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Abstract  

 

 Sediment loading and nutrient losses from construction sites through surface runoff can 

have detrimental effects on nearby water bodies.  In the late Autumn through early Spring a 

perennial warm-season grass cannot be established once construction activities have been 

completed.  Often cool-season grasses such as perennial ryegrass (Lolium perenne L.) are 

established for temporary coverage until environmental conditions are suitable for warm-season 

grass establishment.  The purpose of this research was to 1) determine if higher seeding rates of 

perennial ryegrass accelerate establishment thus reducing sediment loading and 2) determine if 

watering-in fertilizer applications would reduce nutrient losses through surface runoff.  In the 

first experiment trays were seeded at 0, 195, 390, or 585 kg ha
-1

 with 30-min rainfall simulations 

performed at 16.3 L per minute at 14, 28 and 42 days after seeding (DAS).  Increasing seeding 

rates reduced total sediment loading 48% to 67% and 86% of sediment eroded from bare soil 

over the 42-day establishment period.  Sediment losses were highest during the initial rainfall 

simulation at 88, 93, 83, and 62% of total sediment lost from 195, 390, or 585 kg ha
-1

 and bare 

soil controls, respectively.  In the second experiment, the effect of irrigation as a best 

management practice post fertilizer application was evaluated,  Established perennial ryegrass 

was fertilized at 50 kg N ha
-1

 with grass swards not irrigated or irrigated at 1.25 cm 48 hours 

prior to rainfall simulation. Thirty-minute rainfall simulations were performed 2 and 7 days after 

fertilization (DAF).  Non-irrigated fertilizer treatments resulted in the highest TKN losses of 12.3 

kg N ha
-1

, moderate dissolved N losses at 3.1 mg N ha
-1

, and highest TP losses of 2.4 P ha
-1 

2 

DAF compared to 7.0 kg TKN ha
-1

, 5.2 kg DN ha
-1

, and 2.0 kg TP ha
-1

 for irrigated fertilizer 

treatments.  At 7 DAF, iIrrigated fertilizer treatments resulted in higher dissolved N losses of 3.1 

kg N ha
-1

 compared to 0.1 kg N ha
-1 

for non-irrigated treatments but similar TKN and TP losses 
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of 0.8 kg N ha
-1 

and 0.4 kg P ha
-1 

compared to 0.9 kg N ha
-1 

and 0.2 kg P ha
-1

 lost from non-

irrigated treatments.  The two experiments showed increasing perennial ryegrass seeding rates 

during establishment can significantly reduce sediment losses; while irrigating post N 

fertilization of established swards may not reduce N losses during surface runoff.  
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Chapter 1:  Literature Review  

Perennial Ryegrass Origin, Identification, Characteristics, and Establishment  

Perennial ryegrass (PR) (Lolium perenne L.) is a cool-season perennial grass species 

adapted to climates with mild winters and cool, moist summers similar to its origins in southern 

Europe, western Asia, and northern Africa (Beard, 1973; McCarty, 2001).  However, PR grown 

in warmer climates is primarily used as an overseed to dormant warm-season grasses or as 

temporary cover until a more suitable perennial grass species can be established.  

Perennial ryegrass is a bunch type grass that can be identified as having medium leaf 

texture with dark green color, folded vernation, membranous ligule, small claw-like auricles, and 

divided blade with ridges on the adaxial surface and glossy on the abaxial surface.  The 

inflorescence is a spike with awnless spiklets (Turgeon, 2011).  Seeds are typically viable and 

harvested for sale for use in PR establishment. 

In general, perennial ryegrass exhibits poor tolerance to environmental extremes such as 

cold, heat, and drought compared to other cool-season grasses (McCarty, 2001).  Perennial 

ryegrass grows best in soil temperatures between 16-24 degrees C in soils that are neutral to 

slightly acidic, moist and have moderate to high fertility (Emmons, 1995).  Perennial ryegrass is 

typically maintained at 1.25 to 5 cm in high maintenance sites or left un-mowed in utility areas.  

Fertility ranges for increased grass vigor are typically between 1 to 3 kg N 100m
-2

 yr
-1

(Turgeon, 

2011; Emmons, 1995; Fry and Huang, 2004; Beard, 1973). 

There are numerous perennial ryegrass cultivars with finer, denser leaf textures that have 

been bred to withstand greater environmental stresses including heat or wear tolerances 

compared to the more common PR species.  These cultivars are generally used for more highly 
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managed grass areas such as golf courses or athletic fields.  Utilitarian areas are still 

predominantly sown using common PR species.  

Perennial ryegrass, produced through seed germination, has thick vascular bundles 

providing established areas with good wear resistance, good soil compaction tolerance, and fast 

establishment rates (McCarty, 2001).  Although easy to establish, PR is susceptible to common 

diseases including red-thread (Laetisaria fuciformis), dollar spot (Rutstroemia floccossa), brown 

patch (Rhizoctonia solani), gray leaf spot (Pyricularia grisea), and Pythium blight (Emmons, 

1995).  Because perennial ryegrass can germinate quickly and establish in a short duration, it is 

commonly used in conjunction with other cool-season grasses to avoid erosion in sloped areas 

during establishment throughout various climates (Emmons, 1995).  Perennial ryegrass can be 

incorporated into the seedbed in a variety of ways including drop spreaders and fertilizer 

spreaders for smaller areas, cultipacker seeders and hydromulch for larger areas (Turgeon, 2011).   

 Nitrogen and Phosphorus Cycles  

 Plants require nitrogen in the highest concentrations in order to complete their life cycles. 

However, atmospheric nitrogen (N2) is the most prevalent form of nitrogen at over 99% of 

nitrogen distribution throughout plant-soil-atmosphere continuum (Havlin et al., 1999).  Within 

the soil, this macro-nutrient is predominantly unavailable for plant uptake because it is a 

constituent of insoluble organic compounds.  However, through a process known as 

mineralization, micro-organisms breakdown soil organic matter to release nitrogen in the 

inorganic form of ammonium (NH4).  Ammonium released by mineralization can be readily 

absorbed by plant roots for plant growth.  Rates of nitrogen mineralization in soils have been 

estimated at 1.5 to 3% of total organic nitrogen per year depending on temperature and moisture 
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and can constitute a large portion of the annual nitrogen uptake of many plants (Brady and Weil, 

1999).   

Ammonium absorbed by plants can be assimilated and transferred throughout the plant 

for proper growth and development.  However, ammonium that remains within the soil is subject 

to the reverse process of mineralization known as immobilization or other processes such as 

ammonia (NH3) volatilization, fixation by clay minerals or nitrification.  Volatilization of 

ammonium is the conversion of ammonium to ammonia in alkaline soils and drier environments.  

In the process of nitrification, Nitrosomonas sp. and Nitrobacer sp. break down NH4 and 

enzymatically oxidize NH4 in a two step process mediated by temperature, moisture, aeration, 

initial ammonia concentrations, readily available carbon sources and soil pH (Havlin et al., 

1999).  Nitrification of NH4 produces NO2 in the first step with conversion to NO3 in the second 

phase of nitrification.  Once formed, nitrate can be absorb by the plant and transferred 

throughout the tissues for proper growth and development. 

Once nitrogen is in the nitrate form, nitrogen can be lost from leaching, plant uptake 

through mass flow, or denitrification by microorganisms.  Nitrate losses from denitrification 

involve conversion of nitrate into the gaseous forms of 2NO, N2O, or N2 with movement directly 

into the atmosphere.  Denitrification typically occurs when nitrate is available, readily 

decomposable carbon sources are present, the soil air contains less than 10% oxygen (e.g. 

flooded soils), and temperatures are between 2 to 50 C (Brady and Weil, 1996).  Denitrification 

represents a method of nitrogen loss from the soil system.  Other methods for nitrate losses 

include leaching and transport by surface runoff.  Leaching is a process by which water-soluble, 

negatively charged nitrate molecule is moved in draining water downward in the soil below the 

zone of root uptake.  Leaching of nitrogen is more prone in sandy soils with high infiltration and 
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percolation rates and low anion exchange capacity and organic matter.  Surface runoff represents 

the movement of nitrate and other soluble nitrogen forms or eroded sediment bound nitrogen 

through lateral water flow.  Both leaching and surface runoff have been cited for numerous 

environmental issues most often related to eutrophication (Easton and Petrovic, 2004; Gross et. 

al, 1990; Bowman et al., 1998; Linde and Watschke, 1997; Petrovic, 1990; Burwell et al., 2011). 

Similar to nitrogen, phosphorus is a macro-nutrient.  Phosphorus primary function is 

energy storage and transfer within plants.  Although phosphorus is a macro-nutrient, it can be 

scarce in soil solutions.  In heavily fertilized soils, phosphorus concentrations can reach 1 mg L
-1

 

compared to 0.001 mg L
-1

 in infertile soils (Brady and Weil, 1996).  Phosphorus’ primary 

function is energy storage and transfer within plants in processes including photosynthesis, 

nitrogen fixation, flowering, seed production and maturity.  Low phosphorus concentrations, 

rarely exceeding 0.01% of total phosphorus in some soils, plant availability becomes an 

important factor for growth and development especially in the production of lateral and fibrous 

root systems (Brady and Weil, 1996; Turgeon, 2011; Fry and Huang, 2004).  In healthy leaf 

tissue, total phosphorus comprises 0.2 to 0.4% of dry matter (Brady and Weil, 1996).   

Within plants, phosphorus is a component of Adenosine triphosphate, ATP, a high energy 

phosphate group synthesized through photosynthesis and respiration (Fry and Huang, 2004; 

Brady and Weil, 1996). Also of great importance, phosphorus is involved in Deoxyribonucleic 

acid (DNA) and ribonucleic acid (RNA), codes for protein synthesis for all living organisms 

(Brady and Weil, 1996).  Finally, phosphorus is used in the formation of phospholipids a 

component of cellular membranes to help regulate solute movement into and out of cells.       

In the soil, phosphorus must be dissolved in the soil solution to be available for plant 

uptake.  Phosphorus is generally absorbed as phosphate ions HPO4
- 
and H2PO4

- 
through diffusion 
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into plant roots.  Although HPO4
-
 , a monovalent anion, dominates acidic soil solutions, H2PO4

-
 

is the predominate form in alkaline soils (Brady and Weil, 1996; Havlin et al., 1999). This is due 

to organic phosphorus being bound by calcium in alkaline soils while inorganic phosphorus is 

typically bound by iron or aluminum in acidic soils.  Phosphorus held in organic form can be 

mineralized or immobilized by microbes under environmental factors similar to the nitrogen 

releasing process.  Once soluble, phosphorus is released by organic residues or humus, the 

resulting inorganic H2PO4
-
 is subject to plant uptake or chemical reactions with iron, aluminum, 

manganese, or calcium that render it insoluble and unavailable to plants (Havlin et al., 1999).   

Management of phosphorus fertility is not only important for proper plant growth and 

development, but is a key to reducing phosphorus movement and associated environmental 

issues.  Research has shown offsite movement of phosphorus in watersheds and open water 

bodies can have devastating effects on aquatic organisms as a result of eutrophication (Mallin 

and Wheeler, 2000; Shuman, 2004; Austin et al., 1996; Gross et al., 1990; Hay et al., 2007; 

Sharpley et al., 1994; Flemmng and Cox, 2001). 

 Nitrogen and Phosphorus Losses via Surface Runoff  

Eutrophication, from excess N and P transport by surface runoff results in algal blooms, 

decreased oxygen concentrations, and unsuitable environments for many aquatic organisms.  

Phosphorus at levels as low as 0.01 and 0.035 mg L
-1

 have been reported to cause eutrophication 

(Mallin and Wheeler, 2000) and Valiela et al. (1997) reported NO3-N to be a limiting factor for 

eutrophication and algal blooms.  Vegetation has been recognized as being capable of reducing 

pollutant transfer by surface runoff (Gross et al., 1990; Morton et al., 1988).  Krenitsky et al. 

(1998) showed grass canopies reduce sediment erosion and detachment by decreasing raindrop 

kinetic energy as well as reducing subsequent transport of ions attached to soil colloids. 
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In general, proper fertilization practices may not necessarily cause excessive nutrient 

losses from turfgrass (Easton and Petrovic, 2004).  Gross et al. (1990) found runoff losses of 

NO3-N from established turf to be low (<1% of applied fertilizer).  Miltner et al. (1996) 

recovered very low levels of 
15

N-labeled urea leachate, representing only 0.23% of the applied N 

from Kentucky bluegrass (Poa pratensis L.).  In 2002, Bowman et al. examined the fate and 

transport of nitrogen with multiple warm-season turfgrasses.  They reported leaching losses were 

unusually high following the first N application ranging from 48 to 100% and 4 to 16%, 

respectively for NO3 and NH4.  Hay et al. (2007) reported similar findings to Bowman et al. 

(2002) with high NO3 losses from sod and sprigged Tifway bermudagrass during the initial 50 d 

after initial application.   

In a 1997 study, Cole et al. experimented with nutrient losses in bermudagrass by running 

rainfall simulations when the soil was dry and after natural rainfall moistened the soil.  Cole et 

al. reported nutrient losses of 2% and 10-15% for dry and wet soil respectively.  Similarly, 

Shuman (2004) found phosphorus data values for without watering-in are about 14 to 16% 

whereas watering-in values are only 3 to 5%, or about a five times decrease for watering-in and 

waiting three days before the first event.  Additionally, Austin et al. (1996) reported phosphorus 

runoff from a pasture was mostly soluble phosphorus and not adsorbed to soil particles.  Austin 

et al. applied P at 22 kg and 88 kg P ha
-1

 and found total phosphorus lost was 35% and 17% 

respectively.  However, Fleming and Cox (2001) found 98% of total phosphorus was lost in 

overland flow.  Thus rainfall volume and intensity along with soil moisture can be important 

factors in water and nutrient runoff (Shuman, 2004). 

Hay et al. (2007) claims a major percentage of the phosphorus in runoff in agricultural 

systems are adsorbed to particles that are then carried by water.  However, Sharpley et al. (1994) 
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reports little soil particle movement in established turfgrass and pastures and most phosphorus is 

transported by surface runoff in the soluble form (Gross et al., 1990).  Hay et al. (2007) 

measured phosphorus concentrations before and after rainfall simulations during Tifway 

bermudagrass establishment.  Hay et al. (2007) measured phosphorus concentrations before 

rainfall events at 0.009, 0.009, and 0.011 g m
-2

 for manure grown sod, fertilizer grown sod, and 

sprigs, respectively.  However, leaching losses of dissolvable P for manure grown sod, fertilizer 

grown sod, and sprigs measured 0.008, 0.007, and 0.009 g m
-2

 respectively, concluding 

dissolvable P had no significant leaching post rainfall simulations.  In addition to Hay et al. 

(2007), Vietor et al. (2004) reported Kentucky bluegrass sequesters up to 50% of applied N and 

88% of applied P. 

 Sediment Losses via Surface Runoff  

Turfgrass establishment is perhaps one of the most susceptible periods for erosion and 

surface water contamination.  Dense growth habits of established turfgrass can reduce sediment 

losses by providing an indirect pathway for runoff water.  Evapotranspiration is generally the 

largest source of soil water removal in a turfgrass ecosystem resulting in the largest sink of 

nutrients in a turfgrass ecosystem (Easton and Petrovic, 2004; Petrovic, 1990).  However, 

increasingly high soil moisture levels caused by prolonged periods of rainfall or irrigation can be 

responsible for large runoff and nutrient losses (Linde et al., 1995).  Ebdon et al. (1999) reports 

that dense stands of turfgrass such as Kentucky bluegrass is highly efficient at removing water 

from the soil lowering the potential of runoff and leaching by the reduction of soil moisture.  

Established turfgrass systems are able to retain large quantities of precipitation, reduce the 

impact of raindrops, decrease water runoff rates and volumes, absorb nitrogen and phosphorus 

into vegetative tissue, enhance soil stability through root biomass, and increase soil infiltration 
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(Linde et al., 1995, 1998; Gross et al., 1990; Morton et al., 1988; Pearce et al. 1997; Bowman et 

al., 2002).  However, the combination of little ground cover, high application rates of soluble 

fertilizers and frequent irrigation during vegetation establishment create a situation prone to 

runoff and leachate losses (Easton and Petrovic, 2004).   

In a 1995 study, Linde et al. reported a mature creeping bentgrass (Agrostis stolonifera 

L.) verdure intercepted 113% more water compared to PR.  Surface water runoff was similar in 

days post-seeding, but as each sward matured, runoff from PR occurred earlier accompanied 

with greater volumes compared to creeping bentgrass.  They attributed the difference in species 

performance to shoot density.  Creeping bentgrass’ dense canopy and thatch forming growth 

habit produced a more tortuous pathway for downward and horizontal movement of water, 

increased hydraulic and surface resistance for greater soil infiltration, and horizontal shoot and 

leaf orientation for interception of soil particles (Linde et al., 1995).   

In a subsequent study by Linde and Watschke in 1997, they examined the effects of 

sediment transport through creeping bentgrass and PR on 9-11% sloped plots.  After verticutting 

each plot (6.5 m wide and 19 m long), they reported an average of 67 kg and 20 kg of plant 

biomass and organic material was removed from creeping bentgrass and PR respectively.  After 

rainfall simulations, trace amounts (0.8 kg ha
-1

) of sediment were transported via runoff.  In six 

samples where sediment was detected, Linde and Watschke reported the highest concentration of 

sediment at 26 mg L
-1

 for creeping bentgrass producing 170 L of runoff in 100 minutes resulting 

in soil losses of 0.36 kg ha
-1

.  

In a related study, Wauchope et al. (1991) used a mixed stand of bermudagrass and 

bahiagrass (Paspalum notatum Flugge) for sediment loss and runoff experiments.  Wauchope et 

al. conducted simulated rainfalls to bare and grassed plots at a rate of 69 mm h
-1

.  Average soil 
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losses reported were 28 kg ha
-1

 and 8 kg ha
-1

 for bare and grassed areas, respectively.  Similarly, 

Gross et al. (1991) reported soil losses from bare soil and sloped tall fescue (Festuca  

arundinacea Schreb.) during rainfall simulated at 30-min, 120 mm h
-1

.  They reported runoff and 

sediment losses were significantly reduced from tall fescue (54 kg ha
-1

) compared to losses from 

bare soil (519 kg ha
-1

) during rainfall simulations.   
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Chapter 2:  Increasing Perennial Ryegrass Seeding Rate Reduces Sediment Loading 

During Establishment  

 

Sediment loading via surface runoff is an environmental concern especially in areas 

subject to construction activities (Daniel et al., 1979; Kuo et al., 1988; and Schuler, 1987).  The 

United States Environmental Protection Agency has recognized sediment as one of the most 

prevalent pollutants of open water bodies throughout the United States (USEPA, 1983). 

Sediment loading increases water turbidity that in turn negatively affects aquatic organisms and 

vegetation; increases chemical and nutrient loading; and potentially alters hydraulic 

characteristics (Burwell et al., 2011; Linde et al., 1995, 1998; Krenitsky et al., 1998).   

Current best management practices to limit sediment movement often include planting 

vegetation in affected or riparian areas to limit runoff incidence and filter runoff before entering 

receiving waters (Gross et al., 1990, 1991; Krenitsky et al., 1998; Linde and Watschke, 1997).  

Several studies have demonstrated the ability of vegetation to reduce surface runoff and erosion 

compared to fallow soils (Daniel et al, 1979; Gross et al., 1990; Linde et al., 1995; Easton and 

Petrovic, 2004).  As a result, grasses are often prescribed as a best management practice because 

many species are perennial, relatively easy to establish, and effective barriers to sediment 

movement. 

In areas with sub-tropical climates similar to southern Louisiana where construction can 

occur year round, perennial or annual ryegrasses (Lolium perenne L.; Lolium multiflorum L.) are 

typically planted from October to March post-construction because environmental conditions are 

unsuitable for establishing a perennial warm-season grass species (Turgeon, 2011) and erosion 

control measures are required within 30 days after construction completion for areas larger than 

five acres (LDEQ, 2011).  Temporary vegetative coverage with ryegrass has been shown to 
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reduce erosion while maintaining embankment structural integrity until environmental conditions 

are conducive for warm-season perennial grass species establishment (Burwell et al., 2011).  

Positive relationships between grass coverage or tiller density have been correlated to 

increased runoff resistance and reduced sediment loading (Easton and Petrovic, 2004; Burwell et 

al., 2011).  The establishment phase represents a period in which a site is highly susceptible to 

erosion due to bare or sparse vegetative coverage.  In a study examining common bermudagrass  

(Cynodon dactylon L.) coverage effects on earthen levee embankment erosion in south 

Louisiana, Burwell et al. (2011) reported 62 to 90% of total sediment loading during 

establishment (>85% coverage) occurred when there was <50% grass coverage.  They also 

reported the application of water-soluble nitrogen to accelerate common bermudagrass 

establishment did not sufficiently accelerate ground coverage to reduce overall sediment loading 

during establishment; but resulted in increased nitrogen losses in runoff waters.    

For areas that need temporary vegetative coverage, increasing seeding rates during 

establishment of large utility areas may be a simpler and safer alternative to increased fertility 

practices to achieve higher ground coverage for greater runoff resistance.  Because vegetation 

specifications for construction sites vary from state-to-state and between contracting entities, it is 

not uncommon to find perennial ryegrass (PR) application rates <196 kg ha
-1

.  Therefore, the 

objective of this study was to examine the effect PR seeding rate has to accelerate ground 

coverage to reduce sediment loading from surface runoff during establishment. 

Material and Methods  

 Perennial Ryegrass Establishment in Runoff Trays  

The study was conducted at the Louisiana State University Agricultural Center Burden 

Research Facility in Baton Rouge, La in October 2011 and January 2012.  Sixteen trays (13.5 cm 
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x 200 cm x 75 cm) within internal areas of 1.5 m
2
 were filled and compacted with a soil 

consisting of 57.3% clay, 32.1% silt, and 9.8% sand collected from the Bonnet Carre Spillway 

borrow pit located near LaPlace, La.  Soils had pH 8.1 with fertility concentrations of 62.4 mg P 

kg
-1

 and 338.7 mg K kg
-1

.  Soil-filled trays were placed in a greenhouse on wooden pallets to 

facilitate tray movement under the rainfall simulator.  Trays were used rather than a field study 

so that runoff from natural rainfall events would not confound runoff comparisons.    

Trays were seeded with perennial ryegrass at 195, 390, or 585 kg PLS ha
-1

 and unseeded 

bare soil controls with 4 replications.  Immediately after seeding, irrigation was applied to ensure 

adequate soil moisture for seed germination.  Following seed emergence, irrigation was applied 

with 1.25 cm every 3 days for the first 14 days and every 5 days the remainder of the study.  No 

fertilizer or pesticides were applied throughout the 42-day study.   

 Rainfall Simulation Setup  

Thirty-minute rainfall simulations were conducted at 14, 28, and 42 days after seeding.  

The method followed for rainfall simulation was outlined by the United States Department of 

Agriculture’s (USDA) National Phosphorous Research Project’s (NPRP) protocol for rain 

simulation (USDA, 2008).  Trays were fixed at a 20⁰ slope and simulated rainfall applied using 

the Tlaloc 3000 Rainfall Simulator (Joern’s Inc.; West Lafayette, IN), a field mobile unit based 

on the designs of Miller (1987) and Humphry et al. (2002).  The Tlaloc 3000 contains a Spraying 

Systems Co. Fulljet ½HH SS 50WSQ nozzle with a spray angle of 104° (±5%) that delivered 

16.3 L per minute at 7 psi (USDA, 2008).  The rainfall intensity selected for simulations 

represents a 10-year historical high for Baton Rouge, La (Louisiana Office of State Climatology, 

2010).  All water used for rainfall simulations was from a municipal source.  Because rainfall 

simulations occurred within a greenhouse, the nozzle and associated plumbing assemblies were 
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removed from the Tlaloc 3000 enclosure and mounted 3 m above the soil surface of the trays.  

Tarps were hung around the single-tray rainfall simulation area to limit wind disturbance.  

During simulations, surface runoff flowed to the lower side of the trays through PVC gutters into 

117 L collection reservoirs and weighted  

  Prior to rainfall simulation canopy coverage was photographed for digital analysis (Systat 

Software, Inc.; San Jose, CA); tiller density was assessed in a 25 cm
2
; and soil moisture 

measured using EC-5  (Decagon Devices, Pullman, WA) probes within 30 minutes of rainfall 

simulation.  During rainfall simulations, measurements included the time until the onset of runoff 

and total runoff volume.  At the end of the 30-min rainfall simulation, composite water samples 

were collected and analyzed for sediment concentrations following EPA method 160.2 (USEPA, 

1999) with the modification of using 40 mL samples.  During the second study, water samples 

were collected every 5 min for 30 min to assess sediment losses over the 30-min runoff period.   

 Statistical Analysis  

Vegetative data concerning coverage and tillering as well as runoff data concerning 

sediment loading were analyzed using the GLM procedure in the statistical software SAS (SAS, 

2008).  PR seeding rate was the only fixed effect imposed on soil-filled trays arranged in a 

complete randomized design maintained under a greenhouse environment.  Means were separate 

by date using Fisher’s protected least significant difference at a significance of p≤0.05.  Runoff 

data concerning time until the onset of runoff and runoff volumes were regressed against PR 

coverage with the linear equation listed.  Data were combined for all analyses across experiments 

when the interaction term of experiment and seed treatment was not significant at a level of 

p≤0.20.  
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Results  

 Perennial Ryegrass Establishment  

 Perennial ryegrass ground coverage was accelerated over the 42-day establishment period 

by increasing seeding rate from 195 to 585 kg ha
-1

.  At 14 DAS, the lowest seeding rate resulted 

in 22% ground coverage compared to 48 and 63% ground coverage for the moderate and higher 

seeding rates, respectively, and corresponding tiller densities of 23, 35, and 47 cm
2
 (figure1, 

figure 2).   

 The trend of higher ground coverage with increasing seeding rate continued at 28 DAS 

with 43, 64, and 79% ground coverage for all seeding rates but swards exhibited a decline in 

tiller densities for the  moderate and highest seeding rates while the lowest seeding rate of 195 kg 

ha
-1

 was static.  However, at 42 DAS no differences in ground coverage occurred between 

seeding rates with all swards resulting in >80% groundcover.  Only the highest seeding rate 

exhibited significant increased tiller density 42 DAS at 60.5 cm
2
compared to 26 and 26.5 cm

2
 for 

the 195 and 390 kg ha
-1

 seeding rates.  

 Effects of Seeding Rate on Runoff Initiation and Volume  

The influence of seeding rate to delay the onset of surface runoff did not differ for the 

first rainfall simulation.  At 14 DAS, seeding rates actually had runoff occur faster compared to 

bare soil controls. Surface runoff was initiated within 60.5, 49.5, and 55 s for the low, moderate, 

and high seeding rates, respectively, compared to 177 for the bare soil control (figure 3).  The 

delay in the bare soil is most likely a function of soil moisture prior to rainfall simulation with 

23.6, 24.1, 27.4, and 19.6 for the low, moderate, and high seeding rates and bare soil control  
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Figure 1.  Influence of perennial ryegrass seeding rates (0, 195, 390, and 585 kg ha
-1

) on ground 

coverage for rainfall simulations performed at 14, 28, and 42 days after seeding.  Ground 

coverages means are separated by rainfall simulation date using Fisher Protected LSD (α=0.05). 
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Figure 2.  Effect of perennial ryegrass seeding rates (0, 195, 390, and 585 kg ha

-1
) on sward tiller 

density 14, 28, and 42 days after seeding.  Tiller densities means are separated by rainfall 

simulation date using Fisher Protected LSD (α=0.05). 
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14 DAS.  At 28 and 42 DAS, PR seeding rate did not affect the duration necessary to delay the 

onset of runoff at 263, 215, and 302 s 28 DAS for 195, 390, and 585 kg ha
-1

 seeding rates, 

respectively.  All seeded treatments delayed the onset of runoff for a longer duration than bare 

soil controls.  However, 42 DAS there were no differences in the effect of seeding rate to delay 

runoff at 225 to 285 s, but again all seeding rates increased the duration for runoff compared to 

220 s for bare soil controls.  Data for the time until the onset of runoff combined across events 

and regressed against PR ground coverage exhibited a positive relationship illustrating the effect 

of increasing vegetative coverage to delay runoff (figure 4). 
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Figure 3.  Perennial ryegrass seeding rates (0, 195, 390, and 585 kg ha
-1

) delay the onset of 

surface runoff during rainfall simulations performed at 14, 28, and 42 days after seeding.  Time 

duration means are separated by rainfall simulation date using Fisher Protected LSD (α=0.05  

As was the case for Perennial ryegrass coverage affecting onset of runoff, PR coverage 

also affected runoff volume.  Overall, runoff volume regressed against PR coverage resulted in a 
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negative relationship illustrating declines in runoff volumes as PR coverage increased (figure 5, 

figure 6).  When runoff volume losses are evaluated at each rainfall date, no differences in runoff 

occurred at 14 DAS between bare soil controls and PR seeding rate treatments.  However, at 28 

and 42 DAS, all seeding rates reduced runoff volumes compared to bare soil controls with the 

exception of the 390 kg ha
-1

 PR seeding rate 28 DAS in which the runoff volume of 35 L was 

comparable to 34.35 L lost from the bare soil control. 

 
Figure 4.  Affects of perennial ryegrass ground coverage to delayed surface runoff from 

simulated rainfall performed at 14, 28, and 42 days after seeding.   

 

 Sediment Loading  

 Sediment losses were highest for the bare soil control and 195 kg ha
-1

 PR seeding rate at 

3406 and 1218 kg ha
-1

 with a step reduction in sediment losses for 390 and 585 kg ha
-1

 PR 

seeding rates at 427 and 320 kg ha
-1

, respectively (figure 7).  Interesting in the second 

experiment when sediment losses were accounted every five minutes during the 30-min runoff  
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Figure 5.  Perennial ryegrass seeding rate (0, 195, 390, and 585 kg ha
-1

) effects on runoff 

volume losses from rainfall simulations performed at 14, 28, and 42 DAS.  Time duration means 

are separated by rainfall simulation date using Fisher Protected LSD (α=0.05).  

 

event, after five minutes of runoff, sediment losses from all seeding rates and control were 

somewhat static with the control exhibiting the highest sediment loss  

 rate of 243.6 kg ha
-1

 compared to 12.8, 11.7, and 26.6 kg ha
-1

 for 195, 390, and 585 kg ha
-1

 PR  

 

seeding rates (figure 8).  By 28 DAS, all treatments including the bare soil control resulted in 

declines in sediment losses.  However, all seeded treatments exhibited the lowest sediment losses 

of 864 to 169 kg ha
-1

 compared to 4854 kg ha
-1

 for bare soil controls.  This pattern was again 

observed at the final rainfall simulation 42 DAS.  Data combining sediment losses for total 

sediment lost as a percentage of bare soil controls during the 42-day establishment period 

exhibited a pattern of decreasing sediment losses with higher PR seeding rates (figure 9).  Total 

sediment loss as a percentage of bare soil controls of 48%, 67%, and 86% corresponded to PR 

seeding rates of 195, 390, and 585 kg ha
-1

.  
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Figure 6.  Effect of perennial ryegrass ground cover on surface runoff volume lost during 

rainfall simulations at 14, 28, and 42 days after seeding. 

 

 

 

Figure 7. Sediment losses from swards of perennial ryegrass seeded at 0, 195, 390, or 585 kg ha
-

1
 and subjected to rainfall simulations 14, 28, and 42 days after seeding.  Sediment loading 

means are separated by rainfall simulation date using Fisher Protected LSD (α=0.05). 
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Figure 8.  Influence of perennial ryegrass seeding at 0, 195, 390, or 585 kg ha

-1
 on sediment 

losses during a 30-min rainfall simulation 14 days after seeding. 

 
Figure 9.  Total sediment loading from three rainfall simulations conducted 14, 28, and 42 days 

after seeding on perennial ryegrass swards seeded at 0, 195, 390, or 585 kg ha
-1

.  Sediment 

loading means are separated by rainfall simulation date using Fisher Protected LSD (α=0.05). 

 

 



23 
 

Discussion  

For earthen embankments subject to intense and frequent rainfall that results in surface 

runoff, this research clearly demonstrated that higher seeding rates can accelerate PR coverage 

for greater erosion resistance.  Based on the data from this study, increasing PR seeding rates 

during establishment from 195 kg ha
-1

 to 390 or 585 kg ha
-1

 can reduce total sediment loading 

48% to 67% and 86% eroded from bare soil, respectively.  Grasses create a dense canopy that 

increases water infiltration to limit runoff occurrence and severity; reduces kinetic energy 

associated with splash erosion from raindrop impact; as well as filters suspended solids in 

flowing waters (Krenitsky et al., 1998; Easton and Petrovic, 2004; Burwell et al., 2011). 

Numerous studies concerning sediment erosion in agronomic fields or other environments have 

clearly demonstrated and described the benefits mature vegetation has to significantly decrease 

sediment loading compared to fallow soils (Gross et al., 1990, 1991; Krenistsky et al., 1998; 

Linde and Watschke, 1997; Linde et al. 1995, 1998).     

 The ability of higher Perennial ryegrass seeding rates to reduce sediment loading during 

establishment is a direct result of higher vegetative coverage decreasing erosion during the first 

runoff event 14 DAS.  Similar to the findings of Burwell et al. (2011) in which higher sediment 

losses were correlated to lower groundcover with 62 to 90% of total sediment calculated to have 

eroded with <50% common bermudagrass groundcover during establishment, sediment lost 

during the initial rainfall simulation in this study accounted for 88, 93, 83, and 62% of total 

sediment losses during the 42-d establishment period for increasing seeding rates and bare soil 

control, respectively. Therefore, faster PR coverage can significantly reduce potential sediment 

losses within the first few weeks after seeding. In addition, once surface runoff occurs, sediment 

losses appear to become static within 5 min, indicating the length of the runoff period will 
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directly affect sediment mass lost from a site and that plant cover mediates sediment detachment 

and movement.  A slightly different relationship than has been reported for soluble pollutants 

such as nitrogen in which high pollutant concentrations initially occurs within the first volumes 

of runoff before declining with subsequent flow (Easton and Petrovic, 2004; Gaudreau et al. 

2002; and Linde and Watschke, 1997).  

Under suitable environmental conditions, PR can germinate in less than 7 d followed by 

rapid growth.  Therefore, from a groundcover measurement, increasing seeding rates increased 

plant populations exponentially 14 DAS as demonstrated with 23, 47, and 64% ground cover for 

increasing perennial ryegrass seeding rates, respectively.  The presence of the plant material in 

the form of leaves most likely shielded the soil from raindrop impact erosion and disrupted water 

flow to filter suspended sediment particles rather than provide an extensive rooting system to 

retain soil.  It was observed after the first rainfall simulation, that plants were being uprooted in 

the 390 and 585 kg ha
-1

 PR seeding rate treatments.  However, the effects of seeding rate on 

erosion resistance may not be consistent for more slowly germinating or establishing species.  

For example, in a study examining tall fescue seeding rate effects on surface runoff, Gross et al. 

(1991) reported runoff and sediment movement did not differ across seeding rates of 0, 98, 244, 

390, and 488 kg ha
-1

 but that increasing rainfall intensity from 76 to 120 mm hr
-1

 had a 

pronounced effect on sediment losses.  Although there were differences in sward densities, Gross 

et al. (1991) simulated rainfall 9 months after seeding.  Therefore the impact of seeding rate in 

terms of affect during establishment was not fully accounted and indicates differences between 

seeding rate effects on erosion will dissipate over time.  The comparison of this study with Gross 

et al. (1991) demonstrates the influence species selection, period of observation, rainfall 

intensity, duration, and timing can have on a site’s erosion resistance performance.   
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Taking into account the high rainfall intensity and frequency employed in this study, the 

data clearly indicates increasing PR seeding rates can potentially reduce sediment movement as a 

direct result of faster canopy coverage during the first few weeks following seeding.  Because 

vegetative cover affects surface runoff severity, assessing certain vegetal parameters may 

provide greater insight into how grasses reduce erosion during the initial weeks after 

establishment.  Data characterizing PR coverage and tiller density in this study indicating 

increasing PR seeding rate accelerated turfgrass coverage and early tiller density 14 DAS.  

Easton and Petrovic (2004) positively correlated Kentucky bluegrass tiller density to runoff 

initiation in a study examining nitrogen effects on Kentucky bluegrass (Poa pratensis L.) surface 

runoff.  They reported increasing tiller density resulted in greater runoff resistance due to 

increased infiltration and reduced runoff volumes.   In this study PR ground cover was a simple 

measurement that confirmed the findings of Burwell et al. (2011) who illustrated a negative 

linear relationship between sediment losses and grass coverage.  The fluctuations in tiller density 

between rainfall events from 14 DAS to 28 DAS are the result of plant damage from intense 

rainfall and water flow.  Flowing water was observed to uproot immature plants that later 

desiccated and died prior to the subsequent simulation 28 DAS.  Changes in tiller density would 

alter intra-sward competition as well as be affected by delayed PR seed germination.  Changes in 

ryegrass sward architecture from higher seeding rates has been reported in dormant warm-season 

overseeding studies (Green et al., 2004; Nelson et al., 2005; Trappe et al., 2012).  Therefore, 

tiller counts may be a better gauge for describing runoff potential for more mature grass swards 

rather than during establishment; this also indicates canopy coverage regardless of tiller density 

is more of a significant factor when describing erosion dynamics in the initial weeks of 

establishment.  
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Long-term runoff resistance and performance differences between PR seeding rates 

would not be expected once higher vegetative coverages are achieved.  At 42 DAS each PR 

seeding rate resulted in >80% ground cover with < 103 kg soil ha
-1

 lost in the final runoff 

simulation.  Although this study does not take into account practices such as nitrogen fertility or 

mulch applications at seeding, data from this study clearly demonstrated higher initial vegetative 

coverage as result of increasing PR seeding rates provides an alternative method to reduce 

sediment loading without relying on soluble nutrients prone to movement for canopy closure.  Of 

course the application of mulches could alter erosion losses especially prior to germination.  Less 

fertile soils could also impact seed growth over time.  However, increasing the PR seeding rate is 

a simple, economical, one-step process that requires basic equipment and knowledge that can 

significantly decrease erosion of sloped sites prone to surface runoff during late autumn through 

winter in the southeastern United States until a permanent warm-season species can be 

established. 
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Chapter 3:  Effects of Irrigation on N Movement Post Fertilization of Perennial Ryegrass  

 

Sediment loading and nutrient losses from surface runoff are common pollutants that 

impair water bodies throughout the United States (USEPA, 1999).  Nitrogen contamination of 

surface waters via surface runoff has been shown to significantly contribute to eutrophication 

and subsequent deterioration of surface water quality (Sharpley et al., 1994; Uttormark et al., 

1974).  Researchers have reported concentrations as low as 1 mg N L
-1

 increase algal growth that 

in turn leads to impaired water quality (Walker and Branham, 1992; Koehler et al., 1982; Mallin 

and Wheeler, 2000).  Therefore, management of N and P through implementation of best 

management practices should be a component of any fertilization plan.    

Mature grass systems have been recognized and often cited for reducing nutrient and 

sediment movement by reducing surface runoff occurrence, severity and filtering suspended 

solids and adsorbed pollutants (Easton and Petrovic, 2004; Linde and Watschke, 1996; Gross et 

al., 1990; Daniel et al., 1979).  Increased use of fertilizers to maintain grassed areas has risen 

over the years.  However, turf managers often relying on natural rainfall to incorporate fertilizers 

may be increasing nutrient runoff losses. In a 2011 study, Borst found grass coverage had little 

impact on nutrient losses when rainfall intensity exceeded soil infiltration capacity.  In fact, he 

concluded grass may contribute to greater nutrient losses from granular fertilizers because it was 

limiting fertilizer interaction with the underlying soil.  He suggested fertilizer incorporation with 

irrigation may decrease potential nutrient movement.  In 2002, Schroeder reported P losses could 

be curbed 12% simply by irrigating post fertilization.  

As irrigation has become more available in home lawns and athletic fields, the simple act 

of irrigating post fertilizer application may decrease N and P losses from surface runoff.  In order 
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to test this best management practice, a study was conducted to determine how effective 

irrigation post fertilizer application affected N and P losses from surface runoff. 

Materials and Methods  

 Nutrient and Sediment Loading of Established Perennial Ryegrass in Runoff Trays  

 

The study was conducted at the Louisiana State University Agricultural Center Burden 

Research Facility in Baton Rouge, LA in 2011 and 2012.  Twelve stainless steel trays (140 cm x 

76 cm x 14 cm) within internal areas of 1 m
2
 were filled and compacted using a soil consisting of 

57.3% clay, 32.1% silt, and 9.8% sand collected from the Bonnet Carre Spillway borrow pit 

located near LaPlace, LA.  Soils had pH 8.1 with fertility levels of 62.4 mg P kg
-1

 and 338.7 mg 

K kg
-1

.  Soil-filled trays were maintained under greenhouse conditions at 28 C and 1600 PAR.  

Trays were placed on wooden pallets to allow placement of trays directly under the rainfall 

simulator for simulation events.   

The stainless steel trays (15.25 cm x 208.5 cm x 75 cm) were seeded with perennial 

ryegrass at 585 kg PLS ha
-1

.  Seeds were irrigated with no supplemental fertilization until grass 

reached full maturity 42 DAS.  Four trays served as unfertilized and non-irrigated controls.  

Eight trays served as the fertilizer treatments and were applied with a water-soluble N source, 

ammonium nitrate (13-13-13) at 50 kg ha
-1

.  Four trays served as irrigated treatments and four 

trays served as non-irrigated treatments.  The irrigated fertilizer treatments were watered with 

1.25 cm 48 h prior to rainfall simulations.  The non-irrigated fertilizer treatments were not 

irrigated prior rainfall simulations.   

 Rainfall Simulation Setup  

Thirty-minute rainfall simulations were conducted at 2 and 7 days after initial fertilizer 

application.  The method followed for rainfall simulation was outlined by the United States 
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Department of Agriculture’s (USDA) National Phosphorous Research Project’s (NPRP) protocol 

for rain simulation (USDA, 2008).  Trays were fixed at a 20⁰ slope with simulated rainfall 

applied using the Tlaloc 3000 Rainfall Simulator (Joern’s Inc.; West Lafayette, IN), a field 

mobile unit based on the designs of Miller (1987) and Humphry et al. (2002).  The Tlaloc 3000 

contains a Spraying Systems Co. Fulljet ½HH SS 50WSQ nozzle with a spray angle of 104° 

(±5%) that delivered 16.3 L per minute at 7 psi (USDA, 2008).  The rainfall intensity selected for 

simulations represents a 10-year historical high for Baton Rouge, LA (Louisiana Office of State 

Climatology, 2010).  All water used for rainfall simulations was from a municipal source.  

Because rainfall simulations occurred within a greenhouse, the nozzle and associated plumbing 

assemblies were removed from the Tlaloc 3000 enclosure and mounted 3 m above the soil 

surface of the trays.  Runoff collection troughs made of PVC gutter materials were assembled at 

the base of each tray on the down slope side.  Metal sheets bent to an angle of 90° were placed 

inside each tray to direct runoff into PVC gutters to be collected in 48 L reservoirs and weighed. 

 Data Collection  

 Prior to rainfall simulation canopy coverage was photographed for digital analysis (Systat 

Software, Inc.; San Jose, CA ); tiller density was assessed in a 25 cm
2
; and soil moisture 

measured using EC-5  (Decagon Devices, Pullman, WA) probes within 30 minutes of rainfall 

simulation.  During rainfall simulations, measurements included the time until the onset of runoff 

and total runoff volume.  At the end of the 30-min rainfall simulation, composite water samples 

were collected and analyzed for sediment loading and total N and P following EPA methods 

160.2 and 351.2 (USEPA, 1999). 
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 Statistical Design  

 Trays were arranged in a complete randomized design with 3 replications per treatment 

combination.  Data were analyzed using the general linear procedure in the statistical software 

SAS (SAS, 2008).  Time until runoff, total runoff volumes, sediment loading, and nutrient loss 

means per rainfall simulation were separated using Fisher’s protected least significant difference 

at p≤0.05.  Sediment loading and nutrient means from the rainfall simulations were totaled and 

analyzed using the general linear procedure in SAS with means separated according to Fisher’s 

protected least significant difference at p≤0.05. Data was combined across experiment because 

the interaction term treatment by experiment was above p≤0.20.  Therefore, results are reported 

and discussed across experiments.  

Results  

 Surface Runoff from Perennial Ryegrass  

 Surface runoff initiation and volumes differed slightly across treatments with irrigation 

prior to rainfall simulation having the greatest impact (table 1).  Irrigated fertilizer treatments 

delayed runoff 140 and 247 s and released 32.9 and 38.7 L at 2 and 7 DAF, respectively, 

compared to runoff initiation delays of 272 and 340 s and runoff volumes of 38.5 and 31.9 L for 

corresponding non-irrigated fertilizer treatments.  Controls delayed runoff 216 and 285 s and 

released 23.7 and 34.2 L of runoff for the simulations 2 and 7 DAF.   

The difference in the ability of each treatment to delay runoff was most likely due to 

initial soil moistures but other factors such as sward density may have affected results. Initial soil 

moistures 2 DAF were 23.4, 28.7, and 33.0 % for control, non-irrigated fertilizer, and irrigated 

fertilizer.  Again soil moisture prior to the second rainfall simulation 7 DAF followed a similar 
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pattern with the irrigated fertilizer treatment exhibiting the highest soil moisture at 28.7 % 

compared to 25.2 

Table 1.  Irrigation post-fertilizer application effect on surface runoff parameters and sediment losses  

  Soil Moisture   

Time until 

Runoff    Runoff Volume    Total Sediment  

 

(%) 

 

(seconds) 

 

(liters) 

 

(kg ha
-1

) 

  

2 

days 7 days   

2 

days 7 days   2 days 7 days   2 days 

7 

days 

Unfertilized 

Control 

23.4 

c 

25.2  

ab 

 

216 b 284.5 ab 

 

23.7 b 34.2 ab 

 

265.9 a 

29.8 

b 

Non-Irrigated 

28.7 

b 21.9 b 

 

272 a 339.5 a 

 

38.5 a 31.9 b 

 

  221.2 ab 

30.5 

b 

Irrigated 

 33   

a 28.7 a   140 c  247    b   

 32.9 

ab 38.7 a   180.9 b 

64.4 

a 

Means followed by the same letter within a column are not significantly different according to 

Fisher's Protected LSD p≤0.05. 

Rainfall simulation occurred at 2 and 7 days after fertilizer applications 

 

and 21.9 for the control and non-irrigated fertilizer treatment.  Sward densities and biomass from 

the second experiment showed minor differences with 25,600, 22,000, 25,200 tillers ha
-1 

for non-

irrigated fertilizer treatments, irrigated fertilizer treatments, and controls, respectively, and 

corresponding biomasses of 16.4, 16.0, and 20.8 kg ha
-1

.   

 Nitrogen, Phosphorus, and Sediment Losses from Surface Runoff  

 Nutrient losses from surface runoff differed not only across irrigated and non-irrigated 

fertilizer treatments but also between nitrogen and phosphorus form.  Unfertilized controls had 

the lowest TKN, dissolved N, and TP masses lost from surface runoff for all treatments and 

across each rainfall simulation (table 2).  Non-irrigated fertilizer treatments resulted in the 

highest TKN losses of 12.3 kg N ha
-1

, moderate dissolved N losses at 3.1 mg N ha
-1

, and highest 

TP losses of 2.4 P ha
-1 

2 DAF compared to TKN, dissolved N, and TP losses of 7.0 kg N ha
-1

, 5.2 

kg N ha
-1

, and 2.0 kg P ha
-1

 for irrigated fertilizer treatments.  Nutrient losses for all treatments 

from the second rainfall simulation 7 DAF declined with the exception of control TP losses that 
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were static 0.2 kg P ha
-1

.  During the second rainfall simulation, irrigated fertilizer treatments 

resulted in higher dissolved N losses of 3.1 kg N ha
-1

 compared to 0.1 kg N ha
-1 

for non-irrigated 

treatments but similar TKN and TP losses of 0.8 kg N ha
-1 

and 0.4. kg P ha
-1 

compared to 0.9 kg 

N ha
-1 

and 0.2 kg P ha
-1

 lost from non-irrigated treatments. 

Table 2.  Irrigation post-fertilizer application effect on nutrient movement via surface runoff.  

  TKN    Dissolved N     TP   

 

(kg ha-1) 

 

(kg ha-1) 

 

(kg ha-1) 

  2 days 7 days   2 days 7 days   2 days 7 days 

Unfertilized Control  3.4 c 0.7 a 

 

1.4 c 0.1 b 

 

0.2 c 0.2 a 

Non-Irrigated 12.3 a 0.9 a 

 

3.1 b  0.1 b 

 

2.4 a 0.2 a 

Irrigated  7.0 b 0.8 a   5.2 a 3.1 a   2.0 b 0.4 a 

Means followed by the same letter within a column are not significantly different according to 

Fisher's Protected LSD p≤0.05. 

TKN = Total Kejhldahl Nitrogen; TP= Total Phosphorus 

Rainfall simulation occurred at 2 and 7 days after fertilizer applications 

 

Sediment losses followed as similar pattern exhibited by nutrient losses between rainfall 

simulations with declines in losses with the second rainfall simulation 7 DAF (table 1).  Irrigated 

fertilizer treatments had the lowest sediment losses at 180.9 kg ha
-1

 compared to 221.2 and 265.9 

kg ha
-1

 from non-irrigated treatments and controls, respectively.  However, in the second rainfall 

simulation irrigated fertilizer treatments resulted in the highest sediment losses at 64.4 kg ha
-1

 

compared to 30.5 and 29.8 kg ha
-1

 sediment losses for non-irrigated fertilizer treatments and 

controls, respectively. 

Discussion  

 Loss of nutrients and sediment from sloped areas adjacent to water bodies or drainage are 

of particular concern given current water impairment conditions of many water bodies around 

the United States.  Although grasses are recognized as being good components of buffers and 

often prescribed for permanent or temporary cover of fallow soils (Easton and Petrovic, 2004; 
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Gross et al., 1990, 1991; Linde and Watschke, 1997), sloped areas subject to N and P 

fertilization are susceptible to nutrient movement from surface runoff.  However, if simple 

practices such as irrigating post fertilizer application could reduce nutrient losses from sloped 

areas then this could serve as a more effective best management practice to limit nutrient 

movement.  This study was designed to understand how irrigation specifically affects N and P 

losses. 

 Durations until the onset of runoff and volumes of runoff differed across treatments with 

irrigated fertilizer treatments being the fastest to runoff.  Application of irrigation prior to rainfall 

simulations in order to dissolve and infiltrate fertilizer particles into the soil would have raised 

initial soil moisture prior to rainfall simulations.  Shuman (2004) and others (Nishat et al., 2010; 

Linde and Watschke, 1997) have reported increases in soil moisture is a major factor in 

determining a site’s susceptibility to runoff occurrence.  The non-irrigated fertilizer treatments 

and controls had slightly lower soil moistures without the additions of irrigation which extended 

the duration until runoff was initiated.  However, once runoff was initiated the volumes lost over 

the 30-min runoff simulations did not correspond to times runoff were delayed.  Runoff 

resistance of a grassed area has been shown to be influenced by vegetative parameters such as 

coverage and architecture.  Burwell et al. (2011) illustrated an increase in grass coverage of 

common bermudagrass (Cynodon dactylon L.) correlated in reduced runoff volumes.  Easton and 

Petrovic (2004) reported a similar finding for Kentucky bluegrass (Poa pratensis L.) sod 

production by regressing increasing sward densities to increased infiltration rates and reduced 

runoff volumes.  Grasses can create dense mats with high biomass matrices and rooting that 

increase infiltration and decrease water flow to limit surface runoff severity.  In this study the 

differences in sward densities and biomasses were slight, but probably affected runoff volumes.   
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Once runoff was initiated, the non-irrigated fertilizer treatments resulted in the highest 

TKN and TP losses with 368 and 443 % higher than losses from controls and 76 and 16.8 % 

higher than losses from irrigated fertilizer treatments.  High nutrient losses from non-irrigated 

slopes compared to unfertilized controls have extensively reported in the scientific literature 

(Gross et al, 1990, 1991; Easton and Petrovic, 2004; Vietor et al., 2004; Burwell et al. 2011).  

High nutrient losses from surface runoff from the first rainfall post application are typical 

according to many published scientific studies (Gross et al, 1991; Easton and Petrovic, 2004; 

Vietor et al., 2004).  Findings regarding non-irrigated fertilizer treatments from this study agree 

with Borst (2011), who reported more than a 2 to 3-folded increase in N and P losses from 

surface runoff of a dense St. Augustinegrass (Stenotaphrum secundatum) canopy when fertilizer 

was not irrigated post application (Borst, 2011).  When irrigation was applied, the fertilizer 

particles would have dissolved and infiltrated into the soil for greater plant root uptake.  

However, plant uptake has been shown to account for less than 50% of the nutrients absorbed of 

fertilizer applied leaving excess fertilizer available for movement or other processes (Henning et 

al., 2009).  Of course factors such as soil texture, temperature, and available soil moisture can 

mediate many of these processes including soil and organic matter binding, microbial use, or 

losses from the soil-plant system (Brady and Weil, 1996).  In this case, the purpose of  irrigating 

post fertilizer application was to allow greater plant nutrient uptake as well as to move nutrients 

away from the soil surface to reduce interaction with flowing surface waters.  In 2002, Schroeder 

reported P losses could be curbed 12% simply by irrigating post fertilization.  However, 

movement of P from surface runoff has been shown to be affected strongly by current soil P 

concentrations and soil binding potential (Pote et al, 1996).  Saturation of soil with excess P 

fertilization would most likely limit the effect irrigation post fertilizer application has to reduce P 
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losses from surface runoff.  Fortunately, this is probably not the case for NO3-N, which would be 

subject to greater leaching especially as soil hydraulic conductivity increased.  Intense irrigation 

and rainfall have been shown to greatly enhance potential N leaching (Mallin and Wheeler, 

2000; Easton and Petrovic, 2004; Linde et al. 1995, 1998; Linde and Watschke, 1997; Gross et 

al. 1990, 1991).     

Interestingly, even though irrigation post fertilizer application resulted in 76 and 16.8 % 

reduction in TKN and TP, dissolved N losses actually increased 68% for irrigated fertilizer 

treatments compared to non-irrigated fertilizer treatments.  This suggests that even though 

fertilizer particles can be dissolved, the volume of water needed to move nutrients beyond the 

zone of interaction with runoff waters will be dependent on soil texture and infiltration rate.  

Therefore, the act of simply irrigating fertilizer may not be enough to prevent nutrient losses via 

surface runoff.  Either the combination of time between fertilization and irrigation prior to a 

potential rainfall should be increased to allow for plant uptake and soil processes to use available 

nutrient as well as allow the soil moisture reduce and/or the volume of irrigation applied should 

be sufficient to move nutrients away from the zone of interaction with flowing surface runoff 

waters.  Greater attention to devising irrigation strategies to limit nutrient movement from 

surface runoff must be considered to maximize reduction of an area’s nutrient losses. 
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Chapter Summaries  

Chapter 1  

 Nutrient losses and sediment loading from surface runoff can have devastating effects to 

surrounding water bodies.  Nutrients such as nitrogen and phosphorus have been reported as 

constituents leading to increases in algal growth causing eutrophication and contamination in 

adjacent water bodies (Mallin and Wheeler, 2000; Hay et al., 2007; Valiela et al., 1997).  

Structural integrity of sloped areas such as highways, levee systems and home lawns can also be 

affected by surface runoff via sediment loading.   

 Grass establishment is an economical and effective way to reduce nutrient and sediment 

transport.  Research has shown grass establishment is an effective way to delay surface runoff 

ultimately reducing sediment loading and nutrient transport (Easton and Petrovic, 2004; Linde 

and Watschke, 1997; Gross et al., 1990; Linde et al., 1995).   In 1991, Gross et al. reported a 

reduction in sediment losses from tall fescue (54 kg ha
-1

) compared to losses from bare soil (519 

kg ha
-1

) during rainfall simulations. Linde et al. (1995) reported mature creeping bentgrass 

verdure intercepted 113% compared to bare soil. 

 Research has shown that turfgrass is an effective best management practice in order to 

reduce sediment loading and nutrient losses on sloped sites.    

Chapter 2  

 In 2004, Easton and Petrovic identified the establishment period for vegetative cover as 

the most susceptible to surface runoff and sediment loading.  Because PR is commonly seeded 

during late autumn and early spring post construction, application of higher seeding rates may 

prove a simple method for reducing sediment losses during surface runoff.  This experiment 

showed trays seeded at 0, 195, 390, or 585 kg ha
-1

 with 30-min rainfall simulations performed at 
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16.3 L per minute at 14, 28 and 42 days after seeding reduced total sediment loading 48% to 

67% and 86% of sediment eroded from bare soil over the 42-day establishment period.  Sediment 

losses were highest during the initial rainfall simulation at 88, 93, 83, and 62% of total sediment 

lost from 195, 390, or 585 kg ha
-1

 and bare soil controls, respectively.  Therefore increasing PR 

seeding rates is an effective and efficient way to establish vegetation on sloped areas to reduce 

surface runoff occurrence and severity.      

Chapter 3  

 Nitrogen contamination of surface waters via surface runoff has been shown to 

significantly contribute to eutrophication and subsequent deterioration of surface water quality 

(Sharpley et al., 1994; Uttormark et al., 1974).  However, mature grass systems have been 

recognized and often cited for reducing nutrient and sediment movement by reducing surface 

runoff occurrence, severity and filtering suspended solids and adsorbed pollutants (Easton and 

Petrovic, 2004; Linde and Watschke, 1996; Gross et al., 1990; Daniel et al., 1979).  This study 

examined the affects irrigation incorporated fertilizers had on nutrient losses through surface 

runoff 2 and 7 days after fertilization (DAF).  Non-irrigated fertilizer treatments resulted in the 

highest TKN losses of 12.3 kg N ha
-1

, moderate dissolved N losses at 3.1 mg N ha
-1

, and highest 

TP losses of 2.4 P ha
-1 

2 DAF compared to TKN, dissolved N, and TP losses of 7.0 kg N ha
-1

, 5.2 

kg N ha
-1

, and 2.0 kg P ha
-1

 for irrigated fertilizer treatments.  During the second rainfall 

simulation, irrigated fertilizer treatments resulted in higher dissolved N losses of 3.1 kg N ha
-1

 

compared to 0.1 kg N ha
-1 

for non-irrigated treatments but similar TKN and TP losses of 0.8 kg 

N ha
-1 

and 0.4. kg P ha
-1 

compared to 0.9 kg N ha
-1 

and 0.2 kg P ha
-1

 lost from non-irrigated 

treatments.  This suggests that irrigation to incorporate fertilizers 2 days prior to a rainfall event 

would be a best management practice for reducing P but not necessarily DN.  However, not 
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incorporating fertilizer with irrigation has a greater effect 7 days prior to a rainfall event.  This 

experiment reiterates the importance of timing and incorporation of fertilizer applications’ effect 

on nutrient runoff losses prior to natural rainfall events. 
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