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ABSTRACT 

Discriminate Analysis as a procedure was evaluated to select molecular markers 

associated with complex traits in US rice germplasm. Markers for percent head rice, percent total 

rice, and grain yield were identified with high levels of correct classification that mapped within 

or near traditional Quantitative Trait Loci (QTL).   

Mixed model-regression procedure to identify molecular markers that predict phenotypic 

variance associated with four agronomic traits was created and validated in two distinct rice 

inbred populations. Main and epistatic effects were identified by standard hypothesis testing and 

Bayesian information criteria in a multivariate format. The new procedure increased power and 

enhanced prediction ability of markers in validation samples from both populations.  

A new SNP discovery and genotyping protocol referred to as Alternative Ecotilling has 

identified four previously reported and 14 new SNPs in the alk and waxy genes among 57 

accessions based on comparisons with sequencing results. The new procedure has been 

published in 2006 in the journal Plant Molecular Biology Reporter. 

 Application of haplotype-specific markers in exon 7 of the BAD2 gene for marker-

assisted identification and introgression of the aroma gene in U.S. rice was evaluated. 

Aromatic/non-aromatic phenotypes were consistent with corresponding marker haplotypes for all 

progeny tested which shows the potential of this procedure for marker assisted breeding of new 

aromatic varieties. 

Similarly, an allele-specific PCR assays were developed to distinguish between 

homozygous and heterozygous imazethapyr-resistant S653D and G654E SNP alleles of the rice 

ALS gene. Field collections were successfully screened for the presence of S653D SNP, and F2 

progeny lines of natural CL 121 x red rice outcrosses were screened for the presence of the G654E 

 xi



 

SNP. These assays were proven successful and are currently used for detection of outcrossing 

and seed purity for the LSU AgCenter Rice Breeding Project. 

 

 xii



 

CHAPTER 1 GENERAL INTRODUCTION 

1.1 Association Mapping for Complex Traits 

Modern genomic research through DNA sequencing efforts has laid the foundation to 

determine the role of selected genes that affect human health and economic productivity in plants 

and animals. Early efforts in genomics focused on traits governed by simple inheritance via one 

or two dominant nuclear genes (Botstein and Risch, 2003). However, many important life-

history and fecundity characteristics in both humans and plants are controlled primarily by 

multiple genes that interact in varying degrees with the environment. A major effort for 

discovery of genes affecting human health has focused on development of a “haplotype map” 

(http://www.hapmap.org) that defines inherited blocks of molecular markers or haplotypes across 

the genome. Similar strategies have been reported recently using candidate genes in plants 

(Remington et al., 2001; Thornsberry et al., 2001; Olsen et al., 2004). Linkage disequilibrium 

(LD) mapping is used in both instances as the tool of choice to detect functional associations 

between haplotypes and selected traits of interest (Flint-Garcia et al., 2003). However, the LD 

strategy may not adequately account for variations in selection pressure, population structure, 

recombination rate and mating pattern that ultimately gave rise to high rates of false positives 

and lack of reproducibility across different populations (Weiss and Terwilliger, 2000; Terwilliger 

et al., 2002; Page et al., 2003; Pennisi, 2003). However, no consensus has been reached on the 

optimal approach for mapping complex traits (Risch, 2000; Botstein and Risch, 2003).  

Mcharo et al. (2004) and Zhang et al. (2005) demonstrated the potential of Discriminant 

Analysis (DA), a multivariate statistical tool, as a possible alternative to LD association mapping 

technique in plants. Zhang et al. (2005) identified potential makers for 12 different agronomic 

traits using the molecular and phenotypic data of a collection of 218 diverse rice lines. The new 
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DA-selected markers were found to be mapped within or near traditional Quantitative Trait Loci 

(QTL) on the Cornell 2001 map (www.gramene.org). However, the results presented in this 

study were based on the phenotypic data of the plant material that was not evaluated in multiple 

environments. Hence, the potential of DA procedure to identify marker-trait associations in a 

narrow germplasm base rice collection and grown in multiple environments must be 

investigated.  

Yu et al. (2006) proposed the mixed model procedure to account for spurious associations 

generated by population structure and familial relationships. Sucessful application of the mixed 

model procedure as an association genetic technique for candidate marker/gene identification 

was demonstrated in Maize (Yu et al., 2006), barley (Rostoks et al., 2006) and potato (Malosetti 

et al., 2007). However, Parisseaux and Bernardo (2004) argued that the mixed model analysis 

was primarily useful in identifying markers associated with triats with large effects and candidate 

gene discovery. Complex triat association mapping generally involves simultaneous use of more 

than one marker each explaining a portion of the variaion with in the trait. In this context, use of 

multiple regresson technique might be a good choice, as it facilitates several methods of 

selection of variables that can yield an optimal model (a combination of marker effects) with 

highest predictability (R2 value). In addition, the inclusion of epistatic interactions occurring 

between alleles in QTL studies and association studies was emphasized by a number of rice 

researchers (Cao et al., 2001; Liao et al., 2001; Yu et al., 2002; Mei et al., 2003; Cui, 2005; Fan 

et al., 2005; Cui et al., 2006; Wan et al., 2006).  

1.2 Successes and Challenges for Rice Breeding and Genomics Research 

Rice is one of the major agricultural commodities in Louisiana with nearly 540,000 acres 

planted in 2003 (Childs, 2003) producing an estimated farm gate value of ~ $198,000,000 
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(http://www.lsuagcenter.com/agsummary/progressreport.aspx). Rice is also the primary staple 

food for nearly half of the world’s population, thus there is a need for increasing production to 

fulfill the needs of an exploding global population. It is estimated that by the year 2025 nearly 4 

billion, mostly poor, will consume rice as a basic food (http://www.knowledge 

bank.irri.org/factsheets/default.htm). In contrast to the world outlook, the U.S. rice industry 

experienced a reduction of 28.5 million cwt in milled rice exports in 2003 (Childs, 2004), and 

much of this reduction was due to milling quality of the rice grains. Thus, efforts to increase the 

rice grain yield and quality through genomics and breeding programs assume greater significance 

(Goff et al., 2004) that will ultimately benefit Louisiana and U.S. rice farmers. 

Because milling yield and other complex characters pose a formidable challenge to rapid 

varietal development, there has been a growing emphasis on marker aided selection (MAS) to 

complement rice improvement programs. Apart from phenotypic data, MAS requires the 

identification of dependable molecular marker systems, generation or exploitation of variation 

within the crop of interest using DNA-based markers, and a means to link markers with 

economically important traits.  

 Public U.S. rice breeding programs from five rice-growing states (AR, LA, MS, MO and 

TX) participate annually in the cooperative Uniform Rice Nursery (URN). Each year a set of 200 

elite rice inbred lines representing potential new varieties are evaluated in each state for plant 

height, maturity, grain yield, milling yield, and percent amylose content. Phenotypic data from 

these trials represent a valuable database from which to identify marker-trait associations for 

MAS and breeding programs in each of the participating states.  

Aside from the practical aspects, rice is considered a model for genomic research in 

cereal grasses due to its relatively small genome size (~ 430 Mbp), diploid pairing, ability to take 
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up and express foreign genes, and the existence of large genetic stock centers in the U.S., Asia, 

Africa, and South America. These desirable attributes as a model plant and important food crop 

has led to the creation in 1997 of the International Rice Genomic Sequencing Project (IRGSP) 

(http://rgp.dna.affrc. go.jp /IRGSP/index.html) that produced a draft sequence of the japonica 

rice genome in 2002 which continues to post updates and progess reports on their website. Phase 

3 sequences of chromosomes 1, 4, and 10 have been completed by IRGSP. The Beijing 

Genomics Institute in China and its collaborators have released a draft sequence of the 

corresponding indica genome including comparative single nucleotide polymorphism (SNP), 

complementary DNA (cDNA) and other data between the two subspecies (http://rise. genomics 

.org .cn/rice2 /index .jsp). In the U.S., the Rice Genome Project of The Institute of Genomic 

Research (TIGR; www.tigr.org) has contributed ~ 55 Mbp of DNA sequence to public databases 

and posted a tentative assembly of all 12 chromosomes (www.tigr.org). The Gramene website 

(www.gramene.org) serves as an information source for > 2000 mapped rice simple sequence 

repeat (SSR) markers, numerous annotated QTLs for different traits, comparative maps, and 

mutants.  

International efforts to sequence the rice genome have laid the foundation to determine 

the location and function of genes for both basic and applied research interests. Certain genes 

with large effects in rice such as Hd1 controlling for head rice (Yano et al., 2000) have been 

previously identified by positional cloning strategies, however, no one general approach to 

identifying genes that govern complex quantitative traits with moderate or small effects has been 

established. The data mining methods and results obtained during the proposed research will not 

only contribute to rice genomics in general, but also will complement other approaches such as 

microarray technology, proteomics, gene knockout studies, and RNAi-mediated gene silencing. 
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This will be accomplished by rapid identification of candidate markers and genes for evaluation 

and confirmation via modern technologies.  

1.3 Single Nucleotide Polymorphisms (SNPs) in the Rice Waxy and Alk Loci 

There are five basic types of DNA-based marker systems that include restricted fragment 

length plymorphisms (RFLPs), random amplification polymorphic differences (RAPDs), 

amplified fragment length plymorphisms (AFLPs), microsatellite or SSR markers and SNPs. 

Among these the SNP markers can maximally detect and exploit the variation between any two 

individuals of a given species. There are many SNPs reported in cereal crops such as rice, barley, 

maize etc. (Issiki et al., 1998; Bundock et al., 2004; Till et al., 2004) and their potential utility in 

plant functional genomics has been reported (Henikoff et al., 2003; Feltus et al., 2004). A 

genome-wide SNP identification effort has recently been published from two publicly available 

indica and japonica genome sequences (Feltus et al., 2004; Shen et al., 2004). Although 

additional research is needed, the SNP databases should prove invaluable for identifying 

polymorphisms in selected loci.  

The amylose content of rice is mainly responsible for eating and cooking quality and has 

been reported to be governed primarily by the waxy (Wx) locus (Zhou et al., 2003; Bao et al., 

2004; Yakanama et al., 2004). Two alleles at this locus (Wxa and Wxb) differ by a SNP at the first 

exon-intron donor splice site junction (Bao et al., 2004; Yamanaka et al., 2004). The Wxa allele 

(AGGT) was shown to be predominant in non-waxy indica cultivars, whereas the Wxb allele 

(AGTT) was common to the non-waxy japonica varieties (Issiki et al., 1998; Yamanaka et al., 

2004). Amylose content was also found to be associated with the alk (alkali-spreading score, an 

indicator of the temperature at which the rice grain becomes gelatinous during cooking 

(McKenzie et al., 1983; Sano 1984) locus on chromosome 6. In addition, two SNP markers in 
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exon 8 of the alk gene have been characterized and found to be associated with percent amylose 

content (Fjellstrom et al., 2004).  

1.4 Ecotilling via the CEL 1 Assay 

Genetic variation can be generated by saturated mutagenesis (McCallum et al., 2000, 

Sallaud et al., 2003, Till et al., 2003, Henikoff et al., 2004) or exploited by natural existing 

variation in a population by the “Ecotilling” procedure (Comai et al., 2004). Ecotilling involves 

the identification of single or multiple nucleotide differences among a given set of plant material 

against a reference line. SNPs are particularly useful in studies dealing with narrow germplasm 

such as those in U.S. rice breeding programs. There are many tools available for the 

identification and validation of SNPs, but most are laborious, involving aligning of multiple 

sequences (cDNAs, ESTs or direct sequence of candidate genes), or using various homology 

search algorithms. Most SNP validation techniques are based on the polymerase chain reaction 

(PCR) that are combined with the use of costly equipment and chemicals (Pacey-Miller et al., 

2003; Schmid et al., 2003). These validation techniques also require tedious primer designing 

and optimization steps. The CEL 1 endonuclease identifies potential SNPs via in vitro digestion 

of heteroduplex, double-stranded DNA molecules at the mismatch positions (Oleykowski et al., 

1988; Till et al., 2004). SNP polymorphisms are detected by gel-based systems that reveal size 

differences between the reference and candidate fragments. The CEL 1 assay is a rapid, multi-

allele detecting and semi high-throughput fine mapping technique (Comai et al., 2004). Utility of 

the CEL 1 nuclease assay in Arabidopsis thaliana was demonstrated by Colbert et al. (2001) and 

Comai et al. (2004), but the procedure required use of fluorescently tagged primers and an 

expensive SNP detection system. Therefore, a cost-effective alternative without involving 

expensive tagged primers and detection systems is desirable. Because the DNA sequence of the 
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rice genome of both japonica (Nipponbare) and indica (93-11) rice cultivars are publicly 

available (Sasaki et al., 2000; Yu et al., 2002), this information could be exploited for 

identification of targeted loci and design of primers for the CEL 1 assay. Two alternatives for the 

CEL 1 assays include development of a genome wide SNP map with markers distributed at a 

regular physical interval on all 12 rice chromosomes or characterization of SNPs in selected 

targeted gene/loci. The latter approach will be applied to grain yield and quality traits during the 

course of this research.  

1.5 Aromatic Rice 

 The demand for premium priced aromatic rice in countries such as the United States, 

Canada, the Middle East, Europe and Australia, identifies the growing consumer preference for 

aromatic rice (Cordeiro et al., 2000; Jin et al., 2003). Currently, traditional aromatic rice growing 

countries such as Thailand, India and Pakistan are the only major international exporters for the 

premium “Jasmine” and “basmati” rice. The aroma in “Jasmine” and “basmati” rice varieties is 

mainly due to accumulation of 2-acetyl-1-pyrroline in leaf and seed tissues of the plant (Buttery 

et al., 1983). Bradbury et al. (2005a) reported that a stretch of mutations (a SNP haplotype) in the 

exon7 of the fgr gene, which encodes for the betaine aldehyde dehydrogenase (BAD2) enzyme, 

are responsible for the aroma in rice. During the transcription of the BAD2 gene, this haplotype 

would encode for a premature stop signal resulting in the production of a non-functional 

truncated BAD2 enzyme (Bradbury et al., 2005a). This truncated BAD2 enzyme is deficient in 

three conserved protein motifs needed for its substrate binding activity and subsequently results 

in the accumulation of 2-acetyl-1-pyrroline (Bradbury et al., 2005a). Thus, detection of the 

haplotype alleles in the BAD2 gene would enable discrimination between aromatic and non-

aromatic rice and thus assist marker-assisted introgression of the aromatic trait into local rice  

 7



 

varieties.  

 The aromatic rice breeding program at the Rice Research Station, Crowley, Louisiana, 

primarily involves cooking rice grains for distinguishing the aromatic rice from non-aromatic 

rice (Sha et al., 2000). However, the use of this method is limited by the need for technical 

expertise and is low throughput. Recently, Bradbury et al. (2005b) demonstrated the utility of 

allele-specific PCR amplification assay for the BAD2 gene in Australian temperate japonica 

aromatic and non-aromatic germplasm. However, there is a need for validating the use of BAD2 

gene haplotype based markers in a marker-assisted selection program for US aromatic rice 

varieties which are mainly derived from topical japonica and indica germplasm.  

1.6 Red Rice Weed Control by ALS-inhibiting Herbicides  

Red rice (Oryza sativa L.) is the most problematic weed in rice fields causing significant 

yield losses in the U.S. (Gealy et al., 2003). At the seedling stage this weed is virtually 

indistinguishable from commercial white rice, and control of the red rice weed in rice fields has 

been until recently, a near impossible task (Gealy et al., 2003). Nevertheless, herbicides such as 

imidazolinones (imazethapyr) that inhibit acetohydroxy synthase (AHAS) or acetolactate 

synthase (ALS) activity can provide effective control of this noxious weed in rice fields (Steele 

et al., 2002). AHAS/ALS is one of the key enzymes in the biosynthetic pathway of the branched 

chain amino acids and is encoded by the acetolactate synthase ALS gene (Tan et al., 2006). 

Commercial Clearfield rice varieties were developed by inducing two mutations in the ALS gene 

at the 1880 bp and 1883 bp positions, causing S653D and G654E substitutions in the normal or 

wild-type ALS gene product (Tan et al., 2005; Tan et al., 2006). The altered ALS enzyme of the 

Clearfield rice varieties fails to bind with imidazolinone herbicides, thus conferring resistance 

(Tan et al., 2005; Tan et al., 2006).  
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Nearly 30% of the total rice cultivated area in Louisiana was planted with the 

imazethapyr-resistant CL161 variety in 2005 (Gealy et al., 2006). However, increasing 

dependency on imazethapyr use and the possible gene-flow of herbicide resistance gene to red 

rice via outcrossing are two major concerns pertaining to Clearfield rice cultivation. The red rice 

genome has 12 chromosomes as that of cultivated rice and due to this genetic similarity, a high 

outcrossing frequency of up to 0.17% between red rice and rice has been observed by (Zhang et 

al., 2005). Furthermore, many examples of rice x red rice hybridization events (Chen et al., 2004; 

Messeguer et al., 2004; Song et al., 2004; Wang et al., 2006) and transfer of herbicide resistance 

from cultivated rice to red rice biotypes (Estorminos et al., 2002 ; Madsen et al., 2002; Gealy et 

al., 2003) have been reported. Considering the evidence of crop x wild hybridization and gene-

flow between rice and red rice, there is an urgent need for the development of tools which can 

monitor the outcrossing events. DNA based herbicide resistance assay techniques have received 

more emphasis than conventional herbicide resistance assays such as pollen germination, leaf 

disc and AHAS enzyme activity assays (Corbett and Tardiff, 2006). However, application of 

DNA based techniques for assaying imazethapyr resistance in Clearfield rice has not been 

demonstrated. Genotyping of S653D and G654E SNP alleles in Clearfield x red rice hybrids 

through allele-specific PCR could provide direct evidence for the ALS gene transfer from 

Clearfield rice to red rice.  

1.7 Research Objectives 

(1) Evaluate the potential of  Discriminate Analysis (DA) procedure to detect informative 

molecular markers associated with plant height, grain yield and quality traits (percent 

amylose content, percent head rice and percent total rice) in the 2000 URN inbred 

lines.  
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(2) Create and evaluate a mixed model-regression procedure that identifies main and 

epistatic effects by standard hypothesis testing and Bayesian information criteria in a 

multivariate format for agronomic traits evaluated in the 2000 URN trial  

(3) Develop a simple, rapid, efficient, and cost-effective alternative to standard Ecotilling 

for SNP discovery and genotyping in rice that can be easily adapted to small or 

medium-sized laboratories. 

(4) Develop and evaluate PCR-based assays for high-throughput SNP screening of 

aromatic rice. 

(5) Develop and evaluate PCR-based assays for high-throughput SNP screening of 

imazethapyr herbicide resistant rice. 
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CHAPTER 2 IDENTIFICATION OF MOLECULAR MARKERS ASSOCIATED  
WITH GRAIN YIELD, QUALITY AND PLANT HEIGHT IN RICE  

USING DISCRIMINANT ANALYSIS 
 
2.1 Introduction 

2.1.1 Mapping of Quantitative Trait Loci (QTL) 

The majority of traits related to fecundity and adaptation in plants and animals are 

governed by multiple genes that interact in varying degrees to changes in the environment that 

produce a continuous phenotypic response. For QTL mapping in plants, the initial task typically 

requires screening potential parents for polymorphic molecular markers and the subsequent 

production of segregating or recombinant inbred populations. Loci or intervals are then defined 

on pre-existing genetic maps that are linked with a trait of interest by single-factor ANOVA 

(Jermstad et al., 2003), regression (Wang et al., 2004), interval (Lincoln et al., 1992) or other 

standard mapping procedures. For complex quantitative traits in rice, ≥ 300 recombinant inbred 

lines are generally evaluated that require three to four years to develop. Moreover, relatively few 

meiotic events in F2 or recombinant inbred lines limit the power of linkage analysis to effectively 

dissect traits governed by multiple loci, and examination of genetic diversity in diploids is 

restricted to only two alleles segregating per locus (Flint-Garcia et al., 2003). Near-isogenic lines 

have been used to identify and clone genes with large effect in rice (Yano et al., 2000) and 

Arabidopsis thaliana (Johanson et al., 2000) related to flowering, but this approach is time 

consuming and may not be efficient for complex loci with moderate or small effects. Production 

of large segregating or intermating populations can promote recombination, but substantial 

investments in time, labor, and financial resources over multiple generations are required. 

2.1.2 Association/ LD Mapping in Humans 

  Due to the limited power and resolution of traditional QTL mapping research, association  
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or LD mapping was established based on the nonrandom association of different alleles across 

two or more loci in a population (Hill and Robertson, 1968). Association mapping reportedly 

enjoys increased precision and resolution over interval or QTL methods by capturing information 

contained in multiple recombination events over time in natural or selected populations (Ewens 

and Spielman, 2001). LD is traditionally measured between pairs of loci to calculate differences 

in observed and expected haplotype frequencies (Garcia et al., 2003). This approach has been 

used extensively in human studies for the discovery of markers and genotypes that underlie 

simple Mendelian traits with subsequent fine mapping and positional cloning of genes for certain 

disorders such as cystic fibrosis (Kerem et al., 1989), Alzheimer’s disease (Martin et al., 2000), 

psoriasis (Trembeth et al., 1997), and colorectal cancer (Nishisho et al., 1991; Wooster et al., 

1995). However, the majority of human diseases such as diabetes, stroke, heart disease, 

depression, and asthma are affected by multiple genes and environmental conditions. To identify 

those factors affecting complex human disorders and other traits, the International HAPMAP 

project was created in 2002 as an international collaboration among scientists in six countries 

including the U.S. (http://www.hapmap. org/abouthapmap.html.en). This project aims to identify 

single nucleotide polymorphism (SNP) loci inherited together in small chromosomal blocks or 

haplotypes across the genome to facilitate LD approaches to gene identification and 

characterization. However, a general lack of results and reproducibility has led some scientists to 

question this approach, the future impact of the HAPMAP project and the LD methodology in 

general (Couzin, 2002; Hirschhorn et al., 2002; Trikalinos et al., 2004).  

2.1.3 LD Studies in Plants 

 It is important to emphasize that LD mapping research in plants has used the same 

general methods described above for human populations. Association genetic mapping in plants 
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has to date been conducted primarily in maize and Arabidopsis thaliana. LD values and patterns 

in maize were found to vary substantially among populations with different selection and 

developmental histories (Labate et al., 2000; Tenaillon et al., 2001; Clark et al., 2004). Rapid 

decline in LD was observed within a 1500 bp intragenic region of four candidate genes for height 

and flowering among a diverse collection of maize inbred lines (Remington et al., 2001; 

Thornsberry et al., 2001). SSR markers produced larger LD regions than SNP markers across the 

genome. Using elite maize inbred lines, Ching et al. (2002) found, in contrast to diverse 

germplasm, little or no reduction in LD values over a 300-500 bp range for 18 candidate genes. 

A. thaliana as a self pollinating species produced allelic associations over a much greater region 

(~ 250 kb) than in outcrossing species such as maize (Hagenblad and Nordborg, 2002; Nordborg 

et al., 2002). LD mapping was used recently to identify a serine substitution in the candidate 

CRY2 photoperiod receptor gene in A. thaliana, presumably responsible for the A(S) early 

flowering phenotype (Olsen et al., 2004). 

Garris et al. (2003) characterized LD in the candidate region of xa5, a recessive gene 

conferring race-specific resistance to bacterial blight disease in rice. Thirteen segments from a 

70-kb candidate region in 114 landrace accessions were sequenced along with five additional 

segments from an adjacent 45-kb region in resistant accessions. The results showed significant 

LD up to 100 kb between sites that suggested genome-wide scanning may be feasible for 

markers that are associated with simple and complex traits. The candidate gene approach was 

recently employed in LD mapping of QTLs for disease and maturity traits in tetraploid potato 

(Gebhardt et al., 2004; Simko et al., 2004). 

2.1.4 Preliminary Studies using Discriminant Analysis for Marker-trait Associations in 
Rice 

Discriminant Analysis (DA) is a multivariate statistical procedure first developed by  
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Fisher (1936) that involves the creation of two “training samples” derived from, in the case of 

the proposed research, selected inbred or recombinant lines with contrasting phenotypic values. 

From DNA profiles of all lines included in the experiment, markers are identified by DA that 

best differentiate between the training samples. An error rate, referred to as “percent correct 

classification”, is calculated to measure ability of the markers to correctly assign individual lines 

to the training samples. With high levels of correct classification, an association between 

marker(s) and phenotype or plant trait is inferred.  

DA has been used in plant research for diversity analysis of wild emmer wheat (Fahima 

et al., 2002), identification of drought-tolerant Kentucky bluegrass cultivars using morphological 

criteria (Ebdon et al., 1998) and to estimate position and effects of QTLs in simulated full and 

half-sib families (Gilbert and Le Roy, 2003). Microarray expression profiling studies have 

utilized DA to identify genes and gene clusters associated with human diseases (Mendez et al., 

2002; DePrimo et al., 2003; Kari et al., 2003; Musumarra et al., 2003) and to detect protein 

coding regions in genomic sequences (Zhang, 1998; Zhang et al., 2002). Finally, the DA 

procedures was recently used to accurately assign unrelated sweet potato clones using AFLP 

markers to groups defined by high and low dry matter content (Mcharo et al., 2004). 

The potential of DA has been investigated, along with complementary procedures 

described in this proposal, to identify SSR markers putatively associated with grain yield and 

quality characteristics in rice (Zhang et al., 2005; Kadaru et al., unpublished results). In the first 

of two cooperative studies with Drs. Xu and McCouch of Cornell University, a total of 218 U.S. 

and Asian inbred lines were grown in single-row plots in 1996 and 1997 near Alvin, TX. Three 

measurements per line were collected for 12 traits that included 1000 grain weight, tiller number, 

grain length-width ratio, and all known components of yield and grain quality. 
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DNA profiles were obtained for all 218 lines using 60 SSR and 114 RFLP markers 

selected randomly over the rice genome by Drs. Xu and McCouch. To evaluate DA for marker-

trait associations, the following procedures were carried out (1) Transform phenotypic data if 

necessary to normal distribution by log, square root or other methods (2) Use 1, 2, or 3 standard 

deviations of trait distribution to create user-defined “training samples”. For molecular data 

analysis: (1) Transform raw marker data to identify individual alleles (2) Fill in missing marker 

data using the Multiple Imputation procedure (SAS Institute, ver. 9.0) (3) Perform molecular 

analysis of variance (AMOVA, Excoffier et al. 1992) of marker profiles to test differences 

between training samples using Arlequin software (Schneider et al., 2002) (4) Identify potential 

population structure by genetic distance (www.powermarker.net) or model-based 

(www.stats.ox.ac.uk/ ~pritch/home.html) methods (5) Perform parametric Discriminant Analysis 

(PROC STEPDISC, SAS Institute, ver. 9.0) to identify marker(s) that best differentiate training 

samples within each subpopulation (6) Use “nonparametric method” within DISCRIM procedure 

(SAS Institute, ver. 9.0) to perform “K-nearest-neighbor” classification of inbred lines into pre-

defined groups) and (7) Calculate percent correct classification with “crossvalidate” option 

within PROC DISCRIM procedure (SAS Institute, ver. 9.0). SSR and RFLP markers were 

located on the Rice-Cornell SSR 2001-1 and Rice-Cornell RFLP 2001-2 genetic maps 

(www.gramene.org).  

However, to perform the DA analysis Zhang et al. (2005) have used a rice collection that 

was evaluated at a single location and had a wide germplasm base. In this scenario, DA 

successfully identified markers that can distinguish between high and low classes of 12 different 

agronomic traits. Therefore, the potential of DA procedure to identify marker-trait associations in 
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a narrow germplasm base rice collection, which were also evaluated in multiple environments, 

was investigated in this current study. 

2.2 Materials and Methods 

2.2.1 Plant Material  

The first plant material consisted of 192 elite rice inbred lines that were evaluated in five 

rice-growing states (AR, LA, MS, MO and TX) during the year 2000 under the state cooperative 

Uniform Rice Nursery (URN) trials. Details for the second set of plant material consisting of 57 

diverse rice lines are given in section 4.2.1. 

2.2.2 Phenotypic Data 

The phenotypic data consisted of observations collected in the year 2000 for the 

following traits in 192 elite URN lines across five US states (AR, LA, MS, MO and TX). Rice 

grain yield (measured in pounds / acre), percent amylose content (proportion of amylose to 

amylopectin content of a rice grain), percent total rice (ratio of weights of hulled whole and 

broken rice grains to that of total de-hulled rice grain sample, expressed as a percentage) and 

percent head rice (percentage ratio of milled whole rice grains to that of total de-hulled rice 

grains). The data for percent amylose content were obtained from the AR and TX locations.  

2.2.3 Molecular Data 

 The molecular data consisted of SSR marker profiles for these same lines using 95 SSR 

primer sets, provided by Drs. Xu and McCouch, Plant Breeding Department, Cornell University. 

The marker genotypic data were converted into allele data containing 579 alleles with an average 

of six alleles/locus. Heterozygote individuals were treated as missing data. Missing data across 

these 579 alleles were imputed by using the multiple imputations procedure (PROC Mi) in SAS 

software v. 9.1.0. A total of five separate imputations were computed for the 579 allele data, and   
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the five datasets sets were used for the subsequent DA analysis.  

2.3 Results and Discussion 

2.3.1 Percent Amylose Content  

The rice waxy locus is well characterized with known DNA sequence and SNP markers 

(Olsen and Purugganan, 2002; Fellstom et al., 2004). If the DA method described in this 

proposal exhibits sufficient power and precision, successful identification of markers associated 

with percent amylose content should be possible. A total of 192 US lines from the 2000 AR and 

TX URN databases were used to detect potential SSR marker-amylose content associations. 

Using the DA procedure, the well known RM190 marker within the waxy gene (Chen et al., 

2004), along with three additional loci (RM231, RM25 and RM225) were selected by DA as 

genetic factors contributing to percent amylose content in the 2000 URN germplasm for AR and 

TX (Table 2.1). The RM190, RM231, RM25 and RM225 loci have been previously mapped to 

chromosome 6 (6.7 cM), chromosome 3 (15.7 cM), chromosome 8 (52.2 cM) and chromosome 6 

(26.2 cM), respectively, on the Cornell Rice SSR 2001 map (www.gramene.org). The DA-

selected locus RM225 was found within a reported Qualitative Trait Locus (QTL) for amylose 

(Septiningish et al., 2002; 0-33.6cM on Cornell Rice SSR 2001 map) and also within the amy6 

QTL (Aluko et al., 2004; 6.7-37.0cM on Cornell Rice SSR 2001 map). Thus, these newly 

reported SSR DA markers could be potential candidate loci for percent amylose content. 

As a further validation, the DA selected markers were evaluated with an additional set of 

plant material consisting of 57 U.S. and Asian inbred lines with known percent amylose content. 

Markers RM25, RM225, RM231 and RM190 from our previous DA analysis were selected for 

fingerprinting of the above lines. SSR profiles were generated for all the 57 lines (Table 2.2) and  

regressed with their percent amylose content data. Examples of SSR profiles generated for 38 

lines are shown in Figure 2.1. 
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Table 2.1 Discriminant Analysis -selected markers for percent amylose content 

State  Arkansas Texas Combined 

DA markers / 
Individual R2 value1 

15% Training Sample 
 

RM225_132_24/0.5859 
RM190_122_5/0.5054 
RM510_119_2/0.374 
RM416_113_3/0.0752 
RM418_280_4/0.0554 
RM72_159_3/0.0363 
RM340_117_2/0.0363 
RM162_205_3/0.0339 
RM273_209_3/0.0339 
RM7_167_2/0.0178 
RM3912_205_6/0.0178 
RM231_193_7/0.0178 
RM239_141_1/0.0178 
RM3912_207_7/0.0178 
RM16_217_9/0.0178 
RM481_208_16/0.0178 
RM109_100_120.0167 
RM169_168_30.0167 
RM317_161_6/0.0044 
RM482_186_3/0.0044 

RM190_122_5/0.586 
RM437_252_1/0.2365 
RM234_135_2/0.2094 
RM214_154_8/0.1489 
RM3430_211_6/0.113 
RM422_387_8/0.1084 
RM475_185_1/0.0928 
RM190_120_4/0.0782 
RM481_171_11/0.0729 
RM1359_166_7/0.0377 
RM437_274_5/0.0374 
RM623_348_4/0.0185 
RM7_167_2/0.0185 
RM214_142_5/0.0185 
RM149_245_6/0.0176 
RM279_162_5/0.0176 
RM162_205_3/0.0172 
RM481_156_6/0.0065 
RM72_189_8/0.0031 
 

RM225_132_2/0.581 
RM190_122_5/0.5676 
RM190_120_4/0.1154 
RM72_159_3/0.0357 
RM162_205_3/0.0357 
RM229_127_5/0.0357 
RM109_100_12/0.0175 
RM7_167_2/0.0175 
RM21_153_8/0.0175 

Combined R2 value2 0.6055 0.5829 0.6026 
% Correct Classification3 100 100 95.55 

DA markers /R2 value1 

5% Training Sample 

RM231_181_2/0.8182
RM21_155_9/0.0431 
 

RM25_139_2/0.6481 
RM317_161_6/0.1307 
 

RM190_122_5/0.6667 
RM317_161_6/0.1111 
 

Combined R2 value2 0.3607 0.1407 0.1575 
% Correct Classification3 100 100 100 

 

1 Individual R2 values calculated from Pearson correlation coefficient; 2 Combined R2 value calculated from multiple 
regression (PROC REG, SAS Institure, ver. 9.0); 3 Percent correct classification were calculated by leave-one-out 
validation with in the training samples; 4 The first part of the DA marker denotes the SSR marker, the second part 
represents the observed allele size in bp and the third part stands for the allele number of the SSR locus. 
All the sets of markers identified by DA procedure are reordered based on their individual R2 values, not by relative 
contribution to the discriminant rule. Individual R2 values are calculated for respective the Training samples only 
whereas the Combined R2 values are calculated considering all individuals. 

 
Table 2.2 Summary of percent amylose content and DA-selected SSR marker allele sizes for 57 
rice lines 
 

Accession NPGS/GRIN 
Number 

 
Origin 
 

Amylose 
Classa RM25 d RM190d RM225d RM231d

Bolivar PI 628791 USA High 142 e 107 e 119 e 181 e

Cocodrie PI 6063631 USA High 144 125 133 192 
Cheniere NDb USA High 144 123 133 192 
Cypress PI 9700184 USA Intermediate 144 123 133 192 
Dixiebelle  PI 595900 USA High 140 107 133 181 
Fortuna PI 275448 USA Low 140 119 128 192 
Fortuna Moredo PI 431075 USA NDb 140 121 118 187 
Francis PI 632447 USA Intermediate 144 123 134 181 
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Table 2.2 (continued) 

Accession NPGS/GRIN 
Number 

 
Origin 
 

Amylose 
Classa RM25 d RM190d RM225d RM231d

Golden Steve PI 612579 USA Low 137 119 128 185 
Jackson  PI 572412 USA Intermediate 144 123 130 181 
J-85 PI 595927 USA Low 142 118 138 185 
Kokubelle PI 612581 USA (Intermediate)c 144 123 135 181 
Lacrosse PI 389966 USA Low 140 123 138 181 
LaGrue  PI 568891  USA Intermediate 144 123 135 181 
L-205 PI 608664 USA High 144 107 137 181 
Maxwell PI 612582 USA (Low)c 140 119 129 192 
Millie  PI 538354 USA Intermediate 144 125 140 181 
Neches PI 633972 USA Glutinous 144 125 137 181 
Sierra  PI 633623 USA High 144 108 137 181 
Tor Tora PI 431150 USA ND 144 115 140 181 
Tebonnet PI 487195 USA Intermediate 144 104 140 187 
Tsuri Mai PI 612580 USA ND 140 123 130 189 
TX 2172 TX 2172 USA Glutinous 148 121 132 183 
TX 3043 TX 3043 USA High 140 109 138 181 
TX 4175 TX 4175 USA High 140 109 138 181 
Waxy M101 PI 506223 USA Glutinous 140 125 132 189 
Wells PI 612439 USA Intermediate 144 115 142 181 
EPAGRI 106 ND Brazil ND 140 111 137 181 
Gui Chow  ND  China High 142 109 123 185 
Hsuan Jha PI 160829 China High 142 109 140 185 
E Che Goo PI 389570 China High 144 109 123 185 
TeQing PI 536047 China High 144 109 124 192 
ZHE733  PI 629016 China High 142 109 123 185 
Nipponbare PI 514663 Japan Low 140 123 135 192 
Yuukara PI 341937 Japan Low 140 123 137 192 
Chong Kuc Tae CI 12284 S Korea Glutinous 140 121 132 181 
Dawebyan PI 222405 Myanmar High 142 113 143 187 
HB 1 ND Philippines Glutinous 133 121 145 183 
IR 29 PI 393986 Philippines Glutinous 144 121 143 185 
IR 532-1-33  PI 388332 Philippines High 144 107 123 168 
IR 1561-243-5-6 PI 385340 Philippines High 144 107 142 168 
Chin Feng Hsuch PI 389048 Taiwan High 142 109 140 183 
Hung Chu Shien PI 389073 Taiwan High 142 109 142 192 
Taipei Woo Co PI 294397 Taiwan High 144 109 140 181 
Dhariyal PI 297569 Bangladesh High 130 107 123 185 
IR 36 PI 408586 Philippines High 144 109 140 185 
ARC 10764 PI 373576 India High 130 104 124 185 
Basmati PI 173923 India Intermediate 140 118 143 181 
Ratna PI 413980 India High 142 107 124 171 
Achhame PI 400028 Nepal Intermediate 144 119 124 189 
Kakani2 PI 400020 Nepal Intermediate 144 118 124 189 
Fine Mushkan PI 385765 Pakistan High 127 121 124 185 
Hansraj PI 385815 Pakistan High 127 111 124 185 
Palman PI 385814 Pakistan High 127 104 124 185 
Sufaida PI 385819 Pakistan High 127 109 124 185 
Mad/S PI 385323 Rwanda High 142 109 140 192 
a Amylose class where apparent amylose content falls into the following categories: Glutinous = 0 to 5%, Low = 5 to 
19%, Intermediate = 19 to 23%, and High > 23%. b ND = no data available. c Data as provided on US Plant Variety 
Protection description of accession. d Denotes the name of the SSR marker. e Represents the obsereved band size in 
bp for the SSR locus. 
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Figure 1 Resolving of RM190, RM225 and RM25 SSR marker PCR amplified products on 6% 
non-denature PAGE by multiplex-loading. M1 = first loading of Sigma PCR 20 bp low ladder, 
M2, M3 and M4 = subsequent 3 loadings of Sigma PCR 20 bp low ladder at 60 minute interval.  

 

Out of 45 observed alleles from RM190, RM25, RM225 and RM231 markers, 38 alleles 

explained 89.9% (Pearson Correlation coefficient R2 = 0.899; P value of <0.001) of the observed 

variation in percent amylose content among the 57 lines (Table 2.2). The best multiple regression 

models with dependent variables ranging from 1-10 along with individual adjusted R2 values 

were determined (Table 2.3). The best single independent allele that could explain maximum 

variation was RM225_132 (Adj-R2 = 0.2477, P value = <0.0001). The RM231 locus was also 

identified in the AR and TX germplasm as contributing to percent amylose content (Table 2.1, 

Arkansas lines, 5% training sample).  

2.3.2 DA Analysis for Percent Head Rice, Percent Total Rice, Plant Height, Heading Date 
and Grain Yield 
 

The potential of Discriminate Analysis (DA) as an association genetics tool to select 

markers in adapted US rice germplasm was explored. All the steps required for DA procedure 

were performed from data of 192 elite US inbred lines planted in year 2000 and candidate SSR  
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Table 2.3 Multiple regression Adj-R2 values obtained for the DA-selected alleles associated with 
percent amylose content among 57 rice lines using stepwise selection from 1 to 10 variable 
models 
 

No. of 
alleles in 
the model 

Adj-R2

value 
Calculated 

p-value Order of the DA-selected marker alleles in the model 

1 0.2477 <.0001 Intercept RM225_132 
2 0.3309 <.0001 Intercept RM225_132 RM225_145 
3 0.4466 <.0001 Intercept RM190_109 RM225_132 RM225_145 
4 0.5552 <.0001 Intercept RM190_107 RM190_109 RM225_132 

RM225_145 
5 0.5999 <.0001 Intercept RM190_107 RM190_109 RM225_132 

RM225_145 RM25_127 
6 0.6291 <.0001 Intercept RM190_107 RM190_109 RM225_132 

RM225_145 RM25_127 RM25_140 
7 0.6581 <.0001 Intercept RM190_107 RM190_109 RM225_132 

RM225_133 RM225_145 RM25_127 RM25_140 
8 0.6773 <.0001 Intercept RM190_107 RM190_108 RM190_109 

RM225_132 RM225_133 RM225_145 RM25_127 
RM25_140 

9 0.7051 <.0001 Intercept RM190_107 RM190_108 RM190_109 
RM225_132 RM225_133 RM225_137 RM225_145 
RM25_127 RM25_140 

10 0.7262 <.0001 Intercept RM190_107 RM190_108 RM190_109 
RM190_113 RM225_132 RM225_133 RM225_137 
RM225_145 RM25_127 RM25_140 

 

Table 2.4 Individual R2 values for 10 best variables/alleles calculated using simple linear 
regression 
 

DA-selected 
SSR marker 

allele 
Adj-R2 p-value 

RM225_132 0.2477 <.0001 
RM25_140 0.1117 0.0083 
RM190_109 0.0994 0.0123 
RM25_142 0.0769 0.025 
RM190_121 0.0751 0.0265 
RM190_107 0.0735 0.0278 
RM225_145 0.0661 0.0353 
RM25_148 0.0661 0.0353 
RM25_133 0.0661 0.0353 
RM231_183 0.0592 0.0438 
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markers for percent head rice, percent total rice and gross yield across five states (AR, LA, MS, 

MO and TX) were identified. DA markers were identified for each trait for all the 5% training 

samples (TS), 15% TS and 30% TS. The state summaries of the DA-selected markers for 15% 

and 5% TS are given in Tables 2.5-2.10. 

DA markers produced high levels of percent correct classification and R2 values 

indicating potential value of this approach in marker-assisted selection. The DA-selected markers 

were primarily location-specific, most likely emphasizing different environment conditions 

prevailing in these four states.  

 
2.3.3 Comparison of DA and QTL results  

Many QTLs were reported in the past for the traits percent head rice, percent total rice 

(Tan et al., 2001; Mei et al., 2002; Septiningsih et al., 2003; Aluko et al., 2004) and grain yield 

(Xiao et al., 1996a; Xiao et al., 1996b; Tan et al., 1997; Li et al., 2000; Ishimaru et al., 2001; 

Zhuang et al., 2001; Cai et al., 2002; Hittalmani et al., 2002; Hua et al., 2002; Lafitte et al., 2002; 

Venuprasad et al., 2002; Xing et al., 2002; Cui et al., 2003; Hittalmani et al., 2003; Hua et al., 

2003; Ishimaru et al., 2003; Li et al., 2004). New DA markers identified for percent head rice, 

percent total rice, plant height, heading date and grain yield were compared with these traditional 

(QTL) loci with the Rice Cornell SSR 2001 genetic map (Figure 2.2, 2.3). Mapping all these 

QTLs has clearly shown the overlapping regions among the grain quality traits and yield, which 

was also evident in the DA analysis. DA markers mapped within or nearby previously reported 

QTLs emphasizing the robustness of the DA procedure (Table 2.6, 2.7). Certain DA markers 

were found distant to the reported QTLs, suggesting potential new markers for the corresponding 

traits.  
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Table 2.5 Discriminant Analysis-selected markers for percent head rice, percent total rice, plant height, heading date and grain yield 
from 192 lines of 2000 URN field trials across all five states 

Trait   
Percent Head Rice Percent Total Rice Plant Height Heading Date Grain Yield 

4RM106_287_1/0.2307 
RM341_142_4/0.2279  
RM481_156_6/0.1835  
RM437_274_5/0.105  
RM475_185_1/0.1049  
RM120_184_4/0.0684  
RM279_162_5/0.0676  
RM13_149_5/0.0316  
RM250_173_8/0.0287  DA markers / 

Individual R2 value1

15% Training Sample 
 

RM481_219_18/0.0161  

RM437_274_5/0.2465 
RM279_158_3/0.0959  
RM55_234_4/0.0769  
RM144_256_11/0.0644  
RM169_168_3/0.0514  
RM333_165_2/0.0204 

RM431_254_4/0.8556 
RM109_96_8/0.0481  
RM5_126_7/0.0308  
RM232_153_5/0.0236  
RM214_142_5/0.0151 

RM510_119_2/0.2694 
RM248_81_3/0.2593  
RM25_139_2/0.1488  
RM25_141_3/0.1335  
RM623_348_4/0.0794  
RM149_242_3/0.0781  
RM3912_195_5/0.0473  
RM333_189_8/0.0462  
RM482_189_4/0.0303  
RM214_142_5/0.0303  
RM341_139_3/0.0149  
RM475_235_5/0.0149  
RM178_115_1/0.0149  
RM333_204_11/0.0149  
RM231_187_5/0.0149  
RM184_217_3/0.0149  
RM5752_138_3/0.0024  
RM162_240_11/0.0011  
RM1167_175_3/0.0004  
RM72_189_8/0 

RM25_139_2/0.1029 
RM498_217_4/0.0756 
RM341_174_7/0.0634 
RM481_171_11/0.0517 
RM481_159_7/0.0438 
RM315_137_2/0.0376 
RM184_204_1/0.0197 
RM25_145_6/0.0195 
RM316_196_2/0.0141 
RM408_117_1/0.013 
RM1167_171_1/0.0119 
RM21_129_2/0.0094 
RM144_256_11/0.006 
RM109_94_6/0.0052 
RM169_194_5/0.0045 
RM109_99_11/0.004 
RM142_237_2/0.0032 
RM5_114_5/0.0011 
RM210_151_7/0.0005 
RM16_217_9/0.0002 

Combined R2 value2 0.2977 0.0965 0.3463 0.3549 0.2653 
% Correct Classification3 100 100 100 99.99 99.96 

DA markers / 

RM437_252_1/0.4571 
RM1189_176_2/0.102  
RM214_146_6/0.0026 

RM437_274_5/0.2465 
RM279_158_3/0.0959  
RM55_234_4/0.0769  
RM144_256_11/0.0644  

RM431_254_4/0.8264 
RM109_96_8/0.0455 

RM3912_193_4/0.0654 
RM144_253_10/0.0342 
RM273_209_3/0.0258 
RM162_236_9/0.0245 
RM341_142_4/0.0157 
RM149_241_2/0.0135 
RM181_239_1/0.0103 
RM422_385_7/0.0064 
RM333_161_1/0.0047 

RM341_142_4/0.2747 
RM437_274_5/0.2525  
RM431_250_2/0.1905  

Individual R2 value1

5% Training Sample 
RM169_168_3/0.0514  
RM333_165_2/0.0204 

RM109_100_12/0.1111 

Combined R2 value2 0.0743 0.0965 0.1168 0.2251 

1 Individual R  Pearson correlation coefficient; 2 values calculated from 2 Combined R2 value calculated from multiple regression (PROC REG, SAS Institure, ver. 
9.0); 3 Percent correct classification were calculated by leave-one-out validation with in the training samples; 4 The first part of the DA marker denotes the SSR 
marker, the second part represents the observed allele size in bp and the third part stands for the allele number of the SSR locus. All the sets of markers identified 
by DA procedure are reordered based on their individual R2 values, not by relative contribution to the discriminant rule. Individual R2 values are calculated for 
respective the Training samples only whereas the Combined R2 values are calculated considering all individuals. 

0.1766 

Combined 

% Correct Classification3 100 100 100 100 100 
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Table 2.6 Discriminant Analysis-selected markers for percent head rice, percent total rice, plant height, heading date and grain yield 
from 192 lines of 2000 URN field trials evaluated in Arkansas 

Trait   
Percent Head Rice Percent Total Rice Plant Height Heading Date Grain Yield 

DA markers / 
Individual R2 value1

15% Training Sample 

4RM250_177_10/0.202 
RM418_283_5/0.1296  
RM21_139_4/0.1011  
RM3431_150_2/0.0799  
RM149_241_2/0.0667  
RM333_165_2/0.0664  
RM234_141_3/0.0565  
RM214_146_6/0.038  
RM1189_176_2/0.0333  
RM228_117_6/0.0188  
RM144_261_13/0.0164  
RM169_172_4/0.0164  
RM109_95_7/0.0026 

RM279_160_4/0.2961 
RM16_167_1/0.1148  
RM149_240_1/0.092  
RM279_162_5/0.0842  
RM169_166_2/0.0546  
RM478_202_3/0.0229  
RM478_236_8/0.0175  
RM149_243_4/0.011  
RM403_239_1/0.0017 

RM431_254_4/0.4613 
RM5_126_7/0.0647  
RM109_96_8/0.0356  
RM229_127_5/0.0356 
RM144_261_13/0.0175 
RM284_146_3/0.0175 
RM232_153_5/0.0175 
RM109_87_2/0.0154  
RM169_164_1/0.0154 
RM214_142_5/0.0154 
RM474_275_8/0.0154 
RM1359_166_7/0.0068 
RM481_219_18/0 

RM3430_211_6/0.1904 
RM478_200_2/0.1579 
RM3912_195_5/0.0991 
RM5_128_8/0.0942  
RM162_236_9/0.0699 
RM232_141_2/0.068  
RM120_186_5/0.0579 
RM431_254_4/0.0566 
RM482_189_4/0.0447 
RM21_151_7/0.0293  
RM481_219_18/0.0293 
RM149_241_2/0.0224 
RM1189_188_7/0.0187 
RM431_242_1/0.0144 
RM7_167_2/0.0144  
RM333_204_11/0.0144 
RM3431_148_1/0.0028 
RM149_244_5/0.0016 
RM17_183_2/0.0001  
RM181_241_2/0.0001 

RM279_164_6/0.2233 
RM136_100_3/0.1557 
RM317_165_7/0.09  
RM3431_148_1/0.0842 
RM119_170_4/0.0357 
RM25_145_6/0.0347  
RM623_348_4/0.034  
RM144_253_10/0.0309 
RM234_135_2/0.0252 
RM228_117_6/0.0175 
RM190_105_1/0.006  

Combined R2 value2 0.3249 0.2806 0.351 

Arkansas 

0.3746 0.2503 
% Correct Classification3 100 100 100 100 100 

RM3912_191_3/0.264 
RM418_283_5/0.1835  
RM120_184_4/0.1173  
RM190_113_3/0.1107  
RM312_94_1/0.1107  
RM169_164_1/0.053 

RM279_160_4/0.56 
RM279_162_5/0.1316  

1 Individual R values calculated from Pearson correlation coefficient; 2 2 Combined R2 value calculated from multiple regression (PROC REG, SAS Institure, ver. 
9.0); 3 Percent correct classification were calculated by leave-one-out validation with in the training samples. 4 The first part of the DA marker denotes the SSR 
marker, the second part represents the observed allele size in bp and the third part stands for the allele number of the SSR locus. All the sets of markers identified 
by DA procedure are reordered based on their individual R2 values, not by relative contribution to the discriminant rule. Individual R2 values are calculated for 
respective the Training samples only whereas the Combined R2 values are calculated considering all individuals. 
 

DA markers / 
Individual R2 value1

5% Training Sample 
 

RM481_219_18/0.0833  
RM210_151_7/0.0014 

RM431_254_4/0.5483 
RM109_96_8/0.0496 
RM284_146_3/0.0496 
RM169_164_1/0.0417 

RM279_164_6/0.3968 
RM481_219_18/0.1429 
RM250_175_9/0.0667 

RM250_173_8/0.64 
RM316_196_2/0.0526 
RM214_146_6/0.0526 

Combined R2 value2 0.0915 0.1196 0.17 0.1333 0.0726 
% Correct Classification3 100 100 100 100 100 
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Table 2.7 Discriminant Analysis-selected markers for percent head rice, percent total rice, plant height, heading date and grain yield 
from 192 lines of 2000 URN field trials evaluated in Louisiana 

Trait   
Percent Head Rice Percent Total Rice Plant Height Heading Date Grain Yield 

DA markers / 
Individual R2 value1

15% Training Sample 

4RM341_142_4/0.3783 

 
1 Individual R2 values calculated from Pearson correlation coefficient; 2 Combined R2 value calculated from multiple regression (PROC REG, SAS Institure, ver. 
9.0); 3 Percent correct classification were calculated by leave-one-out validation with in the training samples; 4 The first part of the DA marker denotes the SSR 
marker, the second part represents the observed allele size in bp and the third part stands for the allele number of the SSR locus. All the sets of markers identified 
by DA procedure are reordered based on their individual R2 values, not by relative contribution to the discriminant rule. Individual R2 values are calculated for 
respective the Training samples only whereas the Combined R2 values are calculated considering all individuals. 

RM279_158_3/0.3422 
RM202_176_4/0.1168 
RM55_234_4/0.0341 
RM149_250_8/0.0341 
RM120_186_5/0.0203 
RM144_253_10/0.0201 

RM296_125_2/0.2804 
RM279_158_3/0.2469 
RM433_223_2/0.2074 
RM481_171_11/0.1984 
RM341_142_4/0.1902 
RM109_97_9/0.1115  
RM317_165_7/0.0883 
RM409_91_6/0.0558  
RM161_165_1/0.032 

RM431_254_4/0.36 
RM120_180_2/0.0517  
RM3431_160_5/0.0421  
RM161_185_7/0.0421  
RM214_115_2/0.0338  
RM161_180_4/0.0338  
RM109_96_8/0.0207  
RM144_247_8/0.0207  
RM16_184_6/0.0166  
RM228_113_4/0.0166  
RM1167_177_4/0.0156  
RM481_165_9/0.0001  
RM5_106_1/0.0001 

RM437_252_1/0.2639 
RM3430_211_6/0.1809  
RM317_161_6/0.159  
RM149_241_2/0.1289  
RM279_164_6/0.0977  
RM109_98_10/0.0786  
RM149_240_1/0.045  
RM116_279_3/0.0365  
RM119_167_3/0.0365  
RM162_201_1/0.0236  
RM623_334_2/0.0194  
RM178_117_2/0.0184  
RM104_234_3/0.0184  
RM214_148_7/0.0159  
RM210_159_10/0.013  
RM149_245_6/0.0102  
RM1189_174_1/0.009  
RM149_243_4/0.007  
RM162_226_7/0.0011  
RM162_205_3/0.0002 

RM481_168_10/0.2083 
RM437_254_2/0.1812  
RM120_184_4/0.1664  
RM228_111_3/0.1544  
RM316_196_2/0.0753  
RM3431_160_5/0.0545  
RM416_112_2/0.0545  
RM5_106_1/0.0545  
RM181_239_1/0.0448  
RM481_219_18/0.0357  
RM161_181_5/0.0258  
RM1167_177_4/0.0252  
RM317_165_7/0.0252  
RM420_203_4/0.0175  
RM234_151_4/0.0175  
RM109_87_2/0.0175  
RM5_112_3/0.0128  
RM109_98_10/0.0061 

Combined R2 value2

Louisiana 

0.1925 0.2194 0.3096 0.3437 0.3633 
% Correct Classification3 100 100 100 100 100 

DA markers / 
Individual R2 value1

5% Training Sample 

RM341_142_4/0.5844 
RM149_250_8/0.1467 
RM144_253_10/0.0005 

RM341_142_4/0.7162 
RM162_205_3/0.0294 

RM437_252_1/0.6481 
RM118_162_3/0.2083 
RM7_173_4/0.0946 
RM1359_158_4/0.0749 
RM144_253_10/0.0749 
RM119_167_3/0.0118 
RM190_120_4/0.0003 

RM437_252_1/0.3529 
RM279_160_4/0.2667  

RM109_87_2/0.0294 RM190_122_5/0.2667  
RM3431_160_5/0.1895  
RM161_180_4/0.0571 

RM149_240_1/0.5385 
RM1167_177_4/0.12  
RM482_192_5/0.0526 

Combined R2 value2 0.1085 0.0823 0.1117 0.2166 0.1083 
% Correct Classification3 100 100 100 100 100 
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Table 2.8 Discriminant Analysis-selected markers for percent head rice, percent total rice, plant height, heading date and grain yield 
from 192 lines of 2000 URN field trials evaluated in Mississippi 

Trait   
Percent Head Rice Percent Total Rice Plant Height Heading Date Grain Yield 

4RM231_191_6/0.2389 
RM181_241_2/0.1381  
RM21_139_4/0.1282  
RM250_177_10/0.101  
RM475_185_1/0.0948  
RM118_162_3/0.0573  
RM149_254_11/0.0547  
RM229_117_2/0.0385  
RM474_259_5/0.0379  
RM225_142_6/0.0331  
RM340_114_1/0.0253  
RM184_215_2/0.014  
RM55_227_2/0.0132  
RM17_157_1/0.0131  
RM109_87_2/0.0131  
RM162_212_6/0.0131  
RM341_139_3/0.0131  
RM437_270_4/0.0125  
RM72_159_3/0.0125  
RM317_140_1/0.0083  
RM190_113_3/0.0061  
RM104_238_4/0.0047  

DA markers / 
Individual R2 value1

15% Training sample 

RM136_100_3/0.0041  

RM279_162_5/0.1631 
RM437_274_5/0.1299  
RM214_146_6/0.0916  
RM284_142_1/0.0718  
RM7_173_4/0.0667  
RM273_199_1/0.0605  
RM149_245_6/0.0408  
RM109_95_7/0.0317  
RM431_250_2/0.03  
RM171_328_2/0.0172  
RM433_221_1/0.0165  
RM478_236_8/0.011  
RM210_151_7/0.0086  
RM234_141_3/0.0054  
RM169_168_3/0.0008  
RM1189_188_7/0.0002  
RM162_236_9/0  

RM431_254_4/0.6776 
RM1167_177_4/0.09  
RM13_149_5/0.0434  
RM317_153_4/0.0213  
RM144_235_4/0.0213  
RM481_202_15/0.0213  
RM422_381_5/0.0213  
RM112_123_1/0.017  
OSR13_98_2/0.017  
RM210_141_3/0.0148  
RM25_143_4/0.0084  
RM341_156_5/0.0084  
RM210_153_8/0.0042  
RM5_126_7/0.0034  
RM25_139_2/0.0016 

RM225_132_2/0.3486 
RM623_348_4/0.0761  
RM333_189_8/0.0761  
RM136_103_5/0.0307  
RM517_264_3/0.0243  
RM25_148_8/0.0164  
RM109_90_3/0.0164 

RM25_139_2/0.2609 
RM250_177_10/0.1765  
RM161_179_3/0.0985  
RM184_215_2/0.0943  
RM481_216_17/0.075  
RM3431_160_5/0.0545  
RM475_194_2/0.0545  
RM431_254_4/0.0216  
RM279_160_4/0.0193  
RM482_186_3/0.0185  
RM214_111_1/0.0175  
RM5752_159_5/0.0175  
RM149_256_13/0.0175  
RM474_275_8/0.0175  
RM120_176_1/0.0143  
RM3912_191_3/0.0048  
RM474_261_7/0.0023  
RM338_182_2/0.0023  
RM408_127_5/0.0011  
RM228_105_2/0  

Combined R2 value2 0.4252 0.3656 0.2654 0.235 0.4111 
% Correct Classification3 100 100 100 100 100 

DA markers / 
Individual R2 value1

5% Training sample 
 

RM106_287_1/0.3025 
RM317_165_7/0.1613  
RM482_192_5/0.1613  
RM104_222_1/0.1232  
RM1359_166_7/0.0909  
RM190_113_3/0.0313 

RM7_175_5/0.3656 
RM317_161_6/0.1361  

1 Individual R  Pearson correlation coefficient; 2 values calculated from 2 Combined R2 value calculated from multiple regression (PROC REG, SAS Institure, ver. 
9.0); 3 Percent correct classification were calculated by leave-one-out validation with in the training samples; 4 The first part of the DA marker denotes the SSR 
marker, the second part represents the observed allele size in bp and the third part stands for the allele number of the SSR locus. All the sets of markers identified 
by DA procedure are reordered based on their individual R2 values, not by relative contribution to the discriminant rule. Individual R2 values are calculated for 
respective the Training samples only whereas the Combined R2 values are calculated considering all individuals. 

RM109_97_9/0.0649  
RM408_117_1/0.029  
RM5752_159_5/0.029 

RM431_250_2/0.8462 
RM475_185_1/0.0368 

RM181_239_1/0.4152 
RM475_199_4/0.3667  
RM225_142_6/0.1618  
RM206_147_5/0.1618  
RM232_141_2/0.0764  
RM420_203_4/0.0764  
RM144_244_7/0.0404 

RM231_191_6/0.375 
RM109_95_7/0.1111  
RM1189_174_1/0.1111  
RM340_117_2/0.0526 

Combined R2 value2 0.1613 0.162 0.1175 0.1835 0.0782 

Mississippi 

% Correct Classification3 100 100 100 100 100 
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Table 2.9 Discriminant Analysis-selected markers for percent head rice, percent total rice, plant height, heading date and grain yield 
from 192 lines of 2000 URN field trials evaluated in Missouri 

 

1 Individual R2 values calculated from Pearson correlation coefficient; 2 Combined R2 value calculated from multiple regression (PROC REG, SAS Institure, ver. 
9.0); 3 Percent correct classification were calculated by leave-one-out validation with in the training samples; 4 The first part of the DA marker denotes the SSR 
marker, the second part represents the observed allele size in bp and the third part stands for the allele number of the SSR locus. All the sets of markers identified 
by DA procedure are reordered based on their individual R2 values, not by relative contribution to the discriminant rule. Individual R2 values are calculated for 
respective the Training samples only whereas the Combined R2 values are calculated considering all individuals. 
 

Trait   
Percent Head Rice Percent Total Rice Plant Height Heading Date Grain Yield 

DA markers / 
Individual R2 value1

15% Training Sample 

Phenotypic data 
is not available 

Phenotypic data 
is not available 

4RM431_254_4/0.4033 
RM431_250_2/0.2954 
RM486_99_3/0.2906  
RM118_158_1/0.1512 
RM1189_190_8/0.1505 
RM55_232_3/0.0982  
RM1167_177_4/0.0728 
RM409_91_6/0.0701  
RM214_148_7/0.0478 
RM109_96_8/0.0422  
RM162_240_11/0.0199 
RM162_201_1/0.0174 
RM422_387_8/0.0152 
RM232_153_5/0.0136 
RM475_196_3/0.0136 
RM279_160_4/0.0109 
RM232_155_6/0.0076 
RM7_175_5/0.0025  
RM161_181_5/0.0007 
RM481_168_10/0.0001 

RM190_122_5/0.3324 
RM474_257_4/0.1099 
RM21_153_8/0.0862  
RM1167_177_4/0.0502 
RM623_348_4/0.0415 
RM5_106_1/0.0414  
RM136_103_5/0.0414 
RM3431_160_5/0.0414 
RM418_277_3/0.0414 
RM3430_211_6/0.0351 
RM5_128_8/0.0203  
RM120_188_6/0.0203 
RM161_183_6/0.0203 
RM162_201_1/0.0175 
RM228_113_4/0.0175 
RM232_153_5/0.0175 
RM120_182_3/0.0135 
RM72_189_8/0.0048  
RM149_245_6/0.0027 
RM1189_190_8/0.0001 

RM623_350_5/0.1984 
RM229_129_6/0.1673 
RM279_158_3/0.164  
RM7_173_4/0.1081  
RM149_241_2/0.1067 
RM623_348_4/0.0741 
RM250_173_8/0.0433 
RM3431_158_4/0.0252 
RM416_113_3/0.0175 
RM162_201_1/0.0175 
RM422_399_11/0.017 
RM317_165_7/0.0023 

Combined R2 value2   0.4181 0.3546 0.2705 
% Correct Classification3   99.99 100 100 

Phenotypic data 
is not available 

RM431_254_4/0.5819 
RM109_96_8/0.0803 
RM149_245_6/0.0451 

RM478_200_2/0.2899 
RM3912_193_4/0.2222 
RM475_199_4/0.16  
RM232_141_2/0.1026 
RM162_201_1/0.0494 

RM228_111_3/0.2525 
DA markers / 
Individual R2 value1

5% Training Sample 

Phenotypic data 
is not available 

RM7_173_4/0.1905  
RM210_143_4/0.1765 
RM171_344_4/0.1111 
RM293_202_3/0.0526 

Combined R2 value2   0.1528 0.1185 0.1087 

Missouri 

% Correct Classification3   100 100 100 
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Table 2.10 Discriminant Analysis-selected markers for percent head rice, percent total rice, plant height, heading date and grain yield 
from 192 lines of 2000 URN field trials evaluated in Texas 

Trait   
Percent Head Rice Percent Total Rice Plant Height Heading Date Grain Yield 

4RM623_334_2/0.3872 
RM3912_193_4/0.1512  
RM109_95_7/0.1174  
RM408_127_5/0.1113  
RM341_142_4/0.1102  
RM437_274_5/0.1096  
RM312_94_1/0.0987  
RM422_399_11/0.0619  
RM206_195_14/0.0144  
RM202_176_4/0.0052  DA markers / 

Individual R2 value1

15% Training Sample RM1189_188_7/0.0001 

RM437_274_5/0.169 
RM408_127_5/0.1451  
RM316_196_2/0.118  
RM181_249_5/0.069  
RM1167_171_1/0.0659  
RM1359_166_7/0.0586  
RM418_283_5/0.0243  
RM214_154_8/0.0048  
RM72_189_8/0.0007  

RM431_254_4/0.7389 
RM623_350_5/0.36  
RM486_99_3/0.2516  
RM1167_177_4/0.0536  
RM21_129_2/0.0223  
RM478_226_7/0.0185  
RM232_139_1/0.0185  
RM171_324_1/0.0185  
RM106_293_3/0.0182  
RM109_87_2/0.0172  
RM3912_207_7/0.0172  
RM72_186_7/0.0148  
RM475_199_4/0.0134  
RM225_138_4/0.0079  
RM333_189_8/0.0068  
RM293_200_2/0.0056  
RM279_158_3/0.0049  
RM5_126_7/0.0032  
RM55_227_2/0.0031  
RM234_141_3/0.0022 

RM478_200_2/0.1837 
RM3912_193_4/0.1787  
RM317_161_6/0.173  
RM623_348_4/0.0659  
RM341_156_5/0.0632  
RM120_186_5/0.0632  
RM1189_174_1/0.0382  
RM149_241_2/0.0343  
RM420_182_1/0.0322  
RM409_85_2/0.0274  
RM25_148_8/0.0204  
RM162_242_12/0.0204  
RM190_113_3/0.0204  
RM210_137_1/0.0199  
RM1359_166_7/0.0066  
RM312_96_2/0.0028  
RM510_111_1/0.0023  
RM474_275_8/0.0022  
RM21_147_5/0.0022  
RM340_114_1/0.0016 

RM3912_195_5/0.2083 
RM486_105_4/0.1623  
RM250_169_6/0.1154  
RM623_348_4/0.1154  
RM315_132_1/0.1147  
RM316_196_2/0.095  
RM409_91_6/0.0873  
RM16_167_1/0.0584  
RM210_137_1/0.0556  
RM144_250_9/0.0175  
OSR13_94_1/0.0012 

Combined R2 value2 0.3109 0.2205 0.335 0.3765 0.3525 
% Correct Classification3 100 100 100 100 100 

DA markers / 
Individual R2 value1

5% Training Sample 
 

RM481_156_6/0.3422 
RM279_158_3/0.2853  
RM409_85_2/0.2424  
RM3431_148_1/0.2381  
RM284_142_1/0.1736  
RM293_198_1/0.1686  
RM474_259_5/0.1071  
RM341_174_7/0.0862  
RM232_155_6/0.0305  
RM317_140_1/0.0081  

RM25_145_6/0.2582 
RM3431_148_1/0.1452  
RM109_97_9/0.0955  

1 Individual R  Pearson correlation coefficient; 2 values calculated from 2 Combined R2 value calculated from multiple regression (PROC REG, SAS Institure, ver. 
9.0); 3 Percent correct classification were calculated by leave-one-out validation with in the training samples; 4 The first part of the DA marker denotes the SSR 
marker, the second part represents the observed allele size in bp and the third part stands for the allele number of the SSR locus. All the sets of markers identified 
by DA procedure are reordered based on their individual R2 values, not by relative contribution to the discriminant rule. Individual R2 values are calculated for 
respective the Training samples only whereas the Combined R2 values are calculated considering all individuals. 

RM21_151_7/0.0547  
RM422_387_8/0.0198  
RM120_182_3/0.0014 

RM431_250_2/0.825 
RM109_87_2/0.055 

RM478_212_6/0.5295 
RM1189_174_1/0.1136  
RM119_148_1/0.064  
RM333_177_4/0.0521  
RM210_141_3/0.025  
RM21_157_10/0.0139  

RM250_169_6/0.4286 

RM478_206_5/0.0124  
RM119_167_3/0.0097  
RM231_191_6/0.008  
RM239_144_3/0.0024  

RM498_213_2/0.1905  
RM144_253_10/0.0526 

Combined R2 value2 0.1801 0.0946 0.1226 0.1317 0.154 

Texas 

% Correct Classification3 100 100 100 100 100 
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Figure 2.2 Chromosomal positions of DA selected markers and traditional QTLs for grain yield, 
percent head rice and percent total rice. 
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Figure 2.3 Chromosomal positions of DA selected markers and traditional QTLs for grain yield, 
percent head rice and percent total rice. 
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Table 2.11 Summary of chromosomal positions of traditional QTLs and new DA-selected markers on Cornell SSR 2001 map for 
Grain yield 
 

Linkage 
group 

(QTL name) 
Map Position 

(cM) 

Flanking 
molecular
markers 

Position  
of markers 

(cM) 

Position 
(cM) 

on Cornell 
SSR_2001 

Cited 
Reference  Remarks 

DA markers 
shown 
on map 

Position 
of DA 

markers 

1 Rice-Cornell 9024/LH422 
RI QTL 1996 

90.8-
120.7 

RG173 
RZ276 

120.7 
103.6 

66.4 
85.4 

Xiao et al., 
1996 

Complete QTL 
not defined RM312_94_1* 71.6 

1 
(yld1.1) 

Rice-Cornell V20A/Oruf 
QTL 1998 

53.3-
102.7 

RZ276 
RM5 

50.0 
79.0 

85.4 
94.9 

Xiao et al., 
1996 

Complete QTL 
not defined 

RM5_116_1* 
RM5_112_3† 

79.0 
79.0 

1 Rice-Cornell IR64/Azu DH 
QTL 

154.8-
194.1 

RM212 
RM414 

148.7 
191.1 

145.6 
191.1 

Lafitte 
et al., 2002 

Complete QTL 
not defined 

RM315_139_3Φ 
RM315_137_2† 

165.3 
165.3 

1 
(qYLD1) 

Rice-Cornell IR64/Azu DH 
QTL 

175.5-
177.9 

RM315 
RM431 

165.3 
178.3 

165.3 
178.3 

Hittalmani 
et al., 2002 

Complete QTL 
not defined 

RM315_139_3Φ 
RM315_137_2† 

165.3 
165.3 

2 
(yd2) 

Rice-CNHZAU 
Zh97/Ming63 RI QTL 2002 0.0-31.8 RM240 

RM213 
0.0 

31.8 
158.9 
186.4 

Xing et al., 
2002 

Complete QTL 
defined RM482_192_5† 187.5 

3 Rice-JRGP Nip/Kas F2 
QTL 2000 

73.5-
97.1 

V142 
V8 

80.0 
86.8 

119.7 
198 

Ishimaru et 
al., 2001 

Complete QTL 
not defined 

RM55_234_4* 
RM55_217_1Φ 
RM416_112_2† 

168.2 
168.2 
191.6 

5 
 

Rice-JRGP Nip/Kas F2 
QTL 2000 

49.4-
67.2 Cen5 53.2-54.6 52.5-70.0 Ishimaru et 

al., 2001 
Complete QTL 

not defined RM169_172_4* 57.9 

6 
(yd6) 

Rice-Cornell 9024/LH422 
RI QTL 1996 

132.9-
142.3 

RG653 
RG433 

128.9 
142.3 

133.5 
149.7 

Li et al., 
2000 

Complete QTL 
not defined RM340_117_2Φ† 133.5 

7 Rice-JNIG W1944/Peik 
QTL 2002 0.0-25.0 RG128 

RZ387 
1.5 

25.0 
0.0 

25.0 

Cai et al., 
2002 

 

Complete QTL 
not defined 

RM481_171_11Φ 
RM481_168_10† 
RM481_219_18† 
RM481_202_15† 
RM481_216_17Φ 
RM5752_129_2* 

3.2 
3.2 
3.2 
3.2 
3.2 

11.0 
10 

(qYLD10-1) 
Rice-IRRI IR64/Azu DH 

QTL 2003 
25.8-
42.4 

RG257 
RG241 

25.8 
42.4 

33.2 
58.3 

Hittalmani 
et al., 2003 

Complete QTL 
defined RM184_215_2† 58.3 

11 
(yd11) 

Rice-CNHZAU 
Zh97/Ming63 RI QTL 2002 

100.1-
127.8 

RG118 
RM209 

127.8 
87.7 

38.9 
73.9 

Hua et al., 
2002 

lower tail is 
not clearly 

defined 

RM120_186_5* 
RM120_184_4† 
RM202_176_4* 
RM287_101_2Φ 

41.7 
41.7 

- 
54.0 

 
Traditional QTLs for total grain yield, percent head rice are from web source: www.gramene.org. * - DA-selected SSR markers for gross yield, † - DA-selected 
SSR markers for percent head rice, and Φ - DA-selected SSR markers for percent total rice 
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Table 2.12 Summary of chromosomal positions of traditional QTLs and new DA markers on Cornell SSR 2001 map for percent head 
rice 
 

Linkage 
group 

(QTL name) 
Map Position 

(cM) 
Flanking 
markers 

Position 
(cM) 

of markers 

Position 
(cM) 

on Cornell 
SSR_2001 

Reference Remarks 
DA markers 

Shown 
on map 

Position 
of DA 

markers 

1 Rice-Cornell IR64/IRG105 
QTL 2003 

191.2-
227.1 

RM265 
RG331 

191.2 
227.1 

155.9 
194.1 

Septiningsih 
et al., 2003 

Complete QTL 
not defined 

RM315_139_3Φ 
RM315_137_2† 165.3 

5 Rice-Cornell IR64/IRG105 
QTL 2003 

116.8-
156.2 

RM430 
RM334 

116.8 
156.2 

78.7 
141.8 

Septiningsih 
et al., 2003 

Complete QTL 
defined RM161_165_1Φ 96.9 

 
Traditional QTLs for total grain yield, percent head rice are from web source: www.gramene.org. † - DA-selected SSR markers for percent head rice, and Φ - 
DA-selected SSR markers for percent total rice. 
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CHAPTER 3 VALIDATION OF MIXED MODEL-REGRESSION PROCEDURE  
FOR ASSOCIATION GENETICS IN RICE†

 

3.1 Introduction  

Completion of the rice genome sequencing project (Takashi et al., 2005) will serve as a 

powerful springboard for functional characterization of rice genes by a variety of methods that 

include identity and validation of DNA markers associated with complex traits. Standard QTL 

mapping approaches such as Composite Interval Mapping (Zeng, 1994) can be used, but power 

and precision may be compromised by limited recombination in segregating/recombinant inbred 

lines and by relatively small sample size of most mapping populations (Kearsey and Farquhar, 

1998; Beavis, 1998). Moreover, low predictive performance has been reported in different 

mapping studies when markers were first selected in one population and then evaluated in 

separate test samples (Beavis, 1994; Beavis, 1998; Melchinger et al., 1998; Mei et al., 2003; 

Sillanpaa and Auranen, 2004). Resampling and cross validation methods have been proposed to 

obtain unbiased estimates of QTL position and effect for marker-assisted selection (Beavis, 

1994; Utz et al., 2000; Schon et al., 2004). 

3.1.1 Kinship Relationships 

Kinship describes the probability that two homologous genes are identical by decent in a given 

sample. However, kinship relationships have not been considered in most plant mapping or 

marker-assisted selection strategies. Mixed models using variance component approaches that 

account for kinship estimates have been exploited in animal research for over two decades 

(Henderson, 1984; George et al., 2000). Nagamine and Haley (2001) extended the mixed model 

of Henderson to detect QTL by interval mapping in animal systems. Parisseaux and Bernardo  

† The MR procedure analysis for the population I was carried out by Samuel A. Ordonez Jr, School of Plant, 
Environmental and Soil Sciences, LSU. 
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(2004) developed a mixed model for hybrid crops incorporating effects for general combining 

ability of markers associated with agronomic traits. Arbelbide et al. (2006) developed a mixed 

model for self pollinating plants that accounted for multiple location effects and kinship based on 

pedigree records. Arbelbide and Bernardo (2006) applied single and multiple marker analyses in 

the mixed model format for candidate loci and genes associated with bread quality traits in wheat 

(Triticum aestivum L.).  

3.1.2 The TASSEL Software Program 

 The TASSEL software program (http://www.maizegenetics.net) incorporates population 

structure and kinship estimates into a mixed model for association genetics of unrelated 

individuals (Yu et al., 2006). However, the mixed model has not been extensively explored in 

selfing species such as rice. The TASSEL mixed model was used recently in association studies 

of a complex agronomic trait in barley (Rostoks et al., 2006). Epistasis was postulated to impact 

the ability to detect marker-trait associations for the selected population of inbred varieties. Zhao 

et al. (2007) found that the TASSEL mixed model correctly identified some, but not all major 

candidate genes related to flowering in Arabidopsis, and the method was not sufficiently 

sensitive to identify additional loci with minor effects.  

3.1.3 Hypothesis Testing in Complex Trait Mapping 

 The “model selection” approach, based on information criteria such as Bayesian 

Information Criterion (BIC; Schwarz, 1978) and Akaike Information Criterion (AIC; Akaike, 

1974), has been investigated to address selection bias present in standard QTL mapping 

techniques (Ball, 2001; Piepho and Gauch, 2001; Bogdan et al., 2004; Bogdan and Doerge, 

2005). The model selection strategy proposes to identify the fewest number of variables that 

minimize BIC or other information criteria as opposed to standard hypothesis testing to build the 
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optimal predictive model. Model selection was reported to be superior to Composite Interval 

Mapping in simulated studies (Broman and Speed, 2002). 

3.1.4 Association Genetics 

 Association genetics is an alternative strategy to standard QTL methods that is routinely 

used in human studies (Newton-Cheh and Hirschhorn, 2005), and one that is gaining support in 

the plant research community (Hayes and Szucs, 2006). The principal advantage of this 

approach, generally referred to as “linkage disequilibrium” mapping, is based on the ability to 

rapidly query informative regions of the genome among unrelated individuals that have 

generated numerous meiotic events over multiple generations. Linkage disequilibrium studies 

have been conducted for various marker-trait associations in maize (Yu and Buckler, 2006), rice 

(Garris et al., 2003), potato (Simko et al., 2006), barley (Kraakman et al., 2004; Malysheva-Otto 

et al., 2006; Rostoks et al., 2006) and wheat (Breseghello and Sorrells, 2006), but few studies 

have validated results in separate test populations.  

3.1.5 Population Structure 

 Spurious associations between genotype and phenotype caused by population 

stratification must be detected among unrelated individuals in association studies to reduce Type 

I errors. Clustering techniques are one approach to identify stratified populations. For example, 

the model-based clustering “Structure” software program identifies putative population structure 

and assigns individuals to subgroups based on genotype frequencies (Pritchard et al., 2000). 

3.1.6 Significance of Epistatic Interactions 

  Epistatic interactions between alleles at different loci in rice have been reported to exert 

considerable influence on different characters such as hybrid vigor (Yu et al., 1997; Goodnight, 

1999; Li et al., 2001), cooking quality (Fan et al., 2005), plant height and heading date (Yu et al., 
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2002), panicle number (Liao et al., 2001) and other complex traits (Cao et al., 2001; Mei et al., 

2003). QTL models have therefore been developed to account for epistasis in rice and other 

species (Bogdan et al., 2004; Cui and Wu, 2005; Cui et al., 2006; Wan et al., 2006), so it is 

advantageous to include an epistatic component in robust models developed for association 

genetics.  

The multivariate discriminant analysis procedure was previously evaluated to identify 

markers associated with agronomic traits among a diverse collection of U.S. and Asian inbred 

rice lines (Zhang et al., 2005). Consideration of population structure and estimation of missing 

data resulted in selection of markers that mapped within previously identified QTL regions for 

12 complex traits. 

 The first objective of our current research was to evaluate the mixed model for ability to 

predict phenotypic variance of four complex agronomic traits in two distinct inbred populations 

of rice. The second objective focused on the creation and validation of a mixed model-regression 

(MR) procedure for prediction ability of selected markers in separate test samples.  

3.2 Materials and Methods 

3.2.1 Plant Material and Phenotypic Data Collection 

Two distinct collections of inbred lines representing diverse and narrow germplasm were 

evaluated separately in this study. The first collection, referred to as Population I and described 

in Zhang et al. (2005), was comprised of a random group of 218 diverse lines with 56% of U.S. 

origin and the remaining from Asian sources. The phenotypic data (plant height, heading date, 

tiller number) and genotypic profiles for the current study were obtained from Zhang et al. 

(2005). U.S. public rice breeders in Crowley, LA, Beaumont, TX, Stuttgart, AR, Stoneville, MS, 

and Portageville, MO conduct a replicated field plot trial each year of common elite breeding 
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lines and varieties representing a narrow germplasm base. All 192 inbred lines of the trial, 

referred to as Population II in this study, were planted from March to April, 2000 at each of the 

five locations above in two to four replicated six-row plots, 2.0 m x 1.4 m, in a randomized 

complete block design. Standard agronomic practices at each location were implemented to 

minimize weed and insect damage for maximum grain yield. The center four rows of each plot 

were used to collect data for plant height and heading date in the same manner as Population I. In 

addition, data for grain yield at 12% moisture for all states of Population II and amylose content 

for TX and AR were collected. Phenotypic data were transformed if necessary to a normal 

distribution by log transformation and averaged across replications within each state to compute 

mean and variances along with analysis of variance (ANOVA) using PROC MIXED, SAS 

Institute, v. 9.0. 

3.2.2 Molecular Marker Analyses 

The initial molecular marker data used for Population I was described by Zhang et al. 

(2005). Heterozygous and rare (< 0.07%) alleles were excluded for the current study, reducing 

the number of marker alleles in Population I from 1153 to 309. For Population II, 97 single 

sequence repeat (SSR) markers, evenly spaced over the 12 chromosomes, generated a total of 

579 alleles with an average of six alleles/locus. Rare alleles were removed as above, but 

heterozygous loci were retained to provide an adequate number of marker alleles (235) for the 

final analysis. PROC ALLELE, SAS Genetics, SAS Institute v. 9.1.4, was used to estimate 

polymorphism information content (PIC), level of heterozygosity and allelic diversity.  

3.2.3 Creation of Training and Validation Samples 

The “Complete Sample” consisted of the entire collection of inbred lines for Population I 

(n=218) and Population II (n=192). Complete Samples were randomly partitioned into 80% and 
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20% subsamples by the “partition fraction (validate=0.2)” statement of PROC GLMSelect, SAS 

v 9.1.3, to generate the Training and Validation Samples, respectively. The Training and 

Validation Samples of Population I consisted of 177 and 41 individuals, respectively, while 

Population II included 161 individuals in the Training Sample and 31 individuals in the 

Validation Sample. Detection of potential population structure in the Complete Sample was 

carried out by the “Structure” software program (http://pritch.bsd. uchicago.edu/structure.html). 

3.2.4 TASSEL/Mixed Model Analyses 

 Phenotypic and marker datasets from Training Samples of each population were used 

with the “Simple” (S), “Structure” (Q), “Kinship” (K), and ”Full” (Q+K) models in version 1.9.6 

of the TASSEL software program (http://www.maizegenetics.net/ index.php?page= 

bioinformatics/tassel/downloads.html) to identify potential marker-trait associations. Kinship 

estimates were obtained from TASSEL for both populations. Negative values obtained were set 

to zero, implying no relationship. All markers selected by a model at the p < 0.05 level for each 

trait in the Training Sample were evaluated by TASSEL in the Validation Sample of both 

populations. Pooled R2 values for the Q+K mixed model were obtained by summing partial R2 

values of individual marker alleles identified in the Validation Samples.  

3.2.5 Mixed Model-Regression (MR) Procedure 

In the first step of the MR procedure, the four statistical models of the TASSEL program 

described above were tested for their ability to identify candidate marker alleles associated with 

each of the four agronomic traits in the Training Sample. In step two, significant markers 

identified in the Training Sample by each of the four TASSEL models were subsequently 

evaluated in the Validation Sample by Stepwise and Forward methods of PROC GLMSelect. 

Both the Stepwise and Forward methods were assessed using the CHOOSE, SELECT and STOP 
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options in all combinations with Bayesian Information Criterion (BIC), Coefficient of Variation 

(CV), Adjusted R2 (ADJRSQ), or SL selection criterion = 0.15, with and without consideration 

of epistasis. For each selected marker-trait combination, a total of 76 different GLMSelect 

models were evaluated, generating a total of 1,140 and 2,432 models that were assessed in the 

Validation Samples of Population I and II, respectively. The model that produced the highest 

adjusted R2 value for a given trait in the Validation Sample was considered the “optimal” MR 

procedure. 

3.2.6 Statistical Models of TASSEL and the MR Procedure 

Four models of the TASSEL software program (Simple (S), Structure (Q), Kinship (K) 

and Mixed (Q+K) were evaluated in the current study and are described in detail by Yu et al. 

(2006). For the MR procedure, markers selected by TASSEL in the Training Samples were 

evaluated in the Validation Samples with four models, designated ‘MR’, ‘MR-E’, ‘MR-Q’, and 

‘MR-QE’ using PROC GLMSelect. The ‘MR’ model, similar to the ‘S’ model in TASSEL 

considered main fixed effects (SSR/RFLP markers) as follows: 

y = Xβ + Sα + ε     (1)   

where y = vector of experimental trait (phenotypic) values; β = vector of all fixed effects 

excluding molecular marker effects and population structure effects; α = vector that included 

information of more than one molecular marker effect, excluding their interaction effects; 

ε = vector of residual effects. The total number of effects and their order in α were determined by 

selection criteria in PROC GLMSelect. The X and S coefficients represented incidence matrices 

for β and α vectors consisting of 0s and 1s. The ‘MR-E’ model was identical to the ‘MR’ model 

above except the α vector included information for more than one molecular marker effect along 

with their two-way interaction (epistatic) effects. 
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The ‘MR-Q’ model added a population structure term to equation 1 above as follows: 

y = Xβ + Sα + Qν + ε  

where α = vector for more than one molecular marker effect, excluding their interaction effects, ν 

= vector of population structure effects and Q = design matrix for the ν vector. The ‘MR-EQ’ 

model was identical the ‘MR-Q’ model except that the α vector not only included the 

information of more than one molecular marker effect, but also their two-way interaction 

(epistatic) effects.  

3.3 Results 

Descriptive statistics of the four traits evaluated in the Complete, Training, and 

Validation Samples of Population I and II are shown in Table 3.1. The Training and Validation 

Samples were generally representative of average values and the extent of phenotypic variability 

of the Complete Samples. Exceptions to this trend were the higher variance observed for tiller 

number in the Validation Sample vs. other samples in Population I and the smaller variance 

observed for heading date and amylose content in the Validation Sample of Population II. Means 

and variances were greater as expected for plant height and heading date among the diverse lines 

represented by Population II vs. the narrow germplasm of elite lines in Population II. Grain yield 

and amylose content of Population II were within the expected range of current U.S. commercial 

cultivars. Molecular variation as measured by PIC and allelic diversity were consistent across the 

Complete, Training, and Validation Samples for both populations (data not shown). As expected, 

mean variation of the diverse Population I for PIC (0.47, range 0.46-0.49) and allelic diversity 

(0.52, range 0.51-0.53) was greater for corresponding values in the narrow germplasm of 

Population II (PIC = 0.34, range 0.31-0.36; allelic diversity = 0.38, range 0.35-0.39). 

Surprisingly, the average level of heterozygosity in the narrow germplasm of Population II (0.05) 
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was five-fold greater than the corresponding heterozygosity in the diverse lines of Population I. 

This unexpected finding may be due to greater segregation at loci in the early generation 

breeding lines of Population II vs. the later generation lines represented primarily by varieties 

and fixed lines of Population I.  

The pairwise kinship estimates as determined by the TASSEL program for individuals in 

the Training Samples of Population I and II are shown in Figure 3.1. The vast majority of 

individuals showed little or no apparent relationship in the diverse germplasm of Population I 

which was similar to estimates of kinship detected in a large collection of maize inbreds (Yu et 

al., 2006). In contrast, higher levels of relatedness were observed in the narrow germplasm of 

Population II.  

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.1 Pairwise kinship estimates from Training Samples of Populations I and II 
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Table 3.1 Means, variances and ranges for plant height, heading date, tiller number, grain yield and amylose content of Complete, 
Training, and Validation Samples in Population I and II 
 

Complete Samplea Training Sampleb Validation Samplec 
 
 
Trait 

 
 
Mean 

 
 
Variance 

 
Range 
Min-Max 

 
 
Mean 

 
 
Variance 

 
Range 
Min-Max 

 
 
Mean 

 
 
Variance 

 
Range 
Min-Max 

Population I          
Plant height (cm)   106      426      63-185   107       423       63-185   105      450      70-165 
Heading date (d)     96        84      75-129     96         83       75-129     95        90      81-123 
Tiller number     12        69        4-50     11         63       4-50     12        98        5-47 
          
Population II                 
Plant height (cm) d     98      177      83-256      98       197     83-256    100        71      86-120  
Heading date (d) d     85        14      71-96      85         15     71-97      85          9      79-90  
Grain yield (kg/ha)d 7881 693189 4477-9759  7880 702159 4477-9759  7890 668360 6250-9642  
Amylose content (%)e      19        17       0-26      19         19       0-26      20           9     12-25  
 
a Complete Sample comprised of 218 inbred lines in Population I and 192 individuals in Population II 

b Training Sample comprised of 177 inbred lines in Population I and 161 individuals in Population II 

c Validation Sample comprised of 41 inbred lines in Population I and 31 individuals in Population II 
d Mean values obtained across five states of LA, TX, AR, MS and MO. 
e Mean values obtained across two states of TX and AR 
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3.3.1 TASSEL/Mixed Model Analysis 

The full mixed model in TASSEL identified numerous markers at the p < 0.05 level 

presumably associated with the four agronomic traits in the Training Samples of Population I and 

II (data not shown). Markers previously reported to be associated with traits evaluated in this 

study were also detected by the mixed model. For example, the RM190 microsatellite, 

commonly used to classify rice into different amylose content classes (Bao et al., 2006), was the 

top marker, as judged by p values, from the mixed model in both populations. For plant height in 

Population I, three of the top five markers mapped inside or ≤ 5 cM from published QTLs based 

on the Gramene (gramene.org) website (data not shown). Markers in the three corresponding loci 

were also found associated with plant height in the same population using Discriminant Analysis 

by Zhang et al. (2005). The mixed model detected different markers that mapped within 

published QTL regions for plant height in Population II (data not shown). Similar results were 

found for the remaining traits evaluated in both populations of this study. 

As expected, the contribution of individual markers as revealed by partial R2 values from 

the mixed model in the Training and Validation Samples varied depending on the trait (data not 

shown). Nevertheless, the role of individual markers was found to be small in all cases. This 

result was not unexpected for complex traits, but a small effect was found even for a marker with 

a known large impact such as RM190.  

 Because the predictive ability of individual markers selected by the mixed model was 

found to be low, I applied all significant markers from the Training Sample to the Validation 

Sample for mixed model analysis. Partial R2 values were pooled across individual significant 

markers detected in the Validation Sample at the p < 0.05 level. Moderate prediction rates were 

obtained after combining contributions from individual markers for plant height in both 
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populations (Table 3.2). Individual R2 values were low and varied from 0.13 to 0.21 in 

Population I and 0.12 to 0.24 in Population II. The mixed model performed poorly for heading 

date in both populations where no significant markers were detected. In contrast, a combined 

high prediction rate for tiller number was produced in Population I while individual markers 

explained phenotypic variation that ranged from 0.11 to 0.25. Only moderate levels of prediction 

were detected for grain yield (range of individual markers = 0.08 to 0.20) and amylose content 

(range of individual markers = 0.01 to 0.15) with Population II. 

Figure 3.2 shows the P-value and power plots of the four different models evaluated in 

TASSEL for all traits in both populations, except for amylose content. Type I error rates as 

revealed by P-values for both populations were consistently the highest in every case with the 

Simple Model (Figure 3.2a-c, g-i). For all traits in Population I, the full mixed Q+K model was 

no better in reducing Type I errors when compared to the model accounting for only Q 

population structure effects. A different trend was observed with the narrow Population II in that 

the Q+K model was the most effective in reducing type I errors for all traits. Amylose content 

produced the same outcome (data not shown). Importantly, P-value plots revealed substantial 

Type I error rates for all traits in each population, regardless of the model used. Reducing error 

in the Training Sample by applying more stringent p values < 0.001 and a False Discovery Rate 

(FDR) threshold of 0.05 were also attempted, but no markers were selected under these 

conditions in the Validation Sample. 

 The power of each model generated by TASSEL as a function of marker effect is shown 

in Figures 3.2 and 3.3. The plots revealed that the Q structure and Q+K full models in Population 

I exhibited similar power that was greater than the Simple (S) and Kinship (K) models (Figure 

3.2d-f). The greatest contrast among models for power was observed for the complex trait of  
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Table 3.2 Optimal values produced by mixed model and Mixed model-regression (MR) procedure for Adjusted R2, Root Mean Square 
Error (MSE), Bayesian Information Criteria (BIC), Akaike Information Criteria (AIC), Average error sum of squares (ASE) and 
Predicted Residual Sum of Squares (PRESS) values for plant height, heading date, tiller number and grain yield in Validation Samples 
of Population I and II 
 
 Plant height Heading date Tiller number 
A  MR Procedure     MR Procedure  MR Procedure 
 
Population I

Mixed  
Model 

No 
Epistasis 

 
Epistasis 

  Mixed 
  Model 

No 
Epistasis 

 
Epistasis 

Mixed 
Model 

No  
Epistasis 

 
Epistasis 

Adjusted R2   0.57a       0.70a       0.91    0.00     0.72     0.90   1.52     0.84     0.92 
Root MSE ndb       0.12       0.07 nd     3.96     2.31 nd     3.54     2.52 
BIC nd -146.21  -183.10 nd 145.48 109.79 nd 119.48   91.58 
AIC nd -165.06  -210.52 nd 123.20   80.66 nd 109.20   81.30 
ASE nd      0.01c       0.00 nd   10.70     3.12 nd   10.71     5.42 
PRESS nd      0.76       0.21 nd 748.52   86.30 nd 755.51 321.72 
Markers of   V.S.d   6     10     15     0   12     16 12     5     5 
Markers of   T,S.e 44     44     44   35   35   35 55   55   55 
 
 Plant height Heading date Grain Yield 
B  MR Procedure     MR Procedure  MR Procedure 
 
Population II

Mixed  
Model 

No 
Epistasis 

 
Epistasis 

  Mixed 
  Model 

No 
Epistasis 

 
Epistasis 

Mixed 
Model 

No  
Epistasis 

 
Epistasis 

Adjusted R2   0.62a      0.68a       0.95     0.00       0.27       0.63    0.71       0.57      0.96 
Root MSE ndb      0.01       0.00 nd       0.01       0.01 nd       0.02      0.00 
BIC nd -165.81 -200.96 nd -157.34 -166.87 nd -166.38 -210.17 
AIC nd -173.45 -212.96 nd -160.18 -171.59 nd -172.47 -227.23 
ASE nd      0.00c      0.00 nd       0.00      0.00 nd      0.00       0.00 
PRESS nd      0.08      0.04 nd       0.00      0.00 nd      0.02       0.00 
Markers of   V.S.d    3      6    10     0 2        4    8      4     13 
Markers of   T.S.e  19    30    30   17     16    16  22    28     28 
 
a Adjusted R2 values for MR procedure calculated by SAS PROC GLM Select. R2 values for full Q+K mixed model calculated by summing partial R2 values of 
individual marker alleles identified in Validation Sample by TASSEL software program. 
b No data collected; c ASE values rounded off to the nearest two decimal points. 
d Number of selected markers/variables from Validation Sample. 
e Number of selected marker alleles from Training Sample. 
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Figure 3.2 Type I error rates generated by simple (S), kinship (K), structure (Q), and full mixed (K+Q) models for plant height (a) 
heading date (b) and tiller number (c) in Population I. Adjusted average power of different models shown for plant height (d) heading 
date (e) and tiller number (f) in Population I.  
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Population II  
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
    

 

 

Figure 3.3 Type I error rates shown for plant height (g) heading date (h), and grain yield (i) in Population II. Adjusted average power 
of different models shown for plant height (j) heading date (k), and grain yield (l) in Population II. Straight diagonal line indicates 
perfect model fit with no Type I errors. 
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tiller number. The greatest power for heading date in Population II was produced with the full 

Q+K model (Figure 3.3k). Similar results were found for plant height (Figure 3.3j), grain yield 

(Figure 3.3l) and amylose content (data not shown).  

3.3.2 Validation Results of the MR Procedure  

Table 3.2 summarizes the “optimized” adjusted R2 and information criteria values 

obtained by the MR procedure with and without epistasis for agronomic traits evaluated in the 

Validation Samples of Population I and II. When the MR procedure was implemented without 

consideration of epistasis for plant height and heading date in Validation Samples of Population 

I, prediction values were detected only at modest levels. Surprisingly, a moderately high 

prediction value was produced for tiller number, even when epistasis was ignored. The highest 

prediction values for all traits in the Validation Sample of Population I were observed when 

epistasis was incorporated into the MR procedure. Consideration of epistasis in MR markedly 

improved prediction by ~ 18 to 20% for plant height and heading date, although ability of 

epistasis to enhance prediction was modest for tiller number. Smaller values for Bayesian criteria 

(BIC, AIC), standard measures of variation (Root MSE, ASE), and leave-one-out cross 

validation (PRESS) provided additional evidence as to the value of including epistasis in the MR 

analysis. I found that the use of BIC, AIC or adjusted R2 as variable selection criteria in 

Population I generally resulted in higher predictive ability with fewer variables vs. the standard 

F-value hypothesis testing approach (data not shown). However, no one model was optimal for 

all traits in Population I, and in several instances, identical values were obtained from similar, 

but different models. As was the case with the mixed model described above, the MR procedure 

identified variables in Population I that mapped to published QTL regions for all traits (data not 

shown).  
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MR analyses of the four traits evaluated across locations in Validation Samples of 

Population II are presented in Table 3.2. Consistent with the diverse germplasm of Population I, 

a moderate prediction level by MR without epistasis was observed for plant height in Population 

II, but a substantial improvement of ~ 25% was found when epistasis was considered. In the case 

of heading date, prediction ability was poor without epistasis, and only a moderate rate could be 

produced with epistasis by MR which was in contrast to corresponding high prediction rates 

obtained in Population I. 

The economically important grain yield character in the Validation Sample of Population 

II followed the trend of plant height in that a modest prediction rate was produced by MR 

without epistasis, whereas a substantial gain in prediction was obtained when epistasis was 

included in the analysis (Table 3.2). The relatively high adjusted R2 value for yield was 

accompanied by a moderate number of selected variables which was not surprising given the 

complex nature of this trait. In contrast, a high prediction value with few selected variables was 

detected for amylose content with or without epistasis by MR in the Validation Sample of 

Population II (data not shown). As was the case for the mixed model, RM190 was the top marker 

selected by the MR procedure. In general, the best MR procedures with high predictive ability 

for traits in the Validation Samples of Population II were generated with the Q+K mixed model 

in the first step coupled with the MR-E model using stepwise regression and epistasis in the 

second step. The use of BIC, CV, and ADJRSQ selection criteria generally outperformed the 

standard hypothesis testing SL option for ability to generate high prediction rates. All 

information criteria values of BIC, AIC, ASE, and PRESS detected in the Validation Samples of 

Population II were consistent, as in Population I, with improved MR models when epistasis was 

included in the analysis. 
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Figure 3.4a displays the sequence and contribution of selected variables by the GLM 

Select portion of the MR procedure for tiller number in Population I. The selected variables 

showed both positive and negative contributions that varied over different steps in development 

of the model. Variables that were selected in the first two steps appeared to play major roles in 

the final model which was reflected in the adjusted R2 values that rapidly increased up to the 

second sequence, but saw little improvement from steps three to five. Improving prediction 

values by using only variables with positive coefficients was also attempted, but this approach 

failed perhaps because epistatic variables with both positive and negative coefficients often 

contained the same marker alleles (data not shown).  

Figure 3.4b depicts the “coefficient evolution” panel for grain yield in the Validation 

Sample of Population II. While more variables were selected for grain yield vs. tiller number, 

model development for both traits followed similar trends. For example, early variable selection 

played a major role for both traits as seen by coefficient and adjusted R2 values. Both positive 

and negative variables for each trait contributed to the final “optimized” model.  

3.4 Discussion  

Creation of a mixed model-regression procedure for association genetics in rice that was 

validated in two separate inbred populations is reported in this study. The mixed model 

component of our two-step approach proved useful for detection of individual known and 

candidate markers associated with published QTL regions. Similar results have been observed 

with mixed models in maize (Yu et al., 2006). The mixed model by itself may therefore prove 

useful for fine mapping of individual loci with large effects and gene discovery efforts in 

association genetics as suggested by Parisseaux and Bernardo (2004). 

Our mixed model analyses of marker-trait associations showed an inherent advantage of 
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Figure 3.4 Coefficients of selected variables and adjusted R2 values for tiller number and grain 
yield by mixed model-regression procedure (MR) as a function of when variables enter and leave 
the model  
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kinship estimates to reduce Type I errors in the narrow germplasm consistent with a recent study 

in maize (Yu et al., 2006). However, no such advantage was observed when mixed models 

considered kinship with the wide germplasm base of Population I. The Structure Q model was 

apparently sufficient to account for the majority of variation in relatedness among the inbred 

lines. The mixed model analyses found that individual contributions of each selected marker 

were small and could not be used in a practical setting for marker assisted selection. The selected 

markers were also evaluated by the TASSEL/mixed model as a group in the Validation Sample, 

but combined predictive ability was generally not satisfactory (i.e. R2 < 0.90) for applied 

breeding purposes.  

The idea that there was still inherent value captured from markers identified in the mixed 

model that could be exploited in a multivariate format was also tested. The conventional 

multivariate regression model without variable selection proved fruitless, so the mixed model-

regression MR approach described in this study was created and evaluated. Key features of the 

MR procedure during this study were the following: (1) Detection of informative markers that 

mapped to published QTL regions by the mixed model in step one (2) Creation of Training 

Samples and further evaluation of selected markers in Validation Samples. High rates of Type I 

error detected in the Training Sample by the mixed model may have been mitigated in part by 

subsequent testing in the Validation Sample that enriched for unbiased estimators as suggested 

by previous studies (Beavis, 1994; Utz et al., 2000; Schon et al., 2004). (3) Inclusion of epistasis 

in the GLM Select portion of step two. Greater than 95% of the selected variables by MR were 

epistatic, demonstrating the importance of intergenic interactions for complex traits as proposed 

by Carlborg and Haley (2004) and (4) Use of Bayesian criteria, adjusted R2, and other 

information criteria along with standard F tests to identify candidate variables in the GLM Select 
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portion of the MR procedure. Only moderate predictive ability was found for heading date in the 

narrow germplasm of Population II. This may have been due to a relatively low amount of 

variation in the Validation Sample vs. greater variation accompanied by a higher prediction rate 

(0.79) detected in the Training Sample 

It is noteworthy that a high frequency of rare alleles was detected both in the diverse and 

narrow germplasm collections of Population I and II. This allelic architecture arose, not as a 

result of artificial selection pressure as one might suspect even in the narrow germplasm of 

Population II, but due to high allelic diversity among lines in both populations where rare alleles 

were common. The TASSEL program eliminated the rare alleles for evaluation as conventional 

genetic wisdom advocates, but this action diluted the number of alleles to 27%-40% in the 

original two populations that most likely reduced the power of the MR procedure. A positive 

perspective is that even greater predictive ability of MR may be likely with minimal occurrence 

of rare alleles, but this possibility must be confirmed in other samples. Results from this study 

provide strong evidence that the MR procedure should be further explored as a robust strategy to 

identify molecular variables associated with complex traits in rice and other plants.  
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CHAPTER 4 ALTERNATIVE ECOTILLING PROTOCOL FOR RAPID, COST-
EFFECTIVE SNP DISCOVERY AND GENOTYPING IN RICE (ORYZA SATIVA L.)*

 
4.1 Introduction 

Variation at the single nucleotide level has been successfully associated with many 

important human diseases (Xu et al., 2004; Greb et al., 2005; Litonjua et al., 2005; Shi et al., 

2005) with subsequent use in clinical diagnostics (Kuppuswamy et al., 1991) and development of 

novel drugs (Waschke et al., 2005). SNPs are widely used in molecular evolutionary studies that 

focus on the origin and diversity of various plant and animal species (Olsen and Purugganan 

2002). A genome-wide SNP identification effort in rice has recently been published from two 

publicly available indica (93-11) (http://rise.genomics.org.cn/rice/index2.jsp) and japonica 

(Nipponbare) (http://rgp.dna.affrc.go.jp/) genome sequences (Feltus et al., 2004; Shen et al., 

2004). SNP mutations in the rice alk gene that encodes for soluble starch synthase (SSSIIa) have 

been shown to alter the amylose content in grains (Umemoto et al., 2004). SNP mutations in the 

rice alk gene that encodes for soluble starch synthase (SSSIIa) have been shown to be associated 

with altered SSSIIa enzyme activity, cooking quality, and amylopectin properties in rice 

(Umemoto et al., 2002; Fjellstrom et al., 2004; Umemoto et al., 2004). Fjellstrom et al. (2004) 

detected two additional SNPs in exon 8 of the alk gene associated with cooking quality. The 

waxy gene encodes for the granule-bound starch synthase enzyme, and the first exon-intron 

donor splice site was found to interfere with normal mRNA splicing, leading to low amylose 

production in the grain (Isshiki et al., 1998; Yamanaka et al., 2004).  

The potential utility of SNPs in plants to elucidate gene function and regulation has been 

proposed (Feltus et al., 2004; Henikoff et al., 2004). Conventional SNP discovery is typically  

* Reprinted with permission from the editor of the “Plant Molecular Biology Reporter” journal. 
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carried out by direct alignment of sequences obtained from whole genomes (Feltus et al., 2004; 

Shen et al., 2004), genes (Olsen and Purugganan, 2002), or cDNAs/ESTs (Grivet et al., 2003; 

Morales et al., 2003; Chaves et al., 2005). Standard methods for SNP typing include allele 

specific polymerase chain reaction (Moutou et al., 2001; Hayashi et al., 2004), single nucleotide 

primer extension (Xiong et al., 1998; Russom et al., 2003), cleaved amplified polymorphic 

sequence (CAPS) (Thiel et al., 2004), single-strand conformational polymorphism (Sato et al., 

2003), pyrosequencing (Ronagi, 2001), and heteroduplex analysis by denaturing high 

performance liquid chromatography (dHPLC) (Giordano et al., 1999). However, these methods 

require expensive equipment set up, complex PCR primer design, and often experience a high 

rate of false positives (Comai et al., 2004). 

 The TILLING and Ecotilling methods were developed as high-throughput systems to 

simultaneously identify and genotype mutations that exist in mutagenized or natural populations 

by heteroduplex analysis using single-stand specific (sss) nucleases such as CEL I nuclease 

(Oleykowski et al., 1998) and mung bean nuclease (Colbert et. al., 2001; Comai et al., 2004; Till 

et al., 2004a). The strength of these methods lies in their ability to reduce sequencing costs 

associated with verification of SNP haplotype analysis in large populations (Comai et al., 2004; 

Gilchrist et al., 2005). TILLING and Ecotilling have been used to study DNA variation in 

Arabidopsis thaliana (Till et al., 2003a; Comai et al., 2004; Henikoff et al., 2004), maize (Till et 

al., 2004b), wheat (Slade et al., 2005), and Drosophilia melanogaster (Winkler et al., 2005). In 

addition, the SurveyorTM Mutation Discovery platform from Transgenomic, Inc., NE uses a 

heteroduplex mismatch detection system with CEL I nuclease and reverse phase HPLC for 

mutation detection. The results to date show that these techniques can be successfully carried out 

in a well established laboratory dedicated to high-throughput analysis that requires a large initial 
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investment in equipment and subsequent purchase of relatively expensive chemical reagents. 

However, this approach may not be suitable for research programs with limited funds that cannot 

purchase costly equipment or regents as required by TILLING/ Ecotilling. This is particularly 

true where SNP analysis is a component, but not the major emphasis of a research program. 

Moreover, the single strand-specific endonucleases used in Ecotilling/TILLING were reported to 

exhibit simultaneous and competing exo-nuclease activity during mismatch cleaving reactions 

(Kroeker et al., 1976; Till et al., 2004a). This unwanted exonuclease activity of the single strand-

specific nucleases is believed to reduce sensitivity of this method (Till et al., 2004a).  

To address these issues, a simple, rapid, efficient, and cost-effective alternative to 

standard Ecotilling for SNP discovery and genotyping in rice that can be easily adapted to small 

or medium-sized laboratories was developed. Utility of the modified Ecotilling approach for 

SNP discovery and genotyping was demonstrated by evaluation of a 922 bp region of the alk 

gene and a 472 bp fragment of waxy gene among a large diverse group of rice accessions from 

13 countries.  

4.2 Materials and Methods 

4.2.1 Plant Material and DNA Isolation 

A total of 57 diverse inbred rice accessions representing low, intermediate, and high 

amylose classes were selected for the present study (Table 4.1). The selected materials represent 

a wide geographical sampling from 13 countries and three continents. (28 lines from USA, 1 line 

from Brazil, 8 lines from NE Asia, 8 lines from SE Asia, 11 lines from S Asia, and 1 line from 

Africa). This collection also contains the cultivar Nipponbare to serve both as the reference and 

internal negative control. All accessions, except EPAGRI 106 from Brazil and HB1 from Dr. 

Rush, Louisiana State University, were obtained from the USDA National Plant Germplasm 
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collection. Amylose class and starch gelatinization temperature data were obtained from the 

USDA-ARS-Germplasm Resources Information Network and USDA-ARS Rice Research Unit, 

USDA Grain Quality Laboratory, Beaumont, TX. The varieties Cocodrie, Cypress, and Ratna 

were included twice as internal controls. Four to five plants from each accession were grown to 

the three leaf stage in the greenhouse, and 25 mg samples from single leaf tissue from each plant 

were bulked (100 mg) to isolate genomic DNA using the GenElute Plant Genomic DNA kit 

(Sigma-Aldrich, MO). DNA stocks at 2.5 ng/µl were prepared for each accession. Pools of 

genomic DNA, each consisting of 8 accessions with equal amounts of DNA, were assembled 

from these working stocks and used to evaluate sensitivity of the alternative Ecotilling protocol. 

The last genomic pool consisted of only 4 individuals. 

4.2.2 Primer Design for Alk and Waxy Gene Regions 

4.2.2.1 SNP Discovery 

Primers were designed for the alk and waxy genes using Primer3 v.4 software 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) with sequence information obtained 

from GenBank accessions AP003509 and AP002542, respectively. For validation of SNP 

discovery by this protocol, a set of primers namely, alkF1 (5’-GTG GGG TTC TCG GTG AAG 

AT-3’) and alkRn (5’-AAG CAA GAG GCA AAC AGC TC-3’) were designed to amplify a 922 

bp DNA fragment (from bp 4041 to 4963) of the alk gene (Figure 4.1a). A second set of primers 

namely, waxyF3 (5’-TGC ATC TTT CAT TGC TCG TT-3’) and waxyHR (5’- TGC TTC ACT 

TCT CTG CTT GTG-3’) were also designed to amplify a 472 bp DNA region (from bp 1655 to 

2127 positions) within the first intron of the waxy gene (Figure 4.1b). 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
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Figure 4.1 (a) Diagram of exons (white boxes) and introns (black boxes) of rice alk gene 
showing location of six SNPs in exon 8. The long vertical bars depict locations of two 
known SNPs, whereas the short vertical bars show the locations of four newly discovered 
SNPs by the alternative Ecotilling method. The # symbols are placed over the SNPs in 
lower case. Positions of two PCR primer sets are designated with arrows and the 
horizontal line represents the amplified product containing the two SNPs. (b) Location of 
the SNP at donor splice site of intron 1 in waxy gene and the primers designed to amplify 
the 186 and 472 bp products.  
 

4.2.2.2 SNP Genotyping  

One primer set designed to amplify a 378 bp targeted fragment in exon 8 of the 

alk gene consisted of the reverse primer, alkR22 (5’-CCA TTG GTA CTT GGC CTT 

GA-3’) and the alkF1 primer (described in the previous section). This DNA region 

contains two mutations, reported by Fjellstrom et al. (2004), at positions 4041 and 4172 
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bp (Figure 4.1a). The second primer set consisted of the forward waxyF3 primer (5’-TGC 

TTC ACT TCT CTG CTT GTG-3’) and the reverse waxyYR primer (5’-TTT CCA GCC 

CAA CAC CTT AC-3’) designed to amplify a 186 bp DNA fragment bracketing one 

reported SNP (1600 bp position) at the donor splice site of the waxy gene (Isshiki et al., 

1998) (Figure 4.1b).  

4.2.3 Polymerase Chain Reaction (PCR)  

A total of 5 ng of genomic DNA from each accession or pooled sample was used 

to amplify the target region in a 10 µl PCR reaction containing 1 X polymerase buffer, 

2.0 mM each dNTP mix (GeneAmp, Applied Biosystems, CA), 0.08 µM of each primer, 

5 % DMSO, and 0.2 U of Optimase (Transgenomic, Inc., NE) or AmpliTaq (Perkin 

Elmer, NJ) polymerase enzyme. PCR reactions were performed using the iCycler (Bio-

Rad, CA). The thermocycle profile used to amplify the 922 bp alk fragment was 950C - 4 

min, 33 cycles of (950C - 30 s, 620C - 15 s, 720C - 60 s) and 720C - 5 min. PCR 

amplifications for the 378 bp fragment of the alk gene, and the 186 bp and 472 bp waxy 

fragments were carried out using 950C - 4 min, 30 cycles of (950C - 30 s, 57.20C - 30 s, 

720C - 30 s) and 720C - 5 min. 

4.2.4 Mega-Gel Preparation 

4.2.4.1 SNP Discovery 

The Mega-Gel Dual High-Throughput Vertical Electrophoresis Unit (C.B.S. 

Scientific Company, CA) (Wang et al., 2003) was used in the present study. Non-

denaturing gels (5.0 % (w/v) acrylamide/bis-acrylamide (19:1), 0.5X TBE buffer (110 

mM Tris, 90 mM Boric acid, 2.5 mM EDTA, pH 8.0), 0.07% (w/v) ammonium 

persulfate, 0.08% (w/v) TEMED) were prepared in a 50 (L) x 22 (W) x 1.5 (T) cm format 
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for evaluating products of PCR/sss nuclease assays. The gels were prepared without Gel 

Wrap® casting system gaskets. 

4.2.4.2 SNP Genotyping 

To carry out SNP genotyping using the alternative Ecotilling protocol, 6.5% (w/v) 

acrylamide/bis-acrylamide PAGE gels were prepared as described in the above SNP 

discovery section. 

4.2.5 Alternative Ecotilling Using CEL I Nuclease 

Commercial standard electrophoresis grade CEL I or Surveyor nuclease 

(Transgenomic, Inc., NE) was used to genotype the SNPs in the alk and waxy genes. A 

100 ng aliquat of PCR product (5-6.5 µl) from the queried rice line (individual or pooled 

DNA) was mixed with 100 ng (5-6.5 µl) of the PCR product from the Nipponbare 

cultivar. Mixtures were denatured and annealed to form heteroduplex DNA molecules 

using the iCycler as per the SurveyorTM Mutation Discovery kit protocol (Transgenomic, 

Inc., NE). This 1:1 PCR product mix was then made to a final 15 µl reaction volume by 

adding 1.5 µl of 10X reaction buffer, 0.5 µl of enhancer solution (Transgenomic, Inc., 

NE), and 0.5 µl of CEL I nuclease. The reactions were incubated at 450C for 15 min and 

then stopped by adding 3 µl of 6x stopping dye (0.0625% Xylene cyanol, 30% glycerol 

solution, 135 mM EDTA). Entire samples were then immediately loaded onto a freshly 

prepared gel along with the DNA markers. Fifty ng of a 20 bp DNA marker (Sigma-

Algrich, MO) premixed with the 1.5 µl of 10X CEL I nuclease buffer (1 X concentration) 

were loaded per well. Gels were run at 300 v for 90 min and then stained for 10 min 

using 200 mL of 0.5 X TBE, pH 8.0, containing a 1:10000 dilution of SYBR Gold 

nucleic acid gel stain (Molecular Probes, OR) followed by two washings using 500 ml of 
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distilled water. Images of gels were obtained with a KODAK GL100 system using the 

535 nm WB 50 optical band-pass filter. Bands were analyzed for SNP genotyping using 

KODAK 1D 3.0 software. SNP genotypes observed at both alk and waxy loci were 

scored as band present (1) or absent (0) for each individual or pooled sample.  

4.2.6 Alternative Ecotilling Using Mung Bean Nuclease  

To examine the flexibility of this alternative protocol, mung bean nuclease (New 

England Biolabs, MA) was also used for SNP genotyping. The 10 X mung bean nuclease 

reaction buffer (100 mM MgSO4, 2 mM ZnSO4, 200 mM Bis-Tris pH 6.5, 0.02% Triton 

X-100, and 0.002 mg/ml BSA) needed for the single-strand specific nuclease activity was 

prepared as per Till et al. (2004a). The experimental protocol followed was similar to that 

of CEL I nuclease described previously except that the reactions were incubated at 650C 

for 30 min.  

4.2.7 Standard Ecotilling Assay  

The original Ecotilling assay was also carried out for both alk and waxy gene 

regions. The eight-fold genomic DNA pools of 57 rice accessions were queried against 

Nipponbare DNA for both these gene regions as per the International Rice Research 

Institute website protocol on the 4300 LI-COR gel analysis system 

(http://www.knowledgebank.irri.org/microarray2004/docs/ 

Lab_session_EcoTILLING_protocol.doc). The 5’ end IRDye 700 modification was 

carried out for the alkF1 and waxyF3 primers, whereas alkR22 and waxyHR primers 

were labeled with IRDye 800 at their 5’ends. The denaturation and annealing steps were 

carried out as per the SurveyorTM Mutation Discovery kit protocol. The LI-COR images 

were then manually scored for SNP analysis. 
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4.2.8 DNA Sequencing and Alignment 

For verification of the alternative Ecotilling SNP discovery and genotyping 

results, both the alk and waxy gene PCR products of all 57 accessions and those of the 

reference Nipponbare cultivar were sequenced. All sequencing reactions were performed 

at the LSU Genomics Core Facility, Pennington Biomedical Research Center. The 

sequencing reactions were carried out using BigDye® Terminator v3.1 Cycle Sequencing 

Kit with 5 to 20 ng of the gel-purified PCR product (Zymoclean™ Gel DNA Recovery 

Kit, Zymo Research, CA) and were analyzed using the ABI 3100 DNA Analyzer. 

Sequences were then aligned using ClustalX 1.8 software (http://bips.u-

strasbg.fr/fr/Documentation/ ClustalX/) to locate SNPs. All mismatches in the alignments 

were manually traced back to their sequencing quality (phred) scores before evaluating 

the modified Ecotilling results.  

4.3 Results and Discussions 

4.3.1 SNP Discovery 

The PCR amplified products of eight genomic DNA pool templates of 57 rice 

lines were analyzed against that of Nipponbare cultivar as per the alternative Ecotilling 

protocol for both alk gene and waxy gene regions. For the 922 bp PCR heteroduplex 

analysis of the alk gene, new SNPs were identified in all genomic DNA pools (Figure 

4.2). Therefore, all individual members from all the 8-fold pools were sequenced and 

SNPs were characterized and revealed four new SNPs at bp positions 4525 (A/G), 4541 

(A/G), 4693 (G/A) and 4695 (C/T), along with two previously reported SNPs at positions 

4041 (A>G) and 4172 (GC>TT) by Fjellstrom et al. (2004) (Figure 4.2). 

A small cluster of 10 SNPs and one indel in intron 1 comprising a 472 bp region  
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of the waxy gene was also evaluated by alternative Ecotilling that reproducibly detected 

polymorphism in this region including the indel, but it did not clearly identify the 

individual SNPs (data not shown). Instead, multiple digestion products of similar size 

were observed as a smear on the gel, so in this case sequencing would be necessary to 

resolve each variation. Subsequent sequencing of 30 randomly selected lines for this 

region confirmed the alternative Ecotilling results. Presence of clusters for SNP discovery 

is not considered a problem, since the average distance between individuals SNPs in the 

rice genome is estimated to be ~ 500 bp (Feltus et al., 2004). Standard Ecotilling using IR 

Dye labeled primers was also carried out for this same waxy gene region, and as expected 

all the bands were clearly separated (data not shown). Even in such a case, sequencing 

was also necessary to properly score the waxy SNP cluster in pools, but not the 

individual, DNA templates of the standard Ecotilling protocol.  

4.3.2 SNP Genotyping 

The alternative Ecotilling protocol using CEL I nuclease was performed 

individually for 57 rice accessions against Nipponbare (1:1) for the two SNPs in the exon 

8 region of the alk gene (Figure 4.3). The genotyping was carried out by analyzing the 

modified Ecotilling images supplemented with the aligned sequence information of all 

observed representative haplotype samples and the reference accession. The (A/G) 

polymorphism was not observed in the reference Nipponbare accession, but was detected 

in the remaining 56 lines (Table 4.1). A relatively small proportion of the accessions 

(13/57; 23%) contained the GC/TT mutation which may not be surprising given the 

presence of two substitutions at this locus. Nevertheless, a moderately high percentage of 

U.S. accessions (8/20; 40%) contained the GC/TT polymorphism which was four-fold 
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Figure 4.2 SNP genotyping using pools (8 samples combined) of genomic DNA for 922 
bp exon 8 region of the alk gene. The order of individual rice accessions of the eight-
sample DNA pools is the same as that denoted in Figure 4.4. The last genomic pool 
consists of only 4 individuals. Lane C is the Nipponbare/Nipponbare homoduplex 
control; Lanes 1 to 8 are heteroduplex digestion products of individual pools using CEL 
I; M1 = 100 bp marker. Arrow 1 points to CEL I nuclease undigested 922 bp PCR 
product mix; arrow 2 - 766 bp DNA fragment for the first A/G SNP; arrow 3 - 635 bp 
DNA fragment for GC/TT SNP; arrow 4 - 521 bp DNA band derived from digestion of 
fragments 3 and 9; arrow 5 - 490 bp DNA band derived from digestion of fragments 2 
and 7; arrow 6 - 287 bp DNA fragment for the GC/TT SNP and 283 bp DNA fragment 
for the second A/G SNP; arrow 7 - 266 bp DNA fragment for the third A/G SNP; arrow 8 
- 156 bp DNA fragment for the first A/G SNP; arrow 9 - 114 bp DNA fragment for the 
G/A SNP; arrow 10 - 112 bp DNA fragment for the C/T SNP. 
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more frequent than germplasm originating from southeast Asia (Myanmar, Philippines, 

Taiwan, Bangladesh, India, Nepal, Pakistan).The modified Ecotilling genotyping results 

were compared with sequence information from all 57 accessions and found to be in 

complete agreement. All accessions containing the GC/TT mutation displayed low 

gelatinization temperature, although nine accessions with low gelatinization temperature 

did not display this mutation (Table 4.1). 
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Figure 4.3 Modified Ecotilling of two SNPs in exon 8 region of the alk gene for 57 
accessions using CEL I nuclease. Lanes 1 - 57 are CEL I nuclease digests of PCR 
heteroduplex molecules of 57 accessions with Nipponbare; Lane 2 contains CEL I 
nuclease digest of Nipponbare/Nipponbare PCR homoduplex; Arrow 1 points to CEL I 
nuclease undigested 378 bp PCR product mix; arrow 2 - 287 bp DNA fragment 
corresponding to GC/TT SNP; arrow 3 - 221 bp DNA fragment for the A/G SNP; arrow 4 
- 156 bp DNA fragment for the A/G SNP; arrow 5 - 131 bp DNA band derived from 
digestion of fragments 2 and 3; arrow 6 - 91 bp DNA fragment for GC/TT SNP. 
 
 Alternative Ecotilling using mung bean nuclease in the waxy gene for the 57 

accessions revealed that a majority (46/57; 81%) carried the T/G SNP at the donor splice 

(Figure 4.4). All five accessions from China carried this SNP while both the accessions 

from Japan, including Nipponbare did not (Table 4.1). Inspection of the G/A SNP, 

 79



 

Table 4.1 SNP genotypes in alk and waxy genes of 57 rice accessions using the Alternative Ecotilling protocol  
 

Exon 8 of alk gene Intron 1 of waxy gene 
Accession NPGS/GRIN 

Number Origin 
 

Gel. 
Temperaturea

Amylose 
Classb SNP  

A/G 
SNP  

 GC/TT 
SNP  
T/G  

SNP 
G/A 

AB 647  NDc  USA Low High 1 1 1 1 
Bolivar PI 628791 USA Intermediate High 1 0 1 1 
Cocodrie PI 6063631 USA Intermediate High 1 0 1 0 
Cheniere ND USA Intermediate High 1 0 1 0 
Cypress PI 9700184 USA Intermediate Intermediate 1 0 1 0 
Dixiebelle  PI 595900 USA Intermediate High 1 0 1 1 
Fortuna PI 275448 USA Low Low 1 1 0 0 
Fortuna Moredo PI 431075 USA ND ND 1 0 1 1 
Francis PI 632447 USA Intermediate Intermediate 1 0 1 0 
Golden Steve PI 612579 USA Low Low 1 1 0 0 
Jackson  PI 572412 USA Intermediate Intermediate 1 0 1 0 
J-85 PI 595927 USA Low Low 1 1 0 0 
Kokubelle PI 612581 USA (Intermediate)d (Intermediate)d 1 0 1 0 
Lacrosse PI 389966 USA Intermediate Low 1 0 1 0 
LaGrue  PI 568891  USA Intermediate Intermediate 1 0 1 0 
L-205 PI 608664 USA Intermediate High 1 0 1 1 
Maxwell PI 612582 USA (Low)d (Low)d 1 1 0 0 
Millie  PI 538354 USA Intermediate Intermediate 1 0 1 0 
Neches PI 633972 USA Low Glutinous 1 1 1 0 
Sierra  PI 633623 USA Intermediate High 1 0 1 1 
Tor Tora PI 431150 USA ND ND 1 0 1 0 
Tebonnet PI 487195 USA Intermediate Intermediate 1 0 1 1 
Tsuri Mai PI 612580 USA ND ND 1 1 0 0 
TX 2172 TX 2172 USA Intermediate Glutinous 1 0 0 0 
TX 3043 TX 3043 USA Intermediate High 1 0 1 1 
TX 4175 TX 4175 USA Intermediate High 1 0 1 1 
Waxy M101 PI 506223 USA Low Glutinous 1 1 0 0 
Wells PI 612439 USA Intermediate Intermediate 1 0 1 0 
EPAGRI 106 ND Brazil ND ND 1 0 1 0 
Gui Chow  ND  China Low High 1 1 1 1 
Hsuan Jha PI 160829 China Intermediate High 1 0 1 1 
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Table 4.1 (continued) 
 

Exon 8 of alk gene Intron 1 of waxy gene 
Accession NPGS/GRIN 

Number Origin Gel. 
Temperaturea

Amylose 
Classb SNP  

A/G 
SNP  

 GC/TT 
SNP  
T/G  

SNP 
G/A 

E Che Goo PI 389570 China Intermediate High 1 0 1 1 
TeQing PI 536047 China Intermediate High 1 0 1 1 
ZHE733  PI 629016 China Intermediate High 1 0 1 1 
Nipponbare PI 514663 Japan Low Low 0 0 0 0 
Yuukara PI 341937 Japan Low Low 1 1 0 0 
Chong Kuc Tae CI 12284 S Korea Low Glutinous 1 1 1 1 
Dawebyan PI 222405 Myanmar Low High 1 0 1 1 
HB 1 ND Philippines Intermediate Glutinous 1 0 0 0 
IR 29 PI 393986 Philippines Low Glutinous 1 1 0 0 
IR 532-1-33  PI 388332 Philippines Intermediate High 1 0 1 1 
IR 1561-243-5-6 PI 385340 Philippines Low High 1 1 1 1 
Chin Feng Hsuch PI 389048 Taiwan Low High 1 0 1 1 
Hung Chu Shien PI 389073 Taiwan Low High 1 0 1 1 
Taipei Woo Co PI 294397 Taiwan Intermediate High 1 0 1 1 
Dhariyal PI 297569 Bangladesh Intermediate High 1 0 1 1 
IR 36 PI 408586 Philippines Intermediate High 1 0 1 1 
ARC 10764 PI 373576 India Low High 1 0 1 1 
Basmati PI 173923 India Intermediate Intermediate 1 0 1 0 
Ratna PI 413980 India Low High 1 0 1 1 
Achhame PI 400028 Nepal Low Intermediate 1 0 1 1 
Kakani2 PI 400020 Nepal Low Intermediate 1 0 1 0 
Fine Mushkan PI 385765 Pakistan Low High 1 0 1 0 
Hansraj PI 385815 Pakistan Intermediate High 1 0 1 1 
Palman PI 385814 Pakistan Intermediate High 1 0 1 1 
Sufaida PI 385819 Pakistan Intermediate High 1 0 1 1 
Mad/S PI 385323 Rwanda Intermediate High 1 0 1 1 
a Gel. temperature = starch gelatinization temperature class as estimated by alkali spreading value documented in USDA-ARS-GRIN or USDA-ARS Rice 
Research Unit records. b Amylose class where apparent amylose content falls into the following categories: Glutinous = 0 to 5%, Low = 5 to 19%, Intermediate = 
19 to 23%, and High > 23%. c ND = no data available.  d Data as provided on US Plant Variety Protection description of accession.  
‘0’ indicates presence of the wild type or reference haplotype for a given SNP, whereas ‘1’ indicates presence of the mutant or alternate haplotype for the same 
SNP.  Note: the order of rice accessions is rearranged as per their geographical origin, but not as per the order in which the alternative Ecotilling assay was 
carried out. 
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located 85 bp downstream of the donor slice site, showed that half of the accessions (30/57) 

contained this polymorphism. All of the 30 accessions with this SNP also carried the T/G SNP at 

the donor splice site. The sequence information from the 57 accessions was once again in 

complete agreement with the alternative Ecotilling results. The G/A polymorphism occurred at 

the 5’ end of a group of 10 SNPs and in an insertion/deletion (Olsen and Purugganan, 2002) that 

spanned a region of 472 bp. The T/G polymorphism was associated with an intermediate or high 

amylose class in those 40 accessions with measured amylose data except for the Chong Ku Tae 

accession. In addition, a G/A polymorphism was associated with the high amylose class in 26 of 

the 29 accessions carrying this mutation (Table 4.1).  
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Figure 4.4. Modified Ecotilling of waxy locus for 57 accessions using mung bean nuclease. 
Lanes 1 - 57 are CEL I nuclease digests of PCR heteroduplex molecules of 57 accessions with 
Nipponbare. The M lane - 100 bp marker; Lanes 2 and 45 - CEL I nuclease digest of Nipponbare 
/ Nipponbare homoduplex; Arrow 1 points to undigested 186 bp PCR product mix; arrow 2 - 140 
bp DNA fragment for G/A mutation; arrow 3 - 131 bp DNA fragment for T/G donor splice site 
SNP; arrow 4 - 56 bp DNA fragment for T/G donor splice site SNP. Three accessions (Cocodrie, 
Cypress, and Ratna) were duplicated as controls in lanes 5, 7 and 45, and accessions are not in 
the same order as Table 4.1. All 30 US accessions were alphabetically ordered, followed by 
alphabetical ordering of the remaining accessions according to their country of origin.  
 
4.3.3 Sensitivity of the Alternative Ecotilling Method 

The eight-fold pools of genomic DNA prepared from the 57 accessions were also 

genotyped for the alk gene region, and the results obtained were consistent with the individual 
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SNP results for all members of the pools (Figure 4.5c). All SNPs were faithfully detected and 

signal or band intensity was comparable to that of individual SNP typing shown in Figure 4.5a, 

b. All genomic DNA pooled samples were assayed for the alk region via the standard Ecotilling 

method as per the IRRI protocol. Results from the standard method were consistent with 

information obtained previously by alternative Ecotilling and sequence information (data not 

shown).  

The CEL I nuclease and mung bean (sss) endonucleases were used separately to evaluate 

flexibility of the alternative Ecotilling protocol (Figure 4.5a, b). Four different amounts of 

commercial CEL I nuclease (1 µl, 1/2 µl, 1/3 µl, 1/4 µl) and mung bean nuclease concentrations 

(10 U or 1 µl, 5 U or 1/2 µl, 3.33 U or 1/3 µl and 2.5U or 1/4 µl) were tested. Use of 1 µl of 

commercial CEL I nuclease or 1 µl of commercial mung bean nuclease was found to produce the 

highest band intensities. However, use of 0.33 µl CEL I nuclease or 0.5 µl mung bean nuclease 

gave reproducible and unequivocal genotyping of SNPs. In fact, all results presented in this 

paper for SNP genotyping of the alk and waxy loci were carried out using the reduced 

concentrations.  

4.3.4 Time and Cost Analyses 

Time requirements for both modified and standard Ecotilling procedures were determined 

for the following steps: PCR setup and running, template denaturation, CEL I nuclease and mung 

bean nuclease reaction setup and digestion, gel preparation, setup, mounting, and pre-run, 

comb/membrane loading, gel running (200-1000 bp fragments), staining, imaging and data 

collection. All the steps of the modified Ecotilling procedure could be completed in 7.5 hr, 

including data collection and analysis. Each gel illustrated in this paper was generated and 

analyzed in a single day. In contrast, the standard Ecotilling protocol (in our hands), required 
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11.5 hr to complete over a two day period. DNA precipitation and volume reduction, software 

data input, and denaturation of samples and size standards were additional steps required for 

standard Ecotilling. Finally, only a single digital image was needed to genotype SNPs with 

alternative Ecotilling, whereas two separate image files were required to collect and analyze data 

with standard Ecotilling.  
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Figure 4.5 Modified Ecotilling for SNP detection in exon 8 of alk gene carried out with varying 
concentrations of CEL I nuclease and mung bean nucleases. All treatments were replicated twice 
as indicated with a horizontal line above corresponding lanes. Panel a: Lanes C1,2 - PCR 
homoduplex digests of Nipponbare cultivar using 1 µl of CEL I nuclease (negative control); 
Lanes 1 through 8 - PCR heteroduplex digests of Waxy M101and Nipponbare using 1 µl, 1/2 µl, 
1/3 µl and 1/4 µl of CEL I nuclease, respectively. Arrow 1 points to CEL I nuclease undigested 
378 bp PCR product mix; arrow 2 - 287 bp DNA fragment for A >G SNP; arrow 3 - 221 bp 
DNA fragment for the GC/TT SNP; arrow 4 - 156 bp DNA fragment for the GC/TT SNP; arrow 
5 - 131 bp DNA band derived from digested fragments 2 and 3; arrow 6 - 91 bp DNA fragment 
for A/G SNP; Panel b: Lanes C1, 2 - PCR homoduplex digest of Nipponbare using 1 µl of mung 
bean nuclease (negative control); Lanes 1 through 8 - PCR heteroduplex digests of Waxy M101 
and Nipponbare using 1 µl, 1/2 µl, 1/3 µl and 1/4 µl of mung bean nuclease, respectively. Panel 
c: SNP genotyping using pools (8 samples combined) of genomic DNA for exon 8 region of alk 
gene. Lane C is homoduplex control; Lanes 1 to 8 are heteroduplex digestion products of 
individual pools using CEL I; M = 20 bp marker. The order of individual rice accessions for the 
eight-sample DNA pools is the same as that denoted in Figure 4.4.  
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Cost estimates for SNP analysis that included the following items were determined for 

both alternative and standard Ecotilling (Table 4.2): Genomic DNA isolation, pipette tips, 

sample tubes, PCR and PAGE gel reagents, labeled and unlabeled primers, gel buffer, loading 

dye, size standards, and CEL I nuclease and mung bean nuclease. Membrane combs were 

specific to standard Ecotilling as was SYBR Gold dye to modified Ecotilling. The cost/sample 

for standard Ecotilling was estimated to be $1.96 when using CEL I nuclease while alternative 

Ecotilling was $1.26, a saving of ~ 46%, primarily attributed to reduced costs of unlabeled 

primers and native PAGE gels. A reduction of $0.48/sample was possible in both procedures 

when commercial mung bean nuclease vs. CEL I nuclease was used. Even though some 

researchers may prefer to carry out direct sequencing at ~ $25 per 1000 bp, both strands, for SNP 

genotyping, the alternative Ecotilling method is justified considering the reduced costs and 

increased speed.  

Table 4.2 Time requirements for different stages of alternative vs. standard Ecotilling  
 

                 Modified Ecotilling Standard Ecotilling  
Day 1 Day 1 

PCR reaction setup  30 min PCR reaction setup  30 min 
PCR 120 min PCR 120 min 
Denaturation  25 min Denaturation  25 min 
CEL I nuclease reaction setup  15 min CEL I nuclease reaction setup  15 min 
CEL I nuclease reaction  20 min CEL I nuclease reaction  20 min 
  Isopropanol precipitation  45 min 
Gel preparation  30 min Volume reduction by incubating 

at 85 0C 
 45 min 

Gel setting  60 min Subtotal 300 min (5 hrs) 
Gel mounting   5 min Day 2 
Sample loading into 100 well 
comb 

 5 min Gel Preparation 45min 

Gel running (500 bp)  90-120 min Gel setting 60min 
Gel staining and imaging  20min Gel cleaning and mounting  30 min 
  SAGA template preparation 15 min 
   Pre-run 25 min 
  Denaturation of size standards 5 min 
  Loading samples onto 96 well 

TILLING membrane 
30 min per plate 

  Gel running (500bp) 180 min 
  Subtotal 390 min (6.5 hrs) 
Total 450 min (7.5 hr) Total  690 min (11.5 hrs) 
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CHAPTER 5 DEVELOPMENT AND APPLICATION OF HAPLOTYPE-SPECIFIC 
ASSAYS FOR GENOTYPING OF THE AROMA GENE IN RICE 

5.1 Introduction 

5.1.1 Market Potential of Aromatic Rice 

 A growing demand for aromatic rice has created new and expanding market opportunities 

in the United States, Canada, the Middle East and Europe (Cordeiro et al., 2000; Jin et al., 2003). 

International market value of “Jasmine” aromatic rice for Thailand in 2003 was $840 million 

while “basmati” aromatic rice produced $960 million for India and Pakistan in the same year 

(http://basmati.com/aromatic/index.shtml). In the U.S. nearly 12% of the total rice consumed is 

aromatic, primarily imported and consumed by the Asian-American community (Sha, 2005). In 

addition, the aromatic rice farmer often secures higher returns for his produce than the 

conventional rice growing farmer (Jin et al., 2003).  

5.1.2 Aroma Detection Assays 

 The aroma characteristic in rice is primarily attributed to accumulation of 2-acetyl-1-

pyrroline in leaf and seed tissues (Buttery et al., 1983). Determination of rice seed aroma by 

conventional abrasive, tasting, cooking or chemical methods is generally imprecise, time 

consuming, requires large amounts of sample materials, and often suffers from lack of agreement 

among laboratories (Lorieux et al., 1996; Widjaja et al., 1996; Cordeiro et al., 2002). Use of 

molecular markers as an alternative to conventional methods for distinguishing aromatic and 

non-aromatic genotypes has been evaluated in previous research (Ahn et al., 1992; Garland et al., 

2000; Cordeiro et al., 2002; Jin et al., 2003). Ahn et al. (1992) mapped the aroma trait 4.5 cM 

from the restricted fragment length polymorphism (RFLP) marker RG28 on chromosome 8 
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(Garland et al., 2000). The simple sequence repeat (SSR) marker SCU015RM was detected 4 cM 

from the aroma trait by Cordeiro et al. (2002). Jin et al. (2003) subsequently reported the 

association of aroma with a C/T SNP marker located ~ 2 cM from the fragrance (fgr) gene. 

However, these molecular markers were not tightly linked with the aroma trait, so this approach 

to distinguish aromatic and non-aromatic rice genotypes was not successful (Jin et al., 2003).  

5.1.3 The Aroma Gene 

 Bradbury et al. (2005a) reported that the recessive nature of aroma was controlled by the 

fgr gene on chromosome 8 which encodes for the enzyme, betaine aldehyde dehydrogenase 

(BAD2). Sequence analysis of the fgr or BAD2 gene from 14 aromatic and 62 non-aromatic rice 

varieties revealed presence of two aromatic and non-aromatic haplotypes in exon 7, consisting of 

two A/T mutations (bp positions 6147, 6149, Genbank accession AP004463), an 8 bp indel (bp 

positions 6151 to 6158), followed by a C/T mutation at bp position 6159. The C/T SNP of this 

haplotype was postulated to generate a transcriptional stop signal during synthesis of the BAD2 

enzyme that leads to production of a truncated protein (Bradbury et al., 2005a). The truncated 

non-functional BAD2 enzyme presumably lacks three conserved protein motifs needed for its 

substrate binding activity, resulting in accumulation of 2-acetyl-1-pyrroline in plant tissues and 

the aroma characteristic in rice Thus, presence or absence of the aroma SNP haplotype would be 

directly associated with presence or absence of the aromatic trait for marker-assisted 

introgression into rice varieties.  

5.1.4 SNP Genotyping Assay for the Aromatic Rice 

Although current SNP genotyping technologies promise accurate and high-throughput 

results, their utility is seriously limited by use of expensive reagents and detection equipment 
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(Hayashi et al., 2004). In this context, a number of inexpensive allele-specific SNP genotyping 

assays have been developed by several researchers (Ye et al., 2001; Soleimani et al., 2003; 

Zhang et al., 2003; Chiapparino et al., 2004; Bundock et al., 2006). However, these methods 

require use of complex PCR primer designing, cycling conditions and scoring strategies. In 

contrast, the two allele-specific SNP primer system with a common reverse primer (Zhang et al., 

2003) has been employed in previous genotyping studies of single copy genes in diploid 

organisms such as rice (Hayashi et al., 2004). However, for combined genotyping of more than 

one SNP, this approach requires a restricted size of amplified PCR products within a specific 

range to avoid unambiguous discrimination. This study emphasizes a simple modification of the 

methods of Hayashi et al. (2004) that results in accurate scoring of PCR haplotype products on 

agarose gels that differ by only a single base pair.  

Bradbury et al. (2006) reported a single tube allele-specific amplification method for 

genotyping aroma-associated haplotypes in rice. However, due to presence of a wide range of 

DNA bands (585 bp, 577 bp, 355bp and 257 bp) in the PCR amplified products generated by this 

method, multiple loadings of the PCR products, either on the agarose or the native PAGE gel is 

not possible. This difficulty will seriously limit the high-through put scaling ability for the SNP 

genotyping method described by Bradbury et al. (2006). In addition, the SNP genotyping by this 

method requires use of higher PCR reaction volumes than the conventional allele specific assays. 

Moreover, results from these studies were obtained primarily from Australian temperate japonica 

germplasm that may not be applicable for indica or tropical japonica lines.  

 The objective of this research was to develop and apply a haplotype-specific assay for 

genotyping of the aroma gene in US and Asian rice germplasm. The technique developed during 

this study involved use of unlabeled primers, optimization of PCR cycling conditions and a  
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simple assay using standard gel electrophoresis.  

5.2 Materials and Methods 

5.2.1 Plant Material and Genomic DNA Extraction 

Three sets of lines from U.S. (Louisiana, California) and Asian (Thailand, India, Japan) 

sources were used to carry out the BAD2 SNP haplotype study. The first set consisted of seven 

non-aromatic Japanese and U.S. inbred rice varieties, namely, Nipponbare, Cocodrie, Cheniere, 

Cypress, Francis, Trenasse, CL131, and 13 aromatic U.S. and Asian inbred varieties/lines, 

namely A201, A301, Basmati370, Calmati, Della, Dellamati, Dellrose, KDM-105, LA2131, 

LA2137, LA2140, LA2177 and LA0502183 (Figure 5.1a). For the haplotype assays described 

below, leaf samples from a single plant of each line or variety were collected in 2005 field plots 

at the Rice Research station, Crowley, LA. A total of 100 mg of leaf tissue/line was used to 

isolate genomic DNA using the GenElute Plant Genomic DNA kit (Sigma-Aldrich, MO), and ~ 

2 to 4 ng from this genomic DNA was used to perform the haplotype assays. 

 The second set of material consisted of 50 breeding lines in the F2 to F7 generations 

developed at the Rice Research Station, Crowley, LA that tested positive for aroma by a standard 

cooking method (Sha et al., 2000) (Table 5.1). Collection of leaf samples and DNA isolation 

were the same as that described for the 20 varieties. The third set of materials consisted of four to 

five progeny derived in the subsequent generation from each of the 50 breeding lines. Each 

individual was grown in the greenhouse and leaf samples from 3-4 week seedlings of each 

progeny were collected for haplotype assays. Seeds from each progeny line were harvested, dried 

to ~ 12% moisture and scored for aroma as described by Sha et al. (2000). Seeds of the aromatic 

Dellrose and non-aromatic Cocodrie varieties served as positive and negative controls,  

respectively, for the experiment. 
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5.2.2 Haplotype-specific Primer Design 

All primers were designed using the Primer3 software (Rozen and Helen 2000). 

Sequence information for the BAD2 gene was obtained from Genbank accession no. AP004463. 

In case of the aromatic and non-aromatic haplotypes, the group of linked SNP and indel alleles 

occurred over five nucleotide bases (from bp positions 6147 to 6151) and over 13 nucleotide 

bases (from bp positions 6147 to 6159), respectively (Figure 5.1a). Using this information, four 

different haplotype-specific forward primer sets were designed and evaluated (results not 

shown). Unlike the Zhang et al. (2003) original protocol, current haplotype-specific forward 

primers did not contain a single target SNP allele at the last nucleotide base. Instead, the linked 

SNP and indel alleles were placed at three different locations within the 22-nt (aromatic) or 23-nt 

(non-aromatic) primer. Among all primers tested, the following set produced accurate 

discrimination between aromatic and non-aromatic haplotypes: aromatic specific primer, 5′-CTG 

GTA TAT ATT TCA GCT GAT C-3′, designed to contain ‘T’ alleles at bp positions 6147 and 

6149 (see Figure 1a) for the first two SNPs, presence of an 8 bp deletion at bp positions 6151 

through 6158, and a ‘T’ allele for the last SNP at bp 6159. Positions for the SNP and indel alleles 

associated with primer sequences are underlined. The non-aromatic forward primer 5′-AAA 

GAT TAT GGC TTC AGC TGA TC-3′ was designed with an ‘A’ allele for the second SNP at 

bp 6149 bp, no deletion at bp 6151 through 6158 and a ‘C’ allele for the third SNP at bp 6159 

bp. The first “A” SNP at position 6147 was not included due to large Tm differences between the 

primer pairs. To reduce background amplification with other haplotypes, a nucleotide mismatch 

of C→A was introduced in the forward primers at the third base position upstream of the 3′ 

termini as described by Zhang et al. (2003) and Hayashi et al. (2004). No SNPs or mismatches 

were introduced into the common reverse primer, 5′-CCA GTG AAA CAG GCT GTC AA-3′. 
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The aromatic and non-aromatic specific primers were used to amplify expected 236 bp and 237 

bp PCR products, respectively, from exon 7 of the BAD2 gene (Figure 5.1b, c). 

5.2.3 Haplotype-Specific Polymerase Chain Reaction (HS-PCR) 

To evaluate each variety or line, two separate PCR reactions specific to each of the BAD2 

haplotypes were carried out using the respective forward primer and the common reverse primer. 

The 6.5 µl PCR mix consisted of the following: 2 µl of 2.5 ng µl-1 template genomic DNA mixed 

with 0.65 µl of 10x Taq Buffer (15 mM MgCl2, Gene Amp, Applied Biosystems, CA), 0.52 µl of 

2.5 mM dNTPs mix (Gene Amp, Applied Biosytems), 0.13 µl each of 20 µM forward and 

reverse primers and 0.05 µl of 5 U µl-1 AmpliTag DNA Polymerase (Applied Biosytems, CA). 

The following optimized stringent PCR cycling conditions were carried out using the BioRad 

iCycler: 95oC - 2 min, 28 cycles of (95oC - 12 s, 60oC - 12 s, 72oC - 12 s) and 72oC - 5 min. For 

haplotype scoring, 5 µl of each PCR product were loaded onto a 2% agarose gel, run for 20 min 

at 7.5 V cm-1 in 1x TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) and photographed 

after staining with ethidium bromide. To demonstrate high levels of specificity and absence of 

background, the remaining 1.5 µl of the PCR product was loaded onto a non-denaturing 6.0% 

(w/v) acrylamide/bis-acrylamide (19:1) poly-acrylamide gel, electrophoresed for 45 min in 0.5x 

TBE buffer (110 mM Tris, 90 mM Boric acid, 2.5 mM EDTA, pH 8.0) at 15 V cm-1 and stained 

with SYBRGreen (Molecular Probes, OR). Presence or absence of bands generated from each of 

the aromatic and non-aromatic specific PCRs were scored as 1 or 0, respectively, to identify 

corresponding homozygous or heterozygous haplotypes (Table 1). The 1, 0 and 1, 1 scores 

represent the dominant, non-aromatic haplotypes (homozygous and heterozygous states, 

respectively), whereas 0, 1 denotes presence of the recessive homozygous aroma haplotype. 
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5.2.4 DNA Sequencing and Alignment 

For validation of genotyping results from the first set of 20 varieties, PCR products were 

gel-purified with the Zymoclean™ Gel DNA Recovery Kit (Zymo Research, CA), and 25 to 50 

ng were used as template for cycling reactions using the BigDye® Terminator v3.1 Cycle 

Sequencing Kit. PCR products of both aromatic and non-aromatic BAD2 haplotypes were 

sequenced on both strands. Sequence data were aligned using the ClustalX 1.8 software 

(http://bips.u-strasbg.fr/fr/Documentation/ClustalX/) to locate SNPs and compare haplotype 

results.  

5.3 Results and Discussions 

5.3.1 Aroma Phenotypes and Haplotypes of 20 Varieties 

The ability of the haplotype-specific assay to detect aromatic or non-aromatic haplotypes at the 

BAD2 gene was first carried out in a blind study with 20 known inbred aromatic and non-

aromatic varieties and lines (Figure 5.1a). In two separate PCR experiments, genomic DNA of 

each variety or line was used to generate haplotypes using each of the specific forward primers 

and the common reverse primer. Haplotypes were successfully scored with either agarose or 

PAGE gels, although the PAGE format showed distinct bands of greater intensity than the 

agarose method. Out of 20 varieties/lines genotyped, 13 aromatic types were homozygous for the 

expected 236 bp band. Both haplotypes for five of the aromatic varieties/lines (A301, Basmati 

370, Calmati, Dellrose, and KDM-105) are shown in lanes 1 to 5 (non-aromatic) and the 

corresponding 1′ to 5′ (aromatic) (Figure 5.1b, c). The remaining 7 non-aromatic varieties were 

homozygous for the expected 237 bp band. Results for five varieties (Cheniere, Cocodrie, 

Cypress, Francis and Nipponbare) are shown in lanes 6 to 10 (non-aromatic) and 6′ to 10′ 

(aromatic) (Figure 5.1b, c). To validate genotyping results, PCR amplified products from exon 7 
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Figure 5.1 Haplotype-specific assays of aromatic and non-aromatic lines. Panel (a):  
Sequence alignment results for the exon 7 haplotypes of BAD2 gene (bp positions 6131 - 6176) 
carried out for the 20 aromatic and non-aromatic varieties. Vertical boxes are used to highlight 
the observed SNP and indel alleles. Panel (b): haplotypes of varieties/lines observed on 2 % 
agarose gel; M1 = 100 bp DNA ladder (N.E. Biolabs); Lanes 1 - 5 and the corresponding 1′ - 5′ 
are A301, Basmati 370, Calmati, Dellrose, and KDM-105, respectively; Lanes 6 - 10 and the 
corresponding 6′ - 10′ are Cheniere, Cocodrie, Cypress, Francis and Nipponbare, respectively; 
Lanes 11 - 15 and the corresponding 11′ - 15′ are 5 progeny of breeding line A007 (see Table 1); 
Lanes 16 - 20 and the corresponding 16′ - 20′ are 5 progeny of breeding line A011 (not in the 
same order as in Table 1). Panel (c): haplotypes of lines as in Panel (b) observed on 6 % (w/v) 
native Mega-Gel PAGE gel; M2 = 20 bp PCR DNA marker (Sigma-Aldrich).  
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of the BAD2 gene were sequenced for both stands and aligned for all 20 varieties/lines (Figure 

5.1a). Sequencing results confirmed that all 13 types scored as aromatic showed the expected 8 

bp deletion at positions 6151 through 6158 and three ‘T’ alleles at bp positions 6147, 6149, and 

6169 that is consistent with results of Bradbury et al. (2005a). For all 7 non-aromatic varieties, 

sequencing revealed the presence of two ‘A’ SNP alleles at bp positions 6147 and 6149, no 

deletion at bp positions 6151 through 6158, and a ‘C’ SNP allele at bp position 6159 in 

agreement with Bradbury et al. (2005a). Recombinant haplotypes were not observed for any 

variety/line, corresponding to results of Bradbury et al. (2005a), suggesting that only two SNP 

haplotypes occur in exon 7 of the BAD2 gene. Thus, there was complete correlation between 

sequencing alignment results and the BAD2 haplotypes. 

5.3.2 Aroma Phenotypes and Haplotypes of 50 Breeding Lines and Their Progeny 

To further assess versatility of the aroma haplotype assay, I evaluated 50 U.S. rice 

breeding lines (second set) for association of the aroma trait and the SNP haplotypes in exon 7 of 

the BAD2 gene (Table 5.1). All 50 lines were scored as aromatic as determined by the protocol 

of Sha et al. (2000). Because this breeding material may be actually segregating for aroma and 

the haplotypes observed from the first set of 20 varieties, all 50 breeding lines were grown in the 

greenhouse and advanced to the next generation that represents the third set of lines. 

Presence/absence of seed aroma in 4 to 5 progeny from each of the 50 lines was determined as 

before and recorded for this third set of material (Table 5.1). Out of the 226 progeny tested, a 

majority (203/226, ~90%) strongly expressed the aroma trait. Due to insufficient seed 

production, determination of aroma phenotype for 22 progeny with the aromatic haplotype and 

two progeny with non-aromatic haplotypes was not determined. Therefore, this material will not 

be discussed. Nevertheless, genotyping results presented in Table 5.1 show that 203 progeny 
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with the aromatic phenotype also exhibited the aroma haplotype (0, 1) while 23 non-aromatic 

progeny produced the dominant non-aromatic haplotypes (either 1, 0 or 1, 1). Thus, results 

demonstrate the expected association between haplotypes and observed aroma phenotypes for 

the 226 progeny tested. Sequencing of target haplotype regions in segregating individuals was 

not performed because ambiguous results (‘N’ reads) occur frequently at the SNP sites (Kadaru, 

unpublished results), an expected result when two SNP alleles occur in the same template sample 

from heterozygotes. 

 The introduction of a mismatch towards the 3′ terminus for the forward 

haplotype-specific primer substantially reduced background PCR amplification of other 

genotypes and produced reliable discrimination between both haplotypes. Substitution of the 

pyrimidine cytosine by the purine adenine at the third base position from the 3′ end eliminated 

background bands that otherwise would cause erroneous genotyping results. Figures 5.1b and 

5.1c show that haplotype discrimination was unambiguous even when performed on moderately 

sensitive ethidium bromide stained agarose gels and as well as on highly sensitive SYBRGreen 

stained non-denaturing PAGE gels. The strategy to conduct separate PCR reactions and score 

bands on different gels resulted in accurate and easy determination of haplotypes/PCR products 

that differed by only one base pair. Moreover, this approach would allow correct scoring of 

haplotypes, a feature not possible by the method of Hayashi et al. (2004). Using the unlabeled 

primer set, a 96 well thermocycler, and a native PAGE gel format, 400 individual samples can be 

processed and analyzed in one day by a single operator. The cost for each haplotype assay was 

estimated to be ~ $0.15 using the equipment, reagents, and methods described in this study. 

Thus, this haplotype assay is particularly suitable for marker-assisted research projects desiring 

moderately high throughput on a limited budget.  
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Table 5.1 Phenotypes and SNP haplotypes of rice breeding lines and their progeny  
 

Progeny 1 Progeny 2 Progeny 3 Progeny 4 Progeny 5 Line Pedigree Hapa Phenb Hap Phen Hap Phen Hap Phen Hap Phen
A007c Dellrose/3/Katy/NWBT//Jodon 0,1 - 0,1 a 0,1 a 0,1 a 0,1 a 
A010 96INT/AR1188 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A011 CCDR/A301 1,0 na 1,1 - 1,1 na 0,1 a 0,1 a 
A012 L202/Leah//Toro/3/IR67016 0,1 a 0,1 a 0,1 - 0,1 a 0,1 a 
A013 J-85/Della/3/ L202/Leah//Toro 0,1 a 0,1 a 0,1 a 1,1 na 0,1 a 
A015 Calmati 0,1 a 0,1 a 0,1 a 0,1 a 0,1 - 
A016 CPRS//L201/RU7402003/3/BASMATI SUF AID PAK 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A018 902207X2/DG 1275 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A021 A201/SADARI TYPEd 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A022 A201/SADARI TYPE 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A023 A201/SADARI TYPE 0,1 a 0,1 a 0,1 a 0,1 - 0,1 a 
A025 Dellrose/3/Katy/NWBT//Jodon /4/JSMN/DLLA 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A028 A201//ADAR/JODN/3/CPRS 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A030 CPRS/LGRU//97 KDM X2-5 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A031 Dellrose/3/Katy/NWBT//Jodon 1,1 na 0,1 a 0,1 a 0,1 - 0,1 a 
A032 Dellrose/3/Katy/NWBT//Jodon 0,1 a 0,1 a 0,1 - 0,1 a 1,0 na 
A033 97 KDMX2-1/Wells 0,1 a 0,1 a 0,1 a 0,1 - 0,1 a 
A034 CCDR/LGRU//97 KDMX2-5 0,1 a 0,1 a 0,1 a 0,1 a 0,1 - 
A035 CCDR/LGRU//97 KDMX2-5 0,1 a 0,1 a 0,1 a 0,1 a 0,1 - 
A037 DLMT/B8462T3-710//DMSI/3/RSMT/4/Wells 0,1 a 0,1 - 0,1 a 0,1 a 0,1 a 
A038 DLMT/B8462T3-710//DMSI/3/RSMT/4/Wells 0,1 a 0,1 a 0,1 a 0,1 a 0,1 - 
A040 L202/Leah//Toro/3/IR67016 0,1 a 0,1 - 0,1 a 0,1 a 0,1 a 
A041 DLMT/B8462T3-710//DMSI/3/RSMT/4/Wells 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A042 Dellmont/3/NWBT/KATY//L202 0,1 a 0,1 a 1,1 na 0,1 a 0,1 a 
A043 Dellrose/3/Katy/NWBT//Jodon 1,1 na 1,1 na 0,1 a 1,1 na 1,0 na 
A044 CPRS/Dellrose 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A045 Dellrose/3/Katy/NWBT//Jodon 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A046 DLMT/B8462T3-710//DMSI/3/RSMT 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A047 Dellrose/3/Katy/NWBT//Jodon 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A048 Dellrose/3/Katy/NWBT//Jodon 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A049 A201/SADARI TYPE 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A050 A201/SADARI TYPE 0,1 a 0,1 a 0,1 a 0,1 a 1,0 - 
A051 A201/SADARI TYPE 0,1 a 0,1 a 0,1 - 0,1 a 0,1 a 
A052 A201/SADARI TYPE 0,1 a 0,1 a 0,1 a 0,1 a 0,1 A 
A053 A201/SADARI TYPE 0,1 a 0,1 a 0,1 a 0,1 a 0,1 - 
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Table 5.1 (continued) 
 

Progeny 1 Progeny 2 Progeny 3 Progeny 4 Progeny 5 Line Pedigree Hapa Phenb Hap Phen Hap Hap Phen Hap Phen Hap 
A054 A201/SADARI TYPE 1,1 na 0,1 a 0,1 - 0,1 a 0,1 a 
A055 A201/SADARI TYPE 1,0 na 0,1 a 1,1 na 0,1 a 0,1 a 
A057 J-85/Della/3/RU9302065//LSBR-5/LMNT 0,1 a 0,1 - 0,1 a 0,1 a 0,1 a 
A059 J-85/Della /3/RU9302065// LSBR-5/LMNT 0,1 a 0,1 a 0,1 a 0,1 - 0,1 a 
A060 J-85/Della /3/RU9302065// LSBR-5/LMNT 0,1 a 0,1 - 0,1 a 0,1 a 0,1 a 
A061 J-85/Della /3/RU9302065// LSBR-5/LMNT 0,1 - 1,1 na 0,1 a 0,1 a 0,1 a 
A062 DLMT/3/NWBT/KATY/2/L202/4/ DLMT/B8462T3-710//DMSI 0,1 a 1,1 na 1,0 na 0,1 a 0,1 a 
A063 Dellrose/3/Katy/NWBT//Jodon /4/A201 0,1 a 0,1 a 0,1 a 0,1 - 0,1 a 
A064 Dellrose/3/Katy/NWBT//Jodon /4/J-85/Della 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A065 Dellrose/3/Katy/NWBT//Jodon /4/J-85/Della 0,1 - 0,1 a 1,1 na 1,1 na 0,1 a 
A066 Dellrose/3/Katy/NWBT//Jodon /4/ J-85/Della 0,1 a 0,1 a 0,1 a 0,1 - 0,1 a 
A067 Dellrose/3/Katy/NWBT//Jodon /4/ J-85/Della 1,1 na 1,1 na 0,1 a 0,1 a 0,1 a 
A068 Dellrose/3/Katy/NWBT//Jodon /4/ J-85/Della 0,1 a 0,1 a 0,1 a 1,1 na 0,1 a 
A069 Dellrose/3/Katy/NWBT//Jodon /4/ J-85/Della 0,1 a 0,1 a 0,1 a 0,1 a 0,1 a 
A070 DLMT/B8462T3-710//DMSI/3/RSMT/4/Wells 0,1 a 1,1 na 0,1 a 1,0 na 0,1 A 

 
Hapa = SNP haplotype phase results for the BAD2 gene. Non-aromatic haplotype (237 bp band) results are designated first,  
followed by the aromatic haplotypes (236 bp band); 1 = presence of haplotype and 0 = absence of haplotype.  
Phenb = aroma trait evaluated as per Sha et al. (2000) protocol; ‘a’ = aroma detected, ‘na’ = aroma not detected and ‘-’ = data not 
obtained due to insufficient seed production.  
c All 50 lines were scored as aromatic as determined by Sha et al. (2000).  
d Different lines with the same pedigree are full sibs derived from the same cross.  
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CHAPTER 6: DEVELOPMENT AND APPLICATION OF ALLELE-SPECIFIC 
PCR ASSAYS FOR IMAZETHAPYR HERBICIDE RESISTANCE IN RICE 

 
6.1 Introduction  

6.1.1 The Noxious Red Rice Weed 

Red rice (Oryza sativa L.) is a common and notorious weed in rice fields 

throughout the world (Tan et al., 2005) causing losses up to $50 million annually in the 

southern United States alone (Gealy et al., 2003). The yield losses in cultivated rice fields 

are mainly due to competition for water, nutrients, sunlight, and poor milling quality of 

rice grains resulting from weed seed mixtures (Dilday et al., 1990). As the red rice 

biotypes are morphologically similar to cultivated rice and belong to the same genus and 

species as that of cultivated rice, managing this weed in rice fields has been a very 

difficult task (Gealy et al., 2003; Tan et al., 2005; Zhang, 2005). 

6.1.2 Amino Acid Biosynthesis Inhibiting Herbicides 

 There are three main types of amino acid biosynthesis inhibiting herbicides 

namely, 1) EPSP synthase enzyme inhibiting herbicides such as glyphosate, 2) GS 

enzyme inhibiting herbicides such as glufosinate and 3) AHAS or ALS enzyme inhibiting 

herbicides such as imidazolinones (imazethapyr, imazamox etc), sulfonylureas, 

triazolopyramidines, pyrimidinyl-oxybenzoates, and sulfonylamino-carbonyl-

triazolinones (Corbett and Tardif, 2006). ALS-inhibiting herbicides are increasingly used 

for control of weeds that mimic cultivated crops and for both broad spectrum weed 

control (Tan et al., 2005). Examples of mimic weeds controlled by imidazolinone 

herbicides are jointed goat grass (Aegilops cylindrica Host) in winter wheat fields (Ball et 

al., 1999), shattercane grass (Soghum bicolor (L) Moench) and johnson grass (Sorghum 

halepens (L) Pers) in maize (Krausz et al.,1998; Askew et al., 1999), wild mustard 
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(Brassica kaber (DC) LC Wheeler) in rape oilseed fields (Tan et al., 2005), and red rice 

(Oryza sativa L) in rice fields (Steele et al., 2002). Broad spectrum weed control by these 

ALS-inhibiting herbicides was reported in rice, sunflower, and rapeseed crops (Tan et al., 

2005). All of the above examples of weed control were made possible by growing 

imidazolinone-resistant crop varieties and by application of imidazolinone herbicides. 

This system is commercially known as the ClearfieldTM production system was 

developed by screening natural AHAS or ALS gene variants or by induced mutagenesis 

(Tan et al., 2006). Due to their non-GM/non-transgenic nature, imidazolinone-resistant 

crops have gained rapid acceptance by farmers and the commodity markets (Tan et al., 

2006). Five imidazolinone-resistant crops namely, Clearfield maize, Clearfield wheat, 

Clearfield canola, Clearfield sunflower, and Clearfield rice constitute a major proportion 

of total commercial Clearfield cultivation in US, Canada and Europe (Tan et al., 2006). 

On the other hand, commercial Clearfield cultivation has disadvantages of increased 

herbicide dependency and possibility of natural transfer of herbicide resistance genes to 

weed species via cross pollination (Tan et al., 2005). Furthermore, in the last two 

decades, nearly 95 weed biotypes have been found to be resistant to these herbicides 

(Heap, 2007) suggesting concurrent evolution of resistant weed biotypes with increased 

use of the imidazolinone herbicides. 

6.1.3 Gene-flow from Crop Species and Their Wild Relatives  

 Successful crop-wild relative hybridization events have been documented in the 

literature for cases such as canola (Jorgensen et al., 1994; Legere 2005), cotton 

(Brubacker et al., 1993; Dawson et al., 1996), pearl millet (Renno et al., 1997), radish 

(Campbell et al., 2006), sorghum (Arriola et al., 1996), sugar beet (Arnaud et al., 2003), 
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sunflower (Alexander et al., 2001; Mercer et al., 2006), and wheat (Guadagnuolo et al., 

2001). Moreover, Ellstrand (2003) reported a list of 48 cultivars for which spontaneous 

hybridization with their wild relatives was documented and also gave estimates for 

spontaneous hybridization rates for 10 important crop species. With the introduction and 

adoption of genetically modified crops, numerous cases of transgene-flow into wild 

relatives and its ecological impacts were also discussed (Quist and Chapala, 2001; Poppy, 

2004; Vacher et al., 2004; Andow, 2005; Zhang et al., 2005; Guadagnuolo et al., 2006). 

Particularly, the spread of herbicide resistance genes was demonstrated in at least two 

important crop species viz., canola (Reiger et al., 2001) and winter wheat (Perez-Jones et 

al., 2006). Reiger et al. (2001) have documented the pollen-mediated gene transfer 

between herbicide-resistant canola growing fields and surrounding conventional canola 

growing fields, while Perez-Jones et al. (2006) have reported introgression of an 

imidazolinone-resistance gene from winter wheat to jointed goatgrass. 

6.1.4 Outcrossing among Cultivated Rice and Red Rice 

Even in the case of rice, crop-wild relative hybridization events were reported by 

many authors (Chen et al., 2004; Messeguer et al., 2004; Song et al., 2004; Wang et al., 

2006). Gene flow between cultivated rice and red rice has been reported in detail by 

Dillon et al. (2001), and Rong et al. (2004). Other reports include Estorminos et al. 

(2002), Gealy et al. (2003), Madsen et al. (2002) and Zhang et al. (2003). Studies by 

Estorminos et al. (2002) and Dillon et al. (2001) have revealed 0-0.05% outcrossing rate 

between the CL 2551 (CL 121) rice and AR red rice biotypes and identified putative 

imidazolinone-resistant CL 2551 x red rice hybrids. Zhang et al. (2003) established the 

transfer of glufosinate herbicide resistance from transgenic glufosinate-resistant rice to 
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red rice. Thus, there is a growing concern pf imazethapyr herbicide resistance acquired 

by red rice from commercial Clearfield rice cultivars to via cross pollination under field 

conditions (Tan et al., 2005; Zhang, 2005).  

The earliest attempts of identification of crop-wild hybrids by random amplified 

molecular polymorphic DNA (RAPD) markers were carried out in sunflower (Whitton et 

al., 1997; Linder et al., 1998) and pearl millet (Arriola et al., 1996). Gealy et al. (2002) 

used Simple Sequence Repeat (SSR) or microsatellite markers for differentiating among 

US red rice, rice and hybrid populations. These authors reported that out of the 18 SSR 

makers they tested, four SSR markers namely RM215, RM234, RM251, and RM253 

could reliably distinguish between red rice and rice. Using these SSR markers, Zhang et 

al. 2005 successfully confirmed outcrossing between Clearfield rice and red rice in 

Louisiana. Although this molecular marker analysis indicated the presence of outcrossing 

between Clearfield rice and red rice in chromosomes 3, 6 and 7, it did not show that the 

mutant ALS gene from Clearfield rice that conferred herbicide resistance (see below) was 

actually transferred to red rice.  

6.1.5 The ALS Gene 

Acetohydroxy synthase, encoded by the acetohydroxy synthase AHAS/ALS gene, 

is one of the key enzymes in the biosynthetic pathway of the branched chain amino acids 

namely, isoleucine, leucine and valine in plants and is the target for action of 

imidazolinone herbicides such as imazethapyr (Tan et al., 2006). Six point mutations in 

the ALS gene (either naturally existing or artificially induced) that confer resistance to 

this herbicide exist in crop plants and weed biotypes (Tranel and Wright, 2002; Tan et al., 

2005; Corbett and Tardif, 2006; Tan et al., 2006). In the ALS gene of Arabidopsis 
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thaliana, positions of these six mutations correspond to amino acids Ala122, Pro197, Ala205, 

Asp376, Trp574 and Ser653 (Corbett and Tardif, 2006), and these point mutations are 

designated A122T, P197H, A205V, D376E, W574L, and S653T, respectively. In the case of the 

rice ALS gene, two ‘G/A’ transition mutations at 1880 bp and 1883 bp positions were 

reported and these correspond to Ser653 and Gly654 locations in A. thaliana (Tan et al., 

2005; Tan et al., 2006). In the rice AHAS gene product, these point mutations are known 

to cause amino acid substitutions from serine to asparagine (S to D) and glycine to 

glutamic acid (G to E), respectively. Both these substitutions are reported to prevent 

binding of imidazolinone herbicides with the rice AHAS enzyme, thus conferring 

resistance to the imazethapyr (New path) herbicide (Tan et al., 2005; Tan et al., 2006). 

The commercial ClearfieldTM rice technology involves the use of these two ALS gene 

mutations (CL 121 and CL 141 varieties carry the G654E mutation, whereas the CL 161 

variety has the S653D mutation) (Tan et al., 2005; Tan et al., 2006). All the Clearfield 

varieties have the A205 mutation which confers resistance to the imazethapyr herbicide.  

6.1.6 ALS-inhibiting Herbicide Resistance Assays 

 The diagnostic tests that are devised for confirmation of ALS-inhibitor herbicide 

resistance can be broadly classified into three main categories namely, the conventional 

bioassays, the enzyme based tests and the DNA based methods (Corbett and Tardif, 

2006). The conventional herbicide resistance bioassays such as the seedling bioassay, 

modified seedling assay (Cirujeda et al., 2001; Walsh et al., 2001), pollen germination 

assay (Ritcher and Powles, 1993), and leaf disc assays (Patzoldt and Tranel, 2002) are 

generally very effective, but are also labor intensive, time consuming and ineffective in 

elucidation of cross-resistance patterns (Corbett and Tardif, 2006). The ALS enzyme 
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activity based assays such as the acetoin accumulation assay (Hinz and Owen, 1995; 

Kwon and Penner, 1995; Hall et al., 1998), and Ketoacid Reductoisomerase (KARI) 

assays (Simpson et al., 1995; Lovell et al., 1996) are limited by the complex nature of 

enzyme extraction procedures and quick deterioration of extracted enzyme samples 

(Corbett and Tardif, 2006). Direct sequencing of the ALS gene, PCR-restriction fragment 

length polymorphism (PCR-RFLP), PCR amplification of specific alleles (PASA) and 

denaturing high-performance liquid chromatography (DHPLC) methods are the main 

DNA based assays developed for the ALS-inhibitor herbicides (Corbett and Tardif, 

2006). Direct sequencing (McNaughton et al., 2005) and DHPLC (Siminszky et al., 

2005) of the ALS gene in the target crop species or weed biotypes are the most 

informative methods of all DNA based herbicide resistance detection methods. The 

DHPCL method involves PCR amplification of the target ALS gene, preparation of 

heteroduplex DNA (by mixing wild plant PCR product with mutant plant PCR product 

and by heating and cooling of the mixture) and their separation on an HPLC column. 

However, use of these methods is restricted by expensive instruments, time and cost per 

sample, and high-through put factors (Corbett and Tardif, 2006). The PCR-RFLP method 

is similar to cleaved amplified polymorphic sequence (CAPS) technique, which involves 

PCR amplification of target ALS gene and subsequent digestion of these PCR products 

using specific restriction endonucleases. The PCR-RFLP assay was successfully 

employed for all the reported ALS gene mutations in the 6.1.5 subsection viz., P197H 

(Guttieri et al., 1992; Tan and Medd, 2002), W574L (Foes et al., 1999; Tan and Medd, 

2002), A122T (Corbett and Tardif, 2006), A205V (Corbett and Tardif, 2006), D376E 

(Corbett, 2004) and S653T (Corbett and Tardiff, 2006). However, exact substitution 
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information of the nucleotide base at the mutation site cannot be determined by this 

method (Corbett and Tardif, 2006). The PASA method is a three primer (namely forward, 

reverse and middle) PCR set up system, where in the forward and reverse primers non-

specific to the target SNP and the middle primer (also a reverse primer) is allele specific. 

Upon PCR amplification, the herbicide resistant plant DNA yields two bands, while the 

susceptible plant DNA will produce only one band (Corbett and Tardif, 2006). 

Application of the PASA, nested PASA, or multiplex PASA method for detection of 

ALS-inhibiting herbicide resistance was demonstrated by Corbett (2004), Patzoldt and 

Tranel (2002), Patzoldt and Tranel (2003), and Wagner et al. (2002). 

6.1.7 SNP Based Assays in Clearfield Rice x Red Rice Outcrossing Assessment 

Development of a robust SNP genotyping technique that can differentiate between 

the ‘A’ or ‘G’ allele at the 1880 bp (S653D SNP) and 1883 bp (G654E SNP) positions of 

the rice ALS gene would enable direct assessment of transfer of this gene from Clearfield 

rice to red rice. Even though the PASA technique described in the previous subsection is 

a single nucleotide polymorphism (SNP) based assay, its application in the rice crop was 

not reported. In addition, this method is seriously limited by its inability to effectively 

differentiate between the heterozygous and homozygous state of resistant alleles in crop 

or weed biotypes. Corbett and Tardif (2006) have argued that the intensity of the allele-

specific (PASA) band in heterozygous resistant plant would be half that of homozygous 

resistant plant. However, differences in band intensities can also arise due to differences 

in initial template DNA concentration, purity of template DNA and even a bad reaction 

set up by the researcher. It is well known that the action of the ALS gene is semi-

dominant in nature (Tan et al., 2006) and herbicide crop resistance is a function of 
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number of ALS gene copies. The present study is aimed at constructing a SNP marker 

assay that would not rely on allele-specific band intensity for distinguishing homozygous 

resistant (Clearfield rice) and heterozygous resistant (Clearfield rice x red rice) plants. 

The objective of this research was to develop a simple, reproducible, cost-effective, high-

throughput method for screening of imazethapyr herbicide resistant Clearfield rice and 

Clearfield rice x red rice hybrids. Using the new ALS gene SNP assays, a total of 483 

field-collections were screened for the presence of S653D SNP and another 145 F2 

progeny lines of natural CL 121 x red rice crosses were screened for the presence of the 

G654E SNP. 

6.2 Materials and Methods 

6.2.1 Plant Materials and Their Genomic DNA Isolation 

Three different sets of plant collections comprising cultivated rice lines, red rice 

weed biotypes, and their hybrids were used for carrying out the present study. The first 

plant collection consisted of the rice varieties Cocodrie, CL 121, CL 141, CL 161, 

Cypress, LaGrue, Nipponbare, and progeny from CL 121 x red rice, and CL 161 x natural 

outcrosses. The leaf samples of these plants were collected from different rice growing 

locations across Louisiana during 2004 and 2005 by Dr. Weiqiang Zhang. Some of the 

Clearfield rice and red rice samples in this set were collected at more than one location. 

Genomic DNA from the leaf tissues of these plants were extracted by the procedure 

described in the next paragraph and were included in the subsequent ALS gene SNP 

assays either as positive or negative control samples. 

The second set of plant material was used to conduct the ALS G654E SNP assay. 

Five previously identified naturally outcrossed Clearfield-red rice F1 hybrids and their F2 
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progeny, kindly provided by Dr. Weiqiang Zhang, were screened for the presence of the 

‘A’ or ‘G’ allele in the ALS gene at the G654E locus. Seeds of these five natural outcrosses 

were planted in the field at Ben Hur Farm in 2004 and Newpath herbicide was applied at 

140 gm/ha rate at the two to three leaf stage. A second application of herbicide was 

carried out at the same rate 20 days after the first application. Leaf tissues of ~30 

herbicide resistant lines from each of the five progeny, totaling 145 F2 lines were 

collected for genomic DNA extraction. A total of 100 mg of leaf tissue/line was used to 

isolate genomic DNA using the GenElute Plant Genomic DNA kit (Sigma-Aldrich, MO) 

and ~ 2-4 ng from this genomic DNA was used to perform the AS-PCR assay.  

The third set of plant material was a field collection of 483 putative CL 161 x red 

rice hybrid plants collected by Dr. Weiqiang Zhang across 11 different locations in 

Louisiana in 2004. Only leaf samples from the plants which have the distinct red rice 

morphology were collected. This plant material was used for carrying out the ALS S653D 

SNP assay. Using 25 mg of leaf tissue of these lines, genomic DNA was isolated using 

the UltraClean-htp™ 96 Well Plant DNA Kit (MO BIO Laboratories, Inc., CA) as per the 

manufacturer’s instructions.  

6.2.2 Allele Specific Primer Design and Polymerase Chain Reaction (AS-PCR) 

The ALS gene sequence information obtained from Genbank no. AP005841 was 

used to design allele-specific primers for the G654E and S653D SNPs. For each of these 

SNPs, two separate allele-specific forward primers were designed, of which, the last 

nucleotide base corresponded to one of the two possible alleles occurring in the ALS 

gene. To increase binding specificity of the allele-specific forward primers with their 

corresponding target SNP allele, an additional nucleotide mismatch was introduced at the 
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third or fourth base position upstream of the 3′ termini (Zhang et al., 2003; Hayashi et al., 

2004). Both allele-specific primers employed the same reverse primer to amplify the SNP 

containing region of the ALS gene. For both SNPs, 16 different susceptible and resistant 

specific primers were designed and evaluated (data not shown) using the control/first set 

of plant material. The list of the allele specific primers which produced best 

discrimination between resistant and susceptible alleles for the G654E and S653D SNPs are 

shown in Table 6.1. For all the primer sets of Table 6.1, polymerase chain reaction (PCR) 

amplifications were performed using the following cycling conditions: 95oC - 2 min, 28 

cycles of (95oC - 12 s, 60oC - 12 s, 72oC - 12 s) and 72oC - 5 min. Details for the PCR 

reaction set up, gel running, and the subsequent scoring procedure can be found in 

subsection 5.2.3. 

Table 6.1 AS-PCR primer design and single nucleotide polymorphism (SNP) details for 
the ALS gene 
 

Forward Primer Reverse primer 
Locus Mutation details 

Name and Sequence Modification Name and Sequence 

PCR 
amplicon 

size 

‘G’ allele for the reported 
G/A mutation 

ALS654SusF 
5’-CTG CCT ATG ATC 

CCA AGG GG-3’ 

Artificial mismatch at 
third base from 3′ end 
(T was replaced by G) 

ALSR3 
5’-TGG GTC ATT 

CAG GTC AAA CA-3’ 
131 bp 

G654E SNP in 
ALS gene ‘A’ allele for the reported 

G/A mutation 

ALS654ResF 
5’-CTG CCT ATG ATC 

CCA AGG GA-3’ 
Same as above 

ALSR3 
5’-TGG GTC ATT 

CAG GTC AAA CA-3’ 
131 bp 

‘G’ allele for the reported 
G/A mutation 

ALS653SusF 
5’-GTG CTG CCT ATG 

ATC CTA AG-3’ 

Artificial mismatch at 
fourth base from 3′ end 
(C was replaced by T) 

ALSR3 
5’-TGG GTC ATT 

CAG GTC AAA CA-3’ 
134 bp 

S653D SNP in 
ALS gene ‘A’ allele for the reported 

G/A mutation 

ALS653ResF 
5’-GTG CTG CCT ATG 

ATC CTA AA-3’ 
Same as above 

ALSR3 
5’-TGG GTC ATT 

CAG GTC AAA CA-3’ 
134 bp 

 
 
6.2.3 DNA Sequencing and Alignment 

For validation of ALS gene SNP assay results, PCR products of the ALS gene 

fragments amplified from all control plant lines described in the first paragraph of 6.2.1 

subsection were sequenced. For further details about template preparation, sequencing 

and alignment procedures, refer to subsection 5.2.4.  
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6.3 Results and Discussions 

6.3.1 SNP Genotyping Results for the Control Set of Plants 

As a pilot study, the first plant collection (described in the first paragraph of the 

subsection 6.2.1) were genotyped for the G654E and S653D SNPs. Each individual plant 

DNA was genotyped four times to identify the four alleles present at the G654E and S653D 

SNPs. For all lines the SNP genotyping results were consistent with their expected 

imazethapyr resistance pattern (based on their origin). The Cocodrie, CL 161, Cypress, 

LaGrue, Nipponbare, red rice tested negative for the G654E SNP, whereas CL 121, CL 

141 and CL 121 x red rice hybrids tested positive for the G654E SNP (Figure 6.2). 

Similarly, Cocodrie, CL 121, CL 141, Cypress, LaGrue, Nipponbare, red rice tested 

negative for the S653D SNP, while CL 161 and CL 161 x red rice hybrids tested positive 

for the S653D SNP (Figure 6.3). Heterozygous resistant alleles in the case of CL 121 x red 

rice hybrids (for the G654E SNP) and CL 161 x red rice hybrids (for the S653D SNP) were 

faithfully genotyped (Figures 6.2 and 6.3). As a further validation of these allele-specific 

SNP genotyping results, the ALS gene from all these lines were sequenced and aligned to 

identify the SNP alleles at the G654E and S653D loci. A perfect correlation between the 

observed allele-specific SNP genotyping results and the sequencing alignment results was 

obtained. For both SNP loci, the alignment information revealed the presence of the 

homozygous and heterozygous alleles. An example of sequence alignment for 10 unique 

lines from the first plant collection is depicted in Figure 6.1. 

6.3.2 The ALS G654E SNP Assay Results 

For the ALS G654E SNP assay, five independent F2 populations (~30 lines each) 

grown from previously identified natural CL 121 x red rice or CL 141 x red rice hybrids  
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5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - Nipponbare

5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - Cypress 

5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - LaGrue

5' GGAGCATGTGCTGCCTATGATCCCAAATGGGGGCGCATTCAAGGACATGATCCTGG 3' - CL161

5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - Red rice 

5' GGAGCATGTGCTGCCTATGATCCCAANTGGGGGCGCATTCAAGGACATGATCCTGG 3' - CL161 X red rice outcross 

5' GGAGCATGTGCTGCCTATGATCCCAAGTGAGGGCGCATTCAAGGACATGATCCTGG 3' - CL121

5' GGAGCATGTGCTGCCTATGATCCCAAGTGAGGGCGCATTCAAGGACATGATCCTGG 3' - CL141

5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - Red rice 

5' GGAGCATGTGCTGCCTATGATCCCAAGTGNGGGCGCATTCAAGGACATGATCCTGG 3' - CL121 X red rice outcross 

1880 1883 Bp position:

5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - Nipponbare

5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - Cypress 

5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - LaGrue

5' GGAGCATGTGCTGCCTATGATCCCAAATGGGGGCGCATTCAAGGACATGATCCTGG 3' - CL161

5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - Red rice 

5' GGAGCATGTGCTGCCTATGATCCCAANTGGGGGCGCATTCAAGGACATGATCCTGG 3' - CL161 X red rice outcross 

5' GGAGCATGTGCTGCCTATGATCCCAAGTGAGGGCGCATTCAAGGACATGATCCTGG 3' - CL121

5' GGAGCATGTGCTGCCTATGATCCCAAGTGAGGGCGCATTCAAGGACATGATCCTGG 3' - CL141

5' GGAGCATGTGCTGCCTATGATCCCAAGTGGGGGCGCATTCAAGGACATGATCCTGG 3' - Red rice 

5' GGAGCATGTGCTGCCTATGATCCCAAGTGNGGGCGCATTCAAGGACATGATCCTGG 3' - CL121 X red rice outcross 

1880 1883 Bp position:

Figure 6.1 Sequencing alignment results for the G654E and S653D SNP mutations in the 
rice ALS gene (from 1854 - 1910 bp positions) for 10 representative plant samples. The 
vertical boxes high lighten the alleles observed for the G654E and S653D SNPs. 
 
were screened using the G654E SNP primer set. Figure 6.2 shows the DNA band pattern 

for the G654E mutation in the ALS gene (131 bp PCR amplified fragment) for 13 

representative rice lines. Robust identification of heterozygous resistant alleles in CL 121 

x red rice progeny lines (lanes 11, 25 and 14, 28) was observed. As expected, all five 

hybrids exhibited segregation of alleles at G654E SNP locus in their progenies. Of the 145 

F2 progenies screened, 59 rice lines were found to be heterozygous resistant and the 

remaining 86 were homozygous resistant at the ALS G654E SNP locus.  

6.3.3 The ALS S653D SNP Assay Results 

For the ALS S653D SNP assay, a field collection of 483 putative CL 161 x red rice 

hybrids were screened for the presence of the ‘A’ or ‘G’ allele indicated by the 134 bp 

DNA band. The allele specific genotyping results of the S653D SNP in ALS gene for 16 

representative rice lines are shown in Figure 6.3. Of the 483 rice lines tested, 87 lines 

were identified as homozygous resistant and 339 lines identified as heterozygous resistant 

for the S653D SNP locus in the ALS gene.  
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Figure 6.2 The ALS gene G654E SNP assay results for 13 representative rice lines on the 
2% agarose gel. M2 = NEB 50 bp DNA marker. 
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Figure 6.3 ALS S653D SNP assay results for 16 representative rice lines on the 2% agarose 
gel. M1 = NEB 100 bp DNA marker. 
 
6.3.4 Validation of SNP Genotyping Results Using Micro Satellite Markers 

To corroborate the ALS gene SNP genotyping assays (for both G654E and S653D 

SNPs), all the heterozygous imazethapyr-resistant samples (putative natural outcrosses) 

identified in the earlier analysis were tested using three simple sequence repeat (SSR) 
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markers, namely RM 180, RM 251 and RM 253. These SSR markers were reported to 

distinguish between the weedy red rice and cultivated rice cultivars (Gealy et al., 2002; 

Zhang, 2005). As expected, all these heterozygous individuals possessed both the red rice 

and the cultivated rice specific SSR bands (data not shown). The ALS gene in rice is 

physically located on chromosomes 2, whereas the SSR markers RM251, RM253 and 

RM180 are located on chromosomes 3, 6 and 7, respectively. Thus, SSR amplification 

results confirmed presence of recombinant DNA (at loci other than ALS gene) in the CL 

161 x red rice hybrid material. These results indicate that the new ALS gene SNP assays 

developed in this study are a reliable method for assessment of out-crossing and 

subsequent transfer of ALS gene between Clearfield rice varieties and red rice.  

Using a 96 well thermocycler, 400 individual samples can be feasibly genotyped 

and analyzed by the new ALS gene SNP assays in one day by a single operator. Pooling 

of genomic DNA samples was found to be not effective while performing the ALS or 

imazethapyr-resistant SNP assays. The cost/sample for each allele specific PCR was 

estimated to be ~ $0.15 (details not shown), and thus these assays are well suitable for 

laboratories with limited funding such as regional research stations.  
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CHAPTER 7 SUMMARY AND CONCLUSIONS 

7.1 Discriminant Analysis 

 This study was carried out to evaluate the potential of Discriminate Analysis (DA) 

procedure to detect informative molecular markers associated with percent amylose 

content and five agronomic traits among 192 inbred rice lines. The DA procedure 

identified marker sets for the complex traits even with narrow germplasm breeding 

material evaluated across five U.S. states. While some markers were common among two 

or more states, the majority of DA-selected alleles were location-specific, indicating 

strong GxE effects. 

 The DA procedure successfully identified new markers RM25, RM225, RM231, 

along with the known RM190 (Waxy) locus for percent amylose content. These DA-

selected markers were successfully validated in the second set of 57 US and Asian rice 

lines, suggesting feasible application of simple inherited trait DA results across different 

plant populations. Thus, DA identified three new loci associated with amylose content 

that may be useful for marker-assisted selection in a diverse representation of rice 

accessions.  

The DA-selected markers overall produced high levels of leave-one-out percent 

correct classification in the training samples and individual R2 values, indicating potential 

value of this approach in identification of informative alleles for marker-assisted 

selection. In addition, the DA-selected markers were identified for percent amylose 

content, percent head rice, percent total rice, and grain yield that mapped on the rice 

genetic map within or near traditional Quantitative Trait Loci (QTL). Results from this 

study suggest that DA can successfully complement traditional methods to identify 
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markers associated with complex and economically important traits in rice. Dr. Don 

Labonte, LSU AgCenter, currently uses the DA method in his breeding program for 

marker assisted research of visus resistance and other traits.  

7.2 Mixed Model-Regression Approach 

 I have created and evaluated a mixed model-regression procedure that identifies 

main and epistatic effects by standard hypothesis testing and Bayesian information 

criteria in a multivariate format for agronomic traits evaluated in a collection of elite 

Louisiana breeding lines. Validation of the procedure in a separate test samples indcates 

that additional research using the mixed model-regression approach is warranted.  

7.3 Alternative Ecotilling 

 I have successfully developed a simple, rapid, efficient, and cost-effective 

alternative to standard Ecotilling for SNP discovery and genotyping in rice that can be 

easily adapted to small or medium-sized laboratories. Results from analysis of the alk and 

waxy loci demonstrate that modified Ecotilling is a reproducible, simple, rapid, and cost-

effective approach for SNP discovery and genotyping in rice when compared to the 

standard Ecotilling method. Specifically, the Alternative Ecotilling SNP detection and 

analysis is consistent with standard Ecotilling and sequencing results over separate 

experiments representing a diverse geographical collection of accessions from Asia, 

Africa, and the Americas. The alternative Ecotilling protocol successfully identified 

expected associations between SNP variation and trait measurements. This feature was 

verified by the strong association between the waxy T/G SNP and amylose class and 

where all accessions having the alk GC/TT mutation displayed low gelatinization 

temperature. Preliminary data also indicates that the G/A SNP in the waxy gene intron 
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may be associated with increased rice starch pasting viscosity measurements (R.G. 

Fjellstrom, data not shown). In addition, a unique A/G SNP was detected in the alk gene 

of Nipponbare among the accessions that was verified by sequencing, and a G/A SNP at 

the waxy locus, unknown to us at the onset of this study. Alternative Ecotilling was 

equally effective in SNP detection from either an individual or a pooled sample, 

indicating that rapid genotyping of large populations is possible. 

This study shows that modified Ecotilling does not require investment in 

expensive laboratory equipment or costly reagents such as florescent compounds for 

primer labeling. In contrast to standard Ecotilling, data collection, storage, and analysis 

by the alternative Ecotilling procedure do not involve extensive training or use of 

complex software programs written in different languages. Up to 400 individual or 

pooled samples can be realistically processed and analyzed in one day by a single 

operator. This means that 3200 individuals in an 8-fold pool format could be screened in 

a single day for SNP variation. Therefore, SNP analysis using alternative Ecotilling 

should be very suitable for laboratories with limited funding for various targeted research 

objectives in rice genomics, breeding, and evolutionary studies.  

7.4 Haplotype Genotyping of the Aromatic Rice 

 A simple, rapid, and precise haplotype-specific assay for a targeted region of the 

BAD2 gene that unambiguously distinguishes homozygous and heterozygous genotypes 

associated with seed aroma in rice was developed. Sufficient details were provided 

regarding the design and practical application of haplotype-specific primers for marker-

assisted identification and introgression of the aroma gene from tropical japonica and 

indica sources. The present marker-based approach should also prove useful for 
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combining aroma as a recessive trait with other characteristics such as disease resistance 

in three-way forward crosses.  

While conducting this research, Bradbury et al. (2005b) published a study that 

described a four-primer system to identify aromatic and non-aromatic rice. This system 

was also tested and found to correctly genotype the U.S. germplasm (data not shown). 

Due to size and range of multiple PCR products, the system developed by Bradbury et al. 

(2005b) would not be amenable for high throughput genotyping of rice for aroma. The 

method reported in this study, however, will remain useful for high throughput using a 

PAGE format.  

7.5 Marker Development for Outcrossing among Clearfield Rice and Red Rice 

I have successfully developed simple, rapid, relatively high-throughput and 

precise allele-specific SNP genotyping techniques for the ALS gene in rice which require 

use of only standard PCR and electrophoresis instruments. For the first time, a DNA 

based Imazethapyr resistance assay that could differentiate between the resistant 

Clearfield rice and susceptible red rice was demonstrated. Inaddition, this assay could 

effectively discriminate between the homozygous resistant and heterozygous resistant 

S653D and G654E SNP alleles. Using the new ALS gene SNP assays, a total of 483 field-

collections were successfully screened for the presence of S653D SNP and another 145 F2 

progeny lines of natural CL 121 x red rice crosses were screened for the presence of the 

G654E SNP. Natural outcrosses between CL 121 x red rice and CL 161 x red rice were 

successfully identified in these palnt collections. In addition, amplification results of SSR 

markers that can differentiate red rice and cultivated rice, have confirmed presence of 

recombinant DNA (at loci other than ALS gene) in the CL 161 x red rice hybrid material. 
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Thus, this AS-PCR SNP genotyping results can be immediately and effectively applied 

for accurate assessment of out-crossing using ClearfieldTM rice technology and thus 

development of better weed management practices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 127



 

APPENDIX: PERMISSION LETTER 

From: "Dr. Don P. Bourque" <dbourque@u.arizona.edu> 
To: Suresh Kadaru <skadar1@lsu.edu> 
CC:  
Subject: Re: Permission to use my published work in dissertation 
Date: Tuesday, March 13, 2007 3:14:59 PM  
 

 
Dear Dr. Kadaru: 
 
As representative of the ISPMB, and for the PMBR, I hereby grant you permission to use 
your published paper (cited below) as part of dissertation work 
 
SB Kadaru, AS Yadav, RG Fjellstrom and JH Oard. 2006. Alternative Ecotilling protocol 
for rapid, cost-effective SNP discovery and genotyping in rice (Oryza sativa L.). Plant 
Molecular Biology Reporter 24:1-20. 
 
 
Congratulations on completing your graduate work and best of luck for the future. 
 
Sincerely, 
Don P. Bourque 
 
 
 
 
Suresh Kadaru wrote:  

Dear Dr. Bourque, 

I request you to kindly grant the permission to use the below cited publication as part of 
dissertation work. 

SB Kadaru, AS Yadav, RG Fjellstrom and JH Oard. 2006. Alternative Ecotilling protocol 
for rapid, cost-effective SNP discovery and genotyping in rice (Oryza sativa L.). Plant 
Molecular Biology Reporter 24:1-20. 

Regards, 

Suresh B Kadaru 
Graduate Student 
Rice Genetics Lab 
School of Plant, Environmental and Soil Sciences 
104 Madison B. Sturgis Hall 

 128



 

Louisiana State University 
Baton Rouge, LA 70803 
Phone: Office:(225) 578 7864 
Cell:(225) 202 0409  

 
 
 
--  
Don P. Bourque, Professor 
Departments of Biochemistry and Molecular Biophysics 
& Molecular and Cellular Biology 
Editor, Plant Molecular Biology Reporter 
536 Biosciences West Bldg. 
1041 E. Lowell Street  
Tucson AZ 85721-0088 
(520) 621-7529 
Fax (520) 621-1697 
e-mail:dbourque@u.arizona.edu
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 129

http://mymail.paws.lsu.edu/scripts/mail/compose.mail?compose=1&.ob=4c183ec60d5ffc6c1b48eab4e3a42f7e9ec1ecde&composeto=&composecc=&subject=&body=


 

VITA 

 Suresh Babu Kadaru was born in 1974 in Nidubrolu town of Andhra Pradesh, 

India. He had pursued his high school education in Hyderabad, Andhra Pradesh, India. 

He finished his bachelor’s degree in Acharya N G Ranga Agricultural University, 

Rajendranagar Campus. After a short period of work experience, he joined Tamil Nadu 

Agricultural University, Coimbatore, India, and completed his master’s degree in 

biotechnology. Before joining LSU, he worked for two years in National Research Center 

for Plant Biotechnology, Indian Agricultural Research Institute, India.  

 130


