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Abstract 

 Four studies were conducted at the LSU AgCenter Rice Research Station 

near Crowley, Louisiana to evaluate the effects of simulated herbicide drift 

on ‘Cocodrie’ rice.  Herbicides were applied at 6.3 and 12.5% of the labeled 

usage rate of 863 g ae/ha of glyphosate, 70 g ai/ha of imazethapyr, 493 g 

ai/ha of glufosinate, and 44 g ai/ha of imazamox.  Herbicides were applied to 

rice at the 1-tiller, panicle differentiation (PD), boot, and physiological 

maturity growth stages.  Spray volume varied proportionally to herbicide 

dosage and was 15 L/ha for the 6.3% rate and 29 L/ha for the 12.5% rate using 

234 L/ha as the target spray volume and were applied with a tractor-mounted 

CO2-pressurized sprayer. 

 Glyphosate reduced plant height and primary and total crop yield, with 

the greatest reduction in primary crop yield resulting from glyphosate 

applied at boot.  Primary crop rice seed germination was reduced by 

glyphosate.  Glyphosate reduced ratoon crop rice seed weight; however, ratoon 

crop seed germination was not reduced. 

 Imazethapyr reduced plant height and primary and total crop yield, with 

the greatest reduction in primary crop yield resulting from imazethapyr 

applied at boot.  Primary crop rice seed weight was reduced by imazethapyr 

applied at boot.  Primary crop rice seed germination was reduced by 

imazethapyr.  Ratoon crop rice seed germination was reduced by imazethapyr 

applied at PD. 

 Glufosinate reduced rice plant height and, when applied at boot, 

reduced primary and total crop yield.  Primary crop rice seed germination and 

primary crop seedling vigor were reduced by glufosinate. 

 Imazamox reduced plant height and primary and total crop yield with the 

greatest reduction in yield observed from rice treated at boot.  Primary crop 

rice seed germination was reduced by imazamox.  Primary crop seedling vigor 
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was reduced with imazamox applied at boot.  Ratoon crop rice seed weight and 

germination was not affected by imazamox. 

 Simulated glyphosate, imazethapyr, glufosinate, and imazamox drift 

applications did not affect rice when applied at maturity.  The greatest 

reduction in primary crop yield was observed when glyphosate, imazethapyr, 

glufosinate, and imazamox were applied to rice at boot and they all reduced 

primary crop rice seed germination.
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Chapter 1 

Literature Review 

Rice (Oryza sativa L.) is a major crop produced in the four state 

region of Arkansas, Louisiana, Mississippi, and Texas, with these states 

accounting for 76% of the 1.2 million total hectares of rice planted in the 

U.S. and 70% of the $3.4 billion of total value of rice produced in the U.S. 

in 2008 (NASSa 2009; NASSb 2009).  Louisiana planted approximately 184,160 

hectares of rice in 2008 with approximately 59% planted in imidazolinone-

resistant rice cultivars and hybrids (LSUA 2009).  That same year, 

approximately 98% of Louisiana’s 424,920 hectares of soybean [Glycine max 

(L.) Merr.] were planted in glyphosate-resistant soybean cultivars and, in 

2009, glufosinate-resistant soybean cultivars became available to commercial 

soybean producers in Louisiana (Ronald J. Levy, Jr.1, personal communication). 

Averaged over the ten year period 1999 to 2008, the Louisiana 

Department of Agriculture and Forestry (LDAF) processed 76 Pesticide 

Investigation Reports per year listing ground or aerial applicators in 

Louisiana, and, on average, six reports per year involved rice (Lisa 

Gautreaux2, personal communication).  However, it was reported that, in 2009, 

at least 50 rice fields were suspected of being affected by glyphosate drift 

and at least 25 rice fields were suspected of being affected by imazethapyr 

drift, many of which were not reported to the LDAF (Ronald J. Levy, Jr.1, 

personal communication; John K. Saichuk3, personal communication).  Therefore, 

the number of rice fields actually affected by a drift event each year may be 

underrepresented by the number of official complaints processed by the LDAF.  

                                                 
   1 Ronald J. Levy, Jr., Louisiana State University AgCenter Soybean, Corn, 
and Grain Sorghum Specialist, 8208 Tom Bowman Dr., Alexandria, LA 71302. 
   2 Lisa Gautreaux, Pesticide and Environmental Programs Administrative 
Coordinator, Louisiana Department of Agriculture and Forestry, 5825 Florida 
Blvd., Baton Rouge, LA 70806. 
   3 John K. Saichuk, Louisiana State University AgCenter Rice Specialist, 
1373 Caffey Rd., Rayne, LA 70578. 
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Since many of the rice producing parishes in Louisiana also produce 

glyphosate-resistant corn (Zea mays L.), cotton (Gossypium hirsutum L.) and 

soybean, glufosinate-resistant corn, cotton, and soybean, and imidazolinone-

resistant rice, the potential exists for off-target drift from these crops to 

rice (LSUA 2009; NASSc 2009). 

It has been reported that fine spray droplets less than 150 µm in size 

have a greater potential to drift off-target (Hanks 1995; SDTF 1997).  The 

use of adjuvants and selection of proper spray nozzle type, size, and 

application pressure can be beneficial in reducing the amount of fine spray 

droplets in the spray cloud (Hanks 1995; Jones et al. 2007; Nuyttens et al. 

2007; VanGessel and Johnson 2005).  This increase in droplet size can reduce 

the potential for off-target drift from droplets larger than 150 µm; however, 

environmental conditions at the time of herbicide application can also impact 

the off-target drift of spray solutions (Bouse et al. 1976; Crabbe et al. 

1994; Thistle 2004). 

Wind speed and direction may be considered the two most important 

factors affecting spray droplets in the atmosphere, a stable atmosphere may 

be the third most important factor (Thistle 2004).  A stable atmosphere, 

commonly referred to as an inversion, is an atmosphere that has a change of 

temperature with a change in elevation in the atmosphere.  In a stable 

atmosphere, warm air overlies cool air.  If air in a particular layer is 

displaced upward or downward it will be colder or warmer, respectfully, than 

the immediately adjacent layer it enters and thus return to its layer of 

origin.  If a herbicide application is made during an inversion scenario, the 

fine droplets that do not succumb to gravity will remain in the air layer in 

which they are applied due to the lack of layers mixing.  The droplets in 

this layer can be very concentrated and horizontally may move off-target 

great distances.   
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Ultra-low-volume applications made during a stable atmosphere produced 

35% more herbicide drift than applications made during turbulent atmosphere 

with light wind speeds (Crabbe et al. 1994).  The conditions in which the 

greatest drift occurred were in moderately stable conditions with wind at 3 

m/s resulting in off-target drift 71% at 400 m and 50% at 2200 m from the 

application site and in slightly stable conditions with wind at 5 m/s 

resulting in off-target drift 77% at 400 m and 27% at 2200 m from the 

application site.  It is recommended that herbicide applications should be 

avoided during the early morning and late evening as these times are most 

favorable for the development of inversion conditions (Crabbe et al. 1994; 

Thistle 2004). 

Through the use of simulated herbicide drift studies, the potential 

effects of herbicide drift to rice can be evaluated.  In previous research, 

simulated drift studies varying the spray volume proportionally with reduced 

herbicide rates to simulate herbicide drift have resulted in increased crop 

injury compared with the same lower herbicide rates at a constant high spray 

volume (Banks and Schroeder 2002; Ellis et al. 2002; Ramsdale et al. 2003; 

Roider et al. 2008).  Banks and Schroeder (2002) reported varying spray 

volume proportionally with herbicide dosage, thus maintaining constant 

herbicide concentration in the spray, would change the response of sweet corn 

to glyphosate when compared with a constant spray volume where herbicide rate 

would vary and be more dilute in the carrier.  The no-effect glyphosate rate 

for sweet corn was 0.046 kg ae/ha when using a spray volume proportional to 

the reduced glyphosate rate; however, the no-effect glyphosate rate was four 

times greater when glyphosate was applied in a constant spray volume.  Ellis 

et al. (2002) reported glyphosate applied to corn at 12.5 and 6.3% of the 

labeled use rate in a proportional spray volume and a constant spray volume 

produced results similar to those observed by Banks and Schroeder (2002).  
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The use of a constant spray volume in drift research may underestimate the 

effects of off-target drift to susceptible crops. 

 Glyphosate is a nonselective, foliar applied, postemergence herbicide 

used to control annual and perennial weeds in preplant burndown applications 

and for weed control in glyphosate-resistant crops (Senseman 2007c).  The use 

of glyphosate has greatly increased with the introduction and extensive 

acceptance of glyphosate-resistant canola (Brassica napus L.), cotton 

(Gossypium hirsutum L.), corn, and soybean (Shaner 2000). 

The mechanism of action of glyphosate is the inhibition of 5-

enolpyruvylshikimate-3-phosphate (EPSP) synthase (EC 2.5.1.19) which produces 

EPSP from shikimate-3-phosphate and phosphoenolpyruvate in the shikimic acid 

pathway (Amrhein et al. 1980; Amrhein et al. 1983; Boocock and Coggins 1983; 

Herrmann and Weaver 1999; Hollander-Czytko and Amrhein 1987; Jakeman et al. 

1998; Schonbrunn et al. 2001; Senseman 2007c).  The inhibition of EPSP 

synthase is accomplished by glyphosate competing with phosphoenolpyruvate to 

bind with the shikimate-3-phosphate:EPSP synthase complex to form EPSP 

(Amrhein et al. 1980; Boocock and Coggins 1983; Herrmann and Weaver 1999; 

Jaworski 1972; Rubin et al. 1982; Schonbrunn et al. 2001).  This outcompeting 

of phosphoenolpyruvate inhibits the formation of EPSP, which in turn inhibits 

the formation of the aromatic amino acids tryptophan, tyrosine, and 

phenylalanine which are needed for protein synthesis. 

The symptoms expressed in plants from the inhibition of EPSP synthase 

are that growth is inhibited soon after application followed by general 

foliar chlorosis and necrosis within 4 to 7 days in highly susceptible 

species (Senseman 2007c).  Visual symptoms occur within 10 to 20 days for 

less susceptible species, appearing first and most pronounced in immature 

leaves and growing points in the form of chlorosis.  Also, regrowth of 

treated perennial and woody species often appears deformed and multiple 

shoots may develop at the nodes. 
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Simulated drift applications of glyphosate applied to rice at the two- 

to three-leaf and panicle differentiation growth stages reduced rice yield 67 

to 99% and 29 to 54%, respectively (Ellis et al. 2003).  Kurtz and Street 

(2003) reduced rice yield with simulated glyphosate drift applied to rice at 

mid-tiller, panicle initiation, and boot growth stages.  Applications of 

glyphosate to red rice (Oryza sativa L.) in the two- to three-tiller, boot, 

and bloom growth stages reduced red rice seed germination, regardless of 

timing (Brommer et al. 1998).  The use of glyphosate as a preharvest 

desiccant in grain sorghum [Sorghum bicolor (L.) Moench.] reduced grain 

sorghum seed germination (Baur et al. 1977).   

 In 1993, imidazolinone-resistant rice was developed and exhibited 

tolerance to the imidazolinone class of herbicides (Croughan 1994; Pellerin 

et al. 2004; Webster and Masson 2001). Imazethapyr and imazamox are selective 

imidazolinone herbicides used to control annual and perennial weeds in 

soybean, edible legumes, and imidazolinone-resistant crops (Senseman 2007a, 

2007b). 

The mechanism of action for imazethapyr and imazamox is inhibition of 

acetolactase synthase (ALS) (EC 4.1.3.18) also called acetohydroxyacid 

synthase (AHAS), a key enzyme in the biosynthesis of the branched-chain amino 

acids isoleucine, leucine, and valine (Muhitch et al. 1987; Senseman 2007a, 

2007b; Shaner 1991; Shaner et al. 1984; Stidham 1991; Stidham and Singh 

1991).  Plant death results from events occurring in response to ALS 

inhibition, specifically the inhibition of isoleucine, leucine and valine, 

but the actual sequence of phytotoxic processes is unclear (Shaner 1991; 

Stidham and Singh 1991).  Some secondary effects may include disruption of 

photosynthate translocation, hormone imbalance due to interruption of 

source/sink relationships, and interference in DNA synthesis and cell growth. 

The symptoms expressed from this toxicity are growth inhibition within 

a few hours of herbicide application and meristematic areas becoming 
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chlorotic, followed by a slow general foliar chlorosis and necrosis (Shaner 

1991).  This injury to meristematic areas can be attributed to inhibition of 

branched-chain amino acids in the meristematic region.  Even though plants 

have the ability to scavenge amino acids from pre-existing proteins, the 

meristematic region lacks the protein reserve pools that are available in the 

mature regions of the plant.  Injury symptoms usually appear within 7 to 14 d 

for susceptible species. 

A simulated drift application of the commercial herbicide premix of 

imazethapyr plus imazapyr affected rice plant height and yield; however, 

simulated drift of the imazethapyr plus imazapyr premix did not affect yield 

when applied to corn (Bond et al. 2006).  Al-Khatib et al. (2003) reported 

imazethapyr applied at various times within 30 d of planting resulted in 

reduced grain sorghum yield.  Deeds et al. (2006) reported imazamox applied 

to wheat (Triticum aestivum L.) at the flowering and jointing growth stages 

at 33% of the labeled use rate reduced wheat yield more than 90%.  

Applications of imazethapyr to red rice in the two to three-tiller, boot, and 

bloom growth stages reduced red rice seed germination, regardless of timing 

(Brommer et al. 1998).  Simulated imazamox drift applications applied to 

wheat at the jointing and flowering growth stages had no effect on wheat seed 

germination (Deeds et al. 2006).     

 Glufosinate is a nonselective, foliar applied, postemergence herbicide 

used to control annual and perennial weeds in non-crop areas and for weed 

control in glufosinate-resistant crops (Senseman 2007d).  The mechanism of 

action of glufosinate is the inhibition of the enzyme glutamine synthetase 

(EC 6.3.1.2) that converts glutamate and ammonia to glutamine (Lea et al. 

1984; Senseman 2007d).  This inhibition of glutamine synthetase results in a 

toxic accumulation of ammonia in treated plants and inhibition of 

photosystems I and II (Sauer et al. 1987; Senseman 2007d; Tachibana et al. 

1986; Wild et al. 1987). 
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 The symptoms expressed in plants from the inhibition of glutamine 

synthase are chlorosis and wilting within 3 to 5 d followed by necrosis in 7 

to 14 d after application to susceptible species (Senseman 2007d).  The rate 

of symptom development is increased in bright sunlight, high humidity, and 

moist soil. 

 Glufosinate applied to rice at a simulated drift rate of 53 g/ha 

reduced rice yield 30% (Ellis et al. 2003).  When glufosinate was applied to 

grain sorghum at 1, 3, 10, and 33% of its labeled use rate only the 10 and 

33% rates resulted in reduced grain sorghum yield (Al-Khatib et al. 2003).  

Rice seed germination was reduced by simulated glufosinate drift when 

evaluated at 16 C (Ellis et al. 2003).  Glufosinate applied for preharvest 

desiccation of grain sorghum did not effect grain sorghum seed germination 

(Bovey et al. 1999).  Bennett and Shaw (2000) found that glufosinate applied 

preharvest in soybean reduced seed germination of sicklepod (Senna 

obtusifolia (L) Irwin and Barnaby) and pitted morningglory (Ipomoea lacunosa 

L.). 

 A need exists to evaluate the effects of a glufosinate, glyphosate, 

imazamox, or imazethapyr drift event on rice.  The objectives of this 

research were to evaluate the effects of simulated drift of these herbicides 

applied to rice during the primary rice crop on the crop response and impact 

on the seed produced on treated rice in the primary and ratoon rice crops. 
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 Chapter 2 

Response of Rice to Glyphosate Drift 

Introduction 

 Glyphosate is a nonselective, foliar applied, postemergence herbicide 

used to control annual and perennial weeds in preplant burndown applications 

and for weed control in glyphosate-resistant crops (Senseman 2007).  The use 

of glyphosate has greatly increased with the introduction and extensive 

acceptance of glyphosate-resistant canola (Brassica napus L.), cotton 

(Gossypium hirsutum L.), corn (Zea mays L.), and soybean [Glycine max (L.) 

Merr.] (Shaner 2000).   

The mechanism of action of glyphosate is the inhibition of 5-

enolpyruvylshikimate-3-phosphate (EPSP) synthase (EC 2.5.1.19) which produces 

EPSP from shikimate-3-phosphate and phosphoenolpyruvate in the shikimic acid 

pathway (Amrhein et al. 1980; Amrhein et al. 1983; Boocock and Coggins 1983; 

Herrmann and Weaver 1999; Hollander-Czytko and Amrhein 1987; Jakeman et al. 

1998; Schonbrunn et al. 2001; Senseman 2007).  The inhibition of EPSP 

synthase is accomplished by glyphosate competing with phosphoenolpyruvate to 

bind with the shikimate-3-phosphate:EPSP synthase complex to form EPSP 

(Amrhein et al. 1980; Boocock and Coggins 1983; Herrmann and Weaver 1999; 

Jaworski 1972; Rubin et al. 1982; Schonbrunn et al. 2001).  This outcompeting 

of phosphoenolpyruvate inhibits the formation of EPSP, which in turn inhibits 

the formation of the aromatic amino acids tryptophan, tyrosine, and 

phenylalanine which are needed for protein synthesis. 

The symptoms expressed in plants from the inhibition of EPSP synthase 

are that growth is inhibited soon after application followed by general 

foliar chlorosis and necrosis within 4 to 7 days in highly susceptible 

species (Senseman 2007).  Visual symptoms occur within 10 to 20 days for less 

susceptible species, appearing first and most pronounced in immature leaves 

and growing points in the form of chlorosis.  Also, regrowth of treated 
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perennial and woody species often appears deformed and multiple shoots may 

develop at the nodes.  

Rice (Oryza sativa L.) is a major crop produced in the four state 

region of Arkansas, Louisiana, Mississippi, and Texas, with these states 

accounting for 76% of the 1.2 million total hectares of rice planted in the 

U.S. and 70% of the $3.4 billion of total value of rice produced in the U.S. 

in 2008 (NASSa 2009; NASSb 2009).  That same year, approximately 98% of 

Louisiana’s 424,920 hectares of soybean were planted in glyphosate-resistant 

soybean cultivars (Ronald J. Levy, Jr.1, personal communication).  Since many 

of the rice producing parishes in Louisiana also produce glyphosate-resistant 

soybean, corn, and cotton (NASSc 2009), the potential exists for off-target 

herbicide drift from one of these crops to rice. 

In 2003 to 2005, glyphosate ranked second among herbicides listed in 

all Pesticide Investigation Reports processed by the Louisiana Department of 

Agriculture and Forestry (LDAF) and was the most listed herbicide in reports 

processed in 2006 to 2008 (Lisa Gautreaux2, personal communication).  Averaged 

over the ten year period 1999 to 2008, the LDAF processed 76 Pesticide 

Investigation Reports per year listing ground or aerial applicators in 

Louisiana, and, on average, six reports per year involved rice.  However, it 

was reported that, in 2009, at least 50 rice fields were suspected of being 

affected by glyphosate drift and at least 25 rice fields were suspected of 

being affected by imazethapyr drift, many of which were not reported to the 

LDAF (Ronald J. Levy, Jr.1, personal communication; John K. Saichuk3, personal 

communication).  Therefore, the number of rice fields actually affected by a 

                                                 
   1 Ronald J. Levy, Jr., Louisiana State University AgCenter Soybean, Corn, 
and Grain Sorghum Specialist, 8208 Tom Bowman Dr., Alexandria, LA 71302. 
   2 Lisa Gautreaux, Pesticide and Environmental Programs Administrative 
Coordinator, Louisiana Department of Agriculture and Forestry, 5825 Florida 
Blvd., Baton Rouge, LA 70806. 
   3 John K. Saichuk, Louisiana State University AgCenter Rice Specialist, 
1373 Caffey Rd., Rayne, LA 70578. 
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drift event each year may be underrepresented by the number of official 

complaints processed by the LDAF. 

It has been reported that fine spray droplets less than 150 µm in size 

have a greater potential to drift off-target (Hanks 1995; SDTF 1997).  The 

use of adjuvants and selection of proper spray nozzle type, size, and 

application pressure can be beneficial in reducing the amount of fine spray 

droplets in the spray cloud (Hanks 1995; Jones et al. 2007; Nuyttens et al. 

2007; VanGessel and Johnson 2005).  This increase in droplet size can reduce 

the potential for off-target drift from droplets larger than 150 µm; however, 

environmental conditions at the time of herbicide application can also impact 

the off-target drift of spray solutions (Bouse et al. 1976; Crabbe et al. 

1994; Thistle 2004). 

Wind speed and direction may be considered the two most important 

factors affecting spray droplets in the atmosphere, a stable atmosphere may 

be the third most important factor (Thistle 2004).  A stable atmosphere, 

commonly referred to as an inversion, is an atmosphere that has a change of 

temperature with a change in elevation in the atmosphere.  In a stable 

atmosphere, warm air overlies cool air.  If air in a particular layer is 

displaced upward or downward it will be colder or warmer, respectfully, than 

the immediately adjacent layer it enters and thus return to its layer of 

origin.  If a herbicide application is made during an inversion scenario, the 

fine droplets that do not succumb to gravity will remain in the air layer in 

which they are applied due to the lack of layers mixing.  The droplets in 

this layer can be very concentrated and horizontally may move off-target 

great distances. 

Ultra-low-volume applications made during a stable atmosphere produced 

35% more herbicide drift than applications made during turbulent atmosphere 

with light wind speeds (Crabbe et al. 1994).  The conditions in which the 

greatest drift occurred were in moderately stable conditions with wind at 3 
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m/s resulting in off-target drift 71% at 400 m and 50% at 2200 m from the 

application site and in slightly stable conditions with wind at 5 m/s 

resulting in off-target drift 77% at 400 m and 27% at 2200 m from the 

application site.  It is recommended that herbicide applications should be 

avoided during the early morning and late evening as these times are most 

favorable for the development of inversion conditions (Crabbe et al. 1994; 

Thistle 2004). 

Through the use of simulated herbicide drift studies, the potential 

effects of glyphosate drift to rice can be evaluated.  In previous research, 

simulated drift studies varying the spray volume proportionally with reduced 

herbicide rates to simulate herbicide drift resulted in increased crop injury 

compared with the same herbicide rate applied in a constant spray volume 

(Banks and Schroeder 2002; Ellis et al. 2002; Ramsdale et al. 2003; Roider et 

al. 2008).  Banks and Schroeder (2002) reported varying spray volume 

proportionally with herbicide dosage, thus maintaining constant herbicide 

concentration in the spray, would change the response of sweet corn to 

glyphosate when compared with a constant spray volume where herbicide rate 

would vary and be more dilute in the carrier.  The no-effect glyphosate rate 

for sweet corn was 0.046 kg ae/ha when using a spray volume proportional to 

the reduced glyphosate rate; however, the no-effect glyphosate rate was four 

times greater when glyphosate was applied in a constant spray volume.  Ellis 

et al. (2002) reported glyphosate applied to corn at 12.5 and 6.3% of the 

labeled use rate in a proportional spray volume and a constant spray volume 

produced results similar to those observed by Banks and Schroeder (2002).  

The use of a constant spray volume in drift research may underestimate the 

effects of off-target drift to susceptible crops. 

Simulated drift applications of glyphosate applied to rice at the two- 

to three-leaf and panicle differentiation growth stages in a constant spray 

volume reduced rice yield 67 to 99% and 29 to 54%, respectively (Ellis et al. 
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2003).  Kurtz and Street (2003) reduced rice yield with simulated glyphosate 

drift applied to rice at mid-tiller, panicle initiation, and boot growth 

stages.   

 Some studies evaluating the effects of glyphosate on seed weight, 

germination, and viability have been conducted.  Brommer et al. (1998) 

reported applications of glyphosate and imazethapyr to red rice (Oryza sativa 

L.) reduced red rice seed germination, regardless of timing.  The use of 

glyphosate as a preharvest desiccant in grain sorghum [Sorghum bicolor (L.) 

Moench.] reduced grain sorghum seed germination when planted after treatment 

(Baur et al. 1977).  Glyphosate applied during reproductive growth stages to 

giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti 

Medik.) resulted in reduced seed germination of both species (Biniak and 

Aldrich 1986).  Roider et al. (2007) reported glyphosate applied to wheat at 

first node, boot, and early flowering growth stages resulted in 16 to 36 

percent reductions in seed weight.  A need exists to evaluate the possible 

effects of a glyphosate drift event on rice crop seed germination and 

seedling vigor. 

 Even though published studies evaluating the effects of simulated 

glyphosate drift on rice exist (Ellis et al. 2003; Koger et al. 2005; Kurtz 

and Street 2003), none of these studies were conducted using spray volumes 

that vary proportionally with reduced herbicide dosage.  The objectives of 

this research were to evaluate the effects of simulated glyphosate drift 

applied to rice during the primary rice crop on the crop response and impact 

on the seed produced on treated rice in the primary and ratoon rice crops. 

Materials and Methods 

Simulated Glyphosate Drift Field Study.  A study was conducted on rice grown 

in 2005 through 2007 at the LSU AgCenter Rice Research Station near Crowley, 

Louisiana on a Crowley silt loam (fine montmorillonitic, thermic Typic 

Albaqualf) with pH 5.5 and 1.2% organic matter.  Field preparation consisted 
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of a fall and spring disking and two passes in opposite directions with a 

two-way bed conditioner equipped with rolling baskets and S-tine harrows 15 

cm deep.  The long grain rice cultivar ‘Cocodrie’ was drill-seeded March 28 

to April 17 in 2005 through 2007.  Plots consisted of twelve-18 cm spaced 

rows 6 m long. 

 The experimental design was an augmented two-factor factorial 

arrangement of treatments in a randomized complete block with four 

replications.  Factor A consisted of glyphosate applied at simulated drift 

rates of 6.3 and 12.5% of the labeled usage rate of 863 g ae/ha, or 54 and 

108 g/ha, respectively.  Factor B consisted of application timings at 

different growth stages: one-tiller, panicle differentiation (PD), boot, and 

physiological maturity.  Each herbicide application was made with the spray 

volume varying proportionally to herbicide dosage based on a constant spray 

volume of 234 L/ha.  The 12.5% herbicide rate was applied at a spray volume 

of 29 L/ha and the 6.3% herbicide rate was applied at a spray volume of 15 

L/ha.  Each application was made with a tractor-mounted CO2-pressurized 

sprayer calibrated to deliver a constant carrier volume with speed adjusted 

to vary application rate and equipped with Teejet®4 TX-2 Conejet® 800033 

nozzles.  A ratoon rice crop was not produced in 2006 due to unfavorable 

weather following primary crop harvest. 

 The study area was maintained weed-free using clomazone at 420 g ai/ha 

applied preemergence followed by propanil at 4483 g ai/ha plus halosulfuron 

at 53 g ai/ha applied postemergence.  For the primary rice crop a preplant 

application of 280 kg/ha of 8-24-24 (N-P2O5-K2O) fertilizer and a preflood 

application of 365 kg/ha 46-0-0 urea fertilizer were applied to the study 

area and for the ratoon rice crop a preflood application of 100 kg/ha 46-0-0 

urea fertilizer was applied to the study area to maintain proper fertility 

                                                 
   4 Spraying Systems Co., P. O. Box 7900, Wheaton, IL 60187. 
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and to maximize yields in the primary and ratoon crops.  Standard agronomic 

and pest management practices were implemented throughout the growing season 

to maximize yield.   

 Rice plant height and rice injury in the primary rice crop were 

obtained 7 days after herbicide treatment (DAT) and continued weekly for 28 

DAT.  Rice plant height was obtained by measuring four plants per plot from 

the soil surface to the tip of the extended uppermost emerged leaf or 

extended rice panicle.  Rice injury was evaluated based on chlorosis and 

necrosis of foliage and reduced plant height using a scale of 0 to 100% where 

0 = no injury and 100 = plant death.  Rice plant height at primary crop 

harvest and rough rice yield, 100-count seed weight, and stem and panicle 

counts for the primary and ratoon crop were also obtained.  Whole plots were 

harvested using a mechanical plot harvester and rough rice yield was adjusted 

to 12% moisture.  Stem and panicle counts were calculated by hand harvesting 

a 0.46 m section of row and determining the number of stems present at the 

mid-height of the plants and the number of panicles with bases emerged beyond 

the sheath of the flag leaf or the last leaf to emerge prior to the panicle. 

 All data were subjected to the Mixed Procedure of SAS (SAS 2003).  

Year, replications (nested within year), and all interactions containing 

either of these effects were considered random effects.  Application timing 

and rate were considered fixed effects.  Considering year or combination of 

year as random effects permits inferences about treatments over a range of 

environments (Carmer et al. 1989; Leon et al. 2008).  Type III statistics 

were used to test all possible effects of fixed factors (application timing 

and rate) and least square means were used for mean separation at the 5% 

probability level (p ≤ 0.05). 

Seed Germination Study.  The germination potential of seed collected from 

grain harvested in the simulated glyphosate drift field study at primary crop 

harvest, 2005 through 2007, and at ratoon crop harvest, 2005 and 2007, was 
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evaluated at multiple temperatures.  Seed collected from each plot were air-

dried and stored at 8 C.  Germination temperatures evaluated were 13, 16, 19, 

22, and 25 C.  Temperature selection and germination testing procedure for 

this study were based on procedures previously described by Webster et al. 

(2003) and follow germination procedures recommended by Association of 

Official Seed Analysts (AOSA) (AOSA 2006).  Temperature selection was based 

on 19 C being the historical mean 10-cm soil temperature in Crowley, LA on 

April, 1, which corresponds to 50% of the rice being planted across the state 

(Webster et al. 2003). 

 One hundred seeds from each field plot were prepared by soaking for 30 

min in a 50:50 (v/v) solution of chlorine bleach and distilled water to 

decrease seedling diseases.  After soaking, seeds were triple rinsed with 

distilled water.  After seed preparation, seeds were placed in a 10 cm 

plastic Petri dish between two 9 cm germination blotters5.  Next, 10 ml of 

carboxin (5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3-carboxamide) plus 

thiram (tetramethylthiuram disulfide) plus distilled water solution (52 ml of 

a 10% carboxin and 10% thiram premix liquid fungicide combined with 948 ml 

distilled water) was applied in each Petri dish to reduce seedling diseases.  

Petri dishes were sealed with Parafilm M6 to prevent moisture loss and placed 

in a constant-temperature growth chamber in total darkness.  Germination 

counts were taken 5, 9, and 14 d after initiation (DAI) of the study.  A seed 

was considered germinated if the radical had reached a length of 1 mm. 

 Seed germination data were arranged as repeated measures and subjected 

to the Mixed Procedure of SAS (SAS 2003).  Year, replications (nested within 

year), DAI (nested within replications), and all interactions containing 

either of these effects were considered random effects.  Application timing 

                                                 
   5 Anchor Steel Blue Seed Germination Blotter®, SDB 3.5. Anchor Paper 
Company, 480 Broadway, St. Paul, MN 55101. 
   6 Parafilm M®. Pechiney Plastic Packaging, Menash, WI 54952. 



 20

and rate and germination temperature were considered fixed effects.  

Considering year or combination of year as random effects permits inferences 

about treatments over a range of environments (Carmer et al. 1989; Leon et 

al. 2008).  Type III statistics were used to test all possible effects of 

fixed factors (application timing and rate and germination temperature) and 

least square means were used for mean separation at the 5% probability level 

(p ≤ 0.05). 

Seedling Vigor Study.  Vigor of seedlings from grain collected at primary 

crop harvest in the simulated glyphosate drift field study in 2006 and 2007 

was examined.  Seedling vigor, as defined by AOSA (AOSA 2002), is “seedling 

vigor comprises those seed properties which determine the potential for 

rapid, uniform emergence, and development of normal seedlings under a wide 

range of field conditions” and it is used as a measure of seed quality by 

producers.  Since there is no accepted standard vigor test for rice, vigor 

testing procedures for this study were based on procedures previously 

described by Webster et al. (2003). 

Approximately 100 seeds from each field plot were prepared by soaking 

for 30 min in a 50:50 (v/v) solution of chlorine bleach and distilled water 

to decrease seedling diseases.  After soaking, seeds were triple rinsed with 

distilled water.  Following seed preparation, seeds were pre-germinated by 

soaking in distilled water for 24 h.  Ten pre-germinated seeds from each 

field plot were placed on a single sheet of nontreated germination paper7 cut 

to fit a 12 by 23 by 0.3 cm acrylic sheet.  Germination paper was moistened 

by submerging in distilled water for 5 seconds to facilitate adherence to the 

acrylic sheet and provide residual moisture to rice seeds.  Seeds were placed 

along the center of germination paper oriented with the radical end of the 

seed toward the lower half of the sheet.  A one-ply paper towel strip was 

                                                 
   7  Anchor Steel Blue Seed Germination Blotters®, SDB 1924. Anchor Paper 
Company, 480 Broadway, St. Paul, MN 55101. 
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placed over the seed, and 5 ml of a mancozeb [ethylene (bis)-dithiocarbamate] 

plus distilled water solution (dry formulation of mancozeb at 1640 mg ai/L 

distilled water) was applied on top of the strip to reduce seedling diseases.  

The plated seeds were then placed vertically in a rack and then placed in a 

30 by 51 by 5 cm dish with 1,420 ml of distilled water to allow for 

evaporation.  The dish and racks of plates were wrapped in plastic wrap to 

prevent desiccation.  The glass dish was placed in a constant temperature 

growth chamber at 21 C for 12 d in total darkness.  At the end of 12 d, shoot 

lengths were measured and an average of the 10 shoot lengths was obtained for 

data analysis.   

Seedling vigor data were subjected to the Mixed Procedure of SAS (SAS 

2003).  Year, replications (nested within year), and all interactions 

containing either of these effects were considered random effects.  

Application timing and rate were considered fixed effects.  Considering year 

or combination of year as random effects permits inferences about treatments 

over a range of environments (Carmer et al. 1989; Leon et al. 2008).  Type 

III statistics were used to test all possible effects of fixed factors 

(application timing and rate) and least square means were used for mean 

separation at the 5% probability level (p ≤ 0.05). 

Results and Discussion 

Simulated Glyphosate Drift Field Study.  A crop injury response was observed 

in the primary crop (Table 2.1).  When applied at an equal rate, rice crop 

injury was higher when applied to the one-tiller stage of rice, the earliest 

timing evaluated in this study.  At the one-tiller stage some recovery or 

regrowth was observed when treated with the low rate of glyphosate; however, 

the 108 g/ha rate of glyphosate had a greater impact on one-tiller rice.  

When treatments were delayed to the PD and boot timings visual injury was 

below 20% except for the 21 and 28 DAT evaluation at the PD timing when  
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Table 2.1. Effects of simulated glyphosate drift application rate and timing 
on primary rice crop injury 7, 14, 21, and 28 days after treatment (DAT), 
2005 through 2007, Crowley, Louisiana.a 
_________________________________________________________________________________________________________________ 

  Injury 

  _____________________________________________________________________ 

Glyphosate 

rateb 

 

Timing 

 

7 DAT 

 

14 DAT 

 

21 DAT 

 

28 DAT 

_________________________________________________________________________________________________________________ 

g ae/ha  _______________________________ % _______________________________ 

54 1-tiller 32 a 45 a 31 b 33 b 

 PD   6 bc  12 bc 14 c 14 c 

 Boot   5 bc  10 bc  10 cd  10 cd 

 Maturity  0 c  0 c  0 d  0 d 

108 1-tiller 37 a 56 a 49 a 52 a 

 PD  9 b 19 b 30 b 35 b 

 Boot   7 bc  11 bc  11 cd  11 cd 

 Maturity  0 c  0 c  0 d  0 d 

Nontreated   0 c  0 c  0 d  0 d 

_________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 54 and 108 g/ha glyphosate rates were applied at spray volumes of 
15 and 29 L/ha, respectively. 
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treated with 108 g/ha of glyphosate.  This indicated that drift can be rate 

dependant when applied to earlier growth stages.  As with actual drift 

events, identifying drift based on visual injury is more difficult as rice 

matures (Eric P. Webster8, personal communication).  Similar findings were 

reported by Ellis et al. (2003) and Kurtz and Street (2003) where visual 

injury symptoms were more severe in rice treated with glyphosate during early 

vegetative growth stages than rice treated during late reproductive growth 

stages. 

 This reduction in visual injury during reproductive growth stages may 

be due to the translocation of glyphosate to meristematic tissue (Martin and 

Edgington 1981).  This tissue is located in the internal portions of the rice 

plant during the reproductive stages of growth and would not be expressed on 

foliar tissue. 

 The injury symptoms observed in this study on plants treated at the 

one-tiller timing were a general chlorosis in the uppermost leaves to plant 

death.  The newest leaf to emerge following treatment often emerged tightly 

rolled.  Also, an overall stunting of plants was observed on plants treated 

at the one-tiller and PD timings (Table 2.2). 

 Visual symptomology observed on plants treated with glyphosate at PD 

and boot, often beyond the rating dates evaluated in this study, were various 

forms of foliar and inflorescence malformations.  Foliar symptoms were plants 

having multiple shoots arising from the secondary nodes of the main stem and 

the flag leaf on the main stem and secondary shoots would often appear 

wrinkled, contorted, or rolled (Figure 2.1, 2.2).  In some instances 

secondary shoots were stunted or both stunted and malformed.  At maturity 

some panicles failed to fully exert beyond the flag leaf sheath or emerged  

                                                 
   8 Eric P. Webster, Louisiana State University AgCenter Rice Weed 
Specialist, 104 M.B. Sturgis Hall, Baton Rouge, LA 70803. 
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Table 2.2. Effects of simulated glyphosate drift application rate and timing 
on primary crop rice plant height at 7, 14, 21, and 28 days after treatment 
(DAT) and at harvest, 2005 through 2007, as percent of the nontreated, 
Crowley, Louisiana.a 
____________________________________________________________________________________________________________________ 

  Rice plant height 

  ___________________________________________________________________________ 

Glyphosate 

rateb 

 

Timing 

 

7 DATc 

 

14 DATd 

 

21 DATe 

 

28 DATf 

 

Harvestg 

____________________________________________________________________________________________________________________ 

g ae/ha  _________________________ % of nontreated _______________________ 

54 1-tiller  69 b  75 e  82 c   79 cd   88 bc 

 PD  95 a   87 cd  83 c  81 c  90 b 

 Boot  97 a   94 ab  94 b  89 b   89 bc 

 Maturity 102 a   97 ab   99 ab 102 a 100 a 

108 1-tiller  70 b  65 f  74 d   75 cd   88 bc 

 PD  95 a  85 d  75 d  73 d  85 c 

 Boot  98 a   93 bc  93 b  90 b   88 bc 

 Maturity 102 a 102 a 101 a 100 a 102 a 

Nontreated  100 a  100 ab 100 a 100 a 100 a 

____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 54 and 108 g/ha glyphosate rates were applied at spray volumes of 
15 and 29 L/ha, respectively. 
   c Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 41, 64, 92, and 50 cm, respectively. 
   d Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 54, 72, 99, and 56 cm, respectively. 
   e Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 65, 79, 98, and 60 cm, respectively. 
   f Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 70, 88, 97, and 64 cm, respectively. 
   g Actual height of nontreated rice at primary crop harvest was 94 cm. 
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Figure 2.1. Symptoms observed   Figure 2.2. Symptoms observed 
with a boot application of   with a boot application of  
108 g ae/ha glyphosate.    54 g ae/ha glyphosate.   
  
 

   
Figure 2.3. Symptoms observed   Figure 2.4. Symptoms observed 
with a boot application of   with a boot application of   
108 g ae/ha glyphosate.    108 g ae/ha glyphosate. 
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from the side of the sheath (Figure 2.3).  Some of the inflorescence 

malformations were due to malformed panicle axis and partially emerged 

panicles due to fusing with the flag leaf sheath.  Individual florets 

malformations that were observed were florets that were void of a developing 

grain with only a bleached lemma and palea remaining and individual florets 

with tips of the lemma excessively curved toward the palea (Figure 2.4) 

causing an appearance often referred to as “parrot beaked” when observed in 

association with the straighthead physiological disorder of rice (Groth et 

al. 2009). 

 A plant height response was observed in the primary rice crop with 

glyphosate applications (Table 2.2).  When evaluated at 7, 14, 21, and 28 

DAT, glyphosate applied to rice at the one-tiller stage resulted in reduced 

rice plant height, compared with the nontreated.  This is similar to results 

observed through visual injury.  Rice plant height was reduced at 14, 21, and 

28 DAT when glyphosate was applied to rice at PD and at 21 and 28 DAT when 

glyphosate was applied at boot, regardless of rate.  These findings support 

the trend of increased crop injury at earlier application timings.  Similar 

findings were reported by Ellis et al. (2003) and Kurtz and Street (2003).  

However, glyphosate applied to rice at one-tiller, PD, and boot timings 

resulted in reduced rice plant height at primary crop harvest, 85 to 90% of 

the nontreated.  Glyphosate applied to mature rice had no affect on rice 

plant height.   

 Stem and panicle counts in the primary and ratoon crops were affected 

by glyphosate applications (Table 2.3).  Glyphosate applied at one-tiller, 

PD, and boot increased secondary plant stems in the primary crop resulting in 

an increase in stem count compared with the nontreated.  However, panicle 

count was only increased in the primary crop when glyphosate was applied at 

both rates at PD and at the 108 g/ha rate at one-tiller.  In  
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Table 2.3. Effects of simulated glyphosate drift application rate and timing 
on primary crop rice stem and panicle counts, 2005 through 2007, and ratoon 
crop rice stem and panicle counts, 2005 and 2007, as percent of the 
nontreated, Crowley, Louisiana.a 
_______________________________________________________________________________________________________________________ 

  Primary crop counts Ratoon crop counts 

  ______________________________ ____________________________ 

Glyphosate 

rateb 

 

Timing 

 

Stem 

 

Panicle 

 

Stem 

 

Panicle 

_______________________________________________________________________________________________________________________ 

g ae/ha  ___________________ % of nontreatedc ___________________ 

54 1-tiller  98 c 105 c   83 bc  76 b 

 PD 147 b 161 b   96 bc  73 b 

 Boot 161 b 104 c 198 a 242 a 

 Maturity 100 c 106 c 106 b  96 b 

108 1-tiller 139 b 150 b  67 c  65 b 

 PD 196 a 197 a 113 b 103 b 

 Boot 196 a  98 c 215 a 235 a 

 Maturity  97 c 103 c 104 b  94 b 

Nontreated  100 c 100 c  100 bc 100 b 

_______________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not statistically 
different according to the t-test on difference of least square means at P = 
0.05. 
   b The 54 and 108 g/ha glyphosate rates were applied at spray volumes of 15 
and 29 L/ha, respectively. 
   c Actual nontreated primary crop stem and panicle counts were 39 and 35 per 
0.46 m of row, respectively, and actual nontreated ratoon crop stem and 
panicle counts were 44 and 32 per 0.46 m of row, respectively. 
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the ratoon crop, an increase in stem and panicle counts was only observed in 

rice treated at the boot stage (Table 2.3). 

 Glyphosate applied at one-tiller, PD, and boot reduced primary crop 

yield, compared with the nontreated (Table 2.4).  The primary crop yield 

reduction resulting from an application of glyphosate at the boot timing was 

more severe than when applied to the earlier growth stages of rice evaluated 

in this study.  Glyphosate applied at 54 and 108 g/ha at boot resulted in a 

primary crop yield 54 and 36% of the nontreated, respectively.  However, the 

ratoon crop yield was 149 and 148% of the nontreated.  This increase was due 

to glyphosate causing an excess of secondary stems to be produced on the 

upper plant nodes in the primary rice crop (Table 2.3).  This excess of 

secondary stems did not produce panicles in the primary crop but did produce 

panicles in the ratoon crop.  This response was not observed with rice 

treated at the other timings.  However, when primary and ratoon crop yields 

were combined, the increase in ratoon crop yield did not compensate for the 

primary crop yield loss.  These data indicate a drift event at the growth 

stages evaluated in this study reduced total crop yield regardless of 

glyphosate rate.  Total yield was reduced when glyphosate was applied at the 

one-tiller, PD, and boot timings, compared to the nontreated (Table 2.4).  

Glyphosate applications at maturity had no effect on primary, ratoon, or 

total crop rough rice yield. 

 Though primary crop rice yield was reduced by simulated glyphosate 

drift applications at the one-tiller, PD, and boot timings, it appears that 

rice is most susceptible to glyphosate during the boot growth stage, which is 

similar to results reported by Kurtz and Street (2003).  Rice producers in 

Louisiana may have the ability to recover some yield loss from a drift event 

occurring to rice during the boot growth stage by increasing ratoon crop 

yield; however, the reduction in total crop yield from a glyphosate drift 
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Table 2.4. Effects of simulated glyphosate drift application rate and timing 
on primary crop rice yield, 2005 through 2007, and ratoon and total crop rice 
yield, 2005 and 2007, as percent of the nontreated, Crowley, Louisiana.a 
______________________________________________________________________________________________________________________ 

 Yield 

 ___________________________________________________________________ 

Glyphosate 

rateb 

 

Timing 

 

Primary crop 

 

Ratoon crop 

 

Total crop 

______________________________________________________________________________________________________________________ 

g ae/ha  ___________________ % of nontreatedc ____________________ 

54 1-tiller   66 bc  62 c   54 bc 

 PD  75 b  66 c  70 b 

 Boot  54 c 149 a   57 bc 

 Maturity  99 a   85 bc  93 a 

108 1-tiller  55 c   86 bc  66 b 

 PD  55 c   86 bc   52 bc 

 Boot  36 d 148 a  44 c 

 Maturity  96 a  92 b  93 a 

Nontreated  100 a 100 b 100 a 

______________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not statistically 
different according to the t-test on difference of least square means at P = 
0.05. 
   b The 54 and 108 g/ha glyphosate rates were applied at spray volumes of 15 
and 29 L/ha, respectively. 
   c Actual nontreated yield for the primary, ratoon, and total crops were 
7000, 1300, and 8300 kg/ha, respectively. 
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event at the one-tiller, PD, or boot growth stages of rice can be 

significant. 

Seed Germination and Seedling Vigor Studies.  Simulated glyphosate drift 

applications did not affect rice seed weight in the primary rice crop; 

however, ratoon crop rice seed weight was affected (Table 2.5).  Averaged 

across application rates, glyphosate applied at one-tiller reduced ratoon 

crop rice seed weight to 91% of the nontreated.  It is expected that any 

unfilled or malformed grain observed on rice panicles on treated plants was 

separated and expelled by the mechanical plot harvester.  This separation is 

similar to a commercial harvesting operation so any affect on seed weight, 

germination, or seedling vigor of harvested grain observed in this study is 

reflective of the impact expected on commercial seed rice producers.  Studies 

conducted using hand-harvesting of seeds, such as Walker and Oliver (2008), 

which bypass a separation process, may misrepresent the impact of herbicides 

on seed in mechanically harvested grain crops.   

 Averaged across application rates, primary crop rice seed germination 

was not effected at 13, 16, or 19 C, compared with the nontreated (Table 

2.6).  Germination of primary crop rice seed at 22 C was reduced to 93 and 

88% of the nontreated when glyphosate was applied at PD and boot, 

respectively.  When evaluated at 25 C, primary crop rice seed germination was 

reduced to 92% of the nontreated when glyphosate was applied to rice at one-

tiller and PD and to 82% of the nontreated when applied at boot.   

 Ratoon crop rice seed germination was not reduced, compared to the 

nontreated, at any temperature evaluated in this study (Table 2.7).  Ellis et 

al. (2003) also observed a decrease in rice seed germination at various 

temperatures for seed collected from plants treated with a simulated 

glyphosate drift application.  Glyphosate drift applications did not reduce 

primary crop seedling vigor (data not shown).  These data indicate that rice 

seed weight may not be affected but seed germination may be, especially if 
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Table 2.5. Effects of simulated glyphosate drift application timing on 
primary crop seed weight, 2005 through 2007, and ratoon crop rice seed 
weight, 2005 and 2007, as percent of the nontreated, Crowley, Louisiana.a 
_____________________________________________________________________________________________________________________ 

 100-seed weight 

 _____________________________________________________________ 

Glyphosate timing Primary crop Ratoon crop 

____________________________________________________________________________________________________________________ 

 _______________ % of nontreatedb,c _______________ 

1-tiller 100 a  91 b 

PD  98 a 100 a 

Boot  99 a 101 a 

Maturity 101 a 100 a 

Nontreated 100 a 100 a 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across application rates of 54 and 108 g ai/ha glyphosate 
applied at spray volumes of 15 and 29 L/ha, respectively. 
   c Actual nontreated 100-seed weight for the primary and ratoon crop were 
2300 and 2000 mg, respectively. 
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Table 2.6. Effects of simulated glyphosate drift application timing on 
primary crop rice seed germination at various temperatures, 2005 through 
2007, as percent of the nontreated, Crowley, Louisiana.a 
_____________________________________________________________________________________________________________________ 

 Temperatures 

 _______________________________________________________________________________________ 

Glyphosate 

timing 

 

13 C 

 

16 C 

 

19 C 

 

22 C 

 

25 C 

_____________________________________________________________________________________________________________________ 

 __________________________ % of nontreatedb,c _________________________________ 

1-tiller  89 a  98 a  93 a  97 a  92 b 

PD  78 a  83 a  89 a  93 b  92 b 

Boot  89 a  91 a  85 a  88 c  82 c 

Maturity  89 a  98 a  91 a 100 a 100 a 

Nontreated 100 a 100 a 100 a 100 a 100 a 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across application rates of 54 and 108 g ai/ha glyphosate 
applied at spray volumes of 15 and 29 L/ha, respectively. 
   c Actual germination of the nontreated seed at 13, 16, 19, 22, and 25 C 
was 9, 42, 54, 73, and 66%, respectively. 
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Table 2.7. Effects of simulated glyphosate drift application timing on 
ratoon crop rice seed germination at various temperatures, 2005 and 2007, as 
percent of the nontreated, Crowley, Louisiana.a 
_____________________________________________________________________________________________________________________ 

 Temperatures 

 _______________________________________________________________________________________ 

Glyphosate 

timing 

 

13 C 

 

16 C 

 

19 C 

 

22 C 

 

25 C 

_____________________________________________________________________________________________________________________ 

 _____________________________ % of nontreatedb,c _____________________________ 

1-tiller 167 a 150 a 116 a 115 a 108 a 

PD  67 c 100 b  105 ab 104 c 102 b 

Boot  133 ab 117 b 116 a 119 a  105 ab 

Maturity  100 bc  89 b  92 b  108 bc 102 b 

Nontreated  100 bc 100 b 100 b 100 c 100 b 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across application rates of 54 and 108 g ai/ha glyphosate 
applied at spray volumes of 15 and 29 L/ha, respectively. 
   c Actual germination of the nontreated seed at 13, 16, 19, 22, and 25 C 
was 3, 18, 38, 48, and 60%, respectively. 
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the drift event occurs to the primary crop during the reproductive growth 

stages.  However, it appears that if seeds germinate seedling vigor will not 

be adversely affected.  If seed rice is affected by a drift event, extra 

caution should be taken before that seed is sold to producers. 

 In conclusion, simulated glyphosate drift applications at the one-

tiller, PD, and boot timings resulted in reduced plant height and primary and 

total crop yield losses, with the greatest reduction in primary crop yield 

resulting from a simulated glyphosate drift application applied at the boot 

growth stage.  Glyphosate applications to mature rice had no effect on rice 

plant height or yield.  Seed weight and seed vigor of primary crop rice seed 

was not affected by simulated glyphosate drift applications; however, primary 

crop seed germination was reduced when glyphosate was applied at one-tiller, 

PD, and boot, with increased susceptibility at the boot growth stage.  A 

reduction in ratoon crop rice seed weight by glyphosate applications was 

observed; however, ratoon crop rice seed germination was not reduced. 

 The ability to identify glyphosate drift on rice can be helpful to 

producers, Cooperative Extension Service personnel, crop consultants, and 

state regulatory agencies in distinguishing between herbicide drift and 

injury associated with soil fertility issues, diseases, and other disorders 

affecting rice.  Misidentification of herbicide drift symptoms as injury 

associated with these factors can lead to loss in profitability if growers 

apply unnecessary applications of inputs to correct these factors when the 

symptoms present are actually a result of herbicide drift.  The ability to 

correlate the symptoms observed to glyphosate drift also may assist state 

regulatory agencies in identifying the source of a herbicide drift event.  If 

glyphosate can be identified by observation of plant symptoms this can reduce 

the cost associated with confirmation of a herbicide drift event through the 

use of diagnostic testing of foliar residue since most analytical facilities 
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charge per evaluation and the diagnostic tests involved are often herbicide 

specific. 

 A glyphosate drift event occurring to a producer’s field at the one-

tiller, PD, or boot growth stages of rice can reduce rice yield; however, 

this study indicates that a drift event occurring at the boot stage may be 

the most detrimental to yield.  Rice receiving a drift event in vegetative 

growth stages, one-leaf to one-tiller, can often recover if stand is 

maintained at recommended densities (Eric P. Webster8, personal 

communication).  However, a glyphosate drift event occurring to rice in the 

reproductive stage of growth may have little to no visual foliar injury and 

often symptoms may not appear until rice plants near crop maturity.  This may 

lead to loss of yield and profitability due to continuing to supply crop 

inputs, such as increased fertilizer, insecticide, and fungicide 

applications, to a crop that has an already reduced yield potential.  The 

negative effects of a glyphosate drift event occurring to a seed producer’s 

field to rice in the PD or boot growth stages has the potential to be two-

fold.  The reduction in profitability the year of the event from reduced 

yield in combination with the reduction in seed germination has the ability 

to reduce profitability in the subsequent year’s crop due to an increase in 

seeding rate to offset the reduced seed germination. 

 Caution should be taken when applying glyphosate near commercial rice 

fields, especially when making applications near rice in the reproductive 

growth stages.  Though the effects of glyphosate drift on rice may not be 

immediately apparent by visual observation, the potential affect on grain 

yield and the germination potential of the harvested grain could be highly 

detrimental to rice producers. 
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Chapter 3 

Effects of Simulated Imazethapyr Drift on Non-Clearfield Rice Grown for Grain 
and Seed Rice 

 
Introduction 

 In 1993, imidazolinone-resistant rice (Oryza sativa L.) was developed 

and exhibited tolerance to the imidazolinone class of herbicides (Croughan 

1994; Pellerin et al. 2004; Webster and Masson 2001).  Imazethapyr is a 

selective herbicide used to control annual and perennial weeds in soybean 

[Glycine max (L.) Merr.], edible legumes, and imidazolinone-resistant crops 

(Senseman 2007). 

The mechanism of action for imazethapyr is inhibition of acetolactase 

synthase (ALS) (EC 4.1.3.18) also called acetohydroxyacid synthase (AHAS), a 

key enzyme in the biosynthesis of the branched-chain amino acids isoleucine, 

leucine, and valine (Muhitch et al. 1987; Senseman 2007; Shaner 1991; Shaner 

et al. 1984; Stidham 1991; Stidham and Singh 1991).  Plant death results from 

events occurring in response to ALS inhibition, specifically the inhibition 

of isoleucine, leucine and valine, but the actual sequence of phytotoxic 

processes is unclear (Shaner 1991; Stidham and Singh 1991).  Some secondary 

effects may include disruption of photosynthate translocation, hormone 

imbalance due to interruption of source/sink relationships, and interference 

in DNA synthesis and cell growth. 

The symptoms expressed from this toxicity are growth is inhibited 

within a few hours of herbicide application, meristematic areas become 

chlorotic, followed by a slow general foliar chlorosis and necrosis (Shaner 

1991).  This injury to meristematic areas can be attributed to inhibition of 

branched-chain amino acids in the meristematic region.  Even though plants 

have the ability to scavenge amino acids from pre-existing proteins, the 

meristematic region lacks the protein reserve pools that are available in the 
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mature regions of the plant.  Injury symptoms usually appear within 7 to 14 d 

for susceptible species. 

Rice is a major crop produced in the four state region of Arkansas, 

Louisiana, Mississippi, and Texas, with these states accounting for 76% of 

the 1.2 million total hectares of rice planted in the U.S. and 70% of the 

$3.4 billion of total value of rice produced in the U.S. in 2008 (NASSa 2009; 

NASSb 2009).  Louisiana planted approximately 184,000 hectares of rice in 

2008 with approximately 59% planted to imidazolinone-resistant rice cultivars 

or hybrids (LSUA 2009).  Since many of the rice producing parishes in 

Louisiana produce imidazolinone-resistant and conventional rice, the 

potential exists for off-target drift of imazethapyr to conventional rice. 

Averaged over the ten year period 1999 to 2008, the Louisiana 

Department of Agriculture and Forestry processed 76 Pesticide Investigation 

Reports per year listing ground or aerial applicators in Louisiana, and, on 

average, six reports per year involved rice (Lisa Gautreaux1, personal 

communication).  However, it was reported that, in 2009, at least 50 rice 

fields were suspected of being affected by glyphosate drift and at least 25 

rice fields were suspected of being affected by imazethapyr drift, many of 

which were not reported to the LDAF (Ronald J. Levy, Jr.2, personal 

communication; John K. Saichuk3, personal communication).  Therefore, the 

number of rice fields actually affected by a drift event each year may be 

underrepresented by the number of official complaints processed by the LDAF. 

It has been reported that fine spray droplets less than 150 µm in size 

have a greater potential to drift off-target (Hanks 1995; SDTF 1997).  The 

                                                 
   1 Lisa Gautreaux, Pesticide and Environmental Programs Administrative 
Coordinator, Louisiana Department of Agriculture and Forestry, 5825 Florida 
Blvd., Baton Rouge, LA 70806. 
   2 Ronald J. Levy, Jr., Louisiana State University AgCenter Soybean, Corn, 
and Grain Sorghum Specialist, 8208 Tom Bowman Dr., Alexandria, LA 71302. 
   3 John K. Saichuk, Louisiana State University AgCenter Rice Specialist, 
1373 Caffey Rd., Rayne, LA 70578. 
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use of adjuvants and selection of proper spray nozzle type, size, and 

application pressure can be beneficial in reducing the amount of fine spray 

droplets in the spray cloud (Hanks 1995; Jones et al. 2007; Nuyttens et al. 

2007; VanGessel and Johnson 2005).  This increase in droplet size can reduce 

the potential for off-target drift from droplets larger than 150 µm; however, 

environmental conditions at the time of herbicide application can also impact 

the off-target drift of spray solutions (Bouse et al. 1976; Crabbe et al. 

1994; Thistle 2004). 

Wind speed and direction may be considered the two most important 

factors affecting spray droplets in the atmosphere, a stable atmosphere may 

be the third most important factor (Thistle 2004).  A stable atmosphere, 

commonly referred to as an inversion, is an atmosphere that has a change of 

temperature with a change in elevation in the atmosphere.  In a stable 

atmosphere, warm air overlies cool air.  If air in a particular layer is 

displaced upward or downward it will be colder or warmer, respectfully, than 

the immediately adjacent layer it enters and thus returns to the original 

layer.  If a herbicide application is made during an inversion scenario, the 

fine droplets that do not succumb to gravity will remain in the layer in 

which they are deposited due to the lack of layers mixing.  The droplets in 

this layer can be very concentrated and horizontally may move off-target 

great distances. 

Ultra-low-volume applications made during a stable atmosphere produced 

35% more herbicide drift than applications made during a turbulent atmosphere 

with light wind speeds (Crabbe et al. 1994).  The conditions in which the 

greatest drift occurred were in moderately stable conditions with wind at 3 

m/s resulting in off-target drift 71% at 400 m and 50% at 2200 m from the 

application site and in slightly stable conditions with wind at 5 m/s 

resulting in off-target drift 77% at 400 m and 27% at 2200 m from the 

application site.  It is recommended that herbicide applications should be 
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avoided during the early morning and late evening because these times are 

most favorable for the development of inversion conditions (Crabbe et al. 

1994; Thistle 2004). 

Through the use of simulated herbicide drift studies, the potential 

effects of imazethapyr drift to rice can be evaluated.  In previous research, 

simulated drift studies varying the spray volume proportionally with reduced 

herbicide rates to simulate herbicide drift resulted in increased crop injury 

compared with the same herbicide rate applied in a constant spray volume 

(Banks and Schroeder 2002; Ellis et al. 2002; Ramsdale et al. 2003; Roider et 

al. 2008).  Banks and Schroeder (2002) reported varying spray volume 

proportionally with herbicide dosage, thus maintaining constant herbicide 

concentration in the spray, would change the response of sweet corn (Zea mays 

L.) to glyphosate when compared with a constant spray volume where herbicide 

rate would vary and be more dilute in the carrier.  The no-effect glyphosate 

rate for sweet corn was 0.046 kg ae/ha when using a spray volume proportional 

to the reduced glyphosate rate; however, the no-effect glyphosate rate was 

four times greater when glyphosate was applied in a constant spray volume. 

A simulated drift application of the commercial herbicide premix of 

imazethapyr plus imazapyr affected rice plant height and yield; however, 

simulated drift of the imazethapyr plus imazapyr premix did not affect yield 

when applied to corn (Bond et al. 2006).  Al-Khatib et al. (2003) reported 

imazethapyr applied at various times within 30 d of planting resulted in 

reduced grain sorghum (Sorghum bicolor L.) yield. 

 Rapid rice seed germination and seedling growth can enhance plant stand 

establishment in commercial fields (Krishnasamy and Seshu 1989; Pollock and 

Roos 1972; Wright 1980).  Clay and Griffin (2000) reported late season 

applications of glyphosate to common cocklebur (Xanthium strumarium L.), hemp 

sesbania [Sesbania herbacea (Mill.) McVaugh], and sicklepod [Senna 

obtusifolia (L.) Irwin and Barneby] reduced 100-seed weight and seedling 
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emergence when applied to plants at initial seed set but had no effect when 

applied to plants at physiological maturity.  Glyphosate applied to wheat at 

first node, boot, and early flowering growth stages resulted in 16 to 36% 

reductions in seed weight (Roider et al. 2007).  A negative correlation 

between 100-count seed weight and rice seed germination has been observed 

(Krishnasamy and Seshu 1989).  Applications of glyphosate and imazethapyr to 

red rice (Oryza sativa L.) in the two- to three-tiller, boot, and bloom 

growth stages reduced red rice seed germination, regardless of timing 

(Brommer et al. 1998).  The use of glyphosate as a preharvest desiccant in 

grain sorghum reduced grain sorghum seed germination (Baur et al. 1977).  A 

need exists to evaluate the possible effects of an imazethapyr drift event on 

rice crop seed germination and seedling vigor.   

 Even though published studies evaluating the effects of simulated 

imazethapyr drift exist (Al-Khatib et al. 2003; Bond et al. 2006), none of 

these studies were conducted using spray volumes proportional with reduced 

herbicide dosage.  The objectives of this research were to evaluate the 

effects of simulated imazethapyr drift applied to rice during the primary 

rice crop on the crop response and impact on the seed produced on treated 

rice in the primary and ratoon rice crops. 

Materials and Methods 

Simulated Imazethapyr Drift Field Study.  A study was conducted on rice grown 

in 2005 through 2007 at the LSU AgCenter Rice Research Station near Crowley, 

Louisiana on a Crowley silt loam (fine montmorillonitic, thermic Typic 

Albaqualf) with pH 5.5 and 1.2% organic matter.  Field preparation consisted 

of a fall and spring disking and two passes in opposite directions with a 

two-way bed conditioner equipped with rolling baskets and S-tine harrows 15 

cm deep.  The long grain rice cultivar ‘Cocodrie’ was drill-seeded March 28 

to April 17 in 2005 through 2007.  Plots consisted of twelve-18 cm spaced 

rows 6 m long. 
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 The experimental design was an augmented two-factor factorial 

arrangement of treatments in a randomized complete block with four 

replications.  Factor A consisted of imazethapyr applied at simulated drift 

rates of 6.3 and 12.5% of the labeled usage rate of 70 g ai/ha, or 4.4 and 

8.7 g/ha, respectively.  Factor B consisted of application timings at 

different growth stages: one-tiller, panicle differentiation (PD), boot, and 

physiological maturity.  Each herbicide application was made with the spray 

volume varying proportionally to herbicide dosage based on a constant spray 

volume of 234 L/ha.  The 12.5% herbicide rate was applied at a spray volume 

of 29 L/ha and the 6.3% herbicide rate was applied at a spray volume of 15 

L/ha.  Each application was made with a tractor-mounted CO2-pressurized 

sprayer calibrated to deliver a constant carrier volume with speed adjusted 

to vary application rate and equipped with Teejet®4 TX-2 Conejet® 800033 

nozzles.  A ratoon rice crop was not produced in 2006 due to unfavorable 

weather following primary crop harvest. 

 The study area was maintained weed-free using clomazone at 420 g ai/ha 

applied preemergence followed by propanil at 4483 g ai/ha plus halosulfuron 

at 53 g ai/ha applied postemergence.  For the primary rice crop a preplant 

application of 280 kg/ha of 8-24-24 (N-P2O5-K2O) fertilizer and a preflood 

application of 365 kg/ha 46-0-0 urea fertilizer were applied to the study 

area and for the ratoon rice crop a preflood application of 100 kg/ha 46-0-0 

urea fertilizer was applied to the study area to maintain proper fertility 

and to maximize yields in the primary and ratoon crops.  Standard agronomic 

and pest management practices were implemented throughout the growing season 

to maximize yield.   

 Rice plant height and rice injury in the primary rice crop were 

obtained 7 days after herbicide treatment (DAT) and continued weekly for 28 

                                                 
   4 Spraying Systems Co., P. O. Box 7900, Wheaton, IL 60187. 
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DAT.  Rice plant height was obtained by measuring four plants per plot from 

the soil surface to the tip of the extended uppermost emerged leaf or 

extended rice panicle.  Rice injury was evaluated based on chlorosis and 

necrosis of foliage and reduced plant height using a scale of 0 to 100% where 

0 = no injury and 100 = plant death.  Rice plant height at primary crop 

harvest and rough rice yield, 100-count seed weight, and stem and panicle 

counts for the primary and ratoon crop were also obtained.  Whole plots were 

harvested using a mechanical plot harvester and rough rice yield was adjusted 

to 12% moisture.  Total stem and panicle counts were calculated by hand 

harvesting a 0.46 m section of row and determining the number of stems 

present at the mid-height of the plants and the number of panicles with bases 

emerged beyond the sheath of the flag leaf, the last leaf to emerge prior to 

the panicle. 

 All data were subjected to the Mixed Procedure of SAS (SAS 2003).  

Year, replications (nested within year), and all interactions containing 

either of these effects were considered random effects.  Application timing 

and rate were considered fixed effects.  Considering year or combination of 

year as random effects permits inferences about treatments over a range of 

environments (Carmer et al. 1989; Leon et al. 2008).  Type III statistics 

were used to test all possible effects of fixed factors (application timing 

and rate) and least square means were used for mean separation at the 5% 

probability level (p ≤ 0.05). 

Seed Germination Study.  The germination potential of seed collected from 

grain harvested in the simulated imazethapyr drift field study at primary 

crop harvest, 2005 through 2007, and at ratoon crop harvest, 2005 and 2007, 

was evaluated at multiple temperatures.  Seed collected from each plot was 

air-dried and stored at 8 C.  Germination temperatures evaluated were 13, 16, 

19, 22, and 25 C.  Temperature selection and germination testing procedure 

for this study were based on procedures previously described by Webster et 
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al. (2003) and follow standard germination procedures recommended by 

Association of Official Seed Analysts (AOSA) (AOSA 2006).  Temperature 

selection was based on 19 C being the historical mean 10-cm soil temperature 

in Crowley, LA on April, 1, which corresponds to 50% of the rice being 

planted across the state (Webster et al. 2003). 

 One hundred seeds from each field plot were prepared by soaking for 30 

min in a 50:50 (v/v) solution of chlorine bleach and distilled water to 

decrease seedling diseases.  After soaking, seeds were triple rinsed with 

distilled water.  After seed preparation, seeds were placed in a 10 cm 

plastic Petri dish between two 9 cm germination blotters5.  Next, 10 ml of 

carboxin (5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3-carboxamide) plus 

thiram (tetramethylthiuram disulfide) plus distilled water solution (52 ml of 

a 10% carboxin and 10% thiram premix liquid fungicide combined with 948 ml 

distilled water) was applied in each Petri dish to reduce seedling diseases.  

Petri dishes were sealed with Parafilm M6 to prevent moisture loss and placed 

in a constant-temperature growth chamber in total darkness.  Germination 

counts were taken 5, 9, and 14 d after initiation (DAI) of the study.  A seed 

was considered germinated if the radical had reached a length of 1 mm. 

 Seed germination data were arranged as repeated measures and subjected 

to the Mixed Procedure of SAS (SAS 2003).  Year, replications (nested within 

year), DAI (nested within replications), and all interactions containing 

either of these effects were considered random effects.  Application timing 

and rate and germination temperature were considered fixed effects.  

Considering year or combination of year as random effects permits inferences 

about treatments over a range of environments (Carmer et al. 1989; Leon et 

al. 2008).  Type III statistics were used to test all possible effects of 

                                                 
   5 Anchor Steel Blue Seed Germination Blotter®, SDB 3.5. Anchor Paper 
Company, 480 Broadway, St. Paul, MN 55101. 
   6 Parafilm M®. Pechiney Plastic Packaging, Menash, WI 54952. 
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fixed factors (application timing and rate and germination temperature) and 

least square means were used for mean separation at the 5% probability level 

(p ≤ 0.05). 

Seedling Vigor Study.  Vigor of seedlings from grain collected at primary 

crop harvest in the simulated imazethapyr drift field study in 2006 and 2007 

was examined.  Seedling vigor, as defined by AOSA (AOSA 2002), is “seedling 

vigor comprises those seed properties which determine the potential for 

rapid, uniform emergence, and development of normal seedlings under a wide 

range of field conditions” and it is used as a measure of seed quality by 

producers.  Since there is no accepted standard vigor test for rice, vigor 

testing procedures for this study were based on procedures previously 

described by Webster et al. (2003). 

Approximately 100 seeds from each field plot were prepared by soaking 

for 30 min in a 50:50 (v/v) solution of chlorine bleach and distilled water 

to decrease seedling diseases.  After soaking, seeds were triple rinsed with 

distilled water.  Following seed preparation, seeds were pre-germinated by 

soaking in distilled water for 24 h.  Ten pre-germinated seeds from each 

field plot were placed on a single sheet of nontreated germination paper7 cut 

to fit a 12 by 23 by 0.3 cm acrylic sheet.  Germination paper was moistened 

by submerging in distilled water for 5 seconds to facilitate adherence to the 

acrylic sheet and provide residual moisture to rice seeds.  Seeds were placed 

along the center of germination paper oriented with the radical end of the 

seed toward the lower half of the sheet.  A one-ply paper towel strip was 

placed over the seed, and 5 ml of a mancozeb [ethylene (bis)-dithiocarbamate] 

plus distilled water solution (dry formulation of mancozeb at 1640 mg ai/L 

distilled water) was applied on top of the strip to reduce seedling diseases.  

The plated seeds were then placed vertically in a rack and then placed in a 

                                                 
   7  Anchor Steel Blue Seed Germination Blotters®, SDB 1924. Anchor Paper 
Company, 480 Broadway, St. Paul, MN 55101. 
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30 by 51 by 5 cm dish with 1,420 ml of distilled water to allow for 

evaporation.  The dish and racks of plates were wrapped in plastic wrap to 

prevent desiccation.  The glass dish was placed in a constant temperature 

growth chamber at 21 C for 12 d in total darkness.  At the end of 12 d, shoot 

lengths were measured and an average of the 10 shoot lengths was obtained for 

data analysis.   

Seed vigor data were subjected to the Mixed Procedure of SAS (SAS 

2003).  Year, replications (nested within year), and all interactions 

containing either of these effects were considered random effects.  

Application timing and rate were considered fixed effects.  Considering year 

or combination of year as random effects permits inferences about treatments 

over a range of environments (Carmer et al. 1989; Leon et al. 2008).  Type 

III statistics were used to test all possible effects of fixed factors 

(application timing and rate) and least square means were used for mean 

separation at the 5% probability level (p ≤ 0.05). 

Results and Discussion 

Simulated Imazethapyr Drift Field Study.  A crop injury response was observed 

in the primary crop (Table 3.1).  Imazethapyr applied at 4.4 and 8.7 g/ha at 

one-tiller resulted in crop injury of 28 to 39% at 7, 14, 21, and 28 DAT.  

When applications were delayed to the PD and boot stages crop injury was 20% 

or less except for rice treated at the boot stage at 28 DAT.  An increase in 

injury from 21 to 28 DAT with rice treated with imazethapyr at boot was noted 

because necrosis of the flag leaf was observed at 28 DAT that was not present 

at 21 DAT.  No response was observed on rice treated with imazethapyr at 

maturity.  These data indicate that visual injury to rice is more severe when 

imazethapyr was applied during the early, vegetative growth stage of rice.  

As with actual drift events, identifying drift based on visual injury is more 
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Table 3.1. Effects of simulated imazethapyr drift application rate and 
timing on primary rice crop injury 7, 14, 21, and 28 days after treatment 
(DAT), 2005 through 2007, Crowley, Louisiana.a 
_________________________________________________________________________________________________________________ 

  Injury 

  ___________________________________________________________________ 

Imazethapyr 

rateb 

 

Timing 

 

7 DAT 

 

14 DAT 

 

21 DAT 

 

28 DAT 

_________________________________________________________________________________________________________________ 

g ai/ha  ______________________________ % ________________________________ 

4.4 1-tiller 32 a 33 a 32 a  28 ab 

 PD  10 bc   8 bc  8 c   8 cd 

 Boot   6 cd   8 bc  10 bc 22 b 

 Maturity  0 d  0 c  0 c  0 d 

8.7 1-tiller 32 a 39 a 38 a 37 a 

 PD 15 b 20 b 20 b  20 bc 

 Boot   8 bc   9 bc 12 b  27 ab 

 Maturity  0 d  0 c  0 c  0 d 

Nontreated   0 d  0 c  0 c  0 d 

_________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 4.4 and 8.7 g/ha imazethapyr rates were applied at spray volumes 
of 15 and 29 L/ha, respectively. 
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difficult as rice matures (Eric P. Webster8, personal communication).  When 

evaluating the efficacy of imazethapyr on selected weed species, visual 

injury symptoms were more severe on plants treated at earlier timings (Hoss 

et al. 2003; Shaw et al. 1990). 

 This reduction in visual injury during reproductive growth stages may 

be due to the translocation of imazethapyr to meristematic tissue (Shaner et 

al. 1984).  This tissue is located in the internal portions of the rice plant 

during the reproductive stages of growth and would not be expressed on foliar 

tissue. 

 The injury symptoms observed in this study on plants treated at the 

one-tiller timing were an interveinal chlorosis in the uppermost leaves 

(Figure 3.1) to plant death.  Leaves of treated plants often exhibited small, 

narrow reddish-brown leaf lesions similar to those associated with leaf blast 

disease of rice (Groth et al. 2009).  Subsequent tillers on recovering 

treated plants often emerged along a single plane resulting in a flat, fan-

shaped appearance in plants.  Also, an overall stunting of plants was 

observed on plants treated at the one-tiller and PD timings (Table 3.2). 

 Visual symptomology observed on plants treated with imazethapyr at PD 

and boot, often beyond the rating dates evaluated in this study, were various 

forms of foliar and inflorescence malformations.  Foliar symptoms were plants 

having multiple shoots arising from the secondary nodes of the main stem 

(Figure 3.2).  The flag leaf on the main stem and secondary shoots would 

often appear malformed wrinkled, contorted, or rolled.  In some instances 

secondary shoots were stunted or both stunted and malformed.  Panicles may 

partially exert beyond the flag leaf sheath or emerged from the side of the 

sheath (Figure 3.3).  Often panicles failed to initiate emersion from the  

                                                 
   8 Eric P. Webster, Louisiana State University AgCenter Rice Weed 
Specialist, 104 M.B. Sturgis Hall, Baton Rouge, LA 70803. 
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Figure 3.1. Symptoms observed   Figure 3.2. Symptoms observed 
with a one-tiller application   with a boot application of 
of 4.4 g ai/ha imazethapyr.   8.7 g ai/ha imazethapyr. 
 
 

  
Figure 3.3. Symptoms observed  Figure 3.4. Symptoms observed with a 
with a boot application of  boot application of 8.7 g ai/ha  
8.7 g ai/ha imazethapyr.   imazethapyr. 
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Table 3.2. Effects of simulated imazethapyr drift application rate and 
timing on primary crop rice plant height at 7, 14, 21, and 28 days after 
treatment (DAT) and at harvest, 2005 through 2007, as percent of the 
nontreated, Crowley, Louisiana.a 
____________________________________________________________________________________________________________________ 

  Rice plant height 

  _________________________________________________________________________ 

Imazethapyr 

rateb 

 

Timing 

 

7 DATc 

 

14 DATd 

 

21 DATe 

 

28 DATf 

 

Harvestg 

____________________________________________________________________________________________________________________ 

g ai/ha  _______________________ % of nontreated _________________________ 

4.4 1-tiller  73 d  84 d   84 cd  80 d  92 c 

 PD   95 bc   88 cd  87 c   96 ab  96 b 

 Boot   95 bc  94 b  92 b   92 bc  91 c 

 Maturity 103 a 101 a 102 a 101 a 100 a 

8.7 1-tiller  71 d  74 e  78 e  76 d  90 c 

 PD  92 c  83 d   80 de  80 d  90 c 

 Boot   94 bc   91 bc  92 b  89 c  91 c 

 Maturity  100 ab   96 ab 102 a 100 a 100 a 

Nontreated   100 ab 100 a 100 a 100 a 100 a 

____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 4.4 and 8.7 g/ha imazethapyr rates were applied at spray volumes 
of 15 and 29 L/ha, respectively. 
   c Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 40, 66, 94, and 47 cm, respectively. 
   d Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 52, 73, 100, and 55 cm, respectively. 
   e Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 65, 78, 99, and 58 cm, respectively. 
   f Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 72, 86, 98, and 63 cm, respectively. 
   g Actual height of nontreated rice at primary crop harvest was 96 cm. 
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flag leaf sheath and decomposed in the leaf sheath causing necrosis of the 

flag leaf if the plants were treated at the boot stage (Figure 3.4).  Some of  

the inflorescence malformations were due to a malformed panicle axis and 

partially emergence of the panicle due to fusing of the panicle with the flag 

leaf sheath.  Individual florets malformations that were observed were 

florets with the tips of the lemma excessively curved toward the palea 

(Figure 3.3) causing an appearance often referred to as “parrot beaked” when 

observed in association with the straighthead physiological disorder of rice 

(Groth et al. 2009). 

 A plant height response was observed in the primary rice crop when 

imazethapyr was applied to rice (Table 3.2).  At 7 DAT, rice plant height was 

71 to 73% of the nontreated when either imazethapyr rate was applied at one-

tiller and 92% of the nontreated when 8.7 g/ha imazethapyr was applied at PD.  

Imazethapyr at 8.7 g/ha was more detrimental to rice plant height applied at 

one-tiller and PD, 71 to 83% of the nontreated, than applications at boot, 89 

to 92% of the nontreated, at 14, 21, and 28 DAT.  A similar trend was 

observed at 14, 21, and 28 DAT with imazethapyr applied 4.4 g/ha.  At primary 

crop harvest, applications at one-tiller, PD, and boot resulted in rice plant 

height 90 to 92% of the nontreated, with the exception of 4.4 g/ha 

imazethapyr applied at PD, 96% of the nontreated. Imazethapyr applications at 

maturity had no effect on primary crop rice plant height.  Generally, 

imazethapyr applied at equal rates was more detrimental to rice plant height 

when applied at one-tiller and PD than when applied at boot.  These findings 

support the trend of increased crop injury at the one-tiller application 

timing.  Similar findings were reported by Ellis et al. (2003) and Kurtz and 

Street (2003). 

Stem and panicle counts in the primary and ratoon crops were affected 

by imazethapyr applications (Table 3.3).  Imazethapyr applied at PD and boot 

increased secondary plant stems in the primary crop resulting  
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Table 3.3. Effects of simulated imazethapyr drift application rate and 
timing on primary crop rice stem and panicle counts, 2005 through 2007, and 
ratoon crop rice stem and panicle counts, 2005 and 2007, as percent of the 
nontreated, Crowley, Louisiana.a 
_____________________________________________________________________________________________________________________ 

  Primary crop counts Ratoon crop counts 

  _____________________________ ______________________________ 

Imazethapyr 

rateb 

 

Timing 

 

Stem 

 

Panicle 

 

Stem 

 

Panicle 

_____________________________________________________________________________________________________________________ 

g ai/ha  __________________ % of nontreatedc __________________ 

4.4 1-tiller  97 d  95 b 105 b 127 b 

 PD 136 c 116 b 100 b 110 b 

 Boot  189 ab 102 b 177 a 269 a 

 Maturity  107 cd  94 b 115 b 112 b 

8.7 1-tiller  89 d  95 b 114 b 119 b 

 PD 179 b 172 a 127 b 133 b 

 Boot 212 a 106 b 184 a 318 a 

 Maturity  112 cd 104 b  97 b 103 b 

Nontreated  100 d 100 b 100 b 100 b 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 4.4 and 8.7 g/ha imazethapyr rates were applied at spray volumes of 
15 and 29 L/ha, respectively. 
   c Actual nontreated primary crop stem and panicle counts were 33 and 32 
per 0.46 m of row, respectively, and actual nontreated ratoon crop stem and 
panicle counts were 39 and 27 per 0.46 m of row, respectively. 
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in an increase in stem count compared with the nontreated.  This increase was 

due to imazethapyr causing an excess of secondary stems to be produced on the 

upper plant nodes.  However, panicle count was only increased in the primary 

crop when imazethapyr was applied at PD at the 8.7 g/ha rate.  In the ratoon 

crop, an increase in stem and panicle counts was only observed in rice 

treated at the boot stage (Table 3.3). 

 A primary crop rice yield response was observed (Table 3.4).  

Imazethapyr applied at 8.7 g/ha at one-tiller and PD and 4.4 g/ha at one-

tiller resulted in a primary crop rice yield 62 to 74% of the nontreated.  

The primary crop yield reduction resulting from an application of imazethapyr 

at the boot timing is more severe than when applied to the earlier growth 

stages of rice evaluated in this study.  Regardless of rate, imazethapyr 

applied at boot resulted in a primary crop yield 31 to 44% of the nontreated.  

However, the ratoon crop yield was 131 to 137% of the nontreated with the 

same boot timing.  This increase was due to imazethapyr causing an excess of 

secondary stems to be produced on the upper plant nodes in the ratoon rice 

crop (Table 3.3).  This excess of secondary stems did not produce panicles in 

the primary crop but did produce panicles in the ratoon crop.  This response 

was not observed with rice treated at the other timings.  However, when 

primary and ratoon crop yields were combined, the increase in ratoon crop 

yield did not compensate for the primary crop yield loss.  Either rate of 

imazethapyr applied at boot and 8.7 g/ha of imazethapyr applied at one-tiller 

resulted in a total crop yield 41 to 53% of the nontreated (Table 3.4).  

Imazethapyr applied at 4.4 g/ha at one-tiller and at 8.7 g/ha at PD reduced 

total crop yield to 63 and 80% of the nontreated, respectively.  Imazethapyr 

applied to rice at maturity and at 4.4 g/ha at PD had no effect on primary, 

ratoon, or total crop rice yield, compared with the nontreated. 
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Table 3.4. Effects of simulated imazethapyr drift application rate and timing 
on primary crop rice yield, 2005 through 2007, and ratoon and total crop rice 
yield, 2005 and 2007, as percent of the nontreated, Crowley, Louisiana.a 
_________________________________________________________________________________________________________________________ 

 Yield 

 ___________________________________________________________________ 

Imazethapyr 

rateb 

 

Timing 

 

Primary crop 

 

Ratoon crop 

 

Total crop 

_________________________________________________________________________________________________________________________ 

g ai/ha  ____________________ % of nontreatedc ____________________ 

4.4 1-tiller  64 b   83 bc  63 c 

 PD  90 a   86 bc   91 ab 

 Boot  44 c 131 a   51 cd 

 Maturity  96 a   87 bc   96 ab 

8.7 1-tiller  62 b   82 bc   53 cd 

 PD  74 b  77 c  80 b 

 Boot  31 c 137 a  41 d 

 Maturity  98 a   93 bc  98 a 

Nontreated  100 a 100 b 100 a 

_________________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not statistically 
different according to the t-test on difference of least square means at P = 
0.05. 
   b The 4.4 and 8.7 g/ha imazethapyr rates were applied at spray volumes of 15 
and 29 L/ha, respectively. 
   c Actual nontreated yield for the primary, ratoon, and total crops were 
6800, 1300, and 8100 kg/ha, respectively. 
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 Though primary crop rice yield was reduced by simulated imazethapyr 

drift applications at the one-tiller, PD, and boot timings, it appears that 

rice is most susceptible to imazethapyr during the boot growth stage.  

Similar results were reported by Hensley et al. (2009) when evaluating 

simulated glyphosate drift on rice.  Rice producers in Louisiana may have the 

ability to recover some yield loss from an imazethapyr drift event occurring 

to rice during the boot growth stage by increasing ratoon crop yield; 

however, the reduction in total crop yield from an imazethapyr drift event at 

the boot growth stage of rice has the potential to be significant.  These 

data also indicate an increased susceptibility to imazethapyr drift occurring 

at the one-tiller timing compared to the PD timing.  This may be due to the 

reduced plant biomass at this growth stage compared to the later PD growth 

stage.  Shaw et al. (1990) reported an increased susceptibility to 

imazethapyr in smaller plants when evaluating its effects on johnsongrass 

(Sorghum halepense L.) at 15, 30, and 60 cm plant heights.  Though rice has 

the ability to recover from imazethapyr drift occurring at the vegetative 

one-tiller stage, if a combination of herbicide drift and climatic conditions 

unsuitable for growth hinder recovery, yield losses may be significant (Eric 

P. Webster8, personal communication).  

Seed Germination and Seedling Vigor Studies.  Simulated imazethapyr drift 

applications did affect primary crop rice seed weight; however, ratoon crop 

rice seed weight was not affected (Table 3.5).  An application of 8.7 g/ha 

imazethapyr at boot reduced primary crop rice seed weight to 93% of the 

nontreated.  These data indicate that the grain that remains after mechanical 

harvesting can be impacted by imazethapyr applications.  It is expected that 

any unfilled or malformed grain observed on rice panicles on treated plants 

would have been separated and expelled by the mechanical plot harvester.  

This separation is similar to a commercial harvesting operation so any 

reduction in seed weight, germination, or seedling vigor of harvested grain  
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Table 3.5. Effects of simulated imazethapyr drift application rate and 
timing on primary crop rice seed weight, 2005 through 2007, and ratoon crop 
rice seed weight, 2005 and 2007, as percent of the nontreated, Crowley, 
Louisiana.a 
_____________________________________________________________________________________________________________________ 

 100-seed weight 

 ____________________________________________________ 

Imazethapyr 

rateb 

 

Timing 

 

Primary crop 

 

Ratoon crop 

_____________________________________________________________________________________________________________________ 

g ai/ha  ____________ % of nontreatedc ____________ 

4.4 1-tiller  100 ab 108 a 

 PD  100 ab  98 a 

 Boot 101 a 101 a 

 Maturity 103 a  99 a 

8.7 1-tiller  100 ab  96 a 

 PD  97 b  98 a 

 Boot  93 c 100 a 

 Maturity 102 a  98 a 

Nontreated   100 ab 100 a 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 4.4 and 8.7 g/ha imazethapyr rates were applied at spray volumes of 
15 and 29 L/ha, respectively. 
   c Actual nontreated 100-seed weight for the primary and ratoon crop were 
2320 and 2014 mg, respectively. 
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observed in this study is reflective of the impact expected on commercial 

seed rice producers.  Studies conducted using hand-harvesting of seeds, such 

as Walker and Oliver (2008), which bypass a separation process, may 

misrepresent the impact of herbicides on seed in mechanically harvested grain 

crops. 

 Imazethapyr applications did not affect primary crop rice seed 

germination at 13 or 16 C (Table 3.6).  Primary crop seed germination at 19 

and 22 C was reduced by imazethapyr applied at one-tiller, PD, and boot, 

compared with the nontreated.  At these temperatures, when applied at PD and 

boot, 8.7 g/ha imazethapyr resulted in a greater reduction in germination 

than 4.4 g/ha.  When evaluated at 25 C, primary crop rice seed germination 

was reduced, compared with the nontreated, when imazethapyr was applied at 

8.7 g/ha at one-tiller, PD, and boot, and 4.4 g/ha at boot.  The greatest 

reduction in primary crop seed germination at 19, 22, and 25 C was observed 

from an imazethapyr application at 8.7 g/ha at boot resulting in germination 

53, 69, and 62% of the nontreated, respectively.  Reductions in germination 

of this magnitude can lead to a significant increase in seed cost to rice 

producers.  Compared with the nontreated at 19 C, a producer using seed 

affected by the 8.7 g/ha imazethapyr rate at boot would have to approximately 

double their seeding rate to achieve a rice seed germination comparable to 

that of the nontreated seed.  Ratoon crop rice seed germination was reduced 

at 19 and 22 C when 4.4 g/ha imazethapyr was applied at PD (Table 3.7). 

 Imazethapyr applications did not reduce primary crop seedling plant 

vigor (data not shown).  These data indicate that when 8.7 g/ha imazethapyr 

is applied at boot, there is a correlation between reduced rice seed weight 

and seed germination, also observed by Krishnasamy and Seshu (1989).  

However, a lack of reduction in seed weight was not an indicator of seed 

germination for imazethapyr applications at one-tiller and PD or the 4.4  
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Table 3.6. Effects of simulated imazethapyr drift application rate and 
timing on primary crop rice seed germination at various temperatures, 2005 
through 2007, as percent of the nontreated, Crowley, Louisiana.a 
____________________________________________________________________________________________________________________ 

  Temperatures 

  ________________________________________________________________________ 

Imazethapyr 

rateb 

 

Timing 

 

13 C 

 

16 C 

 

19 C 

 

22 C 

 

25 C 

____________________________________________________________________________________________________________________ 

g ai/ha  _______________________ % of nontreatedc _____________________ 

4.4 1-tiller  43 a  95 a  79 b   89 bc   97 ab 

 PD  71 a  95 a  81 b  90 b 100 a 

 Boot 100 a  93 a   71 bc   87 bc  82 d 

 Maturity 100 a 102 a 100 a  99 a 103 a 

8.7 1-tiller  57 a  91 a   74 bc  91 b   91 bc 

 PD 100 a  79 a  66 c  83 c   85 cd 

 Boot 100 a  74 a  53 d  69 d  62 e 

 Maturity 100 a 105 a  98 a   95 ab   97 ab 

Nontreated  100 a 100 a 100 a 100 a 100 a 

____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 4.4 and 8.7 g/ha imazethapyr rates were applied at spray volumes of 
15 and 29 L/ha, respectively. 
   c Actual germination of the nontreated seed at 13, 16, 19, 22, and 25 C 
was 7, 42, 58, 78, and 68%, respectively. 
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Table 3.7. Effects of simulated imazethapyr drift application rate and 
timing on ratoon crop rice seed germination at various temperatures, 2005 
and 2007, as percent of the nontreated, Crowley, Louisiana.a 
____________________________________________________________________________________________________________________ 

  Temperatures 

  _______________________________________________________________________ 

Imazethapyr 

rateb 

 

Timing 

 

13 C 

 

16 C 

 

19 C 

 

22 C 

 

25 C 

____________________________________________________________________________________________________________________ 

g ai/ha  _____________________ % of nontreatedc _____________________ 

4.4 1-tiller 125 a 213 a 126 a 127 a 103 a 

 PD  50 a  67 c  78 d  87 d  93 a 

 Boot 100 a 120 b 113 b  109 bc  91 a 

 Maturity 100 a  113 bc  96 c   95 cd  96 a 

8.7 1-tiller 100 a 200 a  122 ab 129 a  96 a 

 PD  75 a 120 b 100 c   96 cd  93 a 

 Boot 125 a 133 b 128 a 116 b  99 a 

 Maturity 100 a 127 b   89 cd   91 cd  94 a 

Nontreated  100 a  100 bc 100 c 100 c 100 a 

____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 4.4 and 8.7 g/ha imazethapyr rates were applied at spray volumes of 
15 and 29 L/ha, respectively. 
   c Actual germination of the nontreated seed at 13, 16, 19, 22, and 25 C 
was 4, 15, 46, 55, and 69%, respectively. 
 



 62

g/ha rate at boot in this study.  These data also indicate that rice seed 

germination may be affected by an imazethapyr drift even if there is no 

notable reduction in seed weight.  However, it appears that if seeds 

germinate, seedling vigor will not be adversely affected.  If seed rice is 

affected by a drift event, extra caution should be taken before that seed is 

sold to producers. 

 In conclusion, simulated imazethapyr drift applications at the one-

tiller, PD, and boot timings result in reduced plant height and primary and 

total crop yield losses, with the greatest reduction in primary crop yield 

resulting from imazethapyr applied at the boot growth stage.  Imazethapyr 

applications to mature rice had no effect on rice plant height or yield.  

Primary crop rice seed weight was reduced by an imazethapyr application to 

rice at boot.  Primary crop rice seed germination was reduced when 

imazethapyr was applied at one-tiller, PD, and boot, with increased 

susceptibility at the boot growth stage.  A reduction in ratoon crop rice 

seed weight was not observed; however, ratoon crop rice seed germination was 

reduced by an imazethapyr application at the PD growth stage. 

 The ability to identify imazethapyr drift on rice can be helpful to 

producers, Cooperative Extension Service personnel, crop consultants, and 

state regulatory agencies in distinguishing between herbicide drift and 

injury associated with soil fertility issues, diseases, and other disorders 

affecting rice.  Misidentification of herbicide drift symptoms as injury 

associated with these factors can lead to loss in profitability if growers 

apply unnecessary applications of inputs to correct these factors when the 

symptoms present are actually a result of herbicide drift.  The ability to 

correlate the symptoms observed to imazethapyr drift also may assist state 

regulatory agencies in identifying the source of a herbicide drift event.  If 

imazethapyr can be identified by observation of plant symptoms this can 

reduce the cost associated with confirmation of a herbicide drift event 
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through the use of diagnostic testing of foliar residue since most analytical 

facilities charge per evaluation and the diagnostic tests involved are often 

herbicide specific. 

 An imazethapyr drift event occurring to a producer’s field at the one-

tiller, PD, or boot growth stages of rice can reduce yield; however, this 

study indicates that a drift event occurring at the boot stage may be the 

most detrimental to yield.  Rice receiving a drift event in vegetative growth 

stages, one-leaf to one-tiller, can often recover if stand is maintained at 

recommended densities (Eric P. Webster8, personal communication).  However, an 

imazethapyr drift event occurring to rice in the reproductive stage of growth 

may have little to no visual foliar injury and often symptoms may not appear 

until rice plants near crop maturity.  This may lead to loss of yield and 

profitability due to continuing to supply crop inputs, such as increased 

fertilizer, insecticide, and fungicide applications, to a crop that has an 

already reduced yield potential.  The negative effects of an imazethapyr 

drift event occurring to a seed producer’s field to rice in the PD or boot 

growth stages has the potential to be two-fold.  The reduction in 

profitability the year of the event from reduced yield and a reduction in 

seed germination has the ability to reduce profitability in the subsequent 

year’s crop due to an increase in seeding rate to offset the reduced seed 

germination. 

 Caution should be taken when applying imazethapyr near adjacent 

susceptible rice fields, especially when making applications near rice in the 

reproductive growth stages.  Though the effects of imazethapyr drift on rice 

may not be immediately apparent by visual observation, the potential affect 

on grain yield and the germination potential of the harvested grain could be 

highly detrimental to rice producers. 
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Chapter 4 

Impact of Off-site Deposition of Glufosinate to Rice 
 

Introduction 

 Glufosinate is a nonselective, foliar applied, postemergence herbicide 

used to control annual and perennial weeds in non-crop areas and for weed 

control in glufosinate-resistant crops (Senseman 2007).  The mechanism of 

action of glufosinate is the inhibition of the enzyme glutamine synthetase 

(EC 6.3.1.2) that converts glutamate and ammonia to glutamine (Lea et al. 

1984; Senseman 2007).  This inhibition of glutamine synthetase results in a 

toxic accumulation of ammonia in treated plants and inhibition of 

photosystems I and II (Sauer et al. 1987; Senseman 2007; Tachibana et al. 

1986; Wild et al. 1987). 

 The symptoms expressed in plants from the inhibition of glutamine 

synthase are that chlorosis and wilting usually occur within 3 to 5 d 

followed by necrosis in 7 to 14 d after application to susceptible species 

(Senseman 2007).  The rate of symptom development is increased in bright 

sunlight, high humidity, and moist soil. 

Rice (Oryza sativa L.) is a major crop produced in the four state 

region of Arkansas, Louisiana, Mississippi, and Texas, with these states 

accounting for 76% of the 1.2 million total hectares of rice planted in the 

U.S. and 70% of the $3.4 billion of total value of rice produced in the U.S. 

in 2008 (NASSa 2009; NASSb 2009).  Glufosinate-resistant rice has been 

evaluated and approximately 320 ha of glufosinate-resistant rice was produced 

commercially in Louisiana in 2000 (Lanclos et al. 2002; Lanclos et al. 2003; 

Steven D. Linscombe1, personal communication; Zhang et al. 2003).  

Glufosinate-resistant corn (Zea mays L.) has been researched and evaluated 

for more than a decade and glufosinate-resistant soybean [Glycine max (L.) 

                                                 
   1 Steven D. Linscombe, Louisiana State University AgCenter Rice Research 
Station Resident Coordinator, 1373 Caffey Rd., Rayne, LA 70578. 
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Merr.] cultivars became available for commercial soybean producers in 

Louisiana in 2009 (Krausz et al. 1999; Ronald J. Levy, Jr.2, personal 

communication).  Since many of the rice producing parishes in Louisiana also 

produce soybean and corn (NASSc 2009), the potential exists for off-target 

herbicide drift from one of these crops to rice. 

In 2000, glufosinate drift was observed on rice from an application 

applied to commercially produced glufosinate-resistant rice in Louisiana 

(Steven D. Linscombe1, personal communication).  Averaged over the ten year 

period 1999 to 2008, the Louisiana Department of Agriculture and Forestry 

processed 76 Pesticide Investigation Reports per year listing ground or 

aerial applicators in Louisiana, and, on average, six reports per year 

involved rice (Lisa Gautreaux3, personal communication).  However, it was 

reported that, in 2009, at least 50 rice fields were suspected of being 

affected by glyphosate drift and at least 25 rice fields were suspected of 

being affected by imazethapyr drift, many of which were not reported to the 

LDAF (Ronald J. Levy, Jr.2, personal communication; John K. Saichuk4, personal 

communication).  Therefore, the number of rice fields actually affected by a 

drift event each year may be underrepresented by the number of official 

complaints processed by the LDAF. 

It has been reported that fine spray droplets less than 150 µm in size 

have a greater potential to drift off-target (Hanks 1995; SDTF 1997).  The 

use of adjuvants and selection of proper spray nozzle type, size, and 

application pressure can be beneficial in reducing the amount of fine spray 

droplets in the spray cloud (Hanks 1995; Jones et al. 2007; Nuyttens et al. 

                                                 
   2 Ronald J. Levy, Jr., Louisiana State University AgCenter Soybean, Corn, 
and Grain Sorghum Specialist, 8208 Tom Bowman Dr., Alexandria, LA 71302. 
   3 Lisa Gautreaux, Pesticide and Environmental Programs Administrative 
Coordinator, Louisiana Department of Agriculture and Forestry, 5825 Florida 
Blvd., Baton Rouge, LA 70806. 
   4 John K. Saichuk, Louisiana State University AgCenter Rice Specialist, 
1373 Caffey Rd., Rayne, LA 70578. 
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2007; VanGessel and Johnson 2005).  This increase in droplet size can reduce 

the potential for off-target drift from droplets larger than 150 µm; however, 

environmental conditions at the time of herbicide application can also impact 

the off-target drift of spray solutions (Bouse et al. 1976; Crabbe et al. 

1994; Thistle 2004). 

Wind speed and direction may be considered the two most important 

factors affecting spray droplets in the atmosphere, a stable atmosphere may 

be the third most important factor (Thistle 2004).  A stable atmosphere, 

commonly referred to as an inversion, is an atmosphere that has a change of 

temperature with a change in elevation in the atmosphere.  In a stable 

atmosphere, warm air overlies cool air.  If air in a particular layer is 

displaced upward or downward it will be colder or warmer, respectfully, than 

the immediately adjacent layer it enters and thus returns to the original 

layer.  If a herbicide application is made during an inversion scenario, the 

fine droplets that do not succumb to gravity will remain in the layer in 

which they are deposited due to the lack of layers mixing.  The droplets in 

this layer can be very concentrated and may horizontally move off-target, and 

in some cases, great distances. 

Ultra-low-volume applications made during a stable atmosphere produced 

35% more herbicide drift than applications made during a turbulent atmosphere 

with light wind speeds (Crabbe et al. 1994).  The conditions in which the 

greatest drift occurred were in moderately stable conditions with wind at 3 

m/s resulting in off-target drift 71% at 400 m and 50% at 2200 m from the 

application site and in slightly stable conditions with wind at 5 m/s 

resulting in off-target drift 77% at 400 m and 27% at 2200 m from the 

application site.  It is recommended that herbicide applications should be 

avoided during the early morning and late evening because these times are 

most favorable for the development of inversion conditions (Crabbe et al. 

1994; Thistle 2004). 
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 Through the use of simulated herbicide drift studies, the potential 

effects of glufosinate drift to rice can be evaluated.  In previous research, 

simulated drift studies varying the spray volume proportionally with reduced 

herbicide rates to simulate herbicide drift resulted in increased crop injury 

compared with the same herbicide rate applied in a constant spray volume 

(Banks and Schroeder 2002; Ellis et al. 2002; Ramsdale et al. 2003; Roider et 

al. 2008).  Ellis et al. (2002) reported that glyphosate and glufosinate 

applied at 6.3 and 12.5% of their labeled use rates in a proportionally 

reduced carrier volume reduced corn yield four times and one-and-one-half 

times more, respectively, compared to the same herbicide doses applied with a 

constant carrier volume of 234 L/ha.  The no-effect glyphosate rate for sweet 

corn was four times greater when using a spray volume proportional to the 

reduced glyphosate rate compared to when reduced glyphosate rates were 

applied in a constant spray volume (Banks and Schroeder 2002). 

 Glufosinate applied to rice at a simulated drift rate of 53 g/ha in a 

constant spray volume reduced rice yield 30% (Ellis et al. 2003).  When 

glufosinate was applied to grain sorghum (Sorghum bicolor L.) at 1, 3, 10, 

and 33% of its labeled use rate only the 10 and 33% rates resulted in reduced 

grain sorghum yield (Al-Khatib et al. 2003). 

 Rapid rice seed germination and seedling growth can enhance plant stand 

establishment in commercial fields (Krishnasamy and Seshu 1989; Pollock and 

Roos 1972; Wright 1980).  Rice seed germination was reduced by simulated 

glufosinate drift when evaluated at 16 C (Ellis et al. 2003).  Bennett and 

Shaw (2000) found that applications of glufosinate applied preharvest in 

soybean reduced seed germination of sicklepod (Senna obtusifolia (L) Irwin 

and Barnaby) and pitted morningglory (Ipomoea lacunosa L.).  Glufosinate 

applied for preharvest desiccation of grain sorghum (Sorghum bicolor (L.) 

Moench) did not effect grain sorghum seed germination (Bovey et al. 1999).  

Glyphosate applied to wheat at first node, boot, and early flowering growth 
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stages resulted in 16 to 36% reductions in seed weight (Roider et al. 2007).  

A negative correlation between 100-count seed weight and rice seed 

germination has been observed (Krishnasamy and Seshu 1989).  A need exists to 

evaluate the possible effects of a glufosinate drift event on rice crop seed 

germination and seedling vigor.   

 Even though a published study evaluating the effects of simulated 

glufosinate drift on rice exists (Ellis et al. 2003), this study was not 

conducted using spray volumes proportional with reduced herbicide dosage.    

The objectives of this research were to evaluate the effects of simulated 

glufosinate drift applied to rice during the primary rice crop on the crop 

response and impact on the seed produced on treated rice in the primary and 

ratoon rice crops. 

Materials and Methods 

Simulated Glufosinate Drift Field Study.  A study was conducted on rice grown 

in 2005 through 2007 at the LSU AgCenter Rice Research Station near Crowley, 

Louisiana on a Crowley silt loam (fine montmorillonitic, thermic Typic 

Albaqualf) with pH 5.5 and 1.2% organic matter.  Field preparation consisted 

of a fall and spring disking and two passes in opposite directions with a 

two-way bed conditioner equipped with rolling baskets and S-tine harrows 15 

cm deep.  The long grain rice cultivar ‘Cocodrie’ was drill-seeded March 28 

to April 17 in 2005 through 2007.  Plots consisted of twelve-18 cm spaced 

rows 6 m long. 

 The experimental design was an augmented two-factor factorial 

arrangement of treatments in a randomized complete block with four 

replications.  Factor A consisted of glufosinate applied at simulated drift 

rates of 6.3 and 12.5% of the labeled usage rate of 493 g ai/ha, or 31 and 62 

g/ha, respectively.  Factor B consisted of application timings at different 

growth stages: one-tiller, panicle differentiation (PD), boot, and 

physiological maturity.  Each herbicide application was made with the spray 
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volume varying proportionally to herbicide dosage based on a constant spray 

volume of 234 L/ha.  The 12.5% herbicide rate was applied at a spray volume 

of 29 L/ha and the 6.3% herbicide rate was applied at a spray volume of 15 

L/ha.  Each application was made with a tractor-mounted CO2-pressurized 

sprayer calibrated to deliver a constant carrier volume with speed adjusted 

to vary application rate and equipped with Teejet®5 TX-2 Conejet® 800033 

nozzles.  A ratoon rice crop was not produced in 2006 due to unfavorable 

weather following primary crop harvest. 

 The study area was maintained weed-free using clomazone at 420 g ai/ha 

applied preemergence followed by propanil at 4483 g ai/ha plus halosulfuron 

at 53 g ai/ha applied postemergence.  For the primary rice crop a preplant 

application of 280 kg/ha of 8-24-24 (N-P2O5-K2O) fertilizer and a preflood 

application of 365 kg/ha 46-0-0 urea fertilizer were applied to the study 

area and for the ratoon rice crop a preflood application of 100 kg/ha 46-0-0 

urea fertilizer was applied to the study area to maintain proper fertility 

and to maximize yields in the primary and ratoon crops.  Standard agronomic 

and pest management practices were implemented throughout the growing season 

to maximize yield.   

 Rice plant height and rice injury in the primary rice crop were 

obtained 7 days after herbicide treatment (DAT) and continued weekly for 28 

DAT.  Rice plant height was obtained by measuring four plants per plot from 

the soil surface to the tip of the extended uppermost emerged leaf or 

extended rice panicle.  Rice injury was evaluated based on chlorosis and 

necrosis of foliage and reduced plant height using a scale of 0 to 100% where 

0 = no injury and 100 = plant death.  Rice plant height at primary crop 

harvest and rough rice yield, 100-count seed weight, and stem and panicle 

counts for the primary and ratoon crop were also obtained.  Whole plots were 

                                                 
   5 Spraying Systems Co., P. O. Box 7900, Wheaton, IL 60187. 
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mechanically harvested and rough rice yield was adjusted to 12% moisture.  

Total stem and panicle counts were calculated by hand harvesting a 0.46 m 

section of row and determining the number of stems present at the mid-height 

of the plants and the number of panicles with bases emerged beyond the sheath 

of the flag leaf, or the last leaf to emerge prior to the panicle. 

 All data were subjected to the Mixed Procedure of SAS (SAS 2003).  

Year, replications (nested within year), and all interactions containing 

either of these effects were considered random effects.  Application timing 

and rate were considered fixed effects.  Considering year or combination of 

year as random effects permits inferences about treatments over a range of 

environments (Carmer et al. 1989; Leon et al. 2008).  Type III statistics 

were used to test all possible effects of fixed factors (application timing 

and rate) and least square means were used for mean separation at the 5% 

probability level (p ≤ 0.05). 

Seed Germination Study.  The germination potential of seed collected from 

grain harvested in the simulated glufosinate drift field study at primary 

crop harvest, 2005 through 2007, and at ratoon crop harvest, 2005 and 2007, 

was evaluated at multiple temperatures.  Seed collected from each plot was 

air-dried and stored at 8 C.  Germination temperatures evaluated were 13, 16, 

19, 22, and 25 C.  Temperature selection and germination testing procedure 

for this study were based on procedures previously described by Webster et 

al. (2003) and follow standard germination procedures recommended by 

Association of Official Seed Analysts (AOSA) (AOSA 2006).  Temperature 

selection was based on 19 C being the historical mean 10-cm soil temperature 

in Crowley, LA on April, 1, which corresponds to 50% of the rice being 

planted across the state (Webster et al. 2003). 

 One hundred seeds from each field plot were prepared by soaking for 30 

min in a 50:50 (v/v) solution of chlorine bleach and distilled water to 

decrease seedling diseases.  After soaking, seeds were triple rinsed with 
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distilled water.  After seed preparation, seeds were placed in a 10 cm 

plastic Petri dish between two 9 cm germination blotters6.  Next, 10 ml of 

carboxin (5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3-carboxamide) plus 

thiram (tetramethylthiuram disulfide) plus distilled water solution (52 ml of 

a 10% carboxin and 10% thiram premix liquid fungicide combined with 948 ml 

distilled water) was applied in each Petri dish to reduce seedling diseases.  

Petri dishes were sealed with Parafilm M7 to prevent moisture loss and placed 

in a constant-temperature growth chamber in total darkness.  Germination 

counts were taken 5, 9, and 14 d after initiation (DAI) of the study.  A seed 

was considered germinated if the radical had reached a length of 1 mm. 

 Seed germination data were arranged as repeated measures and subjected 

to the Mixed Procedure of SAS (SAS 2003).  Year, replications (nested within 

year), DAI (nested within replications), and all interactions containing 

either of these effects were considered random effects.  Application timing 

and rate and germination temperature were considered fixed effects.  

Considering year or combination of year as random effects permits inferences 

about treatments over a range of environments (Carmer et al. 1989; Leon et 

al. 2008).  Type III statistics were used to test all possible effects of 

fixed factors (application timing and rate and germination temperature) and 

least square means were used for mean separation at the 5% probability level 

(p ≤ 0.05). 

Seedling Vigor Study.  Vigor of seedlings from grain collected at primary 

crop harvest in the simulated glufosinate drift field study in 2006 and 2007 

was examined.  Seedling vigor, as defined by AOSA (AOSA 2002), is “seedling 

vigor comprises those seed properties which determine the potential for 

rapid, uniform emergence, and development of normal seedlings under a wide 

                                                 
   6 Anchor Steel Blue Seed Germination Blotter®, SDB 3.5. Anchor Paper 
Company, 480 Broadway, St. Paul, MN 55101. 
   7 Parafilm M®. Pechiney Plastic Packaging, Menash, WI 54952. 
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range of field conditions” and it is used as a measure of seed quality by 

producers.  Since there is no accepted standard vigor test for rice, vigor 

testing procedures for this study were based on procedures previously 

described by Webster et al. (2003). 

Approximately 100 seeds from each field plot were prepared by soaking 

for 30 min in a 50:50 (v/v) solution of chlorine bleach and distilled water 

to decrease seedling diseases.  After soaking, seeds were triple rinsed with 

distilled water.  Following seed preparation, seeds were pre-germinated by 

soaking in distilled water for 24 h.  Ten pre-germinated seeds from each 

field plot were placed on a single sheet of nontreated germination paper8 cut 

to fit a 12 by 23 by 0.3 cm acrylic sheet.  Germination paper was moistened 

by submerging in distilled water for 5 seconds to facilitate adherence to the 

acrylic sheet and provide residual moisture to rice seeds.  Seeds were placed 

along the center of germination paper oriented with the radical end of the 

seed toward the lower half of the sheet.  A one-ply paper towel strip was 

placed over the seed, and 5 ml of a mancozeb [ethylene (bis)-dithiocarbamate] 

plus distilled water solution (dry formulation of mancozeb at 1640 mg ai/L 

distilled water) was applied on top of the strip to reduce seedling diseases.  

The plated seeds were then placed vertically in a rack and then placed in a 

30 by 51 by 5 cm dish with 1,420 ml of distilled water to allow for 

evaporation.  The dish and racks of plates were wrapped in plastic wrap to 

prevent desiccation.  The glass dish was placed in a constant temperature 

growth chamber at 21 C for 12 d in total darkness.  At the end of 12 d, shoot 

lengths were measured and an average of the 10 shoot lengths was obtained for 

data analysis.   

Seed vigor data were subjected to the Mixed Procedure of SAS (SAS 

Institute 2003).  Year, replications (nested within year), and all 

                                                 
   8  Anchor Steel Blue Seed Germination Blotters®, SDB 1924. Anchor Paper 
Company, 480 Broadway, St. Paul, MN 55101. 
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interactions containing either of these effects were considered random 

effects.  Application timing and rate were considered fixed effects.  

Considering year or combination of year as random effects permits inferences 

about treatments over a range of environments (Carmer et al. 1989; Leon et 

al. 2008).  Type III statistics were used to test all possible effects of 

fixed factors (application timing and rate) and least square means were used 

for mean separation at the 5% probability level (p ≤ 0.05). 

Results and Discussion 

Simulated Glufosinate Drift Field Study.  A crop injury response was observed 

in the primary crop (Table 4.1).  At 7 and 14 DAT, averaged across 

application rates, the greatest crop injury was 24 and 14% at the boot 

timing, respectively.  Crop injury at 21 DAT was 6% with glufosinate applied 

at PD and boot and at 28 DAT crop injury was less than 5% for all timings 

evaluated.  These data indicate a trend of increased crop injury when 

glufosinate is applied at later growth stages.  Ellis et al. (2003) reported 

similar findings when evaluating glufosinate drift on rice. 

 Foliar symptoms observed on rice plants treated with glufosinate begin 

as small reddish-brown lesions within 2 DAT becoming irregularly shaped 

chlorotic lesions within 7 DAT on affected leaves (Figure 4.1, 4.2, 4.3).  By 

14 DAT, new leaf growth had initiated in plants treated at one-tiller and PD 

with chlorotic lesions increasing in size on the lower leaves resulting in 

necrosis of the leaf (Figure 4.4).  By 28 DAT, visual symptoms were often 

undetectable, compared with nontreated plants. 

 A plant height response was observed in the primary rice crop when a 

simulated glufosinate drift application was applied to rice (Table 4.2).   

Rice plant height at 7 through 28 DAT was 94 to 96% of the nontreated when 

glufosinate was applied to rice at one-tiller.  Regardless of timing, no rice 

plant height was less than 98% of the nontreated at harvest.  These data 
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Table 4.1. Effects of simulated glufosinate drift application timing on 
primary rice crop injury 7, 14, 21, and 28 days after treatment (DAT), 
2005 through 2007, Crowley, Louisiana.a 
_________________________________________________________________________________________________________________ 

 Injury 

 ____________________________________________________________________________ 

Glufosinate 

timing 

 

7 DAT 

 

14 DAT 

 

21 DAT 

 

28 DAT 

_________________________________________________________________________________________________________________ 

 __________________________________ %b ____________________________________ 

1-tiller 10 c  4 c 1 b 1 b 

PD 15 b  9 b 6 a 1 b 

Boot 24 a 14 a 6 a 3 a 

Maturity  0 d  0 d 0 b 0 b 

Nontreated  0 d  0 d 0 b 0 b 

_________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across application rates of 31 and 62 g ai/ha 
glufosinate applied at spray volumes of 15 and 29 L/ha, respectively. 
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Figure 4.1. Symptoms observed   Figure 4.2. Symptoms observed 
with a PD application of   with a PD application of  
62 g ai/ha glufosinate.    31 g ai/ha glufosinate. 
 
 

   
Figure 4.3. Symptoms observed   Figure 4.4. Symptoms observed 
with a PD application of   with a PD application of 
62 g ai/ha glufosinate.    31 g ai/ha glufosinate. 
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Table 4.2. Effects of simulated glufosinate drift application timing on 
primary crop rice plant height at 7, 14, 21, and 28 days after treatment 
(DAT) and at harvest, 2005 through 2007, as percent of the nontreated,  
Crowley, Louisiana.a 
____________________________________________________________________________________________________________________ 

 Rice plant height 

 __________________________________________________________________________________ 

Glufosinate 

timing 

 

7 DATb 

 

14 DATc 

 

21 DATd 

 

28 DATe 

 

Harvestf 

____________________________________________________________________________________________________________________ 

 ___________________________ % of nontreatedg ____________________________ 

1-tiller  94 b  96 b  96 c  96 c   99 ab 

PD  98 a  99 a   99 ab  98 b  98 b 

Boot  99 a   98 ab  98 b   99 ab  98 b 

Maturity  99 a 100 a 100 a   99 ab 100 a 

Nontreated 100 a  100 a 100 a 100 a 100 a 

____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 41, 65, 93, and 51 cm, respectively. 
   c Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 54, 71, 99, and 56 cm, respectively. 
   d Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 65, 78, 98, and 60 cm, respectively. 
   e Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 71, 88, 97, and 64 cm, respectively. 
   f Actual height of nontreated rice at primary crop harvest was 96 cm. 
   g Data averaged across application rates of 31 and 62 g ai/ha 
glufosinate applied at spray volumes of 15 and 29 L/ha, respectively. 
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indicate rice has the ability to recover from early injury caused by 

glufosinate drift with little or no impact on plant height.  A similar trend 

of greater injury at earlier application timings was reported by Hoss et al. 

(2003) when evaluating efficacy of glufosinate on prairie cupgrass (Eriochloa 

contracta Hitchc.). 

 A crop yield response was observed (Table 4.3).  Averaged across 

application rates, primary crop yield was reduced to 90% of the nontreated 

when simulated glufosinate drift was applied to rice at the boot growth 

stage.  A reduction in ratoon crop yield was not observed; however, total 

crop yield was 93% of the nontreated when glufosinate was applied at the boot 

stage.  These data indicate rice is susceptible to glufosinate drift 

occurring at the boot growth stage.  These finding support the trend of 

increased crop injury with a glufosinate drift event at the boot stage.  

Ellis et al. (2003) reported a late reproductive growth stage application of 

glufosinate reduced rice yield.  Though a yield reduction of this magnitude 

would reduce grower’s profits, the yield reduction observed by Ellis et al. 

(2003) and Hensley et al. (2009) when evaluating glyphosate drift on rice 

resulted in a more significant decrease in primary crop yield.  The rice 

plant stem and panicle counts in the primary and ratoon crop were not 

affected by glufosinate applications (data not shown).  The carbohydrate 

source for developing rice grain is the three or four uppermost leaves of the 

rice plant (Dunand and Saichuk 2009).  Since the visual crop injury observed 

with a glufosinate application at the boot stage would affect these uppermost 

leaves, this injury could account for the reduction in primary crop yield. 

Seed Germination and Seedling Vigor Studies.  Simulated glufosinate drift 

applications did not affect primary crop rice seed weight (Table 4.4) or 

ratoon crop rice seed weight (data not shown).  It is expected that any 

unfilled or malformed grain on rice panicles on treated plants would be 

separated and expelled by the mechanical plot harvester.  This separation is 
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Table 4.3. Effects of simulated glufosinate drift application timing on 
primary crop rice yield, 2005 through 2007, and ratoon and total crop rice 
yield, 2005 and 2007, as percent of the nontreated, Crowley, Louisiana.a 
_____________________________________________________________________________________________________________________ 

 Yield 

 ___________________________________________________________________________ 

Glufosinate timing Primary crop Ratoon crop Total crop 

_____________________________________________________________________________________________________________________ 

 _______________________ % of nontreatedb,c _______________________ 

1-tiller 100 a  98 a  98 a 

PD 100 a 102 a  99 a 

Boot  90 b 106 a  93 b 

Maturity 103 a  93 a  99 a 

Nontreated 100 a 100 a  100 a 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across application rates of 31 and 62 g ai/ha glufosinate 
applied at spray volumes of 15 and 29 L/ha, respectively. 
   c Actual nontreated yield for the primary, ratoon and total crops were 
6100, 1500, and 7600 kg/ha, respectively. 
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Table 4.4. Effects of simulated glufosinate drift application rate on 
primary crop rice seed weight, 2005 through 2007, and seedling vigor, 2006 
and 2007, as percent of the nontreated, Crowley, Louisiana.a 
_____________________________________________________________________________________________________________________ 

Glufosinate rate 100-seed weight Seedling vigor 

_____________________________________________________________________________________________________________________ 

g ai/ha ________________ % of nontreatedb,c ________________ 

31 100 a  88 b 

62 100 a  91 b 

Nontreated 100 a 100 a 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across the one-tiller, PD, boot, and maturity application 
timings. 
   c Actual nontreated 100-seed weight and seedling vigor shoot length was 
2400 mg and 43 mm, respectively. 
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similar to a commercial harvesting operation so any affect on seed weight, 

germination, and seedling vigor of harvested grain observed in this study is 

reflective of the impact expected on commercial seed rice producers.  Studies 

conducted using hand-harvesting of seeds, such as Walker and Oliver (2008), 

which bypass a separation process, may misrepresent the impact of herbicides 

on seed in mechanically harvested grain crops. 

 A primary crop rice seed germination response was observed (Table 4.5).  

Averaged across application timings, glufosinate applied at 31 and 62 g/ha 

resulted in rice seed germination 92 to 93% of the nontreated when evaluated 

at 19 C.  Glufosinate applications had no affect on rice seed germination 

when evaluated at 13, 16, 22, and 25 C.  Ellis et al. (2003) reported a 

simulated glufosinate drift application to rice resulted in a reduction in 

primary crop seed germination.  Reductions in germination of this magnitude 

can lead to an increase in seed cost to rice producers.  Ratoon crop rice 

seed germination was not reduced by simulated glufosinate drift applications, 

compared with the nontreated (Table 4.6). 

 A reduction in primary crop rice seedling vigor was observed (Table 

4.4).  Averaged across application timings, glufosinate applied at 31 and 62 

g/ha resulted in primary crop rice seedling vigor 88 to 91% of the 

nontreated.  These data indicate that even with no notable reduction in seed 

weight, rice seed germination and seedling vigor may be affected by 

glufosinate drift.  If seed rice is affected by a glufosinate drift event, 

extra caution should be taken before that seed is sold to producers. 

 In conclusion, simulated glufosinate drift to rice at the one-tiller, 

PD, and boot growth stages resulted in visual crop injury and reduced rice 

plant height.  Primary and total crop rice yield was reduced by glufosinate 

applied at the boot growth stage.  Averaged across application timings, 

primary crop rice seed germination and rice seedling vigor were reduced by  
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Table 4.5. Effects of simulated glufosinate drift application rate on 
primary crop rice seed germination at various temperatures, 2005 through 
2007, as percent of the nontreated, Crowley, Louisiana.a 
____________________________________________________________________________________________________________________ 

 Temperatures 

 ___________________________________________________________________________ 

Glufosinate rate 13 C 16 C 19 C 22 C 25 C 

____________________________________________________________________________________________________________________ 

g ai/ha _______________________ % of nontreatedb,c _______________________ 

31 125 a  93 a  92 b 103 a 102 a 

62 113 a  89 a  93 b 100 a 100 a 

Nontreated 100 a 100 a 100 a 100 a 100 a 

____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across the one-tiller, PD, boot, and maturity application 
timings. 
   c Actual germination of the nontreated seed at 13, 16, 19, 22, and 25 C 
was 8, 45, 59, 76, and 68%, respectively. 
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Table 4.6. Effects of simulated glufosinate drift application timing on 
ratoon crop rice seed germination at various temperatures, 2005 and 2007, as 
percent of the nontreated, Crowley, Louisiana.a 
____________________________________________________________________________________________________________________ 

 Temperatures 

 __________________________________________________________________________ 

 

Glufosinate timing 

 

13 C 

 

16 C 

 

19 C 

 

22 C 

 

25 C 

____________________________________________________________________________________________________________________ 

 _____________________ % of nontreatedb,c _______________________ 

1-tiller 100 a 127 a 113 a 117 a 120 a 

PD  67 a 105 b 102 b  98 c 112 b 

Boot  67 a  109 ab  107 ab  112 ab 120 a 

Maturity 100 a  91 b  98 b 106 b  97 c 

Nontreated 100 a 100 b 100 b  100 bc 100 c 

____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across application rates of 31 and 62 g ai/ha glufosinate 
applied at spray volumes of 15 and 29 L/ha, respectively. 
   c Actual germination of the nontreated seed at 13, 16, 19, 22, and 25 C 
was 3, 22, 46, 52, and 59%, respectively. 
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glufosinate applications, regardless of rate.  Glufosinate applications did 

not affect rice treated at primary crop maturity. 

 The ability to identify glufosinate drift on rice can be helpful to 

producers, Cooperative Extension Service personnel, crop consultants, and 

state regulatory agencies in distinguishing between herbicide drift and 

injury associated with soil fertility issues, diseases, and other disorders 

affecting rice.  Misidentification of herbicide drift symptoms as injury 

associated with these factors can lead to loss in profitability if growers 

apply unnecessary applications of inputs to correct these factors when the 

symptoms present are actually a result of herbicide drift.  The ability to 

correlate the symptoms observed to glufosinate drift also may assist state 

regulatory agencies in identifying the source of a herbicide drift event.  If 

glufosinate can be identified by observation of plant symptoms this can 

reduce the cost associated with confirmation of a herbicide drift event 

through the use of diagnostic testing of foliar residue since most analytical 

facilities charge per evaluation and the diagnostic tests involved are often 

herbicide specific. 

 A glufosinate drift event occurring to a producer’s field at the boot 

growth stage of rice can reduce yield.  The negative effects of a glufosinate 

drift event occurring to a seed producer’s field to rice in the boot growth 

stage has the potential to be two-fold.  The reduction in profitability the 

year of the event from reduced yield and a reduction in seed germination and 

seedling vigor has the ability to reduce profitability in the subsequent 

year’s crop due to an increase in seeding rate to offset the reduced seed 

germination and seedling vigor. 

 Caution should be taken when applying glufosinate near adjacent 

susceptible rice fields, especially when making applications near rice in the 

boot growth stage.  The potential effect on grain yield and the seed 
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germination and seedling vigor potential of the harvested grain could be 

highly detrimental to rice producers. 
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Chapter 5 

Rice Crop and Seed Rice Response to Off-target Drift of Imazamox 
 

Introduction 

Imazamox is a selective imidazolinone herbicide used to control annual 

and perennial weeds in soybean [Glycine max (L.) Merr.], edible legumes, and 

imidazolinone-resistant crops (Senseman 2007).  The mechanism of action for 

imazamox is inhibition of acetolactase synthase (ALS) (EC 4.1.3.18) also 

called acetohydroxyacid synthase (AHAS), a key enzyme in the biosynthesis of 

the branched-chain amino acids isoleucine, leucine, and valine (Muhitch et 

al. 1987; Senseman 2007; Shaner 1991; Shaner et al. 1984; Stidham 1991; 

Stidham and Singh 1991).  Plant death results from events occurring in 

response to ALS inhibition, specifically the inhibition of isoleucine, 

leucine and valine, but the actual sequence of phytotoxic processes is 

unclear (Shaner 1991; Stidham and Singh 1991).  Some secondary effects may 

include disruption of photosynthate translocation, hormone imbalance due to 

interruption of source/sink relationships, and interference in DNA synthesis 

and cell growth. 

The symptoms expressed from this toxicity are growth is inhibited 

within a few hours of herbicide application, meristematic areas become 

chlorotic, followed by a slow general foliar chlorosis and necrosis (Shaner 

1991).  This injury to meristematic areas can be attributed to inhibition of 

branched-chain amino acids in the meristematic region.  Even though plants 

have the ability to scavenge amino acids from preexisting proteins, the 

meristematic region lacks the protein reserve pools that are available in the 

mature regions of the plant.  Injury symptoms usually appear within 7 to 14 d 

for susceptible species. 

In 1993, imidazolinone-resistant rice (Oryza sativa L.) was developed 

and exhibited tolerance to the imidazolinone class of herbicides (Croughan 
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1994; Pellerin et al. 2004; Webster and Masson 2001).  The first commercially 

available imidazolinone-resistant rice cultivars were ‘CL 121’ and ‘CL 141’ 

which were derived from the imidazolinone-resistant parent line ‘IMI-tolerant 

93AS-3510’ (Carlson et al. 2002; Croughan 1994, 1998; Gealy et al. 2003; Tan 

et al. 2005; Webster and Masson 2001).  Webster and Masson (2001) evaluated 

resistance of this parent line to several ALS-inhibiting herbicides and 

reported that the parent line exhibited decreased tolerance to the 

imidazolinone herbicides imazamox and imazapic, compared with imazethapyr, 

the herbicide targeted for use with commercial imidazolinone-resistant rice 

varieties. 

Subsequently, the cultivar ‘CL 161’ and the hybrid ‘CLXL 8’ were 

released which were produced from a different parent line than those 

cultivars previously released (Gealy 2003; Tan 2005; Croughan 2008).  Meins 

et al. (2004) found ‘CL 161’ and ‘CLXL 8’ to have increased tolerance to 

imazamox equivalent to that of imazethapyr.  Imazamox1 is currently labeled 

for use in imidazolinone-resistant rice cultivars and hybrids; however, 

imazamox can only be applied following at least two imazethapyr applications. 

Imazamox can be useful following imazethapyr applications due to its 

effectiveness controlling escaped red rice (Oryza sativa L.) plants that 

survived previous imazethapyr applications and because of its limited soil 

activity (Meins et al. 2003; USDA 2004).  The half life of imazamox in soil 

was reported to be 1.4 wk compared to 16 wk for imazethapyr (Aichele and 

Penner 2005).  This would result in less potential for injury of subsequent 

crops from residual herbicide residue.   

Rice is a major crop produced in the four state region of Arkansas, 

Louisiana, Mississippi, and Texas, with these states accounting for 76% of 

the 1.2 million total hectares of rice planted in the U.S. and 70% of the 

                                                 
   1 Beyond® herbicide label. BASF Corporation, Research Triangle Park, NC, 
27709. 
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$3.4 billion of total value of rice produced in the U.S. in 2008 (NASSa 2009; 

NASSb 2009).  Louisiana planted approximately 184,160 hectares of rice in 

2008 with approximately 59% planted in imidazolinone-resistant rice cultivars 

and hybrids (LSUA 2009).  Since many of the rice producing parishes in 

Louisiana also produce imidazolinone-resistant rice, the potential exists for 

off-target drift of imazamox to conventional rice. 

Averaged over the ten year period 1999 to 2008, the Louisiana 

Department of Agriculture and Forestry (LDAF) processed 76 Pesticide 

Investigation Reports per year listing ground or aerial applicators in 

Louisiana, and, on average, six reports per year involved rice (Lisa 

Gautreaux2, personal communication).  However, it was reported that, in 2009, 

at least 50 rice fields were suspected of being affected by glyphosate drift 

and at least 25 rice fields were suspected of being affected by imazethapyr 

drift, many of which were not reported to the LDAF (Ronald J. Levy, Jr.3, 

personal communication; John K. Saichuk4, personal communication).  Therefore, 

the number of rice fields actually affected by a drift event each year may be 

underrepresented by the number of official complaints processed by the LDAF.   

It has been reported that fine spray droplets less than 150 µm in size 

have a greater potential to drift off-target (Hanks 1995; SDTF 1997).  The 

use of adjuvants and selection of proper spray nozzle type, size, and 

application pressure can be beneficial in reducing the amount of fine spray 

droplets in the spray cloud (Hanks 1995; Jones et al. 2007; Nuyttens et al. 

2007; VanGessel and Johnson 2005).  This increase in droplet size can reduce 

the potential for off-target drift from droplets larger than 150 µm; however, 

                                                 
   2 Lisa Gautreaux, Pesticide and Environmental Programs Administrative 
Coordinator, Louisiana Department of Agriculture and Forestry, 5825 Florida 
Blvd., Baton Rouge, LA 70806. 
   3 Ronald J. Levy, Jr., Louisiana State University AgCenter Soybean, Corn, 
and Grain Sorghum Specialist, 8208 Tom Bowman Dr., Alexandria, LA 71302. 
   4 John K. Saichuk, Louisiana State University AgCenter Rice Specialist, 
1373 Caffey Rd., Rayne, LA 70578. 
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environmental conditions at the time of herbicide application can also impact 

the off-target drift of spray solutions (Bouse et al. 1976; Crabbe et al. 

1994; Thistle 2004). 

Wind speed and direction may be considered the two most important 

factors affecting spray droplets in the atmosphere, a stable atmosphere may 

be the third most important factor (Thistle 2004).  A stable atmosphere, 

commonly referred to as an inversion, is an atmosphere that has a change of 

temperature with a change in elevation in the atmosphere.  In a stable 

atmosphere, warm air overlies cool air.  If air in a particular layer is 

displaced upward or downward it will be colder or warmer, respectfully, than 

the immediately adjacent layer it enters and thus return to its layer of 

origin.  If a herbicide application is made during an inversion scenario, the 

fine droplets that do not succumb to gravity will remain in the air layer in 

which they are applied due to the lack of layers mixing.  The droplets in 

this layer can be very concentrated and horizontally may move off-target 

great distances. 

Ultra-low-volume applications made during a stable atmosphere produced 

35% more herbicide drift than applications made during turbulent atmosphere 

with light wind speeds (Crabbe et al. 1994).  The conditions in which the 

greatest drift occurred were in moderately stable conditions with wind at 3 

m/s resulting in off-target drift 71% at 400 m and 50% at 2200 m from the 

application site and in slightly stable conditions with wind at 5 m/s 

resulting in off-target drift 77% at 400 m and 27% at 2200 m from the 

application site.  It is recommended that herbicide applications should be 

avoided during the early morning and late evening as these times are most 

favorable for the development of inversion conditions (Crabbe et al. 1994; 

Thistle 2004). 

Through the use of simulated herbicide drift studies, the potential 

effects of imazamox drift to rice can be evaluated.  In previous research, 
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simulated drift studies varying the spray volume proportionally with reduced 

herbicide rates to simulate herbicide drift resulted in increased crop injury 

compared with the same herbicide rate applied in a constant spray volume 

(Banks and Schroeder 2002; Ellis et al. 2002; Ramsdale et al. 2003; Roider et 

al. 2008).  Banks and Schroeder (2002) reported varying spray volume 

proportionally with herbicide dosage, thus maintaining constant herbicide 

concentration in the spray, would change the response of sweet corn (Zea mays 

L.) to glyphosate when compared with a constant spray volume where herbicide 

concentration would vary and be more dilute in the carrier.  The no-effect 

glyphosate rate for sweet corn was 0.046 kg ae/ha when using a spray volume 

proportional to the reduced glyphosate rate; however, the no-effect 

glyphosate rate was four times greater when glyphosate was applied in a 

constant spray volume. 

Deeds et al. (2006) reported imazamox applied to wheat (Triticum 

aestivum L.) at the flowering and jointing growth stages at 33% of the 

labeled use rate of 35 g ai/ha reduced wheat yield more than 90%.  A 

simulated drift application of the commercial herbicide premix of imazethapyr 

plus imazapyr affected rice plant height and yield; however, simulated drift 

of the imazethapyr plus imazapyr premix did not affect yield when applied to 

corn (Bond et al. 2006). 

 Rapid rice seed germination and seedling growth can enhance plant stand 

establishment in commercial fields (Krishnasamy and Seshu 1989; Pollock and 

Roos 1972; Wright 1980).  Simulated imazamox drift applications applied to 

wheat at the jointing and flowering growth stages had no effect on wheat seed 

germination (Deeds et al. 2006).  Regardless of timing, applications of 

glyphosate and imazethapyr to red rice (Oryza sativa L.) in the two to three-

tiller, boot, and bloom growth stages reduced red rice seed germination 

(Brommer et al. 1998).  Glyphosate applied to wheat at first node, boot, and 

early flowering growth stages resulted in 16 to 36% reductions in seed weight 
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(Roider et al. 2007).  A negative correlation between 100-count seed weight 

and rice seed germination has been observed (Krishnasamy and Seshu 1989).  A 

need exists to evaluate the possible effects of an imazamox drift event on 

rice crop seed germination and seedling vigor. 

 The objectives of this research were to evaluate the effects of 

simulated imazamox drift applied to rice during the primary crop on the 

primary and ratoon rice crops and the impact on the seed produced on treated 

rice. 

Materials and Methods 

Simulated Imazamox Drift Field Study.  A study was conducted on rice grown in 

2005 through 2007 at the LSU AgCenter Rice Research Station near Crowley, 

Louisiana on a Crowley silt loam (fine montmorillonitic, thermic Typic 

Albaqualf) with pH 5.5 and 1.2% organic matter.  Field preparation consisted 

of a fall and spring disking and two passes in opposite directions with a 

two-way bed conditioner equipped with rolling baskets and S-tine harrows 15 

cm deep.  The long grain rice cultivar ‘Cocodrie’ was drill-seeded March 28 

to April 17 in 2005 through 2007.  Plots consisted of twelve-18 cm spaced 

rows 6 m long. 

 The experimental design was an augmented two-factor factorial 

arrangement of treatments in a randomized complete block with four 

replications.  Factor A consisted of imazamox applied at simulated drift 

rates of 6.3 and 12.5% of the labeled usage rate of 44 g ai/ha, or 2.7 and 

5.5 g/ha, respectively.  Factor B consisted of application timings at 

different growth stages: one-tiller, panicle differentiation (PD), boot, and 

physiological maturity.  Each herbicide application was made with the spray 

volume varying proportionally to herbicide dosage based on a constant spray 

volume of 234 L/ha.  The 12.5% herbicide rate was applied at a spray volume 

of 29 L/ha and the 6.3% herbicide rate was applied at a spray volume of 15 

L/ha.  Each application was made with a tractor-mounted CO2-pressurized 
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sprayer calibrated to deliver a constant carrier volume with speed adjusted 

to vary application rate and equipped with Teejet®5 TX-2 Conejet® 800033 

nozzles.  A ratoon rice crop was not produced in 2006 due to unfavorable 

weather following primary crop harvest.   

 The study area was maintained weed-free using clomazone at 420 g ai/ha 

applied preemergence followed by propanil at 4483 g ai/ha plus halosulfuron 

at 53 g ai/ha applied postemergence.  For the primary rice crop a preplant 

application of 280 kg/ha of 8-24-24 (N-P2O5-K2O) fertilizer and a preflood 

application of 365 kg/ha 46-0-0 urea fertilizer were applied to the study 

area and for the ratoon rice crop a preflood application of 100 kg/ha 46-0-0 

urea fertilizer was applied to the study area to maintain proper fertility 

and to maximize yields in the primary and ratoon crops.  Standard agronomic 

and pest management practices were implemented throughout the growing season 

to maximize yield.   

 Rice plant height and rice injury in the primary rice crop were 

obtained 7 days after herbicide treatment (DAT) and continued weekly for 28 

DAT.  Rice plant height was obtained by measuring four plants per plot from 

the soil surface to the tip of the extended uppermost emerged leaf or 

extended rice panicle.  Rice injury was evaluated based on chlorosis and 

necrosis of foliage and reduced plant height using a scale of 0 to 100% where 

0 = no injury and 100 = plant death.  Rice plant height at primary crop 

harvest and rough rice yield, 100-count seed weight, and stem and panicle 

counts for the primary and ratoon crop were also obtained.  Whole plots were 

harvested using a mechanical plot harvester and rough rice yield was adjusted 

to 12% moisture.  Total stem and panicle counts were calculated by hand 

harvesting a 0.46 m section of row and determining the number of stems 

present at the mid-height of the plants and the number of panicles with bases 

                                                 
   5 Spraying Systems Co., P. O. Box 7900, Wheaton, IL 60187. 
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emerged beyond the sheath of the flag leaf, or the last leaf to emerge prior 

to the panicle. 

 All data were subjected to the Mixed Procedure of SAS (SAS 2003).  

Year, replications (nested within year), and all interactions containing 

either of these effects were considered random effects.  Application timing 

and rate were considered fixed effects.  Considering year or combination of 

year as random effects permits inferences about treatments over a range of 

environments (Carmer et al. 1989; Leon et al. 2008).  Type III statistics 

were used to test all possible effects of fixed factors (application timing 

and rate) and least square means were used for mean separation at the 5% 

probability level (p ≤ 0.05). 

Seed Germination Study.  The germination potential of seed collected from 

grain harvested in the simulated imazamox drift field study at primary crop 

harvest, 2005 through 2007, and at ratoon crop harvest, 2005 and 2007, was 

evaluated at multiple temperatures.  Seed collected from each plot was air-

dried and stored at 8 C.  Germination temperatures evaluated were 13, 16, 19, 

22, and 25 C.  Temperature selection and germination testing procedure for 

this study were based on procedures previously described by Webster et al. 

(2003) and follow germination procedures recommended by Association of 

Official Seed Analysts (AOSA) (AOSA 2006).  Temperature selection was based  

on 19 C being the historical mean 10-cm soil temperature in Crowley, LA on 

April, 1, which corresponds to 50% of the rice being planted across the state 

(Webster et al. 2003). 

 One hundred seeds from each field plot were prepared by soaking for 30 

min in a 50:50 (v/v) solution of chlorine bleach and distilled water to 

decrease seedling diseases.  After soaking, seeds were triple rinsed with 

distilled water.  After seed preparation, seeds were placed in a 10 cm 
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plastic Petri dish between two 9 cm germination blotters6.  Next, 10 ml of 

carboxin (5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3-carboxamide) plus 

thiram (tetramethylthiuram disulfide) plus distilled water solution (52 ml of 

a 10% carboxin and 10% thiram premix liquid fungicide combined with 948 ml 

distilled water) was applied in each Petri dish to reduce seedling diseases.  

Petri dishes were sealed with Parafilm M7 to prevent moisture loss and placed 

in a constant-temperature growth chamber in total darkness.  Germination 

counts were taken 5, 9, and 14 d after initiation (DAI) of the study.  A seed 

was considered germinated if the radical had reached a length of 1 mm. 

 Seed germination data were arranged as repeated measures and subjected 

to the Mixed Procedure of SAS (SAS 2003).  Year, replications (nested within 

year), DAI (nested within replications), and all interactions containing 

either of these effects were considered random effects.  Application timing 

and rate and germination temperature were considered fixed effects.  

Considering year or combination of year as random effects permits inferences 

about treatments over a range of environments (Carmer et al. 1989; Leon et 

al. 2008).  Type III statistics were used to test all possible effects of 

fixed factors (application timing and rate and germination temperature) and 

least square means were used for mean separation at the 5% probability level 

(p ≤ 0.05). 

Seedling Vigor Study.  Vigor of seedlings from grain collected at primary 

crop harvest in the simulated imazamox drift field study in 2006 and 2007 was 

examined.  Seedling vigor, as defined by AOSA (AOSA 2002), is “seedling vigor 

comprises those seed properties which determine the potential for rapid, 

uniform emergence, and development of normal seedlings under a wide range of 

field conditions” and it is used as a measure of seed quality by producers.  

                                                 
   6 Anchor Steel Blue Seed Germination Blotter®, SDB 3.5. Anchor Paper 
Company, 480 Broadway, St. Paul, MN 55101. 
   7 Parafilm M®. Pechiney Plastic Packaging, Menash, WI 54952. 
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Since there is no accepted standard vigor test for rice, vigor testing 

procedures for this study were based on procedures previously described by 

Webster et al. (2003). 

Approximately 100 seeds from each field plot were prepared by soaking 

for 30 min in a 50:50 (v/v) solution of chlorine bleach and distilled water 

to decrease seedling diseases.  After soaking, seeds were triple rinsed with 

distilled water.  Following seed preparation, seeds were pre-germinated by 

soaking in distilled water for 24 h.  Ten pre-germinated seeds from each 

field plot were placed on a single sheet of nontreated germination paper8 cut 

to fit a 12 by 23 by 0.3 cm acrylic sheet.  Germination paper was moistened 

by submerging in distilled water for 5 seconds to facilitate adherence to the 

acrylic sheet and provide residual moisture to rice seeds.  Seeds were placed 

along the center of germination paper oriented with the radical end of the 

seed toward the lower half of the sheet.  A one-ply paper towel strip was 

placed over the seed, and 5 ml of a mancozeb [ethylene (bis)-dithiocarbamate] 

plus distilled water solution (dry formulation of mancozeb at 1640 mg ai/L 

distilled water) was applied on top of the strip to reduce seedling diseases.  

The plated seeds were then placed vertically in a rack and then placed in a 

30 by 51 by 5 cm dish with 1,420 ml of distilled water to allow for 

evaporation.  The dish and racks of plates were wrapped in plastic wrap to 

prevent desiccation.  The glass dish was placed in a constant temperature 

growth chamber at 21 C for 12 d in total darkness.  At the end of 12 d, shoot 

lengths were measured and an average of the 10 shoot lengths was obtained for 

data analysis.   

Seedling vigor data were subjected to the Mixed Procedure of SAS (SAS 

2003).  Year, replications (nested within year), and all interactions 

containing either of these effects were considered random effects.  

                                                 
   8 Anchor Steel Blue Seed Germination Blotters®, SDB 1924. Anchor Paper 
Company, 480 Broadway, St. Paul, MN 55101. 



 101

Application timing and rate were considered fixed effects.  Considering year 

or combination of year as random effects permits inferences about treatments 

over a range of environments (Carmer et al. 1989; Leon et al. 2008).  Type 

III statistics were used to test all possible effects of fixed factors 

(application timing and rate) and least square means were used for mean 

separation at the 5% probability level (p ≤ 0.05). 

Results and Discussion 

Simulated Imazamox Drift Field Study.  A crop injury response was observed in 

the primary crop (Table 5.1).  Regardless of rate, simulated imazamox drift 

applications at one-tiller resulted in the greatest amount of injury at 7, 

14, and 21 DAT, 25 to 36%.  Imazamox at 5.5 g/ha applied at PD and boot 

resulted in 11 to 14% injury 21 DAT.  At 28 DAT, imazamox at either rate at 

one-tiller and boot and 5.5 g/ha at PD resulted in 15 to 26% injury.  An 

increase in injury from 21 to 28 DAT with rice treated with imazamox at boot 

was noted because necrosis of the flag leaf was observed at 28 DAT that was 

not present at 21 DAT.  No response was observed on rice treated with 

imazamox at maturity.  These data indicate that visual injury to rice is more 

severe when imazamox is applied during the early, vegetative growth stage of 

rice.  As with actual drift events, identifying drift based on visual injury 

is more difficult as rice matures (Eric P. Webster9, personal communication).  

When evaluating the efficacy of imazethapyr on selected weed species, visual 

injury symptoms were more severe on plants treated at earlier timings (Hoss 

et al. 2003; Shaw et al. 1990). 

 This reduction in visual injury during reproductive growth stages may 

be due to the translocation of imazamox to meristematic tissue (Shaner et al. 

1984).  This tissue is located in the internal portions of the rice plant  

 

                                                 
   9 Eric P. Webster, Louisiana State University AgCenter Rice Weed 
Specialist, 104 M.B. Sturgis Hall, Baton Rouge, LA 70803. 
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Table 5.1. Effects of simulated imazamox drift application rate and timing 
on primary rice crop injury 7, 14, 21, and 28 days after treatment (DAT), 
2005 through 2007, Crowley, Louisiana.a 
_________________________________________________________________________________________________________________ 

  Injury 

  ___________________________________________________________________ 

Imazamox 

rateb 

 

Timing 

 

7 DAT 

 

14 DAT 

 

21 DAT 

 

28 DAT 

_________________________________________________________________________________________________________________ 

g ai/ha  ______________________________ % ________________________________ 

2.7 1-tiller 25 a 27 a 25 a 20 a 

 PD  2 b  8 b   5 bc   5 bc 

 Boot  7 b  8 b   9 bc 23 a 

 Maturity  0 b  0 b  0 c  0 c 

5.5 1-tiller 32 a 36 a 33 a 26 a 

 PD  3 b 11 b 14 b  15 ab 

 Boot  7 b  8 b 11 b 23 a 

 Maturity  0 b  0 b  0 c  0 c 

Nontreated   0 b  0 b  0 c  0 c 

_________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 2.7 and 5.5 g/ha imazamox rates were applied at spray volumes of 
15 and 29 L/ha, respectively. 
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during the reproductive stages of growth and would not be expressed on foliar 

tissue. 

 The injury symptoms observed in this study on plants treated at the 

one-tiller timing were an interveinal chlorosis in the uppermost leaves 

(Figure 5.1) to plant death.  Leaves of treated plants often exhibited small, 

narrow reddish-brown leaf lesions similar to those associated with leaf blast 

disease of rice (Groth et al. 2009).  Subsequent tillers on recovering 

treated plants often emerged along a single plane causing a flat, fan-shaped 

appearance in plants.  Also, an overall stunting of plants was observed on 

plants treated at the one-tiller and PD timings (Table 5.2). 

 Visual symptomology observed on plants treated with imazamox at PD and 

boot, often beyond the rating dates evaluated in this study, were various 

forms of foliar and inflorescence malformations.  Foliar symptoms were plants 

having multiple shoots arising from the secondary nodes of the main stem 

(Figure 5.2).  The flag leaf on the main stem and secondary shoots would 

often appear malformed, wrinkled, contorted, or rolled.  In some instances 

secondary shoots were stunted or both stunted and malformed.  Panicles may 

partially exert beyond the flag leaf sheath or emerged from the side of the 

sheath (Figure 5.3).  Often panicles failed to initiate emersion from the 

flag leaf sheath and decomposed in the leaf sheath causing necrosis of the 

flag leaf if the plants were treated at the boot stage (Figure 5.4).  Some of 

the inflorescence malformations were due to a malformed panicle axis and 

partially emergence of the panicle due to fusing of the panicle with the flag 

leaf sheath.  Individual florets malformations that were observed were 

florets with the tips of the lemma excessively curved toward the palea 

(Figure 5.3) causing an appearance often referred to as “parrot beaked” when 

observed in association with the straighthead physiological disorder of rice 

(Groth et al. 2009). 
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Table 5.2. Effects of simulated imazamox drift application rate and timing 
on primary crop rice plant height at 7, 14, 21, and 28 days after treatment 
(DAT) and at harvest, 2005 through 2007, as percent of the nontreated, 
Crowley, Louisiana.a 
____________________________________________________________________________________________________________________ 

  Rice plant height 

  __________________________________________________________________________ 

Imazamox 

rateb 

 

Timing 

 

7 DATc 

 

14 DATd 

 

21 DATe 

 

28 DATf 

 

Harvestg 

____________________________________________________________________________________________________________________ 

g ai/ha  ______________________ % of nontreated ________________________ 

2.7 1-tiller  80 c   91 de  87 e   86 cd  93 b 

 PD  99 a   96 cd   96 cd   97 ab 100 a 

 Boot   98 ab   96 cd   96 cd   91 bc  92 b 

 Maturity   95 ab  102 ab 108 a 101 a 100 a 

5.5 1-tiller  66 d  82 f  85 e  83 d  90 b 

 PD  93 b  89 e  88 e   88 cd  92 b 

 Boot   97 ab  94 d  94 d   91 bc  91 b 

 Maturity   98 ab 106 a  105 ab 103 a 100 a 

Nontreated  100 a  100 bc  100 bc 100 a 100 a 

____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 2.7 and 5.5 g/ha imazamox rates were applied at spray volumes of 
15 and 29 L/ha, respectively. 
   c Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 40, 65, 93, and 40 cm, respectively. 
   d Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 51, 72, 99, and 51 cm, respectively. 
   e Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 64, 77, 99, and 57 cm, respectively. 
   f Actual heights of nontreated rice for the 1-tiller, PD, boot, and 
maturity timings were 77, 86, 98, and 62 cm, respectively. 
   g Actual height of nontreated rice at primary crop harvest was 95 cm. 
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Figure 5.1. Symptoms observed   Figure 5.2. Symptoms observed 
with a one-tiller application   with a boot application of 
of 2.7 g ai/ha imazamox.   5.5 g ai/ha imazamox. 
 
 

   
Figure 5.3. Symptoms observed   Figure 5.4. Symptoms observed  
with a boot application of   with a boot application of 
2.7 g ai/ha imazamox.    5.5 g ai/ha imazamox. 
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 A plant height response was observed in the primary rice crop when 

imazamox was applied to rice (Table 5.2).  With the exception of a boot 

application at 7 DAT, 5.5 g/ha imazamox applied at one-tiller, PD, and boot 

reduced rice plant height at 7, 14, 21, and 28 DAT.  Imazamox applied at 2.7 

g/ha resulted in reduced plant height at 7 through 28 DAT when applied at 

one-tiller.  Imazamox applied at 5.5 g/ha resulted in the greatest reduction 

in height at 7 and 14 DAT when applied at one-tiller, 66 and 82% of the 

nontreated, respectively.  At primary crop harvest, rice plant height was 90 

to 100% of the nontreated, regardless of application rate or timing.  

Imazamox applied to mature rice had no affect on primary crop rice plant 

height.  These findings support the trend of increased crop injury at earlier 

application timings.  Similar findings were reported by Bond et al. (2006). 

Stem and panicle counts in the primary and ratoon crops were affected 

by imazamox applications (Table 5.3).  Imazamox applied at PD and boot 

increased secondary plant stems in the primary crop resulting in an increase 

in stem count compared with the nontreated.  This increase was due to 

imazamox causing an excess of secondary stems to be produced on the upper 

plant nodes in the primary rice crop.  However, this increase in stems did 

not translate into an increase in the number of panicles in the primary crop.  

In the ratoon crop, an increase in stem counts was observed when imazamox was 

applied to rice at one-tiller and boot; however, an increase in panicle 

counts was only observed in rice treated at the boot stage, compared with the 

nontreated (Table 5.3). 

A primary crop rice yield response was observed (Table 5.4).  Primary 

crop yield was 79 and 83% of the nontreated when imazamox was applied to rice 

at 2.7 g/ha at one-tiller and 5.5 g/ha at PD, respectively.  Imazamox applied 

to rice at 5.5 g/ha at one-tiller and 2.7 g/ha at boot resulted in a primary 

crop yield 54 to 58% of the nontreated.  The greatest reduction in primary  
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Table 5.3. Effects of simulated imazamox drift application timing on primary 
crop rice stem and panicle counts, 2005 through 2007, and ratoon crop rice 
stem and panicle counts, 2005 and 2007, as percent of the nontreated, 
Crowley, Louisiana.a 
_____________________________________________________________________________________________________________________ 

 Primary crop counts Ratoon crop counts 

 ________________________________ ________________________________ 

Imazamox timing Stem Panicle Stem Panicle 

_____________________________________________________________________________________________________________________ 

 ______________________ % of nontreatedb,c ______________________ 

1-tiller  92 c  86 b 123 b 103 b 

PD 112 b 112 a  112 bc  99 b 

Boot 141 a  90 b 156 a 188 a 

Maturity  97 c   96 ab  110 bc 103 b 

Nontreated 100 c  100 ab 100 c 100 b 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across application rates of 2.7 and 5.5 g ai/ha imazamox 
applied at spray volumes of 15 and 29 L/ha, respectively. 
   c Actual nontreated primary crop stem and panicle counts were 38 and 35 
per 0.46 m of row, respectively, and nontreated ratoon crop stem and panicle 
counts were 38 and 30 per 0.46 m of row, respectively. 
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Table 5.4. Effects of simulated imazamox drift application rate and timing on 
primary crop rice yield, 2005 through 2007, and ratoon and total crop rice 
yield, 2005 and 2007, as percent of the nontreated, Crowley, Louisiana.a 
_________________________________________________________________________________________________________________________ 

 Yield 

 ___________________________________________________________________ 

Imazamox rateb Timing Primary crop Ratoon crop Total crop 

_________________________________________________________________________________________________________________________ 

g ai/ha  ____________________ % of nontreatedc ____________________ 

2.7 1-tiller  79 b  96 b  72 b 

 PD 100 a 100 b 101 a 

 Boot  58 c 135 a   60 bc 

 Maturity  99 a  99 b 101 a 

5.5 1-tiller  54 c 103 b   62 bc 

 PD  83 b  97 b  89 a 

 Boot  34 d 156 a  47 c 

 Maturity 102 a 104 b 101 a 

Nontreated  100 a 100 b 100 a 

_________________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not statistically 
different according to the t-test on difference of least square means at P = 
0.05. 
   b The 2.7 and 5.5 g/ha imazamox rates were applied at spray volumes of 15 
and 29 L/ha, respectively. 
   c Actual nontreated yield for the primary, ratoon, and total crops were 
5900, 1300, and 7200 kg/ha, respectively. 
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crop yield was observed on plants treated with 5.5 g/ha imazamox at boot, 34% 

of the nontreated.  However, regardless of rate, imazamox applied at boot 

resulted in a ratoon crop rice yield 135 to 156% of the nontreated.  This 

increase was due to imazamox causing an excess of secondary stems to be 

produced on the upper plant nodes in the primary rice crop (Table 5.3).  This 

excess of secondary stems did not produce panicles in the primary crop but 

did produce panicles in the ratoon crop.  This increase in ratoon crop 

panicles was not observed with rice treated at the other timings.  However, 

when primary and ratoon crop yields were combined, the increase in ratoon 

crop yield did not compensate for the primary crop yield loss.  Total crop 

yield was 47 to 72% of the nontreated when imazamox was applied to rice at 

one-tiller and boot.  Imazamox had no effect on primary, ratoon, or total 

crop yield when applied to mature rice. 

 Though primary crop rice yield was reduced by simulated imazamox drift 

applications at the one-tiller, PD, and boot timings, it appears that rice is 

most susceptible to imazamox during the boot growth stage.  Similar results 

were reported by Hensley et al. (2009) when evaluating simulated imazethapyr 

drift on rice.  Rice producers in Louisiana may have the ability to recover 

some yield loss from an imazamox drift event occurring to rice during the 

boot growth stage by increasing ratoon crop yield; however, the reduction in 

total crop yield from an imazamox drift event at the boot growth stage of 

rice has the potential to be significant.  These data also indicate an 

increased susceptibility to imazamox drift occurring at the one-tiller timing 

compared to the PD timing.  This may be due to the reduced plant biomass at 

this growth stage compared to the later PD growth stage.  Shaw et al. (1990) 

reported an increased susceptibility to imazethapyr in smaller plants when 

evaluating its effects on johnsongrass (Sorghum halepense L.) at 15, 30, and 

60 cm plant heights.  Though rice has the ability to recover from imazamox 

drift occurring at the vegetative one-tiller stage, if a combination of 
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herbicide drift and climatic conditions unsuitable for growth hinder 

recovery, yield losses may be significant (Eric P. Webster7, personal 

communication).  

Seed Germination and Seedling Vigor Studies.  Simulated imazamox drift 

applications did not affect primary crop rice seed weight (Table 5.5) or 

ratoon crop rice seed weight (data not shown).  It is expected that any 

unfilled or malformed grain observed on rice panicles on treated plants was 

separated and expelled by the mechanical plot harvester.  This separation is 

similar to a commercial harvesting operation so any affect on seed weight, 

germination, or seedling vigor of harvested grain observed in this study is 

reflective of the impact expected on commercial seed rice producers.  Studies 

conducted using hand-harvesting of seeds, such as Walker and Oliver (2008), 

which bypass a separation process, may misrepresent the impact of herbicides 

on seed in mechanically harvested grain crops. 

 Primary crop rice seed germination was affected by simulated imazamox 

drift applications (Table 5.6).  Imazamox applications had no affect on 

primary crop germination at 13 and 16 C; however, the greatest reduction in 

germination, at 19, 22, and 25 C were observed in plants treated at boot with 

5.5 g/ha imazamox.  Primary crop rice seed germination was reduced at 19 and 

22 C when 5.5 g/ha imazamox was applied at PD and at 22 and 25 C when 2.7 

g/ha imazamox was applied at boot.  These data indicate an increased 

susceptibility to reduced rice seed germination from imazamox drift occurring 

to rice in the reproductive growth stages, especially the boot stage.  

Reductions in germination of this magnitude can lead to a significant 

increase in seed cost to rice producers.  Compared with the nontreated at 19 

C, a producer using seed affected by the 5.5 g/ha imazamox rate at boot would 

have to approximately double their seeding rate to achieve a rice plant 

density comparable to that of the nontreated seed.  Imazamox applications 
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Table 5.5. Effects of simulated imazamox drift application timing on primary 
crop rice seed weight, 2005 through 2007, and seedling vigor, 2006 and 2007, 
as percent of the nontreated, Crowley, Louisiana.a 
_____________________________________________________________________________________________________________________ 

Imazamox timing 100-seed weight  Seedling vigor 

_____________________________________________________________________________________________________________________ 

 ________________ % of nontreatedb,c ________________ 

1-tiller  98 a   98 ab 

PD  98 a 103 a 

Boot  97 a  90 b 

Maturity  99 a 103 a 

Nontreated 100 a 100 a 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across application rates of 2.7 and 5.5 g ai/ha imazamox 
applied at spray volumes of 15 and 29 L/ha, respectively. 
   c Actual nontreated 100-seed weight and seedling vigor shoot length was 
2300 mg and 35 mm, respectively. 
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Table 5.6. Effects of simulated imazamox drift application rate and timing 
on primary crop rice seed germination at various temperatures, 2005 through 
2007, as percent of the nontreated, Crowley, Louisiana.a 
____________________________________________________________________________________________________________________ 

  Temperatures 

  ________________________________________________________________________ 

Imazamox 

rateb 

 

Timing 

 

13 C 

 

16 C 

 

19 C 

 

22 C 

 

25 C 

____________________________________________________________________________________________________________________ 

g ai/ha  ______________________ % of nontreatedc _______________________ 

2.7 1-tiller  67 a  86 a    94 abc   93 de 100 a 

 PD 111 a  98 a  100 ab 102 b   96 ab 

 Boot  89 a  86 a   88 bc   89 ef  88 b 

 Maturity 111 a  95 a    98 abc 101 b 100 a 

5.5 1-tiller  44 a  86 a    98 abc   96 cd 100 a 

 PD  89 a  95 a  86 c  87 f  97 a 

 Boot  78 a  79 a  55 d  80 g  62 c 

 Maturity 100 a  98 a 102 a 109 a 101 a 

Nontreated  100 a 100 a  100 ab  100 bc 100 a 

____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b The 2.7 and 5.5 g/ha imazamox rates were applied at spray volumes of 15 
and 29 L/ha, respectively. 
   c Actual germination of the nontreated seed at 13, 16, 19, 22, and 25 C 
was 9, 43, 49, 70, and 65%, respectively. 
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did not reduce ratoon crop rice seed germination, compared with the 

nontreated (Table 5.7). 

 A primary crop seedling vigor response was observed (Table 5.5).  

Primary crop seedling vigor was reduced to 90% of the nontreated when 

imazamox was applied to rice at boot.  These data indicate that even if there 

is no notable reduction in seed weight, the grain that remains after 

mechanical harvesting may have reduced seed germination and seedling vigor if 

an imazamox drift event occurs to rice, especially at the boot growth stage.  

If seed rice is affected by an imazamox drift event, extra caution should be 

taken before that seed is sold to producers. 

 In conclusion, simulated imazamox drift applications at the one-tiller, 

PD, and boot timings resulted in reduced plant height and primary crop yield 

losses.  Total crop yield was reduced when imazamox was applied at one-tiller 

and boot with the greatest reduction in primary and total crop yield 

resulting from imazamox applied at the boot growth stage.  Imazamox 

applications to mature rice had no effect on rice plant height or yield.  

Primary crop rice seed weight was not reduced by an imazamox application to 

rice; however, primary crop rice seed germination was reduced when imazamox 

was applied at one-tiller, PD, and boot, with increased susceptibility at the 

boot growth stage.  Primary crop seedling vigor was reduced when imazamox was 

applied to rice at boot.  Ratoon crop rice seed weight and seed germination 

was not reduced by imazamox applications. 

 The ability to identify imazamox drift on rice can be helpful to 

producers, Cooperative Extension Service personnel, crop consultants, and 

state regulatory agencies in distinguishing between herbicide drift and 

injury associated with soil fertility issues, diseases, and other disorders 

affecting rice.  Misidentification of herbicide drift symptoms as injury 

associated with these factors can lead to loss in profitability if growers  
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Table 5.7. Effects of simulated imazamox drift application timing on ratoon 
crop rice seed germination at various temperatures, 2005 and 2007, as 
percent of the nontreated, Crowley, Louisiana.a 
_____________________________________________________________________________________________________________________ 

 Temperatures 

 __________________________________________________________________________ 

Imazamox timing 13 C 16 C 19 C 22 C 25 C 

____________________________________________________________________________________________________________________ 

 ______________________ % of nontreatedb,c ______________________ 

1-tiller 133 a 139 a 116 a 109 a 113 a 

PD 100 a  89 b  91 b  98 c  97 c 

Boot 100 a 100 b 111 a  105 ab  103 bc 

Maturity 100 a  89 b 100 b  100 bc  100 bc 

Nontreated  100 a 100 b 100 b  100 bc  100 bc 

_____________________________________________________________________________________________________________________ 

   a Means within a column followed by the same letter were not 
statistically different according to the t-test on difference of least 
square means at P = 0.05. 
   b Data averaged across application rates of 2.7 and 5.5 g ai/ha imazamox 
applied at spray volumes of 15 and 29 L/ha, respectively. 
   c Actual germination of the nontreated seed at 13, 16, 19, 22, and 25 C 
was 3, 18, 45, 57, and 62%, respectively. 
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apply unnecessary applications of inputs to correct these factors when the 

symptoms present are actually a result of herbicide drift.  The ability to 

correlate the symptoms observed to imazamox drift also may assist state 

regulatory agencies in identifying the source of a herbicide drift event.  If 

imazamox can be identified by observation of plant symptoms this can reduce 

the cost associated with confirmation of a herbicide drift event through the 

use of diagnostic testing of foliar residue since most analytical facilities 

charge per evaluation and the diagnostic tests involved are often herbicide 

specific. 

 An imazamox drift event occurring to a producer’s field at the one-

tiller, PD, or boot growth stages of rice can reduce yield and germination of 

harvested seed; however, this study indicates that an imazamox drift event 

occurring to rice at the boot stage may be the most detrimental to yield and 

seed germination.  Rice receiving a drift event in vegetative growth stages, 

one-leaf to one-tiller, can often recover if stand is maintained at 

recommended densities (Eric P. Webster9, personal communication).  However, an 

imazamox drift event occurring to rice in the reproductive stage of growth 

may have little to no visual foliar injury and often symptoms may not appear 

until rice plants near crop maturity.  This may lead to loss of yield and 

profitability due to continuing to supply crop inputs, such as increased 

fertilizer, insecticide, and fungicide applications, to a crop that has an 

already reduced yield potential.  Unfortunately, due to the use of imazamox 

for late season red rice control following imazethapyr applications, the 

potential for off-target drift of imazamox is greater during the reproductive 

growth stages of rice.  The negative effects of an imazamox drift event 

occurring to a seed producer’s field to rice in the PD or boot growth stages 

has the potential to be two-fold.  The reduction in profitability the year of 

the event from reduced yield in combination with the reduction in seed 

germination has the ability to reduce profitability in the subsequent year’s 
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crop due to an increase in seeding rate to offset the reduced seed 

germination.  If seed germination is too low seed may not be sold as seed 

rice which can decrease profitability more. 

 Caution should be taken when applying imazamox near adjacent 

susceptible rice fields, especially when making applications near rice in the 

reproductive growth stages.  Though the effects of imazamox drift on rice may 

not be immediately apparent by visual observation, the potential affect on 

grain yield and the germination potential of the harvested grain could be 

highly detrimental to rice producers. 
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Chapter 6 

Summary and Conclusions 

 Simulated glyphosate drift applied to rice at the one-tiller, PD, and 

boot timings resulted in reduced plant height and primary and total crop 

yield losses, with the greatest reduction in primary crop yield resulting 

from glyphosate applied at the boot growth stage.  Primary crop rice seed 

weight was not affected by glyphosate applications; however, primary crop 

rice seed germination was reduced when glyphosate was applied at one-tiller, 

PD, and boot, with increased susceptibility at the boot growth stage.  

Seeding vigor of primary crop rice seed was not affected by glyphosate 

applications.  A reduction in ratoon crop rice seed weight by glyphosate 

applications at one-tiller was observed; however, ratoon crop rice seed 

germination was not reduced. 

 Simulated imazethapyr drift applied to rice at the one-tiller, PD, and 

boot timings resulted in reduced plant height and primary and total crop 

yield losses, with the greatest reduction in primary crop yield resulting 

from imazethapyr applied at the boot growth stage.  Primary crop rice seed 

weight was reduced by an imazethapyr application to rice at boot.  Primary 

crop rice seed germination was reduced when imazethapyr was applied at one-

tiller, PD, and boot, with increased susceptibility at the boot growth stage.  

A reduction in ratoon crop rice seed weight was not observed; however, ratoon 

crop rice seed germination was reduced by an imazethapyr application at the 

PD growth stage. 

 Simulated glufosinate drift applied to rice at the one-tiller, PD, and 

boot growth stages resulted in reduced rice plant height.  Primary and total 

crop rice yield was reduced by glufosinate applied at the boot growth stage.  

Averaged across application timings, primary crop rice seed germination and 

rice seedling vigor were reduced by glufosinate applications, regardless of 

rate.  



 121

 Simulated imazamox drift applied to rice at the one-tiller, PD, and 

boot timings resulted in reduced plant height and primary crop yield losses.  

Total crop yield was reduced when imazamox was applied at one-tiller and boot 

with the greatest reduction in primary and total crop yield resulting from 

imazamox applied at the boot growth stage.  Primary crop rice seed weight was 

not reduced by an imazamox application to rice; however, primary crop rice 

seed germination was reduced when imazamox was applied at one-tiller, PD, and 

boot, with increased susceptibility at the boot growth stage.  Primary crop 

seedling vigor was reduced when imazamox was applied to rice at boot.  Ratoon 

crop rice seed weight and seed germination was not reduced by imazamox 

applications. 

 Simulated glyphosate, imazethapyr, glufosinate, and imazamox drift 

applications did not affect rice when applied at maturity.  The greatest 

reduction in primary crop yield was observed when each herbicide was applied 

to rice at the boot growth stage.  Although each herbicide was evaluated 

separately, the yield reduction observed with simulated glyphosate, 

imazethapyr, and imazamox drift applied to rice at the boot growth stage was 

greater than that observed with glufosinate. 

 Simulated drift of glyphosate, imazethapyr, glufosinate, and imazamox 

reduced primary crop rice seed germination.  Generally, glyphosate, 

imazethapyr, and imazamox applications at the boot timing resulted in the 

greatest reduction in seed germination.  Glufosinate reduced primary crop 

seed germination regardless of timing. 

 The negative effects of a glyphosate, imazethapyr, glufosinate, or 

imazamox drift event occurring to a seed producer’s field to rice in the boot 

growth stage has the potential to be two-fold.  The reduction in 

profitability the year of the event from reduced yield and a reduction in 

seed germination has the ability to reduce profitability in the subsequent 

year’s crop due to an increase in seeding rate to offset the reduced seed 
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germination.  Caution should be taken when applying any of these herbicides 

near adjacent susceptible rice fields, especially when making applications 

near rice in the reproductive growth stages.  Though the effects of 

glyphosate, imazethapyr and imazamox drift on rice may not be immediately 

apparent by visual observation, the potential effect on grain yield and the 

germination potential of the harvested grain could be highly detrimental to 

rice producers. 

 One important aspect of this research is the identification and 

documentation of the symptomology associated with glyphosate, imazethapyr, 

glufosinate, and imazamox drift to rice.  While an understanding of the 

potential for yield loss is important, one must first be able to identify the 

causal agent of a suspected drift event before a potential detriment to yield 

can begin to be estimated. 

 The ability to identify drift of these herbicides can be helpful to 

producers, Cooperative Extension Service personnel, crop consultants, and 

state regulatory agencies in distinguishing between herbicide drift and 

injury associated with soil fertility issues, diseases, and other disorders 

affecting rice.  Misidentification of herbicide drift symptoms as injury 

associated with these factors can lead to loss in profitability if growers 

apply unnecessary applications of inputs to correct these factors when the 

symptoms present are actually a result of herbicide drift.  The ability to 

correlate the symptoms observed to a particular herbicide also may assist 

state regulatory agencies in identifying the source of a herbicide drift 

event.  If the suspected herbicide can be identified by observation of plant 

symptoms this can reduce the cost associated with confirmation of a herbicide 

drift event through the use of diagnostic testing of foliar residue since 

most analytical facilities charge per evaluation and the diagnostic tests 

involved are often herbicide specific. 
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 The landscape of agriculture in Louisiana is one of diversity which 

provides ample opportunity for off-target herbicide drift to affect adjacent 

crops.  While the knowledge of the detrimental effects and symptoms 

associated with glyphosate, glufosinate, imazethapyr, and imazamox drift are 

valuable following a drift event of these herbicides, the gains involved in 

avoiding off-target drift to susceptible crops are much greater.  Growers and 

commercial applicators must use caution when applying these herbicides near 

susceptible rice.   
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