 

traits compared to the linear and sigmoid kernels (Table 3.1). Following the same trend, the 

smallest NRMSE values were observed with radial basis and polynomial kernels.  The computed 

r2 values were virtually identical to those of the corresponding R2 values for both SVR and linear 

methods across all traits shown in Table 3.1 (data not shown). 

We also analyzed the data using a multiple linear regression approach implemented in 

SAS GLMSelect (see methods). As shown in Table 3.1, accuracy for GLMSelect as measured by 

MSE was greater than SVR across all traits when computed with linear or sigmoid kernel 

functions. Markers effects identified were 25 for both AC and HD traits in both SVR and 

multiple linear regression method while 27 marker effects were found for HR in both analyses. 
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MSE values with the linear multiple regression approach were, however, 1.8 to 3.5-fold greater 

across all traits versus SVR with the polynomial or radial basis function. 

Table 3.1 MSE, R2 and RMSE values obtained by SVR (using linear, polynomial, sigmoid, and 
radial basis kernel functions) and multiple linear regression with epistasis for amylose content 
(AC), heading date (HD), and head rice (HR) across five locations in AR, LA, MO, MS, TX,  
2000. 

 

Similarly, linear multiple regression exhibited a greater ability to explain trait variation as 

measured by R2 compared to the sigmoid or linear functions. However, prediction of variation 

for heading date and head rice were reduced substantially by 20 to 30 percent for the linear 

GLMSelect versus SVR when using the polynomial and radial basis kernels. For amylose 

content, R2 values of GLMSelect versus the polynomial or radial basis method were essentially 

identical. NRMSE values from GLMSelect were similar to those using the radial basis kernel for 

AC, but were substantially larger for HD and HR compared to values obtained by the radial basis 

kernel.  

3.3.3 Power Estimation in SVR 

The power of SVR as a function of ES, measured by the correlation coefficient ρ , was 

determined for amylose content, heading date and head rice. Shapes of the power curves for all 

traits were very similar, so results for amylose content are shown as an example in Figure 3.2.  In 

general the results showed power increasing in a strong linear manner when the effect size ρ  

was set at small to medium values of 0.1 to 0.3, a result that was consistent with “Cohen’s rule” 

MSE R² NRMSE MSE R² NRMSE MSE R² NRMSE MSE R² NRMSE MSE R² NRMSE

AC 3.78 0.72 0.53 1.50 0.89 0.33 5.03 0.63 0.61 1.50 0.89 0.33 2.68 0.85 0.39

HD 8.52 0.39 0.78 1.53 0.89 0.33 9.60 0.31 0.83 1.54 0.91 0.30 5.46 0.61 0.62

HR 16.00 0.40 0.77 2.94 0.78 0.47 16.90 0.36 0.80 2.93 0.91 0.30 7.98 0.71 0.54

SAS GLMSelect

Support Vector Regression Multiple Linear Regression

Trait Linear Polynomial Sigmoid Radial basis
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(1988). The SVR models for all three traits produced an “acceptable” power ≈ 0.80 when the ES 

of ρ  was set at 0.20. An increase in ρ  > 0.30 had little impact as the power values approached a 

maximum plateau of ~ 1.0.   

 

                           Correlation coefficient ρ  
 
Figure 3.2 Plot of power for optimized Support Vector Regression as a function of correlation 

coefficient ρ  for amylose content (AC). 

3.3.4 Identification of Marker-Trait Associations  

Selected marker alleles from optimized SVR models and their corresponding sequential 

R2 values for amylose content, heading date, and head rice are presented in Figure 3.3 a-c. All 

optimized SVR models exhibited high R2 values of ~ 0.90 with 25 to 33 selected main and 

epistatic effects. As shown in Figure 3.3a, the RM190.122.6 allele was identified as a single 

main effect that explained the greatest amount of variation for amylose content (R2 = 0.47). The 
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RM190 locus, located within the granule-bound starch synthase gene, is a well-known 

microsatellite marker used to classify different levels of amylose content in rice (Ayres et al., 

1997). The second selected variable consisted of the RM190.122.6 allele epistatic to 

RM510.119.2 which mapped within a second QTL for amylose content on chromosome 6 (QTL 

accession AQBN001, www.gramene.org). The remaining selected markers showed small, 

incremental effects on total observed variation (R2 = 0.91) which was consistent with previous 

studies of this trait (McKenzie et al., 1983).  

 

                                                                       Cumulative R2 

Figure 3.3a Selected marker effects from optimized SVR models and corresponding sequential 
R2 values on the horizontal axis for amylose. The number of total selected variables is 25 and R2 

= 0.90.  

A total of 25 variables were selected by SVR that explained 90 percent of observed 

variation for heading date as shown in Figure 3.3b. All marker alleles that comprised the top four 

epistatic terms were found in previous QTL studies to be associated with heading date.  Selected 
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marker allele RM279.164.6 on chromosome 2 mapped within QTL dth2.1 (accession AQED001, 

www.gramene .org) and was epistatic to four different alleles (RM132.80.3, chromosome 3; 

RM3431.150.2, chromosome 6; RM437.274.5, chromosome 5; RM208.147.5, chromosome 2). 

RM190.122.6 was detected in this study to be associated with both heading date and amylose 

content which may not be unexpected, given the moderate correlation of 0.35 found in this study 

between heading date and amylose content. In addition, the RM190 locus mapped within 5 cM 

of the Hd3a locus, reported to be a major activator of flowering under short day conditions 

(Tamaki et al., 2007). 

 

Cumulative R2 

Figure 3.3b Selected marker effects from optimized SVR models and corresponding sequential 
R2 values on the horizontal axis for heading date. The number of total selected variables is 25 
and R2 = 0.90.  

The markers associated with head rice by SVR analysis are shown in Figure 3.3c. 

Selected markers for this important grain quality character were also associated with milling 

traits in previous QTL mapping studies. For example, RM315.137.2 and RM3912.191.3 were 
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detected as epistatic alleles contributing the most to head rice (R2 = 0.17). The RM315 locus is 

located within QTLs previously reported on chromosome 1 for head rice (Septiningsih et al., 

2003) and brown rice (Aluko et al., 2004) from interspecific crosses of O. sativa x O. rufipogon.  

RM3912 was not detected in previous studies and therefore represents a new candidate locus for 

head rice. RM476.199.4 identified by SVR on chromosome 1 was mapped previously within the 

QTL hr1 for head rice (Aluko et al., 2004). RM481.156.6 on chromosome 7 was detected by 

SVR that also mapped within the QTL mr7 for percent milled rice (Aluko et al., 2004). All but 

one of the 27 selected variables were epistatic with final R2 = 0.89.  

 

Cumulative R2 

Figure 3.3c Selected marker effects from optimized SVR models and corresponding sequential 
R2 values on the horizontal axis for and head rice. The number of total selected variables is 27 
and R2 = 0.89. 

3.4 Discussion  

Association genetics is a relatively new approach for the plant research community that 

has the potential to identify and characterize molecular markers associated with traits in ways not 
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possible by standard QTL mapping techniques. Recent reports have illustrated the potential value 

of association genetics to select markers for agronomic traits (Wang et al., 2008; Belo et al., 

2008), but the best statistical strategy to address issues such as non-linear effects on trait 

variation remains an open question. The statistical foundation for all plant association genetics to 

date has been the general linear model that assumes factors or variables that influence agronomic 

characters will act in a linear manner. Because genes for complex traits and the corresponding 

phenotypes interact in non-linear relationships, we evaluated non-linear SVR for prediction 

accuracy and power of DNA markers to be associated with economically important agronomic 

traits in rice. The results showed that our modified SVR procedure produced high levels of 

accuracy using the radial basis kernel which is consistent with previous studies of maize inbred 

lines (De Baets et al., 2008). High levels of power were detected with the SVR procedure for all 

three complex traits that warrants further investigation.   Our SVR approach for marker selection 

was supported by previous QTL mapping studies that identified the same genetic regions for the 

three traits evaluated in this study.  The outcome and procedures developed during this study 

could provide insights and guidance for development of model simulations and design of future 

validation experiments.  

The power analysis showed SVR produced high levels of power for the three traits over a 

wide range of effect sizes for all optimized models. All results suggest that the SVR procedure 

used during this study allowed for high accuracy levels and robust ability to detect candidate 

genotype-phenotype associations among rice inbred lines. The ability to account for population 

structure has been reported as a necessary cornerstone for association genetics in maize and other 

crops (Yu et al., 2006). The model-based “Structure” software program that assumes outcrossing 

is a popular approach to detect population stratification. Population structure analysis in the 



 

71 

current study revealed that gross population differentiation was absent among the elite rice 

breeding lines with a narrow germplasm base.   

SSR markers were utilized in this study, but SNP markers will most likely become the 

marker of choice in the future for marker-assisted breeding due to high abundance, facile 

genotyping, and high throughput capabilities. One advantage of SVR under those circumstances 

may be the ability to obtain “sparse” solutions with relatively few variables versus other methods 

involving large datasets (Vapnik, 1995). Another advantage of SVR may be an internal 

validation step to estimate parameters that gives rise to high power and precision.  All results 

obtained from this study suggested that SVR exhibited desirable features for association genetics 

in rice and other inbred species that should be further explored and developed for optimum 

power and prediction accuracy of marker-trait relationships.  
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CHAPTER 4 EVALUATIO� OF D�A MARKERS TO FACILITATE 

BREEDI�G FOR AROMA A�D COOKI�G 

QUALITY I� LOUISIA�A RICE 

4.1 Introduction 

4.1.1 Importance of Rice 

Rice (Oryza sativa L.) is one of the most important food crops in the world serving as the 

principal source of calories for more than half of the world's population (Singh and Khush, 

2000). Asia produces and consumes approximately 90% of the rice on earth.  It is estimated that 

by the year 2025 nearly 4 billion people, mostly poor, will consume rice as a basic food. Global 

production is projected at 417 million tons of milled rice for 2007, but global consumption 

continues to outpace production which is expected at 423.2 million tons of milled rice (Grain: 

World Markets and Trade May 2006).  

4.1.2 Rice Industry in the United States and Louisiana 

Rice production and marketing in the United States is a multibillion dollar industry. At 

the farm level alone, rice generates more than $1.5 billion in revenues. In 2007, rice was planted 

on more than 1.1 million hectares in the United States with production estimated at 8.6 M MT 

(http://www.usarice.com /index. php?option=com_content&view=article&id=671&Itemid=386). 

U.S. rice production takes place in six states—Arkansas, California, Louisiana, Mississippi, 

Missouri, and Texas. The U.S. produces high-quality varieties of short, medium and long grain 

rice, as well as specialty rice including jasmine and basmati types. The U.S. rice farmers produce 

two percent of the world's annual rice supply and represent the world's fourth largest rice 

exporting country. Approximately half of the annual U.S. rice production is used domestically. 

Americans consume ~ 11 kg of rice per year which is substantially below world consumption 

levels of  85.9 kg per capita  (http://www. unctad.org/infocomm/anglais/rice/market.htm#conso). 
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Louisiana ranks third in terms of rice total production following Arkansas and California. 

The rice industry in Louisiana accounts for $235 M in 2006, from 350,000 acres with average 

yields of 5,820 lbs/acre for a total of 20.1 M cwt (Louisiana Farm Reporter; 

http://www.lsuagcenter.com/agsummary/progressreport.aspx).  Louisiana rice planting for 2007 

was 360,000 acres, up 3 percent from a year earlier, but still the lowest acreage planted since 

1914 (http://www.aragriculture.org/agfoodpolicy/radio/ may2007/ 042_05082007_audio.htm). 

For 2008, the area planted was 464,000 acres with average yield of 5,830lbs. The area planted in 

2008 increased by more than 20% compared to 2007 (http://usda.mannlib. cornell.edu/ usda/ 

current/CropProdSu/CropProdSu-01-12-2009.pdf).  

4.1.3 Status of Specialty Rice Breeding and Demand Worldwide 

The demand for high quality or special purpose aromatic and basmati rices in the U.S. 

and elsewhere has increased during the past two decades (Cordeiro et al., 2000; Jin et al., 2003).  

Economic value of “Jasmine” aromatic rice for Thailand alone was $840 M and “Basmati” was 

$960 M for India and Pakistan in 2003 (http://basmati.com/ aromatic/ index.shtml). Thailand is 

the number one exporter of “Jasmine” aromatic rice to the U.S. In the U.S., ~ 12% of the total 

rice consumed is aromatic, primarily imported and consumed by the Asian-American community 

(Sha, 2005). Aromatic rice contains natural chemical compounds which give it a distinctive 

“popcorn” scent. Jasmine rice is sought for its aroma, flavor, slender kernels, and soft-cooking 

characteristics (Singh et al., 2000). With the huge market and increasing demand for high quality 

aromatic rice in the U.S. and worldwide, breeding for special purpose aromatic rice is 

imperative. Aromatic rice creates the option of securing higher returns over the conventional rice 

due to higher price (Jin et al., 2003).  

However, using the traditional method of breeding, i.e. crossing and then selection, is 

tedious and labor intensive. Moreover, recessive traits such as aroma may be lost through selfing 
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and the selection process, given that grain evaluation through taste to determine aroma is often 

difficult, time consuming and unreliable at times.  

4.1.4 Molecular Markers for Crop Improvement 

The applications of molecular markers as a tool for crop improvement have improved 

efficiency in breeding new and improved rice lines in the last decade (Collard and Mackill, 

2008). Molecular markers allow selection for particular characters or traits on the basis of a 

simple laboratory test on a small amount of leaf or grain tissue, rather than direct measurement 

of the character itself.  There are several types of molecular markers available for use. Among 

them are restricted fragment length polymorphisms (RFLP), random amplified polymorphic 

difference (RAPD), amplified fragment length polymorphisms (AFLP), simple sequence repeats 

(SSR) and single nucleotide polymorphisms (SNP) that can detect a single nucleotide difference 

in the DNA sequence between two individuals. The utility of SNP markers has been reported in 

several crops with great success (Issiki et al., 1998; Bundock et al., 2004; Till et al., 2004), as 

well as its potential for plant genomic research (Feltus et al., 2004).  In rice, indica and japonica 

genome sequences have been published and are publicly available (Feltus et al., 2004; Shen et 

al., 2004; Takashi M,  2005) that allow development of PCR-based SNP markers for efficient 

marker- assisted breeding. 

4.1.5 Molecular Markers for Fragrance (Aroma), Amylose Content, and Gelatinization 

Temperature in Rice 

 

The fragrance in Jasmine and Basmati rice has been associated with increased levels of 2-

acetyl-1-pyroline (2AP), the chemical compound whose levels are controlled primarily by a 

single recessive gene (fgr) (Yoshihashi, 2002).  The single recessive fragrance gene (fgr) has 

been linked to the RFLP marker RG28 on chromosome 8 at a genetic distance of 4.5 cM (Ahn et 

al., 1992). This RFLP marker was identified as a candidate to produce a PCR-based marker 



 

76 

capable of discriminating between fragrant and non-fragrant rice cultivars (Garland et al., 2000). 

PCR-based marker systems are desirable because of their simplicity and requirement for small 

quantities of tissue. The marker developed, SCU-Rice-SSR-1, relied on the use of capillary 

electrophoresis to discriminate the single base pair difference in a (T)n repeat between many 

fragrant and non-fragrant varieties. However, when using less sensitive DNA separation systems 

such as agarose gels, the marker failed to discriminate between the varietal types. Also, some 

important parent combinations were not polymorphic for this marker. In 2002, Cordeiro et al. 

developed an SSR marker that is linked to the fragrance gene. This SSR marker, however, could 

not predict fragrance status and was not completely accurate. Recently, Bradbury et al. (2005) 

identified an eight base pair deletion and three SNPs in exon 8 of the gene encoding 

betainealdehyde dehydrogenase 2 (BAD2) on chromosome 8 in rice as the most likely cause of 

fragrance in Basmati and Jasmine rices. Non-fragrant rice possess the fully functional copy of 

the gene encoding BAD2, while the fragrant rice possess the deletion and SNPs in BAD2, 

resulting in a frame shift that generates a premature stop codon to disable the BAD2 enzyme.  

The crippled BAD2 gene results in an increase of the previous compound 2-acetyl-1-pyroline 

(2AP) in the pathway. 

Eating and cooking qualities of rice are primarily due to amylose content (AC) that is 

governed largely by the waxy locus (Zhou et al., 2003; Bao et al., 2004; Yamanaka et al., 2004). 

Low AC is usually associated with tender, cohesive, and glossy cooked rice (Juliano, 1971). Four 

QTLs on chromosomes 3, 4, 6, and 7 have been identified by Lanceras et al. (2000) for AC in a 

mapping population that accounted for 80% of the phenotypic variation in the population. 

Ramalingan (2002) used an SSR marker 484/W2R located on chromosome 6 that successfully 

differentiated high and low AC in a marker-assisted selection (MAS) program.  RFLP markers 

C688 and C952 on chromosome 6 were designed and used for MAS to improve quality traits in 
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rice hybrids (Zhou, 2003).  SSR marker RM 190, which is known to be located within the waxy 

locus on chromosome 6 (Temnykh et al., 2000; McCouch et al., 2002), is commonly used to 

classify rice into different AC classes (Bao et al., 2006). Yamanaka et al. (2004) identified SNPs 

in the waxy gene among glutinous cultivars. They developed a “derived cleaved amplified 

polymorphic sequence” marker (dCAPS) for detection of the one-base splicing mutation without 

the need for sequencing.  

Another important cooking quality trait in rice is gelatinization temperature (GT) which 

was found to be controlled by the alk locus (Bao et al., 2006). Molecular markers for the alk 

gene have been cloned and developed (Gao et al., 2003; Jiang et al., 2004). Nucleotide 

substitutions in the coding sequence of starch synthase IIa (SSIIa) have been reported to cause 

alterations in GT (Gao et al., 2003). Chen et al. (2003) identified two separate mutations in the 

SSIIa gene that were associated with low GT, and Fjellstrom et al. (2004) detected two 

additional SNPs in exon 8 of the alk gene associated with cooking quality . Nakamura et al. 

(2005) analyzed in detail the effect of amino acid replacement caused by these SNPs on the 

enzyme activity, amylopectin structure and variation in GT. The results indicated that two of the 

SNPs (4,198 and 4,229/ 4,330 bp) were essential for SSIIa activity and granule association. 

Waters et al. (2006) identified two SNPs in the exon in the SSIIa gene that could differentiate 

between high and low GT. The A/G SNP at base 2412 determined whether a methionine or 

valine was present at the corresponding amino acid residue in SSIIa, while two adjacent SNPs at 

bases 2543 and 2544 coded for either leucine (GC) or phenylalanine (TT). Rice varieties with 

high GT starch exhibited a combination of valine and leucine at these residues. In contrast, rice 

varieties with low GT starch possessed a combination of either methionine and leucine or valine 

and phenylalanine at these same residues. Bao et al. (2006) found similar SNPs for 

differentiating between high and low GT. Their study provided further support for the utilization 
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of the GC/TT polymorphism in the SSIIa gene. GC/TT SNP could differentiate rice with high or 

intermediate GT from those with low GT in about 90% of cases among 509 rice samples (Bao et 

al., 2006). Thus, this SNP polymorphism may be very useful in marker-assisted selection for the 

improvement of GT and other physicochemical properties of rice. 

4.1.6 S�P Marker Development for Marker-Assisted Breeding in Rice 

Kadaru et al. (2006) developed a modified procedure based on standard Ecotilling 

(Comai et al., 2004) for rice SNP discovery and genotyping referred to as Alternative Ecotilling 

(AE).  Four previously reported and 14 new SNPs in the alk and waxy genes among 57 rice 

accessions based on comparisons with sequencing results were characterized by AE for GT and 

AC, respectively. In addition, new SNP markers for haplotype-specific markers in exon 7 of the 

BAD2 gene for marker-assisted identification and introgression of the aroma gene in U.S. rice 

were developed in Prof. Oard’s laboratory. These SNPs can distinguish aromatic and non-

aromatic phenotypes and were consistent with corresponding marker haplotypes for all progeny 

tested.  Allele-specific PCR assays were developed in Prof. Oard’s laboratory for aroma 

(fragrance), alk, and waxy that can distinguish and differentiate between homozygous and 

heterozygous SNP alleles of rice that could lead to efficient marker-assisted breeding. The 

primary objective of this research is to evaluate the potential of selected DNA markers to 

facilitate rapid introgression of aroma and cooking quality traits into elite Louisiana breeding 

lines. A second objective is to combine desirable alleles for aroma and cooking quality in elite 

LA breeding lines with acceptable agronomic traits.  

4.2 Materials and Methods 

4.2.1 Plant Material  

Breeding lines used in this study were obtained in cooperation with Prof. Xueyan Sha, 

Rice Breeder at the Rice Research Station, Crowley, LA.  The first set of lines consisted of 228 
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plants, designated Batch 1, in 2007 from 13 different segregating populations, four of which 

were parents (96 INT/ARNT, AC969, JSMN/DLLA/LLEAH/DLLA, 

L202/LEAH//TORO/3/IR67016), and nine were derived from 2-way and 3-way backcrossed 

(BC) and F2 lines . The second set of materials, designated Batch 2, consisted of 58 individual 

plants from 19 different selected lines that were grown in the greenhouse in 2007. Seeds of the 

second batch were provided by Prof. Sha as part of the collaborative work on SNP markers. 

 The 286 lines form Batch 1 and Batch 2 were genotyped for presence of desirable alleles 

for aroma, AC, and GT in 2007 using SNP markers developed by Prof. Oard’s laboratory 

(aroma, waxy) and USDA researchers in Beaumont, TX (alk).  Out of the 286 lines, 78 individual 

plants carried desirable alleles either in a homozygous or heterozygous state. Forty eight plants 

out of 78 were further selected based on overall agronomic plant type. Using the SNP marker 

data, these 48 plants were crossed among themselves based on maturity and grain type to 

combine desired combinations of aroma, low AC, and low GT alleles.  Seventy-six new cross 

combinations were generated during the summer of 2007.  A total of 33 out 76 F1’s together with 

32 segregating parents were grown in the greenhouse during the Fall of 2007 for additional 

crosses and selection of improved plant type. A second round of 91 crosses were generated that 

constituted the material for genotyping, designated Batch 3, and field evaluation during the 

Summer of 2008. In addition, populations totaling 67 individual plants (Batch 4 and 5) from 

Prof. Sha’s program were genotyped for GT to confirm and validate the presence of favorable 

alleles in the selected breeding lines. 

4.2.2 Hybridization and Pyramiding of Quality Traits in Aromatic Rice Breeding 

Populations 

 

As stated in previous sections, 35 lines were selected from among the 65 individual 

plants from Batch 1 that possess desired alleles in either homozygous or heterozygous state and 
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13 plants were selected from Batch 2 in the same manner. The 35 selected plants were crossed 

among themselves in 2007, taking into consideration plant height and grain type to develop long-

grain type aromatic lines. A total of 65 new crosses were developed by intercrossing 12 lines 

used solely as male parents and 23 lines used either male or female. In addition, 11 crosses were 

completed from 9 of the 13 greenhouse selections from Batch 2. 

A total of 32 segregating parents, 21 F1’s from Batch 1, and 11 F1’s from Batch 2 were 

planted in the greenhouse during the Fall of 2007. Evaluations on the greenhouse plants were 

carried out based on overall phenotype that includes grain type and maturity in addition to 

previous marker data in planning the hybridization scheme. Crossing schemes were: F1 x F1, F1 x 

Segregating Parentals (SP), and SP x SP in an attempt to improve overall phenotype and increase 

frequency of favorable allele.  A total of 91 new crosses were generated which were planted and 

evaluated in the field and genotyped for aroma, AC, and GT SNP alleles during the summer of 

2008.  

4.2.3 Leaf Collection and Genomic D�A Extraction  

Leaf samples for 705 individual plants were collected in the field in 2007 and 2008 at the 

Rice Research Station (Crowley, LA) and in the greenhouse (Table 4.1). All samples were stored 

at -20 °C prior to DNA extraction which was carried out using the Qiagen DNeasy 96 Plant Kit. 

A modified DNA extraction procedure was carried out as follows: frozen leaf samples of 30-40 

mg were cut into small pieces and placed into microtube collection racks. Two stainless steel 

beads (2.3mm) (Biospec products) were added to each microtube along with 400 µL working 

lysis solution. To ensure complete disruption of the plant tissue, racks of collection microtubes 

were placed in a Mini-Bead Beater (Biospec products) for grinding twice, each at 2.5 minutes. 

All remaining steps were followed as indicated in the Qiagen DNeasy Plant Handbook. A sample 
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volume of 200 µL was collected at the final step. DNA concentrations were determined using the 

NanoDrop (spectrophotometer) and diluted to 10 ng/µL as working stocks for SNP genotyping. 

Table 4.1 Summary of plant materials genotyped for Aroma, AC, and GT SNP alleles  

Batch Collection Site No. of populations/ Generation No. of plants 

1 Rice Research Station 13/ Parents, F2, BC 228 
2 Baton Rouge Greenhouse 19/ Parents, F1, F2 58 
3 Rice Research Station   1/ F5:F7 54 
4 Rice Research Station   1/ F5:F7 13 
5 Rice Research Station 91/ F1’s 352 

4.2.4 Polymerase Chain Reaction (PCR), S�P Genotyping, and Scoring  

SNP markers developed by Prof. Oard’s laboratory (aroma, waxy) and USDA researchers 

in Beaumont, TX (alk) were used to obtain genotypes.  For the BAD2 aroma gene, primer 

sequence for the fragrance allele was 5’-CTGGTATATATTTCAGCTGATC-3’ and the non-

fragrance allele was 5’-AAAGATTATGGCTTCAGTGATC-3’ with a common reverse primer 

of 5’-CCAGTGAAACAGGCTGTCAA-3’. For the waxy gene, primer sequence of the high AC 

allele was 5’-CAGGAAGAACATCTGCACGG-3’ and the low AC allele was                                   

5’-CAGGAAGAACATCTGCACGT-3’ with a common reverse primer                                                 

5’-TTTCCAGCCCAACACCTTAC-3’. The last primer combination was the alk gene where 

primer sequence for the high GT allele in the alk gene was 5’-TGCCGCGCACCTGGAGC-3’ 

and the low GT allele was 5’-CATGCCGCGCACCTGGAAA-3’  and a common reverse primer 

of 5’-CGCCGAGCCGCACAAGC-3’. 

PCR was performed using 2.0 µL template DNA (20 ng) in a 10 µL PCR reaction 

containing 1 µL of 10X buffer (Applied Biosystems, Inc.), 0.8 µL of dNTP mix (Applied 

Biosystems, Inc.), 0.2 µL of each primer (20 µM), 0.08 µL polymerase enzyme (Applied 

Biosystems, Inc.) and 5.72 µL distilled water . PCR reactions were performed using the iCycler 

(Bio-Rad, CA). The thermocycle profile used to amplify the 237 bp fragment of the aroma/BAD2 
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gene was 95 °C- 2 min, 28 cycles of (95 °C - 12 s, 60 °C - 12 s, 72 °C - 12 s) and 72 °C - 5 min. 

PCR amplifications for the 186 bp fragment of the waxy gene was carried out using 95 °C - 3 

min, 28 cycles of (95 °C - 20 s, 60 °C - 20 s, 72 °C - 20 s) and 72 °C - 5 min. Finally, PCR 

amplification profile for the 90 bp alk gene fragment was 95 °C - 3 min, 28 cycles of (95 °C - 20 

s, 63 °C - 20 s, 72 °C - 20 s) and 72 °C - 5 min. 

PCR products were resolved in a 2% agarose gel treated with 0.05 µg/mL ethidium 

bromide solution and visualized under UV light using Gel Logic 200 Imaging System. SNP 

genotypes were scored as band present (1) or absent (0) for each individual sample. Data were 

recorded and entered into an Excel spreadsheet. 

4.2.5 Field Experiment, Phenotypic Data Collection, and Analysis 

The 91 different F1 crosses that consisted of 352 individual plants were grown in the 

greenhouse during the Fall of 2007. Seedlings were grown in the greenhouse from April 4, 2008 

until they were ready for transplanting a month later at the Crowley Rice Research Station. 

Individual F1 plants were transplanted at approximately 20 cm distances within rows and 30 cm 

distance between rows. Normal cultural and management practices were followed for fertilizer, 

herbicide, and insecticide applications. Standard water management was carried out to ensure 

normal and healthy growth of plants. 

Phenotypic data collected for eight traits in this study were the following: (1) plant height 

(PLTH) which was measured from the base of the rice plant to the tip of the highest panicle in 

cm,  (2) plant maturity (PLTM) was scored as intermediate (i) (100-115d), late (l) (116-130d), 

and very late (vl) (>130d) maturity  (3) panicle number (PANN) was determined by counting the 

number of seed-bearing panicles in each plant, (4) panicle length (PANL) was determined by 

measuring the main tiller/panicle and expressed in cm, (5) spikelet number (SPKN) was 

determined by counting the filled and unfilled spikelets of the main tiller, (6) seeds per panicle 
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(SDPN) was determined by counting the filled grains of the main tiller in each plant in the 

population, (7) spikelet fertility (SPFT) expressed as percentage was determined by the formula 

SDPN/SPKN *100 (8) presence of pubescent or glabrous leaves (PBGL) was determined by 

physically examining leaves on each plant. Data were gathered and entered into an Excel 

spreadsheet. The agronomic data were analyzed using SAS software package 9.1.3. Descriptive 

statistics were computed using PROC UNIVARIATE. PROC CORR was used to calculate linear 

correlations between the different agronomic traits. Frequency distribution figures were 

generated in Microsoft Excel 2007.  

4.3 Results and Discussion 

4.3.1 Molecular Profiles of Breeding Populations for Aromatic Rice 

Table 4.1 summarizes plant material genotyped for aroma, AC, and GT alleles that were 

placed into five Batches based on population and/or generation. Molecular analysis of Batch 1 

revealed that 28% (65/228) carried desired allelic combinations in either a homozygous or 

heterozygous state (Table 4.2). Specifically, 68% (44/65) of the plant selections were 

homozygous for aroma while a majority (64/65) of the lines were heterozygous for AC, and all 

selections were heterozygous for GT. Approximately one-half (54%, 35/65) of these individuals 

were selected in the field based on overall plant type and utilized in crosses to combine desired 

alleles and increase their frequency in elite breeding lines. 

Table 4.3 summarizes the genotyping results for Batch 2 consisting of F2 material grown 

in the greenhouse in 2007. Approximately one-quarter (22%, 13/58) carry desired alleles for 

aroma, AC, and GT in the heterozygous state. These F2 plants were then utilized in crosses to 

combine desired alleles and increase allele frequency in the population. In addition, separate 

genotyping for GT were carried out on 54 and 13 advanced lines (F5:F7) from Batch 3 and Batch 

4, respectively.    
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Table 4.2 Molecular profiles of 65 selected rice plants from Batch 1 that contain the desired 
alleles for Aroma, AC, and GT.  

Pedigree Plant # Aroma AC GT  

96 INT/ARNT/4/9502008-
A//AR1188/CCDR/3/CPRS/LGRU//97KDM 
X2-1 

2-5 H h h  

96INT/ARNT/3/96 INT/ARNT//CCDR 4-4 H h h ** 

4-5 h h h ** 

4-8 H h h ** 

4-14 h h h  

4-18 h h h  

4-29 h h h ** 

4-32 H h h ** 

4-36 H h h  

96INT/ARNT/3/97 KDM X2-
1/WELLS//AC969 INT/ARNT//CCDR 

5-6 H h h ** 

5-7 H H h ** 

5-8 H h h  

5-9 H h h ** 

5-10 H h h ** 

5-11 H h h  

5-12 H h h ** 

5-13 H h h ** 

5-14 H h h ** 

5-15 H h h ** 

5-16 H h h ** 
5-17 H h h ** 

5-18 H h h ** 

5-19 H h h ** 

5-20 H h h ** 

CPRS/KDM 
105/3/JSMN/DLLA/LEAH/DLLA 

7-1 H h h  

7-2 h h h  

7-6 H h h  

7-8 h h h ** 

7-11 h h h  

7-14 H h h  

7-15 H h h  

7-16 h h h ** 

7-18 h h h  

7-26 h h h  
 7-29 H h h ** 
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Table 4.2 (continued) 
 

     

Pedigree Plant # aroma AC GT  

CPRS/KDM 105//96 INT/ARNT 
 

8-2 h h h ** 

8-3 H h h ** 

8-5 H h h ** 

8-6 h h h  

8-7 h h h ** 

8-9 H h h  

8-12 h h h ** 

8-18 h h h ** 

8-22 H h h  

8-25 H h h  

8-26 h h h  

8-28 H h h  

8-37 h h h  

8-38 h h h  

JSMN/DLLA/LEAH/DLLA/4/9502008-A//AR 
1188/CCDR/3/CPRS/LGRU 

10-1 H h h ** 

10-4 H h h ** 

10-6 h h h  

10-7 h h h ** 

10-9 h h h  

10-10 h h h ** 

10-19 H h h  

10-20 H h h  

L202/LEAH//TORO/3/IR67016/4/97 KDM X2-
1/WELLS//AC969 

13-1 H h h  

13-2 H h h  

13-3 H h h ** 

13-4 H h h  

13-5 H h h  

13-6 H h h ** 

13-7 H h h ** 

13-8 H h h ** 

13-9 H h h  

 
** Plant selected for overall appearance and additional crosses, H-homozygous for allele of 
interest, h-heterozygous for allele of interest, AC - amylose content, GT-gelatinization 
temperature 
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The results again showed that approximately 25% of the lines for Batch 3 (14/54) and Batch 4 

(3/13) possessed the desired low GT allele. These results suggest that using markers at a late 

stage of selection such as F5 or F7 for a recessive trait such as GT would result in a relative small 

chance (~25%) of selecting lines that possess the desired allele(s). Nevertheless, separate 

laboratory tests from Prof. Sha’s laboratory confirmed and validated the marker results from this 

study (data not shown). Overall, these results illustrates the potential and value of the GT (alk) 

SNPs for marker-assisted breeding to develop aromatic rice as it could enrich for desired GT 

alleles early  in the breeding process. Moreover, if breeding objectives entail simultaneous 

selection of different quality traits that are difficult or expensive to phenotype, markers would 

play a significant role.  

Table 4.3 Molecular profiles of 13 selected F2 rice plants from Batch 2 that contain alleles for 
Aroma, AC, and GT.  

Pedigree Plant # Aroma  AC GT  

L202/LEAH/TORO/3/IR67016/TAU
CAURI//KBNT/LCSN 

3-1 h h h  

3-2 h H h  

4-3 h h h  

5-1 h H h  

6-1 H h h  

6-2 h h H  

JSMN/DLLA/96SP287/3/952008-
A/DREW 

14-2 h H h  

15-2 h h h  

16-1 H h H  

17-1 H h H  

17-2 h H H  

18-2 h H h  

19-2 h h h  

 
H-homozygous for allele of interest, h-heterozygous for allele of interest, AC - amylose content, 
GT-gelatinization temperature  
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Genotyping results for the 452 F1’s (Batch 5) for aroma, AC, and GT were summarized 

in Table 4.4. The majority of F1’s (78%) were heterozygous for aroma and only 1% of the 

population was found to be homozygous. Genotype result for AC revealed that 26 % of the 

aromatic lines also carried the desired low AC allele. Furthermore, 44% of the F1’s were found to 

be heterozygous for AC-possessing both low and high AC alleles. GT genotypes revealed that 

17% of the total F1’s produced a low GT genotype -the desired outcome for the development of 

aromatic lines. Nearly half (41%) of the lines were also found to be heterozygous for both the 

low and high GT alleles. Gene combinations for the desired genotypes are summarized in Table 

4.4.  

Table 4.4 Aroma, AC and GT allele-genotyping in one and two-gene combinations of the 452 
F1’s (Batch 5) evaluated at Rice Research Station, Crowley, LA, 2008 

 

Genotype Aroma AC GT Genotype Aroma/AC Aroma/ GT AC/ GT 

H+ 6 118 78 H+/H+ 6 1 37 

h 353 201 186 H+/h or h/H+ 86 66 54 

H- 87 105 145 h/h 174 161 135 

Nd 6 28 43 H-/h or h/H- or 
H-/H- 

152 175 145 

Total 452 452 452 Total 418 403 371 

 H+-homozygous for desired allele; h-heterozygous; H--homozygous for undesirable allele;  
Nd-no data  

A small portion of the population had either the aroma/AC or aroma/GT combinations in 

the homozygous state. However, a small percentage (8%) of the populations had both the AC 

and GT combinations in the desired combinations. Two gene combinations that are heterozygous 

for both genes are 38%, 36% and 30%, respectively, for Aroma/AC, Aroma/GT and AC/GT 

combinations. These results showed the potential of markers to rapidly identify individuals 

possessing the desired two-gene gene combinations for breeding and selection. Moreover, 

individuals lacking the gene(s) of interest could be discarded in early generations. This would 
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improve selection efficiency and breeding for specialty jasmine rice where quality traits are 

difficult and expensive to phenotype.  

4.3.2 Descriptive Statistics and Correlation Analysis of Agronomic Traits for F1’s of 

Aromatic Breeding Lines 

Table 4.5 summarizes the six agronomic data generated from 452 F1’s (Batch 5) 

evaluated at the Rice Research Station, Crowley, LA, 2008. The results show high levels of 

variation for all traits measured in this study. For example, the range for plant height (PLTH) 

was extensive at 60 cm. Nevertheless, a majority 75% of the F1 plants (340/452) were <100 cm 

in height, an acceptable level for elite breeding material. For panicle number (PANN), the range 

was also wide (38 panicles), indicating the potential of identifying high tillering plants in the 

populations. For spikelet fertility (SPKN), only 37% of the F1’s produced values >85%.  

Table 4.5 Descriptive statistics of six agronomic traits of 452 F1’s (Batch 5) evaluated at Rice 
Research Station, Crowley, LA, 2008. 

 

Trait Unit N Mean Std Dev Min Max 

PLTH  cm 451 94.27 9.13278 69 129 

PANN - 447 14.87 5.55304 3 41 

PANL cm 452 23.83 2.35814 17.8 33.1 

SPKN - 452 228.42 57.30926 81 361 

SDPN - 452 175.20 50.98544 26 331 

SPFT percent 452 77.52 15.02513 9 100 

 
PLTH-plant height, PANN-panicle number, PANL-panicle length,  
SPKN-spikelet number per panicle, SDPN-filled seeds per panicle, SPFT-spikelet fertility 

The low percentage of fertile F1’s may be due to environmental conditions in 2008 or to inter-

subspecific hybridizations that affect reproductive potential. For the remaining four traits 

(PANL, SPKN, SDPN, SPFT), similar trends of high genetic variations were observed. Nearly 

half (57%) exhibited the desired glabrous leaf trait for U.S. rice breeding. One half (52%) of the 
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lines showed intermediate maturity, 38% exhibited late maturity while the remaining lines were 

very late in maturing (data not shown). The overall observed high levels of variation in these 

lines were consistent with hybrids derived from indica and japonica germplasm. The majority of 

the F1 plants showed agronomic traits similar to other advanced LSU breeding lines that warrant 

further selection combined with the molecular profiling methods described above.  

Figure 4.1 shows the phenotypic distribution of the six agronomic traits collected from 

the 452 F1 plants. All traits showed a normal or close to normal distribution except for SPFT that 

was substantially skewed toward high fertility for most of the F1’s. The results suggest that high 

levels of variation present in this material will provide ample opportunity to identify  new 

phenotypic combinations in the next generation that are superior to those of the parents evaluated 

in this study.  

Correlation analysis of the six quantitative traits using Pearson Correlation Coefficients 

revealed interesting results (Table 4.6). For example, PLTH was found to be moderately 

associated with multiple yield related traits that includes panicle number (PANN), panicle length 

(PANL), number of spikelets per panicle (SPKN), and seeds per panicle (SDPN), indicating the 

possibility of using PLTH as indirect selection for the above mentioned traits that are more 

difficult to phenotype than PLTH. On the other hand, PLTH was negatively associated with 

SPFT indicating that taller plants tended to have lower spikelet fertility. Similarly, PANL was 

found to be associated with SPKN, and SDPN in the F1’s evaluated. This result would also 

suggest the potential of PANL as indirect selection for SPKN and SDPN. As expected, SDPN 

was found to be associated with SPFT. Clearly, a more thorough experiment in multiple 

locations is needed to confirm and validate these results. Shi (1995) found high association 

between panicle density and grains per panicle as well as spikelet fertility. These associations 

found in this study may be due to high phenotypic variability observed in the populations 
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brought about by the indica x japonica crosses used in the development of the populations. These 

warrant further verification in other populations under different environmental conditions. 

 
 
Figure 4.1 Frequency distribution of six agronomic traits of  F1’s (n=452) of aromatic rice 
breeding populations evaluated at Rice Research Station, Crowley, LA, 2008. 

4.3.3 Marker and Phenotype Profiles of Selected Aromatic Lines 

Table 4.7 summarizes the individual plant selections based on marker data and their 

corresponding phenotypes. It was interesting to note that one F1 plant (324-7) possessed desired 

alleles for presence of aroma, low AC, and low GT. The corresponding phenotype data for this 

selection were encouraging. For example, PANN, SPKN, SDPN were above the population 

mean and all other traits were within the acceptable range for an elite breeding line except for 

spikelet fertility (<85%).  
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Table 4.6 Correlation analyses of six agronomic traits of 452 F1’s of aromatic rice breeding 
populations evaluated at Rice Research Station, Crowley, LA, 2008. 

Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

 PLTH PANN PANL SPKN SDPN 

PANN 
 

0.33416 
(<.0001) 
 

    

PANL 
 

0.33911 
(<.0001) 
 

0.03645 
(0.4420) 
 

   

SPKN 
 

0.32410 
(<.0001) 
 

-0.01460 
(0.7581) 
 

0.42164 
(<.0001) 
 

  

SDPN 
 

0.16387 
(0.0005) 

0.02132 
(0.6530) 
 

0.30613 
(<.0001) 
 

0.71940 
(<.0001) 
 

 

SPFT 
 

-0.17245 
(0.0002) 

0.04457 
(0.3471) 

-0.09768 
(0.0379) 

-0.21860 
(<.0001) 

0.50281 
(<.0001) 

PLTH-plant height, PANN-panicle number, PANL-panicle length,  
SPKN -spikelet number per panicle, SDPN-filled seeds per panicle, SPFT-spikelet fertility 

 Plant 324-7 is a candidate for advancement and selection of better improved agronomic traits in 

succeeding generations. In addition, 5 other F1’s (324-1, 324-4, 324-6, 325-1, 364-2) were 

homozygous for low AC and low GT and heterozygous for aroma with good phenotypic data 

including high spikelet fertility (>85%). Except for one of the five selections, plant height was 

<100 cm. Moreover, the five selected F1’s produced >12 panicles along with high density 

spikelets. Overall, the six selected F1’s were considered as candidates for advancement as elite 

aromatic lines with superior agronomic traits. The remaining 28 selections could be advanced to 

F2 and succeeding generations.  

Results from the molecular and agronomic analysis in this study clearly showed that the 

SNP marker approach was able to enrich for frequency of desired alleles in lines in only two 

generations that also exhibited desired agronomic characteristics. The strong implication is that 
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marker-assisted methods for certain traits such as aroma, AC, and GT could speed up and 

increase efficiency in development of new Louisiana aromatic rice varieties.  

Table 4.7 Molecular and phenotypic profiles of selected  F1’s (n=34) derived from selected 
backcrosses and advanced generation lines of aromatic rice breeding populations evaluated at 
Rice Research Station, Crowley, LA, 2008. 

Phenotype Genotype 

Plant# PLTH PLTM PANN PANL SPKN SDPN SPFT Aroma AC GT  

324-1 99 i  18 23.1 280 252 90 h H H ** 

324-2 87 l  4 23.9 173 153 88 h H H  

324-3 102 i  18 26.6 234 179 77 h H H  

324-4 98 i  22 21.9 197 180 91 h H H ** 

324-6 99 i  20 23.2 157 147 94 h H H ** 

324-7 105 i  25 23.2 234 172 73 H H H *** 

325-1 91 i 13 24.6 311 262 84 h H H ** 

325-2 78 i 13 23.7 321 245 76 h H H  

328-2 111 i 16 24.4 203 146 72 h H H  

328-6 114 l 19 23.9 268 192 71 h H H  

329-2 111 l 22 23.7 162 133 82 h H H  

329-3 109 i 14 25.3 191 137 72 h H H  

329-6 110 l 12 27.5 289 216 75 h H H  

329-7 110 l 10 23.9 277 193 70 h H H  

336-1 100 l 16 22.0 213 148 69 h H H  

336-7 100 l 10 22.3 231 133 57 h H H  

336-8 100 l 14 19.6 170 104 61 h H H  

337-6 100 i 13 25.8 254 136 53 h H H  

337-7 88 l 9 22.9 256 120 47 h H H  

337-9 104 l 18 25.1 326 246 75 h H H  

343-1 83 i  17 22.5 181 143 79 h H H  

343-2 95 nd 8 25.4 237 195 82 h H H  

343-3 94 nd 10 24.1 196 146 75 h H H  

345-1 88 l 17 23.4 112 83 74 h H H  

347-1 69 l 4 22.5 202 162 80 h H H  

347-2 97 l 8 22.8 207 143 69 h H H  

347-3 nd nd nd nd nd nd nd h H H  

347-4 83 l 3 22.4 249 172 69 h H H  

347-6 94 l 13 25.7 279 187 67 h H H  

347-9 93 l 13 25.0 252 203 81 h H H  

359-1 97 vl 10 26.9 168 93 56 h H H  

364-1 95 l 12 23.0 249 183 73 h H H  

364-2 87 l 16 22.2 220 194 88 h H H ** 

365-1 100 l 24 26.0 185 142 77 h H H  

PLTH-plant height, PLTM-plant maturity (i-intermediate, l-late, vl-very late), PANN-panicle 
number, PANL-panicle length, SPKN-spikelet number per panicle, SDPN-filled seeds per 
panicle, SPFT-spikelet fertility, h-heterozygous, H-homozygous for the trait of interest, ***-
selection based on genotype and phenotype data, nd-no data collected  
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The primary method to identify aromatic rice primarily involves cooking rice grains to 

distinguish aromatic rice from non-aromatic types (Sha et al., 2000). But the use of this method 

is limited by the need of technical expertise due to inconsistencies of results from person to 

person and has low throughput in addition to the fact that phenotyping is completed after grain 

harvest. Recent advances in molecular biology paved the way for the development of a more 

precise method of genotyping. Allele-specific PCR amplification assay for the BAD2 gene has 

been developed (Bradbury, 2005; Kadaru, 2006) for use in marker-assisted breeding. This 

technology has been demonstrated to be reliable and efficient in Australian temperate japonica 

aromatic and non-aromatic germplasm (Bradbury, 2005) and in U.S. aromatic rice varieties 

which are mainly derived from tropical japonica and indica germplasm (Kadaru, 2007).  AC and 

GT traits are primary determinants to rice cooking and eating qualities that are also difficult to 

phenotype. Modern AC determination for example requires an Automatic Recording Titrator 

(ART-3, Hirama Laboratories, Kanagawa, Japan) using the iodine titration method (Tan et al., 

1999; Tian et al., 2005) while GT determination involves a long and rigorous process as 

proposed by Little et al. (1958) and Wang et al. (2007). Recent developments in allele-specific 

PCR assays for AC (waxy) and GT (alk) genes opens the avenue for a more precise and accurate 

method to determine grain quality (Kadaru et al., 2006) and expedite breeding efficiency. 

The MAS strategy holds promise for traits that are difficult to phenotype in early 

generations, particularly after grain harvest which can be costly and labor-intensive. In a 

classical F2 population where genes/traits of interest are recessive, theoretically 25% of the 

population carries the recessive trait in homozygous state. With the use of efficient and reliable 

molecular markers, 75% of the F2 plants in each population could be discarded. This approach 

would not only reduce the number of plants to evaluate, but also increase the frequency of 

favorable alleles in succeeding generations. Moreover, the power of MAS is perhaps best 
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exemplified when selection of more than one trait is involved. Zhou et al. (2003) demonstrated 

the ability of MAS to simultaneously improve four quality traits in hybrid rice germplasm. 

The results from this study showcased the ability of molecular markers to screen and 

select individuals that possess the quality traits of interest in rice. It is interesting to note the 

power of SNP markers in discriminating individual plants with high success. Without the use of 

markers such as those used in this study, identification of  individual plants or lines that carry all 

favorable alleles for aroma, low AC and low GT would be labor-intensive, costly, and time 

consuming. Results from this study open the avenue of routinely using SNP markers for breeding 

aromatic and cooking quality traits.  However, further validation in the next generation of the 

best plant selections would further confirm the stability and accuracy of these SNP markers for 

marker-assisted breeding.  

Although MAS offers enormous potential, the cost of genotyping is still a barrier for 

wider application of MAS in applied plant breeding programs (Collard and Mackill, 2008). A 

cost-benefit analysis of using markers for specific traits will determine the efficient use of this 

technology. In maize for example, it was established that using markers to select for opaque2-the 

gene associated with quality protein in maize, is more economical than conventional screening 

methods (Dreher, et al., 2003). 

In case of quality traits in rice, the use of SNP markers mentioned in this study as an 

integral part of rice breeding program for aromatic rice is highly suggested. Selection by SNP 

markers combined with phenotypic selection can reduce the amount of material to evaluate and 

shorten the time of breeding over conventional methods of phenotyping and selection. Finally, 

from an agronomic standpoint, it is interesting to note the high correlations of most of the 

quantitative traits measured as it opens an avenue for indirect selection of traits that are difficult 

to measure. 
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CHAPTER 5 GE�ETIC A�ALYSIS OF POLLE� STERILITY I� LI�ES DERIVED 

FROM A �ATURAL OUTCROSS BETWEE� A LOUISIA�A RED 

RICE BIOTYPE A�D COMMERCIAL RICE 

5.1 Introduction 

5.1.1 Red Rice 

Red rice (Oryza sativa L.) is considered a noxious weed of cultivated rice (Oryza sativa 

L.) in most temperate growing regions of the world (Fisher and Ramirez, 1993). Known in Italy 

since the last century, and for some time considered as a pathologic strain of the crop, red rice 

exhibits wide variability for numerous anatomical, biological and physiological features. In 

addition to being a noxious pest for rice production in the Southern United States (Oard et al., 

2000), outcrossing between red rice biotypes and cultivated rice has posed a major challenge to 

effective weed management. Zhang (2006) documented that as high as 3.2% of outcrossed 

hybrids were observed in one field in Louisiana in 2003. 

In spite of the aforementioned disadvantages, red rice can offer potential for 

diversification and improvement of the rice gene pool in the U.S. through introgression of pollen 

sterility and other traits.  For example, Xiong et al. (1999) performed a mapping study between 

indica and photoperiod-sensitive wild rice. One QTL was detected accounting for 52% of the 

variation, suggesting that wild rice possesses a major gene for photoperiod sensitivity.  Gealy 

(2006) hypothesized that difference in flowering time in U.S. red rice populations were 

associated with two independent homozygous complementary dominant photoperiod sensitive 

genes.  

5.1.2 Male Sterility in Rice 

Male sterility is a characteristic found widely in plants (Zuo et al., 2008) with more  than 

100 different male sterile mutants reported in rice (Bruskiewich et al., 2003). Male sterility 

prevents self-fertilization, but represents tremendous value for basic research on plant 
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reproduction and commercial exploitation of heterosis (Zhang et al., 2008). Recently, several 

male sterile rice mutants from different sources (Zuo et al., 2008, Zhang et al., 2008) have been 

phenotypically characterized and mapped. Inheritance studies on these different mutants showed 

a single recessive nuclear gene (Zuo et al., 2008, Zhang et al., 2008) controlling the expression 

of this trait. 

5.1.3 Cytoplasmic Male Sterility in Rice 

There are generally two kinds of sterility classes in rice: cytoplasmic male sterility 

(CMS) and nuclear male sterility (NMS) (Zhang et al., 2008). The CMS system is controlled by 

the interaction of cytoplasmic and nuclear genes (Virmani, 1994). The genetic factor(s) present 

in the cytoplasm have been reported to occur in mitochondrial DNA (Levings and Pring, 1976; 

Forde and Leaver, 1980; Kadowaki et al., 1986). This phenomenon in rice was first reported by 

Weeraratne in 1954 (Li et al., 2007). Shinjyo and Omura reported in 1966 the first CMS 

observed in elite rice cultivars. The CMS line was designated CMS-BT, being the product of an 

inter-subspecific cross between indica Chinsurah Boro II and japonica Taichung native 65 

(Shinjyo, 1975). As early as 1964, Yuan Long Ping discovered male sterility in the indica variety 

Dong-Ting-Wan-Xian, but the breakthrough came in 1970 when he discovered a spontaneous-

male-sterile plant referred to as CMS-WA in a wild population in Hainan Island, China (Yuan, 

1977). Four years later, the first hybrid rice combination Nanyou-2 was released, showing higher 

yield potential as compared to inbred varieties. Since then, several CMS lines have been 

developed through interspecific, inter-subspecific, and intervarietal modes of hybridization (Li et 

al., 2007). 

There are few reports on the molecular basis of CMS in rice (Liu et al., 1989).These 

reports provide evidence that rice CMS is controlled by variation in mitochondrial (mt) DNA 

(Virmani, 1994; Mignouna et al., 1987; Wang et al., 1987). Molecular properties of mt DNA in 
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CMS rice were reported by Kadowaki et al. (1988) who showed variation in mt DNA from ten 

strains of rice with male sterile cytoplasm. Restriction fragment length polymorphism (RFLP) 

was observed among mt DNAs analyzed, and eight different patterns among ten CMS lines were 

observed. These results suggested substantial variation in mt DNA which may be associated with 

CMS in rice. To further understand the molecular mechanism of CMS, Kadowaki and Oh-Fuchi 

(1989) cloned a DNA fragment (POSB 376) uniquely observed in CMS-BT type cytoplasm. 

Transcription of POSB 376 was altered by introduction of a fertility restorer gene, which 

suggested a role of mitochondrial RNA processing enzyme(s) in CMS. In addition, Liu et al., 

(1989) analyzed the translation products of the rice mitochondria in vitro, using electrophoresis 

and autoradiography. They found that a 22-kDa polypeptide was absent in the BT-CMS lines 

Nonghu 26A and Fengjin A compared to the fertile cytoplasm in Nonghu 26B and Fengjin B. 

These results suggested that mitochondrial genomes associated with fertility were mutated or 

rearranged.  Huang et al. (2006) characterized the diversity of rice CMS cytoplasm and the 

mechanism of CMS using RFLP. They analyzed the sterile (A) and maintainer lines (B) of nine 

CMS sources that have been widely used in commercial production in China. The results showed 

that mitochondrial genomic differences were detected between A and B lines and within A lines 

in many functional genes.  

5.1.4 Hybrid Rice in China, Asia, and the U.S. 

CMS is broadly categorized into three types namely, CMS-WA, CMS-HL, and CMS-BT 

based on inheritance, morphology of abortive pollens and restoration-maintenance relationships 

(Li et al., 2007). However, commercial hybrid rice is almost exclusively based on CMS-WA, 

accounting for 90% of three-line hybrids in China (Yuan and Peng, 2005) and 100% outside 

China (Sattari et al., 2008). Moreover, the International Rice Research Institute relies heavily on 
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CMS-WA in the development of rice hybrids. This scenario opens the vulnerability of the rice 

hybrids to narrowing genetic base due to one common CMS background.  

Hybrid varieties were first released in China in the 1970’s. Chinese hybrids currently 

produce grain yields of 10% to 20% over the best local inbreds and occupy ~50% of the total rice 

acreage.  Hybrid varieties are developed by breeders using two main approaches (Li et al., 2007). 

The “three-line method” uses cytoplasmic male sterile (CMS or A), “maintainer” (B), and 

fertility restoration (R) lines in crosses to develop new varieties. The “two-line” method uses 

photoperiod or temperature-sensitive male sterile and R lines for variety development. After 

early success with the first generation of hybrids in China, a yield plateau was first observed in 

the late 1990’s (Cheng et al., 2007). Chinese breeders subsequently developed the so-called 

“super rice” varieties that increased yields over previous hybrids by 10-30% in some 

environments. The increased yield from super rice hybrids was attributed to the use of wide 

indica/japonica crosses and increased attention to improvement of agronomic traits of A, B, and 

R materials.  For U.S. commercial hybrid rice, the company RiceTec is currently the major 

commercial entity that creates and markets hybrid rice varieties to U.S. rice producers. RiceTec 

states that their varieties enjoy a ~ 20 to 30% yield advantage over inbreds in LA and AR 

(RiceTec.com). Yield trials conducted by breeding programs in LA and AR indicate yield 

advantage of RiceTec hybrids versus inbreds at ~ 10%. Bayer Crop Science is currently 

establishing a research station near El Campo, Texas with emphasis on the U.S. hybrid rice 

market. Bayer has considerable experience in development of hybrid rice in Asia 

(www.bayercropscience.com). Under the umbrella name of “Arize”, Bayer has recently 

commercialized different varieties in India, the Philippines, Indonesia, Vietnam, Bangladesh, 

Pakistan, and Brazil. 
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5.1.5 Initial Characterization of Red Rice–Clearfield Hybrid  

Red rice biotypes carry the same AA genome as cultivated rice, so red rice weeds can 

hybridize with adapted commercial strains (Oard, 2005; Gealy et al., 2006). Weiqiang Zhang in 

Prof. Oard’s laboratory conducted a survey in 2002 and 2003 to monitor the potential and 

consequences of hybridization between Newpath-resistant Clearfield rice and weedy rice in 

Louisiana commercial fields (Zhang et al., 2006). Seeds were collected in 2003 from potential 

outcrosses of Clearfield variety CL161 and red rice biotypes. In 2004 seeds from the putative 

outcrosses were planted at the Ben Hur Farm near Baton Rouge, LA and treated with Newpath 

herbicide. Survival of herbicide treatment along with whole-plant and molecular information 

provided strong evidence that a natural outcross between CL161 and a red rice biotype had 

occurred. One interesting putative F1 plant that survived the herbicide treatment was 

substantially shorter (66 cm) versus other treated plants (~110 cm) and flowered ~ 10-14 days 

earlier than the other red rice-Clearfield hybrids. This plant was also partially sterile at ~ 30% 

seed set. Due to these unique characteristics and overall plant type, ~ 100 F2 seeds from this 

plant were collected, dried to 12% moisture, and stored at room temperature.  These F2 materials 

were the foundation of this study. The objective of this research was to conduct a genetic 

analysis of pollen sterility/male sterility in a single F2 population derived from a natural outcross 

of the red rice biotype described above with the commercial Louisiana variety Cleafield161. 

5.2 Materials and Methods 

5.2.1 Plant Material Characterization and Generation of F1 and F2 Populations 

The starting plant material for this study consisted of 63 F2 individuals originally derived 

from a natural outcross in 2003 between a Louisiana red rice biotype and the Clearfield variety 

CL161 (Zhang, 2006).  Each F2 plant was characterized in the greenhouse during the summer of 

2007 for fertility/sterility traits: pollen viability and morphology by I2-KI staining, and number of 
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fertile seeds from bagged panicles. Based on pollen evaluation, 58 out of 63 F2 plants were 

completely pollen-sterile and the remaining plants were partially sterile (95% -99% pollen 

sterility). I2-KI staining of pollen grains from  the 63 F2 plants showed that pollen varied from 

irregular and unstained, spherical and stained, and combinations of both.  A majority of bagged 

panicles (59/63) yielded no selfed-seeds, indicating that the F2 hybrid population was indeed 

sterile. To restore fertility and perform genetic analysis of pollen sterility, 32 100% pollen-sterile 

F2 plants were crossed with Louisiana varieties Cocodrie and Trenasse. A total of 159 F1 plants 

from 27 red rice x Cocodrie crosses and 156 F1 plants from 25 red rice x Trenasse crosses were 

planted in the greenhouse during the Fall of 2007. Selection of the “best” F1 plants among 315 

individual plants for genetic analysis were based on overall all phenotype-maturity, plant height, 

panicle length and number, spikelets fertility. Thirty-three F1 plants were selected for F2 

segregation and genetic analysis in the field. Phenotypic traits measured and collected for the F1 

plants were plant height, panicle number, and panicle length, filled and unfilled grains of the 

main tiller. F2 seeds from the 33 F1 plants were harvested and dried to 12% moisture for storage 

at 4°C until planting in the field during the summer of 2008. 

5.2.2 Genetic Analysis and Characterization of Pollen Sterility and Additional Agronomic 

Traits in F2 Populations 

Segregation analyses for pollen sterility and two agronomic traits were performed in one 

F2 population derived from a cross of red rice x Cocodrie. F2 seeds produced from the population 

grown in the greenhouse were planted and evaluated in 2008 in field plots at the Crowley Rice 

Research Station. The planting date was April 16, 2008 and the study was terminated on August 

18, 2008. Individual F2 seeds were planted at 25 cm distances within rows and 38 cm distance 

between rows with a “Hege Vacuum Planter”. The Cocodrie male parent was also planted for 

comparison. F2 population sizes that ranged from 200-500 were dependent on the amount of 
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seeds harvested from each plant in the greenhouse. Normal cultural and management practices 

were strictly followed for fertilizer, herbicide, and insecticide applications. Standard water 

management was carried out to ensure normal and healthy growth of plants.  

The data collected for eight traits in this study were the following: (1) plant height 

(PLTH) which was measured from the base of the rice plant to the tip of the highest panicle in 

cm,  (2) panicle number (PANN) was determined by counting the number of seed-bearing 

panicles in each plant, (3) panicle length (PANL) was determined by measuring the main 

tiller/panicle and expressed in cm, (4) spikelet number (SPKN) was determined by counting the 

filled and unfilled spikelets of the main tiller, (6) seeds per panicle (SDPN) was determined by 

counting the filled grains of the main tiller in each plant in the population, (7) spikelet fertility 

(SPFT), expressed as percentage was determined by the formula SDPN/SPKN *100; individuals 

with SPFT values of < 20 were scored as sterile while those with SPFT values > 20 were scored 

as fertile. This scoring system was based on the seed set of F2 ratooned plants brought in the 

greenhouse, where plants with at least 20% seed set in the field were sterile in the greenhouse, 

(8) presence of pubescent or glabrous leaves (PBGL) was determined by physically examining 

leaves on each plant, (9) pollen sterility (PNST) was determined by collecting at least 10 

spikelets from each sterile plant and ~ 1000 pollen grains were stained with I2-KI and viewed 

with a standard compound light microscope at 100X. A visual estimate of the percentage of I2-

KI-treated sterile pollen for each F2 plant was determined in three separate microscopic fields 

and recorded as average percent pollen sterility. Individuals with PNST values < 2% were scored 

as fertile while those with values > 98% were scored as sterile (Sattari et al., 2008).  

The agronomic data were analyzed using SAS software package 9.1.3. Descriptive 

statistics were computed using PROC UNIVARIATE.  PROC CORR was used to calculate 

linear correlations between the different agronomic traits. The chi-square test was conducted to 
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test the goodness-of-fit using PROC FREQ in SAS. Frequency distribution figures were 

generated in Microsoft Excel 2007 program.  

5.3 Results  

5.3.1 Pollen Sterility of F2 Red Rice-Clearfield Outcross  

The 63 F2 plants derived from the red rice-CL161 outcross were generally short (<70cm), 

leaves were pubescent and tillers ranged from 5-22 under greenhouse conditions. The 63 F2 

plants exhibited a high degree of pollen sterility. For example, 92% of the plants were 

completely pollen sterile with overall mean sterility of 99.73%.  The majority (94%) of the F2 

plants produced no seeds while the remaining plants each produced only a single seed under 

controlled condition (bagged panicle). These data confirmed that the 63 F2 plants from the 

outcross between red rice and CL161 were male sterile.   

5.3.2 Phenotypic Characterization of F1 Hybrids Derived from Red Rice-Clearfield 161 x 

Cocodrie or Trenasse 

A total of 315 F1 plants were produced from crosses of red rice-CL 161 x Cocodrie and 

red rice-CL161 x Trenasse. The plants were grown under greenhouse conditions during the 

spring of 2008 with 33 selected for advancement and characterization of six agronomic 

characters. Twenty-four selected F1’s were red rice - CL161 x Cocodrie and 9 F1’s were red rice 

- L161 x Trenasse. Genetic variability existed for most of the traits measured. For example, plant 

height varied substantially with a range of 22 cm. Plant height values were generally lower 

versus most commercial rice varieties that range in height from ~ 90 - 95 cm. The male parents 

for these crosses (Cocodrie and Trenasse) which are popular LA varieties exhibited mean heights 

of 93 and 94 cm, which were at least 15 cm greater than the average of the F1’s. This result was 

not unexpected because the original male sterile parent of the outcross measured ~ 66 cm in 

height. For panicle number and length, the ranges were 11 panicles and 7 cm, respectively. 
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Panicle length as very similar to the male parents, but not for tiller number due to differences in 

growing conditions.  The range for percent seed fertility for the bagged and unbagged samples 

were 84% and 90.8%, respectively. These results indicated the high phenotypic variation for this 

trait. Means for the bagged panicles for SDPN and SPFT data were significantly lower than the 

unbagged samples by 47 seeds and 27%, respectively.  A difference of 9 seeds on the average 

was noted for SPKN. These results may be due to environmental differences that affected the 

panicle growth and seed setting in the bagged versus. the unbagged conditions (Sattari et al., 

2008). 

Table 5.1 Descriptive statistics for the seven agronomic traits of 33 selected F1’s derived from 
natural outcrosses between red rice-clearfield 161 x Cocodrie or Trenasse, greenhouse, LSU 
Baton Rouge, Fall 2007. 

Trait Unit N Mean SD Min Max 

PLTH cm 33 78 5.64 69 91 

PANN - 33 9 2.74 5 16 

PANL cm 33 22 1.84 19 26 

SPKNa - 33 141 35.83 58 203 

SPKNb - 33 150 27.04 107 232 

SDPNa - 33 62 40.99 0 145 

SDPNb - 33 109 38.88 1 171 

SPFTa percent 33 45 26.31 0 84 

SPFTb percent 33 72 22.47 0.77 92 

PLTH-plant height, PANN-panicle number, PANL-panicle length, SPKN-spikelet number per 
panicle, SDPN-filled seeds per panicle, SPFT-spikelet fertility samples, SD-standard deviation 
adata from bagged panicle, bdata from unbagged panicle  
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Table 5.2 Correlation analysis for the seven agronomic traits of 33 selected F1’s derived from 
natural outcrosses between red rice-clearfield 161 x Cocodrie or Trenasse, greenhouse, LSU 
Baton Rouge, Fall 2007. 

Pearson Correlation Coefficients,   
Prob > |r| under H0: Rho=0 

  PLTH PANN PANL SPKNa SPKNb SDPNa SDPNb SPFTa 

PANN 

 
 

0.08648 

(0.6323) 
 

       

PANL 

 
 

0.69051 

(<.0001) 
 

0.37805 

(0.0301) 
 

      

SPKNa 

 
 

0.30692 

(0.0823) 
 

0.33797 

(0.0544) 
 

0.30308 

(0.0864) 
 

     

SPKNb 

 
 

0.61210 

(0.0002) 
 

0.38303 

(0.0278) 
 

0.72409 

(<.0001) 
 

0.26061 

(0.1430) 
 

    

SDPNa 

 
 

0.25620 

(0.1501) 
 

0.45760 

(0.0074) 
 

0.09147 

(0.6127) 
 

0.36195 

(0.0385) 
 

-0.03434 

(0.8495) 
 

   

SDPNb 

 
 

0.61569 

(0.0001) 
 

0.32221 

(0.0674) 
 

0.45304 

(0.0081) 
 

0.01467 

(0.9354) 
 

0.60452 

(0.0002) 
 

0.45245 

(0.0082) 
 

  

SPFTa 

 
 

0.10030 

(0.5787) 
 

0.33243 

(0.0587) 
 

-0.02351 

(0.8967) 
 

-0.07598 

(0.6743) 
 

-0.18029 

(0.3154) 
 

0.87240 

(<.0001) 
 

0.38796 

(0.0257) 
 

 

SPFTb 

 
 

0.34139 

(0.0519) 
 

0.17998 

(0.3162) 
 

0.08769 

(0.6275) 
 

-0.14595 

(0.4177) 
 

0.12239 

(0.4974) 
 

0.57865 

0.0004) 
 

0.85690 

(<.0001) 
 

0.59848 

(0.0002) 
 

PLTH-plant height, PANN-panicle number, PANL-panicle length, SPKN-spikelet number per 
panicle, SDPN-filled seeds per panicle, SPFT-spikelet fertility, SD-standard deviation 
a- bagged panicle sample, b-unbagged panicle sample 

Linear correlation analysis was performed between the nine phenotypic traits of the 33 

F1’s using Pearson’s coefficient. Table 5.2 presents the summary of the analysis. Plant height 

was highly associated with panicle length, spikelet number and seeds per panicle of the 
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unbagged sample, but not correlated with the other traits. Similarly, panicle length was highly 

correlated with spikelet number, but only moderately correlated with seeds per panicle, 

suggesting maximum seed production for this population requires long panicles. The bagged and 

unbagged samples were not correlated with spikelet number or seeds per panicle. This result 

might be due to potential effect of bagging on seed production (Sattari et al., 2008).  Because 

only a few fertile pollen grains are sufficient for normal fertilization and seed set in rice (Sattari 

et al., 2008), bagging of panicles may have affected pollen fertility and seed set of the plant 

examined in this study.   

5.3.3 Descriptive Statistics and Correlation Analysis of Agronomic Traits in F2 Population  

Table 5.3 shows the means, standard deviation, minimum and maximum values for each 

of six agronomic traits examined in 478 F2 individuals  derived from the red rice-CL161 x 

Cocodrie. High levels of phenotypic variations were observed for all six traits as would be 

expected from a “wide cross” between an adapted elite commercial cultivar and a weedy, red rice 

biotype. For example, PLTH exhibited a range of 57 cm. In comparison to the male parent, 92% 

of the F2 plants had the same height or were shorter than Cocodrie. PANN also exhibited high 

phenotypic variation with a range of 44 panicles, and the mean PANN value is greater by 6 tillers 

than the male parent Cocodrie. It is interesting to note that 76% of F2 population had more 

panicles than Cocodrie, indicating a potential for heterosis in the original cross. Similarly, for 

PANL and SDPN, 71% and 59%, respectively, of the F2 populations produced larger panicles 

and more seeds per panicle compared to the male parent Cocodrie. Both traits also showed high 

phenotypic variability.  Approximately one-quarter (26%) of the population exhibited a glabrous 

leaf texture, the ideal leaf texture for rice varieties in the U.S. For pollen sterility evaluation, 37 

plants were essentially sterile (99%), and 24 F2 plants were partially sterile (80%) based on 

spikelet fertility.   
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Table 5.3 Descriptive statistics of six agronomic traits in one F2 population derived from a red 
rice–Clearfield 161 x Cocodrie cross and the male parent Cocodrie, evaluated at Rice Research 
Station, Crowley, LA, 2008. 

Trait Unit N Mean SD Min Max 

F2 population      

PLTH cm 478 80 9.92 50 107 

PANN - 478 21 7.91 2 46 

PANL cm 478 22 2.20 15.2 27.5 

SPKN - 478 176 47.40 69 338 

SDPN - 478 128 58.45 7 294 

SPFT percent 478 71.60 25.51 4.50 98.85 

Parent-Cocodrie      

PLTH cm 10 93 4 88 101 

PANN - 10 15 3 12 22 

PANL cm 10 21 1 20 23 

SDPN - 10 164 22 121 203 

PLTH-plant height, PANN-panicle number, PANL-panicle length,  
SPKN-spikelet number per panicle, SDPN-filled seeds per panicle, SPFT-spikelet fertility 

Frequency distributions of the six traits examined among the 478 F2 individuals derived 

from the red rice biotype described above and the Clearfield cultivar CL161 are shown in Figure 

5.1. PANN and SPKN followed a normal distribution and PLTH and PANN were close to 

normal. SPFT showed a skewed distribution toward high fertility levels. The arrow in Fig 5.1 

points to the mean value of the male parent Cocodrie for PLTH, PANL, PANN, and SDPN. As 

shown in the graphs, a majority of the lines produced greater values than the male parent 

Cocodrie, an indication of high genetic variability and potential heterosis or hybrid vigor in the 

population. For SDPN, it is interesting to note a bi-modal distribution similar to the pattern 

observed by Sattari et al. (2008) in an F2 population derived from the Gambiaca - CMS source 

for pollen fertility.  
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Correlation analysis of the six quantitative traits using Pearson Correlation Coefficients 

revealed interesting results (Table 5.4). For example, PLTH was found to be associated with 

multiple traits including panicle length (PANL), number of spikelets per panicle (SPKN), seeds 

per panicle (SDPN) and moderately associated with panicle number (PANN) and spikelet 

fertility (SPFT). Similarly, PLTH was highly associated with PANL, SPKN, and SDPN in the 

selected F1’s. This would suggest the possibility of using PLTH as indirect selection for the other 

quantitative traits that are more labor-intensive and time-consuming. Separate data from other 

populations and lines are needed to further confirm these initial observations and findings. Most 

correlation analyses involved only the yield and yield-related traits. Shi (1995) for example 

found high association between density of panicle versus grains per panicle as well as spikelet 

fertility versus density of panicle. No report has been published on correlation of plant height vs. 

yield-related traits similar to what was found in this study. These results may be due to high 

phenotypic variability in the population as brought about by the wide cross of red rice-CL 161 x 

Cocodrie. Moreover, PANL was strongly associated with SPAN indicating that the longer the 

panicle, the more spikelets are expected, but is only moderately correlated with SDPN due to the 

sterility of some spikelets. These association results warrant further verification in other 

populations under different environmental conditions. 

5.3.4 Genetic Analysis of Pollen Sterility and Selected Agronomic Traits 

Chi-squared analyses were carried out to determine the goodness-of-fit for segregation of 

PBGL, SPFT, and PNST observed in the 478 F2 individuals derived from the natural outcross of 

the red rice biotype and the CL161 Clearfield cultivar (Table 5.5). PBGL values were recorded 

in this study to determine if this trait followed a Mendelian segregation pattern in the F2 

population. As expected, pubescent to glabrous leaves satisfactorily fit a Chi-square goodness-
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of-fit ratio of 3:1 pubescent: glabrous, indicating that PBGL in this population was governed by a 

single dominant nuclear-encoded gene as reported by Gealy (2006). 

 

 
 
Fig 5.1 Frequency distribution of the six quantitative traits in the F2 population (n=478) of a red 
rice –Clearfield 161 x Cocodrie cross, evaluated at Rice Research Station, Crowley, LA, 2008. 
 
*arrow indicates the mean of the male parent, Cocodrie 
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Table 5.4 Correlation analysis of the six quantitative traits in the F2 population of a red rice-
clearfield 161 x Cocodrie cross, evaluated in Crowley, LA, 2008. 

Pearson Correlation Coefficients, N = 478  
Prob > |r| under H0: Rho=0 

  PLTH PANN PANL SPKN SDPN 

PANN 

 
 

0.38403 

(<.0001) 
 

    

PANL 

 
 

0.53409 

(<.00010) 
 

0.37139 

(<.0001) 
 

   

SPKN 

 
 

0.54621 

(<.0001) 
 

0.30840 

(<.0001) 
 

0.60741 

(<.0001) 
 

  

SDPN 

 
 

0.64486 

(<.0001) 
 

0.22466 

(<.0001) 
 

0.35814 

(<.0001) 
 

0.67405 

(<.0001) 
 

 

SPFT 

 
 

0.46246 

(<.0001) 
 

0.05905 

(0.1975) 
 

-0.00375 

(0.9349) 
 

0.12429 

(0.0065) 
 

0.79013 

(<.0001) 
 

PLTH-plant height, PANN-panicle number, PANL-panicle length, SPKN-spikelet number per 
panicle, SDPN-fertile seeds per panicle, SPFT-spikelet fertility 

The SPFT values indicated that seed fertility in this population was dominant over 

sterility when the female parent was pollen-sterile. SPFT satisfactorily fit a 15F:1S chi-square 

ratio indicating that seed fertility for this population was controlled by a two dominant 

Mendelian genes. These results are consistent with previous reports on CMS fertility restoration 

studies that indicate digenic inheritance with dominant duplicate gene action for CMS-Dissi, 

Gambiaca (Sattari et al., 2008), and CMS-WA (Sattari et al., 2008; Virmani et al., 1986; Govina 

Raj and Virmani 1988; Bharaj et al., 1991, 1995; and Yao et al., 1997). The other two CMS 

types-BT and HL were found to follow a single gene inheritance (Shinjyo 1969; Huang et al.; 

2000). Finally, segregation analysis of PNST showed a satisfactory chi-square fit of 15F:1S 
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indicating that pollen sterility was therefore controlled by two recessive genes. Genetic control of 

pollen sterility in previous studies in rice has been found to be controlled primarily by 

monogenic recessive genes (Razzaque, 1974; Pavithran and Mohandas, 1976; Trees and Rutger, 

1978; Singh and Ikehashi, 1981), although Pavithran and Mohandas (1976) also observed 

trigenic segregation of an induced male sterile mutant. Male sterility in rice mutants from three 

different studies was reported recently to be controlled by a single recessive gene (Zuo et al., 

2008; Zhang et al., 2008). Although results in the current study deviate from the previous 

reports, additional confirmation and analysis are warranted.  

Table 5.5 Segregation analyses of pubescence, spikelet fertility, and pollen sterility among 478 
F2 individuals derived from the Red Rice-CL161 x Cocodrie cross, Rice Research Station, 
Crowley, LA, 2008. 

Trait  
Observed Expected 

Chi- 
Square 
 

P-value 
No. of plants 

PBGL 
Pubescent Glabrous Pubescent Glabrous (3:1) 

354 124 358 120 0.2259 0.6345 

 
SPFT 
PNST 

Fertile Sterile Fertile Sterile (15:1) 

454 24 448 30 0.2324 0.2669 

411 37 448 30 1.8126 0.1782 

PBGL-pubescent/glabrous leaves, SPFT-spikelet fertility, PNST-pollen sterility 

5.4 Discussion  

Segregation analysis is a classical but powerful method to determine inheritance of a trait 

in F2 populations. In hybrid rice for example, most genetic and inheritance studies rely on 

developing hybrids (AxR) and growing large F2 populations to determine mode of inheritance. 

Previous studies reported that CMS-WA (Satarri et al., 2008, Virmani et al., 1986; Govina Raj 

and Virmani, 1988; Bharaj et al., 1991, 1995; and Yao et al., 1997), and recently CMS Dissi, and 

Gambiaca (Sattari et al., 2008) followed a 15F:1S segregation ratio indicating that fertility 

restoration was controlled by two dominant genes while the CMS-BT and CMS-HL segregated 
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into 3F:1S, indicating that fertility/sterility was governed by one major gene (Shinjyo, 1969; 

Huang et al., 2000). Our result is consistent with the CMS-WA and CMS Dissi and Gambiaca in 

a 15F:1S ratio and is believed to be controlled by two dominant genes.  

The use of pollen-sterile lines has been successfully exploited in China over the last 30 

years to develop commercial hybrid cultivars that exceed the yield of pure-line cultivars by ~ 

15% to 20% (Virmani, 1994). However, the number of pollen-sterile lines is limited, so 

extensive research has been conducted in China to discover or develop new pollen-sterile lines. 

The focus of the current study was to initiate a genetic analysis of a single hybrid plant derived 

from a cross between a weedy red rice and an elite commercial cultivar. The red rice hybrid plant 

exhibited unique and interesting characteristics in terms of fertility and agronomics traits that 

warranted further investigation of CMS-based sterility. 

The results from this study indicate that seed fertility was governed by two dominant 

genes similar to CMS-WA while pollen sterility was controlled by two recessive genes. These 

results are characteristics of genetic/cytoplasmic male sterile lines used to produce hybrid 

cultivars in China and elsewhere. Overall, the results suggest that the selected red rice-CL161 

hybrids could be developed as possible new sources of cytoplasmic genetic male sterile lines for 

hybrid rice breeding in Louisiana. However, additional research at the whole-plant and molecular 

level is needed to confirm if lines developed from this study represent a new source of CMS 

similar to CMS-WA systems developed in Asia. With recent advances in molecular biology, 

tools for comparison at the molecular level are possible through sequence data of different 

types/sources of CMS and the one reported here. Finally, from an agronomic standpoint, it is 

interesting to note the high correlations of most of the quantitative traits measured. This opens an 

avenue for indirect selection of traits that are difficult to measure. 
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CHAPTER 6 SUMMARY A�D CO�CLUSIO�S 

6.1 Mixed Model (TASSEL) and GLMSelect Procedures for Association Genetics  

The SAS GLMSelect and TASSEL mixed model approaches were evaluated for ability to 

identify candidate markers associated with heading date, head rice, and amylose content among 

192 lines of inbred rice lines grown in replicated trials at 5 locations in AR, LA, MO, MS, and 

TX. The TASSEL approach was able to identify individual candidate markers detected across 

locations, but the overall ability to model complex phenotypic variation was poor.  This low 

performance level was attributed to the identification of candidate markers one at a time by 

TASSEL that ignored multiple loci effects and two-way interactions (epistasis).  Therefore, 

selected marker-effects from TASSEL were subsequently evaluated by GLMSelect that allowed 

consideration of epistasis and allowed selection of effects by criteria other than F statistics. The 

combined TASSEL-GLMSelect procedure proved optimal in terms of relatively high adjusted R2 

values, minimal selected effects, and accounting for kinship effects to reduce Type I errors 

within a narrow germplasm base.  

The overall results suggest that a combined mixed model-multiple regression procedure  

that considers epistasis with a validation step should be explored in future studies for association 

studies in rice and other crops. Although the number of selected markers from this study was too 

large for an effective and practical breeding program, increasing the number of markers for 

analysis in this population may increase power and precision. Our study showed that while 

allelic diversity of microsatellite was relatively low in this narrow germplasm, the frequency of 

rare alleles was very high. The use of SNP markers would help alleviate the problem associated 

with rare alleles because they are more prevalent than microsatellite markers and are amenable to 

high throughput analysis. We conclude that high density SNP markers coupled with the methods 

outlined in this study should be further explored for association genetics in rice.  
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6.2 Support Vector Regression (SVR) 

SVR was implemented in R-software to evaluate prediction accuracy and power of DNA 

markers associated with heading date, head rice, and amylose content among 192 lines of inbred 

rice lines in the U.S. grown in 5 states (AR, LA, MO, MS, and TX). The results showed that the 

modified SVR procedure produced high levels of accuracy using radial basis kernel which is 

consistent with previous studies of maize inbred lines (De Baets et al., 2008). High levels of 

power were detected with the SVR procedure for all three complex traits compared to a multiple 

regression approach carried out by GLMSelect. The SVR approach for marker selection was 

supported by previous QTL mapping studies that identified the same genetic regions for the three 

traits evaluated. The outcome and procedures developed in this study could provide insights and 

guidance for the development of model simulations and design of future validation experiments. 

SSR markers were utilized in this study, but dense SNP “chips” and maps with > 40,000 

markers will soon become available. One advantage of SVR under those circumstances may be 

the ability to obtain sparse solutions with relatively few variables versus other methods involving 

large data sets (Vapnik, 1995). Another advantage of SVR maybe an internal validation step to 

estimate parameters that give rise to high power and precision. All results obtained from this 

study suggested that SVR exhibited desirable features for association genetics in rice and other 

inbred species should be further explored and developed for optimum power and prediction 

accuracy of marker-trait association. 

6.3 S�P Markers for Marker-Assisted Selection 

SNP markers were evaluated for aroma, amylose content (AC), and gelatinization 

temperature (GT) in marker-assisted selection of LSU breeding lines aimed at developing new 

elite aromatic varieties. Results from the molecular and agronomic analyses clearly showed that 

the SNP marker approach enriched the frequency of desired alleles in lines with good plant type 
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in only two generations. The strong implication is that marker-assisted methods for certain traits 

such as aroma, AC and GT, could speed up and increase efficiency in development of new 

Louisiana aromatic breeding lines.  Results from this study showcased the ability of molecular 

markers to screen and select individuals that possess the quality traits of interest in rice. Without 

the use of markers such as those used in this study, identification of individual plants or lines that 

carry all favorable alleles for aroma, low GT, and low AC would be labor-intensive, costly and 

time-consuming.  

6.4 Genetic Analysis of Pollen Sterility from �atural Outcross of Weedy and Commercial 

Rice  

A genetic analysis was carried out for pollen sterility/male fertility in a single F2 

population derived from a natural outcross of a red rice biotype with the commercial Louisiana 

variety Clearfield161. Based on segregation analysis using the Chi-Square test, seed fertility 

restoration was governed by two dominant genes, while pollen sterility in contrast was controlled 

by two recessive genes. These results are typical of genetic/cytoplasmic male sterile lines used to 

produce hybrid cultivars in China and elsewhere. Overall, the results suggest that the selected red 

rice-CL161 hybrid and the resulting progeny may be developed further as possible new sources 

of cytoplasmic genetic male sterile lines for hybrid rice breeding in Louisiana through a series of 

backcrosses. However, additional research at the whole-plant and molecular level is needed to 

confirm if lines developed from this study represent a new source of CMS similar to CMS-WA 

systems in Asia. With recent advances in molecular biology, tools for comparison at the 

molecular level are possible through sequence data of different types/sources of CMS and the 

one reported in this study. 
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APPE�DIX R SOURCE CODE FOR THE SVR PROCEDURES 

Step 1: Type the following commands in the R console window to assess the SVR procedure 

install.packages('e1071') + Enter   
library(“e1071”) + Enter  
svm  
 

Step 2:  Read the raw amylose content data by the “read.Table” command:d<- 

read.Table(“ac.dat”, header = TRUE)   
y<-d[,1]     
x0<-d[,-1]   
 

Step 3:  Fit a SVR on each individual marker. 

for (i in 1:194){  
x<-x0[,i]           
sm<- svm(x, y, kernel =“radial”, scale=FALSE, cost = 200, nu = .001, cachesize = 100, 
tolerance = 0.01, epsilon = .01, fitted = TRUE, cross=10) 
py<-predict(sm, x)         
R2<-1-sum((y-py)**2)/2601.3    }  
 

Step 4:  The R
2
s obtained from step 3 are ordered in descending manner. Thirty-five of the 

ordered R
2
s are found to be greater than 0.00001. The markers corresponding to these 35 

R
2
s are then kept and interacted pairwisely, resulting in 630 terms, along with the original 

35 terms, in total.  The forward selection procedure is to be conducted on these 630 terms 

in the SVR model setting. 

d<-read.Table(file=“actotal.dat”, header =TRUE)    
y<-d[,1] 
x0<-d[,-1]  
for (i in 1:630){ 
x<-x0[,i] 
sm<- svm(x, y, kernel =“radial”, scale=TRUE, degree = 3, cost = 200, nu = .00001, cachesize 
= 100, tolerance = 0.01, epsilon = .01, shrinking = TRUE, fitted = TRUE, cross=10) 
py<-predict(sm, x) 
R2<-1-sum((y-py)**2)/2601.3 
} 
 

Step 5: Forward selection is conducted 

d<-read.Table(file=“ac630.dat”) 
y<-d[,1] 
x0<-d[,-1] 
x1<-x0[,1]  
for (i in 1:630){ 
x1<-cbind(x1,x0[,i+1])   
x<-x1 
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sm<- svm(x, y, kernel =“radial”, scale=TRUE, degree = 3, cost = 200, nu = .00001, cachesize 
= 100, tolerance = 0.001, epsilon = .001, shrinking = TRUE, fitted = TRUE, cross=10 
py<-predict(sm, x)   
R2[i+1]<-1-sum((py-y)**2)/2601.3  
mc<-max(R2)   
n<- ncol(s2)   
if (R[i+1]-mc<0.02){x1=x[, -n]}   
if (R[i+1]-mc>0.02) { 
R2<-cbind(R2,R[i+1]) }} 
 

Step 6: The MSE, squared correlation coefficient, and R
2
 are computed  

d<-read.Table(file=“all.dat”, header=TRUE)   
y<-d[, 1] 
x0<-d[,-1] 
x<-x0 
sm<- svm(x, y, kernel =“sigmoid”, scale=TRUE, degree = 3, cost = .1, nu = 1, cachesize = 40,  
tolerance = 0.1, epsilon = .1, shrinking = TRUE, fitted = TRUE, cross=10) 
py<-predict(sm, x) 
R2<-1-sum((py-y)**2)/2601.3 
mse<-sum((py-y)**2)/193 

 

Step 7: Compute power 

require(pwr) 
pw<-read.Table (file=“r2svm.dat”)  
pw1<-sqrt(pw)             
pwr.r.test(r=pw1, n=194, sig.level=0.05, alternative=“two.sided”)  
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