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ABSTRACT 
 

 Tylosin, a macrolide class and widely used antibiotic in animal production, could 

contaminate environment through manure application to soil and further to river and ground 

water.  Tylosin transport and movement in the environment are largely determined by its 

sorption and desorption in soils, which are poorly understood so far.  Therefore, the purpose of 

this study was to determine (1) the optimal conditions for tylosin stability, (2) sorption and 

desorption characteristics of tylosin by poultry litter-impacted three Louisiana soils and (3) 

sorption and desorption of tylosin by selected clay minerals, the main components of soil which 

have strong potential application in environmental clean-up.  To this end, tylosin stability was 

evaluated in terms of light exposure (light and dark), solvents (H2O and 0.01M CaCl2), pH (4.5 

to 7.5), and temperature (4 oC and 25 oC) conditions.  Sorption and desorption of tylosin were 

carried out at different pHs with three Louisiana soils namely Briley, Ruston and Savannah with 

or without organic matter being removed.  For clay minerals, tylosin sorption and desorption 

were carried out with montmorillonite, kaolinite and illite.  Tylosin in 0.01M CaCl2 was stable 

under light at pH 4.5, 6.0 and 7.5, and at 25 oC for about 12 days.  Tylosin sorption was well 

described by the Freundlich equation, with sorption in the order of Briley > Savannah > Ruston.  

Tylosin sorption was affected by pH, with higher sorption at acid pH for Briley, and at pH 6 to 7 

for Ruston and Savannah, but with low sorption as pH further increased.  Removal of organic 

matter dramatically increased tylosin sorption and changed sorption pattern at lower pH < 6.  

Tylosin desorption was in the order of Ruston > Briley > Savannah, with higher desorption under 

acid conditions, and lower desorption between pH 6.0 to 7.5.  Tylosin was strongly sorbed by 

monotmorillonite followed by illite and kaolinite, and desorption in the order of illite > kaolinite 

> montmorillonite.  The results indicated that both pH and organic matter significantly affected 



 ix

tylosin sorption and desorption behaviors in soil and three clay minerals exhibited different 

degree of sorption strength as reflected by the difference in desorption.             
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CHAPTER 1 

 
LITERATURE REVIEW 

 

1.1   Introduction  

            Antibiotics are a diverse range of compounds produced naturally by various living 

organisms, such as bacteria, yeasts, fungi or manufactured synthetically (Kanfer et al., 1998).  

They have antibacterial activity which can inhibit or destroy certain organisms, such as bacteria, 

and are widely used for disease treatments, prevention, and control, as well as growth promotion.  

The use of antibiotics has become an integral part of the growing animal food production 

industry.  To maintain animal health, large amount of antibiotics are consumed.  Although there 

is no official report of antibiotics usage, a survey by Animal Health Institute (AHI) showed that 

about 9 million kg of antibiotics were sold by AHI members in 2001 (AHI, 2002). It was 

estimated that > 22 million pounds of antibiotics were used to treat farm animals and pets in 

United States in 2002 (Kolpin et al., 2002). Majority of antibiotics used in U.S. are for 

preventing and curing illness, with only 13% for growth promotion.  According to a review by 

Sarmah et al. (2006), 5 million kg of antibiotics were used in 2000 in European countries for 

animal health, among which 3.5 million kg were used for therapeutic purposes, and 1.5 million 

kg were used as food additive for growth promotion.  In New Zealand, antibiotics are used in 

feed because of large population of ruminant animals on pasture, animals consumed about 57% 

of nearly 93,000 kg of antibiotics.  In Kenya, 14,600 kg of antibiotics were used in animal food 

production.   

 The use of antibiotics in animal food production has been a concern for the public, and 

controversial to the scientific community because of potential environmental contamination, 

including water and land.  Many antibiotics used in animal production are poorly adsorbed by 
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animals, and as much as 30-90% of the parent compound is excreted (Alcock et al., 1999).  In 

addition, metabolites of antibiotics can also be bioactive and some are transformed back to the 

parent compound after excretion.  For example, the excreted sulfamethazine metabolite, 

glucoronide of N-4-acetylated sulfamethazine, is converted back to the parent compound in 

liquid manure (Berger et al., 1986).  After the antibiotic is administered, sulfamethazine 

undergoes conjugation with sugars in the liver and thus becomes inactivated.  After excretion, 

sugar is rapidly degraded by microbes, thereby reconverting the conjugate to bioactive form.  So, 

it is not surprising that nearly 21% of an oral dose of oxytetracycline was excreted from sheep as 

the original parent compound, and 17-75% of chlortetracycline was excreted from young bulls 

(Montforts, et al., 1999).  Moreover, most of the antibiotics are water-soluble, as much as 90% of 

an antibiotic dose can be excreted in urine and up to 75% in animal feces (Halling-Sorensen, 

2001).  Consequently, antibiotics are frequently found in feces, urine, slurry, manure, and dung 

(Cole et al., 2000; Halling-Sorensen et al., 2002) as manure, slurry and dung are widely applied 

as fertilizers to land.  It is therefore very likely that antibiotics, released into soil through 

fertilization, could find their way into streams and rivers through runoff, resulting in water 

contamination.  For example, a nationwide survey in the U.S. revealed that numerous veterinary 

and human antibiotics were detected in 27% of 139 river water samples at concentrations of up 

to 0.7 μg L-1 (Kolpin et al., 2002).  Antibiotics such as tetracycline and sulfonamide were found 

in water of the Colorado Cache la Pouder River flowing through urban and agricultural areas 

(Yang et al., 2003).  In addition to surface water, antibiotics were also found in ground water 

from urban and agricultural sources (Sengelov et al., 2003; Richards et al., 2004).  These results 

suggest that antibiotics pose an increasingly urgent risk to the environment.    

 Antibiotics have been also reported in plant-based food such as grain, vegetable and fruit 

through uptake by roots.  As early as the 1950s, antibiotics were found in the tissues of broad-
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bean plants grown in solutions containing antibiotics griseofulvin and chloramphenicol (Crowdy 

et al., 1955).  In recent studies, antibiotics such as chlortetracycline were detected in corn, green 

onion and cabbage grown in soils applied with manure containing chlortetracycline (Kumar et 

al., 2005).  Another antibiotic compound, sulfamethazine, was also found in corn, lettuce and 

potato grown in manure-amended soil (Dolliver et al., 2007).  Obviously, there is also a potential 

risk of antibiotics directly to human for consumption of these food contaminated with manure 

application.      

 The main concern over frequent use of antibiotics in animal production has been the 

potential for an increase in populations of new strains of microorganisms resistant to antibiotics 

(Witte, 1998).  Bacterial populations isolated from the gut of animals exposed to antibiotics were 

five times more likely to be resistant to those antibiotics, and tetracycline-resistant bacteria were 

identified in manure (Halling-Sorensen et al., 2005).  Antibiotics sorbed on Minnesota soils 

maintained their antibacterial activity, thus putting continuous pressure on bacteria (Chander et 

al., 2005).  Under the pressure of antibiotics, sensitive strains could acquire resistance either 

from gene mutation or from exchromasomal exchange of resistant genes from R plasmids to 

become resistant strains.  Similarly, antibiotics remaining in soils may favor development of 

antibiotic-resistant bacteria (Halling-Sorensen et al., 1998).  A small number of resistant bacteria 

will gradually become major strains under continuous selection pressure.  Using polymerase 

chain reaction (PCR) technique, bacteria with resistance to tetracycline and streptomycin have 

been found one year after their exposure to antibiotic (Sengelov et al., 2003), indicating that the 

antibiotic-resistant strains develop much faster than expected though initially they are not 

dominant in the populations.  Consequently, bacteria in soils become more resistant to antibiotics 

(Esiobu et al., 2002), and tylosin-resistant bacteria have been isolated from a Minnesota 

cornfield to which swine and chicken manure historically had been applied (Onan et al., 2003).  
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These antibiotic-resistant bacteria could spread into water from soils through runoff, and causes 

serious water contamination.  Once these antibiotic-resistant bacteria spread into animals or 

humans and become dominant in populations, relevant antibiotics would lose their protective 

activities for animals and humans.            

 Based on chemical structure, antibiotics used for veterinary medicine are classed into 

tetracyclines, aminoglycosides, macrolides, β-lactams, sulfonamides, and fluorquinolones 

(Thiele-Bruhn, 2003).  As one member of macrolides, tylosin is one of the most widely used 

veterinary antibiotics in the United States, European Union (EU), Australian, New Zealand and 

several other countries.  It has been administered to swine, beef cattle and chicken for disease 

prevention and control as well as growth promotion.  The amount of tylosin administered in 

animals is high.  For example, Denmark used 14,000 kg of tylosin in 1997 and UK 5144 kg of 

tylosin in 2000 (Loke et al., 2000; Smarmah et al., 2006).  Due to the fact that veterinary 

antibiotics likely enter the environment through manure application to agricultural lands, 

sorption and desorption behaviors of antibiotics in soils will likely play a major role in 

controlling mobility and fate of these antibiotics.  Therefore, tylosin sorption and desorption 

characteristics in soils and influencing factors will be focus of this study.  In addition, the 

interaction between tylosin and specific clay minerals will be also studied.   

1.2   Literature review 

1.2.1 General Properties of Tylosin 

         Tylosin, a member of macrolide group of antibiotics, has good antibacterial activity against 

a broad-spectrum of pathogenic organisms such as gram-positive bacteria, some gram-negative 

bacteria, vibrio, spirochete, coccidian, etc. (McGuire et al., 1961).  Tylosin is produced by 

fermentation of Streptomyces strains.  Structurally, it consists of a substituted 16-membered 

lactone ring, an amino sugar (mycaminose), and two neutral sugars (mycinose and mycarose).  
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Like other fermentation products, tylosin is a mixture of the tylosin A (macrolide), tylosin B 

(desmycosin), tylosin C (macrocin), and tylosin D (relomycin).  Their chemical structure is listed 

in Fig. 1.1 (Loke et al., 2000).           
 All four compounds contribute to the potency of tylosin.  Among these four compounds, 

tylosin A is the major one, accounting for 80% to 90%, followed by tylosin B (Horie et al., 

1998).  Tylosin A, tylosin B, tylosin C and tylosin D were found in faeces, suggesting that 

tylosin B, tylosin C and tylosin D are the metabolites of tylosin A (Horie, 1995).  

 Tylosin, a weak organic base with pKa of 7.73, is not stable in acidic and alkaline 

conditions. In acidic conditions, tylosin A is converted to tylosin B, whereas in neutral and 

alkaline condition it may decompose to tylosin A aldol along with a number of polar 

   

 

Substance R1 R2 Mycarose Mycinose 
Tylosin A CHO CH3 + + 
Tylosin B CHO CH3 - + 
Tylosin C CHO H + + 
Tylosin D CH2OH CH3 + + 

                        “+” sugar present; “-” sugar not present. 

Fig. 1.1 Chemical structure of tylosin   
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decomposition products (Paesen et al., 1995).  However, tylosin remains relatively stable at pH 

around 7 in aqueous solution.  

  Like many other antibiotics, tylosin is subject to photodegradation. Although tylosin 

concentration remained stable in the dark, when exposed to light, it degraded by 13% (Halling-

Sorensen et al., 2003).  Tylosin is widely used in animal feed for pig, cattle and poultry 

production for the treatment of diseases and growth promotion.  

  1.2.2 Occurrence of Tylosin in Environment 

  Tylosin has been used in animal feeds and for animal disease control for approximately 

40 years.  According to a report by Hu (2007), after administering, up to 90% of drugs can be 

excreted in feces and urine as metabolites or in the parent form.  Tylosin was the most frequently 

used antibiotic at 31% of swine production facilities (Bush et al., 2001). Through application of 

manure with excreted tylosin residues from livestock on croplands, without question tylosin can 

enter into soil and water system as a pollutant in the environment.  Different studies have 

reported that the half life of tylosin ranged from 2 to 200 days in different matrics (Table 1.1), so 

that tylosin residue might accumulate in our environment following manure application.   Recent 

evidence has indicated that tylosin has been indeed released into the environment.  According to 

Koppin et,al. (2002),  tylosin was detected in 14% of 139 streams in the United State in 2002 

(Kolpin, et al., 2002).  As much as 0.012 μg L-1 of tylosin was found in Arkansas streams along 

with other antibiotic compounds (Haggard et al, 2006). Clearly, as the occurrence of tylosin in 

the environment is beginning to be understood, further understanding of its fate and strategy can 

be developed in managing the risk associated with tylosin contamination. 

1.2.3 Tylosin Sorption to Soils, Clay Minerals and Manure 

 Previous studies suggested that tylosin is strongly sorbed in soils, but sorption as 

determined by sorption partition coefficient (Kd) varied greatly.  The kd for 11 different Dutch 
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field soils ranged from 10 to 370 (Laak et al., 2006).  Tylosin sorption appeared to correlate 

positively with the soil physical properties.  A study by Rabolle et al. (2000) found that Kd vales 

for a sandy and two Danish sandy loam soils were 8-11, and 62-128, respectively, suggesting 

that soil with higher percentages of silt and clay had higher sorption of tylosin.  This was 

supported by Clay et al.’s (2005), who found that Kranzburg soil from South Dakoda, with 

63.3% silt, 29.1% clay and 7.6% sand, exhibited higher adsorption of tylosin than Badger soil, 

which had 56.6% silt, 31.0% clay and 12.4% sand.  Similarly, a Dutch clay loam soil sorbed 

more tylosin than a Dutch loamy sand soil (Laak, et al., 2006), and a Canada Quebec heavy clay 

soil sorbed more tylosin than a Canada sandy loam soil (Allaire et al., 2006).  Tylosin sorption is 

rapid, with 95% of it sorbed within 3 h (Allairie et al., 2006).   

           Besides soil physical properties, soil pH and ionic strength can also affect tylosin sorption. 

Tylosin is a weak base, and pH may change the charge characteristics of both tylosin and soil 

particles, thus affecting sorption.  A study with Dutch clay loam soil and loamy sand soil showed 

that sorption of tylosin on soil was higher under weak acid conditions (pH 6).  As pH increased, 

the sorption partition coefficient decreased from 156 to 32 for the clay loam soil and from 8.9 to 

3.0 for loamy sand soil (Laak, et al., 2006).  Addition of an electrolyte (CaCl2 or NaCl) at more 

than 0.03 M led to decrease sorption of tylosin by 3-fold (Laak, et al., 2006).  

           Similar to sorption by soil, tylosin is also sorbed by manure.  However, sorption of tylosin 

on solid manure was affected by solvents, with sorption from urine three to four times greater 

than with sorption from 0.01 M CaCl2 and water (Clay et al., 2005). 

 Clay minerals are the sorbent in soil, but it varys considerably in adsorption for tylosin.  

In an early study by Bewick (1979), Na-montmorillonite and Ca montmorillonite (Wyoming 

bentonite) clay minerals were found to exhibit high adsorption of 190 and 65 µg mg-1
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 Table 1.1  Tylosin half life in different environmental matrices  
      
Half-life (T1/2 = day) Matrix Reference 
   
4.1-8.1 Soil-manure slurries  Halling-Serensen (2001) 
 in aerobic laboratory Ingerslev (2001) 
   
49-67 and 79-82 Nature soil Halling-Serensen (2005) 
   
4.5 Manure Carlson (2006) 
   
< 2 Aqueous phase in manure Loke et al.(2000) 
   
9.5-40 Surface water Ingerslev (2001) 
   
6 Cattle excreta Teeter and Meyerhoff (2003) 
< 7.6 Chicken excreta  
7.6 Swine excreta  
   
200 Pond water and ultra water in light Hu et al. (2007) 
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respectively, whereas illite and kaolinite had lower adsorption of 22 and 6.5 μg mg-1 

respectively.  The difference was attributed to expand the structural variation of the clay 

minerals.  Both bentonite and montmorillonite have an expanding lattice that results in an 

increased exchange capacity as compared to illite and kaolinite, which have no expanding lattice. 

 1.2.4 Tylosin Desorption from Soils 

           Two reported studies have been conducted on desorption of tylosin from soils, but the 

results were quite different.  A study by Clay et al. (2005) found that desorption of tylosin from 

South Dakota soil was low.  In a 24-h period, tylosin desorption with 0.01 M CaCl2 from three 

soils was less than 0.2% of the total tylosin sorbed at a high concentration.  No tylosin was 

desorbed from soils exposed to a low tylosin concentration.  However, an earlier study conducted 

by Rabolle et al. (2000) indicated much higher desorption.  Using similar desorption methods, 

Rabolle et al (2000) found that 69% and 26% of sorbed tylosin were desorbed from Danish 

loamy Borris and Lunggaard soils, respectively.   In sandy loam soils, desorption was lower to 

13-14% of the sorbed tylosin.  These inconsistent results suggest that the factors influencing 

tylosin desorption in soils are not clear. 

1.2.5 Tylosin Mobility and Fate in Soils 

            Due to its high sorption onto soil, tylosin mobility in soil is limited.  A study using soil 

column showed that tylosin moved slowly in soils, but differences existed among soils (Rabolle 

et al., 2000).  In a Danish sandy loam soil, almost all the tylosin remained in the top 0-2.5cm 

layer of soil, with very small amounts transported to the 2.5-5.0 cm and 5.0-7.5 cm depths.  In 

contrast, tylosin moved to 20 cm in a sandy soil, with small amounts detected in the 20-22.5 cm 

and 22.5-25 cm depths (Rabolle et al., 2000). There has been no report on tylosin movement in 

runoff.       
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  There are few studies on the fate of tylosin in soil.  Ingerslev and Halling-Sorensen 

(2001) simulated the biodegradability of three veterinary antibiotics in Danish soil-manure 

slurries under aerobic laboratory conditions using aniline as the benchmark chemical, and found 

that half-life for tylosin was 4.1-8.1 days.  In soil situations where soil pH, redox, temperature, 

water content, composition and microbial population vary considerably, the fate of tylosin may 

be quite different.  Halling-Sorensen (2005) examined the fate of tylosin in natural soil 

conditions during a 155-day experiment with two Danish soil types.  Degradation of tylosin not 

only depended on subtype of tylosin, but also on soil.  Tylosin A degraded faster than tylosin B 

and tylosin D.  The half-life of tylosin A was 49-67 days in sandy to loamy sand soils, whereas 

that of tylosin B and of tylosin D was 84-114 days and 79-82 days respectively in similar soils.  

The content of tylosin C remained stable, showing little sign of degradation.  In addition, it is 

generally believed that tylosin B, tylosin C and tylosin D are the degradation products of tylosin 

A, and as compared to parent compound tylosin A, these were more persistent in the soil 

(Halling-Sorensen, 2005).  Another study by Carlson et al. (2006) indicated that the half-life for 

tylosin was 6.1 days in Ontario soils, and addition of manure in these soils seemed to reduce it to 

4.5 days.   

 Both aerobic degradation and abiotic degradation were found to be involved in tylosin 

degradation in soils (Sassman et al., 2007).  Between the non-sterile and the sterile Florida soils, 

tylosin degradation was similar during the first two weeks, suggesting that abiotic degradation 

may dominate at early times. Aerobic degradation appeared to be more rapid than anaerobic, 

with more than half of the tylosin degraded within 3 days after a long lag time (Sassman et al., 

2007).                   
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1.2.6 Tylosin Stability in Water, Sewage and Manure 

 Under aerobic conditions, tylosin was relatively stable in surface water.  Placed in a 

simple shake flask system simulating the conditions in surface water, tylosin had a half-life of 

9.5 to 40 days (Ingerslev et al., 2001).  Addition of sediment or sludge increased its degradation, 

however, degradation was significantly slower in the absence of oxygen. 

            Tylosin potencies were affected by soil interstitial water and sludge water.  Soil 

interstitial water reduced the potency of tylosin within two days under anaerobic condition, with 

EC50 (50% effective concentration) increased from 2.5 to 15.9 mg/L, but tylosin concentration 

remained constant (Halling-Sorensen et al., 2003).  The potency of tylosin in sludge water was 

reduced by 28.2% in 10-h experimental period, but the initial concentration of tylosin was only 

reduced by 2.2%.  This behavior was due to conversion of tylosin into other less potent forms 

such as tylosin B, tylosin C, tylosin D (Teeter et al., 2003).  In addition, biodegradation, sorption 

to sludge, or combinations of the both processes may also reduce the potencies of tylosin in 

sewage sludge (Teeter et al., 2003).  

            Tylosin degraded rapidly in manure.  One study (Liguoro et al., 2003) showed that as 

much as 115,500 μg/kg tylosin was excreted from calves into manure after feeding tylosin at a 

rate 20 mg/kg/day, but this amount was greatly degraded to 5,400 μg/kg in the manure by day 

10.  No tylosin was detected in the manure after 45 day (Liguoro et al., 2003). Mixing tylosin 

with manure also resulted in its degradation.  In an aqueous solution of containing 0.1% manure, 

no tylosin degradation was detected in neither manure filtered through a 0.45 μm filter (no 

microbes) nor non-filtered manure.  With an increase of manure to 3%, degradation rate was 

increased dramatically in non-filtered manure.  In contrast, degradation rate was lower in filtered 

manure (Loke et al., 2000).  This suggested that sorption of tylosin to manure particles, or/and 
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microbe degradation contributed to lower tylosin content in non-filtered manure solution.  Using 

a 14C-tylosin spiking solution, the half-lives of tylosin in cattle, chicken and swine excreta were 

estimated to be 6.2 days, < 7.6 days and 7.6 days, respectively (Teeter et al., 2003). 

1.3 Statement of Problems and Objectives   

 Widespread application of animal waste to agricultural land has caused concern about the 

introduction of veterinary antibiotics into the environment.  One such commonly used antibiotic 

for poultry and cattle production is tylosin.  However, there is little information on the mobility 

and fate of tylosin in soils.   The interaction of tylosin with soil components is a key to 

understanding its retention and release in soil. Therefore, the objectives of this study were to (1) 

evaluate the stability of tylosin under different conditions of light exposure, temperature, and pH; 

(2) characterize tylosin sorption, desorption, and factors that influence these in selected 

Louisiana soils; and (3) assess tylosin sorption and desorption by clay minerals. 

 This information is critical for assessing the environmental risks associated with tylosin 

and developing the necessary means to manage these risks. 

1.4   References  

AHI, 2002. Animal Health Institute. Available on line http: www.ahi.org. 
 
Alcock, R.E., A.Sweetman, K.C. Jones. 1999. Assement of organic contamination fate in 
wastewater treatment plants I. Selected compounds and physiochemical properties. Chemosphere 
38: 2247-2262. 
 
Allaire S.E., J. Del Castillo, V. Juneau. 2006. Sorption kinetics of chlortetracycline and tylosin 
on sandy loam and heavy clay soils.  J. Environ. Qual.35: 969-972.  
 
Berger, K., B. Peterson, H. Buening-Pfaune.  1986. Persistence of drugs occurring in liquid 
manure in food chain.  Arch. Lebenmittelsh. 37: 99-102. 
 
Bewick M. W.M. 1979. The adsorption and release of tylosin by clays and soils.  Plant and Soil 
51: 363-372. 



 

 - 13 -

Bush E. J. and L. G. Biehl. 2001. Use of antibiotics and feed addirives by U.S. pork producers. 
Proceedings of U.S. Animal Health Association, Hershey, PA, Nov 1-8. U.S. Animal Health 
Association, St. Joseph, MO. 
 
Carlson J.C., S. A. Mabury. 2006.  Dissipation kinetics and mobility of chlortetracycline, tylosin, 
and monenson in an agricultural soil in Northumberland County, Ontario, Canada.  Environ. 
Toxicol. Chem. 25: 1-10. 
 
Chander Y, K. Kumar, S. M. Goyal, S. Gupta. 2005.  Antibacterial activity of soil-bound 
antibiotics.  J. Environ. Qual. 34: 1952-1957.  
 
Clay S. A., Z. Liu, R. Thaler, H. Kennouchu. 2005.  Tylosin sorption to silty clay loam soils, 
swine manure and sand. J. Environ. Sci. Health, 40: 841-850. 
 
Cole D., L. Todd, S. Wing. 2000.  Concentrated swine feeding operations and public health: a 
review of occupational and community health effects.  Environ. Health. Perspect. 108: 685-699. 
 
Crowdy S.H., D. Gardner, J. F. Grove, D. Pramer. 1955.  The translocation of antibiotics in 
higher plants. I. Isolation of griseofulvin and chloramphenicol from plant tissue. J. Exp. Bot. 6: 
371-383. 
 
Dolliver H., K. Kumar, S. Gupta. 2007. Sulfamethazine uptake by plants from manure-amended 
soil. J. Environ. Qual. 36: 1224-30. 
 
Esiobu N., L. Arments, J. Ike. 2002. Antibiotic resistance in soil and water environments used 
for various activities.  Int. J. Environ. Health Res. 12: 133-144. 
 
Harggard B. E., J. M. Galloway, W. R. Green, M. Teyer. 2006. Pharmaceuticals and other 
organic chemicals in selected North-Central and Northwestern Arkansas streams. J. Environ. 
Qual. 35: 1078-1087. 
 
Halling-Sorenson B., S. Nors Nielsen, P. F. Lanzky, F. Ingerslev, H. C. Holten Lutzhoft, S. E. 
Jqrgensen. 1998. Occurrence and effects of pharmaceutical substances in the environment-a 
review. Chemosphere 36: 357-393. 
 
Halling-Sorenson B. 2001. Inhibition of aerobic growth and nitrification of bacteria in sewage 
slude by antibacterial agents.  Arch. Environ. Contam. Toxicol. 40: 451-460. 
 
Halling-Sorensen B. 2002.  Toxicity of tetracycline and tetracycline degradation products to 
environmentally relevant bacteria, including selected tetracycline-resistant bacteria.  Arch. 
Environ. Contam.  Toxicol. 44:7-16. 



 

 - 14 -

Halling-Sorensen B., A. Jacobsen, J. Jensen, G. Sengelov, E. Vaclavik, F. Ingerslev F. 2005. 
Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: a field-scale 
study in southern Denmark. Environ. Toxicol. Chem. 24: 802-810. 
 
Halling-Sorensen B., G. Sengelov, F. Ingerslev, L. B. Jensen. 2003.  Reduced antimicrobial 
potencies of oxytetracycline, tylosin, sulfadiazine, streptomycin, ciprofloxacin, and olaquindox 
due to environmental processes.  Arch.Environ. Contam. Toxicol. 44: 7-16. 
 
Horie, M., K. Satio, R. Ishii, T. Yoshida, Y. Haramaki, H. Nakaszawa. 1998. Simutaneous 
determination of five macrolide antibiotics in meat by high-performance liquid chromatograph. 
J. Chromatogr. A, 812: 295-302.  
 
Horie, M. 1995. Chemical analysis of macrolide antibiotics, In: Oka, H., Nakazawa, H., Harada, 
K-I., Macneil, J. D. (Eds.), Chemical analysis for antibiotics used in agriculture, 166-200. AOAC 
internal. Alington, USA. 
 
Hu D. and J. R. Coats. 2007. Aerobic degradation and photolysis of tylosin in water and soil. 
 
Ingerslev, F., B. Halling-Sorensen. 2000. Biodegradability of metronidazole, olaquindox, and 
tylosin and formation of tylosin degradation products in aerobic soil-manure slurries.  Evotoxiol. 
Environ. Safety 48, 311-320. 
 
Ingerslev F., L. Toang, M. L. Loke, B. Halling-Sorensen, N. Nyholm. 2001. Primary 
biodegradation of veterinary antibiotics in aerobic surface water simulation systems.  
Chemosphere, 44: 865-72. 
 
Kay P., P. A. Blackwell, A. B. A. Boxall. 2004.  Fate of veterinary antibiotics in a macroporous 
tile drained clay soil.  Environ. Toxicol.Chem. 23: 1136-1144. 
 
Kanfer S.E., M. F. Skinner, R. B. Walker. 1998. Analysis of macrolide antibiotics.  J. 
Chromatogr. A, 812: 275-286.  
 
Kolpin D.W., E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, H. T. 
Buxton. 2002.  Pharmaceuticals, hormones, and other organic waster contaminants in US 
streams, 1999-2000: A national reconnaissance.  Environ. Sci. Technol. 36: 1202-1211. 
 
Kolz A.C., T. B. Moorman, S. K. Ong, K. D. Scoggin, E. A. Douglas. 2005.  Degradation and 
metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons.  Water Environ 
Res. 77: 49-56. 
 
Kumar K., S. C. Gupta, S. K. Baidoo, Y. Chander, C. J. Rosen. 2005.  Antibiotic uptake by 
plants from soil fertilized with animal manure.  J. Environ. Qual. 34: 2082-5. 
 
Laak T. L., W. A. Gebbink, and J. Tolls . 2006. The effect of pH and ionic strength on sorption 
of sulfachloropyridazine, tylosin, and oxytetracycline to soil.  Environ. Toxicol. Chem.. 25: 904-
911.   



 

 - 15 -

 
Laak T.L., W. A. Gebbink, J. Tolls J. 2006.  Estimation of soil sorption coefficients of veterinary 
pharmaceuticals from soil properties.  Environ. Toxicol. Chem. 25: 933-941. 
 
Liguoro M. D., V. Cibin, F. Capolongo, B. Halling-Sorensen, C. Montesissa. 2003. Use of 
oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil.  
Chemosphere, 52: 203-212.  
 
Loke, M. L., F. Ingerslev, B. Halling-Sorensen, J. Tjornelund. 2000. Stability of tylosin A in 
manure containing test systems determined by high performance liquid chromatograph. 
Chemosphere, 40: 759-765. 
 
Mcquire, J.M., W. S. Boniece, C. E. Higgins, M. M. Hoehn, W. W. Stark, J. Westhead, R. N. 
Wolfe. 1961. Tylosin, a new antibiotic. I. Microbiological studies. Antibiot. Chemother. 11, 320-
327. 
 
Monforts, M. H. 1999. Environmental risk assessment for veterinary medicine products.  Part 1: 
Other than GMO-containing and immunological products.  RIVM report.  National Institute of 
Public Health and the Environment, Bithoven, The Netherlands.  
 
Onan L.J., T. M. LaPara. 2003.  Tylosin-resistant bacteria cultivated from agricultural soil.  
FEMS Microbiol. Lett. 220: 15-20. 
 
Paesen J., K. Cypers, K. Pauwels, E. Roets, J Hoogmsrtens. 1995.  Study of the stability of 
tylosin A in aqueous solutions.  J. Pharm. Biom. Anal. 13: 1153-1159. 
 
Rabolle M., N. H. Spliid. 2000. Sorption and mobility of metronidazole, olaquindox, 
oxytetracycline and tylosin in soil. Chemosphere, 40: 715-722. 
 
Richards S. M., C. J. Wilson, D. J. Johnson, D. M. Castle, M. Lam, S. A. Mabury, P. K. Sibley, 
K. R. Solomon. 2004. Effects of pharmaceutical mixtures in aquatic microcosms. Environ. 
Toxicol. Chem. 23: 1035-1042.  
 
Sarmah A.K., M. T. Meyer, A. B. Boxall. 2006. A global perspective on the use, sales, exposure 
pathways, occurance, fate and effects of veterinary antibiotics (VAs) in the environment.  
Chemesphere, 65: 725-759. 
 
Sassman S.A., A. K. Sarmah, L. S. Lee. 2007.  Sorption of tylosin A, D and A-aldol and 
degradation of tylosin A in soils. Environ. Toxicol. Chem. 26: 1614-1621. 
 
Sengelov G., Y. Agerso, B. Halling-Sorenson, S. B. Baloda, J. S. Anderson, L. B. Jensen. 2003. 
Bacterial antibiotic resistance levels in Danish farmland ad a result of treatment with pig manure. 
Environ. Int. 28: 587-595. 
 
Teeter J. S., R. D. Meyethoff. 2003. Aerobic degradation of tylosin in cattle, chicken, and swine 
excreta.  Environ. Res. 93: 45-51. 



 

 - 16 -

Thiele-Bruhn, S. 2003. Pharmaceutical antibiotic compounds in soils – a review. J. Plant Nutr. 
Soil Sci. 166, 145-167 
 
Yang S., K. Carlson. 2003.  Evolution of antibiotic occurrence in a river through pristine, urban 
and agricultural landscapes.  Water Res. 37: 5645-56. 
 
Witte, W. 1998.  Medical consequences of antibiotic use in agriculture.  Science, 279: 996-997. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 - 17 -

CHAPTER 2 

TYLOSIN STABILITY UNDER DIFFERENT CONDITIONS 
 
2.1 Introduction 

 Tylosin is one of the most widely used antibiotics for disease control, disease prevention 

and growth promotion in animal production. Its structure was shown in chapter 1 (Fig. 1.1).  The 

amount of tylosin administered in animals is high.  For example, Denmark used 14,000 kg of 

tylosin in 1997 and UK 5144 kg of tylosin in 2000 (Loke et al., 2000; Smarmah et al., 2006).  

Tylosin is produced by fermentation of Streptomyces strain.  Structurally, it consists of a 

substituted 16-membered lactone ring, an amino sugar (mycaminose), and two neutral sugars 

(mycinose and mycarose).  Tylosin is a mixture of tylosin A, tylosin B, tylosin C and tylosin D 

(See Fig 1.1).  All four components contribute to the potency of tylosin.  Among these four 

components, tylosin A is a major one accounting for 80% to 90%, followed by tylosin B (Horie 

et al., 1998).  Chemically tylosin is a weak base with pKa 7.73.   

 Tylosin stability is not well documented in the literature.  Among the factors affecting 

tylosin stability, solution pH is thought to be the most important one.  It is generally considered 

that tylosin is stable in neutral pH condition, but not in acidic and alkaline conditions (Paesen et 

al., 1995a).  In acidic conditions, tylosin is converted into tylosin B, whereas in neutral and 

alkaline conditions it decomposes to tylosin A aldol along with a number of polar decomposition 

products (Paesen et al., 1995a).  Below pH 4, the sugar moieties are cleaved from the parent 

molecule.   Above pH 9, loss of sugar as well as condensation at the R1 aldehyde group gives the 

aldols.  Another factor affecting tylosin stability is light exposure. One study showed that tylosin 

concentration remained stable in the dark.  But when exposed to light, it decreased by 13 % 

(Halling-Sorensen et al., 2003), indicating photodegradation.  
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To study tylosin sorption in soils or other media, one fundamental requirement is to 

conduct experiments under certain conditions, in which tylosin is stable, so only sorption 

contributing to tylosin removal in equilibrating solutions can be derived.  Thus, tylosin stability 

was evaluated in this study under different conditions of light exposure, solvents, pHs and 

temperatures to determine the optimal conditions for tylosin sorption. 

2.2   Materials and Methods 

 Tylosin as tylosin tartrate was purchased from Sigma-Aldrich, Inc (St. Louis, MO, USA).  

Selected physical and chemical properties of tylosin are given in table 2.1.  Methanol (HPLC 

grade), sodium perchloride (HPLC grade), and acetonitrile (HPLC grade) were obtained from 

Fisher scientific Inc (Pittsburgh, PA, USA). 

 

Table 2.1 The selected properties of tylosin 

Molecular formula C46H77NO17 

Appearance A white or slightly yellow crystalline power 

Molecular weight 916.1 

Solubility 5 mg mL-1 (water 25 oC) 

Stability Solution are stable at pH 4-9 

pKa 7.73 

UV absorbance 282nm 
            (Paesen et al.,1995b and c; McFarland et al.,1997) 

        ● Effect of Light and Air Exposure on Tylosin Stability:  Tylosin was dissolved in 

sterile H2O at a concentration of 10 mg L-1 and kept at 25 oC in clear glass vials in the dark with 

cap closed (dark-close), in the light with cap closed (light-close), and in the light with cap 

opened (light-open) for 0, 2, 4, 6, 8, 10, 12, 14, 19 and 24 days.  A 2-mL of tylosin solution was 

collected at each time interval for quantification by high performance liquid chromatography 



 

 - 19 -

(HPLC).   The light-open vials were weighed every day to determined loss of volume due to 

evaporation.  The tylosin concentration was corrected for evaporation.    

       ●  Calcium Chloride and pH Effect on Tylosin Stability:  Tylosin was dissolved into H2O 

and 0.01 M CaCl2 with pH pre-adjusted to 4.5, 6.0 or 7.5 to yield final concentration of 10, 25, 

and 50 mg L-1, respectively. Tylosin solutions were then kept in the dark.  An aliquot was taken 

at 0, 1, 4, 7, 12, 18 and 25 days from each solution for tylosin quantification by HPLC.  In 

addition, tylosin stability in H2O and 0.01 M CaCl2 solution without pH adjustment for 27 days 

was evaluated.  The half-life of tylosin in H2O and 0.01 M CaCl2 at pH 4.5, 6.0 or 7.5 was 

estimated by using the first-order kinetic model, which can be expressed as 

                             Ln Ct = ln C0 – kt 

Where C0 and Ct (mg L-1) are the concentrations of tylosin at time 0 and t (day) and k is the rate 

constant (Sparks 2003). Half life was the time (t) when Ct is equal to 1/2 C0. 

      ●  Temperature Effect on Tylosin Stability:  Tylosin, dissolved in 0.01 M CaCl2 solution 

at a concentration of 10 mg L-1, was kept at 4 oC and 25 oC for 0, 1, 4, 7, 12, 18 and 25 days.  An 

aliquot was taken at each time interval and analyzed for tylosin concentration by HPLC.  All 

above experiments were conducted in duplicate.  

Tylosin in the solution was analyzed using an Agilent 1100 HPLC system (Agilent 

Technologies, Palo Alt, CA, USA), equipped with ODS column (250 x 460 mm i.d.) and 5 μm 

particles.  The mobile phase consisted of sodium perchlorate (2.25% m/v) adjusted to pH 2.5 

with hydrochloric acid, and acetonitrile (60:40 v/v).  The flow rate was set at 1.0 ml/min, and the 

column was operated at 35 oC.  The injection volume was 25μl.  The detection was carried out at 

a wavelength of 290 nm.  A series of standards were prepared and analyzed with samples in the 

same HPLC run.  A typical HPLC chromatography is shown in Fig. 2.1 and typical standard 

curve is shown in Fig. 2.2.         
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Fig. 2.1 A typical HPLC chromatography of tylosin in H2O.  Tylosin A absorbance peak 
appeared at about 10.8 min.  
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Fig. 2.2.  A standard curve of absorbance area versus tylosin concentration (mg L-1).  
Absorbance areas were highly correlated with amount of tylosin in a linear equation, with R2 
close to 1.    
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2.3   Results and Discussion 

2.3.1 Tylosin Stability Under Dark and Light Conditions 

The effect of light and air exposure on tylosin stability in H2O is shown in Fig. 2.3.  In 

general, the concentration of tylosin was similar under dark-close and light-close conditions 

within 12 days, suggesting that there was no photodegradation during this short period. There 

was a slight reduction in tylosin concnetration over 12 days, but it was still similar under both 

light and dark conditions, showing no sign of degradation within experimental period.  It was 

reported that half-life of tylosin was as long as 200 days under 12 h light daily condition (Hu and 

Coats, 2007), so it is reasonable that tylosin is stable in a short period as 12 days.  But tylosin is    
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Fig. 2.3. Tylosin stability under dark and light conditions in H2O.  Tylosin solutions (10mg L-1) 
were incubated in dark with vial cap closed (dark-close), light with vial cap closed (light-close) 
and light with vial cap opened (light-open) for times shown at 25 oC. 
 
slowly degraded over longer time.   Light appeared to expedite degradation.  According to Hu’s 

study, 50% of tylosin was lost under 12-h light exposure in 200 day but only 6% tylosin was lost 



 

 - 22 -

in the dark over a period of 6 months (Hu and Coats, 2006).  Our study is in agreement with this 

study in that tylosin is relatively stable in water. As most tylosin sorption/desorption studies were 

conducted in a shorter period, it is not necessary to apply light prevention measure.   

           Significant degradation, however, occurred after 10 days of exposure to light when vial 

cap was opened (Fig.2.3).  This was likely due to microbial contamination that resulted in biotic 

degradation.  It was found that tylosin degradation in sterile water was much slower than in 

surface water manure (Ingerslev et al., 2001), and biotic degradation was responsible for tylosin 

degradation (Loke et al., 2000).  This suggests that use of sterile water is important in studies 

involving tylosin stability.      

2.3.2 Tylosin Stability in H2O and 0.01 M CaCl2 and pH Effect 

            Ionic strength is one factor affecting tylosin stability.  Studies have shown that 

degradation rate increased with background ionic strength (Pasen et al., 1995a).  Adsorption of 

tylosin to soil also increased with CaCl2 concentration (Laak et al., 2006).  The use of 0.01 M 

CaCl2 in solution studies was primarily for mimicking soil ionic strength with the dominance of 

Ca ions (Sparks, 2004).  However, there was no report about tylosin stability in 0.01 M CaCl2. 

Because 0.01 M CaCl2 was widely used to dissolve tylosin for studying the behavior of tylosin in 

soil, tylosin stability in 0.01M CaCl2 was compared with that in H2O in this study.   To that end, 

tylosin was placed in 0.01M CaCl2 or H2O at concentrations of 10, 25 and 50 mg L-1 over a 

period of 27day.   The results in Fig. 2.4 showed the tylosin stability for an initial concentration 

of 10mg L-1.    There was no significant difference in tylosin concentrations between 0.01 M 

CaCl2 and H2O over 27 days of incubation, suggesting that 0.01 M CaCl2 did not cause tylosin 

degradation, and tylosin was stable either in H2O or 0.01M CaCl2.  Similar trends were also seen 
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for initial tylosin concentrations of 25 and 50 mg L-1 (Data not shown).  Therefore, either 0.01M 

CaCl2 or H2O can be used as a solvent for the analysis of tylosin.  
According to the study by Paesen (1995a), solution pH had significant influence on 

tylosin stability.  Tylosin loss was lowest at pH 7, with about 3% decrease within 100 h.  At 

higher pH (base conditions) or lower pH (acid conditions), greater tylosin loss occurred.  For 

example, at pH 4 less than 40% tylosin remained within 100 h, whereas tylosin was completely 

degraded at pH 11 at the same time.  However, Kolz et al. (2005) reported that tylosin was stable 

for at least one month in Milli-Q water at pH 5.7 to 6.7, suggesting that tylosin was much more 

stable.  To determine how stable tylosin is at different pHs and how long stability remains, 
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Fig. 2.4.   Tylosin stability in H2O and 0.01 M CaCl2 over time.  Tylosin was dissolved in H2O 
and 0.01 M CaCl2 at a concentration of 10 mg L-1 and kept at 25 oC for up to 27 days.  Tylosin 
concentration was quantified using HPLC.       
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 Fig. 2.5.   Tylosin stability at pH 4.5, 6.0 and 7.5 in H2O and 0.01 M CaCl2.  Tylosin at 10 
mg L-1 in H2O (A) or 0.01 M CaCl2 (B) was kept at 25 oC and concentration measured at 1, 4, 
7, 12,18 and 25 days using HPLC.       
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tylosin concnetrations at pH 4.5, 6.0 and 7.5 over 25 days were examined.  As shown in Fig. 2.5, 

either in H2O (A) or 0.01 M CaCl2 (B) at a starting concentration of 10 mg L-1, tylosin 

concentration was constant at pH 4.5, 6.0 or 7.5 within 12 days, showing no degradation.   

However, there was a slight decrease in tylosin concentrations afterwards, and a significant 

decrease was seen at pH 4.5 as compared to initial concentration as well as to concentrations at 

pH 6.0 or 7.5 at the same time points.  Similarly, at higher initial concentrations of 25 and 50 mg 

L-1, tylosin remained stable at pH 4.5, 6.0 or 7.5 within 12 days (data not shown).  

Tylosin half life in 0.01 M CaCl2 and H2O at pH4.5, 6.0 and 7.5 was estimated according 

to the first-order kinetic model (Sparks, 2004) and the results are shown in Table 2.2 Tylosin half 

life in 0.01 M CaCl2 (109 days) was similar to that in H2O (115 days) at pH 4.5, but it appeared 

to be slightly longer in 0.01 M CaCl2 (223 and 231 days) than in H2O (213 and 216 days) at pH 

6.0 and 7.5, indicating that tylosin was slightly more stable in 0.01 M CaCl2 than in H2O over 

longer time.  However, tylosin half time was much lower at pH 4.5 as compared to that at pH 6.0 

and 7.5, suggesting that tylosin degradation occurred at acid condition.   

Table 2.2  Half life of tylosin in different solvents 
Condition water 0.01 M CaCl2 

pH ----------------T1/2 (day) -----------------                 

4.5 115 109 
6.0 213 223 
7.5 216 231 

 

Our study demonstrated that tylosin is stable at pH 4.5 to 7.5 within a short time of period 

(12 days), but degradation occurred over time.  Tylosin stability shown in this study was longer 

than Paesen’s study (3% loss in 100 hours) (Paceson et al., 1995a), but shorter than one month 

reported by Kolz (2005).  The greater degradation found by Paesen et al. (1995a) may be 

attributed to potassium phosphate buffer or bacterial contamination in buffer.  Tylosin 
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degradation under non-sterile condition was probably due to bacteria activity (Ingerslev et al., 

2001).  In our study, tylosin was placed in sterile H2O or 0.01 M CaCl2, thus excluding bacterial 

contamination.  Regarding Kolz’s study, because they did not provide any data, it is impossible 

to explain the reasons why tylosin was more stable than our study shown.   In terms of half life, 

tylosin half life in our study (Table 2.2) was slightly longer than the average of 200 days in 

unsterile pond water, sterile pond water and ultrapure water reported by Hu and Coats (2006) 

except for pH4.5.    

2.3.3 Tylosin Stability at 4 oC and 25 oC  

The temperature higher than 60 oC causes tylosin degradation both at pH 4.0 and 9.0 

(Paesen et al., 1995), but there is no comparison of its stability between 25 oC (room temperature) 

and 4 oC.  In this study, tylosin stability at 4 oC and 25 oC was compared.  Results showed that at 

4oC or 25 oC, there was no significant degradation either at pH 4.5, 6.0 or 7.5 (10 mg L-1 in 0.01 

M CaCl2) during the first 12 days (Fig. 2.6).  After 12 days of incubation, tylosin at 25 oC was 

decreased slightly.     

Thus, tylosin is as stable at 25 oC as at 4 oC so that short-term studies can be performed at 

25 oC without concern of tylosin degradation since most tylosin sorption and desorption 

experiments are conducted in short times. 

2.4 Conclusions 

 Several factors that affect tylosin stability were evaluated and following conclusions 

could be made: (1) Light has no effect on tylosin stability for 12 days, but degradation can occurs 

over time; (2) Tylosin in 0.01 M CaCl2 had similar stability as in H2O over a period of 27 days; 

(3) Tylosin was stable for 12 days between pH 4.5 and 7.5 but degradation occurred over longer 

time, especially at pH 4.5, and estimated half time of tylosin in CaCl2 was slightly longer that in 
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H2O; (4) Tylosin had similar stability at 25 oC as at 4 oC for 12 days but degradation occurred 

afterwards, especially at 25 oC. 
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Fig. 2.6. Tylosin stability over time at 4 oC and 25 oC at pH 4.5, 6.0 
                        and 7.5.  Final concentration was measured using HPLC.
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CHAPTER 3 

TYLOSIN SORPTION TO SOIL AS INFLUENCED BY PH AND 
ORGANIC MATTER AND ITS DESORPTION FROM SOILS 

 
3.1 Introduction 

  Tylosin, a macrolid class compound, is one of the most widely used veterinary  

antibiotics in the United States, European Union (EU), Australian, New Zealand and several 

other countries.  It has been administered to swine, beef cattle and chicken for disease prevention 

and control as well as growth promotion.  The amount of tylosin administered in animals is high.  

For example, Denmark used 14,000 kg of tylosin in 1997 and UK 5144 kg of tylosin in 2000 

(Loke et al., 2000; Smarmah et al., 2006).  Due to the fact that tylosin likely enters into the 

environment through manure application first on agricultural lands, sorption and desorption 

behaviors of tylosin in soils are likely to play a major role in controlling the mobility and fate of 

these antibiotics.   

 Limited studies have reported that tylosin is strongly adsorbed in Danish soils (Rabolle et 

al., 2000).  Adsorption partition coefficient (Kd) was found to range 8-11 for sandy soil and 

loamy sand soils, and 62-128 for two sandy loam soils.  Additional study (Clay et al., 2005) on 

South Dakoda soils showed that Kranzburg soil (with 63.3 % silt, 29.1 % clay and 7.6 % sand) 

had higher adsorption than Badger soil (with 56.6 % silt, 31.0 % clay and 12.4 % sand).  

Similarly, tylosin adsorption on a Dutch clay loam soil was higher than that on a loamy sand soil 

(Laak, et al., 2006).  These studies clearly suggest that soil with a higher percentage of silt and 

clay had higher sorption of tylosin than the soil with a higher percentage of sand.       

           Besides texture, soil pH and ionic strength were shown to affect tylosin sorption. Tylosin 

is a weak base, and pH may change the charge of both tylosin and soil particles, thus affecting 
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adsorption.  Adsorption of tylosin was higher under weak acid conditions (pH 6).  As pH 

increased, sorption partition coefficient (Kd) decreased from 156 to 32 for the Dutch clay loam 

soil and from 8.9 to 3.0 for the loamy sand soil (Laak, et al., 2006).  Addition of an electrolyte 

(CaCl2 or NaCl) more concentrated than 0.03 M to the solution led to decreased sorption of 

tylosin by 3-fold (Laak, et al., 2006).  

           There has been no report in the literature so far about the effect of organic matter in soil 

on tylosin sorption.   However, organic matter has been showed to impact the adsorption of other 

antibiotics in soils.  A recent study found that organic matter itself did not contribute to antibiotic 

adsorption directly (Allison et al., 2005).  For example, oxytetracycline was not sorbed on 

cellulose and lignin, except slight adsorption on humic acid.  Instead, organic matter likely 

reduces adsorption of antibiotic to soil by hydrophobic partitioning (Kulshrestha et al., 2004) or 

masking sorption sites (Pill and Laird, 2007), as seen in decrease in oxytetracycline adsorption to 

Na- montmorillonite with increased concentration of humic acid (Kulshrestha et al., 2004), 

suggesting that hydrophobic partitioning was involved.  This was further confirmed by X-ray 

diffraction analysis that humic acid was found to either masks sorption sites on clays or inhibits 

interlayer diffusion of tetracycline to clays (Pill and Laird, 2007).  

 As compared to the sorption of tylosin in soils, there have been very few studies on 

desorption of tylosin, and results were varied.  A study by Clay et al. (2005) found that tylosin 

desorption from South Dakota soil was low.  In a 24-h period less than 0.2% of the total tylosin 

sorbed to three soils was desorbed even at the high concentration.  No tylosin was desorbed from 

soils exposed to a low tylosin concentration.  However, another study conducted by Rabolle et al. 

(2000) indicated much higher desorption.  Using similar desorption methods as Clay et al.(2005), 

they found that 69% and 26%   of sorbed tylosin was released from Borris and Lunggaard  loam 

soils, respectively, whereas the desorption from South Dakota sandy loam soil was only 13-14%.  
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These studies indicated that the exact nature of adsorption and desorption of tylosin in soils are 

still not clear. 

 In this study, sorption characteristics of tylosin to three poultry litter-impacted Louisiana 

soils were studied.  The effect of soil pH and organic matter on tylosin sorption was also 

determined.  Moreover, tylosin desorption from the soils was evaluated in different pH condition, 

as well as extractable tylosin by organic solvent.    

3.2   Materials and Methods 

3.2.1 Soil Samples and Characterization 

Three poultry litter-impacted pasture soils, Briley (loamy, siliceous, semiactive, Thermic Arenic 

Paleudults), Ruston (Fine-loamy, siliceous, semiactive, Thermic Typic Paleudults), and 

Savannah (Fine-loamy, siliceous, semiactive, Thermic Typic Fragiudults), were collected from 

northern Louisiana and used in this study.   All three soils have been used for forage production 

of row crops and have been applied poultry litter.  Soil samples were taken from 0-15 cm depth 

at each soil site.  They were air-dried, grounded and passed through a 2 mm sieve before use.  

Soil pH was measured in deionized water with a soil/solution ratio 1:1 (m/m).  Soil particle size 

analysis was conducted by using pipette method (Gee and Bauder, 1986).  OM content was 

determined by the Wakley-Black method (Wakley, 1947).   The cation exchange capacity (CEC) 

was measured by saturating the soil with 1 M ammonium acetate at pH 7, followed by 

distillation and titration (Soil Survey Laboratory Metheds Manual, 1996).  Selected physical and 

chemical properties of these soils are given in Table 3.1.   

3.2.2 Sorption Experiments 

Tylosin sorption isotherms by three Louisiana soils were conducted at soil solution pH 

4.5, 6.0 or 7.5.  To do so, 2-g samples of Briley, Ruston, and Savannah soils were mixed with 19
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Table 3.1  Selected physical and chemical properties of three sandy loams 
           

Soil  pH Sand Silt Clay OM CEC Extractable 
P Bray II              Clay mineraology          

                  Kao Mic Sme Chl IMS
     -----------g Kg-1------------- cmolc Kg-1 mg Kg-1 --------- %---------     

Briley  5.8 660 208 132 69.9 9.7 2101 74 10 16 - - 

              

Ruston  5.9 716 130 154 69.8 10.8 2380 68 15 - 17 - 

              

Savannah  6.8 524 343 133 69.3 9.1 4625 83 17 - - - 

                

 
*  OM, organic matter; CEC, cation exchange capacity; Kao, kaolinite; Mic, clay mica (illite); Sme, smectite; Chl, chlorite; 
IMS, randomly interstratified clay mica and smectite
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ml 0.01 M CaCl2 solution in a series of 25-ml centrifuge tubes and the mixtures were 

continuously shaken to make uniform soil suspensions.  The pH of the suspension was 

repeatedly adjusted to 4.5, 6.0 and 7.5 (with 0.1M HCl or NaOH) until the overnight change in 

pH was < 0.2. 

The pH adjusted suspensions were then spiked with a volume of tylosin stock solution to 

yield initial tylosin concentrations of 0, 5, 10, 20, 50, 100, or 200 mg L-1, respectively.  The 

spiked mixtures were shaken in a reciprocal shaker at 170 rpm for 24 h.  After equilibrium, the 

mixture suspensions were centrifuged at 11000 rpm for 10 min and filtered through a 0.2 μm 

membrane filter, and filtrates were transferred to amber glass vials for HPLC analysis.  Tylosin 

in filtrates was analyzed using an Agilent 1100 HPLC system, which was equipped with ODS 

column (250 x 460 mm i.d.) and 5 μm particles, and a mobile phase consisting of sodium 

perchlorate (2.25% m/v) at pH 2.5 and acetonitrile (60:40 v/v).  The HPLC system was operated 

at a flow rate of 1.0ml min-1, column temperature of 35 oC, injection volume of 25 μl, and 

detection wavelength of 290 nm.  

The amount of tylosin sorbed by soil was calculated by the difference between amount of 

tylosin spiked and tylosin in equilibrium solution, and was expressed as mg tylosin per kg of soil.  

Freundlich Equation was used to model sorption data.  Freundlich Equation is expressed 

as 

                    q = Kf • C 1/n  

And its linear form is 

 Log q = log Kf + 1/n • log C 

Where q is the amount of tylosin sorbed, Kf (the distribution coefficient), 1/n is the Freundlich 

linearization factor and C the equilibrium tylosin concentration.   
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 In addition, in order to generate sorption at a wide range of soil pH, sorption experiment 

was also conducted with a single concentration of 100 mg L-1 tylosin in 0.01 M CaCl2 solution 

with pH adjusted to 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5 and 9.0, respectively.  The 

sorption partition coefficient (Kd) was calculated by amount of tylosin sorbed divided by 

equilibrium tylosin concentration after 24 h sorption. 

 Similar experiment was carried out with the three selected soils after organic matter being 

removed to determine the effect of organic matter on tylosin sorption.  Organic matter in soils 

was removed by treating soils with 30% H2O2 in a boiling water bath with continuous agitation 

(Sheldrich et al., 1993).  This treatment was repeated till no bubble formed.  The soils were then 

washed with distilled water, dried at 60 oC, ground, and passed through the sieve of < 2 mm 

before use.   All sorption experiments were conducted in duplicate.  

3.2.3 Desorption and Extract Experiments 

 Tylosin desorption was carried out after sorption at initial concentration of 100 mg L-1 

with the three soils for 24 h.  The resultant tylosin-sorbed soils were collected for desorption 

experiments. 

Tylosin-sorbed was desorbed by adding 20 mL 0.01 M CaCl2 solution with pH adjusted 

to 4.5, 6.0 or 7.5, respectively.  Desorption mixtures were continuously shaken in a reciprocal 

shaker at 170 rpm for 24 h.  After equilibrium, the mixtures were centrifuged, filtered through a 

0.2 μm membrane filter, and the filtrates were placed into amber glass vials for HPLC analysis.  

Desoprtion was repeated for 10 times, 24 hours each.  The amount of tylosin desorbed was 

determined each time and corrected for the tylosin present in residue solution based on centrifuge 

tube, soil, and residual solution weights.  Tylosin desorption was expressed as the percentage of 

amount of tylosin desorbed from soil relative to total tylosin sorbed by soil. 
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After desorption experiment using 0.01 M CaCl2, the soils were also extracted for 

tylosin using organic solvent, methanol.  The extraction was conducted by adding 20ml methanol 

in each of 25 ml centrifuge tubes, mixing on vortex mixer for 1 min and then vigorously shaking 

in a reciprocal shaker for 1 h, followed by centrifugation. Extraction was repeated 3-4 times until 

no tylosin was detected in supernatants.  The supernatants were collected and passed through a 

0.2 μm filter for quantification using HPLC as described before.   

3.3   Results and Discussion   

3.3.1 Tylosin Sorption Isotherms and pH Effect 
 
  Tylosin sorption isotherms for Briley, Ruston, and Savannah soils are shown in Figs.3.1 to 3.3, 

respectively.  The sorption curves were well characterized by the Freundlich equation (R2 = 0.98 

to 0.99) (Table 3.2).  The distribution coefficient Kf was used to compare tylosin sorption.  As 

shown in Table 3.2, Briley had the highest Kf for tylosin at Kf  170.0 L Kg-1 at pH 6.0, which 

indicates greater tylosin sorption, followed by Savannah with Kf of 142.8 L Kg-1 at pH 7.5, 

whereas Ruston soil had the lowest Kf of 92.6 L Kg-1 at pH 6.0, which indicates the lowest 

tylosin sorption among theses soils.  Clearly, great differences existed among soils in sorption of 

tylosin.   

The results indicated sorption for tylosin by three Louisiana soils varied greatly (2 to 2.5 

fold).  This difference may be attributed to varying physical and chemical properties, particularly, 

increasing sorption with increasing clay and silt content (Allaire et al., 2006; Clay et al., 2005).   

With smaller size and larger area, clay and silt particles have higher sorption for antibiotics and 

other matter than sand, and may be the partial reason why Ruston soil had lower tylosin sorption 

than Briley and Savannah soils.  Ruston soil had the highest sand content (71.6%) and lower silt 

content (13.0%), compared to Briley and Savannah soils with lower sand content of 66.0% and              
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Fig.3.1 Tylosin sorption isotherms for Briley soil at different pHs.  q = sorbed; Cf = final solution 
concentration (equilibrium concentration).  Dots indicate experimental data and smooth lines 
indicate fittings using Freundlich model. 
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Fig.3.2 Tylosin sorption isotherms for Ruston soil at different pHs.  q = sorbed; Cf = final 
solution concentration (equilibrium concentration).  Dots indicate experimental data and smooth 
lines indicate fittings using Freundlich model. 
.   
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Fig.3.3 Tylosin sorption isotherms for Savannah soil at different pHs.  q = sorbed; Cf = final 
solution concentration (equilibrium concentration).  Dots indicate experimental data and smooth 
lines indicate fittings using Freundlich model. 
 

Table 3.2 Tylosin sorption parameters by soils  

Soil pH Kf (L Kg
-1
) 1/n R

2
 

Briley 4.5  131.8 ± 12.0 0.53 ± 0.02 0.99 

 6.0  170.0 ± 16.8 0.50 ± 0.03 0.99 

 7.5  121.4 ± 9.2 0.55 ± 0.02 0.99 

Ruston  4.5  62.0 ± 7.1 0.61 ± 0.03  0.99 

 6.0  92.6 ± 10.2 0.64 ± 0.03 0.99 

 7.5  86.5 ± 11.5 0.59 ± 0.03 0.99 

Savannah 4.5  104.6 ± 13.5 0.59 ± 0.03 0.98 

 6.0  130.1 ± 14.4 0.58 ± 0.03 0.99 

  7.5  142.8 ± 18.8  0.57 ± 0.04  0.98 
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52.4%, but higher silt content of 20.8% and 34.3%, respectively (Table 3.1).  Although Ruston 

had slightly higher clay content (15%) than Briley (13%) and Savannah (13%), its much higher 

sand content than Briley and Savannah, and much lower silt content than Briley and Savannah 

were clearly unable to overwhelm its slightly advantage on clay content.   Similar results were 

reported for other soils.  For example, South Datoda Kranzburg, Waubay and Badger soils had 

tylosin adsorption of Kf of 1510, 1290 and 1260 respectively, corresponding to their silt content 

of 63.3%, 60.9% and 56.6% respectively (Clay et al., 2005).  Higher adsorption on Minnesota 

Webster soil was mainly due to its greater exchange capacity because of higher clay content 

(34%) than Hubbard soil (10%) (Chander et al, 2005).  A study by Thiele-Bruhn et al. (2004) 

suggested that sulfonamide adsorption was also correlated with soil particle size, in agreement 

with our studies.  Beside the particle size, the clay mineraology was likely another important 

factor in determining tylosin sorption.  This could be especially the case for higher sorption by 

Briley than Savannah.  Briley has much higher sand content (66%) than Savannah (52.4%), and 

much lower silt content (20.8%) than Savannah (34.3%), but it had higher tylosin sorption.  

However, Briley contained 16% of smectite in its clay whereas Savannah had no smectite.  

Smectite clay minerals included montmorillonite, which was shown to have 2 to 3 times higher 

tylosin adsorption than illite, and 10 times higher than kaolinite (Bewick, 1979).  

Tylosin sorption isotherms also indicated that soil pH affects tylosin sorption (Figs. 3.1 to 

3.3, and Table 3.2).  At pH 6.0, both Briley and Ruston soils had the highest amount of sorption, 

with Kf values of 170.0 and 92.6 L Kg-1, respectively.  For Savannah soil, the highest sorption 

was at pH 7.5 with Kf of 142.8 L Kg-1, which was close to Kf 130.1 L Kg-1 at pH 6.0.  Lowest 

sorption occurred at pH 4.5 for Ruston and Savannah soil, with Kf values of 62.0 and 104.6 L 

Kg-1 respectively, whereas Briley had the lowest sorption at pH 7.5 although sorption did not 
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showed much difference between pH 4.5 and 7.5.  The lowest sorption represented a 33.0%, 

23.1% and 26.8% reduction in sorption Kf for Briley, Ruston and Savannah soil, respectively, as 

compared to their highest Kf at pH 6.0 or 7.5.    

 Although sorption isotherms were conducted at three pHs, the pH ranges were too large 

to accurately reflect sorption as a function of pH.  To better determine how pH affects tylosin 

sorption, additional sorption experiments were conducted with a single initial tylosin 

concentration between pH 4 and 9 with smaller pH increments.  The results were shown in 

Fig.3.4 to 3.6.  In this case, Kd, sorption partition coefficient, was calculated after 24 h sorption.  

For Briley soil, it exhibited greater sorption at pH 4.0, then dropped at 4.5 but peaked at pH 6.0 

with Kd about 46 L Kg-1 (Fig.3.4).  At pH higher than 7.0, tylosin sorption dramatically 

decreased, with Kd reduced to less than 10 at pH 9.0.  Unlike Briley soil, tylosin sorption for 

Ruston soil did not show higher sorption at low pH and was maximal at pH 6.0 to 7.0, with Kd 

about 30 L Kg-1 (Fig.3.5).  Outside this pH range, tylosin sorption decreased significantly.   At 

pH 8.5 Kd was less than 10 L Kg-1.  Savannah soil showed a similar tylosin sorption pattern to 

Ruston soil with peak sorption at about pH 6.0 to 7.5 and Kd about 65 L Kg-1 (Fig.3.6).  Outside 

this pH range, tylosin sorption decreased considerably.  At either pH 4.5 or 8.5, tylosin sorption 

dropped to Kd 25 L Kg-1, the lowest level. 

Our study demonstrated that pH is a major factor affecting tylosin sorption by these 

poultry litter-impacted soils.  Tylosin sorption was reduced by 60 to 75% at the lowest pH as 

compared to its maximum sorption except for Briley.  The higher sorption was at pH 4 and 

around 6.0 for Briley soil, 6.0 to 7.0 for Ruston soil, and 6.0 to 7.5 for Savannah soil.  Except for 

Briley, higher or lower pHs than 6.0-7.0 range resulted in dramatic reduction in tylosin sorption.   
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Fig.3.4 Tylosin sorption partition coefficient Kd as a function of pH for Briley soil. 
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Fig.3.5 Tylosin sorption partition coefficient Kd as a function of pH for Ruston soil. 
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Fig.3.6 Tylosin sorption partition coefficient Kd as a function of pH for Savannah soil. 
 
 Effect of pH on tylosin sorption likely reflects changes in charge of soil particles as well 

as tylosin at different pHs.  It has been suggested that electrostatic forces were the mostly 

responsible for antibiotic sorption to charged soil surfaces (Holten et al., 2000), and pH affects 

charges of both soil particles and antibiotics.  At pH > 6.0 – 6.5, the R-COOH of soil organic 

matter (Pka ~5.8-6.0) increases its dissociation and becomes negatively charged surface (Sparks, 

2003) but tylosin (Pka 7.73) loses its positively charged site from protonation of dimethyl-amino 

group on sugar moiety (Block et al., 2003).  Therefore, as pH increases to > 6.0 to 7.5, tylosin 

sorption decreases.  At pH < 5.8 – 6.0, organic matter or mineral surface becomes more 

positively charged, so does tylosin, the repulsive force of positively charged surface had sorption 

decreased for Savannah and Ruston.   As for Briley, due to its higher content of smectite [the 

point of zero charge (Pzc) of 2.5 for montmorillonite], mineral surface is negatively charged at 

pH > 2.5.  This negatively charged surface could still adsorb positively charged tylosin, which 
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may partially explain why the highest tylosin sorption can be achieved at low pH 4.0 to soil 

Briley.  A closer look at chromatograph also revealed the presence of a small peak at pH 4.0.  

According to Nalda et al., (2006), this small peak most likely represents tylosin B transformed 

from tylosin A at this pH.  This suggests that the high sorption of tylosin at pH 4 could be due to 

the transformation of tylosin A to tylosin B.  Such phenomenon was not observed with other pHs 

and soils. 

 This study demonstrated that pH is an important factor in determining sorption for tylosin 

to soil, but related studies are very limited.  One study reported that tylosin sorption to Dutch 

clay loam and sandy loam soil was the highest at about pH 6.0, and decreased with pH increase 

(Laak et al., 2006).  Our study showed a similar trend in that sorption was highest about pH 6.0.  

However, the study by Laak et al. (2006) did not show sorption at pH lower than 6.0.  In contrast, 

broader pH range was evaluated in our study.  

 Our study also suggests that pH effect on tylosin sorption curve is different among soils.   

Tylosin sorption to Briley soil decreased with pH increase, while to Ruston and Savannah soils 

sorption increased with pH, reaching a maximum around pH 6.5, and decreased with further pH 

increase.  The sorption pattern for Briley soil has been observed in the sorption of other 

antibiotics.  For example, sorption of sulfachloropyridazine to Dutch clay loam soil and sandy 

loam soil decreased from a maximum at low pH to a lowest level at high pH (Boxall et al., 2002, 

Laak et al., 2006).  Similar trends have been seen in sorption of oxytetracyline to Connecticut 

iron oxide-rich soils (Figueroa et al., 2005) and sorption of tetracycline to Florida soils (Sassman 

et al., 2005).  Besides soils, sorption of sulfamethazine and tetracycline to clay minerals 

montmorillonite and kaolinite also exhibited similar trends (Gao et al., 2005; Figueroa et al., 

2004).  As for tylosin sorption curve by pH in Ruston and Savannah soils, we have not see any 
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similar reports either in other antibiotics or soils and clays, but this sorption curve was observed 

in sorption of oxytetracycline to iron oxides (Figueroa et al., 2004).  We suspect that the pH-

dependent change due to high organic matter content in these soils may contribute these 

observed sorption phenomena, and further studies are needed to address this difference.          

3.3.2 Effect of Organic Matter on Tylosin Sorption in Soils 

Our study showed that there was an inflection point of maximum tylosin sorption at pH 

6.0 for Briley soil, and maximal sorption at pH 6.0 to 7.0 for Ruston and Savannah soils (Figs. 

3.4 to 3.6). Various studies have shown that soil organic matter can have significant effect on 

sorption behavior of organic compounds (Thiele, 2000; Allison et al., 2005; Gu et al., 2008).  In 

order to evaluate impact of organic matter on tylosin sorption, the soils were treated with H2O2 

for removing organic matter and tylosin sorption was carried out under similar pH range.   

Tylosin sorption to soils after organic matter being removed had two significant changes 

(Figs.3.7 to 3.9).  First, removal of organic matter resulted in dramatic increase of tylosin 

sorption.  After organic matter was removed from soils, maximum amount of tylosin sorption to 

Briley soil was increased by about 8-fold, to Ruston soil by 4-fold, and to Savannah soil by 2-

fold as compared to the soils without organic matter being removed (Figs.3.4 to 3.6).  Second, 

greater amount of tylosin sorption was achieved at acid pH 4 for Briley and Ruston, and tylosin 

sorption decreased dramatically with pH increase, dropping to the lowest level at about pH 9.   

For Savannah soil, tylosin sorption under acid conditions was increased slightly, reaching 

maximum at about 6.6.  Above pH 7, tylosin sorption to the three soils after organic matter being 

removed decreased dramatically, as compared to those soils with organic matter.     

 Our study suggests that organic matter in soil contributes to reduce sorption of tylosin.  

This is different from the early report that higher organic matter was the main cause that the 
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fertile soils (2.4% organic matter) had higher sorption of sulfapyridine than infertile soils (1.6% 

organic matter) (Thiele, 2000).  Other studies revealed complicity of relationship between 

organic matter and antibiotic sorption (Allison et al., 2005; Gu et al., 2008).  In organic matter, 

cellulose and lignin had no affinity for oxytetracycline, but humic acid had low affinity for 

oxytetracycline (Allison et al., 2005).  Humic acid has been found to interact with hydrous Al 

oxide (HAO), reducing its sorption of tetracycline (Gu et al., 2008).   Under different 

concentrations of humic acid, sorption of oxytetracycline to Na- montmorillonite exhibited 

opposite patterns (Kulshrestha et al., 2004).   At a lower concentration of humic acid (1 mg L-1), 

oxytetracycline sorption increased, while at a higher concentration of humic acid (10 mg L-1) 

oxytetracycline sorption decreased, showing hydrophobic partitioning in the solution of clay-

associated humic acid.  Moreover, X-ray diffraction analysis by Pils et al. (2007) found that 

humic acid reduced interlayer sorption of tetracycline to smectites by either masking sorption 

sites on surface of clay minerals or inhibiting interlayer diffusion of tetracycline.  In this study, 

the relatively high organic matter content (~ 70 g Kg-1) of these soils could have attributed to 

reduction in sorption of tylosin to the three Louisiana soils through similar mechanisms.  It is 

reasonably assumed that once organic matter was removed, sorption of tylosin onto soils was just 

like onto clay minerals. This appeared to be the case for Briley and Ruston soils, which showed 

generally decrease trend of tylosin sorption as pH increased from 4 to 9, a trend similar to those 

reported for Dutch soils (Laak et al., 2006) In addition, although the three soils used in this 

study have approximately the same amount of organic matter, their response in sorption to the 

removal of organic matter was different, with Briley soil showing an 8-fold increase, Ruston a 4-

fold increase and Savannah a 2-fold increase.  This could partly reflect their difference in clay 

minerals as seen in Table 3.1.  Furthermore, even with same organic matter content, its  
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Fig.3.7. Tylosin sorption partition coefficient Kd for Briley soil as a function of pH after organic 
matter being removed.   
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Fig.3.8. Tylosin sorption partition coefficient Kd for Ruston soil as a function of pH after 
organic matter being removed.   
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Fig.3.9. Tylosin sorption partition coefficient Kd for Savannah soil as a function of pH after 
organic matter being removed.   

 

composition (cellulose, lignin, humic acid) may be different, which would likely further account 

for differences in tylosin sorption as a function of pH.  

3.3.3 Tylosin Desorption from Soils 

 Three soils exhibited different desorption patterns by 0.01 M CaCl2 (Figs. 3.10 to 3.12).  

Approximately about 43.5 to 94.5 % tylosin was desorbed after 10 times of desorption (once a 

day), with the highest desorption from Briley soil, followed by Ruston soil, and the least 

desorption from Savannah soil.  Desorption occurred very quickly, with the most tylosin being 

desorbed within about five time, but minor tylosin desorption continued for 10 times.  This study 

demonstrated that less tylosin was desorbed from Savannah soil than from Ruston soil and Briley 
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soil, suggesting that tylosin in Savannah soil has lower mobility compared to Ruston and Briley 

soils.   
  It can be seen from Figs. 3.10, 3.11 and 3.12 that tylosin desorption was affected by pH, 

and effect of pH on tylosin desorption varied among soils.  For Briley, pH only had little effect 

on tylosin desorption. Desorption at pH 4.5 and 6.0, which was 74.3% and 73.5% respectively 

after 10 desorptions in the 0.01 M CaCl2 solution, was slightly higher than desorption at pH 7.5, 

which was 67.6% in the same condition.  Tylosin desorption appeared to flat out starting after 8 

desorptions at pH 7.5, but desorption at pH 4.5 and 6.0 still continued even with the 10th 

desorption.  By contrast, pH had greater effect on tylosin desorption from Ruston soil.  

Desorption at pH 4.5 was the highest, with 95% of tylosin desorbed at the 10th in the 0.01 M 

CaCl2 solution, followed by desorption at pH 6.0 with 79.6% of tylosin desorbed in the same 

condition.  The least desorption occurred at pH 7.5 with 60.7% of tylosin desorbed.  Like in 

Briley, tylosin desorption from Ruston also flatted out at pH 7.5 starting at the 3rd in the 0.01 M 

CaCl2 solution, but desorption at pH 4.5 and 7.5 still continued in the 10th equilibrium solution.  

As for tylosin desorption from Savannah, pH had slightly different impact as compared to Briley 

and Ruston.  Desorption was highest at pH 4.5 with 55.4% of tylosin desorbed at the 10th 

desorption in the 0.01 M CaCl2 solution, followed by desorption at pH 7.5 with 49.2% of tylosin 

desorbed in the same condition.  The least desorption occurred at pH 6.0 with 43.5% of tylosin 

desorbed.  No additional tylosin desorption was observed at the 4th in the 0.01 M CaCl2 solution 

at pH 6.0 and 7.5, but the 6th desorption at pH 4.5.   

Very few studies have been conducted on tylosin desorption from soil.  One study found 

that only 0.2% of the tylosin sorbed on three South Dakota soils was desorbed by using 0.01 M 

CaCl2 for 24 h (Clay et al., 2005).  Another study showed higher desorption from Borris soil   
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Fig.3.10. Tylosin desorption by 0.01M CaCl2 for Briley soil 
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Fig.3.11. Tylosin desorption by 0.01M CaCl2 for Ruston soil 
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Fig.3.12. Tylosin desorption by 0.01M CaCl2 for Savannah soil 

69% and from Lunggards soil 26%, from low sandy loam soil 13-14 %  (Rabolle et al., 2000).  

Clearly, tylosin desorption varied from soil to soil.  However, desorption period was only 24 h in 

these two studies, and tylosin desorption may occur beyond this time. Our study is in agreement 

with these two studies in that soil is a major factor in determining tylosin desorption. Moreover, 

our study extended desorption period till 10 days when most desorable tylosin has been desorbed, 

giving a more detailed view of tylosin desorption.         

 Our studies for the first time indicated that tylosin desorption was affected by pH, and 

this has an application in prevention of tylosin release.  Higher percentage of tylosin desorption 

from soil indicats its higher mobility in soil.  Raising soil pHs likely decreases its mobility in soil.  

For example, tylosin adsorption on Ruston soil was as high as 79.6.1% at pH 6.0, but it was 

reduced to 60.7% at pH 7.5, a change of pH from 6.0 to 7.5 resulting in reduction of tylosin 

release by about 20%.  This could be a way to prevent tylosin release from soil into water bodies 
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by reducing tylosin desorption from soil.  However, this approach is limited for some soils like 

Briley from which tylosin desorption was relatively stable from pH 4.5 to 7.5.   

3.3.4 Tylosin Recovery by Organic Solvent  

 The desorption studies using 0.01M CaCl2 showed some tylosin was not desorbed from 

the soils.  To determine the total recovery of tylosin, extraction of tylosin was also performed 

using methanol, an organic solvent, after tylosin desorption by 0.01 M CaCl2.  As indicated in 

Table 3.3, unaccounted tylosin from 0.01 M CaCl2 desorption can be extracted from soils by 

methanol, but recovery rate differed among soils and pHs.  Depending on pH and amount of 

tylosin remained in soil after desorption by 0.01 M CaCl2, tylosin extraction by methanol 

contributed 1 to 20% of total recovery for Ruston soil, 15 to 29% for Briley soil, and 25 to 30% 

for Savannah soil.  Ruston soil had the lowest total unrecovered rate after 0.01 M CaCl2  

Table 3.3  Tylosin recovery from methanol extraction 

Soil pH q (mg Kg-1) Desorbed by Extracted Total 

   

0.01 M 
CaCl2 
（%） 

by methanol 
（%） 

Unrecovered
（%） 

Briley 4.5 1261 ± 10 82 15 3 

 6.0 1358 ± 6 79 18 3 
 7.5 1273 ± 9 67 29 4 

Ruston 4.5 1025 ± 25 98 1 1 

 6.0 1336 ± 12 82 18 0 
 7.5 1180 ± 3 61 20 19 

Savannah 4.5 1166 ± 2 56 25 19 

 6.0 1387 ± 13 43 23 34 
 7.5 1428 ± 21 49 30 21 

* q is the tylosin sorbed after 24 h equilibrium in 0.01 M CaCl2 solvent. 

desorption and methanol extraction, ranging from 0 to 1% at pH 4.5 and 6.0, indicating that the 

unaccounted tylosin after 0.01 M CaCl2 desorption was tightly sorbed on soil, instead of being 

degraded.  However, there was 19 % of tylosin not recovered by methanol at pH 7.5.  Similarly, 
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Briley soil also had lower total unrecovered rate after 0.01 M CaCl2 desorption and methanol 

extraction, ranging from 3 to 4% between pH 4.5 and 7.5.  Savannah soil had the highest total 

unrecovered rate after 0.01 M CaCl2 desorption and methanol extraction, ranging from 19 to 

34%, indicating that tylosin was much more tightly sorbed on Savannah soil and not recoverable 

by methanol extraction, as compared to Briley and Ruston soils.    

Although we could not rule out the possibility of some unrecovered tylosin in sorption by 

Savannah soil being degraded, it is unlikely that this could happen considering similar 

experimental condition was maintained with Savannah as with Ruston and Briley.  On the other 

hand, lower recovery rates have been reported with methanol and other organic solvents (Kolz et 

al., 2005, Rabolle et al, 2000).  The studies with other antibiotics also showed that tightly bound 

antibiotic compounds may be extracted by other method, such as pressurized liquid extraction 

(Stoob, et al., 2006; Schlusener et al., 2003).  Nevertheless it appears that unextractility of 

antibiotic compounds in Danish soils is common (Rabolle et al, 2000).  The total tylosin 

recovery, including desorption by 0.01 M CaCl2 and extraction by methanol, was between 66% 

(Savannah soil at pH 6.0) to 100% (Ruston soil at pH 6.0).  This was better than from the 

recovery rate of 61 to 81% obtained from soil column study (Rabolle et al., 2000).  As seen in 

this study, tylosin recovery rate was mainly determined by soil in the order of Ruston > Briley > 

Savannah, and to a less extent by pH as higher pH (> 7.0) appeared to reduce recovery rate, 

likely due to the strong sorption between positively charged tylosin and negatively charged soil 

mineral and organic matter surfaces.      

3.4. Conclusions 

In this study, tylosin sorption to three Louisiana soils at different pHs was characterized.  

The role of soil organic matter in sorption was also evaluated. Tylosin sorption was well 
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described by the Freundlich equation, with sorption following the order of Briley > Savannah > 

Ruston.  Tylosin sorption to soils was affected by pH, with greater sorption at acid pH 4.0 for 

Briley, and at pH 6 to 7 for Ruston and Savannah.  Soil organic matter decreased sorption of 

tylosin, especially sorption under acid conditions.  Tylosin desorption from soils differs greatly 

among soils, with Ruston soil the highest, followed by Briley soil, and Savannah soil the lowest.  

Similar to sorption, tylosin desorption is greatly affected by pH, with higher desorption under 

acid conditions (pH 4.5), and lower desorption under weakly acid (pH 6.0) or basic (pH 7.5) 

conditions.   
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CHAPTER 4 

TYLOSIN SORPTION AND DESORPTION CHARACTERISTICS OF 
 SELECTED CLAY MINERALS 

 
4.1 Introduction 
 

 Tylosin, a macrolide antibiotic, has good antibacterial activity against a broad-spectrum 

of pathogenic organisms such as gram-positive bacteria, some gram-negative bacteria, vibrio, 

spirochete, coccidian, etc., and it is widely used for disease control, disease prevention and 

growth promotion in animal production.  For example, Denmark used 14,000 kg tylosin in 1997 

and UK 5144 kg of tylosin in 2000 (Loke et al., 2000; Smarmah et al., 2006).  Tylosin is 

produced by fermentation of Streptomyces strain.  Structurally, it consists of a substituted 16-

membered lactone ring, an amino sugar (mycaminose), and two neutral sugars (mycinose and 

mycarose).  Tylosin is a mixture of tylosin A, tylosin B, tylosin C and tylosin D (See Fig 1.1).  

Tylosin is a weak base with pKa 7.73, and remains relatively stable at pH 7 (Paesen et al., 

1995a), but is prone to photodegradation (Halling-Sorensen et al., 2003).  

 Soil is a heterogeneous mixture of airs, water, inorganic and organic solids, and 

microorganisms.  In a typical silt loam soil ideal for plant growth the solid component in the 

surface horizon represents about 50% of the volume (45% mineral and 5% organic matter), air 

comprises about 20-30%, and water makes up the remaining 20-30% (Sparks, 2003).   Inorganic 

solids contain numerous clay minerals, which are naturally occurring materials composed 

primarily of fine-grained minerals. Clay minerals are the main components of soil that determin 

its physical and chemical properties, such as soil shrinkage, CEC value, and sorption for water, 

nutrients and antibiotics.  Soil sorption was found to be determined by clay minerals.  For 
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example, Dutch clay loam soil with higher content of clay and silt had greater tylosin adsorption 

than loam sandy soil with higher content of sand (Laak, et al., 2006).   There are approximately 

30 different types of clay minerals, and can be classified into various groups based on layer 

formation, isomorphic substitution and layer charge characteristics (Sparks, 2003).   Among 

those, kaolinite, montmorillonite, and clay mica (illite) along with vermiculite and chlorite are 

common clay minerals found in most soils.     

 Clay minerals have strong sorption for large varieties of organic and inorganic 

contaminants, thus receiving more and more attention in the removal of environmental 

contaminants.  Clay minerals are widely used to adsorb heavy metals from waste water. 

Montmorillonite, bentonite, and illite, were applied to remove such heavy metals in aqueous 

solution as Fe2+ (Schultz and Grundl, 2004), Co2+ (Shahwan et al., 2006), Ni2+ (Wang et al., 

2007), Cu2+ and Zn2+ (Veil and Alyuz, 2007) and B+ (Karahan et al., 2006).   Montmorillonite, 

illite and kaolinite have been also used to adsorb pesticides such as dichloro-diphenyl-

trichloroethane (DDT), dieldrin and heptachlor from aqeous pesticidal solutions (Huang and 

Liao, 1970).   Recently, montmorillonite clays have been used to remove antibiotics, 

antioxidants, mold inhibitors and other organic compounds from poultry litter aqeous leachats.  

The addition of montmorillonite reduced the leachte toxicity (EC50) (50% effective 

concnetration) by 127% at day 7 as compared to at day 1 (Gupta, et al., 2005).   

 Modified clay minerals have even greater capacity and wider spectrum for sorption of 

other complicated chmiecals.  Recent organo-clays, synthesized by the ion exchange of sodium 

in Wyoming Na-montmorillonite with surfactants Octadecyltrimethylammonium bromide 

(ODTMA), dodecyldimethylammonium bromide (DDDMA), had hydrocarbon sorption for 
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diesel (1.2-7.2 g/g ), castrol hydraulic oil (1.3-3.6 g/g) and valvoline super diesel engine oil (1.3-

3.6 g/g) (Carmody, et al., 2007).   Montmortillonite modified with different organic cations  

showed a remarked increase in sorption of herbicide simazine, with Kf (sorption coefficient) 

from 28-47 for the unmodified to 96-138, 400-753, and 10,000 for the modifed clay minerals 

(Cruz-Guzman et al., 2004).  Similarly, modofied Na-rich Wyoming montmorillonite and Ca-

rich Arizona montmorillonite removed 95% of herbicides terbuthylazine, diuron and MCPA [(4-

chloro-2-methylphenoxy) acetic acid], initially present in aqeous solutions, in constrast to less 

than 15% by the unmodofied montmorillonite (Ceils et al., 2007).  In addition, modifed clay 

minerals have been used for the removal of antibiotics from water. A micelle-clay systems of 

montmorillonite complexed with benzyldimethylhexadecylammonium (BDMHDA) removed 96-

99.9% of tetracycline antibiotics (chlortetracycline, oxytetracline and tetracycline) and 

sulfonamide antibiotics (sulfamethoxazole, sulfisoxazole, and sulfamethizole) from water 

solutions (Polubesova et al., 2006).   Another compound, didodecyldimethylammonium bromide 

(DDAB) charged vesicle-montmorillonite complex could also efficiently remove 92-100% of 

sulfentrazone, imazaquin and alachlor and 60% of atrazine from the contaminated water 

(Undabeytia et al., 2008).     

 Tylosin sorption to clay minerals was rarely studied.  The only one study by Bewick 

(1979) performed tylosin sorption to clay minerals, as well as desorption in a phosphate buffer of 

potassium salts, which is known to effect expandability of clay minerals (Scott et al., 1987).  In 

addition, sorption capacity was evaluated in fairly short time period of 4 h, and sorption kinetics 

of tylosin was not quantified.  With widespread use of tylosin in animal industry and poor 

knowledge of its sorption and desorption on clay minerals as well as increasing potentials of 
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direct use of clay minerals for environmental clean-up, it is the purpose of this study to 

characterize the tylosin sorption kinetics of selected clay minerals as well as tylosin desorption.    

4.2 Materials and Methods 

4.2.1 Clay Minerals and Chemicals 

 Three clay minerals, montmorillonite, kaolinite and illite, were purchased from the Clay 

Minerals Society Source Clay Repository (West Lafayette, IN, USA) and used in this study.    

The selected properties of clay minerals were given in Table 4.1.  Reagent grade tylosin as 

tylosin tartrate was purchased from Sigma-Aldrich, Inc (St. Louis, MO, USA).  Selected physical 

and chemical properties of tylosin are given in Table 4.2.  Methanol (HPLC grade), sodium 

perchloride (HPLC grade), and acetonitrile (HPLC grade) were obtained from Fisher scientific 

Inc (Pittsburgh, PA, USA). 

 

Table 4.1 The Selected properties of clay minerals 

Clay minerals Specific surface (m2 g-1)  CEC (meq Kg-1) 

Montmorillonnite 83.8a 844 a 

Illite 11.0b 170b 

Kaolinite 10.1 a 20 a 

                  a (Van Olphen and Fripiat, 1979); b (O’Loughlin., 2000) 
 
4.2.2 Sorption and Desorption Experiments   

 The sorption and desorption of tylosin with clay minerals were conducted in 0.01 M 

CaCl2 matrix using a batch method.  Based on preliminary studies on sorption capacity, the 

initial concentrations of tylosin of 300, 600 and 4000 mg L-1 were used for sorption with 
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kaolinite, illite and montmorillonite respectively.  Clay minerals (0.5g) were weighed into a 

series of 25-ml preweighed centrifuge tubes, followed by adding 20 mL of 0.01 M CaCl2 

Table 4.2 The selected properties of tylosin 

Molecular formula C46H77NO17 

Appearance A white or slightly yellow crystalline power 

molecular weight 916.1 

Solubility 5 mg ml-1 (water 25 oC) 

Stability Solution are stable at pH 4-9 

pKa 7.73 

UV absorbance 282nm 
From Paesen et al. (1995b and c) and McFarland et al. (1997) 

solution containing initial tylosin concentration as described above.  The tubes were capped, 

mixed using vortex mixer for 2 min, and then continuously shaken in a reciprocal shaker at 170 

rpm, 25 oC (25 ± 0.5 oC) for 10 min, 30 min, 1 h, 3 h, 10 h, 24 h, and 48 h.   At each time 

interval, the mixtures were centrifuged at 11000 rpm for 10 min.   The supernatants were filtered 

through a 0.2 μm membrane filter, and the filtrates were placed in amber glass vials for HPLC 

analysis.  

 The tylosin desorption experiments were carried out following adsorption by clay 

minerals.  After 24 h of sorption, the supernatant was decanted. The tubes with clay mineral 

residues were weighed to determine the amount of the residual supernatant.  A 20 ml 0.01 M 

CaCl2 tylosin-free solution was added in the centrifuge tubes, and the clay mineral residues with 

tylosin adsorbed were resuspended using a vortex mixer for 2 min first and then shaken in a 

reciprocal shaker at 170 rpm for 24 h.  All experiments were conducted in duplicate. 

Tylosin in adsorbing and desorbing solution was analyzed using an Agilent 1100 HPLC 

system (Agilent Technologies, Palo Alt, CA, USA) equipped with ODS column (250 x 460 mm 
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i.d.) and 5 μm particles.  The mobile phase consisted of sodium perchlorate (2.25% m/v) 

adjusted to pH 2.5 with hydrochloric acid, and acetonitrile (60:40 v/v).  The flow rate was set at 

1.0 ml/min, and the column was operated at 35 oC.  The injection volume was 25 μl.  The 

detection was carried out at a wavelength of 290 nm.  A series of standards were prepared and 

analyzed with samples in the same HPLC run.  

 Adsorption (qt) was calculated by difference between initial concentration and final 

concentration at a specific time interval and expressed as unit tylosin adsorbed per unit of clay 

minerals. The sorption data were further fit with power function equation,  

                       qt = atb    
 

 Its linear transformation is 

            ln qt = ln a + b ln t            

Where qt = the amount (mg Kg-1) of tylosin adsorbed on clay at time t;   

t = reaction time (h); 

a = power function model rate constant; 

b = power function model constant; (Dalal, 1974);   

Amount of tylosin desorption was calculated from the tylosin released into the desorbing 

0.01 M CaCl2 solution from clay minerals with tylosin adsorbed.     

4.3   Results and Discussion 

4.3.1 Tylosin Sorption Kinetics 

Sorption kinetics of tylosin by the three clay minerals were shown in Figs. 4.1 to 4.3.  In 

general, montmorillonite adsorbed tylosin more quickly than illite and kaolinite.  For example, 

sorption to montmorillonite reached 91% of the maximal amount in 0.5 h, whereas sorption to 

illite and kaolinite just reached 79% and 34% of maximal amount respectively in the same 
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period.  Kaolinite adsorbed tylosin more slowly than montmorillonite and illite.  To compare 

tylosin sorption rate, power function model, which has been used to describe kinetics of various 

processes in soil (Havlin and Westhall, 1985; Ye et al., 2006), was used to fit sorption kinetic 

data.  As shown in Table 4.3, kinetics of tylosin sorption to three clay minerals were well 

described by the power function, with R2 ranging from 0.94 to 0.99.  Sorption rate (a) was in the 

order of montmorillonite > illite > kaolinite, indicating that montmorillonite had the fastest 

tylosin sorption rate, whereas kaolinite had the slowest sorption rate.  On the other hand, the 

constant b, which had the order of kaolinite > illite > montmorillonite, was negatively correlated 

with adsorption, as suggested by Havlin and Westhall. (1985).  Besides rate of sorption, 

montmorillonite had the highest amount of tylosin sorption, with sorption reaching about 126.3 g 

Kg-1 clay mineral, followed by illite, with its sorption of 5.2 g Kg-1 clay mineral after 48 h.  

Kaolinite had the lowest amount of sorption at about 1.1 g Kg-1 clay mineral after 48 h.  Clearly, 

the three clay minerals had different tylosin sorption rates and amounts.  Based on 48 h sorption 

experiments, sorption partition coefficient (Kd) was calculated and results were also shown in 

Table 4.3.  The Kd values were 150.5 for montmorillonite, 10.9 for illite and 3.9 for kaolinite.        

This translated a montmorillonite’s 13 times higher adsorption than illite, and a 38 times higher 

sorption than kaolinite.          

This study demonstrated high amount of tylosin sorption to clay minerals with the order 

of montmorillonite > illite > kaolinite and maximum tylosin sorption could be reached at 48 h.  

Our study showed different results from what was reported by Bewick (1979).  Bewick (1979) 

found longer than 4 h reaction did not affect amount of tylosin sorption by these three minerals, 

while the much of sorption was within 10 h in our study.  This was clearly not the case for 

kaolinite, which had greater sorption of tylosin after even 10 h.  In addition, sorption of tylosin 

by montmorillonite in 0.01 M CaCl2 as in our study was much higher (126.3 g Kg-1) than that     
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Fig.4.1 Tylosin sorption kinetics for montmorillonite. Solid circles represent experimental 
observations, and line represents the model fitting by power function qt = atb.  
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Fig. 4.2.  Tylosin sorption kinetics for illite.  Solid circles represent experimental observation, 
and line represents the model fitting by power function qt = atb. 
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Fig. 4.3.  Tylosin sorption kinetics for kaolinite.  Solid circles represent experimental observation, 
and line represents the model fitting by power function qt = atb.   
 
    

Table 4.3 Parameters of tylosin sorption to clay minerals   

Clay mineral  Derived by power function equation qt 
= atb       Kd (L Kg-1)* Q (g kg-1)* 

  a B R2     

Montmorillonit
e   118218 ± 146 0.018 

± 0.0005 0.99 150.5 126.3 

Illite  4411 ± 48 0.051 ± 
0.0046 0.99 10.9 5.2 

Kaolinite 448 ± 45 0.248 ± 
0.0338 0.95 3.9 1.1 

 
*Based on sorption time was 48 h.  
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(65 g Kg-1) reported in pH 8.0 phosphate buffer by Bewick (1979), suggesting that tylosin 

sorption in 0.01 M CaCl2 was likely less limited as compared to that in phosphate buffer. The 

amount of tylosin sorption by illite and kaolinite were slightly lower.  These differences could 

also be attributed to the clay sources used in two studies.  

 It is not well documented why clay minerals have different tylosin sorption, but studies 

from sorption of other antibiotics demonstrated that surface area and cation exchange capacity 

(CEC) in clay minerals were the major factors to determine antibiotic sorption (Figueroa et al., 

2004; Gao et al., 2005).  Clay minerals such as montmorillonite with higher sorption capacity 

had more surface area as well as higher cation exchange capacity (CEC) than clays as kaolinite 

with lower sorption (Table 4.1).  Higher surface and cation exchange observed in 

montmorillonite than illite and kaolinite are due to its expandable structure consisting of 

aluminum octahedral sheet sandwiched by silica tetrahedral sheet.  Illite has similar structure as 

montmorillonite but its interlayer charge is balanced by K+, making it nonexpendable.  By 

contrast, nonexpendable kaolinite consists of one aluminum octahedral sheet and one silica 

tetrahedral sheet.  Higher surface area and cation exchange capacity were highly correlated to 

higher adsorption of antibiotics such as sulfonamide, tetracycline, and herbicides such as 

pentachloronitrobenzene, chlorothalonil and isoprothiolane by montmorillonite than kaolinite 

(Gao et al., 2005; Figueroa et al., 2004; Fushiwaki et al., 2001).  Montmorillonite with higher 

adsorption of tetracycline than kaolinite was found to have a 25 times higher surface area than 

kaolinite’s (Figueroa et al., 2004).  Montmorillonite with higher adsorption of sulfonamide had 

50 times higher cation exchange capacity than kaolinite’s (Gao et al., 2005).  Clearly, higher 

sorption of tylosin by montmorillonite than illite and kaolinite, was also likely attributed to its 

higher surface area and cation exchange capacity.      
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4.3.2 Tylosin Desorption 

 As shown in the tylosin sorption study that clay minerals strongly sorbed tylosin, it is of 

great interest to determine the stability of tylosin sorbed on clays.  To that end, the tylosin-sorbed 

clays were washed with 0.01 M CaCl2 for 24 h, and the desorption percentage was determined.  

As shown in Table 4.4, less than 10% of tylosin sorbed in montmorillonite was desorbed, 

whereas about 42.6% of sorbed tylosin was desorbed from illite.  Tylosin sorbed on kaolinite had 

medium desorption (about 19.3%).  This suggests that tylosin adsorbed by montmorillonite was 

more strongly held, but less strongly by illite, possibly due to interlayer space of the former.    

Table 4. 4 Tylosin desorption from clay minerals in 0.01 M CaCl2 
 

Clay mineral Sorption (mg Kg-1) Desorption (mg Kg-1) Desorption (%) 

Montmorillonite   125671 ± 395 13021 ± 106  9.7 

Illite  5169 ± 30 2254 ± 5  42.6 

Kaolinite 1084 ± 10 218 ± 2 19.3 
 

The results were consistent with those observed by Bewick (1979), who conducted 

tylosin desorption using phosphate buffer to wash tylosin-sorbed clays for 4 h,  and found that 

tylosin desorption from montmorillonite was the lowest (7.4%) among the three clay minerals, 

followed by desorption from kaolinite (25%), and highest desorption from illite (30%).  Overall, 

these results were similar indicating desorption power of 0.01 M CaCl2 was similar to that of K 

alts of phosphete buffer even though Ca2+, K+ phosphate and Chloride could have different 

degree of interactions with interlayer and edge surfaces of these clay minerals. 

4.4 Conclusions 

 In this study tylosin adsorption to clays montmorillonite, illite and kaolinite, and 

desorption was studied.  The results demonstrate that rate and amount of tylosin sorption to clay 
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minerals are in the order of montmorillonite > illite > kaolinite, and adsorption is well descibed 

by power functioin equation.  For desorption, a proportion of sorbed tylosin can be desorbed 

using 0.01 M CaCl2 from clay minerals and desorption is in the order of illite > kaolinite > 

montmorillonite, suggesting that some tylosin sorbed in clay minerals is not tightly bound 

especially illite and kaolinite surfaces, which are primiarily planar as compared to the interlayers 

of montmorillonite.   
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CHAPTER 5  
 

SUMMARY AND CONCLUSIONS 
 

  Tylosin is one of the widely used antibiotics in animal production for disease treatments, 

prevention, and control as well as growth promotion. There has been an increasing concern that 

tylosin could be released into soil through manure application and then find their way into river 

and underground water source, thus causing environmental contamination.  The contamination to 

the environment by tylosin is mainly through manure application in farming land, and is largely 

controlled by sorption of tylosin on soil and desorption from it.  However, tylosin sorption and 

desorption by soil were poorly understood, making it impossible to evaluate its risks to the 

environment and solve environmental problems. Moreover, tylosin sorption and desorption by 

clay minerals were rarely studied, restricting their use in environmental clean-up of tylosin.  

Therefore, the purpose of this study was to determine (1) the stability conditions for studying 

sorption and desorption of tylosin, (2) sorption and desorption by three Louisiana soils as well as 

effect of pH and organic matter on tylosin sorption, and (3) tylosin sorption to mineral clays and 

desorption.  

To determine stability conditions for tylosin study, tylosin was evaluated under different 

conditions: light (exposure to light and dark), solvents (H2O and 0.01M CaCl2), pH (4.5, 6.0 and 

7.5), and temperature (4 oC and 25 oC) for fixed periods, and amount of tylosin was quantified by 

high performance liquid chromatography (HPLC).  The results showed that tylosin was stable in 

sealed vials for 12 days under light and dark condition, but slight degradation occurred 

afterwards, and significant degradation occurred in open vials.  As for solvents, tylosin in 0.01M 

CaCl2 was as stable as in H2O during 27 days of experimental period, showing no difference 

between these two solvents.  As for pH, tylosin was stable for 12 days at pH 4.5, 6.0 and 7.5, but 
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degradation occurred afterwards with higher degradation at pH 4.5 than at pH 6.0 and 7.5.  For 

temperature, tylosin was stable at 25 oC for 12 days as at 4 oC, but longer time storage resulted in 

a slight degradation as compared to storage at 4 oC.     

To determine tylosin sorption and desoprtion, tylosin was adsorbed to three poultry litter 

impacted Louisiana Soils (Briley, Ruston and Savannah) in 0.01 M CaCl2 solutions and 

desoprtion was carried out by washing soils with same solution.  In addition, adsorption was 

carried out in soils with organic matter removed.  The amount of tylosin was quantified by 

HPLC. The results showed that tylosin adsorption characteristics were well described by the 

Freundlick equation (q = Kf • C 1/n), with R2 = 0.98 to 0.99.  Briley had the highest tylosin 

adsorption, followed by Savannah, and Ruston lowest.  Tylosin adsorption to soils was affected 

by soil pH, with maximum adsorption at acid pH (4.0) for Briley, and at weak acid to neutral pH 

(6 to 7) for Ruston and Savannah.  Removal of organic matter dramatically increased tylosin 

adsorption, especially under acid pH condition.  Tylosin desorption differed greatly among soils, 

with Ruston highest, followed by Briley, and Savannah lowest.  Tylosin desorption was also 

greatly affected by pH, with higher desorption under acid conditions (pH 4.5), lower desorption 

under weak acid (pH 6.0) or basic (pH 7.5) conditions.  Tylosin undesorbed from soils by 0.01M 

CaCl2 can be recovered by methanol treatments, showing its stability on soils.  

To determine sorption of tylosin to clay minerals and desorption, tylosin was adsorbed to 

three clays (kaolinite, illite, and montmorillonite) in 0.01 M CaCl2 solution.  Desorption was 

carried out by washing tylosin-bound clay minerals with the same solution.  The amount of 

tylosin was quantified by HPLC.  The results showed that tylosin was strongly sorbed to clay 

minerals, reaching maximal adsorption at 24 h.  The adsorption to three clay minerals was well 

described by power function equation (qt = atb) with R2 = 0.95 to 0.99, and was in the order 
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monotmorillonite > illite > kaolinite.  A proportion of Tylosin can be desorbed from mineral 

clays in the order illite > kaolinite > montmorillonite. 

In conclusion, this study demonstrated that tylosin were stable under light, 0.01 M CaCl2, 

pH 4.5 to 6.0, and 25 oC for at least 12 days.  Sorption characteristics of tylosin by three poultry 

litter impacted Louisiana soils can be described by the Freundlich equation.   Both soil pH and 

organic matter play an important role in tylosin sorption.  Tylosin adsorbed on soils remains 

stable, and can be desorbed by 0.01 M CaCl2, and extracted further by methanol.  Three clay 

minerals had different sorption rates with montmorillonite being the highest and kaolinite the 

lowest.  The desorption of tylosin from the three clay minerals using 0.01 M CaCl2 was the least 

with motmorillonite but the most with illite. 
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