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ABSTRACT 

Bermudagrass is grown on many athletic surfaces in the southern United States because of its 

aesthetics, vigorous growth, and excellent wear and stress tolerances. Establishment of bermudagrass 

vegetatively from sprigs provides an economical propagation method for large-acreage sites. During 

sprig establishment, irrigation and N are often applied at high application rates and/or frequencies to 

accelerate plant growth for faster, denser canopy coverage. Conventional wisdom suggests high rates of 

N applied more frequently accelerates bermudagrass growth to shorten the establishment duration for 

playability or susceptibility to erosion. However, during the establishment phase, low initial plant 

densities, frequent irrigation application, and high nitrogen (N) fertility can lead to increased risks of 

surface runoff, erosion, and nutrient movement. Therefore, an experiment was conducted to examine 

the factors of sprig plant rates at 80, 160, 320, and 480 bu ha-1 of bermudagrass cv. Celebration 

fertilized at 0, 12.5, 25, and 50 kg N ha-1 wk -1 over an 8 week establishment period. Celebration 

planted at 360 or 480 bu ha-1 attained0 ≥85% canopy coverage and greater biomass 6 WAP at N applied 

at ≥12.5 kg N ha-1 wk-1. Higher N application rates were not able to accelerate lower sprig planting 

rates of 80 and 160 bu ha-1. In the second experiment, the effect of total solid and N losses were 

examined for sprig planting rates of 160 and 320 bu ha-1 fertilized at 12.5 or 50 kg N ha-1 wk -1. 

Treatments were subject to three rainfall simulations. Sprigs planted at 320 bu ha-1 resulted in faster 

canopy coverage compared to the lower sprig planting rate regardless of N application rates. However, 

N losses were 5 times greater for sprigs fertilized at 50 kg N ha-1 wk -1 regardless of sprig planting rate. 

The data from the two experiments indicate sprig planting rates >320 bu ha-1 fertilized at 12.5 kg N ha-1 

wk -1 accelerate Celebration bermudagrass establish while reducing potential N losses. 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Bermudagrass Origin, Identification, and Characteristics 

Bermudagrass (Cynodon dactylon) is a perennial grass species that originated under sub-

tropical, closely grazed rangelands of Eastern Africa and the East Indies with climates characterized 

with hot, dry summers (McCarty, 2001). Bermudagrass was first introduced into the United States in 

1751 (McCarty, 2001) and can be found growing throughout the southern United States primarily in 

states with subtropical and tropical climates.  

Bermudagrass is a vigorous grass that grows laterally by stolons and rhizomes (Turgeon, 2011). 

In most Cynodon species, long and short internodes alternate with leaves borne on the stem giving the 

illusion of multiple- leaved nodes (Duble, 2004). Bermudagrass is capable of developing a vigorous, 

deep-rooted system, making it adaptable to various soil types (McCarty, 2001; Taliafarro, 1995). 

Optimal growth for bermudagrass occurs in environmental conditions with mild winters, moderate to 

high rainfall, and soil temperatures ranging from 24 to 29o C. (Christians, 2004; Duble, 2004; Fry and 

Huang, 2004). At the onset of cooler temperatures, bermudagrass leaves become chlorotic, giving the 

canopy a tan appearance (Christians, 2004). In climates that have extended periods of cool weather, 

bermudagrass is less vigorous and more susceptible to winter injury.  

Bermudagrass requires high irradiance for optimal growth and development of rhizomes and 

stolons (Duble, 2004). When bermudagrass is subjected to less than 60% irradiance, the grass develops 

elongated internodes and leaves, spindly upright stems, and a weak root system (Duble, 2004). 

Bermudagrass exhibits excellent heat and drought tolerances compared to many other warm-season 

turfgrass species, although water requirements are cultivar- dependent (Christians, 2004). Under 

extreme drought conditions, bermudagrass will enter a semi-dormant state with growth resuming once 

adequate moisture is available. During extreme drought conditions, bermudagrass rhizomes can lose 

slightly more than 50% of their weight and still recover (Duble, 2004).  
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Tolerance of bermudagrass cultivars differ with respect to nematodes, insects, and diseases, 

however, most bermudagrass cultivars exhibit fewer pest problems compared to other highly managed 

turfgrass species (McCarty, 2001). In addition, bermudagrass has been shown to tolerate saline and 

low pH soils while providing excellent wear and stress tolerances from considerable amounts of traffic 

(Duble, 2004; McCarty, 2001).  

Most C. dactylon cultivars produce viable seed; however, seeded bermudagrass cultivars have 

typically exhibited poor to average cold hardiness (Fry, 2004). Bermudagrass seeds are available in 

two forms, hulled or unhulled, with hulled seeds having faster germination rates due to the removal of 

the physical impediment from the seed coat (McCarty, 2001). Until recently, most seeded 

bermudagrass cultivars were used for utilitarian purposes because overall turfgrass quality was poor 

compared to several hybrid-bermudagrasses. However, in recent years improved seeded bermudagrass 

cultivars have been bred with characteristics suited to highly managed turfgrass sites.   

The more popular bermudagrass cultivars used for highly maintained turfgrass sites have been 

regulated to hybrid-bermudagrasses. Hybrid-bermudagrass is the result of interspecific hybridization 

between two bermudagrass species such as C. dactylon and C. transvaalensis. These two species 

provide traits such as the vigor of C. dactylon and finer leaf texture of C. transvaalensis (Fry, 2004; 

Turgeon, 2011; Christians, 2004). Genotypes of these hybrid-bermudagrasses are sterile, necessitating 

vegetative establishment. The first commercially available hybrid-bermudagrasses, Tifway, Tifgreen 

and Tifdwarf, were developed in Tifton, Georgia by Dr. Glen Burton (Fry, 2004; Turgeon, 2012; 

McCarty, 2001; Christians, 2004). Hybrid-bermudagrasses have exceptional recuperative abilities and 

high tolerance to low mowing heights making it an ideal species for sports fields and other highly 

maintained turf areas (Fry, 2004).  

1.2 Common Practices for Establishment of Bermudagrass 

Bermudagrass can be established by seeding or vegetatively by sprigging, plugging, or sodding. 

Common or improved bermudagrasses are typically established by seed (Christians, 2004; Fry, 2004), 
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whereas hybrid-bermudagrass can only be established vegetatively. Common bermudagrass produces 

around 3.96 million seeds kg-1 (Christians, 2004; McCarty, 2001) with optimal temperatures for 

germination occurring between 21o and 35o C (McCarty, 2001). This temperature range usually occurs 

in the southern United States from April to September depending on location. Current recommended 

seeding rates for bermudagrass are 50-75 kg or 100-150 kg ha-1 depending on site characteristics and if 

hulled or unhulled seeds are applied (Puhalla, 1999). A common practice during bermudagrass 

establishment is to apply nitrogen frequently to accelerate bermudagrass growth for faster canopy 

closure.  

 Vegetative establishment of bermudagrass from sprigs is common and economical for species 

that exhibit aggressive stoloniferous growth habits (Christians, 2004; McCarty, 2001). A sprig, defined 

as a vegetative stem, rhizome or stolon, having multiple nodes, will initiate growth and spread under 

suitable environmental conditions (Puhalla, 1999). Although all bermudagrass species can be 

established from sprigs, hybrid bermudagrasses can only be established by sprigs or sod because of 

intraspecific hybridization that renders unviable seed (Christians, 2004; Puhalla, 1999).  

Sprigs are extremely perishable due to heat damage and desiccation, especially during the first 

48 hrs post harvesting (McCarty, 2001). Establishment rates for sprigging vary from 81 bu ha-1 to as 

high as 323.75 bu ha-1 (Puhalla, 1999; Christians, 2004). In a study evaluating sprigging rates and N 

applications of ‘Tifway’, Johnson (1973) showed increasing sprigging rates accelerated the rate of 

establishment. During establishment, N rates as high as 50 kg ha-1 and irrigation are frequently applied 

to prevent sprig desiccation (Rodriguez et al., 2002). Currently, N applications vary greatly, depending 

on the region or turfgrass manager. Nitrogen rates as high as 48 kg N ha-1 wk-1 has been applied during 

bermudagrass establishment from sprigs. However, Geurtal and Evans (2006) reported N applications 

above 48 kg N ha-1 wk-1 did not result in faster sprig establishment of ‘Tifeagle’ hybrid-bermudgrass 

nor did N applications above 24 kg N ha-1 wk-1 accelerate ‘Tifway’ or ‘Tifsport’. Excess N would have 

the potential for offsite movement. 
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 Plugging, another vegetative establishment practice for bermudagrass, is less common for high 

acreage sites. However, plugging can be useful in smaller areas when time and labor are limiting 

factors. Plugs are small pieces of sod, ranging from 5-15 cm, of plant and soil media that are 

transplanted to bare areas (Christians, 2004; Puhalla, 1999; Turgeon, 2011). Because bermudagrass is a 

vigorous species, bermudagrass plugs spread laterally through rhizomes and stolons. Additions of N 

and irrigation can accelerate establishment. There has been no pre-determined rate, diameter, or plug 

spacing specified for bermudagrass. However, Puhalla (1999) showed 10 cm diameter plugs at 30cm 

spacing will effectively cover an area within two months. Therefore, plug spacing and size required 

will depend on the area to be established, time period for establishment and environmental conditions. 

Sodding, the fastest establishment practice, provides an instant ground cover, but is typically 

the most expensive method for turfgrass propagation (Turgeon, 2011). Bermudagrass sod can establish 

within 30 days compared to 60 days for bermudagrass established by sprigs (Puhalla, 1999). During 

establishment adequate soil moisture should be maintained to prevent desiccation until sufficient 

rooting occurs (Puhalla, 1999). Because soil is attached to the turf plant, choosing sod that is 

chemically and physically compatible to existing soil is imperative. Soil harvested with the sod may 

not be similar to the planting area resulting in poor rooting and decreased water infiltration and 

percolation (Puhalla, 1999; Turgeon, 2011; Christians, 2004). Establishment by sod generally requires 

fewer expenses such as machinery, and labor than by seed, sprig, or plug. 

1.3 Nitrogen and Phosphorus Losses in Grasses 

Increased concentrations of N and P in surface water bodies can result in eutrophication, a 

process where algal blooms increase before dying, decomposing, and decreasing dissolved oxygen 

concentrations. Ultimately this results in poor environmental condition for many aquatic fauna. 

Nutrient concentrations of N and P as low as 0.035 and 0.01 mg L-1, respectively, have been found to 

result in eutrophication (Mallin and Wheeler, 2000). 
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One practice to reduce surface runoff is the use of plants in riparian areas to reduce the 

incidence of runoff as well as pollutant offsite movement (Gross et al., 1990; Morton et al., 1988).  

Scientist such as Krenitsky et al. (1998) have reported vegetation can reduce impact erosion and 

sediment attached pollutants from running off during precipitation events. Other scientists have also 

suggest proper application of inputs such as fertilizer may not lead to excessive pollutant transfer 

(Easton and Petrovic, 2004). Gross et al. (1990) and Miltner et al. (1996) reported losses of nitrogen in 

grasses in runoff or leachate to be reduced compared to unvegetated soils. More specific to warm-

season grasses, Bowman et al. (2002) and Hay et al . (2007) reported losses from fertilized 

bermudagrass were highest for the runoff or leaching event immediately post application with nitrogen 

losses declining with subsequent runoff or leaching events.  

Other factors beyond fertilization practices affect nutrient losses. Factors such as antecedent 

soil moisture and post-application irrigation practices have been shown to influence nitrogen and 

phosphorus runoff losses. Both Shuman (2002) and Cole et al. (1997) reported high soil moisture and 

failure to irrigation nutrients post-application led to higher nutrient losses. Shuman (2002) reported 

irrigating phosphorus post-application could reduce losses nearly five-fold. The majority of nutrient 

losses, such as phosphorus, are believed to be the result of surface runoff (Fleming and Cox, 2001). 

Differences in phosphorus losses between annual agronomic commodity production practices and 

perennial grass systems have been reported. It is believed the majority of phosphorus losses in annual 

agronomica commodity production is the result of sediment movement (Hay et al., 2004), whereas in 

grassed areas nutrient losses are the result of more soluble nutrient forms (Sharpley et al., 1994).  
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CHAPTER 2: INFLUENCE OF SPRIGGING AND NITROGEN RATES ON BERMUDAGRASS 
CV. CELEBRATION ESTABLISHMENT AND NITROGEN MOVEMENT 

 
2.1 Introduction 

Bermudagrass is grown on many athletic surfaces in the southern United States because of its 

aesthetics, vigorous growth, and excellent wear and stress tolerances (Duble, 2004; McCarty, 2001). 

Since the introduction of the cultivar ‘Tifway’ bermudagrass (Cynodon dactylon x C. transvaalensis) 

several bermudagrass cultivars have been developed to tolerate various environmental and 

anthropogenic uses. One of the most recent introduced cultivars is Celebration. Celebration has gained 

popularity along the Gulf South as a more aggressive bermudagrass capable of withstanding higher 

trafficked areas (personal communication Ron Strahan). In a study evaluating, thatch decomposition 

between Tifway and Celebration bermudagrass, it was reported Celebration had 3 to 4 times the 

amount of thatch as Tifway due to its vigorous growth (Beasley et al. 2012). To date, bermudagrass 

cultivars that can only be established vegetatively remain the predominant cultivars planted for many 

highly managed athletic areas.  

Establishment of bermudagrass vegetatively from sprigs provides an economical propagation 

method for large-acreage sites compared to sod. During sprig establishment, irrigation and N are often 

applied at high application rates and/or frequencies to accelerate plant growth for faster, denser canopy 

coverage (Guertal and Evans, 2006; Hay et al., 2007). Nitrogen application rates of 48 kg ha-1 wk-1 

until full canopy closure is attained is a common practice by turfgrass managers during bermudagrass 

establishment from sprigs (Rodriguez et al., 2002). Conventional wisdom suggests high rates of N 

applied more frequently accelerates bermudagrass growth to shorten the establishment duration for 

playability or susceptibility to erosion.  

Low initial plant densities, frequent irrigation application, and high nitrogen (N) fertility 

associated during the initial weeks of bermudagrass established from sprigs is susceptible to changes in 

surface morphology from erosion on fine texture soils but also increases the potential for higher 
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nutrient movement. Given the high rate of N applications and decreased resistance to surface runoff 

initiation due to low plant densities, losses of sediment and nutrients into areas that drain to surface 

waters can result in eutrophication, a leading cause of surface water impairment (USEPA, 2002). 

Soluble and sediment bound nutrients enrich surface waters to promote algal blooms that can lead to 

low dissolved oxygen concentrations associated with high decomposition rates. Concentrations as low 

as 1 mg N L-1 and 25 μg P L-1 have been reported to facilitate eutrophication of fresh water bodies 

(Walker and Branham, 1992; Koehler et al., 1982, Mallin and Wheeler, 2000) compared to the often 

cited United States Environmental Protection Agency (USEPA) maximum contaminant levels of 10 

mg L-1 NO3-N and 0.1 mg L-1 for PO4-P allowed for potable water. In southern Louisiana, the 

movement of sediment and nutrients has been documented from areas vegetated with bermudagrass 

(Burwell et al., 2011). High precipitation volumes and intensities associated with southern Louisiana’s 

climate as well as finer textured soils increase the potential for surface runoff to occur. 

Parameters such as higher canopy coverage and density have been positively correlated to 

increased infiltration, delayed runoff, reduced volume, and decreased erosion (Easton and Petrovic, 

2004). However, in a study conducted by Burwell et al. (2011), their results question conventional 

management practices regarding N fertilization during common bermudagrass establishment from 

seed. On levee embankments constructed from clay, an area prone to surface runoff located adjacently 

to open water bodies, in southern Louisiana, Burwell et al. (2011) reported fertilization of N at seeding 

or 50% bermudagrass coverage did not accelerate bermudagrass coverage sufficiently to reduce 

sediment losses compared to unfertilized controls over a 56 and 70-day establishment periods.  

Research examining sprigging rates and N application regimens during bermudagrass sprig 

establishment has generally reported higher sprigging rates reduce the duration for full canopy closure 

while high frequent N applications do not appreciably accelerate bermudagrass establishment from 

sprigs (Johnson, 1973; Guertal and Evans, 2006). Although, many of these studies suggest lower N 

rates during establishment will reduce available N for offsite movement, none of the studies have 
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directly evaluated N losses from surface runoff. Therefore, this research focused on evaluating the 

effect sprigging rates and nitrogen fertility have on vegetative Celebration bermudagrass 

establishment; as well as the relationship these management practices have on movement of nutrient 

and sediment via surface runoff during Celebration establishment. 

2.2 Materials and Methods 

2.2.1 Bermudagrass Establishment and Post-plant Maintenance 

2.2.1.1 Site characterization and treatments. Research was initiated 2 June 2010 and 7 August 

2011 at the Louisiana State University Agricultural Center Burden Botanical Gardens located in Baton 

Rouge, La (30°24'42"N, 91° 6'12"W) on an Oliver silt loam (fine-silty, mixed, thermic, typic 

fragiudalf). Four sprig establishment rates of 80, 160, 320, and 480 bu ha-1 of bermudagrass cv. 

Celebration, henceforth refered to as Celebration, and four N application rates at 0, 12.5, 25, and 50 kg 

N ha-1 wk -1 were evaluated in a split-plot design with N rates (2 m by 8 m) as the main plots and sprig 

establishment rates as sub-plots (2 m x 2 m). The N source applied was ammonium-nitrate (33-0-0).  

During the first 3 weeks after planting (WAP) irrigation was applied at 2.54 cm d-1 and reduced 

to 1.27 cm every 3 and 4 days in subsequent weeks. Pre and post-emergence herbicides were applied 

including oxadiazon (3-[2,4-dichloro-5-(1-methylethoy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-

oxadiaxol-2(3H)-one) was applied at 2 lbs ai acre-1 the day bermudagrass sprigs were planted and 

MSMA (monosodium acid methanearsonate) and quinclorac (3,7-dichloro-8-quinolinacarboxylic acid) 

at 2.2 kg ai ha-1 and 1.2 kg ai ha-1, respectively, 6 WAP to reduce broadleaf and grassy weed 

encroachment. Mowing was performed twice per week at 7.5 cm beginning 3 WAP.  

2.2.1.2 Bermudagrass establishment measurements. Measurements for bermudagrass growth 

included canopy coverage photos captured weekly and rated for percent coverage. At 4 and 8 WAP 

soil cores with a 7.5 cm diameter were harvested and shoot biomass collected. Desiccated sprigs were 

removed with only green leaf and stem tissues excised at the turfgrass-soil interface for biomass 

measurement. Biomass was dried for 48 hrs at 60oC and mass determined gravimetrically. 
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2.2.2  Rainfall Simulation Experiments  

2.2.2.1 Bermudagrass sprig establishment for rainfall simulation. Nutrient and sediment runoff 

studies were also conducted at the Louisiana State University Agricultural Center Burden Botanical 

Gardens located in Baton Rouge, La (30°24'42"N, 91° 6'12"W) on an Oliver silt loam (fine-silty, 

mixed, thermic, typic fragiudalf). Bermudagrass sprig establishment rate and N fertility combinations 

of 160 or 320 bu ha-1 fertilized at 12.5 or 50 kg N ha-1 wk-1 for a total of four treatments were 

evaluated. Sprig and N fertility regimens were propagated in 1.5 m2 plots (210 cm x 75 cm) with trays 

for runoff collection. On the lower side of the trays bars with a 90° angle were used to funnel water 

through exit ports 6 cm in length with a diameter of 2.5 cm. To prevent rainfall from collecting directly 

in troughs during runoff events or natural rainfall events, plastic covers were secured over each trough. 

Collection reservoirs of 120 L were used to collect runoff waters from rainfall simulations. 

The nitrogen source was ammonium-nitrate (33-0-0) applied by hand using shaker jars for even 

distribution. Nitrogen applications ceased at the end of 8 WAP. During bermudagrass sprig 

establishment, irrigation and herbicide regimens followed the rates and application frequencies 

previously detailed in the bermudagrass sprig establishment and nitrogen application experiments.  

2.2.2.2 Rainfall simulations. Rainfall simulations were conducted at 3, 6, and 9 WAP following 

the United States Department of Agriculture’s (USDA) National Phosphorous Research Project’s 

(NPRP) protocols for rainfall simulation (USDA, 2008). Simulated rainfall was applied to all 

treatments using a Tlaloc 3000 Rainfall Simulator (Joern’s Inc.; West Lafayette, IN), based on the 

designs of Miller (1987) and Humphry et al. (2002). The rainfall simulator is fitted with a Spraying 

Systems Co. Fulljet ½HH SS 50WSQ nozzle with a spray angle of 104° (±5%) and delivered 16 L per 

minute at 10 psi (USDA, 2008). The rainfall intensity represents a 2-year average rainfall for Southern 

Louisiana. The nozzle was elevated 3 m above the soil surface.  

2.2.2.3 Data collected during rainfall simulations. During simulated rainfall events, data was 

collected and analyzed for: time until the initiation of surface runoff, total surface runoff volume, total 
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solids, and dissolved N (NH3-N + NO3-N). Total runoff volume was recorded 30 minutes after initial 

runoff of each rainfall event. One-liter composite runoff water samples were collected from each 

collection reservoir with samples were stored at 4⁰C until analyzed.  

2.2.2.4 Total solids and nitrogen analyses. Water samples were analyzed for NH3-N, NO3-N, 

and sediment within 48 h after collection. Erosion was quantified by centrifuging 800 mL of each 

sample at 3500 rpm for 15 min using an Algera-6 table-top centrifuge (Beckman Coulter Inc., Brea, 

CA). Liquid was decanted with the remaining soil dried at 60 C for 7 d prior to soil mass 

measurements being recorded.  

Nitrogen (NH3-N and NO3-N) analyses were performed following a modified version of EPA 

Method 351.2 that excludes the digestion procedure. Water-soluble N was quantitated through titanous 

chloride reduction of NO3-N to NH3-N prior to automated colorimetric analysis (Quickchem 8500 FIA, 

Lachat Instruments, Milwaukee, WI, USA) at a detection limit of 0.01 mg L-1. Soluble N data for NH3-

N and NO3-N are combined and presented as dissolved N (DN).  

2.2.2.5 Statistical analysis. The Celebration vegetative establishment study was replicated four 

times in a split-plot design with N fertility regimens serving as the main plots and sprig planting rates 

as subplots. Percent canopy coverage was analyzed using the mixed procedure using repeated 

measures in the statistical software, SAS (SAS, 2012). Data were combined across experimental runs if 

the interaction term was significant at an alpha level of 0.20. Otherwise, means were separated 

following Fisher’s LSD at an alpha level of 0.05. Biomass accumulation was analyzed following the 

GLM procedure in SAS with means separated following Fisher’s LSD at an alpha level of 0.05. 

 The rainfall simulation experiments were arranged as a completely randomized design with 

three replications with two factors, sprig planting rate and N fertility rate, at two levels each. Data 

concerning canopy coverage, time until runoff, runoff volume, total solids lost, and DN loading were 

analyzed using the generalized linear method in SAS. Data were combined across experimental runs if 
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the interaction term was significant at an alpha level of 0.20. Means were then separated following 

Fisher’s LSD at an alpha level of 0.05.  

2.3 Results 

2.3.1 Celebration Bermudagrass Establishment 

 The establishment of Celebration vegetatively from sprigs was evaluated over an 8-week period 

in each of the experimental runs. All sprigging rates exhibited trends of increasing canopy coverage 

over time albeit at different rates depending on sprig planting rate, N fertility, and environmental 

conditions (Figure 1). In the first experimental run, sprigging rates of 320 and 480 bu ha-1 resulted in 

≥85% coverage within 6 WAP when fertilized at 12.5, 25, or 50 kg N ha-1 wk-1 compared to sprigging 

rates of 80 and 160 bu ha-1 fertilized at corresponding rates.  Differences in N fertilization rates were 

not apparent for the higher sprigging rates. Lower sprigging rates required additional time to increase 

canopy coverages ≥80 % for fertilization rates of 12.5, 25, or 50 kg N ha-1 wk-1 over the 8-week 

establishment period; with the exceptions of 80 bu ha-1 fertilized at 12.5 and 25 kg N ha-1 wk-1 that 

resulted in 72% and 77% canopy coverages. At the 80 and 160b ha-1 sprigging rates, effects of 

increasing N fertilization rates Celebration establishment were not visible during the establishment 

period with the exception of sprigs that received no N fertility. Sprigs that received no N fertility 

during the 8-week establishment period resulted in 42, 64, 62, and 71% canopy coverages for 

increasing sprig establishment rates. However, all sprigging rates appeared to stagnate in growth 

within 5 WAP. 

 The trends observed in first experimental run were also observed in 2011. Sprigging rates of 

320 and 480 bu ha-1 fertilized at 25 and 50 kg N ha-1 wk-1 resulted in ≥85% canopy coverage within 6 

WAP compared to sprigging rates of 80 and 160 bu ha-1 at all fertilization rates. The exception to the 

first experimental run was the slower establishment of Celebration sprigs planted at 320 and 480 bu ha-

1 at the 12.5 kg N ha-1 wk-1 that required 7 WAP to achieve 85% canopy coverage. Again, sprigs 

established with no N fertilization had the lowest canopy coverages compared to corresponding 
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Figure 1.  Combination of various sprigging rates (80, 160, 320 and 480 bu ha-1) fertilized at 0, 12.5, 
25, or 50 kg N ha-1 during the establishment of Celebration bermudagrass in 2010 (left column) and 
2011 (right column).  
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sprigging rates that received N applications. However, increasing sprigging rate for the no N fertility 

sprigs did allow the establishment of Celebration within the 8-week period similar to the lowest 

sprigging rate of 80 bu ha-1 under fertilization. 

 Increases in canopy coverage resulted in greater biomass accumulation at 4 and 8 WAP (Table 

1). Celebration biomass was generally higher for the highest sprig rates of 320 and 480 bu ha-1 within 

each N fertility regimen. At 4 WAP, sprig planting rates of 320 and 480 bu ha-1 had biomasses between 

2.2 and 3.6 g across all N regimens compared to corresponding biomass of 0.4 to 2.3 for sprigs planted 

at 80 and 160 bu ha-1. This pattern continue at 8 WAP with the exception of the 160 bu ha-1 sprig 

planting rate accumulating similar biomass as sprigs planting rates of 320 and 480 bu ha-1. In general, 

N fertility >12.5 kg ha-1 wk-1 resulted in similar biomasses 8 WAP. Sprigs that did not receive any 

addition N fertility resulted in the lowest biomass of 1.9, 1.8, 2.1, and 2.4 g for increasing sprig 

planting rates.  

Table 1. Biomass of Celebration bermudagrass established at four sprig planting rates and 
four fertility regimens.Data are pooled across 2010 and 2011. 
     Biomass 
Nitrogen Fertility Sprig Planting Rate 4 weeks 8 weeks 

---kg N ha-1 wk-1--- ----- bu ha-1 ------ ------------------------------ g --------------------- 
0 80 0.7 b* 1.9 b 

160 0.4 b 1.8 b 

320 1.7 a 2.1 b 
480 1.9 a 2.4 a 

12.5 80 1.6 b 2.8 b 

160 1.9 ab 3.6 a 

320 2.8 a 4.3 a 

480 3.6 a 3.5 ab 
25 80 1.4 b 4.2 b 

160 1.9 b 5.4 a 
320 3.4 a 5.8 a 
480 3.1 a 6.3 a 

50 80 1.1 b 3.9 a 
160 2.3 a 4.3 a 
320 2.7 a 4.7 a 

  480  2.9 a 5.2 a 

* Means within a column within a sprig planting rate are separated using Fisher’s LSD at an 
alpha level of 0.05. Means are different if followed by different letters.  
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2.3.2 Surface Runoff of Celebration Bermudagrass during Vegetative Establishment 

 The sprig planting rates chosen for the experiments represent a commonly implemented sprig 

planting rate of 160 bu ha-1 and a doubling of that rate to 320 bu ha-1. In each of the experimental runs 

canopy coverages were between 20% and 40% for all sprig planting rates and N fertility combinations 

3 WAP (Tables 1 and 2). However, as the duration for Celebration establishment increased to 6 WAP, 

the effect of sprig planting rate became more evident. Sprigs planted at 160 bu ha-1 exhibited canopy 

coverages of 42% and 58% compared to 89% and 93% canopy coverages for the higher sprig planting 

rate regardless of N fertility regimen. By 9 WAP, canopy coverage differences between sprig planting 

rates and N fertility combinations had dissipated with all treatment combinations attaining >86% 

canopy coverage. A similar pattern for changes in canopy coverages was also observed in 2011 (Table 

3). At 6 WAP, the higher sprig rate of 320 bu ha-1 resulted in >83% canopy coverage compared to 52% 

and 63% at the lower sprig planting rate of 160 bu ha-1. Again, all treatments exceeded 92% canopy 

coverage 9 WAP. 

Table 2. Growth and surface runoff parameters of Celebration bermudagrass sprigs established at 
two sprig planting rates and fertilized following two nitrogen fertility regimens rainfall simulated 
at 3, 6 and 9 weeks after planting in 2010. 
  Canopy Coverage Time Until Runoff Runoff Volume 

Sprig 
planting 

rate 

Nitrogen 
fertility 

3 
weeks 

6 
weeks

9 
weeks

3  
weeks

6 
weeks

9 
weeks

3 weeks 
6 

weeks
9 

weeks

bu ha4 - kg N ha4wk-1 --------------%------------ --------------%------------- --------------%---------- 
160 12.5 20c* 42b 87b 217b 316c 483a 123.6a 86.9a 39.4a
160 50 23bc 58b 92ab 255b 339c 471a 135.2a 95.6a 38.4a
320 12.5 32ab 93a 96a 346a 446a 506a 72.7b 68.7b 37.1a
320 50 38a 89a 94a 258a 397a 523b 53.8c 45.4c 28.5a
*Means within a column are separated using Fisher’s LSD at an alpha level of 0.05. Means are 

different if followed by different letters. 
 

The effect of canopy coverage from an increased sprig planting rate increased the duration 

required for surface runoff to occur.  For example, Celebration planted at 160 bu ha-1 increased the 

period for runoff to occur from 217 and 255 s 3 WAP to 483 and 471 s 9 WAP, respectively, while 
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Table 3. Growth and surface runoff parameters of Celebration bermudagrass sprigs established at 
two sprig planting rates and fertilized following two nitrogen fertility regimens rainfall simulated 
at 3, 6 and 9 weeks after planting in 2011. 
  Canopy Coverage Time Until Runoff Runoff Volume 

Sprig 
planting 

rate 

Nitrogen 
fertility 

3 
weeks 

6  
weeks 

9 
weeks

3 
weeks

6 
weeks 

9  
weeks 

3  
weeks 

6  
weeks 

9  
weeks

bu ha4 - 
kg N 

ha4wk-1 --------------%--------- --------------%-------------- --------------%-------------- 

160 12.5 27b* 52b 95a 251b 361bc 357b   93.9a 64.7a 38.3a
160 50 28b 63b 93a 243b 349c 349b 142.9a 78.6a 37.5a
320 12.5 32ab 84a 98a 341a 423a 436a   47.5c 33.1b 28.4b
320 50 36a 92a 94a 335a 392ab 424a   43.9c 37.7b 39.4a
*Means within a column are separated using Fisher’s LSD at an alpha level of 0.05. Means are 

different if followed by different letters. 

sprig planting rates at 320 bu ha-1 increased the duration from 346 and 358 s to 506 and 423 s during 

the same time period. Similar results were also observed in 2011.  

Overall, the duration necessary to initiate runoff were similar between N fertility regimens 

within sprig planting rates. However, differences in the duration necessary to initiate runoff were 

apparent at 3 and 6 WAP between sprig planting rates. Celebration sprigs planted at 320 bu ha-1 

resulted in longer durations of 346 and 358 s compared to 217 and 255 s for sprigs planted at 160 bu 

ha-1 in 2010. These differences in time until surface runoff occurred were also evident between sprig 

planting rates 6 WAP. However, 9 WAP the duration needed to initiate runoff was similar between all 

sprig planting rate and N fertility regimen combinations. A similar pattern, albeit was not as apparent 

as data in 2010, increasing sprig planting rate extended the duration necessary to initiate surface runoff 

at 3 and 6 WAP, but dissipated by 9 WAP 2011.  

 The increases in canopy coverage from increased sprig planting rates also affected surface 

runoff volumes. The lower sprig establishment rate resulted in higher runoff volumes of 123.6 and 

135.2 L compared to 72.7 and 53.8 L for the higher sprig planting rate 3 WAP in 2010 and 93.9 and 

142.9 L compared to 47.5 and 43.9 L for corresponding sprig planting rates 3 WAP in 2011. In each 

year, runoff volume decreased over time with increasing bermudagrass canopy coverages and 



19 

differences in runoff volumes between treatments dissipating 9 WAP when canopy coverages attained 

>86%.  

2.3.3 Total Solids and Nitrogen Losses from Surface Runoff during Celebration Establishment 

 Similar to the patterns observed regarding canopy coverage, time until runoff, and runoff 

volumes, sprig planting rate was the most significant factor on total solid losses (Tables 4 and 5). 

During the first rainfall simulation 3 WAP sprigs planted at 320 bu ha-1 reduced total solid losses from 

0.84 and 0.78 kg ha-1 for Celebration planted at 160 bu ha-1 to 0.35 and 0.28 kg ha-1. As bermudagrass 

canopy coverage increased total solid loading rates declined. However, the decline in total solid 

loading was accelerated at the higher sprig planting rate. For example, sprigs planted at 160 reduced 

total solid loading from 3 WAP at 0.84 and 0.78 kg ha-1 to 0.58 and 0.62 kg ha-1 6 WAP and 0.29 and 

0.24 kg ha-1 9 WAP compared to the higher sprig rate reductions of total solid loading of 0.35 and 0.28 

kg ha-1 3 WAP to 0.31 and 0.33 kg ha-1 6 WAP and 0.21 and 0.22 kg ha-1 WAP in 2010. A similar 

pattern between sprig planting rates was also observed in 2011 with the exception of Celebration 

planted at 320 kg ha-1at 0.41 kg ha-1 total solid loading similar to the lower sprig planting rate 6 WAP.  

 
Table 4.Total solids and dissolved nitrogen lost during surface runoff from simulated rainfall at 
3, 6 and 9 weeks after planting from Celebration bermudagrass established at two sprig planting 
rates and nitrogen fertility regimens in 2010. 
  Total Solids Dissolved Nitrogen 

Sprig 
planting rate 

Nitrogen 
fertility 

3 weeks 6 weeks 9 weeks 3 weeks 6 weeks 9 weeks 

bu ha-1 kg N ha-1wk-1 -------------kg ha-1-------------- ------------------mg------------------- 
160 12.5 0.84a* 0.58a 0.29a   3.3b   6.5c   4.3b 
160 50 0.78a 0.62a 0.24a 11.5a 85.6a 43.4a 
320 12.5 0.35b 0.31b 0.21a   4.9b 12.2c   9.3b 
320 50 0.28b 0.33b 0.22a 15.6a 61.6b 31.3a 

*Means within a column are separated using Fisher’s LSD at an alpha level of 0.05. Means are 
different if followed by different letters. 

 
Unlike total solid loading data, N loading was not as greatly affected by sprig planting rate, but 

rather N fertility regimen.  Regardless of sprig planting rate, nitrogen losses were reduced under the 

lower N fertility regimen of 12.5 kg N ha-1 wk-1 compared 50 kg N ha-1 wk-1. In 2010, sprigs fertilized  
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Table 5.Total solids and dissolved nitrogen lost during surface runoff from simulated rainfall at 3, 
6 and 9 weeks after planting from Celebration bermudagrass established at two sprig planting rates 
and nitrogen fertility regimens in 2011. 
  Total Solids Dissolved Nitrogen 
Sprig planting 

rate 
Nitrogen 
fertility 

3 weeks 6 weeks 9 weeks 3 weeks 6 weeks 9 weeks 

bu ha-1 kg N ha-1wk-1 -------------kg ha-1-------------- ------------------mg------------------- 
160 12.5 0.62b* 0.49a 0.34a   4.2b 11.6b 11.4b 
160 50 0.83a 0.42a 0.31a 10.6a 96.5a 52.5a 
320 12.5 0.44c 0.24b 0.19b   3.9b 10.4b 14.6b 
320 50 0.38c 0.41a 0.16b 14.0a 83.4a 44.2a 

*Means within a column are separated using Fisher’s LSD at an alpha level of 0.05. Means are 
different if followed by different letters. 

 
at the lower N regimen resulted in 3.3 and 4.9 mg DN compared to 11.5and 15.6 mg DN 3 WAP.  

Nitrogen loading between the two N regimens increased at 6 WAP with sprigs fertilized at the higher 

N regimen exhibiting losses of 85.6 and 61.6 mg DN  for sprigs planting rates of 160 and 320 bu ha-1, 

respectively, compared to corresponding DN losses of 6.5 and 12.2 mg DN.  This increase in DN 

losses at 6 WAP also occurred in 2011.  Sprigs fertilized at the higher N regimen resulted in 96.5 and 

83.4 mg DN for sprig planting rates of 160 and 320 bu ha-1, respectively, compared to 11.6 and 10.4 

mg DN for sprig planting rates of 160 and 320 bu ha-1 fertilized at 12.5 kg N ha-1 wk1.  Dissolved N 

losses reduced at 9 WAP, 1 week after ceasing N fertilizer applications.  However, sprigs fertilized at 

the higher N regimen continued to exhibit higher DN losses compared to sprigs following the lower N 

regimen.  

2.4 Discussion 

Areas in Louisiana that plan to establish Celebration bermudagrass vegetatively can accelerate 

canopy coverage and biomass accumulation by increasing sprig planting rates from 80 or 160 bu ha-1 

to 360 or 480 bu ha-1 rather than relying on higher N fertility regimens.  In general, Celebration 

established vegetatively at sprig planting rates of 360 or 480 bu ha-1 was able to attain ≥85% canopy 

coverage 6 WAP and 95% canopy coverage within 8 WAP when fertility was applied at 12.5 kg N ha-1 

wk-1 or above.  Similar findings have been reported in the scientific literature concerning the 
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combination of vegetative establishment rates and N fertility for other bermudagrass cultivars (Geurtal 

and Evans, 2009; Rodriguez et al., 2002).   In a study evaluating Johnson (1973) reported increasing 

sprig planting rates not only accelerated the rate of establishment, but higher fertility was less effective 

in accelerating establishment compared to altering sprig planting rate.  

In a study conducted by Geurtal et al. (2009), they suggested differences in vegetative 

establishment of two bermudagrass cultivars Tifway and Tifsport were a function of stolon vigor.  

Although this may provide insight into differences in cultivar establishment rates, it does not provide 

insight into why higher sprigging rates within a cultivar decrease the duration of establishment. 

Increases in establishment rate of Celebration at higher sprigging rates was not only affected by 

increased plant material but most likely as a result statistically of higher sprig survivability.  In 

research investigating nutrient applications on bermudagrass establishment on a golf green, Rodriguez 

et al. (2002) acknowledged the importance of frequent irrigation to prevent sprig desiccation during 

establishment.  An immature or undeveloped root system limits water uptake and thus plant growth.  

Even though irrigation was applied throughout these studies, some sprig desiccation was visibly 

observed.  Since only one bermudagrass cultivar was evaluated and irrigation regimens were not 

considered, the combination of higher plant material and proportional sprig survival appear to better 

explain differences between canopy coverages and biomass accumulation between sprig planting rates 

observed during the first 6 WAP.  Greater sprig growth early in the establishment period translated to 

higher canopy coverages and biomass accumulation for faster canopy closure.  Further research is 

needed to more clearly elucidate the influence irrigation, fertility, and sprig planting rates affect 

bermudagrass establishment.  

Compared to sprig planting rate, N fertility was a less effective management practice during the 

vegetative establishment of Celebration.  For example, N fertility above 12.5 kg N ha-1 did not 

accelerate canopy coverage when fertility rates were compared within sprigging rates.  Geurtal and 

Evans (2006) reported N applications above 48 kg N ha-1 wk-1 also did not result in faster sprig 
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establishment of ‘Tifeagle’ hybrid-bermudgrass nor did N applications above 24 kg N ha-1 wk-1 

accelerate ‘Tifway’ or ‘Tifsport’ during vegetative establishment (Geurtal et al., 2009).  Johnson 

(1973) also found excessive N did not appreciably attribute to increased Tifway bermudagrass 

establishment.  

The frequent application of high N rates up to 50 kg N ha-1 is often applied by turf managers to 

prevent N from being a limiting nutrient during establishment.  Numerous horticulture and agronomic 

studies have clearly described the impact low N fertility has on plant growth and development (cites).  

However, Celebration sprigs established with no additional N applications resulted in similar 

establishment rates to corresponding fertilized-sprig planting rates the first 4 WAP.  This suggests 

plant N demand, a factor reported to govern N uptake (Bowman et al., 1989), was most likely not 

limiting available N uptake given the similarity in growth. Rather, the similarity in canopy coverages 

of the unfertilized control to the remaining sprigs under the various fertility regimens was most likely 

limited by an undeveloped root system that not only limited water uptake but also N uptake needed to 

accelerate growth.  In a mature creeping bentgrass, Bowman et al. (1998) showed nitrogen uptake was 

positively correlated to increasing rooting architecture.  It appears, sprigs are reliant on stored 

carbohydrates reserves during the first 4 WAP similar to bermudagrass processes associated with 

active growth post-winter dormancy (Munshaw et al., 2001). 

The inability of Celebration sprigs to accelerate establishment at higher N fertility rates could 

have negative consequences on N offsite movement.  In this study, it was evident the conditions such 

as high soil moisture and N fertility during vegetative establishment of Celebration can contribute to 

increased occurrence and severity of surface runoff as reported with data from the rainfall simulation 

experiments.  Factors such as soil moisture, reduced vegetative canopy coverage, and sward density 

have been correlated to increased surface runoff incidence (Gross et al., 1990; Morton et al., 1988).  In 

this experiment, higher sprig planting rates resulted in faster canopy coverage over the 9-week 

observation period to reduce runoff volume and sediment loading while increasing the duration for 
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surface runoff to initiate.  For example, the higher sprig planting rate of 320 bu ha-1 resulted in 

reducing surface runoff volumes from 47.5 L to 33.1 and 28.4 L and total solid loading 0.44 0.19 kg 

ha-1 to 0.24 and 0.19 kg ha-1 from 3 WAP to 6 and 9 WAP in 2011 while extending the duration 

necessary to initiate surface runoff from 341 s to 423 and 436 s.  During this same time period sprigs 

planted at the lower rate of 160 bu ha-1 exhibited slower rates of change in these parameters over the 

establishment period especially at 3 WAP and 6 WAP.  Initial differences between the two sprig 

planting rates are most likely a function of soil coverage.  Although canopy coverages were similar at 3 

WAP, canopy coverage is a measurement of green material and does not account for dessicated plant 

material acting as a mulch covering the soil. Plant material in the form actively growing and dessicated 

sprigs shielded the soil from raindrop impact erosion to increase the duration for surface runoff 

initiation while disrupting water flow to reduce surface runoff volume and filter suspended total solid 

movement compared to the more sparsely covered 160 bu ha-1 Celebration sprig planting rate.   

Over the 9-week observation period, the differences in canopy coverage dissipated as noted 

with >82% canopy coverage for all sprig planting rate and N fertility regimen combinations.  Dense 

grass swards increase water infiltration to reduce surface runoff occurrence and severity; reduce kinetic 

energy associated with splash erosion; and reduce total solids movement (Krenitsky et al., 1998; 

Easton and Petrovic, 2004; Burwell et al., 2011).  However, the N applied to achieve a more resistance 

bermudagrass sward must be considered not only in terms of efficiency to promote sprig establishment 

but also in terms of potential environmental impact. 

In this study, the higher fertility rate of 50 kg N ha-1 consistently resulted in greater N losses 

from surface runoff compared to sprigs established following a regimen of 12.5 kg N ha-1.  Over the 

course of the 9-week observation period with 3 rainfall events, sprigs fertilized at the higher N regimen 

lost a total of 108.5 to 159.5 mg N compared to loses of 14.1 to 28.9 mg N for sprigs fertilized with the 

lower N regimen.  Moreover, gains in reduced total solid movement one may expect to gain through 

accelerating sprig establishment with increased N fertility were not recognized.  Rather sprig planting 
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rate, regardless of N regimen, was a more important factor when discussing total solid transport.  The 

results of the surface runoff portion of the study were similar to the findings of Burwell et al. (2011), in 

which they reported early N applications did not sufficiently accelerate bermudagrass established from 

seed to reduce total solid movement from levee embankments; and that N applications at 50% canopy 

coverage resulted in similar DN losses as pre-plant N applications. 

Based on the data from two experiments of the study, N fertility rates >12.5 kg N ha-1 wk-1 do 

not accelerate Celebration establishment from sprigs.  Rather establishment can be accelerated with 

higher sprig planting rates of 360 to 480 bu ha-1.  The higher sprig rates fertilized at 12.5 kg N ha-1 wk-

1 not only established in 6 to 7 WAP but reduced total solid and N losses during runoff.  Following a 

higher sprig planting rate and 12.5 kg N ha-1 wk-1 fertility regimen reduced N losses 4 to 10 times 

sprigs established following the common application rate of 50 kg N ha-1 wk-1.  Therefore, it is 

recommended that Celebration established vegetatively from sprigs should be planted at rates of 360 

bu ha-1 and fertilized at 12.5 kg N ha-1 wk-1 until full canopy closure. 
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