
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2012

Understanding phosphorus dynamics of two
alluvial soils grown with corn at different
phosphorus rates
Marilyn Sebial Dalen
Louisiana State University and Agricultural and Mechanical College, mdalen1@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Dalen, Marilyn Sebial, "Understanding phosphorus dynamics of two alluvial soils grown with corn at different phosphorus rates"
(2012). LSU Master's Theses. 3046.
https://digitalcommons.lsu.edu/gradschool_theses/3046

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/3046?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3046&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 

UNDERSTANDING PHOSPHORUS DYNAMICS OF TWO ALLUVIAL SOILS 

GROWN WITH CORN AT DIFFERENT PHOSPHORUS RATES 

 

 

 

 

 

 

 

 

 

 

 
A Thesis 

 

Submitted to the Graduate Faculty of the 

Louisiana State University and 

Agriculture and Mechanical College 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

 

in 

 

The School of Plant, Environmental, and Soil Sciences 

 

 

 

 

 

 

 

by 

Marilyn S. Dalen 

B.Sc. Agri., Visayas State University, Leyte, Philippines, 2000 

December 2012 

 

 

 

 



ii 
 

Acknowledgements  

I would like to express my utmost gratitude to Dr. Brenda Tubana, my advisor for 

her valuable assistance in the preparation and completion of this study and for the 

sincerity and encouragement that I will treasure.   

I would also like to thank my committee members; Dr. Jim Wang and Dr. Henry 

Mascagni, Jr. for their appreciated comments and suggestion to improve this manuscript.  

To my soil fertility group: Dr. Jasper Teboh, Yumiko Kanke and Dr. Josh Lofton thank 

you for extending all your help and for fun memories in the field and laboratory works. 

Also, thank you to Dr. Syam Dodla, Tamer Elbana, Sara Nuss, and Chelliah Navin for 

assisting me in the laboratory analysis. 

 To my dearest husband Ian Dalen, who has been my inspiration my deepest 

gratitude for your love, support and understanding as I fulfill my dreams in my chosen 

profession. To my family back home, thank you for your constant guidance, 

encouragement and support despite the distance. Thank you also to all our Filipino 

friends for making our stay memorable. 

 Above all, thank you LORD for all your guidance and blessings. 

 

 

  



iii 
 

Table of Contents 

Acknowledgements..............................................................................................................ii  

List of Tables...................................................................................................................... iv 

List of Figures..................................................................................................................... v 

Abstract ............................................................................................................................. vii 

Chapter 1. Introduction………………………….…………………………………….…. 1 

 

Chapter 2. Influence of Phosphorus Rates on Growth and Yield of Corn Grown on Two 

Alluvial Soils of Louisiana…….......................................................................................... 7 

 2.1 Introduction …........................................................................................................ 7 

 2.2 Materials and Methods……………....................................................................... 11  

 2.2.1 Site description, soil collection and preparation………………………....... 11 

 2.2.2 Greenhouse experiment…………………………………………………… 13 

 2.2.3 Laboratory analysis………………………………………………………... 15 

  2.2.3.1 Soil analysis………………………………………………….…. 15 

  2.2.3.2 Plant analysis………………………………………………...…. 16 

2.2.4 Data analysis…………………………………………………………….… 17 

 2.3 Results and Discussion ......................................................................................... 17 

 2.3.1 Soil physical and chemical properties of the two alluvial soils…………… 17 

 2.3.2 Corn response to P fertilization…………………………………………… 21 

 2.3.3 Mehlich-3 and Bray-2 soil tests for extractable phosphorus……………… 24 

 2.4 Conclusions ........................................................................................................... 28  

 2.5 References.............................................................................................................. 29 

Chapter 3. Influence of Phosphorus Rate on Changes on Phosphorus Functional Fractions 

of Two Louisiana Alluvial Soils………………...............................................................  33 

 3.1 Introduction ….....................................................................................................   33  

 3.2 Materials and Methods.........................................................................................   36  

 3.2.1 Soil samples……………………………………………………………….  36 

 3.2.2 Inorganic phosphorus fractionation……………………………………….  36 

 3.2.3 Total phosphorus analysis…………………………………………………  38 

 3.2.4 Data analysis………………………………………………………………  38 

 3.3 Results and Discussion ......................................................................................... 38 

 3.3.1 Inorganic phosphorus……………………………………………………..   38 

 3.3.2 Total P, residual P, and total inorganic P………………………………….  45  

 3.4 Conclusions ........................................................................................................... 49  

 3.5 References.............................................................................................................. 49 

Chapter 4. Conclusions………………………………………………………………….. 52 

Vita……………………………………………………………………………………… 54 



iv 
 

 

List of Tables  

 

Table 2.1. Soil classification, particle size distribution and chemical properties of 

Commerce silt loam and Perry clay soils………………………………………………... 18  

 

Table 2.2. Soil pH and Mehlich 3 extractable P, K, Ca, Mg of Commerce sl and Perry 

clay at 30 days after lime and P application (30 DAP), and at harvest of 

corn……………………………………………………………………………………….19 

Table 2.3. Effect of different phosphorus fertilizer rates on plant height (cm) at  

V8, V12, and tasseling stage of corn……………………………………………………. 21 

 

Table 3.1. Distribution of inorganic phosphorus fractions of Commerce silt loam and 

Perry clay at 30 days after P fertilizer 

application……………………………………………………………………………….. 42 

 

Table 3.2. Distribution of inorganic phosphorus fractions of Commerce silt loam and 

Perry clay after harvest of corn………………………………………………………….. 42 



v 
 

List of Figures 

 

Figure 2.1. Major land resource areas of Louisiana (Soil Survery Staff, 2008).   

Perry clay soil was obtained from a corn field near Monroe (a) while Commerce  

silt loam soil was collected from the LSU AgCenter Northeast Research  

Station in St. Joseph (b)…………………………………………………………………. 12 

 

Figure 2.2. Treatment establishment in potted Commerce sl and Perry clay soils:  

(A) pre-potted soil, (B, C) removal of the top 15 cm soil, (D) fertilizer application, (E) 

mixing and (F) re-potting treated soil…………………………………………………… 14 

 

Figure 2.3. Total biomass of corn grown on Commerce silt loam and Perry clay soils in 

response to different phosphorus fertilizer rate…………………………………………. 22 

 

Figure 2.4. Grain yield of corn grown on Commerce silt loam and Perry clay soils in 

response to different phosphorus fertilizer rate………………………………………..... 23 

Figure 2.5. Grain P uptake of corn grown on Commerce silt loam and Perry clay soils in 

response to different phosphorus fertilizer rate……………………………………….… 23 

Figure 2.6. Relationship of P fertilizer rate and Mehlich-3 extractable P 30 days after P 

application (A) and at harvest (B) for both Perry clay and Commerce silt loam soils….. 25 

 

Figure 2.7. Relationship of P fertilizer rate and Bray-2 extractable P 30 days after P 

application (A) and at harvest (B) for both Perry clay and Commerce silt loam soils….. 26 

 

Figure 3.1. Sequential fractionation scheme for inorganic phosphorus (Zhang and  

Kovar, 2000)…………………………………………………………………………….. 37 

 

Figure 3.2.  Inorganic phosphorus pools of Commerce sl and Perry clay soils before P 

fertilizer application…………………………………………………………………...… 43 

Figure 3.3. Inorganic phosphorus pools of Commerce sl as influenced by different 

phosphorus rate at 30 days after application…………………………………………….. 43 

Figure 3.4. Inorganic phosphorus pools of Commerce sl as influenced by different 

phosphorus application rate at harvest…………………………………………………... 44 

Figure 3.5. Inorganic phosphorus pools of Perry clay as influenced by different 

phosphorus rate at 30 days after application………………………………………….…. 44 

Figure 3.6. Inorganic phosphorus pools of Perry clay as influenced by different 

phosphorus application rate at harvest………………………………………………..…. 45 

Figure 3.7. Total inorganic phosphorus, residual P and total P of Commerce sl as 

influenced by different phosphorus application rate at 30 days after application……… 47 



vi 
 

Figure 3.8. Total inorganic phosphorus, residual P and total P of Commerce sl as 

influenced by different phosphorus application rate at harvest………………………… 47 

 

Figure 3.9. Total inorganic phosphorus, residual P and total P of Perry clay as influenced 

by different phosphorus application rate at 30 days after application………………….. 48 

 

Figure 3.10. Total inorganic phosphorus, residual P and total P of Perry clay as 

influenced by different phosphorus application rate at harvest………………………… 48 

 

 

  



vii 
 

Abstract 

 

There is little information documented on the influence of soil properties on P 

availability of Louisiana alluvial soils thus this pot experiment was conducted in 2011 to: 

1) evaluate the effect of P fertilizer rate on growth and development of corn grown on 

Perry clay and Commerce sl soils, 2) relate soil test P values using Mehlich-3 and Bray-2 

procedures with yield, total biomass, and P uptake of corn, and 3) identify the soil 

properties that influence P partitioning into functional fractions of two alluvial soils. 

Different P fertilizer rates (0, 34, 67, 101 and 134 kg P2O5 ha
-1

) were applied, replicated 

four times and arranged in a randomized complete block design. After 30 days, corn was 

planted and grown until maturity. Mehlich-3 extractable-P, Bray-2, total-P and Pi 

fractions (labile-P, Al-P, Fe-P, reductant-P, and Ca-P) of soil samples collected at 30 

DAP and at harvest were quantified.  

The Bray-2 P values were about six times higher than Mehlich-3 P values for 

Commerce sl while for Perry clay, the amounts of P extracted by these two procedures 

were very similar (1:1 ratio). Both Bray-2 and Mehlich-3 extractable-P of both soils 

increased with increasing P rate. Commerce sl and Perry clay soils tested low to medium 

for Mehlich-3 extractable-P but responded differently with the application of P fertilizer. 

Grain yield of corn grown on Perry clay significantly responded to P rate but not in 

Commerce sl which was testing very high for Bray-2 extractable-P. The applied P 

fertilizer was transformed into Ca-P for Commerce sl while Perry cl transformed into Fe- 

and reductant-P.  Overall, the labile- and Al-P at 30 DAP increased with increasing P 

rate. With time across P rates, both soils showed build-up of less readily-available 

reductant-P. For total-P, residual-P and total-Pi components, Commerce sl and Perry clay 
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differed significantly (P<0.05) at both 30 DAP and harvest; while total-P and residual-P 

of both soils were not affected. Refinement of soil test P prediction should be pursued 

such that P fertilizer recommendations will not be based solely on P soil test.  
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Chapter 1. Introduction 

Corn (Zea mays L.) is an important cereal crop which ranks the third after wheat 

and rice in the world (David and Adams, 1985). Corn is grown widely in many countries 

of the world; the US is, by far, the largest producer of corn in the world. According to the 

USDA World Agricultural Outlook Board and World Agricultural Supply and Demand 

Estimates (updated August 2012), corn is the primary US feed grain, accounting for more 

than 90 % of total feed grain production and use. Corn is also processed into a multitude 

of food and industrial products including starch, sweeteners, corn oil, beverage and 

industrial alcohol, and fuel ethanol (USDA-ERS, 2012). The average yield in the US for 

2011 is estimated at 9.2 Mg ha
-1

 and the area harvested for grain is estimated at 34 

million ha (USDA-NASS, 2011). Corn is grown over 400,000 farms in the US including 

the state of Louisiana.  

In Louisiana, corn is becoming an important crop commodity and currently 

cultivated in areas previously grown to cotton. According to USDA-NASS report in 

2011, more than 200,000 ha were planted to corn in the state with an average yield of >8 

Mg ha
-1

. The gross value of Louisiana corn production in 2011 was $452.6 million. Corn 

is produced in twenty five (25) parishes in Louisiana where majority is located in 

northeast Louisiana. Soils in the Mississippi, Arkansas, and Ouachita River alluvial 

plains constitute one of the seven distinct soil areas in Louisiana commonly under crop 

production occupying approximately more than 2 million ha.  

Alluvial soils contain a unique group of soils. Soil texture varies dramatically 

across the state of Louisiana. Sorting of the sediments during deposition, together with a 

diverse mineralogy, have resulted in a considerable differences in the deposits. The rich 

sediments deposited developed into soils that are fertile, productive and able to support 
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crops like soybeans, corn, cotton, wheat, sugarcane and many others. However, Louisiana 

is also a state of abundant rainfall. With most areas of the state receiving 125-150 

centimeter (cm) of precipitation annually, nutrients can be readily leached out of the root 

zone, causing poor soil fertility (Weindorf, 2008). Furthermore, the use of cultural 

practices such as excessive tillage resulted in the depletion of organic matter in the soils 

and consequently in a loss of natural fertility. According to Mascagni et al. (2007), P 

deficiency symptoms on corn seedlings are commonly seen and are most pronounced on 

the sandy loam and silt loam Mississippi River alluvial soils with organic matter levels of 

0.5 to 1.0 percent such as Commerce silt loam soil but rarely occur on the finer-textured 

silty clay and clay soils.  

For the year 2012, farmers expected to plant corn on more than 230,000 ha to 

increase production. Corn production area is likely to continue to increase in the next 

years to sustain the needs for corn grain-based food, feeds, and ethanol production 

(USDA-ERS, 2012). With the increasing demand and continuous planting of corn in the 

same size area, farmers should maintain soil productivity to maximize yield potential. 

Some of the major causes of low corn yield are declining soil fertility and insufficient use 

of fertilizers resulting in severe nutrient depletion of soils (Buresh et al., 1997). Corn 

requires adequate supply of nutrients particularly nitrogen (N), phosphorus (P), and 

potassium (K) for good growth and high yield. Corn yields benefit from a robust soil 

fertility program, including optimization of macronutrients to provide a balanced nutrient 

supply for long term production. 

Phosphorus is one of the most important life-supporting elements on Earth. It is 

one of the three crucial nutrients for plant growth (N, P, and K) which are fundamental 
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for modern farming and critical for global food security (Ulrich et al., 2009). It is an 

essential nutrient for all living organisms and indispensable because no other element can 

replace it in its vital role in many physiological and biochemical processes (Syers et al., 

2008). Thus, P is essential for the general health and vigor of all plants.  

Phosphorus fertilizers are frequently applied to ensure optimal P nutrition of 

crops. Plants require adequate P from the very early stages of growth for optimum crop 

production (Grant et al., 2001). Studies in Ontario have shown that corn grain yield was 

strongly affected by P supply and tissue P concentration in the leaf four (L4) to leaf five 

(L5) stage, rather than by P concentration later in growth (Barry and Miller, 1989; 

Lauzon and Miller, 1997). The importance of P as yield limiting factor in many Nigerian 

soils is also well established (Adepetu, 1993).  

Many agricultural systems in which the application of P fertilizers to the soil is 

necessary to ensure plant productivity, but the recovery of applied P by crop plants in a 

growing season is very low (10-30%), because in the soil more than 80% of the P 

becomes immobile and unavailable for plant uptake because of adsorption, precipitation, 

or conversion to the organic form (Tisdale et al., 1993; Holford, 1997).  

In most soils, inorganic phosphorus (Pi) occurs at fairly low concentrations in the 

soil solution a large proportion of it is more or less strongly held by soil minerals. 

Phosphate ions can indeed be adsorbed onto positively charged minerals such as Ca, Fe 

and Al oxides (Hinsinger, 2001; Tiessen, 1998). According to Karaman et al. (2001) soil 

physical and chemical characteristics greatly affect P nutrition of plants. Among these 

are: (1) type of parent material from which the soil is derived; (2) degree of weathering; 
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and (3) climatic conditions. In addition, soil P levels are affected by erosion, crop 

removal and P fertilization. 

Due to low concentration and poor mobility of plant-available P in soils, proper 

applications and management of chemical P fertilizers are needed to improve crop growth 

and yield. Furthermore, the response of corn plant to application of P fertilizers varies by 

variety and growing conditions, and also depends on the availability of other essential 

nutrients (Onasanya et al., 2009).The reserves of P in the world are finite and are 

gradually being depleted (Tiessen, 1995) thus there is a need to develop agricultural 

systems based on meeting minimum P requirements for crops. Soil P must be managed at 

concentrations that allow for good crop production.  

The soil P concentration that correlates with P bioavailability is the greatest 

determinant of the balance between adequate soil P fertility and offsite P escape. In this 

regard, soil testing is likely the best management tool available to determine the need for 

P fertilization and to ensure that soils has enough supply of P to optimize crop 

production. Among the methods that were developed to test soil for crop available P 

include Olsen, (Olsen et al., 1954), Bray (Bray and Kurtz, 1945) and Mehlich-3 

(Mehlich, 1984). Each test method has unique characteristics and may have wide 

different interpretation index. For example, at a given soil test level the interpretation 

may be optimum for one test, but maybe interpreted as low or high for another test 

(Sawyer and Mallarino, 1999). Usually, three types of categories are used regarding soil 

test values: low, medium, and high. A low soil test value offers a high probability of 

response to added fertilizer. A medium soil test value offers a medium probability of 

response from added fertilizer and a high soil test value exhibits a low probability of 
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getting a response (Dahnke and Olson, 1990). According to Mallarino (2009), 

interpretations and recommendations vary among states of the region which can be 

attributed to differences in soil properties and cropping systems. The interpretations and 

recommendations differ even with similar soil-test calibration data because the 

philosophy and assumptions of those making the recommendations also differ across 

states. 

With the adoption of Mehlich-3 procedure by LSU AgCenter’s Soil Testing and 

Plant Analysis Laboratory (STPAL), it is essential to ensure the validity of this soil test 

based on correlations with Bray-2 procedure. In 2008, multiple P field calibration studies 

were established at different locations in Louisiana using corn and soybean as test crops. 

Based on yield response curve with soil test P value established from these calibration 

field trials, the critical P level for soils in Louisiana was set at 35 mg kg
-1

 (Tubana et al., 

2011). They further categorized Mehlich-3 soil test values into the following:  <10 ppm is 

considered very low, 11-20 ppm is low, 21-35 ppm is medium and >36 ppm is high. 

However, there is a difference in soil test interpretation between Mehlich-3 and Bray-2 

soil test values for some soils in this corn-growing region in Louisiana. A very good 

example is the soil test calibration data for Commerce sl in the upper Mississippi River 

alluvial plain. For this soil type, the Mehlich-3 soil test P value is currently interpreted as 

low while its Bray-2 P soil test P value is categorized as very high. There is no current 

explanation or documentation for such inconsistency in soil test interpretation thus this 

study was established to: 1) evaluate the effect of P fertilizer rate on growth and 

development of corn grown on Perry clay and Commerce sl soils, two alluvial soils of 

Louisiana which are acidic and testing low to medium for P using Mehlich-3 procedure, 
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and 2) relate soil test P values using Mehlich-3 and Bray-2 procedures with yield, total 

biomass, and P uptake of corn. 

Furthermore, there is little information on the influence of soil properties on P 

availability for Louisiana alluvial soils particularly on P availability. Thus, this study was 

also conducted to identify the soil properties that influence P partitioning into functional 

fractions of two alluvial soils in Louisiana. To quantify Pi and Po (organic phosphorus) 

compounds, different sequential chemical P fractionation schemes have been developed 

(Chang and Jackson, 1957; Pratt and Garber, 1964; Williams et al., 1971; Hedley et al., 

1982; Zhang and Kovar, 2000). Sequential extraction procedures utilize the ability of 

various chemical reagents to selectively solubilize the Al, Fe, or Ca phosphate phases 

contained in the soil. Although imperfect separation may exist, it has been shown that 

with careful design and interpretation chemical fractionation procedures can be very 

useful in revealing the controlling phases of soil P dynamics (Sui et al., 1999; Delgado 

and Torrent, 2000; Maguire et al., 2000). Also, the facts on P fractionation methodologies 

are also significant for accurate interpretation of P chemistry/fertility and for making 

nutrient management decisions. 
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Chapter 2. Influence of Phosphorus Rates on Growth and Yield of Corn Grown on 

Two Alluvial Soils of Louisiana  

 

 

2.1 Introduction 

Corn (Zea mays L.) is an important cereal crop which ranks the third after wheat 

and rice in the world (David and Adams, 1985). Corn is grown widely in many countries 

of the world; the US is, by far, the largest producer of corn in the world. According to the 

USDA World Agricultural Outlook Board and World Agricultural Supply and Demand 

Estimates (updated August 2012), corn is the primary US feed grain, accounting for more 

than 90 % of total feed grain production and use. Corn is also processed into a multitude 

of food and industrial products including starch, sweeteners, corn oil, beverage and 

industrial alcohol, and fuel ethanol (USDA-ERS, 2012). Corn for grain production is 

estimated at 310 billion kg. The average yield in the US for 2011 is estimated at 9.2 Mg 

ha
-1

 and the area harvested for grain is estimated at 34 million ha (USDA-NASS, 2011). 

Corn is grown over 400,000 farms in the US including the state of Louisiana.  

In Louisiana, corn is becoming an important crop commodity and currently 

cultivated in areas previously grown to cotton. Corn is produced in twenty five (25) 

parishes in Louisiana where majority is located in northeast Louisiana. Soils in the 

Mississippi, Arkansas, and Ouachita River alluvial plains constitute one of the seven 

distinct soil areas in Louisiana commonly under crop production occupying 

approximately more than 2 million ha. According to USDA-NASS report in 2011, more 

than 200,000 ha were planted to corn in the state with an average yield of >8 Mg ha
-1

. 

The gross value of Louisiana corn production in 2011 was $452.6 million; substantially 

higher than $282.7 million attained in 2010 due to increased harvested areas, increased 
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yields and significantly higher grain prices (LSU AgCenter, 2011). For the year 2012, 

farmers expected to plant corn on more than 230,000 ha to increase production. Corn 

production area is likely to continue to increase in the next years to sustain the needs for 

corn grain-based food, feeds, and ethanol production (USDA-ERS, 2012). With the 

increasing demand and continuous planting of corn in the same size area, farmers should 

maintain soil productivity to maximize yield potential. Some of the major causes of low 

corn yield are declining soil fertility and insufficient use of fertilizers resulting in severe 

nutrient depletion of soils (Buresh et al., 1997). Corn requires adequate supply of 

nutrients particularly nitrogen (N), phosphorus (P), and potassium (K) for good growth 

and high yield. Corn yields benefit from a robust soil fertility program, including 

optimization of macronutrients to provide a balanced nutrient supply for long term 

production. 

Phosphorus is one of the most important life-supporting elements on Earth. It is 

one of the three crucial nutrients for plant growth (N, P, and K) which are fundamental 

for modern farming and critical for global food security (Ulrich et al., 2009). It is an 

essential nutrient for all living organisms and is indispensable because no other element 

can replace it in its vital role in many physiological and biochemical processes (Syers et 

al., 2008). Thus, P is essential for the general health and vigor of all plants. Some specific 

growth factors that have been associated with P are: stimulated root development, 

increased stalk and stem strength, improved flower formation and seed production, more 

uniform and earlier crop maturity, increased N-fixing capacity of legumes, improvements 

in crop quality, and increased resistance to plant diseases (Griffith, 1999). 
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Phosphorus fertilizers are frequently applied to ensure optimal P nutrition of 

crops. Plants require adequate P from the very early stages of growth for optimum crop 

production (Grant et al., 2001). Studies in Ontario have shown that corn grain yield was 

strongly affected by P supply and tissue P concentration in the L4 to L5 stage, rather than 

by P concentration later in growth (Barry and Miller, 1989; Lauzon and Miller, 1997). 

The importance of P as yield limiting factor in many Nigerian soils is also well 

established (Adepetu, 1993).  

Many agricultural systems in which the application of P fertilizers to the soil is 

necessary to ensure plant productivity, but the recovery of applied P by crop plants in a 

growing season is very low (10-30%), because in the soil more than 80% of the P 

becomes immobile and unavailable for plant uptake because of adsorption, precipitation, 

or conversion to the organic form (Tisdale et al., 1993; Holford, 1997). Due to low 

concentration and poor mobility of plant-available P in soils, proper applications and 

management of chemical P fertilizers are needed to improve crop growth and yield. 

Furthermore, the response of corn plant to application of P fertilizers varies by variety 

and growing condition in specific locations, and also depends on the availability of other 

essential nutrients (Onasanya et al., 2009). 

The reserves of P in the world are finite and are gradually being depleted 

(Tiessen, 1995) thus there is a need to develop agricultural systems based on meeting 

minimum P requirements for crops. Soil P must be managed at concentrations that allow 

for good crop production. However, the soil P concentration that correlates with P 

bioavailability is the greatest determinant of the balance between adequate soil P fertility 

and offsite P escape. In this regard, soil testing is likely the best management tool 
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available to determine the need for P fertilization and to ensure that soils has enough 

supply of P to optimize crop production.  

Among the methods that were developed to test soil for crop available P include 

Olsen, (Olsen et al., 1954), Bray (Bray and Kurtz, 1945) and Mehlich-3 (Mehlich, 1984). 

Each test method has unique characteristics and may have wide different interpretation 

index. For example, at a given soil test level the interpretation may be optimum for one 

test, but maybe interpreted as low or high for another test (Sawyer and Mallarino, 1999). 

Usually, three types of categories are used regarding soil test values: low, medium, and 

high. A low soil test value offers a high probability of response to added fertilizer. A 

medium soil test value offers a medium probability of response from added fertilizer and 

a high soil test value exhibits a low probability of getting a response (Dahnke and Olson, 

1990). According to Mallarino (2009), interpretations and recommendations vary among 

states of the region which can be attributed to differences in soil properties and other 

production conditions across states. The interpretations and recommendations differ even 

with approximately similar crop response and soil-test calibration data because the 

philosophy and assumptions of those making the recommendations also differ across 

states. 

With the adoption of Mehlich-3 procedure by LSU AgCenter’s Soil Testing and 

Plant Analysis Laboratory (STPAL), it is essential to ensure the validity of this soil test 

based on correlations with Bray-2 procedure. In 2008, multiple P field calibration studies 

were established at different locations in Louisiana using corn and soybean as test crops. 

Based on yield response curve with soil test P value established from these calibration 

field trials, the critical P level for soils in Louisiana was set at 35 mg kg
-1

 (Tubana et al., 
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2011). They further categorized Mehlich-3 soil test values into the following:  <10 ppm is 

considered very low, 11-20 ppm is low, 21-35 ppm is medium and >36 ppm is high. 

However, there is existing disagreement with soil test interpretation between Mehlich-3 

and Bray-2 soil test values for some soils in this corn-growing region in Louisiana. A 

very good example of this soil type is the Commerce silt loam (sl) in the upper 

Mississippi River alluvial plain. For this soil type, the Mehlich-3 soil test P value is 

currently interpreted as low while its Bray-2 P soil test P value is categorized as very 

high. There is no current explanation or documentation for such inconsistency in soil test 

interpretation thus this study was establish to: 1) evaluate the effect of P fertilizer rate on 

growth and development of corn grown on Perry clay and Commerce sl soils, two 

alluvial soils of Louisiana which are acidic and testing low to medium for P using 

Mehlich-3 procedure, and 2) relate soil test P values using Mehlich-3 and Bray-2 

procedures with yield, total biomass, and P uptake of corn. 

2.2 Materials and Methods 

 

2.2.1 Site Description, Soil Collection and Preparation. The soils used for the 

experiment were collected from two locations in northeast Louisiana: St. Joseph in 

Tensas and Monroe in Ouachita Parish (Figure 2.1). Soils from Tensas Parish consist of 

alluvium deposited by floodwaters from Mississippi River. The Commerce (sl) in St. 

Joseph (Latitude 31°, 56’, 45” N; Longitude 91°, 13’, 28”) consists of deep, somewhat 

poorly drained, moderately slowly permeable soils that formed in loamy alluvial 

sediments. It is classified as thermic Fluvaquentic Endoaquepts. 
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Figure 2.1 Major land resource areas of Louisiana (Soil Survery Staff, 2008).  Perry clay 

soil was obtained from a corn field near Monroe (a) while Commerce silt loam soil was 

collected from the LSU AgCenter Northeast Research Station in St. Joseph (b). 

 

On the other hand, the Perry clay soil collected from Monroe (Latitude 32°, 39’, 7.83” N; 

Longitude 92°, 4’, 7.81” W) consists of very deep, poorly drained, very slowly permeable 

soils that formed by clayey alluvium deposition by floodwaters from Arkansas River and 

classified as thermic Chromic Epiaquerts. 

An area of about 100 m
2
 was selected from each location where bulk soil samples 

were collected from the top15 cm layer. The soils were mixed, air-dried, ground and 

(a) Monroe

(b) St. Joseph
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sieved to remove roots and plant debris before potting. Prior to potting, composite 

samples were taken from each soil. 

2.2.2 Greenhouse Experiment. The greenhouse experiment was conducted at 

Louisiana State University campus in Baton Rouge from April 8, 2011 to July 26, 2011. 

For each soil, five rates of P2O5 (0, 34, 67, 101 and 134 kg ha
-1

) were broadcast-applied. 

Treatments were replicated four times and arranged in a randomized complete block 

design. 

Soil weight was adjusted based on moisture content of air-dried soils such that 

each plastic pot (diameter = 35.6 cm and height = 22.9 cm) was filled with 24 kg and 22 

kg soils of Perry clay and Commerce sl soils, respectively. Phosphorus fertilizer was 

applied as Triple Superphosphate (TSP, 46% P2O5) at rates of 0, 0.78, 1.56, 2.34, and 

3.11 g pot
-1

 for Perry clay and 0, 0.72, 1.43, 2.15, 2.86 g pot
-1

 for Commerce sl soils. 

These rates corresponded to 0, 34, 67, 101 and 134 kg P2O5 ha
-1

. Based on soil test 

recommendation, K2O was applied at a rate of 34 kg ha
-1

 (0.55 g pot
-1

) for Commerce sl 

and 67 kg K2O ha
-1

 (1.19 g pot
-1

) for Perry clay as muriate of potash (KCl, 60% K2O). 

Lime application was also recommended at the rate of 1.12 Mt ha
-1

 and applied as 

calcium carbonate (CaCO3). Lime, TSP and KCl were applied one month before planting.  

Soil from each pot was transferred to a 20-L capacity plastic bin; P including the 

recommended rates of lime and KCl were thoroughly mixed with the soil. Soil was then 

placed back in the corresponding pot (Figure 2.2). Nitrogen fertilizer was applied at 200 

kg ha
-1

 in split in the form of urea ammonium nitrate (UAN, 32% N) at 7 and 45 days 

after planting  to ensure adequate supply of N.  
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Figure 2.2. Treatment establishment in potted Commerce sl and Perry clay soils: (A) pre-

potted soil, (B, C) removal of the top 15 cm soil, (D) fertilizer application, (E) mixing 

and (F) re-potting treated soil. 
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The corn hybrid variety used was Pioneer 33R81. Three (3) seeds were sown per 

pot and at about V2 leaf growth stage, plants were thinned to one per pot. Water was 

maintained at field capacity until maturity. Plant height was measured at V8, V12, and 

tasseling growth stages. At harvest, whole plants were cut off at the soil surface. Each 

plant was partitioned into ear, husk, and stover, and dried in the oven for 48 hours at 

65
o
C. Ear weight, grain weight, and number of grains per ear were determined for the 

yield and yield components. Total biomass and root were also weighed per pot.  

Soils were sampled from initial, pre-planting and harvest for routine analysis and 

P sequential fractionation.  

 

2.2.3   Laboratory Analysis 

2.2.3.1 Soil Analysis 

Soil samples were dried, ground and passed through a 2 mm sieve for the 

following physical and chemical analysis.  

2.2.3.1.a. Soil Particle Analysis (Gee and Bauder, 1986). Initial soil samples were 

determined for particle size distribution following pipette method using sodium 

hexametaphosphate (SHMP, 0.5% dispersing solution). 

2.2.3.1.b. Soil pH (1:1 water). Ten (10) grams soil sample was weighed and added with 

10 mL distilled water. Samples were shaken for 1 hour in a reciprocal shaker and sit 

undisturbed for 1 hour. The soil pH was measured using pH electrode meter.   

2.2.3.1.c. Organic matter content (Walkley-Black, 1945). One (1) gram of soil was 

weighed and added with 10 ml 1 N K2Cr2O7 and 20 ml concentrated sulfuric acid and 
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stand for 2 hours. Ninety (90) ml water was added and equilibrated for 16 hours and 

analyzed using colorimeter. 

2.2.3.1.d. Extractable P, K and other elements. Soils were extracted by Mehlich-3 

procedure (Mehlich, 1984). Two (2) grams of soil was weighed and 20 mL of extractant 

(dilute acid-fluoride-EDTA solution of pH 2.5) was added. The soil suspensions were 

shaken for 5 minutes using reciprocal shaker set at high speed. Solution was filtered 

using no. 42 Whatman filter paper and analyzed by Inductively-Coupled Plasma ICP-

OES (SPECTRO CYRIOSCCD, Spectro Analytical Instruments, Inc., Fitchburg, MA). 

2.2.3.1.e. Micronutrients by DTPA buffered at pH 7.3 (Lindsay and Norvell ,1978). 

Available metals were determined by using diethylene-triamine-pentacetic acid (DTPA) 

buffered at pH 7.3. Air-dried soil (10 g) was shaken with 20 mL of DTPA solution for 2 

h. Extracts were collected by filtration through Whatman No.42 filter paper and analyzed 

for Zn, Cu, Mn, and Fe concentrations. 

2.2.3.1. f. Extractable Phosphorus by Bray 2 Colorimetry method (Bray and Kurtz, 

1945). Two (2) grams of soil was weighed and 20 mL of Bray-2 extractant (ammonium 

fluoride-HCl solution) was added. The soil suspensions were shaken for 5 minutes using 

reciprocal shaker set at high speed. Solution was filtered using no. 42 Whatman filter 

paper and analyzed for P by colorimetry ascorbic acid method using spectrophotometer 

with absorbance of 882 nm. 

2.2.3.2 Plant Analysis 

Plant biomass was oven-dried and ground for total nutrient uptake determination. 

Biomass was digested by Nitric acid – Hydrogen peroxide method. A 0.5 gram plant 

tissue was weighed in kimwipes and placed into the digestion tube. Five (5 mL) of nitric 
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acid (HNO3, 67-70%) was added, ensuring that the acid washes any plant tissue on the 

side of the digestion tube down to the bottom and letting the samples stand undisturbed 

for 50 minutes. This time the digestion block was turned on to heat up to between 152 

and 155
o
C. After 50 minutes, the sample was mixed using vortex mixer before placing 

the tube in the digestion block for 2-3 minutes to initiate vigorous boiling. Once the 

brown fumes appeared, tube was removed from the block and allowed to cool for 10 

minutes. To each tube, 3 mL of hydrogen peroxide (H2O2) was added and placed back on 

the digestion block for 2.75 hours (2 hours and 45 minutes). After digestion, the samples 

were removed from the digestion block and were allowed to cool before transferring the 

digest to 15 mL centrifuge tubes making to a volume of 12.5 with deionized water. The 

digest solution was filtered using no. 42 Whatman for ICP multi-element analysis. 

2.2.4  Data Analysis 

Analysis of variance was conducted using PROC MIXED in SAS (SAS, 2010) to 

determine the significance of differences among measured variables for each soil. The 

least square means test was performed to compare treatment means using the LSMEANS 

PDIFF option. The linear model between P extracted and P added was determined for 

both Bray-2 and Mehlich-3 procedure. 

2. 3 Results and Discussion 

2.3.1 Soil physical and chemical properties of the two alluvial soils 

The particle size distribution and chemical properties of the two alluvial soils are 

summarized in Table 2.1. Both soils had an initial pH value of <5.5 which is moderately 

acidic thus lime was applied at the rate of 1.12 Mt ha
-1

 as CaCO3 to raise the pH by at 

least 1 unit.  



18 
 

Table 2.1. Soil classification, particle size distribution and chemical properties of 

Commerce silt loam and Perry clay soils. 

  Commerce silt loam Perry clay 

Classification Fine-silty,  mixed, superactive, 

nonacid, thermic Fluvaquentic 

Endoaquepts 

Very-fine, clayey, smectitic, 

moderately acid, thermic 

Chromic Epiaquerts 

Organic Matter, % 1.20 3.25 

Texture   

           Sand, % 32 6 

           Silt, % 52 36 

           Clay, % 17 58 

pH (1:1 water) 5.40 5.25 

P, mg kg
-1

 24 18 

K, mg kg
-1

 167 250 

Ca, mg kg
-1

 1324 1830 

Mg, mg kg
-1

 294 1526 

S, mg kg
-1

 15.4 28.0 

Fe, mg kg
-1

 70.50 150 

Zn, mg kg
-1

 8.45 4.56 

Cu, mg kg
-1

 1.97 3.20 

Al, mg kg
-1 

Na, mg kg
-1 

Mn mg kg
-1

 

 

0.52 

18.7 

22.2 

2.60 

108 

54.3 

Notes: 

Texture was analyzed using pipette method 

P, K, Ca, Mg, S and Fe was analyzed using Mehlich-3 

Zn and Cu was analyzed using DTPA       

Table 2.2 summarizes soil pH and Mehlich-3 extractable P, K, Ca, and Mg of 

Commerce sl and Perry clay 30 days after lime and P application, and at harvest. The soil 

pH at 30 days after lime application increased to 6.9 for Commerce sl and 5.6 for Perry 

clay. Higher average pH values were recorded at harvest for both Commerce sl (pH 7.4) 

and Perry clay (6.3). Commerce sl has a course texture (32% sand and 52% silt) and 

lower OM (1.2%) compared with Perry cl which has a finer texture (58% clay) and 

higher OM content (3.25%). Soils which contain high clay and OM content are highly 

buffered thus, Perry cl has a higher buffering capacity and increase in pH was smaller 

than with Commerce sl. Correcting pH of cultivated soils is an essential program
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 Table 2.2. Soil pH and Mehlich-3 extractable P, K, Ca, Mg of Commerce sl and Perry clay at 30 days after lime and P application (30 

DAP), and at harvest of corn. 

Soil Type 
P2O5 

Rate 
pH 

 
P 

 
K 

 
Ca 

 
Mg 

  30 DAP Harvest  30 DAP Harvest  30 DAP Harvest  30 DAP Harvest  30 DAP Harvest 

 kg ha
-1

   --------------------------------------------mg kg
-1

----------------------------------------------- 

Commerce sl  0 6.9 a 7.3 a  30.1 d 22.2 d  172 a 135 a  1371 a 1492 a  229 a 214 a 

 34 6.9 a 7.4 a  35.8 c 24.8 d  169 a 135 a  1379 a 1503 a  233 a 213 a 

 67 7.0 a 7.5 a  39.8 b 30.8 bc  179 a 137 a  1412 a 1453 a  237 a 200 a 

 101 7.0 a 7.5 a  42.1 b 35.0 b  159 a 134 a  1262 a 1400 a  213 a 204 a 

 134 6.9 a 7.5 a  47.2 a 41.3 a  160 a 136 a  1340 a 1518 a  227 a 220 a 

 Mean 6.9 7.4  39.0 30.8  168 135  1353 1473  228 210 

Perry clay 0 5.6 a 6.3 a  18.6 d 11.8 a  255 a 194 a  1923 a 1893 a  1344 a 1428 a 

 34 5.6 a 6.3 a  19.3 c 13.7 a  239 b 197 a  1792 b 1995 a  1259 b 1497 a 

 67 5.7 a 6.3 a  25.3 b 15.4 a  254 a 192 a  1957 a 1888 a  1362 a 1404 a 

 101 5.6 a 6.3 a  27.8 b 15.9 a  257 a 204 a  1950 a 2133 a  1369 a 1627 a 

 134 5.7 a 6.4 a  33.1 a 16.0 a  260 a 188 a  1978 a 1890 a  1371 a 1423 a 

 Mean 5.6 6.3  24.8 14.5  253 195  1920 1960  1341 1476 

 Note: Values within a column within soil type with the same letter are not significantly different at P<0.05. 



20 
 

to ensure availability of essential plant nutrients such as P. Phosphorus in soil solution, 

soil pH and buffering capacity are determining factors of plant available P. Morel and 

Hinsinger (1999) reported that in highly P fertilized soils, the P concentration in soil 

solution is high (>1 ppm) and depletion is readily replenished however, replenishment is 

slow if soil solution P is low and soil’s solid phase has a high buffering capacity.  The 

availability of P in the soil depends largely on pH.  

The greatest mobilization occurs at a pH value between 6 and 7. Phosphorus fixation is 

enhanced if soil pH becomes too low (acidic) or too high (alkaline). A study conducted 

by Gudu et al. (2005) showed that lime and P application stimulated the growth of corn 

grown on acid soils of Western Kenya. The combination of the low rate of lime (500 kg 

CaCO3 ha
-1

) and P (10 kg P) was found to be optimum for plant growth (Oluwatoyinbo et 

al., 2005). Lime had significant positive effect on P concentration in plant and actually 

reduced the amount of fertilizer P required for optimum yield. 

At both 30 DAP and  harvest, Perry cl soil had higher Mehlich-3 extractable K, 

Ca, and Mg than Commerce sl (Table 2). On the other hand, Commerce sl soil had 

consistently higher Mehlich-3 extractable P than Perry clay (39 vs. 24.8 mg kg
-1

) for each 

sampling date.  The amount of extractable P, K, and Mg of Commerce sl soil was 

reduced at harvest while slight increase in extractable Ca was noted which can be 

attributed to lime application. Due to nutrient removal by plant, the amount of extractable 

nutrients were expected to decline at the completion of crop cycle. For Perry cl, 

extractable P and K were both reduced but not Ca and Mg.    
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2.3.2 Corn response to P fertilization 

 Corn planted on Commerce sl was generally taller than corn planted on Perry cl. 

At tasselling, Commerce sl recorded an average corn height of 245 cm while Perry clay 

was only 198 cm. There was no clear and consistent effect of P rate on plant height 

measured at V8, V12, and tasseling stage of corn for either soil (Table 2.3). At tasselling 

on Commerce sl, height of corn with P tended to be shorter than corn without P. At the 

highest P rate of 134 kg P2O5 ha
-1

 corn height was significantly lower than that of the 

check (P<0.05). In contrast to earlier study conducted by Ayub et al. (2005), corn plants 

under similar level of applied N responded to P application. Corn plants with P rates of 

80 kg P2O5 ha
-1

 were taller than those which received only 40 kg P2O5 ha
-1

. Heckman et 

al. (2006) reported that based on combined analysis of variance over 51 experimental 

sites in Northeast USA showed than broadcast P application enhanced corn plant height 

at 35 days after planting and at silk emergence. 

Table 2.3. Effect of different phosphorus fertilizer rates on plant height (cm) at V8, V12, 

and tasseling stage of corn. 

Soil Type 
P Rate 

P2O5 kg ha
-1

 

Plant Height (cm) 

V8 V12 Tasseling 

Commerce sl 0 159 a 206 a 254 a 

 34 156 ab 202 a 252 ab 

 67 156 ab 208 a 242 ab 

 101 146 b 180 a 233 ab 

 134 153 ab 194 a 243 b 

 Mean 154 198 244.6 

Perry clay 0 140 a 147 a 176.4 a 

 34 138 a 162 a 202.3 a 

 67 139 a 145 a 187.5 a 

 101 141 a 175 a 205.4 a 

 134 143 a 171 a 217.2 a 

 Mean 140 160 197.8 

Note: Values with the same letter within column within soil type are not significantly 

different at P<0.05. 
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Similar to plant height, total corn biomass was not affected by P rate for either 

soil (Fig. 2.3). Corn grown on Perry cl had higher total biomass than Commerce sl. 

Phosphorus rate significantly affected grain yield of corn grown on Perry clay (P<0.05; 

Fig. 2.4). Based on mean separation procedure, grain yields of the check pot and pots 

which received P were significantly different (P<0.05) where the highest P rate (134 P2O5 

kg ha
-1

) obtained the highest grain yield. However, the increase in grain yield was notably 

not proportionate with P rate. For example, pots which received 34 kg P2O5 ha
-1

 obtained 

higher grain yield than pots which received 67 and 101 kg P2O5 ha
-1

. Grain P uptake for 

both soils showed similar pattern and response to P application as grain yield (Fig. 2.5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Total biomass of corn grown on Commerce silt loam and Perry clay soils in 

response to different phosphorus fertilizer rate. 
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Figure 2.4. Grain yield of corn grown on Commerce silt loam and Perry clay soils in 

response to different phosphorus fertilizer rate.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Grain P uptake of corn grown on Commerce silt loam and Perry clay soils in 

response to different phosphorus fertilizer rate. 
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The probability of crop to respond to fertilizer P is expected to be higher on soils 

testing low in P then declines with increasing soil test P levels. It is important to note that 

even if the soil test P levels are below the set critical P level in a specific region, crop 

response to P application is not always certain.  Heckman et al. (2006) conducted soil test 

calibration studies during 1998 to 1999 at 51 experimental sites in northeastern states. 

Their results showed that only 17 to 47% of those sites with soil test levels below the 

currently used critical P level in the region exhibited positive grain yield response to P 

application. On the other hand, there were sites testing above the critical P level which 

responded as well to P application. For this study, the initial Mehlich-3 extractable P of 

Commerce sl and Perry clay are interpreted as medium and low-P testing soil, 

respectively (Tubana et al., 2011). This indicates that corn planted on Perry should likely 

to respond to P fertilization whereas response of corn grown on Commerce sl should be 

marginal. While the total biomass as a variable showed no response to P for both soils, 

the application of P raised corn grain yield on Perry clay by as much as 200 % with 

respect to grain yield level of the check pot.    

2.3.3 Mehlich-3 and Bray 2 soil tests for extractable phosphorus  

 Figures 2.6 and 2.7 summarize the Mehlich-3 and Bray-2 extractable P of 

Commerce sl and Perry cl at different P rates at 30 DAP and harvest. There was a 

difference between Mehlich-3 and Bray-2 extractable P on Commerce sl as opposed to 

Perry cl soil. The initial soil test P values of Perry cl were categorized as soil testing very 

low and low for P based on soil test interpretation established using Bray-2 and Mehlich-

3, respectively while Commerce sl was testing very high based on Bray-2 P but low to 

medium using Mehlich-3. On average, Bray-2 P values of Commerce at 30 DAP and 

harvest were 200 and 174 mg kg
-1

 compared with its Mehlich-3 P values of 39 and 31 mg   
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Figure 2.6. Relationship of P fertilizer rate and Mehlich-3 extractable P 30 days after P 

application (A) and at harvest (B) for both Perry clay and Commerce silt loam soils. 
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Figure 2.7. Relationship of P fertilizer rate and Bray-2 extractable P 30 days after P 

application (A) and at harvest (B) for both Perry clay and Commerce silt loam soils. 
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kg
-1

, respectively. The Bray-2 P values were about 6 times higher than Mehlich-3 P 

values for Commerce sl while for Perry cl, the amounts of P extracted by these two 

procedures were very similar (1:1 ratio). Sen-Tran (1990) evaluated six different soil test 

procedures to estimate the available P in 82 Quebec soils. Based on their findings, the 

amounts of P extracted by the Mehlich-3 method were closely related with those 

determined by the Bray-2 for about 80% of the soil population classified as Inceptisols. 

The Bray-2 extracted about 1.3 times the amount obtained by Mehlich-3. For the 

remaining 20% of soil samples (very acidic Spodosols), the Bray-2 extracted much more 

P than the Mehlich-3; the ratio varied from 1.6 to 6.6 times.   

 Both Bray-2 and Mehlich-3 extractable P of both soils increased with increasing P 

rate. With the highest P application rate of 134 kg P ha
-1

, Bray-2 extractable P of 

Commerce sl was raised by as much as 30 mg kg
-1

 at 30 DAP compared with only 18 mg 

kg
-1

 for Perry cl. Smaller increases in Mehlich-3 extractable P were determined for both 

soils having an increase of only 17 mg P kg
-1

 for Commerce sl and 14 mg P kg
-1

 for Perry 

cl. At harvest, there were significant differences among extractable P (P<0.05) for both 

procedures except for Mehlich-3 P of Perry cl soil. Figure 6 shows the linear relationship 

between Mehlich-3 extractable P and added P as P2O5 kg ha
-1

. The linear models indicate 

that for every unit of P applied there was a corresponding increase of 0.12 and 0.11 mg P 

kg
-1

 for Commerce sl and Perry clay soils, respectively. At harvest, there was a different 

pattern of Mehlich-3 extractable P between the two soils such that with time, more P was 

extracted using Mehlich-3 for Commerce sl for every unit of P added (0.14 mg P kg
-1

) 

whereas for Perry cl, smaller amount of extractable P was recorded (0.03 mg P kg
-1

). 

These results were consistent based on the linear model between Bray-2 extractable P and 
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P added for Perry clay except that Commerce sl intercept value (soil test P level at 0 P 

rate) was very high. A significant reduction in extractable P was observed at harvest 

compared with what obtained at 30 DAP (0.026 vs. 0.136 mg P kg
-1

).This might be due 

to higher clay content of Perry cl, as the amount of clay increases in the soil, the P-

sorption capacity increases as well. This is because clay particles have a tremendous 

amount of surface area for which phosphate sorption can take place (Penn et al., 2005). In 

addition, the reduction in both Bray-2 and Mehlich-3 extractable P at harvest is consistent 

with the removal of P by corn uptake.  

 

2.4 Conclusions 

This study evaluated Bray-2 and Mehlich-3-based soil test P interpretations for 

corn on soils in the alluvial plains of Louisiana. Both Commerce sl and Perry cl soils 

were tested to having low to medium Mehlich-3 extractable P but responded differently 

with the application of P fertilizer. Grain yield of corn grown on Perry cl significantly 

responded to P rate. This was not the case for corn grown on Commerce sl. According to 

Bray-2 extraction method, Commerce sl was testing very high for P which was consistent 

to the lack of corn grain yield response to P application. Except for soil organic matter 

and particle size distribution, there were no outstanding differences in physical and 

chemical properties which could have resulted in differential response of corn grown on 

these two soils to P application. Also, there might be possible effect of other growth 

limiting condition or factors that could mask the effect of P application. Different P 

extraction procedures were established to obtain soil test P index suitable for specific 

groups of soil. The recent advancement in analytical procedure allowing analysis of 
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multiple elements using one extraction procedure resulted in the adoption of Mehlich-3 

procedure by many soil testing laboratories.  However, the disagreement between the soil 

test P level and probability of crop response documented in earlier field studies including 

the current pot experiment highlighted the potential limitation of Mehlich-3 procedure in 

gauging plant available P in specific soils. The findings in this study suggest that 

refinement of soil test P prediction should be pursued such that P fertilizer 

recommendations will not be based solely on P soil test. 
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Chapter 3. Influence of Phosphorus Rate on Changes on Phosphorus Functional 

Fractions of Two Louisiana Alluvial Soils  

 

3.1 Introduction 

The total phosphorus (P) content of most surface soils is low, averaging only 

0.6%. This compares to an average soil content of 0.14% nitrogen and 0.83% potassium. 

The P content of soils is quite variable ranging from less than 0.04% as P2O5 in the sandy 

soils of the Atlantic and Gulf coastal plain to over 0.3% in soils of the northwestern 

United States (Griffith, 1999). Soil P exists in inorganic and organic compounds that 

range from ions in solution to very stable inorganic and organic compounds. The 

inorganic P (Pi) compounds are mainly coupled with amorphous and crystalline forms of 

Al, Fe, and Ca. The organic (Po) compounds are associated with rapidly to slowly 

decomposable organic molecules such as nucleic acids, phospholipids, sugar phosphates, 

inositol phosphates, and recalcitrant humic substances (Hedley et al., 1982; Tiessen and 

Moir, 1993; Reddy et al., 1999). 

The concentration of available soil Pi seldom exceeds 10 µM (Bieleski, 1973), 

which is much lower than that in plant tissues where the concentration is approximately 

between 5 to 20 mM (Raghothama, 1999). According to Karaman et al. (2001) soil 

physical and chemical characteristics greatly affect P nutrition of plants. Among these 

are: (1) type of parent material from which the soil is derived; (2) degree of weathering; 

and (3) climatic conditions. In addition, soil P levels are affected by erosion, crop 

removal and P fertilization. The utilization of P fertilizers by crops is generally low (10-

30%), and fixation of P significantly affect P accumulation in the soil (Tisdale et al., 

1993). The low efficiency of plant uptake is the main problem associated with P 
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application. When P input from fertilizer exceeds P output in crop, P accumulation in the 

soil gradually increase over time (Kuo et al., 2005). Due to low concentration and poor 

mobility of plant-available P in soils, proper applications and management of chemical P 

fertilizers are needed to improve crop growth and yield. 

Alluvial soils contain a unique group of soils. Soil texture varies dramatically 

across the state of Louisiana. Sorting of the sediments during deposition, together with a 

diverse mineralogy, have resulted in a considerable differences in the deposits. The rich 

sediments deposited resulted in soils that are fertile, productive and able to support crops 

like soybeans, corn, cotton, wheat, sugarcane and many others. However, Louisiana is 

also a state of abundant rainfall. With most areas of the state receiving 125-150 cm of 

precipitation annually, nutrients can be readily leached out of the root zone, causing poor 

soil fertility (Weindorf, 2008). Furthermore, the use cultural practices such as excessive 

tillage has resulted in the depletion of organic matter in the soils and consequently in a 

loss of natural fertility. According to Mascagni et al. (2007), P deficiency symptoms on 

corn seedlings are commonly seen and are most pronounced on the sandy loam and silt 

loam Mississippi River alluvial soils with organic matter levels of 0.5 to 1.0 percent such 

as Commerce silt loam soil but rarely occur on the finer-textured silty clay and clay soils. 

Mineralogical studies of the Mississippi alluvium indicate that smectite minerals are 

predominant in the clay-size fraction, and secondary amounts of micaceous clays are also 

present (Southern Research Publication, 1970). The sand and silt-size fractions consist 

predominantly of quartz and feldspar. Harrell and Wang (2006) also found out that the 

Mississippi River alluvial soil was generally dominated by smectites (78%) followed by 

kaolinite and clay mica (approximately 10% each). 
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In most soils, Pi occurs at fairly low concentrations in the soil solution a large 

proportion of it is more or less strongly held by diverse soil minerals. Phosphate ions can 

indeed be adsorbed onto positively charged minerals such as Ca, Fe and Al oxides 

(Hinsinger, 2001; Tiessen, 1998). In addition, many cropping systems in which the 

application of P to the soil is necessary to ensure plant productivity, the recovery of 

applied P by crop plants in a growing season is very low, because in the soil more than 

80% of the P becomes immobile and unavailable for plant uptake because of adsorption, 

precipitation, or conversion to the organic form (Holford, 1997). Hence, there is little 

information on P availability on Louisiana alluvial soils differing in soil properties. Thus, 

this study aims to identify the soil properties that influence P partitioning into functional 

fractions of two alluvial soils in Louisiana.  

To quantify Pi and Po compounds, different sequential chemical P fractionation 

schemes have been developed (Chang and Jackson, 1957; Pratt and Garber, 1964; 

Williams et al., 1971; Hedley et al., 1982; Zhang and Kovar, 2000). Sequential extraction 

procedures utilize the ability of various chemical reagents to selectively solubilize the Al, 

Fe, or Ca phosphate phases contained in the soil. Although imperfect separation may 

exist, it has been shown that with careful design and interpretation chemical fractionation 

procedures can be very useful in revealing the controlling phases of soil P dynamics (Sui 

et al., 1999; Delgado and Torrent, 2000; Maguire et al., 2000). Also, the facts on P 

fractionation methodologies are also significant for accurate interpretation of P 

chemistry/fertility and for making nutrient management decisions. 
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3.2 Materials and Methods 

 

3.2.1 Soil samples 

Corn seeds were sown on potted Commerce sl and Perry clay soils treated with 

different P rates (0, 34, 67, 101, and 134 kg P ha
-1

) and grown until harvest. Composite 

soil samples were collected and analyzed for soil pH, organic matter content, Mehlich-3 

extractable nutrients, and soil particle size distribution (Table 1, Chapter 1). Soil samples 

from individual pots were obtained 30 days after P (DAP) application but prior to sowing 

and after harvest. Five (5) sampling points from 0-9 inches were collected for each pot. 

These samples were then mixed, air-dried and processed to pass 2-mm sieve for soil pH, 

Mechlich-3 extractable nutrients, total P and sequential inorganic P fractionation. 

3.2.2 Inorganic Phosphorus fractionation 

Inorganic P sequential fractionation analysis was determined following the 

method by Zhang and Kovar (2000). The method is outlined in Figure 3.1 showing  the 

different solutions (1M NH4Cl, 0.5M NH4F, 0.1M NaOH, 0.3M Na3C3H6O7 + 1M 

NaHCO3 + Na2S2O4, and 0.25M H2SO4) and procedures (shaking or washing 

requirements) to extract labile P (extract A), Al-P (extract B), Fe-P (extract C), reductant 

soluble P (extract D), and Ca-P (extract E) fractions.   

Phosphorus concentration was determined by colorimetry using ascorbic acid 

method (Murphey and Riley, 1962) with some modifications on the determination of the 

reductant-soluble phosphate fraction because of potential interferences from dithionite, 

citrate, iron, and silicon (Weaver, 1974). Phosphorus standards series (0, 0.2, 0.4, 0.6, 

0.8, and 1.0 mg P kg
-1

) was prepared containing the same volume of extracting solution 

as the sample extracts used for colorimetry. The absorbance of the sample solutions was   
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Figure 3.1. Sequential fractionation scheme for inorganic phosphorus (Zhang and Kovar, 

2000). 

 

measured at 882 nm. The concentration of P in the solution was derived from the slope 

and intercept between the P standard series and their absorbance readings such that: 


slope

)int-(
)

mL

P ug
(ion Concentrat

erceptAbsorbanceextract  

The amount of each of the P fractions is calculated using the following equation: 

1.0 g soil in 100 mL centrifuge tube 

50 mL 1 M NH4Cl, shake for 30 min, 

centrifuge 

50 mL 0.5 M NH4F, shake for 1 hour, 

centrifuge, wash with saturated NaCl 

50 mL 0.1 M NaOH, shake for 17 hours, 

centrifuge, wash with saturated NaCl 

40 mL 0.3 M Na3C3O7, 5 mL 1 M NaHCO3, 

1 g Na2S2O4, heat, centrifuge, wash with 

saturated NaCl 

50 mL 0.25 M H2SO4, shake for 1 hour, 

centrifuge, wash with saturated NaCl 

Extract A 

Labile - P 

Extract B 

Aluminum (Al) - P 

Extract C 

Iron (Fe) - P 

Extract D 

Reductant soluble - P 

Extract E 

Calcium (Ca) - P 
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3.2.3 Total Phosphorus Analysis (Microwave Acid Digestion, Inductive Coupled Plasma-

Atomic Emission Spectroscopy, EPA Method 200.7) 

 Soil sample (0.5 g) was weighed and placed in a plastic digestion tube. Ten (10 

mL) of nitric acid (HNO3) was added. Sample was placed in a microwave digester for 40 

minutes at 200°C. Sample was allowed to cool down, transferred to a flask and made to a 

final volume of 250 mL with deionized water. Sample was shaken 3-4 times and allowed 

to stand overnight. About 100 mL solutions was decanted and total P concentration was 

quantified by ICP (Optical Emission Spectrometer, Optima 4300 DV).   

3.2.4 Data Analysis 

Analysis of variance was conducted using PROC MIXED in SAS (SAS, 2010) to 

determine the significance of differences among measured variables for each soil. The 

least square means test was performed to compare treatment means using the LSMEANS 

PDIFF option. 

 

3.3 Results and Discussion 

3.3.1 Inorganic Phosphorus 

The soil Pi fractions quantified in this study included labile P, Al-P, Fe-P, 

reductant-P, and Ca-P which correspond to sequentially extracted NH4Cl-Pi, NH4F-Pi, 

NaOH-Pi, NaHCO3-Pi, and H2SO4-Pi. Kuo (1996) categorized total Pi into active and 

inactive P forms: Al-P, Fe-P and Ca-P consisting the active while occluded, reductant 
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soluble and residual P consisting the inactive P forms. Based on the initial Pi 

fractionation, Commerce sl contained higher amount of Ca-bound P (152 mg kg
-1

) 

compared with 11 mg kg
-1

 of the Perry cl soil (Fig. 3.2). Perry cl has higher amount of 

Fe-P (values) and reductant-P (values) than with Commerce sl. Both soils have low 

amount of labile-P (<5 mg kg
-1

) and Al-P (<10 mg kg
-1

). The total Pi of Commerce sl 

was >200 mg kg
-1

 whereas Perry cl recorded only about 80 mg kg
-1

. The largest 

contributing fraction on Commerce sl was Ca-P with 75% of the total Pi while reductant-

P (40%) and Fe-P (40%) fractions were recorded for Perry cl. Calcium-P is a dominant 

form of inorganic P in high pH soils while Fe and Al hydroxyl phosphates dominate in 

low pH soils. However, Beauchemin et al. (2003) noted that Ca-P can also exist in soils 

of all pH values which agree with the result of this study where large contribution of Ca-

P to the total Pi was observed despite of Commerce sl’s low pH.   

The changes in Pi fractions distribution following P application and after harvest 

of corn for Commerce sl are summarized in Figures 3.3 and 3. 4, respectively.  There 

were significant (P<0.05) changes on labile- and Al-Pi pools in response to P rate at 30 

days after P fertilizer application. An increasing trend in both labile- and Al- P was 

observed with increasing P rate; the highest P application rate (134 kg ha
-1

) obtained the 

highest labile- and Al-P fractions with mean value of 14 mg kg
-1

(Table 3.1). The check 

pot has lower mean values of 11 and 8 mg kg
-1

 for labile-P and Al-P, respectively. On the 

other hand, the Fe-, reductant- and Ca-P fractions showed no significant difference 

between P application rates (P<0.05). At harvest, the labile-, Al- and Fe-P fractions 

decreased to about 60-75% (Figure 3.4). The decreased can be attributed to plant uptake 

and fixation or conversion of these Pi fractions to unavailable Pi forms. For example, the 
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reductant- and Ca-P fractions were increased by 5-10 mg kg
-1

 (Table 3.2). It was also 

evident that the amount of Ca- and reductant-P at harvest was the highest at highest P 

application rate (134 mg kg
-1

):Ca-P was the highest concentration (>100 mg kg
-1

) of all 

inorganic P pools at pre-planting and harvest. Generally, the five inorganic P pools were 

influenced by the different P application rates. 

For the Commerce sl soil the observed P pools trend at 30 DAP was in the order 

Ca-P>Fe-P>reductant-P>labile-P>Al-P which correspond to the following extracting 

solution: H2SO4-Pi>NaOH-Pi>NaHCO3-Pi>NH4Cl-Pi>NH4F-Pi. At harvest, there was a 

slight change in trend such that the order was Ca-P>reductant-P>Fe-P>Al-P>labile-P 

(H2SO4-Pi>NaHCO3-Pi>NaOH-Pi>NH4F-Pi>NH4Cl-Pi) which confirmed the Walker and 

Syers (1976) model of P transformation over time.  

In general, the Ca bound P was higher in Commerce sl soil both at 30 DAP and  

harvest. This means that the unutilized fertilizer P did remain in the form of Ca-Pi. 

Contrary to the findings of Pierzynski et al. (1990) which indicate that on heavily 

fertilized soils Al, not Ca, was the predominant cation associated with P in P-rich 

particles regardless of soil pH. Harrell and Wang (2006) also studied the fractionation 

and sorption of Pi of calcareous soils of Louisiana; they reported that Commerce sl in 

Mississippi Red River alluvium contained large percentage of Fe phosphate suggesting 

that even these soils are classified as Commerce alluvium, they possess different 

characteristics.  

For the Pi fractions of Perry cl soil, our results revealed that the most abundant Pi 

form was Fe-Pi (>30 mg kg
-1

) at 30 DAP (Figure 3.5; Table 3.1). All the Pi fractions 

except the reductant-P were significantly influenced by P application rate (P<0.05). It 
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was also observed that there were increasing levels of readily-available labile P and Al-P 

fractions with P application rates. 

On the other hand, at harvest, the reductant-P had the highest concentration (>25 

mg kg
-1

) as shown in Figure 3.6. Moreover, there was a significant difference of 

reductant-P with different P application rates particularly between the highest P 

application and without P application. There was also significant increase in mean 

concentration values around 15 mg kg
-1

 of the reductant-P at harvest (P<0.05). The 

distribution trend of different Pi fractions of Perry clay soil was different at 30 DAP and 

harvest. The trend was Fe-P>Reductant-P>Ca-P>Labile-P>Al-P (NaOH-Pi> NaHCO3-

Pi> H2SO4-Pi> NH4Cl-Pi >NH4F-Pi) and reductant-P>Fe-P>Ca-P>Al-P>Labile-P 

(NaHCO3-Pi>NaOH-Pi>H2SO4-Pi>NH4F-Pi>NH4Cl-Pi) at 30 DAP and harvest, 

respectively. Results showed that the unutilized fertilizer P was transformed mainly to 

reductant-P and Fe-P. 

Overall, the labile P and Al-P fractions of samples collected before planting 

increased with increasing P rate while the relationship of Fe-P with P rates became 

observable only at harvest for both soils. With time across P rates, both soils showed 

build-up of less readily-available reductant-P. Similar findings was observed by Osodeke 

and Ubah (2005) on P fraction in selected soils of southern Nigeria where Al-P 

significantly correlated with the available P indicating that the increase in Al-P increases 

the available P in the soil. Similar results were also reported by Osodeke and Kamalu 

(1992).  
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Table 3.1. Distribution of inorganic phosphorus fractions of Commerce silt loam and 

Perry clay at 30 days after P fertilizer application. 

 

P Rate, 

kg P2O5 ha
-1

 

Inorganic Phosphorus Fractions, mg kg
-1

  

Total Labile-P Al-P Fe-P Reductant-P Ca-P 

Commerce silt loam 

0 11c  8 d 22 a 13 a 112 a 167 

34 12b   9 cd 23 a 13 a 122 a 180 

67 12b  12 bc 23 a 14 a 120 a 181 

101  14ab  13 ab 23 a 12 a 119 a 181 

134 14a 14 a 25 a 12 a 103 a 169 

       

Perry clay 

0c   9 d    4 bc   36 bc 19 a 20 a 89 

34b  12 cd  7 c 34 c 22 a 15 b 89 

67b  12 bc   7 bc   35 bc 21 a 16 b 91 

101ab  13 ab  10 ab   39 ab 21 a 15 b 97 

134a 12 a 12 a 42 a 21 a 15 b 101 

       

Note: Values within a column within soil type with the same letter are not significantly 

different at P<0.05. 

 

Table 3.2. Distribution of inorganic phosphorus fractions of Commerce silt loam and 

Perry clay after harvest of corn. 

 

P Rate, 

kg P2O5 ha
-1

 

Inorganic Phosphorus Fractions, mg kg
-1

  

Total Labile-P Al-P Fe-P Reductant-P Ca-P 

Commerce silt loam 

0 3 c   4 c 14 b 18 b 124 b 162 

34 3 c   6 bc 15 ab 20 ab 128 b 172 

67 4 b   8 ab 17 ab 20 ab 129 b 178 

101 4 b 10 a 18 ab 21 a 128 b 181 

134 6 a 10 a 23 ab 23 a 156 a 218 

       

Perry clay 

0 2 b 1 c 23 b 26 b   6 b 58 

34 2 b 3 bc 29 ab 33 ab   8 b 75 

67 3 b 4 ab 31 ab 31 ab   8 b 76 

101 2 b 6 a 28 ab 35 a   8 b 80 

134 3 a 5 ab 32 a 37 a 12 a 89 

       

Note: Values within a column within soil type with the same letter are not significantly 

different at P<0.05. 
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Figure 3.2.  Inorganic phosphorus pools of Commerce sl and Perry clay soils 

before P fertilizer application. 

  

 

 

Figure 3.3. Inorganic phosphorus pools of Commerce sl as influenced by different 

phosphorus rate at 30 days after application.  
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Figure 3.4. Inorganic phosphorus pools of Commerce sl as influenced by different 

phosphorus application rate at harvest.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Inorganic phosphorus pools of Perry clay as influenced by different 

phosphorus rate at 30 days after application.  
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Figure 3.6. Inorganic phosphorus pools of Perry clay as influenced by different 

phosphorus application rate at harvest.  
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concentration of the total Pi was only 28% of the total P which is 10% lower than the 

Commerce sl while the residual P was 10% higher on the Perry clay. 

At harvest, the same pattern was also observed for total P and total Pi wherein 

there was a significant difference between the two soils (P<0.05). Commerce has a mean 

value of 419 and 182 mg kg
-1 

for total P and total Pi, respectively while Perry cl has a 

mean value of 325 mg kg
-1

 total P and 76 mg kg
-1

 total Pi. There was a 5% increase in 

total Pi of Commerce sl and 10% reduction in residual P at harvest. However, with Perry 

cl soil there was a build-up of residual P with time and a reduction of total Pi.  

Results also showed that there was a significant difference in total Pi 

concentration among P application rates for both soils at harvest (Figures 3.8 and 3.10). 

Soil that received fertilizer P showed higher total Pi concentration compared to the soil 

without P (check pot).  Total Pi was the highest with P application rate of 134 kg ha
-1

; 

with mean values of 218 mg kg
-1

 P and 89 mg kg
-1

 for Commerce sl and Perry cl, 

respectively.  This means that increasing the application rate also increased the amount of 

the inorganic functional fractions of Pi. Similar result was found by Takahashi and 

Anwar (2006) with their field experiment on P uptake and soil P fraction after 23 years of 

annual fertilizer application of wheat grown on Andosol, wherein they reported that total 

Pi increased in treatments with P application at 0-15 cm depths. In contrary, both soils 

showed no significant differences between P rates in terms of total P and residual P at 30 

DAP and harvest. Results from this study had similar findings as Osodeke and Ubah 

(2005) wherein their results revealed that inactive Pi forms had the highest percent of the 

total P constituting 41.2% of the total P in all the soils they collected in 16 locations of 

Southern Nigeria.    
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Figure 3.7. Total inorganic phosphorus, residual P and total P of Commerce sl as 

influenced by different phosphorus application rate at 30 days after application. 

Data with same letter within row are not significantly different at P = 0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Total inorganic phosphorus, residual P and total P of Commerce sl as 

influenced by different phosphorus application rate at harvest. Data with same 

letter within row are not significantly different at P = 0.05. 
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Figure 3.9. Total inorganic phosphorus, residual P and total P of Perry clay as 

influenced by different phosphorus application rate at 30 days after application. 

Data with same letter within row are not significantly different at P = 0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Total inorganic phosphorus, residual P and total P of Perry clay as 

influenced by different phosphorus application rate at harvest. Data with same 

letter within row are not significantly different at P = 0.05. 
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3.4 Conclusions 

 

The P fractionation conducted in this study revealed that the two alluvial soils 

(Commerce sl and Perry clay) differed considerably in terms of the distribution of 

different P fractions. The unutilized P fertilizer was transformed mainly into Ca-P for 

Commerce sl soil while for Perry clay it transformed into Fe- and reductant-P.  Overall, 

the labile- and Al-P fractions before planting increased with increasing P rate while the 

relationship of Fe-P with P rates became observable only at harvest for both soils. With 

time across P rates, both soils showed build-up of less readily-available reductant-P. In 

terms of soil total P, residual P and total Pi components, our results revealed that 

Commerce sl and Perry cl soils differed significantly (P<0.05) at both DAP and harvest. 

On the other hand, the total P and residual P were not affected by P rates at both 30 DAP 

and harvest for both soils. 
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Chapter 4. Conclusions 

This study evaluated Bray-2 and Mehlich-3-based soil test P interpretations for 

corn on two Louisiana alluvial soils. Both Commerce sl and Perry cl soils were tested to 

having low to medium Mehlich-3 extractable P but responded differently with the 

application of P fertilizer. Grain yield of corn grown on Perry cl significantly responded 

to P rate. This was not the case for corn grown on Commerce sl. However, according to 

Bray-2 extraction method, Commerce sl was testing very high for P which was consistent 

to the lack of corn grain yield response to P application. Except for soil organic matter 

and particle size distribution, there were no outstanding differences on physical and 

chemical properties which could have resulted in differential response of corn grown on 

these two soils to P application. Also, there might be possible effect of other growth 

limiting condition or factors that could mask the effect of P application. Different P 

extraction procedures were established to obtain soil test P index suitable for specific 

groups of soil. The recent advancement in analytical procedure allowing analysis of 

multiple elements using one extraction procedure resulted in the adoption of Mehlich-3 

procedure by many soil testing laboratories.  However, the disagreement between the soil 

test P level and probability of crop response documented in earlier field studies including 

the current pot experiment highlighted the potential limitation of Mehlich-3 procedure in 

gauging plant available P in specific soils. The findings this study suggests that 

refinement of soil test P prediction should be pursued such that P fertilizer 

recommendations will not be based solely on P soil test. 

The P fractionation conducted in this study revealed that the two alluvial soils 

(Commerce sl and Perry clay) differed considerably in terms of the distribution of 
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different P fractions. The unutilized P fertilizer was transformed mainly into Ca-P for 

Commerce sl soil while for Perry it transformed into Fe- and reductant-P.  Overall, the 

labile- and Al-P fractions before planting increased with increasing P rate while the 

relationship of Fe-P with P rates became observable only at harvest for both soils. With 

time across P rates, both soils showed build-up of less readily-available reductant-P. In 

terms of soil total P, residual P and total Pi components, our results revealed that 

Commerce sl and Perry clay soils differed significantly (P<0.05) at both 30 DAP and 

harvest. On the other hand, the total P and residual P were not affected by P rates at both 

30 DAP and harvest for both soils. 
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