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ABSTRACT 

Phosphorus (P) is an essential nutrient for all life forms, including plants, but is a limited 

agricultural resource whose future availability is in question.  Therefore, identification of 

alternative forms of P fertilizers is important.  Poultry litter ash (PLA), a byproduct of bioenergy 

production, contains high concentrations of P comparable to conventional fertilizers.  Forms of P 

contained in PLA have been characterized as having low water solubility.  Nutrient losses during 

containerized plant production are high due to excessive inputs of water and nutrients and low 

nutrient sorption capacities of common horticultural substrate components.  Environmental 

concerns over reduced water quality intensify this problem.  Use of low soluble P sources has 

been recommended as a potential means of reducing P losses.  Experiments were conducted to 

determine effects of PLA application on growth, quality, and nutrient uptake of two greenhouse 

crops (Verbena canadensis Britton ‘Homestead Purple’ and Lantana camara L.‘New Gold’), 

substrate chemical properties, and P losses during greenhouse crop production.  In the first 

experiment, substrate leachate-pH increased 25% when PLA was applied instead of 

superphosphate (SP).  Foliar P concentrations of verbena and lantana also increased 27 and 62%, 

respectively.  Application of PLA did not reduce biomass of verbena or lantana.  In a subsequent 

experiment, leachate-dissolved reactive phosphorus (DRP) and effluent-total phosphorus (TP) 

concentrations were reduced >92% and 69%, respectively, through PLA application, however, 

plant growth and landscape establishment was not deleteriously affected.  Water solubility of 

PLA-P decreased markedly as combustion temperature increased.  Finally, in a third experiment, 

concentrations of DRP were reduced 24% through reduction of PLA rate, but were reduced 

134% when PLA was topdressed instead of incorporated.  Plant quality was improved with PLA 

incorporation.  These results indicate that, while P loss reduction can be achieved through PLA 

application, lower substrate P concentrations do not necessarily reduce plant growth or quality.
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CHAPTER 1: LITERATURE REVIEW 

Global and Domestic Phosphorus Supply 

 Phosphorus (P) is the eleventh most abundant element in the earth’s crust (Mengel and 

Kirkby, 1987) and is essential for all life forms, including plants (Smil, 2000).  Historic P 

fertilizer sources have been animal manure (Cordell et al., 2009), other animal byproducts, and 

superphosphate derived from ground animal bones treated with sulfuric acid (Wines, 1985).  The 

superphosphate fertilizers that were manufactured from animal bones were generally low 

analysis and low quality products.  Nitrogen was introduced to the soil system through animal 

manures, but P and potassium were simply recycled.  Potassium was not typically a limiting 

nutrient in the soil, but P was.  A higher quality P fertilizer was needed (Mikkelsen and 

Bruulsema, 2005).   

In 1867, a solution was identified when phosphate rock deposits were discovered and 

mined in South Carolina.  The phosphate rock contained P in high concentrations that could 

easily be converted into superphosphate using existing technologies (Wines, 1985).  Deposits 

have since been discovered and mined in other locations throughout the United States including 

Florida, North Carolina, Idaho, and Tennessee.   Soluble phosphate fertilizers are processed and 

recovered from these phosphate-rich ores (Mikkelsen and Bruulsema, 2005).  However, mined 

phosphate rock is a finite, non-renewable resource (Cordell, 2009). 

Moroccan phosphate reserves are the largest globally and account for an estimated 75% 

of world total reserves (USGS, 2013).  The highest producer of phosphate rock is China, 

followed by the United States and Morocco.  Although over 30 countries are currently producing 

phosphate rock, more than two-thirds of the supply is produced in those three countries.     

 Phosphate reserves are defined by the U.S. Bureau of Mines and United States 

Geological Survey (USGS) as deposits that can be economically extracted with current mining 
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practices.  For example, in 1998 the USGS defined phosphate reserves as those retrievable at a 

cost below $35 per ton (Steen, 1998).  Likewise, in 2001, phosphate reserves were defined as 

those extractable for $40 per ton or less (McClellan and Van Kauwenbergh, 2004).   As opposed 

to reserves, resources are defined as reserves plus all other deposits that may be accessed at some 

point in the future.  The reserve base is the part of an identified resource that meets minimum 

physical and chemical criteria (Roberts and Stewart, 2002).   

Calculations of total global phosphate reserves and reserve base are complicated due to 

many rapidly changing variables.  It is generally agreed upon that, at current production levels, 

global commercial phosphate reserves will last approximately 50-100 years (Cordell et al., 

2009). At current production levels, the United States’ phosphate ore reserves will last less than 

20 years (Roberts and Stewart, 2002).  However, since the definition of reserves is based on 

economics, the time frame could change.   The estimated phosphate ore reserve base life of the 

United States is nearly 100 years, while the global reserve base life is estimated at over 300 years 

(Roberts and Stewart, 2002).  Phosphate resources have been identified on the Atlantic and 

Pacific continental shelves, but these resources cannot be harvested using current technologies 

(USGS, 2006).    

 While the life expectancy of global and domestic phosphate reserves and resources are 

debatable, the notion that the quality of mined phosphate rock is declining seems to be the 

consensus (Cordell, 2009; Roberts and Stewart, 2002; Smil, 2000; Steen, 1998).  While some 

phosphate rocks, such as Moroccan reserves, are characterized as high-quality ores, other 

phosphate rock producers, such as China, are known to produce lower quality phosphate rock 

(Personal communication, Lucina Lampila, Ph.D., R.D.).  When considering the projected 

phosphate rock shortage and current reduction in quality, it is apparent that discovery and 
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development of renewable, high quality P fertilizer sources is and will continue to be an 

important endeavor.  

Agricultural Applications of Poultry Litter and Associated Concerns  

Poultry litter is a biomass source consisting mostly of bird manure and bedding materials 

(Robinson and Sharpley, 1996) and is a waste product of poultry production.  The bedding 

materials that are typically used include straw, sawdust, wood shavings, shredded paper, peanut 

hulls, and rice hulls (Kelleher et al., 2002).  Poultry litter is in great abundance in several areas of 

the United States, including the southeast.  It contains comparable amounts of nitrogen to 

ruminant wastes, but often contains higher concentrations of P, since fowls do not share ruminant 

animals’ ability to extract organically bound-P from feeds (Sommers and Sutton, 1980).     

Composted poultry litter has been used as a soil amendment and as a substrate 

amendment in horticultural production (Marble et al., 2010).  However, composting takes space 

and time which limits the application of some composted products.  Poultry litter, in its raw 

form, has been utilized in field and container nursery production.  Field applications have been 

successful, but pasteurization of poultry litter is necessary before usage in container production 

and problems, such as high rates of P leaching still exist (Broschat, 2008). 

While poultry litter has been successfully used in several agricultural fields, its 

predominant usage, due to its relative low cost and abundance (Jia and Anthony, 2011), is as a 

soil amendment and fertilizer for agronomic crops and pastures.  However, high transportation 

costs due to the low bulk density of poultry litter (Bernhart et al., 2010) limit the geographical 

area available for its use as a fertilizer, which has led to environmental concerns associated with 

agricultural applications of poultry litter.    

The primary environmental concern associated with poultry litter is surface and ground 

water impairment.  Years of land application of poultry litter on a nitrogen basis, in relatively 
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small geographical areas, has led to an accumulation of P in soils of poultry producing areas 

(Maguire and Mullins, 2008).  Runoff of P into surface waters has led to accelerated 

eutrophication of these waters (White et al., 2010).   

Nitrogen and P introduction into fresh water systems via surface runoff events has been 

linked with water quality problems.  However, P is often the limiting nutrient in aquatic systems 

and when it is introduced to these systems, especially as orthophosphate, algae and 

cyanobacteria, whose growth may have been previously limited, can grow and multiply quickly.  

This rapid population growth can lead to anoxic or hypoxic conditions which can result in loss of 

aquatic life.  Point sources of P introduction into aquatic systems have been successfully reduced 

in many cases, but non point sources are much more difficult to identify and limit (Correll, 

1998).  Sediment runoff from agricultural areas is one potential non-point source of P 

introduction into aquatic systems.   

Nitrates from the poultry litter may also leach into groundwater supplies, raising 

questions about drinking water safety and quality (Codling and Isensee, 2005).  In its report to 

Congress in 2004, the USEPA (2009) indicated nutrients as one of the top three causal agents of 

impairment of lakes, ponds, and reservoirs and also listed agriculture as one of the top three 

sources of impairment of these surface waters.    

Nurseries and commercial greenhouse operations have been identified as potential non 

point sources of nutrients, including P.  However, nutrient loss quantities from nurseries have not 

been well documented (Mangiafico et al., 2008). 

Several potential solutions that seek to concentrate nutrients, in order to reduce 

transportation costs, and to alleviate environmental concerns associated with agricultural 

applications of poultry litter have been investigated, such as: compaction (Bernhart et al. 2010) 

pelletization (McMullen, 2005), composting (Brodie et al., 2000), P removal (Szogi et al. 2008), 
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gasification (Priyadarsan et al. 2004), and combustion (Codling et al., 2002; Shiemenz and 

Eicler-Lobermann, 2010). 

Gasification and combustion of poultry litter have the added benefit of energy production 

compared to the other concentration processes.  However, combustion of poultry litter may be 

the most efficient means available to alleviate environmental concerns over P associated with the 

litter since all mineral P remains in the ash resulting from the combustion process.  

Combustion of Poultry Litter  

Recycling of plant nutrients has become a point of interest due to environmental concerns 

and questions of future, sustainable mineral ore supplies.  Uncertainty of the sustainability of the 

future supply of global and domestic mined phosphate rock has prompted a search for 

alternative, sustainable P sources.   The use of biomass ashes as a nutrient source is one such 

proposed strategy (Bachmann and Eichler-Lobermann, 2010).   

Burning biomass waste materials as a means of disposal has been practiced for centuries.  

Ashes from the combustion of the biomass materials have historically been utilized as fertilizer 

sources (Schiemenz and Eicler-Lobermann, 2010).  Carbon and nitrogen are lost in the 

combustion process leaving high concentrations of inorganic plant nutrients such as P, 

potassium, calcium, and magnesium.   

Combustion, however, has not been the historical method of disposal of poultry litter.  In 

a review article, Edwards and Daniel (1992), described in detail many strategies for poultry litter 

waste management including anaerobic digestion, composting, and land application, but 

combustion was not mentioned.  The inefficiencies and inconsistencies that have historically 

been associated with burning poultry litter, along with its value as a soil amendment, were 

factors that likely led to the exclusion of combustion as a disposal technique.  More recently, 

technological advances and increased environmental concerns over land application of poultry 
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litter, have led to the practice of burning poultry litter as a disposal technique as well as a means 

of heat and energy production (Codling et al., 2002; Habetz and Echols, 2006). 

Poultry litter is a biomass source that has both theoretical and realized potential for 

energy production via combustion.  According to Habetz and Echols (2006), poultry litter is a 

viable thermal energy source, since the theoretical combustion of poultry litter could sustain an 

adiabatic flame temperature of approximately 2000 ˚F.  Furthermore, Mukhtar et al. (2002) 

reported the average heating value of poultry litter is around 4100 Btu/lb.  Jia and Anthony 

(2011) reported that co-firing poultry waste with coal in a circulating fluidized bed combustor 

did not impede heat and energy production. Even though other combustible feedstock sources 

have higher heating values, poultry litter is still attractive as a thermal energy source due to its 

relative abundance and low cost.  According to Young et al. (2005), average delivery cost of 

poultry litter per truck delivered across the state of Arkansas in 2005 was less than $1,000.     

While the combustion process is more complicated for poultry litter than for most 

traditional fuel sources due to inconsistency of litter composition and moisture content, and its 

relatively high ash content (Baranyai and Bradley, 2008), it has become technologically feasible.  

For example, by retrofitting a common multiple hearth furnace historically used to burn sewage 

sludge with new air injectors called circle slot jets, Habetz and Echols (2006) demonstrated that 

poultry litter could be efficiently burned to produce energy. Annamalai et al. (1985) also 

demonstrated that poultry litter could successfully produce energy via fluidized bed combustion.  

A related experiment confirmed that, as long as the moisture content of feedstock poultry litter 

was maintained below 25%, chicken litter could be utilized as the sole feedstock for a fluidized 

bed combustor (Abelha et al., 2002).  Fortunately, the moisture content of poultry litter can be 

maintained well below 25% by simply covering stockpiles (Ogejo and Collins, 2009). The 
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potential for energy production via combustion of poultry litter is not only experimentally tested, 

but is also being practiced on a large scale in the United States.   

Fibrominn is a power plant in Benson, Minnesota, operated by an alternative energy 

company called Fibrowatt, LLC, that is currently providing energy for 40,000 homes by 

producing  55 MW of energy per year through the co-combustion of poultry litter and wood, 

with poultry litter constituting more that 60% of the furnace feedstock.  The resultant ash is 

utilized as a nutrient-rich fertilizer for agronomic crops in the Benson, Minnesota area.  The vast 

majority of the ash content of the furnace feedstock is generated from the poultry litter, since 

wood typically has a very low ash content.  Misra and others (1993) reported that the ash content 

of three commonly burned wood species ranged from only 0.43 – 0.87 percent whereas poultry 

litter is reported to have an ash content from about 15 percent (IPEP, 2006) to 25 percent (Jia and 

Anthony, 2011).   

Fibrowatt has plans to build and operate several more power plants in other high volume 

poultry producing areas, such as Mississippi, Georgia, Arkansas, and North Carolina.  When 

these future plants become realities, their ash byproduct may be a valuable fertilizer amendment 

to agricultural industries including nursery and greenhouse production.  Furthermore, due to the 

rising costs of fossil fuels, combustion of biomass materials, including poultry litter, may be an 

attractive means of space-heating greenhouses.  The resultant ash could potentially be used as a 

fertilizer amendment for the crops being grown in said greenhouses. 

 Space heating poultry houses with biomass furnaces is a practice that is being actively 

researched and implemented in the United States.  Although other energy production 

technologies are attractive such as pyrolysis, anaerobic digestion, and gasification, combustion of 

biomass materials is currently the technology of choice for space heating poultry houses.  

Feedstocks that have been evaluated include cord wood, corn, wood pellets, pelletized poultry 
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litter, and raw litter.  Raw litter is the most attractive of all the feedstocks, but is also the most 

problematic.  Several factors undermining the potential use of raw litter as a sustainable furnace 

feedstock for space heating applications include high variability of ash content, ash management 

considerations, furnace emissions concerns, and storage and handling difficulties.  However, raw 

litter is still being actively evaluated for such operations since its theoretical fuel cost is lowest of 

all proposed feedstocks, including propane (Wimberly, 2008).  

Nursery and Greenhouse Fertilization Practices  

Nutrients are typically supplied to containerized plants in water-soluble forms.  One 

common method of nutrient application during containerized plant production is fertilization 

through irrigation, referred to as fertigation.  Applying fertilizers through irrigation allows the 

fertilizers to be supplied in multiple doses, while minimizing labor costs (Mikkelsen and 

Bruulsema, 2005).  Fertigation has also been reported to improve both irrigation and fertilization 

efficiencies when monitored correctly (Hagin and Lowengart, 1996).   

Another popular fertilization practice has been application of slow-release and controlled-

release fertilizers (CRFs).  The distinguishing trait between slow-release and CRFs is that 

controlled-release products have release patterns that are predictable based on several different 

variables, whereas slow-release fertilizers refer to products or substances that release nutrients 

into soil solution over time, but whose release pattern is less predictable and is much more 

generalized.  CRFs are generally associated with different types of coating materials which, over 

time, release nutrients into solution.  Some CRFs release nutrients due to chemical degradation 

of their coating materials via microbes, while others release nutrients due to physical parameters, 

such as temperature and moisture.  Slow-release fertilizer dissolution is typically a function of 

factors such as particle size, soil moisture, pH, and temperature (Shaviv, 2001).  While fertilizer 
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management strategies for containerized plant production seek to maximize plant growth and 

reduce costs, nutrients, especially P, are often over-applied (Silber et al., 2005).  

Phosphorus and Soilless Substrates  

 The fact that P is readily leached from soilless substrates is well documented.  In 1984, 

when soil-based substrates were beginning to be replaced with soilless components, Marconi and 

Nelson (1984) reported that more than 33% applied P, as superphosphate [(SP) (8.7% P)], was 

lost from a peat moss (PM):vermiculite (1:1, v:v) substrate over a nine week period.  Less than 

5% of applied P leached from a sand:soil:PM (1:1:1, v:v:v) substrate in the same amount of time.  

Their results indicated that soilless substrate components have low P sorption capacities 

compared with mineral soil.  However, more dramatic results were obtained by others.   

Yeager and Barrett (1984) reported on the inefficiency of SP as a fertilizer amendment in 

soilless culture.  In their experiment, between 20% and 37% of P, supplied as SP, leached from 

substrates composed of different combinations of pine bark (PB), PM, and sand in one day.  In 

all substrates, 55% of supplied P had leached by 7 days, while 66-76% of the P had leached by 

21 days.  It was concluded that SP was an inefficient source of P in substrates composed of PB, 

PM, and sand.  Despite these recommendations, SP is still used as a starter nutrient in 

commercial substrate mixes (Ku and Hershey, 1997).  Incorporation of starter nutrients into 

soilless substrates during containerized crop production, however, may lead to unnecessary 

nutrient losses while not improving or only slightly improving plant growth parameters.  

Therefore, application of starter nutrients should be questioned as a management strategy 

(Altland and Buamscha, 2008).   

Although application of SP to soilless substrates is no longer recommended, research has 

shown SP is not the only inefficient P source for soilless container production.  In an experiment 

focused on increasing irrigation efficiency in container-grown plant production, Tyler et al. 
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(1996) reported that P leaching losses were unaffected by P application rates.  Although CRFs 

were used in the experiment, P leaching losses were affected only by leaching fraction.  In a 

similar experiment, it was reported that the concentration of dissolved reactive P (DRP) in 

effluent from a PB substrate, amended with a CRF, was independent of the rate of applied P 

(Owen et al., 2008).  CRFs are designed to release a steady, constant stream of nutrients into 

solution (Shaviv and Mikkelson, 1993).  However, if P losses from containers amended with 

CRFs are unaffected by application rate, CRFs may not be efficient P fertilizers.          

 Phosphorus uptake efficiencies (PUE) in container production are very low (Lea-Cox and 

Ristvey, 2003), with values as low as 5% reported (Struve, 1995).  One proposed strategy to 

mitigate nutrient losses from container production is to utilize less soluble fertilizer sources (Lea-

Cox and Ristvey, 2003). 

Historically, water solubility, especially of P sources, was an important criterion in 

determining fertilizer application rates and effectiveness.  However, water solubility is hardly 

considered anymore since all commercial P fertilizers are water soluble (Mikkelsen and 

Bruulsema, 2005).  Usage of water soluble fertilizer sources may unintentionally lead to over-

application of major nutrients such as nitrogen and P, especially when used in soilless culture.  

Less soluble P sources have not been historically used in nursery and greenhouse crop 

production because of an assumed reduction of phosphate availability.  Horticultural substrates 

are typically composed of organic, acidic components such as pine bark and peat moss. Given 

their acidic nature, these substrates may be able to solubilize phosphates originating from low-

soluble sources.   Most studies, however, have focused on irrigation, as well as, nutrient use 

efficiencies in agronomic and horticultural systems, as opposed to solubility to mitigate nutrient 

losses. 
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According to Zhu et al. (2007), horticultural substrates have relatively low water and 

nutrient holding capacities due to their soilless properties and high porosities.  It was concluded 

that container production of ornamental plants is often inefficient due to frequent irrigation and 

fertilizer applications.  Lea-Cox and Ristvey (2003) suggested that several inter-related factors 

were responsible for low nutrient uptake efficiencies of container-grown plants, including plant 

genetic factors and poor timing and placement of fertilizers during the growing cycle.  By simply 

reducing the amount of nitrogen and P fertilizers added to a greenhouse grown azalea crop, 

uptake efficiencies of those nutrients were increased.  Nitrogen uptake efficiency was improved 

from 17% to 60% via a 10-fold reduction of a standard nitrogen application rate.  Similar results 

were achieved for P.  By reducing the amount of P supplied by 80%, the P uptake efficiency for 

azaleas was increased from 30% to 68%.   Ku and Hershey (1997) also reported that P supplied 

through fertigation could be reduced from standard concentrations by up to 80% without 

sacrificing quality or size of a greenhouse-grown poinsettia crop.  Shaviv et al. (1999) reported 

that by combining controlled-release fertilizer incorporation with fertigation practices, nitrogen 

leachate losses were reduced.    

Poultry Litter Ash as a Fertilizer  

Few studies have investigated the potential of poultry litter ash (PLA) as a fertilizer 

amendment.  In a laboratory experiment, Codling (2006) reported that poultry litter ash 

contained high levels of P, but that most of this P was water-insoluble.  However, PLA was 

successfully used as a P source for wheat in a previous pot study (Codling et al., 2002).  

Faridullah et al. (2009) reported that chicken and duck litter ashes could be used as nutrient 

sources for Japanese mustard spinach.  Other biomass ashes have also been successfully utilized 

as nutrient sources for agronomic crops (Schiemenz and Eichler-Lobermann, 2010).  In an 

experiment directed primarily toward altering substrate physical properties, Evans et al. (2011) 
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reported that incorporation of pulp mill ash into a peat-based substrate increased tomato shoot P 

concentrations, although available P and total P in the ash were only 0.1% and 0.17%, 

respectively.  Phosphorus recovered from poultry litter has been used as the primary source of P 

for annual ryegrass (Szogi et al., 2010).  No literature exists on PLA as a fertilizer amendment in 

nursery or greenhouse container production.  Although PLA-P has been characterized as 

primarily water-insoluble, plant P uptake may not be wholly dependent on water-solublity of 

applied P since organic acids (Bolan et al., 1994) and rhizospheric conditions (Hinsinger, 2001) 

have been reported to affect phosphate species’ solubilities. 

Leaching is a common practice in the nursery and greenhouse industries because of 

concerns over potentially hazardous concentrations of salts building up in substrates over time.  

Greenhouse and nursery substrates, especially those that have been fertigated, are typically 

leached with water containing no exogenous fertilizer salts often during the growing cycle 

(Shaviv et al., 1999).  Since soilless substrates generally have low nutrient holding capacities 

(Zhu et al., 2007), the nutrients, including P, contained in the substrate are lost during the 

leaching process.  Rainfall events also leach nutrients from containers that are not covered.  The 

soluble reactive forms of P (SRP) are potentially leached from containers due to these processes 

and may move offsite.   

Experiments conducted to address nutrient loss from nurseries have typically focused on 

the recapture of lost nutrients or improved cultural practices.  Detention basins are one proposed 

strategy to recapture nutrients lost via leaching and rainfall events from nurseries (Mathers et al., 

2005).  Mangiafico et al. (2008) assessed the effectiveness and feasibility of constructed 

detention basins for the recapture of pesticides and nutrients lost from container production 

nurseries via irrigation or rainfall events.  It was concluded that detention basins could be 

constructed that would capture most, if not all, nutrient runoff from a nursery, but that associated 
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costs may preclude basin construction for small or medium-sized container nurseries.  Similarly, 

Fain et al. (2000) surveyed container production nurseries in Alabama and found that nutrient 

detention was more prevalent at large nurseries. 

Constructed wetlands are another proposed strategy to abate nutrient losses from 

greenhouse and nursery operations.  Three aquatic plant species, [Thalia geniculata f. 

rheumoides Shuey, Oenenathe javanica Blume DC. ‘Flamingo’, and Phyla lanceolata Michx.] 

were reported to have high P recovery rates in a laboratory-scale constructed wetland designed 

for use at a container nursery (Polomski et al., 2008).   

The usage of PLA as a fertilizer amendment in nursery and greenhouse container 

production may reduce the amount of P lost via leaching.  In a laboratory study, Codling (2006) 

characterized the forms of P in poultry litter and PLA.  Between 50 and 60 percent of the P 

contained in the poultry litter was present in water-soluble forms.  In contrast, water-soluble P 

forms constituted an average of only 1.5 percent of the total P in PLA.  Most P species (82%) in 

PLA were soluble only in HCl.  The author concluded that P supplied through PLA applications 

may be less prone to losses via runoff events.  Furthermore, PLA could potentially be utilized as 

a liming amendment because of its high pH and alkalinity (Codling, 2006; Faridullah et al., 

2009). 
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CHAPTER 2. THE EFFECTS OF PHOSPHORUS SOURCE, PHOSPHORUS RATE, 

AND LIMING RATE ON GROWTH AND QUALITY OF Verbena canadensis Britton 

‘Homestead Purple’ AND Lantana camara  L. ‘New Gold’  

Introduction  

 Phosphorus (P) is the eleventh most abundant element in the earth’s crust and is essential 

for most life forms, including plants (Smil, 2000).  Phosphorus fertilizers commonly used in 

plant production systems, are mined and processed from phosphate-rich ore deposits in the 

earth’s crust (Mikkelsen and Bruulsema, 2005).  However, future availability of phosphate rock 

ore reserves is in jeopardy (Cordell et al., 2009).  According to Roberts and Stewart (2002), the 

United States’ phosphate rock ore reserves, at current production, are estimated at less than 20 

years.  Current global commercial phosphate reserves are estimated to be depleted within 50 to 

100 years (Cordell et al., 2009).  While expected durations of global and domestic phosphate 

reserves and resources are only estimates, a decline in phosphare rock ore quality is a consensus 

among speculators and scientists (Cordell et al., 2009; Roberts and Stewart, 2002; Smil, 2000; 

Steen, 1998).  Therefore, development of renewable, high quality P fertilizer sources is of 

paramount importance.   

Historically, animal manures have been utilized as fertilizers in production of many 

agricultural commodities. Given concerns regarding phosphate rock ore for P fertilizers, manures 

have gained interest as potential recycled P sources (Dawson and Hilton, 2011).  The rise in 

poultry production has resulted in significant amounts of waste being produced from these 

facilities in many areas of the United States, particularly in the southeastern United States.  

Poultry litter is a biomass source consisting predominantly of bird manure and bedding materials 

(Robinson and Sharpley, 1996).  Bedding materials typically consist of straw, sawdust, wood 

shavings, shredded paper, peanut hulls, and/or rice hulls, depending on location and availability 

of materials (Kelleher et al., 2002).  Poultry litter contains comparable amounts of nitrogen to 
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ruminant wastes, but higher concentrations of P, since fowls are unable to extract organically 

bound-P from feeds with the addition of phytase (Sommers and Sutton, 1980).  Like most 

manures, poultry litter application as a fertilizer source is limited due to high transportation costs 

(Bernhart et al., 2010) and environmental concerns associated with surface water impairment 

(Sharpley et al., 1994).   

To alleviate environmental concerns due to geographically-concentrated poultry litter 

applications as well as expand the use of poultry litter as a recyclable fertilizer source, several 

methods have been employed to reduce weight of, or concentrate P within, poultry litter 

including, compaction (Bernhart et al., 2010),  pelletization (McMullen et al., 2005), composting 

(Brodie et al., 2000), P removal (Szogi et al., 2008), gasification (Priyadarsan et al., 2004), and 

combustion (Codling et al., 2002; Schiemenz and Eichler-Lobermann, 2010).  Of all these 

methods, combustion of poultry litter may be the most efficient means available because the ash 

contains inorganic P while energy released during combustion could be used for electricity or 

heat production (IPEP, 2006).  Although the combustion process can be more complicated for 

poultry litter compared to traditional fuel sources due to inconsistent composition, moisture 

content, and high ash content (Baranyai and Bradley, 2008), combustion of poultry litter is 

technologically feasible (Habetz and Echols, 2006).  For example, Fibrominn power plant in 

Benson, Minnesota, an alternative energy plant, co-combusts poultry litter and wood to provide 

energy to approximately 40,000 homes.  Ash from the combustion process is sold as a 

commercial fertilizer (Misra et al., 1993) with the majority of ash a product of combusted poultry 

litter (IPEP, 2006; Jia and Anthony, 2011).   

With the increase in capability of using poultry litter for ashing or power production the 

potential of poultry litter ash (PLA) as a fertilizer source needs to be examined for a variety of 

cropping systems.  Limited scientific experiments have reported PLA is a suitable nutrient source 
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for several agronomic crops including wheat (Triticum aestivum L.) (Codling et al., 2002), 

Japanese mustard spinach (Brassica rapa L.) (Faridullah et al., 2009), buckwheat (Fagopyrum 

escultentum Lifago), oil radish (Raphnus sativus oleiformis Adagio), phacelia (Phacelia 

tanacetifolia Lisette), or ryegrass (Lolium multiflorum westerwoldicum Gordo) (Bachmann and 

Eichler-Lobermann, 2010).  In each of these experiments, researchers reported increased plant P 

accumulation for soils amended with PLA even though PLA-P is characterized as having low 

water solubility (Codling, 2006; Bachmann and Eichler-Lobermann, 2010).  No experiments 

have examined PLA as a P source for containerized horticultural crops.   

 Given the uncertainty of future P ore based fertilizer availability and quality, low cost 

alternatives such as PLA may be highly desirable in nursery and greenhouse production systems 

that require high P fertilization additions with high water usage.  Additionally, environmental 

concerns, due to P losses from highly concentrated production sites, may be reduced by utilizing 

less soluble, recycled P sources.  Therefore, the objective of the experiment was to examine the 

use of PLA as an alternative P source during the production of two commonly-grown greenhouse 

crops (Lantana camara L. ‘New Gold’ and Verbena canadensis Britton ‘Homestead Purple’). 

Materials and Methods 

Experiment setup   

Eighty Lantana camara L. ‘New Gold’ and Verbena canadensis Britton ‘Homestead 

Purple’ plants growing in 105-cell trays were selected for uniform quality and size for the 

experiment initiated 3 February 2012.  For each species, two plants were transplanted into 1.6-L 

containers for a total of 40 containers per species.  Containers were filled with a substrate 

composed of pine bark (<0.38 cm) and peat moss (4:1; v:v) and pre-plant incorporated with 0.89 

kg m
-3 

of micronutrient package (Micromax, Scotts Company, Marysville, OH), and 0.25 kg K 

m
-3

 (0N-0P-35.7K).  Remaining pre-plant amendments were superphosphate (SP; 20% P) or 
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poultry litter ash (PLA; 10% P), incorporated at 140 or 280 g P m
-3

, in combination with 

pulverized dolomitic limestone (DL) at 1.5 or 3.0 g m
-3

.  Containers filled with the eight pre-

plant incorporated combinations were arranged in a completely randomized design with five 

single-container replications.  All plants were maintained under greenhouse conditions at an 

average temperature of 27.7 ˚C, with no supplemental irradiance, for 42 and 70 d for Verbena 

canadensis and Lantana camara , respectively.   During the experiment, plants were supplied 

with 350 ml water d
-1

 including 120 ml aliquots container
-1

 N at 250 mg NH4NO3 L
-1

 d
-1

. 

Plant response   

Plant growth was measured bi-weekly using a growth index [(height + widest width + 

perpendicular width) / 3] and flower number was quantified for flower buds showing color.  Leaf 

samples, composed of the most recently matured leaves, were removed, dried at 60 ˚C for 72 

hours, and biomass recorded before tissue was milled to <0.5mm using a Thomas Wiley
®
 Mini-

Mill (Thomas Scientific, Swedesboro, NJ).  Tissue was digested in concentrated nitric acid at an 

average of 120 ˚C, diluted to 20 ml with deionized water, and filtered prior to analysis of 

elemental Al, B, Ca, Cu, Fe, Mg, Mn, Mo, P, K, Na, S, and Zn concentrations using inductively 

coupled plasma optical emission spectroscopy (SPECTRO Analytical Instruments, Kleve, 

Germany; Louisiana State University Soil Testing and Plant Analysis Laboratory, Baton Rouge, 

LA).  At 42 and 70 d, plant shoots were harvested at the substrate surface, dried at 60 ˚C for 72 

hours, and biomass recorded.   

Leachate collection and analysis  

Leachate samples measuring 90 ml, from three containers per treatment for Lantana 

camara, were collected bi-weekly following the Virginia Tech extraction method (Wright, 

1986). Leachate samples were transported to the laboratory and allowed to cool to room 
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temperature (21 ˚C) prior to leachate-pH and electrical conductivity (EC) measurement (Orion 

Star A215 solution analyzer; Thermo Scientific Inc., Beverly, MA).  

Statistical analysis   

The experiment was a 2 (P source) x 2 (P rate) x 2 (DL rate) factorial, completely 

randomized design with five replications.  Growth index, flower counts, plant dry weight, 

leachate pH, EC, and tissue nutrient analyses data were analyzed following the mixed procedure 

in SAS/STAT
®
 statistical software (SAS Institute Inc., 2011).  Means for each measurement at 

each collection interval were separated using Tukey’s Honest Significant Difference Test at a 

significance level of 0.05. 

Results 

Plant Response   

Verbena 

Verbena growth was not significantly influenced by P source, P rate, or DL rate at 14 or 28 days 

after potting (DAP) (Table 2.1).  At 42 DAP verbena growth, measured using a growth index, 

increased 9.5% from 40.0 to 44.2 across both P sources as DL rate increased from 1.5 to 3.0 kg 

m
-3

.  However, in the case of shoot dry weight, DL affected verbena growth differently 

depending on P source and rate of application (Table 2.2).  Increasing DL rate from 1.5 to 3.0 kg 

m
-3 

did not increase verbena shoot dry weights at 21.2 g and 23.2 g, respectively, in combination 

with the lower SP application rate.  However, increasing DL application rate at the higher SP 

application rate of 280 g P m
-3

 resulted in higher dry weight of 30.4 g compared to 19.8 g.  For 

PLA, increasing the DL application rate increased verbena shoot dry weight 5.9 g at the lower 

PLA application rate.  In fact, the combination of DL at 3.0 kg m
-3

 and PLA at 140 g m
-3

 resulted 

in shoot dry weight of 26.6 g comparable to 27.3 g and 28.1 g as the DL rate increased at 280 g P  
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Table 2.1. Effects of phosphorus rate and dolomitic limestone rate on growth index of Verbena canadensis 'Homestead Purple' and 

Lantana camara 'New Gold' over experimental periods of 42 and 70 days, respectively.    

   

Verbena Lantana 

P Source
Z
 P Rate DL Rate

Y
 Growth Index

X
 

  (g m
-3

) (kg m
-3

) 14 DAP
W

 28 DAP 42 DAP 14 DAP 28 DAP 42 DAP 56 DAP 70 DAP 

- 140 - 25.5a
V
 35.9a 42.1a 15.3a 22.9a 36.4a 45.8a 51.3a 

- 280 - 26.7a 33.3a 42.1a 16.3a 25.6a 33.1a 42.5b 47.3a 

- 
  

NS
U
 NS NS NS NS NS 0.029 NS 

           - - 1.5 25.1a 33.6a 40.0b 15.3a 24.1a 31.8b 41.1b 46.8b 

- - 3.0 27.1a 35.7a 44.2a 16.3a 24.5a 37.7a 47.2a 51.8a 

   

NS NS 0.048 NS NS 0.013 0.001 0.047 

            
Z
SP = superphosphate; PLA = poultry litter ash. 

Y
DL = pulverized dolomitic limestone. 

X
Growth index was measured in cm as: [(Height + Widest Width + Perpendicular Width) / 3]. 

W
Days after potting. 

V
Values in column followed by different letters are significant according to Tukey's Studentized Range Test (α = 0.05).   

U
P-value derived from analysis of variance; NS = not significant. 
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m
-3

of PLA.  An increasing effect of DL on plant dry weight was not evident at the higher PLA 

application rate.    

Phosphorus application rate, regardless of P source, had the greatest effect on verbena 

flower counts throughout the experiment (Table 2.3).  Flower counts increased from 7.4 to 12, 

12.8 to 19.2, and 11.1 to 13.3, at 14, 28, and 42 DAP, respectively, as the rate of P increased 

from 140 to 280 g m
-3

.  Over the 42-day experiment, total flower counts increased 42% from 

31.3 to 44.5 as P rate increased from 140 to 280 g m
-3

.  In general, verbenas fertilized with 280 g 

P m
-3 

across all DL rates resulted in greater flowering than verbena fertilized at 140 g P m
-3

. 

Lantana 

 As noted with verbena, P source did not affect lantana growth.  However, lantana growth 

index was affected by DL rate and P rate (Table 2.1).  Lantana growth increased from 31.8 to 

37.7, 41.1 to 47.2, and 46.8 to 51.8, at 42, 56, and 70 DAP, respectively, as DL rate increased 

from 1.5 to 3.0 kg m
-3

.   In general, P application rate did not affect growth index of lantana with 

the exception of a 7% decrease at 56 DAP when P rate was increased.  Shoot dry weight of 

lantana was not singularly affected by P source, P rate, or DL rate (Table 2.2).  However, 

increasing DL rate from 1.5 to 3.0 kg m
-3

, increased shoot biomass from 24.9 to 28.9 g, of 

lantanas fertilized with SP, but did not affect those fertilized with PLA.  

Similar to verbena, flower counts of lantana were affected by P application rate 

throughout the experiment (Table 2.3).  Flower counts increased from 48.8 to 66.8, 110.8 to 

150.3, 106.8 to 116.3, and 93.8 to 123.7, at 28, 42, 56, and 70 DAP, respectively, when P 

application rate of either P source was increased from 140 to 280 g P m
-3

.  For the experiment, 

there was an overall increase of 26%, from 382.8 to 483.5 flowers, when P application rate was 

increased.  Similar to shoot dry weight, increasing DL rate from 1.5 to 3.0 kg m
-3

, increased total 
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Table 2.2. Effects of superphosphate or poultry litter ash as phosphorus sources, phosphorus rate, and dolomitic lime rate 

on shoot dry weights of Verbena canadensis 'Homestead Purple' and Lantana camara 'New Gold' harvested at 42 and 70 

days after potting, respectively.  

P Source
Z
 

 
P Rate 

 
DL Rate

Y
 

 

Shoot Dry Weight (g) 

    (g m
-3

)   (kg m
-3

)   Verbena  Lantana  

SP 

 

- 

 

1.5 

 

20.5c 24.9b 

SP 

 

- 

 

3.0 

 

26.8a 28.9a 

PLA 

 

- 

 

1.5 

 

23.9b 29.2a 

PLA 

 

- 

 

3.0 

 

27.3a 26.6ab 

      

0.0217 0.0029 

      
  

SP 

 

140 

 

1.5 

 

21.2c 25.9ab 

SP 

 

280 

 

1.5 

 

19.8c 24.0b 

SP 

 

140 

 

3.0 

 

23.2bc 27.9ab 

SP 

 

280 

 

3.0 

 

30.4a 29.8ab 

PLA 

 

140 

 

1.5 

 

20.6c 26.9ab 

PLA 

 

280 

 

1.5 

 

27.3a 31.6a 

PLA 

 

140 

 

3.0 

 

26.5ab 25.4ab 

PLA 

 

280 

 

3.0 

 

28.1a 27.9ab 

            <0.0001 NS 

 
Z
SP = superphosphate; PLA = poultry litter ash. 

Y
DL = pulverized dolomitic limestone. 

X
Values in column followed by different letters are significant according to Tukey's Studentized Range Test (α = 0.05).   

W
P-value derived from analysis of variance; NS = not significant. 
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Table 2.3. Effects of superphosphate or poultry litter ash as phosphorus sources, phosphorus rate, and dolomitic limestone rate on bi-

weekly and cumulative flower counts of Verbena canadensis 'Homestead Purple' and Lantana camara 'New Gold' over experimental 

periods of 42 and 70 days, respectively.  

   

Flower Count
Z
 

P Source
Y
 P Rate DL Rate

X
 Verbena Lantana 

  (g m
-3

) (kg m
-3

) 14 DAP
W

 28 DAP 42 DAP Total 14 DAP 28 DAP 42 DAP 56 DAP 70 DAP Total 

- 140 - 7.4b
V
 12.8b 11.1b 31.3b 22.8a 48.8b 110.8b 106.8b 93.8b 382.8b 

- 280 - 12.0a 19.2a 13.3a 44.5a 26.5a 66.8a 150.3a 116.3a 123.7a 483.5a 

   
<0.0001

U
 <0.0001 0.0492 <0.001 NS <0.0001 <0.0001 0.0391 0.0012 <0.0001 

SP - 1.5 9.0a 13.5a 10.7a 33.2b 18.8b 52.2b 113.8b 102.0a 100.8a 387.7b 

SP - 3.0 11.0a 15.7a 12.8a 39.5ab 32.0a 65.5a 147.0a 114.0a 111.3a 469.8a 

PLA - 1.5 10.2a 17.3a 12.7a 40.2a 23.8b 57.2ab 118.8b 114.8a 114.3a 429.0ab 

PLA - 3.0 8.7a 17.3a 12.7a 38.7ab 23.8b 56.2ab 142.3a 115.3a 108.3a 446.0a 

   
0.0311 NS NS 0.0276 0.0276 0.0259 NS NS NS 0.0105 

SP 140 1.5 7.0c 11.0d 10.3a 28.3b 17.7b 47.3cd 96.3d 98.3a 94.7a 354.3c 

SP 280 1.5 11.0abc 16.0abcd 11.0a 38.0ab 20.0b 57.0bcd 131.3c 105.7a 107.0a 421.0bc 

SP 140 3.0 7.7bc 12.3cd 13.0a 33.0b 29.7ab 53.7bcd 128.0c 114.0a 97.3a 422.7bc 

SP 280 3.0 14.3a 19.0abc 12.7a 46.0a 34.3a 77.3a 166.0a 114.0a 125.3a 517.0a 

PLA 140 1.5 8.0bc 13.3bcd 11.7a 33.0b 23.7ab 49.3bcd 94.0d 106.7a 98.0a 371.7c 

PLA 280 1.5 12.3ab 21.3a 13.7a 47.3a 24.0ab 65.0abc 143.7bc 123.0a 130.7a 486.3ab 

PLA 140 3.0 7.0c 14.3abcd 9.3a 30.7b 20.0b 44.7d 124.7c 108a 85.0a 382.3c 

PLA 280 3.0 10.3abc 20.3ab 16.0a 46.7a 27.7ab 67.7ab 160.0ab 122.7a 131.7a 509.7a 

      NS NS NS NS NS NS NS NS NS NS 

Z
Flower buds showing color at the time of data collection. 

Y
SP = superphosphate; PLA = poultry litter ash. 

X
DL = pulverized dolomitic limestone. 

W
Days after potting. 

V
Values in column followed by different letters are significant according to Tukey's Studentized Range Test (α = 0.05).   

U
P-value derived from analysis of variance; NS = not significant. 
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flower counts of lantana fertilized with SP from 387.7 to 469.8, but did not affect flower counts 

of lantanas fertilized with PLA.     

Substrate leachate-pH and EC from Lantana camara 

Substrate leachate-pH was affected at every measurement date by P source and DL rate 

(Table 2.4).  Average leachate-pH increased from pH 5.18±0.63 to 6.48±0.33, when the P source 

was changed from SP to PLA, and from pH 5.57±0.81 to 6.09±0.74, when DL rate was increased 

1.5 to 3.0 kg DL m
-3

.  As DL rate increased from 1.5 to 3.0 kg DL m
-3

, substrate leachate-pH 

increased an average of 11%, from 4.87±0.53 to 5.48±0.55, for plants fertilized with SP, but only 

6%, from 6.27±0.27 to 6.69±0.29, for those fertilized with PLA.     

Substrate leachate-EC was also affected by P source at 0, 7, 14, 21, 49, and 63 DAP (Table 2.5).  

Leachate-EC was highest when plants were fertilized with PLA at 0, 7, 49, and 63 DAP, but was 

higher for SP-fertilized plants 14 and 21 DAP.  Increasing the P application rate from 140 g P m
-

3 
to 280 g P m

-3
 than for  at every measurement date and was increased by an average of 33% for 

the 70 d experiment.  While leachate-EC was affected by both P source and P application rate, 

increasing P rate from 140 to 280 g P m
-3

 increased leachate-EC for plants fertilized with PLA 

by a higher margin than for those fertilized with SP at 21, 28, 35, 42, 49, and 56 DAP.  

Foliar nutrient concentrations   

Verbena 

 Foliar concentrations of Ca, Mn, and P were affected by P source for verbenas (Table 

2.6).  Foliar Ca and P concentrations increased from 0.61±0.10 to 0.78±0.16% and 0.26±0.04 to 

0.33±0.03%, respectively, when verbena were fertilized with PLA compared to SP, while Mn 

concentrations decreased from 122.97±23.22 to 65.01±16.83 mg kg
-1

.  A similar trend was also 

exhibited, across both P sources, as foliar P increased from 0.27±0.05 to 0.31±0.04%, and foliar 

Mn decreased from 106.01±36.43 to 81.96±31.79 mg kg
-1 

with P application rate increase from  



29 

 

Table 2.4. Effects of superphosphate or poultry litter ash as phosphorus sources, phosphorus rate, and dolomitic lime rate on substrate 

leachate-pH measured weekly from Lantana camara 'New Gold' over an experimental period of 63 days.  
P Source

Z
 P Rate DL Rate

Y
 Substrate Leachate-pH 

  (g m
-3

) (kg m
-3

) 0 DAP
X
 7 DAP 14 DAP 21 DAP 28 DAP 35 DAP 42 DAP 49 DAP 56 DAP 63 DAP Average 

SP - - 4.33b
W

 4.65b 4.79b 4.89b 5.03b 5.17b 5.49b 5.69b 5.82b 5.89b 5.18b 

PLA - - 5.93a 6.27a 6.31a 6.52a 6.59a 6.68a 6.68a 6.57a 6.57a 6.65a 6.48a 

   
<0.0001

V
 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

                                          - - 1.5 4.93b 5.19b 5.30b 5.44b 5.53b 5.63b 5.81b 5.86b 5.90b 6.06b 5.57b 

- - 3.0 5.32a 5.72a 5.80a 5.97a 6.10a 6.22a 6.36a 6.39a 6.49a 6.48a 6.09a 

   
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

              
              SP - 1.5 4.05d 4.30d 4.44d 4.62d 4.74d 4.87d 5.16d 5.36d 5.48d 5.65d 4.87d 

SP - 3.0 4.61c 4.99c 5.14c 5.17c 5.33c 5.46c 5.82c 6.03c 6.16c 6.13c 5.48c 

PLA - 1.5 5.81b 6.08b 6.16b 6.27b 6.33b 6.39b 6.46b 6.37b 6.32b 6.47b 6.27b 

PLA - 3.0 6.05a 6.45a 6.45a 6.77a 6.87a 6.97a 6.90a 6.77a 6.82a 6.84a 6.69a 

   
0.0004 <0.0001 <0.0001 NS NS NS 0.028 0.0001 0.0035 NS NS 

              
              SP 140 1.5 4.17e 4.41f 4.49f 4.70d 4.74c 4.94f 5.22f 5.58d 5.62d 5.84f 4.97ef 

SP 280 1.5 3.94e 4.19f 4.38f 4.52d 4.74e 4.80f 5.10f 5.13e 5.33e 5.46g 4.76f 

SP 140 3.0 4.78c 5.16d 5.44d 5.57c 5.54c 5.69d 6.00d 6.22b 6.25bc 6.07ef 5.67d 

SP 280 3.0 4.43d 4.83e 4.85e 4.78d 5.11d 5.23e 5.65e 5.84c 6.07c 6.18de 5.30e 

PLA 140 1.5 5.78b 6.02c 6.11c 6.16b 6.27b 6.21c 6.33c 6.38b 6.23bc 6.39cd 6.19c 

PLA 280 1.5 5.83ab 6.13bc 6.22bc 6.37ab 6.38b 6.56b 6.60bc 6.36b 6.41b 6.55bc 6.34bc 

PLA 140 3.0 6.06a 6.33ab 6.34b 6.77a 6.84a 6.89a 6.85ab 6.71a 6.88a 6.78ab 6.64ab 

PLA 280 3.0 6.04a 6.58a 6.57a 6.76a 6.91a 7.05a 6.94a 6.83a 6.76a 6.89a 6.73a 

   
NS NS 0.0002 NS 0.0152 NS NS NS 0.0012 0.0011 NS 

 
Z
SP = superphosphate; PLA = poultry litter ash. 

Y
DL = pulverized dolomitic limestone. 

X
Days after potting. 

W
Values in column followed by different letters are significant according to Tukey's Studentized Range Test (α = 0.05).   

V
P-value derived from analysis of variance; NS = not significant. 
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Table 2.5. Effects of superphosphate or poultry litter ash as phosphorus sources and phosphorus rate on substrate leachate-EC 

measured from Lantana camara 'New Gold' over an experimental period of 63 days.  

P Source
Z
 P Rate Substrate Leachate-EC 

  (g m
-3

) 0 DAP
Y
 7 DAP 14 DAP 21 DAP 28 DAP 35 DAP 42 DAP 49 DAP 56 DAP 63 DAP Average 

SP - 2.24b
X
 2.51b 2.48a 1.98a 1.38a 1.10a 0.85a 0.66b 0.66a 0.57b 1.44a 

PLA - 2.92a 2.99a 2.36b 1.86b 1.39a 1.09a 0.82a 0.73a 0.70a 0.66a 1.55a 

  
<0.0001

W
 <0.0001 0.0017 0.04 NS NS NS 0.0043 NS 0.0112 NS 

             - 140 2.36b 2.34b 2.10b 1.60b 1.13b 0.91b 0.74b 0.59b 0.58b 0.56b 1.29b 

- 280 2.80a 3.16a 2.75a 2.25a 1.64a 1.28a 0.93a 0.80a 0.78a 0.67a 1.71a 

  
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0031 0.0015 

             
SP 140 2.04d 2.12d 2.14c 1.77b 1.29c 0.99c 0.79bc 0.59c 0.59c 0.52b 1.28b 

SP 280 2.44c 2.91b 2.84a 2.20a 1.49b 1.20b 0.90ab 0.74b 0.73b 0.62ab 1.60ab 

PLA 140 2.68b 2.56c 2.06c 1.43c 0.97d 0.82d 0.68c 0.59c 0.57c 0.60ab 1.30b 

PLA 280 3.16a 3.42a 2.66b 2.30a 1.80a 1.36a 0.96a 0.86a 0.82a 0.71a 1.81a 

    NS NS NS 0.001 <0.0001 0.0001 0.0312 0.0036 0.0027 NS NS 

 
Z
SP = superphosphate; PLA = poultry litter ash. 

Y
Days after potting. 

X
Values in column followed by different letters are significant according to Tukey's Studentized Range Test (α = 0.05).   

W
P-value derived from analysis of variance; NS = not significant. 
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140 to 280 g P m
-3

.  Across both P sources and P rates, increasing DL rate from 1.5 to 3.0 kg m
-3

 

decreased foliar Mn concentrations from 100.21±34.11 to 87.77±37.48 mg kg
-1

.  At the high DL 

rate, increasing P rate from 140 to 280 g m
-3

 decreased foliar Mn concentration from 

145.53±9.44 to 88.16±10.23 mg kg
-1

 for verbenas fertilized with SP, but did not affect foliar Mn 

concentrations of verbenas fertilized with PLA. 

Lantana 

 For lantanas, foliar Ca, Mg, Mn, and P concentrations were affected by P source and P 

application rate (Table 6).  When PLA was used as the P source, foliar Ca, Mg, and P increased 

from 0.56 to 0.80%, 0.32 to 0.38%, and 0.21 to 0.34%, respectively.  However, similar to 

verbena, foliar Mn concentrations were decreased from 257.5±25.2 to 130.02±21.1 mg kg
-1

 

when PLA was the P source.  The same general trend existed for P application rate.  As P rate 

increased from 140 to 280 g m
-3

 foliar Ca, Mg, and P concentrations increased from 0.65±0.13 to 

0.71±0.16%, 0.31±0.05 to 0.40±0.04%, and 0.24±0.08 to 0.31±0.07%, respectively, while foliar 

Mn concentrations decreased from 204.67±68.35 to 182.84±70.83 mg kg
-1

.  When P source was 

SP and the DL rate was highest, foliar Mn concentrations decreased from 291.06±17.24 to 

241.70±20.99 mg kg
-1

 as P rate increased from 140 to 280 g m
-3

, but Mn concentrations were not 

affected when PLA was applied.  

Discussion  

Poultry litter ash is an acceptable P source for verbena and lantana greenhouse container 

production compared to water-soluble, phosphate rock ore-based fertilizers such as SP.  Verbena 

and lantana growth, measured using a growth index, and in terms of biomass, exhibited similar 

patterns to plants fertilized using SP.  Codling (2002) reported similar results for wheat (Triticum 

aestivum L.) grown on two differing soil types when comparing PLA to potassium phosphate as 

P fertilizer sources.  Similarly, in an experiment conducted to determine the effects of PLA on 
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Table 2.6. Effects of superphosphate or poultry litter ash as phosphorus sources, phosphorus rate, and dolomitic lime rate on foliar 

nutrient concentrations of Verbena canadensis 'Homestead Purple' and Lantana camara 'New Gold' over an experimental period of 

70 days. 

P Source
Z
 P Rate DL Rate

Y
 Verbena Lantana 

  (g m
-3

) (kg m
-3

) Ca
X
 Mg Mn P K Ca Mg Mn P K 

SP - - 0.61b
W

 0.52a 122.97a 0.26b 1.89a 0.56b 0.32b 257.50a 0.21b 1.24a 

PLA - - 0.78a 0.49a 65.01b 0.33a 1.90a 0.80a 0.38a 130.02b 0.34a 1.46a 

   
0.0072V NS <0.0001 <0.0001 NS <0.0001 <0.0001 <0.0001 <0.0001 NS 

             - 140 - 0.68a 0.52a 106.01a 0.27b 1.88a 0.65b 0.31b 204.67a 0.24b 1.43a 

- 280 - 0.71a 0.48a 81.96b 0.31a 1.92a 0.71a 0.40a 182.84b 0.31a 1.27a 

   

NS NS <0.0001 0.0014 NS 0.0021 <0.0001 0.0024 0.0003 NS 

             - - 1.5 0.69a 0.49a 100.21a 0.29a 1.88a 0.64b 0.33b 184.54b 0.28a 1.38a 

- - 3.0 0.70a 0.51a 87.77b 0.29a 1.92a 0.73a 0.37a 202.98a 0.27a 1.32a 

   

NS NS 0.0063 NS NS 0.0001 <0.0001 0.0077 NS NS 

             SP 140 1.5 0.51a 0.50a 131.66a 0.26bc 1.98ab 0.45e 0.22e 241.36b 0.18c 1.56a 

SP 280 1.5 0.60a 0.48a 126.53a 0.27bc 2.02ab 0.53de 0.36bcd 255.88ab 0.25bc 1.22a 

SP 140 3.0 0.71a 0.61a 145.53a 0.22c 1.71ab 0.66bc 0.32d 291.06a 0.16c 1.09a 

SP 280 3.0 0.64a 0.47a 88.16b 0.31ab 1.86ab 0.60cd 0.38bc 241.70b 0.26bc 1.07a 

PLA 140 1.5 0.82a 0.52a 87.61b 0.32ab 1.84ab 0.71bc 0.33d 138.70cd 0.29b 1.32a 

PLA 280 1.5 0.84a 0.46a 55.04c 0.33ab 1.67b 0.85a 0.40b 102.20d 0.39a 1.41a 

PLA 140 3.0 0.69a 0.45a 59.26c 0.30ab 1.99ab 0.77ab 0.35cd 147.58c 0.33ab 1.75a 

PLA 280 3.0 0.77a 0.51a 58.13c 0.35a 2.11a 0.88a 0.45a 131.58cd 0.33ab 1.37a 

      NS NS <0.0001 NS NS NS 0.0006 0.0031 0.0416 NS 
Z
SP = superphosphate; PLA = poultry litter ash. 

Y
DL = pulverized dolomitic limestone. 

X
Macronutrients reported as percentage of dry matter.  Mn reported in mg·kg

-1
 dry matter. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 

0.05). 
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soil-P pools and P uptake, Bachmann and Eichler-Lobermann (2010) reported no differences in 

biomass per species of buckwheat (Fagopyrum escultentum Lifago), oil radish (Raphnus sativus 

oleiformis Adagio), phacelia (Phacelia tanacetifolia Lisette), or ryegrass (Lolium multiflorum 

westerwoldicum Gordo) when comparing PLA and potassium phosphate.  In addition, flower 

count, a common measurement used for ornamental plant quality, increased as P rate increased 

for PLA and SP.  James and Van Iersel (2001) reported flower numbers, of other ornamental 

species, to be positively affected by increasing P fertility.  Bi et al. (2010) reported increased 

flower numbers for marigold with increasing poultry litter application rates.  Therefore, under 

the conditions tested for ornamental plant production, PLA, a low water soluble P source, was 

able to provide adequate P concentrations throughout the 42 and 70 d production cycles to result 

in marketable quality plants without any observable deleterious effects.Although PLA was 

primarily examined for its suitability as a P source, PLA also affected substrate pH known to 

influence nutrient availability and uptake.  Research has shown substrate amendments such as 

fertilizers and pH-adjusting materials can greatly affect plant growth and quality as a direct result 

of changes in substrate chemical properties (Altland and Buamscha, 2008; Argo and Biernbaum, 

1996; Smith et al., 2004).  Unlike SP, which is known to reduce substrate pH (Huang and 

Nelson, 2001) and require higher lime additions to maintain a range of optimal pH, PLA did not 

lower substrate pH.  In fact, verbena and lantana growth, within species, was similar for PLA 

across both the lower and higher DL rates.   

Poultry litter ash contains a high concentration of Ca as a result of litter composition prior 

to ashing that can result in a high alkaline compound (Codling, 2006).  Although substrate 

leachate-pH often exceeded the recommended range of 5.4 to 6.8 for proper plant growth 

(Fonteno et al., 1996) during the experiment, P plant uptake was not negatively affected at the 
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higher DL in combination with PLA.  Solution pH-dependent dissociation constants for H3PO4 

of 2.1 and 7.2 suggest the monovalent P species (H2PO4
-
) available for plant uptake would not be 

affected within the pH ranges measured for PLA-fertilized plants during the course of the 

experiment (Schachtman et al., 1998). Therefore, PLA has the added benefit of adjusting media 

pH while supplying P that should reduce liming requirements of soilless substrates.  

Because PLA is not a pure P source and contains constituents that can affect substrate 

chemical properties and crop nutrition (Codling, 2006; Bachmann and Eichler-Lobermann, 

2010), effects of PLA incorporation on salt leaching and ancillary nutrient uptake should be 

characterized.  Substrate EC was not affected by DL rate, but was affected by P source and P 

rate, with P rate having the most consistent effect.  Exceedingly high substrate EC was not 

observed with PLA incorporation.  Leachate-EC measurements generally remained within an 

optimal range of 0.5 to 3.0 mS cm
-1 

(Raviv and Lieth, 2008; Robbins and Evans, 2005) 

throughout the experiment, with the only exceptions occurring at the highest rate of PLA at 0 and 

7 DAP.  In general, PLA did not affect the availability or uptake of required nutrients other than 

P.  However, Ca uptake was increased and Mn uptake was decreased for plant fertilized with 

PLA.  Increased Ca uptake was most likely due to increased Ca concentrations as a result of PLA 

application.  More interesting were the changes in foliar Mn across P sources, P rates, and DL 

rates.  In the case of SP-fertilized plants, Mn uptake increased due to higher Mn availability at 

lower substrate pH compared to plants fertilized with the more alkaline PLA.   Although plant 

Mn toxicities occur in organic soils and soilless substrates, toxicity levels have been shown to be 

ameliorated with applications of Fe (Handreck, 1997), K (Alam et al., 2005), Ca (Alam et al., 

2006), or Mg (Le Bot et al., 1990).  Manganese toxicity symptoms were not observed in this 

experiment likely due to Fe, Ca, K, and Mg being supplied in adequate concentrations.   
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Substrate pH was affected throughout the experiment and substrate EC was increased for 

the first week due to PLA incorporation, but adequate concentrations of P were supplied to plants 

verbena and lantana.  However, based on data recorded for this experiment, it is unknown what 

salts contributed to leachate-EC.  High concentrations of P have been shown to be rapidly 

released from SP in soilless substrates (Yeager and Barrett, 1984), but P dissolution rates from 

PLA in a soilless substrate have not previously been reported.  Continued research should 

determine the rate and concentration of P dissolution from PLA when used as a P source in a 

soilless substrate.  
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CHAPTER 3: PHOSPHORUS SOURCE AFFECTS PHOSPHORUS LOSSES FROM 

GREENHOUSE CROP PRODUCTION 

Introduction  

Soilless substrates commonly used in nursery and greenhouse production are 

characterized as having high percolation rates (Zhu et al., 2007) and low phosphorus (P) sorption 

capacities (Yeager and Barrett, 1984; Bilderback, 2001).  As a result, nursery and greenhouse 

operations have been identified as contributors to non-point nutrient pollution (Mangifiaco et al., 

2008); especially in P-accelerated eutrophication of adjacent surface waters.  Mitigating P losses 

during nursery and greenhouse production poses a significant challenge to responsible growers 

(Bilderback, 2001) to comply with legislation enacted in a number of states regulating nutrient 

loading (Lea-Cox et al., 2010).  

Research has clearly indicated increased P leaching can be directly affected by water-

solubility of P sources applied during container production (Yeager and Wright, 1982; Yeager 

and Barrett, 1984; Cole and Dole, 1997).  Many growers compensate for low P retention of 

soilless substrates through higher fertilizer application rates and frequencies (Silber et al., 2005).  

However, management practices that rely on high, frequent fertility rates have been shown to 

increase nutrient leaching losses (Zhu et al., 2007).  Reductions in water-solubility of fertilizer 

sources is a proposed strategy to reduce unnecessary nutrient losses from soilless substrates 

during container production (Lea-Cox and Ristvey, 2003).  Controlled-released fertilizer (CRF) 

technologies, including coated or granulated fertilizers, release P over time for plant uptake 

(Shaviv, 2001). In many cases, CRFs are less economical compared to uncoated, water-soluble 

fertilizers and vary in efficacy with regard to stemming nutrient leaching losses (Tyler et al., 

1996; Bilderback, 2001; Ristvey et al., 2007; Zhang et al., 2007).  
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Reduction of P losses continues to be an important research endeavor given the levels of 

surface water impairment across the United States associated with P-enriched water bodies 

(Correll, 1998).  Recycling nutrients, mainly in the form of manures, has been researched 

extensively in recent years as a means to mitigate unnecessary P inputs and losses during crop 

production cycles (Dawson and Hilton, 2011; Bachmann and Eichler-Lobermann, 2010).  One 

recycled P source in great abundance due to rise in poultry production, particularly in the 

southeastern United States, is poultry litter (USDA, 2000). Poultry litter contains comparable 

amounts of nitrogen to ruminant wastes, but higher concentrations of P, since fowls are unable to 

extract organically bound-P from feeds without the addition of phytase (Somers and Sutton, 

1980).  However, poultry litter application has been reported as a P source for surface water 

impairment due to concentrated land applications (Sharpley et al., 1994).  Attempts to increase 

the acreage for poultry litter application must be accompanied with reduced costs associated with 

transportation (Bernhart et al., 2010).  Processes to concentrate P from manures have included 

compaction (Bernhart et al. 2010), pelletization (McMullen, 2005), composting (Brodie et al., 

2000), P extraction (Szogi et al. 2008), gasification (Priyadarsan et al. 2004), or combusting 

(Codling et al., 2002; Shiemenz and Eicler-Lobermann, 2010) poultry litter.   

Unlike many processes used to concentrate P, combustion of poultry litter can be used in 

energy production (Habetz and Echols, 2006).  For example, Fibrominn power plant in Benson, 

Minnesota, is an alternative energy plant that co-combusts poultry litter and wood to provide 55 

MW of energy for 40,000 homes.   Combustion of poultry litter converts P from 50 to 60% 

water-soluble forms, found in raw poultry litter, to 1.5% water soluble P in poultry litter ash 

(PLA).  More than 80% of the P species in PLA are soluble in hydrochloric acid (Codling, 2006) 

and as a result less prone to movement via surface runoff.  Although PLA-P is present in low-
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soluble compounds, PLA has been reported to be a suitable P source for wheat [(Triticum 

aestivum L) (Codling et al., 2002)], Japanese mustard spinach [(Brassica rapa L.) (Faridullah et 

al., 2009)], buckwheat (Fagopyrum escultentum Lifago), oil radish (Raphnus sativus oleiformis 

Adagio), phacelia (Phacelia tanacetifolia Lisette), and ryegrass [(Lolium multiflorum 

westerwoldicum Gordo) (Bachmann and Eichler-Lobermann, 2010)].   

To date, no published research on PLA’s effects on reducing P leaching from soilless 

substrates is available.  Therefore, experiments were conducted to determine the effect of PLA 

application on P losses from a soilless substrate during containerized plant production and 

combustion temperature’s effect on PLA-P solubility. 

Materials and Methods  

Experiment I  

Setup  

 Sixty Lantana camara L. ‘New Gold’ plants growing in a 105-cell tray were selected for 

uniform quality and size prior to the initiation of studies 6 September 2011 and 2 March 2012.  

Two plants were transplanted into 30 1.6-L containers for a total of 60 containers.  Substrate was 

composed of amended pine bark (<0.38 cm) and peat moss (4:1; v:v) amended with 0.89 kg m
-3 

micronutrient package (Micromax, Scotts Company, Marysville, OH), 0.25 kg K m
-3

 (0N-0P-

35.7K), and 2.97 kg m
-3 

of pulverized dolomitic limestone.  Pre-plant P treatment sources were 

either superphosphate (20% P) or PLA (10% P) incorporated as a single source or at ratios of 

25:75, 50:50 or 75:25 SP:PLA at 280 g P m
-3 

with controls receiving no P fertilizer.  Poultry 

litter ash used in this experiment was the product of commercial energy production via 

combustion of poultry litter and was obtained courtesy of North American Fertilizer, LLC.   
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 Plants were maintained under greenhouse conditions at averages of 23.7 °C and 28.4 °C 

in 2011 and 2012, respectively, with no supplemental irradiance, for 84 d.   During the 

experiment, plants were supplied with 350 ml water d
-1

 including 120 ml aliquots container
-1

 of 

N at 250 mg NH4NO3 L
-1

 d
-1

.  

In 2012, Lantana camara L. ‘New Gold’, grown on an adjacent greenhouse bench 

according to previously outlined procedures, were transplanted into a raised bed to simulate post-

transplant field conditions at the end of the 84-d experimental period.  A linear bed, measuring 

120 m long and 1 m wide was amended with pine bark, milled to <0.95 cm (Phillips Bark 

Processing Co., Brookhaven, MS) and granular fertilizer (12N-2.6P-4.9K) was pre-plant applied 

to the surface of the soil at 0.97 kg N 100 m
-2

.  Lantana were planted into the raised bed 1.2 m 

apart in a randomized complete block design with five replications.  Plants were mulched with 

pine bark <1.6 cm (Phillips Bark Processing Co., Brookhaven, MS) at a depth of 5 cm.  The 

planted bed was overhead irrigated with 0.4 cm water d
-1

. 

Data Collection 

Lantana growth was measured bi-weekly using a growth index [(height + widest width + 

perpendicular width) / 3].  In 2012, flowers showing color were quantified bi-weekly.  At 84 

days after planting (DAP), lantana shoots and roots were harvested and separated.  Roots were 

washed with a gentle stream of water to remove attached soilless substrate before being dried at 

60 °C for 72 hours and biomass recorded.  Lantana leaf and root samples were also collected.  

Samples with a mass of 0.5 g were milled to <0.5-mm, digested in concentrated nitric acid at 120 

°C for 4 hours.  Concentrated samples were diluted with 20 ml deionized water, filtered 

(Whatman 42) before being analyzed for elemental Al, B, Ca, Cu, Fe, Mg, Mn, Mo, P, K, Na, S, 

and Zn (using inductively coupled plasma optical emission spectroscopy (ICP-OES) (SPECTRO 
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Analytical Instruments, Kleve, Germany; Louisiana State University Soil Testing and Plant 

Analysis Laboratory, Baton Rouge, LA). 

Leachate from three containers per P treatment was collected weekly following the 

Virginia Tech extraction method (Wright, 1986).  Leachate samples were cooled to room 

temperature (21 ˚C) and leachate-pH and EC measured (Orion Star A215 solution analyzer, 

Thermo Scientific Inc., Beverly, MA).  In the laboratory, 15 ml of leachate was filtered through a 

0.45 µm disposable nylon filter (22 mm diameter, Whatman
TM

; GE Healthcare UK Limited, 

Buckinghamshire) in preparation for dissolved reactive phosphorus (DRP) analysis using the 

molybdate colorimetric method developed by Murphy and Riley (1962) and modified by Pote 

and Daniel (2000a).  Dissolved reactive P was quantified at 880 nm using a spectrophotometer 

(Spectronic 20, Bausch and Lomb, Rochester, NY).   

Once planted into a simulated landscape, lantana growth was measured weekly using a 

growth index [(height + widest width + perpendicular width) / 3] and flowers showing color 

were quantified for the first 28 d.  At the end of the 49-d experimental period, lantana shoots 

were harvested at the soil surface, dried at 60 °C for 96 hours and biomass recorded.  Prior to 

shoot harvest, leaf samples, composed of the most recently-matured leaves, were collected.  

Samples with a mass of 0.5 g were milled to <0.5-mm and digested in concentrated nitric acid at 

120 °C for 4 hours.  Concentrated samples were diluted with 20 ml deionized water, and filtered 

(Whatmann No. 42) before being analyzed for elemental Al, B, Ca, Cu, Fe, Mg, Mn, Mo, P, K, 

Na, S, and Zn using inductively coupled plasma optical emission spectroscopy (ICP-OES) 

(SPECTRO Analytical Instruments, Kleve, Germany; Louisiana State University Soil Testing 

and Plant Analysis Laboratory, Baton Rouge, LA). 
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Statistical Analysis 

Lantana were arranged in a completely randomized design with five replicates in the 

greenhouse, and as a randomized complete block design with five blocks in the landscape 

evaluation.  Growth index, flower counts, plant dry weight, leachate-pH and EC, and tissue 

nutrient concentrations were analyzed using the mixed procedure in SAS/STAT
®
 statistical 

software (SAS Institute Inc., 2011). Where appropriate, means for each measurement at each 

collection interval were separated using Tukey’s Honest Significant Difference Test at a 

significance level of 0.05.  Leachate-DRP data were fitted to appropriate models using regression 

techniques.  All data were analyzed using SAS/STAT
®
 statistical software (SAS Institute Inc., 

2011).   

Experiment II  

Setup 

In 2012, lantana were grown in soilless substrate and P-treatments were prepared 

following the procedures outline in Experiment I.  However, these containerized lantana plants 

were used to quantify effluent-total P (effluent-TP) during the 84-d experimental period.  

Effluent from growing containers was continuously collected in 18.9-L polypropylene buckets.  

In order to capture growing container effluent and prevent evaporative losses, a 15-cm diameter 

opening was fashioned in each lid to allow the 1.6 L containers to empty directly into the 

collection bucket.  A silicone caulk sealant was placed applied to seal the container-bucket 

junction.  Lantana were maintained under the same conditions and protocols previously 

described in Experiment I.   
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Data Collection 

Total leachate volume was quantified bi-weekly with 120-ml aliquots collected for total P 

(TP) analysis.  The procedure for TP analysis included digestion of 25 mL sub-samples in 1 ml 

and 5 ml concentrated sulfuric and nitric acids, respectively, at 145 ˚C  for 6 hrs on a digestion 

block (Bran + Luebbe BD-40) controlled with a BD-20/40 controller (Bran + Luebbe, Vallejo, 

California) (Pote and Daniel, 2000b).  Post digestion, TP was quantified at 880 nm using a 

spectrophotometer (Spectronic 20, Bausch and Lomb, Rochester, NY).   

At 84 DAP, lantana shoots and roots were harvested and separated.  Roots were washed 

with a gentle stream of water to remove attached soilless substrate.  Shoot and root tissues were 

dried at 60 °C for 72 hours and biomasses recorded.  Lantana shoot and root samples were also 

collected.  Samples with a mass of 0.5 g were milled to <0.5-mm, digested in concentrated nitric 

acid at 120 °C for 4 hours.  Concentrated samples were diluted with 20 ml with deionized water, 

and filtered before being quantified for elemental P concentration using inductively coupled 

plasma optical emission spectroscopy (ICP-OES) (SPECTRO Analytical Instruments, Kleve, 

Germany; Louisiana State University Soil Testing and Plant Analysis Laboratory, Baton Rouge, 

LA).  Effluent-P and plant accumulated P analyses were used to calculate a mass balance of P. 

Statistical Analysis 

Lantana were arranged in a completely randomized design with three replicates.  Growth 

index, flower count, plant dry weight, tissue P concentration, and effluent-TP were analyzed 

using the mixed procedure in SAS/STAT
®

 statistical software (SAS Institute Inc., 2011). Where 

appropriate, means for each measurement at each collection interval were separated using 

Tukey’s Honest Significant Difference Test at a significance level of 0.05.  All data were 

analyzed using SAS/STAT
®
 statistical software (SAS Institute Inc., 2011).   
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Experiment III  

Setup 

Poultry broiler litter was collected in 2011 from a poultry house located at Ben Hur 

Research Farm (Louisiana State University, Baton Rouge, LA).  The primary bedding material 

was composed of sawdust exposed to a single crop of chickens.  Poultry litter was air-dried on a 

tarpaulin on a greenhouse floor for seven days to reduce excess moisture. Samples weighing 300 

g were combusted in a muffle furnace at 500, 750, or 1000 C for two hours.  Ash was cooled and 

weight recorded.   

 Ash samples, with a mass of 20-g, including a commercially produced PLA (NAFmicro; 

North American Fertilzers, Inc., Benson, MN) were placed into 150 ml deionized water and 

shaken at 250 rpm for 96 hours (New Brunswick Scientific Co.).  Each ash treatment was 

replicated three times.   

Data Collection 

At 3, 6, 12, 24, 48, and 96 hours after initiation, shaking ceased and suspended 

particulates were allowed to settle prior to extraction of 15-ml aliquots using a graduated, 

disposable syringe.  No solid ash material was removed.  Aliquots were filtered through 0.45 µm 

disposable nylon filters (22 mm diameter, Whatman
TM

; GE Healthcare UK Limited, 

Buckinghamshire) and analyzed for P using inductively coupled plasma optical emission 

spectroscopy (ICP-OES) (SPECTRO Analytical Instruments, Kleve, Germany; Louisiana State 

University Soil Testing and Plant Analysis Laboratory, Baton Rouge, LA).        

Statistical Analysis 

Ash samples were arranged as a completely randomized design with three replicates. 

Solution P concentrations were regressed for each combustion temperature over time using linear 
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regression.  All data were analyzed using SAS/STAT
®
 statistical software (SAS Institute Inc., 

2011). 

Results  

Experiment I 

Plant Response in Container  

 Application of P, regardless of source, increased growth index of lantana at 42, 56, and 

70 days after potting (DAP) in 2011, and at all measurement dates in 2012 (Table 3.1).  When 

applied as a singular P source, PLA increased growth index compared to the control, 75, 157, 

and 178% at 42, 56, and 70 DAP in 2011, and an average of 73% throughout the experimental 

period in 2012.  In 2011, excluding the control, between 28 and 70 DAP, lantana growth 

exhibited a slight pattern of slower growth as PLA composition increased.  However, no effect of 

PLA compared to SP on lantana growth was observed in 2012. Similar to growth index, shoot 

biomass slightly decreased to 17.4, 14.6, 12.0, and 10.8 g as PLA percentage increased in 2011 

compared to 18.2 g for 100% SP-fertilized lantana (Table 3.2).  However, much smaller shoot 

biomass differences were detected in 2012.   Shoot:root biomass was increased by P application, 

regardless of source or combination of sources in both years, illustrating a larger disparity in 

shoot mass than root mass based on P application.   Flower counts did not differ between P 

fertilizer treatments with the exception of the first two measurement dates (Table 3.3).   

Tissue Nutrient Accumulation  

As the percentage of PLA increased, foliar P concentrations slightly decreased from 

0.37±0.03% for 100% SP-fertilized lantana to 0.33±0.01% for 100% PLA-fertilized lantana 

(Table 3.4), but all P sources increased foliar P concentrations compared to the control group.  

Lantanas fertilized 
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Table 3.1. Effect of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on growth index of 

Lantana camara 'New Gold' throughout an 84 day experimental period.  

Treatment
Z
 

Growth Index
Y
 

2011 

 
 14 DAP

X
 28 DAP 42 DAP 56 DAP 70 DAP 84 DAP Average 

Control 9.45a
W

 9.68c 9.87d 9.38c 8.97c - 9.47c 

100:0 SP:PLA 11.08a 14.63ab 25.63a 30.37a 32.80a - 22.90a 

75:25 SP:PLA 11.15a 15.85a 26.13a 30.42a 32.33a - 23.18a 

50:50 SP:PLA 11.20a 14.68ab 22.67ab 27.23ab 28.87ab - 20.93ab 

25:75 SP:PLA 10.63a 13.28ab 18.63bc 25.20ab 26.67ab - 18.88ab 

0:100 SP:PLA 10.52a 11.83bc 17.27c 24.10b 25.00b - 17.74b 

 

NS
V
 <0.0001 <0.0001 <0.0001 <0.0001 - <0.0001 

 
 

 

2012 

Control 7.53c 12.31b 15.11b 18.81c 22.36b 24.94b 16.84b 

100:0 SP:PLA 16.53a 27.44a 31.89a 36.92ab 44.83a 47.94a 34.26a 

75:25 SP:PLA 17.39a 26.64a 32.67a 42.53a 46.50a 48.06a 35.63a 

50:50 SP:PLA 16.69a 24.17a 28.89a 37.69ab 46.00a 49.14a 33.93a 

25:75 SP:PLA 12.47b 24.33a 27.36a 32.22ab 40.94a 43.50a 30.14a 

0:100 SP:PLA 13.14b 21.08a 26.00a 31.97b 39.72a 42.72a 29.11a 

  

  
<0.0001 0.0002 <0.0001 0.0001 <0.0001 <0.0001 0.0001 

Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Growth index was measured in cm as: [(Height + Widest Width + Perpendicular Width) / 3]. 

X
DAP = days after potting. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference 

Test (α = 0.05). 
V
P-value derived from analysis of variance; NS = not significant. 
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Table 3.2. Effect of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on biomass 

accumulation of Lantana camara 'New Gold' during an 84-d experimental period. 

Treatment
Z
 

2011 2012 

Shoot
Y
 Root Shoot:Root Shoot Root Shoot:Root 

Control 2.10d
X
 2.19d 0.99b 8.55c 5.61c 1.51b 

100:0 SP:PLA 18.20a 5.55b 3.06a 25.24a 8.26ab 2.99a 

75:25 SP:PLA 17.43a 6.88a 2.60a 27.41a 9.87a 2.82a 

50:50 SP:PLA 14.62b 5.81ab 2.45a 26.23a 9.36ab 2.82a 

25:75 SP:PLA 11.99c 4.69bc 2.65a 21.85b 7.67b 2.73a 

0:100 SP:PLA 10.81c 4.00c 2.71a 21.75b 7.93b 2.71a 

       

 

<0.0001
W

 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Shoot and root dried biomasses were measured in grams while Shoot:Root ratio is unitless. 

X
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test 

(α = 0.05). 
W

P-value derived from analysis of variance; NS = not significant. 
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Table 3.3. Effects of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on flower counts of 

Lantana camara 'New Gold' in over an 84-d experimental period in 2012. 

 
Flower Counts

Y
 

Treatment
Z
 

14 DAP 28 DAP 42 DAP 56 DAP 70 DAP 84 DAP Total 

Control 5.67c 8.67c 11.00b 9.33b 13.67b 6.67b 55.00b 

100:0 SP:PLA 33.00ab 65.33ab 110.67a 138.00a 114.00a 145.33a 606.33a 

75:25 SP:PLA 30.67ab 75.33a 114.33a 145.33a 123.67a 154.33a 643.67a 

50:50 SP:PLA 33.67a 72.67ab 115.33a 150.33a 131.33a 157.33a 660.67a 

25:75 SP:PLA 29.33ab 58.00ab 104.67a 153.00a 119.00a 160.33a 624.33a 

0:100 SP:PLA 22.67b 54.33b 104.33a 152.67a 108.00a 148.33a 590.33a 

        

 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.004 

 
Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Flower buds showing color at the time of data collection. 

X
Days after potting. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 

0.05). 
V
P-value derived from analysis of variance; NS = not significant. 
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Table 3.4. Effect of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on foliar and root 

nutrient concentrations of Lantana camara 'New Gold' in 2011. 

Treatment
Z
 

Foliar 

mg k 

 
Root 

Ca
X
 Mg Mn P K  Ca Mg Mn P K 

Control 0.83a 0.49a 226.46a 0.03d 3.24a  0.43a 0.30ab 151.04a 0.02d 0.98a 

100:0 SP:PLA 1.04a 0.42abc 225.53a 0.37ab 1.81d  0.25b 0.33a 144.08a 0.33a 0.37cd 

75:25 SP:PLA 0.97a 0.45ab 187.94b 0.39a 1.98cd  0.23b 0.33a 104.02ab 0.27ab 0.69b 

50:50 SP:PLA 0.94a 0.42abc 158.18bc 0.36abc 2.29bcd  0.24b 0.29ab 79.86bc 0.21c 0.85ab 

25:75 SP:PLA 0.85a 0.40bc 147.08cd 0.34bc 2.57abc  0.25b 0.27ab 68.66bc 0.23b 0.61bc 

0:100 SP:PLA 0.86a 0.35c 115.97d 0.33c 2.76ab  0.26b 0.26b 51.91c 0.21bc 0.36d 

            

 

NS 0.0066 <0.0001 <0.0001 0.0003  <0.0001 0.0113 0.0001 <0.0001 <0.0001 
Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Samples composed of recently matured leaves. 

X
Macronutrients reported as percentage of dry matter.  Mn reported in mg·kg

-1
 dry matter. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test 

(α = 0.05). 
V
P-value derived from analysis of variance; NS = not significant. 

U
Sub-sample of entire root system.
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with 100% PLA had foliar Mn concentrations reduced by 49%, from 225.53±8.37 to 

115.97±11.71 mg·kg
-1

 compared to 100% SP-fertilized lantana.  Fertilization with 100% PLA 

also led to a 52% increase in foliar K concentrations, from 1.81±0.12 to 2.76±0.18%, compared 

with 100% SP-fertilized plants. 

Similar trends were observed for root nutrient concentrations. As the percentage of PLA 

increased, root P concentrations decreased slightly from 0.33±0.01% for 100% SP-fertilized 

lantanas to 0.21±0.02% for 100% PLA-fertilized lantanas (Table 3.4).  Root Mn concentrations 

also decreased from 144.08±4.31 to 51.91±2.16 mg Mn kg
-1

 as the percentage of PLA increased 

from 0 to 100.     

Landscape Establishment 

 Phosphorus source during production affected landscape performance of lantana.  Growth 

index of lantanas fertilized with phosphorus, regardless of source during greenhouse production, 

increased growth index for the first three measurement intervals (Table 3.5).  Similarly, flower 

numbers were higher for lantanas fertilized with P than for those receiving no exogenous P 

during greenhouse production for the first two measurement dates (Table 3.6)  At the end of the 

experimental period, there were no differences in foliar concentrations of nutrients that had 

previously differed during greenhouse production (Table 3.7).  Lantanas shoot biomass did not 

differ due to production P-fertilization treatment at the end of the 49-d experimental period 

(Table 3.8).         

Dissolved Reactive Phosphorus  

 Application of 100% PLA decreased cumulative DRP losses 93 and 92% in 2011 and 

2012, respectively, compared to lantana fertilized with 100% SP during the 84-day production 

cycles (Figure 3.1).  Increasing the percentage of PLA as a component of applied fertilizer, by 
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Table 3.5. Effects of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources during greenhouse 

production on growth index of Lantana camara 'New Gold' grown in a simulated landscape for 49 days in 2012.  

Treatment
Z 

 
Growth Index

Y
 

0 DAP
X
 7 DAP 14 DAP 21 DAP 28 DAP 35 DAP 42 DAP 49 DAP 

Control 

 

38.93b
W

 39.07b 42.60b 48.93a 82.27b 88.93b 90.67b 93.80b 

100:0 SP:PLA 67.87a 59.93a 60.47a 61.40ab 99.67a 101.33a 104.20a 109.00a 

75:25 SP:PLA 69.87a 61.07a 61.13a 64.07a 90.40ab 94.80ab 97.13ab 101.27ab 

50:50 SP:PLA 65.13a 59.20a 59.20a 63.40a 95.40a 97.60ab 100.07ab 103.67ab 

25:75 SP:PLA 68.20a 58.93a 59.60a 63.20a 93.80ab 98.00ab 100.73ab 104.67ab 

0:100 SP:PLA 61.53a 61.07a 56.67a 60.67ab 93.87ab 97.60ab 100.20ab 103.67ab 

  
        

    <0.0001
V
 0.0003 0.0032 0.0215 0.0052 0.0434 0.0413 0.049 

Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Growth index was measured in cm as: [(Height + Widest Width + Perpendicular Width) / 3]. 

X
DAP = days after potting. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test 

(α = 0.05). 
V
P-value derived from analysis of variance; NS = not significant. 
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Table 3.6. Effects of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources during 

greenhouse production on flower number of Lantana camara 'New Gold' measured over the course of 28 days in a 

simulated landscape in 2012.  

Treatment
Z
 

Flower Count
Y
  

(number of flowers) 

0 DAP
X
 7 DAP 14 DAP 21 DAP 28 DAP 

Control 

 

5.0b
W

 24.4b 49.4a 71.4a 209.4a 

100:0 SP:PLA 51.4ab 110.8a 77.6a 57.4a 301.8a 

75:25 SP:PLA 61.4a 94.4a 72.6a 89.2a 292.2a 

50:50 SP:PLA 52.0ab 112.0a 77.6a 92.4a 303.4a 

25:75 SP:PLA 44.0ab 93.6a 75.0a 55.8a 270.2a 

0:100 SP:PLA 27.4ab 88.2a 67.6a 50.4a 290.4a 

  
     

    0.0172
V
 <0.0001 NS NS NS 

Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Flower buds showing color. 

X
DAP = days after potting. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference 

Test (α = 0.05). 
V
P-value derived from analysis of variance; NS = not significant. 



55 

 

Table 3.7. Effects of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources during greenhouse 

production on flower number of Lantana camara 'New Gold' measured over the course of 28 days in a simulated landscape 

in 2012.  

Treatment
Z
 

Foliar Nutrient
Y
 

Ca
X
 Mg Mn P K 

Control 

 

1.18a
W

 0.75a 108.67a 0.42a 2.44a 

100:0 SP:PLA 1.18a 0.72a 117.78a 0.50a 2.42a 

75:25 SP:PLA 1.17a 0.72a 112.12a 0.48a 2.30a 

50:50 SP:PLA 1.18a 0.72a 108.37a 0.49a 2.46a 

25:75 SP:PLA 1.19a 0.72a 99.63a 0.47a 2.22a 

0:100 SP:PLA 1.20a 0.74a 107.66a 0.50a 2.22a 

  
     

    NS
V
 NS NS NS NS 

Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Samples composed of recently matured leaves. 

X
Macronutrients reported as percentage of dry matter.  Mn reported in mg·kg

-1
 dry matter. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference 

Test (α = 0.05). 
V
P-value derived from analysis of variance; NS = not significant. 
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Table 3.8. Effects of superphosphate, poultry litter ash, and combinations thereof as 

phosphorus sources during greenhouse production on flower number of Lantana 

camara 'New Gold' grown in a simulated landscape for 49 days in 2012.  

Treatment
Z
  Shoot Dry Weight (g) 

Control 421.8a
Y
 

100:0 SP:PLA 571.0a 

75:25 SP:PLA 569.5a 

50:50 SP:PLA 571.3a 

25:75 SP:PLA 524.7a 

0:100 SP:PLA 521.8a 

 
 

   NS
X
 

Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = 

poultry litter ash. 
Y
Values in columns followed by different letters were significant according to Tukey’s 

Honest Significance Difference Test (α = 0.05). 

X
P-value derived from analysis of variance; NS = not significant. 

 

 

25% gradations (in the order of 75:25, 50:50, and 25:75 SP:PLA), reduced cumulative DRP 

losses 45, 71, and 87% and 44, 69, and 85%, in 2011 and 2012, respectively, compared to 100% 

SP-fertilized lantana.  All fertilizer treatments containing SP exhibited high initial DRP losses of 

498, 290, 96, and 40 mg DRP L
-1

 and 513, 296, 150, and 51 mg DRP L
-1

 at 0 DAP in 2011 and 

2012, respectively, with subsequent DRP losses declining over time.  On the other hand, PLA, as 

a single P source, resulted in generally static DRP losses, reaching maxima of 14 mg DRP L
-1

 in 

both years.  Reductions in initial DRP losses were disproportionate to the percentage of PLA 

applied and were greater than expected.    
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Figure 3.1. Effects of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on dissolved reactive 

phosphorus concentrations in leachate from Lantana camara. ‘New Gold’ over an 84 day experimental period. 
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Substrate leachate-pH and EC  

Phosphorus source, as single sources and in combination, affected substrate leachate-pH 

(Table 3.9).  Although leachate-pH generally remained within recommended range of 5.4 to 6.8 

for soilless substrates (Fonteno et al., 1996), as the percentage of PLA increased, substrate 

leachate-pH increased at each measurement date to maxima of 6.98 and 7.05 in 2011 and 2012, 

respectively.  All P sources and combination increased leachate-EC compared to controls for the 

first 21 to 28 DAP, but did not exceed recommended substrate leachate-EC range of 0.5 to 3.0 

mS cm
-1

 throughout the experiment (Table 3.10).  Overall, no pattern of leachate-EC and P 

source or combination was found. 

Experiment II  

Effluent-TP was increased by P application, regardless of source, at each measurement date 

(Table 3.11).  Similar to leachate-DRP, cumulative effluent-TP was reduced 69%, from 

348.52±15.86 to 106.51±7.89 mg P container
-1

 through PLA application (Table 3.12).  For the 

experiment, 77% of applied P, from SP alone, was collected in effluent, compared with only 

24% from PLA.  By 14 DAP, 76% of cumulative TP was collected from SP, compared to only 

25% from PLA (Table 3.11).  In fact 76, 92, 98, and 99% of cumulative TP was collected from 

the 100% SP treatment by 14, 28, 42, and 56 DAP, respectively.  On the other hand, similar to 

leachate-DRP, TP was released from PLA more slowly and over a more extended time period as 

25, 48, 72, 86, and 95% of cumulative effluent-TP was collected from PLA by 14, 28, 42, 56, 

and 70 DAP.  In addition, 91% of applied P, from SP, was accounted for, compared to only 40% 

from PLA (Table 3.12). 
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Table 3.9. Effect of  superphosphate, poultry litter ash, and combinations thereof as phosphorus sources  on substrate leachate-pH from 

Lantana camara 'New Gold' over an 84 day experimental period.   

TreatmentZ 

Substrate leachate-pH 

2011 

0 DAPY 7 DAP 14 DAP 21 DAP 28 DAP 35 DAP 42 DAP 49 DAP 56 DAP 63 DAP 70 DAP 77 DAP 84 DAP 

Control 4.97cX 6.41a 6.20b 6.47b 6.59ab 6.36bc 6.09b 6.22b 6.39bc 6.48cd 6.54bcd 6.54b 6.47bc 

100:0 SP:PLA 4.36d 5.02d 5.17e 5.08e 5.14d 5.27e 5.42c 5.55d 6.15c 6.20d 6.31d 6.34c 6.39bc 

75:25 SP:PLA 4.59d 5.66c 5.44d 5.71d 5.88c 5.92d 6.15b 5.93c 6.40bc 6.24d 6.40cd 6.35c 6.30c 

50:50 SP:PLA 5.02c 6.01b 5.76c 6.08c 6.25bc 6.16cd 6.21b 6.26b 6.57abc 6.55bc 6.59abc 6.53b 6.36bc 

25:75 SP:PLA 5.61b 6.23ab 6.14b 6.05c 6.64ab 6.56ab 6.51ab 6.59a 6.68ab 6.85ab 6.71ab 6.69a 6.54ab 

0:100 SP:PLA 6.10a 6.47a 6.56a 6.69a 6.92a 6.85a 6.77a 6.68a 6.98a 6.89a 6.78a 6.79a 6.74a 

 
             

 

<0.0001W <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0012 <0.0001 0.0002 <0.0001 0.0003 

 
             

 

2012 

Control 4.92c 6.27ab 6.36ab 6.39b 6.51b 6.32c 6.12c 6.11cd 6.22cd 6.23cd 6.18c 6.11d - 

100:0 SP:PLA 4.43d 4.69d 4.89e 4.96d 5.09e 5.18e 5.67d 5.82d 6.11d 6.18d 6.24c 6.21cd - 

75:25 SP:PLA 4.42d 5.50c 5.55d 5.40c 5.69d 5.51d 6.07c 6.04cd 6.26cd 6.20d 6.19c 6.20d - 

50:50 SP:PLA 5.01c 6.14b 5.91c 6.19b 6.11c 6.37bc 6.31b 6.33bc 6.42bc 6.34c 6.29c 6.37bc - 

25:75 SP:PLA 5.58b 6.26ab 6.15bc 6.12b 6.56b 6.59b 6.48b 6.51b 6.64ab 6.59b 6.51b 6.48b - 

0:100 SP:PLA 6.06a 6.54a 6.58a 6.79a 6.93a 7.05a 6.86a 6.85a 6.76a 6.82a 6.83a 6.70a - 

 
             

 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 - 

 ZTreatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

YDays after potting. 
XValues in column followed by different letters are significant according to Tukey's Studentized Range Test (α = 0.05).  P values are listed at 

the bottom of each column. 
WValues in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 0.05). 
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Table 3.10. Effect of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources  on substrate leachate-EC from 
Lantana camara 'New Gold' over an 84 day experimental period.   

 

Treatment
Z
 

Substrate leachate-EC 

2011 

0 DAP
Y
 7 DAP 14 DAP 21 DAP 28 DAP 35 DAP 42 DAP 49 DAP 56 DAP 63 DAP 70 DAP 77 DAP 84 DAP 

Control 1.03c
X
 1.18d 1.38c 1.26c 1.28a 1.66ab 1.51a 0.54a 0.46a 0.39a 0.35b 0.34b 0.38b 

100:0 SP:PLA 2.39b 2.40b 2.16ab 1.91ab 1.66a 1.73ab 1.36a 0.68a 0.55a 0.81a 0.77a 0.72a 0.64a 

75:25 SP:PLA 2.52b 1.96c 2.12b 1.76b 1.38a 1.58b 1.13a 0.69a 0.64a 0.88a 0.65a 0.75a 0.64a 

50:50 SP:PLA 2.49b 2.19bc 2.44a 2.06a 1.40a 1.82a 1.42a 0.63a 0.61a 0.81a 0.72a 0.71a 0.65a 

25:75 SP:PLA 2.72b 2.42bc 2.18ab 1.89ab 1.43a 1.81a 1.45a 0.67a 0.67a 0.73a 0.66a 0.64a 0.63a 

0:100 SP:PLA 3.33a 3.21a 2.45a 1.86b 1.63a 1.79a 1.33a 0.66a 0.69a 0.57a 0.67a 0.69a 0.63a 

 <0.0001
W

 <0.0001 <0.0001 <0.0001 NS 0.0091 NS NS NS 0.0487 0.0001 <0.0001 0.004 

 2012 

Control 1.04c 1.14d 1.30c 1.24b 1.18c 1.40c 1.08a 0.87a 0.62b 0.72b 0.60b 0.67a - 

100:0 SP:PLA 2.58b 2.79b 2.51ab 2.08a 2.02a 1.65bc 1.35a 1.07a 1.03a 0.98a 0.91a 0.73a - 

75:25 SP:PLA 2.34b 2.16c 2.05b 1.82a 1.95ab 1.59bc 1.31a 0.89a 1.19a 1.00a 0.94a 0.85a - 

50:50 SP:PLA 2.37b 2.52bc 2.66a 2.18a 1.84ab 1.65bc 1.32a 0.96a 1.07a 1.00a 1.00a 0.80a - 

25:75 SP:PLA 2.72b 2.82b 2.35ab 1.93a 1.71b 1.81ab 1.28a 0.81a 1.05a 0.92a 0.90a 0.78a - 

0:100 SP:PLA 3.22a 3.27a 2.49ab 2.07a 1.93ab 1.95a 1.16a 0.87a 1.18a 1.02a 0.93a 0.83a - 

 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0007 NS NS 0.0003 0.0001 0.0037 NS - 

 
Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Days after potting. 

X
Values in column followed by different letters are significant according to Tukey's Studentized Range Test (α = 0.05).  P values are 

listed at the bottom of each column. 
W

Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 0.05). 



61 

 

Table 3.11. Effects of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on total phosphorus in 

effluent from Lantana camara 'New Gold' grown in a closed system over an 84 day experimental period in 2012. 

Treatment
Z
 

Effluent-Total P (mg P L
-1

) 

14 DAP
Y

 28 DAP 42 DAP 56 DAP 70 DAP 84 DAP Total 

Control 0.70f
X
 0.35c 0.56c 0.84d 0.52d 0.84e 3.82e 

100:0 SP:PLA 265.26a 55.22a 19.59ab 3.85bc 3.49bc 1.12de 348.52a 

75:25 SP:PLA 186.55b 54.85a 11.47b 2.79c 2.14c 1.77bc 259.57b 

50:50 SP:PLA 117.43c 33.47b 12.19b 4.97b 3.44bc 1.47cd 172.99c 

25:75 SP:PLA 68.69d 25.14b 11.56b 4.16bc 4.56b 2.15b 116.27d 

0:100 SP:PLA 26.62e 25.02b 25.05a 15.38a 8.80a 5.64a 106.51d 

 
       

 
<0.0001

W
 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 
Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Days after potting. 

X
Values in column followed by different letters are significant according to Tukey's Studentized Range Test (α = 0.05).   

W
P-value derived from analysis of variance; NS = not significant. 
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Table 3.12. Effect of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on phosphorus fate 

and partitioning from Lantana camara ‘New Gold’ grown in a closed system for 84 days in 2012. 

 

 

Treatment
Y
 

Recovered Phosphorus
Z
 

Shoot-P (mg) Root-P (mg) Total Plant Tissue-P (mg) 
Effluent-P 

(mg) 

Total Recovered-

P (mg) 

Percent 

Recovered-P 

Control 4.70b
X
 1.97c 6.67c 3.82 10.49 - 

100:0 SP:PLA 54.59a 5.84b 60.42b 348.52a 408.94a 90.88a 

75:25 SP:PLA 63.18a 8.89a 72.07ab 259.57b 331.63b 73.70b 

50:50 SP:PLA 73.84a 9.10a 82.94a 172.99c 255.93c 56.87c 

25:75 SP:PLA 58.19a 7.72ab 65.91ab 116.27d 182.18d 40.48d 

0:100 SP:PLA 65.48a 8.84a 74.32ab 106.51d 180.82d 40.18d 

 
      

 <0.0001
W

 <0.0001 <0.0485 <0.0001 <0.0001 <0.0001 
Z
Recovered phosphorus expressed as amounts (mg); Total Recovered-P (mg) = (Effluent-P + Plant Tissue-P); Percent 

Recovered-P = [Total Recovered-P (mg) / Applied-P (450 mg·container
-1

)] *100. 
Y
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

X
Values in column followed by different letters are significant according to Tukey's Studentized Range Test (α = 0.05).   

W
P-value derived from analysis of variance; NS = not significant. 
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Application of 50:50 SP:PLA led to the highest amount of recovered P in plant tissues 

(Table 3.12).  Other P treatments were similar with the exception of 100:0 SP:PLA, which led to 

slightly lower tissue P accumulation.    

 Phosphorus application increased growth index throughout the experiment similar to 

growth in experiment I (Table 3.13).    Application of P, regardless of source, increased shoot 

biomass (Table 3.14) while flower numbers were increased with either P source throughout the 

experiment (Table 3.15). 

Experiment III  

 Combustion temperature affected water-mediated P dissolution from poultry litter (Figure 

3.2).  As combustion temperature was increased from 500 to 750 to1000 °C, cumulative P 

dissolution decreased from 1062 to 369 to 0.75 mg DRP L
-1

 for a 96 hour period.  Commercially 

produced PLA had P dissolution rates in deionized water similar to poultry litter combusted at 

1000 °C.  

Discussion  

Poultry litter ash has been reported as a suitable P source for greenhouse crop production 

that has liming capability to reduce micronutrient toxicities associated with acidic soils and 

soilless substrates (Wells et al., 2013).  However, the most positive attribute of PLA as a P-

fertilizer for greenhouse crop production may be reduction of potential P losses.  In the current 

experiment, lantana fertilized with 100% PLA exhibited reductions in DRP and TP losses of 

92% and 69%, respectively compared to lantana fertilized with 100% SP.  Reductions in initial 

DRP losses were disproportionate to the percentage of PLA applied and were greater than 

expected.  For example, replacement of the SP fraction of the P fertilizer with 25, 50, and 75%  
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Table 3.13. Effect of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on growth index of 

Lantana camara ' New Gold'
 
grown in a closed system over an 84 day experimental period in 2012. 

 

Treatment
Z
 

Growth Index
Y
 

14 DAP
X

 28 DAP 42 DAP 56 DAP 70 DAP 84 DAP Average 

Control 8.67c
W

 14.97b 19.14c 22.58b 28.33b 31.00b 20.78b 

100:0 SP:PLA 18.36a 31.19a 37.75ab 41.78a 48.350a 53.06a 38.44a 

75:25 SP:PLA 19.19a 30.22a 38.47a 47.03a 50.97a 53.44a 39.89a 

50:50 SP:PLA 17.89ab 29.75a 34.86ab 42.22a 48.58a 54.83a 38.02a 

25:75 SP:PLA 13.86b 25.47a 31.61ab 41.56a 48.97a 54.61a 36.01a 

0:100 SP:PLA 13.89b 24.00a 28.53b 43.92a 49.08a 53.61a 35.50a 

 
       

 <0.0001
V
 <0.0001 0.0001 0.0003 0.0007 0.0005 0.0006 

Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Growth index was measured in cm as: [(Height + Widest Width + Perpendicular Width) / 3]. 

X
Days after potting. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 

0.05). 
V
P-value derived from analysis of variance; NS = not significant.
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Table 3.14. Effects of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on biomass accumulation of 

Lantana camara ‘New Gold’ grown in a closed system over an 84 day experimental period in 2012. . 

Treatment
Z
 

Dry Weight
Y
  

Shoot Root Shoot:Root 

Control 9.68b
X
 6.77b 1.44b 

100:0 SP:PLA 32.56a 8.88ab 3.75a 

75:25 SP:PLA 32.59a 10.19a 3.22a 

50:50 SP:PLA 38.04a 10.21a 3.75a 

25:75 SP:PLA 27.74a 8.15ab 3.41a 

0:100 SP:PLA 32.14a 8.75ab 3.70a 

    

 <0.0001
W

 0.0282 0.0027 
Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Shoot and root dried biomasses were measured in grams while Shoot:Root ratio is unitless 

X
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 

0.05). 
W

P-value derived from analysis of variance; NS = not significant. 
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Table 3.15. Effect of superphosphate, poultry litter ash, and combinations thereof as phosphorus sources on flower counts of 

Lantana camara
 
'New Gold' grown in a closed system over an 84 day experimental period in 2012. 

 

Treatment
Z
 

Flower Count
Y
 

14 DAP
X
 28 DAP 42 DAP 56 DAP 70 DAP 84 DAP Total 

Control 4.00b
W

 10.66c 11.67c 6.00c 7.33d 10.67b 50.33d 

100:0 SP:PLA 41.00a 71.66ab 126.00b 103.67ab 113.33c 140.00a 595.67c 

75:25 SP:PLA 41.33a 89.68ab 160.67a 112.00ab 142.67ab 180.00a 726.33a 

50:50 SP:PLA 27.00a 90.33a 145.33ab 102.00ab 121.00bc 153.00a 638.67bc 

25:75 SP:PLA 30.67a 72.33ab 143.33ab 92.67b 115.00c 138.33a 592.33c 

0:100 SP:PLA 38.67a 67.67b 156.33a 120.00a 148.33a 172.33a 703.33ab 

 
       

 0.0001
V
 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 
Z
Treatments were: Control = no exogenous P applied; SP = superphosphate; PLA = poultry litter ash. 

Y
Flower buds showing color at the time of data collection. 

X
Days after potting. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 

0.05). 
V
P-value derived from analysis of variance; NS = not significant. 
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Figure 3.2. Combustion temperature affects dissolution kinetics of poultry litter phosphorus.  

 
Figure 3.16. Combustion temperature affects dissolution kinetics of poultry litter phosphorus
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PLA resulted in average initial DRP loss reductions of 45, 70, and 86%, respectively.  Use of 

readily available nutrients early in crop production should be questioned (Altland and Buamscha, 

2008) from an environmental, as well as, production standpoint.  To amplify on the work of 

Altland and Buamscha (2008), since plant roots are not fully developed to exploit the entire 

substrate, high concentrations of soluble nutrients early in the production cycle are most likely 

unnecessary. 

Even though all experimental units received the same volume of water daily, DRP losses 

decreased each subsequent week for all SP-containing fertilizer treatments but remained stable at 

13 mg DRP L
-1

 for 100% PLA the first five weeks after potting (WAP).  These differences in 

DRP losses suggest PLA-P solubility, a factor known to affect P leaching losses, is not 

dependent on water usage during crop production.  According to Raviv and Lieth (2008), 

solution P concentrations for most greenhouse crops should fall between 5 and 60 mg P L
-1

 while 

a lower and narrower range of 5 to 10 mg P L
-1

 is recommended for container-grown crops when 

employing CRFs (Yeager et al., 2007).  However, over-application of P is often the result of 

target N fertilization rates used to determine application of complete, water-soluble fertilizers 

commonly applied to greenhouse crops (Smith et al., 2004).  Monocalcium phosphate, which is 

water-soluble, is the primary P-containing compound within SP (Prochnow et al., 2003).  

Although total P content is somewhat similar for SP and PLA, on average 93% of SP-P is present 

in water-soluble forms (Gowariker, 2009) while a miniscule fraction of PLA-P is considered 

water soluble (Codling, 2006) likely due to formation of water-insoluble di- and tri-calcium 

phosphates due to high temperatures during combustion (Van Wazer, 1958).  Given the lack of 

P-sorption capacities of common substrate components (Khandan-Mirkohi and Schenk, 2008; 

Bilderback, 2001), P is lost from soilless substrates relatively quickly when applied in water-

soluble forms.  Yeager and Barrett (1984) reported up to 37% of P, applied as superphosphate 
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(SP), leached within one day post application with up to 76% P losses within 21 days after 

application.  In a subsequent experiment, Yeager and Barrett (1986) reported 80% of applied P 

leached from a substrate composed of pine bark, peat moss, and sand within 21 days.  Therefore, 

reductions in P losses through application of PLA during container production are a direct result 

of low water-solubility of PLA-P compared to SP-P. 

While low water-solubility of PLA-P is important to achieve P-loss reductions during 

crop production cycles, it may be seen as too limiting a characteristic for application of PLA for 

some container crops.  However, management of PLA processing conditions may manipulate 

PLA-P solubility. Codling (2006) reported solubility of P-containing compounds within poultry 

litter is altered through combustion. Faridullah et al. (2013) combusted chicken and duck litters 

at differing temperatures and used various extractants, including deionized water, to characterize 

P solubilities from resultant ashes.  Water solubility of P contained within chicken and duck 

litters was reduced through combustion, but did not differ based on temperatures ranging from 

200 to 900 °C.  Plant uptake of P was generally not affected by combustion temperature when 

ashes were applied to a sandy soil.  Differences between those results and the current 

experiment’s results may be explained by differences in methodology.  In the current 

experiment, a more dynamic system was employed to characterize dissolution kinetics of P from 

PLA as opposed to simple extraction techniques.  In either case, results of both experiments 

indicate that water solublility is a poor indicator of plant-available P, further pointing to the need 

to reduce applications of water-soluble P fertilizers to substrates with low P-sorption capacities.   

Although information on PLA-P speciation is not available in the literature, it is 

presumed that most PLA-P is present as calcium phosphates (Bachmann and Eichler-Lobermann, 

2010).  While monocalcium phosphate, the primary form of SP-P, has been reported to be water-

soluble (Prochnow et al., 2003), high temperatures during poultry litter combustion would likely 
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lead to the formation of water insoluble di- and tricalcium phosphates (Van Wazer, 1958).  It is 

likely that combustion temperature of poultry litter during commercial energy production far 

exceeds 1000 ˚C (Habetz and Echols, 2006).  Therefore, low water solubility of P contained 

within commercially available PLA, which was applied in greenhouse experiments, is affected 

by high combustion temperatures. Although, P dissolution from PLA combusted at 1000 ˚C or 

above was very low in water, plant P uptake was not reduced in Experiments I and II, as 

previously described.    Due to the energy-expensive nature of P uptake in plants (Mills and 

Jones, 1996), water solubility of P from applied sources may not be a prerequisite for adequate P 

uptake, especially from soilless substrates. 

Given the positive environmental attributes of PLA as a P fertilizer source in container 

crop production, it is important to evaluate the effect of PLA on plant growth and quality.  In 

these series of experiments growth differences in lantana were inconsistent between years most 

likely an artifact of environmental conditions.  In 2011, lantana fertilized with 100% PLA 

reduced growth indices 33, 21, and 24% at 42, 56, and 70 DAP, respectively, compared to those 

fertilized with 100% SP in 2011.  These reductions in growth were accompanied with reduced 

shoot and root biomasses of 41 and 28% for PLA-fertilized lantana compared 100% SP.  As the 

portion of SP increased, as a percentage of P applied, lantana growth and biomass slightly 

increased.  However, in 2012, the differences in growth indices, shoot biomass, and root biomass 

were not consistently evident between P fertilization treatments.  Shoot:root biomass, which 

commonly indicates P-deficiency in crops (Mengel and Kirkby, 1987), did not differ between P-

fertilization treatments in 2011 or 2012; nor did flowering of lantana differ between P-

fertilization treatments from 42 to 84 DAP.   

Differences in lantana response to P-fertilization treatments in 2011 and 2012 may be the 

result of environmental conditions.  During 2011 lantana was grown at an average temperature of 
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23.7 °C with shorter light durations compared to 28.4 °C and longer light periods in 2012.  

Temperature has been shown to affect vigor and rooting of containerized plants (Mathers et al., 

2007).  Delayed rooting would limit root system interaction with a low soluble P source such as 

PLA.  The interaction of roots with PLA may be an important mechanism for releasing P in plant 

available forms (Hinsinger, 2001).  In a multi-year experiment comparing P fertilizer source and 

placement on P availability to eucalyptus in an acidic Brazilian oxisol, Dias et al. (2000) reported 

eucalyptus root systems increased P dissolution rates of low soluble rock phosphates for 

increased plant uptake.  Rhizospheric chemical conditions differ significantly from the 

surrounding bulk soil or substrate environment due to processes involving ion release, gaseous 

flux, and exudation of organic ligands.  Release of these chemicals around the root alters pH to 

affect P solubility, thus availability (Hinsinger, 2001). 

Other factors such as the availability of Mn can be directly affected by substrate pH 

(Fonteno et al., 1996; Mills and Jones, 1996; Reed, 1996; Handreck and Black, 2010). Handreck 

and Black (2010) reported Mn availability in organic potting substrates, unlike mineral soils, is 

highest between a pH range of 4.0 and 5.0 and declines at pHs above 5.5.  Average substrate pH 

of lantanas fertilized with 100% PLA increased from 5.52 to 6.69 and 5.46 to 6.73 in 2011 and 

2012, respectively, compared with those fertilized with 100% SP.  Furthermore, 100% SP-

fertilized plants experienced larger fluctuations in substrate pH during the course of the 

experiment than did 100% PLA-fertilized plants in both years indicating incorporation of PLA 

buffers against large changes in substrate pH during container production cycles.  The increase in 

substrate pH, due to fertilization with PLA, lowered Mn availability and reduced potential for 

toxicity. Although plant Mn toxicities occur in organic soils and soilless substrates, toxicity 

levels have been shown to be affected by applications of Fe (Handreck, 1997), K (Alam et al., 

2005), Ca (Alam et al., 2006), or Mg (le Bot et al. 1990).  In this experiment, Iron, K, Ca, and 
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Mg were in adequate concentrations with each P source and most likely ameliorated possible Mn 

toxicities since symptoms were not observed for either P source.  In previous research, PLA has 

been reported to act as a pH adjusting amendment that would not require the same application 

rates of lime as more acid-forming P sources (Faridullah et al., 2009; Wells et al., 2013). 

Post-production lantana were established in a landscape to evaluate the effect of 

production P-fertility on landscape performance of lantana.  Over the seven week observation 

period, regardless of P source or combination, lantana supplied with adequate P nutrition during 

production resulted in fastest growth, highest biomass, and increased flowering.  However, 

control plants that received no P fertilization during greenhouse production were able to 

accumulate adequate P within the landscape to increase growth, but lagged compared to plants 

that had received P fertilization during greenhouse containerized production.  This indicates P 

management during production can affect lantana growth and establishment within the landscape 

simply through increasing initial plant size, thereby improving photosynthetic potential.   

Conclusions  

Mitigation of P losses from containerized plant production sites poses a challenge to 

responsible growers in the nursery and greenhouse industry.  Recycled P, in the form of low 

water-soluble biomass ash such as PLA, has potential to recycle P and limit P environmental 

impact.  Use of PLA in lantana production reduced DRP and TP losses of 92% and 69%, 

respectively compared to lantana fertilized with 100% SP.  Availability of PLA-P is influenced 

by root interaction and as a result may not be suitable for all crops and substrate combinations. 

However, PLA-P solubility can be manipulated during processing by altering combustion 

temperatures.  This would render PLA fertilizer products capable of meeting various crop P 

requirements and timings.   
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Application of PLA as a P fertilizer amendment limited lantana growth in some cases, but 

differences were small, especially in the second year of the experiment. Once installed in the 

landscape, however, no differences in lantana growth and establishment were observed based on 

greenhouse production P source.  Therefore, from an environmental standpoint, the benefit of 

great reductions in P losses from container production achieved through PLA application 

exceeded the slight decreases in plant vigor observed during crop production.  
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CHAPTER 4: POULTRY LITTER ASH PLACEMENT AFFECTS PHOSPHORUS 

DISSOLUTION IN A HORTICULTURAL SUBSTRATE 

Introduction  

 Poultry litter is a biomass source consisting mostly of bird manure and bedding materials 

(Robinson and Sharpley, 1996) and is a waste product from poultry production that is in great 

abundance in several areas of the United States.  It contains higher amounts of phosphorus (P) 

than ruminant manures since fowls lack the ability to extract organically-bound P from feeds 

(Sommers and Sutton, 1980).  Poultry litter has been used as a fertilizer source for many 

agricultural commodities but its usage has been limited due to associated transportation costs 

(Bernhart et al., 2010) and environmental concerns for surface and ground water impairment 

(Sharpley et al., 1994; Sharpley et al., 1998).  Repeated land applications of poultry litter based 

on desired nitrogen application rates has led to P accumulation in soils of poultry producing 

regions (Maguire and Mullins, 2008) and accelerated eutrophication of adjacent water bodies 

(White et al., 2010). 

Processes to concentrate nutrients in poultry litter in order to reduce transportation costs 

and alleviate environmental concerns have included compaction (Bernhart et al. 2010), 

pelletization (McMullen, 2005), composting (Brodie et al., 2000), P removal (Szogi et al. 2008), 

gasification (Priyadarsan et al. 2004), and combustion (Codling et al., 2002; Shiemenz and 

Eicler-Lobermann, 2010). However, combusting poultry litter may be the most efficient means 

to concentrate P and reduce environmental concerns associated with raw poultry litter 

application. The combustion process is more complicated for poultry litter than for traditional 

fuel sources due to inconsistency of litter composition, moisture content, and relatively high ash 

content (Jia and Anthony, 2011). Over time combustion has become feasible due to 

technological advances in incinerator configurations (Habetz and Echols, 2006).  For example, 
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Fibrominn is a power plant located in Benson, Minnesota that is currently producing 55 MW of 

energy per year through the co-combustion of poultry litter and wood; with poultry litter 

constituting more that 60% of the furnace feedstock.  The resultant ash is utilized as a nutrient-

rich fertilizer for agronomic crops.  The majority of the ash content from the furnace feedstock is 

generated from the poultry litter (IPEP, 2006; Jia and Anthony, 2011) since wood has a low ash 

content (Misra et al., 1993).   

Few experiments have investigated the potential of poultry litter ash (PLA) as a fertilizer 

amendment.  In a laboratory experiment, Codling (2006) reported that PLA contained high 

concentrations of P, but that most PLA-P was water-insoluble. However, PLA was a successful P 

source for wheat (Triticum aestivum L) in a previous experiment (Codling et al., 2002). 

Faridullah et al. (2009) reported chicken and duck litter ashes to be suitable nutrient sources for 

Japanese mustard spinach (Brassica rapa L.) grown on a sandy soil.  Bachmann and Eichler-

Lobermann, (2010) reported that PLA supplied adequate amounts of P to buckwheat 

(Fagopyrum escultentum Lifago), oil radish (Raphnus sativus oleiformis Adagio), phacelia 

(Phacelia tanacetifolia Lisette), and ryegrass (Lolium multiflorum westerwoldicum Gordo) while 

also enriching soil-P pools.  In recent experiments, PLA has been used to grow verbena 

(Verberna canadensis Britton ‘Homestead Purple’) and lantana (Lantana camara L. ‘New 

Gold’) while reducing leachate-DRP and effluent-TP losses 92 and 69%, respectively (Wells et 

al., 2013). 

While PLA application reduces P losses from a soilless substrate compared with a water-

soluble P source when incorporated within the substrate, no studies have characterized the effect 

PLA placement has on plant growth and P leaching losses.  In a related experiment, Warren et al. 

(1997), reported reductions of more than 80% of leachate-TP when controlled release fertilizers 

(CRFs) were surface applied to a soilless substrate, as opposed to incorporated within the 
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substrate. In 2001, Warren et al. (2001) concluded increases in P-leaching, due to increased P 

solubility, was a result of either more uniform dispersal of or increased moisture surrounding 

incorporated fertilizer prills compared with those that were surface-applied. Therefore, the 

objective of this experiment was to characterize effects PLA application rate and placement have 

on plant growth, quality, and leachate-P losses during greenhouse crop production.  

Materials and Methods  

Experiment setup  

Forty Lantana camara L. ‘New Gold’ and Verbena canadensis Britton ‘Homestead 

Purple’ plants growing in 105-cell trays were selected for uniform quality and size prior to the 

initiation of experiments on 6 September 2011 and 29 February 2012.  For each species, two 

plants were transplanted into 20 1.6-L containers for a total of 40 containers.  Substrate was 

composed of amended pine bark, screened to <0.38 cm, and peat moss (4:1; v:v).  Pre-plant 

incorporated amendments, common to all treatments, consisted of 0.89 kg m
-3 

of micronutrient 

package (Micromax, Scotts Company, Marysville, OH), 0.25 kg K m
-3

 (0N-0P-35.7K), and 1.5 

kg pulverized dolomitic limestone m
-3

.    Phosphorus treatment source was PLA (10% P) 

screened to <2.0 mm to remove large agglomerations and extraneous material, either pre-plant 

incorporated or post-plant topdressed uniformly on the substrate surface, at either 140 or 280 g P 

m
-3

.  Poultry litter ash used in this experiment was the product of commercial energy production 

via combustion of poultry litter and was obtained courtesy of North American Fertilizer, LLC.    

Containers were arranged in a 2 (P rate) x 2 (PLA placement) factorial in a completely 

randomized design with five single container replications.  Treatments were: 1) pre-plant 

incorporated PLA at 280 g P m
-3

 2) pre-plant incorporated PLA at 140 g P m
-3

 3) post-plant 

topdressed PLA at 280 g P m
-3

 4) post-plant topdressed PLA at 140 g P m
-3

.   All plants were 

maintained under greenhouse conditions at 24.1 °C and 28.2 °C in 2011 and 2012, respectively, 
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with no supplemental irradiance, for 42 and 70 d for verbena and lantana, respectively.   During 

the experiment, plants were supplied with 350 ml water d
-1

 including 120 ml aliquots container
-1

 

N at 250 mg NH4NO3 L
-1

. 

Plant response  

Growth was measured bi-weekly using a growth index [(height + widest width + 

perpendicular width) / 3].  Flowers were quantified on a bi-weekly basis in 2012 by counting 

flower buds showing color.  At the end of each experimental period, shoots and roots were 

harvested, separated with roots washed to remove substrate, dried at 60 °C for 72 hours, and 

biomass recorded.  Leaf samples of 0.5 g, composed of the most recently matured leaves, were 

milled to <0.5 mm (Thomas Wiley
®
 Mini-Mill; Thomas Scientific, Swedesboro, NJ) and 

digested in concentrated nitric acid at an average temperature of 120 °C.  Samples were then 

diluted to 20 ml with deionized water, vortexed, and filtered before being analyzed for elemental 

Al, B, Ca, Cu, Fe, Mg, Mn, Mo, P, K, Na, S, and Zn  using inductively coupled plasma optical 

emission spectroscopy (ICP-OES) (Spectro ArCos; SPECTRO Analytical Instruments, Kleve, 

Germany; Louisiana State University Soil Testing and Plant Analysis Laboratory, Baton Rouge, 

LA). 

Leachate collection and P analyses  

Leachate from three replicates per treatment of Lantana camara L. ‘New Gold’ was 

collected weekly following the Virginia Tech extraction method (Wright, 1986).  Leachate 

samples were cooled to room temperature (21 ºC) and leachate-pH and EC measured (Orion Star 

A215 solution analyzer, Thermo Scientific Inc., Beverly, MA).  In the laboratory, a 15 ml aliquot 

of leachate was filtered through a 0.45 µm disposable nylon filter (22 mm diameter, Whatman
TM

; 

GE Healthcare UK Limited, Buckinghamshire) in preparation for dissolved reactive phosphorus 

(DRP) analysis using the molybdate colorimetric method developed by Murphy and Riley (1962) 
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and modified by Pote and Daniel (2000).  Dissolved reactive P was quantified at 880 nm using a 

spectrophotometer (Spectronic 20, Bausch and Lomb, Rochester, NY).   

Statistical analysis  

Verbena and lantana were arranged in completely randomized designs with five 

replicates on raised benches in a greenhouse.  Growth index, flower count, plant dry weight, 

leachate-pH and EC, and tissue nutrient concentration were analyzed using the mixed procedure 

in SAS/STAT
®
 statistical software (SAS Institute Inc., 2011). Where appropriate, means for each 

measurement at each collection interval were separated using Tukey’s Honest Significant 

Difference Test at a significance level of 0.05.  All data were analyzed using SAS/STAT
®
 

statistical software (SAS Institute Inc., 2011).   

Results  

Plant response 

Verbena 

In general, growth index of verbena was not affected by P rate in 2011 (Table 4.1).   Over 

the 42-day experiment, average growth index increased 19% from 17.30 to 20.65 for verbena 

fertilized with incorporated PLA compared with PLA applied as a topdressing.  While individual 

factors did not generally affect growth index of verbena in 2012, an interesting interaction 

occurred in which increasing PLA application rate increased growth index of verbena fertilized 

with incorporated PLA from 29.53 to 41.03 at 28 days after potting (DAP) and from 35.33 to 

47.33 at 42 DAP, but did not affect growth of verbena fertilized with PLA as a topdressing.  In 

2011, shoot biomass was slightly increased, from 15.45 to 16.85 g when PLA application rate 

was decreased from 280 to 140 g P m
-3

 (Table 4.2).  An identical increase in biomass was 

observed when PLA was incorporated into the substrate, as opposed to applied as a topdressing.  
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Interestingly, root biomass followed the same trends almost exactly (Table 4.2).  An interaction 

was observed in which verbena root biomass increased 74% from 2.86 to 4.99 g when PLA 

application rate decreased from 280 to 140 g P m
-3

 and PLA was applied as a topdressing, but 

was unaffected by PLA application rate when PLA was incorporated into the substrate.  In 2012, 

verbena flowering was not affected by PLA application rate but was increased for the experiment 

26% from 42.17 to 53.33 when PLA was incorporated instead of topdressed (Table 4.3). 

Tissue nutrient accumulation 

 While effects of PLA application rate and placement were inconsistent for some 

nutrients, foliar Mn and P concentrations were affected by PLA placement in both years (Table 

4.4).  Foliar Mn decreased 65% from 208.09±14.01 to 73.25±13.92 mg Mn kg
-1

 in 2011 and 40% 

from 118.61±9.17 to 71.32±22.87 mg Mn kg
-1

 in 2012 when PLA was incorporated into the 

substrate instead of applied as a topdressing.  In contrast, foliar P concentrations increased from 

0.23±0.05 to 0.29±0.05% P in 2011 and 0.23±0.03 to 0.32±0.02% P in 2012.  A similar response 

was observed for verbena roots in 2011 in which root Mn concentration decreased 85% from 

209±82.46 to 30.44±11.25 mg Mn kg
-1

 and root P concentration increased 67% from 0.15±0.05 

to 0.25±0.07% when PLA was incorporated into the substrate instead of applied as a topdressing 

(Table 4.5).   

Lantana 

 Increasing PLA application rate from 140 to 280 g P m
-3

 reduced lantana growth index  

from 15.7 to 11.95 at 28 DAP and from 17.43 to 13.35 at 42 DAP in 2011, but generally did not 

elicit the same response in 2012 (Table 4.6).  Although PLA placement did not affect growth 

index of lantana in 2011, lantana fertilized with PLA incorporated into the substrate had higher 
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Table 4.1. Effects of poultry litter ash rate and placement on growth index of Verbena 

canadensis ‘Homestead Purple’ over a 42 day experimental period. 

    
Growth Index 2011 

Rate 
 

Placement 

 (g m
-3

)     

 

14 DAP 28 DAP 42 DAP Average 

140 
 

- 

 

14.78a 16.80a 27.70a 19.76a 

280 
 

- 

 

13.13b 14.84a 26.58a 18.18a 

   
 

0.0483 NS NS NS 

    
    

- 
 

Topdressed 

 

12.41b 13.93b 25.55a 17.30b 

- 
 

Incorporated 

 

15.50a 17.71a 28.73a 20.65a 

   
 

0.0011 0.0013 NS 0.019 

    
    

140 
 

Topdressed 

 

13.65ab 15.63ab 27.10a 18.79a 

280 
 

Topdressed 

 

11.17b 12.23b 24.00a 15.80a 

140 
 

Incorporated 

 

15.92a 17.97a 28.30a 20.73a 

280 
 

Incorporated 

 

15.08a 17.45a 29.17a 20.57a 

      

 

NS NS NS NS 

    
Growth Index 2012 

Rate 
 

Placement 

 (g m
-3

)     

 

14 DAP 28 DAP 42 DAP Average 

140 
 

- 

 

17.93a 33.00a 38.35b 29.76a 

280 
 

- 

 

18.46a 35.94a 44.76a 33.06a 

   
 

NS NS 0.0012 NS 

    
    

- 
 

Topdressed 

 

14.15b 33.67a 41.78a 29.87a 

- 
 

Incorporated 

 

22.24a 35.28a 41.33a 32.95a 

   
 

0.0007 NS NS NS 

    
    

140 
 

Topdressed 

 

14.61bc 36.47ab 41.36b 30.81a 

280 
 

Topdressed 

 

13.69c 30.86b 42.19ab 28.92a 

140 
 

Incorporated 

 

21.25ab 29.53b 35.33c 28.70a 

280 
 

Incorporated 

 

23.22a 41.03a 47.33a 37.19a 

 

    

 

NS 0.0006 0.0027 NS 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated 

= mixed thoroughly into substrate prior to potting. 
Y
Growth index was measured in cm as: [(Height + widest width + perpendicular 

width) / 3]. 
X
Days after potting. 

W
Values in columns followed by different letters were significant according to 

Tukey’s Honest Significance Difference Test (α = 0.05). 
V
P-value derived from analysis of variance; NS = not significant. 
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Table 4.2. Effects of poultry litter ash rate and placement on biomass accumulation of 

Verbena canadensis 'Homestead Purple' over a 42 day experimental period. 

    
 

Rate 
 

Placement
Z
 

 
2011 

(g m
-3

) 
   

Shoot
Y
 Root Shoot:Root 

140 
 

- 
 

16.85a
X
 5.27a 3.23b 

280 
 

- 
 

15.45b 3.91b 4.14a 

    
0.005

W
 0.0002 <0.0001 

       
- 

 
Topdressed 

 
15.45b 3.92b 4.11a 

- 
 

Incorporated 
 

16.85a 5.26a 3.25b 

    
0.005 0.0002 <0.0001 

       
140 

 
Topdressed 

 
16.30ab 4.99a 3.28b 

280 
 

Topdressed 
 

14.60b 2.86b 4.95a 

140 
 

Incorporated 
 

17.40a 5.56a 3.18b 

280 
 

Incorporated 
 

16.30ab 4.96a 3.32b 

    
NS 0.0067 <0.0001 

       
Rate 

 
Placement 

 
2012 

(g m
-3

) 
   

Shoot Root Shoot:Root 

140 
 

- 
 

24.10a 10.43a 2.32b 

280 
 

- 
 

25.17a 8.92b 2.82a 

    
NS 0.0122 0.0088 

       
- 

 
Topdressed 

 
23.53b 9.38a 2.54a 

- 
 

Incorporated 
 

25.74a 9.98a 2.60a 

    
0.0022 NS NS 

       
140 

 
Topdressed 

 
24.02b 10.33a 2.34a 

280 
 

Topdressed 
 

23.04b 8.43a 2.74a 

140 
 

Incorporated 
 

24.18b 10.53a 2.30a 

280 
 

Incorporated 
 

27.30a 9.42a 2.90a 

    
0.0038 NS NS 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated = 

mixed thoroughly into substrate prior to potting. 
Y
Shoot and root dried biomasses were measured in grams while Shoot:Root ratio is unitless. 

X
Values in columns followed by different letters were significant according to Tukey’s 

Honest Significance Difference Test (α = 0.05). 
W

P-value derived from analysis of variance; NS = not significant. 
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Table 4.3. Effects of poultry litter ash rate and placement on flower counts of Verbena 

canadensis 'Homestead Purple' over a 42 day experimental period in 2012.   

    
Flower Counts

Y
  

Rate 
 

Placement
Z
 

 (g m
-3

)       14 DAP
X
 28 DAP 42 DAP Total 

140 
 

- 

 

9.17a
W

 16.33a 20.83a 46.33a 

280 
 

- 

 

8.17a 17.33a 23.67a 49.17a 

   
 

NS
V
 NS NS NS 

    
    

- 
 

Topdressed 

 

7.50b 15.33a 19.33b 42.17b 

- 
 

Incorporated 

 

9.83a 18.33a 25.17a 53.33a 

   
 

0.0068 NS 0.0212 0.0026 

    
    

140 
 

Topdressed 

 

9.33a 14.67a 19.33a 43.33b 

280 
 

Topdressed 

 

5.67b 16.00a 19.33a 41.00b 

140 
 

Incorporated 

 

9.00a 18.00a 22.33a 49.33ab 

280 
 

Incorporated 

 

10.67a 18.67a 28.00a 57.33a 

        0.0033 NS NS NS 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated = 

mixed thoroughly into substrate prior to potting. 
Y
Flower buds showing color. 

X
Days after potting. 

W
Values in columns followed by different letters were significant according to Tukey’s 

Honest Significance Difference Test (α = 0.05). 
V
P-value derived from analysis of variance; NS = not significant. 

 

growth indices than those fertilized with PLA applied as a topdressing at every measurement 

date in 2012. Another trend was observed in 2012 in which lantana growth index was decreased 

at the higher PLA application rate when PLA was applied as a topdressing instead of 

incorporated into the substrate. 

Shoot biomass of lantana was not affected by P rate in 2011 or 2012 (Table 4.7).  

However, shoot biomass of lantana fertilized with PLA incorporated into the substrate increased 

32% from 8.18 to 10.78 g in 2011 and 16% from 23.50 to 27.23 g in 2012 compared those  
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Table 4.4. Effects of poultry litter ash rate and placement on foliar nutrient 

concentrations of Verbena canadensis 'Homestead Purple' grown in an experiment 

lasting 42 days. 

    
 2011   

Rate 
 

Placement
Z
 

 (g m
-3

)       Ca
Y
 Mg Mn P  K 

140 
 

- 

 

1.41a
X
 0.68a 149.27a 0.23b 1.97b 

280 
 

- 

 

1.12b 0.63b 132.07b 0.29a 2.66a 

   
 

0.0084
W

 0.0103 0.0285 0.0192 0.0025 

    
     

- 
 

Topdressed 

 

1.10b 0.66a 208.09a 0.23b 2.71a 

- 
 

Incorporated 

 

1.42a 0.65a 73.25b 0.29a 1.92b 

   
 

0.0054 NS <0.0001 0.0093 0.0012 

    
     

140 
 

Topdressed 

 

1.18b 0.66ab 214.38a 0.20b 2.35ab 

280 
 

Topdressed 

 

1.04b 0.64ab 201.80a 0.25ab 3.07a 

140 
 

Incorporated 

 

1.63a 0.71a 84.17b 0.26ab 1.59c 

280 
 

Incorporated   1.20b 0.62b 62.34b 0.32a 2.25bc 

    

NS NS NS NS NS 

    
2012 

            Ca Mg Mn P  K 

140 
 

- 

 

0.74a 0.45a 102.58a 0.27a 1.67a 

280 
 

- 

 

0.67a 0.45a 87.34a 0.29a 1.85a 

   
 

NS NS NS NS NS 

    
     

- 
 

Topdressed 

 

0.83a 0.41a 118.61a 0.23b 1.76a 

- 
 

Incorporated 

 

0.58a 0.49a 71.32b 0.32a 1.76a 

   
 

NS NS 0.0003 0.0001 NS 

    
     

140 
 

Topdressed 

 

0.67a 0.39a 117.57a 0.21b 1.50b 

280 
 

Topdressed 

 

0.50a 0.43a 119.65a 0.25b 2.03a 

140 
 

Incorporated 

 

0.82a 0.52a 87.59ab 0.32a 1.84ab 

280 
 

Incorporated 

 

0.84a 0.46a 55.04b 0.33a 1.67ab 

        NS NS NS NS 0.0022 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated 

= mixed thoroughly into substrate prior to potting. 
Y
Macronutrients reported as percentage of dry matter.  Mn reported in mg·kg

-1
 dry 

matter. 
X
Values in columns followed by different letters were significant according to Tukey’s 

Honest Significance Difference Test (α = 0.05). 
W

P-value derived from analysis of variance; NS = not significant. 
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Table 4.5. Effects of poultry litter ash rate and placement on root nutrient 

concentrations of Verbena canadensis 'Homestead Purple' grown in an experiment 

lasting 42 days in 2011. 

Rate 
 

Placement
Z
 

 
     

(g m
-3

)       Ca
Y
 Mg Mn P  K 

140 
 

- 

 

0.25a
X
 0.20a 103.43a 0.16b 1.42b 

280 
 

- 

 

0.24a 0.19a 136.01a 0.24a 2.01a 

   
 

NS
W

 NS NS 0.0197 0.0117 

    
     

- 
 

Topdressed 

 

0.26a 0.20a 209.00a 0.15b 1.99a 

- 
 

Incorporated 

 

0.23a 0.19a 30.44b 0.25a 1.44b 

   
 

NS NS 0.0007 0.0047 0.0161 

    
     

140 
 

Topdressed 

 

0.26a 0.20a 172.91ab 0.12b 1.74ab 

280 
 

Topdressed 

 

0.27a 0.20a 245.07a 0.18ab 2.25a 

140 
 

Incorporated 

 

0.24a 0.20a 33.94b 0.2ab 1.11b 

280 
 

Incorporated 

 

0.22a 0.18a 26.95b 0.29a 1.78ab 

        NS NS NS NS NS 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated 

= mixed thoroughly into substrate prior to potting. 
Y
Macronutrients reported as percentage of dry matter.  Mn reported in mg·kg

-1
 dry 

matter. 
X
Values in columns followed by different letters were significant according to Tukey’s 

Honest Significance Difference Test (α = 0.05). 
W

P-value derived from analysis of variance; NS = not significant. 

 

 

fertilized with PLA applied as a topdressing.  Root biomass of lantana decreased from 4.48 to 

3.17 g in 2011 when PLA application rate decreased from 140 to 280 g P m
-3 

in 2011, but no 

differences in root biomass were evident between PLA application rates in 2012 (Table 4.7).  

However, in 2012 lantana root biomass increased slightly from 8.78 to 9.95 g when PLA was 

topdressed as opposed to incorporated.  No consistent trend was observed for shoot:root biomass 

between years (Table 4.7). 
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Table 4.6. Effects of poultry litter ash rate and placement on growth index of Lantana 

camara ‘New Gold’ over a 70 day experimental period. 

    
Growth Index

Y
 2011 

Rate 
 

Placement
Z
 

 (g m
-3

)     

 

14 DAP
X
 28 DAP 42 DAP 56 DAP 70 DAP Average 

140 
 

- 

 

13.65a
W

 15.70a 17.43a 32.10a 36.00a 22.98a 

280 
 

- 

 

10.50a 11.95b 13.35b 26.70a 29.53a 18.41a 

   
 

NS
V
 0.045 0.039 NS NS NS 

    
      

- 
 

Topdressed 

 

10.93a 12.50a 14.0a 26.93a 30.63a 19.00a 

- 
 

Incorporated 

 

13.22a 15.15a 16.78a 31.87a 34.90a 22.38a 

   
 

NS NS NS NS NS NS 

    
      

140 
 

Topdressed 

 

12.93a 15.47a 17.27a 31.07a 34.47a 22.24a 

280 
 

Topdressed 

 

8.93a 9.53a 10.73a 22.80a 26.80a 15.76a 

140 
 

Incorporated 

 

14.37a 15.93a 17.60a 33.13a 37.53a 23.71a 

280 
 

Incorporated 

 

12.07a 14.37a 15.97a 30.60a 32.27a 21.05a 

      

 

NS NS NS NS NS NS 

    
Growth Index 2012 

Rate 
 

Placement 

 (g m
-3

)     

 

14 DAP 28 DAP 42 DAP 56 DAP 70 DAP Average 

140 
 

- 

 

10.82b 19.5b 31.53a 45.39a 50.53a 31.55a 

280 
 

- 

 

12.35a 21.85a 30.61a 45.25a 49.89a 31.99a 

   
 

NS 0.0295 NS NS NS NS 

    
 

 
   

 - 
 

Topdressed 

 

9.79b 18.74b 29.52b 42.68b 44.58b 29.06a 

- 
 

Incorporated 

 

13.38a 22.61a 32.62a 47.96a 55.83a 34.48a 

   
 

0.0005 0.0024 0.0333 0.03 0.0228 NS 

    
      

140 
 

Topdressed 

 

9.78b 19.86b 32.9a 44.92ab 47.50a 30.87a 

280 
 

Topdressed 

 

9.81b 17.61b 26.75b 40.44b 41.67a 27.26a 

140 
 

Incorporated 

 

11.86b 19.14b 30.78ab 45.86ab 53.56a 32.24a 

280 
 

Incorporated 

 

14.89a 26.08a 34.46a 50.06a 58.11a 36.72a 

      

 

0.0444 0.0008 0.0051 NS NS NS 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated = 

mixed thoroughly into substrate prior to potting. 
Y
Growth index was measured in cm as: [(Height + widest width + perpendicular width) / 

3]. 
X
Days after potting. 

W
Values in columns followed by different letters were significant according to Tukey’s 

Honest Significance Difference Test (α = 0.05). 
V
P-value derived from analysis of variance; NS = not significant. 
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Flowering of lantana was typically not affected by P rate in 2012 (Table 4.8)  However, 

lantana fertilized with PLA incorporated into the substrate had increased flower numbers at each 

measurement date starting at 14 DAP compared with those fertilized with PLA applied as a 

topdressing.  Flower numbers of lantana were increased for the 70-d experimental period from 

378 to 440 when PLA was incorporated into the substrate instead of applied as a topdressing.   

Tissue nutrient accumulation 

 Similar to the results concerning verbena nutrient uptake, lantana foliar Mn and P 

concentrations were affected by PLA rate and placement (Table 4.9).  As PLA application rate 

increased from 140 to 280 g P m
-3 

lantana foliar Mn concentrations decreased from 

209.62±54.02 to 155.84±50.83 mg kg
-1

 in 2011 and from 188.3±56.82 to 137.25±39.24 mg kg
-1

 

in 2012.  Similarly, and more markedly, foliar Mn decreased from 230.49±31.12 to 34.97±28.16 

mg kg
-1

 in 2011 and from 205.1±39.13 to 120.45±22.4 mg kg
-1

in 2012 when lantana were 

fertilized with substrate-incorporated PLA instead of PLA applied as topdressing.  Similar, yet 

opposite trends were observed for lantana foliar P concentrations.  Lantana foliar P 

concentrations increased from 0.25±0.05 to 0.28±0.05% P in 2011 and from 0.26±0.05 to 

0.32±0.08% P in 2012 as PLA application rate increased from 140 to 280 g P m
-3

.  Application 

method of PLA had a similar, but more marked effect on lantana foliar P concentrations.  

Incorporation of PLA into the substrate increased lantana foliar P concentrations from 0.22±0.02 

to 0.32±0.02% P in 2011 and from 0.24±0.03 to 0.34±0.06% P in 2012 compared with PLA 

applied as a topdressing.  Lantana root Mn and P concentrations followed similar trends 

compared to foliar results with root Mn decreasing 50% from 89.45±11.16 to 45.16±21.42 mg 

Mn kg
-1 

and root P increasing from 0.10±0.01 to 0.15±0.01% P in 2011 when PLA was 

incorporated into the substrate instead of applied as a topdressing (Table 4.10).  
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Table 4.7. Effects of poultry litter ash rate and placement on biomass accumulation of 

Lantana camara ‘New Gold’ grown in an experiment lasting 70 days. 

    
 

Rate 
 

Placement
Z
 

 
2011 

(g m
-3

) 
   

Shoot
Y
 Root Shoot:Root 

140 
 

- 
 

10.19a
X
 4.48a 3.21a 

280 
 

- 
 

8.76a 3.17b 2.31b 

    
NS

W
 0.0194 0.0092 

       
- 

 
Topdressed 

 
8.18b 3.40a 2.86a 

- 
 

Incorporated 
 

10.78a 4.24a 2.66a 

    
0.0239 NS NS 

       
140 

 
Topdressed 

 
9.36a 4.00ab 2.45a 

280 
 

Topdressed 
 

6.99a 2.79b 3.27a 

140 
 

Incorporated 
 

11.03a 4.95a 2.17a 

280 
 

Incorporated 
 

110.53a 3.54a 3.16a 

    
NS NS NS 

       
Rate 

 
Placement 

 
2012 

(g m
-3

) 
   

Shoot Root Shoot:Root 

140 
 

- 
 

25.99a 9.62a 2.59a 

280 
 

- 
 

24.79a 9.11a 2.62a 

    
NS NS NS 

       
- 

 
Topdressed 

 
23.50b 9.95a 2.31b 

- 
 

Incorporated 
 

27.23aa 8.78b 2.90a 

    
0.0357 0.0368 0.0004 

       
140 

 
Topdressed 

 
25.01a 10.21a 2.40bc 

280 
 

Topdressed 
 

21.90a 9.70a 2.22c 

140 
 

Incorporated 
 

26.88a 9.02a 2.78ab 

280 
 

Incorporated 
 

27.57a 8.53a 3.02a 

    
NS NS NS 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated = 

mixed thoroughly into substrate prior to potting. 
Y
Shoot and root dried biomasses were measured in grams while Shoot:Root ratio is unitless. 

X
Values in columns followed by different letters were significant according to Tukey’s 

Honest Significance Difference Test (α = 0.05). 
W

P-value derived from analysis of variance; NS = not significant. 



92 

 

 

Table 4.8. Effects of poultry litter ash rate and placement on flower counts of Lantana camara 'New 

Gold' over a 70 day experimental period in 2012.   

    Flower Counts
Y
 

Rate 
 

Placement
Z
 

 (g m
-3

)       14 DAP
X
 28 DAP 42 DAP 56 DAP 70 DAP Total 

140 
 

- 

 

23.83a
W

 46.83a 131.33a 97.67a 106.83b 406.50a 

280 
 

- 

 

26.00a 42.67a 131.33a 95.50a 115.67a 411.17a 

   
 

NS
V
 NS NS NS 0.0237 NS 

    
      

- 
 

Topdressed 

 

23.83a 36.33b 122.17b 89.83b 105.50b 377.67b 

- 
 

Incorporated 

 

26.00a 53.17a 140.50a 103.33a 117.00a 440.00a 

   
 

NS <0.0001 0.002 0.0081 0.0067 0.0004 

    
      

140 
 

Topdressed 

 

24.00a 42.67b 123.00ab 96.67ab 108.00b 394.33bc 

280 
 

Topdressed 

 

23.67a 30.00c 121.33b 83.00b 103.00b 361.00c 

140 
 

Incorporated 

 

23.67a 51.00ab 139.67ab 98.67ab 105.67b 418.67ab 

280 
 

Incorporated 

 

28.33a 55.33a 141.33a 108.00a 128.33a 461.33a 

        NS 0.0064 NS 0.0176 0.0024 0.0069 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated = mixed 

thoroughly into substrate prior to potting. 
Y
Flower buds showing color. 

X
Days after potting. 

W
Values in columns followed by different letters were significant according to Tukey’s Honest 

Significance Difference Test (α = 0.05). 
V
P-value derived from analysis of variance; NS = not significant. 

 

Substrate Leachate-pH and EC  

 Substrate leachate-pH measured from lantana was typically increased by increasing PLA 

application rate from 140 to 280 g P m-3 (Table 4.11).  Similarly, incorporation of PLA into the 

substrate increased substrate leachate-pH compared with PLA applied as a topdressing.  

Leachate-EC was higher 7 to 42 DAP in 2011 and at every measurement date in 2012 for lantana 

fertilized at 280 g P m
-3 

than for those fertilized with 140 g P m
-3

 (Table 4.12).  Applying PLA as 

a topdressing increased leachate-EC of lantana compared with incorporation of PLA into the 

substrate. 
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Table 4.9. Effects of poultry litter ash rate and placement on foliar nutrient 

concentrations of Lantana camara 'New Gold' grown in an experiment lasting 70 days. 

    
2011  

Rate 
 

Placement
Z
 

 (g m
-3

)       Ca
Y
 Mg Mn P  K 

140 
 

- 

 

0.74a
X
 0.41a 209.62a 0.25b 2.23a 

280 
 

- 

 

0.78a 0.39a 155.84b 0.28a 2.29a 

   
 

NS
W

 NS <0.0001 0.0006 NS 

    
     

- 
 

Topdressed 

 

0.65b 0.41a 230.49a 0.22b 2.31a 

- 
 

Incorporated 

 

0.86a 0.39a 134.97b 0.32a 2.21a 

   
 

0.0139 NS <0.0001 <0.0001 NS 

    
     

140 
 

Topdressed 

 

0.67a 0.42a 258.79a 0.20d 2.34a 

280 
 

Topdressed 

 

0.63a 0.41a 202.20b 0.23c 2.28a 

140 
 

Incorporated 

 

0.80a 0.41a 160.45c 0.30b 2.12a 

280 
 

Incorporated   0.92a 0.37a 109.48d 0.33a 2.31a 

    

NS NS NS NS NS 

    
2012 

            Ca Mg Mn P  K 

140 
 

- 

 

0.69a 0.30b 188.30a 0.26b 1.40a 

280 
 

- 

 

0.71a 0.33a 137.25b 0.32a 1.44a 

   
 

NS 0.0158 0.0003 0.0035 NS 

    
     

- 
 

Topdressed 

 

0.62b 0.27b 205.10a 0.24b 1.47a 

- 
 

Incorporated 

 

0.78a 0.37a 120.45b 0.34a 1.37b 

   
 

<0.0001 <0.0001 <0.0001 0.0002 NS 

    
     

140 
 

Topdressed 

 

0.66b 0.27c 237.90a 0.22b 1.48a 

280 
 

Topdressed 

 

0.57c 0.27c 172.29b 0.26b 1.46a 

140 
 

Incorporated 

 

0.71b 0.33b 138.70bc 0.29b 1.32a 

280 
 

Incorporated 

 

0.85a 0.40a 102.20c 0.39a 1.41a 

        <0.0001 0.0188 NS NS NS 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated = 

mixed thoroughly into substrate prior to potting. 
Y
Macronutrients reported as percentage of dry matter.  Mn reported in mg·kg

-1
 dry 

matter. 
X
Values in columns followed by different letters were significant according to Tukey’s 

Honest Significance Difference Test (α = 0.05). 
W

P-value derived from analysis of variance; NS = not significant. 
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Leachate-Dissolved Reactive Phosphorus  

 In general, as P rate increased from 140 to 280 g P m
-3 

DRP leachate losses increased 

30% from 5.51±3.16 to 7.14±3.94 mg P L
-1

 in 2011 and 18% from 5.65±3.46 to 6.69±3.84 mg P 

L
-1 

in 2012 (Tables 4.13 and 4.14).  Leachate-DRP losses were not proportionate to PLA 

application rate increases.  Interestingly, PLA placement method appeared to have a more 

pronounced effect on leachate-DRP in both years compared to P application rate.  On average, 

leachate-DRP was increased 127% from 3.87±1.11 to 8.77±3.66 mg P L
-1

 in 2011and 141% 

from 3.62±0.98 to 8.72±3.59 mg P L
-1

 in 2012 for PLA incorporated within the substrate than 

applied as a topdressing.   

Discussion  

Placement of PLA affected P availablity in the substrate.  Incorporation of PLA within 

the substrate increased average leachate-DRP 127 and 141% in 2011 and 2012, respectively, 

compared to topdressing applications.  Given the nature of P uptake by plants, it is likely that 

root system-PLA interaction accelerated P dissolution and plant uptake.   Phosphorus uptake was 

increased through root system interaction with low soluble rock phosphates in a multi-year 

experiment evaluating P source and placement on eucalyptus growth in an acidic soil (Dias et al., 

2000).  Processes including ion release, gaseous flux, and organic ligand exudation, can alter 

rhizospheric chemical conditions in order to enhance P solubility and uptake from soils 

(Hinsinger, 2001). While rhizospheric chemical parameters were not measured directly in this 

experiment, based on plant tissue analyses greater uptake was most likely a result of increased 

root and P interaction from PLA incorporated within the substrate.  In addition to root-P 

interactions, organic acids within the substrate, not originating from plant roots, may have also 

affected P solubility (Bolan et al., 1994).   
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Table 4.10. Effects of poultry litter ash rate and placement on root nutrient concentrations 

of Lantana camara 'New Gold' grown in an experiment lasting 70 days in 2011. 

Rate 
 

Placement
Z
 

 
 

        

(g m
-3

)       Ca
Y
 Mg Mn P  K 

140 
 

- 

 

0.25a
X
 0.23a 79.34a 0.11b 0.21b 

280 
 

- 

 

0.26a 0.25a 55.27b 0.13a 0.25a 

   
 

NS
W

 NS 0.008 0.0015 0.0174 

    
     

- 
 

Topdressed 

 

0.23a 0.23a 89.45a 0.10b 0.22a 

- 
 

Incorporated 

 

0.28a 0.25a 45.16b 0.15a 0.24a 

   
 

NS NS 0.0002 <0.0001 NS 

    
     

140 
 

Topdressed 

 

0.23a 0.24a 99.46a 0.09c 0.20a 

280 
 

Topdressed 

 

0.23a 0.23a 79.45ab 0.10c 0.24a 

140 
 

Incorporated 

 

0.28a 0.23a 59.23bc 0.13b 0.22a 

280 
 

Incorporated 

 

0.29a 0.27a 31.10c 0.16a 0.26a 

        NS NS NS NS NS 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated = 

mixed thoroughly into substrate prior to potting. 
Y
Macronutrients reported as percentage of dry matter.  Mn reported in mg·kg

-1
 dry matter. 

X
Values in columns followed by different letters were significant according to Tukey’s 

Honest Significance Difference Test (α = 0.05). 
W

P-value derived from analysis of variance; NS = not significant. 

 

In either case, P concentrations in plant biomass were increased when PLA was 

incorporated into the substrate.  In contrast, topdressed PLA remained at or near the substrate 

surface during the experiment and limited PLA-root interactions.  Consequently, leachate-DRP 

and biomass P concentrations were reduced for PLA topdressing applications compared to 

incorporated PLA treatments.  In a previous related experiment, tissue nutrient concentrations, 

including shoot and root P, were increased by incorporating controlled-release fertilizers (CRF) 

into the growing substrate, as opposed to surface application (Warren, et al. 2001).  In fact, total 

plant P content was reduced >70%, regardless of CRF formulation, when the fertilizer was 

topdressed rather than incorporated.  Leachate-TP was also increased up to 88% (Warren et al.,  
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Table 4.11.  Effects of poultry litter ash rate and placement on substrate leachate-pH measured from Lantana camara 'New Gold' 

grown in an experiment lasting 70 days. 

  

Substrate Leachate-pH 

Rate Placement
Z
 2011 

(g m
-3

)   7 DAP
Y
 14 DAP 21 DAP 28 DAP 35 DAP 42 DAP 49 DAP 56 DAP 63 DAP Average 

140 - 6.01a
X
 6.02a 6.48a 6.74a 6.54b 6.26a 6.32b 6.44a 6.26b 6.34a 

280 - 6.00a 6.06a 6.56a 6.81a 6.81a 6.39a 6.48a 6.45a 6.42a 6.44a 

            
  

NS
W

 NS NS NS 0.0086 NS 0.0122 NS 0.0203 NS 

            - Topdressed 5.83b 5.71b 6.36b 6.68a 6.55b 6.26a 6.37a 6.37a 6.21b 6.26b 

- Incorporated 6.19a 6.37a 6.68a 6.88a 6.80a 6.39a 6.43a 6.2a 6.48a 6.53a 

  
0.0038 0.0005 0.0019 NS 0.0128 NS NS NS 0.0013 0.0016 

            140 Topdressed 6.05ab 5.78bc 6.38b 6.77ab 6.46b 6.19a 6.28b 6.50a 6.21b 6.29b 

280 Topdressed 5.60c 5.63c 6.33b 6.58b 6.65ab 6.32a 6.45ab 6.23a 6.20b 6.22b 

140 Incorporated 5.98bc 6.26ab 6.57ab 6.71ab 6.63ab 6.32a 6.36ab 6.39a 6.31b 6.39b 

280 Incorporated 6.40a 6.48a 6.79a 7.05a 6.96a 6.47a 6.51a 6.66a 6.64a 6.66a 

  

0.0014 NS NS 0.0322 NS NS NS 0.0484 0.0154 0.0181 

  
          

    2012 

140 - 5.68a 6.02a 6.21b 6.32b 6.54b 6.58a 6.51b 6.42b 6.31b 6.29b 

280 - 5.82a 6.00a 6.36a 6.50a 6.67a 6.77a 6.73a 6.60a 6.58a 6.50a 

  
NS NS 0.0063 0.0007 0.0265 NS 0.0002 0.0007 0.0003 0.0136 

            
- Topdressed 5.59b 5.84b 6.12b 6.28b 6.41b 6.42b 6.57b 6.35b 6.25b 6.20b 

- Incorporated 5.92a 6.18a 6.46a 6.53a 6.80a 6.79a 6.66a 6.67a 6.58a 6.58a 

  
0.0054 0.0004 <0.0001 <0.0001 <0.0001 0.0002 0.024 <0.0001 <0.0001 0.0004 

            
140 Topdressed 5.75b 6.01b 6.09c 6.21c 6.32b 6.31c 6.35b 6.25c 6.08c 6.15b 

280 Topdressed 5.42b 5.67c 6.15c 6.35bc 6.51b 6.53bc 6.80a 6.44b 6.42b 6.25b 

140 Incorporated 5.62b 6.03b 6.33b 6.42b 6.77a 6.85a 6.67a 6.58b 6.55b 6.42b 

280 Incorporated 6.22a 6.32a 6.58a 6.64a 6.82a 6.74ab 6.65a 6.77a 6.61a 6.74a 

    0.0007 0.0005 0.0454 NS NS 0.0213 <0.0001 NS 0.0031 NS 
ZTopdressed = post-plant application spread evenly on substrate surface; Incorporated = mixed thoroughly into substrate prior to potting. 
YDays after potting. 
XValues in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 0.05). 
WP-value derived from analysis of variance; NS = not significant. 
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Table 4.12. Effects of poultry litter ash rate and placement on substrate leachate-EC measured in Lantana camara 'New Gold' grown in 

an experiment lasting 70 days . 

  

Substrate Leachate-EC 

Rate Placement
Z
 2011 

(g m
-3

)   7 DAP
Y
 14 DAP 21 DAP 28 DAP 35 DAP 42 DAP 49 DAP 56 DAP 63 DAP Average 

140 - 2.00b
X
 1.97b 1.79b 1.56b 1.70a 1.83b 1.13a 0.75a 0.42a 1.46b 

280 - 2.81a 2.54a 2.40a 2.22a 1.97a 2.15a 1.13a 0.89a 0.58a 1.85a 

  
0.0001

W
 <0.0001 0.0001 0.0001 NS 0.0091 NS NS NS 0.0183 

- Topdressed 2.60a 2.49a 2.37a 2.20a 2.18a 2.37a 1.19a 0.83a 0.48a 1.86a 

- Incorporated 2.21b 2.02b 1.82b 1.58b 1.49b 1.61b 1.06a 0.81a 0.52a 1.46b 

  
0.0091 0.0001 0.0002 0.0002 0.014 <0.0001 NS NS NS 0.0172 

140 Topdressed 2.18bc 2.14b 1.97bc 1.73b 2.03ab 2.20a 1.25a 0.79a 0.46a 1.63ab 

280 Topdressed 3.02a 2.84a 2.78a 2.67a 2.32a 2.53a 1.12a 0.87a 0.57a 2.08a 

140 Incorporated 1.81c 1.80c 1.62c 1.39b 1.36c 1.46b 0.99a 0.71a 0.38a 1.29b 

280 Incorporated 2.60ab 2.23b 2.02b 1.77b 1.62bc 1.76b 1.14a 0.91a 0.59a 1.63ab 

  

NS NS 0.0456 0.0169 NS NS NS NS NS NS 

    2012 

140 - 1.94b 1.88b 1.87b 1.57b 1.21b 1.20b 0.98b 0.83b 0.57b 1.34b 

280 - 2.55a 2.33a 2.35a 2.18a 1.59a 1.45a 1.27a 1.3a 0.76a 1.72a 

  
<0.0001 0.0008 <0.0001 <0.0001 0.0005 0.0036 0.012 0.0063 0.0062 0.008 

- Topdressed 2.34a 2.30a 2.35a 2.07a 1.62a 1.63a 1.39a 1.14a 0.78a 1.73a 

- Incorporated 2.15b 1.92b 1.87b 1.68b 1.18b 1.01b 0.86b 0.71b 0.55b 1.33b 

  
0.0186 0.0022 <0.0001 0.0004 0.0002 <0.0001 <0.0001 <0.0001 0.002 0.0059 

140 Topdressed 2.14b 2.18a 2.15b 1.74b 1.44b 1.51a 1.20b 1.08ab 0.69a 1.57ab 

280 Topdressed 2.53a 2.42a 2.56a 2.41a 1.79a 1.74a 1.58a 1.20a 0.87a 1.90a 

140 Incorporated 1.74c 1.59b 1.59c 1.41c 0.98c 0.88b 0.75c 0.57c 0.44b 1.11b 

280 Incorporated 2.56a 2.25a 2.15b 1.95b 1.38b 1.15b 0.96bc 0.86b 0.65ab 1.55ab 

    0.0077 0.0421 NS NS NS NS NS NS NS NS 
ZTopdressed = post-plant application spread evenly on substrate surface; Incorporated = mixed thoroughly into substrate prior to potting . 
YDays after potting. 
XValues in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 0.05). 
WP-value derived from analysis of variance; NS = not significant. 
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Table 4.13.  Effect of poultry litter ash rate and placement on leachate dissolved reactive phosphorus measured from Lantana 

camara 'New Gold'over the course of a 70 day experiment in 2011. 

Rate Placement
Z
 Dissolved Reactive Phosphorus (mg·L

-1
)  

(g m
-3

)   7 DAP
Y
 14 DAP 21 DAP 28 DAP 35 DAP 42 DAP 49 DAP 56 DAP 63 DAP 70 DAP Average 

140 - 7.73a
X
 8.38a 7.33b 6.06b 5.86b 4.58b 5.23b 3.23b 3.44a 3.20a 5.51b 

280 - 8.03a 9.03a 9.11a 8.38a 8.69a 8.16a 7.21a 5.36a 4.16a 3.24a 7.14a 

  
NSW NS 0.0005 0.0093 <0.0001 0.0003 0.0075 0.0021 NS NS 0.0083 

             - Topdressed 3.07b 4.60b 4.48b 3.97b 4.93b 3.89b 4.56b 3.03b 3.19b 3.01a 3.87b 

- Incorporated 12.70a 12.82a 11.96a 10.47a 9.63a 8.85a 7.88a 5.56a 4.41a 3.44a 8.77a 

  
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0003 0.0007 0.0083 NS <0.0001 

             140 Topdressed 3.06b 4.49b 4.38c 3.60c 3.96d 2.76c 3.90c 2.77b 3.02b 2.76a 3.47c 

280 Topdressed 3.08b 4.70b 4.59c 4.34c 5.89c 5.02bc 5.21bc 3.28b 3.37b 3.26a 4.28c 

140 Incorporated 12.42a 12.27a 10.29b 8.52b 7.76b 6.40b 6.56b 3.68b 3.87ab 3.66a 7.54b 

280 Incorporated 12.98a 13.37a 13.62a 12.42a 11.49a 11.29a 9.21a 7.44a 4.95a 3.22a 10.00a 

    NS NS 0.001 0.0495 0.0117 NS NS 0.0092 NS NS NS 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated = mixed thoroughly into substrate prior to 

potting. 
Y
Days after potting.

 

X
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 

0.05).
 

W
P-value derived from analysis of variance; NS = not significant. 



99 

 

Table 4.14.  Effect of poultry litter ash rate and placement on leachate dissolved reactive phosphorus measured from Lantana camara 

'New Gold' over the course of a 70 day experiment in 2012. 

Rate Placement
Z
 Dissolved Reactive Phosphorus (mg·L-1

) 

(g m
-3

)   7 DAP
Y
 14 DAP 28 DAP 42 DAP 56 DAP 70 DAP Average 

140 - 6.80b
X
 8.43b 7.40b 4.88b 3.81b 2.56b 5.65a 

280 - 7.32a 9.45a 8.58a 6.55a 4.64a 3.60a 6.69a 

  
0.0103

W
 0.0352 0.0146 0.029 0.0295 0.0143 NS 

  
      

 - Topdressed 3.19b 4.87b 4.46b 3.64b 3.11b 2.43b 3.62b 

- Incorporated 10.93a 13.01a 11.52a 7.80a 5.34a 3.73a 8.72a 

  
<0.0001 <0.0001 <0.0001 0.0002 0.0001 0.0047 <0.0001 

  
      

 140 Topdressed 3.22c 4.32b 4.24c 3.44c 2.76c 2.00b 3.33b 

280 Topdressed 3.15c 5.43b 4.69c 3.83bc 3.46bc 2.86ab 3.90b 

140 Incorporated 10.37b 12.54a 10.56b 6.32b 4.86ab 3.11ab 7.96a 

280 Incorporated 11.50a 13.47a 12.48a 9.27a 5.82a 4.35a 9.48a 

    0.005 NS NS NS NS NS NS 

 
Z
Topdressed = post-plant application spread evenly on substrate surface; Incorporated = mixed thoroughly into substrate prior to 

potting. 
Y
Days after potting. 

X
Values in columns followed by different letters were significant according to Tukey’s Honest Significance Difference Test (α = 

0.05). 
W

P-value derived from analysis of variance; NS = not significant. 

 

 

 



100 

 

2001) and 83% (Warren et al., 1997) when CRF was incorporated into the substrate.  

Researchers concluded increased P solubility resulting from CRF incorporation was due to 

uniform dispersal of fertilizer prills throughout the substrate and/or increased moisture content 

within the substrate.  Broschat (2005) reported release rates of P from CRFs were slowed when 

CRFs were surface applied to substrates compared with incorporated, but were increased over 

incorporation rates when placed in water.  

 In this experiment, substrate leachate-DRP was affected by both P rate and PLA 

placement with PLA placement be the more substantial factor.  Subsequently, both shoot and 

root P concentrations were affected to a greater extent by PLA placement than PLA application 

rate.  For example, when PLA application rate was reduced from 280 to 140 g P m
-3

, leachate-

DRP concentrations were not reduced proportionally.  In fact, during the first two weeks of the 

experiment, leachate-DRP concentration was not reduced by lowering PLA application rate in 

2011 and was only slightly reduced in 2012.  Losses of P from container production have 

previously been shown to be unaffected by P rate even when high-technology CRFs were used as 

P sources.  In an experiment spanning 100 days, Tyler et al. (1996) reported cumulative effluent-

DRP was reduced 57% by reducing leaching fraction by 50%, but was not affected by fertilizer 

application rate.   Similarly, in an experiment focused on reducing P losses from containerized 

plants by amending substrates with calcined clay, Owen et al. (2008) reported cumulative 

effluent-DRP was unaffected by P application rate, but was dependent on irrigation rate and 

substrate amendment.  Given the results of current and previous experiments, P dissolution rate 

in a soilless substrate may not be a function of P application rate but rather PLA-P solubility is 

controlled by root interaction.    

In addition to influencing PLA-P dissolution, PLA application rate and placement also 

affected substrate pH and EC and thus nutrient uptake.  Since solution pH strongly affects Mn 
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solubility in soilless substrates (Handreck and Black, 2010), the effect of PLA placement on 

substrate leachate-pH led to decreased foliar and root Mn concentrations in verbena and lantana 

grown in substrates amended with PLA.  In general, substrate leachate-pH was within the range 

at which inorganic P is most available to plants (Schachtman et al., 1998).  This indicates P plant 

uptake was not likely limited due to substrate pH effects on P solubility.  Leachate-DRP 

concentrations were within the recommended range of 5 to 60 mg P L
-1

 (Raviv and Lieth, 2008) 

for greenhouse crops throughout the experiment for PLA that was incorporated within the 

substrate.   

Substrate EC is a measurement of the concentration of salts in the substrate solution and 

is highly affected by fertilizer application rate (Fain et al., 2008).  In this experiment substrate 

EC was, as expected, affected by PLA application rate.  However, PLA application method also 

greatly affected substrate EC.  Topdressing PLA increased substrate EC compared to PLA 

incorporation into the substrate.  Increased EC leaching from topdressed PLA treatments were 

unexpected but may be the result of increased interaction of PLA with irrigation water.  Direct 

contact with irrigation water would have increased solubility of ancillary salts that could have 

limited substrate and root interaction for higher EC measurements compared to incorporated 

PLA treatments.      

During a 47-week experiment evaluating nutrient release patterns from commonly-used 

CRFs incorporated in a substrate composed of peat moss, pine bark, and sand (5:4:1, v:v:v) used 

to fill fallow containers, Merhaut et al. (2006) reported that TP concentrations ranged from 15 to 

60 mg P L
-1

 for the first 10 weeks, but averaged below 10 mg L
-1

 for the final 27 weeks.  

According to the authors, nutrient release would have been expected to accelerate if plants were 

grown in the substrate.  They concluded commonly-used water soluble fertilizers, including 

CRFs, may supply excessive nutrients early in the growing cycle of a plant leading to shortages 
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of nutrients in the later weeks of the production cycle.   Although, pre-plant incorporation of 

water-soluble P fertilizers within the growing substrate is a common practice for containerized 

plant production, this practice should be questioned given the high nutrient leaching losses 

(Altland and Buamscha, 2008).  Use of PLA as a P source may reduce unnecessary P losses from 

containerized plant production with little to no deleterious effects to plant growth and quality; 

and may provide growers with an alternative to costly, high-technology fertilizers.  

Conclusions  

Application of PLA as a topdressing did not reduce plant growth parameters in every 

case, but did reduce flowering and plant P uptake compared with application of PLA as a 

substrate amendment.  Reductions in plant P uptake when PLA was applied as a topdressing 

were most likely the result of limited interaction between plant roots and PLA.  It is believed the 

interaction of plant roots is one of the primary mechanisms for P release form PLA.  Reductions 

in leachate-DRP of 5.0 mg P L
-1

 achieved through PLA topdressing are minimal when 

considering reductions in leachate-DRP when comparing PLA incorporated within the substrate 

to water-soluble P sources.  Therefore, topdressing is not recommended as the primary 

application method of PLA due to decreased plant growth and quality.  For greenhouse crop 

container production PLA should be pre-plant incorporated within the substrate at a rate of at 

least 140 g P (as total P) m
-3

 but not exceeding 280 g P m
-3

. 
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APPENDIX: TESTS OF FIXED EFFECTS FOR REPORTED DATA 

Appendix Table 2.1. Type 3 Tests of Fixed Effects for growth index of Verbena canadensis 

‘Homestead Purple’ at 14 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 3.00 0.1213 

Prate 1 16 1.13 0.3197 

Limerate*Prate 1 16 5.91 0.0412 

Psource 1 16 0.66 0.4403 

Limerate*Psource 1 16 0.19 0.6762 

Prate*Psource 1 16 0.65 0.4431 

Limerate*Prate*Psource 1 16 0.43 0.5293 

 

Appendix Table 2.1. Type 3 Tests of Fixed Effects for growth index of Verbena canadensis 

‘Homestead Purple’ at 28 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 2.07 0.1883 

Prate 1 16 3.16 0.1132 

Limerate*Prate 1 16 2.69 0.1395 

Psource 1 16 0.07 0.8000 

Limerate*Psource 1 16 0.00 0.9964 

Prate*Psource 1 16 0.62 0.4546 

Limerate*Prate*Psource 1 16 0.40 0.5465 
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Appendix Table 2.1. Type 3 Tests of Fixed Effects for growth index of Verbena canadensis 

‘Homestead Purple’ at 42 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 5.44 0.0480 

Prate 1 16 0.00 0.9581 

Limerate*Prate 1 16 0.00 0.9461 

Psource 1 16 0.19 0.6705 

Limerate*Psource 1 16 0.01 0.9223 

Prate*Psource 1 16 1.84 0.2122 

Limerate*Prate*Psource 1 16 0.59 0.4651 

 

Appendix Table 2.1. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 14 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 1.50 0.2562 

Prate 1 16 1.78 0.2186 

Limerate*Prate 1 16 2.09 0.1859 

Psource 1 16 0.02 0.8921 

Limerate*Psource 1 16 0.00 0.9783 

Prate*Psource 1 16 1.50 0.2562 

Limerate*Prate*Psource 1 16 0.07 0.7935 
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Appendix Table 2.1. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 28 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.09 0.7678 

Prate 1 16 4.13 0.0765 

Limerate*Prate 1 16 0.51 0.4941 

Psource 1 16 0.04 0.8463 

Limerate*Psource 1 16 0.13 0.7295 

Prate*Psource 1 16 0.16 0.6994 

Limerate*Prate*Psource 1 16 0.07 0.7989 

 

Appendix Table 2.1. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 42 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 10.07 0.0131 

Prate 1 16 3.05 0.1188 

Limerate*Prate 1 16 2.37 0.1619 

Psource 1 16 0.01 0.9290 

Limerate*Psource 1 16 0.01 0.9234 

Prate*Psource 1 16 0.12 0.7358 

Limerate*Prate*Psource 1 16 0.00 0.9915 
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Appendix Table 2.1. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 56 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 23.47 0.0013 

Prate 1 16 6.98 0.0296 

Limerate*Prate 1 16 0.69 0.4313 

Psource 1 16 0.37 0.5612 

Limerate*Psource 1 16 0.90 0.3694 

Prate*Psource 1 16 0.07 0.8004 

Limerate*Prate*Psource 1 16 1.10 0.3239 

 

Appendix Table 2.1. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 70 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 5.53 0.0465 

Prate 1 16 3.53 0.0970 

Limerate*Prate 1 16 0.64 0.4459 

Psource 1 16 0.22 0.6488 

Limerate*Psource 1 16 0.02 0.8786 

Prate*Psource 1 16 0.04 0.8387 

Limerate*Prate*Psource 1 16 0.02 0.8987 



110 

 

Appendix Table 2.2. Type 3 Tests of Fixed Effects for shoot dry weight of Verbena canadensis 

‘Homestead Purple’  

Effect Num DF Den DF F Value Pr > F 

Limerate 1 32 64.75 <.0001 

Prate 1 32 34.49 <.0001 

Limerate*Prate 1 32 1.96 0.1713 

Psource 1 32 10.98 0.0023 

Limerate*Psource 1 32 5.83 0.0217 

Prate*Psource 1 32 1.12 0.2985 

Limerate*Prate*Psource 1 32 32.06 <.0001 

 

Appendix Table 2.2. Type 3 Tests of Fixed Effects for shoot dry weight of Lantana camara 

‘New Gold’  

Effect Num DF Den DF F Value Pr > F 

Limerate 1 32 0.42 0.5198 

Prate 1 32 3.14 0.0861 

Limerate*Prate 1 32 0.16 0.6877 

Psource 1 32 1.02 0.3204 

Limerate*Psource 1 32 10.44 0.0029 

Prate*Psource 1 32 3.31 0.0780 

Limerate*Prate*Psource 1 32 2.16 0.1511 
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Appendix Table 2.3. Type 3 Tests of Fixed Effects for flower count of Verbena canadensis 

‘Homestead Purple’ at 14 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.11 0.7401 

Prate 1 16 38.29 <.0001 

Limerate*Prate 1 16 0.32 0.5815 

Psource 1 16 0.62 0.4425 

Limerate*Psource 1 16 5.58 0.0311 

Prate*Psource 1 16 1.03 0.3263 

Limerate*Prate*Psource 1 16 1.53 0.2337 

 

Appendix Table 2.3. Type 3 Tests of Fixed Effects for flower count of Verbena canadensis 

‘Homestead Purple’ at 28 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 1.03 0.3251 

Prate 1 16 36.15 <.0001 

Limerate*Prate 1 16 0.01 0.9387 

Psource 1 16 6.64 0.0203 

Limerate*Psource 1 16 1.03 0.3251 

Prate*Psource 1 16 0.30 0.5922 

Limerate*Prate*Psource 1 16 0.74 0.4031 
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Appendix Table 2.3. Type 3 Tests of Fixed Effects for flower count of Verbena canadensis 

‘Homestead Purple’ at 42 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 1.05 0.3208 

Prate 1 16 4.53 0.0492 

Limerate*Prate 1 16 0.75 0.3988 

Psource 1 16 0.75 0.3988 

Limerate*Psource 1 16 1.05 0.3208 

Prate*Psource 1 16 3.88 0.0664 

Limerate*Prate*Psource 1 16 1.80 0.1990 

 

Appendix Table 2.3. Type 3 Tests of Fixed Effects for total flower count of Verbena canadensis 

‘Homestead Purple’  

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 2.24 0.1542 

Prate 1 16 67.24 <.0001 

Limerate*Prate 1 16 0.60 0.4505 

Psource 1 16 3.64 0.0745 

Limerate*Psource 1 16 5.87 0.0276 

Prate*Psource 1 16 1.41 0.2529 

Limerate*Prate*Psource 1 16 0.07 0.7998 
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Appendix Table 2.3. Type 3 Tests of Fixed Effects for flower count of Lantana camara  ‘New 

Gold’ at 14 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 11.71 0.0035 

Prate 1 16 3.80 0.0690 

Limerate*Prate 1 16 1.58 0.2271 

Psource 1 16 0.68 0.4226 

Limerate*Psource 1 16 11.71 0.0035 

Prate*Psource 1 16 0.02 0.8982 

Limerate*Prate*Psource 1 16 0.42 0.5251 

 

Appendix Table 2.3. Type 3 Tests of Fixed Effects for flower count of Lantana camara  ‘New 

Gold’ at 28 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 4.46 0.0507 

Prate 1 16 38.02 <.0001 

Limerate*Prate 1 16 3.34 0.0864 

Psource 1 16 0.55 0.4687 

Limerate*Psource 1 16 6.03 0.0259 

Prate*Psource 1 16 0.21 0.6540 

Limerate*Prate*Psource 1 16 0.33 0.5760 
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Appendix Table 2.3. Type 3 Tests of Fixed Effects for flower count of Lantana camara  ‘New 

Gold’ at 42 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 86.14 <.0001 

Prate 1 16 167.42 <.0001 

Limerate*Prate 1 16 0.86 0.3671 

Psource 1 16 0.00 0.9571 

Limerate*Psource 1 16 2.51 0.1329 

Prate*Psource 1 16 0.97 0.3404 

Limerate*Prate*Psource 1 16 2.01 0.1750 

 

Appendix Table 2.3. Type 3 Tests of Fixed Effects for flower count of Lantana camara  ‘New 

Gold’ at 56 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 2.15 0.1622 

Prate 1 16 5.05 0.0391 

Limerate*Prate 1 16 0.28 0.6051 

Psource 1 16 2.76 0.1163 

Limerate*Psource 1 16 1.82 0.1964 

Prate*Psource 1 16 1.92 0.1844 

Limerate*Prate*Psource 1 16 0.11 0.7441 
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Appendix Table 2.3. Type 3 Tests of Fixed Effects for flower count of Lantana camara  ‘New 

Gold’ at 70 days after potting 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.09 0.7705 

Prate 1 16 15.56 0.0012 

Limerate*Prate 1 16 0.96 0.3426 

Psource 1 16 0.48 0.4987 

Limerate*Psource 1 16 1.18 0.2928 

Prate*Psource 1 16 1.65 0.2169 

Limerate*Prate*Psource 1 16 0.00 0.9569 

 

Appendix Table 2.3. Type 3 Tests of Fixed Effects for total flower count of Lantana camara 

‘New Gold’ 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 19.41 0.0004 

Prate 1 16 80.15 <.0001 

Limerate*Prate 1 16 0.80 0.3835 

Psource 1 16 0.60 0.4482 

Limerate*Psource 1 16 8.38 0.0105 

Prate*Psource 1 16 3.24 0.0908 

Limerate*Prate*Psource 1 16 0.11 0.7433 
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Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 0 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 138.73 <.0001 

Prate 1 16 16.73 0.0009 

Limerate*Prate 1 16 1.90 0.1866 

Psource 1 16 2238.25 <.0001 

Limerate*Psource 1 16 20.11 0.0004 

Prate*Psource 1 16 20.11 0.0004 

Limerate*Prate*Psource 1 16 0.16 0.6986 

 

Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 7 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 191.85 <.0001 

Prate 1 16 1.58 0.2274 

Limerate*Prate 1 16 0.05 0.8314 

Psource 1 16 1762.81 <.0001 

Limerate*Psource 1 16 16.55 0.0009 

Prate*Psource 1 16 35.16 <.0001 

Limerate*Prate*Psource 1 16 2.85 0.1108 
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Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 14 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 268.25 <.0001 

Prate 1 16 8.30 0.0109 

Limerate*Prate 1 16 8.94 0.0087 

Psource 1 16 2495.73 <.0001 

Limerate*Psource 1 16 47.42 <.0001 

Prate*Psource 1 16 72.79 <.0001 

Limerate*Prate*Psource 1 16 24.11 0.0002 

 

Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 21 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 71.15 <.0001 

Prate 1 16 9.47 0.0072 

Limerate*Prate 1 16 10.64 0.0049 

Psource 1 16 667.49 <.0001 

Limerate*Psource 1 16 0.25 0.6211 

Prate*Psource 1 16 21.55 0.0003 

Limerate*Prate*Psource 1 16 2.37 0.1435 
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Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 28 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 254.07 <.0001 

Prate 1 16 3.34 0.0862 

Limerate*Prate 1 16 10.46 0.0052 

Psource 1 16 1937.85 <.0001 

Limerate*Psource 1 16 0.27 0.6131 

Prate*Psource 1 16 17.80 0.0007 

Limerate*Prate*Psource 1 16 7.39 0.0152 

 

Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 35 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 393.53 <.0001 

Prate 1 16 0.49 0.4919 

Limerate*Prate 1 16 19.02 0.0005 

Psource 1 16 2602.51 <.0001 

Limerate*Psource 1 16 0.06 0.8033 

Prate*Psource 1 16 87.80 <.0001 

Limerate*Prate*Psource 1 16 1.20 0.2887 
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Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 42 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 138.40 <.0001 

Prate 1 16 0.31 0.5865 

Limerate*Prate 1 16 4.69 0.0457 

Psource 1 16 649.27 <.0001 

Limerate*Psource 1 16 5.84 0.0279 

Prate*Psource 1 16 19.88 0.0004 

Limerate*Prate*Psource 1 16 0.07 0.7917 

 

Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 49 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 364.10 <.0001 

Prate 1 16 43.54 <.0001 

Limerate*Prate 1 16 3.62 0.0753 

Psource 1 16 977.65 <.0001 

Limerate*Psource 1 16 25.53 0.0001 

Prate*Psource 1 16 70.25 <.0001 

Limerate*Prate*Psource 1 16 0.35 0.5605 
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Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 56 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 478.29 <.0001 

Prate 1 16 14.87 0.0014 

Limerate*Prate 1 16 2.88 0.1092 

Psource 1 16 775.84 <.0001 

Limerate*Psource 1 16 11.72 0.0035 

Prate*Psource 1 16 24.05 0.0002 

Limerate*Prate*Psource 1 16 15.35 0.0012 

 

Appendix Table 2.4. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 63 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 155.60 <.0001 

Prate 1 16 0.00 0.9806 

Limerate*Prate 1 16 10.47 0.0052 

Psource 1 16 515.29 <.0001 

Limerate*Psource 1 16 2.74 0.1174 

Prate*Psource 1 16 17.43 0.0007 

Limerate*Prate*Psource 1 16 15.82 0.0011 
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Appendix Table 2.4. Type 3 Tests of Fixed Effects for average substrate leachate-pH measured 

from Lantana camara ‘New Gold’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 94.98 <.0001 

Prate 1 16 2.64 0.1240 

Limerate*Prate 1 16 1.11 0.3081 

Psource 1 16 593.18 <.0001 

Limerate*Psource 1 16 3.35 0.0860 

Prate*Psource 1 16 15.07 0.0013 

Limerate*Prate*Psource 1 16 0.21 0.6561 

 

Appendix Table 2.5. Type 3 Tests of Fixed Effects for substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 0 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 1.07 0.3153 

Prate 1 16 187.23 <.0001 

Limerate*Prate 1 16 0.17 0.6839 

Psource 1 16 449.38 <.0001 

Limerate*Psource 1 16 0.13 0.7215 

Prate*Psource 1 16 1.18 0.2925 

Limerate*Prate*Psource 1 16 0.00 0.9593 
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Appendix Table 2.5. Type 3 Tests of Fixed Effects for substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 7 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 2.53 0.1314 

Prate 1 16 286.99 <.0001 

Limerate*Prate 1 16 0.07 0.8009 

Psource 1 16 95.28 <.0001 

Limerate*Psource 1 16 0.07 0.8009 

Prate*Psource 1 16 0.70 0.4146 

Limerate*Prate*Psource 1 16 2.21 0.1564 

 

Appendix Table 2.5. Type 3 Tests of Fixed Effects for substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 14 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 5.38 0.0340 

Prate 1 16 377.24 <.0001 

Limerate*Prate 1 16 0.08 0.7874 

Psource 1 16 14.17 0.0017 

Limerate*Psource 1 16 0.18 0.6774 

Prate*Psource 1 16 1.88 0.1892 

Limerate*Prate*Psource 1 16 1.04 0.3219 
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Appendix Table 2.5. Type 3 Tests of Fixed Effects for substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 21 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.21 0.6504 

Prate 1 16 144.17 <.0001 

Limerate*Prate 1 16 0.03 0.8558 

Psource 1 16 4.78 0.0440 

Limerate*Psource 1 16 0.00 0.9758 

Prate*Psource 1 16 16.02 0.0010 

Limerate*Prate*Psource 1 16 0.00 0.9517 

 

Appendix Table 2.5. Type 3 Tests of Fixed Effects for substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 28 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 1.34 0.2638 

Prate 1 16 192.54 <.0001 

Limerate*Prate 1 16 1.45 0.2462 

Psource 1 16 0.01 0.9110 

Limerate*Psource 1 16 0.38 0.5484 

Prate*Psource 1 16 76.45 <.0001 

Limerate*Prate*Psource 1 16 3.73 0.0715 
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Appendix Table 2.5. Type 3 Tests of Fixed Effects for substrate Leachate-EC measured from 

Lantana camara ‘New Gold’ at 35 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.00 0.9799 

Prate 1 16 129.68 <.0001 

Limerate*Prate 1 16 0.41 0.5314 

Psource 1 16 0.02 0.8998 

Limerate*Psource 1 16 3.12 0.0965 

Prate*Psource 1 16 24.39 0.0001 

Limerate*Prate*Psource 1 16 0.08 0.7819 

 

Appendix Table 2.5. Type 3 Tests of Fixed Effects for substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 42 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.40 0.5340 

Prate 1 16 29.20 <.0001 

Limerate*Prate 1 16 0.01 0.9288 

Psource 1 16 0.53 0.4780 

Limerate*Psource 1 16 2.53 0.1316 

Prate*Psource 1 16 5.58 0.0312 

Limerate*Prate*Psource 1 16 1.50 0.2379 
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Appendix Table 2.5. Type 3 Tests of Fixed Effects for Substrate Leachate-EC measured from 

Lantana camara ‘New Gold’ at 49 Days After Potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.05 0.8276 

Prate 1 16 123.53 <.0001 

Limerate*Prate 1 16 0.05 0.8276 

Psource 1 16 11.03 0.0043 

Limerate*Psource 1 16 8.28 0.0109 

Prate*Psource 1 16 11.63 0.0036 

Limerate*Prate*Psource 1 16 8.80 0.0091 

 

Appendix Table 2.5. Type 3 Tests of Fixed Effects for Substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 56 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 9.21 0.0079 

Prate 1 16 140.04 <.0001 

Limerate*Prate 1 16 8.60 0.0097 

Psource 1 16 4.09 0.0601 

Limerate*Psource 1 16 18.05 0.0006 

Prate*Psource 1 16 12.53 0.0027 

Limerate*Prate*Psource 1 16 1.73 0.2071 
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Appendix Table 2.5. Type 3 Tests of Fixed Effects for substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 63 days after potting. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 5.85 0.0278 

Prate 1 16 12.08 0.0031 

Limerate*Prate 1 16 0.09 0.7636 

Psource 1 16 8.20 0.0112 

Limerate*Psource 1 16 1.86 0.1919 

Prate*Psource 1 16 0.09 0.7636 

Limerate*Prate*Psource 1 16 0.09 0.7636 

 

Appendix Table 2.5. Type 3 Tests of Fixed Effects for average substrate leachate-EC measured 

from Lantana camara ‘New Gold’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.00 0.9675 

Prate 1 16 14.55 0.0015 

Limerate*Prate 1 16 0.00 1.0000 

Psource 1 16 0.96 0.3409 

Limerate*Psource 1 16 0.05 0.8330 

Prate*Psource 1 16 0.76 0.3973 

Limerate*Prate*Psource 1 16 0.02 0.8790 
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Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar Ca concentration of Verbena 

canadensis ‘Homestead Purple’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.04 0.8523 

Prate 1 16 0.30 0.5936 

Limerate*Prate 1 16 0.24 0.6333 

Psource 1 16 9.47 0.0072 

Limerate*Psource 1 16 4.38 0.0526 

Prate*Psource 1 16 0.16 0.6960 

Limerate*Prate*Psource 1 16 0.93 0.3481 

 

Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar Mg concentration of Verbena 

canadensis ‘Homestead Purple’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.49 0.4958 

Prate 1 16 1.48 0.2416 

Limerate*Prate 1 16 0.00 0.9869 

Psource 1 16 0.92 0.3523 

Limerate*Psource 1 16 1.23 0.2830 

Prate*Psource 1 16 1.66 0.2164 

Limerate*Prate*Psource 1 16 3.63 0.0750 
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Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar Mn concentration of Verbena 

canadensis ‘Homestead Purple’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 9.86 0.0063 

Prate 1 16 36.85 <.0001 

Limerate*Prate 1 16 1.72 0.2077 

Psource 1 16 214.07 <.0001 

Limerate*Psource 1 16 0.00 0.9628 

Prate*Psource 1 16 3.30 0.0879 

Limerate*Prate*Psource 1 16 27.89 <.0001 

 

Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar P concentration of Verbena 

canadensis ‘Homestead Purple’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.01 0.9220 

Prate 1 16 14.82 0.0014 

Limerate*Prate 1 16 9.98 0.0061 

Psource 1 16 34.25 <.0001 

Limerate*Psource 1 16 0.00 0.9459 

Prate*Psource 1 16 1.27 0.2770 

Limerate*Prate*Psource 1 16 0.87 0.3650 
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Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar K concentration of Verbena 

canadensis ‘Homestead Purple’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.46 0.5071 

Prate 1 16 0.35 0.5638 

Limerate*Prate 1 16 2.79 0.1146 

Psource 1 16 0.03 0.8609 

Limerate*Psource 1 16 19.09 0.0005 

Prate*Psource 1 16 1.18 0.2938 

Limerate*Prate*Psource 1 16 0.63 0.4403 

 

Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar Ca concentration of Lantana 

camara ‘New Gold’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 24.88 0.0001 

Prate 1 16 13.45 0.0021 

Limerate*Prate 1 16 5.56 0.0315 

Psource 1 16 182.49 <.0001 

Limerate*Psource 1 16 7.13 0.0167 

Prate*Psource 1 16 10.47 0.0052 

Limerate*Prate*Psource 1 16 2.81 0.1134 
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Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar Mg concentration of Lantana 

camara ‘New Gold’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 53.25 <.0001 

Prate 1 16 206.53 <.0001 

Limerate*Prate 1 16 3.25 0.0902 

Psource 1 16 95.98 <.0001 

Limerate*Psource 1 16 3.74 0.0709 

Prate*Psource 1 16 2.74 0.1172 

Limerate*Prate*Psource 1 16 18.11 0.0006 

 

Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar Mn concentration of Lantana 

camara ‘New Gold’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 9.28 0.0077 

Prate 1 16 13.00 0.0024 

Limerate*Prate 1 16 3.21 0.0921 

Psource 1 16 443.33 <.0001 

Limerate*Psource 1 16 0.01 0.9115 

Prate*Psource 1 16 0.53 0.4765 

Limerate*Prate*Psource 1 16 12.14 0.0031 

 



131 

 

Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar P concentration of Lantana camara 

‘New Gold’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.20 0.6599 

Prate 1 16 20.85 0.0003 

Limerate*Prate 1 16 1.95 0.1813 

Psource 1 16 77.97 <.0001 

Limerate*Psource 1 16 0.03 0.8666 

Prate*Psource 1 16 1.40 0.2534 

Limerate*Prate*Psource 1 16 4.91 0.0416 

 

Appendix Table 2.6. Type 3 Tests of Fixed Effects for foliar K concentration of Lantana camara 

‘New Gold’. 

Effect Num DF Den DF F Value Pr > F 

Limerate 1 16 0.27 0.6080 

Prate 1 16 2.03 0.1732 

Limerate*Prate 1 16 0.12 0.7328 

Psource 1 16 4.00 0.0627 

Limerate*Psource 1 16 5.03 0.0395 

Prate*Psource 1 16 0.03 0.8617 

Limerate*Prate*Psource 1 16 2.95 0.1051 
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Appendix Table 3.1. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ in 2011. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 14 5 24 1.62 0.1953 

Treatment (PLA:SP) 28 5 24 10.86 <.0001 

Treatment (PLA:SP) 42 5 24 36.45 <.0001 

Treatment (PLA:SP) 56 5 24 35.64 <.0001 

Treatment (PLA:SP) 70 5 24 36.92 <.0001 

Treatment (PLA:SP) Average 5 24 22.94 <.0001 

 

Appendix Table 3.1. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ in 2012. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 14 5 24 31.26 <.0001 

Treatment (PLA:SP) 28 5 24 12.36 0.0002 

Treatment (PLA:SP) 42 5 24 15.45 <.0001 

Treatment (PLA:SP) 56 5 24 13.53 0.0001 

Treatment (PLA:SP) 70 5 24 22.88 <.0001 

Treatment (PLA:SP) Average 5 24 14.22 0.0001 
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Appendix Table 3.2. Type 3 Tests of Fixed Effects for biomass of Lantana camara ‘New Gold’ in 

2011. 

Effect Biomass 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) Shoot 5 24 119.65 <.0001 

Treatment (PLA:SP) Root 5 24 35.52 <.0001 

Treatment (PLA:SP) Shoot:Root 5 24 25.95 <.0001 

 

Appendix Table 3.2. Type 3 Tests of Fixed Effects for biomass of Lantana camara ‘New Gold’ in 

2012. 

Effect Biomass 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) Shoot 5 24 17.58 <.0001 

Treatment (PLA:SP) Root 5 24 3.75 0.0282 

Treatment (PLA:SP) Shoot:Root 5 24 7.08 0.0027 

 

Appendix Table 3.3. Type 3 Tests of Fixed Effects for flower numbers of Lantana camara ‘New 

Gold’ in 2012. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 14 5 24 23.75 <.0001 

Treatment (PLA:SP) 28 5 24 35.28 <.0001 

Treatment (PLA:SP) 42 5 24 168.19 <.0001 

Treatment (PLA:SP) 56 5 24 48.28 <.0001 

Treatment (PLA:SP) 70 5 24 24.48 <.0001 

Treatment (PLA:SP) Total 5 24 227.55 <.0001 
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Appendix Table 3.4. Type 3 Tests of Fixed Effects for foliar nutrient concentrations of Lantana 

camara ‘New Gold’ in 2011. 

Effect Nutrient 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) Ca 5 12 0.98 0.4690 

Treatment (PLA:SP) Mg 5 12 5.66 0.0066 

Treatment (PLA:SP) Mn 5 12 32.38 <.0001 

Treatment (PLA:SP) P 5 12 216.66 <.0001 

Treatment (PLA:SP) K 5 12 11.28 0.0003 

 

Appendix Table 3.4. Type 3 Tests of Fixed Effects for root nutrient concentrations of Lantana 

camara ‘New Gold’ in 2011. 

Effect Nutrient 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) Ca 5 12 38.57 <.0001 

Treatment (PLA:SP) Mg 5 12 4.90 0.0113 

Treatment (PLA:SP) Mn 5 12 13.93 0.0001 

Treatment (PLA:SP) P 5 12 61.61 <.0001 

Treatment (PLA:SP) K 5 12 24.01 <.0001 
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Appendix Table 3.5. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ planted in a simulated landscape in 2012. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 0 5 24 15.65 <.0001 

Treatment (PLA:SP) 7 5 24 7.28 0.0003 

Treatment (PLA:SP) 14 5 24 4.89 0.0032 

Treatment (PLA:SP) 21 5 24 3.27 0.0215 

Treatment (PLA:SP) 28 5 24 4.45 0.0052 

Treatment (PLA:SP) 35 5 24 2.57 0.0534 

Treatment (PLA:SP) 42 5 24 2.47 0.0613 

Treatment (PLA:SP) 49 5 24 2.64 0.0490 

 

Appendix Table 3.6. Type 3 Tests of Fixed Effects for flower counts of Lantana camara ‘New 

Gold’ planted in a simulated landscape in 2012. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 0 5 24 3.45 0.0172 

Treatment (PLA:SP) 7 5 24 9.18 <.0001 

Treatment (PLA:SP) 14 5 24 0.92 0.4868 

Treatment (PLA:SP) 21 5 24 1.45 0.2419 

Treatment (PLA:SP) 28 5 24 2.26 0.0813 
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Appendix Table 3.7. Type 3 Tests of Fixed Effects for foliar nutrient concentrations of Lantana 

camara ‘New Gold’ grown in a simulated landscape in 2012. 

Effect Nutrient 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) Ca 5 12 1.50 0.2603 

Treatment (PLA:SP) Mg 5 12 0.11 0.9873 

Treatment (PLA:SP) Mn 5 12 1.59 0.2366 

Treatment (PLA:SP) P 5 12 2.75 0.0702 

Treatment (PLA:SP) K 5 12 0.47 0.7897 

 

Appendix Table 3.8. Type 3 Tests of Fixed Effects for shoot biomass of Lantana camara ‘New 

Gold’ grown in a simulated landscape in 2012. 

Effect Biomass 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) Shoot 5 24 1.32 0.2876 
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Appendix Table 3.9. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ in 2011. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 0 5 18 75.47 <.0001 

Treatment (PLA:SP) 7 5 17 75.37 <.0001 

Treatment (PLA:SP) 14 5 17 135.84 <.0001 

Treatment (PLA:SP) 21 5 12 223.51 <.0001 

Treatment (PLA:SP) 28 5 12 49.41 <.0001 

Treatment (PLA:SP) 35 5 12 61.45 <.0001 

Treatment (PLA:SP) 42 5 12 20.17 <.0001 

Treatment (PLA:SP) 49 5 12 70.70 <.0001 

Treatment (PLA:SP) 56 5 12 8.53 0.0012 

Treatment (PLA:SP) 63 5 12 21.04 <.0001 

Treatment (PLA:SP) 70 5 12 12.91 0.0002 

Treatment (PLA:SP) 77 5 12 46.27 <.0001 
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Appendix Table 3.9. Type 3 Tests of Fixed Effects for substrate leachate-pH measured from 

Lantana camara ‘New Gold’ in 2012. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 0 5 12 89.38 <.0001 

Treatment (PLA:SP) 7 5 12 116.18 <.0001 

Treatment (PLA:SP) 14 5 12 109.62 <.0001 

Treatment (PLA:SP) 21 5 12 107.64 <.0001 

Treatment (PLA:SP) 28 5 12 96.60 <.0001 

Treatment (PLA:SP) 35 5 12 211.44 <.0001 

Treatment (PLA:SP) 42 5 12 111.91 <.0001 

Treatment (PLA:SP) 49 5 12 27.56 <.0001 

Treatment (PLA:SP) 56 5 12 28.24 <.0001 

Treatment (PLA:SP) 63 5 12 108.94 <.0001 

Treatment (PLA:SP) 70 5 12 49.98 <.0001 

Treatment (PLA:SP) 77 5 12 42.85 <.0001 
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Appendix Table 3.10. Type 3 Tests of Fixed Effects for substrate leachate-EC measured from 

Lantana camara ‘New Gold’ in 2011. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 0 5 18 67.66 <.0001 

Treatment (PLA:SP) 7 5 17 114.31 <.0001 

Treatment (PLA:SP) 14 5 17 25.52 <.0001 

Treatment (PLA:SP) 21 5 12 47.43 <.0001 

Treatment (PLA:SP) 28 5 12 2.36 0.1034 

Treatment (PLA:SP) 35 5 12 5.20 0.0091 

Treatment (PLA:SP) 42 5 11 0.92 0.5028 

Treatment (PLA:SP) 49 5 12 0.91 0.5070 

Treatment (PLA:SP) 56 5 12 1.51 0.2581 

Treatment (PLA:SP) 63 5 12 3.13 0.0487 

Treatment (PLA:SP) 70 5 12 14.15 0.0001 

Treatment (PLA:SP) 77 5 12 16.54 <.0001 
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Appendix Table 3.10. Type 3 Tests of Fixed Effects for substrate leachate-EC measured from 

Lantana camara ‘New Gold’ in 2012. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 0 5 12 82.02 <.0001 

Treatment (PLA:SP) 7 5 12 97.59 <.0001 

Treatment (PLA:SP) 14 5 12 15.42 <.0001 

Treatment (PLA:SP) 21 5 12 18.34 <.0001 

Treatment (PLA:SP) 28 5 12 25.17 <.0001 

Treatment (PLA:SP) 35 5 12 9.51 0.0007 

Treatment (PLA:SP) 42 5 12 1.37 0.3013 

Treatment (PLA:SP) 49 5 12 2.34 0.1052 

Treatment (PLA:SP) 56 5 12 11.37 0.0003 

Treatment (PLA:SP) 63 5 12 14.14 0.0001 

Treatment (PLA:SP) 70 5 12 6.54 0.0037 

Treatment (PLA:SP) 77 5 12 2.30 0.1102 
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Appendix Table 3.11. Type 3 Tests of Fixed Effects for effluent-TP measured from Lantana 

camara ‘New Gold’ grown in a closed system in 2012. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 14 5 12 60.22 <.0001 

Treatment (PLA:SP) 28 5 12 46.11 <.0001 

Treatment (PLA:SP) 42 5 12 22.95 <.0001 

Treatment (PLA:SP) 56 5 12 26.56 <.0001 

Treatment (PLA:SP) 70 5 12 121.37 <.0001 

Treatment (PLA:SP) 84 5 12 128.24 <.0001 

Treatment (PLA:SP) Total 4 10 235.75 <.0001 

 

Appendix Table 3.12. Type 3 Tests of Fixed Effects for phosphorus fate and partitioning measured 

from Lantana camara ‘New Gold’ grown in a closed system in 2012. 

Effect Partition 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) Shoot-P 5 12 37.00 <.0001 

Treatment (PLA:SP) Root-P 5 12 25.31 <.0001 

Treatment (PLA:SP) Total Plant-P 4 10 3.52 0.0485 

Treatment (PLA:SP) Effluent-P 4 10 235.75 <.0001 

Treatment (PLA:SP) Total 

Recovered-P 

4 10 123.55 <.0001 

Treatment (PLA:SP) Percent 

Recovered-P 

4 10 123.55 <.0001 
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Appendix Table 3.13. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ grown in a closed system in 2012. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 14 5 12 19.53 <.0001 

Treatment (PLA:SP) 28 5 12 14.73 <.0001 

Treatment (PLA:SP) 42 5 12 13.58 0.0001 

Treatment (PLA:SP) 56 5 12 11.68 0.0003 

Treatment (PLA:SP) 70 5 12 9.55 0.0007 

Treatment (PLA:SP) 84 5 12 10.59 0.0005 

Treatment (PLA:SP) Average 5 12 10.09 0.0006 

 

Appendix Table 3.14. Type 3 Tests of Fixed Effects for biomass of Lantana camara ‘New Gold’ 

grown in a closed system in 2012. 

Effect Biomass 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) Shoot 5 12 17.58 <.0001 

Treatment (PLA:SP) Root 5 12 3.75 0.0282 

Treatment (PLA:SP) Shoot:Root 5 12 7.08 0.0027 
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Appendix Table 3.15. Type 3 Tests of Fixed Effects for flower numbers of Lantana camara ‘New 

Gold’ grown in a closed system in 2012. 

Effect 

Days After 

Planting 

Num 

DF 

Den 

DF F Value Pr > F 

Treatment (PLA:SP) 14 5 12 13.81 0.0001 

Treatment (PLA:SP) 28 5 12 38.07 <.0001 

Treatment (PLA:SP) 42 5 12 122.73 <.0001 

Treatment (PLA:SP) 56 5 12 82.77 <.0001 

Treatment (PLA:SP) 70 5 12 107.75 <.0001 

Treatment (PLA:SP) 84 5 12 28.76 <.0001 

Treatment (PLA:SP) Total 5 12 192.00 <.0001 

 

Appendix Table 4.1. Type 3 Tests of Fixed Effects for growth index of Verbena canadensis 

‘Homestead Purple’ at 14 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 4.57 0.0483 

Placement 1 16 15.88 0.0011 

Rate*Placement 1 16 1.13 0.3034 

 

Appendix Table 4.1. Type 3 Tests of Fixed Effects for growth index of Verbena canadensis 

‘Homestead Purple’ at 28 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 4.10 0.0599 

Placement 1 16 15.23 0.0013 

Rate*Placement 1 16 2.22 0.1556 
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Appendix Table 4.1. Type 3 Tests of Fixed Effects for growth index of Verbena canadensis 

‘Homestead Purple’ at 42 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 0.41 0.5311 

Placement 1 16 3.33 0.0867 

Rate*Placement 1 16 1.29 0.2723 

 

Appendix Table 4.1. Type 3 Tests of Fixed Effects for average growth index of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 1.51 0.2369 

Placement 1 16 6.81 0.0190 

Rate*Placement 1 16 1.22 0.2862 

 

Appendix Table 4.1. Type 3 Tests of Fixed Effects for growth index of Verbena canadensis 

‘Homestead Purple’ at 14 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 0.12 0.7359 

Placement 1 16 28.61 0.0007 

Rate*Placement 1 16 0.91 0.3672 
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Appendix Table 4.1. Type 3 Tests of Fixed Effects for growth index of Verbena canadensis 

‘Homestead Purple’ at 28 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 3.50 0.0983 

Placement 1 16 1.05 0.3359 

Rate*Placement 1 16 29.55 0.0006 

 

Appendix Table 4.1. Type 3 Tests of Fixed Effects for growth index of Verbena canadensis 

‘Homestead Purple’ at 42 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 24.12 0.0012 

Placement 1 16 0.12 0.7425 

Rate*Placement 1 16 18.26 0.0027 

 

Appendix Table 4.1. Type 3 Tests of Fixed Effects for average growth index of Verbena canadensis 

‘Homestead Purple’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 1.66 0.2335 

Placement 1 16 1.45 0.2625 

Rate*Placement 1 16 4.12 0.0768 
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Appendix Table 4.2. Type 3 Tests of Fixed Effects for shoot dry weight of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 10.81 0.0050 

Placement 1 16 10.81 0.0050 

Rate*Placement 1 16 0.50 0.4918 

 

Appendix Table 4.2. Type 3 Tests of Fixed Effects for root dry weight of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 41.43 0.0002 

Placement 1 16 40.02 0.0002 

Rate*Placement 1 16 13.17 0.0067 

 

Appendix Table 4.2. Type 3 Tests of Fixed Effects for shoot:root dry weight of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 598.81 <.0001 

Placement 1 16 537.86 <.0001 

Rate*Placement 1 16 424.07 <.0001 
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Appendix Table 4.2. Type 3 Tests of Fixed Effects for shoot dry weight of Verbena canadensis 

‘Homestead Purple’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 3.14 0.0953 

Placement 1 16 13.30 0.0022 

Rate*Placement 1 16 11.42 0.0038 

 

Appendix Table 4.2. Type 3 Tests of Fixed Effects for root dry weight of Verbena canadensis 

‘Homestead Purple’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 10.39 0.0122 

Placement 1 16 1.62 0.2393 

Rate*Placement 1 16 0.70 0.4270 

 

Appendix Table 4.2. Type 3 Tests of Fixed Effects for shoot:root dry weight of Verbena canadensis 

‘Homestead Purple’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 11.84 0.0088 

Placement 1 16 0.17 0.6871 

Rate*Placement 1 16 0.45 0.5194 
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Appendix Table 4.3. Type 3 Tests of Fixed Effects for flower count of Verbena canadensis 

‘Homestead Purple’ at 14 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 2.40 0.1599 

Placement 1 8 13.07 0.0068 

Rate*Placement 1 8 17.07 0.0033 

 

Appendix Table 4.3. Type 3 Tests of Fixed Effects for flower count of Verbena canadensis 

‘Homestead Purple’ at 28 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.29 0.6061 

Placement 1 8 2.59 0.1461 

Rate*Placement 1 8 0.03 0.8625 

 

Appendix Table 4.3. Type 3 Tests of Fixed Effects for flower count of Verbena canadensis 

‘Homestead Purple’ at 42 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 1.93 0.2026 

Placement 1 8 8.17 0.0212 

Rate*Placement 1 8 1.93 0.2026 
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Appendix Table 4.3. Type 3 Tests of Fixed Effects for total flower count of Verbena canadensis 

‘Homestead Purple’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 1.19 0.3072 

Placement 1 8 18.47 0.0026 

Rate*Placement 1 8 3.95 0.0819 

 

Appendix Table 4.3. Type 3 Tests of Fixed Effects for total flower count of Verbena canadensis 

‘Homestead Purple’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 1.19 0.3072 

Placement 1 8 18.47 0.0026 

Rate*Placement 1 8 3.95 0.0819 

 

Appendix Table 4.4. Type 3 Tests of Fixed Effects foliar Ca concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 12.08 0.0084 

Placement 1 8 14.29 0.0054 

Rate*Placement 1 8 3.29 0.1073 
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Appendix Table 4.4. Type 3 Tests of Fixed Effects foliar Mg concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 11.12 0.0103 

Placement 1 8 0.87 0.3794 

Rate*Placement 1 8 4.12 0.0768 

 

Appendix Table 4.4. Type 3 Tests of Fixed Effects foliar Mn concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 7.12 0.0285 

Placement 1 8 437.39 <.0001 

Rate*Placement 1 8 0.52 0.4933 

 

Appendix Table 4.4. Type 3 Tests of Fixed Effects foliar P concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 8.55 0.0192 

Placement 1 8 11.58 0.0093 

Rate*Placement 1 8 0.01 0.9343 
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Appendix Table 4.4. Type 3 Tests of Fixed Effects foliar K concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 18.71 0.0025 

Placement 1 8 24.15 0.0012 

Rate*Placement 1 8 0.04 0.8545 

 

Appendix Table 4.5. Type 3 Tests of Fixed Effects root Ca concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.04 0.8522 

Placement 1 8 1.33 0.2828 

Rate*Placement 1 8 0.30 0.6009 

 

 

Appendix Table 4.5. Type 3 Tests of Fixed Effects root Mg concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.61 0.4576 

Placement 1 8 0.46 0.5180 

Rate*Placement 1 8 2.18 0.1779 
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Appendix Table 4.5. Type 3 Tests of Fixed Effects root Mn concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.95 0.3577 

Placement 1 8 28.60 0.0007 

Rate*Placement 1 8 1.41 0.2698 

 

Appendix Table 4.5. Type 3 Tests of Fixed Effects root P concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 8.44 0.0197 

Placement 1 8 14.98 0.0047 

Rate*Placement 1 8 0.26 0.6222 

 

Appendix Table 4.5. Type 3 Tests of Fixed Effects root K concentration of Verbena canadensis 

‘Homestead Purple’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 10.56 0.0117 

Placement 1 8 9.23 0.0161 

Rate*Placement 1 8 0.19 0.6766 
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Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 14 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 4.23 0.0563 

Placement 1 16 2.22 0.1553 

Rate*Placement 1 16 0.31 0.5864 

 

Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 28 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 4.73 0.0450 

Placement 1 16 2.36 0.1438 

Rate*Placement 1 16 1.60 0.2235 

 

Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 42 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 5.06 0.0390 

Placement 1 16 2.35 0.1448 

Rate*Placement 1 16 1.82 0.1960 
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Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 56 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 2.84 0.1113 

Placement 1 16 2.37 0.1431 

Rate*Placement 1 16 0.80 0.3842 

 

Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 70 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 3.17 0.0942 

Placement 1 16 1.38 0.2576 

Rate*Placement 1 16 0.11 0.7456 

 

Appendix Table 4.6. Type 3 Tests of Fixed Effects for average growth index of Lantana camara 

‘New Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 4.49 0.0502 

Placement 1 16 2.46 0.1365 

Rate*Placement 1 16 0.78 0.3892 
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Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 14 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 5.89 0.0415 

Placement 1 16 32.38 0.0005 

Rate*Placement 1 16 5.67 0.0444 

 

Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 28 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 7.00 0.0295 

Placement 1 16 19.06 0.0024 

Rate*Placement 1 16 26.83 0.0008 

 

Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 42 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 0.59 0.4645 

Placement 1 16 6.59 0.0333 

Rate*Placement 1 16 14.57 0.0051 
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Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 56 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 0.00 0.9464 

Placement 1 16 6.94 0.0300 

Rate*Placement 1 16 4.68 0.0625 

 

Appendix Table 4.6. Type 3 Tests of Fixed Effects for growth index of Lantana camara ‘New 

Gold’ at 70 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 0.03 0.8772 

Placement 1 16 7.90 0.0228 

Rate*Placement 1 16 1.68 0.2306 

 

Appendix Table 4.6. Type 3 Tests of Fixed Effects for average growth index of Lantana camara 

‘New Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 0.02 0.8813 

Placement 1 16 3.70 0.0905 

Rate*Placement 1 16 2.07 0.1885 
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Appendix Table 4.7. Type 3 Tests of Fixed Effects for shoot dry weight of Lantana camara ‘New 

Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 1.92 0.1863 

Placement 1 16 6.31 0.0239 

Rate*Placement 1 16 0.82 0.3791 

 

Appendix Table 4.7. Type 3 Tests of Fixed Effects for root dry weight of Lantana camara ‘New 

Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 8.50 0.0194 

Placement 1 16 3.55 0.0962 

Rate*Placement 1 16 0.05 0.8239 

 

Appendix Table 4.7. Type 3 Tests of Fixed Effects for shoot:root dry weight of Lantana camara 

‘New Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 11.66 0.0092 

Placement 1 16 0.56 0.4769 

Rate*Placement 1 16 0.09 0.7686 
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Appendix Table 4.7. Type 3 Tests of Fixed Effects for shoot dry weight of Lantana camara ‘New 

Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 0.60 0.4502 

Placement 1 16 5.26 0.0357 

Rate*Placement 1 16 1.44 0.2481 

 

Appendix Table 4.7. Type 3 Tests of Fixed Effects for root dry weight of Lantana camara ‘New 

Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 1.14 0.3177 

Placement 1 16 6.26 0.0368 

Rate*Placement 1 16 0.00 0.9918 

 

Appendix Table 4.7. Type 3 Tests of Fixed Effects for shoot:root dry weight of Lantana camara 

‘New Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 16 0.11 0.7445 

Placement 1 16 32.96 0.0004 

Rate*Placement 1 16 4.26 0.0728 
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Appendix Table 4.8. Type 3 Tests of Fixed Effects for flower count of Lantana camara ‘New Gold’ 

at 14 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.61 0.4565 

Placement 1 8 0.61 0.4565 

Rate*Placement 1 8 0.82 0.3930 

 

Appendix Table 4.8. Type 3 Tests of Fixed Effects for flower count of Lantana camara ‘New Gold’ 

at 28 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 3.22 0.1104 

Placement 1 8 52.58 <.0001 

Rate*Placement 1 8 13.41 0.0064 

 

Appendix Table 4.8. Type 3 Tests of Fixed Effects for flower count of Lantana camara ‘New Gold’ 

at 42 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.00 1.0000 

Placement 1 8 20.37 0.0020 

Rate*Placement 1 8 0.17 0.6924 
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Appendix Table 4.8. Type 3 Tests of Fixed Effects for flower count of Lantana camara ‘New Gold’ 

at 56 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.32 0.5898 

Placement 1 8 12.24 0.0081 

Rate*Placement 1 8 8.88 0.0176 

 

Appendix Table 4.8. Type 3 Tests of Fixed Effects for flower count of Lantana camara ‘New Gold’ 

at 70 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 7.76 0.0237 

Placement 1 8 13.15 0.0067 

Rate*Placement 1 8 19.03 0.0024 

 

Appendix Table 4.8. Type 3 Tests of Fixed Effects for total flower count of Lantana camara ‘New 

Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.20 0.6697 

Placement 1 8 34.98 0.0004 

Rate*Placement 1 8 13.00 0.0069 
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Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar Ca concentration of Lantana camara ‘New 

Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.34 0.5770 

Placement 1 8 9.82 0.0139 

Rate*Placement 1 8 1.36 0.2763 

 

Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar Mg concentration of Lantana camara 

‘New Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.26 0.6254 

Placement 1 8 0.26 0.6267 

Rate*Placement 1 8 0.08 0.7810 

 

Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar Mn concentration of Lantana camara 

‘New Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 648.70 <.0001 

Placement 1 8 2047.19 <.0001 

Rate*Placement 1 8 1.77 0.2197 
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Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar P concentration of Lantana camara ‘New 

Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 30.18 0.0006 

Placement 1 8 293.73 <.0001 

Rate*Placement 1 8 0.19 0.6781 

 

Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar K concentration of Lantana camara ‘New 

Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 1.19 0.3068 

Placement 1 8 3.05 0.1189 

Rate*Placement 1 8 5.33 0.0498 

 

Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar Ca concentration of Lantana camara ‘New 

Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 3.84 0.0858 

Placement 1 8 141.75 <.0001 

Rate*Placement 1 8 60.84 <.0001 
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Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar Mg concentration of Lantana camara 

‘New Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 9.30 0.0158 

Placement 1 8 78.19 <.0001 

Rate*Placement 1 8 8.63 0.0188 

 

Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar Mn concentration of Lantana camara 

‘New Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 36.56 0.0003 

Placement 1 8 100.51 <.0001 

Rate*Placement 1 8 2.97 0.1230 

 

Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar P concentration of Lantana camara ‘New 

Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 16.64 0.0035 

Placement 1 8 39.18 0.0002 

Rate*Placement 1 8 3.80 0.0870 



164 

 

Appendix Table 4.9. Type 3 Tests of Fixed Effects foliar K concentration of Lantana camara ‘New 

Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.09 0.7742 

Placement 1 8 0.69 0.4298 

Rate*Placement 1 8 0.18 0.6789 

 

Appendix Table 4.10. Type 3 Tests of Fixed Effects root Ca concentration of Lantana camara ‘New 

Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.01 0.9257 

Placement 1 8 2.78 0.1339 

Rate*Placement 1 8 0.06 0.8054 

 

Appendix Table 4.10. Type 3 Tests of Fixed Effects root Mg concentration of Lantana camara 

‘New Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.93 0.3624 

Placement 1 8 1.28 0.2899 

Rate*Placement 1 8 1.50 0.2562 
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Appendix Table 4.10. Type 3 Tests of Fixed Effects root Mn concentration of Lantana camara 

‘New Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 12.30 0.0080 

Placement 1 8 41.64 0.0002 

Rate*Placement 1 8 0.35 0.5704 

 

Appendix Table 4.10. Type 3 Tests of Fixed Effects root P concentration of Lantana camara ‘New 

Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 22.34 0.0015 

Placement 1 8 143.40 <.0001 

Rate*Placement 1 8 1.19 0.3079 

 

Appendix Table 4.10. Type 3 Tests of Fixed Effects root K concentration of Lantana camara ‘New 

Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 8.93 0.0174 

Placement 1 8 1.51 0.2542 

Rate*Placement 1 8 0.08 0.7827 
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Appendix Table 4.11. Type 3 Tests of Fixed Effects of substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 7 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.02 0.8861 

Placement 1 8 16.25 0.0038 

Rate*Placement 1 8 22.76 0.0014 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 14 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.12 0.7403 

Placement 1 8 32.39 0.0005 

Rate*Placement 1 8 2.57 0.1479 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 21 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 1.39 0.2725 

Placement 1 8 20.48 0.0019 

Rate*Placement 1 8 3.74 0.0893 
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Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 28 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.49 0.5019 

Placement 1 8 3.80 0.0870 

Rate*Placement 1 8 6.70 0.0322 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 35 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 11.93 0.0086 

Placement 1 8 10.19 0.0128 

Rate*Placement 1 8 0.93 0.3642 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 42 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 2.59 0.1463 

Placement 1 8 2.23 0.1671 

Rate*Placement 1 8 0.03 0.8658 
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Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 49 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 10.37 0.0122 

Placement 1 8 1.75 0.2226 

Rate*Placement 1 8 0.06 0.8184 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 56 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.00 0.9665 

Placement 1 8 1.88 0.2070 

Rate*Placement 1 8 5.41 0.0484 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 63days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 8.33 0.0203 

Placement 1 8 23.15 0.0013 

Rate*Placement 1 8 9.41 0.0154 



169 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on average substrate leachate-pH measured 

from Lantana camara ‘New Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 3.06 0.1186 

Placement 1 8 21.72 0.0016 

Rate*Placement 1 8 8.76 0.0181 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 7 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 2.43 0.1574 

Placement 1 8 14.27 0.0054 

Rate*Placement 1 8 27.89 0.0007 
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Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 14 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.19 0.6717 

Placement 1 8 34.05 0.0004 

Rate*Placement 1 8 30.71 0.0005 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 21 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 13.50 0.0063 

Placement 1 8 68.01 <.0001 

Rate*Placement 1 8 5.61 0.0454 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 28 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 28.47 0.0007 

Placement 1 8 52.94 <.0001 

Rate*Placement 1 8 1.36 0.2779 
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Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 35 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 7.37 0.0265 

Placement 1 8 72.53 <.0001 

Rate*Placement 1 8 2.10 0.1850 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 42 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.91 0.3689 

Placement 1 8 40.67 0.0002 

Rate*Placement 1 8 8.16 0.0213 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 49 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 45.07 0.0002 

Placement 1 8 7.77 0.0236 

Rate*Placement 1 8 53.77 <.0001 
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Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 56 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 28.90 0.0007 

Placement 1 8 88.52 <.0001 

Rate*Placement 1 8 0.00 1.0000 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on substrate leachate-pH measured from 

Lantana camara ‘New Gold’ at 63 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 35.36 0.0003 

Placement 1 8 93.74 <.0001 

Rate*Placement 1 8 17.45 0.0031 

 

Appendix Table 4.11. Type 3 Tests of Fixed Effects on average substrate leachate-pH measured 

from Lantana camara ‘New Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 4.89 0.0580 

Placement 1 8 24.46 0.0011 

Rate*Placement 1 8 0.31 0.5902 
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Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 7 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 48.55 0.0001 

Placement 1 8 11.69 0.0091 

Rate*Placement 1 8 0.06 0.8139 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 14 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 68.52 <.0001 

Placement 1 8 47.86 0.0001 

Rate*Placement 1 8 3.87 0.0848 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 21 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 49.79 0.0001 

Placement 1 8 41.42 0.0002 

Rate*Placement 1 8 5.59 0.0456 



174 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 28 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 48.53 0.0001 

Placement 1 8 42.79 0.0002 

Rate*Placement 1 8 9.03 0.0169 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 35 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 3.63 0.0934 

Placement 1 8 22.72 0.0014 

Rate*Placement 1 8 0.02 0.9021 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 42 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 11.69 0.0091 

Placement 1 8 68.16 <.0001 

Rate*Placement 1 8 0.03 0.8602 
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Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 49 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.01 0.9092 

Placement 1 8 3.11 0.1156 

Rate*Placement 1 8 3.81 0.0866 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 56 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 3.04 0.1192 

Placement 1 8 0.06 0.8095 

Rate*Placement 1 8 0.50 0.5001 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 63 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 4.54 0.0656 

Placement 1 8 0.37 0.5614 

Rate*Placement 1 8 0.18 0.6811 
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Appendix Table 4.12. Type 3 Tests of Fixed Effects on average substrate leachate-EC measured 

from Lantana camara ‘New Gold’ in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 8.73 0.0183 

Placement 1 8 8.98 0.0172 

Rate*Placement 1 8 0.19 0.6746 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 7 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 93.94 <.0001 

Placement 1 8 8.67 0.0186 

Rate*Placement 1 8 12.49 0.0077 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 14 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 27.69 0.0008 

Placement 1 8 19.74 0.0022 

Rate*Placement 1 8 5.84 0.0421 
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Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 21 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 115.88 <.0001 

Placement 1 8 127.43 <.0001 

Rate*Placement 1 8 3.02 0.1203 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 28 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 81.24 <.0001 

Placement 1 8 34.05 0.0004 

Rate*Placement 1 8 0.94 0.3612 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 35 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 31.10 0.0005 

Placement 1 8 40.48 0.0002 

Rate*Placement 1 8 0.10 0.7576 
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Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 42 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 16.50 0.0036 

Placement 1 8 99.28 <.0001 

Rate*Placement 1 8 0.07 0.7934 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 49 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 23.89 0.0012 

Placement 1 8 76.26 <.0001 

Rate*Placement 1 8 2.04 0.1911 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 56 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 13.50 0.0063 

Placement 1 8 58.92 <.0001 

Rate*Placement 1 8 2.14 0.1815 
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Appendix Table 4.12. Type 3 Tests of Fixed Effects on substrate leachate-EC measured from 

Lantana camara ‘New Gold’ at 63 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 13.58 0.0062 

Placement 1 8 20.41 0.0020 

Rate*Placement 1 8 0.08 0.7804 

 

Appendix Table 4.12. Type 3 Tests of Fixed Effects on average substrate leachate-EC measured 

from Lantana camara ‘New Gold’ in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 12.29 0.0080 

Placement 1 8 13.85 0.0059 

Rate*Placement 1 8 0.24 0.6345 

 

Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 7 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.18 0.6854 

Placement 1 8 189.52 <.0001 

Rate*Placement 1 8 0.14 0.7137 
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Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 14 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 2.26 0.1709 

Placement 1 8 357.54 <.0001 

Rate*Placement 1 8 1.03 0.3391 

 

Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 21 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 32.49 0.0005 

Placement 1 8 575.08 <.0001 

Rate*Placement 1 8 25.07 0.0010 

 

Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 28 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 11.57 0.0093 

Placement 1 8 90.57 <.0001 

Rate*Placement 1 8 5.35 0.0495 
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Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 35 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 104.87 <.0001 

Placement 1 8 289.13 <.0001 

Rate*Placement 1 8 10.56 0.0117 

 

Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 42 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 37.73 0.0003 

Placement 1 8 72.52 <.0001 

Rate*Placement 1 8 5.09 0.0540 

 

Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 49 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 12.63 0.0075 

Placement 1 8 35.47 0.0003 

Rate*Placement 1 8 1.43 0.2653 
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Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 56 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 20.08 0.0021 

Placement 1 8 28.32 0.0007 

Rate*Placement 1 8 11.66 0.0092 

 

Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 63 days after potting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 4.19 0.0747 

Placement 1 8 12.10 0.0083 

Rate*Placement 1 8 1.12 0.3204 

 

Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 70 days after planting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 0.01 0.9372 

Placement 1 8 1.08 0.3299 

Rate*Placement 1 8 1.28 0.2900 
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Appendix Table 4.13. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 70 days after planting in 2011. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 12.12 0.0083 

Placement 1 8 109.22 <.0001 

Rate*Placement 1 8 3.10 0.1163 
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Appendix Table 4.14. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 7 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 11.11 0.0103 

Placement 1 8 2403.46 <.0001 

Rate*Placement 1 8 14.64 0.0050 

 

Appendix Table 4.14. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 14 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 6.40 0.0352 

Placement 1 8 405.49 <.0001 

Rate*Placement 1 8 0.05 0.8218 

 

Appendix Table 4.14. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 28 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 9.63 0.0146 

Placement 1 8 343.36 <.0001 

Rate*Placement 1 8 3.75 0.0887 
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Appendix Table 4.14. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 42 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 7.06 0.0290 

Placement 1 8 43.85 0.0002 

Rate*Placement 1 8 4.13 0.0766 

 

Appendix Table 4.14. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 56 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 7.00 0.0295 

Placement 1 8 50.10 0.0001 

Rate*Placement 1 8 0.17 0.6923 

 

Appendix Table 4.14. Type 3 Tests of Fixed Effects on substrate leachate-DRP measured from 

Lantana camara ‘New Gold’ at 70 days after potting in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 9.71 0.0143 

Placement 1 8 14.98 0.0047 

Rate*Placement 1 8 0.31 0.5943 
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Appendix Table 4.14. Type 3 Tests of Fixed Effects on average substrate leachate-DRP measured 

from Lantana camara ‘New Gold’ at in 2012. 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Rate 1 8 2.89 0.1275 

Placement 1 8 68.80 <.0001 

Rate*Placement 1 8 0.59 0.4638 
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