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ABSTRACT 
 

Uniola paniculata (sea oats) has been used extensively to build and stabilize dunes along 

the southern Atlantic and Gulf of Mexico coasts of United States.  A breeding program could 

enhance coastal restoration by developing improved plants for beach restoration.  The goal was 

to initiate a successful breeding program for sea oats adapted to low dune profiles, with high 

seed yield and germination, and superior vegetative biomass essential.  The specific objectives 

were to: 1) examine effect of storage environment on sea oats seed germination; 2) determine 

time necessary for sea oats seeds to germinate; 3) determine sea oats seed moisture content; 4) 

determine survival and performance of vegetative sea oats plants and sea oats seedlings at beach 

environments with shallow dune profiles; 5) develop efficient methods to identify saturation 

tolerant sea oats lines; 6) determine sea oats seed yield in natural and artificial environments and 

7) identify fungal and bacterial pathogens of sea oats seed.  Sea oats seed stored in hermetically 

sealed jars at room temperature had highest average germination and seed germination was 

highest 21 days after germination.  Sea oats seed moisture content, ranged from 6 to 16 %, and 

was negatively correlated with germination.  Small sea oats seedlings had highest mortality 

however, seedling cost significantly less than vegetative plants.  Increasing seedling densities 

could reduce production costs and result in acceptable survival rates accompanied with genetic 

diversity.  We found that small seedlings flooded continuously to 14 cm depth in greenhouse for 

3 months could predict sea oats survival in saturated beach conditions after 6 months.  In 2007, 

2009, 2010, and 2011 we determined sea oats seed yield in natural and artificial environments.  

Consistent seed yields were not obtained for either environment; however, sea oats seed were 

possible to be produced in artificial production nurseries.  Finally, to determine seed pathogens 

colonizing sea oats seed, bacteria and fungi were isolated from sea oats seed harvested in 2011 
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and identified using both morphological and molecular techniques.  The dominant bacterial 

genera colonizing sea oats seed were Bacillus and Enterobacter; while the dominant fungal 

genera were Fusarium and Curvularia.  Additional research needs to be done to establish the 

pathogenicity or endophytic status of these species.   
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CHAPTER 1:  INTRODUCTION 
 

The health of Louisiana’s coast plays a vital role in the economics of the United States.  

This region produces 30% of the nation’s sea food, provides wintering habitats for migratory 

waterfowls and serves as the entry point for 18% of America’s foreign and domestic energy 

supply (Restore or Retreat 2007).  Sand dunes play a large role in the protection of coastal areas 

(O’Connell 2003).  Coastal regions characterized by dune formations face less damage during 

hurricanes than do coastal regions lacking such features.  Stabilization of exposed dunes  is 

attempted by planting with native dune species such  sea oats (Uniola paniculata L.) (Westra and 

Loomis 1966; Woodhouse 1978).  Sea oats are planted throughout the northern Gulf of Mexico 

coast on beaches to reduce coastal erosion.  Sea oats is a perennial dune grass extremely valuable 

in dune restoration projects.  Sea oats is regarded as a pioneer species for beach restoration 

endeavors (Johnson 1990).  The result of sea oats vegetative growth and sand burial is 

development of sand dunes that protect coastal communities, industries, infrastructures and 

residents (Wagner 1964).   

Sea oats can be propagated in three ways: vegetatively using rhizome material, sexually 

using seeds, or by  using micropropagation techniques (Lonard et al. 2011).  While sea oat 

propagation via rhizome material is comparatively the easiest of three methods, one consequence 

is elimination of genetic diversity, because every plant has an identical genotype.  Genetic 

diversity is necessary for established sea oats to be able to adapt to environmental changes 

(Huenneke 1991; Kutner and Morse 1996; Ledig 1996).  Sexually reproducing sea oats from 

seeds preserves genetic diversity; however there is limited access to sea oats seed.  Reproducing 

sea oats using micropropagation techniques can maintain genetic diversity (Valero-Aracama et 

al. 2007; Valero-Aracama et al. 2010; Lonard et al. 2011) if care is taken to include many 
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genotypes.  However, it requires specialized equipment and trained personnel.  Therefore, few 

are able to micropropagate sea oats.   

Among the major challenges faced by those engaged in coastal restoration is the 

insufficient production and availability of planting material for restoration projects due to limited 

seed production, seed dormancy, poor germination, poor seed storage and low seedling survival.  

Sea oats spread in the Northern Gulf of Mexico coast may also be impeded by shallow dune 

profiles.  Many beaches in the Northern Gulf of Mexico coast have very shallow dunes.  When 

dunes are shallow, sea oats grow at or near the water-table, which then contributes to plant death 

(Hester and Mendelssohn 1987).  Improved cultivars that can adapt to the low dune profiles are 

necessary, especially for Louisiana with the lowest dune profiles (Monteferrante et al. 1982; 

Hester and Mendelssohn 1987).  Improved cultivars are genetically distinct, which mimics 

undisturbed environments; have increased seed production and germination, which is necessary 

for self-sustainability; and have superior vegetative biomass essential for reducing coastal 

erosion.  Field trials are needed to identify populations that are adapted to the low dunes of 

Louisiana and have increased seed yield, to accelerate utilization of sea oats in beach restoration 

projects.  

The objectives of this study were to: 1) examine the effect of storage environment, 

specifically, storage temperature and container on sea oats seed germination, 2) determine the 

length of time necessary for sea oats seeds to germinate, 3) examine sea oats seed moisture 

content, 4) determine seed pathogen incidence during germination, 5) determine if survival and 

performance differed for large vegetative sea oats plants and small sea oats seedlings at beach 

environments with low dune profiles, 6) develop greenhouse protocols to identify saturation 
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tolerant sea oats lines, 7) determine sea oats seed yield in natural and artificial environments and 

8) identify fungi and bacteria colonizing sea oats seed. 
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Sea oats  

2.1.1 Plant description, morphology, and taxonomy 

 
Sea oats is a semi-tropical, rhizomatous perennial, C4 grass dominating many beach and 

dune environments (Wagner 1964; Sylvia 1986; Hester and Mendelssohn 1989; Bachman and 

Whitwell 1995).  It is a tall and erect plant, which grows as tall as 1-2 meters with leaves 

measuring up to 20-40 cm in length and approximately 0.6 cm (1/4 inch) in width and have 

pointed tips hence in many ways resembling common agronomic oats (Wagner, 1964; Westra 

and Loomis, 1966; Harper and Seneca, 1974).  Leaves are thick, sturdy, and deeply furrowed at 

the abaxial surface (Kearney 1900).  The inflorescence is a panicle of many laterally compressed 

spikelets each with 10-20 florets and the lower 4-6 florets are normally empty (Hitchcock and 

Chase 1971).  Flowering spikelets are flat and measure about 20-50 cm (Radford et al. l968).  

Seed heads are large, and become yellow brown and straw colored in late summer (Amos 1997).  

Sea oats trap wind-blown sands that eventually mound to form dunes (Johnson 1990).  Sea oats 

have dense surface roots and deep penetrating roots (Hester and Mendelssohn 1987).  Rhizomes 

are elongated and extensively creeping in habit.  They readily root upon burial in sand 

(Hitchcock 1951; Clewell 1985; Duncan 1987).  Rhizomes produce extensive lateral growth, 

which stabilizes continuous dune ridges (Duncan 1987).  Sea oats is an herbaceous plant with 

buds arising from the internodes.  These buds are formed randomly around the circumference of 

the stem within the nodal region and sand deposition somehow stimulates elongation of the 

internodes and growth of more buds (Hester 1985).   

Sea oats belongs to kingdom: Plantae, subkingdom: Tracheobionta (vascular plants), 

class: Liliopsidia (monocotyledons), order: Cyperales, family: Poaceae (grass family), Genus: 
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Uniola, species: paniculata.(http://plants.usda.gov).  The genus Uniola L. is a tetraploid with 

chromosome number 2n=40 (Watson 1992; Radford et al. l968). 

2.1.2  Sea oats geographical distribution and range of habitants 

Sea oats have an extensive range from temperate shorelines on the Atlantic Coast of the 

United States ( e.g. North Hampton County, Virginia) southwards into Dos Bocas, Tabasco, 

Mexico (Wagner 1964).  Sea oats are also widely distributed in the Bahama lslands and some 

sandy areas of Cuba’s northwestern coast, although it is absent from the remainder of the West 

Indies (Wagner 1964).  Throughout a large portion of its range, sea oats is a major component of 

the dune vegetation.  Along the southeastern Atlantic coast sea oats is often the dominant 

foredune sand binding grass (Wagner 1964; Woodhouse et al. 1967). 

Sea oats has a coastal zone distribution and is limited to a sand dune habitant (Seneca 

1972).  Sea oats is the most widely recognized plant species on the coastal pioneer and frontal 

dune sites throughout the Gulf and the southern Atlantic coastal region (Craig and Service 1984; 

Duncan and Duncan 1987; Barnett 1997) (Figure 1.1).  Only a few plant species can tolerate the 

stresses of a dune environment, particularly frontal dune sites.  Foredune plants must be able to 

survive being buried by blowing sand, sand blasting, salt spray, salt water flooding, drought, 

heat, and low nutrient supply (Salmon et al. 1982; Craig and Service 1984; Barnett 1997; Hill 

2001).  In Louisiana, sea oats is absent in coastal regions where the water table is raised to the 

soil surface (Hester and Mendelssohn 1989).   
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Figure 1.1  Geographical distribution of sea oats in the United States 

 

Coastal dunes generally have 3 vegetation zones based on soil salinity (Salmon et al. 

1982; Craig and Service 1984).  Landward of the highest tides, pioneer or frontal zone sites are 

stabilized by sand trapping action of various rhizomatous grasses like sea oats that are tolerant to 

salt spray.  Landward of the frontal zone area, the backdune zone supports less salt tolerant 

grasses and forbs as well as shrubs and some trees.  Farthest from the ocean is the forest zone 

vegetation in this zone is transition from maritime to non-maritime species.  

2.2  Coastal sand dunes 

Coastal sand dunes are typically formed through the trapping of sand by dune vegetation.  

The type of vegetation that grows on dunes has special adaptation characteristics that allow the 

vegetation to establish, grow, and trap sand in the harsh conditions of coastal areas.  In the 

absence of such vegetation, the wind can act on the exposed sand, forming migrating dunes that 

move back and forth with the wind (Chapman 1976).  The vegetation of coastal dunes usually 

becomes established when seeds or plants are trapped along shorelines during very high tides 
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(Chapman 1976).  Trapping of seeds or plants is the first step in the sequence of events and 

circumstances necessary for the development of coastal dune vegetation.  The next crucial factor 

in the process is that the seeds or plants must be suitable for establishment in the area. The 

establishment of suitable seeds or plants must then be followed by one or two years of favorable 

growing conditions.  However, on most sites the complete sequence does not occur. The early 

phases occur frequently on many sites, but the embryo dunes are usually destroyed by storm 

activity before sufficient establishment occurs (Woodhouse et al. 1967; Woodhouse 1978). 

Consequently, the sequence of events can be bolstered if the area can be stabilized for a long 

enough period of time with different stabilization techniques.  Thus, one of the major functions 

of coastal dunes is to serve as a reservoir of sand for beaches (Salmon et al. 1982; Rogers et al. 

2003). 

2.2.1  Physical environment of the sand dunes  

The sand dune environments are subject to selective forces on vegetation both temporally 

and spatially.  Extreme episodic storm events can immediately effect the vegetation community 

through complete destruction, burial and/or exposure from sediment displacement and storm 

surge over-wash, mechanical damage from increased wind speeds, and periodic inundation by 

saltwater (Costa et al. 1996).  The vegetation is subject to high incident sunlight due to lack of a 

plant canopy (Oosting 1954).  In addition, soil surface temperatures can exceed 50°C during the 

growing season, and air temperatures often exceed 32°C at midday.  The topography of the sand 

dune creates a mosaic pattern of soil water content, wind patterns, and exposure to salt spray 

deposition (Oosting 1954).  High winds may cause sand abrasion and mechanical damage to 

plants as well as cause blowouts that expose roots and rhizomes to desiccation.  Soil (i.e. sand) 

has a low water holding capacity, thus soil nutrients are quickly leached out, and soil evaporation 
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rates are relatively high due to high wind and temperatures.  Although sand dune systems are 

usually not deficient in plant micronutrients (e.g. calcium, magnesium, and sodium), receiving 

many of these cations through salt spray, they are characteristically deficient in plant 

macronutrients (i.e. nitrogen, phosphorous, and potassium) essential for growth and carbon 

allocation. 

2.2.2  Physical tolerances of sea oats 

Sea oats tolerate high temperature conditions; they can withstand surface soil temperatures as 

high as 52-53 °C (125-127 °F) and air temperature around 35-38 °C (95-100 °F) (Oosting 1954).  

They are highly tolerant to inundation by sea water for short periods, however, they cannot 

tolerate prolonged periods of inundation (Hester and Mendelssohn 1989).  Sea oats can thrive 

under salt spray conditions.  It is assumed that salt spray provides a source of micronutrients in 

the heavily leached soils of beach stands (Hester and Mendelssohn 1989; Stalter 1993).  Sea oats 

can withstand harsh environmental conditions that include drought.  Stomata in sea oats close 

when soil moisture reaches 8.5% (Hester and Mendelssohn 1989).  Sea oats do not tolerate water 

logging of roots (Hester and Mendelssohn 1987; Hester and Mendelssohn 1989).  Tolerable soil 

pH for Uniola species ranges from 6.9 to 7.9 (Oosting 1954).  Sea oats are colonized with 

beneficial microorganisms such as VAM (Vesicular-Arbuscular Mycorrhizal) fungi, which 

increase the surface area for nutrient absorption to plant roots. The hyphae of these fungi also 

help in binding sand grains into aggregates and aid in stabilizing substrata (Sylvia 1986). 

2.3  Growth seasons of sea oats 

The growing season of sea oats depends upon the geographic location.  In North 

Carolina,  germination of seeds occurs from late May to mid-June and growth the season occurs 

from May to September (Tyndall R.W 1987).  In Florida, sea oats require three growing seasons 
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to flower and set seed (Wunderlin 1982).  In Texas, flowering and seed formation occurs from 

April through November (Gould 1978).  Sea oats are dormant during winter from the onset of 

cooler weather in early fall until spring when it warms up.  Sea oats respond to lower winter 

temperatures by synthesis of anthocyanins which color the younger leaves light pink to a dull 

purplish green making it difficult on occasion to determine whether individuals are living or 

dead.  The first indication of growth renewal is the development of new leaves which soon 

replace those of the preceding year.  Later on, elongation of the flowering culm begins. 

2.3.1  Sea oats phenology 

Floral initiation is believed to be temperature controlled, beginning earliest in the south 

and progressing northwards (Harper 1973; Colosi 1979).  By early July the spikelet primordial 

begin emerging from the protecting leaf sheaths.  Rapid elongation of the culm internodes soon 

exposes the remainder of the panicle.  The spikelets at this stage are rather small, composed of 

the two basal glumes, a series of sterile lemmas, and then a variable number of embryonic 

florets.  These develop rapidly and by late July to early August, the spikelets are almost fully 

expanded.  The spikelets are described to comprise a variable number of florets (ranging from 5-

20 florets), which are typically hermaphroditic, unisexual, or sterile.  Within each spikelet, the 

fertile florets are subtended by 3-6 sterile or neuter florets (Crewz et al. 1987).  Florets develop 

and open (anthesis) from the base of the spikelet up toward the developing tip (Wagner 1964).  

At anthesis, the lemma and palea of the floret separate slightly, allowing the three anthers to be 

exposed to the wind and the two plumose stigmas to be exposed, one on each side of the floret 

through the lateral overlap of the lemma and palea margins (Wagner 1964).  Florets open and 

close in the early morning and open only once per season (Colosi 1979).  Seed development 

potentially begins with anthesis of the lowest fertile floret of the spikelet.  Pollination may occur 
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at that time and the fertilized ovule may then begin to develop into a seed (Colosi 1979).  Walsh 

(1994) noted that sea oats is wind pollinated and cross-pollination may be required for sea oats to 

produce large quantities of seeds.  

The floret is composed of a large lemma and slightly smaller palea nested together, spoon 

fashion, including between them three stamens and ovary (Wagner 1964).  At anthesis the lemma 

and palea separate slightly allowing the three anthers to be exposed to the wind and the two 

plumose stigmas to be exposed, one on each side of the floret through the lateral overlap of the 

lemma and the palea margins.  By mid to late August all fertile florets have undergone anthesis. 

A typical spikelet has 2 glumes above which are 4 sterile lemmas followed by 6 to 8 fertile 

florets.  In a terminal position are two or more incompletely developed florets.  Despite the 

production of 6 to 8 fertile florets per spikelet few of these ever set seed.  Although apparently 

viable a great number of ovaries subsequently abort. 

In Louisiana, typically seed numbers range from 0.00-9.53 per culm depending on the 

population (Walsh 1994).  Spikelets are rapidly disseminated by wind, and are usually buried by 

sand accretion.  Ordinarily, sea oats spikelets after dispersal lie dormant until spring when all 

viable seeds germinate.  Apparently some dormancy mechanism prevents germination in fall 

even if the environment is favorable (Woodhouse et al. 1967).  Germination is prevented in the 

fall by the seed coat that, though permeable to liquids and gases, resists the expansion of the 

embryo referred to as thermally-sensitive physiological block (Wagner 1964).  By late May, all 

viable seeds germinate in few weeks and then greatest concentration of seedlings can be found 

on the upper beach where sand accretion is light (Wagner 1964).  Grisebach (1864) describes the 

grass having some flowers that are fertile and 3- androus while Hitchcock (1950) mentioned that 

the spikelets are apparently sterile, with neither caryopses nor stamens found (Wagner 1964).  
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Although the spikelets of sea oats are deciduous, falling from the panicle over late fall and early 

winter, the florets remain attached to the rachis of the spikelet so that whatever seeds are 

contained are distributed as a unit (Westra and Loomis 1966).  Spikelets falling on sites of sand 

accretion are quickly buried and if this burial is not excessive (endosperm reserves allow the 

coleoptile to elongate no more than 6 inches), viable seeds will produce seedlings the following 

spring (Tyndall R.W 1987). 

Self-pollination fails to increase genetic variability and therefore stunts a species’ abilitiy 

to adapt (Roalson and McCubbin 2003).  Most plant species would tend to self-pollinate when 

both male and female gametes are present in a single flower (Roalson and McCubbin 2003).  

Self-incompatibility (SI) is considered to be one of the most important strategies used by 

flowering plants to prevent self-fertilization and consequent inbreeding depression caused by 

homozygosity.  Members of the grass family, the Poaceae, exhibit a gametophytic self-

incompatibility (GSI) system which is controlled by at least two multiallelic and independent 

loci, S and Z (Lundqvist 1954; Hayman 1956).   

Crewz (1987) observed that sea oats is a plant having a hermaphroditic flowering system, 

thus it could be an obligate outcrosser and possess a degree of self-compatibility, i.e., pollen 

transfer would be probably among flowers of the same plant.  He further pointed out that 

Wagner’s (1964) observation that sea oats did not show apomixis could be attributed to having 

sea oats samples that were not under proper environment induction conditions.  Under controlled 

condition experiments on sea oats where fruit set reduction was deduced to self-incompatibility, 

low fruit set could be due to the experimental set-up itself that inhibits pollination (Crewz et al. 

1987).  Hester and Mendelssohn (1987) proposed that this may be a consequence of limited 
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cross-pollination.  If cross-pollination is limited, then the seed set that does occur may be a result 

of selfing, and self incompatability would explain the poor seed set that results.  

2.4  Sea oats propagation methods 

Sea oats plants exhibit both sexual and asexual modes of reproduction.  It reproduces 

asexually by forming buds around the stem and sexually via seeds.  

2.4.1  Vegetative propagation 

The primary natural method of reproduction in the dune habitat is through vegetative 

means.  Buds are formed around the stem base and the formation angle of the buds determines 

whether a shoot or lignified rhizome develops.  Acutely angled buds become tillers and right 

angled buds become rhizomes.  Internodal portions of the rhizomes decay leaving the nodal 

regions with associated culms to root and become new plants.  As sand is deposited around the 

base of the plant, these rhizomes establish roots in dune sand.  Vegetative reproduction for dune 

propagation is reportedly expensive (Lewis et al., 1986), although it is the primary means of 

reproduction in the dune habitat (Bachman and Whitwell 1995).  This means of reproduction 

only creates larger stands of sea oats and colonization of new areas that are spatially distant is 

accomplished primarily by seed (Holmes, 1983).  Survival of transplants from one dune stand to 

another dune has been shown to be low.  So nursery or greenhouse production of planting stock 

is essential for large-scale production of high quality transplants (Seneca 1972). 

2.4.2  Micropropagation of sea oats 

Micropropagation has a great commercial potential due to the speed of propagation, 

decreased production space requirement, and the ability to multiply elite clones exhibiting 

superior growth and enhanced stress tolerance (Garton and Mosses, 1985; Kane et al., 1989).  
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Micropropagation also can be used to establish and maintain virus-free plant stock.  This is done 

by culturing the plant’s apical meristem, which typically is not virus-infected.  Once new plants 

are developed from the apical meristem, they can be maintained and sold as virus-free plants 

(http://www.biotech.iastate.edu/lab_protocols/AV_Micropropagation.html).  Micropropagation 

can be achieved by using different parts of the plant as the primary ‘explant’ (synonym of 

‘propagule’ in situ) such as, the apical meristem, nodal bud, shoot buds, axillary buds, or through 

production of somatic embryos, a process commonly known as somatic embryogenesis. 

2.4.3  Seed propagation 

Genetic diversity during sexual reproduction results from independent assortment of 

chromosomes and crossing over during meiosis and fusion of gametes during fertilization.  

Plants grown from seed will therefore be genetically diverse compared to plants from cuttings. 

Genetic diversity is a goal in many restoration projects.  Using direct seeding methods for 

projects also eliminates the production process in the nursery.  This may reduce labor costs and 

other expenses as maintenance of mature plants would be unnecessary.  

Seed production is rather low compared with its potential (Hester and Mendelssohn, 

1990).  Wagner (1964) found 2.24 caryopses per spikelet,  Westar and Loomis (1964) found 2 

caryposes per spikelet and Hester and Mendelssohn (1987) found a range from 0.091 to 0.002 

caryopses per spikelet in Louisiana populations of Uniola paniculata, but few of these ever set 

seed (Holmes, 1983).  Although fertile pollen is produced, about 70% of the ovules are aborted 

and thus sea oats are not considered as a heavy seed producer (Westra and Loomis, 1966).  

2.4.4  Sea oats seed dormancy 

In efforts to overcome the germination issues of sea oats that early scientists were facing, 

Wagner (1964) studied the seed dormancy both on dunes and in the greenhouse.  Gibberellic acid 
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treatment on seeds was effective in breaking seed dormancy (Woodhouse and Hanes, 1966).  

However, Westra and Loomis (1966) disagreed with gibberellic acid treatment and instead 

recommended thiourea with a pre-chilling treatment of alternating high and low temperatures.  

Seneca (1972) reported his results on the germination and seedling response of three populations 

of sea oats distributed in Virginia and North Carolina region, Atlantic coast Florida, and the Gulf 

coast.  He found out that seeds from Virginia and North Carolina required cold treatment while 

its seedlings showed homogenous vegetative potential. In the Atlantic coast Florida region, seeds 

did not require cold treatment and seedlings were found to have a low potential for vegetative 

growth.  Gulf coast seeds showed response to cold treatment and the seedlings had the highest 

potential for vegetative growth (Seneca, 1972).  In the succeeding years, Hester and 

Mendelssohn (1987) in a study involving Louisiana sea oats concluded that cold treatment did 

not enhance seed germination and was not required to break dormancy.  It was noted, however, 

that room-temperature treatment yielded 88.8% germination without prior cold treatment 

suggesting that moist cold condition had done a great deal in reducing the time required to 

achieve 50% germination (Hester and Mendelssohn, 1987). Meanwhile (Bachman and Whitwell 

1995) presented their results on the nursery production of sea oats utilizing preplant treatments of 

seeds.  Thiourea was not effective in improving seed germination but gibberellic acid treatment 

at 100 ppm increased and accelerated germination of freshly harvested seeds (Bachman and 

Whitwell, 1995).  The authors concluded that poor seed germination could not be attributed to 

dormancy. 

2.4.5  Seed pathogens 

Most of the wildly grown grass seeds have been found contaminated with various fungi, 

i.e., Fusarium spp., Ulocladium spp, Alternaria spp., and Cuvularia spp., and Bipolaris.spp 
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(Han-Mo Koo et al., 2003).  These seed borne fungi can reduce not only seed quality but also 

cause yield loss (Neergaard 1979).  Also, Neergaard (1979) described that reduction of yield 

could be caused by seed borne fungi that lead to poor seed development, which is not necessarily 

seed transmitted.  Halfon-Meiri (1970) reported that seed borne fungi such as Alternaria. 

brassicola and Phoma ligam in crops belonging to family Gramineae could shrink and reduce 

seeds.  Many seed borne fungi could cause seed rot either on plant or during germination 

(Neergaard 1979).  Many species in Fusarium are major plant pathogens and many are seed 

borne (Neergaard 1979). Fusarium. oxysporum, an agent of Fusarium wilt of many hosts, is the 

most important plant pathogenic species of Fusarium, having a wide host range, and including 

numerous formae speciales, some of which contain two or several pathogenic races causing 

devastating wilt disease (Neergaard 1979).  Many of these Fusarium. oxysporum are seed borne 

(Noble M. and Richard 1968), and the Anderson (1974) index includes hosts such as Allium spp., 

Glycine max, Oryza. sativa, Solanum melongena, Sorghum. vulgare, Cucumis sativa, and Pisum 

sativum.  Fusarium. semitectum is predominantly a secondary invader of plant tissues of many 

hosts including Oryza. sativa, Zea. mays, and Sorghum. vulgare, and prevailed in tropical and 

subtropical regions (Neergaard, 1979).  Fusarium. solani is a ubiquitous pathogen and occurs on 

seed of a wide range of hosts such as Capsicum annuum, Coriandrum sativum, Cuminum 

cyminum, Lycopercon esculentum, Oryza. sativa, Phaseolus vulgaris, and Sorghum. vulgare 

(Ram Nath 1970).  Noble and Richardson (1968) also listed Allium, Cucurbita, Trifolium 

pratense, and Zea mays.  The pathogen causes root rot in many hosts such as broad bean, 

Phaseolus bean, and pea (Neergaard, 1979). 

Bipolaris. spicifera (teleomorph: Cochliobolus spicifer Nelson) is distributed worldwide 

and occurs mainly in tropical and subtropical regions (Sivanesan and Holliday, 1981; Alcorn, 
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1988).  This fungus was first named as Brachucladium spoiciferum Bainier in 1908 (Sivanesan 

and Holliday, 1981), renamed as Curvularia spicifera (Bainier) Boedijin in 1933 (Sivanesan and 

Holliday, 1981), then Helminthosporiun spiciferum (Bainier) Nicot in 1953 (Sivanesan and 

Holliday, 1981; Alcorn, 1988), followed by Drechslera spicifera (Bainier) Arx in 1970 

(Sivanesan and Holliday, 1981; Alcorn, 1988), and renamed again as Bipolaris. spicifera 

(Bainier) by Subramanian in 1971 (Holliday 1981). Bipolaris. spicifera has a wide host range 

infecting more than 77 plant species including 51 grass genera and could be isolated from soil 

and air (Domsch. K. H 1980).  
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CHAPTER 3:  EFFECT OF SEED STORAGE ENVIRONMENT ON 
UNIOLA PANICULATA GERMINATION1 

3.1  Introduction 

 
Beach restoration is essential in the northern Gulf of Mexico coast due to high rates of 

coastal erosion. Sea oats (Uniola paniculata), a native perennial grass of the southern Atlantic 

and northern Gulf of Mexico coasts of the United States builds and stabilizes sand dunes, which 

buffer storm surge and protect coastal communities and infrastructure (Wagner 1964; Seneca 

1972). To produce sea oats plants for beach restoration, seeds are often collected from natural 

populations and grown in greenhouses until large enough for planting. Significant work has 

investigated the effects of light, temperature, and stratification on sea oats seed germination. 

Alternating temperatures yield the highest germination (Seneca 1969, Seneca 1972, Hester and 

Mendelssohn 1987) and light is not required for germination (Westra and Loomis 1966, Burgess 

et al. 2002). Response to cold stratification varies. Sea oats seed produced in Virginia and North 

Carolina had higher germination after cold stratification (Seneca 1969, Seneca 1972, Burgess et 

al. 2002), while seed collected from Florida’s Atlantic Coast were unaffected by cold 

stratification. Seneca (1972) also found that seeds collected from the northern Gulf of Mexico 

coast had an intermediate response while Hester and Mendelssohn (1987) found that seeds 

collected from Louisiana germinated faster after cold stratification.  

To support sea oats restoration efforts, reduce the frequency of seed harvests that cause 

physical disruptions to natural ecosystems, and strengthen sea oats genetic conservation 

additional work is needed. Seed germination is known to be affected by seed storage conditions, 

moisture content, and pathogens (Copeland and McDonald 2001, Elias et al. 2007, Elias et al. 

                                                 
1 This chapter originally appears as “Nabukalu, P. and C.A. Knott. 2013. Effect of storage environment on Uniola 
paniculata germination. Ecological Restoration 31(1):16-19”. Reprinted with permission of Ecological Restoration 
Journal. 
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2012); however there are only limited accounts of sea oats seed pathogens (Hester and

Mendelssohn 1987, Burgess et al. 2002). Information on how long seeds must remain in 

germination conditions to achieve high germination percentages is also limited; most studies 

investigated germination for specific time periods (Seneca 1969, Seneca 1972, Hester and 

Mendelssohn 1987, Burgess et al. 2002). Germination period is essential for planning and 

implementing beach restoration projects. The objectives of this study were to: (1) examine effect 

of storage environment, specifically, storage temperature and container on sea oats seed 

germination, (2) determine the length of time necessary for sea oats seeds to germinate, (3) 

examine sea oats seed moisture content; and (4) determine seed pathogen incidence during 

germination.  

3.2  Materials and methods 

We harvested mature sea oats panicles in September 2010 from a seed production nursery 

established in a natural beach environment at Long Beach, MS. Seeds were threshed from 

panicles with a forage belt thresher (Agriculex Inc., Guelph, Ontario) and placed into six storage 

environments (Table 3.1) in December 2010.  

Table 3.1.  Storage environments and conditions of sea oats seed harvested in September 2010 
from a seed production nursery at Long Beach, MS. 

Environment Temperature Container 
RT Ambient  Room Temperature (20-25°C) None 
RT Sealed Jar Room Temperature (20-25°C) Hermetically sealed jar 
4°C Ambient 4°C None 
4°C Sealed Jar 4°C Hermetically sealed jar 
-20°C Ambient -20°C None 
-20°C Sealed Jar -20°C Hermetically sealed jar 

Environments were selected to simulate commercial storage. From January 2011 to December 

2011, 200 seeds, 8 replicates of 25 seeds, were removed from each environment every 28 days. 
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We used the oven method to determine seed moisture content (Elias et al. 2012). We surface 

sterilized sea oats seeds with 25% Clorox for 15 minutes (Woodhouse et al. 1968) prior to 

placement onto germination paper moistened with distilled water (ISTA 2008). We germinated 

seeds in the dark at 18.3°C / 35°C for 17 / 7 hours (Woodhouse et al. 1968).  

Every 7 days we examined seed germination and pathogen incidence for 35 days after 

planting. A seed was considered germinated when the radicle was greater than 2 mm; seed 

infected with pathogens were removed. Percentage germination was calculated for 21, 28, and 35 

days after planting as: (number of germinated seed at dχ / (number of seed planted – number of 

infected seed)) x 100, where dχ is the number of days seeds were in the germination 

environment. Total percentage seed germination was calculated as: (total number of germinated 

seed/ (total number of seed planted – total number of infected seed) x 100. Percentage pathogen 

incidence was calculated as: (number of infected seed / number of seed planted) x 100.  

3.3  Data Analysis 

We analyzed data with analyses of variance (ANOVA) as randomized complete block 

designs (PROC MIXED, SAS Institute version 9.1.3). Percentage seed moisture had 2 replicates; 

total seed germination and pathogen incidence had 8 replicates; and seed germination at 21, 28 

and 35 days had 96 replicates. Storage environment was specified as fixed effect; replicates were 

considered random effects. LSMEANS were separated using pdmix800 at p < 0.05 level (Saxton 

1998). We found significant time by environment interactions; therefore separate analyzes were 

conducted.  

3.4  Results and Discussion 

Sea oats seeds stored in hermetically sealed jars at room temperature consistently had the 

highest total germination from 4 to 15 months after harvesting and ranged from 28-71% and seed 
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stored in ambient conditions at room temperature had high total germination except for 4 and 7 

months after harvesting (Table 3.2). Other investigators reported high sea oats germination from 

Louisiana seed when stored at room temperature for 6 months (Hester and Mendelssohn 1987). 

This is not surprising because northern Gulf of Mexico coast typically remains above freezing 

year round; therefore northern Gulf of Mexico sea oats seeds are adapted to warm temperatures. 

Seed stored in ambient conditions at 4°C had the lowest total germination throughout the 

experiment and ranged from 12-32 % (Table 3. 2). Total germination of seed stored in 

hermetically sealed jars at 4°C, ambient conditions at -20°C and hermetically sealed jars at -20°C 

were typically among the lowest (Table 3.2). This suggests that low temperatures cause chilling 

injury prior to imbibition (Bewley and Black 1982), which reduces sea oats seed germination.  

Seed moisture content is critical for seed storage, however specific reports of sea oats 

seed moisture are lacking. We found seeds stored at -20°C storage environments (ambient and 

hermetically sealed jars) had high seed moisture contents that ranged from 12-16% and 10-16% 

respectively (Table 3.2). Seeds stored at room temperature ambient conditions consistently had 

the lowest seed moisture contents ranging from 6-13% (Table 3.2). Typically seed moisture 

contents below 13% are recommended for grass seed storage (Elias et al. 2007). We also found a 

negative correlation between seed moisture content and germination (p < 0.05; r = -0.40); which 

is consistent with orthodox seed (Hong and Ellis 1996).  

We were also interested in pathogen incidence because pathogens are known to affect 

seed quality and reduce germination. We found seed stored at -20°C ambient consistently had the 

highest pathogen incidence; 4°C ambient had high pathogen incidence except at 4 and 12 months 

after harvesting (Table 3.2). Seed stored in hermetically sealed jars at room temperature had the 
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lowest pathogen incidence (Table 3.2). Increased pathogen incidence at low temperature may 

have resulted from chilling injury (Hong and Ellis 1996) that allowed opportunistic pathogens to   
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Table 3.2.  Average total percentage seed germination, moisture content, and pathogen incidence for sea oats seed stored for different 
lengths of time and in different environments. Averages followed by different letters within each row are significantly different (t test, 
p < 0.05). 

Months after 
Harvesting 

Storage Environment   
RT 

Ambient 
RT Sealed Jar 4°C Ambient 4°C Sealed Jar -20°C 

Ambient 
-20°C Sealed Jar Significance 

Level 
  

Seed Germination (%) F Value P Value 
4  25 bc  33 ab 15 c 43 a  34 ab  33 ab 2.81 0.0307 
5 28 a 28 a 12 b  23 ab 26 a  23 ab 2.68 0.0376 
6     32 abc 40 a 21 c  38 ab   30 abc  28 bc 2.74 0.0341 
7 34 b 53 a 19 c 19 c  27 bc  28 bc 11.37 <0.0001 
8 32 a 37 a 32 a 44 a 34 a 37 a 0.90 0.4946 
9 43 a 52 a 27 b 29 b 27 b 24 b 8.11 <0.0001 

10 45 a 45 a 13 c 26 b  20 bc  24 bc 11.10 <0.0001 
11 35 a 36 a 18 b 21 b 13 b 20 b 6.09 0.0004 
12 50 a 58 a 30 b 32 b 33 b 27 b 6.28 0.0003 
13 62 a 71 a 31 b 29 b 26 b 24 b 16.88 <0.0001 
14 49 a 45 a 19 b 38 a 20 b 36 a 6.55 0.0002 
15 52 a 52 a 29 b 28 b 26 b 24 b 6.55 0.0002 
  

Moisture Content (%) 
  

4 9 c 13 b 10 c 13 b 14 a  14 ab 48.02 0.0003 
5 9 d  13 bc 10 d 12 c 15 a  14 ab 53.58 0.0002 
6 8 d 13 b 11 c 13 b 14 a 12 b 67.90 0.0001 
7 9 c 12 b  14 ab  13 ab 14 a 14 a 14.12 0.0057 
8 12 a 13 a 11 a 12 a 13 a 13 a 0.64 0.6803 
9 9 b  11 ab  11 ab  12 ab 13 a 13 a 3.97 0.0784 

10 9 d 12 c 12 c  14 ab 14 b 16 a 29.60 0.0010 
11 9 c  11 bc  12 bc  13 ab 16 a  13 ab 7.34 0.0237 
12 13 c 16 a 13 c  13 bc  15 ab 10 d 14.10 0.0057 
13 9 b 12 a  11 ab 12 a 12 a 13 a 4.19 0.0709 
14 6 d   7 cd  9 bc  11 ab 13 a 13 a 17.96 0.0033 
15 10 b  12 ab  12 ab  13 ab 15 a 15 a 3.66 0.0903 
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(Table 3.2. continued) 

Months after 
Harvesting 

Storage Environment   
RT 

Ambient 
RT Sealed Jar 4°C Ambient 4°C Sealed Jar -20°C 

Ambient 
-20°C Sealed Jar Significance 

Level 
  

Pathogen Incidence (%) 
  

4  36 ab  29 bc 12 d 25 c 40 a 42 a 13.95 <.0001 
5 34 a 13 b 36 a  25 ab 32 a 29 a  4.06 0.0052 
6  32 ab 28 b  31 ab  36 ab  32 ab 39 a 1.15 0.3513 
7 30 c 49 a  41 ab 7 d   38 abc  31 bc 14.53 <0.0001 
8 34 b 22 c 45 a 45 a  41 ab 34 b 6.90 0.0001 
9  25 bc  23 bc 36 a  25 bc  30 ab 19 c 4.11 0.0049 

10 47 a 48 a 39 a 47 a 47 a 41 a 1.02 0.4191 
11  25 bc 18 c  32 ab 33 a 36 a  25 bc 6.24 0.0003 
12 27 b  31 ab 29 b 29 b  41 a 28 b 1.82 0.1337 
13 27 a 31 a 39 a 35 a 31 a 31 a 0.91 0.4887 
14  39 ab 33 b 45 a 46 a  41 ab 48 a 1.87 0.1252 
15 40 a 35 a 36 a 39 a 43 a 36 a 0.66 0.6530 
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invade weak seed coats and deteriorate the embryo (Klich 2007).  

Restoration practitioners are extremely interested in length of time required for sea oats 

seeds to germinate because it directly affects production costs and project planning. We found 

the highest germination 21 days after planting and lowest germination 28 and 35 days after 

planting for all environments (Table 3. 3). In addition seeds stored in hermetically sealed jars at 

room temperature had highest germination, while seed stored at 4°C ambient conditions had 

lowest germination (Table 3.3). We expected seeds stored at low temperatures to germinate 

faster than seeds stored at room temperature based upon previous studies (Seneca 1972, Hester 

and Mendelssohn 1987, Burgess et al. 2002); however they had lower germination percentages 

in comparison to room temperature storage (Table 3.3). We also found highest pathogen 

incidence 21 days after germination and when seed were stored at -20°C ambient (Table 3.3). 

More work is needed to determine why both seed germination and pathogen incidence are 

highest 21 days after germination. Burgess et al. (2002) identified numerous pathogens 

associated with sea oats seed decay during germination. This study and previous studies (Hester 

and Mendelssohn 1987, Burgess et al. 2002) suggest that measures to reduce pathogen incidence 

including chemicals and plant resistance would improve sea oats plant yields for beach 

restoration. 

3.5.  Conclusion 

In conclusion, we found sea oats seed stored in hermetically sealed jars at room 

temperature consistently had the highest average germination for seed harvested from the 

northern Gulf of Mexico coast. We also were the first to report sea oats seed moisture content, 

which ranged from 6 to 16 %, and was negatively correlated with germination. Finally, we found 

seed germination was highest 21 days after germination.  
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Table 3.3.  Average percentage seed germination and pathogen incidence after 21, 28, and 35 days in germination environment for sea 
oats seed stored in six environments. Averages within a row for each variable (seed germination, pathogen incidence) followed by 
different capitalized letters are significantly different (t test, p < 0.05). Averages within a column followed by different superscripts 
are significantly different (t test, p < 0.05). 

 

Storage 
Environment 

Days after Planting   
21 28 35 Significance level 21 28 35 Significance level 

 Seed Germination (%) F Value P Value Pathogen Incidence (%) F Value P Value 
RT Ambient 29  Ba 5 Fb 1 Gc 309.70 <0.0001 22 AB a 8 ABb 3 Dc 188.37 <0.0001 

RT Sealed Jar 31 Aa 6 Fb 3 Gc 207.10 <0.0001 18 Ca 7 Bb 6 Bb 57.99 <0.0001 
4°C Ambient 12 Ea 6 Fb 2 Gc 126.30 <0.0001 19 C a 8 ABb 7 Ab 39.61 <0.0001 

4°C Sealed Jar 19  Ca 6 Fb 2 Gc 133.62 <0.0001 20 BCa 9 Ab 4 Cc 81.90 <0.0001 
-20°C Ambient 14 Da 6 Fb 3 Gc 70.12 <0.0001 24 Aa 10 Ab 4 Cc 147.34 <0.0001 

-20°C Sealed Jar 15 Da 6 Fb 3 Gc 86.35 <0.0001 19 Ca 9 Ab 5 Bc 70.03 <0.0001 
 



2 This chapter originally appears as “Nabukalu, P. and C.A. Knott. 2013. Effect of Uniola paniculata plant size on 
survival and performance at beaches with low dune profiles.  Ecological Restoration 31(1): 12-16.”. Reprinted with 
permission of Ecological Restoration Journal.      26 

CHAPTER 4:  EFFECT OF UNIOLA PANICULATA PLANT SIZE ON 
SURVIVAL AND PERFORMANCE AT BEACHES WITH LOW DUNE 
PROFILES2 

4.1  Introduction 

In the United States, northern Gulf of Mexico sand dunes are important for reducing the 

effects of tropical storms and hurricanes on coastal communities and infrastructure (Claudino-

Sales et al. 2008). Dunes accumulate more quickly when vegetation is present because 

vegetation traps windblown sediments (Synder and Boss 2002; Claudino-Sales et al. 2008; 

Houser et al. 2008). Most dune restoration projects along the northern Gulf of Mexico coast 

utilize sea oats (Uniola paniculata), a perennial dune grass native to the southern Atlantic and 

northern Gulf of Mexico coasts in the United States (Wagner 1964; Judd et al. 1977). The 

primary habitat of sea oats is coastal dunes that are subject to high winds, salt spray, tropical 

storms and hurricanes, sand burial, low soil nutrients, xeric conditions, and extremely high soil 

temperatures (Lonard et al. 2011).  

The size of sea oats planted for beach restoration projects along northern Gulf of Mexico 

beaches varies widely. In Louisiana, most sea oats are large, established container plants that are 

vegetatively reproduced for at least 1 year. Every plant is genetically identical, which eliminates 

genetic diversity necessary for plants to adapt to environmental changes (Huenneke 1991; Kutner 

and Morse 1996; Ledig 1996). In Mississippi and Florida, most sea oats plants used for beach 

restoration are produced from seeds and can vary significantly for plant age and size. This 

preserves genetic diversity however most seeds are harvested from natural beach environments, a 

practice that disrupts natural ecosystems. 
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Investigations to determine whether large, vegetative sea oats plants survive and perform 

better than seedlings have not been documented to our knowledge. This is critical information 

needed to plan and implement successful beach restoration projects. The objective of this study 

was to determine if survival and performance differed for large vegetative sea oats plants and 

small sea oats seedlings at beach environments with low dune profiles.   

4.2  Materials and Methods 

Sea oats seeds collected from 8 states (TX, LA, MS, AL, FL, SC, NC, VA) were 

germinated, transplanted to natural beaches, and evaluated for plant performance at beaches with 

low dune profiles (Bertrand-Garcia et al. 2012). In 2005, rhizomes were harvested from plants 

selected for superior performance in low dune profile beaches (Bertrand-Garcia et al. 2012), 

planted into 1-gallon containers and maintained in controlled greenhouses. We divided rhizomes 

of greenhouse propagated material, replanted them into 1-gallon containers, and allowed plants 

to grow in controlled greenhouses for 1 year to provide vegetative plants for the study; each plant 

had at least 5 stems. In 2009 we harvested sea oats seeds from beach field trials described above. 

We germinated seeds in controlled greenhouses. Large seedlings were 8 months old and more 

than 30 cm tall. Small seedlings were 3 months old and 10 to 15 cm tall.  

We established a preliminary study in May 2008 at Biloxi, MS, to evaluate sea oats 

seedling performance; 384 vegetative plants, 25 large seedlings, and 25 small seedlings were 

included. Larger trials established in March 2009 and June 2010 at Long Beach, MS, included 

365 vegetative plants, 664 small seedlings and 64 large seedlings and 140 vegetative plants, 720 

large seedlings, and 113 small seedlings, respectively.  

In 2008, plant survival and vigor were measured for each plant in August, September, and 

October (3, 4, and 5 months after transplant). We considered plants with any green color as alive 
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while plants without any green color were considered dead. Plant vigor was measured with a 0-

10 scale: 0 was a dead plant and 10 was a plant with numerous dark green leaves and stems, 

densely distributed stems, and aggressive vegetative spread. Heavy machinery unintentionally 

destroyed seedlings after month 5 evaluations. In 2009, plant survival at a second site was 

measured for each plant in May and June (2 and 3 months after transplant) at Long Beach. Heavy 

equipment also destroyed these seedlings prior to the 3 month assessments. In 2010, another field 

site was established at Long Beach; sea oats seedlings’ locations were communicated to 

equipment operators to avoid plant destruction. Plant survival was measured for each plant in 

August, September, October, 2010, and March, April, and November, 2011: 2, 3, 4, 9, 10, and 17 

months after transplant. Plant vigor was measured 9, 10, and 17 months after transplant. Total 

number of stems per plot was measured 4, 9, 10 and 17 months after transplant. Stem density was 

measured as number of stems per 100 cm2  at 9, 10, and 17 months after transplant. 

4.3  Data Analysis 

We conducted individual analyses of variance (ANOVA) for each environment (Biloxi, 

2008; Long Beach, 2009; Long Beach, 2010) as completely random design. Data were analyzed 

as repeated measures for each environment using PROC MIXED in SAS version 9.1 (Institute 

2002). Plant size was specified as fixed effect while replicates were considered random effects. 

Least squares means were used for means separation at P < 0.05.  

4.4  Results and Discussion 

In the 2008 preliminary trial, average plant survival ranged from 88 to 100% (Figure 4.1, 

Graph A) 3 months after transplanting. Vegetative sea oats plants and large seedlings had 

significantly higher survival (F= 4.49, P= 0.0117) 3 months after transplant than small sea oats  
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seedlings (Figure 4.1, Graph A). We also found that large seedlings were 20% more vigorous 

(F= 9.33, P= 0.0001) than vegetative plants or small seedlings (Figure 4.1, Graph B). 

Figure 4.1.  Average plant survival (A) and vigor (B) of vegetative sea oats plants, 8 month old 
sea oats (large) seedlings and 3 month old sea oats (small) seedlings at three field trials in natural 
beach environments. Columns labeled with different letters for each assessment date and location 
are significantly different at p < 0.05 level. 
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Approximately 3.5 months after transplant, Hurricane Gustav made landfall near Cocodrie, LA, 

260 km southwest of the experiment. The beach was flooded by approximately 2 m of storm 

surge for 7 days. After surge receded, debris was removed from plots. Plant survival and vigor 

were measured, which corresponded with 4 months after transplant. Surprisingly, survival and 

plant vigor were similar (F= 0.66, P= 0.5151) for all sea oats plant sizes (Figure 4.1, Graph A 

and B). Five months after transplant, we found that vegetative plants had significantly higher 

plant survival (F= 9.04, P= 0.0001) and plant vigor (F= 4.44, P= 0.0125) than seedlings (Figure 

4.1, Graph A and B). Unfortunately, we could not complete further evaluations because heavy 

machinery removing storm debris from Hurricane Gustav unintentionally removed the seedlings. 

In 2009, plant survival 2 months after transplant was similar (F= 1.64, P= 0.1939) for 

vegetative plants, large and small seedlings (Figure 4.1, Graph A), which supports our findings 

in the small preliminary trial in 2008 that survival is similar for all sea oats plant sizes in normal 

conditions. Seedlings were again removed accidentally by heavy machinery cleaning the beach. 

In 2010, survival was consistently higher for vegetative plants than seedlings (P< 0.0001 

for each evaluation date; Figure 4.1, Graph A). This was most likely due to significant storm 

surge generated by Tropical Storm Alex, which flooded the newly established field trial 1 week 

after transplant. Despite these harsh conditions, approximately 30% of small sea oats seedlings, 

40% of large seedlings, and 80% of vegetative plants survived. We also found that vegetative 

plants had a higher survival rate than seedlings 1 month after storm surge in the 2008 preliminary 

trial. These findings suggest that seedlings are less tolerant to salt water flooding than vegetative 

plants.  

In 2010, plant vigor was significantly higher (F= 5.72, P= 0.0036) for vegetative plants 

and small sea oats seedlings 9 months after transplant while at 10 months (F= 23.28, P< 0.0001) 
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and 17 months (F= 21.48, P< 0.0001) after transplant vegetative plants were more vigorous than 

seedlings (Figure 4.1, Graph B). Plant vigor was not measured for the first 8 months because all 

plants had a similarly low vigor due to storm surge. We also measured the number of stems 

produced by each plant in 2010. We found that small sea oats seedlings consistently produced 

the most stems while large seedlings produced the fewest stems (P< 0.0001 for all evaluation 

dates; Figure 4.2, Graph A). We also found that stem density was greatest for vegetative plants 9 

months (F= 5.03, P= 0.0071) and 17 months (F= 28.10, P< 0.0001) after transplant (Figure 4.2, 

Graph B) and that 10 months after transplant stem density was similar (F= 2.37, P= 0.0953) for 

all sea oats plant sizes (Figure 4.2, Graph B). These results suggest that sea oats seedlings spread 

further from the original planting site because they consistently produced the most stems and 

lowest stem density. In theory, sea oats seedlings are ideal for beach restoration projects because 

they provide significantly more genetic diversity than vegetative plants (Rauf et al. 2010) and are 

more cost effective because seedlings can be produced for about 25% of the cost of large 

vegetative plants. In this study we found that survival of sea oats seedlings was similar to the 

survival of vegetative plants in normal beach conditions. However, after storm surge events 

vegetative plants survived better and had higher stem densities than seedlings, while seedlings 

produced more stems than vegetative plants.  

4.5  Conclusion 

Our results indicate that large vegetative plants are most appropriate for beach 

environments that are vulnerable to frequent storm surge events and that seedlings would survive 

better in environments with less frequent storm surge. However, if sea oats seedlings are 

preferred in beach restoration projects for increased genetic diversity and reduced cost, 
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restoration planners should require 3 times as many sea oats seedlings as large vegetative plants 

to compensate for higher mortality rates of sea oats seedlings in unfavorable conditions. 

Figure 4.2. Average number of stems (A) and stem per 100cm2 (B) of vegetative sea oats plants, 
8 month old sea oats (large) seedlings and 3 month old sea oats (small) seedlings at a large field 
trial, Long Beach, MS, 2010.  Columns labeled with different letters for each assessment date are 
significantly different at p < 0.05 level.   
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CHAPTER 5:  DEVELOPMENT AND EVALUATION OF SEA OATS 
LINES FOR BEACHES WITH SHALLOW DUNES 

5.1  Introduction 

Sea oats (Uniola paniculata L.), an ecologically important perennial dune grass, is 

planted on beaches in the northern Gulf of Mexico coast to reduce coastal erosion and restore 

natural ecosystems.  Sea oats stabilize and build sand dunes, which protect coastal communities, 

industries, infrastructure and residents (Wagner 1964).  It is native to beach environments 

throughout the mid and southern Atlantic and northern Gulf of Mexico coasts of the United 

States (Wagner 1964; Judd et al. 1977).  Beaches are subject to numerous harsh conditions such 

as high winds, salt spray, tropical storms and hurricanes, sand scouring, burial, low soil nutrients, 

xeric conditions, and extremely high soil temperatures (Lonard et al. 2011).  Sea oats typically 

spread in beach environments with underground rhizomes (Wagner 1964; Hester and 

Mendelssohn 1987; Lonard et al. 2011; Lonard et al. 2012), which are stimulated to grow by 

sand burial (Wagner 1964; Lane et al. 2008).  In natural environments sea oats commonly 

produce large areas of genetically identical sea oats plants (Frank W. Judd 1977; Hester and 

Mendelssohn 1987; Subudhi et al. 2005), because sea oats rarely become established from seeds 

(Wagner 1964).  Rare seedling establishment is likely due to environmental factors such as sand 

burial, high soil temperature, and low sand moisture on beaches (Lonard et al. 2012).  Limited 

sea oats seed production, which has been reported to range from complete sterility to 2.4 seeds 

per spikelet (Wagner 1964; Westra and Loomis 1966; Hitchcock and Chase 1971; Hester and 

Mendelssohn 1987), may also contribute to low sea oats seedling establishment in natural 

environments. 

Sea oats spread in the Northern Gulf of Mexico coast may also be impeded by shallow 

dune profiles.  Many beaches in the Northern Gulf of Mexico coast have very shallow dunes 
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(Monteferrante et al. 1982; Hester and Mendelssohn 1987) due to shoreline erosion (Morton et 

al. 2004; Couvillion et al. 2011), overwash events (Hester and Mendelssohn 1987), low sediment 

supply (Davis Jr. 1994; Houser et al. 2008), persistent onshore winds (Davis Jr. 1994), and 

narrow widths of beaches that do not allow significant sand accumulation (Claudino-Sales et al. 

2008).  When dunes are shallow, sea oats grow at or near the water-table, which can contribute to 

plant death (Hester and Mendelssohn 1987).  Soil saturation has long been identified as a major 

abiotic stress, which markedly affects plant growth and development.  As water saturates the soil 

pores, gases are displaced, a reduction in gas diffusion occurs and phytotoxic compounds 

accumulate as anaerobic conditions prevail (VanToai et al. 2001).  Various methods have been 

used to identify saturation tolerance in several plant species.  For agricultural crop species where 

yield is the ultimate judging factor (Rosielle and Hamblin 1981; VanToai et al. 1994) the 

approach is to select varieties with highest yield regardless of stress conditions and/or 

morphological adaptations for tolerance to soil saturation (Bacanamwo and Purcell 1999a; 

1999b).  Several other traits have also been used to make determinations about saturation 

tolerance: leaf color, plant height, chlorophyll content, and biomass of roots and shoots (VanToai 

et al. 2001). 

Typically saturation tolerance research has been conducted in controlled greenhouse and 

growth chamber environments for agronomic crops.  Field evaluations have also been utilized, 

but to a lesser extent due to lower levels of control that can be achieved in field environments.  

Plant death is rare when saturation tolerance is evaluated in controlled conditions (Oosterhuis et 

al. 1990; Tara 2010) because plants in the greenhouse usually produce aerenchyma and 

adventitious roots closer to the soil surface.  In addition greenhouse investigations typically use 

coarse-textured soils, which have a low water- holding  capacity (Oosterhuis et al. 1990).  When 
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saturation tolerance is evaluated in field conditions plant death can occur due to prolonged 

saturation periods (Sullivan et al. 2001; Tara 2010).  To our knowledge the only reported study 

that investigated sea oats saturation tolerance was by Hester and Mendelssohn (1989).  They 

examined the growth responses of sea oats to 3 watering regimes and 4 controlled water-table 

depths.  They observed that excessive water from either inundation or shallow water-table depth 

negatively affected sea oats plant growth and survival.  This may explain the decline of sea oats 

populations in Louisiana.  It also demonstrates the need to develop and incorporate genetically 

diverse saturation tolerant sea oats lines into northern Gulf of Mexico beach restoration projects.   

The overall goal of this study was to develop a sea oats breeding program for saturation 

tolerance.  The specific objectives were to: (1) develop greenhouse protocols to identify 

saturation tolerant sea oats lines and (2) determine sea oats seed yield in natural and artificial 

environments.  

5.2  Materials and methods 

5.2.1  Sea oats saturation tolerance trials  

Sea oats seeds were collected in 2009 from beach trials at Holly Beach, LA, and Long 

Beach, MS (Bertrand-Garcia et al. 2012).  Seed was germinated and seedlings were produced in 

controlled greenhouse conditions maintained at 25°C with natural photoperiod.   

In March 2010, a greenhouse study with 7 treatments was initiated which had 3 water 

depths (6, 10, 14 cm), 2 flood regimes (static and cyclic) and a non-flooded control (Table 5.1).  

Flooded treatments were accomplished in plastic-lined wood-framed tanks that were 2.1 m x 

1.25 m x 0.4 m.  A total of 160 seedlings, which were approximately 6 months old and at least 12 

cm tall, were placed into each treatment.  Water in the flooded treatments was mechanically 

circulated with submersible fountain pumps (Quanzhou Yuanhua Electronic Technology Co., 
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Ltd, Fujian, China).  The static flood regime (S) continuously flooded sea oats plants.  Water in 

the S treatments was drained every 28 days and immediately refilled.  Sea oats plants in the 

cyclic flood regime (C) were flooded for 14 days followed by 14 days that were non-flooded.  

Sea oats plants in the control treatment were grown on a dry greenhouse bench and watered 

every 3 days.  All sea oats plants were fertilized every 14 days with Peter’s peat lite 20-10-20 

water soluble fertilizer (11.98 g L-1; Scott’s Sierra Horticultural Products Co., Marysville, Ohio).  

Sea oats survival, plant height, number of leaves per plant, root length, and fresh weight were 

measured in April, May, and June, 2010.  Sea oats plants with any green color were considered 

alive while plants without any green color were considered dead.  Plant height was measured 

from the soil level to the tip of the plant.  The number of green leaves was counted to determine 

number of leaves per plant.  Forty sea oats seedlings per treatment, 10 per replication, were 

randomly selected and measured for total fresh-weight biomass and root length every 28 days.  

Roots were carefully removed from soil, washed with tap water, and dried with paper towels.  

Total fresh-weight biomass was measured by weighing seedlings and root length was measured 

from the shoot base to root tips.  

In July 2010, a beach trial with 360 sea oats seedlings, which were approximately 3 

months old and at least 12 cm tall, was established at an extremely saturated beach with shallow 

dunes at Holly Beach, LA.  Sea oats seedling survival was measured in August, September and 

October, 2010.  

In December 2011, a second greenhouse study was initiated; 4 treatments, including 2 

salinity levels (0 and 35 ppt; parts per thousand) and 2 flood levels (0 and 14 cm), were 

examined.  A total of 720 sea oats seedlings, which were 4 months old and at least 12 cm tall, 

were included: 180 seedlings for each treatment (Table 5.3).  Salinity levels were accomplished 



37 

with Instant Ocean® salt (Aquarium Systems, Mentor, Ohio) according to manufacturers’ 

directions.  Flooded treatments were accomplished as described above.  Sea oats seedlings in the 

0 cm flood treatment were watered every 3 days.  Water in the flooded treatments was drained 

and immediately replaced every 28 days.  Sea oats survival, plant height, and number of leaves 

per plant were measured as described above every 28 days.  In March 2011, fresh-weight 

biomass and root length were measured as described above.   

In 2012, a beach trial and a field trial were initiated.  In May 304 seedlings, which were 

approximately 8 months old and at least 30 cm tall, were transplanted to an extremely saturated 

beach with shallow dunes at Holly Beach, LA.  In August 304 seedlings, which were 

approximately 10 months old and at least 30 cm tall, were transplanted to saturated fields at 

Burden Museum and Gardens, Baton Rouge, LA.  Sea oats survival, plant height, and number of 

leaves per plant were measured as described above every 2 days.  Above-ground fresh-weight 

biomass was measured 6 months after transplanting. 

5.2.2 Sea oats seed yield 

Sea oats seeds were collected from 8 states (TX, LA, MS, AL, FL, SC, NC, VA) and 

germinated in 2003 (Bertrand-Garcia et al. 2012).  Seedlings were transplanted and evaluated for 

performance at saturated beaches with shallow dunes: Holly Beach, LA, and Long Beach, MS 

(Bertrand-Garcia et al. 2012).  In 2005, rhizomes and stem material of 75 plants from 6 states 

(TX, LA, AL, FL, NC), which performed well in saturated beach conditions, were harvested and 

transported to Baton Rouge, LA, where they were established in an artificial breeding nursery 

(Bertrand-Garcia et al. 2012).  Plants were fertilized once per month with approximately 500 L 

of all-purpose water soluble plant food (24-8-16; The Scott’s Company, LLC.).  Mature sea oats 

panicles were harvested September 2007, 2009, 2010, and 2011 from the artificial breeding 
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nursery and beaches with shallow dunes: Holly Beach, LA, and Long Beach, MS.  Seeds were 

threshed from panicles with a forage belt thresher (Agriculex Inc., Guelph, Ontario).  Number of 

seed spikelet-1, number of seed plant-1, number of spikelets plant-1, average number of florets 

spikelet-1, 100 seed weight, number of seed g-1, percent seed set, and seed viability were 

measured.  Percent seed set was calculated as: (number of seed spikelet-1 ÷ number of florets 

spikelet-1) x 100.  In February 2013, seeds were soaked in a 1% solution of 2, 3, 5-triphenyl 

tetrazolium chloride to test for embryo viability (Baskin 1998).  

5.3 Statistical analyses  

5.3.1 Sea oats saturation tolerance trials  

Analyses of variance (ANOVA) were conducted as repeated measures for sea oats 

percent survival, plant height, number of leaves per plant, and root length using PROC MIXED 

in SAS® version 9.1 (Institute 2002).  Percent sea oats survival was arcsine square root 

transformed.  Non-transformed data are reported; data interpretations were based upon 

transformed data. ANOVA were conducted for fresh weight biomass using PROC MIXED in 

SAS® (SAS Institute, 2002).  In 2010 the greenhouse environment was a randomized complete 

block factorial design (3 flood depths, 2 flood regimes, and the control) with 4 replications; each 

replication had 40 plants.  In 2010 the beach environment was a completely randomized design 

with 360 total seedlings; 4 replications of 80 plants.  The 2011 greenhouse experiment was a 

randomized complete block factorial design (2 salinity and 2 flood levels) with 720 seedlings; 4 

replications of 45 seedlings.  In 2012 the beach and field trials were completely randomized 

design with 304 total seedlings; 4 replications of 76 plants.  Least squares means were used for 

means separation at the p < 0.05 level with pdmix (Saxton 1998).  Pearson correlation 

coefficients were calculated using PROC CORR in SAS® version 9.1 (SAS Institute 2002) for 
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percent sea oats survival between 2010 greenhouse treatments and Holly Beach and 2011 

greenhouse treatments and 2012 beach and field trials.   

5.3.2 Sea oats seed yield 

Analyses of variance (ANOVA) were conducted for number of seed spikelet-1, number of 

seed plant-1, number of spikelets plant-1, average number of florets spikelet-1, 100 seed weight, 

number of seed g-1, percent seed set, and seed viability using PROC MIXED in SAS version 9.1 

(Institute 2002).  Least squares means were used for means separation at the p < 0.05 level with 

pdmix (Saxton 1998).  

5.4 Results and discussion 

5.4.1  Sea oats saturation tolerance trials  

Saturated beaches with shallow dune profiles are present along the northern Gulf of 

Mexico coast.  The most saturated beaches are considered to be in Louisiana because of 

extremely high erosion rates within the state (Hester and Mendelssohn 1989; Couvillion et al. 

2011).  Consequently, sea oats populations are limited within Louisiana.  To prevent the 

extinction of sea oats within Louisiana and to improve performance of sea oats throughout the 

northern Gulf of Mexico coast, saturation tolerant sea oats lines should be developed.  In this 

study, we examined methods to identify and develop saturation tolerant sea oats lines for use in 

beach restoration projects throughout the northern Gulf of Mexico coast and to produce 

sufficient numbers of genetically different sea oats seeds to support a breeding initiative.  

In 2010 greenhouse and beach trials were established.  Significant (p < 0.05) treatment by 

time interactions were detected for survival, plant height, leaf numbers, fresh weight and root 

length (data not shown); therefore data were analyzed separately for each month.  One month 

after transplant (MAT), survival of sea oats seedlings ranged from 47-100% with the non-
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flooded greenhouse control having the highest survival, 100%, and Holly Beach having the 

lowest survival, 47% (Table 5.1).  In greenhouse environment, sea oats seedling survival was  

Table 5.1  Average sea oats survival in a controlled greenhouse trial, Baton Rouge, LA, and 
saturated beach trial, Holly Beach, LA, in 2010 

Survival (%)

Treatmentb F-Valuec
1 MATa 
50.67*** 

2 MAT 
44.15*** 

3 MAT 
83.34*** 

Control 100.0 ad 99.0 a 98.0 a 
06C 98.0  a 100  a 98.0  a 
06S 98.0  a 96.0  ab 92.0  a 
10C 98.0  a 95.0  ab 92.0 a 
10S 83.0  b 78.0  cd 69.0  b 
14C 91.0  ab 88.0  bc 80.0  b 
14S 81.0  b 70.0  d 41.0  c 
Holly Beach 47.0  c 46.0  e 25.0  d 

a MAT = months after transplanting.  
b Control indicates sea oats plants were grown on dry bench and watered every 3 days; 06, 10, 
and 14 indicate water depths were 6, 10, and 14 cm, respectively; C indicates cyclic flood where 
sea oats plants were cyclically flooded for 14 days followed by 14 days of dry conditions; S 
indicates static flood where sea oats plants were continuously flooded. 
c *** indicates p < 0.001.
d Averages within a column followed by different letters are statistically different according to 
the t test on difference of least square means (p = 0.05).  

lowest for seedlings constantly flooded at 10 cm (10S) and 14 cm (14S), 83% and 81%, 

respectively (Table 5.1).  Sea oats seedling survival 2 and 3 MAT, was highest for the control, 

cyclic flood at 6 cm (06C), static flood at 6 cm (06S) and cyclic flood at 10 cm (10C) and lowest 

at Holly Beach (Table 5.1).  The lowest sea oats survival amongst greenhouse treatments was 

found in 14S, with 70% and 41% at 2 and 3 MAT, respectively.  Sea oats survival in 2010 

greenhouse conditions was consistently lowest when sea oats plants were constantly flooded in 

14 cm of water.  We also found that survival in saturated beach conditions at Holly Beach, LA, 

was always lowest when compared to greenhouse treatments.   
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The combination of multiple extreme environmental conditions likely resulted in high (p 

< 0.05) sea oats mortality at Holly Beach in 2010.  Approximately two weeks prior to sea oats 

plantings at Holly Beach Hurricane Alex made landfall at Soto la Marina, Tamaulipas, Mexico, 

approximately 800 km southwest of Holly Beach.  Hurricane Alex generated a tremendous 

amount of storm surge that flooded Holly Beach.  In addition, 22 cm rainfall occurred within the 

first 28 days after transplant, which is approximately 9 cm above average.  Finally, the average 

low air temperature at Holly Beach one month after transplant was 24.7° C while the average 

low temperature in the greenhouse trial was 20° C.  We have observed low temperatures 

exceeding 20°C reduce vegetative growth of sea oats.  Others investigators have also reported 

that as low daily temperatures increase, vegetative growth of some plants species decreases 

(Abdul-Razack 2011).  It is possible that when all these factors were combined they resulted in 

extreme sea oats plant stress and ultimately much higher sea oats mortality than the greenhouse 

environment.   

Although mean sea oats survival differed between greenhouse and beach environments 

we wanted to determine whether survival in greenhouse treatments could predict survival in 

saturated beach conditions.  Three significant (p < 0.05) correlations between greenhouse and 

beach environments were detected: 06S one MAT and Holly Beach one MAT (r = 0.9643; p = 

0.0364); 06S two MAT and Holly Beach one MAT (r = 0.9636; p = 0.0364); and 06S three MAT 

and Holly Beach two MAT (r = 0.9688; p = 0.0312).  Although significant correlations were 

detected for one greenhouse treatment and the beach environment, the correlations were not 

meaningful.  Sea oats survival when flooded with 6 cm of water for 1, 2, and 3 months correlated 

with survival at Holly Beach after 1, 1, and 2 months, respectively.  Our goal was to develop a 
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greenhouse protocol that could reduce the time not increase the time necessary to identify 

saturation tolerant sea oats. 

Sea oats plant height, leaf numbers, total fresh weight biomass and root length were also 

measured in the 2010 greenhouse trial to determine the response of sea oats to saturated growing 

conditions.  We were unable to measure these traits for sea oats at Holly Beach due to the 

extremely time consuming and laborious nature of the measurements.  In the greenhouse, plant 

height varied among treatments.  AT 1 MAT, plant height ranged from 16.66 to 22.18 cm (Table 

5.2).  Plants grown in 14C had the tallest plants while plants grown in 10C had the shortest plants 

(Table 5.2).  At 2 MAT, plants under 14C had the tallest plants, whereas, the control had the 

shortest plants (Table 5.2).  At 3 MAT, plants grown in 10C and 10S had the tallest plants and 

the control had the shortest plants (Table 5.2).  It appears that sea oats seedlings respond to 

saturation stress by increasing in plant height.  Similar findings (Sman et al. 1991; Banga et al. 

1995; Vartapetian and Jackson 1997; Voesenek et al. 2004; Striker et al. 2005) have been 

reported in several plant species.  Increased plant height is thought to restore contact of shoots 

with the atmosphere for increased access to aerated and illuminated zones above or close to the 

water surface, which increases oxygen uptake (Armstrong 1979; Laan and Blom 1990a; Laan et 

al. 1990b). 

We also found that the number of sea oats leaves differed significantly among 

experimental treatments.  At 1 MAT, the control had the most leaves per plant and 14S had the 

least leaves per plant (Table 5.2).  At 2 MAT, 06S and 10C had the most leaves per plant while 

the control and 14S had the least leaves per plant (Table 5.2).  At 3 MAT, 06C and 10C had the 

most leaves and the control had the least leaves (Table 5.2).  When grown in saturated conditions 

sea oats seedlings produced more leaves than plants grown in the control treatment, which were  



43 

Table 5.2  Average plant height, number of leaves per plant, total fresh weight biomass, and root 
length for sea oats grown in greenhouse conditions, Baton Rouge, LA, 2010  

Treatmenta 1 MATb 2 MAT 3 MAT 
Plant Height (cm) 

F-Valuec 9.71*** 6.52*** 22.92*** 
Control  18.13 cdd 18.11 cd 19.05 d 
06C 18.84 bc 22.82 ab 28.11 b 
06S 19.95 b 21.04 b 24.26 c 
10C 16.66 d 21.46 b 33.19 a 
10S 17.84 cd 21.73 b 33.70 a 
14C 22.18 a 23.94 a 30.63 ab 
14S 19.85 b 20.72 b 30.99 ab 

Number of Leaves 
F-Value 9.90*** 36.87*** 17.90***

Controlb 2.46 a 2.33 d 2.36 c 
06C 2.34 ab 3.61 a 3.59 a 
06S 2.33 ab 2.95 c 2.84 b 
10C 2.31 ab 3.66 a 3.88 a 
10S 2.12 bc 2.95 c 2.85 b 
14C 2.07 c 3.27 b 2.97 b 
14S 1.68 d 2.34 d 3.07 b 

Total Fresh Weight Biomass (g) 
F-Value 2.14* 4.94*** 6.07***

Controlb 0.37 abcc 0.43 d 0.53 c 
06C  0.35 c 0.54 cd 0.75 b
06S  0.44 a 0.71 a 0.66 bc
10C  0.35 bc 0.69 ab 0.82 ab
10S  0.37 abc 0.57 bc 0.95 a
14C  0.44 a 0.72 a 0.97 a
14S  0.33 c 0.52 cd 0.88 ab

Root Length (cm) 
F-Value 3.72** 3.01** 16.29***

Controlb 24.42 a 30.27 a 32.98 a 
06C 19.86 bc 18.58 b 17.63 c 
06S 16.16 c 21.28 b 18.38 c 
10C 19.63 bc 19.70 b 17.43 c 
10S 17.56 c 19.30 b 19.86 bc 
14C 23.49 ab 20.38 b 23.48 b 
14S 19.59 bc 21.88 b 21.68 bc 

a Control indicates sea oats plants were grown on dry bench and watered every 3 days; 06, 10, and 14 indicate water
depths were 6, 10, and 14 cm, respectively; C indicates cyclic flood where sea oats plants were cyclically flooded 
for 14 days followed by 14 days of dry conditions; S indicates static flood where sea oats plants were continuously 
flooded. b MAT = months after transplanting.  c * indicated p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001.  
d Averages within a column followed by different letters are statistically different according to the t test on 
difference of least square means (p = 0.05). 
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non-saturated conditions; a similar observation was made by Grimoldi et al (1999).  It has been 

suggested that increased leaf numbers under saturated conditions increase the surface area 

making contact with oxygen, light and carbon dioxide, which are major features contributing to 

survival in saturated conditions (Grimoldi et al. 1999).  

Finally we measured total fresh weight biomass and root length for sea oats seedlings 

grown in greenhouse in 2010.  At 1 MAT, biomass was highest for sea oats seedlings grown at 

06S and 14C and lowest for 06C and 14S (Table 5.2).  At 2 MAT, sea oats plants under 06S and 

14C still had the most biomass while the control had the least (Table 5.2).  At 3 MAT, 10S and 

14C had the highest biomass while the control had the lowest biomass.  Root length also varied 

significantly among different treatments.  Sea oats seedlings grown under normal conditions 

(control treatment) had the longest roots 1, 2, and 3 MAT (Table 5.2).  One MAT, 06S and 10S 

had the shortest roots; 2 MAT all the flooded sea oats had short roots; and 3 MAT 06C, 06S, and 

10C had the shortest roots (Table 5.2).  From this study it appears that saturated conditions 

reduce normal root development in sea oats.  We also observed sea oats plants grown in 

saturated conditions developed more adventitious roots at the soil level (data not shown).  This 

mechanism has been reported to occur to replace roots that have been killed by anoxia 

(Vartapetian and Jackson, 1997).  These roots usually emerge from the shoot base into surface 

layers to enhance oxygen transport (Visser et al., 1996) and reduce saturation injury.  

In 2011 a second greenhouse trial was initiated to determine if greenhouse conditions could 

be used to predict saturated field conditions.  We examined 4 treatments: 2 salinity levels (0 and 

35 ppt) and 2 flood levels (0 and 14 cm).  Saline treatments were added to simulate beach 

conditions after an extreme episodic storm event accompanied with salt water intrusion.  We 

chose 14 cm constant flooding because this treatment provided the highest mortality, tall plants, 
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and high plant biomass in the 2010 greenhouse trial.  We also established a beach trial at Holly 

Beach in 2012 and a field trial at Burden Museum and Gardens in 2012.  The field trial was a 

saturated agronomic field.   

Sea oats seedling survival in 2011 greenhouse and 2012 beach and field trials ranged from 59 

to 100 % one MAT.  Seedling survival was highest when sea oats plants were grown in 

greenhouse on dry bench and watered regularly every 3 days (control),  flooded  to 14 cm with 

35 ppt saline solution (14Sal) and at Holly Beach (Table 5.3).  Sea oats survival was lowest 

when sea oats seedlings were grown flooded to 14 cm with fresh water (14Fr; Table 5.3), which 

was similar to what we observed in 2010 trial (Table 5.1).  At 2 MAT, sea oats survival ranged 

from 7.8 to 97.7%; the control and Holly Beach had the highest survival while plants grown on 

dry bench regularly watered with 35 ppt saline solution (BSal) had the lowest survival (Table 

5.3).  At 3 MAT, sea oats seedling survival ranged from 0.3 to 98%; the control had the highest 

survival while plants under BSal had the lowest survival (Table 5.3).  This indicates that in non-

saturated conditions, sea oats are very sensitive to saline conditions.  Others have documented 

that although sea oats tolerate salt spray (Boyce 1954; Valk 1977) they are not salt-tolerant 

plants (http://www.plant-materials.nrcs.usda.gov/pubs/lapmcpg7412.pdf).  It is also very 

interesting to note that survival of sea oats plants in 14Sal was consistently higher than survival 

of sea oats plants grown in 14Fr.  Other investigators have reported that sea oats grow larger and 

are more vigorous when salt spray is present on leaves or when washed into root zone (Boyce 

1954; Valk 1977).  A remarkable difference in sea oats survival was found between Holly Beach 

in 2010 and 2012.  Sea oats survival 3 MAT was 76% in 2012 while only 25% in 2010.  In 2010,  
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Table 5.3  Average sea oats survival, plant height, number of leaves, fresh weight and root length 
of sea oats plants evaluated in 2011 in controlled greenhouse (Baton Rouge, LA) and in 2012 in 
saturated beach (Holly Beach, LA) and field (Baton Rouge, LA) conditions  

Treatment a 1 MAT b 2 MAT 3 MAT 
Survival (%)

F-Value c 52.31*** 219.75*** 190.99*** 

14Fr  59.0 cd 28.3 d 14.5 d 
BSal 81.9 b 7.8 e 0.3 e 

14Sal 94.9 a 73.0 b 40.5 c 
Control  100.0   a 97.7 a 98.0 a 
Burden 78.5 b 56.7 c 45.8 c 
Holly Beach 96.1 a 93.8 a 76.0 b 

Plant Height (cm) 

F-Value 313.18*** 292.47*** 192.69***
14Fr 19.7 c 21.1 c 23.9 cd 
BSal 16.1 d 18.7 cd 26.0 bcd 
14Sal 15.9 d 16.8 d 19.2 d 
Control 17.6 cd 20.5 c 25.2 c 
Burden 50.7 b 49.8 b 52.9 b 
Holly Beach 59.8 a 65.7 a 67.7 a 

Number of Leaves
F-Value 124.24*** 47.80*** 45.12***

14Fr 1.79 d 1.48 c 2.52 c 
BSal 1.68 d 1.62 c 1.66 bc 
14Sal 2.31 cd 1.81 c 2.06 c 
Control 2.46 cd 2.33 c 2.34 c 
Burden 11.09 a 16.06 a 23.83 a 
Holly Beach 5.66 b 11.71 b 13.28 b 

Fresh Weight Biomass (g)e

F-Value 39.75*** 
14Fr  - - - - 0.26 b 
BSal  - - - - 0.13 b 
14Sal  - - - - 0.19 b 
Control  - - - - 0.47 b 
Burden  - - - - 5.63 a 
Holly Beach  - - - - 6.72 a 

Root Length (cm) 
F-Value 5.88** 

14Fr  - - - - 7.13 b 
BSal  - - - - 6.42 b 
14Sal  - - - - 6.97 b 
Control  - - - - 20.47 a 
Burden  - - - - - - 
Holly Beach  - - - - - - 
a Control indicates sea oats plants were grown on dry bench and watered every 3 days; 14Fr indicates sea oats plants 
were grown flooded to a depth of 14 cm with fresh water; BSal indicates that sea oats plants were grown on dry 
bench and water every 3 days with 35 ppt saline solution; 14Sal indicates sea oats plants were grown flooded with 
35 ppt saline solution at a flood depth of 14 cm. b MAT = months after transplanting.  c * indicated p < 0.05; ** 
indicates p < 0.001; *** indicates p < 0.001.  d Averages within a column followed by different letters are 
statistically different according to the t test on difference of least square means (P = 0.05). e Total biomass was 
measured for the controlled greenhouse trial and above-ground biomass was measured for the beach and field trials.
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Hurricane Alex resulted in significant storm surge at Holly Beach just prior to transplanting; 22 

cm rainfall within the first 28 days after transplant, and the average low temperature was 24.7°C.   

In 2012, Holly Beach was not affected by any major storm event prior to or within the first 28 

days after transplant.  It also received 8 cm rainfall and the average low temperature was 20.3°C.  

This suggests that in 2010 beach conditions were much more saturated and had higher night time 

temperatures which may have resulted in higher mortality.  We also measured plant survival 6 

MAT for Holly Beach and Burden (data not shown).  Sea oats survival was higher at Holly 

Beach, 74%, than at Burden, 40%.  This is likely due to higher water holding capacity of the 

soils at Burden, 31 cm rainfall within the first 28 days after transplant, and low temperatures at 

Burden were 22°C within the first 28 days after transplant. 

To further investigate the morphological responses of sea oats seedlings to saturated 

conditions, we measured plant height, leaf numbers, and fresh weight biomass for greenhouse 

treatments and field environment and root length for the greenhouse trial.  Significant (p < 0.05) 

treatment by time interactions were detected for plant height, leaf numbers, fresh weight and root 

length (data not shown); therefore data were analyzed separately for each month.  Sea oats plant 

height was significantly different for the different treatments.  Throughout the trial Holly Beach 

had the tallest plants (Table 5.3).  This was not surprising because sea oats seedlings used at 

Holly Beach field trial were about 8 months old compared to seedlings used in greenhouse 

treatments, which were about 3.5 months old.  We specifically examined young seedlings in the 

greenhouse trials and older plants in beach and field trials to determine whether small seedlings 

evaluated in greenhouse conditions could predict survival of large sea oats plants at saturated 

beaches.  We also found that sea oats at Burden consistently had the highest number of leaves, 

while greenhouse treatments had lowest number of leaves (Table 5.3).  This is most likely 
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because seedlings used in field environments were older than seedlings used in greenhouse 

treatments. 

To determine fresh weight biomass we measured total biomass for plants under 

greenhouse treatments and above-ground biomass for plants under beach and field environments.  

Accurately measuring below-ground biomass in field and beach conditions would have been 

nearly impossible due to aggressive spread of sea oats roots and rhizomes from neighboring 

plants.  When we analyzed biomass, the beach and field environments had the highest sea oats 

biomass compared to greenhouse treatments; all greenhouse treatments had similar total biomass 

(Table 5.3).  The difference in age of seedlings used in greenhouse and field environments could 

have contributed to increased biomass at field and beach environments.  In the greenhouse, roots 

were longest for control plants (Table 5.3) an observation similar to what was observed in 2010. 

Pearson correlation coefficients were used to determine whether sea oats survival in 

greenhouse treatments could predict sea oats survival in saturated beach and field environments.  

Sea oats survival 3 MAT when grown in greenhouse with constant flooding at 14 cm with fresh 

water was significantly correlated with survival of sea oats 6 MAT at Holly Beach (r = 0.9696; p 

= 0.0304) and Burden (r = 0.9943; p = 0.0057).  The ability to predict sea oats survival in 

greenhouse conditions has significant implications for a saturation tolerance breeding program.  

Selection of saturation tolerant sea oats lines after only 7 months (4 month old plants and 3 

month assay) instead of 14 months (8 month old plants and 6 month assay) would reduce the 

time to select sea oats saturation tolerant lines, thus increasing the efficiency of the breeding 

program.  It is noteworthy that the selected greenhouse treatment appears to be a good predictor 

of sea oats survival under saturated beach conditions in the absence of storm surge.  However, 

after a significant storm event that produces storm surge, such as occurred at Holly Beach in 
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2010, significant correlations between greenhouse treatments and beach environments were not 

found.  This suggests that additional work would be needed to identify greenhouse conditions if 

selection for storm surge tolerance in the greenhouse is desired. 

5.4.2  Sea oats seed yield 

In addition to effective selection, genetic diversity is also an essential component for a 

successful saturation tolerant sea oats breeding program.  Seed is a readily available source of 

genetic diversity in sea oats because it is an open-pollinated heterozygous plant (Wagner 1964).  

To determine whether large quantities of sea oats seeds could be produced outside of beach 

environments, we compared sea oats seed yield, seed yield components, and seed viability in 

natural low dune profile beach environments and artificial nurseries at Baton Rouge, LA.  

Significant (p < 0.05) time by treatment interactions were detected for number of seed spikelet-1, 

number of seed plant-1, number of spikelets plant-1, average number of florets spikelet-1, percent 

seed set, and seed viability therefore individual analyses were conducted.   

The number of seed spikelet-1 ranged from 0.38-1.23 for natural environments and 0.61-

2.19 for the artificial environments (Table 5.4).  More sea oats seeds spikelet-1 were produced in 

artificial environments in 2007 and 2010, while more seeds spikelet-1 were produced in natural 

beach environments in 2009 and 2011 (Table 5.4).  The number of seeds plant-1 ranged from 

92.6 to 470.3 (Table 5.4).  More seeds plant-1 were produced at artificial nursery than natural 

beach environments in 2007 while in 2009, more seeds plant-1 were produced in natural beach 

environments.  In 2010 and 2011, there were no significant differences in number of seeds plant-1

among environments.  In 2007, higher seed yield in artificial environments could be explained by 

increased soil fertility, because plants were continuously fertilized from 2005 to 2012.   
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Table 5. 4  Average number of seed spikelet-1, number of seed plant-1, number of spikelets plant-

1, number florets spikelet-1, percent seed set, and percent viable seed for sea oats harvested from 
natural (Holly Beach, LA, and Long Beach, MS) and artificial (Baton Rouge, LA) environments 
in 2007, 2009, 2010 and 2011 

Environment 2007 2009 2010 2011 
Number of Seed Spikelet-1 

F-value 141.54***a 8.61** 9.46** 46.44*** 
Natural  0.38 bb 0.98 a 1.23 b 1.14 a 
Artificial  2.19 a 0.61 b 1.56 a 0.53 b

Number of Seed Plant-1 
 F-value 76.49*** 216.10*** 8.65** 2.31n.s.

Natural  92.6 b 219.3 a 171.5 b 177.3 a
Artificial  470.3 a 107.0 b 215.8 b 129.8 a

Number of Spikelets Plant-1 
 F-value 3.42n.s. 19.14*** 15.29*** 4.48* 

Natural  241.4 a 227.4 a 184.4 b 192.3 a 
Artificial  215.9 a 202.3 b 221.3 a 135.9 b

Number Florets Spikelet-1 
 F-value 6.38* 92.98*** 0.00n.s. 12.32** 

Natural  12.7 a 7.0 b 9.6 a 11.7 b
Artificial  11.2 b 8.6 a 9.6 a 13.7 a

Seed Set (%) 
 F-value 217.73*** 43.29*** 49.36*** 48.61*** 

Natural  3.2 b 14.6 a 10.7 b 10.2 a
Artificial  20.0 a 6.5 b 16.3 a 4.3 b

Viable Seed (%) 
 F-value 0.00n.s. 1.09n.s. 47.60*** 1.04n.s. 

Natural  0.0 a 36.0 a 68.0 a 66.0 a 
Artificial  0.0 a 24.0 a 16.0 b 56.0 a 

a * indicates p < 0.05; ** indicates p < 0.001; *** indicates p < 0.001; n.s. indicates non- 
significant difference. 
b Averages within a column followed by different letters are statistically different according to 
the t test on difference of least square means (P = 0.05).
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Crewz  (1987) found that increased soil fertility improved sea oats seed yield.  The higher seed 

yields at natural environments in 2009 may be due to the effects of Hurricane Gustav, which 

made landfall at Cocodrie, Louisiana in 2008. Storm surge may have resulted in introduction of 

nutrients.  In addition we have observed increased panicle and seed production following storm 

events that destroy dunes and above-ground plant material to ambient beach elevations.  We 

have also observed that as above-ground sea oats material and rhizomes densities increase 

panicle and seed yields decrease.  These observations suggest a physiologic plant response to 

quantities of above- and below- ground plant material that affect seed yield.  

Average number of florets spikelet-1 varied for plants in natural and artificial 

environments with the exception of 2010 (Table 5.4).  In 2007, plants in natural environment had 

more florets spikelet-1 than plants in artificial environment (Table 5.4).  In 2009 and 2011, sea 

oats plants in artificial environments had more florets spikelet-1 than plants in natural 

environments (Table 5.4).  In 2009 and 2011, sea oats plants in natural environment had more 

spikelets plant-1 than plants in artificial environment (Table 5.4).  In 2010, sea oats plants in 

artificial environments had more spikelets plant-1 than plants in natural environment (Table 5.4).  

Based on our data, environments with high number of spikelets plant-1 were observed to have 

high average number of seed spikelet-1 and number of seed plant-1.  Seed set varied for plants in 

natural and artificial environments.  In 2007 and 2010, sea oats plants in artificial environment 

had a higher percent seed set than plants in natural environments (Table 5.4).  In 2009 and 2011 

sea oats plants in natural environments had a higher seed set than plants in artificial 

environments (Table 5.4).  It was surprising that environments with higher average number of 

florets spikelet-1 had low seed set.  These data indicate that most of the florets formed were not 

fertile.  The number of fertile florets in each spikelet determines the absolute capacity of seed 
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that can be formed per spikelet.  Although only a small fraction of this potential is realized, the 

number of fertile florets in each spikelet may serve as an indicator of the reproductive potential 

of spikelets.  Finally we measured 100 seed weight and seeds g-1 because seed weight is known 

to influence seed germination, seedling vigor and establishment (Copeland and MacDonald 

2001).  The 100 seed weight was similar for natural and artificial environments (Table 5.5).  

When we analyzed the number of sea oats seed per gram, the artificial environments were found 

to have more seeds per gram than the natural environments (Table 5.5).  

Table 5.5  Average weight of 100 sea oats seeds and number of seeds g-1in natural (Holly Beach, 
LA and Long Beach, MS) and artificial environments (Baton Rouge, LA) in 2007, 2009, 2010, 
and 2011 

Environment 
100 seed wt.(g) 

F-valuea 0.54n.s. 
Natural  0.30 ab 
Artificial  0.44 a

Number of Seed g-1 
F-value 10.88**

Natural  237.13 b
Artificial  721.18 a

a n.s. indicates non- significant difference. 
b Averages within a column followed by different letters are statistically different according to the t test on 
difference of least square means (p = 0.05). 

In 2007, sea oats seed germination was measured (data not shown).  Germination ranged 

from 0 to 100% with an average of 38% and the mode was 32% for seed harvested from natural 

environments.  The seed germination of the artificial seed production nursery also ranged from 0 

to 100%; however the average was only 20% and the mode was 0%.  We speculate the lower 

germinations found in the artificial environment were due to seed maturity.  The panicles 

harvested from natural environments had already begun to shatter; most of the panicles had 

already shed the top 5 cm of spikelets at the time of harvest.  In contrast, panicles from the 
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artificial environment were harvested when the first spikelet was shed, which was <1 cm.  This 

would suggest that seeds harvested from natural environments were more mature and therefore 

had higher germination.  Panicle harvests in 2009, 2010, and 2011 were delayed until 

approximately 5 cm spikelets had been shed.  Due to time constraints we were unable to measure 

seed germination within 5 months of harvest.  Instead we measured seed viability for all 

harvested seed in 2013.  In 2007, no viable seeds were found (Table 5.4).  This is not surprising 

because in previous studies we found that sea oats seed viability decreases as storage time 

increases (Nabukalu and Knott, 2013).  Viability of seeds harvested in 2009 was similar for 

natural and artificial production environments, 36 and 24%, respectively (Table 5.4).  Sea oats 

seed viability was higher for seeds harvested from natural environments in 2010, 68 versus 15% 

(Table 5.4).  In 2011, seed viability was similar for both environments: 66% for natural 

environments and 56 % for artificial environments (Table 5.4).   

We found that sea oats seeds can be produced in artificial environments.  Establishing 

seed production nurseries could support coastal restoration efforts by minimizing sea oats seed 

harvests from natural environments.  Minimizing seed harvests from natural ecosystems will also 

reduce disruption of the natural ecosystems, which can result in sea oats stand decline and 

resultant land loss.  Establishing artificial seed production nurseries also support breeding 

programs by producing a source of readily available genetic diversity.  However, our findings 

clearly demonstrate the need for additional research to optimize sea oats seed yield, viability, and 

storage.  

5.5  Conclusion 

We identified a greenhouse protocol that could predict sea oats survival in half the time 

of saturated beach conditions.  We also found that seed can be produced in artificial production 
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nurseries, but that additional research is required to optimize seed yields, viability and storage 

conditions. 
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CHAPTER SIX:  IDENTIFICATION OF FUNGI AND BACTERIA 
COLONIZING SEA OATS SEEDS  

6.1  Introduction 

Seeds play a vital role in species preservation and maintaining biodiversity.  Seed quality 

is widely accepted as essential for plant production and conservation efforts (Guan 2009), but 

seed lots often fall short of this ideal.  Plant seeds are not only reproductive organs (Guan 2009), 

they are also carriers of various beneficial microbes as well as pathogens.  The composition of 

microbial communities on and within seeds tends to affect their storage and field performance.  

Many studies have confirmed that the surface and interior of seeds bear a variety of microbial 

organisms (Nelson 2004) residing in the rhizosphere, in the phyllosphere, and inside the tissues 

of healthy plants (Liu et al. 2012).   

Among the bacterial species colonizing barley seeds during the early stages of 

germination are Acinetobacter, Bacillus, Burkholderia, Pantoea and Pseudomonas (Normander 

2000).  Cotton seeds were colonized by species of Enterobacter, Microbacterium, 

Curtobacterium etc. (McKellar 2003).  Germinating seeds are colonized by indigenous microbial 

populations within a few hours of sowing and populations may reach densities of 105–107 

cells/seed (Liu et al. 2012).  The nature and activities of the organisms colonizing germinating 

seeds would be expected to significantly affect the performance of microbial strains artificially 

introduced to seeds for the purpose of nitrogen fixation, plant growth promotion or biological 

disease control.   

The association of various fungi with sea oats seeds has been reported to have either 

significant harmful effect on seed germination and plant growth or to be beneficial to seed 

performance under particular field conditions (Sylvia 1986).  An obvious effect of seed borne 

pathogenic fungi is the deterioration of seed quality and the significant decrease in germination 
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rates.  Some of the seed-borne fungi have been found to be very destructive, causing seed rot, 

decreased seed germination and pre and post germination death.  In other plant species, seed 

borne pathogens have been reported to affect the seed quality by damaging external or internal 

seed tissues and cause the important seed diseases like seed rot, seed necrosis, and seedling 

damage through the local or systemic infection (Bateman and Kwasna 1999).   

A range of new and traditional methods are available for detection of microbial 

organisms surviving in seed.  As the majority of plant diseases are transmitted through 

contaminated seed or propagative materials, detection and identification of pathogens in seed is 

of paramount importance required for formulating disease control mechanisms.  The objectives 

of the present study were to: 1) determine the effect of seed pathogens on sea oats seed 

germination and 2) identify fungal and bacteria species colonizing sea oats seed. 

6.2  Materials and methods 

6.2.1  Germination assay 

Seed used in this study was harvested in 2011 from 2 natural beach environments (Long 

Beach, MS and Holly Beach, LA), and 2 artificial breeding nurseries ( Louisiana State 

University Agriculture Center’s Central Research Station, Baton Rouge, LA and Burden 

Museum and Gardens, Baton Rouge, LA).  

6.2.2  Seed treatment and experimental designing 

Sea oats seeds were first surface sterilized with a 25% Clorox solution for 15 minutes 

(Woodhouse et al, 1968) to reduce the incidence of surface contaminants.  Disinfected seeds 

were rinsed thoroughly with distilled water.  The disinfected seeds were then placed on moist 

germination paper towel (ISTA 2003) saturated with distilled water.  Two hundred seeds from 

each study environment were germinated.  One hundred seeds were placed on each germination 
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paper and they were arranged into 4 replicates of 25 seeds.  The seeds were then incubated in the 

dark at 18.3°C for 17 hours and 35°C for 7 hours (Woodhouse et al, 1968).  Once placed in 

alternating thermoperiod, seeds were kept moist with sterilized deionized water and checked 

every 7 days for 28 days after germination.  A seed was considered germinated when the radical 

was greater than 2 mm in length.  Seeds were considered infested with fungi or bacteria when 

mycelia or bacterial discharge (ooze) was visible, respectively.  Seeds infested with fungi and 

bacteria were counted and removed to prevent spread of pathogens to adjacent seeds.   

6.2.3  Data collection and analysis 

Percentage seed germination was calculated as follows: (number of germinated seeds / 

total seed) x 100.  Percentage infected seed was calculated as (number of removed seed / number 

of seeds planted) x 100.  The cumulative percent germination and pathogen infestation were 

determined on a weekly basis.  All statistical analyses were performed in SAS 9.3.  Analysis of 

variance (ANOVA) was performed using the General Linear Model (GLM) procedure.  A 

critical significance level of α = 0.05 was chosen for all statistical tests.  Least squares means 

were used for means separation at P < 0.05.  

6.3  Bacteria identification 

6.3.1  Bacteria isolation 

Bacteria were isolated from sea oats seed harvested in 2011 from natural beach 

environment Long Beach, MS and artificial breeding nursery; Louisiana State University 

Agriculture Center’s Research Station, Baton Rouge, LA BenHur.  From each location a 1.0 g 

batch of seed was processed.  In a laminar-flow hood, seeds were partially crushed (until 

approximately 80% of the seed was broken) with a sterilized mortar and pestle and suspended in 

100 ml of sterile phosphate-buffered saline solution (PBS; 137 mM NaCl, 2.7 mM KCl, 0.01 M 
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Na2HPO4, 1.8 mMKH2PO4, pH 7.4) with 0.025% Tween 20 (Sigma-Aldrich, St.Louis).  The 

seed suspension was incubated for 2 h at 4°C.  Then, 100 μl of 10-fold serial dilutions (10–2, 10–

3, and 10–4) of the suspension in sterile saline (0.85% NaCl) was plated in duplicate on Nutrient 

agar (NA; Difco™, Sparks, MD) supplemented with 0.01% cycloheximide (Sigma-Aldrich). 

NA was prepared by adding 23 g of nutrient agar (Difco™, Sparks, MD) to 1 L distilled water 

and autoclaving at 121 °C for 25 min.  The serial diluted plates were incubated at 22 °C under 12 

h light and 20 °C with 12 h darkness.  The plates were observed for development of bacterial 

colonies daily for 5 days.  A loop-full of bacterial cells from the edge of each colony was 

streaked onto another NA plate for single-cell purification and identification of the bacteria.  The 

isolates were further purified on nutrient agar (NA; Difco Laboratories, Detroit) and maintained 

at -80°C in 15% glycerol. 

6.3.3 DNA extraction   

Total DNA was extracted from bacterial colonies using QIAprep Spin Miniprep kit 

(Qiagen, Inc.,Valencia, CA) according to the manufacturer’s instructions.  DNA concentrations 

were measured using a nanodrop spectrophotometer (Thermo Scientific Inc., Waltham MA) and 

DNA quality was verified using a 1% agarose gel in 1× Tris-acetate EDTA (TAE) buffer stained 

with ethidium bromide.  The agarose gel was visualized under UV light and documented after 

electrophoresis.  DNA concentration of each sample was adjusted to 50 ng/µL.  The DNA was 

stored at -20 ˚C.   

6.3.4  Polymerase chain reaction (PCR) amplification  

For identification of the bacterial cultures, Polymerase chain reaction (PCR) was 

performed to amplify the 16S rRNA genes from the extracted DNA using the primer set 27f (5-

AGA GTT TGA TCM GGC TCA G-3) and 1492 r (5-GGT TAC CTT GTT ACG ACT T-3) 
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(Lane, 1991).  The 50µL PCR  reaction mixture contained 50ng of  DNA extract, 1.5mM MgCl2, 

1X Reaction buffer (without MgCl2) (Promega Corporation, Madison, WI), 200µM of each 

dNTP, 0.20µM of each primer and 1.0U Taq polymerase (Promega).  PCR was performed in 

BioRad MyCyclerTM Programmable thermal cycler (BioRad, Hercules, CA).  After initial 

denaturation at 94°C for 5min, each thermal cycling was as follows: denaturation at 94°C for 1 

min, annealing at 55°C for 1 min, and elongation at 72°C for 1min.  At the end of 30 cycles, the 

final extension step was at 72°C for 10min.  PCR products were run on 1% agarose in TBE 

buffer (445mM Tris, 445mM Boric acid and 10mM EDTA (pH8.0) to confirm that the correct 

product approximately 1500bp in size was produced. 

6.3.5  DNA sequencing and phylogenetic analysis  

The PCR products were purified using the QIAGEN PCR purification kit (Qiagen, 

Inc.,Valencia, CA) following the manufacturer’s instructions.  Purified PCR products were 

sequenced in an automated sequencer at the Beckman Coulter Genomics DNA Sequencing 

Facility (http://www.beckmancoulter.com).  Sequencing was performed using the same forward 

and reverse primer sets which were used for PCR amplification.   

Sequences were edited and their similarities determined against known sequences in the 

NCBI Genbank database using the Basic Local Alignment Search Tool (BLAST) algorithm21. 

For phylogenetic analysis, multiple sequence alignment of concatenated ITS sequence was 

constructed in MEGA5 using a MUSCLE algorithm (http://www.megasoftware.net/; Tamura et 

al. 2011) and the resulting alignment checked and the sequences used for phylogenetic tree 

construction.  Gene phylogenies were inferred by maximum likelihood (ML) in RAxML 

(Stamatakis, 2006) using a GTR model of evolution in the CIPRES Gateway Science portal 
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(Miller et al., 2010).  Support for the branching topologies was evaluated by bootstrap analysis 

derived from 1000 replicates with 10 random additions replicated. 

6.4  Identification of fungi 

6.4.1  Seed Samples 

Fungi were isolated from visually healthy sea oats seed harvested in 2010 from 2 

artificial nurseries; Louisiana State University Agriculture Center’s research stations (Ben Hur 

research station, Baton Rouge and Burden Rural life research station, Baton Rouge) and 2 natural 

environments; Long Beach, MS and Holly Beach, LA.  A working sample of 200 seeds was 

taken at random from the seed harvested from each location.  

6.4.2 Fungal isolation  

In a laminar flow hood, seeds were surface sterilized by placing the seeds in sterilized 

strainers and immersing them for 1 minute in a solution of 70% ethyl alcohol and then for 15 

minutes in 25% sodium hypochlorite solution and then thoroughly rinsed with sterilized distilled 

water.  Following sterilization the seeds were blotted with sterilized blotter paper prior to being 

placed onto potato dextrose agar (PDA) in Petri plates.  PDA was prepared by adding 39 g of 

dehydrated PDA (Difco™, Sparks, MD) to one liter of distilled water in a conical flask.  After 

mixing it thoroughly, the medium was autoclaved for 15 min at 121˚C, cooled before being 

poured into Petri plates.  The seeds were placed individually on PDA in Petri dishes using sterile 

forceps.  Ten sterilized seeds were placed on each plate.  The plated seeds were incubated at 22-

24 ˚C with 12 h light/12 h darkness.  The incubated plates were observed for fungal growth at 2, 

4, 6, 8, and 10 days after plating.  Plaques on culture medium (2mm in diameter) with hyphal tips 

of the developing fungal colonies were cut and transferred onto PDA for purification.  
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6.4.3  Morphological identification  

Cultures were examined periodically and identified when they sporulated.  The cultures 

were separated into groups based on classical morphological features including growth pattern, 

colony texture, pigmentation, and growth rate of the colonies on PDA (Promputtha et al., 2005). 

When fungal colonies sporulated on PDA, small plaques from the edge and the center of each 

growing colony were transferred onto glass slides, and then were examined using a compound 

light microscope (Zeiss immersion 518 N microscope).  Specimens for light microscopy were 

mounted in sterile distilled water for observation for characteristics of their vegetative and 

reproductive structures such as hyphal color and structures, shape and size of conidia, 

conidiophores, and microsclerotia.  Genus identification was made by examining the isolated 

fungi under with the help of identification keys (Raper and Fennell, 1965; Booth, 1971; Ellis et 

al., 1980; Barnett and Hunter, 1972; Sivaesan, 1990).

6.4.4  DNA extraction  

Total DNA was extracted from fungal mycelia using QIAprep Spin Miniprep kit (Qiagen, 

Inc.,Valencia, CA) according to the manufacturer’s instructions.  DNA concentrations were 

measured using a nanodrop spectrophotometer (Thermo Scientific Inc., Waltham MA) and DNA 

quality was verified using a 1% agarose gel in 1× Tris-acetate EDTA (TAE) buffer stained with 

ethidium bromide.  The agarose gel was visualized under UV light and documented after 

electrophoresis.  DNA concentration of each sample was adjusted to 50 ng/µL.  The DNA was 

stored at -20 ˚C.   

6.4.5  Polymerase chain reaction (PCR) amplification  

For identification of the fungal isolates, DNA of each isolate was amplified by 

polymerase chain reaction (PCR).  Two different Internal Transcribed Spacer (ITS) primers sets; 
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ITS1 (5' TCCGTAGGTGAACCTGCGG-3') and ITS4 (5' TCCTCCGCTTATTGATATGC-3')

(White et al., 1990) were used for amplification of the fungal ribosomal DNA (rDNA) internal 

transcribed spacer (ITS) regions 1 and 2 of all isolates.  These primers produce an amplicon that 

is between 600 and 800 bp.  The 50µL PCR  reaction mixture contained final concentrations of 

10x PCR buffer, 2.0 mM MgCl2, 2.5 mM dNTPs, 10 µM of each primers, 2 units of Taq 

polymerase (Promega Corp., Madison, WI), and 2 µl of DNA extract.  The PCR amplifications 

were conducted using a BioRad MyCyclerTM Programmable thermal cycler (BioRad, Hercules, 

CA).  The PCR cycles included initial denaturing for 2 min at 95 °C; 35 cycles of denaturation at 

94 °C for 45 sec, annealing at 54 °C for 1 min and extension at 72 °C for 1.5 min; followed by 

final extension at 72 °C for 5 min.  PCR products were separated by electrophoresis in 1.5% 

agarose gels, stained with ethidium bromide, and visualized with a UV transilluminator.  The 

lengths of the amplification products were estimated by comparing with a 100-bp DNA ladder.  

6.4.6  DNA sequencing and phylogenetic analysis 

The PCR products were purified using the QIAGEN PCR purification kit following the 

manufacturer’s instructions.  Purified PCR products were sequenced in an automated sequencer 

at the Beckman Coulter Genomics DNA Sequencing Facility (http://www.beckmancoulter.com).   

Sequencing was performed using the same forward and reverse primer sets which were used for 

PCR amplification.  Sequences were edited and their similarities determined against known 

sequences in the NCBI Genbank database using the Basic Local Alignment Search Tool 

(BLAST) algorithm21.  For phylogenetic analysis, multiple sequence alignment of concatenated 

ITS sequence was constructed in MEGA5 using a MUSCLE algorithm 

(http://www.megasoftware.net/; Tamura et al. 2011) and the resulting alignment verified and the 

sequences used for phylogenetic tree construction.  Gene phylogenies were inferred by 
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maximum likelihood (ML) in RAxML (Stamatakis, 2006) using a GTR model of evolution in the 

CIPRES Gateway Science portal (Miller et al., 2010).  Support for the branching topologies was 

evaluated by bootstrap analysis derived from 1000 replicates with 10 random additions 

replicated.  Out-groups were selected based on sister relationships relative to each group 

(Millanes, et al., 2011). 

6.5  Results and discussion 

6.5.1 Germination Assay 

To determine the effect of seed borne pathogens on sea oats seed germination, a 

germination assay was conducted.  We monitored seed germination and pathogen infestation 

every 7 days for 28 days from the day of planting.  During week 1, no sea oats seeds were 

germinated; however seeds infested with either fungi or bacteria were observed.  Sea oats seeds 

harvested from Burden were observed to have the highest pathogen incidence in week 1(13%; 

Figure 6.1).  In week 2, 3 and 4 all locations had high pathogen incidence varying from 17- 

46.5%.  Beginning from week 2 and continuing until week 4, Holly Beach and Long Beach had 

high seed germination (Figure 6.1).  The seed produced at the artificial nurseries: Burden and 

Ben Hur had very low germination percentages (Figure 6.1).  Possible explanations for natural 

locations having significantly high germination percentages are environmental differences and 

seed maturity levels at harvest.  Sea oats seeds harvested from natural environments; Holly 

Beach and Long Beach could have attained physiological and harvest maturity prior to 

harvesting and were fully capable of germination when dormancy.  Sea oats seed harvested from 

artificial nurseries: Burden and Ben Hur were harvested early, and they  may have not reached 

harvest maturity.  There was no significant difference in cumulative pathogen incidence for seed 

harvested from the different locations in week 2, 3 and 4 (Figure 6.1).   
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Figure 6.1  Cumulative percent seed germination and cumulative pathogen incidence of sea oats 
seeds harvested from Ben Hur, Burden, Holly Beach and Long Beach.  Columns labeled with 
different letters for each assessment week and location are significantly different at p < 0.05 
level.  

However, each location consistently had a higher cumulative pathogen incidence than 

cumulative percent germination by week 2, 3 and 4 (Figure 6.1).  This clearly demonstrated how 

pathogen incidence can deteriorate sea oats seed quality and decrease germination rates.  Seed-

borne fungi are very destructive; they cause seed rot, decreased seed germination and pre- and 

post- germination death.  In other plant species, seed borne pathogens have also been reported to 

affect the seed quality by damaging external or internal seed tissues, causing seed diseases like 

seed rot, seed necrosis, and seedling damage through the local or systemic infection (Bateman 

and Kwasna 1999).   

In order to identify control measures to these seed borne pathogens, it is very necessary to 

know the exact species inhabiting the seeds and identify seed treatments to decrease pathogen 
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incidence.  Fungicide seed treatments protect seed viability and inhibit the invasion of fungal 

pathogens causing seed rot and seedling blight.  

6.5.2  Identification of Bacteria colonizing sea oats seed 

To identify seed borne bacteria colonizing sea oats seeds, bacteria were isolated from sea 

oats seed, purified to single-cell isolates, and identified using molecular species identification. 

The PCR products were sequenced and putative species identifications of isolates were made by 

comparing consensus sequences to other isolates in the NCBI Genbank database using a Blastn 

search (http://www.ncbi.nlm.nih.gov/).  Species identifications were based primarily on 16S 

rDNA sequence identity.  Cultures which shared 97% or more 16S rDNA sequence identity with 

Genbank sequences were considered conspecific and any sequence variation of 3% or less was 

assumed to be intraspecific.  

Based on 16S rDNA sequence analysis 9 bacteria genera were represented: Bacillus 

(29.16 %), Paenibacillus (7.29 %), Cronobacter (9.38 %), Enterobacter (30.21 %), Erwinia 

(4.17 %), Escherichia (2.08 %), Pantoea (9.37 %), Pectobacterium (1.04 %), Pseudomonas 

(7.29 %; Figure 6.2).  Among the dominant bacteria genera detected were Bacillus and 

Enterobacter (Figure 6.2).  Bacillus and Enterobacter are known to be plant growth- promoting 

bacteria (PGPB; Sturz 1995; Videira et al.2009; Lucy et al.2004; Liu et al.2011), which may 

directly or indirectly affect the growth and development of plants (Feng and Song 2001).   

The most dominant bacterial species were Bacillus amyloliquefaciens (Table 6.1).  

Bacillus amyloliquefaciens is an important plant growth-promoting rhizobacteria (PGPR) which 

can produce secondary metabolites antagonistic to several plant pathogens (Jun-Yuan et 

al.2013).  Environment-friendly applications of PGPR in agriculture have gained more 

importance, in particular in horticulture and nursery production.  Considerable progress has been 
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achieved in the area of PGPR biofertilizer technology. It has been also demonstrated and proved 

that PGPR can be very effective and are potential microbes for enriching the soil fertility and 

enhancing the plant yield.  Recent studies confirm that the treatment of seeds with non-

pathogenic bacteria, such as Agrobacterium, Bacillus, Streptomyces, Pseudomonas, Alcaligenes, 

etc. induce root formation in some plants because of natural plant growth promoting substances 

produced by the bacteria.  It appears that more work is needed to determine if identified bacteria 

are putative pathogens or beneficial endophytes. 
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Figure 6.2  Bacteria genera represented basing on 16S rRNA sequences obtained from 
sequencing bacteria colonies obtained from sea oats seed. 

6.5.3  Morphological Identification of fungi colonizing sea oats seed 

A total of 435 pure fungal cultures were obtained; 105, 141, 99, 90 from Ben Hur, 

Burden, Long Beach and Holly Beach respectively.  The cultures were separated into groups 

based on classical morphological features including growth pattern, colony texture, 

pigmentation, and growth rate of the colonies on PDA
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Table 6.1 Distribution of 16S rRNA sequences obtained from sequencing bacteria colonies 
obtained from sea oats seed 

Phylum Genus Closest NCB1 match 
Location* No of 

isolates 
% Total 
isolates 

% 
identity 

Firmicutes Bacillus Bacillus aerophilus LB 1 1.04 98 
Bacillus amyloliquefaciens LB, BH 13 13.54 100 
Bacillus aryabhattai LB 1 1.04 100 
Bacillus cereus BH 2 2.08 100 
Bacillus circulans LB 1 1.04 100 
Bacillus megaterium LB, BH 4 4.17 100 
Bacillus sp. BH 3 3.13 99 
Bacillus subtilis BH, LB 2 2.08 99 
Bacillus tequilensis LB 1 1.04 99 

Paenibacillus  Paenibacillus hunanensis LB 2 2.08 99 
Paenibacillus polymyxa LB 3 3.13 99 
Paenibacillus sp. LB 2 2.08 99 

Proteobacteria Cronobacter  Cronobacter dublinensis LB, BH 5 5.21 98 
Cronobacter sakazakii BH, LB 4 4.17 99 

Enterobacter  Enterobacter cloacae LB 1 1.04 99 
Enterobacter cowanii BH 1 1.04 99 
Enterobacter sp.  LB, BH 27 28.13 99 

Erwinia  Erwinia persicina LB 1 1.04 99 
Erwinia sp. LB 3 3.13 99 

Escherichia . Escherichia sp. LB, BH 2 2.08 99 
Pantoea  Pantoea agglomerans LB 2 2.08 99 

Pantoea ananatis  LB 2 2.08 98 
Pantoea gaviniae BH 1 1.04 99 
Pantoea sp. LB, BH 3 3.13 99 
Pantoea stewartii LB 1 1.04 99 

Pectobacterium  Pectobacterium cypripedii LB 1 1.04 99 
Pseudomonas  Pseudomonas oryzihabitans BH 1 1.04 99 

Pseudomonas sp. LB, BH 6 6.25 99 

* location: BH= Ben Hur and  LB= Long Beach
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When fungal cultures from Ben Hur were examined under compound light microscope, 

12 genera were observed including: Alternaria (3.81 %), Aspergilus (1.90 %), Bipolaris (7.72 

%), Curvularia (17.14 %), Fusarium (43.81 %), Penicilium (1.90 %), Pestalotia (1.90 %), 

Pithomyces (0.95 %), Sarocladium (0.95 %), Colletotrichum (2.86 %), Epicoccum (4.0 %), 

Setosphaeria (7.62%), and non-sporulated fungi (4.92 %).  Fusarium was observed to be the 

most common genera colonizing sea oats seed harvested from Ben Hur as shown in Figure 6.3.1. 
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Figure 6.3.1 Fungi isolated from sea oats seed harvested from Ben Hur in 2011 basing on 
morphological characterization as observed under compound light microscope. 

When fungal cultures from Burden were examined under compound light microscope, 12 

genera were observed including: Alternaria (0.71 %), Aspergilus (2.84 %), Bipolaris (4.26 %), 

Colletotrichum (0.71 %), Curvularia (48.94 %), Epicoccum (0.71 %),  Fusarium (29.79 %), 
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Penicilium (1.42 %), Nigrospora (1.0 %), Helminthosporium (4.31 %), Pithomyces (0.71 %), 

Setosphaeria (1.42. %), and non-sporulated fungi (3.20 %).  Curvularia was observed to be the 

most common genera colonizing sea oats seed harvested from Burden as shown in Figure 6.3.2. 
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Figure 6.3.2  Fungi isolated from sea oats seed harvested from Burden in 2011 basing on 
morphological characterization as observed under compound light microscope. 

When fungal cultures from Long Beach, MS were examined under compound light 

microscope, 13 genera were observed including: Alternaria (2.11 %), Aspergilus (2.11 %), 

Bipolaris (7.37 %), Epicoccum (1.05 %), Curvularia (46.32 %), Fusarium (11.58 %), Penicilium 

(1.05 %), Pyricularia (1.05 %), Helminthosporium (1.05 %), Sclerotium ( 7.37 %), Rhizopus 

(1.05 %), Setosphaeria (4.50. %), Trichoderma (2.11%) and non-sporulated fungi (11.29 %).  

Curvularia was observed to be the most common genera colonizing sea oats seed harvested from 

Long Beach, MS as shown in Figure 6.3.3. 



70 

2.11 2.11
7.37

1.05

46.32

11.58

1.05 1.05 1.05
7.37

1.05
4.50 2.11

11.29

0
5

10
15
20
25
30
35
40
45
50

In
ci

d
en

ce
 (

%
)

Fungal genera

Long Beach

Figure 6.3.3.  Fungi isolated from sea oats seed harvested from Long Beach, MS. basing on 
morphological characterization as observed under compound light microscope. 

When fungal cultures from Holly Beach, LA were examined under compound light 

microscope, 12 genera were observed including: Alternaria (5.66 %), Aspergilus (5.66 %), 

Bipolaris (6.67 %), %), Curvularia (34.44 %), Fusarium (18.89 %), Epicoccum (5.20%), %), 

Helminthosporium (1.11 %), Setosphaeria (1.11 %), Penicilium (1.11 %), Pithomyces (4.44 %), 

Sclerotium ( 2.22 %), Trichoderma (1.11%) and non-sporulated fungi (12.58 %).  Curvularia 

was observed to be the most common genera colonizing sea oats seed harvested from Holly 

Beach, LA as shown in Figure 6.3.4. 

Curvularia was found to be the most dominant fungal genera at Long Beach, Holly 

Beach and Burden whereas, Fusarium dominated Ben Hur location.  Fusarium tends to be an 

opportunistic pathogen causing diseases which are most damaging on plants that are debilitated.   
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Figure 6.3.4.  Fungi isolated from sea oats seed harvested from Holly Beach, LA in 2011 basing 
on morphological characterization as observed under compound light microscope. 

This was interesting because Long Beach, Holly Beach and Burden sea oats production systems 

are all rainfed , whereas Ben Hur is under sprinkler irrigation which provides conditions 

favorable for pathogen infestation.  Plants at Ben Hur location were observed to be stressed, 

most likely due to the excessive water from sprinkler irrigation.  Sea oats are not tolerant to 

prolonged inundation.  Ben Hur nursery production environment could have increased Fusarium 

incidence.  Other fungal genera found to be common to all locations were: Alternaria, 

Aspergillus, Bipolaris, Curvularia, Fusarium, Epicoccum, Setosphaeria, and Penicilium. 

Helminothosporium were only found at Long Beach, Holly Beach and Burden.  Colletotrichum 

was only found on sea oats seed harvested from artificial breeding nurseries, Ben Hur and 

Burden.  Sclerotia and Trichoderma was only found on sea oats seed harvested from natural 

environments, Long Beach and Holly Beach.  Pyricularia and Rhizopus were only identified on 
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sea oats seed harvested from Long Beach.  Pithomyces were identified on sea oats seed harvested 

from Burden, Holly Beach and Ben Hur.  Nigrospora was only found on sea oats seed harvested 

from Burden.  Sarocladium was only identified on sea oats seed harvested from Ben Hur.  

For species identification, 96 pure fungal cultures were randomly chosen for DNA 

extraction and PCR amplification.  The PCR amplified DNA displayed only one distinct band, 

approximately 650 bp on agarose gel.  The PCR products were sequenced, and putative species 

identifications of isolates were made by comparing consensus sequences to other isolates in the 

NCBI Genbank database using a Blastn search (http://www.ncbi.nlm.nih.gov/).   

Based on ITS sequence analysis, 13 fungal genera were represented in the 96 pure fungal 

cultures selected for molecular analysis including; Alternaria (6.37 %), Ampelomyces (1.06 %), 

Bipolaris (2.12 %), Curvularia (26.59 %), Fusarium (31.92%), Colletotrichum (2.13 %), 

Pestalotia (1.06 %), Epicoccum (4.26 %), Phoma (7.44 %), Setosphaeria (11.7 %), and 

Nigrospora (2.12 %; Figure 6.4).  The most commonly represented genera were still Fusarium 

and Curvularia (Figure 6.4). 

Species identifications were based primarily on ITS sequence identity.  Isolates which 

shared 97% or more ITS sequence identity with Genbank sequences were considered conspecific 

and any sequence variation of 3% or less was assumed to be intraspecific.  Thirty nine fungal 

species were observed.  Curvularia lunata and Fusarium acuminatum were the most frequently 

observed fungal species (Table 6.2).  Curvularia lunata is a seed borne pathogen and causes leaf 

blight (Kim- Jisoo and Lee-DuHyung, 1998).  Generally, a number of Curvularia species have 

been reported as causal agents of leaf spots, leaf blights, grain rot, root rot, seedling blights, grain 

discoloration, grain lesion and grain deformation ( Benoit and Mathur, 1970).  In rice, 



73 

Curvularia has been reported to be a seed borne pathogen and causes germination failure 

(Sisterna and Bello, 1998). 
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Figure 6.4  Fungal genera represented basing on ITS sequence analysis 

Fusarium species are considered to be important plant pathogens. Fusarium species 

normally have  numerous formae speciales, some of which contain two or several pathogenic 

races causing devastating wilt disease (Neergaard 1979).  Many of the Fusarium species are seed 

borne (Noble M. and Richard 1968; Ram Nath 1970; Neergaard 1979; Domsch. K. H 1980) and 

occur on seed of a wide range of hosts such as Capsicum annuum, Coriandrum sativum, 

Cuminum cyminum, Lycopercon esculentum, O. sativa, Phaseolus vulgaris, and S. vulgar,  

Allium, Cucurbita, Trifolium pratense, and Zea mays, Glycine max, Solanum melongena, S. 

vulgare, Cucumis sativa, and Pisum sativum.  Like many fungi, this genus is endowed with 
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several means of survival, amongst which is its quick capacity for change, both morphological 

and physiological, when faced with environmental changes (Booth, 1971).  There are pathogenic 

and non–pathogenic forms.  The latter can colonize the cortex of roots of plants without causing 

symptoms of disease (Appel & Gordon, 1994), and survive in live tissue, as also exercising 

antagonism between the pathogenic forms in the soil (Edel et al., 1997).  The phytopathogenic 

species affect a wide range of hosts and cause root rot, vascular wilting, yellowing and foliar 

necrosis (Ramachandran et al., 1982; Nelson & Hansen,1997). 

6.5.4 Conclusion 

The high pathogen incidence observed in this study, could account for the decreased sea 

oats seed germination percentages.  Among the most dominant bacteria genera colonizing sea 

oats seed were Bacillus and Enterobacter.  With a few exceptions, most of them are known to be 

plant growth promoting bacteria and can be beneficial endophytes.  In general, beneficial 

endophytes promote host plant growth, increase plant nutrient uptake, inhibit plant pathogen 

growth, reduce disease severity, and enhance tolerance to environmental stresses.  These are very 

important for sea oats plants which grow in very harsh environmental conditions, thus enabling 

them to adapt and survive better.  However, additional research needs to be done to establish the 

pathogenicity or endophytic status of these species.  Fungal genera; Fusarium and Curvularia, 

which were observed to be the most dominant fungal genera are important plant pathogens and 

cause germination failure.  More research is needed in formulating seed treatments that suppress 

pathogens during storage and germination.
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Table 6.2 Distribution of ITS sequences obtained from sequencing fungal isolates obtained from sea oats seed 

Phyllum Class Genus Closest NCB1 match 
Location No. of 

Isolates 
% Total 
isolates 

% 
IDENTITY 

Ascomycota Ascomycetes Curvularia Cochliobolus hawaiiensis LB 1 1.06 100
Curvularia affinis HB, BH 5 5.32 100
Curvularia fallax BH 1 1.06 100
Curvularia geniculatus LB, BH 2 2.13 100
Curvularia lunata LB, BH, BT 10 10.64 100
Curvularia sp. BT 1 1.06 99
Curvularia spicifer BH, LB 2 2.13 100
Curvularia trifolii  HB 1 1.06 100
Curvularia verruculosa BH, LB 2 2.13 100

Colletotrichum Colletotrichum gloeosporioides BH 2 2.13 100
Epicoccum Epicoccum sorghi BH, HB, BT, LB 4 4.26 100

Dothideomycetes Alternaria Alternaria alternata BH 1 1.06 99
Alternaria brassicae HB, BT, LB 2 2.13 100
Alternaria porri BT 1 1.06 99
Alternaria tenuissima BH 1 1.06 100
Alternaria triticimaculans BH 1 1.06 100

Ampelomyces Ampelomyces sp. LB 1 1.06 100
Bipolaris Bipolaris papendorfii BT 1 1.06 99

Bipolaris sp. BT 1 1.06 100
---------------- Dothideomycete sp. LB 2 2.13 100
Phoma Phoma herbarum LB 1 1.06 99

Phoma macrostoma BH 1 1.06 100
Phoma sp. BT, LB, BH 5 5.32 100

------------------- Pleosporales sp. HB 1 1.06 99
Setosphaeria Setosphaeria rostrata BH, LB, BT 11 11.7 100

Sordariomycetes Fusarium Fusarium acuminatum BT, BH, HB 8 8.51 100
Fusarium armeniacum BH, HB 2 2.13 99
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Where for location: BH= Ben Hur, BT = Burden Trial, LB= Long Beach and HB= Holly Beach

(Table 6.2. continued) 

Phyllum Class Genus Closest NCB1 match 
Location No. of 

Isolates 
% Total 
isolates 

% 
IDENTITY 

Fusarium chlamydosporum HB, BH, BT 4 4.26 89
Fusarium equiseti BH, LB 4 4.26 99
Fusarium fujikuroi BH 1 1.06 100
Fusarium langsethiae BH 1 1.06 99
Fusarium moniliforme BT 2 2.13 99
Fusarium oxysporum BH, BT 2 2.13 99
Fusarium purpureum BH 1 1.06 100
Fusarium sp. LB 3 3.19 100
Fusarium sporotrichioides BT 2 2.13 95

Nigrospora Nigrospora sp. BH 1 1.06 100
Nigrospora sphaerica BT 1 1.06 99

Pestalotia Pestalotiopsis microspora LB 1 1.06 99
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CHAPTER 7:  SUMMARY AND CONCLUSIONS  

Uniola paniculata (sea oats) is a coastal foredune grass that plays an essential role in 

dune stabilization.  However, coastal developments and recent severe hurricanes have 

substantially reduced coastal vegetation throughout the Southeastern United States.  Specifically, 

populations of sea oats have been considerably reduced; thereby having a direct impact on 

coastline stability.  Currently, a significant need exists to re-establish damaged sea oats 

populations.  A breeding program could enhance coastal restoration by developing improved sea 

oats plants for beach restoration.  The goal was to initiate a successful breeding program for sea 

oats adapted to shallow dune profiles, with high seed yield and germination, and superior 

vegetative biomass essential for reducing coastal erosion. 

The foundation of any successful breeding program relies on availability of germplasm 

diversity and efficient seed production methods.  In addition, identification of important 

selectable traits and development of efficient selection methods is very necessary.  Knowledge 

pertaining to seed storage, germination, plant production methods and agronomic practices are 

also very essential in establishing a successful breeding program. 

In natural beach environments, seed yields are affected by several stochastic events like 

hurricanes.  For reliable seed yields, alternative seed production environments are necessary. In 

this study we were interested in determining whether sea oats seeds could be produced away 

from natural beach environments. It was found that sea oats seeds can be produced in artificial 

environments.  Establishing seed production nurseries could support coastal restoration efforts by 

minimizing sea oats seed harvests from natural environments.  Minimizing seed harvests from 

natural ecosystems will also reduce disruption of the natural ecosystems, which can result in sea 



78 

oats stand decline and resultant land loss.  Establishing artificial seed production nurseries also 

support breeding programs by producing a source of readily available genetic diversity.   

To preserve sea oats seeds in storage, experiments were carried out to identify sea oats 

seed storage environments leading to maximum longevity.  Sea oats seed stored in hermetically 

sealed jars at room temperature consistently had the highest average germination for seed 

harvested from the northern Gulf of Mexico coast.  Identification of seed storage methods can 

help in ex situ seed storage necessary for sea oats conservation and also provide a source of 

genetically diverse germplasm for restoration.   

These investigations found high seed pathogen incidence during germination.  The most 

dominant bacteria genera colonizing sea oats seed were Bacillus and Enterobacter.  Bacillus and 

Enterobacter are most commonly cited as plant growth promoting bacteria. Additional research 

needs to be done to establish the pathogenicity or beneficial endophytic status of these species.  

It would be interesting to identify beneficial endophytes as they are known to promote host plant 

growth, increase plant nutrient uptake, inhibit plant pathogen growth, reduce disease severity, 

and enhance tolerance to environmental stresses.  Fusarium and Curvularia, were observed to be 

the most dominant fungal genera attacking sea oats seed.  Fusarium and Curvularia are most 

commonly cited as pathogens.  From these studies, it would appear that identifying seed 

treatments to reduce these fungi would enhance sea oats seed germination.  There is still need in 

formulating seed treatments to suppress pathogens during storage and germination. 

To determine minimal sea oats plant size needed for restoration, vegetative plants, large 

seedlings, and small seedlings were evaluated.  Large vegetative plants are very costly to 

produce, and to reduce costs small seedlings would be preferred. When conditions were ideal 

88% of the small seedlings survived.  Despite the significant storm surge 1 week after 
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transplanting, at 3 months after transplanting approximately 30% of small sea oats seedlings 

survived.  Therefore small sea oats seedlings can be used at greater densities to compensate for 

higher mortality rates in unfavorable conditions.  Increasing seedling densities could reduce 

production costs and result in acceptable survival rates accompanied with genetic diversity.   

A greenhouse protocol that could predict sea oats survival in half the time of saturated 

beach conditions was identified.  Selection of saturation tolerant sea oats lines in greenhouse 

conditions in half the time of that required in saturated beach conditions would reduce the time to 

select sea oats saturation tolerant lines, thus increasing the efficiency of the breeding program.  

The ability to predict sea oats survival in greenhouse conditions has significant implications for a 

saturation tolerance breeding program; allowing multiple selection cycles to occur each year thus 

speeding up the breeding program.   

This work has identified: alternative seed production environments, seed storage 

methods, putative seed pathogens, characteristics essential for selection of sea oats lines adapted 

to the Northern Gulf of Mexico Coast and minimal plant sizes to be used in beach restoration 

projects.  All these were essential in developing a successful sea oats breeding program. 
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APPENDIX A: PHYLOGENETIC ANALYSIS OF FUNGI ISOLATED 
FROM SEA OATS SEED BASED ON ITS SEQUENCE ANALYSES 

Figure A.1  Phylogenetic relationships in Curvularia isolates based on analyses of ITS 
sequences. ITS Genbank accession numbers are listed. Boostrap values above 50% are indicated. 
Alternaria Alternata was used as an outgroup. 
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Figure A.2  Phylogenetic relationships in Fusarium  isolates based on analyses of ITS sequences. 
ITS Genbank accession numbers are listed. Boostrap values above 50% are indicated. 
Cochliobolus lunata was used as an outgroup. 
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Figure A.3  Phylogenetic relationships in Setospharia  isolates based on analyses of ITS 
sequences. ITS Genbank accession numbers are listed. Boostrap values above 50% are indicated. 
Fusarium was used as an outgroup. 
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Figure A.4  Phylogenetic relationships in Alternaria  isolates based on analyses of ITS 
sequences. ITS Genbank accession numbers are listed. Boostrap values above 50% are indicated. 
Curvularia affinis was used as an outgroup. 
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From: Pheonah Nabukalu [mailto:pnabuk1@tigers.lsu.edu]  
Sent: Thursday, May 23, 2013 3:17 PM 
To: ERjournal@AESOP.Rutgers.edu 
Cc: Knott, Carrie 
Subject: Permission Letters 

Dear Dr. Aronson,  

I would like to request for permission letters to include all of the work that I have already 
published in Ecological Restoration Journal into my doctoral dissertation. 
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Nabukalu, P. and C.A. Knott. 2013. Effect of Uniola paniculata plant size on survival and 
performance at beaches with low dune profiles.  Ecological Restoration 31(1): 12-16. 
Nabukalu, P. and C.A. Knott. 2013. Effect of storage environment on Uniola paniculata 
germination.  Ecological Restoration 31(1):16-19.  

Thank you 
Pheonah Nabukalu 
Louisiana State University 

From: ER Journal ERJournal@aesop.rutgers.edu 

To: Pheonah Nabukalu <pnabuk1@tigers.lsu.edu> 
Date: Thu, May 30, 2013 at 7:41 PMsubject:  

RE: Permission Lettersmailed-by: aesop.rutgers.edu 

Hi Pheonah, 

You have permission to include the work mentioned below in your doctoral dissertation. This is 
how to cite the copyright: 

 [Article title] appears in Ecological Restoration [issue number]. Copyright 2013 by the Board of 
Regents of the University of Wisconsin.  

If her thesis formatting requirements don't allow her to put this at the bottom of the first page of 
the particular article/chapter, then I assume she can included it on an acknowledgments page at 
the beginning of the manuscript. 

 Let me know if you have any more questions! 
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